WorldWideScience

Sample records for ciemat fusion device

  1. Characterization of the Plasma Edge for Technique of Atomic Helium Beam in the CIEMAT Fusion Device

    International Nuclear Information System (INIS)

    In this report, the measurement of Electron Temperature and Density in the Boundary Plasma of TJ-II with a Supersonic Helium Beam Diagnostic and work devoted to the upgrading of this technique are described. Also, simulations of Laser Induced Fluorescence (LIF) studies of level populations of electronically excited He atoms are shown. This last technique is now being installed in the CIEMAT fusion device. (Author )

  2. Development and Testing of Atomic Beam-Based Plasma Edge Diagnostics in the CIEMAT Fusion Devices

    International Nuclear Information System (INIS)

    In this report the development of plasma edge diagnostic based on atomic beam techniques fir their application in the CIEMAT fusion devices is described. The characterisation of the beams in laboratory experiments at the CSIC, together with first results in the Torsatron TJ-II are reported. Two types of beam diagnostics have been developed: a thermal (effusive) Li and a supersonic, pulsed He beams. This work has been carried out in collaboration between the institutions mentioned above under partial financial support by EURATOM. (Author) 17 refs

  3. Characterization of the Plasma Edge for Technique of Atomic Helium Beam in the CIEMAT Fusion Device; Caracterizacion del Borde del Plasma del Dispositivo de Fusion TJ-II del CIEMAT mediante el Diagnostico del Haz Supersonico de Helio

    Energy Technology Data Exchange (ETDEWEB)

    Hidalgo, A.

    2003-07-01

    In this report, the measurement of Electron Temperature and Density in the Boundary Plasma of TJ-II with a Supersonic Helium Beam Diagnostic and work devoted to the upgrading of this technique are described. Also, simulations of Laser Induced Fluorescence (LIF) studies of level populations of electronically excited He atoms are shown. This last technique is now being installed in the CIEMAT fusion device. (Author ) 36 refs.

  4. Euraton-CIEMAT for fusion Association: Annual report 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    This annual report presents the main activities during 1998 in the EURATOM-CIEMAT for the fusion. The goal line of research are: 1. The TJ-II facility 2. Physics Studies 3. Fusion Technology Programme 4. Keep in Touch Activities in ICF at Denim.

  5. Recent progress in thin-film-silicon photovoltaic devices at CIEMAT; Recientes progresos en la tecnologia de dispositivos fotovoltaicos de silicio en lamina delgada en el CIEMAT

    Energy Technology Data Exchange (ETDEWEB)

    Gandia, J. J.; Carabe, J.

    2011-07-01

    Solar photovoltaic energy has evolved in the last 50 years on the basis of the co-existence of two fundamental technological paths: that of wafer-based silicon, dominating the market, and that of thin films, representing an important part of the options for the future of this energy-conversion field. More recently new concepts have gained significance, such as concentration photovoltaic (CPV), dye-sensitised solar cells (DSSC), organic cells, silicon-heterojunction (SHJ) cells and thin-crystalline silicon devices among others. over 90% of all these PV technologies are based on the use of either of the forms of the most abundant element of the earth crust: silicon. CIEMAT, being aware of the relevant role renewable energies and post-vocalic in particular must play in dinging solutions to the energy and environmental problem, has several action lines within this discipline. Among them is the one developed at the laboratory for Deposited-silicon Devices (DSD), entirely devoted to acquiring by own means the technology required for the fabrication of thin-film-silicon-based PV devices in order to be in conditions to give a maximum support to the Spanish industry in this field. Within the context of the historic evolution of PV technology in the world, this paper describes the progress of the DSD lab in the last years, according to a plan aimed at developing technology of the maximum strategic value. such a working scheme, supported by valuable collaborations, has led the group to a reference position in the areas of thin-film-silicon p-i-n devices on glass, silicon-heterojunction cells and p-i-n devices on flexible substrates. (Author) 5 refs.

  6. Ceramics for fusion devices

    International Nuclear Information System (INIS)

    Ceramics are required for a number of applications in fusion devices, among the most critical of which are magnetic coil insulators, windows for RF heating systems, and structural uses. Radiation effects dominate consideration of candidate materials, although good pre-irradiation properties are a requisite. Materials and components can be optimized by careful control of chemical and microstructural content, and application of brittle material design and testing techniques. Future directions for research and development should include further extension of the data base in the areas of electrical, structural, and thermal properties; establishment of a fission neutron/fusion neutron correlation including transmutation gas effects; and development of new materials tailored to meet the specific needs of fusion reactors

  7. Fusion engineering device design description

    International Nuclear Information System (INIS)

    The US Magnetic Fusion Engineering Act of 1980 calls for the operation of a Fusion Engineering Device (FED) by 1990. It is the intent of the Act that the FED, in combination with other testing facilities, will establish the engineering feasibility of magnetic fusion energy. During 1981, the Fusion Engineering Design Center (FEDC), under the guidance of a Technical Management Board (TMB), developed a baseline design for the FED. This design is summarized herein

  8. Fusion Engineering Device design description

    International Nuclear Information System (INIS)

    The US Magnetic Fusion Engineering Act of 1980 calls for the operation of a Fusion Engineering Device (FED) by 1990. It is the intent of the Act that the FED, in combination with other testing facilities, will establish the engineering feasibility of magnetic fusion energy. During 1981, the Fusion Engineering Design Center (FEDC), under the guidance of a Technical Management Board (TMB), developed a baseline design for the FED. This design is summarized herein

  9. Nuclear fusion device

    International Nuclear Information System (INIS)

    Grooves are formed on the wall surface disposed at the inner side of a vacuum vessel for confining plasmas, to thereby divide the flow channel of induced eddy current. During unsteady state of the plasmas, the flow channel of the eddy current induced on the wall surface is divided into a great number of small loops to inhibit the spacial extension of the induced eddy current, and the value of the induced eddy current is decreased. Therefore, electromagnetic forces formed on the wall surface due to interaction with steady magnetic fields are decreased to reduce the moment of the force exerted on the wall surface. The integrity and the reliability in view of the structure of the thermonuclear device can be improved. (N.H.)

  10. Elongated toroid fusion device

    International Nuclear Information System (INIS)

    A device for achieving ignition of a plasma with ohmic heating is described comprising: means for defining a toroidal plasma chamber,a and confining gas therein, and means including electrically conductive coils for generating plasma within the chamber and for confining and shaping such plasma substantially into and filling a predetermined single region of the chamber without an axisymmetric internal separatix and ohmically heating the confined plasma to ignition. The predetermined region is toroidal with a major axis defining an axial direction parallel thereto and a transaxial direction perpendicular to the axis and having an axial cross section with an elongation, k, greater than 4, where k is the ratio of the maximum axial dimension of the cross section to the maximum transaxial dimension of the cross section

  11. Electromagnetic computations for fusion devices

    International Nuclear Information System (INIS)

    Among the difficulties in making nuclear fusion a useful energy source, two important ones are producing the magnetic fields needed to drive and confine the plasma, and controlling the eddy currents induced in electrically conducting components by changing fields. All over the world, researchers are developing electromagnetic codes and employing them to compute electromagnetic effects. Ferromagnetic components of a fusion reactor introduce field distortions. Eddy currents are induced in the vacuum vessel, blanket and other torus components of a tokamak when the plasma current disrupts. These eddy currents lead to large forces, and 3-D codes are being developed to study the currents and forces. 35 refs., 6 figs

  12. Electromagnetic computations for fusion devices

    Energy Technology Data Exchange (ETDEWEB)

    Turner, L.R.

    1989-09-01

    Among the difficulties in making nuclear fusion a useful energy source, two important ones are producing the magnetic fields needed to drive and confine the plasma, and controlling the eddy currents induced in electrically conducting components by changing fields. All over the world, researchers are developing electromagnetic codes and employing them to compute electromagnetic effects. Ferromagnetic components of a fusion reactor introduce field distortions. Eddy currents are induced in the vacuum vessel, blanket and other torus components of a tokamak when the plasma current disrupts. These eddy currents lead to large forces, and 3-D codes are being developed to study the currents and forces. 35 refs., 6 figs.

  13. Theoretical aspects of Dust in fusion devices

    International Nuclear Information System (INIS)

    It is known that micro-particles (dust) exist in fusion devices. However, an impact of dust on plasma contamination, material migration, and performance of fusion devices is still under debate. In burning plasma experiments like ITER dust can also pose safety problems related to it's chemical activity, toxicity, tritium retention, and radioactive content. In order to address all these issues we need to understand the physics of dust generation, dynamics, and transport. In this paper, the results of recent theoretical studies of dust in fusion plasmas are reviewed. Different aspects of the physics of dust in fusion plasmas, including the processes of dust generation, charging, heating, destruction, spinning, forces acting on dust, dust collision with material walls, etc are discussed. The numerical models of these processes have been incorporated into the dust transport code DUSTT, which is capable of tracking of dust particles in fusion devices in 3D geometry. The results of the simulations of dust particle dynamics, transport, and the impact on edge plasma performance are considered. The latest results on nonlinear interactions of dust grain with tokamak plasma as well as remaining gaps in the understanding of physics of dust in fusion devices are discussed (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  14. ASME Division 4 fusion energy devices

    International Nuclear Information System (INIS)

    There is an on-going effort within the ASME Section III Codes and Standards organization approved by the ASME Board of Nuclear Codes and Standards to develop rules for the construction of fusion-energy-related components such as vacuum vessel (vacuum or target chamber), cryostat and superconductor structures and their interaction with each other. These rules will be found in Division 4 of Section III entitled 'Fusion Energy Devices (BPV III)'. Other related support structures, including metallic and non-metallic materials, containment or confinement structures, fusion-system piping, vessels, valves, pumps, and supports will also be covered. The rules shall contain requirements for materials, design, fabrication, testing, examination, inspection, certification, and stamping. The formation of the new Sub-Group Fusion Energy Devices that will develop these rules is just beginning to develop its membership and future working group support structures. (author)

  15. Magnetic systems for fusion devices

    International Nuclear Information System (INIS)

    Mirror experiments have led the way in applying superconductivity to fusion research because of unique requirements for high and steady magnetic fields. The first significant applications were Baseball II at LLNL and IMP at ORNL. More recently, the MFTF-B yin-yang coil was successfully tested and the entire tandem configuration is nearing completion. Tokamak magnets have also enjoyed recent success with the large coil project tests at ORNL, preceded by single coil tests in Japan and Germany. In the USSR, the T-7 Tokamak has been operational for many years and the T-15 Tokamak is under construction, with the TF coils nearing completion. Also the Tore Supra is being built in France

  16. Plasma surface interactions in controlled fusion devices

    Energy Technology Data Exchange (ETDEWEB)

    Ghendrih, Ph.; Becoulet, M.; Costanzo, L. [and others

    2000-07-01

    This report brings together all the contributions of EURATOM/CEA association to the 14. international conference on plasma surface interactions in controlled fusion devices. 24 papers are presented and they deal mainly with the ergodic divertor and the first wall of Tore-supra tokamak.

  17. Plasma surface interactions in controlled fusion devices

    International Nuclear Information System (INIS)

    This report brings together all the contributions of EURATOM/CEA association to the 14. international conference on plasma surface interactions in controlled fusion devices. 24 papers are presented and they deal mainly with the ergodic divertor and the first wall of Tore-supra tokamak

  18. Arcing phenomena in fusion devices workshop

    International Nuclear Information System (INIS)

    The workshop on arcing phenomena in fusion devices was organized (1) to review the pesent status of our understanding of arcing as it relates to confinement devices, (2) to determine what informaion is needed to suppress arcing and (3) to define both laboratory and in-situ experiments which can ultimately lead to reduction of impurities in the plasma caused by arcing. The workshop was attended by experts in the area of vacuum arc electrode phenomena and ion source technology, materials scientists, and both theoreticians and experimentalists engaged in assessing the importance of unipolar arcing in today's tokamaks. Abstracts for papers presented at the workshop are included

  19. Arcing phenomena in fusion devices workshop

    Energy Technology Data Exchange (ETDEWEB)

    Clausing, R.E.

    1979-01-01

    The workshop on arcing phenomena in fusion devices was organized (1) to review the pesent status of our understanding of arcing as it relates to confinement devices, (2) to determine what informaion is needed to suppress arcing and (3) to define both laboratory and in-situ experiments which can ultimately lead to reduction of impurities in the plasma caused by arcing. The workshop was attended by experts in the area of vacuum arc electrode phenomena and ion source technology, materials scientists, and both theoreticians and experimentalists engaged in assessing the importance of unipolar arcing in today's tokamaks. Abstracts for papers presented at the workshop are included.

  20. Scientific and Technological Facilities in CIEMAT; Las Instalaciones del CIEMAT

    Energy Technology Data Exchange (ETDEWEB)

    Vaquero Ortiz, E. M.

    2012-09-13

    The precise knowledge of the available Resources in an Organization, regardless the work it carries out, is an essential strategic enable to achieve its goals. Material Resources are part of the resources in an organization, The Material Resources expression includes a wide span of elements, because a Material Resource, as a generic concept, is each and every specific physical mean, utilised to get any of the Organization objectives. In case of CIEMAT, as Public Research Agency, its Material Resources consists of its scientific and technological facilities. These resources are the basis of this Agency numerous amount of technical capabilities, allowing it to carry out its research, development and innovation activity to transfer its results to the society later. This report is a summary on CIEMAT scientific and technological facilities, whose spread can help to show its scientific and technological capabilities, to enable the execution of a wide variety of projects and to open new external cooperation channels. In that list its possible to find the two Unique Scientific and Technological Infrastructures (ICTS) in Spain which are hold by CIEMAT and the Ionizing Radiations Metrology Laboratory (LMRI) which is the Spanish National Standards Laboratory for ionising radiations. (Author)

  1. Plasma Surface interaction in Controlled fusion devices

    International Nuclear Information System (INIS)

    The subjects presented in the 9th conference on plasma surface interaction in controlled fusion devices were: the modifications of power scrape-off-length and power deposition during various configurations in Tore Supra plasmas; the effects observed in ergodic divertor experiments in Tore-Supra; the diffuse connexion induced by the ergodic divertor and the topology of the heat load patterns on the plasma facing components in Tore-Supra; the study of the influence of air exposure on graphite implanted by low energy high density deuterium plasma

  2. Divertor for a linear fusion device

    Science.gov (United States)

    Ryutov, D. D.; Yushmanov, P. N.; Barnes, D. C.; Putvinski, S. V.

    2016-03-01

    Linear fusion devices can use large magnetic flux flaring in the end tanks to reduce the heat load on the end structures. In order to reduce parallel electron heat loss, one has to create conditions where the neutral gas density in the end tanks is low, as otherwise cold electrons produced by the ionization of the neutrals would cool down the core plasma electrons. The processes determining the neutral gas formation and spatial distribution are analysed for the case where neutrals are formed by the surface recombination of the outflowing plasma. The conditions under which the cooling of the core plasma is negligible are formulated.

  3. Eddy current analysis in fusion devices

    International Nuclear Information System (INIS)

    In magnetic fusion devices, particularly tokamaks and reversed field pinch (RFP) experiments, time-varying magnetic fields are in intimate contact with electrically conducting components of the device. Induced currents, fields, forces, and torques result. This note reviews the analysis of eddy current effects in the following systems: Interaction of a tokamak plasma with the eddy currents in the first wall, blanket, and shield (FWBS) systems; Eddy currents in a complex but two-dimensional vacuum vessel, as in TFTR, JET, and JT-60; Eddy currents in the FWBS system of a tokamak reactor, such as NET, FER, or ITER; and Eddy currents in a RFP shell. The cited studies are chosen to be illustrative, rather than exhaustive. 42 refs

  4. Parametric study of axisymmetric fusion devices

    International Nuclear Information System (INIS)

    Three different axisymmetric magnetic mirror fusion machines are examined in order to optimize the ratio the fusion power produced by them to the power injected into them to maintain the plasma. These three devices were chosen to study the continuum between a simple mirror and a tandem mirror. This allowed the evolutionary process leading from the simple to the tandem mirror to be examined in detail. The Kelley mirror, which corresponds to the middle step, was examined in depth for the first time. A computer code that models the plasma in these machines was written to investigate the steady-state operation of these machines. The balance equations are solved by using an ordinary differential equation solver, LSODE, to numerically solve the system of differential equations. The computer model was used to examine parameter space to optimize Q for each of the three machines. When feasible, a comparison with a Fokker-Planck code was made for the optimal Q case for each machine. Finally, the possible roles these devices might fill was discussed

  5. Tritium and workers in fusion devices-lessons learnt

    International Nuclear Information System (INIS)

    Fusion machines from all over the world have contributed to the knowledge accumulated in fusion science. This knowledge has been applied to design new experimental fusion machines and in particular ITER. Only two fusion devices based on magnetic confinement have used deuterium and tritium fuels to-date-the Tokamak Fusion Test Reactor, TFTR, in Princeton, USA, and JET, the European tokamak. These machines have demonstrated that the fusion reaction is achievable with these fuels, and have provided valuable lessons on radioprotection-related issues as concerns tritium and workers. Dedicated tritium installations for fusion research and development have also contributed to this knowledge base.

  6. Tritium and workers in fusion devices-lessons learnt.

    Science.gov (United States)

    Rodriguez-Rodrigo, Lina; Elbez-Uzan, Joelle; Alejaldre, Carlos

    2009-09-01

    Fusion machines from all over the world have contributed to the knowledge accumulated in fusion science. This knowledge has been applied to design new experimental fusion machines and in particular ITER. Only two fusion devices based on magnetic confinement have used deuterium and tritium fuels to-date-the Tokamak Fusion Test Reactor, TFTR, in Princeton, USA, and JET, the European tokamak. These machines have demonstrated that the fusion reaction is achievable with these fuels, and have provided valuable lessons on radioprotection-related issues as concerns tritium and workers. Dedicated tritium installations for fusion research and development have also contributed to this knowledge base. PMID:19690360

  7. Dispersion interferometer for controlled fusion devices

    International Nuclear Information System (INIS)

    A common feature in interferometry is the presence of two independent optical channels. Since wave phase in a medium depends on the geometrical path, polarization and radiation frequency, respectively, one can distinguish three types of interferometric schemes when the channels are geometrically separated, or separation occurs in polarizations or radiation frequencies. We have developed a measurement scheme based on a dispersion interferometer (DI) for plasma diagnostics in the experiments on controlled fusion. DI optical channels have the same geometrical path and are separated in radiation frequency. Use of a common optical path causes the main advantage of the DI technique - low sensitivity to vibrations of optical elements. The use of the DI technique for diagnostics of a laser spark in air and of arc discharges has shown its essential advantages as compared to classical interferometers. Interest in the DI technique from the viewpoint of its application in controlled fusion devices is determined also generated by the possibility of developing a compact multichannel interferometer not requiring a vibration isolation structure. (author) 14 refs., 3 figs

  8. Roadmap and performance carried out during Ciemat site decommissioning

    International Nuclear Information System (INIS)

    Ciemat (Research Centre for Energy, Environment and Technology) located in the heart of the Ciudad Universitaria of Madrid, occupies a property of 20 Ha. Since its creation in 1951 as JEN, and in 1986 renowned as Ciemat, it has involved on R and D projects in the field of Energy and Environment, i.e., Nuclear Fission, Nuclear Fusion, Fossils Fuels, Renewable Energy. As a consequence of the R and D projects developed between 1951 - 1986 on Nuclear Fission field (fuel design, fabrication, characterization on irradiated fuels, safety studies, etc) and to the diversification of the goals as well, it is necessary to Decommissioning and Dismantling (D and D) from nuclear facilities (nuclear reactor, Hot Cells, Irradiation facility), buildings and soils. Preparations for D and D included a staged shutdown of operations, planning documentation and licensing for decommissioning. As a prerequisite to Ciemat application for a decommissioning license and nuclear environmental assessment was carried out according to Spanish Nuclear Council (CSN) and approval of the site decommissioning project was obtained in 2000 and valid until December 31, 2006. Since 2001 - 2003 is underway and focussed on the radiological characterization of the site (divided in pieces of ground), when each piece of ground is characterized a planning for D and D is presented to CSN in order to obtain a license for actuation. Nowadays several pieces of ground are decontaminated and modifications have been done in order to achieve a safe state of storage-with-surveillance. Later phases have planned waste management improvements for selected wastes already on temporally storage, eventually followed by final decommissioning of facilities and buildings and cleaning of contaminants from soils and removal of waste from the site. This paper describes the planning, nuclear and environment assessment and descriptions of decommissioning activities currently underway at Ciemat. (Author)

  9. Roadmap and performance carried out during Ciemat site decommissioning

    Energy Technology Data Exchange (ETDEWEB)

    Quinones, Javier; Diaz Diaz, Jose Luis

    2005-01-01

    Ciemat (Research Centre for Energy, Environment and Technology) located in the heart of the Ciudad Universitaria of Madrid, occupies a property of 20 Ha. Since its creation in 1951 as JEN, and in 1986 renowned as Ciemat, it has involved on R and D projects in the field of Energy and Environment, i.e., Nuclear Fission, Nuclear Fusion, Fossils Fuels, Renewable Energy. As a consequence of the R and D projects developed between 1951 - 1986 on Nuclear Fission field (fuel design, fabrication, characterization on irradiated fuels, safety studies, etc) and to the diversification of the goals as well, it is necessary to Decommissioning and Dismantling (D and D) from nuclear facilities (nuclear reactor, Hot Cells, Irradiation facility), buildings and soils. Preparations for D and D included a staged shutdown of operations, planning documentation and licensing for decommissioning. As a prerequisite to Ciemat application for a decommissioning license and nuclear environmental assessment was carried out according to Spanish Nuclear Council (CSN) and approval of the site decommissioning project was obtained in 2000 and valid until December 31, 2006. Since 2001 - 2003 is underway and focussed on the radiological characterization of the site (divided in pieces of ground), when each piece of ground is characterized a planning for D and D is presented to CSN in order to obtain a license for actuation. Nowadays several pieces of ground are decontaminated and modifications have been done in order to achieve a safe state of storage-with-surveillance. Later phases have planned waste management improvements for selected wastes already on temporally storage, eventually followed by final decommissioning of facilities and buildings and cleaning of contaminants from soils and removal of waste from the site. This paper describes the planning, nuclear and environment assessment and descriptions of decommissioning activities currently underway at Ciemat. (Author)

  10. Reliability and safety analysis for systems of fusion device

    Energy Technology Data Exchange (ETDEWEB)

    Alzbutas, Robertas, E-mail: robertas.alzbutas@lei.lt; Voronov, Roman

    2015-05-15

    Highlights: • Reliability is very important from fusion devices efficiency perspective. • Rich experience of probabilistic safety analysis exists in nuclear industry. • Reliability and safety analysis was applied for systems of fusion device. • This enables to identify and prioritize availability improvement measures. • Recommendations are based on cost effectiveness for risk decrease options. - Abstract: Fusion energy or thermonuclear power is a promising, literally endless source of energy. Development of fusion power is still under investigation and experimental phase, and a number of fusion devices are under construction in Europe. Since fusion energy is innovative and fusion devices contain unique and expensive equipment, an issue of their reliability is very important from their efficiency perspective. A Reliability, Availability, Maintainability, Inspectability (RAMI) analysis is being performed or is going to be performed in the nearest future for such fusion devices as ITER and DEMO in order to ensure reliable and efficient operation for experiments (e.g., in ITER) or for energy production purposes (e.g., in DEMO). On the other hand, rich experience of the reliability and Probabilistic Safety Analysis (PSA) exists in nuclear industry for fission power plants and other nuclear installations. In this paper, the Wendelstein 7-X (W7-X) device is mainly considered. This stellarator device is in commissioning stage in the Max-Planck-Institut für Plasmaphysik, Greifswald, Germany (IPP). In the frame of cooperation between the IPP and the Lithuanian Energy Institute (LEI) under the European Fusion Development Agreement a pilot project of a reliability analysis of the W7-X systems was performed with a purpose to adopt Nuclear Power Plant (NPP) PSA experience for fusion device systems. During the project reliability and safety (risk) analysis of a Divertor Target Cooling Circuit, which is an important system for permanent and reliable operation of in

  11. Reliability and safety analysis for systems of fusion device

    International Nuclear Information System (INIS)

    Highlights: • Reliability is very important from fusion devices efficiency perspective. • Rich experience of probabilistic safety analysis exists in nuclear industry. • Reliability and safety analysis was applied for systems of fusion device. • This enables to identify and prioritize availability improvement measures. • Recommendations are based on cost effectiveness for risk decrease options. - Abstract: Fusion energy or thermonuclear power is a promising, literally endless source of energy. Development of fusion power is still under investigation and experimental phase, and a number of fusion devices are under construction in Europe. Since fusion energy is innovative and fusion devices contain unique and expensive equipment, an issue of their reliability is very important from their efficiency perspective. A Reliability, Availability, Maintainability, Inspectability (RAMI) analysis is being performed or is going to be performed in the nearest future for such fusion devices as ITER and DEMO in order to ensure reliable and efficient operation for experiments (e.g., in ITER) or for energy production purposes (e.g., in DEMO). On the other hand, rich experience of the reliability and Probabilistic Safety Analysis (PSA) exists in nuclear industry for fission power plants and other nuclear installations. In this paper, the Wendelstein 7-X (W7-X) device is mainly considered. This stellarator device is in commissioning stage in the Max-Planck-Institut für Plasmaphysik, Greifswald, Germany (IPP). In the frame of cooperation between the IPP and the Lithuanian Energy Institute (LEI) under the European Fusion Development Agreement a pilot project of a reliability analysis of the W7-X systems was performed with a purpose to adopt Nuclear Power Plant (NPP) PSA experience for fusion device systems. During the project reliability and safety (risk) analysis of a Divertor Target Cooling Circuit, which is an important system for permanent and reliable operation of in

  12. Nuclear Analysis for Near Term Fusion Devices

    International Nuclear Information System (INIS)

    A Next Step Options (NSO) study was initiated to consider the logical steps that might be undertaken to restructure the U.S. Fusion Sciences Program. Most of the effort was concentrated on designing the Fusion Ignition Research Experiment (FIRE), which is in the preconceptual design phase. It utilizes 16 cryogenically cooled wedged copper TF coils with beryllium copper in the inner legs and OFHC copper in the outer legs. We provided significant contributions in the areas of neutronics, shielding and activation analyses. The design went through different changes. Early in the year 2002 the baseline design changed from a major radius of 2 m to a major radius of 2.14 m and an aspect ratio of 3.6. In addition the fusion power during the DT pulses changed from 200 MW to 150 MW. We spent significant part of the effort calculating the nuclear performance parameters for the final baseline design. While pulses producing a total of 5 TJ of DT fusion energy and 0.5 TJ of DD fusion energy were considered in the previous designs, a detailed experimental plan was developed that results in higher total fusion energy. We assessed the impact on the peak magnet insulator dose. Multi-dimensional calculations were performed also to determine the impact of plasma shape and profile on he peak radiation effects in the TF coils. We performed multi-dimensional calculations for one of the most critical diagnostics ports to assess streaming and determine the nuclear environment at the sensitive components. The radwaste level and volume was quantified for the different components of FIRE

  13. Wafer Fusion for Integration of Semiconductor Materials and Devices

    Energy Technology Data Exchange (ETDEWEB)

    Choquette, K.D.; Geib, K.M.; Hou, H.Q.; Allerman, A.A.; Kravitz, S.; Follstaedt, D.M.; Hindi, J.J.

    1999-05-01

    We have developed a wafer fusion technology to achieve integration of semiconductor materials and heterostructures with widely disparate lattice parameters, electronic properties, and/or optical properties for novel devices not now possible on any one substrate. Using our simple fusion process which uses low temperature (400-600 C) anneals in inert N{sub 2} gas, we have extended the scope of this technology to examine hybrid integration of dissimilar device technologies. As a specific example, we demonstrate wafer bonding vertical cavity surface emitting lasers (VCSELs) to transparent AlGaAs and GaP substrates to fabricate bottom-emitting short wavelength VCSELs. As a baseline fabrication technology applicable to many semiconductor systems, wafer fusion will revolutionize the way we think about possible semiconductor devices, and enable novel device configurations not possible by epitaxial growth.

  14. Nuclear data for nuclear fusion devices

    International Nuclear Information System (INIS)

    The engineering and physical problems of design of a thermonuclear installation involve a detailed investigation of the interaction between the fusion neutrons and the blanket materials. In this paper are reviewed the most important processes which take place within the blanket: a) tritium breeding, b) nuclear heating, c) radiation damage. (orig.)

  15. Pellet production methods for fueling fusion devices

    International Nuclear Information System (INIS)

    A review is given of the methods developed for producing and positioning hydrogen isotope pellets which are used for filling magnetic confinement machines. Composite pellets used in inertial confinement (i.e. laser fusion) experiments are not considered in this review. (orig.)

  16. Database for fusion devices and associated fuel systems

    International Nuclear Information System (INIS)

    A computerized database storage and retrieval system has been set up for fusion devices and the associated fusion fuel systems which should be a useful tool for the CFFTP program and other users. The features of the Wang 'Alliance' system are discussed for this application, as well as some of the limitations of the system. Recommendations are made on the operation, upkeep and further development that should take place to implement and maintain the system

  17. Numerical experiments providing new insights into plasma focus fusion devices

    International Nuclear Information System (INIS)

    Recent extensive and systematic numerical experiments have uncovered new insights into plasma focus fusion devices including the following: (1) a plasma current limitation effect, as device static inductance is reduced towards very small values; (2) scaling laws of neutron yield and soft x-ray yield as functions of storage energies and currents; (3) a global scaling law for neutron yield as a function of storage energy combining experimental and numerical data showing that scaling deterioration has probably been interpreted as neutron 'saturation'; and (4) a fundamental cause of neutron 'saturation'. The ground-breaking insights thus gained may completely change the directions of plasma focus fusion research. (author)

  18. Soil radiological characterisation and remediation at CIEMAT

    International Nuclear Information System (INIS)

    Located in Madrid, CIEMAT is the Spanish Centre for Energy-Related, Environmental and Technological Research. It used to have more than 60 facilities in operation that allowed a wide range of activities in the nuclear field and in the application of ionising radiations. At present, the centre includes several facilities; some of them are now obsolete, shut down and in dismantling phases. In 2000 CIEMAT started the 'Integrated plan for the improvement of CIEMAT facilities (PIMIC)', which includes activities for the decontamination, dismantling, rehabilitation of obsolete installations and soil remediation activities. A small contaminated area named with the Spanish word 'Lenteja' (Lentil), has had to be remediate and restored. In the 70's, an incidental leakage of radioactive liquid occurred during a transference operation from the Reprocessing Plant to the Liquid Treatment Installation, and contaminated about 1000 m3 of soil. Remediation activities in this area started with an exhaustive radiological characterisation of the soil, including surface samples and up to 16 meters boreholes, and the development of a comprehensive radiological characterization methodology for pre-classification of materials. Once the framework was defined the following tasks were being carried out: preparation of the area, soil extraction activities and final radiological characterisation for release purposes. Next step will be the refilling of the resulting hole from the removal soil activities. This paper will describe the soil radiological characterization and remediation activities at the Lentil Zone in Ciemat Research Centre. (authors)

  19. Computerized device for critical flicker fusion frequency determination

    Science.gov (United States)

    Racene, Diana

    2003-08-01

    The critical fusion flicker frequency of the human visual system is the threshold sensitivity for a sine wave-modulated patch of monochromatic flickering light measured as a function of its temporal frequency and average luminance level. The critical flicker fusion frequency changes in different ocular and non-ocular conditions, for example: high-myopia, AMR, glaucoma, schizophrenia, after alcohol intake, fatigue. A computerized test for critical flicker fusion frequency determination was developed. Visual stimuli are two monochromatic LED light sources that are connected to a microcircuit driven by a computer program. The control of the device is realized through the parallel port of the PC. During the test a patient has to choose which one of two light sources is flickering. The critical cliker fusion frequency is determined by a psychophysical procedure, where the stimulus frequency that showed detection probability 75% is considered as threshold.

  20. Coupling of transit time instabilities in electrostatic confinement fusion devices

    International Nuclear Information System (INIS)

    A model of the behavior of transit time instabilities in an electrostatic confinement fusion reactor is presented in this letter. It is demonstrated that different modes are excited within the spherical cathode of a Farnsworth fusor. Each of these modes is dependent on the fusion products as well as the acceleration voltage applied between the two electrodes and they couple to a resulting oscillation showing non-linear beat phenomena. This type of instability is similar to the transit time instability of electrons between two resonant surfaces but the presence of ions and the occurring fusion reactions alter the physics of this instability considerably. The physics of this plasma instability is examined in detail for typical physical parameter ranges of electrostatic confinement fusion devices

  1. Initial trade and design studies for the fusion engineering device

    International Nuclear Information System (INIS)

    The Magnetic Fusion Energy Engineering Act of 1980 calls for the operation of a Fusion Engineering Device (FED) by 1990. It is the intent of the Act that the FED, in combination with other testing facilities, will establish the engineering feasibility of magnetic fusion energy. The Fusion Engineering Design Center (FEDC), under the guidance of a Technical Management Board (TMB), initiated a program of trade and design studies in October 1980 to support the selection of the FED concept. This document presents the results of these initial trade and design studies. Based on these results, a baseline configuration has been identified and the Design Center effort for the remainder of the fiscal year will be devoted to the development of a self-consistent FED design description

  2. Measurements of temperature and density in magnetic confinement fusion devices

    Science.gov (United States)

    Udintsev, Victor S.

    2010-11-01

    Controlled thermonuclear fusion can fulfil the demand of mankind to have an inexhaustible source of energy that does not cause any serious environmental pollution. The aim of fusion research is to build a continuously operating reactor in which the energy released by the fusion reactions is sufficiently high to keep the plasma hot and to produce more fusion reactions. The knowledge of the plasma temperature and density, together with the energy confinement time, is therefore very important for the effective control of the self-sustained fusion reactor. Various methods and diagnostics for measurements of the plasma temperature and density in present experimental fusion devices, as well as requirements for the future fusion reactors, will be discussed. A special attention will be given to the temperature and density diagnostics in ITER tokamak, which is presently under construction by several international partners at Cadarache in France. Development of these diagnostics is a major challenge because of severe environment, strict engineering requirements, safety issues and the need for high reliability in the measurements.

  3. Local wall power loading variations in thermonuclear fusion devices

    International Nuclear Information System (INIS)

    A 2 1/2-dimensional geometric model is presented that allows calculation of power loadings at various points on the first wall of a thermonuclear fusion device. Given average wall power loadings for brems-strahlung, cyclotron radiation charged particles, and neutrons, which are determined from various plasma-physics computation models, local wall heat loads are calculated by partitioning the plasma volume and surface into cells and superimposing the heating effects of the individual cells on selected first-wall differential areas. Heat loads from the entire plasma are thus determined as a function of position on the first-wall surface. Significant differences in local power loadings were found for most fusion designs, and it was therefore concluded that the effect of local power loading variations must be taken into account when calculating temperatures and heat transfer rates in fusion device first walls

  4. FED-R: a fusion engineering device utilizing resistive magnets

    Energy Technology Data Exchange (ETDEWEB)

    Jassby, D.L.; Kalsi, S.S. (eds.)

    1983-04-01

    The principal purpose of the FED-R tokamak facility is to provide a substantial quasi-steady flux of fusion neutrons irradiating a large test area in order to carry out thermal, neutronic, and radiation effects testing of experimental blanket assemblies having a variety of configurations, compositions, and purposes. The design of the FED-R device also suggests potential for an upgrade that could be employed as a full-scale demonstration reactor for some specific fusion-neutron application when required.

  5. FED-R: a fusion engineering device utilizing resistive magnets

    International Nuclear Information System (INIS)

    The principal purpose of the FED-R tokamak facility is to provide a substantial quasi-steady flux of fusion neutrons irradiating a large test area in order to carry out thermal, neutronic, and radiation effects testing of experimental blanket assemblies having a variety of configurations, compositions, and purposes. The design of the FED-R device also suggests potential for an upgrade that could be employed as a full-scale demonstration reactor for some specific fusion-neutron application when required

  6. Fusion product diagnostics planned for Large Helical Device deuterium experiment

    International Nuclear Information System (INIS)

    Deuterium experiment on the Large Helical Device (LHD) is now being planned at the National Institute for Fusion Science. The fusion product diagnostics systems currently considered for installation on LHD are described in this paper. The systems will include a time-resolved neutron yield monitor based on neutron gas counters, a time-integrated neutron yield monitor based on activation techniques, a multicollimator scintillation detector array for diagnosing spatial distribution of neutron emission rate, 2.5 MeV neutron spectrometer, 14 MeV neutron counter, and prompt γ-ray diagnostics.

  7. Scientific and Technological Facilities in CIEMAT

    International Nuclear Information System (INIS)

    The precise knowledge of the available Resources in an Organization, regardless the work it carries out, is an essential strategic enable to achieve its goals. Material Resources are part of the resources in an organization, The Material Resources expression includes a wide span of elements, because a Material Resource, as a generic concept, is each and every specific physical mean, utilised to get any of the Organization objectives. In case of CIEMAT, as Public Research Agency, its Material Resources consists of its scientific and technological facilities. These resources are the basis of this Agency numerous amount of technical capabilities, allowing it to carry out its research, development and innovation activity to transfer its results to the society later. This report is a summary on CIEMAT scientific and technological facilities, whose spread can help to show its scientific and technological capabilities, to enable the execution of a wide variety of projects and to open new external cooperation channels. In that list its possible to find the two Unique Scientific and Technological Infrastructures (ICTS) in Spain which are hold by CIEMAT and the Ionizing Radiations Metrology Laboratory (LMRI) which is the Spanish National Standards Laboratory for ionising radiations. (Author)

  8. On the interpretation of tungsten emission spectra in fusion devices

    International Nuclear Information System (INIS)

    Atomic spectra emitted by fusion plasmas are generally contaminated by ions originating from plasma erosion of material walls. These ions may be present in several charge states and the radiation they emit falls in the x-ray to vacuum ultraviolet regions, making them atomic fingerprints used as a diagnostic tool. This work reports on recent achievements on the interpretation of specific tungsten spectra from the Axially Symmetric Divertor Experiment (ASDEX) Upgrade tokamak and the Large Helical Device (LHD) stellarator. (paper)

  9. Tritium supply for near-term fusion devices

    International Nuclear Information System (INIS)

    Next-generation fusion devices may consume several kilogrammes of tritium per year. The supply of tritium for fusion depends upon the availability of man-made sources, and the size of the fusion and commerical demands. The most significant uncommitted tritium resource is the 2.2-2.3 kg/y from the Ontario Hydro Darlington facility. Military tritium production is a large source, but is almost entirely committed to military programs, except for about 0.1-0.5 kg/y made available for commercial uses. Side production of tritium in power reactors is possible, but limited in practice. It is made available for commerical uses. Side production of tritium in power reactors is possible, but limited in practice. It is made available for commercial uses. Side production of tritium in power reactors is possible, but limited in practice. It is estimated that an additional 0.2-0.5 kg/y by the year 2000 is a reasonable assumption from this and other sources, such as fuel reprocessing facilities and the Chalk River tritium removal facility. Also over the next decade, fusion demand will average about 0.01 kg/y, while commerical demand will be roughly 0.2 kg/y and possibly grow to 1 kg/y. The effect on a fusion engineering test reactor starting up around the year 2000 is that the machine operating lifetime may be limited, or some tritium breeding required. Some scenarios are quantified here. Assuming for example, about 2 kg T/y is available for fusion use starting 1988, then a 700 MWf machine starting in 2000 would need a 70% tritium breeding rate to support a ten-year testing phase at 30% availability (i.e. 3 MW-y/m2 fluence at 1 MW/m2 wall load). (orig.)

  10. Railgun pellet injection system for fusion experimental devices

    Energy Technology Data Exchange (ETDEWEB)

    Onozuka, M. [Mitsubishi Heavy Industries Ltd., Yokohama (Japan). Adv. Tech. Dev. Dept.; Oda, Y. [Mitsubishi Heavy Industries Ltd., Yokohama (Japan). Adv. Tech. Dev. Dept.; Azuma, K. [Mitsubishi Heavy Industries Ltd., Yokohama (Japan). Adv. Tech. Dev. Dept.; Satake, K. [Mitsubishi Heavy Industries Ltd., Yokohama (Japan). Adv. Tech. Dev. Dept.; Kasai, S. [Japan Atomic Energy Research Institute, Tokai-mura, Naka-gun 319-11 (Japan); Hasegawa, K. [Japan Atomic Energy Research Institute, Tokai-mura, Naka-gun 319-11 (Japan)

    1995-11-01

    A railgun pellet injection system has been developed for fusion experimental devices. Using a low electric energy railgun system, hydrogen pellet acceleration tests have been conducted to investigate the application of the electromagnetic railgun system for high speed pellet injection into fusion plasmas. In the system, the pellet is pre-accelerated before railgun acceleration. A laser beam is used to induce plasma armature. The ignited plasma armature is accelerated by an electromagnetic force that accelerates the pellet. Under the same operational conditions, the energy conversion coefficient for the dummy pellets was around 0.4%, while that for the hydrogen pellets was around 0.12%. The highest hydrogen pellet velocity was 1.4 km s{sup -1} using a 1 m long railgun. Based on the findings, it is estimated that the hydrogen pellet has the potential to be accelerated to 5 km s{sup -1} using a 3 m long railgun. (orig.).

  11. Decommissioning of nuclear installations at CIEMAT

    International Nuclear Information System (INIS)

    This report presents the work carried out by CIEMAT in the frame of decommissioning the research reactor JEN-1. Studies for evaluating different metal cutting techniques, including plasma-arc cutting, contact-arc cutting and mechanical saw cutting led to assessing the performance, advantages and associated problems for each technique. The main metallic material studied was aluminium, but some experiments with stainless steel were also conducted. Melting was also studied as a decontamination technique and as a way to reduce volume and facilitate the management of radioactive waste. (author)

  12. Superconducting (radiation hardened) magnets for mirror fusion devices

    International Nuclear Information System (INIS)

    Superconducting magnets for mirror fusion have evolved considerably since the Baseball II magnet in 1970. Recently, the Mirror Fusion Test Facility (MFTF-B) yin-yang has been tested to a full field of 7.7 T with radial dimensions representative of a full scale reactor. Now the emphasis has turned to the manufacture of very high field solenoids (choke coils) that are placed between the tandem mirror central cell and the yin-yang anchor-plug set. For MFTF-B the choke coil field reaches 12 T, while in future devices like the MFTF-Upgrade, Fusion Power Demonstration and Mirror Advanced Reactor Study (MARS) reactor the fields are doubled. Besides developing high fields, the magnets must be radiation hardened. Otherwise, thick neutron shields increase the magnet size to an unacceptable weight and cost. Neutron fluences in superconducting magnets must be increased by an order of magnitude or more. Insulators must withstand 1010 to 1011 rads, while magnet stability must be retained after the copper has been exposed to fluence above 1019 neutrons/cm2

  13. Wall reflection issues for optical diagnostics in fusion devices

    International Nuclear Information System (INIS)

    The problem of light reflection has been raised as a high priority issue for optical diagnostics in next step fusion devices where metallic wall environment will generate significant perturbations in the diagnostics measurements. Tore Supra is a large size tokamak equipped with water-cooled stainless-steel panels used to sustain the plasma long shot radiations. These panels are highly reflective and affect significantly optical systems. In particular, we show that the infrared imaging diagnostic, which surveys the plasma facing component surface temperature for safety purposes, can give incorrect information due to reflected light coming from the bottom limiter. In the visible range, motional Stark effect and Zeff measurements experience important drifts during the plasma heating phases due to parasitic light coming from the limiter, but also from the plasma itself when the viewing lines are facing the reflecting walls. In the next step fusion devices such as ITER, the possibility to use optical measurements needs to be accessed by a modeling of the diagnostic light in its machine environment and the development of new techniques of online correction.

  14. Mirror Fusion Test Facility: an intermediate device to a mirror fusion reactor

    International Nuclear Information System (INIS)

    The Mirror Fusion Test Facility (MFTF-B) now under construction at Lawrence Livermore National Laboratory represents more than an order-of-magnitude step from earlier magnetic-mirror experiments toward a future mirror fusion reactor. In fact, when the device begins operating in 1986, the Lawson criteria of ntau = 1014 cm-3.s will almost be achieved for D-T equivalent operation, thus signifying scientific breakeven. Major steps have been taken to develop MFTF-B technologies for tandem mirrors. Steady-state, high-field, superconducting magnets at reactor-revelant scales are used in the machine. The 30-s beam pulses, ECRH, and ICRH will also introduce steady-state technologies in those systems

  15. D-3He fueled fusion devices as a step towards total fusion safety

    International Nuclear Information System (INIS)

    equipment. The bio shield contains traces of radioactivity and can be cleared from regulatory control after a relatively short period of time (∼10 y). Results obtained for the Candor experiment indicate that no environmental problems arise from such a device, from the radiological point of view, even with the presence of D-T plasma triggering. Candor does reach the zero-waste option as all wastes can be cleared within 100 y [6]. The D-3He cycle offers safety advantages and could be the ultimate response to the environmental requirements for future nuclear power plants. Furthermore, the low neutron production helps overcome some of the engineering and material hurdles to fusion development. Studies for the development of advanced fuel cycles should be carried out in parallel with the current mainstream fusion pathway that primarily focuses on D-T tokamaks, such as ITER, test facilities, DEMO, and power plants. References 1. L. El-Guebaly, 'Evaluation of Disposal, Recycling, and Clearance Scenarios for Managing ARIES Radwaste after Plant Decommissioning,' 8th IAEA TM on Fusion Power Plant Safety (July 10-13, 2006, Vienna, Austria). To be published in Nuclear Fusion (2007). 2. M. Zucchetti, L. El-Guebaly, R. Forrest, T. Marshall, N. Taylor, and K. Tobita, 'The Feasibility of Recycling and Clearance of Active Materials from a Fusion Power Plant,' ICFRM-12, Dec. 4-9, 05, Santa Barbara, CA. To be published in Journal of Nuclear Materials (2007). 3. L. El-Guebaly, R. Pampin, and M. Zucchetti, 'Clearance Considerations for Slightly- Irradiated Components of Fusion Power Plants,' 8th IAEA TM on Fusion Power Plant Safety (July 10-13, 2006, Vienna, Austria). To be published in Nuclear Fusion (2007). 4. F. Najmabadi, R. Conn et al., The ARIES-III D-3He Tokamak-Reactor Study,' Proceedings of IEEE 14th Symposium on Fusion Engineering, San Diego, CA, Vol. 1, 213 (Sept. 30 - Oct. 4, 1991). 5. B. Coppi, P. Detragiache, S. Migliuolo et al., 'D-3He Burning, Second Stability Regionand the

  16. Reducing the tritium inventory in waste produced by fusion devices

    Energy Technology Data Exchange (ETDEWEB)

    Pamela, J., E-mail: jerome.pamela@cea.fr [CEA, Agence ITER-France, F-13108 Saint-Paul-lez-Durance (France); Decanis, C. [CEA, DEN, Centre de Cadarache, F-13108 Saint-Paul-lez-Durance (France); Canas, D. [CEA, DEN/DADN, Centre de Saclay, F-91191 Gif-sur-Yvette cedex (France); Liger, K.; Gaune, F. [CEA, DEN, Centre de Cadarache, F-13108 Saint-Paul-lez-Durance (France)

    2015-04-15

    Highlights: • Fusion devices including ITER will generate tritiated waste, some of which will need to be detritiated before disposal. • Interim storage is the reference solution offering an answer for all types of tritiated radwaste. • Incineration is very attractive for VLLW and possibly SL-LILW soft housekeeping waste, since it offers higher tritium and waste volume reduction than the alternative thermal treatment technique. • For metallic waste, further R&D efforts should be made to optimize tritium release management and minimize the need for interim storage. - Abstract: The specific issues raised by tritiated waste resulting from fusion machines are described. Of the several categories of tritium contaminated waste produced during the entire lifespan of a fusion facility, i.e. operating phase and dismantling phase, only two categories are considered here: metal components and solid combustible waste, especially soft housekeeping materials. Some of these are expected to contain a high level of tritium, and may therefore need to be processed using a detritiation technique before disposal or interim storage. The reference solution for tritiated waste management in France is a 50-year temporary storage for tritium decay, with options for reducing the tritium content as alternatives or complement. An overview of the strategic issues related to tritium reduction techniques is proposed for each radiological category of waste for both metallic and soft housekeeping waste. For this latter category, several options of detritiation techniques by thermal treatment like heating up or incineration are described. A comparison has been made between these various technical options based on several criteria: environment, safety, technical feasibility and costs. For soft housekeeping waste, incineration is very attractive for VLLW and possibly SL-LILW. For metallic waste, further R&D efforts should be conducted.

  17. Reducing the tritium inventory in waste produced by fusion devices

    International Nuclear Information System (INIS)

    Highlights: • Fusion devices including ITER will generate tritiated waste, some of which will need to be detritiated before disposal. • Interim storage is the reference solution offering an answer for all types of tritiated radwaste. • Incineration is very attractive for VLLW and possibly SL-LILW soft housekeeping waste, since it offers higher tritium and waste volume reduction than the alternative thermal treatment technique. • For metallic waste, further R&D efforts should be made to optimize tritium release management and minimize the need for interim storage. - Abstract: The specific issues raised by tritiated waste resulting from fusion machines are described. Of the several categories of tritium contaminated waste produced during the entire lifespan of a fusion facility, i.e. operating phase and dismantling phase, only two categories are considered here: metal components and solid combustible waste, especially soft housekeeping materials. Some of these are expected to contain a high level of tritium, and may therefore need to be processed using a detritiation technique before disposal or interim storage. The reference solution for tritiated waste management in France is a 50-year temporary storage for tritium decay, with options for reducing the tritium content as alternatives or complement. An overview of the strategic issues related to tritium reduction techniques is proposed for each radiological category of waste for both metallic and soft housekeeping waste. For this latter category, several options of detritiation techniques by thermal treatment like heating up or incineration are described. A comparison has been made between these various technical options based on several criteria: environment, safety, technical feasibility and costs. For soft housekeeping waste, incineration is very attractive for VLLW and possibly SL-LILW. For metallic waste, further R&D efforts should be conducted

  18. The new CIEMAT strategies for learning and knowledge transfer

    International Nuclear Information System (INIS)

    Educational and training systems are a determining factor in the potential for excellence, innovation and competitiveness in the framework of research as a means to improve know-how, capabilities and skills. In recent years, the EU has supported open and distance education through its innovation, education, training and research programs. The European initiatives promote efficiency by improving quality and occupational training in different sectors and by fostering the use of the information technologies. Having followed the new trends in training and the advantages obtained by using the net in training, the CIEMAT has also taken an interest in improving the learning and knowledge transfer environments through its virtual center. It is a space for developing online educational activities in certain areas, in which the center can be considered as expert, such as all subjects related to energy and environment: renewable, radiological protection, atmospheric contamination, fusion, nuclear power, etc. This virtual space includes a Virtual Classroom and a specialized Thematic Portals, and it aims to be a place of reference for the areas of knowledge related to energy and environment. (Author) 5 refs

  19. Fusion Engineering Device (FED) first wall/shield design

    International Nuclear Information System (INIS)

    The torus of the Fusion Engineering Device (FED) is comprised of the bulk shield and its associated spool lstructure and support system, the first wall water-cooled panel and armor systems, and the pumped limiter. The bulk shielding is provided by ten shield sectors that are installed in the spool structure in such a way as to permit extraction of the sectors through the openings between adjacent toroidal field coils with a direct radial movement. The first wall armor is installed on the inboard and top interior walls of these sectors, and the water-cooled panels are installed on the outboard interior walls and the pumped limiter in the bottom of the sectors. The overall design of the first wall and shield system is described in this paper

  20. Training in nuclear safety and technology at Ciemat (Spain)

    International Nuclear Information System (INIS)

    Fission nuclear energy acceptance has suffered great change from its discovery. During 50 s and 70 s, was worldwide approved but a high social repulse is experimented nowadays in some societies. This fact has led to a contradictory situation in the world. We can find some countries where the majority of their electric energy is produced in nuclear power plants (NPPs). In Europe, France produces over the 75% of the electric energy consumed, moreover, in Asia, new NPPs are being constructed in China, Japan or India; but on the contrary, other countries, such as Spain, has signed the nuclear moratorium. The result of this situation has conducted to a lower interest in nuclear training at universities and few implementation of superior studies in Nuclear Technology. But nuclear and radioactive installations are still opened and need qualified staff. The training Unit of C.I.E.M.A.T. has been organizing courses on nuclear energy and radiation protection for more than 30 years and develops all the educational program which has been required by Spanish Radiation Protection Education. Within the training courses variety, a course of about 68 E.C.T.S. (following Bologna Process, 1999) to permit young graduated to be specialized in this area, has been organised. E.C.T.S. credits indicate the average student work load to successfully complete a course. 68 E.C.T.S. represents, in terms of workload, near one year of study. The programme contents subjects like Fission, Fusion, NPPs Operation and Control, Nuclear Fuel and Cycle. At a more interdisciplinary level, the programme also provides knowledge in other fields of application such as Nuclear Medicine, Radiation Effects, Radiation Protection, Shielding against Radiation, Material Science, Radiation Measurements and Instruments, Waste Management and Decommissioning, Environmental Impact of NPPs and National and International Regulation. The theoretical schedules are completed by practical sessions on computational codes

  1. Safety analysis and evaluation of the next fusion device

    International Nuclear Information System (INIS)

    As a part of safety evaluation, a probabilistic risk assessment (PRA) has been attempted for the Next Fusion Device system. Among the various events related to safety, a number of representative events have been selected for assessment, from the events in normal operation state, repair and maintenance state and accidental state. In the first chapter, in order to conduct the probabilistic risk assessment of the whole Fusion Experimental Reactor (FER), the data base required for the analysis was investigated in 1.1, the results on the failure mode and effects analysis (FMEA), accident sequence, radioactive inventory leakage flow path, event tree analysis (ETA) and fault tree analysis (FTA) were summarized in 1.2 to 1.5, respectively. Based on these results, accident initiating events were evaluated in 1.6, and overall risk was assessed in 1.7 and the tasks for the future were summarized in 1.8. It is important to analyze and evaluate various events during normal operations, repair and maintenance and accidents. However, due to the large uncertainties in the modeling of phenomena or the data base, there are many events for which realistic analyses are difficult. Three such events were selected and studied in chapter two. In 2.1, the temperature rise in the reactor structure after the Loss-of-Coolant-Accident caused by the decay heat under various heat removal conditions were investigated. In 2.2, the radiation dose of personnel during repair and maintenance period caused by the release of activated dust were estimated. Lastly, in 2.3 tritium behavior in the stainless steel first wall and graphite armour were studied. (author)

  2. Neutron Standards Laboratory of the CIEMAT

    International Nuclear Information System (INIS)

    By means of a calculation series with Monte Carlo methods and the code MCNPX was characterized the neutrons field produced by the existent calibration sources in the Neutron Standards Laboratory of the Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT). The laboratory has two neutron calibration sources one of 241AmBe and other 252Cf that are stored in a water pool. A detailed three-dimensional model of the room was built with the base of stainless steel remarking in the selector to the sources that situates them to 4 m of the floor to be irradiated on the irradiation table and the storage pool. Each one of the sources was defined on the model in its double steel encapsulated. The spectra were calculated with different cases with the purpose of to calculate the contribution of each element that impacts to the neutrons transport. The spectra of the calibration sources were calculated to different distances regarding the source from 0, 15, 35, 50 to 300 cm on the base and in a same way the values of the ambient dose equivalent using the approaches of the ICRP-74. The results show clearly that the great contribution in the modification of the spectrum is attributed to the walls, and floor of the Neutron Standards Laboratory installations. (Author)

  3. Diagnostic neutral beams for plasma studies in magnetic fusion devices

    International Nuclear Information System (INIS)

    Nowadays, low-divergent, quasi-stationary neutral beams are widely used in magnetic fusion devices as a diagnostic tool providing unique information about plasma parameters. Essentially, a diagnostic determines the requirements for the beams, which in many cases consist in sufficiently large current density and energy of the particles so that the beam can penetrate to the plasma core. At the same time, the duration of the beams should overlap that of a plasma shot (∼10 s or longer for large machines). We have developed a number of diagnostic hydrogen beams with a maximum beam energy of 55kV, extracted ion current varying up to 6 A, and pulse duration from several milliseconds to 10 s. The beams are formed by a four electrode ion optical system which makes it possible to provide a low divergent (0.5-0.7 deg.) beam. Additionally, a beam can be focused onto a desired point by proper choice of the curvature radius of the grids. The beams can be modulated with a frequency variable up to 500 Hz. The plasma emitter in the injector is provided by a radiofrequency discharge in hydrogen (deuterium) for long duration beams and, alternatively, by an arc-discharge plasma box for the beams with a duration of up to ∼0.5 s. The arc discharge plasma box provides a higher proton fraction (∼90%) than the RF discharge version (∼60%). The parameters for the different beams developed are presented. (author)

  4. Diagnostics Development towards Steady State Operation in Fusion Devices

    International Nuclear Information System (INIS)

    The stellarator Wendelstein 7-X (W7-X) is being presently under construction and is already equipped with superconducting coil systems and principally is capable of quasi-continuous operation. However, W7-X is faced with new enhanced technical requirements which have to be met by plasma facing components as well as the diagnostic systems in general. Depending on the available heating power, the continuous heat flux to plasma facing components during long pulse operation might lead to unacceptable local thermal overload and necessitates sufficient but often complicate active cooling precautions. Fusion devices with electron cyclotron frequency heating (ECRH) are concerned with significant stray radiation, depending on the chosen heating scheme and the plasma parameters. The required shielding is often not compatible with optimal UHV-consistent design and high intensity throughput. For machine safety, diagnostics are required which are able to identify enhanced plasma wall interaction on a fast time scale in order to prevent damage in time. For W7-X, video camera systems covering most of the inner wall, fast IR-camera systems with coating-resistant pinhole-optics for the observation of the divertor surface temperature and spectrometers with large spectral survey covering relevant spectral lines of all intrinsic impurities with sufficient spectral resolution and sensitivity are necessary. In combination with energy integrating but spatially resolving diagnostics like bolometers and soft-X cameras slow impurity accumulation phenomena on a time scale much larger than flat-top times typically achieved in short-pulse operation can be identified and a radiative plasma collapse possibly be avoided by counteractive measures. Longer port dimensions due to thermal insulation of the cryogenic coil system and high density operation with strong density gradients necessitate the choice of shorter wavelengths for interferometer laser beams. This complicates the avoidance of fringe

  5. A STANDARD DATA ACCESS LAYER FOR FUSION DEVICES

    Czech Academy of Sciences Publication Activity Database

    Neto, A.; Fernandes, H.; Valcárcel, D.; Varandas, C.; Vega, J.; Sánchez, E.; Pena, A.; Hron, Martin

    Varšava: Warsaw University of Technology, Euratom - IPPLM Association, 2006, P1-D-463. [Symposium on Fusion Technology/24th./. Varšava (PL), 11.09.2006-15.09.2006] Institutional research plan: CEZ:AV0Z20430508 Keywords : tokamak * fusion * data access * data storage Subject RIV: JC - Computer Hardware ; Software

  6. Assembly of Drift Tubes (DT) Chambers at CIEMAT (Madrid)

    CERN Multimedia

    Jesus Puerta-Pelayo

    2003-01-01

    The construction of muon drift tube chambers (DT) has been carried out in four different european institutes: Aachen (Germany), CIEMAT-Madrid (Spain), Legnaro and Turin (Italy), all of them following similar procedures and quality tests. Each chamber is composed by three or two independent units called superlayers, with four layers of staggered drift cells each. The assembly of a superlayer is a succesive glueing of aluminium plates and I-beams with electrodes previously attached, forming a rectangular and gas-tight volume. These pictures illustrate the various processes of material preparation, construction, equipment and assembly of full chambers at CIEMAT (Madrid).

