WorldWideScience

Sample records for ciemat fusion device

  1. Characterization of the Plasma Edge for Technique of Atomic Helium Beam in the CIEMAT Fusion Device

    International Nuclear Information System (INIS)

    In this report, the measurement of Electron Temperature and Density in the Boundary Plasma of TJ-II with a Supersonic Helium Beam Diagnostic and work devoted to the upgrading of this technique are described. Also, simulations of Laser Induced Fluorescence (LIF) studies of level populations of electronically excited He atoms are shown. This last technique is now being installed in the CIEMAT fusion device. (Author )

  2. Development and Testing of Atomic Beam-Based Plasma Edge Diagnostics in the CIEMAT Fusion Devices

    International Nuclear Information System (INIS)

    In this report the development of plasma edge diagnostic based on atomic beam techniques fir their application in the CIEMAT fusion devices is described. The characterisation of the beams in laboratory experiments at the CSIC, together with first results in the Torsatron TJ-II are reported. Two types of beam diagnostics have been developed: a thermal (effusive) Li and a supersonic, pulsed He beams. This work has been carried out in collaboration between the institutions mentioned above under partial financial support by EURATOM. (Author) 17 refs

  3. Characterization of the Plasma Edge for Technique of Atomic Helium Beam in the CIEMAT Fusion Device; Caracterizacion del Borde del Plasma del Dispositivo de Fusion TJ-II del CIEMAT mediante el Diagnostico del Haz Supersonico de Helio

    Energy Technology Data Exchange (ETDEWEB)

    Hidalgo, A.

    2003-07-01

    In this report, the measurement of Electron Temperature and Density in the Boundary Plasma of TJ-II with a Supersonic Helium Beam Diagnostic and work devoted to the upgrading of this technique are described. Also, simulations of Laser Induced Fluorescence (LIF) studies of level populations of electronically excited He atoms are shown. This last technique is now being installed in the CIEMAT fusion device. (Author ) 36 refs.

  4. Euraton-CIEMAT for fusion Association: Annual report 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    This annual report presents the main activities during 1998 in the EURATOM-CIEMAT for the fusion. The goal line of research are: 1. The TJ-II facility 2. Physics Studies 3. Fusion Technology Programme 4. Keep in Touch Activities in ICF at Denim.

  5. Recent progress in thin-film-silicon photovoltaic devices at CIEMAT; Recientes progresos en la tecnologia de dispositivos fotovoltaicos de silicio en lamina delgada en el CIEMAT

    Energy Technology Data Exchange (ETDEWEB)

    Gandia, J. J.; Carabe, J.

    2011-07-01

    Solar photovoltaic energy has evolved in the last 50 years on the basis of the co-existence of two fundamental technological paths: that of wafer-based silicon, dominating the market, and that of thin films, representing an important part of the options for the future of this energy-conversion field. More recently new concepts have gained significance, such as concentration photovoltaic (CPV), dye-sensitised solar cells (DSSC), organic cells, silicon-heterojunction (SHJ) cells and thin-crystalline silicon devices among others. over 90% of all these PV technologies are based on the use of either of the forms of the most abundant element of the earth crust: silicon. CIEMAT, being aware of the relevant role renewable energies and post-vocalic in particular must play in dinging solutions to the energy and environmental problem, has several action lines within this discipline. Among them is the one developed at the laboratory for Deposited-silicon Devices (DSD), entirely devoted to acquiring by own means the technology required for the fabrication of thin-film-silicon-based PV devices in order to be in conditions to give a maximum support to the Spanish industry in this field. Within the context of the historic evolution of PV technology in the world, this paper describes the progress of the DSD lab in the last years, according to a plan aimed at developing technology of the maximum strategic value. such a working scheme, supported by valuable collaborations, has led the group to a reference position in the areas of thin-film-silicon p-i-n devices on glass, silicon-heterojunction cells and p-i-n devices on flexible substrates. (Author) 5 refs.

  6. Ceramics for fusion devices

    International Nuclear Information System (INIS)

    Ceramics are required for a number of applications in fusion devices, among the most critical of which are magnetic coil insulators, windows for RF heating systems, and structural uses. Radiation effects dominate consideration of candidate materials, although good pre-irradiation properties are a requisite. Materials and components can be optimized by careful control of chemical and microstructural content, and application of brittle material design and testing techniques. Future directions for research and development should include further extension of the data base in the areas of electrical, structural, and thermal properties; establishment of a fission neutron/fusion neutron correlation including transmutation gas effects; and development of new materials tailored to meet the specific needs of fusion reactors

  7. Fusion Engineering Device design description

    Energy Technology Data Exchange (ETDEWEB)

    Flanagan, C.A.; Steiner, D.; Smith, G.E.

    1981-12-01

    The US Magnetic Fusion Engineering Act of 1980 calls for the operation of a Fusion Engineering Device (FED) by 1990. It is the intent of the Act that the FED, in combination with other testing facilities, will establish the engineering feasibility of magnetic fusion energy. During 1981, the Fusion Engineering Design Center (FEDC), under the guidance of a Technical Management Board (TMB), developed a baseline design for the FED. This design is summarized herein.

  8. Fusion engineering device design description

    International Nuclear Information System (INIS)

    The US Magnetic Fusion Engineering Act of 1980 calls for the operation of a Fusion Engineering Device (FED) by 1990. It is the intent of the Act that the FED, in combination with other testing facilities, will establish the engineering feasibility of magnetic fusion energy. During 1981, the Fusion Engineering Design Center (FEDC), under the guidance of a Technical Management Board (TMB), developed a baseline design for the FED. This design is summarized herein

  9. Fusion Engineering Device design description

    International Nuclear Information System (INIS)

    The US Magnetic Fusion Engineering Act of 1980 calls for the operation of a Fusion Engineering Device (FED) by 1990. It is the intent of the Act that the FED, in combination with other testing facilities, will establish the engineering feasibility of magnetic fusion energy. During 1981, the Fusion Engineering Design Center (FEDC), under the guidance of a Technical Management Board (TMB), developed a baseline design for the FED. This design is summarized herein

  10. Fusion engineering device design description

    Energy Technology Data Exchange (ETDEWEB)

    Flanagan, C.A.; Steiner, D.; Smith, G.E.

    1981-12-01

    The US Magnetic Fusion Engineering Act of 1980 calls for the operation of a Fusion Engineering Device (FED) by 1990. It is the intent of the Act that the FED, in combination with other testing facilities, will establish the engineering feasibility of magnetic fusion energy. During 1981, the Fusion Engineering Design Center (FEDC), under the guidance of a Technical Management Board (TMB), developed a baseline design for the FED. This design is summarized herein.

  11. Elongated toroid fusion device

    International Nuclear Information System (INIS)

    A device for achieving ignition of a plasma with ohmic heating is described comprising: means for defining a toroidal plasma chamber,a and confining gas therein, and means including electrically conductive coils for generating plasma within the chamber and for confining and shaping such plasma substantially into and filling a predetermined single region of the chamber without an axisymmetric internal separatix and ohmically heating the confined plasma to ignition. The predetermined region is toroidal with a major axis defining an axial direction parallel thereto and a transaxial direction perpendicular to the axis and having an axial cross section with an elongation, k, greater than 4, where k is the ratio of the maximum axial dimension of the cross section to the maximum transaxial dimension of the cross section

  12. Electromagnetic computations for fusion devices

    International Nuclear Information System (INIS)

    Among the difficulties in making nuclear fusion a useful energy source, two important ones are producing the magnetic fields needed to drive and confine the plasma, and controlling the eddy currents induced in electrically conducting components by changing fields. All over the world, researchers are developing electromagnetic codes and employing them to compute electromagnetic effects. Ferromagnetic components of a fusion reactor introduce field distortions. Eddy currents are induced in the vacuum vessel, blanket and other torus components of a tokamak when the plasma current disrupts. These eddy currents lead to large forces, and 3-D codes are being developed to study the currents and forces. 35 refs., 6 figs

  13. ASME Division 4 fusion energy devices

    Energy Technology Data Exchange (ETDEWEB)

    Sowder, W.K. [Quality Management Services, LLC, Idaho Falls, Idaho (United States); Barnes, R.W. [PE-Anric Enterprices Inc., Toronto, Ontario (Canada)

    2011-07-01

    There is an on-going effort within the ASME Section III Codes and Standards organization approved by the ASME Board of Nuclear Codes and Standards to develop rules for the construction of fusion-energy-related components such as vacuum vessel (vacuum or target chamber), cryostat and superconductor structures and their interaction with each other. These rules will be found in Division 4 of Section III entitled 'Fusion Energy Devices (BPV III)'. Other related support structures, including metallic and non-metallic materials, containment or confinement structures, fusion-system piping, vessels, valves, pumps, and supports will also be covered. The rules shall contain requirements for materials, design, fabrication, testing, examination, inspection, certification, and stamping. The formation of the new Sub-Group Fusion Energy Devices that will develop these rules is just beginning to develop its membership and future working group support structures. (author)

  14. Plasma surface interactions in controlled fusion devices

    Energy Technology Data Exchange (ETDEWEB)

    Ghendrih, Ph.; Becoulet, M.; Costanzo, L. [and others

    2000-07-01

    This report brings together all the contributions of EURATOM/CEA association to the 14. international conference on plasma surface interactions in controlled fusion devices. 24 papers are presented and they deal mainly with the ergodic divertor and the first wall of Tore-supra tokamak.

  15. Plasma surface interactions in controlled fusion devices

    International Nuclear Information System (INIS)

    This report brings together all the contributions of EURATOM/CEA association to the 14. international conference on plasma surface interactions in controlled fusion devices. 24 papers are presented and they deal mainly with the ergodic divertor and the first wall of Tore-supra tokamak

  16. Scientific and Technological Facilities in CIEMAT; Las Instalaciones del CIEMAT

    Energy Technology Data Exchange (ETDEWEB)

    Vaquero Ortiz, E. M.

    2012-09-13

    The precise knowledge of the available Resources in an Organization, regardless the work it carries out, is an essential strategic enable to achieve its goals. Material Resources are part of the resources in an organization, The Material Resources expression includes a wide span of elements, because a Material Resource, as a generic concept, is each and every specific physical mean, utilised to get any of the Organization objectives. In case of CIEMAT, as Public Research Agency, its Material Resources consists of its scientific and technological facilities. These resources are the basis of this Agency numerous amount of technical capabilities, allowing it to carry out its research, development and innovation activity to transfer its results to the society later. This report is a summary on CIEMAT scientific and technological facilities, whose spread can help to show its scientific and technological capabilities, to enable the execution of a wide variety of projects and to open new external cooperation channels. In that list its possible to find the two Unique Scientific and Technological Infrastructures (ICTS) in Spain which are hold by CIEMAT and the Ionizing Radiations Metrology Laboratory (LMRI) which is the Spanish National Standards Laboratory for ionising radiations. (Author)

  17. Divertor for a linear fusion device

    Science.gov (United States)

    Ryutov, D. D.; Yushmanov, P. N.; Barnes, D. C.; Putvinski, S. V.

    2016-03-01

    Linear fusion devices can use large magnetic flux flaring in the end tanks to reduce the heat load on the end structures. In order to reduce parallel electron heat loss, one has to create conditions where the neutral gas density in the end tanks is low, as otherwise cold electrons produced by the ionization of the neutrals would cool down the core plasma electrons. The processes determining the neutral gas formation and spatial distribution are analysed for the case where neutrals are formed by the surface recombination of the outflowing plasma. The conditions under which the cooling of the core plasma is negligible are formulated.

  18. Eddy current analysis in fusion devices

    International Nuclear Information System (INIS)

    In magnetic fusion devices, particularly tokamaks and reversed field pinch (RFP) experiments, time-varying magnetic fields are in intimate contact with electrically conducting components of the device. Induced currents, fields, forces, and torques result. This note reviews the analysis of eddy current effects in the following systems: Interaction of a tokamak plasma with the eddy currents in the first wall, blanket, and shield (FWBS) systems; Eddy currents in a complex but two-dimensional vacuum vessel, as in TFTR, JET, and JT-60; Eddy currents in the FWBS system of a tokamak reactor, such as NET, FER, or ITER; and Eddy currents in a RFP shell. The cited studies are chosen to be illustrative, rather than exhaustive. 42 refs

  19. Parametric study of axisymmetric fusion devices

    International Nuclear Information System (INIS)

    Three different axisymmetric magnetic mirror fusion machines are examined in order to optimize the ratio the fusion power produced by them to the power injected into them to maintain the plasma. These three devices were chosen to study the continuum between a simple mirror and a tandem mirror. This allowed the evolutionary process leading from the simple to the tandem mirror to be examined in detail. The Kelley mirror, which corresponds to the middle step, was examined in depth for the first time. A computer code that models the plasma in these machines was written to investigate the steady-state operation of these machines. The balance equations are solved by using an ordinary differential equation solver, LSODE, to numerically solve the system of differential equations. The computer model was used to examine parameter space to optimize Q for each of the three machines. When feasible, a comparison with a Fokker-Planck code was made for the optimal Q case for each machine. Finally, the possible roles these devices might fill was discussed

  20. Reliability and safety analysis for systems of fusion device

    Energy Technology Data Exchange (ETDEWEB)

    Alzbutas, Robertas, E-mail: robertas.alzbutas@lei.lt; Voronov, Roman

    2015-05-15

    Highlights: • Reliability is very important from fusion devices efficiency perspective. • Rich experience of probabilistic safety analysis exists in nuclear industry. • Reliability and safety analysis was applied for systems of fusion device. • This enables to identify and prioritize availability improvement measures. • Recommendations are based on cost effectiveness for risk decrease options. - Abstract: Fusion energy or thermonuclear power is a promising, literally endless source of energy. Development of fusion power is still under investigation and experimental phase, and a number of fusion devices are under construction in Europe. Since fusion energy is innovative and fusion devices contain unique and expensive equipment, an issue of their reliability is very important from their efficiency perspective. A Reliability, Availability, Maintainability, Inspectability (RAMI) analysis is being performed or is going to be performed in the nearest future for such fusion devices as ITER and DEMO in order to ensure reliable and efficient operation for experiments (e.g., in ITER) or for energy production purposes (e.g., in DEMO). On the other hand, rich experience of the reliability and Probabilistic Safety Analysis (PSA) exists in nuclear industry for fission power plants and other nuclear installations. In this paper, the Wendelstein 7-X (W7-X) device is mainly considered. This stellarator device is in commissioning stage in the Max-Planck-Institut für Plasmaphysik, Greifswald, Germany (IPP). In the frame of cooperation between the IPP and the Lithuanian Energy Institute (LEI) under the European Fusion Development Agreement a pilot project of a reliability analysis of the W7-X systems was performed with a purpose to adopt Nuclear Power Plant (NPP) PSA experience for fusion device systems. During the project reliability and safety (risk) analysis of a Divertor Target Cooling Circuit, which is an important system for permanent and reliable operation of in

  1. Wafer Fusion for Integration of Semiconductor Materials and Devices

    Energy Technology Data Exchange (ETDEWEB)

    Choquette, K.D.; Geib, K.M.; Hou, H.Q.; Allerman, A.A.; Kravitz, S.; Follstaedt, D.M.; Hindi, J.J.

    1999-05-01

    We have developed a wafer fusion technology to achieve integration of semiconductor materials and heterostructures with widely disparate lattice parameters, electronic properties, and/or optical properties for novel devices not now possible on any one substrate. Using our simple fusion process which uses low temperature (400-600 C) anneals in inert N{sub 2} gas, we have extended the scope of this technology to examine hybrid integration of dissimilar device technologies. As a specific example, we demonstrate wafer bonding vertical cavity surface emitting lasers (VCSELs) to transparent AlGaAs and GaP substrates to fabricate bottom-emitting short wavelength VCSELs. As a baseline fabrication technology applicable to many semiconductor systems, wafer fusion will revolutionize the way we think about possible semiconductor devices, and enable novel device configurations not possible by epitaxial growth.

  2. Initial trade and design studies for the fusion engineering device

    International Nuclear Information System (INIS)

    The Magnetic Fusion Energy Engineering Act of 1980 calls for the operation of a Fusion Engineering Device (FED) by 1990. It is the intent of the Act that the FED, in combination with other testing facilities, will establish the engineering feasibility of magnetic fusion energy. The Fusion Engineering Design Center (FEDC), under the guidance of a Technical Management Board (TMB), initiated a program of trade and design studies in October 1980 to support the selection of the FED concept. This document presents the results of these initial trade and design studies. Based on these results, a baseline configuration has been identified and the Design Center effort for the remainder of the fiscal year will be devoted to the development of a self-consistent FED design description

  3. Local wall power loading variations in thermonuclear fusion devices

    International Nuclear Information System (INIS)

    A 2 1/2-dimensional geometric model is presented that allows calculation of power loadings at various points on the first wall of a thermonuclear fusion device. Given average wall power loadings for brems-strahlung, cyclotron radiation charged particles, and neutrons, which are determined from various plasma-physics computation models, local wall heat loads are calculated by partitioning the plasma volume and surface into cells and superimposing the heating effects of the individual cells on selected first-wall differential areas. Heat loads from the entire plasma are thus determined as a function of position on the first-wall surface. Significant differences in local power loadings were found for most fusion designs, and it was therefore concluded that the effect of local power loading variations must be taken into account when calculating temperatures and heat transfer rates in fusion device first walls

  4. FED-R: a fusion engineering device utilizing resistive magnets

    Energy Technology Data Exchange (ETDEWEB)

    Jassby, D.L.; Kalsi, S.S. (eds.)

    1983-04-01

    The principal purpose of the FED-R tokamak facility is to provide a substantial quasi-steady flux of fusion neutrons irradiating a large test area in order to carry out thermal, neutronic, and radiation effects testing of experimental blanket assemblies having a variety of configurations, compositions, and purposes. The design of the FED-R device also suggests potential for an upgrade that could be employed as a full-scale demonstration reactor for some specific fusion-neutron application when required.

  5. FED-R: a fusion engineering device utilizing resistive magnets

    International Nuclear Information System (INIS)

    The principal purpose of the FED-R tokamak facility is to provide a substantial quasi-steady flux of fusion neutrons irradiating a large test area in order to carry out thermal, neutronic, and radiation effects testing of experimental blanket assemblies having a variety of configurations, compositions, and purposes. The design of the FED-R device also suggests potential for an upgrade that could be employed as a full-scale demonstration reactor for some specific fusion-neutron application when required

  6. Fusion product diagnostics planned for Large Helical Device deuterium experiment

    International Nuclear Information System (INIS)

    Deuterium experiment on the Large Helical Device (LHD) is now being planned at the National Institute for Fusion Science. The fusion product diagnostics systems currently considered for installation on LHD are described in this paper. The systems will include a time-resolved neutron yield monitor based on neutron gas counters, a time-integrated neutron yield monitor based on activation techniques, a multicollimator scintillation detector array for diagnosing spatial distribution of neutron emission rate, 2.5 MeV neutron spectrometer, 14 MeV neutron counter, and prompt γ-ray diagnostics.