  7. Mini-fission fusion explosive devices (mini-nukes) for nuclear pulse propulsion

    Science.gov (United States)

    Winterberg, F.

    2005-11-01

    Nuclear pulse propulsion demands low-yield nuclear explosive devices. Because the critical mass of a fission explosive is rather large, this leads to extravagant fission devices with a very low fuel burn-up. For non-fission ignited pure fusion microexplosions the problem is the large ignition apparatus (laser, particle beam, etc.). Fission ignited large fusion explosive devices are for obvious reasons even less desirable. A third category (mini-nukes) are devices where the critical mass of the fission explosive is substantially reduced by its coupling to a DT fusion reaction, with the DT fusion neutrons increasing the fission rate. Whereas in pure fission devices a reduction of the critical mass is achieved by the implosive compression of the fissile core with a chemical high explosive, in the third category the implosion must at the same time heat the DT surrounding the fissile core to a temperature of ⩾107K, at which enough fusion neutrons are generated to increase the fission rate which in turn further increases the temperature and fusion neutron production rate. As has been shown by the author many years ago, such mini-nukes lead to astonishingly small critical masses. In their application to nuclear pulse propulsion the combustion products from the chemical high explosive are further heated by the neutrons and are becoming part of the propellant.

  8. Flywheel induction motor-generator for magnet power supply in small fusion device

    Science.gov (United States)

    Hatakeyma, S.; Yoshino, F.; Tsutsui, H.; Tsuji-Iio, S.

    2016-04-01

    A flywheel motor-generator (MG) for the toroidal field (TF) coils of a small fusion device was developed which utilizes a commercially available squirrel-cage induction motor. Advantages of the MG are comparably-long duration, quick power response, and easy implementation of power control compared with conventional capacitor-type power supply. A 55-kW MG was fabricated, and TF coils of a small fusion device were energized. The duration of the current flat-top was extended to 1 s which is much longer than those of conventional small devices (around 10-100 ms).

  9. Signature of Spanish Traineeship Collaboration Agreement between CERN and CIEMAT

    CERN Multimedia

    Redondo Esteban, Isabel

    2015-01-01

    Signature of the collaboration agreement for the training of young Spanish engineers and applied physicists in key CERN technologies. CIEMAT represented by D. Cayetano Lopez Martinez, Director-General. CERN represented by Dr. Jose Miguel Jimenez, Head of Technology Department. In presence of Ms Maria Luisa Poncela Garcia, Secretary-General for Science, Technology and Innovation. Ministry of Economy and Competitiveness.

  10. Particulate Contamination Within Fusion Devices and Complex (Dusty) Plasmas

    CERN Document Server

    Creel, J; Kong, J; Hyde, Truell W

    2007-01-01

    Over the past decade, dust particulate contamination has increasingly become an area of concern within the fusion research community. In a burning plasma machine design like the International Thermonuclear Experimental Reactor (ITER), dust contamination presents problems for diagnostic integration and may contribute to tritium safety issues. Additionally due to ITER design, such dust contamination problems are projected to become of even greater concern due to dust/wall interactions and possible instabilities created within the plasma by such particulates. Since the dynamics of such dust can in general be explained employing a combination of the ion drag, Coulomb force, and ion pre-sheath drifts, recent research in complex (dusty) plasma physics often offers unique insights for this research area. This paper will discuss the possibility of how experimental observations of the dust and plasma parameters within a GEC rf Reference Cell might be employed to diagnose conditions within fusion reactors, hopefully pr...

  11. Neutron Standards Laboratory of the CIEMAT; Laboratorio de Patrones Neutronicos del CIEMAT

    Energy Technology Data Exchange (ETDEWEB)

    Guzman G, K. A. [Universidad Politecnica de Madrid, C. Jose Gutierrez Abascal 2, 28006 Madrid (Spain); Mendez V, R. [Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas, Av. Complutense 40, 28040 Madrid (Spain); Vega C, H. R., E-mail: karen.guzman.garcia@alumnos.upm.es [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico)

    2014-08-15

    By means of a calculation series with Monte Carlo methods and the code MCNPX was characterized the neutrons field produced by the existent calibration sources in the Neutron Standards Laboratory of the Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT). The laboratory has two neutron calibration sources one of {sup 241}AmBe and other {sup 252}Cf that are stored in a water pool. A detailed three-dimensional model of the room was built with the base of stainless steel remarking in the selector to the sources that situates them to 4 m of the floor to be irradiated on the irradiation table and the storage pool. Each one of the sources was defined on the model in its double steel encapsulated. The spectra were calculated with different cases with the purpose of to calculate the contribution of each element that impacts to the neutrons transport. The spectra of the calibration sources were calculated to different distances regarding the source from 0, 15, 35, 50 to 300 cm on the base and in a same way the values of the ambient dose equivalent using the approaches of the ICRP-74. The results show clearly that the great contribution in the modification of the spectrum is attributed to the walls, and floor of the Neutron Standards Laboratory installations. (Author)

  12. Particulate Contamination Within Fusion Devices and Complex (Dusty) Plasmas

    OpenAIRE

    Creel, J.; Carmona-Reyes, J.; Kong, J.; Hyde, Truell W.

    2007-01-01

    Over the past decade, dust particulate contamination has increasingly become an area of concern within the fusion research community. In a burning plasma machine design like the International Thermonuclear Experimental Reactor (ITER), dust contamination presents problems for diagnostic integration and may contribute to tritium safety issues. Additionally due to ITER design, such dust contamination problems are projected to become of even greater concern due to dust/wall interactions and possi...

  13. Dielectric and electrical design consideration of ceramics for fusion devices

    International Nuclear Information System (INIS)

    The research and development of high performance ceramics for nculear applications are increasing their importance. Especially in nuclear develoment, innovative and application of ceramics are needed in fusion reactors. Summarized are the develoment of new materials such as silicon nitride with good mechanical and electrical properties and the application of zirconia-based ceramics for high temperature electrolysis of tritiated water in a tritium recycling system. (orig.)

  14. High beta predemonstration fusion devices (philosophy, characteristics, and R and D requirements)

    International Nuclear Information System (INIS)

    A predemonstration fusion device (PDFD) must provide the physics and technology information necessary to warrant design, construction, and operation of succeeding fusion reactors. This report sumarizes in three sections the bases for developing a PDFD. In the first section the philosophy and physics bases which will result in an economically viable fusion reactor are described. The characteristics and operating parameters of a PDFD which will provide a working demonstration of the concepts are given in the second section. In the final section the major research and development activities necessary to support construction and operation of the PDFD are outlined

  15. Development of advanced coatings for ITER and future fusion devices

    Czech Academy of Sciences Publication Activity Database

    Matějíček, Jiří; Chráska, Pavel

    ZURICH: TRANS TECH PUBLICATIONS LTD, 2010 - (VINCENZINI, P.; MONTAVON, G.), s. 47-65. (Advances in Science and Technology. 66). ISSN 1662-0356. [INTERNATIONAL CERAMICS CONGRESS/12th./. Montecatini Terme (IT), 06.06.2010-11.06.2010] R&D Projects: GA MPO 2A-1TP1/101 Institutional research plan: CEZ:AV0Z20430508 Keywords : fusion materials * coatings * ITER * DEMO * plasma facing components * blanket Subject RIV: JG - Metallurgy http://www.scientific.net/AST.66.47

  16. Juan Antonio Rubio appointed as Director-General of CIEMAT

    CERN Multimedia

    2004-01-01

    Juan Antonio Rubio, Head of CERN's ETT unit (Education and Technology Transfer) has been appointed by the Spanish Ministry of Education and Science as the Director General of the Research Centre for Energy, Environment and Technology, CIEMAT. Dr Rubio's career began at the Spanish Nuclear Energy Commission where he held the posts of Investigator, Head of the High Energy Group and Head of Nuclear Physics and High Energy Division. Later, he was named Director of the Department of Basic Investigation and Scientific Director of the CIEMAT. In 1987 he joined CERN as Scientific Adviser to the Director General and Group Leader of the Scientific Assessment Group. Up to now, Dr Rubio has been the Head of the ETT unit, as well as Coordinator for Latin America and Commissioner for the 50th Anniversary of the Organization. He was born on 4 June 1944 in Madrid, and holds a Doctorate in Physical Sciences from the Universidad Complutense de Madrid.

  17. The CIEMAT programme on radiation dosimetry: a space for collaboration

    International Nuclear Information System (INIS)

    This communication presents an overview of the technical and scientific activities presently carried-out at the CIEMAT Radiation Dosimetry Unit. The aim of the presentation is to facilitate the identification of possible areas of common interest with the Portuguese dosimetry community. The activities described are in areas of both, external and internal dosimetry, and include research and also services. The CIEMAT dosimetry services have evolved and nowadays they are more focused towards quality control activities serving the whole national community rather than to routine services, whenever these kind of services can be provided by other Spanish companies or institutions. Several research lines have been implemented, some of them very recently, chosen with criteria of opportunity and interest and also considering our technical possibilities and experience. (author)

  18. Users and Programmers Guide for HPC Platforms in CIEMAT

    International Nuclear Information System (INIS)

    This Technical Report presents a description of the High Performance Computing platforms available to researchers in CIEMAT and dedicated mainly to scientific computing. It targets to users and programmers and tries to help in the processes of developing new code and porting code across platforms. A brief review is also presented about historical evolution in the field of HPC, ie, the programming paradigms and underlying architectures. (Author) 32 refs

  19. Activation analysis on HT-7U fusion experimental device

    International Nuclear Information System (INIS)

    Activation, dose rate and self-shielding effect of HT-7U device were calculated and analyzed by using one-dimensional discrete coordinate transport calculation code ANISN and the activation calculation code AFDKR with their data libraries based on one-dimensional model. Neutron spectrum, induced γ spectrum and their dose rate to the neighbour inhabitants and activity level were given and estimated

  20. From Present Fusion Devices to DEMO: a Changing Role between Diagnostics and Modeling

    OpenAIRE

    Donne, A. J. H.

    2013-01-01

    On present-day devices much effort is devoted to develop state-of-the-art diagnostics with a continuous drive towards higher accuracy, better spatial and temporal resolution and more diagnostic channels. Diagnostic innovations often lead to better physics insight and they are often a driver for improving theoretical models. In future fusion devices the operation of diagnostics is strongly limited by the hostile environment. In ITER many of the presently used diagnostics are still marginally a...

  1. Probabilistic Multi-Sensor Fusion Based Indoor Positioning System on a Mobile Device

    OpenAIRE

    Xiang He; Aloi, Daniel N.; Jia Li

    2015-01-01

    Nowadays, smart mobile devices include more and more sensors on board, such as motion sensors (accelerometer, gyroscope, magnetometer), wireless signal strength indicators (WiFi, Bluetooth, Zigbee), and visual sensors (LiDAR, camera). People have developed various indoor positioning techniques based on these sensors. In this paper, the probabilistic fusion of multiple sensors is investigated in a hidden Markov model (HMM) framework for mobile-device user-positioning. We propose a graph struct...

  2. Non-superconducting magnet structures for near-term, large fusion experimental devices

    International Nuclear Information System (INIS)

    This paper describes the magnet and structural design in the following American tokamak devices: the Princeton Large Torus (PLT), the Princeton Divertor Experiment (PDX), and the Tokamak Fusion Test Reactor (TFTR). The Joint European Torus (JET), also presented herein, has a magnet structure evolved from several European programs and, like TFTR, represents state of the art magnet and structure design

  3. IAEA technical committee meeting on research using small fusion devices (abstracts)

    International Nuclear Information System (INIS)

    The thirteenth IAEA technical committee meeting on research using small fusion devices are held in Chengdu, P. R. China on 18-20 Oct. , 1999. 41 articles are received and the content includes toroidal systems, helical systems, plasma focus, diagnostic systems, theory and modeling, improving confinement, numerical simulation, innovative concepts and others

  4. Generalized self-similarity of edge plasma turbulence in fusion devices

    International Nuclear Information System (INIS)

    Recent results of the edge plasma turbulence in fusion devices are reviewed. The intermittent turbulent fluctuations demonstrate a multifractal statistics. The generalized scale invariance has been observed by involving the Extended Self-Similarity hypothesis. Turbulence scalings are compared with predictions of intermittent turbulence models (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  5. Stochastic model of a first-order nonequilibrium phase transition in a magnetic fusion device

    International Nuclear Information System (INIS)

    The ambipolar electric field in many nonaxisymmetric fusion devices is known to be a multivalued function. A master equation for the probability distribution of the electric field is developed for internal fluctuations, and a generalized Gibbs free energy is defined. As with a liquid-gas phase transition, the most probable value of the electric field is the one that minimizes the free energy

  6. Scaling laws of intermittent plasma turbulence in edge of fusion devices

    International Nuclear Information System (INIS)

    The high-order structure functions have been analyzed to characterize the edge plasma intermittency in fusion devices. The scaling properties of edge turbulence have shown a strong divination from a prediction of the Kolmogorov's K41 model. The turbulent fluctuations demonstrate a generalized scale invariance and log-Possion statistics. (author)

  7. Management of a water leak on actively cooled fusion devices

    International Nuclear Information System (INIS)

    ITER will be the most important machine equipped with actively cooled plasma facing components (PFCs). In case of abnormal events during a discharge, the PFC will be submitted to localized transient phenomena (high power densities, run away electrons, etc.), leading, in the worst case, to the degradation of the PFC wall and possibly to a water leak. In any case, a leak will have important consequences for the PFCs and equipment located in the vacuum vessel or connected to the ports such as seals, pumping systems or diagnostics. Considerable experience of these events has been gained at Tore Supra over a period of more than 10 years [J.J. Cordier, Ten years of maintenance on Tore Supra actively cooled components, in: Proceedings of the 21th Symp. of Fusion Technology (SOFT), Madrid, Spain, September, 2000.], which will be useful for the next step machines. This paper describes for each leak size type the procedures for maintaining save conditions in the vacuum vessel. It also presents the methods used at Tore Supra to drain-off the primary loop circuits and to identify the leaky PFC

  8. Study of plasma equilibrium in toroidal fusion devices using mesh-free numerical calculation method

    Science.gov (United States)

    Rasouli, C.; Abbasi Davani, F.; Rokrok, B.

    2016-08-01

    Plasma confinement using external magnetic field is one of the successful ways leading to the controlled nuclear fusion. Development and validation of the solution process for plasma equilibrium in the experimental toroidal fusion devices is the main subject of this work. Solution of the nonlinear 2D stationary problem as posed by the Grad-Shafranov equation gives quantitative information about plasma equilibrium inside the vacuum chamber of hot fusion devices. This study suggests solving plasma equilibrium equation which is essential in toroidal nuclear fusion devices, using a mesh-free method in a condition that the plasma boundary is unknown. The Grad-Shafranov equation has been solved numerically by the point interpolation collocation mesh-free method. Important features of this approach include truly mesh free, simple mathematical relationships between points and acceptable precision in comparison with the parametric results. The calculation process has been done by using the regular and irregular nodal distribution and support domains with different points. The relative error between numerical and analytical solution is discussed for several test examples such as small size Damavand tokamak, ITER-like equilibrium, NSTX-like equilibrium, and typical Spheromak.

  9. Combined ion micro probe and SEM analysis of strongly non uniform deposits in fusion devices

    Energy Technology Data Exchange (ETDEWEB)

    Bykov, I.; Bergsåker, H.; Petersson, P. [Division of Fusion Plasma Physics, Association EURATOM-VR, Royal Institute of Technology KTH (Sweden); Likonen, J. [Association EURATOM-TEKES, VTT, PO Box 1000, 02044 VTT, Espoo (Finland); Possnert, G. [Tandem Laboratory, Association EURATOM-VR, Uppsala Universitet, Box 256, Uppsala 75105 (Sweden); Widdowson, A. [CCFE, Culham Science Centre, Abingdon OX14 3DB (United Kingdom)

    2015-01-01

    Conventional ion beam analysis (IBA) of deposited layers from fusion devices may have insufficient accuracy due to strongly uneven appearance of the layers. Surface roughness and spatial variation of the matrix composition make interpretation of broad beam spectra complex and non obvious. We discuss complications of applied IBA arising for fusion-relevant surfaces and demonstrate how quantification can be improved by employing micro IBA methods. The analysis is bound to pre-defined regions on the sample surface and can be extended by employing beams of several types, scanning electron microscopy (SEM) and stereo SEM techniques.

  10. Fusion energy in an inertial electrostatic confinement device using a magnetically shielded grid

    International Nuclear Information System (INIS)

    Theory for a gridded inertial electrostatic confinement (IEC) fusion system is presented, which shows a net energy gain is possible if the grid is magnetically shielded from ion impact. A simplified grid geometry is studied, consisting of two negatively biased coaxial current-carrying rings, oriented such that their opposing magnetic fields produce a spindle cusp. Our analysis indicates that better than break-even performance is possible even in a deuterium-deuterium system at bench-top scales. The proposed device has the unusual property that it can avoid both the cusp losses of traditional magnetic fusion systems and the grid losses of traditional IEC configurations

  11. Potential common radiation problems for components and diagnostics in future magnetic and inertial confinement fusion devices

    International Nuclear Information System (INIS)

    This work aims at identifying common potential problems that future fusion devices will encounter for both magnetic and inertial confinement approaches in order to promote joint efforts and to avoid duplication of research. Firstly, a comparison of radiation environments found in both fusion reaction chambers will be presented. Then, wall materials, optical components, cables and electronics will be discussed, pointing to possible future areas of common research. Finally, a brief discussion of experimental techniques available to simulate the radiation effect on materials is included.

  12. Fusion energy in an inertial electrostatic confinement device using a magnetically shielded grid

    Energy Technology Data Exchange (ETDEWEB)

    Hedditch, John, E-mail: john.hedditch@sydney.edu.au; Bowden-Reid, Richard, E-mail: rbow3948@physics.usyd.edu.au; Khachan, Joe, E-mail: joe.khachan@sydney.edu.au [School of Physics, The University of Sydney, Sydney, New South Whales 2006 (Australia)

    2015-10-15

    Theory for a gridded inertial electrostatic confinement (IEC) fusion system is presented, which shows a net energy gain is possible if the grid is magnetically shielded from ion impact. A simplified grid geometry is studied, consisting of two negatively biased coaxial current-carrying rings, oriented such that their opposing magnetic fields produce a spindle cusp. Our analysis indicates that better than break-even performance is possible even in a deuterium-deuterium system at bench-top scales. The proposed device has the unusual property that it can avoid both the cusp losses of traditional magnetic fusion systems and the grid losses of traditional IEC configurations.

  13. The new CIEMAT strategies for learning and knowledge transfer; Las nuevas estrategias para el aprendizaje y la transferencia de conocimiento del CIEMAT

    Energy Technology Data Exchange (ETDEWEB)

    Marco Arboli, M.

    2008-07-01

    Educational and training systems are a determining factor in the potential for excellence, innovation and competitiveness in the framework of research as a means to improve know-how, capabilities and skills. In recent years, the EU has supported open and distance education through its innovation, education, training and research programs. The European initiatives promote efficiency by improving quality and occupational training in different sectors and by fostering the use of the information technologies. Having followed the new trends in training and the advantages obtained by using the net in training, the CIEMAT has also taken an interest in improving the learning and knowledge transfer environments through its virtual center. It is a space for developing online educational activities in certain areas, in which the center can be considered as expert, such as all subjects related to energy and environment: renewable, radiological protection, atmospheric contamination, fusion, nuclear power, etc. This virtual space includes a Virtual Classroom and a specialized Thematic Portals, and it aims to be a place of reference for the areas of knowledge related to energy and environment. (Author) 5 refs.

  14. Quality management system in the CIEMAT radiation dosimetry service

    International Nuclear Information System (INIS)

    This paper describes the activities realised by the CIEMAT Radiation Dosimetry Service (SDR) for the implementation of a quality management system (QMS) in order to achieve compliance with the requirements of ISO/IEC 17025 and to apply for the accreditation for testing measurements of radiation dose. SDR has decided the accreditation of the service as a whole and not for each of its component laboratories. This makes it necessary to design a QMS common to all, thus ensuring alignment and compliance with standard requirements, and simplifying routine works as possible. (authors)

  15. Bilateral Comparison CIEMAT-CENTIS-DMR for radionuclide activity measurements

    International Nuclear Information System (INIS)

    We present the results of a bilateral comparison of radionuclide activity measurements between the Radionuclide Metrology Department of the Center of Isotopes of Cuba (CENTIS-DMR), and the Ionising Radiation Metrology Laboratory (LMRI) of the Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT) of Spain. The aim of the comparison was to establish the comparability of the measurement instruments and methods used to obtain radioactive reference materials of some gamma-emitting nuclides at CENTIS-DMR. The results revealed that there are no statistically significant differences between the data reported by both laboratories. (Author) 7 refs

  16. Kinetics of dust particles around the scrape off layer in fusion devices

    International Nuclear Information System (INIS)

    A kinetic model based on the balance of charge and energy over the dust particle surface around the scrape off layer (SOL) region in fusion devices has been developed; for describing the dust mass diminution, its temperature evolution and phase change process have been taken into account. The formulation has been utilized to determine the lifetime of cylindrical and spherical dust particles. A realistic situation in fusion devices, when the plasma exhibits meso-thermal flow, has been taken into account; for this purpose a rigorous approach, pioneered by Mott-Smith and Langmuir (1926 Phys. Rev. 28 727), has been adopted to derive the general expressions for the electron (ion) current on cylindrical dust surfaces and the corresponding mean energy of accreting electrons/ions in a flowing plasma. On the basis of analytical modelling the numerical results for the dust electric potential energy and the lifetime of the dust particles corresponding to a typical plasma environment near the SOL region of Mega Ampere Spherical tokamak (MAST)/Joint European Torus (JET) fusion devices have been evaluated for graphite and tungsten dust particles. The results are graphically illustrated as functions of particle size, electron/ion temperature and plasma ionization. It is seen that a large dust particle immersed in low temperature plasma can survive for long time; as an important outcome it is also noticed that the cylindrical particles of tungsten last longer than spherical particles. The findings are of relevance in characterizing and simulating the effects of a variety of dusts for experimental campaigns in large scale (ITER/Demo-like) fusion devices. (paper)

  17. Study, analysis, design and diagnostics of plasma and beam facing components of fusion devices

    OpenAIRE

    Sartori, Emanuele

    2013-01-01

    Neutral Beam Injection is the horse-power of present and future fusion devices. Modeling plays a fundamental role in anticipating/predicting the performance of the injector and optimizing its behaviour. Successful design can only be achieved through integrated approach between physics and engineering. In the last three years, my research activity has been carried out at Consorzio RFX, where the ultimate neutral beam test facility is being designed and constructed. This PhD thesis has sought t...

  18. Sausage instability of Z-discharged plasma channel in LIB-fusion device

    International Nuclear Information System (INIS)

    Current-carring plasma channels have been proposed for transporting intense ion beams from diodes to a target in a LIB-fusion device. In this paper, the growth rate of the most dangerous surface mode, that is, axisymmetric sausage instability is examined for the plasma channel. The growth rate is shown to be smaller than that of the plasma channel with no fluid motion in a sharp boundary. It is concluded that the stable plasma channel can be formed. (author)

  19. The measurement of potential distribution of plasma in MM-4 fusion device

    International Nuclear Information System (INIS)

    Some experimental results of the potential distribution in MM-4 fusion device are presented by measuring the floating potential of probe. The results showed that the distribution of axial potential is asymmetrical, but the radial potential is symmetrical. There are double ion potential wells in the plasma. The depth of the deepest potential well become deeper is the strength of the magnetic field and injection current are increasing. The location of the deepest well is moved towards the device center along with the increasing of injection energy. This is different from others results. The mechanism of causing this distribution in also discussed

  20. Integrated Plan for the Improvement of CIEMAT Installations Decommissioning, Spain

    International Nuclear Information System (INIS)

    The Research Centre for Energy, Environment and Technology (CIEMAT), formerly the Nuclear Energy Board, is located in downtown Madrid, within the university campus. It used to have more than 60 facilities in operation, which allowed a wide range of activities in the nuclear field. Particularly significant among these facilities were the research reactors, particle accelerators, hot cells and nuclear fuel manufacturing and processing plants. Presently, CIEMAT, which is authorized as a single nuclear facility, includes various installations, some of which are now obsolete, shut down and in dismantling phases. In 2000, it started the PIMIC project. The final goal of PIMIC is to have a model R&D centre, made up mainly of a set of conventional laboratories and facilities, along with some regulated radioactive installations. The scope of the project includes: – Modernization of buildings and facilities, conditioning them for new needs; – Improving and fixing infrastructure; – Decommissioning of shutdown and obsolete facilities; – Cleaning zones, removal of any residual contamination resulting from previous activities and recovery of the totality of the infrastructure for non-nuclear uses

  1. Solid radiographic fusion with a nonconstrained device 5 years after cervical arthroplasty.

    Science.gov (United States)

    Heary, Robert F; Goldstein, Ira M; Getto, Katarzyna M; Agarwal, Nitin

    2014-12-01

    Cervical disc arthroplasty (CDA) has been gaining popularity as a surgical alternative to anterior cervical discectomy and fusion. Spontaneous fusion following a CDA is uncommon. A few anecdotal reports of heterotrophic ossification around the implant sites have been noted for the BRYAN, ProDisc-C, Mobi-C, PRESTIGE, and PCM devices. All CDA fusions reported to date have been in devices that are semiconstrained. The authors reported the case of a 56-year-old man who presented with left C-7 radiculopathy and neck pain for 10 weeks after an assault injury. There was evidence of disc herniation at the C6-7 level. He was otherwise healthy with functional scores on the visual analog scale (VAS, 4.2); neck disability index (NDI, 16); and the 36-item short form health survey (SF-36; physical component summary [PSC] score 43 and mental component summary [MCS] score 47). The patient underwent total disc replacement in which the DISCOVER Artificial Cervical Disc (DePuy Spine, Inc.) was used. The patient was seen at regular follow-up visits up to 60 months. At his 60-month follow-up visit, he had complete radiographic fusion at the C6-7 level with bridging trabecular bone and no motion at the index site on dynamic imaging. He was pain free, with a VAS score of 0, NDI score of 0, and SF-36 PCS and MCS scores of 61 and 55, respectively. Conclusions This is the first case report that identifies the phenomenon of fusion around a nonconstrained cervical prosthesis. Despite this unwanted radiographic outcome, the patient's clinical outcome was excellent. PMID:25303618

  2. Fusion

    CERN Document Server

    Mahaffey, James A

    2012-01-01

    As energy problems of the world grow, work toward fusion power continues at a greater pace than ever before. The topic of fusion is one that is often met with the most recognition and interest in the nuclear power arena. Written in clear and jargon-free prose, Fusion explores the big bang of creation to the blackout death of worn-out stars. A brief history of fusion research, beginning with the first tentative theories in the early 20th century, is also discussed, as well as the race for fusion power. This brand-new, full-color resource examines the various programs currently being funded or p

  3. The environment effect on operation of in-vessel mirrors for plasma diagnostics in fusion devices

    International Nuclear Information System (INIS)

    First mirrors will be the plasma facing components of optical diagnostic systems in ITER. Mirror surfaces will undergo modification caused by erosion and re-deposition processes. As a consequence, the mirror performance may be changed and may deteriorate. In the divertor region it may also be obscured by deposition. The limited access to in-vessel components of ITER calls for testing the mirror materials in present day devices in order to gather information on the material damage and degradation of the mirror performance, i.e. reflectivity. Since 2001 the investigations of this problem are included in the experimental program of several large scale fusion devices. In this paper the main results obtained on LHD (large helical device), T-10, Tore-Supra and TEXTOR are analyzed and some details of future experiments on Jet are described

  4. TASKA-M - a low cost, near term tandem mirror device for fusion technology testing

    International Nuclear Information System (INIS)

    TASKA-M (Modifizierte Tandem Spiegelmaschine Karlsruhe) is a study of a dedicated fusion technology device based on the mirror principle, in continuation of the 1981/82 TASKA study. The main objective is to minimize cost while retaining key requirements of neutron flux and fluence for blanket and material development and for component testing in a nuclear environment. Direct costs are reduced to about 400 M$ by dropping reactor-relevant aspects not essential to technology testing: No thermal barrier and electrostatic plugging of the plasma; fusion power of 7 MW at an injected power of 44 MW; tritium supply from external sources. All technologies for operating the machine are expected to be available by 1990; the plasma physics relies on microstabilization in a sloshing ion population. (orig.)

  5. Fusion of gait and fingerprint for user authentication on mobile devices

    DEFF Research Database (Denmark)

    Derawi, Mohammad; Gafurov, Davrondzhon; Larsen, Rasmus;

    2010-01-01

    A new multi-modal biometric authentication approach using gait signals and fingerprint images as biometric traits is proposed. The individual comparison scores derived from the gait and fingers are normalized using four methods (min-max, z-score, median absolute deviation, tangent hyperbolic) and...... capacitive line sensor, an optical sensor with total internal reflection and a touch-less optical sensor. The fusion results of these two biometrics show an improved performance and a large step closer for user authentication on mobile devices....... then four fusion approaches (simple sum, user-weighting, maximum score and minimum core) are applied. Gait samples are obtained by using a dedicated accelerometer sensor attached to the hip. The proposed method is evaluated using 7200 fingerprint images and gait samples. Fingerprints are collected by a...

  6. Estimation of low level waste by a regulatory clearance in JT-60U fusion device

    International Nuclear Information System (INIS)

    The low level waste of JT-60U fusion device has been estimated by a regulatory clearance. The JT-60U consists of the heating devices such as neutral beam injectors and radio frequency systems, the main devices including the vacuum vessel and the coils, and the diagnostic devices in the torus hall. Those structure materials of the JT-60U device include copper, stainless steels, carbon steel, high manganese steel, inconel 625, ferritic steel, and lead. The gross weight of the device is about 6,400 tons. Radiation transport calculations are performed using 1D code ANISN. In the activation calculations, ACT-4 was employed. The stainless steels of about 50 tons are used for the base of the first wall on the vacuum vessel in JT-60U. For the low level waste management, the evaluation for the steels with the activated nuclides is important. IAEA RS-G-1.7 is applied to the clearance level for the structures of the activated materials. The activated level of the material with 60Co takes about 45 years until less than the clearance level. (author)

  7. Efforts by the CIEMAT to diagnose and treat Butterfly children. the CIEMAT in the CIBER of Rare Diseases; Esfuerzos en el CIEMAT por diagnosticas y tratar a los ninos pariposa. El CIEMAT en el CIBER de enfermedades Raraas

    Energy Technology Data Exchange (ETDEWEB)

    Rio Nechaevsky, M. del

    2009-07-01

    The CIEMAT is one of the institutions associated with the Center for Online Biomedical Research of Rare Diseases (CIBERER). The CIBER of Rare diseases is one of the new public consortiums established at the initiative of the Carlos III Institute of Health. It is formed by 60 research groups linked to 30 different institutions. These research groups are the basic operating units and are grouped together in seven scientific areas. With this online structure, the CIBERER is a pioneering initiative to facilitate synergy's between cutting-edge groups and institutions in different areas and disciplines in the field of rare diseases, as well as to ensure that scientific findings are transferred from the laboratory to the clinic, based on the concept of Translational Research. (Author) 13 refs.

  8. Focused neutral beams with low chaotic divergence for plasma heating and diagnostics in magnetic fusion devices

    International Nuclear Information System (INIS)

    A series of neutral beam injectors has been developed in the Budker Institute of Nuclear Physics for plasma heating and diagnostics in modern fusion devices. Ion optical system of these injectors is optimized to produce ion beams with low angular divergence. In order to provide beam focusing, the grids are formed to be spherical segments. Such geometrically focused neutral beams are particularly advantageous for plasma diagnostics when high spatial resolution is required. Another application of these beams is plasma heating in the machines with narrow ports through which only small size, high power density beams can be transported. (author)

  9. IAEA technical meeting on nuclear data library for advanced systems - Fusion devices

    International Nuclear Information System (INIS)

    A Technical Meeting on 'Nuclear Data Library for Advanced Systems - Fusion Devices' was held at the IAEA Headquarters in Vienna from 31 October to 2 November 2007. The main objective of the initiative has been to define a proposal and detailed plan of activities for a Co-ordinated Research Project on this subject. Details of the discussions which took place at the meeting, including a review of the current activities in the field, a list of recommendations and a proposed timeline schedule for the CRP are summarized in this report. (author)

  10. 7. IAEA Technical Meeting on Steady State Operation of Magnetic Fusion Devices - Booklet of abstracts

    International Nuclear Information System (INIS)

    This meeting has provided an appropriate forum to discuss current issues covering a wide range of technical topics related to the steady state operation issues and also to encourage forecast of the ITER performances. The technical meeting includes invited and contributed papers. The topics that have been dealt with are: 1) Superconducting devices (ITER, KSTAR, Tore-Supra, HT-7U, EAST, LHD, Wendelstein-7-X,...); 2) Long-pulse operation and advanced tokamak physics; 3) steady state fusion technologies; 4) Long pulse heating and current drive; 5) Particle control and power exhaust, and 6) ITER-related research and development issues. This document gathers the abstracts

  11. Efforts by the CIEMAT to diagnose and treat Butterfly children. the CIEMAT in the CIBER of Rare Diseases

    International Nuclear Information System (INIS)

    The CIEMAT is one of the institutions associated with the Center for Online Biomedical Research of Rare Diseases (CIBERER). The CIBER of Rare diseases is one of the new public consortiums established at the initiative of the Carlos III Institute of Health. It is formed by 60 research groups linked to 30 different institutions. These research groups are the basic operating units and are grouped together in seven scientific areas. With this online structure, the CIBERER is a pioneering initiative to facilitate synergy's between cutting-edge groups and institutions in different areas and disciplines in the field of rare diseases, as well as to ensure that scientific findings are transferred from the laboratory to the clinic, based on the concept of Translational Research. (Author) 13 refs

  12. Management of water leaks on Tore Supra actively cooled fusion device

    International Nuclear Information System (INIS)

    Up to now, Tore Supra is the only fusion device fully equipped with actively cooled Plasma Facing Components (PFCs). In case of abnormal events during a plasma discharge, the PFCs could be submitted to a transient high power density (run away electrons) or to a continuous phenomena as local thermal flux induced by trapped suprathermal electrons or ions). It could lead to a degradation of the PFC integrity and in the worst case to a water leak occurrence. Such water leak has important consequence on the tokamak operation that concerns PFCs themselves, monitoring equipment located in the vacuum vessel or connected to the ports as RF antennas, diagnostics or pumping systems. Following successive water leak events (the most important water leak, that occurred in September 2002, is described in the paper), a large feedback experience has been gained on Tore supra since more than 15 years that could be useful to actively cooled next devices as W7X and ITER. (authors)

  13. Monitoring of discharge cleaning for fusion devices by microwave spectroscopy of water molecules

    International Nuclear Information System (INIS)

    The monitoring method of discharge cleaning which was based on microwave spectroscopy was developed in order to apply it to fusion devices and availability of this method was experimentally investigated. Water molecules are one of the major residual molecules in a vacuum vessel, and hence the partial pressure of water is a good index of progress in conditioning. Temporal changes in the partial pressure were measured by using this method during discharge cleaning consequently. Three subjects were studied with a Stark modulated microwave spectrometer, namely, proportionality between the spectrum intensity and the partial pressure, resolving power of the spectrometer for isotopic water molecules and applicability of this method to the measurement of radioactive water molecules. Rotational spectra of the light water H2O (22.235 GHz) and the hydrogen isotopic waters HDO (22.307 GHz) and HTO (16.563 GHz) were observed in several plasma devices for these purposes. (orig.)

  14. Probabilistic Multi-Sensor Fusion Based Indoor Positioning System on a Mobile Device.

    Science.gov (United States)

    He, Xiang; Aloi, Daniel N; Li, Jia

    2015-01-01

    Nowadays, smart mobile devices include more and more sensors on board, such as motion sensors (accelerometer, gyroscope, magnetometer), wireless signal strength indicators (WiFi, Bluetooth, Zigbee), and visual sensors (LiDAR, camera). People have developed various indoor positioning techniques based on these sensors. In this paper, the probabilistic fusion of multiple sensors is investigated in a hidden Markov model (HMM) framework for mobile-device user-positioning. We propose a graph structure to store the model constructed by multiple sensors during the offline training phase, and a multimodal particle filter to seamlessly fuse the information during the online tracking phase. Based on our algorithm, we develop an indoor positioning system on the iOS platform. The experiments carried out in a typical indoor environment have shown promising results for our proposed algorithm and system design. PMID:26694387

  15. Probabilistic Multi-Sensor Fusion Based Indoor Positioning System on a Mobile Device

    Directory of Open Access Journals (Sweden)

    Xiang He

    2015-12-01

    Full Text Available Nowadays, smart mobile devices include more and more sensors on board, such as motion sensors (accelerometer, gyroscope, magnetometer, wireless signal strength indicators (WiFi, Bluetooth, Zigbee, and visual sensors (LiDAR, camera. People have developed various indoor positioning techniques based on these sensors. In this paper, the probabilistic fusion of multiple sensors is investigated in a hidden Markov model (HMM framework for mobile-device user-positioning. We propose a graph structure to store the model constructed by multiple sensors during the offline training phase, and a multimodal particle filter to seamlessly fuse the information during the online tracking phase. Based on our algorithm, we develop an indoor positioning system on the iOS platform. The experiments carried out in a typical indoor environment have shown promising results for our proposed algorithm and system design.

  16. Modelling of surface evolution of rough surface on divertor target in fusion devices

    International Nuclear Information System (INIS)

    Highlights: • We study the surface evolution of rough surface on divertor target in fusion devices. • The effects of gyration motion and E × B drift affect 3D angular distribution. • A larger magnetic field angle leads to a reduced net eroded areal density. • The rough surface evolution affects the physical sputtering yield. - Abstract: The 3D Monte-Carlo code SURO has been used to study the surface evolution of rough surface on the divertor target in fusion devices. The edge plasma at divertor region is modelled by the SDPIC code and used as input data for SURO. Coupled with SDPIC, SURO can perform more sophisticated simulations to calculate the local angle and surface evolution of rough surface. The simulation results show that the incident direction of magnetic field, gyration and E × B force has a significant impact on 3D angular distribution of background plasma and accordingly on the erosion of rough surface. The net eroded areal density of rough surface is studied by varying the magnetic field angle with surface normal. The evolution of the microscopic morphology of rough surface can lead to a significant change in the physical sputtering yield

  17. Modelling of surface evolution of rough surface on divertor target in fusion devices

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Shuyu, E-mail: daishuyu@dlut.edu.cn [Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); Liu, Shengguang; Sun, Jizhong [Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); Kirschner, A. [Forschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung – Plasmaphysik, D-52425 Jülich (Germany); Kawamura, G. [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki, Gifu 509-5292 (Japan); Tskhakaya, D. [Association EURATOM – öAW, Institute of Applied Physics, TU Wien, A-1040 Vienna (Austria); Ding, Rui; Luo, Guangnan [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Wang, Dezhen, E-mail: wangdez@dlut.edu.cn [Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China)

    2015-08-15

    Highlights: • We study the surface evolution of rough surface on divertor target in fusion devices. • The effects of gyration motion and E × B drift affect 3D angular distribution. • A larger magnetic field angle leads to a reduced net eroded areal density. • The rough surface evolution affects the physical sputtering yield. - Abstract: The 3D Monte-Carlo code SURO has been used to study the surface evolution of rough surface on the divertor target in fusion devices. The edge plasma at divertor region is modelled by the SDPIC code and used as input data for SURO. Coupled with SDPIC, SURO can perform more sophisticated simulations to calculate the local angle and surface evolution of rough surface. The simulation results show that the incident direction of magnetic field, gyration and E × B force has a significant impact on 3D angular distribution of background plasma and accordingly on the erosion of rough surface. The net eroded areal density of rough surface is studied by varying the magnetic field angle with surface normal. The evolution of the microscopic morphology of rough surface can lead to a significant change in the physical sputtering yield.

  18. A lab-on-a-chip device for investigating the fusion process of olfactory ensheathing cell spheroids.

    Science.gov (United States)

    Munaz, Ahmed; Vadivelu, Raja K; John, James A St; Nguyen, Nam-Trung

    2016-08-01

    Understanding the process of fusion of olfactory ensheathing cell spheroids will lead to improvement of cell transplantation therapies to repair spinal cord injuries. The successful fusion of transplanted spheroids will enable alternative transplantation strategies to be developed for in vivo applications. This paper describes the use of a microfluidic device to trap and fuse olfactory ensheathing cell spheroids. The velocity, the pressure distribution in the device were simulated numerically to predict the trapping location. The simulation predicted the optimum flow rates for trapping the spheroids in the later experiments. Simulated particle trajectories were verified experimentally with tracing of fluorescent micro particles. The fusion process of the spheroids was investigated over a period of 48 hours. The microfluidic platform presented here can be used for testing potential drugs that can promote the fusion process and improve the transplantation therapy. PMID:27387270

  19. Summary of the 19th International Atomic Energy Agency Technical Meeting on 'Research Using Small Fusion Devices'

    Science.gov (United States)

    Van Oost, G.; Mank, G.

    2011-08-01

    This paper presents a summary of recent results reported on several topics on magnetic confinement, dense magnetized plasmas, innovative fusion technology and applications, diagnostic systems and control and data acquisition systems. The main topics covered on the magnetic confinement devices, diagnostics and data acquisition concern the tokamak KTM (Kazakhstan Tokamak for Material testing) for materials research and testing, and IAEA Joint Experiments on small tokamaks. For the dense magnetized plasmas results on development and commissioning of plasma focus devices were reported. The plasmatron VISION I for innovative plasma-wall interaction studies, a lithium divertor for KTM and compact fusion reactors as neutron sources were presented.

  20. Motion-sensor fusion-based gesture recognition and its VLSI architecture design for mobile devices

    Science.gov (United States)

    Zhu, Wenping; Liu, Leibo; Yin, Shouyi; Hu, Siqi; Tang, Eugene Y.; Wei, Shaojun

    2014-05-01

    With the rapid proliferation of smartphones and tablets, various embedded sensors are incorporated into these platforms to enable multimodal human-computer interfaces. Gesture recognition, as an intuitive interaction approach, has been extensively explored in the mobile computing community. However, most gesture recognition implementations by now are all user-dependent and only rely on accelerometer. In order to achieve competitive accuracy, users are required to hold the devices in predefined manner during the operation. In this paper, a high-accuracy human gesture recognition system is proposed based on multiple motion sensor fusion. Furthermore, to reduce the energy overhead resulted from frequent sensor sampling and data processing, a high energy-efficient VLSI architecture implemented on a Xilinx Virtex-5 FPGA board is also proposed. Compared with the pure software implementation, approximately 45 times speed-up is achieved while operating at 20 MHz. The experiments show that the average accuracy for 10 gestures achieves 93.98% for user-independent case and 96.14% for user-dependent case when subjects hold the device randomly during completing the specified gestures. Although a few percent lower than the conventional best result, it still provides competitive accuracy acceptable for practical usage. Most importantly, the proposed system allows users to hold the device randomly during operating the predefined gestures, which substantially enhances the user experience.

  1. Improved zero dimensional model of a reversed field pinch fusion device

    International Nuclear Information System (INIS)

    A zero-dimensional model has been developed which accurately predicts conditions observed during several runs of the ZT-40M reversed field pinch fusion device at Los Alamos National Laboratory. The model is based on a physical model developed by E.H. Klevans at Penn State University. Improvements made to this model included the use of coronal non-equilibrium equations for predicting impurity effects, the inclusion of an exponentially decaying ion heating term, and the relaxation of the assumption that ion and electron densities are equal in the device. The model has been used to simulate ZT-40M in both flat-top and slowly ramped current modes. Using experimentally measured density and current evolutions, the model accurately predicts observed tau/sub E/, β/sub Θ/, T/sub e/, T/sub i/, Z/sub eff/, and radiated power. The continuing goal of this work is to predict conditions in the ZT-H device, which is under construction. 28 refs., 18 figs

  2. Developing Boundary/PMI Solutions for Next-Step Fusion Devices

    Science.gov (United States)

    Guo, H. Y.; Leonard, A. W.; Thomas, D. M.; Allen, S. L.; Hill, D. N.; Unterberg, Z.

    2014-10-01

    The path towards next-step fusion development requires increased emphasis on the boundary/plasma-material interface. The new DIII-D Boundary/Plasma-Material Interactions (PMI) Center has been established to address these critical issues on a timescale relevant to the design of FNSF, adopting the following transformational approaches: (1) Develop and test advanced divertor configurations on DIII-D compatible with core plasma high performance operational scenarios in FNSF; (2) Validate candidate reactor PFC materials at reactor-relevant temperatures in DIII-D high-performance plasmas, in collaboration with the broad material research/development community; (3) Integrate validated boundary-materials interface with high performance plasmas to provide viable boundary/PMI solutions for next-step fusion devices. This program leverages unique DIII-D capabilities, promotes synergistic programs within the broad PMI community, including linear material research facilities. It will also enable us to build a compelling bridge for the US research on long-pulse facilities. Work supported by the US DOE under DE-FC02-04ER54698 and DE-AC52-07NA27344, DE-AC05-00OR2725.

  3. Proceedings of the Japan-U.S. workshop P-118 on vacuum technologies for fusion devices

    International Nuclear Information System (INIS)

    Fusion community does not appreciate vacuum technologies to the same extent as accelerator community does. This is because, in the case of accelerators, in particular storage ring systems, the requirement of attaining ultrahigh vacuum in order to avoid collisional loss is well defined, on the other hand, it is not possible to define the requirement so precisely in the case of fusion devices. One of the reasons is that core plasma interacts with vessel wall so strongly and unpredictably that it becomes difficult to identify the role played by individual components. However, in the next step and the next generation machines like CIT, LHS, ITER, FER and NET, vacuum technologies would play more significant roles, because the CIT will introduce tritium in a vacuum vessel, and the aim of the ITER project is to demonstrate particle balance, namely, to achieve steady state operation with D-T fuel. The Japan-U.S. workshop P-118 was held at the Institute of Plasma Physics, Nagoya University, from August 1 to 5, 1988. 33 participants including 4 from the U.S. took part in the workshop. In the plenary session, 12 lectures were given, and also the topics-oriented session on pumping, gauging, remote maintenance, first wall, pump limiter, divertor and others was held. (K.I.)

  4. Computerized cost estimation spreadsheet and cost data base for fusion devices

    International Nuclear Information System (INIS)

    An automated approach to performing and cataloging cost estimates has been developed at the Fusion Engineering Design Center (FEDC), wherein the cost estimate record is stored in the LOTUS 1-2-3 spreadsheet on an IBM personal computer. The cost estimation spreadsheet is based on the cost coefficient/cost algorithm approach and incorporates a detailed generic code of cost accounts for both tokamak and tandem mirror devices. Component design parameters (weight, surface area, etc.) and cost factors are input, and direct and indirect costs are calculated. The cost data base file derived from actual cost experience within the fusion community and refined to be compatible with the spreadsheet costing approach is a catalog of cost coefficients, algorithms, and component costs arranged into data modules corresponding to specific components and/or subsystems. Each data module contains engineering, equipment, and installation labor cost data for different configurations and types of the specific component or subsystem. This paper describes the assumptions, definitions, methodology, and architecture incorporated in the development of the cost estimation spreadsheet and cost data base, along with the type of input required and the output format

  5. Carbon coating on the wall of nuclear fusion devices and plasma-surface interactions

    International Nuclear Information System (INIS)

    The plasma-assisted carbon-film coating of the inner walls of nuclear fusion devices, which is a new technical trend, is reviewed in view of plasma-surface interactions. A great advantage of the easiness for both wide-area and repeated coatings is due to the so-called in situ coating of the walls compared with the precoating. The amorphous carbon films produced by this in situ plasma coating contain ordinarily a large number of H atoms (H/C = 0.4∼0.6), which lead to recycling of a large amount of hydrogen (release and implantation of H atoms) in nuclear fusion discharges. This demerit of the plasma method can be covered by reducing the H content in the films under suitable coating conditions, and also by conditioning the film surface with a helium glow discharge. A simple model for the interaction between a-C : H film and hydrogen plasma is proposed. Further, another low-Z material coating, that is in situ boron coating, is briefly discussed. (author)

  6. Study of the pores inside tungsten coating after thermal cycling for fusion device

    Science.gov (United States)

    Desgranges, C.; Firdaouss, M.; Hernandez, C.; Martin, C.; Ruset, C.; Grigore, E.; Missirlian, M.; Samaille, F.; Bucalossi, J.

    2016-02-01

    In the next fusion devices, all the plasma facing components will consist of bulk tungsten or tungsten coating on carbon. This paper focuses on the behaviour of tungsten coated on carbon fibre composite designed for the WEST project (Bucalossi et al 2011 Fusion Eng. Des. 86 684-688) under intensive thermal cycling delivered by an electron beam. The use of scanning electron microscope has allowed in particular, the observation of several pore lines inside the coating. These pore lines have different aspects depending on the observed zone according to the localisation of the electron beam, accentuated lines with more numerous enlarged pores in zone exposed to the electron beam. An analogous trend is also observed for JET tungsten-coated samples under similar thermal cycles despite their different properties due to an alternative manufacturing method of the substrate. A systematic and attentive comparison on the coating changes after the application of the electron beam heating is presented. The observed comportments as the formation of the pore lines or the pore shapes are assumed to be inherent to simultaneous diffusion processes. In association with the pore line formation, a migration of the carbon substrate towards the surface is presumed and discussed.

  7. Participation of CIEMAT in studies of radioecology in european marine ecosystems; Participacion del Ciemat en estudios de radioecologia en ecosistemas marinos Europeos

    Energy Technology Data Exchange (ETDEWEB)

    Gasco, C.; Meral, J.; Gonzalez, A. M. [Ciemat. Madrid (Spain)

    1999-07-01

    In this report the different objectives and results achieved through the participation of the Aquatic Radioecology Laboratory for CIEMAT in some European Projects from 1994 up to now are detailed. A Description of the studied ecosystems, the sampling campaigns performed, and the analytical methods developed are presented as well. Finally the main results and conclusions obtained are summarized. (Author)

  8. Participation of CIEMAT in 27th annual meeting of the Spanish Nuclear Safety; Participacion del CIEMAT en la 27 Reunion Anual de la Sociedad Nuclear Espanola

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    The book assembles the paper of researches of CIEMAT during the 27th annual meeting of Spanish Nuclear society. The paper were presented during the following sessions: 1. Maintenance and in-service inspection 2. Radioactive wastes. 3. Environment 4. R and D management 5. Nuclear Safety. 6. Lifetime. (Author)

  9. Participation of CIEMAT in 26th annual meeting of the Spanish Nuclear Safety; Participacion del CIEMAT en la 26 reunion anual de la Sociedad Nuclear Espanola

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    The book assembles the paper of researches of CIEMAT during the 26th annual meeting of Spanish Nuclear society. The paper were presented during the following sessions: 1. Maintenance and in-service inspection 2. Radioactive wastes 3. Environment 4. R and D management 5. Nuclear Safety 6. Lifetime.

  10. Eddy current experiments with closely placed solid boxes simulating a next step fusion device

    International Nuclear Information System (INIS)

    Eddy current experiments with closely placed solid boxes driven by a coil alternative current were carried out. The experiment was to designed to identify approaches to the problems about: (1) computing accuracy of the eddy current calculation with thin plate approximation; and (2) modeling baselines for a computational study of eddy currents in a super conducting (SC) fusion device. The following conclusions were drawn from experimental data and their comparison with eddy current analyses: (1) the skin effect is a major cause of computational error; (2) if the error due to the skin effect cannot be ignored, the double shell model calculates accurate eddy currents; (3) the mesh size with a narrow gap should be small enough (for example smaller than five times the gap width) so as not to cause additional error. The Finite Element Method (FEM) model for the eddy current computation is well modeled using these conclusions

  11. Calculational models for the treatment of pulsed/intermittent activation within fusion energy devices

    International Nuclear Information System (INIS)

    Two calculationally efficient methods have been developed to compute the induced radioactivity due to pulsed/intermittent irradiation histories as encountered in both magnetic and inertial fusion energy devices. The numerical algorithms are based on the linear chain method (Bateman Equations) and employ series reduction and matrix algebra. The first method models the case in which the irradiated materials are present throughout a series of irradiation pulses. The second method treats the case where a fixed amount of radioactive and transmuted material is created during each pulse. Analytical solutions are given for each method for a three nuclide linear chain. Numerical results and comparisons are presented for a select number of linear chains. (orig.)

  12. Studies for the ion cyclotron range of frequency heating in a tokamak fusion experimental device

    Energy Technology Data Exchange (ETDEWEB)

    Saigusa, Mikio [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment

    1996-02-01

    Ion cyclotron range of frequency heating has been investigated as an efficient additional plasma heating and non-inductive current driving methods in a tokamak type fusion experimental device. At first, an ICRF antenna coupling code was developed for the estimation of the coupling properties of phased antenna array, so that the ICRF antennas were designed for JT-60 and JT-60U ICRF heating systems using the coupling codes. The ICRF heating experiments had been performed in JT-60 and JT-60U. The coupling properties of ICRF antenna, the physics of peripheral plasma and energy confinement by ICRF heating in various heating regimes have been investigated. Next, the Toroidicity induced Alfven Eigen (TAE) mode have been studied using minority ICRF heating for producing energetic ions which can excite TAE mode. The TAE mode could be suppressed by current profile control using current ramp operation and lower hybrid current drive. (author) 74 refs.

  13. EMP Fusion

    OpenAIRE

    KUNTAY, Isık

    2010-01-01

    This paper introduces a novel fusion scheme, called EMP Fusion, which has the promise of achieving breakeven and realizing commercial fusion power. The method is based on harnessing the power of an electromagnetic pulse generated by the now well-developed flux compression technology. The electromagnetic pulse acts as a means of both heating up the plasma and confining the plasma, eliminating intermediate steps. The EMP Fusion device is simpler compared to other fusion devices and this reduces...

  14. Effect of Fusion Neutron Source Numerical Models on Neutron Wall Loading in a D-D Tokamak Device

    Institute of Scientific and Technical Information of China (English)

    陈义学; 吴宜灿

    2003-01-01

    Effect of various spatial and energy distributions of fusion neutron source on the calculation of neutron wall loading of Tokamak D-D fusion device has been investigated by means of the 3-D Monte Carlo code MCNP. A realistic Monte Carlo source model was developed based on the accurate representation of the spatial distribution and energy spectrum of fusion neutrons to solve the complicated problem of tokamak fusion neutron source modelling. The results show that those simplified source models will introduce significant uncertainties. For accurate estimation of the key nuclear responses of the tokamak design and analyses, the use of the realistic source is recommended. In addition, the accumulation of tritium produced during D-D plasma operation should be carefully considered.

  15. Proceeding of JSPS-CAS Core-University Program (CUP) on superconducting key technology for advanced fusion device

    International Nuclear Information System (INIS)

    The JSPS-CAS Core University Program (CUP) seminar on 'Superconducting Key Technology for Advanced Fusion Device' was held in Xi'an, China from October 18 to 21, 2010. This seminar was organized in the framework of the CUP in the field of plasma and nuclear fusion. This seminar honored by NIFS and ASIPP is aim to have a wide discussion on the new application and achievements on superconducting technology of nuclear fusion reactor. The superconducting technology on fusion reactor involves the fields on high current superconductor and magnet, quench protection, current control, cooling of the magnet, and reliability of large scale refrigerator. The technology on ITER high temperature superconductor current leads and the conductor test of JT-60SA are discussed in this seminar. Thirty-four oral talks and two summary talks were presented in this seminar. Total number of the participants was 34, including 12 Japanese participants. (author)

  16. Effect of thin contaminating coating on reflectance of metallic mirror placed inside the vacuum chamber of fusion device

    International Nuclear Information System (INIS)

    The practice of use diagnostic mirrors inside the fusion devices revealed the appearance of a deposit on the mirror surface. Such deposit is a result of condensation of the erosion materials of those inner components that are subjected to the strongest plasma impact. Another reason for deposit growth is the wall conditioning procedures like carbonization and boronization. Appeared on the diagnostic mirrors and windows the contaminating films deteriorate the optical properties of these diagnostic elements,i.e., the mirror reflectance and window transmissivity. The object of this paper is to investigate an influence on reflectance of metal mirrors of thin films of the materials that are most probable in fusion devices under operation (boron and carbon) or can be promising in a fusion reactor (beryllium)

  17. Methods and devices for characterization of neutron field in controlled nuclear fusion installations. Resume of Ph.D thesis

    International Nuclear Information System (INIS)

    The abstract presents the essential features of the Ph.D. thesis which is dealing with the development of advanced methods and devices for characterization of neutron emission in controlled nuclear fusion systems. This work presents the author's contribution to neutron diagnosis in fusion systems and especially in investigation and understanding of fusion mechanisms in dense Z-pinch installations in their most preferment variant plasma focus, aiming to optimization of neutron production and applications. The work is structured in 6 chapters and 4 appendices. The first chapter presents the numerical and analytical models for the main characteristics of neutron emission in fusion systems. To extract quantitative information on the distribution function of reacting deuterons from neutron measurements analytical expressions for flux anisotropy and energy spectrum of the fusion neutrons emitted in Z-pinch installations were derived. The second chapter introduces the main calibration method of total neutron yield in pulsed fusion system. The conclusions of this study were used for selecting the optimal method of experimental determination of neutron yield in plasma focus installations operating in the laboratory of plasma physics and nuclear fusion of the Institute for Physics and Technology of Radiation Devices, Bucharest and in the Focalized Plasma Group in the Institute of Experimental Physics of the Heinrich-Heine University, Dusseldorf. The third chapter describes the theoretical principles in the spectroscopy of fusion neutrons. The fourth chapter is entirely dedicated to the characterization of neutron emission in the focalized plasma installation SPEED-2 of the University of Dusseldorf. In the fifth chapter there are introduced and applied original methods for determination of energy and angular characteristics of the distribution function of reactant deuterons in focalized plasma. In the sixth chapter it is developed an original concept of collimation and

  18. Development of laser-based techniques for in situ characterization of the first wall in ITER and future fusion devices

    NARCIS (Netherlands)

    Philipps, V.; Malaquias, A.; Hakola, A.; Karhunen, J.; Maddaluno, G.; Almaviva, S.; Caneve, L.; Colao, F.; Fortuna, E.; Gasior, P.; Kubkowska, M.; Czarnecka, A.; Laan, M.; Lissovski, A.; Paris, P.; van der Meiden, H. J.; Petersson, P.; Rubel, M.; Huber, A.; Zlobinski, M.; Schweer, B.; Gierse, N.; Xiao, Q.; Sergienko, G.

    2013-01-01

    Analysis and understanding of wall erosion, material transport and fuel retention are among the most important tasks for ITER and future devices, since these questions determine largely the lifetime and availability of the fusion reactor. These data are also of extreme value to improve the understan

  19. A comparison of hydrogen vs. helium glow discharge effects on fusion device first-wall conditioning

    International Nuclear Information System (INIS)

    Hydrogen- and deuterium-fueled glow discharges are used for the initial conditioning of magnetic fusion device vacuum vessels following evacuation from atmospheric pressure. Hydrogenic glow discharge conditioning (GDC) significantly reduces the near-surface concentration of simple adsorbates, such as H2O, CO, and CH4, and lowers ion-induced desorption coefficients by typically three orders of magnitude. The time evolution of the residual gas production observed during hydrogen-glow discharge conditioning of the carbon first-wall structure of the TFTR device is similar to the time evolution observed during hydrogen GDC of the initial first-wall configuration in TFTR, which was primarily stainless steel. Recently, helium GDC has been investigated for several wall-conditioning tasks on a number of tokamaks including TFTR. Helium GDC shows negligible impurity removal with stainless steel walls. For impurity conditioning with carbon walls, helium GDC shows significant desorption of H2O, CO, and CO2; however, the total desorption yield is limited to the monolayer range. In addition, helium GDC can be used to displace hydrogen isotopes from the near-surface region of carbon first-walls in order to lower hydrogenic retention and recycling. 38 refs., 6 figs

  20. CIEQUI: An oracle database for information management in the analytical chemistry unit of CIEMAT

    International Nuclear Information System (INIS)

    An in-house software product named CIEQUI has been developed in CIEMAT, with purpose-written programs as a laboratory information management system (LIMS). It is grounded upon relational data base from ORACLE, with the supported languages SQL, PL/SQL, SQL*Plus, and DEC BASIS, and with the tools SQL*Loader, SQL*Forms and SQL*Menu. Its internal organization and functional structure are schematically represented and the advantages and disadvantages of a tailored management system are described. Although it is difficult to unity the analysis criteria in a R AND D organization such as CIEMAT, because of the wide variety in the sample type and in the involved determinations, our system provides remarkable advantages. CIEQUI reflects the complexity of the laboratories it serves. It is a system easily accessible to all, that help us in many tasks about organization and management of the analytical service provided through the different laboratories of the CIEMAT Analytical Chemistry Unit. (Author)

  1. The CIEDA-CIEMAT. The close relationship been Environmental Law and Scientific-Technical Innovation; El CIEDA-CIEMAT. La Intima relacion entre el derecho ambiental y la innovacion cientifico-tecnica

    Energy Technology Data Exchange (ETDEWEB)

    Molina Hernandez, A. J.

    2010-07-01

    The main goal of the International Environmental Law Studies Center (CIEDA-CIEMAT) is to become a reference center in the area of research, development and dissemination of the legal instruments needed to implement sustainability policies. The CIEDA-CIEMAT forms part of the actions included in the Specific Action Plan for Soria (PAES) that commissions CIEMAT to create such a center. The legal needs associated with environmental protection have brought about a rapid evolution of environmental law. The CIEDA-CIEMAT intends to support the public powers and civil society in the implementation of a sustainable development model. Considering the global nature of environmental problems, the international orientation of the Center is an essential ingredient, with a special focus on cooperation with the developing countries. Tho close ties of this branch of law to scientific-technological knowledge fully justifies the inclusion of a center of this nature in CIEMAT. (Author)

  2. Characterization of Size, Composition and Origins of Dust in Fusion Devices. Summary Report of the Third Research Coordination Meeting

    International Nuclear Information System (INIS)

    Twelve experts on processes of dust in fusion experiments met at IAEA Headquarters 30 November - 02 December 2011 for the 3rd Research Coordination Meeting (RCM) of the Coordinated Research Project (CRP) on ''Characterization of size, composition and origins of dust in fusion devices.'' Participants reviewed their work done in the course of the CRP and the current state of knowledge, and they made plans for a dust database and a final CRP report. Presentations, discussions and recommendations of the RCM are summarized here. (author)

  3. Consolidation of use of the CSN-CIEMAT radiological protection educational portal; Consolidacion de la utilidad del portal educativo de proteccion radiologica CSN-Ciemat

    Energy Technology Data Exchange (ETDEWEB)

    Llorente Herranz, C.; Marco Arboli, M.; Fernandez Sanchez, J.; Villaroel Gonzalez-Elipe, R.

    2016-05-01

    he workers of nuclear and radioactive facilities are required to undertake training programmes on radiological protection in order to achieve the accreditations and licences granted by the CSN. Since 2003, the Council has been collaborating with CIEMAT in the development, maintenance and updating of the teaching material for these courses. More than a thousand such courses have been delivered to date and their contents are accessible via Internet. (Author)

  4. User's and Programmer's Guide for HPC Platforms in CIEMAT; Guia de Utilizacion y programacion de las Plataformas de Calculo del CIEMAT

    Energy Technology Data Exchange (ETDEWEB)

    Munoz Roldan, A.

    2003-07-01

    This Technical Report presents a description of the High Performance Computing platforms available to researchers in CIEMAT and dedicated mainly to scientific computing. It targets to users and programmers and tries to help in the processes of developing new code and porting code across platforms. A brief review is also presented about historical evolution in the field of HPC, ie, the programming paradigms and underlying architectures. (Author) 32 refs.

  5. Energy-dependent finite-orbit treatment for plasma buildup in mirror fusion devices

    International Nuclear Information System (INIS)

    A computer simulation of hot plasma buildup in mirror fusion devices and results from this model are presented. In a small, hot magnetically confined plasma, the ion orbit radius (rho/sub i/) can be comparable to the plasma radius (R/sub p/). It a mirror-confined plasma were rho/sub i//R/sub p/ > 1/25 (such as 2XII-B), a point kinetic treatment of ion interactions becomes inaccurate and a finite gyro-radius (FGR) treatment must be used to adequately describe plasma buildup processes. This is particularly true for describing losses due to cold-gas charge exchange (c-x) near the plasma surface, since a particle lost near the vacuum interface may have contributed to the density as far as 2 rho/sub i/ radially inward from the c-x point. A similar FGR effect applies to beam-deposited ions whose large orbits influence the density up to 2 rho/sub i/ from the trapping point

  6. Ohmic heating coil power supply using thyristor circuit breaker in a thermonuclear fusion device

    International Nuclear Information System (INIS)

    In a large scale Tokamak thermonuclear fusion device such as the critical plasma testing facility (JT60) presently under construction, mechanical breakers such as vacuum and air breakers are mostly used for interrupting DC heavy current which is supplied to the ohmic heating coils of inductive energy accumulation method. The practical use of the DC breakers employing thyristors has just been started because the history of thyristor development is short and thristors are still expensive, in spite of the advantages. In this paper, the circuit is investigated in which the excellent high speed controllability of thyristors is fully utilized, while the economy is taken into accout, and the experiment carried out with a unit model is described. It was found that a thyristor switch, which was constructed by connecting the high speed thyristors of peak off-state voltage rating 2,000 V and mean current rating 500 A in direct parallel, was able to interrupt 12.7 kA current in the power supply circuit of ohmic heating coils developed this time. In addition, the switch configuration was able to be greatly simplified. When the multistage raising of plasma current is required, the raise can be performed with a single thyristor breaker because it can make high speed control. Therefore, the capacity of the breaker can be doubly and drastically reduced. Also, if current unbalance might occur between thyristor switch units, it gives no problem since the time of reverse voltage after current interruption dispersed smaller as current increased. (Wakatsuki, Y.)

  7. Tritium retention in plasma facing components for NET/ITER fusion devices

    International Nuclear Information System (INIS)

    This paper presents the derivation and the results of a tritium inventory assessment carried out for prototypical NET/ITER first-wall and divertor carbon-based armors, and discusses the impact of the uncertainties associated with these estimates. Transient effects associated with fusion device pulsed operation were modelled using two tritium retention models: (i) A new model primarily suitable for tritium retention analysis is porous media, and (ii) a diffusion-type model developed for metallic materials. The influence of several key factors such as the material microstructure, the flux density, the temperature range, the burn operation scenario, and the burn duration which are expected to strongly affect tritium retention is analyzed. A parametric assessment is performed for a 50/50% D-T plasma, particle fluxes in the range of 1016-1019 particles cm-2 s-1, temperatures in the range of 300-1900deg C, and burn-times in the range of 400-1000 s. (orig.)

  8. Characterization of scintillator screens for suprathermal ion detection in fusion devices

    International Nuclear Information System (INIS)

    The luminescence of scintillator screens of Y3Al5O12:Ce3+ (P46), Gd2O2S:Tb3+ (P43), Y2O3:Eu3+ (P56) and SrGa2S4:Eu2+ (TG-Green) has been characterized when irradiated with deuterium ions and α-particles with energies up to 3 MeV. The relative efficiency of the scintillator layers deposited on stainless steel plates has been studied as a function of beam energy and current as well as ion species. The emitted light first increases linearly with beam energy and then saturates. A logarithmic decay of the efficiency with beam current has been observed for all scintillators. Furthermore, the scintillator degradation by high ion dose has been investigated. Among the screens under study, the TG-Green and P46 scintillators are the best suited materials, in terms of relative efficiency and degradation with ion dose, for fast-ion loss detection in fusion devices.

  9. Energy-dependent finite-orbit treatment for plasma buildup in mirror fusion devices

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, M.M.

    1980-01-01

    A computer simulation of hot plasma buildup in mirror fusion devices and results from this model are presented. In a small, hot magnetically confined plasma, the ion orbit radius (rho/sub i/) can be comparable to the plasma radius (R/sub p/). It a mirror-confined plasma were rho/sub i//R/sub p/ > 1/25 (such as 2XII-B), a point kinetic treatment of ion interactions becomes inaccurate and a finite gyro-radius (FGR) treatment must be used to adequately describe plasma buildup processes. This is particularly true for describing losses due to cold-gas charge exchange (c-x) near the plasma surface, since a particle lost near the vacuum interface may have contributed to the density as far as 2 rho/sub i/ radially inward from the c-x point. A similar FGR effect applies to beam-deposited ions whose large orbits influence the density up to 2 rho/sub i/ from the trapping point.

  10. JNM theme issue on models and data for plasma-material interaction and hydrogen retention in fusion devices

    Science.gov (United States)

    Braams, Bastiaan J.; Chung, Hyun-Kyung

    2015-12-01

    Plasma-wall interaction in fusion devices encompasses a wide variety of processes. On a short timescale these include deposition of energetic plasma particles (primarily hydrogen and helium) into the surface, physical and chemical sputtering of surface material into the plasma, and reflection and desorption of particles from the surface. On a longer timescale the processes include diffusion of hydrogen and helium in the wall and changes in surface composition, morphology and material microstructure due to plasma bombardment and (in a reactor) neutron irradiation. Together these processes are extremely important in determining the plasma performance, the lifetime of plasma-facing components, trapping and retention of the tritium fusion fuel in the wall, and ultimately the feasibility of fusion power production.

  11. Operating Instructions for the Cryogenics in the Liquid Argon Detector at CIEMAT; Operacion de la Criogenia del Detector de Argon Liquido del CIEMAT

    Energy Technology Data Exchange (ETDEWEB)

    Romero, L.; Leal, M. D.; Prado, M. del; Ramirez, J. L.

    2009-12-19

    Ciemat has wide experience in designing and developing gaseous particle detectors. It has taken part in the building of experiments for CERN accelerators, constructing shares of the muon chambers for L3 experiment in LEP and CMS experiment in LHC. Recently, new concepts for particle detectors have been developed, as a natural evolution from the ones built at Ciemat. These new radiation detectors use liquefied noble gases as active media. A testing system for these kind of liquefied argon detectors has been built at Ciemat, and includes a supporting cryogenic system for the liquefaction and maintenance of the liquid argon needed for operating the detector. This document describes the technical features of this cryogenic system. Besides the documentation of the cryogenic system, this technical report can be of help for the management and upgrading of the detector. As well as an introduction, the report includes the following chapters: The second one is a description of the cryogenics and gas systems. The third chapter shows the controlling electronics. The fourth chapter deals with the important topic that is security, its systems and protocols. The fifth describes the cryogenic operations possible in this equipment. The report is completed with diagrams, schemes, pictures and tables for the easier management of the setup. (Author)

  12. Application of parallel heat exchangers in helium refrigerators for mitigating effects of pulsed load from fusion devices

    International Nuclear Information System (INIS)

    Research highlights: → Simulation revealed adverse effects of heat load from fusion device on helium plant. → Flow fluctuation leads to ineffective heat transfer and decreases plant capacity. → Use of parallel heat exchangers reduced the flow fluctuation by 15%. → This also compensated the reduction in refrigerator capacity. → This may ensure the continuous cooling requirement of fusion devices. - Abstract: Tokamaks and Stellarators generate heat loads that are pulsating in nature. The helium refrigerators employed for cooling these fusion devices are, however, designed for a steady heat load. Unless they are appropriately adapted and controlled, process parameters under pulsed load may vary to such an extent which may lead of plant instability. In this paper, performance of a J-T stage as a part of modified Claude cycle based helium refrigerator has been analyzed subjecting it to a pulsed heat load for understanding of the behavior of the components. Pulsed heat load results in the fluctuation of mass flow rate in the return stream that needs to be mitigated. The analyses focus both on the equipment and their interactions in the cycle and a concept of parallel heat exchangers has been applied. There is a steady decrease in liquid level in Dewar when the plant is designed with a capacity equal to the time-averaged heat load. Introduction of parallel heat exchanger mitigates mass flow rate fluctuation by 15% with only one additional heat exchanger at the last stage. There is promise for a higher mitigation effect when more heat exchangers are used in parallel in more number of stages. The study may be extended to entire helium plant used in fusion devices.

  13. Participation of CIEMAT in studies of radioecology in european marine ecosystems

    International Nuclear Information System (INIS)

    In this report the different objectives and results achieved through the participation of the Aquatic Radioecology Laboratory for CIEMAT in some European Projects from 1994 up to now are detailed. A Description of the studied ecosystems, the sampling campaigns performed, and the analytical methods developed are presented as well. Finally the main results and conclusions obtained are summarized. (Author)

  14. Coordinated Use of Heterogeneous Infrastructures for Scientific Computing at CIEMAT by means of Grid Technologies; Aprovechamiento Coordinado de las Infraestructuras Heterogeneas para Calculo Cientifico Participadas por el CIEMAT por medio de Tecnologias Grid

    Energy Technology Data Exchange (ETDEWEB)

    Rubio-Montero, A. J.

    2008-08-06

    Usually, research data centres maintain platforms from a wide range of architectures to cover the computational needs of their scientists. These centres are also frequently involved in diverse national and international Grid projects. Besides, it is very difficult to achieve a complete and efficient utilization of these recourses, due to the heterogeneity in their hardware and software configurations and their unequal use along the time. This report offers a solution to the problem of enabling a simultaneous and coordinated access to the variety of computing infrastructures and platforms available in great Research Organisms such as CIEMAT. For this purpose, new Grid technologies have been deployed in order to facilitate a common interface which enables the final user to access the internal and external resources. The previous computing infrastructure has not been modified and the independence on its administration has been guaranteed. For a sake of comparison, a feasibility study has been performed with the execution of the Drift Kinetic Equation solver (Dikes) tool, a high throughput scientific application used in the TJ-II Flexible Heliac at National Fusion Laboratory. (Author) 35 refs.

  15. Radiation defects in perovskitic thin films of future bolometer systems in fusion devices

    International Nuclear Information System (INIS)

    This work represents an extensive study of the radiation resistance of ferroelectric and antiferroelectric thin films in view of a possible application as a temperature sensitive element in a new type of bolometer (which assesses the total absorbed radiation dose) in a fusion device like ITER (International Thermonuclear Experimental Reactor). In comparison to the actual systems for ITER, alternative bolometers could be valuable, because they are less sensitive to electromagnetic noise and simplify 'remove handling'. Perovskitic ferroelectric compounds like Pb(1-x)LaxZr(1-y)Tiy03 (PLZT) and PbZr53Ti47O3 (PZT) as well as the antiferroelectric system PbZrO3 (PZ) were irradiated in the TRIGA Mark II reactor (Vienna) to a total fluence of 2*1022 m-2 (E +62 0.1 MeV) for PLZT and PZT and to 4*1022 m-2 (E+620.1 MeV) for PZ, respectively. The dielectric properties (i.e. the hysteresis loops and the dielectric constant ε) were investigated prior to and after irradiation. Furthermore, all films were annealed after irradiation at several temperatures, in order to remove the radiation-induced defects. The measurements show that antiferroelectric PZ films are more radiation-resistant than PLZT and PZT. The observed radiation-induced defects and the annealing effects are explained with a 'phenomenological model', which is based on oxygen vancancies and radiation-induced charge carriers inducing an internal bias field ('poling effect'). In particular, a quadratic dependence of the relative change of the Curie-Weiss temperature as well as of the charge carrier density on the neutron fluence was found for PZ films. Epitaxial PZ films show a significant performance improvement and an increase of the radiation resistivity. In summary, the antiferroelectric PZ films are the most promising candidates for further investigations and the development of future alternative bolometer systems for ITER. (author)

  16. EURAC: accelerator-based material testing device for a fusion reactor

    International Nuclear Information System (INIS)

    The European Communities' Joint Research Center (JCR) has studied the feasibility of spallation neutrons to simulate the fusion reactor first wall conditions. It can be shown that spallation neutrons, produced by 600 MeV protons impinging on a thin lead target are simulating the fusion reactor first wall conditions as well as, or even better than, neutron sources based on the D-Li stripping or D-T fusion reaction. A D-T fusion cycle produces five times more neutrons per unit of energy released than a fission cycle, with about twice the damage energy and the capability to produce ten times more hydrogen, helium and transmutation products than fission neutrons. They determine, together with other parameters, the lifetime of the construction materials for the low plasma-density fusion reactors (Tokamak, Tandem-Mirror, etc.), which require a first wall. 15 refs., 1 fig

  17. From Data Acquisition to Data Fusion: A Comprehensive Review and a Roadmap for the Identification of Activities of Daily Living Using Mobile Devices

    Directory of Open Access Journals (Sweden)

    Ivan Miguel Pires

    2016-02-01

    Full Text Available This paper focuses on the research on the state of the art for sensor fusion techniques, applied to the sensors embedded in mobile devices, as a means to help identify the mobile device user’s daily activities. Sensor data fusion techniques are used to consolidate the data collected from several sensors, increasing the reliability of the algorithms for the identification of the different activities. However, mobile devices have several constraints, e.g., low memory, low battery life and low processing power, and some data fusion techniques are not suited to this scenario. The main purpose of this paper is to present an overview of the state of the art to identify examples of sensor data fusion techniques that can be applied to the sensors available in mobile devices aiming to identify activities of daily living (ADLs.

  18. Studies on advanced superconductors for fusion device. Pt. 1. Present status of Nb{sub 3}Sn conductors

    Energy Technology Data Exchange (ETDEWEB)

    Tachikawa, Kyoji; Yamamoto, Junya [eds.

    1996-03-01

    Nb{sub 3}Sn conductors have been developed with great expectation as an advanced high-field superconductor to be used in fusion devices of next generation. Furthermore, Nb{sub 3}Sn conductors are being developed for NMR magnet and superconducting generator as well as for cryogen-free superconducting magnet. A variety of fabrication procedures, such as bronze process, internal tin process and Nb tube method, have been developed based on the diffusion reaction. Recently, Nb{sub 3}Sn conductors with ultra-thin filaments have been fabricated for AC use. Both high-field and AC performances of Nb{sub 3}Sn conductors have been significantly improved by alloying addition. The Ti-doped Nb{sub 3}Sn conductor has generated 21.5T at 1.8K operation. This report summarizes manufacturing procedures, superconducting performances and applications of Nb{sub 3}Sn conductors fabricated through different processes in different countries. More detailed subjects included in this report are high-field properties, AC properties, conductors for fusion with large current capacities, stress-strain effect and irradiation effect as well as standardization of critical current measurement method regarding to Nb{sub 3}Sn conductors. Comprehensive grasp on the present status of Nb{sub 3}Sn conductors provided by this report will act as a useful data base for the future planning of fusion devices. (author). 172 refs.

  19. Evaluation of efficacy of a new hybrid fusion device: a randomized, two-centre controlled trial

    OpenAIRE

    Siewe, Jan; Bredow, Jan; Oppermann, Johannes; Koy, Timmo; Delank, Stefan; Knoell, Peter; Eysel, Peer; Sobottke, Rolf; Zarghooni, Kourosh; Röllinghoff, Marc

    2014-01-01

    Background The 360° fusion of lumbar segments is a common and well-researched therapy to treat various diseases of the spine. But it changes the biomechanics of the spine and may cause adjacent segment disease (ASD). Among the many techniques developed to avoid this complication, one appears promising. It combines a rigid fusion with a flexible pedicle screw system (hybrid instrumentation, “topping off”). However, its clinical significance is still uncertain due to the lack of conclusive data...

  20. Magnetic Fusion Energy Plasma Interactive and High Heat Flux Components: Volume 5, Technical assessment of critical issues in the steady state operation of fusion confinement devices

    International Nuclear Information System (INIS)

    Critical issues for the steady state operation of plasma confinement devices exist in both the physics and technology fields of fusion research. Due to the wide range and number of these issues, this technical assessment has focused on the crucial issues associated with the plasma physics and the plasma interactive components. The document provides information on the problem areas that affect the design and operation of a steady state ETR or ITER type confinement device. It discusses both tokamaks and alternative concepts, and provides a survey of existing and planned confinement machines and laboratory facilities that can address the identified issues. A universal definition of steady state operation is difficult to obtain. From a physics point of view, steady state is generally achieved when the time derivatives approach zero and the operation time greatly exceeds the characteristic time constants of the device. Steady state operation for materials depends on whether thermal stress, creep, fatigue, radiation damage, or power removal are being discussed. For erosion issues, the fluence and availability of the machine for continuous operation are important, assuming that transient events such as disruptions do not limit the component lifetimes. The panel suggests, in general terms, that steady state requires plasma operation from 100 to 1000 seconds and an availability of more than a few percent, which is similar to the expectations for an ETR type device. The assessment of critical issues for steady state operation is divided into four sections: physics issues; technology issues; issues in alternative concepts; and devices and laboratory facilities that can address these problems

  1. Bilateral Comparison CIEMAT-CENTIS-DMR for radionuclide activity measurements; Comparacion Bilateral CIEMAT-CENTIS-DMR de la Medida de Actividad de Radionucleidos

    Energy Technology Data Exchange (ETDEWEB)

    Oropesa Verdecia, P.; Garcia-Torano, E.

    2004-07-01

    We present the results of a bilateral comparison of radionuclide activity measurements between the Radionuclide Metrology Department of the Center of Isotopes of Cuba (CENTIS-DMR), and the Ionising Radiation Metrology Laboratory (LMRI) of the Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT) of Spain. The aim of the comparison was to establish the comparability of the measurement instruments and methods used to obtain radioactive reference materials of some gamma-emitting nuclides at CENTIS-DMR. The results revealed that there are no statistically significant differences between the data reported by both laboratories. (Author) 7 refs.

  2. Database for the registration of radiological surveillance in radioactive facilities of CIEMAT; Base de datos para el registro de vigilancias radiologicas en las instalaciones radiactivas del CIEMAT

    Energy Technology Data Exchange (ETDEWEB)

    Marquez Fernandez, J. L.; Carroza Garcia, J. A.; Perez-Cejuela, P.; Vico Ocon, A.; Alvarez Garcia, A.

    2013-07-01

    In the CIEMAT There are 21 Radiation Facilities in which according to the Radiation Protection Manual must considered radiation hazards and / or contamination. The Radiological Protection Service according to this risk It establishes the classification and marking of areas and a monitoring plan that includes the type and extent of radiological periodicity. The information derived from this monitoring be registered and properly stored. Therefore, it has been completed the design of an application that allows technical experts record their actions and also consult records radiation monitoring tasks performed. (Author)

  3. Comparison of the physics performance of D-He3 fusion in high- and low-beta toroidal devices

    International Nuclear Information System (INIS)

    This paper reports on the use of D-He3 in future fusion reactors which is one of the most promising alternative to D-T fueled fusion devices. One of the difficulties with these alternatives is related to the higher requirements for confinement quality. As examples for possible high (>0.7) and low (3, there are enormous uncertainties due to the small physics data base. On the other hand, the lower beta of the Tokamak makes it less well suited to D-He3 operation but its advanced stage of development is a clear advantage. Three variations of the Tokamak concept, for D-T and D-He3, are under investigation in the US Advanced Reactor Innovation and Evaluation Study ARIES; the High Field Tokamak (HFT), the second stability version (SST) and the Spherical Torus (ST)

  4. The application of machine learning in multi sensor data fusion for activity recognition in mobile device space

    Science.gov (United States)

    Marhoubi, Asmaa H.; Saravi, Sara; Edirisinghe, Eran A.

    2015-05-01

    The present generation of mobile handheld devices comes equipped with a large number of sensors. The key sensors include the Ambient Light Sensor, Proximity Sensor, Gyroscope, Compass and the Accelerometer. Many mobile applications are driven based on the readings obtained from either one or two of these sensors. However the presence of multiple-sensors will enable the determination of more detailed activities that are carried out by the user of a mobile device, thus enabling smarter mobile applications to be developed that responds more appropriately to user behavior and device usage. In the proposed research we use recent advances in machine learning to fuse together the data obtained from all key sensors of a mobile device. We investigate the possible use of single and ensemble classifier based approaches to identify a mobile device's behavior in the space it is present. Feature selection algorithms are used to remove non-discriminant features that often lead to poor classifier performance. As the sensor readings are noisy and include a significant proportion of missing values and outliers, we use machine learning based approaches to clean the raw data obtained from the sensors, before use. Based on selected practical case studies, we demonstrate the ability to accurately recognize device behavior based on multi-sensor data fusion.

  5. Applications of spectroscopic methods to the characterization of the ablation clouds of pellets in magnetic fusion devices

    Energy Technology Data Exchange (ETDEWEB)

    Koubiti, M.; Godbert-Mouret, L.; Marandet, Y.; Rosato, J.; Stamm, R. [PIIM UMR 6633 CNRS-Universite de Provence, F-13397 Marseille Cedex 20 (France); Goto, M.; Morita, S. [National Institute for Fusion Science, Oroshi-cho 322-6, Toki 509-5292 (Japan)

    2011-07-01

    In the field of magnetic fusion research, pellet injection is considered as a major technique for deep plasma fuelling and plasma control by mitigation of edge instabilities. Pellet injection is planned for ITER as the primary core fuelling system. For such major purposes, pellets made of hydrogen or its isotopes are used. In addition, some other purposes are achievable using pellets made from other materials like carbon, aluminium, molybdenum, titanium and so on. In the Large Helical Device (LHD), pellets are used to characterize the transport of impurities. Investigating the ablation clouds of different pellets injected in LHD using spectroscopic measurements may allow to improve our understanding of the physics of the ablation of pellets injected in magnetic fusion devices. A spectroscopic technique based on the emission line intensities and broadening has been previously applied to carbon pellets before its generalization to other pellets. In this paper we illustrate this technique for the case of aluminium pellets. Using data from LHD, it has been shown that line intensities can bring valiant information allowing the characterization of the cloud surrounding the pellet core inside the plasma. For carbon pellets it was mandatory to take into account of radiation absorption effects on some lines. The data investigated here were obtained from LHD where different pellets were injected in the device in the aim of realizing high ion temperature plasmas

  6. Nuclear Data Libraries for Advanced Systems - Fusion Devices (FENDL-3). Summary report from the Second Research Coordination Meeting

    International Nuclear Information System (INIS)

    The second Research Co-ordination Meeting of the Nuclear Data Libraries for Advanced Systems - Fusion Devices (FENDL - 3) was held at the IAEA Headquarters in Vienna from 23 to 26 March 2010. A summary of the meeting is given in this report along with the discussions which took place. An important outcome of the meeting was the decision to provide ENDF data libraries (FENDL-3/T) by April 2011. Finally, a list of task assignments was prepared together with the plan for future CRP activities. (author)

  7. SHOW. A program for the integrated analysis of the data produced in a nuclear fusion experimental device

    International Nuclear Information System (INIS)

    The report describes the program SHOW, an application devoted to the integrated analysis of the data produced in nuclear fusion experimental devices. The program is currently used for the analysis of the FTU data and a version is also available at JET. The code is written in FORTRAN 77, runs on IBM mainframes under MVS operating system and makes use of the GDDM graphical package. The program, that operates both in batch and interactive modes, permits to perform a graphical analysis of the data collected in the experimental databases. The report contains as appendixes the detailed description of all the program options together with a short illustration of the FTU databases

  8. Evidences for and the models of self-similar skeletal structures in fusion devices, severe weather phenomena and space

    CERN Document Server

    Kukushkin, A B

    2005-01-01

    The paper briefly reviews (i) the evidences for self-similar structures of a skeletal form (namely, tubules and cartwheels, and their simplest combinations), called the Universal Skeletal Structures (USS), observed in the range 10-5 cm - 1023 cm. in the high-current electric discharges in various fusion devices, severe weather phenomena, and space, (ii) the models for interpreting the phenomenon of skeletal structures, including the hypothesis for a fractal condensed matter (FCM), assembled from nanotubular dust, and (iii) probable role of FCM, which might be responsible for the USS phenomenon, in tornado, ball lightning, and waterspout.

  9. Summary report from 1. research coordination meeting on nuclear data libraries for advance systems - fusion devices (FENDL - 3)

    International Nuclear Information System (INIS)

    The first Research Co-ordination Meeting of the Nuclear Data Libraries for Advance Systems - Fusion Devices (FENDL - 3) was held at the IAEA Headquarters in Vienna from 2 to 5 December 2008. A summary of the meeting is given in this report along with discussions which took place. An important outcome of the meeting was the agreement to create a new FENDL-3.0 Starter Library. Finally, a list of task assignments was prepared together with the plan for future CRP activities. (author)

  10. Automated pose estimation of objects using multiple ID devices for handling and maintenance task in nuclear fusion reactor

    International Nuclear Information System (INIS)

    This paper describes a method for the automated estimation of three-dimensional pose (position and orientation) of objects by autonomous robots, using multiple identification (ID) devices. Our goal is to estimate the object pose for assembly or maintenance tasks in a real nuclear fusion reactor system, with autonomous robots cooperating in a virtual assembly system. The method estimates the three-dimensional pose for autonomous robots. This paper discusses a method of motion generation for ID acquisition using the sensory data acquired by the measurement system attached to the robots and from the environment. Experimental results show the feasibility of the proposed method. (author)

  11. Neutron field characteristics of Ciemat's Neutron Standards Laboratory Hector Rene Vega-Carrillo

    OpenAIRE

    Guzmán-García, Karen Arlete; Méndez Villafañe, Roberto; Vega-Carrillo, Héctor René

    2015-01-01

    Monte Carlo calculations were carried out to characterize the neutron field produced by the calibration neutron sources of the Neutron Standards Laboratory at the Research Center for Energy, Environment and Technology (CIEMAT) in Spain. For 241AmBe and 252Cf neutron sources, the neutron spectra, the ambient dose equivalent rates and the total neutron fluence rates were estimated. In the calibration hall, there are several items that modify the neutron field. To evaluate their effects differen...

  12. Quality Control Procedures Applied to the CMS Muon Chambers Built at CIEMAT

    International Nuclear Information System (INIS)

    In this document the quality control procedures applied to the CMS muon drift chambers built at CIEMAT are described. It includes a description of the high voltage and front electronics associated to the chambers. Every procedure is described with detail and a list of the more common problems and possible solutions is given. This document can be considered as a chamber test handbook for beginners. (Author) 3 refs

  13. Spanish regulatory perspective for the decommissioning of an old civilian nuclear research centre (CIEMAT)

    International Nuclear Information System (INIS)

    The Center for Energy-related, Environmental and Technical Research (CIEMAT) is the main Spanish energy research center. CIEMAT is the heir of the former Nuclear Energy Board (Junta de Energia Nuclear - JEN), which was created in 1951 with a view to promoting the development and use of nuclear energy in Spain. Most of the centres for civilian nuclear research created in the fifties, like the JEN, had among their basic objectives to carry out investigations guided to the industrial development of the nuclear fuel cycle. The majority of them were endowed with experimental facilities that reproduced in a pilot scale the different stages of the full nuclear cycle facilities. The JEN main experimental facilities were: Plants for the treatment of uranium ores and for the concentration process; The manufacturing of fuel elements for research reactors; The JEN-1 thermal neutron experimental reactor, and CORAL fast reactor; The pilot plant for the treatment of irradiated fuel (M-1); The metallurgical hot cells for research relating to irradiated fuel; and Plants for the treatment and storage of liquid radioactive wastes. It should be pointed out that most of these installations were designed, built, operated, and even definitively shut down, prior a regulatory system as currently conceived is in force. The Science Act was passed in 1986, transforming the JEN into CIEMAT, and assigning to the latter a series of new functions, while making it the direct heir of the assets and strategic functions of its predecessor. The CIEMAT continued the process of 'denuclearization' of the installations inherited from the JEN, and used certain of them for the performance of research projects oriented towards the development of decontamination and dismantling techniques. (author)

  14. CIEMAT interlaboratories comparison of the results obtained in the proficiency test run by IAEA

    International Nuclear Information System (INIS)

    This report contains the results obtained by two different laboratories from CIEMAT after participating in the Proficiency Test organised by IAEA (International Atomic Energy Agency) in 1999. This test involves the analysis of fly ashes containing natural radionuclides and different amounts of added transuranics. The extraction techniques, counting methods and results obtained are detailed. This type of test are used for the labs to achieve their accreditation and check the reliability of the procedures routinely employed. (Author) 4 refs

  15. Liquid Scintillation counting Standardization of 22 NaCl by the CIEMAT/NIST method

    International Nuclear Information System (INIS)

    We describe a procedure for preparing a stable solution of ''22 NaCl for liquid scintillation counting and its counting stability and spectral evolution in Insta-Gel''R is studied. The solution has been standardised in terms of activity concentration by the CIEMAT/NIST method with discrepancies between experimental and computed efficiencies lower than 0.4/% and an overall uncertainty of 0.35%

  16. Consolidation of use of the CSN-CIEMAT radiological protection educational portal

    International Nuclear Information System (INIS)

    he workers of nuclear and radioactive facilities are required to undertake training programmes on radiological protection in order to achieve the accreditations and licences granted by the CSN. Since 2003, the Council has been collaborating with CIEMAT in the development, maintenance and updating of the teaching material for these courses. More than a thousand such courses have been delivered to date and their contents are accessible via Internet. (Author)

  17. Report of Activities of the Association Euratom/Ciemat

    International Nuclear Information System (INIS)

    The focal point of the work at the Spanish Association has been the flexible Heliac TJII, which since 2002 is the only stellarator in operation in Europe. The main milestone of TJ-II operation has been the generation of plasmas sustained by NBI heating (which lead to a record in TJ-II stored energy) but significant physics results have been also obtained in the continuation of existing lines (improved confinement scenarios and the role of rational surfaces, iota scaling with boronized walls, turbulence studies, impurity transport and rotation experiments, suprathermal electrons studies, plasma wall effects, etc). TJ-II improvements include the progress in the second NBI, the preparations for the Bernstein wave heating system, the installation of a Diagnostic NB and the fast camera (Ha) diagnostic (on temporal loan from PPPL- Princeton). Other activities of the Association include the Materials research programme, both in the areas of insulator materials properties and structural materials (with a new line open: studies of Tritium barriers during irradiation), the studies on the socio-economic impact of fusion and a reinforced participation in the EFDA technology work programme. The Association wants to increase technology activities and, along this line, a number of expression of interest have been submitted, leading to several task contracts : design of the European Dipole, design of the magnet for ITER field simulation on NBI test bed, IFMIF security analysis, Demo Blanket support system (finished), Main plasma reflectometry system (finished), Tritium retention/ removal studies. Finally, the Association has keep its involvement in the PhD programme Fusion and Plasma Physics that has been carried since 2001 in collaboration with several Universities and other Spanish research centres. (Author)

  18. Proceedings of US/Japan workshop, Q219 on high heat flux components and plasma surface interactions for next fusion devices

    Energy Technology Data Exchange (ETDEWEB)

    Ulrickson, M.A.; Stevens, P.L.; Hino, T.; Hirohata, Y. [eds.

    1996-12-01

    This report contains the viewgraphs from the proceedings of US/Japan Workshop on High Heat Flux Components and Plasma Surface Interactions for Next Fusion Devices. Some of the general topics covered by this report are: PFC/PSI in tokamak and helical devices; development of high heat flux components; PSIS and plasma facing materials;tritium; and material damage.

  19. Proceedings of US/Japan workshop, Q219 on high heat flux components and plasma surface interactions for next fusion devices

    International Nuclear Information System (INIS)

    This report contains the viewgraphs from the proceedings of US/Japan Workshop on High Heat Flux Components and Plasma Surface Interactions for Next Fusion Devices. Some of the general topics covered by this report are: PFC/PSI in tokamak and helical devices; development of high heat flux components; PSIS and plasma facing materials;tritium; and material damage

  20. Operating Instructions for the Cryogenics in the Liquid Argon Detector at CIEMAT

    International Nuclear Information System (INIS)

    Ciemat has wide experience in designing and developing gaseous particle detectors. It has taken part in the building of experiments for CERN accelerators, constructing shares of the muon chambers for L3 experiment in LEP and CMS experiment in LHC. Recently, new concepts for particle detectors have been developed, as a natural evolution from the ones built at Ciemat. These new radiation detectors use liquefied noble gases as active media. A testing system for these kind of liquefied argon detectors has been built at Ciemat, and includes a supporting cryogenic system for the liquefaction and maintenance of the liquid argon needed for operating the detector. This document describes the technical features of this cryogenic system. Besides the documentation of the cryogenic system, this technical report can be of help for the management and upgrading of the detector. As well as an introduction, the report includes the following chapters: The second one is a description of the cryogenics and gas systems. The third chapter shows the controlling electronics. The fourth chapter deals with the important topic that is security, its systems and protocols. The fifth describes the cryogenic operations possible in this equipment. The report is completed with diagrams, schemes, pictures and tables for the easier management of the setup. (Author)

  1. High-speed repetitive pellet injector prototype for magnetic confinement fusion devices

    International Nuclear Information System (INIS)

    The design of a test facility aimed at demonstrating the feasibility of high-speed repetitive acceleration of solid D2 pellets for fusion applications, developed in a collaboration between Oak Ridge National Laboratory and ENEA Frascati, is presented. The results of tests performed at the CNPM/CNR on the piston wear in a repetitively operating two-stage gun are also reported

  2. Mechanical behavior of a novel non-fusion scoliosis correction device

    NARCIS (Netherlands)

    Wessels, M.; Hekman, E.E.G.; Verkerke, G.J.

    2013-01-01

    Introduction: We developed an innovative non-fusion correction system (XS LATOR) consisting of two individual implants that are extendable and extremely flexible. One implant, the XS LAT, generates a lateral, bending moment and one implant, the XS TOR, generates a torsion moment. Two 'inverse' impla

  3. Performance of Hall sensor-based devices for magnetic field diagnosis at fusion reactors

    Czech Academy of Sciences Publication Activity Database

    Bolshakova, I.; Ďuran, Ivan; Holyaka, R.; Hristoforou, E.; Marusenkov, A.

    2007-01-01

    Roč. 5, č. 1 (2007), s. 283-288. ISSN 1546-198X R&D Projects: GA AV ČR KJB100430504 Institutional research plan: CEZ:AV0Z20430508 Keywords : Galvanomagnetic * Sensor * Fusion Reactor * Magnetic Diagnostics * Radiation Hardness Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.587, year: 2007

  4. Diagnostics of First Wall Materials in a Magnetically Confined Fusion Device by Polarization-Resolved Laser-Induced Breakdown Spectroscopy

    International Nuclear Information System (INIS)

    Laser-induced breakdown spectroscopy (LIBS) is a powerful analytical tool for real-time diagnostics and detection of multiple elements deposited at the first wall of magnetically confined plasma fusion devices. Recently, we have tested LIBS in our laboratory for application to in situ real-time diagnostics in the fusion device EAST. In this study, we applied polarization-resolved LIBS (PR-LIBS) to reduce the background continuum and enhance the resolution and sensitivity of LIBS. We used aluminium (Al) (as a substitute for Be) and the first wall materials tungsten (W) and molybdenum (Mo) to investigate polarized continuum emission and signal-to-background ratio (SBR). A Nd:YAG laser with first, second and third harmonics was used to produce plasma. The effects of the laser polarization plane, environmental pressure and polarizer detection angle were investigated. The spectra obtained without using a polarizer (i.e. LIBS) were compared with those obtained with a polarizer (PR-LIBS). Distribution of emission spectral intensity was observed to follow Malus' law with respect to variation in the angle of detection of the polarizer. The spectra obtained by PR-LIBS had a higher SBR and greater stability than those obtained by LIBS, thereby enhancing the reliability of LIBS for quantitative analyses. A comparison of Al, Mo and W showed that W exhibited a higher continuum with stronger polarization than the low-Z elements. (plasma technology)

  5. Studies on advanced superconductors for fusion device. Pt. 2. Metallic superconductors other than Nb{sub 3}Sn

    Energy Technology Data Exchange (ETDEWEB)

    Tachikawa, K.; Yamamoto, J.; Mito, T. [eds.

    1997-03-01

    A comprehensive report on the present status of the development of Nb{sub 3}Sn superconductors was published as the NIFS-MEMO-20 in March, 1996 (Part 1 of this report series). The second report of this study covers various progress so far achieved in the research and development on advanced metallic superconductors other than Nb{sub 3}Sn. Among different A15 crystal-type compounds, Nb{sub 3}Al has been fabricated into cables with large current-carrying capacity for fusion device referring its smaller sensitivity to mechanical strain than Nb{sub 3}Sn. Other high-field A15 superconductors, e.g. V{sub 3}Ga, Nb{sub 3}Ge and Nb{sub 3}(Al,Ge), have been also fabricated through different novel processes as promising alternatives to Nb{sub 3}Sn conductors. Meanwhile, B1 crystal-type NbN and C15 crystal-type V{sub 2}(Hf,Zr) high-field superconductors are characterized by their excellent tolerance to mechanical strain and neutron irradiation. Chevrel-type PbMo{sub 6}S{sub 8} compound has gained much interests due to its extremely high upper critical field. In addition, this report includes the recent progress in ultra-fine filamentary NbTi wires for AC use, and that in NbTi/Cu magnetic shields necessary in the application of high magnetic field. The data on the decay of radioactivity in a variety of metals relating to fusion superconducting magnet are also attached as appendices. We hope that this report might contribute substantially as a useful reference for the planning of fusion apparatus of next generation as well as that of other future superconducting devices. (author)

  6. On the energy transfer between flows and turbulence in the plasma boundary of fusion devices

    International Nuclear Information System (INIS)

    The energy transfer between perpendicular flows and turbulence has been investigated in the JET plasma boundary region. The energy transfer from DC flows to turbulence, directly related with the momentum flux (e.g. θv-barr>) and the radial gradient in the flow, can be both positive and negative in the proximity of sheared flows. The direct computation of the turbulent viscosity gives values comparable to the anomalous particle diffusivitiy (in the order of 1m2/s). Furthermore, this energy transfer rate is comparable with the mean flow kinetic energy normalized to the correlation time of turbulence, implying that this energy transfer is significant. These results show, for the first time, the dual role of turbulence as a damping (eddy viscosity) and driving of flows in fusion plasmas emphasizing the important role of turbulence to understand perpendicular dynamics in the plasma boundary region of fusion plasmas

  7. Fusion in a magnetically-shielded-grid inertial electrostatic confinement device

    OpenAIRE

    Hedditch, John; Bowden-Reid, Richard; Khachan, Joe

    2015-01-01

    Theory for a gridded inertial electrostatic confinement (IEC) fusion system is presented that shows a net energy gain is possible if the grid is magnetically shielded from ion impact. A simplified grid geometry is studied, consisting of two negatively-biased coaxial current-carrying rings, oriented such that their opposing magnetic fields produce a spindle cusp. Our analysis indicates that better than break-even performance is possible even in a deuterium-deuterium system at bench-top scales....

  8. Potential common radiation problems for components and diagnostics in future magnetic and inertial confinement fusion devices

    OpenAIRE

    Alvarez Ruiz, Jesus; Gonzalez Arrabal, Raquel; Rivera de Mena, Antonio; Rio Redondo, Emma del; Garoz Gómez, David; Hodgson, E.R.; Tabares, F.; Vila Vazquez, Rafael A.; Perlado Martin, Jose Manuel

    2011-01-01

    This work aims at identifying commonpotentialproblems that futurefusiondevices will encounter for both magnetic and inertialconfinement approaches in order to promote joint efforts and to avoid duplication of research. Firstly, a comparison of radiation environments found in both fusion reaction chambers will be presented. Then, wall materials, optical components, cables and electronics will be discussed, pointing to possible future areas of common research. Finally, a brief discussion of exp...

  9. Integration Between SCORM Learning Objects and the CIEMAT Virtual Elearning Platform; Integracion de Objetos de Aprendizaje SCORM con la Plataforma de Ensenanza Virtual del CIEMAT

    Energy Technology Data Exchange (ETDEWEB)

    Bailador Ferreras, M. A.; Troiani, S.; Gonzalez Giralda, C.; Llorente Herranz, C.; Marco Arboli, M. L.

    2010-08-06

    New information and communications technologies have made a major contribution in the way of understanding the training needs, which have been involved in the change from the traditional teaching to the use of virtual learning platforms. Thus, Ciemat, has installed a virtual platform for education, in particular MOODLE in which have been installed some virtual contents developed with Flash. The next necessary step has been how to integrate the contents with the MOODLE virtual platform, following the aim to know the assessment for learning tracking of the learners. This document provides the technological facts for the integration of the flash virtual contents and the virtual platform in order to achieve the training process is efficiently evaluated. (Author) 5 refs.

  10. Facility Bench of Stationary Engines for Study of Emissions (E65-PO) CIEMAT; Instalacion Banco de Motores Estacionarios para Estudio de Emisiones (E65-PO) CIEMAT

    Energy Technology Data Exchange (ETDEWEB)

    Rojas Garcia, E.; Rodriguez Maroto, J.J.

    2007-07-01

    The Project of Technology of Aerosols in Generation of Energy, of the Department of Fossil Fuels of the CIEMAT, began in the year 2004, a research activity line, based on the study of the emissions coming from internal combustion engines, particularly of Diesel technology. Activity was continued by the Polluting Emissions Group of the Department of Environment, when becoming the original Project in this Group. From the concession to the Group, of the project GR/AMB/0119/2004 Evaluation of the Emissions of Biodiesel supported by the Autonomous Community of Madrid together with the European Regional Development Fund (ERDF), this activity was encourage, with the design, assembly and to get ready of the facility Bench of stationary engines for study of emissions, located in the building 65 at CIEMAT, Madrid. The present report constitutes a detailed technical description of each one of the elements that the installation Bench of stationary engines for study of emissions it integrated within the framework of the referred project (GR/AMB/0119/2004) and whose capacity includes studies of the effects of the engine, fuel, operation conditions, and methodology of sampling and measurement of emissions (gases and particles). The fundamental parts of facility describes in the present report are: engine test cell (cabin of sound insulation , ventilation and refrigeration system, anti vibrations mounting, engine, dynamometric brake), lines of preconditioning of particles and gases emissions (exhaust line, primary and secondary dilution lines, gases cleaning system...), other general parts of facility (sampling and measurement station, service lines...). The present report not only reflects the characteristics of the systems involved, but rather also in certain cases specified the procedure and reason for their choice. (Author) 10 refs.

  11. Results of the Interlaboratory Exercise CNS/CIEMAT-04 Among Environmental Radioactivity Laboratories (Aqueous Solution); Resultados del Ejercicio Interlaboratorios de Radiactividad Ambiental CSN/CIEMAT-04 (Solucion Acuosa)

    Energy Technology Data Exchange (ETDEWEB)

    Romero Gonzalez, M. L.; Barrera Izquierdo, M.

    2004-07-01

    The document describes the outcome of the CSN/CIEMAT-04 interlaboratory test comparison among environmental radioactivity laboratories. The exercise was organised according to the ISO-43 and the ISO/IUPAC/AOAC Harmonised Protocol for the proficiency testing of analytical laboratories. Following the issue of the European Community Drinking Water Directive 98/83/EC concerning the quality of water for human consumption, the last inter-comparison exercise was organised by using a water sample, in an attempt to evaluate the performance of the laboratories analysing the required radioactivity parameters (H-3, gross alpha and beta activity and residual beta). The sample (a synthetic drinking water), was prepared at the National Laboratory for Ionising Radiation's Standards (CIEMAT), and contained the following radionuclides ''241 Am, ''239+240 Pu, ''90Sr, ''137 Cs, ''3 H y ''40 K. The results of the exercise were computed for 38 participating laboratories, and their analytical performance was assessed using the z-score approach. Robust statistics of the participant's results was applied to obtain the median and standard deviation, including suspected outliers. The exercise has revealed and homogeneous behaviour of laboratories, being statistical parameters from the results close to the reference values. A raised percentage os satisfactory laboratory performance has been obtained for gross alpha, gross beta and residual beta: 85, 97 and 87% respectively. The study has shown that participant laboratories perform radioactive determinations in drinking water samples with satisfactory quality levels. (Author) 16 refs.