  7. Scientific and Technological Facilities in CIEMAT

    International Nuclear Information System (INIS)

    The precise knowledge of the available Resources in an Organization, regardless the work it carries out, is an essential strategic enable to achieve its goals. Material Resources are part of the resources in an organization, The Material Resources expression includes a wide span of elements, because a Material Resource, as a generic concept, is each and every specific physical mean, utilised to get any of the Organization objectives. In case of CIEMAT, as Public Research Agency, its Material Resources consists of its scientific and technological facilities. These resources are the basis of this Agency numerous amount of technical capabilities, allowing it to carry out its research, development and innovation activity to transfer its results to the society later. This report is a summary on CIEMAT scientific and technological facilities, whose spread can help to show its scientific and technological capabilities, to enable the execution of a wide variety of projects and to open new external cooperation channels. In that list its possible to find the two Unique Scientific and Technological Infrastructures (ICTS) in Spain which are hold by CIEMAT and the Ionizing Radiations Metrology Laboratory (LMRI) which is the Spanish National Standards Laboratory for ionising radiations. (Author)

  8. Technology monitoring in the CIEMAT; La vigilancia tecnologica en el CIEMAT

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Martinez, M.; Cuesta, M. J.; Crespi, S. N.; Cabrera, J. A.

    2008-07-01

    The CIEMAT Foresight and Technology Monitoring Unit focuses its activities on obtaining strategic information on future developments in the area of energy and environment that can be used for decision making by the centers management. In addition, it provides services to CIEMAT researchers and other external customers. In May 2007, the Asociacion Espanola de Normalizacion y Certificacion AENOR delivered to the CIEMAT the first Technology Monitoring System certificate granted in Spain as per standard UNE 166006:2006. This article describes the Units experience in the implementation process of the Technology Monitoring System and provides several examples of the way in which the Unit graphically represents the information analyzed in its Technology Monitoring Reports. (Author)

  9. Railgun pellet injection system for fusion experimental devices

    Energy Technology Data Exchange (ETDEWEB)

    Onozuka, M. [Mitsubishi Heavy Industries Ltd., Yokohama (Japan). Adv. Tech. Dev. Dept.; Oda, Y. [Mitsubishi Heavy Industries Ltd., Yokohama (Japan). Adv. Tech. Dev. Dept.; Azuma, K. [Mitsubishi Heavy Industries Ltd., Yokohama (Japan). Adv. Tech. Dev. Dept.; Satake, K. [Mitsubishi Heavy Industries Ltd., Yokohama (Japan). Adv. Tech. Dev. Dept.; Kasai, S. [Japan Atomic Energy Research Institute, Tokai-mura, Naka-gun 319-11 (Japan); Hasegawa, K. [Japan Atomic Energy Research Institute, Tokai-mura, Naka-gun 319-11 (Japan)

    1995-11-01

    A railgun pellet injection system has been developed for fusion experimental devices. Using a low electric energy railgun system, hydrogen pellet acceleration tests have been conducted to investigate the application of the electromagnetic railgun system for high speed pellet injection into fusion plasmas. In the system, the pellet is pre-accelerated before railgun acceleration. A laser beam is used to induce plasma armature. The ignited plasma armature is accelerated by an electromagnetic force that accelerates the pellet. Under the same operational conditions, the energy conversion coefficient for the dummy pellets was around 0.4%, while that for the hydrogen pellets was around 0.12%. The highest hydrogen pellet velocity was 1.4 km s{sup -1} using a 1 m long railgun. Based on the findings, it is estimated that the hydrogen pellet has the potential to be accelerated to 5 km s{sup -1} using a 3 m long railgun. (orig.).

  10. Superconducting (radiation hardened) magnets for mirror fusion devices

    International Nuclear Information System (INIS)

    Superconducting magnets for mirror fusion have evolved considerably since the Baseball II magnet in 1970. Recently, the Mirror Fusion Test Facility (MFTF-B) yin-yang has been tested to a full field of 7.7 T with radial dimensions representative of a full scale reactor. Now the emphasis has turned to the manufacture of very high field solenoids (choke coils) that are placed between the tandem mirror central cell and the yin-yang anchor-plug set. For MFTF-B the choke coil field reaches 12 T, while in future devices like the MFTF-Upgrade, Fusion Power Demonstration and Mirror Advanced Reactor Study (MARS) reactor the fields are doubled. Besides developing high fields, the magnets must be radiation hardened. Otherwise, thick neutron shields increase the magnet size to an unacceptable weight and cost. Neutron fluences in superconducting magnets must be increased by an order of magnitude or more. Insulators must withstand 1010 to 1011 rads, while magnet stability must be retained after the copper has been exposed to fluence above 1019 neutrons/cm2

  11. Mirror Fusion Test Facility: an intermediate device to a mirror fusion reactor

    International Nuclear Information System (INIS)

    The Mirror Fusion Test Facility (MFTF-B) now under construction at Lawrence Livermore National Laboratory represents more than an order-of-magnitude step from earlier magnetic-mirror experiments toward a future mirror fusion reactor. In fact, when the device begins operating in 1986, the Lawson criteria of ntau = 1014 cm-3.s will almost be achieved for D-T equivalent operation, thus signifying scientific breakeven. Major steps have been taken to develop MFTF-B technologies for tandem mirrors. Steady-state, high-field, superconducting magnets at reactor-revelant scales are used in the machine. The 30-s beam pulses, ECRH, and ICRH will also introduce steady-state technologies in those systems

  12. Wall reflection issues for optical diagnostics in fusion devices

    International Nuclear Information System (INIS)

    The problem of light reflection has been raised as a high priority issue for optical diagnostics in next step fusion devices where metallic wall environment will generate significant perturbations in the diagnostics measurements. Tore Supra is a large size tokamak equipped with water-cooled stainless-steel panels used to sustain the plasma long shot radiations. These panels are highly reflective and affect significantly optical systems. In particular, we show that the infrared imaging diagnostic, which surveys the plasma facing component surface temperature for safety purposes, can give incorrect information due to reflected light coming from the bottom limiter. In the visible range, motional Stark effect and Zeff measurements experience important drifts during the plasma heating phases due to parasitic light coming from the limiter, but also from the plasma itself when the viewing lines are facing the reflecting walls. In the next step fusion devices such as ITER, the possibility to use optical measurements needs to be accessed by a modeling of the diagnostic light in its machine environment and the development of new techniques of online correction.

  13. The new CIEMAT strategies for learning and knowledge transfer

    International Nuclear Information System (INIS)

    Educational and training systems are a determining factor in the potential for excellence, innovation and competitiveness in the framework of research as a means to improve know-how, capabilities and skills. In recent years, the EU has supported open and distance education through its innovation, education, training and research programs. The European initiatives promote efficiency by improving quality and occupational training in different sectors and by fostering the use of the information technologies. Having followed the new trends in training and the advantages obtained by using the net in training, the CIEMAT has also taken an interest in improving the learning and knowledge transfer environments through its virtual center. It is a space for developing online educational activities in certain areas, in which the center can be considered as expert, such as all subjects related to energy and environment: renewable, radiological protection, atmospheric contamination, fusion, nuclear power, etc. This virtual space includes a Virtual Classroom and a specialized Thematic Portals, and it aims to be a place of reference for the areas of knowledge related to energy and environment. (Author) 5 refs

  14. Reducing the tritium inventory in waste produced by fusion devices

    International Nuclear Information System (INIS)

    Highlights: • Fusion devices including ITER will generate tritiated waste, some of which will need to be detritiated before disposal. • Interim storage is the reference solution offering an answer for all types of tritiated radwaste. • Incineration is very attractive for VLLW and possibly SL-LILW soft housekeeping waste, since it offers higher tritium and waste volume reduction than the alternative thermal treatment technique. • For metallic waste, further R&D efforts should be made to optimize tritium release management and minimize the need for interim storage. - Abstract: The specific issues raised by tritiated waste resulting from fusion machines are described. Of the several categories of tritium contaminated waste produced during the entire lifespan of a fusion facility, i.e. operating phase and dismantling phase, only two categories are considered here: metal components and solid combustible waste, especially soft housekeeping materials. Some of these are expected to contain a high level of tritium, and may therefore need to be processed using a detritiation technique before disposal or interim storage. The reference solution for tritiated waste management in France is a 50-year temporary storage for tritium decay, with options for reducing the tritium content as alternatives or complement. An overview of the strategic issues related to tritium reduction techniques is proposed for each radiological category of waste for both metallic and soft housekeeping waste. For this latter category, several options of detritiation techniques by thermal treatment like heating up or incineration are described. A comparison has been made between these various technical options based on several criteria: environment, safety, technical feasibility and costs. For soft housekeeping waste, incineration is very attractive for VLLW and possibly SL-LILW. For metallic waste, further R&D efforts should be conducted

  15. Reducing the tritium inventory in waste produced by fusion devices

    Energy Technology Data Exchange (ETDEWEB)

    Pamela, J., E-mail: jerome.pamela@cea.fr [CEA, Agence ITER-France, F-13108 Saint-Paul-lez-Durance (France); Decanis, C. [CEA, DEN, Centre de Cadarache, F-13108 Saint-Paul-lez-Durance (France); Canas, D. [CEA, DEN/DADN, Centre de Saclay, F-91191 Gif-sur-Yvette cedex (France); Liger, K.; Gaune, F. [CEA, DEN, Centre de Cadarache, F-13108 Saint-Paul-lez-Durance (France)

    2015-04-15

    Highlights: • Fusion devices including ITER will generate tritiated waste, some of which will need to be detritiated before disposal. • Interim storage is the reference solution offering an answer for all types of tritiated radwaste. • Incineration is very attractive for VLLW and possibly SL-LILW soft housekeeping waste, since it offers higher tritium and waste volume reduction than the alternative thermal treatment technique. • For metallic waste, further R&D efforts should be made to optimize tritium release management and minimize the need for interim storage. - Abstract: The specific issues raised by tritiated waste resulting from fusion machines are described. Of the several categories of tritium contaminated waste produced during the entire lifespan of a fusion facility, i.e. operating phase and dismantling phase, only two categories are considered here: metal components and solid combustible waste, especially soft housekeeping materials. Some of these are expected to contain a high level of tritium, and may therefore need to be processed using a detritiation technique before disposal or interim storage. The reference solution for tritiated waste management in France is a 50-year temporary storage for tritium decay, with options for reducing the tritium content as alternatives or complement. An overview of the strategic issues related to tritium reduction techniques is proposed for each radiological category of waste for both metallic and soft housekeeping waste. For this latter category, several options of detritiation techniques by thermal treatment like heating up or incineration are described. A comparison has been made between these various technical options based on several criteria: environment, safety, technical feasibility and costs. For soft housekeeping waste, incineration is very attractive for VLLW and possibly SL-LILW. For metallic waste, further R&D efforts should be conducted.

  16. Fusion Engineering Device (FED) first wall/shield design

    International Nuclear Information System (INIS)

    The torus of the Fusion Engineering Device (FED) is comprised of the bulk shield and its associated spool lstructure and support system, the first wall water-cooled panel and armor systems, and the pumped limiter. The bulk shielding is provided by ten shield sectors that are installed in the spool structure in such a way as to permit extraction of the sectors through the openings between adjacent toroidal field coils with a direct radial movement. The first wall armor is installed on the inboard and top interior walls of these sectors, and the water-cooled panels are installed on the outboard interior walls and the pumped limiter in the bottom of the sectors. The overall design of the first wall and shield system is described in this paper

  17. Assembly of Drift Tubes (DT) Chambers at CIEMAT (Madrid)

    CERN Multimedia

    Jesus Puerta-Pelayo

    2003-01-01

    The construction of muon drift tube chambers (DT) has been carried out in four different european institutes: Aachen (Germany), CIEMAT-Madrid (Spain), Legnaro and Turin (Italy), all of them following similar procedures and quality tests. Each chamber is composed by three or two independent units called superlayers, with four layers of staggered drift cells each. The assembly of a superlayer is a succesive glueing of aluminium plates and I-beams with electrodes previously attached, forming a rectangular and gas-tight volume. These pictures illustrate the various processes of material preparation, construction, equipment and assembly of full chambers at CIEMAT (Madrid).

  18. Instrumented posterior lumbar interbody fusion (PLIF) with interbody fusion device (Cage) in degenerative disc disease (DDD): 3 years outcome.

    Science.gov (United States)

    Ahsan, M K; Hossain, M A; Sakeb, N; Khan, S I; Zaman, N

    2013-10-01

    This prospective interventional study carried out at Bangabandhu Sheikh Mujib Medical University and a private hospital in Dhaka, Bangladesh during the period from October 2003 to September 2011. Surgical treatment of degenerative disc disease (DDD) should aim to re-expand the interbody space and stabilize until fusion is complete. The present study conducted to find out the efficacy of using interbody fusion device (Cage) to achieve interbody space re-expansion and fusion in surgical management of DDD. We have performed the interventional study on 53 patients, 42 female and 11 male, with age between 40 to 67 years. All the patients were followed up for 36 to 60 months (average 48 months). Forty seven patients were with spondylolisthesis and 06 with desiccated disc. All subjects were evaluated with regard to immediate and long term complications, radiological fusion and interbody space re-expansion and maintenance. The clinical outcome (pain and disability) was scored by standard pre and postoperative questionnaires. Intrusion, extrusion and migration of the interbody fusion cage were also assessed. Forty seven patients were considered to have satisfactory outcome in at least 36 months follow up. Pseudoarthrosis developed in 04 cases and 06 patients developed complications. In this series posterior lumbar interbody fusion (PLIF) with interbody cage and instrumentation in DDD showed significant fusion rate and maintenance of interbody space. Satisfactory outcome observed in 88.68% cases.

  19. Signature of Spanish Traineeship Collaboration Agreement between CERN and CIEMAT

    CERN Multimedia

    Redondo Esteban, Isabel

    2015-01-01

    Signature of the collaboration agreement for the training of young Spanish engineers and applied physicists in key CERN technologies. CIEMAT represented by D. Cayetano Lopez Martinez, Director-General. CERN represented by Dr. Jose Miguel Jimenez, Head of Technology Department. In presence of Ms Maria Luisa Poncela Garcia, Secretary-General for Science, Technology and Innovation. Ministry of Economy and Competitiveness.

  20. Mini-fission fusion explosive devices (mini-nukes) for nuclear pulse propulsion

    Science.gov (United States)

    Winterberg, F.

    2005-11-01

    Nuclear pulse propulsion demands low-yield nuclear explosive devices. Because the critical mass of a fission explosive is rather large, this leads to extravagant fission devices with a very low fuel burn-up. For non-fission ignited pure fusion microexplosions the problem is the large ignition apparatus (laser, particle beam, etc.). Fission ignited large fusion explosive devices are for obvious reasons even less desirable. A third category (mini-nukes) are devices where the critical mass of the fission explosive is substantially reduced by its coupling to a DT fusion reaction, with the DT fusion neutrons increasing the fission rate. Whereas in pure fission devices a reduction of the critical mass is achieved by the implosive compression of the fissile core with a chemical high explosive, in the third category the implosion must at the same time heat the DT surrounding the fissile core to a temperature of ⩾107K, at which enough fusion neutrons are generated to increase the fission rate which in turn further increases the temperature and fusion neutron production rate. As has been shown by the author many years ago, such mini-nukes lead to astonishingly small critical masses. In their application to nuclear pulse propulsion the combustion products from the chemical high explosive are further heated by the neutrons and are becoming part of the propellant.

  1. Flywheel induction motor-generator for magnet power supply in small fusion device.

    Science.gov (United States)

    Hatakeyma, S; Yoshino, F; Tsutsui, H; Tsuji-Iio, S

    2016-04-01

    A flywheel motor-generator (MG) for the toroidal field (TF) coils of a small fusion device was developed which utilizes a commercially available squirrel-cage induction motor. Advantages of the MG are comparably-long duration, quick power response, and easy implementation of power control compared with conventional capacitor-type power supply. A 55-kW MG was fabricated, and TF coils of a small fusion device were energized. The duration of the current flat-top was extended to 1 s which is much longer than those of conventional small devices (around 10-100 ms). PMID:27131676

  2. Flywheel induction motor-generator for magnet power supply in small fusion device

    Science.gov (United States)

    Hatakeyma, S.; Yoshino, F.; Tsutsui, H.; Tsuji-Iio, S.

    2016-04-01

    A flywheel motor-generator (MG) for the toroidal field (TF) coils of a small fusion device was developed which utilizes a commercially available squirrel-cage induction motor. Advantages of the MG are comparably-long duration, quick power response, and easy implementation of power control compared with conventional capacitor-type power supply. A 55-kW MG was fabricated, and TF coils of a small fusion device were energized. The duration of the current flat-top was extended to 1 s which is much longer than those of conventional small devices (around 10-100 ms).

  3. Neutron Standards Laboratory of the CIEMAT; Laboratorio de Patrones Neutronicos del CIEMAT

    Energy Technology Data Exchange (ETDEWEB)

    Guzman G, K. A. [Universidad Politecnica de Madrid, C. Jose Gutierrez Abascal 2, 28006 Madrid (Spain); Mendez V, R. [Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas, Av. Complutense 40, 28040 Madrid (Spain); Vega C, H. R., E-mail: karen.guzman.garcia@alumnos.upm.es [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico)

    2014-08-15

    By means of a calculation series with Monte Carlo methods and the code MCNPX was characterized the neutrons field produced by the existent calibration sources in the Neutron Standards Laboratory of the Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT). The laboratory has two neutron calibration sources one of {sup 241}AmBe and other {sup 252}Cf that are stored in a water pool. A detailed three-dimensional model of the room was built with the base of stainless steel remarking in the selector to the sources that situates them to 4 m of the floor to be irradiated on the irradiation table and the storage pool. Each one of the sources was defined on the model in its double steel encapsulated. The spectra were calculated with different cases with the purpose of to calculate the contribution of each element that impacts to the neutrons transport. The spectra of the calibration sources were calculated to different distances regarding the source from 0, 15, 35, 50 to 300 cm on the base and in a same way the values of the ambient dose equivalent using the approaches of the ICRP-74. The results show clearly that the great contribution in the modification of the spectrum is attributed to the walls, and floor of the Neutron Standards Laboratory installations. (Author)

  4. High beta predemonstration fusion devices (philosophy, characteristics, and R and D requirements)

    International Nuclear Information System (INIS)

    A predemonstration fusion device (PDFD) must provide the physics and technology information necessary to warrant design, construction, and operation of succeeding fusion reactors. This report sumarizes in three sections the bases for developing a PDFD. In the first section the philosophy and physics bases which will result in an economically viable fusion reactor are described. The characteristics and operating parameters of a PDFD which will provide a working demonstration of the concepts are given in the second section. In the final section the major research and development activities necessary to support construction and operation of the PDFD are outlined

  5. Juan Antonio Rubio appointed as Director-General of CIEMAT

    CERN Document Server

    2004-01-01

    Juan Antonio Rubio, Head of CERN's ETT unit (Education and Technology Transfer) has been appointed by the Spanish Ministry of Education and Science as the Director General of the Research Centre for Energy, Environment and Technology, CIEMAT. Dr Rubio's career began at the Spanish Nuclear Energy Commission where he held the posts of Investigator, Head of the High Energy Group and Head of Nuclear Physics and High Energy Division. Later, he was named Director of the Department of Basic Investigation and Scientific Director of the CIEMAT. In 1987 he joined CERN as Scientific Adviser to the Director General and Group Leader of the Scientific Assessment Group. Up to now, Dr Rubio has been the Head of the ETT unit, as well as Coordinator for Latin America and Commissioner for the 50th Anniversary of the Organization. He was born on 4 June 1944 in Madrid, and holds a Doctorate in Physical Sciences from the Universidad Complutense de Madrid.