  12. Experimental study of potential structure in a spherical IEC fusion device

    International Nuclear Information System (INIS)

    The spherical inertial-electrostatic confinement (SIEC) concept is designed to focus and accelerate ions and electrons radially inward towards the center of a negatively biased, highly transparent spherical grid. The converging ions create a high-density plasma core where a high fusion rate occurs. In addition, under proper conditions, the ion and electron flows create a space-charge induced double potential well (a negative potential well nested inside a positive potential well). This structure traps high-energy ions within the virtual anode created by the double potential, providing a high fusion density in the trap volume. The present experiment was designed to verify double potential well formation and trapping by a measurement of the radial birth profile of energetic (3-MeV) protons produced by D-D fusion reactions in a deuterium discharge. This experiment was designed to operate at high perveance (0.4 to 1.4 mA/kV3/2), where formation of a double well is predicted theoretically. Additional steps to aid well formation included: use of the unique Star mode of operation to obtain ion beam focusing down to approximately 1.6 H the ballistic limit and the incorporation of a second electrically floating grid (in addition to the focusing/accelerating cathode grid) to reduce the ion radial energy spread to 0.34 mA/kV3/2. As the perveance increased, the depth of the double well also increased. At the maximum perveance studied, 1.38 mA/kV3/2 (corresponding to 80 mA and 15 kV), the negative potential well depth, corresponding to the measured proton-rate density, was estimated to be 22%--27% of the applied cathode voltage. This represents the first conclusive demonstration of double well formation in an SIEC, since prior measurements by other researchers typically yielded marginal or negative results

  13. Status of Development of High Temperature Radiation Hardened Hall Sensors for Energy Producing Fusion Devices

    Czech Academy of Sciences Publication Activity Database

    Kovařík, Karel; Ďuran, Ivan; Sentkerestiová, J.; Oszwaldowski, M.; Viererbl, L.; Boshakova, I.; Holyaka, R.; Erashok, V.

    Vol. 2. Prague : MATFYZPRESS, 2012 - (Šafránková, J.; Pavlů, J.), s. 216-221 ISBN 978-80-7378-225-2. - (WDS. 2). [Annual Conference of Doctoral Students - WDS 2012 /21./. Prague (CZ), 29.05.2012-01.06.2012] R&D Projects: GA ČR GAP205/10/2055; GA MŠk 7G10072; GA MŠk(CZ) LG11018; GA MŠk LA08048 Institutional support: RVO:61389021 Keywords : Hall sensor * fusion * tokamak Subject RIV: BL - Plasma and Gas Discharge Physics http://www.mff.cuni.cz/veda/konference/wds/proc/proc-contents.php?year=2012#ppm

  14. An integrative radiation protection control system based on a CAN bus for the HT-7U tokamak fusion device

    International Nuclear Information System (INIS)

    A radiation protection control system has been designed, based on distributed computers and consideration of the features of the radiation source of the HT-7U fusion experimental device, for protecting the workers and the public against neutron and photon radiation, and especially for ensuring that workers cannot unexpectedly enter an area of high radiation level in any case. A multi-subsystem (irradiation monitoring subsystem, access control subsystem, safety interlock subsystem and other related facilities) integration concept is proposed for the design. This system has been implemented on the basis of the up-to-date industrial field bus CAN, featuring simplicity and flexibility of installation and maintenance, capability for real-time long distance communication and multi-master protocol

  15. Integrated Prediction and Mitigation Methods of Materials Damage and Lifetime Assessment during Plasma Operation and Various Instabilities in Fusion Devices

    Energy Technology Data Exchange (ETDEWEB)

    Hassanein, Ahmed [Purdue Univ., West Lafayette, IN (United States)

    2015-03-31

    This report describes implementation of comprehensive and integrated models to evaluate plasma material interactions during normal and abnormal plasma operations. The models in full3D simulations represent state-of-the art worldwide development with numerous benchmarking of various tokamak devices and plasma simulators. In addition, significant number of experimental work has been performed in our center for materials under extreme environment (CMUXE) at Purdue to benchmark the effect of intense particle and heat fluxes on plasma-facing components. This represents one-year worth of work and resulted in more than 23 Journal Publications and numerous conferences presentations. The funding has helped several students to obtain their M.Sc. and Ph.D. degrees and many of them are now faculty members in US and around the world teaching and conducting fusion research. Our work has also been recognized through many awards.

  16. Integrated Prediction and Mitigation Methods of Materials Damage and Lifetime Assessment during Plasma Operation and Various Instabilities in Fusion Devices

    International Nuclear Information System (INIS)

    This report describes implementation of comprehensive and integrated models to evaluate plasma material interactions during normal and abnormal plasma operations. The models in full3D simulations represent state-of-the art worldwide development with numerous benchmarking of various tokamak devices and plasma simulators. In addition, significant number of experimental work has been performed in our center for materials under extreme environment (CMUXE) at Purdue to benchmark the effect of intense particle and heat fluxes on plasma-facing components. This represents one-year worth of work and resulted in more than 23 Journal Publications and numerous conferences presentations. The funding has helped several students to obtain their M.Sc. and Ph.D. degrees and many of them are now faculty members in US and around the world teaching and conducting fusion research. Our work has also been recognized through many awards.

  17. Charge-injection-device performance in the high-energy-neutron environment of laser-fusion experiments

    International Nuclear Information System (INIS)

    Charge-injection devices (CIDs) are being used to image x rays in laser-fusion experiments on the University of Rochester's OMEGA Laser System. The CID cameras are routinely used up to the maximum neutron yields generated (∼1014 DT). The detectors are deployed in x-ray pinhole cameras and Kirkpatrick-Baez microscopes. The neutron fluences ranged from ∼107 to ∼109 neutrons/cm2 and useful x-ray images were obtained even at the highest fluences. It is intended to use CID cameras at the National Ignition Facility (NIF) as a supporting means of recording x-ray images. The results of this work predict that x-ray images should be obtainable on the NIF at yields up to ∼1015, depending on distance and shielding.

  18. Profiles of Information Consumption and Production of CIEMAT Researches within the Period 2005-2007

    International Nuclear Information System (INIS)

    Given the importance of scientific and technological evaluation in the current international scene, the goal is to show CIEMAT researchers' profiles on information consumption and production through different biblio metric indicators, mainly quantitative. Taking further steps based on this data, margins of coincidence on both patterns will be carefully checked not only from a group perspective but also on an individual scale, in the most widely used scientific journals. This analysis shall reveal the information needs of researchers for the future design of documentary strategies. (Author) 21 refs.

  19. Performances on actinide transmutation based accelerator-driven systems (ADS) at CIEMAT

    International Nuclear Information System (INIS)

    The FACET group at CIEMAT is studying the properties and potentialities of several liquid metal-cooled ADS designs for actinide and fission product transmutation. The main characteristics of these systems are the use of lead or lead-bismuth eutectic as primary coolant and moderator and fuels made by transuranics. The program has two main research lines. The first one is dedicated to the development of concepts, designs, operation models and computer simulation tools characteristics of this kind of systems. The second line includes the participation and the data analysis of the most advanced experiments in the field and international benchmarks. (authors)

  20. Implementation of ISO 28218 quality system in the laboratory of body radioactivity counter CIEMAT; Implementacion de la norma ISO 28218 en el sistema de calidad del laboratorio del contador de radiactividad corporal del CIEMAT

    Energy Technology Data Exchange (ETDEWEB)

    Navarro Amaro, J. F.; Perez Lopez, B.; Lopez Ponte, M. A.; Perez Jimenez, C.

    2011-07-01

    The laboratory of body radioactivity counter has implemented IS0 28218 standard Performance Criteria for Radio bioassay in all measured in vivo techniques of internal contamination in the human organism in monitoring programs defined by the Personal Dosimetry Service Internal CIEMAT. The application of this rule in the laboratory's quality system is essential to meet the technical requirements of the standard IS0/IEC 17025 with the purpose of obtaining ENAC accreditation as a testing laboratory and calibration within the framework of the accreditation of Service CIEMAT Radiation Dosimetry. (Author)

  1. Tritium breeding ratio and neutron-gamma shielding leakages in a modified net fusion device

    International Nuclear Information System (INIS)

    The aim of the present work was to examine the tritium breeding ratio and neutron-gamma shielding leakages of a blanket recently proposed for the next generation of fusion reactors, the 'acqueous self-cooled blanket' concept (ASCB), in the special case of its application to the Next European Torus (NET). The primary functions of this blanket are radiation shielding, energy removal and tritium production, and it is based on an interesting and very simple design, which uses stainless steel as structural material and an acqueous solution with lithium compounds for cooling and tritium breeding. A modification to the original design is proposed, which includes heavy water as coolant of the first wall; in this way, the tritium production can be increased approximately 3%, without losses in the thermalhydraulic properties and only negligible changes (less than 0.4%) in neutron-gamma leakages, compared with the ones with light water only. (Author)

  2. Evaluation of an Electrostatic Dust Removal System with Potential Application in Next-Step Fusion Devices

    Energy Technology Data Exchange (ETDEWEB)

    Friesen, F. Q.L.; John, B.; Skinner, C. H.; Roquemore, A. L.; Calle, C. I.

    2011-01-20

    The ability to manage inventories of carbon, tritium, and high-Z elements in fusion plasmas depends on means for effective dust removal. A dust conveyor, based on a moving electrostatic potential well, was tested with particles of tungsten, carbon, glass and sand. A digital microscope imaged a representative portion of the conveyor, and dust particle size and volume distributions were derived before and after operation. About 10 mm3 volume of carbon and tungsten particles were moved in under 5 seconds. The highest driving amplitude tested of 3 kV was the most effective. The optimal driving frequency was 210 Hz (maximum tested) for tungsten particles, decreasing to below 60 Hz for the larger sand particles. Measurements of particle size and volume distributions after 10 and 100 cycles show the breaking apart of agglomerated carbon, and the change in particle distribution over short timescales (<1 s).

  3. Computerized cost estimation spreadsheet and cost data base for fusion devices

    International Nuclear Information System (INIS)

    Component design parameters (weight, surface area, etc.) and cost factors are input and direct and indirect costs are calculated. The cost data base file derived from actual cost experience within the fusion community and refined to be compatible with the spreadsheet costing approach is a catalog of cost coefficients, algorithms, and component costs arranged into data modules corresponding to specific components and/or subsystems. Each data module contains engineering, equipment, and installation labor cost data for different configurations and types of the specific component or subsystem. This paper describes the assumptions, definitions, methodology, and architecture incorporated in the development of the cost estimation spreadsheet and cost data base, along with the type of input required and the output format

  4. The manufacture of carbon armoured plasma-facing components for fusion devices

    International Nuclear Information System (INIS)

    Within the last decade Plansee has been active in the development and manufacture of different plasma-facing-components for nuclear fusion experiments consisting in a tungsten or CFC-armor joined onto metallic substrates like TZM, stainless steel or copper-alloys. The manufacture of these components requires unique joining technologies in order to obtain reliable thermo mechanical stable joints able to withstand highest heat fluxes without any deterioration of the joint. In an overview the different techniques will be presented by some examples of components already manufactured and successfully tested under high heat flux conditions. Furthermore an overview will be given on the manufacture of different high heat flux components for TORE SUPRA, Wendelstein 7-X and ITER. (author)

  5. Assessment of martensitic steels as structural materials in magnetic fusion devices

    International Nuclear Information System (INIS)

    This manuscript documents the results of preliminary experiments and analyses to assess the feasibility of incorporating ferromagnetic martensitic steels in fusion reactor designs and to evaluate the possible advantages of this class of material with respect to first wall/blanket lifetime. The general class of alloys under consideration are ferritic steels containing from about 9 to 13 percent Cr with some small additions of various strengthening elements such as Mo. These steels are conventionally used in the normalized and tempered condition for high temperature applications and can compete favorably with austenitic alloys up to about 6000C. Although the heat treatment can result in either a tempered martensite or bainite structure, depending on the alloy and thermal treatment parameters, this general class of materials will be referred to as martensitic stainless steels for simplicity

  6. Evaluation of an Electrostatic Dust Removal System with Potential Application in Next-Step Fusion Devices

    International Nuclear Information System (INIS)

    The ability to manage inventories of carbon, tritium, and high-Z elements in fusion plasmas depends on means for effective dust removal. A dust conveyor, based on a moving electrostatic potential well, was tested with particles of tungsten, carbon, glass and sand. A digital microscope imaged a representative portion of the conveyor, and dust particle size and volume distributions were derived before and after operation. About 10 mm3 volume of carbon and tungsten particles were moved in under 5 seconds. The highest driving amplitude tested of 3 kV was the most effective. The optimal driving frequency was 210 Hz (maximum tested) for tungsten particles, decreasing to below 60 Hz for the larger sand particles. Measurements of particle size and volume distributions after 10 and 100 cycles show the breaking apart of agglomerated carbon, and the change in particle distribution over short timescales (<1 s).

  7. Evaluation of an Electrostatic Dust Removal System with Potential Application in Next-Step Fusion Devices

    Science.gov (United States)

    Friesen, F. Q. L.; John, B.; Skinner, C. H.; Roquemore, A. L.; Calle, C. I.

    2011-01-01

    The ability to manage inventories of carbon, tritium, and high-Z elements in fusion plasmas depends on means for effective dust removal. A dust conveyor, based on a moving electrostatic potential well, was tested with particles of tungsten, carbon, glass and sand. A digital microscope imaged a representative portion of the conveyor, and dust particle size and volume distributions were derived before and after operation. About 10 cu mm volume of carbon and tungsten particles were moved in under 5 seconds. The highest driving amplitude tested of 3 kV was the most effective. The optimal driving frequency was 210 Hz (maximum tested) for tungsten particles, decreasing to below 60 Hz for the larger sand particles. Measurements of particle size and volume distributions after 10 and 100 cycles show the breaking apart of agglomerated carbon, and the change in particle distribution over short timescales 1 s).

  8. From Present Fusion Devices to DEMO: a Changing Role between Diagnostics and Modeling

    NARCIS (Netherlands)

    Donne, A. J. H.

    2013-01-01

    On present-day devices much effort is devoted to develop state-of-the-art diagnostics with a continuous drive towards higher accuracy, better spatial and temporal resolution and more diagnostic channels. Diagnostic innovations often lead to better physics insight and they are often a driver for impr

  9. Millimeter and submillimeter wave technology developments for the next generation of fusion devices

    International Nuclear Information System (INIS)

    There is increasing demand for compact watt-level coherent sources in the millimeter and submillimeter wave region. The approach that we have taken to satisfy this need is to fabricate two-dimensional grids loaded with oscillators, electronic beam steerers, and frequency multipliers for quasioptical coherent spatial combining of the outputs of a large number of low-power devices

  10. Short-term annealing in silicon devices after fission and fusion irradiations

    International Nuclear Information System (INIS)

    The described technique estimates the transient recovery of a semiconductor device to a short pulse of damaging radiation. Unlike previous techniques this method uses meaningful parameters, at relevant fluences, of typical mil. spec. devices. Using existing simulation facilities steady state (seconds) irradiations are proposed and a Fredholm integral equation is unfolded to obtain the transient response. The technique, which is applicable to both neutron and gamma radiation, is demonstrated by a simulated neutron irradiation transient recovery experiment. Applied to weapons systems the technique facilitates accurate predictions of electronic recovery times after exposure of the system to a weapons burst. It also obviates the necessity of building new pulsed simulation machines for direct measurement of transient recovery

  11. 14. international conference on plasma-surface interactions in controlled fusion devices

    International Nuclear Information System (INIS)

    The subject of this meeting was a blend of laboratory studies of basic processes, simulation of specific plasma-surface interactions and measurements on existing confinement devices and their extrapolation to future reactors. As in previous meetings of this series, much attention was devoted to discussion of plasma-surface interaction studies relevant to ITER and many contributions focussed on ITER-relevant research and development topics

  12. Multi-Sensor Fusion for Enhanced Contextual Awareness of Everyday Activities with Ubiquitous Devices

    Directory of Open Access Journals (Sweden)

    John J. Guiry

    2014-03-01

    Full Text Available In this paper, the authors investigate the role that smart devices, including smartphones and smartwatches, can play in identifying activities of daily living. A feasibility study involving N = 10 participants was carried out to evaluate the devices’ ability to differentiate between nine everyday activities. The activities examined include walking, running, cycling, standing, sitting, elevator ascents, elevator descents, stair ascents and stair descents. The authors also evaluated the ability of these devices to differentiate indoors from outdoors, with the aim of enhancing contextual awareness. Data from this study was used to train and test five well known machine learning algorithms: C4.5, CART, Naïve Bayes, Multi-Layer Perceptrons and finally Support Vector Machines. Both single and multi-sensor approaches were examined to better understand the role each sensor in the device can play in unobtrusive activity recognition. The authors found overall results to be promising, with some models correctly classifying up to 100% of all instances.

  13. Results of the Interlaboratory Exercise CNS/CIEMAT-04 Among Environmental Radioactivity Laboratories (Aqueous Solution)

    International Nuclear Information System (INIS)

    The document describes the outcome of the CSN/CIEMAT-04 interlaboratory test comparison among environmental radioactivity laboratories. The exercise was organised according to the ISO-43 and the ISO/IUPAC/AOAC Harmonised Protocol for the proficiency testing of analytical laboratories. Following the issue of the European Community Drinking Water Directive 98/83/EC concerning the quality of water for human consumption, the last inter-comparison exercise was organised by using a water sample, in an attempt to evaluate the performance of the laboratories analysing the required radioactivity parameters (H-3, gross alpha and beta activity and residual beta). The sample (a synthetic drinking water), was prepared at the National Laboratory for Ionising Radiation's Standards (CIEMAT), and contained the following radionuclides ''241 Am, ''239+240 Pu, ''90Sr, ''137 Cs, ''3 H y ''40 K. The results of the exercise were computed for 38 participating laboratories, and their analytical performance was assessed using the z-score approach. Robust statistics of the participant's results was applied to obtain the median and standard deviation, including suspected outliers. The exercise has revealed and homogeneous behaviour of laboratories, being statistical parameters from the results close to the reference values. A raised percentage os satisfactory laboratory performance has been obtained for gross alpha, gross beta and residual beta: 85, 97 and 87% respectively. The study has shown that participant laboratories perform radioactive determinations in drinking water samples with satisfactory quality levels. (Author) 16 refs

  14. Dismantling and rehabilitation programme of nuclear and radioactive facilities at the Spanish Research Centre (CIEMAT)

    International Nuclear Information System (INIS)

    Ciemat was gradually proceeding to the decommissioning of its more than 60 historical facilities. At present, a general decommissioning programme has been established that includes, to a different extent, all radioactive and nuclear facilities and their areas of influence, particularly those related to the front-end and back-end of the nuclear fuel cycle, hot cells and three experimental reactors. The purpose of the programme is to manage a model of a research centre integrating, on one side, a set of radioactive and conventional facilities and laboratories, and, on the other, a small area temporarily classified as a nuclear facility dedicated to the radioactive wastes management and providing an interim storage for materials under safeguards. The largest part of the radioactive wastes produced will be sent to El Cabril, a near surface disposal facility for low and intermediate level wastes, and the rest will be temporarily stored at Ciemat. This paper presents the main features of the programme and the lessons learned in its execution so far. (author)

  15. Computation of stationary 3D halo currents in fusion devices with accuracy control

    Science.gov (United States)

    Bettini, Paolo; Specogna, Ruben

    2014-09-01

    This paper addresses the calculation of the resistive distribution of halo currents in three-dimensional structures of large magnetic confinement fusion machines. A Neumann electrokinetic problem is solved on a geometry so complicated that complementarity is used to monitor the discretization error. An irrotational electric field is obtained by a geometric formulation based on the electric scalar potential, whereas three geometric formulations are compared to obtain a solenoidal current density: a formulation based on the electric vector potential and two geometric formulations inspired from mixed and mixed-hybrid Finite Elements. The electric vector potential formulation is usually considered impractical since an enormous computing power is wasted by the topological pre-processing it requires. To solve this challenging problem, we present novel algorithms based on lazy cohomology generators that enable to save orders of magnitude computational time with respect to all other state-of-the-art solutions proposed in literature. Believing that our results are useful in other fields of scientific computing, the proposed algorithm is presented as a detailed pseudocode in such a way that it can be easily implemented.

  16. Power saving of large-scaled cryogenic system for fusion device

    International Nuclear Information System (INIS)

    For the purpose of reducing the power consumption of a cryogenic system for an experimental nuclear fusion system, we studied a new cryogenic system which includes an additional auxiliary gas cooling system. The power consumption of the helium compressor will be reduced by cooling down the suction gas temperature of helium compressor, and the power reduction becomes higher than the power used for the additional auxiliary gas cooling system. Further, much higher power reduction will be realized by adding a chemical heat pump driven by the waste heat of the helium compressor because the chemical heat pump requires small power against normal type heat pump. We studied the improvement of efficiency of this new system comparing to the CERN's 18 kW cryogenic system because this system will be the design basis of ITER's cryogenic system. As the result of study, some 11% of power consumption can be saved using this new cycle compared to a conventional system when the helium gas suction temperature of the compressor is 235 K. (author)

  17. Conceptual design of a generic pulse schedule and event handling editor for improved fusion device operation

    International Nuclear Information System (INIS)

    Highlights: ► Real-time event handling requires extended functionalities of pulse schedule editors and plasma control systems ► A new pulse schedule editor, conceived for parameterization of systematic off-normal event handling, is described ► A global, generic approach on off-normal event handling is highlighted ► The functional architecture of an off-normal event handling oriented plasma control system is discussed ► The main objects of the pulse schedule editor are the segment-descriptor object and the scenario-descriptor object. -- Abstract: Coping with unexpected events is an important issue of nuclear fusion experiments. The future machines, characterized by very long plasma discharges and actively cooled metallic plasma-facing components, will require a systematic intervention in real time, in order to maximize the performance and protect the investment. The real-time management of events will require extending the functionalities of the current pulse schedule editors with the possibility of using reference waveforms provided with acceptability margins and setting up advanced mitigation strategies and event countermeasures. With this purpose, a new pulse schedule editor, based on a time-segment approach for the preparation of experimental scenarios, is being conceived on Tore Supra, together with a new plasma control system. This paper will report on their conceptual design and give account of the preliminary results of a feasibility study currently under way in order to prepare a possible implementation on Tore Supra

  18. The long way to steady state fusion plasmas - the superconducting stellarator device Wendelstein 7-X

    CERN Document Server

    CERN. Geneva

    2016-01-01

    The stable generation of high temperature Hydrogen plasmas (ion and electron temperature in the range 10-20 keV) is the basis for the use of nuclear fusion to generate heat and thereby electric power. The most promising path is to use strong, toroidal, twisted magnetic fields to confine the electrically charged plasma particles in order to avoid heat losses to the cold, solid wall elements. Two magnetic confinement concepts have been proven to be most suitable: (a) the tokamak and (b) the stellarator. The stellarator creates the magnetic field by external coils only, the tokamak by combining the externally created field with the magnetic field generated by a strong current in the plasma. “Wendelstein 7-X” is the name of a large superconducting stellarator that went successfully into operation after 15 years of construction. With 30 m3 plasma volume, 3 T magnetic field on axis, and 10 MW micro wave heating power, Hydrogen plasmas are generated that allow one to establish a scientific basis for the extrapol...

  19. Conceptual design of a generic pulse schedule and event handling editor for improved fusion device operation

    Energy Technology Data Exchange (ETDEWEB)

    Barana, Oliviero, E-mail: oliviero.barana@cea.fr [CEA, IRFM, F-13108 Saint-Paul-Lez Durance (France); Nouailletas, Rémy; Brémond, Sylvain; Moreau, Philippe; Allegretti, Ludovic; Balme, Stéphane; Ravenel, Nathalie [CEA, IRFM, F-13108 Saint-Paul-Lez Durance (France); Mannori, Simone [ENEA C.R. Brasimone, 40032 Camugnano (Italy); Guillerminet, Bernard; Leroux, Fabrice; Douai, David; Nardon, Eric; Hertout, Patrick; Saint-Laurent, François [CEA, IRFM, F-13108 Saint-Paul-Lez Durance (France)

    2013-10-15

    Highlights: ► Real-time event handling requires extended functionalities of pulse schedule editors and plasma control systems ► A new pulse schedule editor, conceived for parameterization of systematic off-normal event handling, is described ► A global, generic approach on off-normal event handling is highlighted ► The functional architecture of an off-normal event handling oriented plasma control system is discussed ► The main objects of the pulse schedule editor are the segment-descriptor object and the scenario-descriptor object. -- Abstract: Coping with unexpected events is an important issue of nuclear fusion experiments. The future machines, characterized by very long plasma discharges and actively cooled metallic plasma-facing components, will require a systematic intervention in real time, in order to maximize the performance and protect the investment. The real-time management of events will require extending the functionalities of the current pulse schedule editors with the possibility of using reference waveforms provided with acceptability margins and setting up advanced mitigation strategies and event countermeasures. With this purpose, a new pulse schedule editor, based on a time-segment approach for the preparation of experimental scenarios, is being conceived on Tore Supra, together with a new plasma control system. This paper will report on their conceptual design and give account of the preliminary results of a feasibility study currently under way in order to prepare a possible implementation on Tore Supra.

  20. Computation of stationary 3D halo currents in fusion devices with accuracy control

    Energy Technology Data Exchange (ETDEWEB)

    Bettini, Paolo, E-mail: paolo.bettini@unipd.it [Università degli Studi di Padova, Dipartimento di Ingegneria Industriale (DII), Via Gradenigo 6/A, 35131 Padova (Italy); Consorzio RFX, C.so Stati Uniti 4, 35127 Padova (Italy); Specogna, Ruben, E-mail: ruben.specogna@uniud.it [Università degli Studi di Udine, Dipartimento di Ingegneria Elettrica, Gestionale e Meccanica (DIEGM), Via delle Scienze 206, I-33100 Udine (Italy)

    2014-09-15

    This paper addresses the calculation of the resistive distribution of halo currents in three-dimensional structures of large magnetic confinement fusion machines. A Neumann electrokinetic problem is solved on a geometry so complicated that complementarity is used to monitor the discretization error. An irrotational electric field is obtained by a geometric formulation based on the electric scalar potential, whereas three geometric formulations are compared to obtain a solenoidal current density: a formulation based on the electric vector potential and two geometric formulations inspired from mixed and mixed-hybrid Finite Elements. The electric vector potential formulation is usually considered impractical since an enormous computing power is wasted by the topological pre-processing it requires. To solve this challenging problem, we present novel algorithms based on lazy cohomology generators that enable to save orders of magnitude computational time with respect to all other state-of-the-art solutions proposed in literature. Believing that our results are useful in other fields of scientific computing, the proposed algorithm is presented as a detailed pseudocode in such a way that it can be easily implemented.

  1. Operation of an experimental thermonuclear fusion device from Tore Supra to ITER

    International Nuclear Information System (INIS)

    The operation of a thermonuclear experimental reactor requires the simultaneous availability of a large number of basic sub- systems. One of the main goal of the operating staff is to maximize the time duration and the potential performances of the experimental campaigns. The implementation of availability indicators allows for both the optimization of the maintenance periods and the increase of reliability of the device. The data collected along the lifetime of the tokamak Tore Supra are feeding the international database which will be used to define the operation procedures of the next international thermonuclear experimental reactor ITER. (authors)

  2. NaOH-based high temperature heat-of-fusion thermal energy storage device

    Science.gov (United States)

    Cohen, B. M.; Rice, R. E.

    1978-01-01

    A material called Thermkeep, developed as a low-cost method for the storage of thermal energy for solar electric power generating systems is discussed. The storage device consists of an insulated cylinder containing Thermkeep in which coiled tubular heat exchangers are immersed. A one-tenth scale model of the design contains 25 heat-exchanger tubes and 1500 kg of Thermkeep. Its instrumentation includes thermocouples to measure internal Thermkeep temperatures, vessel surface, heated shroud surface, and pressure gauges to indicate heat-exchanger pressure drops. The test-circuit design is presented and experimental results are discussed.

  3. Participation of CIEMAT in the 29 Annual meeting of the Spanish Nuclear Society. Zaragoza 1,2 y 3 October 2003; Participacion del CIEMAT en la 29 Reunion Anual de la Sociedad Nuclear Espanola

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    The book assembles the paper of researches of CIEMAT during the 29th annual meeting of Spanish Nuclear Society. The paper were presented during the following sessions : 1. Nuclear fuel. 2. R and D materials. 3.Operation and maintenance. Lifetime. 4.- R and D and T participation and transmutation.5. Environment. 6. Radioactive wastes and dismantling. 7. Nuclear safety. 8. Nuclear law.

  4. Detective studies of soft X-ray tomography on controlled thermonuclear fusion device

    International Nuclear Information System (INIS)

    In is necessary to design tomographic detective system with very high accuracy and high quality. It is such a detective system that its five resolutions are all very high quality. The five resolutions are: the radial resolution, the angular resolution, the spatial resolution of detector, the resolution of detector array, and the time resolution. The radial resolution is decided by the number of detectors in detector array. The angular resolutions depend on the number of detector arrays. According to the concrete condition of controlled device, through making special rectangular detector the optimum spatial resolution of detector and the optimum spatial resolution of detector array can be obtained. The high time resolution can be got by making wide-band ampli-filter circuit system. The tomographic system with high quality can use the multi-angle multi-array mode or perfect single array mode. The soft X-ray tomographic system with high sensitivity can measure the stable signal and perform the tomography under the conditions of Te ∼150 eV, ne ∼1013 cm-3 on the small Tokamak devices. (authors)

  5. CORSICA: A comprehensive simulation of toroidal magnetic-fusion devices. Final report to the LDRD Program

    Energy Technology Data Exchange (ETDEWEB)

    Crotinger, J.A.; LoDestro, L.; Pearlstein, L.D.; Tarditi, A.; Casper, T.A.; Hooper, E.B.

    1997-03-21

    In 1992, our group began exploring the requirements for a comprehensive simulation code for toroidal magnetic fusion experiments. There were several motivations for taking this step. First, the new machines being designed were much larger and more expensive than current experiments. Second, these new designs called for much more sophisticated control of the plasma shape and position, as well as the distributions of energy, mass, and current within the plasma. These factors alone made it clear that a comprehensive simulation capability would be an extremely valuable tool for machine design. The final motivating factor was that the national Numerical Tokamak Project (NTP) had recently received High Performance Computing and Communications (HPCC) Grand Challenge funding to model turbulent transport in tokamaks, raising the possibility that first-principles simulations of this process might be practical in the near future. We felt that the best way to capitalize on this development was to integrate the resulting turbulence simulation codes into a comprehensive simulation. Such simulations must include the effects of many microscopic length- and time-scales. In order to do a comprehensive simulation efficiently, the length- and time- scale disparities must be exploited. We proposed to do this by coupling the average or quasistatic effects from the fast time-scales to a slow-time-scale transport code for the macroscopic plasma evolution. In FY93-FY96 we received funding to investigate algorithms for computationally coupling such disparate-scale simulations and to implement these algorithms in a prototype simulation code, dubbed CORSICA. Work on algorithms and test cases proceeded in parallel, with the algorithms being incorporated into CORSICA as they became mature. In this report we discuss the methods and algorithms, the CORSICA code, its applications, and our plans for the future.

  6. Deep drawing of tungsten plates for structural divertor applications in future fusion devices

    Energy Technology Data Exchange (ETDEWEB)

    Reiser, J., E-mail: jens.reiser@kit.edu [Karlsruhe Institute of Technology (KIT), Institute for Applied Materials (IAM-AWP) (Germany); Rieth, M.; Dafferner, B.; Baumgaertner, S.; Ziegler, R. [Karlsruhe Institute of Technology (KIT), Institute for Applied Materials (IAM-AWP) (Germany); Hoffmann, A. [PLANSEE Metall GmbH, Reutte (Austria)

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer Successful deep drawing of a 1 mm tungsten plate. Black-Right-Pointing-Pointer The grains follow the contour - grain boundary alignment. Black-Right-Pointing-Pointer Deep drawing fits to the needs of a mass production. Black-Right-Pointing-Pointer Charpy tests of 1 mm tungsten plate material prove the anisotropy material behavior. - Abstract: The reference design of a helium cooled divertor for future fusion reactors makes use of hundreds of thousands of finger units consisting of a pressurized structural part called a thimble. Due to the high number of parts needed, the thimble has to be fabricated by mass production techniques like deep drawing. As the thimble is a pressurized part exposed to an internal pressure of 100 bar, the demands for the material are high, which means that it requires the best available tungsten material. Former work has shown that pure tungsten material has the best impact properties and has to be preferred over other commercially available tungsten materials, such as that doped with potassium or strengthened with oxides like lanthanum oxide. Furthermore the inherent weakness of the grain boundaries has to be taken into account, which requires the need for grains that are aligned to the contour of the part (grain boundary alignment). This paper describes the successful deep drawing of a 1 mm tungsten plate in high vacuum at 600 Degree-Sign C. In doing this, a thimble can be machined with grains that follow the contour. Furthermore the characterization of a 1 mm tungsten plate is conducted by tensile tests at room temperature and at 600 Degree-Sign C, as well as by Charpy tests taking into account the anisotropic material behaviour.

  7. User perceptions of large versus small fusion devices and electric power research institute-funded compact reactor studies

    International Nuclear Information System (INIS)

    The rationale for Electric Power Research Institute interest in small fusion systems is discussed from two points of view: economic demonstration of the competitive features of fusion energy and end use application. The physics base is summarized for five fusion schemes, which might enhance the prospects for a small fusion reactor, and scaling laws, which connect small systems with high-power-density systems are derived

  8. Monte Carlo analysis of the Neutron Standards Laboratory of the CIEMAT; Analisis Monte Carlo del Laboratorio de Patrones Neutronicos del CIEMAT

    Energy Technology Data Exchange (ETDEWEB)

    Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico); Mendez V, R. [Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas, Av. Complutense 40, 28040 Madrid (Spain); Guzman G, K. A., E-mail: fermineutron@yahoo.com [Universidad Politecnica de Madrid, Departamento de Ingenieria Nuclear, C. Jose Gutierrez Abascal 2, 28006 Madrid (Spain)

    2014-10-15

    By means of Monte Carlo methods was characterized the neutrons field produced by calibration sources in the Neutron Standards Laboratory of the Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT). The laboratory has two neutron calibration sources: {sup 241}AmBe and {sup 252}Cf which are stored in a water pool and are placed on the calibration bench using controlled systems at distance. To characterize the neutrons field was built a three-dimensional model of the room where it was included the stainless steel bench, the irradiation table and the storage pool. The sources model included double encapsulated of steel, as cladding. With the purpose of determining the effect that produces the presence of the different components of the room, during the characterization the neutrons spectra, the total flow and the rapidity of environmental equivalent dose to 100 cm of the source were considered. The presence of the walls, floor and ceiling of the room is causing the most modification in the spectra and the integral values of the flow and the rapidity of environmental equivalent dose. (Author)

  9. Results of the Interlaboratory Exercise CSN/CIEMAT-100 Among Environmental Radioactivity Laboratories (Soil); Resultados del Ejercicio Interlaboratorios de Radiactividad Ambiental CSN/CIEMAT-00 (Suelo)

    Energy Technology Data Exchange (ETDEWEB)

    Romero Gonzalez, M. L.

    2002-07-01

    The document describes the outcome of the CSN/CIEMAT-00 interlaboratory test comparison among environmental radioactivity laboratories. the exercise was organised according to the ISO-43 and the ISO/IUPAC/AOAC Harmonized Protocol for the proficiency testing of analytical laboratories. the test sample was a soil containing environmental levels of K-40, Ra-226, Ac-228, Sr-90, Cs-137, Cs-134, Pu (239-240) y Am-241. the Universidad Autonoma de Barcelona prepared the material and reported adequate statistical studies of homogeneity. The results of the exercise were computed for 30 participating laboratories, and their analytical performance was assessed using the u-score approach. A raised percentage of satisfactory laboratory performance has been obtained for all the analysis, being the best performance in gamma measurements. The exercise has drawn that several laboratories have difficulties in the evaluation of combined uncertainty, mainly in analysis involving radiochemical steps. The study has shown an homogeneous inter-laboratory behaviour, and the improvement achieved through subsequent exercises in the quality of the data they are producing. (Author) 10 refs.

  10. Results of the Interlaboratory Exercise CSN/CIEMAT-02 Among Environmental Radioactivity Laboratories (Sea Fish); Resultados del Ejercicio Interlaboratorios de Radiactividad Ambiental CSN/CIEMAT-02 (Fauna Marina)

    Energy Technology Data Exchange (ETDEWEB)

    Romero gonzalez, M. L.

    2003-07-01

    The document describes the outcome of the CSN/CIEMAT-02 interlaboratory test comparison among environmental radioactivity laboratories. The exercise was organised according to the ISO-43 and the ISO/IUPAC/AOAC Harmonized Protocol for the proficiency testing of analytical laboratories. The test sample was a reference materials provided by the IAEA-MEL (IAE Marine Environmental Laboratory, Monaco), a sea fish containing environmental levels of U-238, U-234, K-40, Pb-210, Ra-226, Sr-90, Cs-137, Co-60, Pu-(239+240), Am-241 and Tc-99. The results of the exercise were computed for 32 participating laboratories, and their analytical performance was assessed using the z-score approach. A raised percentage of satisfactory laboratory performance has been obtained for all the analysis, being the best performance in gamma measurements. The laboratories have made an effort to calculate the combined uncertainty of the radiochemical determinations. Most of the laboratories have demonstrated its competence in performing the study analysis and also the adequate measuring capability of their detection equipment even in conditions close to detection limits. The study has shown the capacity of participant laboratories to perform radioactive determinations in environmental sea fish samples with satisfactory quality levels. (Author) 6 refs.

  11. Irradiation of samples for fusion prospective materials by the plasma focus device of Sofia University

    Science.gov (United States)

    Zapryanov, Stanislav; Blagoev, Alexander

    2014-05-01

    This paper presents the first results for irradiation of tungsten, molybdenum and stainless steel samples with the 4 kJ plasma focus (PF) device at the University of Sofia. The samples were placed 4 cm above the anode of the PF machine and were exposed to a considerable number of shots. The working gas was deuterium with the pressure adjusted in the range of 1-3.3 mbar. Thus, the plasma streams and the fast-ion beam, which appear after the pinch phase, impinge the samples. The interaction of the pinch products with the targets causes substantial surface damage to the specimens. A mesh of partially melted cracks and re-crystallized regions are revealed on this surface and various chemical compounds are also present.

  12. Core configuration of a gas-cooled reactor as a tritium production device for fusion reactor

    International Nuclear Information System (INIS)

    The performance of a high-temperature gas-cooled reactor as a tritium production device is examined, assuming the compound LiAlO2 as the tritium-producing material. A gas turbine high-temperature reactor of 300 MWe nominal capacity (GTHTR300) is assumed as the calculation target, and using the continuous-energy Monte Carlo transport code MVP-BURN, burn-up simulations are carried out. To load sufficient Li into the core, LiAlO2 is loaded into the removable reflectors that surround the ring-shaped fuel blocks in addition to the burnable poison insertion holes. It is shown that module high-temperature gas-cooled reactors with a total thermal output power of 3 GW can produce almost 8 kg of tritium in a year

  13. On the statistics of edge fluctuations: comparative study between various fusion devices

    CERN Document Server

    Sattin, F; Scarin, P; Vianello, N; Cavazzana, R; Marrelli, L; Serianni, G; Zweben, S J; Maqueda, R J; Yagi, Y; Sakakita, H; Koguchi, H; Kiyama, S; Hirano, Y; Terry, J L

    2009-01-01

    In this paper we present a statistical study of edge fluctuations taken with the Gas Puffing Imaging (GPI) diagnostics. We carry out a comparison of GPI signal from an extensive database including four devices (two Tokamaks and two Reversed Field Pinches). The data are analyzed in terms of their statistical moments Skewness and Kurtosis, as done in [B. Labit, et al, Phys. Rev. Lett. \\textbf{98}, 255002 (2007)]. The data align along parabolic curves, although different from machine to machine, with some spread around the best-fitting curve. A discussion about the meaning of the parabolic trend as well as the departure of real data from it is provided. A phenomenological model is finally provided, attempting to accomodate experimental evidence.

  14. Development of elemental techniques for in-vacuum remote manipulators of fusion devices

    International Nuclear Information System (INIS)

    A number of works have been done at JAERI to develop elemental techniques for in-vacuum manipulators through the process of fabrication and performance test of an in-situ coating machine, a leak hunting device and a multi-joint remote handling machine. Major technical problems encountered in the course of the development are the selection of driving methods, improvement of lubricating materials and mitigation of outgassing from constructional materials. The purpose of the in-situ coating machine is to inspect and repair the eroded or damaged surface of TiC-coated tiles in the JT-60 vacuum vessel. The machine basically consists of an in-vacuum manipulator with a long arm of four degrees of freedom, a quartz fiberscope and ohmically heated titanium evaporators. The leak hunting device is composed of a light-weighted manipulator and a small ionization gauge attached to the tip of the manipulator arm. Leak points can be located by moving the ionization gauge along the inner wall of the test vessel. In the above two applications, MoS2-coated Inconel (or stainless steel) is used for most movable parts including gears, Ag-ionplated stainless steel for ball bearings, and a self-lubricating alloy for slide bearings. A preliminary test was also made of an in-vacuum remote handling machine with multi-joint arms. In this case, each joint has its own driving unit consisting of electric motor, torque sensor, electronic circuit for control, gears, bearings, etc., and is exposed to a high vacuum. A special hydrocarbon grease is used as the lubricant since no solid lubricating materials endure the strong forces fallen on the gears of the joint. (author). 7 refs, 8 figs, 1 tab

  15. Fusion Physics

    International Nuclear Information System (INIS)

    Recreating the energy production process of the Sun - nuclear fusion - on Earth in a controlled fashion is one of the greatest challenges of this century. If achieved at affordable costs, energy supply security would be greatly enhanced and environmental degradation from fossil fuels greatly diminished. Fusion Physics describes the last fifty years or so of physics and research in innovative technologies to achieve controlled thermonuclear fusion for energy production. The International Atomic Energy Agency (IAEA) has been involved since its establishment in 1957 in fusion research. It has been the driving force behind the biennial conferences on Plasma Physics and Controlled Thermonuclear Fusion, today known as the Fusion Energy Conference. Hosted by several Member States, this biennial conference provides a global forum for exchange of the latest achievements in fusion research against the backdrop of the requirements for a net energy producing fusion device and, eventually, a fusion power plant. The scientific and technological knowledge compiled during this series of conferences, as well as by the IAEA Nuclear Fusion journal, is immense and will surely continue to grow in the future. It has led to the establishment of the International Thermonuclear Experimental Reactor (ITER), which represents the biggest experiment in energy production ever envisaged by humankind.

  16. Fast Scintillation Probes For Investigation Of Pulsed Neutron Radiation From Small Fusion Devices

    International Nuclear Information System (INIS)

    This paper presents the design as well as laboratory/performance tests results taken by means of the fast scintillation probes. The design of each scintillation probe is based on photomultiplier tube hybrid assembly, which--besides photomultiplier itself--also includes high-voltage divider optimized for recording of fast radiation bursts. Plastic scintillators with short-time response are applied as hard X-ray and neutron radiation detectors. Heavy-duty probe's housing provides efficient shielding against electromagnetic interference and allows carrying out pulsed neutron measurements in a harsh electromagnetic environment. The crucial parameters of scintillation probes have been examined during laboratory tests in which our investigations have been aimed mainly to determine: a time response, an anode radiant sensitivity and an electron transit time dependence on high-voltage supply. During the performance tests, the relative calibration of probes set has been done. It allowed to carry out very accurate measurements of neutron emission anisotropy and investigations of neutron radiation scattering by different materials. The usefulness of presented scintillation probes - embedded in the neutron time-of-flight diagnostic system was proven during experimental campaigns conducted on the plasma-focus PF1000 device

  17. Tungsten: An option for divertor and main chamber plasma facing components in future fusion devices

    International Nuclear Information System (INIS)

    The tungsten programme in ASDEX Upgrade is pursued towards a full high-Z device. The spectroscopic diagnostic and the cooling factor of W have been extended and refined. The W-coated surfaces represent now a fraction of 65% (24.8 m2). The only two major components which are not yet coated are the strikepoint region of the lower divertor as well as the limiters at the low field side. While extending the W surfaces, the W concentration and the discharge behaviour have changed gradually pointing to critical issues when operating with a W wall: anomalous transport in the plasma centre should not be too low, otherwise neoclassical accumulation can occur. A very successful remedy is the addition of central RF heating at the 20-30% level. Regimes with low ELM activity show increased impurity concentration over the whole plasma radius. These discharges can be cured by increasing the ELM frequency through pellet ELM pacemaking or by higher heating power. Moderate gas puffing also mitigates the impurity influx and penetration, however at the expense of lower confinement. The erosion yield at the low field side guard limiter can be as high as 10-3 and fast particle losses from NBI were identified to contribute a significant part to the W sputtering. Discharges run in the upper, W coated divertor do not show higher W concentrations than comparable discharges in the lower C-based divertor. (author)

  18. The role and application of ion beam analysis for studies of plasma-facing components in controlled fusion devices

    Science.gov (United States)

    Rubel, Marek; Petersson, Per; Alves, Eduardo; Brezinsek, Sebastijan; Coad, Joseph Paul; Heinola, Kalle; Mayer, Matej; Widdowson, Anna

    2016-03-01

    First wall materials in controlled fusion devices undergo serious modification by several physical and chemical processes arising from plasma-wall interactions. Detailed information is required for the assessment of material lifetime and accumulation of hydrogen isotopes in wall materials. The intention of this work is to give a concise overview of key issues in the characterization of plasma-facing materials and components in tokamaks, especially in JET with an ITER-Like Wall. IBA techniques play a particularly prominent role here because of their isotope selectivity in the low-Z range (1-10), high sensitivity and combination of several methods in a single run. The role of 3He-based NRA, RBS (standard and micro-size beam) and HIERDA in fuel retention and material migration studies is presented. The use of tracer techniques with rare isotopes (e.g. 15N) or marker layers on wall diagnostic components is described. Special instrumentation, development of equipment to enhance research capabilities and issues in handling of contaminated materials are addressed.

  19. Rotor-dynamic design aspects for a variable frequency drive based high speed cryogenic centrifugal pump in fusion devices

    International Nuclear Information System (INIS)

    Superconducting magnets of large size are inevitable for fusion devices due to high magnetic field requirements. Forced flow cooling of the superconducting magnets with high mass flowrate of the order ∼3 kg/s is required to keep superconducting magnets within its safe operational boundaries during various plasma scenarios. This important requirement can be efficiently fulfilled by employing high capacity and high efficiency cryogenic centrifugal pumps. The efficiency > 70% will ensure overall lower heat load to the cryoplant. Thermo-hydraulic design of cryogenic centrifugal pump revealed that to achieve the operational regime with high efficiency, the speed should be ∼ 10,000 revolutions per minute. In this regard, the rotor-dynamic design aspect is quite critical from the operational stability point of view. The rotor shaft design of the cryogenic pump is primarily an outcome of optimization between thermal heat-in leak at cryogenic temperature level from ambient, cryogenic fluid impedance and designed rotation speed of the impeller wheel. The paper describes the basic design related to critical speed of the rotor shaft, rotor whirl and system instability prediction to explore the ideal operational range of the pump from the system stability point of view. In the rotor-dynamic analysis, the paper also describes the Campbell plots to ensure that the pump is not disturbed by any of the critical speeds, especially while operating near the nominal and enhanced operating modes. (author)

  20. The life test of a DC circuit breaker of tokamak device JT-60 for a nuclear fusion research

    International Nuclear Information System (INIS)

    In the Tokamak devices for nuclear fusion research, the construction of the current transformer circuits having plasma as the secondary circuit and the change of the primary circuit current are necessary for generating current in the plasma. This is considered to be fairly difficult in practice if conventional methods using capacitor discharge and iron core coils are employed. Considering such circumstances, it was decided for JT-60 to use an air-core current transformer coil and to employ the method of storing energy in the form of current in the coil inductance instead of a capacitor. For this reason, a DC circuit breaker is required to interrupt coil current. The authors improved an AV vacuum breaker, which had been developed as the vacuum breaker of longitudinal magnetic field type applying a magnetic field in parallel with an arc, to get the one for DC circuit for the purpose of applying it to JT-60. In this paper, the operational characteristic of the DC breaker is described, the construction and function of the life test circuit is explained, and the test results are reported. Finally, interruptions of 10,000 times at 20 kA were carried out. It is successful that the restrike of arc occurring during tens of milli-seconds after interruptions was improved to 0.05% or less for 10,000 times operations. Further, it was found that the generation of arc restrike can be reduced practically to zero with two breakers in series. (Wakatsuki, Y.)

  1. High-speed repetitive pellet injector for plasma fueling of magnetic confinement fusion devices

    International Nuclear Information System (INIS)

    The projected fueling requirements of future magnetic confinement devices for controlled thermonuclear research [e.g., the International Thermonuclear Experimental Reactor (ITER)] indicate that a flexible plasma fueling capability is required. This includes a mix of traditional gas puffing and low- and high-velocity deuterium-tritium pellets. Conventional pellet injectors (based on light gas guns or centrifugal accelerators) can reliably provide frozen hydrogen pellets (1- to 6-mm-diam sizes tested) up to ∼1.3-km/s velocity at the appropriate pellet fueling rates (1 to 10 Hz or greater). For long-pulse operation in a higher velocity regime (>2 km/s), an experiment in collaboration between Oak Ridge National Laboratory (ORNL) and ENEA Frascati is under way. This activity will be carried out in the framework of a collaborative agreement between the US Department of Energy and European Atomic Energy Community -- ENEA Association. In this experiment, an existing ORNL hydrogen extruder (equipped with a pellet chambering mechanism/gun barrel assembly) and a Frascati two-stage light gas gun driver have been combined on a test facility at ORNL. Initial testing has been carried out with single deuterium pellets accelerated up to 2.05 km/s with the two-stage driver; in addition, some preliminary repetitive testing (to commission the diagnostics) was performed at reduced speeds, including sequences at 0.5 to 1 Hz and 10 to 30 pellets. The primary objective of this study is to demonstrate repetitive operation (up to ∼1 Hz) with speeds in the 2- to 3-km/s range. In addition, the strength of extruded hydrogen ice as opposed to that produced in situ by direct condensation in pipe guns can be investigated. The equipment and initial experimental results are described

  2. Preparation and LSC standardization of ''89 Sr (DNP) using the CIEMAT/NIST method

    International Nuclear Information System (INIS)

    A procedure for preparation of liquid scintillation counting samples of the strontium DNP complex, labelled with ''89 Sr, is described. The chemical quench, the counting stability and spectral evolution of this compound is studied in six scintillators, Toluene, Toluene-alcohol, Dioxane-naphthalene, HiSafe II, Ultima-Gold and Instagel. The liquid scintillation standardization of ''89Sr-DNP by the CIEMAT/NIST method, using Hisafe II and Ultima-Gold scintillators, has been carried out. The discrepancies between experimental and computed efficiencies are lower than 0.38% and 0.48%, respectively. The solution has been standardized in terms of activity concentration to an overall uncertainty of 0.38%. (Author)

  3. Facility ''Bench of Stationary Engines for Study of Emissions (E65-PO) CIEMAT''

    International Nuclear Information System (INIS)

    The Project of Technology of Aerosols in Generation of Energy, of the Department of Fossil Fuels of the CIEMAT, began in the year 2004, a research activity line, based on the study of the emissions coming from internal combustion engines, particularly of Diesel technology. Activity was continued by the Polluting Emissions Group of the Department of Environment, when becoming the original Project in this Group. From the concession to the Group, of the project GR/AMB/0119/2004 Evaluation of the Emissions of Biodiesel supported by the Autonomous Community of Madrid together with the European Regional Development Fund (ERDF), this activity was encourage, with the design, assembly and to get ready of the facility Bench of stationary engines for study of emissions, located in the building 65 at CIEMAT, Madrid. The present report constitutes a detailed technical description of each one of the elements that the installation Bench of stationary engines for study of emissions it integrated within the framework of the referred project (GR/AMB/0119/2004) and whose capacity includes studies of the effects of the engine, fuel, operation conditions, and methodology of sampling and measurement of emissions (gases and particles). The fundamental parts of facility describes in the present report are: engine test cell (cabin of sound insulation , ventilation and refrigeration system, anti vibrations mounting, engine, dynamometric brake), lines of preconditioning of particles and gases emissions (exhaust line, primary and secondary dilution lines, gases cleaning system...), other general parts of facility (sampling and measurement station, service lines...). The present report not only reflects the characteristics of the systems involved, but rather also in certain cases specified the procedure and reason for their choice. (Author) 10 refs

  4. Collection of Summaries of reports on result of research at basic experiment device for nuclear fusion reactor blanket design, 1994

    International Nuclear Information System (INIS)

    The development of nuclear fusion reactors reached such stage that the generation of fusion power output comparable with the input power into core plasma is possible. At present, the engineering design of the international thermonuclear fusion experimental reactor, ITER, is advanced by the cooperation of Japan, USA, Europe and Russia, aiming at the start of operation at the beginning of 21st century. This meeting for reporting the results has been held every year, and this time, it was held on May 19, 1995 at University of Tokyo with the theme ''The interface properties of fusion reactor materials and the control of particle transport''. About 50 participants from academic, governmental and industrial circles discussed actively on the theme. Three lectures on the topics of fusion reactor engineering and materials and seven lectures on the basic experiment of fusion reactor blanket design related to the next period project were given at the meeting. (K.I.)

  5. CIEMAT participation in the VI National Plan of Scientific Research, Development and Technological Innovation 2008-2012; Participacion del CIEMAT en el VI Plan Nacional de Investigacion Cientifica, Desarrollo e Innovacion Tecnologica 2008-2012

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez, M. T.; Puertas, M. I.

    2014-02-01

    The participation of CIEMAT in the VI National Plan for Scientific Research, Development and Technological Innovation 2008-2011, that was extended by decision of the Council of Ministers until December 2012, is presented. In the first part of the report presents a complete information about the structure of the Plan, the various Instrumental Lines of Action and subsequent calls for National Programs, that have taken place throughout the development of the Plan since its beginning in 2008 until its closure gives in December 2012. The second part of the report includes the description and analysis of the participation of CIEMAT in the calls of the various National Programs, and the contribution of each of the Departments in the number of projects awarded and the funding obtained. The Total number of funded projects was 292, which meant funding amounting to 101, 5 M Euros. (Author)

  6. Experimental results on the irradiation of nuclear fusion relevant materials at the dense plasma focus ‘Bora’ device

    Science.gov (United States)

    Cicuttin, A.; Crespo, M. L.; Gribkov, V. A.; Niemela, J.; Tuniz, C.; Zanolli, C.; Chernyshova, M.; Demina, E. V.; Latyshev, S. V.; Pimenov, V. N.; Talab, A. A.

    2015-06-01

    Samples of materials counted as perspective ones for use in the first-wall and construction elements in nuclear fusion reactors (FRs) with magnetic and inertial plasma confinement (W, Ti, Al, low-activated ferritic steel ‘Eurofer’ and some alloys) were irradiated in the dense plasma focus (DPF) device ‘Bora’ having a bank energy of ⩽5 kJ. The device generates hot dense (T ˜ 1 keV, n ˜ 1019 cm-3) deuterium plasma, powerful plasma streams (v ˜ 3 × 107 cm s-1) and fast (E ˜ 0.1 … 1.0 MeV) deuterons of power flux densities q up to 1010 and 1012 W cm-2 correspondingly. ‘Damage factor’ F = q × τ0.5 ensures an opportunity to simulate radiation loads (predictable for both reactors types) by the plasma/ion streams, which have the same nature and namely those parameters as expected in the FR modules. Before and after irradiation we provided investigations of our samples by means of a number of analytical techniques. Among them we used optical and scanning electron microscopy to understand character and parameters of damageability of the surface layers of the samples. Atomic force microscopy was applied to measure roughness of the surface after irradiation. These characteristics are quite important for understanding mechanisms and values of dust production in FR that may relate to tritium retention and emergency situations in FR facilities. We also applied two new techniques. For the surface we elaborated the portable x-ray diffractometer that combines x-ray single photon detection with high spectroscopic and angular resolutions. For bulk damageability investigations we applied an x-ray microCT system where x-rays were produced by a Hamamatsu microfocus source (150 kV, 500 µA, 5 µm minimum focal spot size). The detector was a Hamamatsu CMOS flat panel coupled to a fibre optic plate under the GOS scintillator. The reconstruction of three-dimensional data was run with Cobra 7.4 and DIGIX CT software while VG Studio Max 2.1, and Amira 5.3 were used for

  7. Edge plasma fluctuations measurements in fusion experiments

    International Nuclear Information System (INIS)

    We report on investigations on electrostatic fluctuations in the edge plasma region which have been carried out during the last few years at several European fusion experiments. Various methods and probe arrangements have been used to determine fluctuations of the plasma potential, the electric field and the electron temperature. Investigations were under-taken in ISTTOK (Instituto Superior Tecnico TOKamak), Lisbon, Portugal, in CASTOR (Czech Academy of Science TORus), Prague, Czech Republic, and the TJ-II Flexible Heliac at CIEMAT in Madrid, Spain. (author)

  8. Quality Control Procedures Applied to the CMS Muon Chambers Built at CIEMAT; Procedimientos de Control de Calildad de las Camaras de Muones del Experimento CMS Construidas en el CIEMAT

    Energy Technology Data Exchange (ETDEWEB)

    Fouz, M. C.; Puerta Pelayo, J.