  6. Users and Programmers Guide for HPC Platforms in CIEMAT

    International Nuclear Information System (INIS)

    This Technical Report presents a description of the High Performance Computing platforms available to researchers in CIEMAT and dedicated mainly to scientific computing. It targets to users and programmers and tries to help in the processes of developing new code and porting code across platforms. A brief review is also presented about historical evolution in the field of HPC, ie, the programming paradigms and underlying architectures. (Author) 32 refs

  7. Non-gyroscope DR and adaptive information fusion algorithm used in GPS/DR device

    Institute of Scientific and Technical Information of China (English)

    Li Qingli; Xue Yongqi; Shang Yanlei; Shi Pengfei

    2006-01-01

    In view of the problems existing in GPS, a non-gyroscope DR is introduced. The operating principle and the algorithm of the GPS/DR device are also presented. By operating measured data synthetically, linear observation equations are obtained for the information fusion algorithm. This approach avoids model error due to linearizing nonlinear observation equations in the conventional algorithm, so that the stability of information fusion algorithm is improved and computation expenses are reduced. Field running experiments show that satisfactory accuracy can be obtained by the proposed navigation model and algorithm for the non-gyroscope GPS/DR device.

  8. Three dimensional modelling of ICRF launchers for fusion devices

    Science.gov (United States)

    Carter, M. D.; Rasmussen, D. A.; Ryan, P. M.; Hanson, G. R.; Stallings, D. C.; Batchelor, D. B.; Bigelow, T. S.; England, A. C.; Hoffman, D. J.; Murakami, M.; Wang, C. Y.; Wilgen, J. B.; Rogers, J. H.; Wilson, J. R.; Majeski, R.; Schilling, G.

    1996-02-01

    The three dimensional (3-D) nature of antennas for fusion applications in the ion cyclotron range of frequencies (ICRF) requires accurate modelling to design and analyse new antennas. In this article, analysis and design tools for radiofrequency (RF) antennas are successfully benchmarked with experiment, and the 3-D physics of the launched waves is explored. The systematic analysis combines measured density profiles from a reflectometer system, transmission line circuit modelling, detailed 3-D magnetostatics modelling and a new 3-D electromagnetic antenna model including plasma. This analysis gives very good agreement with measured loading data from the Tokamak Fusion Test Reactor (TFTR) Bay-M antenna, thus demonstrating the validity of the analysis for the design of new RF antennas. The 3-D modelling is contrasted with 2-D models, and significant deficiencies are found in the latter. The 2-D models are in error by as much as a factor of 2 in real and reactive loading, even after they are corrected for the most obvious 3-D effects. Three dimensional effects play the most significant role at low parallel wavenumbers, where the launched power spectrum can be quite different from the predictions of 2-D models. Three dimensional effects should not be ignored for many RF designs, especially those intended for fast wave current drive

  9. Hardware device for data fusion and novelty detection in condition monitoring

    Science.gov (United States)

    Taylor, Odin; MacIntyre, John

    2000-04-01

    The hardware device is known as a Local Fusion System (LFS) and is part of a larger modular condition monitoring solution. The LFS unit will be discussed in detail in this paper, describing how the design has evolved into a real hardware based condition-monitoring device that will be taken to market by one of the project partners. The device is responsible for learning the normal operating state of a machine component and identifying when it changes, in a process called novelty detection. To learn the normal operating state of a machine, the device learns a representation of the sensors that are connected to the unit (which could be of varying types and number) by using a novel neural network based fusion center that will be discussed in detail in this paper. The paper will also look pre- and post-processing issues in a limited hardware environment along with some example development data that if from a real-world machine.

  10. Non-superconducting magnet structures for near-term, large fusion experimental devices

    International Nuclear Information System (INIS)

    This paper describes the magnet and structural design in the following American tokamak devices: the Princeton Large Torus (PLT), the Princeton Divertor Experiment (PDX), and the Tokamak Fusion Test Reactor (TFTR). The Joint European Torus (JET), also presented herein, has a magnet structure evolved from several European programs and, like TFTR, represents state of the art magnet and structure design

  11. Stochastic model of a first-order nonequilibrium phase transition in a magnetic fusion device

    International Nuclear Information System (INIS)

    The ambipolar electric field in many nonaxisymmetric fusion devices is known to be a multivalued function. A master equation for the probability distribution of the electric field is developed for internal fluctuations, and a generalized Gibbs free energy is defined. As with a liquid-gas phase transition, the most probable value of the electric field is the one that minimizes the free energy

  12. The new CIEMAT strategies for learning and knowledge transfer; Las nuevas estrategias para el aprendizaje y la transferencia de conocimiento del CIEMAT

    Energy Technology Data Exchange (ETDEWEB)

    Marco Arboli, M.

    2008-07-01

    Educational and training systems are a determining factor in the potential for excellence, innovation and competitiveness in the framework of research as a means to improve know-how, capabilities and skills. In recent years, the EU has supported open and distance education through its innovation, education, training and research programs. The European initiatives promote efficiency by improving quality and occupational training in different sectors and by fostering the use of the information technologies. Having followed the new trends in training and the advantages obtained by using the net in training, the CIEMAT has also taken an interest in improving the learning and knowledge transfer environments through its virtual center. It is a space for developing online educational activities in certain areas, in which the center can be considered as expert, such as all subjects related to energy and environment: renewable, radiological protection, atmospheric contamination, fusion, nuclear power, etc. This virtual space includes a Virtual Classroom and a specialized Thematic Portals, and it aims to be a place of reference for the areas of knowledge related to energy and environment. (Author) 5 refs.

  13. Management of a water leak on actively cooled fusion devices

    International Nuclear Information System (INIS)

    ITER will be the most important machine equipped with actively cooled plasma facing components (PFCs). In case of abnormal events during a discharge, the PFC will be submitted to localized transient phenomena (high power densities, run away electrons, etc.), leading, in the worst case, to the degradation of the PFC wall and possibly to a water leak. In any case, a leak will have important consequences for the PFCs and equipment located in the vacuum vessel or connected to the ports such as seals, pumping systems or diagnostics. Considerable experience of these events has been gained at Tore Supra over a period of more than 10 years [J.J. Cordier, Ten years of maintenance on Tore Supra actively cooled components, in: Proceedings of the 21th Symp. of Fusion Technology (SOFT), Madrid, Spain, September, 2000.], which will be useful for the next step machines. This paper describes for each leak size type the procedures for maintaining save conditions in the vacuum vessel. It also presents the methods used at Tore Supra to drain-off the primary loop circuits and to identify the leaky PFC

  14. Study of plasma equilibrium in toroidal fusion devices using mesh-free numerical calculation method

    Science.gov (United States)

    Rasouli, C.; Abbasi Davani, F.; Rokrok, B.

    2016-08-01

    Plasma confinement using external magnetic field is one of the successful ways leading to the controlled nuclear fusion. Development and validation of the solution process for plasma equilibrium in the experimental toroidal fusion devices is the main subject of this work. Solution of the nonlinear 2D stationary problem as posed by the Grad-Shafranov equation gives quantitative information about plasma equilibrium inside the vacuum chamber of hot fusion devices. This study suggests solving plasma equilibrium equation which is essential in toroidal nuclear fusion devices, using a mesh-free method in a condition that the plasma boundary is unknown. The Grad-Shafranov equation has been solved numerically by the point interpolation collocation mesh-free method. Important features of this approach include truly mesh free, simple mathematical relationships between points and acceptable precision in comparison with the parametric results. The calculation process has been done by using the regular and irregular nodal distribution and support domains with different points. The relative error between numerical and analytical solution is discussed for several test examples such as small size Damavand tokamak, ITER-like equilibrium, NSTX-like equilibrium, and typical Spheromak.

  15. Combined ion micro probe and SEM analysis of strongly non uniform deposits in fusion devices

    Energy Technology Data Exchange (ETDEWEB)

    Bykov, I.; Bergsåker, H.; Petersson, P. [Division of Fusion Plasma Physics, Association EURATOM-VR, Royal Institute of Technology KTH (Sweden); Likonen, J. [Association EURATOM-TEKES, VTT, PO Box 1000, 02044 VTT, Espoo (Finland); Possnert, G. [Tandem Laboratory, Association EURATOM-VR, Uppsala Universitet, Box 256, Uppsala 75105 (Sweden); Widdowson, A. [CCFE, Culham Science Centre, Abingdon OX14 3DB (United Kingdom)

    2015-01-01

    Conventional ion beam analysis (IBA) of deposited layers from fusion devices may have insufficient accuracy due to strongly uneven appearance of the layers. Surface roughness and spatial variation of the matrix composition make interpretation of broad beam spectra complex and non obvious. We discuss complications of applied IBA arising for fusion-relevant surfaces and demonstrate how quantification can be improved by employing micro IBA methods. The analysis is bound to pre-defined regions on the sample surface and can be extended by employing beams of several types, scanning electron microscopy (SEM) and stereo SEM techniques.

  16. Fusion energy in an inertial electrostatic confinement device using a magnetically shielded grid

    Energy Technology Data Exchange (ETDEWEB)

    Hedditch, John, E-mail: john.hedditch@sydney.edu.au; Bowden-Reid, Richard, E-mail: rbow3948@physics.usyd.edu.au; Khachan, Joe, E-mail: joe.khachan@sydney.edu.au [School of Physics, The University of Sydney, Sydney, New South Whales 2006 (Australia)

    2015-10-15

    Theory for a gridded inertial electrostatic confinement (IEC) fusion system is presented, which shows a net energy gain is possible if the grid is magnetically shielded from ion impact. A simplified grid geometry is studied, consisting of two negatively biased coaxial current-carrying rings, oriented such that their opposing magnetic fields produce a spindle cusp. Our analysis indicates that better than break-even performance is possible even in a deuterium-deuterium system at bench-top scales. The proposed device has the unusual property that it can avoid both the cusp losses of traditional magnetic fusion systems and the grid losses of traditional IEC configurations.

  17. Fusion

    CERN Document Server

    Mahaffey, James A

    2012-01-01

    As energy problems of the world grow, work toward fusion power continues at a greater pace than ever before. The topic of fusion is one that is often met with the most recognition and interest in the nuclear power arena. Written in clear and jargon-free prose, Fusion explores the big bang of creation to the blackout death of worn-out stars. A brief history of fusion research, beginning with the first tentative theories in the early 20th century, is also discussed, as well as the race for fusion power. This brand-new, full-color resource examines the various programs currently being funded or p

  18. [Nursing Care of Lumbar Spine Fusion Surgery Using a Semi-Rigid Device (ISOBAR)].

    Science.gov (United States)

    Wu, Meng-Shan; Su, Shu-Fen

    2016-04-01

    Aging frequently induces degenerative changes in the spine. Patients who suffer from lumbar degenerative disease tend to have lower back pain, neurological claudication, and neuropathy. Furthermore, incontinence may be an increasing issue as symptoms become severe. Lumbar spine fusion surgery is necessary if clinical symptoms continue to worsen or if the patient fails to respond to medication, physical therapy, or alternative treatments. However, this surgical procedure frequently induces adjacent segment disease (ASD), which is evidenced by the appearance of pathological changes in the upper and lower sections of the spinal surgical sites. In 1997, ISOBAR TTL dynamic rod stabilization was developed for application in spinal fusion surgery to prevent ASD-related complications. The device has proven effective in reducing pain in the lower back and legs, decreasing functional disability, improving quality of life, and retarding disc degeneration. However, the effectiveness of this intervention in decreasing the incidence of ASD requires further research investigation, and relevant literature and research in Taiwan is still lacking. This article discusses lumbar degenerative disease, its indications, the contraindications of lumbar spine fusion surgery using ISOBAR, and related postoperative nursing care. We hope this article provides proper and new knowledge to clinical nurses for the care of patients undergoing lumbar spine fusion surgery with ISOBAR. PMID:27026564

  19. Development progresses of radio frequency ion source for neutral beam injector in fusion devices

    Science.gov (United States)

    Chang, D. H.; Jeong, S. H.; Kim, T. S.; Park, M.; Lee, K. W.; In, S. R.

    2014-02-01

    A large-area RF (radio frequency)-driven ion source is being developed in Germany for the heating and current drive of an ITER device. Negative hydrogen ion sources are the major components of neutral beam injection systems in future large-scale fusion experiments such as ITER and DEMO. RF ion sources for the production of positive hydrogen (deuterium) ions have been successfully developed for the neutral beam heating systems at IPP (Max-Planck-Institute for Plasma Physics) in Germany. The first long-pulse ion source has been developed successfully with a magnetic bucket plasma generator including a filament heating structure for the first NBI system of the KSTAR tokamak. There is a development plan for an RF ion source at KAERI to extract the positive ions, which can be applied for the KSTAR NBI system and to extract the negative ions for future fusion devices such as the Fusion Neutron Source and Korea-DEMO. The characteristics of RF-driven plasmas and the uniformity of the plasma parameters in the test-RF ion source were investigated initially using an electrostatic probe.

  20. Efforts by the CIEMAT to diagnose and treat Butterfly children. the CIEMAT in the CIBER of Rare Diseases

    International Nuclear Information System (INIS)

    The CIEMAT is one of the institutions associated with the Center for Online Biomedical Research of Rare Diseases (CIBERER). The CIBER of Rare diseases is one of the new public consortiums established at the initiative of the Carlos III Institute of Health. It is formed by 60 research groups linked to 30 different institutions. These research groups are the basic operating units and are grouped together in seven scientific areas. With this online structure, the CIBERER is a pioneering initiative to facilitate synergy's between cutting-edge groups and institutions in different areas and disciplines in the field of rare diseases, as well as to ensure that scientific findings are transferred from the laboratory to the clinic, based on the concept of Translational Research. (Author) 13 refs

  1. TASKA-M - a low cost, near term tandem mirror device for fusion technology testing

    International Nuclear Information System (INIS)

    TASKA-M (Modifizierte Tandem Spiegelmaschine Karlsruhe) is a study of a dedicated fusion technology device based on the mirror principle, in continuation of the 1981/82 TASKA study. The main objective is to minimize cost while retaining key requirements of neutron flux and fluence for blanket and material development and for component testing in a nuclear environment. Direct costs are reduced to about 400 M$ by dropping reactor-relevant aspects not essential to technology testing: No thermal barrier and electrostatic plugging of the plasma; fusion power of 7 MW at an injected power of 44 MW; tritium supply from external sources. All technologies for operating the machine are expected to be available by 1990; the plasma physics relies on microstabilization in a sloshing ion population. (orig.)

  2. Focused neutral beams with low chaotic divergence for plasma heating and diagnostics in magnetic fusion devices

    International Nuclear Information System (INIS)

    A series of neutral beam injectors has been developed in the Budker Institute of Nuclear Physics for plasma heating and diagnostics in modern fusion devices. Ion optical system of these injectors is optimized to produce ion beams with low angular divergence. In order to provide beam focusing, the grids are formed to be spherical segments. Such geometrically focused neutral beams are particularly advantageous for plasma diagnostics when high spatial resolution is required. Another application of these beams is plasma heating in the machines with narrow ports through which only small size, high power density beams can be transported. (author)

  3. 7. IAEA Technical Meeting on Steady State Operation of Magnetic Fusion Devices - Booklet of abstracts

    International Nuclear Information System (INIS)

    This meeting has provided an appropriate forum to discuss current issues covering a wide range of technical topics related to the steady state operation issues and also to encourage forecast of the ITER performances. The technical meeting includes invited and contributed papers. The topics that have been dealt with are: 1) Superconducting devices (ITER, KSTAR, Tore-Supra, HT-7U, EAST, LHD, Wendelstein-7-X,...); 2) Long-pulse operation and advanced tokamak physics; 3) steady state fusion technologies; 4) Long pulse heating and current drive; 5) Particle control and power exhaust, and 6) ITER-related research and development issues. This document gathers the abstracts

  4. Research in the Ciemat on severe accidents: strategy and recent results; Investigaciones en el Ciemat sobre accidentes severos: estrategia y resultados recientes

    Energy Technology Data Exchange (ETDEWEB)

    Herranz, L. E.

    2012-11-01

    Severe accident research is a fundamental brick in the nuclear technology wall. Its complexity entails huge challenges that require international cooperation to be overcome. CIEMAT has accumulated more than 40 years of experience in the field. By setting a structured research strategy and a continuous enhancement of theoretical an experimental capabilities, CIEMAT has recently produced the results on which this article builds up. Through them, both its working domains and its firm commitment for a continuous growth of knowledge and know-how are outlined. (Author) 24 refs.

  5. Management of water leaks on Tore Supra actively cooled fusion device

    International Nuclear Information System (INIS)

    Up to now, Tore Supra is the only fusion device fully equipped with actively cooled Plasma Facing Components (PFCs). In case of abnormal events during a plasma discharge, the PFCs could be submitted to a transient high power density (run away electrons) or to a continuous phenomena as local thermal flux induced by trapped suprathermal electrons or ions). It could lead to a degradation of the PFC integrity and in the worst case to a water leak occurrence. Such water leak has important consequence on the tokamak operation that concerns PFCs themselves, monitoring equipment located in the vacuum vessel or connected to the ports as RF antennas, diagnostics or pumping systems. Following successive water leak events (the most important water leak, that occurred in September 2002, is described in the paper), a large feedback experience has been gained on Tore supra since more than 15 years that could be useful to actively cooled next devices as W7X and ITER. (authors)

  6. Probabilistic Multi-Sensor Fusion Based Indoor Positioning System on a Mobile Device

    Directory of Open Access Journals (Sweden)

    Xiang He

    2015-12-01

    Full Text Available Nowadays, smart mobile devices include more and more sensors on board, such as motion sensors (accelerometer, gyroscope, magnetometer, wireless signal strength indicators (WiFi, Bluetooth, Zigbee, and visual sensors (LiDAR, camera. People have developed various indoor positioning techniques based on these sensors. In this paper, the probabilistic fusion of multiple sensors is investigated in a hidden Markov model (HMM framework for mobile-device user-positioning. We propose a graph structure to store the model constructed by multiple sensors during the offline training phase, and a multimodal particle filter to seamlessly fuse the information during the online tracking phase. Based on our algorithm, we develop an indoor positioning system on the iOS platform. The experiments carried out in a typical indoor environment have shown promising results for our proposed algorithm and system design.