    2004-07-01

    In this document the quality control procedures applied to the CMS muon drift chmabers built at CIEMAT are described. It includes a description of the high voltage and front electronics associated to the chambers. Every procedure is described with detail and a list of the more common problems and possible solutions is given. This document can be considered as a chambert test handbook for beginners. (Author) 3 refs.

  9. CIEMAT Interlaboratories Comparison of the Results obtained in the Proficiency Test Run by IAEA; Comparacion Interlaboratorios del CIEMAT de los Resultados Obtenidos en la Prueba de Capacitacion de Analisis de Transuranicos en Cenizas propocionadas por el OIEA

    Energy Technology Data Exchange (ETDEWEB)

    Gasco, C.; Anton, M. P.; Alvarez, A.; Navarro, N.; Meral, J.; Gonzalez, A.; Higueras Lafaja, E. [Ciemat. Madrid (Spain)

    2000-07-01

    This report contains the results obtained by two different laboratories from CIEMAT after participating in the Proficiency Test organised by IAEA (International Atomic Energy Agency) in 1999. This test involves the analysis of fly ashes containing natural radionuclides and different amounts of added transuranics. The extraction techniques, counting methods and results obtained are detailed. This type of test are used for the labs to achieve their accreditation and check the reliability of the procedures routinely employed. (Author) 4 refs.

  10. Liquid scintillation counting standardization of ''125 I in organic and inorganic samples by the CIEMAT/NIST method

    International Nuclear Information System (INIS)

    The liquid scintillation counting standardization of organic and inorganic samples of ''125 I by the CIEMAT/NIST method using five different scintillators is described. The discrepancies between experimental and computed efficiencies are lower than 1.4% and 1.7%, for inorganic and organic samples, respectively, in the interval 421-226 of quenching parameter. Both organic and inorganic solutions have been standardized in terms of activity concentration to an overall uncertainty of 0.76%

  11. The specialized portals in the knowledge transfer systems: the ionizing radiation portal http://www.ionizantes.ciemat.es/

    International Nuclear Information System (INIS)

    Full text: This paper shows the new infrastructure to disseminate RP knowledge and information developed by the community involved in radiation uses. The www.ionizantes.ciemat.es portal has been implemented by CIEMAT and CINDOC- CSIC with the support of the national and international organizations related to the radiation applications. The design and structure of the databases was developed by CIEMAT and CINDOC-CSIC using the experience acquired by both organizations in the knowledge transfer. The initiative aims to establish collaboration with the sector involved in the most important applications of the ionizing radiation uses. The goal is to share resources establishing a new system of information between the experts, researchers and public. The portal also brings the dialogue to the entire sector and provides details of the relevant research projects. The main specific objectives of this portal are: a) To inform about the new projects developed; b) To download publications, reports and papers; c) to learn more about ionizing radiation; d) To promote collaborative knowledge transfer. The portal shows particular relevance to representative international and national organizations, the private sector and the local community relevant organizations. Results: The resources include in the database of the portal are: the agenda, documents, research calls, legislation, research projects, most important journals and summaries, patents and other available tools. The information is presented in a categorized and classified structure. This virtual community offers better knowledge transfer. It also optimizes the communication and research dissemination to the society. (author)

  12. Collection of summaries of reports on result of research at basic experiment device for nuclear fusion reactor blanket design, 1995

    International Nuclear Information System (INIS)

    This report meeting was held on May 22, 1995 at University of Tokyo by about 40 participants. As the topics on the fusion reactor engineering research in Japan, lectures were given on the present state and future of nuclear fusion networks and on the strong magnetic field tokamak using electromagnetic force-balanced coils being planned. Thereafter, the reports of the results of the researches which were carried out by using this experimental facility were made, centering around the subject related to the future conception 'The interface properties of fusion reactor materials and particle transport control'. The publication was made on the future conception of the basic experiment setup for fusion reactor blanket design, the application of high temperature superconductors to the advancement of nuclear fusion reactors, the modeling of the dynamic irradiation behavior of fusion reactor materials, the interface particle behavior in plasma-wall interaction, the behavior of tritium on the surface of breeding materials, and breeding materials and the behavior of tritium in plasma-wall interaction. (K.I.)

  13. Proceedings of US/Japan Workshop (97FT5-06) on High Heat Flux Components and Plasma Surface Interactions for Next Fusion Devices

    International Nuclear Information System (INIS)

    The 1997 US-Japan Workshop on High Heat Flux Components and Plasma Surface Interactions for Next Fusion Devices was held at the Warwick Regis Hotel in San Francisco, California, on December 8-11, 1997. There were 53 presentations as well as discussions on technical issues and on planning for future collaborations, and 35 researchers from japan and the US participated in the workshop. Over the last few years, with the strong emphasis in the US on technology for ITER, there has been less work done in the US fusion program on basic plasma materials interaction and this change in emphasis workshops. The program this year emphasized activities that were not carried out under the ITER program and a new element this year in the US program was planning and some analysis on liquid surface concepts for advanced plasma facing components. The program included a ceremony to honor Professor Yamashina, who was retiring this year and a special presentation on his career

  14. Results of the Interlaboratory Exercise CSN/CIEMAT-100 Among Environmental Radioactivity Laboratories (Soil)

    International Nuclear Information System (INIS)

    The document describes the outcome of the CSN/CIEMAT-00 interlaboratory test comparison among environmental radioactivity laboratories. the exercise was organised according to the ISO-43 and the ISO/IUPAC/AOAC Harmonized Protocol for the proficiency testing of analytical laboratories. the test sample was a soil containing environmental levels of K-40, Ra-226, Ac-228, Sr-90, Cs-137, Cs-134, Pu (239-240) y Am-241. the Universidad Autonoma de Barcelona prepared the material and reported adequate statistical studies of homogeneity. The results of the exercise were computed for 30 participating laboratories, and their analytical performance was assessed using the u-score approach. A raised percentage of satisfactory laboratory performance has been obtained for all the analysis, being the best performance in gamma measurements. The exercise has drawn that several laboratories have difficulties in the evaluation of combined uncertainty, mainly in analysis involving radiochemical steps. The study has shown an homogeneous inter-laboratory behaviour, and the improvement achieved through subsequent exercises in the quality of the data they are producing. (Author) 10 refs

  15. Results of the Interlaboratory Exercise CNS/CIEMAT-2008 among Environmental Radioactivity Laboratories (Phosphogypsum)

    International Nuclear Information System (INIS)

    The document describes the outcome of the CSN/CIEMAT-2008 interlaboratory test comparison among environmental radioactivity laboratories. The exercise was organised according to the ISO-43 and the ISO/IUPAC/AOAC. Aphosphogypsum material was used as a test sample, in an attempt to evaluate the performance of the laboratories analyzing NORM (Naturally-Occurring Radioactive Materials). The analysis required were: U-238, Th-234, U-234, Th-230, Ra-226, Pb-214, Bi-214, Pb-210, Po-210, Th-232 and U-235, and also gross alpha and gross beta activities. Reference values have been established according to the method of consensus of expert laboratories, with four international laboratories of credited experience: IAEA Seibersdorf, IAEA MEL, IRSN-Orsay and Sta.Teresa ENEA. The results of the exercise were computed for 34 answering laboratories and their analytical performance was assessed using the z-score. Robust statistics of the participants results was applied to obtain the median and standard deviation, to achieve a more complete and objective study of the laboratories performance. The exercise has shown an homogeneous behaviour of laboratories, being statistical parameters from the results close to the assigned Reference Values. Participant laboratories have demonstrated their ability to determine natural radionuclides in phosphogypsum samples (NORM material) with a satisfactory quality level. The scheme has also allowed examining the capability of laboratories to determine the activities of natural radionuclides at the equilibrium. (Author) 10 refs.

  16. Results of the Interlaboratory Exercise CSN/CIEMAT-02 Among Environmental Radioactivity Laboratories (Sea Fish)

    International Nuclear Information System (INIS)

    The document describes the outcome of the CSN/CIEMAT-02 interlaboratory test comparison among environmental radioactivity laboratories. The exercise was organised according to the ISO-43 and the ISO/IUPAC/AOAC Harmonized Protocol for the proficiency testing of analytical laboratories. The test sample was a reference materials provided by the IAEA-MEL (IAE Marine Environmental Laboratory, Monaco), a sea fish containing environmental levels of U-238, U-234, K-40, Pb-210, Ra-226, Sr-90, Cs-137, Co-60, Pu-(239+240), Am-241 and Tc-99. The results of the exercise were computed for 32 participating laboratories, and their analytical performance was assessed using the z-score approach. A raised percentage of satisfactory laboratory performance has been obtained for all the analysis, being the best performance in gamma measurements. The laboratories have made an effort to calculate the combined uncertainty of the radiochemical determinations. Most of the laboratories have demonstrated its competence in performing the study analysis and also the adequate measuring capability of their detection equipment even in conditions close to detection limits. The study has shown the capacity of participant laboratories to perform radioactive determinations in environmental sea fish samples with satisfactory quality levels. (Author) 6 refs

  17. Monte Carlo analysis of the Neutron Standards Laboratory of the CIEMAT

    International Nuclear Information System (INIS)

    By means of Monte Carlo methods was characterized the neutrons field produced by calibration sources in the Neutron Standards Laboratory of the Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT). The laboratory has two neutron calibration sources: 241AmBe and 252Cf which are stored in a water pool and are placed on the calibration bench using controlled systems at distance. To characterize the neutrons field was built a three-dimensional model of the room where it was included the stainless steel bench, the irradiation table and the storage pool. The sources model included double encapsulated of steel, as cladding. With the purpose of determining the effect that produces the presence of the different components of the room, during the characterization the neutrons spectra, the total flow and the rapidity of environmental equivalent dose to 100 cm of the source were considered. The presence of the walls, floor and ceiling of the room is causing the most modification in the spectra and the integral values of the flow and the rapidity of environmental equivalent dose. (Author)

  18. A cycle configuration for large-scale helium refrigerator for fusion devices towards complete mitigation of the effects of pulsed heat load

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, Rohan, E-mail: rohankrdutta@gmail.com; Ghosh, Parthasarathi; Chowdhury, Kanchan

    2013-11-15

    Highlights: • Large-scale helium refrigerators are subjected to pulsed heat load from fusion devices. • As a result plants may trip hindering continuous cooling of superconducting magnets. • Proposed a cycle configuration for complete mitigation of such effects in plants. • It includes cold-compressor, supercritical buffer and parallel heat exchanger. • Dynamic simulation revealed almost complete mitigation can be obtained. -- Abstract: Large-scale helium refrigerators in fusion devices work in pulsed heat load condition. The immediate effect of pulsed heat load is mass flow rate fluctuation at the low pressure return stream to the cold-box of the refrigerator. As a result, thermodynamic properties of all the intermediate state points of the cold-box vary widely and may go beyond operating limits. Therefore, for continuous operation, the refrigerators need modification in cycle configuration in order to mitigate the effects of pulsed heat load generated out of the operation of the fusion devices. A number of mitigation techniques exist and none of them is capable of mitigating the mass flow rate fluctuation completely. However, combinations of two or more methods have been found to be effective in mitigation of the effects of pulsed load to the maximum possible extent. In this paper, a cold-end configuration has been proposed that is constituted of combination of different mitigation schemes proposed in previous works. Dynamic simulations are performed to predict the performance of the modified cycle configuration and for validation of the concept towards achievement of complete mitigation. Results of the work have revealed that through the proposed cold-end configuration, almost complete mitigation can be obtained.

  19. A cycle configuration for large-scale helium refrigerator for fusion devices towards complete mitigation of the effects of pulsed heat load

    International Nuclear Information System (INIS)

    Highlights: • Large-scale helium refrigerators are subjected to pulsed heat load from fusion devices. • As a result plants may trip hindering continuous cooling of superconducting magnets. • Proposed a cycle configuration for complete mitigation of such effects in plants. • It includes cold-compressor, supercritical buffer and parallel heat exchanger. • Dynamic simulation revealed almost complete mitigation can be obtained. -- Abstract: Large-scale helium refrigerators in fusion devices work in pulsed heat load condition. The immediate effect of pulsed heat load is mass flow rate fluctuation at the low pressure return stream to the cold-box of the refrigerator. As a result, thermodynamic properties of all the intermediate state points of the cold-box vary widely and may go beyond operating limits. Therefore, for continuous operation, the refrigerators need modification in cycle configuration in order to mitigate the effects of pulsed heat load generated out of the operation of the fusion devices. A number of mitigation techniques exist and none of them is capable of mitigating the mass flow rate fluctuation completely. However, combinations of two or more methods have been found to be effective in mitigation of the effects of pulsed load to the maximum possible extent. In this paper, a cold-end configuration has been proposed that is constituted of combination of different mitigation schemes proposed in previous works. Dynamic simulations are performed to predict the performance of the modified cycle configuration and for validation of the concept towards achievement of complete mitigation. Results of the work have revealed that through the proposed cold-end configuration, almost complete mitigation can be obtained

  20. Fusion facility siting considerations

    International Nuclear Information System (INIS)

    Inherent in the fusion program's transition from hydrogen devices to commercial power machines is a general increase in the size and scope of succeeding projects. This growth will lead to increased emphasis on safety, environmental impact, and the external effects of fusion in general, and of each new device in particular. A critically important consideration in this regard is site selection. The purpose of this paper is to examine major siting issues that may affect the economics, safety, and environmental impact of fusion

  1. Characterization of the storage pool of the Neutron Standards Laboratory of CIEMAT, using Monte Carlo techniques

    International Nuclear Information System (INIS)

    Neutron Standards Laboratory of CIEMAT in Spain is a brand new irradiation facility, with 241Am-Be (185 GBq) and 252Cf (5 GBq) calibrated neutron sources which are stored in a water pool with a concrete cover. From this storage place an automated system is able to take the selected source and place it in the irradiation position, 4 m over the ground level and in the geometrical center of the Irradiation Room with 9 m (length) x 7.5 m (width) x 8 m (height). For calibration or irradiation purposes, detectors or materials can be placed on a bench but it is possible to use the pool (1.0 m x 1.5 m and more than 1.0 m depth) for long time irradiations in thermal neutron fields. For this reason it is essential to characterize the pool itself in terms of neutron spectrum. In this document, the main features of this facility are presented and the characterization of the storage pool in terms of neutron fluence rate and neutron spectrum has been carried out using simulations with MCNPX-2.7.e code. The MCNPX-2.7.e model has been validated using experimental measurements outside the pool (Bert hold LB6411). Inside the pool, the fluence rate decreases and the spectra is thermalized with the distance to the 252Cf source. This source predominates and the effect of the 241Am-Be source in these magnitudes is not shown until positions closer than 20 cm from it. (author)

  2. Results of the Interlaboratory Exercise CNS/CIEMAT-05 among Environmental Radioactivity Laboratories (Vegetable Ash)

    International Nuclear Information System (INIS)

    The document describes the outcome of the CSN/CIEMAT-05 interlaboratory test comparison among environmental radioactivity laboratories. The exercise was organised according to the ISO-43 and the IUPAC International harmonised protocol for the proficiency testing of analytical chemistry laboratories. The exercise has been designed to evaluate the capability of national laboratories to determine environmental levels of radionuclides in vegetable ash samples. The sample has been prepared by the Environmental Radiation Laboratory, from the University of Barcelona, and it contains the following radionuclides: Sr-90, Pu-238, Am-241, Th-230, Pb-210, U-238, Ra-226, K-40, Ra-228, TI-208, Cs- 137 and Co-60. Reference values have been established TROUGH the kind collaboration of three international laboratories of recognized experience: IAEA MEL and IRSN-Orsay. The results of the exercise were computed for 35 participating laboratories and their analytical performance was assessed using the z-score approach. Robust statistics of the participant's results was applied to obtain the median and standard deviation, to achieve a more complete and objetiva study of the laboratories' performance. Some difficulties encountered to dissolve the test sample caused a lower response of analyses involving radiochemical separation, thus some laboratories couldn't apply their routine methods and no conclusions on PU-238, Am-241 and Th-230 performances have been obtained. The exercise has revealed an homogeneous behaviour of laboratories, being statistical parameters from the results close to the reference values. The study has shown that participant laboratories perform radioactive determinations in vegetable ash samples with satisfactory quality levels. (Author) 6 refs

  3. A low energy germanium detector system for lung counting at the WBC facility of CIEMAT

    International Nuclear Information System (INIS)

    The lung deposition of actinides is a critical radiation protection problem in places dealing with these materials. The Internal Dosimetry Group of CIEMAT counts with four Canberra low energy germanium detectors (LEGe) to perform in vivo lung measurements of radionuclides incorporated in the human body, being efficient for an energy range from 10 to 1000 keV. Each detector is 70 mm in diameter and is equipped with a carbon epoxy window. A great improvement is achieved after the substitution of the old phoswich detectors by the Ge system in the detection of X rays and low energy gamma radiation. The LEGe system is calibrated using the LLNL phantom with a pair of lungs containing homogeneously distributed 241Am and 152Eu, and a set of five overlay plates covering a chest wall thickness range from 1.67 to 4.27 cm. As an application of the LEGe system in the in vivo measurements of actinides, a routine monitoring programme is designed for workers involved in nuclear fuel fabrication processes to detect 238U (234Th) and 235U in the lungs. The reality of radiation exposures in Spain includes planning the decommissioning of nuclear power plants and redundant old nuclear facilities; special monitoring programmes are performed for the detection of 241Am in workers associated with decontamination and dismantling procedures. As a result of the aviation accident that took place over the Palomares space in 1967, members of the public living in the area were, and continue to be, potentially exposed to 239Pu and 241Am by inhalation. The excellent resolution and good sensitivity of the LEGe detector system provides a more accurate assessment of intake and dose in cases of internal contamination by all these radionuclides, emitting at low and moderate energies. (author)

  4. Characterization of the storage pool of the Neutron Standards Laboratory of CIEMAT, using Monte Carlo techniques

    Energy Technology Data Exchange (ETDEWEB)

    Campo B, X.; Mendez V, R.; Embid S, M. [Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas, Av. Complutense 40, 28040 Madrid (Spain); Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98060 Zacatecas (Mexico); Sanz G, J., E-mail: xandra.campo@ciemat.es [Universidad Nacional de Educacion a Distancia, Escuela Tecnica Superior de Ingenieros Industriales, C. Juan del Rosal 12, 28040 Madrid (Spain)

    2014-08-15

    Neutron Standards Laboratory of CIEMAT in Spain is a brand new irradiation facility, with {sup 241}Am-Be (185 GBq) and {sup 252}Cf (5 GBq) calibrated neutron sources which are stored in a water pool with a concrete cover. From this storage place an automated system is able to take the selected source and place it in the irradiation position, 4 m over the ground level and in the geometrical center of the Irradiation Room with 9 m (length) x 7.5 m (width) x 8 m (height). For calibration or irradiation purposes, detectors or materials can be placed on a bench but it is possible to use the pool (1.0 m x 1.5 m and more than 1.0 m depth) for long time irradiations in thermal neutron fields. For this reason it is essential to characterize the pool itself in terms of neutron spectrum. In this document, the main features of this facility are presented and the characterization of the storage pool in terms of neutron fluence rate and neutron spectrum has been carried out using simulations with MCNPX-2.7.e code. The MCNPX-2.7.e model has been validated using experimental measurements outside the pool (Bert hold LB6411). Inside the pool, the fluence rate decreases and the spectra is thermalized with the distance to the {sup 252}Cf source. This source predominates and the effect of the {sup 241}Am-Be source in these magnitudes is not shown until positions closer than 20 cm from it. (author)

  5. CIEMAT Contribution to the PHEBEN-2 Project: Interpretation of the PHEBUS-FPT1. Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Herranz, L. E.; Pra, C. l. del; Rincon, A. M.

    2003-07-01

    This report summarises the CIEMAT contribution to the analysis of the FPT1 test of the PHEBUS-FP Project. The work carried out has been focussed on containment phenomena. the thermal hydraulic evolution and the aerosol behaviour has been simulated with CONTAIN 2.0 code, whereas the iodine chemistry has been modelled with IODE 4.2. In both cases a number of hypotheses and approximations have been adopted. The FPT1 experiment investigated core degradation and release, transport and behaviour of fission products and aerosols under the anticipated conditions for a low pressure accident sequence with a pipe break at the cold leg. The containment scenario was essentially characterised by a condensing and unsaturated atmosphere in contact with an acidic sump. CONTAIN 2.0 has provided an accurate picture of the thermo-hydraulic and aerosol behaviour, whereas IODE 4.2, although succeeded in predicting the overall iodine mass distribution, but it has been unable to capture the gaseous iodine evolution during the experiment. Steam input and condensation determined the thermal conditions of the vessel and made around 30% of particulate mass deplete onto condensing structures. Most of iodine was trapped by silver from the control rods and formed AgI in the sump. the deviations of predictions regarding gaseous iodine point out the need of further development of organics-iodine interaction models. Finally, it should be underlined that the simulation has shed light on experimental aspects as well. The measured steam input history should have been slightly different from the one specified in the final report: a new profile has been proposed. The samplings of airborne caesium (rather different from the {gamma}-spectrometry data) are the most reliable measurements. (Author) 10 refs.

  6. Design and verification of the shielding around the new Neutron Standards Laboratory (LPN) at CIEMAT

    International Nuclear Information System (INIS)

    The construction of the new Neutron Standards Laboratory at CIEMAT (Laboratorio de Patrones Neutronicos) has been finalised and is ready to provide service. The facility is an ∼8 m x 8 m x 8 m irradiation vault, following the International Organization for Standardization 8529 recommendations. It relies on several neutron sources: a 5-GBq (5.8 x 108 s-1) 252Cf source and two 241Am-Be neutron sources (185 and 11.1 GBq). The irradiation point is located 4 m over the ground level and in the geometrical centre of the room. Each neutron source can be moved remotely from its storage position inside a water pool to the irradiation point. Prior to this, an important task to design the neutron shielding and to choose the most appropriate materials has been developed by the Radiological Security Unit and the Ionizing Radiations Metrology Laboratory. MCNPX was chosen to simulate the irradiation facility. With this information the walls were built with a thickness of 125 cm. Special attention was put on the weak points (main door, air conditioning system, etc.) so that the ambient dose outside the facility was below the regulatory limits. Finally, the Radiation Protection Unit carried out a set of measurements in specific points around the installation with an LB6411 neutron monitor and a Reuter-Stokes high-pressure ion chamber to verify experimentally the results of the simulation. Several things have to be taken into consideration in order to analyse the obtained results: First of all, the neutron and gamma background is not taken into account in the simulation. The gamma background at CIEMAT is conservatively established to be 0.2 μSv h-1 and all the measured points around the installation are below this number and so it can be deduced that the gamma background is being measured in these places. A similar argument may be applied to neutron doses around external shielding and inside the irradiation room with the slab closed. Other problem comes from a few measured points

  7. Profiles of Information Consumption and Production of CIEMAT Researches within the Period 2005-2007; Perfiles de Consumo y Produccion de Informacion de los Investigadores del CIEMAT durante el Periodo 2005-2007

    Energy Technology Data Exchange (ETDEWEB)

    Sanz, C.

    2010-03-03

    Given the importance of scientific and technological evaluation in the current international scene, the goal is to show CIEMAT researchers' profiles on information consumption and production through different biblio metric indicators, mainly quantitative. Taking further steps based on this data, margins of coincidence on both patterns will be carefully checked not only from a group perspective but also on an individual scale, in the most widely used scientific journals. This analysis shall reveal the information needs of researchers for the future design of documentary strategies. (Author) 21 refs.

  8. Graphite for fusion energy applications

    International Nuclear Information System (INIS)

    Graphite is in widespread and beneficial use in present fusion energy devices. This report reflects the view of graphite materials scientists on using graphite in fusion devices. Graphite properties are discussed with emphasis on application to fusion reactors. This report is intended to be introductory and descriptive and is not intended to serve as a definitive information source

  9. Proceedings of 1999 U.S./Japan Workshop (99FT-05) On High Heat Flux Components and Plasma Surface Interactions for Next Fusion Devices

    Energy Technology Data Exchange (ETDEWEB)

    NYGREN,RICHARD E.; STAVROS,DIANA T.

    2000-06-01

    The 1999 US-Japan Workshop on High Heat Flux Components and Plasma Surface Interactions in Next Step Fusion Devices was held at the St. Francis Hotel in Santa Fe, New Mexico, on November 1-4, 1999. There were 42 presentations as well as discussion on technical issues and planning for future collaborations. The participants included 22 researchers from Japan and the United States as well as seven researchers from Europe and Russia. There have been important changes in the programs in both the US and Japan in the areas of plasma surface interactions and plasma facing components. The US has moved away from a strong focus on the ITER Project and has introduced new programs on use of liquid surfaces for plasma facing components, and operation of NSTX has begun. In Japan, the Large Helical Device began operation. This is the first large world-class confinement device operating in a magnetic configuration different than a tokamak. In selecting the presentations for this workshop, the organizers sought a balance between research in laboratory facilities or confinement devices related to plasma surface interactions and experimental research in the development of plasma facing components. In discussions about the workshop itself, the participants affirmed their preference for a setting where ''work-in-progress'' could be informally presented and discussed.

  10. Proceedings of 1999 U.S./Japan Workshop (99FT-05) On High Heat Flux Components and Plasma Surface Interactions for Next Fusion Devices

    International Nuclear Information System (INIS)

    The 1999 US-Japan Workshop on High Heat Flux Components and Plasma Surface Interactions in Next Step Fusion Devices was held at the St. Francis Hotel in Santa Fe, New Mexico, on November 1-4, 1999. There were 42 presentations as well as discussion on technical issues and planning for future collaborations. The participants included 22 researchers from Japan and the United States as well as seven researchers from Europe and Russia. There have been important changes in the programs in both the US and Japan in the areas of plasma surface interactions and plasma facing components. The US has moved away from a strong focus on the ITER Project and has introduced new programs on use of liquid surfaces for plasma facing components, and operation of NSTX has begun. In Japan, the Large Helical Device began operation. This is the first large world-class confinement device operating in a magnetic configuration different than a tokamak. In selecting the presentations for this workshop, the organizers sought a balance between research in laboratory facilities or confinement devices related to plasma surface interactions and experimental research in the development of plasma facing components. In discussions about the workshop itself, the participants affirmed their preference for a setting where ''work-in-progress'' could be informally presented and discussed

  11. Uncertainty determination for activity measurements by means of the TDCR method and the CIEMAT/NIST efficiency tracing technique

    International Nuclear Information System (INIS)

    Liquid scintillation counting is a very powerful technique for the activity determination of a number of radionuclides. In radionuclide metrology, the TDCR method and the CIEMAT/NIST efficiency tracing technique are widely used in many laboratories. Both methods require rather complex calculation techniques to derive the counting efficiency of the nuclide under study. This article explores the various sources of uncertainty that should be considered when applying these two techniques, and focuses on possible ways to evaluate them. Concrete examples are provided within the paper. (authors)

  12. TranS1 VEO system: a novel psoas-sparing device for transpsoas lumbar interbody fusion

    OpenAIRE

    Hardenbrook MA; Miller LE; Block JE

    2013-01-01

    Mitchell A Hardenbrook,1,2 Larry E Miller,3,4 Jon E Block4 1Advanced Spine Institute of Greater Boston, North Billerica, MA, 2Department of Orthopedic Surgery, Tufts University School of Medicine, Boston, MA, 3Miller Scientific Consulting Inc, Arden, NC, 4The Jon Block Group, San Francisco, CA, USA Abstract: Minimally invasive approaches for lumbar interbody fusion have been popularized in recent years. The retroperitoneal transpsoas approach to the lumbar spine is a technique that allows dir...

  13. Fusion technology 1992

    International Nuclear Information System (INIS)

    The aim of the biennial series of symposia on the title subject, organized by the European Fusion Laboratories, is the exchange of information on the design, construction and operation of fusion experiments and on the technology being developed for the next step devices and fusion reactors. The coverage of the volume includes the technological aspects of fusion reactors in relation to new developments, this forming a guideline for the definition of future work. These proceedings comprise three volumes and contain both the invited lectures and contributed papers presented at the symposium which was attended by 569 participants from around the globe. The 343 papers, including 12 invited papers, characterize the increasing interest of industry in the fusion programme, giving a broad and current overview on the progress and trends fusion technology is experiencing now, as well as indicating the future for fusion devices

  14. Robotic-Assisted Device in Posterior Spinal Fusion for a High Risk Thoraculombar Fracture in Ankylosing Spondylitis

    OpenAIRE

    Suliman, Ali; Wollstein, Ronit; Bernfeld, Benjamin; Bruskin, Alexander

    2014-01-01

    Fractures in ankylosing spondylitis (AS) are often difficult to treat and surgical treatment may be fraught with complications. We describe the use of a robotic-assisted device in the surgical treatment of an unstable L1 fracture in an elderly patient with chronic lymphocytic leukemia and AS. The postoperative course was uneventful and the patient was discharged after 3 days. The use of a robotic-assisted device in spine surgery is particularly indicated in difficult high risk cases.

  15. Report on Thermo-Hydro-Mechanical Laboratory Tests Performed by CIEMAT on Febex Bentonite 2004-2008

    International Nuclear Information System (INIS)

    The results of the laboratory studies performed by CIEMAT with the FEBEX bentonite in the context of WP3.2 of the NF-PRO Project and of the Agreement ENRESA-CIEMAT Anexo V are presented and analysed in this report. They refer to the effect of the hydraulic gradient on the permeability of bentonite, the effect of the thermal gradient on the hydration kinetics of bentonite, and the repercussion of temperature on the hydro-mechanical properties of bentonite (swelling, permeability and water retention capacity). In all the cases the bentonite has been used compacted to densities expected in the engineered barrier of a high-level radioactive waste repository. The existence of threshold and critical hydraulic gradients has been observed, both of them dependent on bentonite density and water pressures. After more than seven years of hydration, the 40-cm high bentonite columns are far from full saturation, the thermal gradient additionally delaying the process, which is very slow. Temperatures below 100 degree centigrade slightly decrease the swelling and the water retention capacity of the bentonite and increase its permeability. The information obtained improves the knowledge on the behaviour of expansive clay and will help the development of constitutive models and the interpretation of the results obtained in the mock-up and the in situ tests. (Author) 35 refs

  16. Report on Thermo-Hydro-Mechanical Laboratory Tests Performed by CIEMAT on Febex Bentonite 2004-2008

    Energy Technology Data Exchange (ETDEWEB)

    Villar, M. V.; Gomez-Espina, R.

    2009-11-25

    The results of the laboratory studies performed by CIEMAT with the FEBEX bentonite in the context of WP3.2 of the NF-PRO Project and of the Agreement ENRESA-CIEMAT Anexo V are presented and analysed in this report. They refer to the effect of the hydraulic gradient on the permeability of bentonite, the effect of the thermal gradient on the hydration kinetics of bentonite, and the repercussion of temperature on the hydro-mechanical properties of bentonite (swelling, permeability and water retention capacity). In all the cases the bentonite has been used compacted to densities expected in the engineered barrier of a high-level radioactive waste repository. The existence of threshold and critical hydraulic gradients has been observed, both of them dependent on bentonite density and water pressures. After more than seven years of hydration, the 40-cm high bentonite columns are far from full saturation, the thermal gradient additionally delaying the process, which is very slow. Temperatures below 100 degree centigrade slightly decrease the swelling and the water retention capacity of the bentonite and increase its permeability. The information obtained improves the knowledge on the behaviour of expansive clay and will help the development of constitutive models and the interpretation of the results obtained in the mock-up and the in situ tests. (Author) 35 refs.

  17. TranS1 VEO system: a novel psoas-sparing device for transpsoas lumbar interbody fusion

    Directory of Open Access Journals (Sweden)

    Hardenbrook MA

    2013-06-01

    Full Text Available Mitchell A Hardenbrook,1,2 Larry E Miller,3,4 Jon E Block4 1Advanced Spine Institute of Greater Boston, North Billerica, MA, 2Department of Orthopedic Surgery, Tufts University School of Medicine, Boston, MA, 3Miller Scientific Consulting Inc, Arden, NC, 4The Jon Block Group, San Francisco, CA, USA Abstract: Minimally invasive approaches for lumbar interbody fusion have been popularized in recent years. The retroperitoneal transpsoas approach to the lumbar spine is a technique that allows direct lateral access to the intervertebral disc space while mitigating the complications associated with traditional anterior or posterior approaches. However, a common complication of this procedure is iatrogenic injury to the psoas muscle and surrounding nerves, resulting in postsurgical motor and sensory deficits. The TranS1 VEO system (TranS1 Inc, Raleigh, NC, USA utilizes a novel, minimally invasive transpsoas approach to the lumbar spine that allows direct visualization of the psoas and proximal nerves, potentially minimizing iatrogenic injury risk and resulting clinical morbidity. This paper describes the clinical uses, procedural details, and indications for use of the TranS1 VEO system. Keywords: fusion, lateral, lumbar, minimally invasive, transpsoas, VEO

  18. Measurement of magnetic field and velocity profiles in 3.6 K J UNU/ICTP plasma focus fusion device

    International Nuclear Information System (INIS)

    Plasma focus devices operated with deuterium gas filling are interesting sources of hot and dense plasma. These are capable of production considerable amount of neutrons1, soft X-rays, ion and electron beams. The neutron yield in such devices is found to be proportional to the square of the bank energy. However, theoretical and experimental investigations show that the neutron yield should be related to the current flowing through the pinched plasma2 rather than the total current flowing through it. This paper reports the investigations carried out the current and the magnetic field distribution profiles for the 3.6 kJ focus device operated in air gas filling. (author). 5 refs, 5 figs, 1 tab

  19. Devices for launching 0.1-g projectiles to 150 km/s or more to initiate fusion. Pt. 2

    International Nuclear Information System (INIS)

    The possibility of using a railgun accelerator to launch 0.1-g projectiles to hypervelocities (150 km/s or more) to initiate thermonuclear fusion is explored. The analysis reveals that a railgun with a plasma-arc armature is a viable approach to the goal. When calculating the railgun's probable performance, it was discovered that this launch system might possibly be designed to avoid adverse effects from boundary layer drag. An appendix provided by A.C. Buckingham summarizes his calculations that predict the amount of erosive drag between projectile and rail. Finally, it was found that certain properties of railgun and projectile materials can impose operational limits. Using these limits, a single- and multistage accelerator was designed. Within such limits, a railgun could accelerate a 0.1-g projectile to hypervelocities. (orig.)

  20. The role of bone SPECT/CT in the evaluation of lumbar spinal fusion with metallic fixation devices

    DEFF Research Database (Denmark)

    Damgaard, Morten; Nimb, Lars; Madsen, Jan L

    2010-01-01

    PURPOSE: It is difficult to evaluate the stability of the lumbar spondylodesis with metallic fixation devices by conventional imaging methods such as radiography or magnetic resonance imaging. It is unknown whether single photon emission computed tomography/computed tomography (SPECT/CT) may be u...

  1. Biomechanical stability of a bioabsorbable self-retaining polylactic acid/nano-sized β-tricalcium phosphate cervical spine interbody fusion device in single-level anterior cervical discectomy and fusion sheep models

    Directory of Open Access Journals (Sweden)

    Cao L

    2012-11-01

    Full Text Available Lu Cao,1 Ping-Guo Duan,1 Xi-Lei Li,1 Feng-Lai Yuan,3 Ming-Dong Zhao,2 Wu Che,1 Hui-Ren Wang,1 Jian Dong11Department of Orthopedic Surgery, Zhongshan Hospital, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, China; 2Department of Orthopedic Surgery, Jinshan Hospital, Fudan University, Shanghai, China; 3Affiliated Third Hospital of Nantong University, Wuxi, ChinaPurpose: The aim of this study was to investigate the biomechanical stability provided by a novel, polylactic acid/nano-sized, β-tricalcium phosphate, bioabsorbable, self-retaining cervical fusion cage (BCFC.Methods: Quasistatic nonconstraining torques (maximum 1.5 NM induced flexion, extension, lateral bending (±1.5 NM, and axial rotation (±1.5 NM on 32 sheep cervical spines (C2–C5. The motion segment C3–C4 was first tested intact; the following groups were tested after complete discectomy: autologous tricortical iliac crest bone graft, Medtronic–Wego polyetheretherketone (PEEK cage, Solis PEEK cage, and BCFC. The autologous bone graft group was tested with an anterior plate. The mean range of motion (ROM was calculated from the load-displacement curves.Results: BCFC significantly decreased ROM in lateral bending and axial rotation compared to other implants, and no significant difference in ROM between two types of PEEK cages and BCFC could be observed in flexion and extension. Anterior cervical plate (ACP significantly decreased ROM in flexion and extension, but no significant difference in ROM between BCFC and bone graft plus ACP could be determined in lateral bending and axial rotation.Conclusion: The BCFC device showed better stability to autologous tricortical iliac crest bone graft and PEEK cages in single-level anterior cervical discectomy and fusion models and thus may be a potential alternative to the current PEEK cages.Keywords: biomechanics, cervical spine, cages, bioabsorbable, sheep

  2. PREFACE: 15th Latin American Workshop on Plasma Physics (LAWPP 2014) and 21st IAEA TM on Research Using Small Fusion Devices (RUSFD)

    Science.gov (United States)

    Iván Vargas-Blanco, V.; Herrera-Velázquez, J. Julio E.

    2015-03-01

    Written contributions from participants of the Joint 15th Latin American Workshop on Plasma Physics (LAWPP 2014) - 21st IAEA Technical Meeting on Research Using Small Fusion Devices (21st IAEA TM RUSFD). The International Advisory Committees of the 15th Latin American Workshop on Plasma Physics (LAWPP 2014) and the 21st IAEA TM on Research Using Small Fusion Devices (RUSFD), agreed to carry out together this Joint LAWPP 2014 - 21st RUSFD in San José, Costa Rica, on 27-31 January 2014. The Joint LAWPP 2014 - 21st RUSFD meeting, organized by the Instituto Tecnológico de Costa Rica, Universidad Nacional de Costa Rica, and Ad Astra Rocket Company in collaboration with the International Atomic Energy Agency (IAEA). The Latin American Workshop on Plasma Physics (LAWPP) is a series of events which has been held periodically since 1982, with the purpose of providing a forum in which the research of the Latin American plasma physics community can be displayed, as well as fostering collaborations among plasma scientists within the region and with researchers from the rest of the world. Recognized plasma scientists from developed countries are specially invited to the meeting to present the state of the art on several "hot" topics related to plasma physics. It is an open meeting, with an International Advisory Committee, in which the working language is English. It was firstly held in 1982 in Cambuquira, Brazil, followed by workshops in Medellín, Colombia (1985), Santiago de Chile, Chile (1988), Buenos Aires, Argentina (1990), Mexico City, Mexico (1992), Foz do Iguaçu, Brazil (1994, combined with the International Congress on Plasma Physics (ICPP)), Caracas, Venezuela (1997), Tandil, Argentina (1998), La Serena, Chile (2000), Sao Pedro, Brazil (2003), Mexico City, Mexico (2005), Caracas, Venezuela (2007), Santiago de Chile, Chile (2010, combined with the ICPP) and Mar de Plata, Argentina (2011). The 21st IAEA TM on Research Using Small Fusion Devices is an ideal forum for

  3. Preparation and LSC Standardization of ''89Sr (DNP) Using the CIEMAT/NIST Method; Preparacion del ''89Sr(DNP) y calibracion por centelleo liquido, mediante el metodo CIEMAT/NIST

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Barquero, L.; Los Arcos Merino, J. M.; Grau Malonda, A.

    1994-07-01

    A procedure for preparation of liquid scintillation counting samples of the strontium DNP complex, labelled with ''89Sr, is described, the chemical quench, the counting stability and spectral evolution of this compound is studied in six scintillators, Toluene, Toluene-alcohol, Dioxane-naphthalene, HiSafe II, Ultima- Gold and Instagel. The liquid scintillation standardization of 89Sr-DNP by the CIEMAT/NIST method, using HiSafe II and Ultima-Gold scintillators, has been carried out. The discrepancies between experimental and computed efficiencies are lower than 0.38% and 0.48%, respectively. The solution has been standardized in terms of activity concentration to an overall uncertainty of 0,38%. (Author) 10 refs.

  4. Steady-state operation of magnetic fusion devices: Plasma control and plasma facing components. Report on the IAEA technical committee meeting held at Fukuoka, 25-29 October 1999

    International Nuclear Information System (INIS)

    An IAEA Technical Committee Meeting on Steady-State Operation of Magnetic Fusion Devices - Plasma Control and Plasma Facing Components was held at Fukuoka, Japan, from 25 to 29 October 1999. The meeting was the second IAEA Techical Committee Meeting on the subject, following the one held at Hefei, China, a year earlier. The meeting was attended by over 150 researchers from 10 countries

  5. Advanced digital subtraction angiography and MR fusion imaging protocol applied to accurate placement of flow diverter device.

    Science.gov (United States)

    Faragò, Giuseppe; Caldiera, Valentina; Tempra, Giovanni; Ciceri, Elisa

    2016-02-01

    In recent years there has been a progressive increase in interventional neuroradiology procedures, partially due to improvements in devices, but also to the simultaneous development of technologies and radiological images. Cone beam CT (Dyna-CT; Siemens) is a method recently used to obtain pseudo CT images from digital subtraction angiography (DSA) with a flat panel detector. Using dedicated software, it is then possible to merge Dyna-CT images with images from a different source. We report here the usefulness of advanced DSA techniques (Syngo-Dyna CT, three-dimensional DSA iPilot) for the treatment of an intracranial aneurysm with a flow diverter device. Merging MR and Dyna-CT images at the end of the procedure proved to be a simple and rapid additional method of verifying the success of the intervention. PMID:25589548

  6. CIEMAT contribution to the international standard problem ISP-34: contain analysis of FAL-ISP 1 test

    International Nuclear Information System (INIS)

    CIEMAT, along with a great number of international laboratories, has participated in the open exercise of the first International Standard Problem addressing fission product transport issues. The FAL-ISP 1, aimed to study particle agglomeration, has been simulated with CONTAIN code. The thermalhydraulic results obtained have been satisfactory and aerosols ones have been reasonably accurate. However, some discrepancies appeared between predictions and experimental data; these are essentially related to the injection phase of the experiment, where the major influence of input approximations took place. In addition, the rationalization of discrepancies pointed potential data inconsistencies. Some parametric studies showed the results sensitivity to input assumptions concerning aerosol characterization and default values in CONTAIN; in general, they confirmed the suitability of most of the approximations taken. (Author)

  7. MX-80 Bentonite. Thermal-Hydro-Mechanical Characterisation Performed at CIEMAT in the Context of the Prototype Project

    International Nuclear Information System (INIS)

    This document details the results of the thermo-hydro-mechanical (THM) characterisation of the commercial MX-80 bentonite performed by CIEMAT from 2001 to 2004 in the context of a project carried out at the AEspoe Hard Rock Laboratory (Sweden), the Prototype Repository. The swelling pressure and the permeability of the bentonite compacted to different dry densities has been determined, as well as the influence of the permeant salinity on hydraulic conductivity. The influence of salinity on the retention capacity of the compacted bentonite has been studied. For that, a new methodology has been designed. Water retention curves have been determined at temperatures of 20 and 600C. Suction controlled odometer tests have been performed at 20oC. Finally, the behaviour of the MX-80 bentonite has been compared to that of the Spanish FEBEX bentonite. (Author) 13 refs

  8. Ciemat Contribution to The International Standard Problem ISP-34: Contain Analysis of Fal-ISP 1 Test

    International Nuclear Information System (INIS)

    CIEMAT, along with a great number of international laboratories, has participated in the open exercise of the first International Standard Problem addressing fission product transport issues. The FAL-ISP 1, aimed to study particle agglomeration, has been simulated with CONTAIN code. The therma hydraulic results obtained have been satisfactory and aerosol ones have been reasonably accurate. However, some discrepancies appeared between predictions and experimental data; these are essentially related to the injection phase of the experiment, where the major influence of input approximations took place. In addition, the rationalization of discrepancies pointed potential data inconsistencies. Some parametric studies showed the results sensitivity to input assumptions concerning aerosol characterization and default values in CONTAIN; in general, they confirmed the suitability of most of the approximations taken. (Author) 11 refs

  9. Performance of high-temperature gas-cooled reactor as a tritium production device for fusion reactors

    International Nuclear Information System (INIS)

    Highlights: ► The performance of a gas-cooled reactor as a tritium production device was studied. ► Gas-cooled reactors with 3 GWt output can produce 5–8 kg of tritium in a year. ► Use of Li2O compound is efficient compared with Li4SiO4 or Li2TiO3 one. ► Amount of tritium produced can be increased by reducing the enrichment of 235U. - Abstract: The performance of a high-temperature gas-cooled reactor as a tritium production device is examined. A gas turbine high-temperature reactor of 300 MWe nominal capacity (GTHTR300) is assumed as the calculation target of a typical gas-cooled reactor, and using the continuous-energy Monte Carlo transport code MVP-BURN, burn-up simulations for the 3-dimensional entire-core region of GTHTR300 were carried out considering its unique double heterogeneity structure. It is shown that gas-cooled reactors with thermal output power of 3 GW in all can produce 5–8 kg of tritium in a year.

  10. Conceptual design studies of special-purpose equipment for Fusion Engineering Device torus-sector remote maintenance

    International Nuclear Information System (INIS)

    One of the major maintenance operations anticipated for fusion reactors of the Tokamak configuration is remote removal and replacement of torus sectors. This operation will be difficult due to the massive nature of the sector (375 tonnes), and also due to the precision with which it must be positioned within the fixed structure. The same problem, only to a lesser degree, applies to sub-components of the sector such as the limiter blades, shielding, test assemblies, etc. General and specific design requirements have been generated and trade studies conducted on reactor interfacing details as well as handling machine concepts. On the basis of the design requirements and trade studies, a perferred concept for the sector handling machine was developed. In addition, a similar machine was developed for handling the intermediate sized sector sub-components. While most operations will be performed by special purpose machines such as described above, there is a need for a versatile, relatively high capacity mobile system. A concept suitable for this mobile application was also developed as part of these studies. The general conclusion, to the extent these studies have been completed, was that special single-purpose machines will be required to perform the operations requiring high load capacity and handling precision. The machine concepts developed were felt to be within the state-of-the-art, and will make extensive use of commercially available components. The most serious problem was felt to be development of simple methods to obtain the required precision in positioning massive objects such as the torus sector

  11. SiGesDoC: The CIEMAT corporate document and records management system. A tool for managing, saving and disseminating knowledge; SiGesDoC: El sistema de gestion documental corporativa del CIEMAT. Una herramienta para la gestion, preservacion y difusion del conocimiento

    Energy Technology Data Exchange (ETDEWEB)

    Martin Santamaria, E.; Gonzalez Giralda, C.; Bustelo, C.; Gorostiza, C.

    2008-07-01

    The need to manage, save and disseminate technical scientific knowledge as part of the technology transfer process requires the implementation of Corporate Document and Records Management Systems that support a cultural change in the management of documentation generated in organizations as a result of their research work. In the CIEMAT, most knowledge is developed in R and D projects led by scientists and technologists and managed by the research support personnel and, therefore, it is very important to efficiently manage and control the life cycles of these projects. This article describes the implementation of a corporate document and records management system in the CIEMAT. (Author)

  12. Health physics around a controlled fusion research device: the Tokamak at Fontenay-aux-Roses (T.F.R.)

    International Nuclear Information System (INIS)

    The X and neutron dosimetry measurement near the magnetic confinement device for hot plasma, called T.F.R. (Tokamak, Fontenay-aux-Roses) are presented. The biological shielding consists of an ordinary concrete wall 30 cm thick; the dose rate is thus limited at 10-1 mrem per discharge (corresponding to 10 mrem per day) in the whole area frequented by people during T.F.R. operation. A numerical calculation, taking into account the true geometry and X ray reflexion by the walls and roof, and normalized to the measurements, gives some indications on the electron beam which produces X rays. The photoneutron source (up to 1010 neutrons per dischage) and the activation of the vacuum vessel result from high energy electrons (>= 10 MeV) supporting a 10 to 1,000 A current

  13. Hot fusion, cold fusion

    International Nuclear Information System (INIS)

    The publication of observations of nuclear fusion reactions in electrolysis experiments has led to hope that an easy way to domesticate this major source of energy had been found. In this article are recalled the classical solutions which are studied for hot fusion, the state of the art the difficulties and the perspectives, followed by the present situation concerning the experiments related to what has been called, perhaps a little too quickly, cold fusion

  14. Compact fusion reactors

    CERN Document Server

    CERN. Geneva

    2015-01-01

    Fusion research is currently to a large extent focused on tokamak (ITER) and inertial confinement (NIF) research. In addition to these large international or national efforts there are private companies performing fusion research using much smaller devices than ITER or NIF. The attempt to achieve fusion energy production through relatively small and compact devices compared to tokamaks decreases the costs and building time of the reactors and this has allowed some private companies to enter the field, like EMC2, General Fusion, Helion Energy, Lawrenceville Plasma Physics and Lockheed Martin. Some of these companies are trying to demonstrate net energy production within the next few years. If they are successful their next step is to attempt to commercialize their technology. In this presentation an overview of compact fusion reactor concepts is given.

  15. Fundamental processes of plasma and reactive gas surface treatment for the recovery of hydrogen isotopes from carbon co-deposits in fusion devices

    International Nuclear Information System (INIS)

    The use of carbon-based plasma-facing wall components offers many advantages for plasma operation in magnetic confinement nuclear fusion devices. However, through reactions with the hydrogen based fusion plasma, carbon forms amorphous hydrogenated carbon co-deposits (a-C:H) in the vacuum vessels. If tritium is used to fuel the reactor, this co-deposition can quickly lead to an inacceptable high tritium inventory. Through co-deposition with carbon about 10% of the tritium injected into the reactor can be trapped. Even with other wall materials co-deposition can be significant. A method to recover the hydrogen isotopes from the co-deposits is necessary. The method has to be compatible with the requirements of the devices and nuclear fusion plasma operation. In this work thermo-chemical removal by neutral gases (TCR) and removal by plasmas is investigated. Models are developed to describe the involved processes of both removal methods. TCR is described using a reaction-diffusion model. Within this model the reactive gas diffuses into the co-deposits and subsequently reacts in a thermally activated process. The co-deposits are pyrolysed, forming volatile gases, e.g. CO2 and H2O. These gases are pumped from the vacuum vessel and recycled. Applying the model to literature observations enables to connect data on exposure temperature, pressure, time and co-deposit properties. Two limits of TCR (reaction- or diffusion-limited) are identified. Plasma removal sputters co-deposits by their chemical and physical interaction with the impinging ions. The description uses a 0D plasma model from the literature which derives plasma parameters from the balance of input power to plasma power losses. The model is extended with descriptions of the plasma sheath and ion-surface interactions to derive the co-deposit removal rates. Plasma removal can be limited by this ion induced surface release rate or the rate of pumping of the released species. To test the models dedicated experiments

  16. Control mechanism for attenuation of thermal energy pulses using cold circulators in the cryogenic distribution system of fusion devices in tokamak configuration

    International Nuclear Information System (INIS)

    Operation and control of superconducting (SC) magnets in the fusion devices having tokamak configuration opens up the domain of varying peak thermal energy environment as a function of time, commensurate with the plasma pulses. The varied thermal energy environment, thus propagated to upstream of the cooling system, is responsible for the system level instability of the overall cryogenic system. The cryogenic distribution system, the regime of first impact point, therefore, has to be tuned so as to stay at the nearly stable zone of operation. The configuration of the cryogenic distribution system, considered in the present study, involves a liquid helium (LHe) bath as a thermal buffer, LHe submerged heat exchangers and cold circulator apart from the valves for implementations of the precise controls. The cold circulator supplies the forced flow supercritical helium, used for the cooling of SC magnets. The transients of the thermal energy pulses can be attenuated in the cryogenic distribution system by various methodologies. One of the adopted methodologies in the present study is with the precise speed control of the cold circulators. The adopted methodology is applied to various configurations of arrangements of internal components in the distribution system for obtaining system responses with superior attenuation of energy pulses. The process simulation approach, assumptions, considered inputs and constraints, process modeling with different configuration as well as results to accomplish the control scheme for the attenuation of the thermal energy pulses are described

  17. Development of the PF-6 Device ffor the Goal Of the Mainstream Fusion Research and Spin-Off Applications; Medocine, Biology, Material Sciences etc

    International Nuclear Information System (INIS)

    In the framework of the Project we have elaborated a new design of the electrical circuit (in co-operation with ICTP) to increase the repetition rate f of the operational regime of PF-6 device till the level: U = 23 kV, E = 7.4 kJ, f = 5 Hz. With this power supply we have elaborated and tested our new DPF chambers able to work with the deuterium-tritium mixture as a working gas. We have developed, implemented and tested new diagnostics of X ray and neutron pulses with temporal resolution 0.3 ns and 16-frame 1-ns laser interferometry. In cooperation with our partners on this IAEA CRP we provided radiation tests of materials candidate for the main-stream fusion reactors (tungsten, CFC, ceramics Al2O3 and NB, low- activation steels, etc.) using besides the PF-6 facility the Dense Plasma Focus devices PF-5M, ING-103 and PF-1000. In addition with the same partners we undertake initial experiments with an aim to improve characteristics of the surface layer of materials (mechanical and tribological behavior, radiation resistance, etc.) using the above devices. The idea is to use hot plasma streams and beams of fast ions generated in DPF in treatment of internal hard-to-reach compartments of the machine components. In cooperation with Pirelli we have provided first experiments in the field of X ray dynamic quality control with DPF aimed to disclosure imperfections in car tyres. Also we spread our previous X ray based experiments on pulsed radio- enzymology to the pulsed neutron irradiation of enzymes and other bio-test objects. We have provided experiments intended to detect large-volume objects containing illegal substances (explosives, drugs, etc.) and first experiments on irradiation by neutron pulses a fuel element containing fissile materials by means of time-of flight neutron technique. These experiments give an opportunity to use DPF in a single-shot technique of unveiling illegal materials hidden in a luggage or in containers. (author)

  18. Report of Activities of the Association Euratom/Ciemat. Annual Report 2004

    International Nuclear Information System (INIS)

    The focal point of the work at the Spanish Association has been the flexible Heliac TJ-II, which at present is the only stellarator in operation in Europe. The main milestone of TJ-II operation has been the generation of plasmas sustained by NBI heating (which lead to a record in TJ-II stored energy) but significant physics results have been also obtained in the continuation of existing lines (improved confinement scenarios and the role of rational surfaces, iota scaling with boronized walls, turbulence studies, impurity transport and rotation experiments, suprathermal electrons studies, plasma wall effects). TJ-II improvements include the progress in the second NBI, the preparations for the Bernstein wave heating system, the installation of a Diagnostic NB and the fast camera (Ha) diagnostic (on temporal loan from PPPL- Princeton). Other activities of the Association include the Materials research programme, both in the areas of insulator materials properties and structural materials (with a new line open: studies of Tritium barriers during irradiation), the studies on the socio-economic impact of fusion and a reinforced participation in the EFDA technology work programme. The Association wants to increase technology activities and, along this line, a number of expression of interest have been submitted, leading to several task contracts : design of the European Dipole, design of the magnet for ITER field simulation on NBI test bed, IFMIF security analysis, Demo Blanket support system (finished), Main plasma reflectometry system (finished), Tritium retention/ removal studies. Finally, the Association has keep its involvement in the PhD programme Fusion and Plasma Physics that has been carried since 2001 in collaboration with several Universities and other Spanish research centres. (Author)

  19. Results of the Interlaboratory Exercise CNS/CIEMAT-2008 among Environmental Radioactivity Laboratories (Phosphogypsum); Evaluacion de la Intercomparacion CSN/CIEMAT-2008 entre Laboratorios Nacionales de Radiactividad Ambiental (Fosfoyeso)

    Energy Technology Data Exchange (ETDEWEB)

    Romero, M. L.; Barrera, M.; Valino, F.

    2010-05-27

    The document describes the outcome of the CSN/CIEMAT-2008 interlaboratory test comparison among environmental radioactivity laboratories. The exercise was organised according to the ISO-43 and the ISO/IUPAC/AOAC. Aphosphogypsum material was used as a test sample, in an attempt to evaluate the performance of the laboratories analyzing NORM (Naturally-Occurring Radioactive Materials). The analysis required were: U-238, Th-234, U-234, Th-230, Ra-226, Pb-214, Bi-214, Pb-210, Po-210, Th-232 and U-235, and also gross alpha and gross beta activities. Reference values have been established according to the method of consensus of expert laboratories, with four international laboratories of credited experience: IAEA Seibersdorf, IAEA MEL, IRSN-Orsay and Sta.Teresa ENEA. The results of the exercise were computed for 34 answering laboratories and their analytical performance was assessed using the z-score. Robust statistics of the participants results was applied to obtain the median and standard deviation, to achieve a more complete and objective study of the laboratories performance. The exercise has shown an homogeneous behaviour of laboratories, being statistical parameters from the results close to the assigned Reference Values. Participant laboratories have demonstrated their ability to determine natural radionuclides in phosphogypsum samples (NORM material) with a satisfactory quality level. The scheme has also allowed examining the capability of laboratories to determine the activities of natural radionuclides at the equilibrium. (Author) 10 refs.

  20. Magnetic-confinement fusion

    Science.gov (United States)

    Ongena, J.; Koch, R.; Wolf, R.; Zohm, H.

    2016-05-01

    Our modern society requires environmentally friendly solutions for energy production. Energy can be released not only from the fission of heavy nuclei but also from the fusion of light nuclei. Nuclear fusion is an important option for a clean and safe solution for our long-term energy needs. The extremely high temperatures required for the fusion reaction are routinely realized in several magnetic-fusion machines. Since the early 1990s, up to 16 MW of fusion power has been released in pulses of a few seconds, corresponding to a power multiplication close to break-even. Our understanding of the very complex behaviour of a magnetized plasma at temperatures between 150 and 200 million °C surrounded by cold walls has also advanced substantially. This steady progress has resulted in the construction of ITER, a fusion device with a planned fusion power output of 500 MW in pulses of 400 s. ITER should provide answers to remaining important questions on the integration of physics and technology, through a full-size demonstration of a tenfold power multiplication, and on nuclear safety aspects. Here we review the basic physics underlying magnetic fusion: past achievements, present efforts and the prospects for future production of electrical energy. We also discuss questions related to the safety, waste management and decommissioning of a future fusion power plant.

  1. Results of the Interlaboratory Exercise CNS/CIEMAT-05 among Environmental Radioactivity Laboratories (Vegetable Ash); Evaluacion de la Intercomparacion CSN/CIEMAT-2005 entre Laboratorios Nacionales Radiactividad Ambiental (Ceniza Vegetal)

    Energy Technology Data Exchange (ETDEWEB)

    Romero Gonzalez, M. L.; Barrera Izquierdo, M.; Valino Garcia, F.

    2006-07-01

    The document describes the outcome of the CSN/CIEMAT-05 interlaboratory test comparison among environmental radioactivity laboratories. The exercise was organised according to the ISO-43 and the IUPAC {sup I}nternational harmonised protocol for the proficiency testing of analytical chemistry laboratories{sup .} The exercise has been designed to evaluate the capability of national laboratories to determine environmental levels of radionuclides in vegetable ash samples. The sample has been prepared by the Environmental Radiation Laboratory, from the University of Barcelona, and it contains the following radionuclides: Sr-90, Pu-238, Am-241, Th-230, Pb-210, U-238, Ra-226, K-40, Ra-228, TI-208, Cs- 137 and Co-60. Reference values have been established TROUGH the kind collaboration of three international laboratories of recognized experience: IAEA MEL and IRSN-Orsay. The results of the exercise were computed for 35 participating laboratories and their analytical performance was assessed using the z-score approach. Robust statistics of the participant's results was applied to obtain the median and standard deviation, to achieve a more complete and objetiva study of the laboratories' performance. Some difficulties encountered to dissolve the test sample caused a lower response of analyses involving radiochemical separation, thus some laboratories couldn't apply their routine methods and no conclusions on PU-238, Am-241 and Th-230 performances have been obtained. The exercise has revealed an homogeneous behaviour of laboratories, being statistical parameters from the results close to the reference values. The study has shown that participant laboratories perform radioactive determinations in vegetable ash samples with satisfactory quality levels. (Author) 6 refs.

  2. Results Assessment of Intercomparison Exercise CSN/CIEMAT-2010 among Spanish National Laboratories of Environmental Radioactivity (Diet Ashes); Evaluacion de la Intercomparacion CSN/CIEMAT-2010 entre los Laboratorios Nacionales de Radiactividad Ambiental (Ceniza de Dieta)

    Energy Technology Data Exchange (ETDEWEB)

    Gasco, C.; Trinidad, J. A.; Llaurado, M.; Suarez, J. A.

    2012-06-08

    This report describes the results assessment of the intercomparison exercise among environmental radioactivity laboratories, organised by Spanish Regulatory Institution (CSN) and prepared and evaluated by UAB and CIEMAT respectively. The exercise has been carried out following the international standards ISO-43 and ISO/IUPAC that provide a useful guide to perform proficiency tests and inter-laboratories comparisons. The selected matrix for this year (2010) was a diet ash obtained from the ashing of a whole fresh diet (breakfast, lunch and dinner), that was enriched with artificial radionuclides (Cs-137, Co-60,Fe-55,Ni-63,Sr-90,Am-241,Pu-238,Pu-239,240 y C-14) and contained natural radionuclides (U-234, U-238, U-natural Th-230, Th-234, Ra-226, Ra-228, Pb-210, Pb-212, Pb-214, Bi-214, Ac-228, Tl-208, K-40) at environmental level of activity concentration. The z-score test was applied to determine how much the laboratories differ from the reference value. The reference value for this exercise was the median of the results from the different laboratories and their standard deviations to achieve a more complete and objective study of the laboratories performance. The participant laboratories have demonstrated a satisfactory quality level for measuring the natural and artificial radionuclides content in this matrix. The reference values obtained through the medians show a negative bias for Pb-210 and Th-234 when comparing to the given values of external qualified laboratories from ENEA and IRSN and positive one for K-40. (Author)

  3. Results Assessment of Intercomparison Exercise CSN/CIEMAT-2010 among Spanish National Laboratories of Environmental Radioactivity (Diet Ashes)

    International Nuclear Information System (INIS)

    This report describes the results assessment of the intercomparison exercise among environmental radioactivity laboratories, organised by Spanish Regulatory Institution (CSN) and prepared and evaluated by UAB and CIEMAT respectively. The exercise has been carried out following the international standards ISO-43 and ISO/IUPAC that provide a useful guide to perform proficiency tests and inter-laboratories comparisons. The selected matrix for this year (2010) was a diet ash obtained from the ashing of a whole fresh diet (breakfast, lunch and dinner), that was enriched with artificial radionuclides (Cs-137, Co-60,Fe-55,Ni-63,Sr-90,Am-241,Pu-238,Pu-239,240 y C-14) and contained natural radionuclides (U-234, U-238, U-natural Th-230, Th-234, Ra-226, Ra-228, Pb-210, Pb-212, Pb-214, Bi-214, Ac-228, Tl-208, K-40) at environmental level of activity concentration. The z-score test was applied to determine how much the laboratories differ from the reference value. The reference value for this exercise was the median of the results from the different laboratories and their standard deviations to achieve a more complete and objective study of the laboratories performance. The participant laboratories have demonstrated a satisfactory quality level for measuring the natural and artificial radionuclides content in this matrix. The reference values obtained through the medians show a negative bias for Pb-210 and Th-234 when comparing to the given values of external qualified laboratories from ENEA and IRSN and positive one for K-40. (Author)

  4. Revitalizing Fusion via Fission Fusion

    Science.gov (United States)

    Manheimer, Wallace

    2001-10-01

    Existing tokamaks could generate significant nuclear fuel. TFTR, operating steady state with DT might generate enough fuel for a 300 MW nuclear reactor. The immediate goals of the magnetic fusion program would necessarily shift from a study of advanced plasma regimes in larger sized devices, to mostly known plasmas regimes, but at steady state or high duty cycle operation in DT plasmas. The science and engineering of breeding blankets would be equally important. Follow on projects could possibly produce nuclear fuel in large quantity at low price. Although today there is strong opposition to nuclear power in the United States, in a 21st century world of 10 billion people, all of whom will demand a middle class life style, nuclear energy will be important. Concern over greenhouse gases will also drive the world toward nuclear power. There are studies indicating that the world will need 10 TW of carbon free energy by 2050. It is difficult to see how this can be achieved without the breeding of nuclear fuel. By using the thorium cycle, proliferation risks are minimized. [1], [2]. 1 W. Manheimer, Fusion Technology, 36, 1, 1999, 2.W. Manheimer, Physics and Society, v 29, #3, p5, July, 2000

  5. Behaviour of MX-80 Bentonite at Unsaturated Conditions and under Thermo-Hydraulic Gradient - Work Performed by CIEMAT in the Context of the TB T Project - Behaviour of M X-80 Bentonite at Unsaturated Conditions and under Thermo-Hydraulic Gradient - Work Performed by CIEMAT in the Context of the TBT Project -

    International Nuclear Information System (INIS)

    This document reports the thermo-hydro-mechanical characterisation of the MX-80 bentonite performed at CIEMAT between 2004 and 2006 in the context of the Agreement CIEMAT/CIMNE 04/113. This Agreement took place in the framework of the Temperature Buffer Test (TBT) Project, Whose experimental part is going on at the underground research laboratory of Aspo (Sweden) and in which the MX-80 bentonite is used as sealing material in a large scale test. A methodology has been developed for the determination of retention curves at high temperature, what has allowed checking the decrease of the retention capacity of the bentonite with temperature. Infiltration and infiltration/heating tests have been carried out, some of them with simultaneous measurement of temperature and relative humidity. (Author) 9 refs

  6. 颈椎桥形连接融合器进行双节段以上椎间融合的效果评价%Above two-level segment interbody fusion with double-way connection intervertebral fusion device

    Institute of Scientific and Technical Information of China (English)

    傅宇; 傅云根; 罗嘉全; 曹盛生; 李俊宁; 徐文华

    2013-01-01

      背景:颈椎前路钢板置入内固定被认为是颈椎前路多节段椎间盘切除和融合的标准治疗,但是,颈前路植入钢板有着很多金属植入物相关并发症的风险。目的:分析和比较使用颈椎桥形连接融合器和 Cage 椎间融合器+颈椎前路钢板置入内固定进行颈椎前路2节段以上椎间融合的有效性。方法:纳入54例2节段以上颈椎间盘突出接受颈椎前路减压和融合治疗的患者,分别使用颈椎桥形连接融合器进行颈椎前路椎间融合(n=30)和 Cage 椎间融合器与颈椎前路钢板固定系统进行椎间融合(n=24)。使用日本骨科学会(JOA)量表系统评价临床结果,椎间融合后3,6个月依据X射线检查评价颈椎前凸角、椎体间高度和颈椎融合状态。结果与结论:对桥形连接融合器和Cage椎间融合器组的平均随访时间为6个月。两组患者均获得骨性融合,平均愈合时间为5.5个月。桥形连接融合器组平均 JOA 评分由治疗前(7.4±0.4)分,提高到治疗后3个月(14.3±0.5)分,治疗后6个月(14.5±0.8)分,Cage椎间融合器组平均JOA评分由治疗前(7.6±0.7)分,提高到治疗后3个月(13.9±0.4)分,治疗后6个月(14.0±0.6)分,且有显著性差异。治疗后两组的颈椎前凸角和椎间隙高度均较治疗前有显著性改善。说明该植入体植入后能有效恢复颈椎的生理曲度,避免出现螺钉钢板固定并发症,疗效确切。%  BACKGROUND: Anterior cervical spine plate fixation is believed to be the standard method for the treatment of cervical anterior segmental discectomy and fusion, however, anterior cervical plate implants has a lot of risk related to metal implants complications. OBJECTIVE: To analyze and compare the effectiveness of the application of double-way connection intervertebral fusion device and Cage intervertebral fusion device+anterior cervical plate fixation for anterior above two

  7. Fusion technology 1988. V. 2

    International Nuclear Information System (INIS)

    These proceedings comprise two volumes and contain both the invited lectures and the contributed papers presented at the Symposium. The relatively large number of 23 invited lectures gave a broad overview of the problems fusion tecnology is facing both now and in the future. Over half the papers presented in these two volumes concentrate on the technologies of future fusion devices, mainly possible Next Step devices, such as NET or ITER. refs.; figs.; tabs

  8. A new ICRF scenario for bulk ion heating in D-T plasmas: How to utilize intrinsic impurities in fusion devices in our favour

    CERN Document Server

    Kazakov, Y O; Van Eester, D; Bilato, R; Dumont, R; Lerche, E; Mantsinen, M; Messiaen, A

    2015-01-01

    A fusion reactor requires plasma pre-heating before the rate of deuterium-tritium fusion reactions becomes significant. In ITER, radiofrequency (RF) heating of 3He ions, additionally puffed into the plasma, is one of the main options considered for increasing bulk ion temperature during the ramp-up phase of the pulse. In this paper, we propose an alternative scenario for bulk ion heating with RF waves, which requires no extra 3He puff and profits from the presence of intrinsic Beryllium impurities in the plasma. The discussed method to heat Be impurities in D-T plasmas is shown to provide an even larger fraction of fuel ion heating.

  9. A new ICRF scenario for bulk ion heating in D-T plasmas: How to utilize intrinsic impurities in fusion devices in our favour

    OpenAIRE

    Kazakov, Y. O.; Ongena, J; Van Eester, D.; Bilato, R.; Dumont, R.; Lerche, E; Mantsinen, M.; Messiaen, A.

    2015-01-01

    A fusion reactor requires plasma pre-heating before the rate of deuterium-tritium fusion reactions becomes significant. In ITER, radiofrequency (RF) heating of 3He ions, additionally puffed into the plasma, is one of the main options considered for increasing bulk ion temperature during the ramp-up phase of the pulse. In this paper, we propose an alternative scenario for bulk ion heating with RF waves, which requires no extra 3He puff and profits from the presence of intrinsic Beryllium impur...

  10. Fusion Simulation Program

    International Nuclear Information System (INIS)

    Many others in the fusion energy and advanced scientific computing communities participated in the development of this plan. The core planning team is grateful for their important contributions. This summary is meant as a quick overview the Fusion Simulation Program's (FSP's) purpose and intentions. There are several additional documents referenced within this one and all are supplemental or flow down from this Program Plan. The overall science goal of the DOE Office of Fusion Energy Sciences (FES) Fusion Simulation Program (FSP) is to develop predictive simulation capability for magnetically confined fusion plasmas at an unprecedented level of integration and fidelity. This will directly support and enable effective U.S. participation in International Thermonuclear Experimental Reactor (ITER) research and the overall mission of delivering practical fusion energy. The FSP will address a rich set of scientific issues together with experimental programs, producing validated integrated physics results. This is very well aligned with the mission of the ITER Organization to coordinate with its members the integrated modeling and control of fusion plasmas, including benchmarking and validation activities. (1). Initial FSP research will focus on two critical Integrated Science Application (ISA) areas: ISA1, the plasma edge; and ISA2, whole device modeling (WDM) including disruption avoidance. The first of these problems involves the narrow plasma boundary layer and its complex interactions with the plasma core and the surrounding material wall. The second requires development of a computationally tractable, but comprehensive model that describes all equilibrium and dynamic processes at a sufficient level of detail to provide useful prediction of the temporal evolution of fusion plasma experiments. The initial driver for the whole device model will be prediction and avoidance of discharge-terminating disruptions, especially at high performance, which are a critical

  11. Rencontre on fusion technology

    International Nuclear Information System (INIS)

    This report of a rencontre held to consider the technology of magnetic confinement fusion devices gives the agenda for the meeting and lists those topics which were identified as areas of research. These topics included materials, tritium, structures and heat transfer, neutronics and nuclear data, and corrosion problems. (UK)

  12. New solvent extraction processes for minor actinides: CIEMAT contribution to the Partnew project: EU contract n FIKW-CT2000-0087: Fourth Half-Yearly report (March 2002-September 2002)

    International Nuclear Information System (INIS)

    This report includes the work developed at CIEMAT during the fourth semestral period of the Partnew project New solvent extraction processes for minor actinides, during he first semestral period (september 2000 to february 2001). CIEMAT is involved in the following task : the study of the actinides (AN) and lanthanides (LN) extracting properties of new compounds with chemical structure based on two malonamide groups linked to an aromatic platform. The study of new s-bearing extractants with chemical structure similar to malonamides aforementioned, changing the 0 atoms by s atoms, and the determination of the selectivity of these new thiomalonamides of AN(III)extraction

  13. Fusion rings and fusion ideals

    DEFF Research Database (Denmark)

    Andersen, Troels Bak

    This dissertation investigates fusion rings, which are Grothendieck groups of rigid, monoidal, semisimple, abelian categories. Special interest is in rational fusion rings, i.e., fusion rings which admit a finite basis, for as commutative rings they may be presented as quotients of polynomial rings...... by the so-called fusion ideals. The fusion rings of Wess-Zumino-Witten models have been widely studied and are well understood in terms of precise combinatorial descriptions and explicit generating sets of the fusion ideals. They also appear in another, more general, setting via tilting modules for quantum...

  14. Controlled fusion and plasma physics

    International Nuclear Information System (INIS)

    This document presents the several speeches that took place during the 22nd European Physical Society conference on Controlled Fusion and Plasma Physics in Bournemouth, UK, between the 2nd and 7th July 1995. The talks deal with new experiments carried out on several tokamaks, particularly Tore Supra, concerning plasma confinement and fusion. Some information on specific fusion devices or tokamak devices is provided, as well as results of experiments concerning plasma instability. Separate abstracts were prepared for all the 31 papers in this volume. (TEC)

  15. Controlled fusion and plasma physics

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    This document presents the several speeches that took place during the 22nd European Physical Society conference on Controlled Fusion and Plasma Physics in Bournemouth, UK, between the 2nd and 7th July 1995. The talks deal with new experiments carried out on several tokamaks, particularly Tore Supra, concerning plasma confinement and fusion. Some information on specific fusion devices or tokamak devices is provided, as well as results of experiments concerning plasma instability. Separate abstracts were prepared for all the 31 papers in this volume. (TEC).

  16. Fusion Canada

    International Nuclear Information System (INIS)

    This first issue of a quarterly newsletter announces the startup of the Tokamak de Varennes, describes Canada's national fusion program, and outlines the Canadian Fusion Fuels Technology Program. A map gives the location of the eleven principal fusion centres in Canada. (L.L.)

  17. Membrane fusion

    DEFF Research Database (Denmark)

    Bendix, Pól Martin

    2015-01-01

    At Stanford University, Boxer lab, I worked on membrane fusion of small unilamellar lipid vesicles to flat membranes tethered to glass surfaces. This geometry closely resembles biological systems in which liposomes fuse to plasma membranes. The fusion mechanism was studied using DNA zippering...... between complementary strands linked to the two apposing membranes closely mimicking the zippering mechanism of SNARE fusion complexes....

  18. Numerical investigations on a compact magnetic fusion device for studying the effect of external applied magnetic field oscillations on the nuclear burning efficiency of D-T and p-11B fuels

    Science.gov (United States)

    Moustaizis, S. D.; Lalousis, P.; Hora, H.; Larour, J.; Auvray, P.; Balcou, P.; Ducret, J.-E.; Martin, P.

    2015-05-01

    The burning process of high density (about 1018cm-3), high temperature (tens to hundreds of keV) plasma trapped by a high mirror-like magnetic field in a Compact Magnetic Fusion (CMF) device is numerically investigated.. The initial high density and high temperature plasma in the CMF device is produced by ultrashort high intensity laser beam interaction with clusters or thin foils, and two fuels, D-T and p-11B are studied. The spatio-temporal evolution of D-T and p-11B plasmas, the production of alphas, the generated electric fields and the high external applied magnetic field are described by a 1-D multifluid code. The initial values for the plasma densities, temperatures and external applied magnetic field (about 100 T) correspond to high β plasmas. The main objectives of the numerical simulations are: to study the plasma trapping, the neutron and alpha production for both fuels, and compare the effect of the external applied magnetic field on the nuclear burning efficiency for the two fuels.. The comparisons and the advantages for each fuel will be presented. The proposed CMF device and the potential operation of the device within the ELI-NP pillar will be discussed.

  19. Biological performance of a polycaprolactone-based scaffold used as fusion cage device in a large animal model of spinal reconstructive surgery.

    Science.gov (United States)

    Abbah, Sunny A; Lam, Christopher X L; Hutmacher, Dietmar W; Goh, James C H; Wong, Hee-Kit

    2009-10-01

    A bioactive and bioresorbable scaffold fabricated from medical grade poly (epsilon-caprolactone) and incorporating 20% beta-tricalcium phosphate (mPCL-TCP) was recently developed for bone regeneration at load bearing sites. In the present study, we aimed to evaluate bone ingrowth into mPCL-TCP in a large animal model of lumbar interbody fusion. Six pigs underwent a 2-level (L3/4; L5/6) anterior lumbar interbody fusion (ALIF) implanted with mPCL-TCP + 0.6 mg rhBMP-2 as treatment group while four other pigs implanted with autogenous bone graft served as control. Computed tomographic scanning and histology revealed complete defect bridging in all (100%) specimen from the treatment group as early as 3 months. Histological evidence of continuing bone remodeling and maturation was observed at 6 months. In the control group, only partial bridging was observed at 3 months and only 50% of segments in this group showed complete defect bridging at 6 months. Furthermore, 25% of segments in the control group showed evidence of graft fracture, resorption and pseudoarthrosis. In contrast, no evidence of graft fractures, pseudoarthrosis or foreign body reaction was observed in the treatment group. These results reveal that mPCL-TCP scaffolds could act as bone graft substitutes by providing a suitable environment for bone regeneration in a dynamic load bearing setting such as in a porcine model of interbody spine fusion. PMID:19540586

  20. SPECT-CT同机图像融合的仪器质量控制方法探讨%Evaluation of the quality control methods of image fusion in hybrid SPECT-CT device

    Institute of Scientific and Technical Information of China (English)

    程木华; 张峰; 刘克放; 陈谊; 吴春兴; 陈维真

    2007-01-01

    目的 探讨SPECT-CT同机图像融合硬件配准误差的质量评价方法.方法 制作带外套点源、点线模型及用ECT模型,加注放射源后,在床有、无负重情况下,分别对模型进行SPECT-CT采集,然后进行SPECT-CT同机图像融合处理,分析两种图像融合偏差程度.结果 SPECT与CT旋转中心无偏移.在床无负重情况时,点源及点线源与外套无X、Y轴偏移.在床有负重情况下,融合图像Y轴偏移最大值为8.0 mm,X轴偏差无像素偏移.ECT模型可检测核医学"冷"区图像及整体图像融合情况,但不能进行定量测量偏移情况.结论 单点源模型可用于日常简单检测SPECT-CT图像融合硬件配准情况;点线源模型可用于准确定量分析图像融合硬件配匹程度;ECT模型可用图像融合质量综合分析.%Objective To evaluate the quality control method of the hardware match of hybrid SPECT-CT device.Methods A radioactive dot and a linear array of dots model with shell were made.The SPECT-CT tomography was performed in above two models and ECT Qc model with and without load on scan bed,the two kinds of images were fused and the excusive extent of fusion images between SPECT and CT image was analyzed.Results The rotate center between SPECT and CT device was consistent.The fusion image between the radioactive dot and its shell was no excursion in X and Y axis without the bed load,however.the maximal excursion in Y axis was more than 8.0 mm with bed load.The ECT model could be applied to analyze the image fusion of the radioactive"cold"area images and whole model image with the CT image,but the quantitatively analysis was not available.Condusions A radioactive dot with shell model may be used for the routine test of the fusion images in hybrid SPECT-CT device.A linear array of dots may be used for quantitatively analysis of the image fusion status,and the ECT model may be used for synthetically judge of the fusion image's quality.

  1. Progress in inertial fusion and fusion technology at DENIM

    International Nuclear Information System (INIS)

    ultrahigh strength materials. In addition to work performed in IFMIF-EVEDA safety and test cells, a large effort is being performed to define a Laboratory for Fusion Technology in collaboration with CIEMAT, that includes Remote Handling testing under irradiation, materials irradiation and characterization, advanced materials processing, liquid metal loop and laboratory for numerical simulation. (author)

  2. Alternate fusion concepts

    International Nuclear Information System (INIS)

    This review summarizes the status of alternate fusion concepts and plans for their future. The concepts selected for review are those employing electromagnetic confinement for which there have been reasonable predictions of net energy gain from pure fusion and which have shown significant recent development or are the subjects of ongoing international activity. They include advanced tokamaks, stellarators, the spherical torus, reversed-field pinch and dense z-field pinch devices, field reversed configuration, and spheromaks. In addition, an overall view of the status of each concept with respect to achieving ignition and to reactor designs is presented

  3. Device configuration-management system

    International Nuclear Information System (INIS)

    The Fusion Chamber System, a major component of the Magnetic Fusion Test Facility, contains several hundred devices which report status to the Supervisory Control and Diagnostic System for control and monitoring purposes. To manage the large number of diversity of devices represented, a device configuration management system was required and developed. Key components of this software tool include the MFTF Data Base; a configuration editor; and a tree structure defining the relationships between the subsystem devices. This paper will describe how the configuration system easily accomodates recognizing new devices, restructuring existing devices, and modifying device profile information

  4. The Anesthetic Implications of Aqueous Drainage Devices and Glaucoma: A Report of a Patient Undergoing Urgent Prone Cervical Decompression and Fusion.

    Science.gov (United States)

    Blackney, Kevin A; Zavodni, Zachary J; Saddawi-Konefka, Daniel

    2016-08-01

    The pathophysiology of glaucoma and perioperative visual loss is similar. A patient with glaucoma may be at increased risk of perioperative visual loss. For both, goals of management include optimizing ocular perfusion pressure and oxygen delivery. One treatment for refractory glaucoma is an aqueous drainage device; however, there is no published literature on the anesthetic management of patients with these devices. We present the case of a patient with recalcitrant glaucoma treated with an Ahmed Glaucoma Valve who underwent urgent prone surgery. Anesthetic implications of aqueous drainage devices and glaucoma are discussed, and recommendations are made. PMID:27258174

  5. Fusion breeder

    International Nuclear Information System (INIS)

    The fusion breeder is a fusion reactor designed with special blankets to maximize the transmutation by 14 MeV neutrons of uranium-238 to plutonium or thorium to uranium-233 for use as a fuel for fission reactors. Breeding fissile fuels has not been a goal of the US fusion energy program. This paper suggests it is time for a policy change to make the fusion breeder a goal of the US fusion program and the US nuclear energy program. The purpose of this paper is to suggest this policy change be made and tell why it should be made, and to outline specific research and development goals so that the fusion breeder will be developed in time to meet fissile fuel needs

  6. Controlled fusion

    International Nuclear Information System (INIS)

    During the last fifty years the researches on controlled thermonuclear fusion reached great performance in the magnetic confinement (tokamaks) as in the inertial confinement (lasers). But the state of the art is not in favor of the apparition of the fusion in the energy market before the second half of the 21 century. To explain this opinion the author presents the fusion reactions of light nuclei and the problems bound to the magnetic confinement. (A.L.B.)

  7. Application of structural-mechanics methods to the design of large tandem-mirror fusion devices (MFTF-B). Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Karpenko, V.N.; Ng, D.S.

    1985-08-15

    The Mirror Fusion Test Facility (MFTF-B) at Lawrence Livermore National Laboratory requires state-of-the-art structural-mechanics methods to deal with access constraints for plasma heating and diagnostics, alignment requirements, and load complexity and variety. Large interactive structures required an integrated analytical approach to achieve a reasonable level of overall system optimization. The Tandem Magnet Generator (TMG) creates a magnet configuration for the EFFI calculation of electromagnetic-field forces that, coupled with other loads, form the input loading to magnet and vessel finite-element models. The analytical results provide the data base for detailed design of magnet, vessel, foundation, and interaction effects. 13 refs.

  8. Fusion Machinery

    DEFF Research Database (Denmark)

    Sørensen, Jakob Balslev; Milosevic, Ira

    2015-01-01

    SNARE proteins constitute the minimal machinery needed for membrane fusion. SNAREs operate by forming a complex, which pulls the lipid bilayers into close contact and provides the mechanical force needed for lipid bilayer fusion. At the chemical synapse, SNARE-complex formation between the vesicu......SNARE proteins constitute the minimal machinery needed for membrane fusion. SNAREs operate by forming a complex, which pulls the lipid bilayers into close contact and provides the mechanical force needed for lipid bilayer fusion. At the chemical synapse, SNARE-complex formation between...

  9. Fusion Implementation

    International Nuclear Information System (INIS)

    If a fusion DEMO reactor can be brought into operation during the first half of this century, fusion power production can have a significant impact on carbon dioxide production during the latter half of the century. An assessment of fusion implementation scenarios shows that the resource demands and waste production associated with these scenarios are manageable factors. If fusion is implemented during the latter half of this century it will be one element of a portfolio of (hopefully) carbon dioxide limiting sources of electrical power. It is time to assess the regional implications of fusion power implementation. An important attribute of fusion power is the wide range of possible regions of the country, or countries in the world, where power plants can be located. Unlike most renewable energy options, fusion energy will function within a local distribution system and not require costly, and difficult, long distance transmission systems. For example, the East Coast of the United States is a prime candidate for fusion power deployment by virtue of its distance from renewable energy sources. As fossil fuels become less and less available as an energy option, the transmission of energy across bodies of water will become very expensive. On a global scale, fusion power will be particularly attractive for regions separated from sources of renewable energy by oceans

  10. Recent fusion research in the National Institute for Fusion Science

    International Nuclear Information System (INIS)

    The National Institute for Fusion Science (NIFS), which was established in 1989, promotes academic approaches toward the exploration of fusion science for steady-state helical reactor and realizes the establishment of a comprehensive understanding of toroidal plasmas as an inter-university research organization and a key center of worldwide fusion research. The Large Helical Device (LHD) Project, the Numerical Simulation Science Project, and the Fusion Engineering Project are organized for early realization of net current free fusion reactor, and their recent activities are described in this paper. The LHD has been producing high-performance plasmas comparable to those of large tokamaks, and several new findings with regard to plasma physics have been obtained. The numerical simulation science project contributes understanding and systemization of the physical mechanisms of plasma confinement in fusion plasmas and explores complexity science of a plasma for realization of the numerical test reactor. In the fusion engineering project, the design of the helical fusion reactor has progressed based on the development of superconducting coils, the blanket, fusion materials and tritium handling. (author)

  11. Fusion research at ORNL

    International Nuclear Information System (INIS)

    The ORNL Fusion Program includes the experimental and theoretical study of two different classes of magnetic confinement schemes - systems with helical magnetic fields, such as the tokamak and stellarator, and the ELMO Bumpy Torus (EBT) class of toroidally linked mirror systems; the development of technologies, including superconducting magnets, neutral atomic beam and radio frequency (rf) heating systems, fueling systems, materials, and diagnostics; the development of databases for atomic physics and radiation effects; the assessment of the environmental impact of magnetic fusion; and the design of advanced demonstration fusion devices. The program involves wide collaboration, both within ORNL and with other institutions. The elements of this program are shown. This document illustrates the program's scope; and aims by reviewing recent progress

  12. Colliding Beam Fusion Reactors

    Science.gov (United States)

    Rostoker, Norman; Qerushi, Artan; Binderbauer, Michl

    2003-06-01

    The recirculating power for virtually all types of fusion reactors has previously been calculated [1] with the Fokker-Planck equation. The reactors involve non-Maxwellian plasmas. The calculations are generic in that they do not relate to specific confinement devices. In all cases except for a Tokamak with D-T fuel the recirculating power was found to exceed the fusion power by a large factor. In this paper we criticize the generality claimed for this calculation. The ratio of circulating power to fusion power is calculated for the Colliding Beam Reactor with fuels D-T, D-He3 and p-B11. The results are respectively, 0.070, 0.141 and 0.493.

  13. Laser inertial fusion

    International Nuclear Information System (INIS)

    Although the energy of the radiation pulses generated by the world's largest laser facilities approach the MJ limit, it is still lower than that calculated on means of the Lawson criterion for thermonuclear fusion. The severe energy requirements can be weakened by efficient pre-compression of laser targets and by non-linear conversion of laser radiation to shorter wavelengths. The homogeneity of the laser target irradiation can be improved by using multi-beam or indirect-drive laser schemes. The neodymium laser facilities such as Nova Upgrade in Livermore or Gekko XII in Osaca are still the most promising fusion drivers, but the chances of powerful iodine lasers such as ISKRA 5 in Arzamas and Asterix in Munich are also high. The prospects of these and other laser fusion drivers are critically assessed and the role of smaller devices as the Prague iodine laser Perun is discussed. (J.U.) 6 figs., 7 refs

  14. Mirror Fusion Test Facility

    International Nuclear Information System (INIS)

    On October 1, 1977 work began at LLL on the Mirror Fusion Test Facility (MFTF), an advanced experimental fusion device. Scheduled for operation in late 1981, MFTF is designed as an intermediate step between present mirror machines, such as 2XIIB, and an experimental fusion reactor. This design incorporates improved technology and a better theoretical understanding of how neutral beam injection, plasma guns, and gas injection into the plasma region compensate for cooling and particle losses. With the new facility, we expect to achieve a confinement factor (n tau) of 1012 particles . sm/cm3--a tenfold increase over 2XIIB n tau values--and to increase plasma temperature to over 500 million K. The following article describes this new facility and reports on progress in some of the R and D projects that are providing the technological base for its construction

  15. Medical Image Fusion

    Directory of Open Access Journals (Sweden)

    Mitra Rafizadeh

    2007-08-01

    Full Text Available Technological advances in medical imaging in the past two decades have enable radiologists to create images of the human body with unprecedented resolution. MRI, PET,... imaging devices can quickly acquire 3D images. Image fusion establishes an anatomical correlation between corresponding images derived from different examination. This fusion is applied either to combine images of different modalities (CT, MRI or single modality (PET-PET."nImage fusion is performed in two steps:"n1 Registration: spatial modification (eg. translation of model image relative to reference image in order to arrive at an ideal matching of both images. Registration methods are feature-based and intensity-based approaches."n2 Visualization: the goal of it is to depict the spatial relationship between the model image and refer-ence image. We can point out its clinical application in nuclear medicine (PET/CT.

  16. CIEMAT results in the frame of the european project Mechanisms governing the behaviour and transport of transuranics (analogues) and other radionuclides in marine ecosystems

    International Nuclear Information System (INIS)

    This report summarises the objectives and more relevant conclusions obtained by CIEMAT in the frame of the project Mechanisms governing the behaviour and transport of transuranics (analogues) and other radionuclides in marine ecosystems. The overall objective of this project was to identify the basic mechanisms and define the key parameters governing the physico-chemical speciation, vertical and horizontal mobility, biological magnification, incorporation to seabed sediments and ultimate fate of transuranium and other long-lived radionuclides in the marine environment, with a view to providing high-quality data of a universal character for use in the development and validation of predictive models based on fundamental mechanisms rather than the simpler box-model approach. This research was carried out in different European marine ecosystems: those directly affected by controlled releases from Nuclear Industries and/or accidents and those characterized by being preferent radionuclides accumulation sites (submarine canyons, estuaries, etc.). (Author)

  17. A new deflection technique applied to an existing scheme of electrostatic accelerator for high energy neutral beam injection in fusion reactor devices

    Science.gov (United States)

    Pilan, N.; Antoni, V.; De Lorenzi, A.; Chitarin, G.; Veltri, P.; Sartori, E.

    2016-02-01

    A scheme of a neutral beam injector (NBI), based on electrostatic acceleration and magneto-static deflection of negative ions, is proposed and analyzed in terms of feasibility and performance. The scheme is based on the deflection of a high energy (2 MeV) and high current (some tens of amperes) negative ion beam by a large magnetic deflector placed between the Beam Source (BS) and the neutralizer. This scheme has the potential of solving two key issues, which at present limit the applicability of a NBI to a fusion reactor: the maximum achievable acceleration voltage and the direct exposure of the BS to the flux of neutrons and radiation coming from the fusion reactor. In order to solve these two issues, a magnetic deflector is proposed to screen the BS from direct exposure to radiation and neutrons so that the voltage insulation between the electrostatic accelerator and the grounded vessel can be enhanced by using compressed SF6 instead of vacuum so that the negative ions can be accelerated at energies higher than 1 MeV. By solving the beam transport with different magnetic deflector properties, an optimum scheme has been found which is shown to be effective to guarantee both the steering effect and the beam aiming.

  18. A new deflection technique applied to an existing scheme of electrostatic accelerator for high energy neutral beam injection in fusion reactor devices

    Energy Technology Data Exchange (ETDEWEB)

    Pilan, N., E-mail: nicola.pilan@igi.cnr.it; Antoni, V.; De Lorenzi, A.; Chitarin, G.; Veltri, P.; Sartori, E. [Consorzio RFX—Associazione EURATOM-ENEA per la Fusione, Corso Stati Uniti 4, 35127 Padova (Italy)

    2016-02-15

    A scheme of a neutral beam injector (NBI), based on electrostatic acceleration and magneto-static deflection of negative ions, is proposed and analyzed in terms of feasibility and performance. The scheme is based on the deflection of a high energy (2 MeV) and high current (some tens of amperes) negative ion beam by a large magnetic deflector placed between the Beam Source (BS) and the neutralizer. This scheme has the potential of solving two key issues, which at present limit the applicability of a NBI to a fusion reactor: the maximum achievable acceleration voltage and the direct exposure of the BS to the flux of neutrons and radiation coming from the fusion reactor. In order to solve these two issues, a magnetic deflector is proposed to screen the BS from direct exposure to radiation and neutrons so that the voltage insulation between the electrostatic accelerator and the grounded vessel can be enhanced by using compressed SF{sub 6} instead of vacuum so that the negative ions can be accelerated at energies higher than 1 MeV. By solving the beam transport with different magnetic deflector properties, an optimum scheme has been found which is shown to be effective to guarantee both the steering effect and the beam aiming.

  19. A new deflection technique applied to an existing scheme of electrostatic accelerator for high energy neutral beam injection in fusion reactor devices

    International Nuclear Information System (INIS)

    A scheme of a neutral beam injector (NBI), based on electrostatic acceleration and magneto-static deflection of negative ions, is proposed and analyzed in terms of feasibility and performance. The scheme is based on the deflection of a high energy (2 MeV) and high current (some tens of amperes) negative ion beam by a large magnetic deflector placed between the Beam Source (BS) and the neutralizer. This scheme has the potential of solving two key issues, which at present limit the applicability of a NBI to a fusion reactor: the maximum achievable acceleration voltage and the direct exposure of the BS to the flux of neutrons and radiation coming from the fusion reactor. In order to solve these two issues, a magnetic deflector is proposed to screen the BS from direct exposure to radiation and neutrons so that the voltage insulation between the electrostatic accelerator and the grounded vessel can be enhanced by using compressed SF6 instead of vacuum so that the negative ions can be accelerated at energies higher than 1 MeV. By solving the beam transport with different magnetic deflector properties, an optimum scheme has been found which is shown to be effective to guarantee both the steering effect and the beam aiming

  20. Insulators for fusion applications

    International Nuclear Information System (INIS)

    Design studies for fusion devices and reactors have become more detailed in recent years and with this has come a better understanding of requirements and operating conditions for insulators in these machines. Ceramic and organic insulators are widely used for many components of fusion devices and reactors namely: radio frequency (RF) energy injection systems (BeO, Al2O3, Mg Al2O4, Si3N4); electrical insulation for the torus structure (SiC, Al2O3, MgO, Mg Al2O4, Si4Al2O2N6, Si3N4, Y2O3); lightly-shielded magnetic coils (MgO, MgAl2O4); the toroidal field coil (epoxies, polyimides), neutron shield (B4C, TiH2); high efficiency electrical generation; as well as the generation of very high temperatures for high efficiency hydrogen production processes (ZrO2 and Al2O3 - mat, graphite and carbon - felt). Timely development of insulators for fusion applications is clearly necessary. Those materials to be used in fusion machines should show high resistance to radiation damage and maintain their structural integrity. Now the need is urgent for a variety of radiation resistant materials, but much effort in these areas is required for insulators to be considered seriously by the design community. This document contains 14 papers from an IAEA meeting. It was the objective of this meeting to identify existing problems in analysing various situations of applications and requirements of electrical insulators and ceramics in fusion and to recommend strategies and different stages of implementation. This meeting was endorsed by the International Fusion Research Council

  1. Neutrons and fusion

    International Nuclear Information System (INIS)

    The production of energy from fusion reactions does not require neutrons in the fundamental sense that they are required in a fission reactor. Nevertheless, the dominant fusion reaction, that between deuterium and tritium, yields a 14 MeV neutron. To contrast a fusion reactor based on this reaction with the fission case, 3 x 1020 such neutrons produced per gigawatt of power. This is four times as many neutrons as in an equivalent fission reactor and they carry seven times the energy of the fission neutrons. Thus, they dominate the energy recovery problem and create technological problems comparable to the original plasma confinement problem as far as a practical power producing device is concerned. Further contrasts of the fusion and fission cases are presented to establish the general role of neutrons in fusion devices. Details of the energy deposition processes are discussed and those reactions necessary for producing additional tritium are outlined. The relatively high energy flux with its large intensity will activate almost any materials of which the reactor may be composed. This activation is examined from the point of view of decay heat, radiological safety, and long-term storage. In addition, a discussion of the deleterious effects of neutron interactions on materials is given in some detail; this includes the helium and hydrogen producing reactions and displacement rate of the lattice atoms. The various materials that have been proposed for structural purposes, for breeding, reflecting, and moderating neutrons, and for radiation shielding are reviewed from the nuclear standpoint. The specific reactions of interest are taken up for various materials and finally a report is given on the status and prospects of data for fusion studies

  2. 椎间融合器临床试验分组及评价指标注册要求的变化%Change of Regulatory Requirement on Cohort Grouping and Endpoint Seting for Intervertebral Fusion Device Clinical Trail

    Institute of Scientific and Technical Information of China (English)

    郭晓磊

    2015-01-01

    结合国际主流监管机构技术要求与我国监管现状,目前常规的椎间融合器临床试验注册要求发生了简化,颈胸腰椎病患同组试验,并以影像学评价为主,较为合理地向减轻企业负担做出了尝试。%Combining technical requirement from main international administration and status quo of China administration, current regulatory requirement on clinical trail of conventional intervertebral fusion devices has been simplified. Cervical, thoracic and lumbar cases can be grouped into the same cohort, and primary endpoints are mainly based on imageology rather than clinical score. This is an attempt to rational y lessen industrial burdensome.

  3. Image fusion

    Science.gov (United States)

    Pavel, M.

    1993-01-01

    The topics covered include the following: a system overview of the basic components of a system designed to improve the ability of a pilot to fly through low-visibility conditions such as fog; the role of visual sciences; fusion issues; sensor characterization; sources of information; image processing; and image fusion.

  4. Advancing Fusion by Innovations: Smaller, Quicker, Cheaper

    DEFF Research Database (Denmark)

    Gryaznevich, Mikhail; Chuyanov, V. A.; Kingham, D.;

    2015-01-01

    On the path to Fusion power, the construction of ITER is on-going, however there is not much progress in performance improvements of tokamaks in the last 15 years, Fig.1. One possible reason for this stagnation is the lack of innovations in physics and technology that could be implemented...... with this approach in which progress is expected mainly from the increase in the size of a Fusion device. Such innovations could be easier to test and use in much smaller (and so cheaper and quicker to build) compact Fusion devices. In this paper we propose a new path to Fusion energy based on a compact high field...

  5. Devices for launching 0. 1-g projectiles to 150 km/s or more to initiate fusion. Part 2. Railgun accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Hawke, R.S.

    1979-07-06

    The possibility of using a railgun accelerator to launch 0.1-g projectiles to hypervelocities (150 km/s or more) to initiate thermonuclear fusion is studied. The analysis revealed that a railgun with a plasma-arc armature is a viable approach to the goal. When calculating the railgun's probable performance, it was discovered that this launch system might possibly be designed to avoid adverse effects from boundary layer drag. An appendix provided by A.C. Buckingham summarizes his calculations that predict the amount of erosive drag between projectile and rail. Finally, it was found that certain properties of railgun and projectile materials can impose operational limits. Using these limits, single- and multistage accelerators were designed. Within such limits, a railgun could accelerate a 0.1-g projectile to hypervelocities.

  6. Devices for launching 0.1-g projectiles to 150 km/s or more to initiate fusion. Part 2. Railgun accelerators

    International Nuclear Information System (INIS)

    The possibility of using a railgun accelerator to launch 0.1-g projectiles to hypervelocities (150 km/s or more) to initiate thermonuclear fusion is studied. The analysis revealed that a railgun with a plasma-arc armature is a viable approach to the goal. When calculating the railgun's probable performance, it was discovered that this launch system might possibly be designed to avoid adverse effects from boundary layer drag. An appendix provided by A.C. Buckingham summarizes his calculations that predict the amount of erosive drag between projectile and rail. Finally, it was found that certain properties of railgun and projectile materials can impose operational limits. Using these limits, single- and multistage accelerators were designed. Within such limits, a railgun could accelerate a 0.1-g projectile to hypervelocities

  7. Materials for Fusion Applications

    OpenAIRE

    Jiří Matějíček

    2013-01-01

    An overview of materials foreseen for use or already used in fusion devices is given. The operating conditions, material requirements and characteristics of candidate materials in several specific application segments are briefly reviewed. These include: construction materials, electrical insulation, permeation barriers and plasma facing components. Special attention will be paid to the latter and to the issues of plasma-material interaction, materials joining and fuctionally graded interlayers.

  8. Fusion development and technology

    International Nuclear Information System (INIS)

    This report discusses the following: superconducting magnet technology; high field superconductors; advanced magnetic system and divertor development; poloidal field coils; gyrotron development; commercial reactor studies--aries; ITER physics: alpha physics and alcator R ampersand D for ITER; lower hybrid current drive and heating in the ITER device; ITER superconducting PF scenario and magnet analysis; ITER systems studies; and safety, environmental and economic factors in fusion development

  9. [Fusion energy research

    International Nuclear Information System (INIS)

    This report discusses the following topics: principal parameters achieved in experimental devices (FY88); tokamak fusion test reactor; Princeton beta Experiment-Modification; S-1 Spheromak; current drive experiment; x-ray laser studies; spacecraft glow experiment; plasma deposition and etching of thin films; theoretical plasma; tokamak modeling; compact ignition tokamak; international thermonuclear experimental reactor; Engineering Department; Project Planning and Safety Office; quality assurance and reliability; and technology transfer

  10. (Fusion energy research)

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, C.A. (ed.)

    1988-01-01

    This report discusses the following topics: principal parameters achieved in experimental devices (FY88); tokamak fusion test reactor; Princeton beta Experiment-Modification; S-1 Spheromak; current drive experiment; x-ray laser studies; spacecraft glow experiment; plasma deposition and etching of thin films; theoretical plasma; tokamak modeling; compact ignition tokamak; international thermonuclear experimental reactor; Engineering Department; Project Planning and Safety Office; quality assurance and reliability; and technology transfer.

  11. On fusion driven systems (FDS) for transmutation

    Energy Technology Data Exchange (ETDEWEB)

    Aagren, O (Uppsala Univ., Aangstroem laboratory, div. of electricity, Uppsala (Sweden)); Moiseenko, V.E. (Inst. of Plasma Physics, National Science Center, Kharkov Inst. of Physics and Technology, Kharkov (Ukraine)); Noack, K. (Forschungszentrum Dresden-Rossendorf (Germany))

    2008-10-15

    This report gives a brief description of ongoing activities on fusion driven systems (FDS) for transmutation of the long-lived radioactive isotopes in the spent nuclear waste from fission reactors. Driven subcritical systems appears to be the only option for efficient minor actinide burning. Driven systems offer a possibility to increase reactor safety margins. A comparatively simple fusion device could be sufficient for a fusion-fission machine, and transmutation may become the first industrial application of fusion. Some alternative schemes to create strong fusion neutron fluxes are presented

  12. Canadian contributions to the safety and environmental aspects of fusion

    International Nuclear Information System (INIS)

    Since next-step fusion devices will be fuelled with mixtures of tritium and deuterium, the knowledge base and tritium handling experience associated with the operation of CANDU reactors is viewed as relevant to the development of safe fusion technology. Fusion safety issues will be compared with fission safety experience, after which specific Canadian activities in support of fusion safety will be overviewed. In addition, recommendations for appropriate fusion safety criteria will be summarized. 18 refs

  13. Migma fusion reactor

    International Nuclear Information System (INIS)

    Collisions of atomic and molecular ions of like charge are produced in a device including a magnetic field which decreases with the radial distance from its central axis and increases with the distance along the central axis from its center plane. Injected accelerated ion beams are mixed in an organized manner in precessing orbits designed to make them collide head-on or nearly so in the central region of the device continuously and automatically. Ions that have not undergone fusion are continuously and automatically returned by the field to the collision region. The collision probability is further increased by accelerating (rather than heating) the ions to an energy at which the reaction parameter (the product of the fusion cross-secton and the relative ion velocity) is maximized. The atomic nuclei are confined in the device by 'self-trapping' processes. By limiting the injection energy of deuterons to a particular range, it is possible to achieve a breeding effect. Means are presented to maintain the density of the organized ion mixture along with a geometrical configuration of the magnetic field-producing coils and the external electrical fields in such a manner that the charged nuclei resulting from the fusion reactions may have their energy directly converted into electric energy by a decelerating electric potential outside the magnetic field. (LL)

  14. The management of fusion waste

    International Nuclear Information System (INIS)

    Fusion reactors based on the deuterium-tritium fuel cycle will generate radioactive waste as a result of neutron irradiation of the structural materials and absorption of the tritium fuel. An important issue is whether the volume of this waste and the risks associated with it can be reduced to a sufficiently low level that the environmental advantage of fusion can be maintained without incurring unacceptable additional costs. Information is presented on the radioactive waste expected from the decommissioning of three generations of fusion devices - the JET experiment, NET, and power reactors. The characteristics and probable volumes of this waste are considered, together with the risks associated with its disposal. (orig.)

  15. Peaceful fusion

    International Nuclear Information System (INIS)

    Like other intense neutron sources fusion reactors have in principle a potential to be used for military purposes. Although the use of fissile material is usually not considered when thinking of fusion reactors (except in fusion-fission hybrid concepts) quantitative estimates about the possible production potential of future commercial fusion reactor concepts show that significant amounts of weapon grade fissile materials could be produced even with very limited amounts of source materials. In this talk detailed burnup calculations with VESTA and MCMATH using an MCNP model of the PPCS-A will be presented. We compare different irradiation positions and the isotopic vectors of the plutonium bred in different blankets of the reactor wall with the liquid lead-lithium alloy replaced by uranium. The technical, regulatory and policy challenges to manage the proliferation risks of fusion power will be addressed as well. Some of these challenges would benefit if addressed at an early stage of the research and development process. Hence, research on fusion reactor safeguards should start as early as possible and accompany the current research on experimental fusion reactors.

  16. Design study of the large helical device

    International Nuclear Information System (INIS)

    The Large Helical Device (LHD) is a Heliotron/torsatron type superconducting helical fusion device, which is scheduled to be constructed by the newly established National Institute for Fusion Science as the major joint-university fusion research project. This report describes the design study of the LHD. Our goal is demonstration of high energy confinement and high β in the helical device, which is a necessary step toward a helical reactor system. (author)

  17. Characterization of a segmented plasma torch assisted High Heat Flux (HHF) system for performance evaluation of plasma facing components in fusion devices

    International Nuclear Information System (INIS)

    A wide variety of high heat and particle flux test facilities are being used by the fusion community to evaluate the thermal performance of plasma facing materials/components, which includes electron beam, ion beam, neutral beam and thermal plasma assisted sources. In addition to simulate heat loads, plasma sources have the additional advantage of reproducing exact fusion plasma like conditions, in terms of plasma density, temperature and particle flux. At CPP-IPR, Assam, we have developed a high heat and particle flux facility using a DC, non-transferred, segmented thermal plasma torch system, which can produce a constricted, stabilized plasma jet with high ion density. In this system, the plasma torch exhausts into a low pressure chamber containing the materials to be irradiated, which produces an expanded plasma jet with more uniform profiles, compared to plasma torches operated at atmospheric pressure. The heat flux of the plasma beam was studied by using circular calorimeters of different diameters (2 and 3 cm) for different input power (5-55 kW). The effect of the change in gas (argon) flow rate and mixing of gases (argon + hydrogen) was also studied. The heat profile of the plasma beam was also studied by using a pipe calorimeter. From this, the radial heat flux was calculated by using Abel inversion. It is seen that the required heat flux of 10 MW/m2 is achievable in our system for pure argon plasma as well as for plasma with gas mixtures. The plasma parameters like the temperature, density and the beam velocity were studied by using optical emission spectroscopy. For this, a McPherson made 1.33 meter focal length spectrometer; model number 209, was used. A plane grating with 1800 g/mm was used which gave a spectral resolution of 0.007 nm. A detailed characterization with respect to these plasma parameters for different gas (argon) flow rate and mixing of gases (argon+hydrogen) for different input power will be presented in this paper. The plasma

  18. Cold fusion

    International Nuclear Information System (INIS)

    So called 'cold fusion phenomena' are not confirmed yet. Excess heat generation is very delicate one. Neutron generation is most reliable results, however, the records are erratic and the same results could not be repeated. So there is no reason to exclude the malfunction of testing instruments. The same arguments arise in recording 4He, 3He, 3H, which are not rich in quantity basically. An experiment where plenty of 4He were recorded is attached in appendix. The problem is that we are trying to search cold fusion which is permitted by nature or not. The famous tunneling effect in quantum mechanics will answer it, however, the most fusion rate is known to be negligible. The focus of this project is on the theme that how to increase that negligible fusion rate. 6 figs, 4 tabs, 1512 refs. (Author)

  19. Spinal fusion

    Science.gov (United States)

    ... the wound or vertebral bones Damage to a spinal nerve, causing weakness, pain, loss of sensation, problems with your bowels or bladder The vertebrae above and below the fusion are more likely to wear away, leading to more problems later

  20. Cold fusion

    Energy Technology Data Exchange (ETDEWEB)

    Suh, Suk Yong; Sung, Ki Woong; Kang, Joo Sang; Lee, Jong Jik [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-02-01

    So called `cold fusion phenomena` are not confirmed yet. Excess heat generation is very delicate one. Neutron generation is most reliable results, however, the records are erratic and the same results could not be repeated. So there is no reason to exclude the malfunction of testing instruments. The same arguments arise in recording {sup 4}He, {sup 3}He, {sup 3}H, which are not rich in quantity basically. An experiment where plenty of {sup 4}He were recorded is attached in appendix. The problem is that we are trying to search cold fusion which is permitted by nature or not. The famous tunneling effect in quantum mechanics will answer it, however, the most fusion rate is known to be negligible. The focus of this project is on the theme that how to increase that negligible fusion rate. 6 figs, 4 tabs, 1512 refs. (Author).

  1. Fusion energy

    International Nuclear Information System (INIS)

    The efforts of the Chemical Technology Division in fusion energy include the areas of fuel handling, processing, and containment. Current studies are concerned largely with the development of vacuum pumps for fusion reactors and experiments and with development and evaluation of techniques for recovering tritium from solid or liquid breeding blankets. In addition, a small effort is devoted to support of the ORNL design of a major Tokamak experiment, The Next Step (TNS)

  2. Simulation science for fusion plasmas

    Science.gov (United States)

    Sudo, S.; Škorić, M. M.; Watanabe, T.-H.; Todo, Y.; Ishizawa, A.; Miura, H.; Ishizaki, R.; Ito, A.; Ohtani, H.; Usami, S.; Nakamura, H.; Ito, Atsushi; Ishiguro, S.; Tomita, Y.; Takayama, A.; Sato, M.; Yamamoto, T.; Den, M.; Sakagami, H.; Horiuchi, R.; Okamura, S.; Nakajima, N.