  7. Probabilistic Multi-Sensor Fusion Based Indoor Positioning System on a Mobile Device.

    Science.gov (United States)

    He, Xiang; Aloi, Daniel N; Li, Jia

    2015-01-01

    Nowadays, smart mobile devices include more and more sensors on board, such as motion sensors (accelerometer, gyroscope, magnetometer), wireless signal strength indicators (WiFi, Bluetooth, Zigbee), and visual sensors (LiDAR, camera). People have developed various indoor positioning techniques based on these sensors. In this paper, the probabilistic fusion of multiple sensors is investigated in a hidden Markov model (HMM) framework for mobile-device user-positioning. We propose a graph structure to store the model constructed by multiple sensors during the offline training phase, and a multimodal particle filter to seamlessly fuse the information during the online tracking phase. Based on our algorithm, we develop an indoor positioning system on the iOS platform. The experiments carried out in a typical indoor environment have shown promising results for our proposed algorithm and system design. PMID:26694387

  8. Modelling of surface evolution of rough surface on divertor target in fusion devices

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Shuyu, E-mail: daishuyu@dlut.edu.cn [Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); Liu, Shengguang; Sun, Jizhong [Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); Kirschner, A. [Forschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung – Plasmaphysik, D-52425 Jülich (Germany); Kawamura, G. [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki, Gifu 509-5292 (Japan); Tskhakaya, D. [Association EURATOM – öAW, Institute of Applied Physics, TU Wien, A-1040 Vienna (Austria); Ding, Rui; Luo, Guangnan [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Wang, Dezhen, E-mail: wangdez@dlut.edu.cn [Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China)

    2015-08-15

    Highlights: • We study the surface evolution of rough surface on divertor target in fusion devices. • The effects of gyration motion and E × B drift affect 3D angular distribution. • A larger magnetic field angle leads to a reduced net eroded areal density. • The rough surface evolution affects the physical sputtering yield. - Abstract: The 3D Monte-Carlo code SURO has been used to study the surface evolution of rough surface on the divertor target in fusion devices. The edge plasma at divertor region is modelled by the SDPIC code and used as input data for SURO. Coupled with SDPIC, SURO can perform more sophisticated simulations to calculate the local angle and surface evolution of rough surface. The simulation results show that the incident direction of magnetic field, gyration and E × B force has a significant impact on 3D angular distribution of background plasma and accordingly on the erosion of rough surface. The net eroded areal density of rough surface is studied by varying the magnetic field angle with surface normal. The evolution of the microscopic morphology of rough surface can lead to a significant change in the physical sputtering yield.

  9. Modelling of surface evolution of rough surface on divertor target in fusion devices

    International Nuclear Information System (INIS)

    Highlights: • We study the surface evolution of rough surface on divertor target in fusion devices. • The effects of gyration motion and E × B drift affect 3D angular distribution. • A larger magnetic field angle leads to a reduced net eroded areal density. • The rough surface evolution affects the physical sputtering yield. - Abstract: The 3D Monte-Carlo code SURO has been used to study the surface evolution of rough surface on the divertor target in fusion devices. The edge plasma at divertor region is modelled by the SDPIC code and used as input data for SURO. Coupled with SDPIC, SURO can perform more sophisticated simulations to calculate the local angle and surface evolution of rough surface. The simulation results show that the incident direction of magnetic field, gyration and E × B force has a significant impact on 3D angular distribution of background plasma and accordingly on the erosion of rough surface. The net eroded areal density of rough surface is studied by varying the magnetic field angle with surface normal. The evolution of the microscopic morphology of rough surface can lead to a significant change in the physical sputtering yield

  10. A lab-on-a-chip device for investigating the fusion process of olfactory ensheathing cell spheroids.

    Science.gov (United States)

    Munaz, Ahmed; Vadivelu, Raja K; John, James A St; Nguyen, Nam-Trung

    2016-08-01

    Understanding the process of fusion of olfactory ensheathing cell spheroids will lead to improvement of cell transplantation therapies to repair spinal cord injuries. The successful fusion of transplanted spheroids will enable alternative transplantation strategies to be developed for in vivo applications. This paper describes the use of a microfluidic device to trap and fuse olfactory ensheathing cell spheroids. The velocity, the pressure distribution in the device were simulated numerically to predict the trapping location. The simulation predicted the optimum flow rates for trapping the spheroids in the later experiments. Simulated particle trajectories were verified experimentally with tracing of fluorescent micro particles. The fusion process of the spheroids was investigated over a period of 48 hours. The microfluidic platform presented here can be used for testing potential drugs that can promote the fusion process and improve the transplantation therapy. PMID:27387270

  11. Participation of CIEMAT in studies of radioecology in european marine ecosystems; Participacion del Ciemat en estudios de radioecologia en ecosistemas marinos Europeos

    Energy Technology Data Exchange (ETDEWEB)

    Gasco, C.; Meral, J.; Gonzalez, A. M. [Ciemat. Madrid (Spain)

    1999-07-01

    In this report the different objectives and results achieved through the participation of the Aquatic Radioecology Laboratory for CIEMAT in some European Projects from 1994 up to now are detailed. A Description of the studied ecosystems, the sampling campaigns performed, and the analytical methods developed are presented as well. Finally the main results and conclusions obtained are summarized. (Author)

  12. EMP Fusion

    OpenAIRE

    KUNTAY, Isık

    2010-01-01

    This paper introduces a novel fusion scheme, called EMP Fusion, which has the promise of achieving breakeven and realizing commercial fusion power. The method is based on harnessing the power of an electromagnetic pulse generated by the now well-developed flux compression technology. The electromagnetic pulse acts as a means of both heating up the plasma and confining the plasma, eliminating intermediate steps. The EMP Fusion device is simpler compared to other fusion devices and this reduces...

  13. Improved zero dimensional model of a reversed field pinch fusion device

    International Nuclear Information System (INIS)

    A zero-dimensional model has been developed which accurately predicts conditions observed during several runs of the ZT-40M reversed field pinch fusion device at Los Alamos National Laboratory. The model is based on a physical model developed by E.H. Klevans at Penn State University. Improvements made to this model included the use of coronal non-equilibrium equations for predicting impurity effects, the inclusion of an exponentially decaying ion heating term, and the relaxation of the assumption that ion and electron densities are equal in the device. The model has been used to simulate ZT-40M in both flat-top and slowly ramped current modes. Using experimentally measured density and current evolutions, the model accurately predicts observed tau/sub E/, β/sub Θ/, T/sub e/, T/sub i/, Z/sub eff/, and radiated power. The continuing goal of this work is to predict conditions in the ZT-H device, which is under construction. 28 refs., 18 figs

  14. Motion-sensor fusion-based gesture recognition and its VLSI architecture design for mobile devices

    Science.gov (United States)

    Zhu, Wenping; Liu, Leibo; Yin, Shouyi; Hu, Siqi; Tang, Eugene Y.; Wei, Shaojun

    2014-05-01

    With the rapid proliferation of smartphones and tablets, various embedded sensors are incorporated into these platforms to enable multimodal human-computer interfaces. Gesture recognition, as an intuitive interaction approach, has been extensively explored in the mobile computing community. However, most gesture recognition implementations by now are all user-dependent and only rely on accelerometer. In order to achieve competitive accuracy, users are required to hold the devices in predefined manner during the operation. In this paper, a high-accuracy human gesture recognition system is proposed based on multiple motion sensor fusion. Furthermore, to reduce the energy overhead resulted from frequent sensor sampling and data processing, a high energy-efficient VLSI architecture implemented on a Xilinx Virtex-5 FPGA board is also proposed. Compared with the pure software implementation, approximately 45 times speed-up is achieved while operating at 20 MHz. The experiments show that the average accuracy for 10 gestures achieves 93.98% for user-independent case and 96.14% for user-dependent case when subjects hold the device randomly during completing the specified gestures. Although a few percent lower than the conventional best result, it still provides competitive accuracy acceptable for practical usage. Most importantly, the proposed system allows users to hold the device randomly during operating the predefined gestures, which substantially enhances the user experience.

  15. Study of the pores inside tungsten coating after thermal cycling for fusion device

    Science.gov (United States)

    Desgranges, C.; Firdaouss, M.; Hernandez, C.; Martin, C.; Ruset, C.; Grigore, E.; Missirlian, M.; Samaille, F.; Bucalossi, J.

    2016-02-01

    In the next fusion devices, all the plasma facing components will consist of bulk tungsten or tungsten coating on carbon. This paper focuses on the behaviour of tungsten coated on carbon fibre composite designed for the WEST project (Bucalossi et al 2011 Fusion Eng. Des. 86 684-688) under intensive thermal cycling delivered by an electron beam. The use of scanning electron microscope has allowed in particular, the observation of several pore lines inside the coating. These pore lines have different aspects depending on the observed zone according to the localisation of the electron beam, accentuated lines with more numerous enlarged pores in zone exposed to the electron beam. An analogous trend is also observed for JET tungsten-coated samples under similar thermal cycles despite their different properties due to an alternative manufacturing method of the substrate. A systematic and attentive comparison on the coating changes after the application of the electron beam heating is presented. The observed comportments as the formation of the pore lines or the pore shapes are assumed to be inherent to simultaneous diffusion processes. In association with the pore line formation, a migration of the carbon substrate towards the surface is presumed and discussed.

  16. Developing Boundary/PMI Solutions for Next-Step Fusion Devices

    Science.gov (United States)

    Guo, H. Y.; Leonard, A. W.; Thomas, D. M.; Allen, S. L.; Hill, D. N.; Unterberg, Z.

    2014-10-01

    The path towards next-step fusion development requires increased emphasis on the boundary/plasma-material interface. The new DIII-D Boundary/Plasma-Material Interactions (PMI) Center has been established to address these critical issues on a timescale relevant to the design of FNSF, adopting the following transformational approaches: (1) Develop and test advanced divertor configurations on DIII-D compatible with core plasma high performance operational scenarios in FNSF; (2) Validate candidate reactor PFC materials at reactor-relevant temperatures in DIII-D high-performance plasmas, in collaboration with the broad material research/development community; (3) Integrate validated boundary-materials interface with high performance plasmas to provide viable boundary/PMI solutions for next-step fusion devices. This program leverages unique DIII-D capabilities, promotes synergistic programs within the broad PMI community, including linear material research facilities. It will also enable us to build a compelling bridge for the US research on long-pulse facilities. Work supported by the US DOE under DE-FC02-04ER54698 and DE-AC52-07NA27344, DE-AC05-00OR2725.

  17. A discrete geometric formulation for eddy-current problems in fusion devices

    Science.gov (United States)

    Bettini, Paolo; Furno Palumbo, Maurizio; Specogna, Ruben

    2014-03-01

    All thermonuclear controlled fusion devices under construction or design have such high performances to require a special care in the dimensioning of various components, specifically from the electromagnetic point of view. To this purpose, it is fundamental to develop models which are both accurate (i.e. able to describe the physical phenomena) and predictive (i.e. useful not only to explain what happens in running experiments, but also to reliably extrapolate to other range of parameters). The dynamics of fusion plasmas is often conveniently described by Magneto-Hydro-Dynamics (MHD) equations, which predict that some unstable evolution modes may exist. On the other hand, the complexity of the intrinsically 3D model of the interactions between a realistic unstable plasma, the surrounding passive structures (important to guarantee a good MHD stability) and the active conductors (coils) require the numerical solution of challenging electromagnetic problems. In this work a discrete geometric formulation for eddy-current problems in the frequency domain is developed; the magnetic fields produced by a typical active coil system is calculated in the presence of 3D conductive structures.

  18. Proceedings of the Japan-U.S. workshop P-118 on vacuum technologies for fusion devices

    International Nuclear Information System (INIS)

    Fusion community does not appreciate vacuum technologies to the same extent as accelerator community does. This is because, in the case of accelerators, in particular storage ring systems, the requirement of attaining ultrahigh vacuum in order to avoid collisional loss is well defined, on the other hand, it is not possible to define the requirement so precisely in the case of fusion devices. One of the reasons is that core plasma interacts with vessel wall so strongly and unpredictably that it becomes difficult to identify the role played by individual components. However, in the next step and the next generation machines like CIT, LHS, ITER, FER and NET, vacuum technologies would play more significant roles, because the CIT will introduce tritium in a vacuum vessel, and the aim of the ITER project is to demonstrate particle balance, namely, to achieve steady state operation with D-T fuel. The Japan-U.S. workshop P-118 was held at the Institute of Plasma Physics, Nagoya University, from August 1 to 5, 1988. 33 participants including 4 from the U.S. took part in the workshop. In the plenary session, 12 lectures were given, and also the topics-oriented session on pumping, gauging, remote maintenance, first wall, pump limiter, divertor and others was held. (K.I.)

  19. Carbon coating on the wall of nuclear fusion devices and plasma-surface interactions

    International Nuclear Information System (INIS)

    The plasma-assisted carbon-film coating of the inner walls of nuclear fusion devices, which is a new technical trend, is reviewed in view of plasma-surface interactions. A great advantage of the easiness for both wide-area and repeated coatings is due to the so-called in situ coating of the walls compared with the precoating. The amorphous carbon films produced by this in situ plasma coating contain ordinarily a large number of H atoms (H/C = 0.4∼0.6), which lead to recycling of a large amount of hydrogen (release and implantation of H atoms) in nuclear fusion discharges. This demerit of the plasma method can be covered by reducing the H content in the films under suitable coating conditions, and also by conditioning the film surface with a helium glow discharge. A simple model for the interaction between a-C : H film and hydrogen plasma is proposed. Further, another low-Z material coating, that is in situ boron coating, is briefly discussed. (author)

  20. Computerized cost estimation spreadsheet and cost data base for fusion devices

    International Nuclear Information System (INIS)

    An automated approach to performing and cataloging cost estimates has been developed at the Fusion Engineering Design Center (FEDC), wherein the cost estimate record is stored in the LOTUS 1-2-3 spreadsheet on an IBM personal computer. The cost estimation spreadsheet is based on the cost coefficient/cost algorithm approach and incorporates a detailed generic code of cost accounts for both tokamak and tandem mirror devices. Component design parameters (weight, surface area, etc.) and cost factors are input, and direct and indirect costs are calculated. The cost data base file derived from actual cost experience within the fusion community and refined to be compatible with the spreadsheet costing approach is a catalog of cost coefficients, algorithms, and component costs arranged into data modules corresponding to specific components and/or subsystems. Each data module contains engineering, equipment, and installation labor cost data for different configurations and types of the specific component or subsystem. This paper describes the assumptions, definitions, methodology, and architecture incorporated in the development of the cost estimation spreadsheet and cost data base, along with the type of input required and the output format

  1. Calculational models for the treatment of pulsed/intermittent activation within fusion energy devices

    International Nuclear Information System (INIS)

    Two calculationally efficient methods have been developed to compute the induced radioactivity due to pulsed/intermittent irradiation histories as encountered in both magnetic and inertial fusion energy devices. The numerical algorithms are based on the linear chain method (Bateman Equations) and employ series reduction and matrix algebra. The first method models the case in which the irradiated materials are present throughout a series of irradiation pulses. The second method treats the case where a fixed amount of radioactive and transmuted material is created during each pulse. Analytical solutions are given for each method for a three nuclide linear chain. Numerical results and comparisons are presented for a select number of linear chains. (orig.)

  2. Studies for the ion cyclotron range of frequency heating in a tokamak fusion experimental device

    Energy Technology Data Exchange (ETDEWEB)

    Saigusa, Mikio [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment

    1996-02-01

    Ion cyclotron range of frequency heating has been investigated as an efficient additional plasma heating and non-inductive current driving methods in a tokamak type fusion experimental device. At first, an ICRF antenna coupling code was developed for the estimation of the coupling properties of phased antenna array, so that the ICRF antennas were designed for JT-60 and JT-60U ICRF heating systems using the coupling codes. The ICRF heating experiments had been performed in JT-60 and JT-60U. The coupling properties of ICRF antenna, the physics of peripheral plasma and energy confinement by ICRF heating in various heating regimes have been investigated. Next, the Toroidicity induced Alfven Eigen (TAE) mode have been studied using minority ICRF heating for producing energetic ions which can excite TAE mode. The TAE mode could be suppressed by current profile control using current ramp operation and lower hybrid current drive. (author) 74 refs.

  3. Effect of Fusion Neutron Source Numerical Models on Neutron Wall Loading in a D-D Tokamak Device

    Institute of Scientific and Technical Information of China (English)

    陈义学; 吴宜灿

    2003-01-01

    Effect of various spatial and energy distributions of fusion neutron source on the calculation of neutron wall loading of Tokamak D-D fusion device has been investigated by means of the 3-D Monte Carlo code MCNP. A realistic Monte Carlo source model was developed based on the accurate representation of the spatial distribution and energy spectrum of fusion neutrons to solve the complicated problem of tokamak fusion neutron source modelling. The results show that those simplified source models will introduce significant uncertainties. For accurate estimation of the key nuclear responses of the tokamak design and analyses, the use of the realistic source is recommended. In addition, the accumulation of tritium produced during D-D plasma operation should be carefully considered.

  4. Proceeding of JSPS-CAS Core-University Program (CUP) on superconducting key technology for advanced fusion device

    International Nuclear Information System (INIS)

    The JSPS-CAS Core University Program (CUP) seminar on 'Superconducting Key Technology for Advanced Fusion Device' was held in Xi'an, China from October 18 to 21, 2010. This seminar was organized in the framework of the CUP in the field of plasma and nuclear fusion. This seminar honored by NIFS and ASIPP is aim to have a wide discussion on the new application and achievements on superconducting technology of nuclear fusion reactor. The superconducting technology on fusion reactor involves the fields on high current superconductor and magnet, quench protection, current control, cooling of the magnet, and reliability of large scale refrigerator. The technology on ITER high temperature superconductor current leads and the conductor test of JT-60SA are discussed in this seminar. Thirty-four oral talks and two summary talks were presented in this seminar. Total number of the participants was 34, including 12 Japanese participants. (author)

  5. The CIEDA-CIEMAT. The close relationship been Environmental Law and Scientific-Technical Innovation; El CIEDA-CIEMAT. La Intima relacion entre el derecho ambiental y la innovacion cientifico-tecnica

    Energy Technology Data Exchange (ETDEWEB)

    Molina Hernandez, A. J.

    2010-07-01

    The main goal of the International Environmental Law Studies Center (CIEDA-CIEMAT) is to become a reference center in the area of research, development and dissemination of the legal instruments needed to implement sustainability policies. The CIEDA-CIEMAT forms part of the actions included in the Specific Action Plan for Soria (PAES) that commissions CIEMAT to create such a center. The legal needs associated with environmental protection have brought about a rapid evolution of environmental law. The CIEDA-CIEMAT intends to support the public powers and civil society in the implementation of a sustainable development model. Considering the global nature of environmental problems, the international orientation of the Center is an essential ingredient, with a special focus on cooperation with the developing countries. Tho close ties of this branch of law to scientific-technological knowledge fully justifies the inclusion of a center of this nature in CIEMAT. (Author)

  6. CIEQUI: An oracle database for information management in the analytical chemistry unit of CIEMAT

    International Nuclear Information System (INIS)

    An in-house software product named CIEQUI has been developed in CIEMAT, with purpose-written programs as a laboratory information management system (LIMS). It is grounded upon relational data base from ORACLE, with the supported languages SQL, PL/SQL, SQL*Plus, and DEC BASIS, and with the tools SQL*Loader, SQL*Forms and SQL*Menu. Its internal organization and functional structure are schematically represented and the advantages and disadvantages of a tailored management system are described. Although it is difficult to unity the analysis criteria in a R AND D organization such as CIEMAT, because of the wide variety in the sample type and in the involved determinations, our system provides remarkable advantages. CIEQUI reflects the complexity of the laboratories it serves. It is a system easily accessible to all, that help us in many tasks about organization and management of the analytical service provided through the different laboratories of the CIEMAT Analytical Chemistry Unit. (Author)

  7. Effect of thin contaminating coating on reflectance of metallic mirror placed inside the vacuum chamber of fusion device

    International Nuclear Information System (INIS)

    The practice of use diagnostic mirrors inside the fusion devices revealed the appearance of a deposit on the mirror surface. Such deposit is a result of condensation of the erosion materials of those inner components that are subjected to the strongest plasma impact. Another reason for deposit growth is the wall conditioning procedures like carbonization and boronization. Appeared on the diagnostic mirrors and windows the contaminating films deteriorate the optical properties of these diagnostic elements,i.e., the mirror reflectance and window transmissivity. The object of this paper is to investigate an influence on reflectance of metal mirrors of thin films of the materials that are most probable in fusion devices under operation (boron and carbon) or can be promising in a fusion reactor (beryllium)

  8. Development of laser-based techniques for in situ characterization of the first wall in ITER and future fusion devices

    NARCIS (Netherlands)

    Philipps, V.; Malaquias, A.; Hakola, A.; Karhunen, J.; Maddaluno, G.; Almaviva, S.; Caneve, L.; Colao, F.; Fortuna, E.; Gasior, P.; Kubkowska, M.; Czarnecka, A.; Laan, M.; Lissovski, A.; Paris, P.; van der Meiden, H. J.; Petersson, P.; Rubel, M.; Huber, A.; Zlobinski, M.; Schweer, B.; Gierse, N.; Xiao, Q.; Sergienko, G.

    2013-01-01

    Analysis and understanding of wall erosion, material transport and fuel retention are among the most important tasks for ITER and future devices, since these questions determine largely the lifetime and availability of the fusion reactor. These data are also of extreme value to improve the understan

  9. User's and Programmer's Guide for HPC Platforms in CIEMAT; Guia de Utilizacion y programacion de las Plataformas de Calculo del CIEMAT

    Energy Technology Data Exchange (ETDEWEB)

    Munoz Roldan, A.

    2003-07-01

    This Technical Report presents a description of the High Performance Computing platforms available to researchers in CIEMAT and dedicated mainly to scientific computing. It targets to users and programmers and tries to help in the processes of developing new code and porting code across platforms. A brief review is also presented about historical evolution in the field of HPC, ie, the programming paradigms and underlying architectures. (Author) 32 refs.

  10. Consolidation of use of the CSN-CIEMAT radiological protection educational portal; Consolidacion de la utilidad del portal educativo de proteccion radiologica CSN-Ciemat

    Energy Technology Data Exchange (ETDEWEB)

    Llorente Herranz, C.; Marco Arboli, M.; Fernandez Sanchez, J.; Villaroel Gonzalez-Elipe, R.

    2016-05-01

    he workers of nuclear and radioactive facilities are required to undertake training programmes on radiological protection in order to achieve the accreditations and licences granted by the CSN. Since 2003, the Council has been collaborating with CIEMAT in the development, maintenance and updating of the teaching material for these courses. More than a thousand such courses have been delivered to date and their contents are accessible via Internet. (Author)

  11. Operating Instructions for the Cryogenics in the Liquid Argon Detector at CIEMAT; Operacion de la Criogenia del Detector de Argon Liquido del CIEMAT

    Energy Technology Data Exchange (ETDEWEB)

    Romero, L.; Leal, M. D.; Prado, M. del; Ramirez, J. L.

    2009-12-19

    Ciemat has wide experience in designing and developing gaseous particle detectors. It has taken part in the building of experiments for CERN accelerators, constructing shares of the muon chambers for L3 experiment in LEP and CMS experiment in LHC. Recently, new concepts for particle detectors have been developed, as a natural evolution from the ones built at Ciemat. These new radiation detectors use liquefied noble gases as active media. A testing system for these kind of liquefied argon detectors has been built at Ciemat, and includes a supporting cryogenic system for the liquefaction and maintenance of the liquid argon needed for operating the detector. This document describes the technical features of this cryogenic system. Besides the documentation of the cryogenic system, this technical report can be of help for the management and upgrading of the detector. As well as an introduction, the report includes the following chapters: The second one is a description of the cryogenics and gas systems. The third chapter shows the controlling electronics. The fourth chapter deals with the important topic that is security, its systems and protocols. The fifth describes the cryogenic operations possible in this equipment. The report is completed with diagrams, schemes, pictures and tables for the easier management of the setup. (Author)

  12. Participation of CIEMAT in studies of radioecology in european marine ecosystems

    International Nuclear Information System (INIS)

    In this report the different objectives and results achieved through the participation of the Aquatic Radioecology Laboratory for CIEMAT in some European Projects from 1994 up to now are detailed. A Description of the studied ecosystems, the sampling campaigns performed, and the analytical methods developed are presented as well. Finally the main results and conclusions obtained are summarized. (Author)

  13. Energy-dependent finite-orbit treatment for plasma buildup in mirror fusion devices

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, M.M.

    1980-01-01

    A computer simulation of hot plasma buildup in mirror fusion devices and results from this model are presented. In a small, hot magnetically confined plasma, the ion orbit radius (rho/sub i/) can be comparable to the plasma radius (R/sub p/). It a mirror-confined plasma were rho/sub i//R/sub p/ > 1/25 (such as 2XII-B), a point kinetic treatment of ion interactions becomes inaccurate and a finite gyro-radius (FGR) treatment must be used to adequately describe plasma buildup processes. This is particularly true for describing losses due to cold-gas charge exchange (c-x) near the plasma surface, since a particle lost near the vacuum interface may have contributed to the density as far as 2 rho/sub i/ radially inward from the c-x point. A similar FGR effect applies to beam-deposited ions whose large orbits influence the density up to 2 rho/sub i/ from the trapping point.

  14. Coordinated Use of Heterogeneous Infrastructures for Scientific Computing at CIEMAT by means of Grid Technologies; Aprovechamiento Coordinado de las Infraestructuras Heterogeneas para Calculo Cientifico Participadas por el CIEMAT por medio de Tecnologias Grid

    Energy Technology Data Exchange (ETDEWEB)

    Rubio-Montero, A. J.

    2008-08-06

    Usually, research data centres maintain platforms from a wide range of architectures to cover the computational needs of their scientists. These centres are also frequently involved in diverse national and international Grid projects. Besides, it is very difficult to achieve a complete and efficient utilization of these recourses, due to the heterogeneity in their hardware and software configurations and their unequal use along the time. This report offers a solution to the problem of enabling a simultaneous and coordinated access to the variety of computing infrastructures and platforms available in great Research Organisms such as CIEMAT. For this purpose, new Grid technologies have been deployed in order to facilitate a common interface which enables the final user to access the internal and external resources. The previous computing infrastructure has not been modified and the independence on its administration has been guaranteed. For a sake of comparison, a feasibility study has been performed with the execution of the Drift Kinetic Equation solver (Dikes) tool, a high throughput scientific application used in the TJ-II Flexible Heliac at National Fusion Laboratory. (Author) 35 refs.

  15. Radiation defects in perovskitic thin films of future bolometer systems in fusion devices

    International Nuclear Information System (INIS)

    This work represents an extensive study of the radiation resistance of ferroelectric and antiferroelectric thin films in view of a possible application as a temperature sensitive element in a new type of bolometer (which assesses the total absorbed radiation dose) in a fusion device like ITER (International Thermonuclear Experimental Reactor). In comparison to the actual systems for ITER, alternative bolometers could be valuable, because they are less sensitive to electromagnetic noise and simplify 'remove handling'. Perovskitic ferroelectric compounds like Pb(1-x)LaxZr(1-y)Tiy03 (PLZT) and PbZr53Ti47O3 (PZT) as well as the antiferroelectric system PbZrO3 (PZ) were irradiated in the TRIGA Mark II reactor (Vienna) to a total fluence of 2*1022 m-2 (E +62 0.1 MeV) for PLZT and PZT and to 4*1022 m-2 (E+620.1 MeV) for PZ, respectively. The dielectric properties (i.e. the hysteresis loops and the dielectric constant ε) were investigated prior to and after irradiation. Furthermore, all films were annealed after irradiation at several temperatures, in order to remove the radiation-induced defects. The measurements show that antiferroelectric PZ films are more radiation-resistant than PLZT and PZT. The observed radiation-induced defects and the annealing effects are explained with a 'phenomenological model', which is based on oxygen vancancies and radiation-induced charge carriers inducing an internal bias field ('poling effect'). In particular, a quadratic dependence of the relative change of the Curie-Weiss temperature as well as of the charge carrier density on the neutron fluence was found for PZ films. Epitaxial PZ films show a significant performance improvement and an increase of the radiation resistivity. In summary, the antiferroelectric PZ films are the most promising candidates for further investigations and the development of future alternative bolometer systems for ITER. (author)

  16. From Data Acquisition to Data Fusion: A Comprehensive Review and a Roadmap for the Identification of Activities of Daily Living Using Mobile Devices

    Directory of Open Access Journals (Sweden)

    Ivan Miguel Pires

    2016-02-01

    Full Text Available This paper focuses on the research on the state of the art for sensor fusion techniques, applied to the sensors embedded in mobile devices, as a means to help identify the mobile device user’s daily activities. Sensor data fusion techniques are used to consolidate the data collected from several sensors, increasing the reliability of the algorithms for the identification of the different activities. However, mobile devices have several constraints, e.g., low memory, low battery life and low processing power, and some data fusion techniques are not suited to this scenario. The main purpose of this paper is to present an overview of the state of the art to identify examples of sensor data fusion techniques that can be applied to the sensors available in mobile devices aiming to identify activities of daily living (ADLs.

  17. Bilateral Comparison CIEMAT-CENTIS-DMR for radionuclide activity measurements; Comparacion Bilateral CIEMAT-CENTIS-DMR de la Medida de Actividad de Radionucleidos

    Energy Technology Data Exchange (ETDEWEB)

    Oropesa Verdecia, P.; Garcia-Torano, E.

    2004-07-01

    We present the results of a bilateral comparison of radionuclide activity measurements between the Radionuclide Metrology Department of the Center of Isotopes of Cuba (CENTIS-DMR), and the Ionising Radiation Metrology Laboratory (LMRI) of the Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT) of Spain. The aim of the comparison was to establish the comparability of the measurement instruments and methods used to obtain radioactive reference materials of some gamma-emitting nuclides at CENTIS-DMR. The results revealed that there are no statistically significant differences between the data reported by both laboratories. (Author) 7 refs.

  18. Database for the registration of radiological surveillance in radioactive facilities of CIEMAT; Base de datos para el registro de vigilancias radiologicas en las instalaciones radiactivas del CIEMAT

    Energy Technology Data Exchange (ETDEWEB)

    Marquez Fernandez, J. L.; Carroza Garcia, J. A.; Perez-Cejuela, P.; Vico Ocon, A.; Alvarez Garcia, A.

    2013-07-01

    In the CIEMAT There are 21 Radiation Facilities in which according to the Radiation Protection Manual must considered radiation hazards and / or contamination. The Radiological Protection Service according to this risk It establishes the classification and marking of areas and a monitoring plan that includes the type and extent of radiological periodicity. The information derived from this monitoring be registered and properly stored. Therefore, it has been completed the design of an application that allows technical experts record their actions and also consult records radiation monitoring tasks performed. (Author)

  19. Studies on advanced superconductors for fusion device. Pt. 1. Present status of Nb{sub 3}Sn conductors

    Energy Technology Data Exchange (ETDEWEB)

    Tachikawa, Kyoji; Yamamoto, Junya [eds.

    1996-03-01

    Nb{sub 3}Sn conductors have been developed with great expectation as an advanced high-field superconductor to be used in fusion devices of next generation. Furthermore, Nb{sub 3}Sn conductors are being developed for NMR magnet and superconducting generator as well as for cryogen-free superconducting magnet. A variety of fabrication procedures, such as bronze process, internal tin process and Nb tube method, have been developed based on the diffusion reaction. Recently, Nb{sub 3}Sn conductors with ultra-thin filaments have been fabricated for AC use. Both high-field and AC performances of Nb{sub 3}Sn conductors have been significantly improved by alloying addition. The Ti-doped Nb{sub 3}Sn conductor has generated 21.5T at 1.8K operation. This report summarizes manufacturing procedures, superconducting performances and applications of Nb{sub 3}Sn conductors fabricated through different processes in different countries. More detailed subjects included in this report are high-field properties, AC properties, conductors for fusion with large current capacities, stress-strain effect and irradiation effect as well as standardization of critical current measurement method regarding to Nb{sub 3}Sn conductors. Comprehensive grasp on the present status of Nb{sub 3}Sn conductors provided by this report will act as a useful data base for the future planning of fusion devices. (author). 172 refs.

  20. A Simple Apparatus for the Injection of Lithium Aerosol into the Scrape-Off Layer of Fusion Research Devices

    Energy Technology Data Exchange (ETDEWEB)

    D. K. Mansfield, A.L Roquemore, H. Schneider, J. Timberlake, H. Kugel, M.G. Bell and the NSTX Research Team

    2010-10-11

    A simple device has been developed to deposit elemental lithium onto plasma facing components in the National Spherical Torus Experiment. Deposition is accomplished by dropping lithium powder into the plasma column. Once introduced, lithium particles quickly become entrained in scrape-off layer flow as an evaporating aerosol. Particles are delivered through a small central aperture in a computer-controlled resonating piezoelectric disk on which the powder is supported. The device has been used to deposit lithium both during discharges as well as prior to plasma breakdown. Clear improvements to plasma performance have been demonstrated. The use of this apparatus provides flexibility in the amount and timing of lithium deposition and, therefore, may benefit future fusion research devices.

  1. Neutron field characteristics of Ciemat's Neutron Standards Laboratory Hector Rene Vega-Carrillo

    OpenAIRE

    Guzmán-García, Karen Arlete; Méndez Villafañe, Roberto; Vega-Carrillo, Héctor René

    2015-01-01

    Monte Carlo calculations were carried out to characterize the neutron field produced by the calibration neutron sources of the Neutron Standards Laboratory at the Research Center for Energy, Environment and Technology (CIEMAT) in Spain. For 241AmBe and 252Cf neutron sources, the neutron spectra, the ambient dose equivalent rates and the total neutron fluence rates were estimated. In the calibration hall, there are several items that modify the neutron field. To evaluate their effects differen...

  2. Liquid Scintillation counting Standardization of 22 NaCl by the CIEMAT/NIST method

    International Nuclear Information System (INIS)

    We describe a procedure for preparing a stable solution of ''22 NaCl for liquid scintillation counting and its counting stability and spectral evolution in Insta-Gel''R is studied. The solution has been standardised in terms of activity concentration by the CIEMAT/NIST method with discrepancies between experimental and computed efficiencies lower than 0.4/% and an overall uncertainty of 0.35%

  3. Consolidation of use of the CSN-CIEMAT radiological protection educational portal

    International Nuclear Information System (INIS)

    he workers of nuclear and radioactive facilities are required to undertake training programmes on radiological protection in order to achieve the accreditations and licences granted by the CSN. Since 2003, the Council has been collaborating with CIEMAT in the development, maintenance and updating of the teaching material for these courses. More than a thousand such courses have been delivered to date and their contents are accessible via Internet. (Author)

  4. CIEMAT interlaboratories comparison of the results obtained in the proficiency test run by IAEA

    International Nuclear Information System (INIS)

    This report contains the results obtained by two different laboratories from CIEMAT after participating in the Proficiency Test organised by IAEA (International Atomic Energy Agency) in 1999. This test involves the analysis of fly ashes containing natural radionuclides and different amounts of added transuranics. The extraction techniques, counting methods and results obtained are detailed. This type of test are used for the labs to achieve their accreditation and check the reliability of the procedures routinely employed. (Author) 4 refs

  5. Quality Control Procedures Applied to the CMS Muon Chambers Built at CIEMAT

    International Nuclear Information System (INIS)

    In this document the quality control procedures applied to the CMS muon drift chambers built at CIEMAT are described. It includes a description of the high voltage and front electronics associated to the chambers. Every procedure is described with detail and a list of the more common problems and possible solutions is given. This document can be considered as a chamber test handbook for beginners. (Author) 3 refs

  6. Magnetic Fusion Energy Plasma Interactive and High Heat Flux Components: Volume 5, Technical assessment of critical issues in the steady state operation of fusion confinement devices

    International Nuclear Information System (INIS)

    Critical issues for the steady state operation of plasma confinement devices exist in both the physics and technology fields of fusion research. Due to the wide range and number of these issues, this technical assessment has focused on the crucial issues associated with the plasma physics and the plasma interactive components. The document provides information on the problem areas that affect the design and operation of a steady state ETR or ITER type confinement device. It discusses both tokamaks and alternative concepts, and provides a survey of existing and planned confinement machines and laboratory facilities that can address the identified issues. A universal definition of steady state operation is difficult to obtain. From a physics point of view, steady state is generally achieved when the time derivatives approach zero and the operation time greatly exceeds the characteristic time constants of the device. Steady state operation for materials depends on whether thermal stress, creep, fatigue, radiation damage, or power removal are being discussed. For erosion issues, the fluence and availability of the machine for continuous operation are important, assuming that transient events such as disruptions do not limit the component lifetimes. The panel suggests, in general terms, that steady state requires plasma operation from 100 to 1000 seconds and an availability of more than a few percent, which is similar to the expectations for an ETR type device. The assessment of critical issues for steady state operation is divided into four sections: physics issues; technology issues; issues in alternative concepts; and devices and laboratory facilities that can address these problems

  7. Study of lower hybrid current drive system in tokamak fusion devices

    Energy Technology Data Exchange (ETDEWEB)

    Maebara, Sunao [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-01-01

    This report describes R and D of a high-power klystron, RF vacuum window, low-outgassing antenna and a front module for a plasma-facing antenna aiming the 5 GHz Lower Hybrid Current Drive (LHCD) system for the next Tokamak Fusion Device. 5 GHz klystron with a low-perveances of 0.7 {mu}P is designed for a high-power and a high-efficiency, the output-power of 715 kW and the efficiency of 63%, which are beyond the conventional design scaling of 450 kW-45%, are performed using the prototype klystron which operates at the pulse duration of 15 {mu}sec. A new pillbox window, which has an oversized length in both the axial and the radial direction, are designed to reduce the RF power density and the electric field strength at the ceramics. It is evaluated that the power capability by cooling edge of ceramics is 1 MW with continuous-wave operation. The antenna module using Dispersion Strengthened Copper which combines high mechanical property up to 500degC with high thermal conductivity, are developed for a low-outgassing antenna in a steady state operation. It is found that the outgassing rate is in the lower range of 4x10{sup -6} Pam{sup 3}/sm{sup 2} at the module temperature of 300degC, which requires no active vacuum pumping of the LHCD antenna. A front module using Carbon Fiber Composite (CFC) are fabricated and tested for a plasma facing antenna which has a high heat-resistive. Stationary operation of the CFC module with water cooling is performed at the RF power of 46 MWm{sup -2} (about 2 times higher than the design value) during 1000 sec, it is found that the outgassing rate is less than 10{sup -5} Pam{sup 3}/sm{sup 2} which is low enough for an antenna material. (author)

  8. Operating Instructions for the Cryogenics in the Liquid Argon Detector at CIEMAT

    International Nuclear Information System (INIS)

    Ciemat has wide experience in designing and developing gaseous particle detectors. It has taken part in the building of experiments for CERN accelerators, constructing shares of the muon chambers for L3 experiment in LEP and CMS experiment in LHC. Recently, new concepts for particle detectors have been developed, as a natural evolution from the ones built at Ciemat. These new radiation detectors use liquefied noble gases as active media. A testing system for these kind of liquefied argon detectors has been built at Ciemat, and includes a supporting cryogenic system for the liquefaction and maintenance of the liquid argon needed for operating the detector. This document describes the technical features of this cryogenic system. Besides the documentation of the cryogenic system, this technical report can be of help for the management and upgrading of the detector. As well as an introduction, the report includes the following chapters: The second one is a description of the cryogenics and gas systems. The third chapter shows the controlling electronics. The fourth chapter deals with the important topic that is security, its systems and protocols. The fifth describes the cryogenic operations possible in this equipment. The report is completed with diagrams, schemes, pictures and tables for the easier management of the setup. (Author)