    2008-10-01

    The world fusion effort has embarked into a new age with the construction of ITER in Cadarache, France, which will be the first magnetic confinement fusion plasma experiment dominated by the self-heating of fusion reactions. In order to operate and control burning plasmas and next generation demo fusion reactors, an advanced capability for comprehensive integrated computer simulations that are fully verified and validated against experimental data will be necessary. The ultimate goal is to predict reliably the behaviour of plasmas in toroidal magnetic confinement devices on all relevant scales, both in time and space. In addition to developing a sophisticated integrated simulation codes, directed advanced research in fusion physics, applied mathematics, computer science and software is envisaged. In this paper we review the basic strategy and main research efforts at the Department of Simulation Science of the National Institute for Fusion Science (NIFS)- which is the Inter University Institute and the coordinating Center of Excellence for academic fusion research in Japan. We overview a simulation research at NIFS, in particular relation to experiments in the Large Helical Device (LHD), the world's largest superconducting heliotron device, as a National Users' facility (see Motojima et al. [1]). Our main goal is understanding and systemizing the rich hierarchy of physical mechanisms in fusion plasmas, supported by exploring a basic science of complexity of plasma as a highly nonlinear, non-equilibrium, open system. The aim is to establish a simulation science as a new interdisciplinary field by fostering collaborative research in utilizing the large-scale supercomputer simulators. A concept of the hierarchy-renormalized simulation modelling will be invoked en route toward the LHD numerical test reactor.

  3. Simulation science for fusion plasmas

    International Nuclear Information System (INIS)

    The world fusion effort has embarked into a new age with the construction of ITER in Cadarache, France, which will be the first magnetic confinement fusion plasma experiment dominated by the self-heating of fusion reactions. In order to operate and control burning plasmas and next generation demo fusion reactors, an advanced capability for comprehensive integrated computer simulations that are fully verified and validated against experimental data will be necessary. The ultimate goal is to predict reliably the behaviour of plasmas in toroidal magnetic confinement devices on all relevant scales, both in time and space. In addition to developing a sophisticated integrated simulation codes, directed advanced research in fusion physics, applied mathematics, computer science and software is envisaged. In this paper we review the basic strategy and main research efforts at the Department of Simulation Science of the National Institute for Fusion Science (NIFS)- which is the Inter University Institute and the coordinating Center of Excellence for academic fusion research in Japan. We overview a simulation research at NIFS, in particular relation to experiments in the Large Helical Device (LHD), the world's largest superconducting heliotron device, as a National Users' facility (see Motojima et al.). Our main goal is understanding and systemizing the rich hierarchy of physical mechanisms in fusion plasmas, supported by exploring a basic science of complexity of plasma as a highly nonlinear, non-equilibrium, open system. The aim is to establish a simulation science as a new interdisciplinary field by fostering collaborative research in utilizing the large-scale supercomputer simulators. A concept of the hierarchy-renormalized simulation modelling will be invoked en route toward the LHD numerical test reactor.

  4. EURATOM strategy towards fusion energy

    International Nuclear Information System (INIS)

    Research and development (Research and Development) activities in controlled thermonuclear fusion have been carried out since the 60's of the last century aiming at providing a new clean, powerful, practically inexhaustive, safe, environmentally friend and economically attractive energy source for the sustainable development of our society.The EURATOM Fusion Programme (EFP) has the leadership of the magnetic confinement Research and Development activities due to the excellent results obtained on JET and other specialized devices, such as ASDEX-Upgrade, TORE SUPRA, FTU, TCV, TEXTOR, CASTOR, ISTTOK, MAST, TJ-II, W7-X, RFX and EXTRAP. JET is the largest tokamak in operation and the single device that can use deuterium and tritium mixes. It has produced 16 MW of fusion power, during 3 seconds, with an energy amplification of 0.6. The next steps of the EFP strategy towards fusion energy are ITER complemented by a vigorous Accompanying Programme, DEMO and a prototype of a fusion power plant. ITER, the first experimental fusion reactor, is a large-scale project (35-year duration, 10000 MEuros budget), developed in the frame of a very broad international collaboration, involving EURATOM, Japan, Russia Federation, United States of America, Korea, China and India. ITER has two main objectives: (i) to prove the scientific and technical viability of fusion energy by producing 500 MW, during 300 seconds and a energy amplification between 10 and 20; and (ii) to test the simultaneous and integrated operation of the technologies needed for a fusion reactor. The Accompanying Programme aims to prepare the ITER scientific exploitation and the DEMO design, including the development of the International Fusion Materials Irradiation Facility (IFMIF). A substantial part of this programme will be carried out in the frame of the Broader Approach, an agreement signed by EURATOM and Japan. The main goal of DEMO is to produce electricity, during a long time, from nuclear fusion reactions. The

  5. Security on the US Fusion Grid

    International Nuclear Information System (INIS)

    The National Fusion Collaboratory project is developing and deploying new distributed computing and remote collaboration technologies with the goal of advancing magnetic fusion energy research. This work has led to the development of the US Fusion Grid (FusionGrid), a computational grid composed of collaborative, compute, and data resources from the three large US fusion research facilities and with users both in the US and in Europe. Critical to the development of FusionGrid was the creation and deployment of technologies to ensure security in a heterogeneous environment. These solutions to the problems of authentication, authorization, data transfer, and secure data storage, as well as the lessons learned during the development of these solutions, may be applied outside of FusionGrid and scale to future computing infrastructures such as those for next-generation devices like ITER

  6. Data security on the national fusion grid

    International Nuclear Information System (INIS)

    The National Fusion Collaboratory project is developing and deploying new distributed computing and remote collaboration technologies with the goal of advancing magnetic fusion energy research. This work has led to the development of the US Fusion Grid (FusionGrid), a computational grid composed of collaborative, compute, and data resources from the three large US fusion research facilities and with users both in the US and in Europe. Critical to the development of FusionGrid was the creation and deployment of technologies to ensure security in a heterogeneous environment. These solutions to the problems of authentication, authorization, data transfer, and secure data storage, as well as the lessons learned during the development of these solutions, may be applied outside of FusionGrid and scale to future computing infrastructures such as those for next-generation devices like ITER

  7. Data security on the national fusion grid

    Energy Technology Data Exchange (ETDEWEB)

    Burruss, Justine R.; Fredian, Tom W.; Thompson, Mary R.

    2005-06-01

    The National Fusion Collaboratory project is developing and deploying new distributed computing and remote collaboration technologies with the goal of advancing magnetic fusion energy research. This work has led to the development of the US Fusion Grid (FusionGrid), a computational grid composed of collaborative, compute, and data resources from the three large US fusion research facilities and with users both in the US and in Europe. Critical to the development of FusionGrid was the creation and deployment of technologies to ensure security in a heterogeneous environment. These solutions to the problems of authentication, authorization, data transfer, and secure data storage, as well as the lessons learned during the development of these solutions, may be applied outside of FusionGrid and scale to future computing infrastructures such as those for next-generation devices like ITER.

  8. Security on the US Fusion Grid

    Energy Technology Data Exchange (ETDEWEB)

    Burruss, Justin R.; Fredian, Tom W.; Thompson, Mary R.

    2005-06-01

    The National Fusion Collaboratory project is developing and deploying new distributed computing and remote collaboration technologies with the goal of advancing magnetic fusion energy research. This work has led to the development of the US Fusion Grid (FusionGrid), a computational grid composed of collaborative, compute, and data resources from the three large US fusion research facilities and with users both in the US and in Europe. Critical to the development of FusionGrid was the creation and deployment of technologies to ensure security in a heterogeneous environment. These solutions to the problems of authentication, authorization, data transfer, and secure data storage, as well as the lessons learned during the development of these solutions, may be applied outside of FusionGrid and scale to future computing infrastructures such as those for next-generation devices like ITER.

  9. Status and prospects of the fusion technology

    International Nuclear Information System (INIS)

    An assessment of the status and prospects of the fusion technology in particular, with respect to the description of the present tokamak devices and future reactors is carried out. Issues to be reviewed include: superconducting magnets, heating and current-drive systems, plasma control, maintainence, materials, tritium breeding and blanket systems. The costs of the fusion electricity and environmental aspects are also considered

  10. Magnetic field and current field distribution profiles in 3.6 kJ UNU/ICTP plasma focus fusion device

    International Nuclear Information System (INIS)

    A modest 3.6 kJ plasma focus device which can produce sufficiently hot and dense plasma in various gages, and which was designed within the framework of the UN training programme at the University of Malaya, Kuala Lumpur, has been tested for its reproducibility at R/S University of Science and Technology, Port-Harcourt, Zimbabwe. The results show that the system is completely reproducible and that plasma dynamics can be studied experimentally at the graduate and undergraduate level. In this paper we report on the investigations carried out mainly on the current and magnetic profiles using simple Rogowski coil and magnetic probe diagnostic techniques. 9 refs, figs, 1 tab

  11. Tritium accountancy in fusion systems

    International Nuclear Information System (INIS)

    The US Department of Energy (DOE) has clearly defined requirements for nuclear material control and accountability (MCA) of tritium whereas the International Atomic Energy Agency (IAEA) does not since tritium is not a fissile material. MCA requirements are expected for tritium fusion machines and will be dictated by the host country or regulatory body where the machine is operated. Material Balance Areas (MBA) are defined to aid in the tracking and reporting of nuclear material movements and inventories. Material sub-accounts (MSA) are established along with key measurement points (KMP) to further subdivide a MBA to localize and minimize uncertainties in the inventory difference (ID) calculations for tritium accountancy. Fusion systems try to minimize tritium inventory which may require continuous movement of material through the MSA. The ability of making meaningful measurements of these material transfers is described in terms of establishing the MSA structure to perform and reconcile ID calculations. For fusion machines, changes to the traditional ID equation will be discussed which includes breeding, burn-up, and retention of tritium in the fusion device. The concept of 'net' tritium quantities consumed or lost in fusion devices is described in terms of inventory taking strategies and how it is used to track the accumulation of tritium in components or fusion machines. (authors)

  12. Computational fusion magnetohydrodynamics

    International Nuclear Information System (INIS)

    Simple magnetohydrodynamic models provide the framework for much of our understanding of the macroscopic behavior of magnetically confined laboratory plasmas. In even the simplest of models, however, the many different time and spatial scales, the multidimensionality, and the nonlinearity of the equations make finding solutions difficult. In realistic geometries obtaining quantitative results to aid our understanding, to interpret experiment, and to design new devices, involves the development of large scale numerical codes. During the past decade considerable effort has been extended in the fusion community to develop equilibrium, linear stability, and nonlinear time evolution codes in two and three dimensions, some of which have had a considerable impact on the fusion program. An overview of the various types of codes and numerical methods is given. Emphasis is on the spectrum of linear perturbations and ideal MHD stability, boundary layer methods and resistive MHD stability, and modeling of nonlinear, time evolution resistive MHD phenomena in tokamak configurations

  13. Measurement of magnetic field and velocity profiles in 3.6 kJ United Nations University/International Center For Theoretical Physics plasma focus fusion device

    International Nuclear Information System (INIS)

    A Mather-type small plasma focus device was operated in air filling in the pressure range of 0.5 to 1.0 Torr and capacitor bank charging voltage of 13 endash 15 kV. A strong focusing action was observed in this pressure range. Magnetic probe signals at various axial positions were used to estimate velocity of current sheet and axial magnetic field distribution profiles. It was observed that under the present experimental conditions the magnetic field remains constant at 0.72 T from z=0.0 cm to z=8.0 cm but falls rapidly to 0.52 T at about z=14.5 cm at a fixed radial distance of 2.65 cm. The magnetic field and velocity measurements indicate a current shedding effect emdash only 68.5% of the total injected current flows into the focus region. The rapid drop of the magnetic field at z=8.0 cm suggests that further (initial shedding is at the insulator) current and mass shedding in the focus tube is significant after this value of z. Experimental values of velocity of the current sheet are compared with those of the snow plough theoretical model. copyright 1996 American Institute of Physics

  14. Five-year clinical results of cervical total disc replacement compared with anterior discectomy and fusion for treatment of 2-level symptomatic degenerative disc disease: a prospective, randomized, controlled, multicenter investigational device exemption clinical trial.

    Science.gov (United States)

    Radcliff, Kris; Coric, Domagoj; Albert, Todd

    2016-08-01

    OBJECTIVE The purpose of this study was to report the outcome of a study of 2-level cervical total disc replacement (Mobi-C) versus anterior cervical discectomy and fusion (ACDF). Although the long-term outcome of single-level disc replacement has been extensively described, there have not been previous reports of the 5-year outcome of 2-level cervical disc replacement. METHODS This study reports the 5-year results of a prospective, randomized US FDA investigational device exemption (IDE) study conducted at 24 centers in patients with 2-level, contiguous, cervical spondylosis. Clinical outcomes at up to 60 months were evaluated, including validated outcome measures, incidence of reoperation, and adverse events. The complete study data and methodology were critically reviewed by 3 independent surgeon authors without affiliation with the IDE study or financial or institutional bias toward the study sponsor. RESULTS A total of 225 patients received the Mobi-C cervical total disc replacement device and 105 patients received ACDF. The Mobi-C and ACDF follow-up rates were 90.7% and 86.7%, respectively (p = 0.39), at 60 months. There was significant improvement in all outcome scores relative to baseline at all time points. The Mobi-C patients had significantly more improvement than ACDF patients in terms of Neck Disability Index score, SF-12 Physical Component Summary, and overall satisfaction with treatment at 60 months. The reoperation rate was significantly lower with Mobi-C (4%) versus ACDF (16%). There were no significant differences in the adverse event rate between groups. CONCLUSIONS Both cervical total disc replacement and ACDF significantly improved general and disease-specific measures compared with baseline. However, there was significantly greater improvement in general and disease-specific outcome measures and a lower rate of reoperation in the 2-level disc replacement patients versus ACDF control patients. Clinical trial registration no. NCT00389597

  15. Calibration Human Voxel Phantoms for In Vivo Measurement of ''2 sup 4 sup 1 Am in Bone at the Whole Body Counter Facility of CIEMAT

    CERN Document Server

    Moraleda, M; Navarro, J F; Navarro, T

    2002-01-01

    The Whole Body Counting facility of CIEMAT is capable of carrying out In-Vivo measurements of radionuclides emitting X-rays and low energy gamma radiation internally deposited in the body. The system to use for this purpose consists of flour Low energy Germanium (LeGe) Camberra detectors working in the energy range from 10 to 1000 keV. Physical phantoms with a known contamination in the organ of interest are normally used for the calibration of the LEGe detection system. In this document we present a calibration method using the Monte Carlo technique (MCNP4C) over a voxel phantom obtained from a computerized tomography of a real human head. The phantom consists of 104017 (43x59x41) cubic voxels, 4 mn on each side, os specific tissues, but for this simulation only two types are taken into account: adipose tissue and hard bone. The skull is supposed to be contaminated with ''241 Am and the trajectories of the photons are simulated till they reach the germanium detectors. The detectors were also simulated in det...

  16. Study of Adsorbents for the Capture of CO2 in Post-combustion. Contribution of CIEMAT to Module 4 of the CENITCO2 Project

    International Nuclear Information System (INIS)

    The main goal of CIEMAT within the CENIT-CO2 project has been the development of a process for CO2 capture from combustion flue gases by physical adsorption. In the first stage, screening studies to select promising adsorbents were carried out at laboratory scale, using simplified gas compositions. After that, pilot plant studies were performed using appropriate configurations of promising adsorbents under realistic conditions. CO2 adsorption cyclic capacity of different adsorbents has been studied. Lastly, for the adsorbent selected as most promising, its cyclic efficiency and selectivity for CO2 adsorption in the presence of other gaseous components (SO2, H2O, NO) of the combustion gas has been determined, as well as its performance along multiple sorption-desorption cycles in the presence of simulated combustion gas. None of the studied adsorbents, though being promising since they all have a capture efficiency of about 90%, seem to be susceptible of direct application to CO2 capture by physical adsorption under conditions representative of gases exiting the desulphurization tower of conventional pulverized coal combustion plants. As an alternative, the development of hybrid and regenerable solid sorbents (physical-chemical adsorption) is proposed or the application of new technologies under development such as the electrochemical promotion in capturing CO2. (Author) 33 refs.

  17. Socioeconomic Research on Fusion. SERF 1997-98

    Energy Technology Data Exchange (ETDEWEB)

    Saez, R.; Lechon, Y.; Cabal, H.; Lomba, L.; Palomino, I.; Recreo, F.; Robles, B.; Suanez, A.; Cancio, D. [Ciemat. Madrid (Spain)

    1999-09-01

    In this study the environmental externalities produced in some stages of a hypothetical fusion power plant have been studied. The results are the CIEMAT contribution in the macro task named External costs and benefits of the Socioeconomic Research on Fusion (SERF 1997-98) European project. For the externalities economical assessment the Externe methodology has been applied. Lauffen, sited in the SW of Germany has been selected as the hypothetical location of the power plant. The technology, for two different models, was described by Max Planck Institute and the externalities of the materials manufacturing, power plant construction and operation as well as accidents have been monetarily evaluated. The obtained results revealed that for the plant model which uses cooling water, the prevalent cause of external costs were collective doses produced by the global dispersion of 14C emissions. External costs produced by radiological accidents represent low values, however the preliminary assessment performed for the external impacts caused by the ingestion of contaminated foodstuff and water, point out that a more detailed analysis for this stage, is needed. It should be noted that the results presented in this study, are partial values since other potentially important stages such as disposal of radiological waste and decommissioning of the power plant, have not been included. (Author)

  18. Socioeconomic Research on Fusion. Serf 1997-98

    International Nuclear Information System (INIS)

    Tin this study the environmental externalisation produced in some stages of a hypothetical fusion power plant have been studied. The results are the CIEMAT contribution in the macro task named External costs and benefits of the Socioeconomic Research on Fusion (SERF 1997-98) European project. For the externalisation economical assessment the Externe methodology has been applied. Lauffen, sited in the SW of Germany has been selected as the hypothetical location of the power plant. The technology, for two different models, was described by Max Planck Institute and the externalisation of the materials manufacturing, power plant construction and operation as well as accidents have been monetarily evaluated. The obtained results revealed that for the plant model which uses cooling water, the prevalent cause of external costs were the collective doses produced by the global dispersion of 14C emissions. External costs produced by radiological accidents represent low values, however the preliminary assessment performed for the external impacts caused by the ingestion of contaminated food stuff and water, point out that a more detailed analysis for this stage, is needed. It should be noted that the results presented in this study, are partial values since other potentially important stages such as disposal of radiological waste and decommissioning of the power plant, have not been included. (Author) 30 refs

  19. Collaborations in fusion research

    International Nuclear Information System (INIS)

    This paper reviews current experimental collaborative efforts in the fusion community and extrapolates to operational scenarios for the Tokamak Physics Experiment (TPX) and the International Thermonuclear Experimental Reactor (ITER). Current requirements, available technologies and tools, and problems, issues and concerns are discussed. This paper specifically focuses on the issues that apply to experimental operational collaborations. Special requirements for other types of collaborations, such as theoretical or design and construction efforts, will not be addressed. Our current collaborative efforts have been highly successful, even though the tools in use will be viewed as primitive by tomorrow's standards. An overview of the tools and technologies in today's collaborations can be found in the first section of this paper. The next generation of fusion devices will not be primarily institutionally based, but will be national (TPX) and international (ITER) in funding, management, operation and in ownership of scientific results. The TPX will present the initial challenge of real-time remotely distributed experimental data analysis for a steady state device. The ITER will present new challenges with the possibility of several remote control rooms all participating in the real-time operation of the experimental device. A view to the future of remote collaborations is provided in the second section of this paper

  20. Line voltage distortions due to operation of the power supply devices required for plasma heating and magnetic field generation in the W7X thermonuclear fusion experiment

    International Nuclear Information System (INIS)

    The operation of the W7-X plasma heating devices requires high voltage DC power supplies with a total electrical power of 40 MVA. For this purpose twelve-pulse AC/DC converters are projected. These converters enforce a non sinusoidal line current, whose harmonics are causing corresponding line voltage distortions. To evaluate the extent of these distortions, the reaction of the harmonic currents on the AC line, is investigated by numerical network analysis. This is done for both, the 20 kV-junction point of the converters and the 110 kV-line terminal of the electricity supply company. Furthermore the design of LC series-resonant circuits, projected for power factor correction and damping of the harmonic content of the line voltage, has been verified. The additional operation of the 1.5 MVA magnet power supplies also contributes, even though to a much smaller extent, to the line voltage distortion. The influence of these twelve-pulse AC/DC converters was investigated too. The numerical calculations have been done with the aid of the network simulation program 'Pspice'. In an equivalent circuit the transmission line network and the transformers are represented by their inductances respectively equivalent inductances. The rectifier units are simulated by a number of current sources, producing the current harmonics in amplitude, frequency and phase. The harmonics amplitudes of the plasma heating power supplies are frequency and phase. The harmonics amplitudes of the plasma heating power supplies are measured values given by the manufacturer. For the magnet power supplies, the harmonics are derived from the theoretical step like I(t) current shape by Fourier series decomposition. Due to the action of the LC circuits the achieved characteristic voltage quality values are far below the permissible values corresponding to the recommendations of VDE 0160. (orig.)

  1. Outlook for the fusion hybrid and tritium-breeding fusion reactors

    International Nuclear Information System (INIS)

    It is possible to use a nuclear fusion reactor, of a somewhat less technologically challenging design than that contemplated purely for the generation of electricity, by employing fusion-derived neutrons to drive useful nuclear reactions. One device based on this concept is called the fusion hybrid reactor, or, perhaps more explicitly, the fusion-fission hybrid reactor. Neutrons from a fusion core would react with fertile and fissible material in a blanket surrounding the core, with the consequent creation of both fissile material for conventional nuclear reactor fuel and heat for generating electricity. Another such device, called the tritium-breeding fusion reactor, would breed tritium by reaction with lithium targets around the core. This report examines future circumstances in which these reactors might be needed and advantageous. Based on their technical, economic, and social aspects, it discusses the program content and pace at which these applications ought to be pursued. 46 refs., 35 figs., 31 tabs

  2. Short fusion

    CERN Multimedia

    2002-01-01

    French and UK researchers are perfecting a particle accelerator technique that could aid the quest for fusion energy or make X-rays that are safer and produce higher-resolution images. Led by Dr Victor Malka from the Ecole Nationale Superieure des Techniques Avancees in Paris, the team has developed a better way of accelerating electrons over short distances (1 page).

  3. Magnetic fusion

    International Nuclear Information System (INIS)

    This document is a detailed lecture on thermonuclear fusion. The basic physics principles are recalled and the technological choices that have led to tokamaks or stellarators are exposed. Different aspects concerning thermonuclear reactors such as safety, economy and feasibility are discussed. Tore-supra is described in details as well as the ITER project

  4. European fusion energy research and international ITER project

    International Nuclear Information System (INIS)

    The scientific feasibility of fusion energy has been demonstrated in recent tokamak experiments in Europe, Japan and the United States. The basic features of the confinement of high temperature hydrogen plasmas by strong magnetic fields are reasonably well understood, which creates a high level of confidence in the performance of the next step fusion devices. The most powerful fusion device in the world is the Joint European Torus (JET), which has ensured the European Fusion Programme its leading position in international fusion research. The nest step fusion reactor, ITER (International Thermonuclear Experimental Reactor), is an international project involving the cooperation of the European Union, Japan, The Russian Federation and USA. The overall objective of ITER is to demonstrate the scientific and technological feasibility of fusion power for peaceful purposes. Membership in the European Union would automatically make Finland a participant in the Community Fusion Programme and the international ITER project. (orig.)

  5. Alternative approaches to fusion. [reactor design and reactor physics for Tokamak fusion reactors

    Science.gov (United States)

    Roth, R. J.

    1976-01-01

    The limitations of the Tokamak fusion reactor concept are discussed and various other fusion reactor concepts are considered that employ the containment of thermonuclear plasmas by magnetic fields (i.e., stellarators). Progress made in the containment of plasmas in toroidal devices is reported. Reactor design concepts are illustrated. The possibility of using fusion reactors as a power source in interplanetary space travel and electric power plants is briefly examined.

  6. Multiscale study on hydrogen mobility in metallic fusion divertor material

    OpenAIRE

    Heinola, Kalle

    2010-01-01

    For achieving efficient fusion energy production, the plasma-facing wall materials of the fusion reactor should ensure long time operation. In the next step fusion device, ITER, the first wall region facing the highest heat and particle load, i.e. the divertor area, will mainly consist of tiles based on tungsten. During the reactor operation, the tungsten material is slowly but inevitably saturated with tritium. Tritium is the relatively short-lived hydrogen isotope used in the fusion reactio...

  7. Synthesis of superheavy elements by cold fusion

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, S. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Frankfurt Univ. (Germany). Inst. fuer Kernphysik

    2011-07-01

    The new elements from Z = 107 to 112 were synthesized in cold fusion reactions based on targets of lead and bismuth. The principle physical concepts are presented which led to the application of this reaction type in search experiments for new elements. Described are the technical developments from early mechanical devices to experiments with recoil separators. An overview is given of present experiments which use cold fusion for systematic studies and synthesis of new isotopes. Perspectives are also presented for the application of cold fusion reactions in synthesis of elements beyond element 113, the so far heaviest element produced in a cold fusion reaction. Further, the transition of hot fusion to cold fusion is pointed out, which occurs in reactions for synthesis of elements near Z = 126 using actinide targets and beams of neutron rich isotopes of elements from iron to germanium. (orig.)

  8. Synthesis of superheavy elements by cold fusion

    International Nuclear Information System (INIS)

    The new elements from Z = 107 to 112 were synthesized in cold fusion reactions based on targets of lead and bismuth. The principle physical concepts are presented which led to the application of this reaction type in search experiments for new elements. Described are the technical developments from early mechanical devices to experiments with recoil separators. An overview is given of present experiments which use cold fusion for systematic studies and synthesis of new isotopes. Perspectives are also presented for the application of cold fusion reactions in synthesis of elements beyond element 113, the so far heaviest element produced in a cold fusion reaction. Further, the transition of hot fusion to cold fusion is pointed out, which occurs in reactions for synthesis of elements near Z = 126 using actinide targets and beams of neutron rich isotopes of elements from iron to germanium. (orig.)

  9. History of Nuclear Fusion Research in Japan

    Science.gov (United States)

    Iguchi, Harukazu; Matsuoka, Keisuke; Kimura, Kazue; Namba, Chusei; Matsuda, Shinzaburo

    In the late 1950s just after the atomic energy research was opened worldwide, there was a lively discussion among scientists on the strategy of nuclear fusion research in Japan. Finally, decision was made that fusion research should be started from the basic, namely, research on plasma physics and from cultivation of human resources at universities under the Ministry of Education, Science and Culture (MOE). However, an endorsement was given that construction of an experimental device for fusion research would be approved sooner or later. Studies on toroidal plasma confinement started at Japan Atomic Energy Research Institute (JAERI) under the Science and Technology Agency (STA) in the mid-1960s. Dualistic fusion research framework in Japan was established. This structure has lasted until now. Fusion research activities over the last 50 years are described by the use of a flowchart, which is convenient to glance the historical development of fusion research in Japan.

  10. Magnetic fusion; La fusion magnetique

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    This document is a detailed lecture on thermonuclear fusion. The basic physics principles are recalled and the technological choices that have led to tokamaks or stellarators are exposed. Different aspects concerning thermonuclear reactors such as safety, economy and feasibility are discussed. Tore-supra is described in details as well as the ITER project.

  11. Materials requirements for fusion reactors

    International Nuclear Information System (INIS)

    Once the physics of fusion devices is understood, one or more experimental power reactors (EPR) are planned which will produce net electrical power. The structural material for the device will probably be a modification of an austenitic stainless steel. Unlike fission reactors, whose pressure boundaries are subjected to no or only light irradiation, the pressure boundary of a fusion reactor is subjected to high atomic displacement-damage and high production rates of transmutation products, e.g., helium and hydrogen. The design data base must include irradiated materials. Since in situ testing to obtain tensile, fatigue, creep, crack-growth, stress-rupture, and swelling data is currently impossible for fusion reactor conditions, a program of service-temperature irradiations in fission reactors followed by postirradiation testing, simulation of fusion conditions, and low-fluence 14 MeV neutron-irradiation tests are planned. For the Demonstration Reactor (DEMO) expected to be built within ten years after theEPR, higher heat fluxes may require the use of refractory metals, at least for the first 20 cm. A partial data base may be provided by high-flux 14 MeV neutron sources being planned. Many materials other than those for structural components will be required in the EPR and DEMO. These include superconducting magnets, insulators, neutron reflectors and shields, and breeding materials. The rest of the device should utilize conventional materials except that portion involved in tritium confinement and recovery

  12. Fusion rules of equivariantizations of fusion categories

    OpenAIRE

    Burciu, Sebastian; Natale, Sonia

    2012-01-01

    We determine the fusion rules of the equivariantization of a fusion category $\\mathcal{C}$ under the action of a finite group $G$ in terms of the fusion rules of $\\mathcal{C}$ and group-theoretical data associated to the group action. As an application we obtain a formula for the fusion rules in an equivariantization of a pointed fusion category in terms of group-theoretical data. This entails a description of the fusion rules in any braided group-theoretical fusion category.

  13. Carpal Fusion

    OpenAIRE

    Jalal Jalalshokouhi; Mohammad Hossein Herischi; Shahyar Pashaei; Ali Akbar Ameri

    2012-01-01

    Carpal fusion may be seen in hereditary and nonhereditary conditions such as acrocallosal syndrome,acromegaly, Apert syndrome, arthrogryposis, Carpenter syndrome, chromosomal abnormalities, ectrodactyly-ectodermal dysplasia-cleft (EEC) syndrome, the F form of acropectorovertebral dysgenesis or the F syndrome, fetal alcohol syndrome, Holt-Oram syndrome, Leopard syndrome, multiple synostosis syndrome, oligosyndactyly syndrome, Pfeiffer-like syndrome, scleroderma, split hand and foot malformatio...

  14. Cold Fusion

    OpenAIRE

    Zhang, Chu; Yue, Manyu; Yu, Huanzhang; Chen, Cheng

    2006-01-01

    Science can often result in technologies which can solve energy problems in societies. On March 23, 1989, two scientists Stanley Pons and Martin Fleischmann claimed at a press conference that they had been able to perform nuclear fusion at room temperature. Their claim was quickly investigated and checked by many scientists around the world. Their discovery generated a heated debate in the scientific literature and magazines in the next few years, and their work was criticized for being unsci...

  15. A brief overview of Tokamak fusion research

    International Nuclear Information System (INIS)

    Fusion, the nuclear engine that powers the sun and stars, has been pursued by scientists for decades as the ultimate source of energy. It promises an almost inexhaustible fuel supply with the oceans containing sufficient fusion fuel to outlast the expected life of the sun. Fusion is a process whose waste is inert and whose components know no geographical bounds. Scientists have pondered the laws governing the fusion process since the 1940's, and since the late 1950's laboratory devices have been constructed to test and further develop the theories. To achieve fusion, the joining of light atomic nuclei (as opposed to the splitting of heavy elements in the fission process), the natural tendency of the nuclei to repel each other due to their like electrical charges must be overcome. As the fusion takes place, some of the matter of the nuclei is converted to energy. In the stars fusion is accomplished largely by enormous gravitational forces. On earth the fusion fuel must be heated by other means to increase the energy of the particles to force them to fuse. Therein lies the challenge of fusion research - how to heat sufficient matter to hundreds of millions of degrees and contain it long enough for a controlled and sustained fusion reaction to take place. The method that presently shows the most promise is to contain a plasma (an ionized gas - the fourth state of matter) in a magnetic field while heating the plasma by means of high energy neutral particle beams or radio frequency waves

  16. Fusion fundamentals

    International Nuclear Information System (INIS)

    The United States and other countries are in the process of formulating energy policies to meet an anticipated world-wide shortage of fuel supplies. Immediate attention will necessarily focus on fuel conservation and on stretching-out conventional energy technologies (oil, gas, coal and light water reactors). The underlying concern of all policy, however, must be to guard against the emergence of a time gap between the exhaustion of conventional fuels and the availability of appropriate inexhaustible energy sources in the next century. The only known candidates for providing the bulk of the world's long-term energy needs are fusion, solar and fission breeder reactors. These are all still in the development stage and, consequently, it is too early to precisely identify their relative advantages and disadvantages. To assure that fusion will be available as one of the long-term option, the US is continuing a dedicated research and development program to take fusion from its present state to a point where its commercial viability can be ascertained. Similar programs are being carried out in the USSR, Europe, and Japan. 2 tables

  17. Laser fusion

    International Nuclear Information System (INIS)

    In this paper, the physics of laser fusion is described on an elementary level. The irradiated matter consists of a dense inner core surrounded by a less dense plasma corona. The laser radiation is mainly absorbed in the outer periphery of the plasma. The absorbed energy is transported inward to the ablation surface where plasma flow is created. Due to this plasma flow, a sequence of inward going shock waves and heat waves are created, resulting in the compression and heating of the core to high density and temperature. The interaction physics between laser and matter leading to thermonuclear burn is summarized by the following sequence of events: Laser absorption → Energy transport → Compression → Nuclear Fusion. This scenario is shown in particular for a Nd:laser with a wavelength of 1 μm. The wavelength scaling of the physical processes is also discussed. In addition to the laser-plasma physics, the Nd high power pulsed laser is described. We give a very brief description of the oscillator, the amplifiers, the spatial filters, the isolators and the diagnostics involved. Last, but not least, the concept of reactors for laser fusion and the necessary laser system are discussed. (author)

  18. Calibration Human Voxel Phantoms for In Vivo Measurement of ''241 Am in Bone at the Whole Body Counter Facility of CIEMAT

    International Nuclear Information System (INIS)

    The Whole Body Counting facility of CIEMAT is capable of carrying out In-Vivo measurements of radionuclides emitting X-rays and low energy gamma radiation internally deposited in the body. The system to use for this purpose consists of flour Low energy Germanium (LeGe) Camberra detectors working in the energy range from 10 to 1000 keV. Physical phantoms with a known contamination in the organ of interest are normally used for the calibration of the LEGe detection system. In this document we present a calibration method using the Monte Carlo technique (MCNP4C) over a voxel phantom obtained from a computerized tomography of a real human head. The phantom consists of 104017 (43x59x41) cubic voxels, 4 mn on each side, os specific tissues, but for this simulation only two types are taken into account: adipose tissue and hard bone. The skull is supposed to be contaminated with ''241 Am and the trajectories of the photons are simulated till they reach the germanium detectors. The detectors were also simulated in detail to obtain a good agreement with the reality. In order to verify the accuracy of this procedure to reproduce the experiments, the MCNP results are compared with laboratory measurements of a head phantom simulating an internal contamination of 1000 Bq of ''241 Am deposited in bone. Different relative positions source-detector were tried to look for the best counting geometry for measurement of a contaminated skull. Efficiency values are obtained and compared, resulting in the validation of the mathematical method for the assessment of internal contamination of American deposited in skeleton. (Author) 16 refs

  19. Calibration Human Voxel Phantoms for In Vivo Measurement of ''241 Am in Bone at the Whole Body Counter Facility of CIEMAT

    Energy Technology Data Exchange (ETDEWEB)

    Moraleda, M.; Lopez, M. A.; Gomez Ros, J. M.; Navarro, T.; Navarro, J. F.

    2002-07-01

    The Whole Body Counting facility of CIEMAT is capable of carrying out In-Vivo measurements of radionuclides emitting X-rays and low energy gamma radiation internally deposited in the body. The system to use for this purpose consists of flour Low energy Germanium (LeGe) Camberra detectors working in the energy range from 10 to 1000 keV. Physical phantoms with a known contamination in the organ of interest are normally used for the calibration of the LEGe detection system. In this document we present a calibration method using the Monte Carlo technique (MCNP4C) over a voxel phantom obtained from a computerized tomography of a real human head. The phantom consists of 104017 (43x59x41) cubic voxels, 4 mn on each side, os specific tissues, but for this simulation only two types are taken into account: adipose tissue and hard bone. The skull is supposed to be contaminated with ''241 Am and the trajectories of the photons are simulated till they reach the germanium detectors. The detectors were also simulated in detail to obtain a good agreement with the reality. In order to verify the accuracy of this procedure to reproduce the experiments, the MCNP results are compared with laboratory measurements of a head phantom simulating an internal contamination of 1000 Bq of ''241 Am deposited in bone. Different relative positions source-detector were tried to look for the best countring geometry for measurement of a contaminated skull. Efficiency values are obtained and compared, resulting in the validation of the mathematical method for the assessment of internal contamination of American deposited in skeleton. (Author) 16 refs.

  20. Economic effect of fusion in energy market. Economic impact of fusion deployment in energy market

    International Nuclear Information System (INIS)

    Energy model analysis estimates the significant contribution of fusion in the latter half of the century under the global environment constraints if it will be successfully developed and introduced into the market. The total possible economical impact of fusion is investigated from the aspect of energy cost savings, sales, and its effects on Gross Domestic Products. Considerable economical possibility will be found in the markets for fusion related devices, of currently developing countries, and for synthesized fuel. The value of fusion development could be evaluated from these possible economic impact in comparison with its necessary investment. (author)

  1. Contributions to the 20. EPS conference on controlled fusion and plasma physics

    International Nuclear Information System (INIS)

    The Conference covers research on different aspects of plasma physics and fusion technology, like technical aspects of Tokamak devices; plasma instabilities and impurities, development and testing of materials for fusion reactors etc

  2. Carpal Fusion

    Directory of Open Access Journals (Sweden)

    Jalal Jalalshokouhi*

    2012-05-01

    Full Text Available Carpal fusion may be seen in hereditary and nonhereditary conditions such as acrocallosal syndrome,acromegaly, Apert syndrome, arthrogryposis, Carpenter syndrome, chromosomal abnormalities, ectrodactyly-ectodermal dysplasia-cleft (EEC syndrome, the F form of acropectorovertebral dysgenesis or the F syndrome, fetal alcohol syndrome, Holt-Oram syndrome, Leopard syndrome, multiple synostosis syndrome, oligosyndactyly syndrome, Pfeiffer-like syndrome, scleroderma, split hand and foot malformation, Stickler syndrome, thalidomide embryopathy, Turner syndrome and many other conditions as mentioned in Rubinstein-Taybi's book. Sometimes there is no known causative disease.Diagnosis is usually made by plain X-ray during studying a syndrome or congenital disease or could be an incidental finding like our patients. Hand bone anomalies are more common in syndromes or other congenital or non-hereditary conditions, but polydactyly, syndactyly or oligodactyly and carpal fusions are interesting. X-ray is the modality of choice, but MRI and X-ray CT with multiplanar reconstructions may be used for diagnosis.

  3. Study of Adsorbents for the Capture of CO{sub 2} in Post-combustion. Contribution of CIEMAT to Module 4 of the CENITCO{sub 2} Project; Estudio de Adsorbentes para la Captura de CO{sub 2} en Postcombustion. Contribucion del CIEMAT al Modulo 4 del Proyecto CENITCO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz, E.; Marono, M.; Sanchez-Hervas, J. M.

    2010-07-01

    The main goal of CIEMAT within the CENIT-CO{sub 2} project has been the development of a process for CO{sub 2} capture from combustion flue gases by physical adsorption. In the first stage, screening studies to select promising adsorbents were carried out at laboratory scale, using simplified gas compositions. After that, pilot plant studies were performed using appropriate configurations of promising adsorbents under realistic conditions. CO{sub 2} adsorption cyclic capacity of different adsorbents has been studied. Lastly, for the adsorbent selected as most promising, its cyclic efficiency and selectivity for CO{sub 2} adsorption in the presence of other gaseous components (SO{sub 2}, H{sub 2}O, NO) of the combustion gas has been determined, as well as its performance along multiple sorption-desorption cycles in the presence of simulated combustion gas. None of the studied adsorbents, though being promising since they all have a capture efficiency of about 90%, seem to be susceptible of direct application to CO{sub 2} capture by physical adsorption under conditions representative of gases exiting the desulphurization tower of conventional pulverized coal combustion plants. As an alternative, the development of hybrid and regenerable solid sorbents (physical-chemical adsorption) is proposed or the application of new technologies under development such as the electrochemical promotion in capturing CO{sub 2}. (Author) 33 refs.

  4. Basics of Fusion-Fission Research Facility (FFRF) as a Fusion Neutron Source

    International Nuclear Information System (INIS)

    FFRF, standing for the Fusion-Fission Research Facility represents an option for the next step project of ASIPP (Hefei, China) aiming to a first fusion-fission multifunctional device (1). FFRF strongly relies on new, Lithium Wall Fusion plasma regimes, the development of which has already started in the US and China. With R/a=4/1m/m, Ipl=5 MA, Btor=4-6 T, PDT=50- 100 MW, Pfission=80-4000MW, 1 m thick blanket, FFRF has a unique fusion mission of a stationary fusion neutron source. Its pioneering mission of merging fusion and fission consists in accumulation of design, experimental, and operational data for future hybrid applications.

  5. Basics of Fusion-Fissison Research Facility (FFRF) as a Fusion Neutron Source

    Energy Technology Data Exchange (ETDEWEB)

    Leonid E. Zakharov

    2011-06-03

    FFRF, standing for the Fusion-Fission Research Facility represents an option for the next step project of ASIPP (Hefei, China) aiming to a first fusion-fission multifunctional device [1]. FFRF strongly relies on new, Lithium Wall Fusion plasma regimes, the development of which has already started in the US and China. With R/a=4/1m/m, Ipl=5 MA, Btor=4-6 T, PDT=50- 100 MW, Pfission=80-4000MW, 1 m thick blanket, FFRF has a unique fusion mission of a stationary fusion neutron source. Its pioneering mission of merging fusion and fission consists in accumulation of design, experimental, and operational data for future hybrid applications.

  6. View of fusion from Capitol Hill

    International Nuclear Information System (INIS)

    On October 7, 1980, the Magnetic Fusion Energy Engineering Act of 1980 (nicknamed the 'McCormack Fusion Bill') was signed into Public Law (P.L. 96-386) by President Carter. This new law if carried through, would result in an accelerated program leading in the near term to: (1) the establishment of a national center for fusion engineering; and (2) the design, construction and operation of a multi-billion dollar fusion reactor called the Fusion Engineering Device (FED). It is the purpose of this paper to briefly outline some of the legislative history that led up to the passage of P.L. 96-386, and finally, to present some thought on the legislative climate with regard to the FY '82 Department of Energy budget

  7. Medical Image Fusion Using Discrete Wavelet Transform

    OpenAIRE

    Nayera Nahvi; Deep Mittal

    2014-01-01

    Medical image fusion is the process of registering and combining multiple images from single or multiple imaging modalities to improve the imaging quality and reduce randomness and redundancy in order to increase the clinical applicability of medical images for diagnosis and assessment of medical problems. Multimodal medical image fusion algorithms and devices have shown notable achievements in improving clinical accuracy of decisions based on medical images. The domain where ...

  8. Data storage system for fusion experiment

    International Nuclear Information System (INIS)

    An appropriate archiving and an effective using of experimental data are examined in the field of fusion research. Several computer systems in tokamak type fusion experimental devices are reviewed, and then, indispensable functions and optimum utilizing form of data storage system are discussed from the standpoint of computer technology. According to these considerations, the data storage system was made in the JFT-2M tokamak. (author)

  9. Status of Fusion Experimental Reactor (FER) design

    International Nuclear Information System (INIS)

    Conceptual design studies of the Fusion Experimental Reactor (FER) have been conducted at JAERI in line with a long-range plan for fusion reactor development laid out in the long-term program of the Atomic Energy Commission issued in 1982. The FER succeeding the tokamak device JT-60 is a tokamak reactor with a major mission of realizing a self-ignited long-burning DT plasma and demonstrating engineering feasibility. The paper describes recent developments of the FER design concept

  10. Tritium in fusion: R and D in the EU

    International Nuclear Information System (INIS)

    Tritium as one of the two fuel components for fusion power plays a special role in any fusion device. Due to its volatile character, radioactivity and easy incorporation as HTO it needs to be controlled with special care and due to its scarcity on earth it has to be produced in-situ in future fusion power plants. The paper discusses the present tritium R and D activities in fusion ongoing in the EU and presents the various processes/techniques envisaged for controlling tritium in future fusion reactors focusing mainly on the issues of breeding blankets and the fuel cycle in DEMO. (authors)

  11. Radiolytic production of chemical fuels in fusion reactor systems

    International Nuclear Information System (INIS)

    Miley's energy flow diagram for fusion reactor systems is extended to include radiolytic production of chemical fuel. Systematic study of the economics and the overall efficiencies of fusion reactor systems leads to a criterion for evaluating the potential of radiolytic production of chemical fuel as a means of enhancing the performance of a fusion reactor system. The ecumenicity of the schema is demonstrated by application to (1) tokamaks, (2) mirror machines, (3) theta-pinch reactors, (4) laser-heated solenoids, and (5) inertially confined, laser-pellet devices. Pure fusion reactors as well as fusion-fission hybrids are considered

  12. Integrated Simulation and Optimization of Fusion Systems: the Fusion Simulation Project

    Science.gov (United States)

    Batchelor, Donald B.

    2004-05-01

    Advanced experimental devices for fusion energy research are very large in the $1B class, the next major step being construction of ITER, a tokamak device capable of producing several hundred megawatts of fusion power. The plasmas in such devices are extremely far from thermal equilibrium and support a vast number of physical processes that must be controlled and coordinated to successfully achieve the conditions required for fusion. Simulation is a key element in the research program needed to understand experimental results from devices and compare these results to theory, to plan and design experiments on the devices, and to invent and evaluate new, higher performing confinement concepts. There are a number of fundamental computational challenges in such simulation: extreme range of time scales - wall equilibration time/electron cyclotron time O(10^14), extreme range of space scales - machine radius/electron gyroradius O(10^4), extreme plasma anisotropy - mean free path in magnetic field parallel/perpendicular O(10^10), strong non-linear coupling, sensitivity to geometric details, and high dimensionality. To deal with this challenge, several classes of fusion physics sub-disciplines and related simulation codes have been developed. There is not at present a single code, or code set, that integrates these sub-disciplines in their generality. The talk will describe the various approaches to fusion plasma simulation and progress toward bringing together the various models so as to treat the plasma more self-consistently. In particular, the fusion community is planning a comprehensive Fusion Simulation Project (FSP) whose ultimate goal ( 15 years) is to predict reliably the behavior of plasma discharges in toroidal magnetic fusion devices on all relevant time and space scales.

  13. Fusion with laser inertial confinement

    International Nuclear Information System (INIS)

    The main principles of the laser inertial confinement fusion are reviewed; first experiments were carried out at the CEA in 1977 with the PHEBUS device and an indirect attack implosion scheme which has the advantage of a better irradiation uniformity. Researches are concerning now the conversion of laser radiation into X radiation inside the cavity and the parametric instabilities, the implosion through X radiation, the symmetry of the irradiation and the hydrodynamic instabilities. The development of a mega-joule level device is under study

  14. Gasdynamic mirror fusion propulsion experiment

    Science.gov (United States)

    Emrich, William J.

    2001-02-01

    Nuclear fusion appears to be the most promising concept for producing extremely high specific impulse rocket engines. One particular fusion concept which seems to be particularly well suited for fusion propulsion applications is the gasdynamic mirror (GDM). This device would operate at much higher plasma densities and with much larger L/D ratios than previous mirror machines. Several advantages accrue from such a design. First, the high L/D ratio minimizes to a large extent certain magnetic curvature effects which lead to plasma instabilities causing a loss of plasma confinement. Second, the high plasma density will result in the plasma behaving much more like a conventional fluid with a mean free path shorter than the length of the device. This characteristic helps reduce problems associated with ``loss cone'' microinstabilities. An experimental GDM device is currently being constructed at the NASA Marshall Space Flight Center to provide an initial assessment of the feasibility of this type of propulsion system. Initial experiments are expected to commence in the late fall of 2000. .

  15. Gasdynamic mirror fusion propulsion experiment

    International Nuclear Information System (INIS)

    Nuclear fusion appears to be the most promising concept for producing extremely high specific impulse rocket engines. One particular fusion concept which seems to be particularly well suited for fusion propulsion applications is the gasdynamic mirror (GDM). This device would operate at much higher plasma densities and with much larger L/D ratios than previous mirror machines. Several advantages accrue from such a design. First, the high L/D ratio minimizes to a large extent certain magnetic curvature effects which lead to plasma instabilities causing a loss of plasma confinement. Second, the high plasma density will result in the plasma behaving much more like a conventional fluid with a mean free path shorter than the length of the device. This characteristic helps reduce problems associated with 'loss cone' microinstabilities. An experimental GDM device is currently being constructed at the NASA Marshall Space Flight Center to provide an initial assessment of the feasibility of this type of propulsion system. Initial experiments are expected to commence in the late fall of 2000

  16. Catalysed fusion

    CERN Document Server

    Farley, Francis

    2012-01-01

    A sizzling romance and a romp with subatomic particles at CERN. Love, discovery and adventure in the city where nations meet and beams collide. Life in a large laboratory. As always, the challenges are the same. Who leads? Who follows? Who succeeds? Who gets the credit? Who gets the women or the men? Young Jeremy arrives in CERN and joins the quest for green energy. Coping with baffling jargon and manifold dangers, he is distracted by radioactive rats, lovely ladies and an unscrupulous rival. Full of doubts and hesitations, he falls for a dazzling Danish girl, who leads him astray. His brilliant idea leads to a discovery and a new route to cold fusion. But his personal life is scrambled. Does it bring fame or failure? Tragedy or triumph?

  17. Status report on controlled thermonuclear fusion

    International Nuclear Information System (INIS)

    The International Fusion Research Council (IFRC), an advisory body to the International Atomic Energy Agency, reports on the current status of fusion; this report updates its 1978 status report. This report contains a General Overview and Executive Summary, and reports on all current approaches to fusion throughout the world; a series of technical reports is to be published elsewhere. This report is timely in that it not only shows progress which has occurred over the past, but interfaces with possible future devices, in particular the International Thermonuclear Experimental Reactor (ITER), whose conceptual design phase is nearing completion. 5 refs, 6 figs

  18. An economic analysis of fusion breeders

    International Nuclear Information System (INIS)

    This paper presents a study of the economic performance of Fission/Fusion Hybrid devices. This work takes fusion breeder cost estimates and applies methodology and cost factors used in the fission reactor programs to compare fusion breeders with Liquid Metal Fast Breeder Reactors (LMFBR). The results of the analysis indicate that the Hybrid will be in the same competitive range as proposed LMFBRs and have the potential to provide economically competitive power in a future of rising uranium prices. The sensitivity of the results to variations in key parameters is included

  19. 23. IAEA Fusion Energy Conference. Book of Abstracts

    International Nuclear Information System (INIS)

    The 23rd IAEA Fusion Energy Conference (FEC 2010) is aimed at providing a forum for discussing driving physics and technology issues as well as innovative aspects of direct relevance to fusion as a source of nuclear energy. With a number of next step fusion devices being implemented, such as inter alia the International Thermonuclear Experimental Reactor (ITER, Cadarache, France) and the National Ignition Facility (NIF, Livermore, USA), and the need to demonstrate the technological feasibility of fusion power plants together with the economical viability of fusion energy production, the fusion community is now facing new challenges. The resolution of these challenges will dictate research orientations in the present and coming decades. The scientific scope of the FEC 2010 is, therefore, to reflect the priorities set by this new era in fusion energy research. The conference aims to be a platform where results of research and development efforts on national as well as international fusion experiments, shaped by these new priorities, will help in pinpointing the worldwide degree of advances in fusion theory, experiments, technology, engineering, safety and socio-economics. Furthermore, the conference also aims to set these results against the backdrop of the requirements for a net energy producing fusion device and a fusion power plant in general, and to help in defining the way forward

  20. Fracto-fusion

    International Nuclear Information System (INIS)

    As a cold fusion mechanism we investigated a fracto-fusion by which reacting particles are accelerated by the electric field generated between the crack surfaces in a crystal and the beam fusion occurs. By assuming the possible magnitude of the potential difference we calculated the fusion rate and energy multiplication factor. These results are consistent with cold fusion experiments. On the basis of a simple model it is conjectured that necessary electric potential difference to accelerate particles can be generated even in a metal crystal with rather low resistivity, and we conclude that the fracto-fusion mechanism can explain the cold fusion phenomena successfully. (author)

  1. Driven reconnection in magnetic fusion experiments

    International Nuclear Information System (INIS)

    Error fields (i.e. small non-axisymmetric perturbations of the magnetic field due to coil misalignments, etc.) are a fact of life in magnetic fusion experiments. What effects do error fields have on plasma confinement? How can any detrimental effects be alleviated? These, and other, questions are explored in detail in this lecture using simple resistive magnetohydrodynamic (resistance MHD) arguments. Although the lecture concentrates on one particular type of magnetic fusion device, namely, the tokamak, the analysis is fairly general and could also be used to examine the effects of error fields on other types of device (e.g. Reversed Field Pinches, Stellerators, etc.)

  2. Atomic and molecular data needs for fusion

    International Nuclear Information System (INIS)

    Atomic and molecular processes in plasmas play a crucial role in the development of net energy producing magnetic fusion devices. In light of this fact, presented here is a survey of the broad needs of fusion energy research and a review of the status of the existing database. Emphasis is placed on the relatively new needs for data as novel materials are evaluated for use in the next devices, and as components such as the divertor take on more significance for demonstration and practical reactors. Also, examples are given of recent or ongoing data evaluation efforts, the role of national and international data centers is discussed, and some summarizing comments are given

  3. Near term commercial opportunities from long range fusion research

    Energy Technology Data Exchange (ETDEWEB)

    Kulcinski, G.L. [Univ. of Wisconsin, Madison, WI (United States)

    1996-12-31

    An alternate approach to the development of safe, clean, and economical fusion energy for the 21st Century is presented. Instead of continuing exclusively on the path of larger and more costly magnetic confinement fusion reactors based on the DT cycle, it is proposed that near term commercial opportunities using fusion plasmas be identified and pursued. Specific examples of such opportunities are given in the areas of the detection of explosives, the production of medical isotopes, and the destruction of long lived fission product isotopes. It is also suggested that a more profitable path to the goal of fusion electricity might be to concentrate on small, simple devices that eventually can burn the more advanced fusion fuels that emit few if any neutrons. Such devices could gain back the public confidence and counter the `fusion is always 50 years away` syndrome. 11 refs., 4 figs., 2 tabs.

  4. Materials research for fusion

    Science.gov (United States)

    Knaster, J.; Moeslang, A.; Muroga, T.

    2016-05-01

    Fusion materials research started in the early 1970s following the observation of the degradation of irradiated materials used in the first commercial fission reactors. The technological challenges of fusion energy are intimately linked with the availability of suitable materials capable of reliably withstanding the extremely severe operational conditions of fusion reactors. Although fission and fusion materials exhibit common features, fusion materials research is broader. The harder mono-energetic spectrum associated with the deuterium-tritium fusion neutrons (14.1 MeV compared to fusion-relevant neutron source for materials testing is an essential pending step in fusion roadmaps. Structural materials development, together with research on functional materials capable of sustaining unprecedented power densities during plasma operation in a fusion reactor, have been the subject of decades of worldwide research efforts underpinning the present maturity of the fusion materials research programme.

  5. Fusion energy

    International Nuclear Information System (INIS)

    The main purpose of the International Thermonuclear Experimental Reactor (ITER) is to develop an experimental fusion reactor through the united efforts of many technologically advanced countries. The ITER terms of reference, issued jointly by the European Community, Japan, the USSR, and the United States, call for an integrated international design activity and constitute the basis of current activities. Joint work on ITER is carried out under the auspices of the International Atomic Energy Agency (IAEA), according to the terms of quadripartite agreement reached between the European Community, Japan, the USSR, and the United States. The site for joint technical work sessions is at the MaxPlanck Institute of Plasma Physics. Garching, Federal Republic of Germany. The ITER activities have two phases: a definition phase performed in 1988 and the present design phase (1989--1990). During the definition phase, a set of ITER technical characteristics and supporting research and development (R ampersand D) activities were developed and reported. The present conceptual design phase of ITER lasts until the end of 1990. The objectives of this phase are to develop the design of ITER, perform a safety and environmental analysis, develop site requirements, define future R ampersand D needs, and estimate cost, manpower, and schedule for construction and operation. A final report will be submitted at the end of 1990. This paper summarizes progress in the ITER program during the 1989 design phase

  6. Registration and Fusion of the Autofluorescent and Infrared Retinal Images

    Directory of Open Access Journals (Sweden)

    Jiri Jan

    2008-10-01

    Full Text Available This article deals with registration and fusion of multimodal opththalmologic images obtained by means of a laser scanning device (Heidelberg retina angiograph. The registration framework has been designed and tested for combination of autofluorescent and infrared images. This process is a necessary step for consecutive pixel level fusion and analysis utilizing information from both modalities. Two fusion methods are presented and compared.