  9. Report of Activities of the Association Euratom/Ciemat

    International Nuclear Information System (INIS)

    The focal point of the work at the Spanish Association has been the flexible Heliac TJII, which since 2002 is the only stellarator in operation in Europe. The main milestone of TJ-II operation has been the generation of plasmas sustained by NBI heating (which lead to a record in TJ-II stored energy) but significant physics results have been also obtained in the continuation of existing lines (improved confinement scenarios and the role of rational surfaces, iota scaling with boronized walls, turbulence studies, impurity transport and rotation experiments, suprathermal electrons studies, plasma wall effects, etc). TJ-II improvements include the progress in the second NBI, the preparations for the Bernstein wave heating system, the installation of a Diagnostic NB and the fast camera (Ha) diagnostic (on temporal loan from PPPL- Princeton). Other activities of the Association include the Materials research programme, both in the areas of insulator materials properties and structural materials (with a new line open: studies of Tritium barriers during irradiation), the studies on the socio-economic impact of fusion and a reinforced participation in the EFDA technology work programme. The Association wants to increase technology activities and, along this line, a number of expression of interest have been submitted, leading to several task contracts : design of the European Dipole, design of the magnet for ITER field simulation on NBI test bed, IFMIF security analysis, Demo Blanket support system (finished), Main plasma reflectometry system (finished), Tritium retention/ removal studies. Finally, the Association has keep its involvement in the PhD programme Fusion and Plasma Physics that has been carried since 2001 in collaboration with several Universities and other Spanish research centres. (Author)

  10. Applications of spectroscopic methods to the characterization of the ablation clouds of pellets in magnetic fusion devices

    Energy Technology Data Exchange (ETDEWEB)

    Koubiti, M.; Godbert-Mouret, L.; Marandet, Y.; Rosato, J.; Stamm, R. [PIIM UMR 6633 CNRS-Universite de Provence, F-13397 Marseille Cedex 20 (France); Goto, M.; Morita, S. [National Institute for Fusion Science, Oroshi-cho 322-6, Toki 509-5292 (Japan)

    2011-07-01

    In the field of magnetic fusion research, pellet injection is considered as a major technique for deep plasma fuelling and plasma control by mitigation of edge instabilities. Pellet injection is planned for ITER as the primary core fuelling system. For such major purposes, pellets made of hydrogen or its isotopes are used. In addition, some other purposes are achievable using pellets made from other materials like carbon, aluminium, molybdenum, titanium and so on. In the Large Helical Device (LHD), pellets are used to characterize the transport of impurities. Investigating the ablation clouds of different pellets injected in LHD using spectroscopic measurements may allow to improve our understanding of the physics of the ablation of pellets injected in magnetic fusion devices. A spectroscopic technique based on the emission line intensities and broadening has been previously applied to carbon pellets before its generalization to other pellets. In this paper we illustrate this technique for the case of aluminium pellets. Using data from LHD, it has been shown that line intensities can bring valiant information allowing the characterization of the cloud surrounding the pellet core inside the plasma. For carbon pellets it was mandatory to take into account of radiation absorption effects on some lines. The data investigated here were obtained from LHD where different pellets were injected in the device in the aim of realizing high ion temperature plasmas

  11. Automated pose estimation of objects using multiple ID devices for handling and maintenance task in nuclear fusion reactor

    International Nuclear Information System (INIS)

    This paper describes a method for the automated estimation of three-dimensional pose (position and orientation) of objects by autonomous robots, using multiple identification (ID) devices. Our goal is to estimate the object pose for assembly or maintenance tasks in a real nuclear fusion reactor system, with autonomous robots cooperating in a virtual assembly system. The method estimates the three-dimensional pose for autonomous robots. This paper discusses a method of motion generation for ID acquisition using the sensory data acquired by the measurement system attached to the robots and from the environment. Experimental results show the feasibility of the proposed method. (author)

  12. Evidences for and the models of self-similar skeletal structures in fusion devices, severe weather phenomena and space

    CERN Document Server

    Kukushkin, A B

    2005-01-01

    The paper briefly reviews (i) the evidences for self-similar structures of a skeletal form (namely, tubules and cartwheels, and their simplest combinations), called the Universal Skeletal Structures (USS), observed in the range 10-5 cm - 1023 cm. in the high-current electric discharges in various fusion devices, severe weather phenomena, and space, (ii) the models for interpreting the phenomenon of skeletal structures, including the hypothesis for a fractal condensed matter (FCM), assembled from nanotubular dust, and (iii) probable role of FCM, which might be responsible for the USS phenomenon, in tornado, ball lightning, and waterspout.

  13. Proceedings of US/Japan workshop, Q219 on high heat flux components and plasma surface interactions for next fusion devices

    Energy Technology Data Exchange (ETDEWEB)

    Ulrickson, M.A.; Stevens, P.L.; Hino, T.; Hirohata, Y. [eds.

    1996-12-01

    This report contains the viewgraphs from the proceedings of US/Japan Workshop on High Heat Flux Components and Plasma Surface Interactions for Next Fusion Devices. Some of the general topics covered by this report are: PFC/PSI in tokamak and helical devices; development of high heat flux components; PSIS and plasma facing materials;tritium; and material damage.

  14. Proceedings of US/Japan workshop, Q219 on high heat flux components and plasma surface interactions for next fusion devices

    International Nuclear Information System (INIS)

    This report contains the viewgraphs from the proceedings of US/Japan Workshop on High Heat Flux Components and Plasma Surface Interactions for Next Fusion Devices. Some of the general topics covered by this report are: PFC/PSI in tokamak and helical devices; development of high heat flux components; PSIS and plasma facing materials;tritium; and material damage

  15. Dust particles in controlled fusion devices: morphology, observations in the plasma and influence on the plasma performance

    Science.gov (United States)

    Rubel, M.; Cecconello, M.; Malmberg, J. A.; Sergienko, G.; Biel, W.; Drake, J. R.; Hedqvist, A.; Huber, A.; Philipps, V.

    2001-08-01

    The formation and release of particle agglomerates, i.e. debris and dusty objects, from plasma facing components and the impact of such materials on plasma operation in controlled fusion devices has been studied in the Extrap T2 reversed field pinch and the TEXTOR tokamak. Several plasma diagnostic techniques, camera observations and surface analysis methods were applied for in situ and ex situ investigation. The results are discussed in terms of processes that are decisive for dust transfer: localized power deposition connected with wall locked modes causing emission of carbon granules, brittle destruction of graphite and detachment of thick flaking co-deposited layers. The consequences for large next step devices are also addressed.

  16. High-speed repetitive pellet injector prototype for magnetic confinement fusion devices

    International Nuclear Information System (INIS)

    The design of a test facility aimed at demonstrating the feasibility of high-speed repetitive acceleration of solid D2 pellets for fusion applications, developed in a collaboration between Oak Ridge National Laboratory and ENEA Frascati, is presented. The results of tests performed at the CNPM/CNR on the piston wear in a repetitively operating two-stage gun are also reported

  17. Mechanical behavior of a novel non-fusion scoliosis correction device

    NARCIS (Netherlands)

    Wessels, M.; Hekman, E. E. G.; Verkerke, G. J.

    2013-01-01

    Introduction: We developed an innovative non-fusion correction system (XS LATOR) consisting of two individual implants that are extendable and extremely flexible. One implant, the XS LAT, generates a lateral, bending moment and one implant, the XS TOR, generates a torsion moment. Two 'inverse' impla

  18. Integration Between SCORM Learning Objects and the CIEMAT Virtual Elearning Platform; Integracion de Objetos de Aprendizaje SCORM con la Plataforma de Ensenanza Virtual del CIEMAT

    Energy Technology Data Exchange (ETDEWEB)

    Bailador Ferreras, M. A.; Troiani, S.; Gonzalez Giralda, C.; Llorente Herranz, C.; Marco Arboli, M. L.

    2010-08-06

    New information and communications technologies have made a major contribution in the way of understanding the training needs, which have been involved in the change from the traditional teaching to the use of virtual learning platforms. Thus, Ciemat, has installed a virtual platform for education, in particular MOODLE in which have been installed some virtual contents developed with Flash. The next necessary step has been how to integrate the contents with the MOODLE virtual platform, following the aim to know the assessment for learning tracking of the learners. This document provides the technological facts for the integration of the flash virtual contents and the virtual platform in order to achieve the training process is efficiently evaluated. (Author) 5 refs.

  19. Studies on advanced superconductors for fusion device. Pt. 2. Metallic superconductors other than Nb{sub 3}Sn

    Energy Technology Data Exchange (ETDEWEB)

    Tachikawa, K.; Yamamoto, J.; Mito, T. [eds.

    1997-03-01

    A comprehensive report on the present status of the development of Nb{sub 3}Sn superconductors was published as the NIFS-MEMO-20 in March, 1996 (Part 1 of this report series). The second report of this study covers various progress so far achieved in the research and development on advanced metallic superconductors other than Nb{sub 3}Sn. Among different A15 crystal-type compounds, Nb{sub 3}Al has been fabricated into cables with large current-carrying capacity for fusion device referring its smaller sensitivity to mechanical strain than Nb{sub 3}Sn. Other high-field A15 superconductors, e.g. V{sub 3}Ga, Nb{sub 3}Ge and Nb{sub 3}(Al,Ge), have been also fabricated through different novel processes as promising alternatives to Nb{sub 3}Sn conductors. Meanwhile, B1 crystal-type NbN and C15 crystal-type V{sub 2}(Hf,Zr) high-field superconductors are characterized by their excellent tolerance to mechanical strain and neutron irradiation. Chevrel-type PbMo{sub 6}S{sub 8} compound has gained much interests due to its extremely high upper critical field. In addition, this report includes the recent progress in ultra-fine filamentary NbTi wires for AC use, and that in NbTi/Cu magnetic shields necessary in the application of high magnetic field. The data on the decay of radioactivity in a variety of metals relating to fusion superconducting magnet are also attached as appendices. We hope that this report might contribute substantially as a useful reference for the planning of fusion apparatus of next generation as well as that of other future superconducting devices. (author)

  20. Facility Bench of Stationary Engines for Study of Emissions (E65-PO) CIEMAT; Instalacion Banco de Motores Estacionarios para Estudio de Emisiones (E65-PO) CIEMAT

    Energy Technology Data Exchange (ETDEWEB)

    Rojas Garcia, E.; Rodriguez Maroto, J.J.

    2007-07-01

    The Project of Technology of Aerosols in Generation of Energy, of the Department of Fossil Fuels of the CIEMAT, began in the year 2004, a research activity line, based on the study of the emissions coming from internal combustion engines, particularly of Diesel technology. Activity was continued by the Polluting Emissions Group of the Department of Environment, when becoming the original Project in this Group. From the concession to the Group, of the project GR/AMB/0119/2004 Evaluation of the Emissions of Biodiesel supported by the Autonomous Community of Madrid together with the European Regional Development Fund (ERDF), this activity was encourage, with the design, assembly and to get ready of the facility Bench of stationary engines for study of emissions, located in the building 65 at CIEMAT, Madrid. The present report constitutes a detailed technical description of each one of the elements that the installation Bench of stationary engines for study of emissions it integrated within the framework of the referred project (GR/AMB/0119/2004) and whose capacity includes studies of the effects of the engine, fuel, operation conditions, and methodology of sampling and measurement of emissions (gases and particles). The fundamental parts of facility describes in the present report are: engine test cell (cabin of sound insulation , ventilation and refrigeration system, anti vibrations mounting, engine, dynamometric brake), lines of preconditioning of particles and gases emissions (exhaust line, primary and secondary dilution lines, gases cleaning system...), other general parts of facility (sampling and measurement station, service lines...). The present report not only reflects the characteristics of the systems involved, but rather also in certain cases specified the procedure and reason for their choice. (Author) 10 refs.

  1. Results of the Interlaboratory Exercise CNS/CIEMAT-04 Among Environmental Radioactivity Laboratories (Aqueous Solution); Resultados del Ejercicio Interlaboratorios de Radiactividad Ambiental CSN/CIEMAT-04 (Solucion Acuosa)

    Energy Technology Data Exchange (ETDEWEB)

    Romero Gonzalez, M. L.; Barrera Izquierdo, M.

    2004-07-01

    The document describes the outcome of the CSN/CIEMAT-04 interlaboratory test comparison among environmental radioactivity laboratories. The exercise was organised according to the ISO-43 and the ISO/IUPAC/AOAC Harmonised Protocol for the proficiency testing of analytical laboratories. Following the issue of the European Community Drinking Water Directive 98/83/EC concerning the quality of water for human consumption, the last inter-comparison exercise was organised by using a water sample, in an attempt to evaluate the performance of the laboratories analysing the required radioactivity parameters (H-3, gross alpha and beta activity and residual beta). The sample (a synthetic drinking water), was prepared at the National Laboratory for Ionising Radiation's Standards (CIEMAT), and contained the following radionuclides ''241 Am, ''239+240 Pu, ''90Sr, ''137 Cs, ''3 H y ''40 K. The results of the exercise were computed for 38 participating laboratories, and their analytical performance was assessed using the z-score approach. Robust statistics of the participant's results was applied to obtain the median and standard deviation, including suspected outliers. The exercise has revealed and homogeneous behaviour of laboratories, being statistical parameters from the results close to the reference values. A raised percentage os satisfactory laboratory performance has been obtained for gross alpha, gross beta and residual beta: 85, 97 and 87% respectively. The study has shown that participant laboratories perform radioactive determinations in drinking water samples with satisfactory quality levels. (Author) 16 refs.

  2. Profiles of Information Consumption and Production of CIEMAT Researches within the Period 2005-2007

    International Nuclear Information System (INIS)

    Given the importance of scientific and technological evaluation in the current international scene, the goal is to show CIEMAT researchers' profiles on information consumption and production through different biblio metric indicators, mainly quantitative. Taking further steps based on this data, margins of coincidence on both patterns will be carefully checked not only from a group perspective but also on an individual scale, in the most widely used scientific journals. This analysis shall reveal the information needs of researchers for the future design of documentary strategies. (Author) 21 refs.

  3. TDCR and CIEMAT/NIST Liquid Scintillation Methods applied to the Radionuclide Metrology

    Science.gov (United States)

    da Cruz, P. A. L.; da Silva, C. J.; Iwahara, A.; Loureiro, J. S.; De Oliveira, A. E.; Tauhata, L.; Lopes, R. T.

    2016-07-01

    This work presents TDCR and CIEMAT/NIST methods of liquid scintillation implemented in National Institutes of Metrology for activity standardization of radionuclides, which decay by beta emission and electron capture. The computer codes used to calculate the detection efficiency take into account: decay schemes, beta decay theory, quenching parameter evaluation, Poisson statistic model and Monte Carlo simulation for photon and particle interactions in the detection system. Measurements were performed for pure emitters 3H, 14C, 99Tc and for 68Ge/68Ga which decay by electron capture and positron emission, with uncertainties smaller than 1% (k = 1).

  4. TDCR and CIEMAT/NIST liquid scintillation methods applied to the radionuclide metrology

    Energy Technology Data Exchange (ETDEWEB)

    Cruz, Paulo A.L. da; Silva, Carlos J. da; Iwahara, Akira; Loureiro, Jamir S.; Oliveira, Antonio E. de; Tauhata, Luiz, E-mail: palcruz@ird.gov.br [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil); Lopes, Ricardo T. [Coordenacao de Programas de Pos-Graduacao de Engenharia (PEN/COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear

    2015-07-01

    In this work are presented TDCR and CIEMAT/NIST methods of liquid scintillation implemented in National Institutes of Metrology for activity standardization of radionuclides which decay by beta emission and electron capture. The computer codes to calculate the detection efficiency take into account: decay schemes, beta decay theory, quenching parameter evaluation, Poisson statistic model and Monte Carlo simulation for photon and particle interactions in the detection system. Measurements were performed for {sup 3}H, {sup 14}C, {sup 99}Tc pure beta emitters in a large energy range, and {sup 68}Ge/{sup 68}Ga which decay by electron capture and positron emission, with uncertainties smaller than 1% (k = 1). (author)

  5. Implementation of ISO 28218 quality system in the laboratory of body radioactivity counter CIEMAT; Implementacion de la norma ISO 28218 en el sistema de calidad del laboratorio del contador de radiactividad corporal del CIEMAT

    Energy Technology Data Exchange (ETDEWEB)

    Navarro Amaro, J. F.; Perez Lopez, B.; Lopez Ponte, M. A.; Perez Jimenez, C.

    2011-07-01

    The laboratory of body radioactivity counter has implemented IS0 28218 standard Performance Criteria for Radio bioassay in all measured in vivo techniques of internal contamination in the human organism in monitoring programs defined by the Personal Dosimetry Service Internal CIEMAT. The application of this rule in the laboratory's quality system is essential to meet the technical requirements of the standard IS0/IEC 17025 with the purpose of obtaining ENAC accreditation as a testing laboratory and calibration within the framework of the accreditation of Service CIEMAT Radiation Dosimetry. (Author)

  6. Experimental study of potential structure in a spherical IEC fusion device

    International Nuclear Information System (INIS)

    The spherical inertial-electrostatic confinement (SIEC) concept is designed to focus and accelerate ions and electrons radially inward towards the center of a negatively biased, highly transparent spherical grid. The converging ions create a high-density plasma core where a high fusion rate occurs. In addition, under proper conditions, the ion and electron flows create a space-charge induced double potential well (a negative potential well nested inside a positive potential well). This structure traps high-energy ions within the virtual anode created by the double potential, providing a high fusion density in the trap volume. The present experiment was designed to verify double potential well formation and trapping by a measurement of the radial birth profile of energetic (3-MeV) protons produced by D-D fusion reactions in a deuterium discharge. This experiment was designed to operate at high perveance (0.4 to 1.4 mA/kV3/2), where formation of a double well is predicted theoretically. Additional steps to aid well formation included: use of the unique Star mode of operation to obtain ion beam focusing down to approximately 1.6 H the ballistic limit and the incorporation of a second electrically floating grid (in addition to the focusing/accelerating cathode grid) to reduce the ion radial energy spread to 0.34 mA/kV3/2. As the perveance increased, the depth of the double well also increased. At the maximum perveance studied, 1.38 mA/kV3/2 (corresponding to 80 mA and 15 kV), the negative potential well depth, corresponding to the measured proton-rate density, was estimated to be 22%--27% of the applied cathode voltage. This represents the first conclusive demonstration of double well formation in an SIEC, since prior measurements by other researchers typically yielded marginal or negative results

  7. Fusion of gait and fingerprint for user authentication on mobile devices

    DEFF Research Database (Denmark)

    Derawi, Mohammad; Gafurov, Davrondzhon; Larsen, Rasmus;

    2010-01-01

    A new multi-modal biometric authentication approach using gait signals and fingerprint images as biometric traits is proposed. The individual comparison scores derived from the gait and fingers are normalized using four methods (min-max, z-score, median absolute deviation, tangent hyperbolic......) and then four fusion approaches (simple sum, user-weighting, maximum score and minimum core) are applied. Gait samples are obtained by using a dedicated accelerometer sensor attached to the hip. The proposed method is evaluated using 7200 fingerprint images and gait samples. Fingerprints are collected...