  7. Fusion energy

    International Nuclear Information System (INIS)

    Studies of cryosorption pumping of hydrogen with molecular sieves at temperatures between 16 and 35 K indicate that type Na-Y sieve gives significantly higher average pumping speeds than the more conventional type 5A sieve. Apparently, pump speeds are affected by diffusion rates into the crystallite particles, and the larger pore openings in the Na-Y sieve permit higher diffusion rates. Measurements of the rate of tritium sorption from liquid lithium by yttrium coupons gave encouragingly high values despite the stagnant lithium in the contact device

  8. Advances in the real-time interpretation of fusion experiments

    International Nuclear Information System (INIS)

    The National Fusion Collaboratory Project is developing a persistent infrastructure to enable scientific collaboration for all aspects of magnetic fusion energy research by creating a robust, user-friendly collaborative environment and deploying this to the more than one thousand fusion scientists in forty institutions who perform magnetic fusion research in the US. Work specifically focusing on advancing real-time interpretation of fusion experiments includes collocated collaboration in tokamak control rooms via shared display walls, remote collaboration using Internet based audio and video, and pseudo-real-time data analysis via the National Fusion Energy Grid (FusionGrid). The technologies being developed and deployed will also scale to the next generation experimental devices such as ITER

  9. Nuclear fusion - Inexhaustible source of energy for tomorrow

    International Nuclear Information System (INIS)

    The purpose of this paper is to provide a general description of nuclear fusion as an energy option for the future and to clarify to some extent the various issues - scientific, technological, economic and environmental - which are likely to be relevant to controlled thermonuclear fusion. Section 1 describes the world energy problem and some advantages of nuclear fusion compared to other energy options. Sections 2 and 3 describe the fundamentals of fusion energy, plasma confinement, heating and technological aspects of fusion researches. Some plasma confinement schemes (tokamak, stellarator, inertial confinement fusion) are described. The main experimental results and parameter devices are cited to illustrate the state of the art as of 1989. Various engineering problems associated with reactor design, magnetic systems, materials, plasma purity, fueling, blankets, environment, economics and safety are discussed. A description of both bilateral and multilateral efforts in fusion research under the auspices of the IAEA is presented in Section 4. (author). 11 refs, 4 figs, 1 tab

  10. Mechanical technology unique to laser fusion experimental systems

    International Nuclear Information System (INIS)

    Hardware design for laser fusion experimental machines has led to a combination of engineering technologies that are critical to the successful operation of these machines. These large opto-mechanical systems are dependent on extreme cleanliness, accommodation to efficient maintenance, and high stability. These three technologies are the primary mechanical engineering criteria for laser fusion devices

  11. Collective Thomson scattering capabilities to diagnose fusion plasmas

    DEFF Research Database (Denmark)

    Korsholm, Søren Bang; Bindslev, Henrik; Furtula, Vedran;

    2010-01-01

    Collective Thomson scattering (CTS) is a versatile technique for diagnosing fusion plasmas. In particular, experiments on diagnosing the ion temperature and fast ion velocity distribution have been executed on a number of fusion devices. In this article the main aim is to describe the technique...

  12. Bemerkungen zur "kalten Fusion"

    CERN Document Server

    Kuehne, R W

    2006-01-01

    Steven Jones et al. reported to have observed nuclear fusion at room temperature. They observed this "cold fusion" by electrolyzing heavy water. Later experiments confirmed these observations. These experiments confirmed the generation of strong electric fields within the deuterided metals. These electric fields accelerate the deuterons to keV energies and allow the observed nuclear fusion. Roman Sioda and I suggested a theoretical description of this nuclear fusion. Our "extended micro hot fusion" scenario explains how nuclear fusion can be generated over a long time within deuterided metals. Moreover we predicted the explosion of large pieces of deuterided metals. This article reviews the "cold fusion" work of Steven Jones et al. and discusses the fracto-fusion scenario. I show that the extended micro hot fusion scenario can explain the observed neutron emissions, neutron bursts, and heat bursts.

  13. Contributions to the 14th Symposium on fusion technology

    International Nuclear Information System (INIS)

    The ENEA contributions to the 14. Symposium on fusion technology is represented by 15 papers. They are dealing mainly with the FTU (Frascati Tokamak Upgrade), a device under construction, through which high densities and confinement times will be obtained

  14. Fusion for Energy - Nuclear Data for Fusion: Goals and Development Needs

    International Nuclear Information System (INIS)

    The long-term data needs for fusion are driven by the requirements of the international programmes for the development of fusion as a source for electricity production. There are different views of the facilities required to construct and operate a commercial fusion power plant. The major facilities on this development path include, however, the next step device ITER, which is currently under construction as an international project, a fusion material irradiation facility like IFMIF, which is required to develop and qualify materials for high fluence irradiations, and, subsequently, a demonstration power plant (DEMO) proving the feasibility of utilizing the fusion process for the production of electricity. As a consequence, the nuclear data development programme has to focus on the needs of ITER, IFMIF and DEMO

  15. Review of fusion synfuels

    International Nuclear Information System (INIS)

    Thermonuclear fusion offers an inexhaustible source of energy for the production of hydrogen from water. Depending on design, electric generation efficiencies of approx. 40 to 60% and hydrogen production efficiencies by high-temperature electrolysis of approx. 50 to 65% are projected for fusion reactors using high-temperatures blankets. Fusion/coal symbiotic systems appear economically promising for the first generation of commercial fusion synfuels plants. Coal production requirements and the environmental effects of large-scale coal usage would be greatly reduced by a fusion/coal system. In the long term, there could be a gradual transition to an inexhaustible energy system based solely on fusion

  16. Gasdynamic Mirror (GDM) Fusion Propulsion Engine Experiment

    Science.gov (United States)

    1999-01-01

    The Gasdynamic Mirror, or GDM, is an example of a magnetic mirror-based fusion propulsion system. Its design is primarily consisting of a long slender solenoid surrounding a vacuum chamber that contains plasma. The bulk of the fusion plasma is confined by magnetic field generated by a series of toroidal-shaped magnets in the center section of the device. the purpose of the GDM Fusion Propulsion Experiment is to confirm the feasibility of the concept and to demonstrate many of the operational characteristics of a full-size plasma can be confined within the desired physical configuration and still reman stable. This image shows an engineer from Propulsion Research Technologies Division at Marshall Space Flight Center inspecting solenoid magnets-A, an integrate part of the Gasdynamic Mirror Fusion Propulsion Engine Experiment.

  17. Environmental Development Plan (EDP). Magnetic fusion program

    International Nuclear Information System (INIS)

    The Environmental Development Plan (EDP) for magnetic fusion briefly describes the present status of this energy technology and identifies potential areas of concern relevant to the health and safety of workers, the general public, and the natural and man-made environment. It also addresses socioeconomic implications. This plan identifies research and development needed to solve anticipated problems in a timely fashion so that design and operational decisions can be made with reasonably relevant data on which to base such decisions. The principal Environmental Health and Safety (EH and S) concern is radiation exposure resulting directly and indirectly from the deuterium-tritium fusion reaction to be used in early fusion devices. Potentials for personnel and environmental exposure to tritium and neutron-activated materials necessitate special consideration in the selection of materials and development of techniques to minimize escape of radioactivity and ameliorate the consequences of contamination events. The potential for accidents is reviewed in some detail. The presence of magnetic fields up to several hundred Gauss in occupied areas of magnetic fusion reactors raises the question of possible health consequences. Magnetic fusion reactors may require large amounts of special materials whose price and availability must be considered. This EDP addresses only EH and S issues relevant to first generation, pure fusion, central electric power stations for commercial applications. It does not consider possible alternate, nonelectrical applications or fusion-fission hybrids

  18. Fission--fusion systems: classification and critique

    International Nuclear Information System (INIS)

    A useful classification scheme for hybrid systems is described and some common features that the scheme makes apparent are pointed out. The early history of fusion-fission systems is reviewed. Some designs are described along with advantages and disadvantages of each. The extension to low and moderate Q devices is noted. (U.S.)

  19. Fusion Canada issue 23

    International Nuclear Information System (INIS)

    A short bulletin from the National Fusion Program highlighting in this issue TdeV tokamak updates, fusion research in Korea, CCFM program review, TdeV divertor plasma, and CFFTP program review. 4 figs

  20. Fusion Canada issue 27

    International Nuclear Information System (INIS)

    A short bulletin from the National Fusion Program highlighting in this issue ITER reactor siting, a major upgrade for TdeV tokamak, Ceramic Breeders: new tritium mapping technique and Joint Fusion Symposium. 2 figs

  1. Fusion Canada issue 20

    International Nuclear Information System (INIS)

    Fusion Canada's publication of the National Fusion Program. Included in this issue is the CFFTP Industrial Impact Study, CCFM/TdeV Update:helium pumping, research funds, and deuterium in beryllium - high temperature behaviour. 3 figs

  2. Fusion Canada issue 6

    International Nuclear Information System (INIS)

    A short bulletin from the National Fusion Program. Included in this issue is a funding report for CFFTP, a technical update for Tokamak de Varennes and a network for university research by the National Fusion Program. 4 figs

  3. Bemerkungen zur "kalten Fusion"

    OpenAIRE

    Kuehne, Rainer W.

    2006-01-01

    Steven Jones et al. reported to have observed nuclear fusion at room temperature. They observed this "cold fusion" by electrolyzing heavy water. Later experiments confirmed these observations. These experiments confirmed the generation of strong electric fields within the deuterided metals. These electric fields accelerate the deuterons to keV energies and allow the observed nuclear fusion. Roman Sioda and I suggested a theoretical description of this nuclear fusion. Our "extended micro hot f...

  4. The role of energetic particles in fusion plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Pinches, S D [Max-Planck Institut fuer Plasmaphysik, EURATOM-Assoziation, Boltzmannstrasse 2, D-85748 Garching (Germany); Berk, H L [Institute for Fusion Studies, University of Texas at Austin, Austin, TX, 78712 (United States); Borba, D N [Centro de Fusao Nuclear, Associacao EURATOM/IST, Instituto Superior Tecnico, Av Rovisco Pais, 1049-001 Lisbon (Portugal); Breizman, B N [Institute for Fusion Studies, University of Texas at Austin, Austin, TX, 78712 (United States); Briguglio, S [Associazione EURATOM-ENEA sulla Fusione, Via E Fermi 45, CP 65-00044 Frascati (Italy); Fasoli, A [CRPP, EPFL, CH 1015 Lausanne (Switzerland); Fogaccia, G [Associazione EURATOM-ENEA sulla Fusione, Via E Fermi 45, CP 65-00044 Frascati (Italy); Gryaznevich, M P [EURATOM/UKAEA Fusion Association, Culham Science Centre, OX14 3DB (United Kingdom); Kiptily, V [EURATOM/UKAEA Fusion Association, Culham Science Centre, OX14 3DB (United Kingdom); Mantsinen, M J [Helsinki University of Technology, Association Euratom-Tekes (Finland); Sharapov, S E [EURATOM/UKAEA Fusion Association, Culham Science Centre, OX14 3DB (United Kingdom); Testa, D [CRPP, EPFL, CH 1015 Lausanne (Switzerland); Vann, R G L [Department of Physics, University of Warwick, Coventry, CV4 7AL (United Kingdom); Vlad, G [Associazione EURATOM-ENEA sulla Fusione, Via E Fermi 45, CP 65-00044 Frascati (Italy); Zonca, F [Associazione EURATOM-ENEA sulla Fusione, Via E Fermi 45, CP 65-00044 Frascati (Italy)

    2004-12-01

    In the burning fusion plasmas of next step devices such as ITER (2001 ITER-FEAT Outline Design Report IAEA/ITER EDA/DS/18 (Vienna: IAEA) p 21), the majority of the heating of the fusing fuel will come from the plasma self-heating by fusion born {alpha} -particles. Recent advances in theoretical understanding, together with the development of new diagnostic techniques, make this a timely opportunity to survey the role of energetic particles in fusion plasmas and how it projects to future burning plasma devices.

  5. Fusion technology program

    International Nuclear Information System (INIS)

    The report summarizes work performed in the following areas: system and safety studies for fusion reactors; nuclear data for fusion reactors; neutronics calculations for fusion reactors; radiation damage of vanadium alloys and stainless steel 316; facility for in-pile crack growth measurement; niobium tin magnet for Sultan - stage II; development of NET conductor; and development of ceramic tritium breeding materials

  6. Cold fusion research

    International Nuclear Information System (INIS)

    I am pleased to forward to you the Final Report of the Cold Fusion Panel. This report reviews the current status of cold fusion and includes major chapters on Calorimetry and Excess Heat, Fusion Products and Materials Characterization. In addition, the report makes a number of conclusions and recommendations, as requested by the Secretary of Energy

  7. Towards cognitive image fusion

    NARCIS (Netherlands)

    Toet, A.; Hogervorst, M.A.; Nikolov, S.G.; Lewis, J.J.; Dixon, T.D.; Bull, D.R.; Canagarajah, C.N.

    2010-01-01

    The increasing availability and deployment of imaging sensors operating in multiple spectral bands has led to a large research effort in image fusion, resulting in a plethora of pixel-level image fusion algorithms. However, the cognitive aspects of multisensor image fusion have not received much att

  8. Towards cognitive image fusion

    NARCIS (Netherlands)

    Toet, A.; Hogervorst, M.A.; Nikolov, S.G.; Lewis, J.; Dixon, T.; Bull, D.; Canagarajah, N.

    2007-01-01

    The increasing availability and deployment of imaging sensors operating in multiple spectral bands has led to a large research effort in image fusion, resulting in a plethora of pixel-level image fusion algorithms. However, the cognitive aspects of multisensor image fusion have not received much att

  9. Fusion Canada issue 18

    International Nuclear Information System (INIS)

    A short bulletin from the National Fusion Program. Included in this issue is a report on the ITER agreement signed with the EDA, the robotic maintenance for NET, the CFFTP Fusion Pilot Study, the new IEA joint programs on environment, safety and economic aspects of fusion power, and a review by the CCFM advisory committee. 3 figs

  10. Fusion Canada issue 17

    International Nuclear Information System (INIS)

    A short bulletin from the National Fusion Program. Included in this issue is a report on increased funding for the Canadian Fusion Program, news of the compact Toroid fuelling gun, an update on Tokamak de Varennes, the Canada - U.S. fusion meeting, measurements of plasma flow velocity, and replaceable Tokamak divertors. 4 figs

  11. Magneto-Inertial Fusion

    International Nuclear Information System (INIS)

    In this community white paper, we describe an approach to achieving fusion which employs a hybrid of elements from the traditional magnetic and inertial fusion concepts, called magneto-inertial fusion (MIF). The status of MIF research in North America at multiple institutions is summarized including recent progress, research opportunities, and future plans

  12. Tritium monitor for fusion reactors

    International Nuclear Information System (INIS)

    This report describes the design, operation, and performance of a flow-through ion-chamber instrument designed to measure tritium concentrations in air containing 13N, 16N, and 41Ar produced by neutrons generated by D-T fusion devices. The instrument employs a chamber assembly consisting of two coaxial ionization chambers. The inner chamber is the flow-through measuring chamber and the outer chamber is used for current subtraction. A thin wall common to both chambers is opaque to the tritium betas. Currents produced in the two chambers by higher energy radiation are automatically subtracted, leaving only the current due to tritium

  13. Thermal Resonance Fusion

    OpenAIRE

    Dong, Bao-Guo

    2015-01-01

    We first show a possible mechanism to create a new type of nuclear fusion, thermal resonance fusion, i.e. low energy nuclear fusion with thermal resonance of light nuclei or atoms, such as deuterium or tritium. The fusion of two light nuclei has to overcome the Coulomb barrier between these two nuclei to reach up to the interacting region of nuclear force. We found nuclear fusion could be realized with thermal vibrations of crystal lattice atoms coupling with light atoms at low energy by reso...

  14. Fusion applications study: FAME

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, K.R.

    1986-01-01

    Fusion has a wide spectrum of applications that appear technically possible and may become economically feasible. Near-term (approx. 2000) application for production of nuclear fuels and useful radioisotopes is an economically attractive possibility as soon as fusion is ready. Electricity production will remain a prime, large-scale application of fusion. In the longer term, as fossil fuels dwindle, production of hydrogen could become a major application. Additional applications some of which have not even been conceived of yet, will add to this potential richness and diversity of fusion. It is the purpose of the fusion applications study - FMAE - to innovate, investigate, and evaluate these potential applications.

  15. Magnetized target fusion and fusion propulsion.

    Energy Technology Data Exchange (ETDEWEB)

    Kirkpatrick, R. C. (Ronald C.)

    2001-01-01

    Magnetized target fusion (MTF) is a thermonuclear fusion concept that is intermediate between the two mainline approaches, magnetic confinement and inertial confinement fusion (MCF and ICF). MTF incorporates some aspects of each and offers advantages over each of the mainline approaches. First, it provides a means of reducing the driver power requirements, thereby admitting a wider range of drivers than ICF. Second, the magnetic field is only used for insulation, not confinement, and the plasma is wall confined, so that plasma instabilities are traded in for hydrodynamic instabilities. However, the degree of compression required to reach fusion conditions is lower than for ICF, so that hydrodynamic instabilities are much less threatening. The standoff driver innovation proposes to dynamically form the target plasma and a gaseous shell that compresses and confines the target plasma. Therefore, fusion target fabrication is traded in for a multiplicity of plasma guns, which must work in synchrony. The standoff driver embodiment of MTF leads to a fusion propulsion system concept that is potentially compact and lightweight. We will discuss the underlying physics of MTF and some of the details of the fusion propulsion concept using the standoff driver approach. We discuss here the optimization of an MTF target design for space propulsion.

  16. 23rd IAEA Fusion Energy Conference: summary of sessions EX/C and ICC

    International Nuclear Information System (INIS)

    An overview is given of recent experimental results in the areas of innovative confinement concepts, operational scenarios and confinement experiments as presented at the 2010 IAEA Fusion Energy Conference. Important new findings are presented from fusion devices worldwide, with a strong focus towards the scientific and technical issues associated with ITER and W7-X devices, presently under construction.

  17. 23rd IAEA Fusion Energy Conference: Summary Of Sessions EX/C and ICC

    International Nuclear Information System (INIS)

    An overview is given of recent experimental results in the areas of innovative confinement concepts, operational scenarios and confinement experiments as presented at the 2010 IAEA Fusion Energy Conference. Important new findings are presented from fusion devices worldwide, with a strong focus towards the scientific and technical issues associated with ITER and W7-X devices, presently under construction.

  18. 23rd IAEA Fusion Energy Conference: Summary Of Sessions EX/C and ICC

    Energy Technology Data Exchange (ETDEWEB)

    Hawryluk, R J [PPPL

    2011-01-05

    An overview is given of recent experimental results in the areas of innovative confinement concepts, operational scenarios and confinement experiments as presented at the 2010 IAEA Fusion Energy Conference. Important new findings are presented from fusion devices worldwide, with a strong focus towards the scientific and technical issues associated with ITER and W7-X devices, presently under construction.

  19. Viral membrane fusion

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, Stephen C., E-mail: harrison@crystal.harvard.edu

    2015-05-15

    Membrane fusion is an essential step when enveloped viruses enter cells. Lipid bilayer fusion requires catalysis to overcome a high kinetic barrier; viral fusion proteins are the agents that fulfill this catalytic function. Despite a variety of molecular architectures, these proteins facilitate fusion by essentially the same generic mechanism. Stimulated by a signal associated with arrival at the cell to be infected (e.g., receptor or co-receptor binding, proton binding in an endosome), they undergo a series of conformational changes. A hydrophobic segment (a “fusion loop” or “fusion peptide”) engages the target-cell membrane and collapse of the bridging intermediate thus formed draws the two membranes (virus and cell) together. We know of three structural classes for viral fusion proteins. Structures for both pre- and postfusion conformations of illustrate the beginning and end points of a process that can be probed by single-virion measurements of fusion kinetics. - Highlights: • Viral fusion proteins overcome the high energy barrier to lipid bilayer merger. • Different molecular structures but the same catalytic mechanism. • Review describes properties of three known fusion-protein structural classes. • Single-virion fusion experiments elucidate mechanism.

  20. Viral membrane fusion

    International Nuclear Information System (INIS)

    Membrane fusion is an essential step when enveloped viruses enter cells. Lipid bilayer fusion requires catalysis to overcome a high kinetic barrier; viral fusion proteins are the agents that fulfill this catalytic function. Despite a variety of molecular architectures, these proteins facilitate fusion by essentially the same generic mechanism. Stimulated by a signal associated with arrival at the cell to be infected (e.g., receptor or co-receptor binding, proton binding in an endosome), they undergo a series of conformational changes. A hydrophobic segment (a “fusion loop” or “fusion peptide”) engages the target-cell membrane and collapse of the bridging intermediate thus formed draws the two membranes (virus and cell) together. We know of three structural classes for viral fusion proteins. Structures for both pre- and postfusion conformations of illustrate the beginning and end points of a process that can be probed by single-virion measurements of fusion kinetics. - Highlights: • Viral fusion proteins overcome the high energy barrier to lipid bilayer merger. • Different molecular structures but the same catalytic mechanism. • Review describes properties of three known fusion-protein structural classes. • Single-virion fusion experiments elucidate mechanism

  1. The fusion breeder

    International Nuclear Information System (INIS)

    The fusion breeder is a fusion reactor designed with special blankets to maximize the transmutation by 14 MeV neutrons of uranium-238 to plutonium or thorium to uranium-233 for use as a fuel for fission reactors. Breeding fissile fuels has not been a goal of the U.S. fusion energy program. This paper suggests it is time for a policy change to make the fusion breeder a goal of the U.S. fusion program and the U.S. nuclear energy program. There is wide agreement that many approaches will work and will produce fuel for five equal-sized LWRs, and some approach as many as 20 LWRs at electricity costs within 20% of those at today's price of uranium ($30/lb of U3O8). The blankets designed to suppress fissioning, called symbiotes, fusion fuel factories, or just fusion breeders, will have safety characteristics more like pure fusion reactors and will support as many as 15 equal power LWRs. The blankets designed to maximize fast fission of fertile material will have safety characteristics more like fission reactors and will support 5 LWRs. This author strongly recommends development of the fission suppressed blanket type, a point of view not agreed upon by everyone. There is, however, wide agreement that, to meet the market price for uranium which would result in LWR electricity within 20% of today's cost with either blanket type, fusion components can cost severalfold more than would be allowed for pure fusion to meet the goal of making electricity alone at 20% over today's fission costs. Also widely agreed is that the critical-pathitem for the fusion breeder is fusion development itself; however, development of fusion breeder specific items (blankets, fuel cycle) should be started now in order to have the fusion breeder by the time the rise in uranium prices forces other more costly choices

  2. Fusion advanced studies Torus

    International Nuclear Information System (INIS)

    The successful development of ITER and DEMO scenarios requires preparatory activities on devices that are smaller than ITER, sufficiently flexible and capable of investigating the peculiar physics of burning plasma conditions. The aim of the Fusion Advanced Studies Torus (FAST) proposal [2.1] (formerly FT3 [2.2]) is to show that the preparation of ITER scenarios and the development of new expertise for the DEMO design and RD can be effectively implemented on a new facility. FAST will a) operate with deuterium plasmas, thereby avoiding problems associated with tritium, and allow investigation of nonlinear dynamics (which are important for understanding alpha particle behaviour in burning plasmas) by using fast ions accelerated by heating and current drive systems; b) work in a dimensionless parameter range close to that of ITER; c) test technical innovative solutions, such as full-tungsten plasma-facing components and an advanced liquid metal divertor target for the first wall/divertor, directly relevant for ITER and DEMO; d) exploit advanced regimes with a much longer pulse duration than the current diffusion time; e) provide a test bed for ITER and DEMO diagnostics; f) provide an ideal framework for model and numerical code benchmarks, their verification and validation in ITER/ DEMO-relevant plasma conditions

  3. RF accelerators for fusion and strategic defense

    International Nuclear Information System (INIS)

    RF linacs have a place in fusion, either in an auxiliary role for materials testing or for direct drivers in heavy-ion fusion. For SDI, the particle-beam technology is an attractive candidate for discrimination missions and also for lethality missions. The free-electron laser is also a forerunner among the laser candidates. in many ways, there is less physics development required for these devices and there is an existing high-power technology. But in all of these technologies, in order to scale them up and then space-base them, there is an enormous amount of work yet to be done

  4. Materials research for fusion

    Science.gov (United States)

    Knaster, J.; Moeslang, A.; Muroga, T.

    2016-05-01

    Fusion materials research started in the early 1970s following the observation of the degradation of irradiated materials used in the first commercial fission reactors. The technological challenges of fusion energy are intimately linked with the availability of suitable materials capable of reliably withstanding the extremely severe operational conditions of fusion reactors. Although fission and fusion materials exhibit common features, fusion materials research is broader. The harder mono-energetic spectrum associated with the deuterium-tritium fusion neutrons (14.1 MeV compared to average for fission neutrons) releases significant amounts of hydrogen and helium as transmutation products that might lead to a (at present undetermined) degradation of structural materials after a few years of operation. Overcoming the historical lack of a fusion-relevant neutron source for materials testing is an essential pending step in fusion roadmaps. Structural materials development, together with research on functional materials capable of sustaining unprecedented power densities during plasma operation in a fusion reactor, have been the subject of decades of worldwide research efforts underpinning the present maturity of the fusion materials research programme.

  5. Economics of fusion research

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    1977-10-15

    This report provides the results of a study of methods of economic analysis applied to the evaluation of fusion research. The study recognizes that a hierarchy of economic analyses of research programs exists: standard benefit-cost analysis, expected value of R and D information, and expected utility analysis. It is shown that standard benefit-cost analysis, as commonly applied to research programs, is inadequate for the evaluation of a high technology research effort such as fusion research. A methodology for performing an expected value analysis is developed and demonstrated and an overview of an approach to perform an expected utility analysis of fusion research is presented. In addition, a potential benefit of fusion research, not previously identified, is discussed and rough estimates of its magnitude are presented. This benefit deals with the effect of a fusion research program on optimal fossil fuel consumption patterns. The results of this study indicate that it is both appropriate and possible to perform an expected value analysis of fusion research in order to assess the economics of a fusion research program. The results indicate further that the major area of benefits of fusion research is likely due to the impact of a fusion research program on optimal fossil fuel consumption patterns and it is recommended that this benefit be included in future assessments of fusion research economics.

  6. Economics of fusion research

    International Nuclear Information System (INIS)

    This report provides the results of a study of methods of economic analysis applied to the evaluation of fusion research. The study recognizes that a hierarchy of economic analyses of research programs exists: standard benefit-cost analysis, expected value of R and D information, and expected utility analysis. It is shown that standard benefit-cost analysis, as commonly applied to research programs, is inadequate for the evaluation of a high technology research effort such as fusion research. A methodology for performing an expected value analysis is developed and demonstrated and an overview of an approach to perform an expected utility analysis of fusion research is presented. In addition, a potential benefit of fusion research, not previously identified, is discussed and rough estimates of its magnitude are presented. This benefit deals with the effect of a fusion research program on optimal fossil fuel consumption patterns. The results of this study indicate that it is both appropriate and possible to perform an expected value analysis of fusion research in order to assess the economics of a fusion research program. The results indicate further that the major area of benefits of fusion research is likely due to the impact of a fusion research program on optimal fossil fuel consumption patterns and it is recommended that this benefit be included in future assessments of fusion research economics

  7. Recycling fusion materials

    International Nuclear Information System (INIS)

    The inherent safety and environmental advantages of fusion power in comparison with other energy sources play an important role in the public acceptance. No waste burden for future generations is therefore one of the main arguments to decide for fusion power. The waste issue has thus been studied in several documents and the final conclusion of which it is stated that there is no permanent disposal waste needed if recycling is applied. But recycling of fusion reactor materials is far to be obvious regarding mostly the very high specific activity of the materials to be handled, the types of materials and the presence of tritium. The main objective of research performed by SCK-CEN is to study the possible ways of recycling fusion materials and analyse the challenges of the materials management from fusion reactors, based on current practices used in fission reactors and the requirements for the manufacture of fusion equipment

  8. Muon Catalyzed Fusion

    Science.gov (United States)

    Armour, Edward A.G.

    2007-01-01

    Muon catalyzed fusion is a process in which a negatively charged muon combines with two nuclei of isotopes of hydrogen, e.g, a proton and a deuteron or a deuteron and a triton, to form a muonic molecular ion in which the binding is so tight that nuclear fusion occurs. The muon is normally released after fusion has taken place and so can catalyze further fusions. As the muon has a mean lifetime of 2.2 microseconds, this is the maximum period over which a muon can participate in this process. This article gives an outline of the history of muon catalyzed fusion from 1947, when it was first realised that such a process might occur, to the present day. It includes a description of the contribution that Drachrnan has made to the theory of muon catalyzed fusion and the influence this has had on the author's research.

  9. Fusion of Nonionic Vesicles

    DEFF Research Database (Denmark)

    Bulut, Sanja; Oskolkova, M. Z.; Schweins, R.;

    2010-01-01

    We present an experimental study of vesicle fusion using light and neutron scattering to monitor fusion events. Vesicles are reproducibly formed with an extrusion procedure using an single amphiphile triethylene glycol mono-n-decyl ether in water. They show long-term stability for temperatures...... around 20 C, but at temperatures above 26 C we observe an increase in the scattered intensity due to fusion. The system is unusually well suited for the study of basic mechanisms of vesicle fusion. The vesicles are flexible with a bending rigidity of only a few k(H)T. The monolayer spontaneous curvature......, Ho, depends strongly on temperature in a known way and is thus tunable. For temperatures where H-0 > 0 vesicles tyre long-term stable, while in the range H-0 fusion rate increases the more negative the Spontaneous curvature Through a quantitative;analysis of the fusion rate we arrive tit...

  10. Status of fusion maintenance

    International Nuclear Information System (INIS)

    Effective maintenance will be an essential ingredient in determining fusion system productivity. This level of productivity will result only after close attention is paid to the entire system as an entity and appropriate integration of the elements is made. The status of fusion maintenance is reviewed in the context of the entire system. While there are many challenging developmental tasks ahead in fusion maintenance, the required technologies are available in several high-technology industries, including nuclear fission

  11. Filter Bank Fusion frames

    OpenAIRE

    Chebira, Amina; Fickus, Matthew; Mixon, Dustin G.

    2011-01-01

    In this paper we characterize and construct novel oversampled filter banks implementing fusion frames. A fusion frame is a sequence of orthogonal projection operators whose sum can be inverted in a numerically stable way. When properly designed, fusion frames can provide redundant encodings of signals which are optimally robust against certain types of noise and erasures. However, up to this point, few implementable constructions of such frames were known; we show how to construct them using ...

  12. Fusion reactor research

    International Nuclear Information System (INIS)

    This work covers four separate areas: (1) development of technology for processing liquid lithium from blankets, (2) investigation of hydrogen isotope permeation in candidate structural metals and alloys for near-term fusion reactors, (3) analytical studies encompassing fusion reactor thermal hydraulics, tritium facility design, and fusion reactor safety, and (4) studies involving dosimetry and damage analysis. Recent accomplishments in each of these areas are summarized

  13. Fusion11 Conference Summary

    International Nuclear Information System (INIS)

    This document is a summary account of the conference Fusion11, held in Saint Malo, France, May 2-6, 2011. There were 77 talks by experts in the field. The author comments on a few of the physics topics discussed during the presentations. His comments concern: new facilities, fusion cross-sections (particularly the barrier penetration model, optical potentials, the channel coupling, the barrier distribution, fusion hindrance and transfer channels), rare isotopes, clusters and superheavy elements

  14. Magnetic fusion technology

    CERN Document Server

    Dolan, Thomas J

    2014-01-01

    Magnetic Fusion Technology describes the technologies that are required for successful development of nuclear fusion power plants using strong magnetic fields. These technologies include: ? magnet systems, ? plasma heating systems, ? control systems, ? energy conversion systems, ? advanced materials development, ? vacuum systems, ? cryogenic systems, ? plasma diagnostics, ? safety systems, and ? power plant design studies. Magnetic Fusion Technology will be useful to students and to specialists working in energy research.

  15. Fusion research principles

    CERN Document Server

    Dolan, Thomas James

    2013-01-01

    Fusion Research, Volume I: Principles provides a general description of the methods and problems of fusion research. The book contains three main parts: Principles, Experiments, and Technology. The Principles part describes the conditions necessary for a fusion reaction, as well as the fundamentals of plasma confinement, heating, and diagnostics. The Experiments part details about forty plasma confinement schemes and experiments. The last part explores various engineering problems associated with reactor design, vacuum and magnet systems, materials, plasma purity, fueling, blankets, neutronics

  16. Magnetic fusion reactor economics

    International Nuclear Information System (INIS)

    An almost primordial trend in the conversion and use of energy is an increased complexity and cost of conversion systems designed to utilize cheaper and more-abundant fuels; this trend is exemplified by the progression fossil fission → fusion. The present projections of the latter indicate that capital costs of the fusion ''burner'' far exceed any commensurate savings associated with the cheapest and most-abundant of fuels. These projections suggest competitive fusion power only if internal costs associate with the use of fossil or fission fuels emerge to make them either uneconomic, unacceptable, or both with respect to expensive fusion systems. This ''implementation-by-default'' plan for fusion is re-examined by identifying in general terms fusion power-plant embodiments that might compete favorably under conditions where internal costs (both economic and environmental) of fossil and/or fission are not as great as is needed to justify the contemporary vision for fusion power. Competitive fusion power in this context will require a significant broadening of an overly focused program to explore the physics and simbiotic technologies leading to more compact, simplified, and efficient plasma-confinement configurations that reside at the heart of an attractive fusion power plant

  17. Frontiers in fusion research

    CERN Document Server

    Kikuchi, Mitsuru

    2011-01-01

    Frontiers in Fusion Research provides a systematic overview of the latest physical principles of fusion and plasma confinement. It is primarily devoted to the principle of magnetic plasma confinement, that has been systematized through 50 years of fusion research. Frontiers in Fusion Research begins with an introduction to the study of plasma, discussing the astronomical birth of hydrogen energy and the beginnings of human attempts to harness the Sun's energy for use on Earth. It moves on to chapters that cover a variety of topics such as: * charged particle motion, * plasma kinetic theory, *

  18. Fusion reactor safety

    International Nuclear Information System (INIS)

    Nuclear fusion could soon become a viable energy source. Work in plasma physics, fusion technology and fusion safety is progressing rapidly in a number of Member States and international collaboration continues on work aiming at the demonstration of fusion power generation. Safety of fusion reactors and technological and radiological aspects of waste management are important aspects in the development and design of fusion machines. In order to provide an international forum to review and discuss the status and the progress made since 1983 in programmes related to operational safety aspects of fusion reactors, their waste management and decommissioning concepts, the IAEA had organized the Technical Committee on ''Fusion Reactor Safety'' in Culham, 3-7 November 1986. All presentations of this meeting were divided into four sessions: 1. Statements on National-International Fusion Safety Programmes (5 papers); 2. Operation and System Safety (15 papers); 3. Waste Management and Decommissioning (5 papers); 4. Environmental Impacts (6 papers). A separate abstract was prepared for each of these 31 papers. Refs, figs, tabs

  19. Laser fusion program overview

    International Nuclear Information System (INIS)

    This program is structured to proceed through a series of well defined fusion milestones to proof of the scientific feasibility, of laser fusion with the Shiva Nova system. Concurrently, those key technical areas, such as advanced lasers, which are required to progress beyond proof of feasibility, are being studied. We have identified and quantified the opportunities and key technical issues in military applications, such as weapons effects simulations, and in civilian applications, such as central-station electric power production. We summarize the current status and future plans for the laser fusion program at LLL, emphasizing the civilian applications of laser fusion

  20. Linear magnetic fusion: summary of Seattle workshop

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-12-01

    The linear-geometry magnetic confinement concept is among the oldest used in the study of high-temperature plasmas. However, it has generally been discounted as a suitable approach for demonstrating controlled thermonuclear fusion because rapid losses from the plasma column ends necessitate very long devices. Further, the losses and how to overcome them have not yet received parametric experimental study, nor do facilities exist with which such definitive experiments could be performed. Nonetheless, the important positive attribute, simplicity, together with the appearance of several ideas for reducing end losses have provided motivation for continued research on linear magnetic fusion (LMF). These motivations led to the LMF workshop, held in Seattle, March 9--11, 1977, which explored the potential of LMF as an alternate approach to fusion. A broad range of LMF aspects were addressed, including radial and axial losses, stability and equilibrium, heating, technology, and reactor considerations. The conclusions drawn at the workshop are summarized.

  1. The 22nd symposium on fusion technology

    International Nuclear Information System (INIS)

    The Symposium on Fusion Technology (SOFT) was held at the Marina Congress Center, Helsinki, Finland, from 9th to 13th September 2002. It was organized by the Association Euratom-Tekes and hosted by the VTT Technical Research Centre of Finland, Fortum Nuclear Services Ltd. and PrizzTech Oy. The sympoisum included invited and contributed papers as well as poster presentations and an industrial and R and D exhibition. The main topics included all aspects of fusion technology: current and future devices, plasma facing components, plasma heating and current drive, plasma engineering and control, diagnostics, data acquisition and remote participation, magnets and power supplies, fuel cycle, remote handling, vessel, blanket and shield, safety and environment, power plant and socio-economic studies, inertial fusion energy, and transfer of technology. The number of invited speakers was 15, selected presentations 22 and poster presentations 404. The abstracts of the presentations and posters are included in this book. (orig.)

  2. Linear magnetic fusion: summary of Seattle workshop

    International Nuclear Information System (INIS)

    The linear-geometry magnetic confinement concept is among the oldest used in the study of high-temperature plasmas. However, it has generally been discounted as a suitable approach for demonstrating controlled thermonuclear fusion because rapid losses from the plasma column ends necessitate very long devices. Further, the losses and how to overcome them have not yet received parametric experimental study, nor do facilities exist with which such definitive experiments could be performed. Nonetheless, the important positive attribute, simplicity, together with the appearance of several ideas for reducing end losses have provided motivation for continued research on linear magnetic fusion (LMF). These motivations led to the LMF workshop, held in Seattle, March 9--11, 1977, which explored the potential of LMF as an alternate approach to fusion. A broad range of LMF aspects were addressed, including radial and axial losses, stability and equilibrium, heating, technology, and reactor considerations. The conclusions drawn at the workshop are summarized

  3. Fusion tritium program in the United States

    International Nuclear Information System (INIS)

    The fusion technology development program for tritium in the US is centered around the Tritium Systems Test Assembly (TSTA) at Los Alamos National Labortory. Objectives of this project are to develop and demonstrate the fuel cycle for processing the reactor exhaust gas (unburned deuterium and tritium plus impurities), and the necessary personnel and environemntal protection systems for the next generation of fusion devices. The TSTA is a full-scale system for an INTOR/ITER sized machine. That is, TSTA has the capacity to process tritium in a closed loop mode at the rate of 1 kg per day, requiring a tritium inventory of about 100 g. The TSTA program also interacts with all other tritium-related fusion technology programs in the US and all major programs abroad. This report is a summary of the results and interactions of the TSTA program since a previous summary was published and an overview of related tritium programs

  4. Membrane fusion machines of paramyxoviruses: capture of intermediates of fusion

    OpenAIRE

    Charles J Russell; Theodore S Jardetzky; Lamb, Robert A.

    2001-01-01

    Peptides derived from heptad repeat regions adjacent to the fusion peptide and transmembrane domains of many viral fusion proteins form stable helical bundles and inhibit fusion specifically. Paramyxovirus SV5 fusion (F) protein-mediated fusion and its inhibition by the peptides N-1 and C-1 were analyzed. The temperature dependence of fusion by F suggests that thermal energy, destabilizing proline residues and receptor binding by the hemagglutinin–neuraminidase (HN) protein collectively contr...

  5. Estimation of Total Fusion Reactivity and Contribution from Suprathermal Tail using 3-parameter Dagum Ion Speed Distribution

    CERN Document Server

    Majumdar, Rudrodip

    2016-01-01

    Thermonuclear fusion reactivity is a pivotal quantity in the studies pertaining to fusion energy production, fusion ignition and energy break-even analysis in both inertially and magnetically confined systems. Although nuclear fusion reactivity and thereafter the power density of a magnetic confinement fusion reactor and the fulfillment of the ignition criterion are quantitatively determined by assuming the ion speed distribution to be Maxwellian, a significant population of suprathermal ions,with energy greater than the quasi-Maxwellian background plasma temperature, is generated by the fusion reactions and auxiliary heating in the fusion devices. In the current work 3-parameter Dagum speed distribution has been introduced to include the effect of suprathermal ion population in the calculation of total fusion reactivity. The extent of enhancement in the fusion reactivity, at different back-ground temperatures of the fusion fuel plasma, due to the suprathermal ion population has also been discussed.

  6. 桥形椎间锁定融合器(ROI-C)在颈椎病前路减压融合术中应用的临床研究%Bridge Intervertebral Fusion Lock Device (ROI - C) in Cervical Spondylosis Anterior Decompression Fusion Application in Clinical Research

    Institute of Scientific and Technical Information of China (English)

    何彦国

    2015-01-01

    objective to study and analyze the bridge between vertebra locking fusion in cervical spondylosis application of the clinical effect of anterior decompression fusion.Methods to collect a total of 100 patients with cervical spondylosis, randomly divided into observation group and control group, the 50 cases, control group patients with cage combined anterior internal fixation with titanium plate, observation group carries on the bridge a locked intervertebral fusion, both before and after operation for X-ray inspection, two group of patients with cervical physiological curvature and lesion intervertebral height, the incidence of dysphagia observation and comparison.Results the observation group of patients with cervical physiological curvature of the improvement of the degree of improvement and pathology of the intervertebral height was significantly higher than that of control group, the incidence of dysphagia in patients with significantly lower than the control group,P<0.05).Conclusion in the cervical spine anterior decompression fusion, application of bridge intervertebral target fusion can make cervical physiological curvature and pathological changes of intervertebral height effectively restore, and lower the incidence of postoperative patients with dysphagia, shorter operation time, simple operation, is worthy of popularization and application.%目的:研究和分析桥形椎间锁定融合器在颈椎病前路减压融合术中应用的临床效果。方法收集颈椎病患者共100例,随机分为观察组与对照组,各50例,对照组患者进行cage联合前路钛板内固定,观察组进行桥形椎间锁定融合器固定,手术前后均进行了X线片的检查,将两组患者的颈椎生理曲度、病变椎间高度、吞咽困难发生率等进行观察和对比。结果观察组患者的颈椎生理曲度的改善程度、病变椎间高度的改善程度明显高于对照组,患者的吞咽困难发生

  7. Contribution of Beam-Driven Fusion in Pure Deuterium Plasma

    International Nuclear Information System (INIS)

    The urgent and ultimate goal of the fusion research is to accomplish a fusion reactor functioning practically. Though the first fusion reactor is expected to use a DT fuel, most fusion researchers have studied H or D plasmas instead of DT plasma because of radioactivity and resource problems. DD plasma experiments, now a usual trend, can give useful information on the fusion plasma physics, tritium retention, alpha particle transport, neutronics, and so on at a safe controlled radiation level. The KSTAR tokamak, all-superconductor world level fusion research device, has been operated with pure deuterium plasmas since the 2010 campaign, however, the thermal fusion reaction rate is still far below significant because of low plasma temperature. The NBI system equipped on the KSTAR tokamak can deliver more than 1.5 MW input power of deuterium neutral beam at 100 keV with one ion source, which have contributed to making H-mode plasmas for several seconds. The next goal of the NBI input power at the 2012 campaign is 3.5 MW with two ion sources. Hot ions generated from the deuterium neutral beam injected into the D plasma can produce beam-driven fusion reactions at a much more notable level than thermal ones. Contribution of deuterium neutral beam injection on the fusion reactions in a D plasma is preliminarily assessed here

  8. Nuclear fusion inside condense matters

    Institute of Scientific and Technical Information of China (English)

    HE Jing-tang

    2007-01-01

    This article describes in detail the nuclear fusion inside condense matters--the Fleischmann-Pons effect, the reproducibility of cold fusions, self-consistentcy of cold fusions and the possible applications.

  9. Fusion Energy Division: Annual progress report, period ending December 31, 1987

    International Nuclear Information System (INIS)

    The Fusion Program of Oak Ridge National Laboratory (ORNL), a major part of the national fusion program, carries out research in nearly all areas of magnetic fusion. Collaboration among staff from ORNL, Martin Marietta Energy Systems, Inc., private industry, the academic community, and other fusion laboratories, in the United States and abroad, is directed toward the development of fusion as an energy source. This report documents the program's achievements during 1987. Issued as the annual progress report of the ORNL Fusion Energy Division, it also contains information from components of the Fusion Program that are external to the division (about 15% of the program effort). The areas addressed by the Fusion Program include the following: experimental and theoretical research on magnetic confinement concepts, engineering and physics of existing and planned devices, development and testing of diagnostic tools and techniques in support of experiments, assembly and distribution to the fusion community of databases on atomic physics and radiation effects, development and testing of technologies for heating and fueling fusion plasmas, development and testing of superconducting magnets for containing fusion plasmas, and development and testing of materials for fusion devices. Highlights from program activities are included in this report. 126 figs., 15 tabs

  10. Fusion Energy Division progress report, 1 January 1990--31 December 1991

    International Nuclear Information System (INIS)

    The Fusion Program of the Oak Ridge National Laboratory (ORNL), a major part of the national fusion program, encompasses nearly all areas of magnetic fusion research. The program is directed toward the development of fusion as an economical and environmentally attractive energy source for the future. The program involves staff from ORNL, Martin Marietta Energy systems, Inc., private industry, the academic community, and other fusion laboratories, in the US and abroad. Achievements resulting from this collaboration are documented in this report, which is issued as the progress report of the ORNL Fusion Energy Division; it also contains information from components for the Fusion Program that are external to the division (about 15% of the program effort). The areas addressed by the Fusion Program include the following: experimental and theoretical research on magnetic confinement concepts; engineering and physics of existing and planned devices, including remote handling; development and testing of diagnostic tools and techniques in support of experiments; assembly and distribution to the fusion community of databases on atomic physics and radiation effects; development and testing of technologies for heating and fueling fusion plasmas; development and testing of superconducting magnets for containing fusion plasmas; development and testing of materials for fusion devices; and exploration of opportunities to apply the unique skills, technology, and techniques developed in the course of this work to other areas (about 15% of the Division's activities). Highlights from program activities during 1990 and 1991 are presented

  11. Fusion Energy Division annual progress report, period ending December 31, 1989

    International Nuclear Information System (INIS)

    The Fusion Program of Oak Ridge National Laboratory (ORNL) carries out research in most areas of magnetic confinement fusion. The program is directed toward the development of fusion as an energy source and is a strong and vital component of both the US fusion program and the international fusion community. Issued as the annual progress report of the ORNL Fusion Energy Division, this report also contains information from components of the Fusion Program that are carried out by other ORNL organizations (about 15% of the program effort). The areas addressed by the Fusion Program and discussed in this report include the following: Experimental and theoretical research on magnetic confinement concepts, engineering and physics of existing and planned devices, including remote handling, development and testing of diagnostic tools and techniques in support of experiments, assembly and distribution to the fusion community of databases on atomic physics and radiation effects, development and testing of technologies for heating and fueling fusion plasmas, development and testing of superconducting magnets for containing fusion plasmas, development and testing of materials for fusion devices, and exploration of opportunities to apply the unique skills, technology, and techniques developed in the course of this work to other areas. Highlights from program activities are included in this report

  12. Fusion Energy Division: Annual progress report, period ending December 31, 1987

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, O.B. Jr.; Berry, L.A.; Sheffield, J.

    1988-11-01

    The Fusion Program of Oak Ridge National Laboratory (ORNL), a major part of the national fusion program, carries out research in nearly all areas of magnetic fusion. Collaboration among staff from ORNL, Martin Marietta Energy Systems, Inc., private industry, the academic community, and other fusion laboratories, in the United States and abroad, is directed toward the development of fusion as an energy source. This report documents the program's achievements during 1987. Issued as the annual progress report of the ORNL Fusion Energy Division, it also contains information from components of the Fusion Program that are external to the division (about 15% of the program effort). The areas addressed by the Fusion Program include the following: experimental and theoretical research on magnetic confinement concepts, engineering and physics of existing and planned devices, development and testing of diagnostic tools and techniques in support of experiments, assembly and distribution to the fusion community of databases on atomic physics and radiation effects, development and testing of technologies for heating and fueling fusion plasmas, development and testing of superconducting magnets for containing fusion plasmas, and development and testing of materials for fusion devices. Highlights from program activities are included in this report. 126 figs., 15 tabs.

  13. Fusion Energy Division annual progress report, period ending December 31, 1989

    Energy Technology Data Exchange (ETDEWEB)

    Sheffield, J.; Baker, C.C.; Saltmarsh, M.J.

    1991-07-01

    The Fusion Program of Oak Ridge National Laboratory (ORNL) carries out research in most areas of magnetic confinement fusion. The program is directed toward the development of fusion as an energy source and is a strong and vital component of both the US fusion program and the international fusion community. Issued as the annual progress report of the ORNL Fusion Energy Division, this report also contains information from components of the Fusion Program that are carried out by other ORNL organizations (about 15% of the program effort). The areas addressed by the Fusion Program and discussed in this report include the following: Experimental and theoretical research on magnetic confinement concepts, engineering and physics of existing and planned devices, including remote handling, development and testing of diagnostic tools and techniques in support of experiments, assembly and distribution to the fusion community of databases on atomic physics and radiation effects, development and testing of technologies for heating and fueling fusion plasmas, development and testing of superconducting magnets for containing fusion plasmas, development and testing of materials for fusion devices, and exploration of opportunities to apply the unique skills, technology, and techniques developed in the course of this work to other areas. Highlights from program activities are included in this report.

  14. Fusion Energy Division progress report, 1 January 1990--31 December 1991

    Energy Technology Data Exchange (ETDEWEB)

    Sheffield, J.; Baker, C.C.; Saltmarsh, M.J.

    1994-03-01

    The Fusion Program of the Oak Ridge National Laboratory (ORNL), a major part of the national fusion program, encompasses nearly all areas of magnetic fusion research. The program is directed toward the development of fusion as an economical and environmentally attractive energy source for the future. The program involves staff from ORNL, Martin Marietta Energy systems, Inc., private industry, the academic community, and other fusion laboratories, in the US and abroad. Achievements resulting from this collaboration are documented in this report, which is issued as the progress report of the ORNL Fusion Energy Division; it also contains information from components for the Fusion Program that are external to the division (about 15% of the program effort). The areas addressed by the Fusion Program include the following: experimental and theoretical research on magnetic confinement concepts; engineering and physics of existing and planned devices, including remote handling; development and testing of diagnostic tools and techniques in support of experiments; assembly and distribution to the fusion community of databases on atomic physics and radiation effects; development and testing of technologies for heating and fueling fusion plasmas; development and testing of superconducting magnets for containing fusion plasmas; development and testing of materials for fusion devices; and exploration of opportunities to apply the unique skills, technology, and techniques developed in the course of this work to other areas (about 15% of the Division`s activities). Highlights from program activities during 1990 and 1991 are presented.

  15. Controlled Fusion and Plasma Physics

    International Nuclear Information System (INIS)

    This new book by Kenro Miyamoto provides an up-to-date overview of the status of fusion research and the important parts of the underlying plasma physics at a moment where, due to the start of ITER construction, an important step in fusion research has been made and many new research workers will enter the field. For them, and also for interested graduate students and physicists in other fields, the book provides a good introduction into fusion physics as, on the whole, the presentation of the material is quite appropriate for getting acquainted with the field on the basis of just general knowledge in physics. There is overlap with Miyamoto's earlier book Plasma Physics for Nuclear Fusion (MIT Press, Cambridge, USA, 1989) but only in a few sections on subjects which have not evolved since. The presentation is subdivided into two parts of about equal length. The first part, following a concise survey of the physics basis of thermonuclear fusion and of plasmas in general, covers the various magnetic configurations studied for plasma confinement (tokamak; reversed field pinch; stellarator; mirror-type geometries) and introduces the specific properties of plasmas in these devices. Plasma confinement in tokamaks is treated in particular detail, in compliance with the importance of this field in fusion research. This includes a review of the ITER concept and of the rationale for the choice of ITER's parameters. In the second part, selected topics in fusion plasma physics (macroscopic instabilities; propagation of waves; kinetic effects such as energy transfer between waves and particles including microscopic instabilities as well as plasma heating and current drive; transport phenomena induced by turbulence) are presented systematically. While the emphasis is on displaying the essential physics, deeper theoretical analysis is also provided here. Every chapter is complemented by a few related problems, but only partial hints for their solution are given. A selection of

  16. Investigation of film MHD-flows as applied to the problem of development of liquid metal limiters and collector devices of a divertor in a fusion reactor-tokamak

    International Nuclear Information System (INIS)

    MHD-flows in a horizontal channel of rectangular cross section are investigated. The investigations are performed as applied to the problem of creation of liquid metal limiters and collector devices of a divertor in thermonuclear devices. Experiences have been performed with In-Ga-Sn alloy in the ranges of Froude number 1.3-2.103, Hartmann number 0-4.102, flow rates 0.25-4.2 m/s and magnetic induction 0-1.5 T. It has been found that magnetic field leads to suppression of disturbances on a free flow surface. At low flow rates (up to 1 m/s) and great Hartmann numbers (4.102) the stable flow rate is realized. The stable flow mode is realized as well as with the growth of electric current

  17. Tight p-fusion frames

    OpenAIRE

    Bachoc, Christine; Ehler, Martin

    2012-01-01

    Fusion frames enable signal decompositions into weighted linear subspace components. For positive integers p, we introduce p-fusion frames, a sharpening of the notion of fusion frames. Tight p-fusion frames are closely related to the classical notions of designs and cubature formulas in Grassmann spaces and are analyzed with methods from harmonic analysis in the Grassmannians. We define the p-fusion frame potential, derive bounds for its value, and discuss the connections to tight p-fusion fr...

  18. Fusion of biological membranes

    Indian Academy of Sciences (India)

    K Katsov; M Müller; M Schick

    2005-06-01

    The process of membrane fusion has been examined by Monte Carlo simulation, and is found to be very different than the conventional picture. The differences in mechanism lead to several predictions, in particular that fusion is accompanied by transient leakage. This prediction has recently been verified. Self-consistent field theory is applied to examine the free energy barriers in the different scenarios.

  19. Two Horizons of Fusion

    Science.gov (United States)

    Lo, Mun Ling; Chik, Pakey Pui Man

    2016-01-01

    In this paper, we aim to differentiate the internal and external horizons of "fusion." "Fusion" in the internal horizon relates to the structure and meaning of the object of learning as experienced by the learner. It clarifies the interrelationships among an object's critical features and aspects. It also illuminates the…

  20. Thermal Resonance Fusion

    CERN Document Server

    Dong, Bao-Guo

    2015-01-01

    We first show a possible mechanism to create a new type of nuclear fusion, thermal resonance fusion, i.e. low energy nuclear fusion with thermal resonance of light nuclei or atoms, such as deuterium or tritium. The fusion of two light nuclei has to overcome the Coulomb barrier between these two nuclei to reach up to the interacting region of nuclear force. We found nuclear fusion could be realized with thermal vibrations of crystal lattice atoms coupling with light atoms at low energy by resonance to overcome this Coulomb barrier. Thermal resonances combining with tunnel effects can greatly enhance the probability of the deuterium fusion to the detectable level. Our low energy nuclear fusion mechanism research - thermal resonance fusion mechanism results demonstrate how these light nuclei or atoms, such as deuterium, can be fused in the crystal of metal, such as Ni or alloy, with synthetic thermal vibrations and resonances at different modes and energies experimentally. The probability of tunnel effect at dif...