  8. The Current Status of the Magnetoplasma Compressor Device in Belgrade - Study of Plasma Facing Materials Important for Fusion Reactors

    Directory of Open Access Journals (Sweden)

    Nora Trklja

    2015-01-01

    Full Text Available The magnetoplasma compressor, a quasi stationary plasma accelerator, is a source of supersonic compression plasma flow. High plasma parameters of compression flow, large flow velocity and discharge duration enable their efficient usage for development of new plasma technologies, including material surface modification, creation of sub microstructures and nanostructures. In this paper spatial and temporal distribution of emissivity was studied using inverse Abel transform. This has been realized in LabVIEW environment. The plasma flow generated by quasi stationary plasma accelerators can be used for simulation of high energy plasma interaction with different materials of interest for fusion experiments. Surface phenomena are results of specific conditions during plasma flow interaction with target surface. As the next step in our research, spectral analysis of the plasma area around targets surface, after interaction between target and plasma, generated by magnetoplasma compressor, is planned. The first material which will be subjected to interaction with plasma will be a carbon fiber - material of big importance for divertor region in fusion devices.

  9. Charge-injection-device performance in the high-energy-neutron environment of laser-fusion experiments.

    Science.gov (United States)

    Marshall, F J; DeHaas, T; Glebov, V Yu

    2010-10-01

    Charge-injection devices (CIDs) are being used to image x rays in laser-fusion experiments on the University of Rochester's OMEGA Laser System. The CID cameras are routinely used up to the maximum neutron yields generated (∼10(14) DT). The detectors are deployed in x-ray pinhole cameras and Kirkpatrick-Baez microscopes. The neutron fluences ranged from ∼10(7) to ∼10(9) neutrons/cm(2) and useful x-ray images were obtained even at the highest fluences. It is intended to use CID cameras at the National Ignition Facility (NIF) as a supporting means of recording x-ray images. The results of this work predict that x-ray images should be obtainable on the NIF at yields up to ∼10(15), depending on distance and shielding.

  10. Integrated Prediction and Mitigation Methods of Materials Damage and Lifetime Assessment during Plasma Operation and Various Instabilities in Fusion Devices

    Energy Technology Data Exchange (ETDEWEB)

    Hassanein, Ahmed [Purdue Univ., West Lafayette, IN (United States)

    2015-03-31

    This report describes implementation of comprehensive and integrated models to evaluate plasma material interactions during normal and abnormal plasma operations. The models in full3D simulations represent state-of-the art worldwide development with numerous benchmarking of various tokamak devices and plasma simulators. In addition, significant number of experimental work has been performed in our center for materials under extreme environment (CMUXE) at Purdue to benchmark the effect of intense particle and heat fluxes on plasma-facing components. This represents one-year worth of work and resulted in more than 23 Journal Publications and numerous conferences presentations. The funding has helped several students to obtain their M.Sc. and Ph.D. degrees and many of them are now faculty members in US and around the world teaching and conducting fusion research. Our work has also been recognized through many awards.

  11. Integrated Prediction and Mitigation Methods of Materials Damage and Lifetime Assessment during Plasma Operation and Various Instabilities in Fusion Devices

    International Nuclear Information System (INIS)

    This report describes implementation of comprehensive and integrated models to evaluate plasma material interactions during normal and abnormal plasma operations. The models in full3D simulations represent state-of-the art worldwide development with numerous benchmarking of various tokamak devices and plasma simulators. In addition, significant number of experimental work has been performed in our center for materials under extreme environment (CMUXE) at Purdue to benchmark the effect of intense particle and heat fluxes on plasma-facing components. This represents one-year worth of work and resulted in more than 23 Journal Publications and numerous conferences presentations. The funding has helped several students to obtain their M.Sc. and Ph.D. degrees and many of them are now faculty members in US and around the world teaching and conducting fusion research. Our work has also been recognized through many awards.

  12. Charge-injection-device performance in the high-energy-neutron environment of laser-fusion experiments

    International Nuclear Information System (INIS)

    Charge-injection devices (CIDs) are being used to image x rays in laser-fusion experiments on the University of Rochester's OMEGA Laser System. The CID cameras are routinely used up to the maximum neutron yields generated (∼1014 DT). The detectors are deployed in x-ray pinhole cameras and Kirkpatrick-Baez microscopes. The neutron fluences ranged from ∼107 to ∼109 neutrons/cm2 and useful x-ray images were obtained even at the highest fluences. It is intended to use CID cameras at the National Ignition Facility (NIF) as a supporting means of recording x-ray images. The results of this work predict that x-ray images should be obtainable on the NIF at yields up to ∼1015, depending on distance and shielding.

  13. Results of the Interlaboratory Exercise CNS/CIEMAT-04 Among Environmental Radioactivity Laboratories (Aqueous Solution)

    International Nuclear Information System (INIS)

    The document describes the outcome of the CSN/CIEMAT-04 interlaboratory test comparison among environmental radioactivity laboratories. The exercise was organised according to the ISO-43 and the ISO/IUPAC/AOAC Harmonised Protocol for the proficiency testing of analytical laboratories. Following the issue of the European Community Drinking Water Directive 98/83/EC concerning the quality of water for human consumption, the last inter-comparison exercise was organised by using a water sample, in an attempt to evaluate the performance of the laboratories analysing the required radioactivity parameters (H-3, gross alpha and beta activity and residual beta). The sample (a synthetic drinking water), was prepared at the National Laboratory for Ionising Radiation's Standards (CIEMAT), and contained the following radionuclides ''241 Am, ''239+240 Pu, ''90Sr, ''137 Cs, ''3 H y ''40 K. The results of the exercise were computed for 38 participating laboratories, and their analytical performance was assessed using the z-score approach. Robust statistics of the participant's results was applied to obtain the median and standard deviation, including suspected outliers. The exercise has revealed and homogeneous behaviour of laboratories, being statistical parameters from the results close to the reference values. A raised percentage os satisfactory laboratory performance has been obtained for gross alpha, gross beta and residual beta: 85, 97 and 87% respectively. The study has shown that participant laboratories perform radioactive determinations in drinking water samples with satisfactory quality levels. (Author) 16 refs

  14. Computerized cost estimation spreadsheet and cost data base for fusion devices

    International Nuclear Information System (INIS)

    Component design parameters (weight, surface area, etc.) and cost factors are input and direct and indirect costs are calculated. The cost data base file derived from actual cost experience within the fusion community and refined to be compatible with the spreadsheet costing approach is a catalog of cost coefficients, algorithms, and component costs arranged into data modules corresponding to specific components and/or subsystems. Each data module contains engineering, equipment, and installation labor cost data for different configurations and types of the specific component or subsystem. This paper describes the assumptions, definitions, methodology, and architecture incorporated in the development of the cost estimation spreadsheet and cost data base, along with the type of input required and the output format

  15. Evaluation of an Electrostatic Dust Removal System with Potential Application in Next-Step Fusion Devices

    International Nuclear Information System (INIS)

    The ability to manage inventories of carbon, tritium, and high-Z elements in fusion plasmas depends on means for effective dust removal. A dust conveyor, based on a moving electrostatic potential well, was tested with particles of tungsten, carbon, glass and sand. A digital microscope imaged a representative portion of the conveyor, and dust particle size and volume distributions were derived before and after operation. About 10 mm3 volume of carbon and tungsten particles were moved in under 5 seconds. The highest driving amplitude tested of 3 kV was the most effective. The optimal driving frequency was 210 Hz (maximum tested) for tungsten particles, decreasing to below 60 Hz for the larger sand particles. Measurements of particle size and volume distributions after 10 and 100 cycles show the breaking apart of agglomerated carbon, and the change in particle distribution over short timescales (<1 s).

  16. Evaluation of an Electrostatic Dust Removal System with Potential Application in Next-Step Fusion Devices

    Science.gov (United States)

    Friesen, F. Q. L.; John, B.; Skinner, C. H.; Roquemore, A. L.; Calle, C. I.

    2011-01-01

    The ability to manage inventories of carbon, tritium, and high-Z elements in fusion plasmas depends on means for effective dust removal. A dust conveyor, based on a moving electrostatic potential well, was tested with particles of tungsten, carbon, glass and sand. A digital microscope imaged a representative portion of the conveyor, and dust particle size and volume distributions were derived before and after operation. About 10 cu mm volume of carbon and tungsten particles were moved in under 5 seconds. The highest driving amplitude tested of 3 kV was the most effective. The optimal driving frequency was 210 Hz (maximum tested) for tungsten particles, decreasing to below 60 Hz for the larger sand particles. Measurements of particle size and volume distributions after 10 and 100 cycles show the breaking apart of agglomerated carbon, and the change in particle distribution over short timescales 1 s).

  17. From Present Fusion Devices to DEMO: a Changing Role between Diagnostics and Modeling

    NARCIS (Netherlands)

    Donne, A. J. H.

    2013-01-01

    On present-day devices much effort is devoted to develop state-of-the-art diagnostics with a continuous drive towards higher accuracy, better spatial and temporal resolution and more diagnostic channels. Diagnostic innovations often lead to better physics insight and they are often a driver for impr

  18. Multi-Sensor Fusion for Enhanced Contextual Awareness of Everyday Activities with Ubiquitous Devices

    Directory of Open Access Journals (Sweden)

    John J. Guiry

    2014-03-01

    Full Text Available In this paper, the authors investigate the role that smart devices, including smartphones and smartwatches, can play in identifying activities of daily living. A feasibility study involving N = 10 participants was carried out to evaluate the devices’ ability to differentiate between nine everyday activities. The activities examined include walking, running, cycling, standing, sitting, elevator ascents, elevator descents, stair ascents and stair descents. The authors also evaluated the ability of these devices to differentiate indoors from outdoors, with the aim of enhancing contextual awareness. Data from this study was used to train and test five well known machine learning algorithms: C4.5, CART, Naïve Bayes, Multi-Layer Perceptrons and finally Support Vector Machines. Both single and multi-sensor approaches were examined to better understand the role each sensor in the device can play in unobtrusive activity recognition. The authors found overall results to be promising, with some models correctly classifying up to 100% of all instances.

  19. Results of the Interlaboratory Exercise CSN/CIEMAT-100 Among Environmental Radioactivity Laboratories (Soil); Resultados del Ejercicio Interlaboratorios de Radiactividad Ambiental CSN/CIEMAT-00 (Suelo)

    Energy Technology Data Exchange (ETDEWEB)

    Romero Gonzalez, M. L.

    2002-07-01

    The document describes the outcome of the CSN/CIEMAT-00 interlaboratory test comparison among environmental radioactivity laboratories. the exercise was organised according to the ISO-43 and the ISO/IUPAC/AOAC Harmonized Protocol for the proficiency testing of analytical laboratories. the test sample was a soil containing environmental levels of K-40, Ra-226, Ac-228, Sr-90, Cs-137, Cs-134, Pu (239-240) y Am-241. the Universidad Autonoma de Barcelona prepared the material and reported adequate statistical studies of homogeneity. The results of the exercise were computed for 30 participating laboratories, and their analytical performance was assessed using the u-score approach. A raised percentage of satisfactory laboratory performance has been obtained for all the analysis, being the best performance in gamma measurements. The exercise has drawn that several laboratories have difficulties in the evaluation of combined uncertainty, mainly in analysis involving radiochemical steps. The study has shown an homogeneous inter-laboratory behaviour, and the improvement achieved through subsequent exercises in the quality of the data they are producing. (Author) 10 refs.

  20. Results of the Interlaboratory Exercise CSN/CIEMAT-02 Among Environmental Radioactivity Laboratories (Sea Fish); Resultados del Ejercicio Interlaboratorios de Radiactividad Ambiental CSN/CIEMAT-02 (Fauna Marina)

    Energy Technology Data Exchange (ETDEWEB)

    Romero gonzalez, M. L.

    2003-07-01

    The document describes the outcome of the CSN/CIEMAT-02 interlaboratory test comparison among environmental radioactivity laboratories. The exercise was organised according to the ISO-43 and the ISO/IUPAC/AOAC Harmonized Protocol for the proficiency testing of analytical laboratories. The test sample was a reference materials provided by the IAEA-MEL (IAE Marine Environmental Laboratory, Monaco), a sea fish containing environmental levels of U-238, U-234, K-40, Pb-210, Ra-226, Sr-90, Cs-137, Co-60, Pu-(239+240), Am-241 and Tc-99. The results of the exercise were computed for 32 participating laboratories, and their analytical performance was assessed using the z-score approach. A raised percentage of satisfactory laboratory performance has been obtained for all the analysis, being the best performance in gamma measurements. The laboratories have made an effort to calculate the combined uncertainty of the radiochemical determinations. Most of the laboratories have demonstrated its competence in performing the study analysis and also the adequate measuring capability of their detection equipment even in conditions close to detection limits. The study has shown the capacity of participant laboratories to perform radioactive determinations in environmental sea fish samples with satisfactory quality levels. (Author) 6 refs.

  1. Monte Carlo analysis of the Neutron Standards Laboratory of the CIEMAT; Analisis Monte Carlo del Laboratorio de Patrones Neutronicos del CIEMAT

    Energy Technology Data Exchange (ETDEWEB)

    Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico); Mendez V, R. [Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas, Av. Complutense 40, 28040 Madrid (Spain); Guzman G, K. A., E-mail: fermineutron@yahoo.com [Universidad Politecnica de Madrid, Departamento de Ingenieria Nuclear, C. Jose Gutierrez Abascal 2, 28006 Madrid (Spain)

    2014-10-15

    By means of Monte Carlo methods was characterized the neutrons field produced by calibration sources in the Neutron Standards Laboratory of the Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT). The laboratory has two neutron calibration sources: {sup 241}AmBe and {sup 252}Cf which are stored in a water pool and are placed on the calibration bench using controlled systems at distance. To characterize the neutrons field was built a three-dimensional model of the room where it was included the stainless steel bench, the irradiation table and the storage pool. The sources model included double encapsulated of steel, as cladding. With the purpose of determining the effect that produces the presence of the different components of the room, during the characterization the neutrons spectra, the total flow and the rapidity of environmental equivalent dose to 100 cm of the source were considered. The presence of the walls, floor and ceiling of the room is causing the most modification in the spectra and the integral values of the flow and the rapidity of environmental equivalent dose. (Author)

  2. Computation of stationary 3D halo currents in fusion devices with accuracy control

    Science.gov (United States)

    Bettini, Paolo; Specogna, Ruben

    2014-09-01

    This paper addresses the calculation of the resistive distribution of halo currents in three-dimensional structures of large magnetic confinement fusion machines. A Neumann electrokinetic problem is solved on a geometry so complicated that complementarity is used to monitor the discretization error. An irrotational electric field is obtained by a geometric formulation based on the electric scalar potential, whereas three geometric formulations are compared to obtain a solenoidal current density: a formulation based on the electric vector potential and two geometric formulations inspired from mixed and mixed-hybrid Finite Elements. The electric vector potential formulation is usually considered impractical since an enormous computing power is wasted by the topological pre-processing it requires. To solve this challenging problem, we present novel algorithms based on lazy cohomology generators that enable to save orders of magnitude computational time with respect to all other state-of-the-art solutions proposed in literature. Believing that our results are useful in other fields of scientific computing, the proposed algorithm is presented as a detailed pseudocode in such a way that it can be easily implemented.

  3. Conceptual design of a generic pulse schedule and event handling editor for improved fusion device operation

    International Nuclear Information System (INIS)

    Highlights: ► Real-time event handling requires extended functionalities of pulse schedule editors and plasma control systems ► A new pulse schedule editor, conceived for parameterization of systematic off-normal event handling, is described ► A global, generic approach on off-normal event handling is highlighted ► The functional architecture of an off-normal event handling oriented plasma control system is discussed ► The main objects of the pulse schedule editor are the segment-descriptor object and the scenario-descriptor object. -- Abstract: Coping with unexpected events is an important issue of nuclear fusion experiments. The future machines, characterized by very long plasma discharges and actively cooled metallic plasma-facing components, will require a systematic intervention in real time, in order to maximize the performance and protect the investment. The real-time management of events will require extending the functionalities of the current pulse schedule editors with the possibility of using reference waveforms provided with acceptability margins and setting up advanced mitigation strategies and event countermeasures. With this purpose, a new pulse schedule editor, based on a time-segment approach for the preparation of experimental scenarios, is being conceived on Tore Supra, together with a new plasma control system. This paper will report on their conceptual design and give account of the preliminary results of a feasibility study currently under way in order to prepare a possible implementation on Tore Supra

  4. The long way to steady state fusion plasmas - the superconducting stellarator device Wendelstein 7-X

    CERN Document Server

    CERN. Geneva

    2016-01-01

    The stable generation of high temperature Hydrogen plasmas (ion and electron temperature in the range 10-20 keV) is the basis for the use of nuclear fusion to generate heat and thereby electric power. The most promising path is to use strong, toroidal, twisted magnetic fields to confine the electrically charged plasma particles in order to avoid heat losses to the cold, solid wall elements. Two magnetic confinement concepts have been proven to be most suitable: (a) the tokamak and (b) the stellarator. The stellarator creates the magnetic field by external coils only, the tokamak by combining the externally created field with the magnetic field generated by a strong current in the plasma. “Wendelstein 7-X” is the name of a large superconducting stellarator that went successfully into operation after 15 years of construction. With 30 m3 plasma volume, 3 T magnetic field on axis, and 10 MW micro wave heating power, Hydrogen plasmas are generated that allow one to establish a scientific basis for the extrapol...

  5. NaOH-based high temperature heat-of-fusion thermal energy storage device

    Science.gov (United States)

    Cohen, B. M.; Rice, R. E.

    1978-01-01

    A material called Thermkeep, developed as a low-cost method for the storage of thermal energy for solar electric power generating systems is discussed. The storage device consists of an insulated cylinder containing Thermkeep in which coiled tubular heat exchangers are immersed. A one-tenth scale model of the design contains 25 heat-exchanger tubes and 1500 kg of Thermkeep. Its instrumentation includes thermocouples to measure internal Thermkeep temperatures, vessel surface, heated shroud surface, and pressure gauges to indicate heat-exchanger pressure drops. The test-circuit design is presented and experimental results are discussed.

  6. Deep drawing of tungsten plates for structural divertor applications in future fusion devices

    Energy Technology Data Exchange (ETDEWEB)

    Reiser, J., E-mail: jens.reiser@kit.edu [Karlsruhe Institute of Technology (KIT), Institute for Applied Materials (IAM-AWP) (Germany); Rieth, M.; Dafferner, B.; Baumgaertner, S.; Ziegler, R. [Karlsruhe Institute of Technology (KIT), Institute for Applied Materials (IAM-AWP) (Germany); Hoffmann, A. [PLANSEE Metall GmbH, Reutte (Austria)

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer Successful deep drawing of a 1 mm tungsten plate. Black-Right-Pointing-Pointer The grains follow the contour - grain boundary alignment. Black-Right-Pointing-Pointer Deep drawing fits to the needs of a mass production. Black-Right-Pointing-Pointer Charpy tests of 1 mm tungsten plate material prove the anisotropy material behavior. - Abstract: The reference design of a helium cooled divertor for future fusion reactors makes use of hundreds of thousands of finger units consisting of a pressurized structural part called a thimble. Due to the high number of parts needed, the thimble has to be fabricated by mass production techniques like deep drawing. As the thimble is a pressurized part exposed to an internal pressure of 100 bar, the demands for the material are high, which means that it requires the best available tungsten material. Former work has shown that pure tungsten material has the best impact properties and has to be preferred over other commercially available tungsten materials, such as that doped with potassium or strengthened with oxides like lanthanum oxide. Furthermore the inherent weakness of the grain boundaries has to be taken into account, which requires the need for grains that are aligned to the contour of the part (grain boundary alignment). This paper describes the successful deep drawing of a 1 mm tungsten plate in high vacuum at 600 Degree-Sign C. In doing this, a thimble can be machined with grains that follow the contour. Furthermore the characterization of a 1 mm tungsten plate is conducted by tensile tests at room temperature and at 600 Degree-Sign C, as well as by Charpy tests taking into account the anisotropic material behaviour.

  7. CORSICA: A comprehensive simulation of toroidal magnetic-fusion devices. Final report to the LDRD Program

    Energy Technology Data Exchange (ETDEWEB)

    Crotinger, J.A.; LoDestro, L.; Pearlstein, L.D.; Tarditi, A.; Casper, T.A.; Hooper, E.B.

    1997-03-21

    In 1992, our group began exploring the requirements for a comprehensive simulation code for toroidal magnetic fusion experiments. There were several motivations for taking this step. First, the new machines being designed were much larger and more expensive than current experiments. Second, these new designs called for much more sophisticated control of the plasma shape and position, as well as the distributions of energy, mass, and current within the plasma. These factors alone made it clear that a comprehensive simulation capability would be an extremely valuable tool for machine design. The final motivating factor was that the national Numerical Tokamak Project (NTP) had recently received High Performance Computing and Communications (HPCC) Grand Challenge funding to model turbulent transport in tokamaks, raising the possibility that first-principles simulations of this process might be practical in the near future. We felt that the best way to capitalize on this development was to integrate the resulting turbulence simulation codes into a comprehensive simulation. Such simulations must include the effects of many microscopic length- and time-scales. In order to do a comprehensive simulation efficiently, the length- and time- scale disparities must be exploited. We proposed to do this by coupling the average or quasistatic effects from the fast time-scales to a slow-time-scale transport code for the macroscopic plasma evolution. In FY93-FY96 we received funding to investigate algorithms for computationally coupling such disparate-scale simulations and to implement these algorithms in a prototype simulation code, dubbed CORSICA. Work on algorithms and test cases proceeded in parallel, with the algorithms being incorporated into CORSICA as they became mature. In this report we discuss the methods and algorithms, the CORSICA code, its applications, and our plans for the future.

  8. Detective studies of soft X-ray tomography on controlled thermonuclear fusion device

    International Nuclear Information System (INIS)

    In is necessary to design tomographic detective system with very high accuracy and high quality. It is such a detective system that its five resolutions are all very high quality. The five resolutions are: the radial resolution, the angular resolution, the spatial resolution of detector, the resolution of detector array, and the time resolution. The radial resolution is decided by the number of detectors in detector array. The angular resolutions depend on the number of detector arrays. According to the concrete condition of controlled device, through making special rectangular detector the optimum spatial resolution of detector and the optimum spatial resolution of detector array can be obtained. The high time resolution can be got by making wide-band ampli-filter circuit system. The tomographic system with high quality can use the multi-angle multi-array mode or perfect single array mode. The soft X-ray tomographic system with high sensitivity can measure the stable signal and perform the tomography under the conditions of Te ∼150 eV, ne ∼1013 cm-3 on the small Tokamak devices. (authors)

  9. Facility ''Bench of Stationary Engines for Study of Emissions (E65-PO) CIEMAT''

    International Nuclear Information System (INIS)

    The Project of Technology of Aerosols in Generation of Energy, of the Department of Fossil Fuels of the CIEMAT, began in the year 2004, a research activity line, based on the study of the emissions coming from internal combustion engines, particularly of Diesel technology. Activity was continued by the Polluting Emissions Group of the Department of Environment, when becoming the original Project in this Group. From the concession to the Group, of the project GR/AMB/0119/2004 Evaluation of the Emissions of Biodiesel supported by the Autonomous Community of Madrid together with the European Regional Development Fund (ERDF), this activity was encourage, with the design, assembly and to get ready of the facility Bench of stationary engines for study of emissions, located in the building 65 at CIEMAT, Madrid. The present report constitutes a detailed technical description of each one of the elements that the installation Bench of stationary engines for study of emissions it integrated within the framework of the referred project (GR/AMB/0119/2004) and whose capacity includes studies of the effects of the engine, fuel, operation conditions, and methodology of sampling and measurement of emissions (gases and particles). The fundamental parts of facility describes in the present report are: engine test cell (cabin of sound insulation , ventilation and refrigeration system, anti vibrations mounting, engine, dynamometric brake), lines of preconditioning of particles and gases emissions (exhaust line, primary and secondary dilution lines, gases cleaning system...), other general parts of facility (sampling and measurement station, service lines...). The present report not only reflects the characteristics of the systems involved, but rather also in certain cases specified the procedure and reason for their choice. (Author) 10 refs

  10. Rotor-dynamic design aspects for a variable frequency drive based high speed cryogenic centrifugal pump in fusion devices

    International Nuclear Information System (INIS)

    Superconducting magnets of large size are inevitable for fusion devices due to high magnetic field requirements. Forced flow cooling of the superconducting magnets with high mass flowrate of the order ∼3 kg/s is required to keep superconducting magnets within its safe operational boundaries during various plasma scenarios. This important requirement can be efficiently fulfilled by employing high capacity and high efficiency cryogenic centrifugal pumps. The efficiency > 70% will ensure overall lower heat load to the cryoplant. Thermo-hydraulic design of cryogenic centrifugal pump revealed that to achieve the operational regime with high efficiency, the speed should be ∼ 10,000 revolutions per minute. In this regard, the rotor-dynamic design aspect is quite critical from the operational stability point of view. The rotor shaft design of the cryogenic pump is primarily an outcome of optimization between thermal heat-in leak at cryogenic temperature level from ambient, cryogenic fluid impedance and designed rotation speed of the impeller wheel. The paper describes the basic design related to critical speed of the rotor shaft, rotor whirl and system instability prediction to explore the ideal operational range of the pump from the system stability point of view. In the rotor-dynamic analysis, the paper also describes the Campbell plots to ensure that the pump is not disturbed by any of the critical speeds, especially while operating near the nominal and enhanced operating modes. (author)

  11. Development of finely dispersed Ti- and Zr-doped isotropic graphites for the divertor of next step fusion devices

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Galilea, I [CEIT and Tecnun (University of Navarra), 20018 San Sebastian (Spain); Garcia-Rosales, C [CEIT and Tecnun (University of Navarra), 20018 San Sebastian (Spain); Pintsuk, G [Forschungszentrum Juelich GmbH, EURATOM Association, 52425 Juelich (Germany); Linke, J [Forschungszentrum Juelich GmbH, EURATOM Association, 52425 Juelich (Germany)

    2007-03-15

    Finely dispersed Ti- and Zr-doped isotropic graphites have been manufactured using three different starting raw materials. The aim is to obtain doped fine grain isotropic graphites with reduced chemical erosion, high thermal shock resistance and low cost, which aim to be competitive with present carbon-based candidate materials for next step fusion devices. First ITER relevant thermal shock loads were applied on test specimens of these materials. The brittle destruction behaviour of graphite is greatly improved by doping with Ti or Zr, most probably due to a significant increase of thermal conductivity related to the catalytic effect of TiC and ZrC on the graphitization. Doped graphites manufactured with the synthetic mesophase pitch 'AR' as raw material showed the best performance from the three investigated raw materials due to its higher graphitability. The eroded surfaces of doped graphites exhibit a thin solidified carbide layer, probably caused by the segregation of liquid carbide during the thermal shot.

  12. High-speed repetitive pellet injector for plasma fueling of magnetic confinement fusion devices

    International Nuclear Information System (INIS)

    The projected fueling requirements of future magnetic confinement devices for controlled thermonuclear research [e.g., the International Thermonuclear Experimental Reactor (ITER)] indicate that a flexible plasma fueling capability is required. This includes a mix of traditional gas puffing and low- and high-velocity deuterium-tritium pellets. Conventional pellet injectors (based on light gas guns or centrifugal accelerators) can reliably provide frozen hydrogen pellets (1- to 6-mm-diam sizes tested) up to ∼1.3-km/s velocity at the appropriate pellet fueling rates (1 to 10 Hz or greater). For long-pulse operation in a higher velocity regime (>2 km/s), an experiment in collaboration between Oak Ridge National Laboratory (ORNL) and ENEA Frascati is under way. This activity will be carried out in the framework of a collaborative agreement between the US Department of Energy and European Atomic Energy Community -- ENEA Association. In this experiment, an existing ORNL hydrogen extruder (equipped with a pellet chambering mechanism/gun barrel assembly) and a Frascati two-stage light gas gun driver have been combined on a test facility at ORNL. Initial testing has been carried out with single deuterium pellets accelerated up to 2.05 km/s with the two-stage driver; in addition, some preliminary repetitive testing (to commission the diagnostics) was performed at reduced speeds, including sequences at 0.5 to 1 Hz and 10 to 30 pellets. The primary objective of this study is to demonstrate repetitive operation (up to ∼1 Hz) with speeds in the 2- to 3-km/s range. In addition, the strength of extruded hydrogen ice as opposed to that produced in situ by direct condensation in pipe guns can be investigated. The equipment and initial experimental results are described

  13. CIEMAT participation in the VI National Plan of Scientific Research, Development and Technological Innovation 2008-2012; Participacion del CIEMAT en el VI Plan Nacional de Investigacion Cientifica, Desarrollo e Innovacion Tecnologica 2008-2012

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez, M. T.; Puertas, M. I.

    2014-02-01

    The participation of CIEMAT in the VI National Plan for Scientific Research, Development and Technological Innovation 2008-2011, that was extended by decision of the Council of Ministers until December 2012, is presented. In the first part of the report presents a complete information about the structure of the Plan, the various Instrumental Lines of Action and subsequent calls for National Programs, that have taken place throughout the development of the Plan since its beginning in 2008 until its closure gives in December 2012. The second part of the report includes the description and analysis of the participation of CIEMAT in the calls of the various National Programs, and the contribution of each of the Departments in the number of projects awarded and the funding obtained. The Total number of funded projects was 292, which meant funding amounting to 101, 5 M Euros. (Author)

  14. CIEMAT Interlaboratories Comparison of the Results obtained in the Proficiency Test Run by IAEA; Comparacion Interlaboratorios del CIEMAT de los Resultados Obtenidos en la Prueba de Capacitacion de Analisis de Transuranicos en Cenizas propocionadas por el OIEA

    Energy Technology Data Exchange (ETDEWEB)

    Gasco, C.; Anton, M. P.; Alvarez, A.; Navarro, N.; Meral, J.; Gonzalez, A.; Higueras Lafaja, E. [Ciemat. Madrid (Spain)

    2000-07-01

    This report contains the results obtained by two different laboratories from CIEMAT after participating in the Proficiency Test organised by IAEA (International Atomic Energy Agency) in 1999. This test involves the analysis of fly ashes containing natural radionuclides and different amounts of added transuranics. The extraction techniques, counting methods and results obtained are detailed. This type of test are used for the labs to achieve their accreditation and check the reliability of the procedures routinely employed. (Author) 4 refs.

  15. Quality Control Procedures Applied to the CMS Muon Chambers Built at CIEMAT; Procedimientos de Control de Calildad de las Camaras de Muones del Experimento CMS Construidas en el CIEMAT

    Energy Technology Data Exchange (ETDEWEB)

    Fouz, M. C.; Puerta Pelayo, J.

    2004-07-01

    In this document the quality control procedures applied to the CMS muon drift chmabers built at CIEMAT are described. It includes a description of the high voltage and front electronics associated to the chambers. Every procedure is described with detail and a list of the more common problems and possible solutions is given. This document can be considered as a chambert test handbook for beginners. (Author) 3 refs.

  16. CIEMAT EXTERNAL DOSIMETRY SERVICE: ISO/IEC 17025 ACCREDITATION AND 3 Y OF OPERATIONAL EXPERIENCE AS AN ACCREDITED LABORATORY.

    Science.gov (United States)

    Romero, A M; Rodríguez, R; López, J L; Martín, R; Benavente, J F

    2016-09-01

    In 2008, the CIEMAT Radiation Dosimetry Service decided to implement a quality management system, in accordance with established requirements, in order to achieve ISO/IEC 17025 accreditation. Although the Service comprises the approved individual monitoring services of both external and internal radiation, this paper is specific to the actions taken by the External Dosimetry Service, including personal and environmental dosimetry laboratories, to gain accreditation and the reflections of 3 y of operational experience as an accredited laboratory. PMID:26567323

  17. Posterior lumbar interbody fusion using nonresorbable poly-ether-ether-ketone versus resorbable poly-L-lactide-co-D,L-lactide fusion devices: a prospective, randomized study to assess fusion and clinical outcome

    NARCIS (Netherlands)

    Jiya, T.U.; Smit, T.H.; Deddens, J.; Mullender, M.G.

    2009-01-01

    STUDY DESIGN: A prospective randomized clinical study. OBJECTIVE.: To assess fusion, clinical outcome, and complications. SUMMARY OF BACKGROUND DATA: Resorbable poly-L- lactide-co-D,L-lactide (PLDLLA) cages intended to aid spinal interbody fusion have been introduced into clinical practice within th

  18. Results of the Interlaboratory Exercise CNS/CIEMAT-2008 among Environmental Radioactivity Laboratories (Phosphogypsum)

    International Nuclear Information System (INIS)

    The document describes the outcome of the CSN/CIEMAT-2008 interlaboratory test comparison among environmental radioactivity laboratories. The exercise was organised according to the ISO-43 and the ISO/IUPAC/AOAC. Aphosphogypsum material was used as a test sample, in an attempt to evaluate the performance of the laboratories analyzing NORM (Naturally-Occurring Radioactive Materials). The analysis required were: U-238, Th-234, U-234, Th-230, Ra-226, Pb-214, Bi-214, Pb-210, Po-210, Th-232 and U-235, and also gross alpha and gross beta activities. Reference values have been established according to the method of consensus of expert laboratories, with four international laboratories of credited experience: IAEA Seibersdorf, IAEA MEL, IRSN-Orsay and Sta.Teresa ENEA. The results of the exercise were computed for 34 answering laboratories and their analytical performance was assessed using the z-score. Robust statistics of the participants results was applied to obtain the median and standard deviation, to achieve a more complete and objective study of the laboratories performance. The exercise has shown an homogeneous behaviour of laboratories, being statistical parameters from the results close to the assigned Reference Values. Participant laboratories have demonstrated their ability to determine natural radionuclides in phosphogypsum samples (NORM material) with a satisfactory quality level. The scheme has also allowed examining the capability of laboratories to determine the activities of natural radionuclides at the equilibrium. (Author) 10 refs.

  19. Results of the Interlaboratory Exercise CSN/CIEMAT-02 Among Environmental Radioactivity Laboratories (Sea Fish)

    International Nuclear Information System (INIS)

    The document describes the outcome of the CSN/CIEMAT-02 interlaboratory test comparison among environmental radioactivity laboratories. The exercise was organised according to the ISO-43 and the ISO/IUPAC/AOAC Harmonized Protocol for the proficiency testing of analytical laboratories. The test sample was a reference materials provided by the IAEA-MEL (IAE Marine Environmental Laboratory, Monaco), a sea fish containing environmental levels of U-238, U-234, K-40, Pb-210, Ra-226, Sr-90, Cs-137, Co-60, Pu-(239+240), Am-241 and Tc-99. The results of the exercise were computed for 32 participating laboratories, and their analytical performance was assessed using the z-score approach. A raised percentage of satisfactory laboratory performance has been obtained for all the analysis, being the best performance in gamma measurements. The laboratories have made an effort to calculate the combined uncertainty of the radiochemical determinations. Most of the laboratories have demonstrated its competence in performing the study analysis and also the adequate measuring capability of their detection equipment even in conditions close to detection limits. The study has shown the capacity of participant laboratories to perform radioactive determinations in environmental sea fish samples with satisfactory quality levels. (Author) 6 refs

  20. Results of the Interlaboratory Exercise CSN/CIEMAT-100 Among Environmental Radioactivity Laboratories (Soil)

    International Nuclear Information System (INIS)

    The document describes the outcome of the CSN/CIEMAT-00 interlaboratory test comparison among environmental radioactivity laboratories. the exercise was organised according to the ISO-43 and the ISO/IUPAC/AOAC Harmonized Protocol for the proficiency testing of analytical laboratories. the test sample was a soil containing environmental levels of K-40, Ra-226, Ac-228, Sr-90, Cs-137, Cs-134, Pu (239-240) y Am-241. the Universidad Autonoma de Barcelona prepared the material and reported adequate statistical studies of homogeneity. The results of the exercise were computed for 30 participating laboratories, and their analytical performance was assessed using the u-score approach. A raised percentage of satisfactory laboratory performance has been obtained for all the analysis, being the best performance in gamma measurements. The exercise has drawn that several laboratories have difficulties in the evaluation of combined uncertainty, mainly in analysis involving radiochemical steps. The study has shown an homogeneous inter-laboratory behaviour, and the improvement achieved through subsequent exercises in the quality of the data they are producing. (Author) 10 refs

  1. Collection of summaries of reports on result of research at basic experiment device for nuclear fusion reactor blanket design, 1995

    International Nuclear Information System (INIS)

    This report meeting was held on May 22, 1995 at University of Tokyo by about 40 participants. As the topics on the fusion reactor engineering research in Japan, lectures were given on the present state and future of nuclear fusion networks and on the strong magnetic field tokamak using electromagnetic force-balanced coils being planned. Thereafter, the reports of the results of the researches which were carried out by using this experimental facility were made, centering around the subject related to the future conception 'The interface properties of fusion reactor materials and particle transport control'. The publication was made on the future conception of the basic experiment setup for fusion reactor blanket design, the application of high temperature superconductors to the advancement of nuclear fusion reactors, the modeling of the dynamic irradiation behavior of fusion reactor materials, the interface particle behavior in plasma-wall interaction, the behavior of tritium on the surface of breeding materials, and breeding materials and the behavior of tritium in plasma-wall interaction. (K.I.)

  2. Proceedings of US/Japan Workshop (97FT5-06) on High Heat Flux Components and Plasma Surface Interactions for Next Fusion Devices

    International Nuclear Information System (INIS)

    The 1997 US-Japan Workshop on High Heat Flux Components and Plasma Surface Interactions for Next Fusion Devices was held at the Warwick Regis Hotel in San Francisco, California, on December 8-11, 1997. There were 53 presentations as well as discussions on technical issues and on planning for future collaborations, and 35 researchers from japan and the US participated in the workshop. Over the last few years, with the strong emphasis in the US on technology for ITER, there has been less work done in the US fusion program on basic plasma materials interaction and this change in emphasis workshops. The program this year emphasized activities that were not carried out under the ITER program and a new element this year in the US program was planning and some analysis on liquid surface concepts for advanced plasma facing components. The program included a ceremony to honor Professor Yamashina, who was retiring this year and a special presentation on his career

  3. Results of the Interlaboratory Exercise CNS/CIEMAT-05 among Environmental Radioactivity Laboratories (Vegetable Ash)

    International Nuclear Information System (INIS)

    The document describes the outcome of the CSN/CIEMAT-05 interlaboratory test comparison among environmental radioactivity laboratories. The exercise was organised according to the ISO-43 and the IUPAC International harmonised protocol for the proficiency testing of analytical chemistry laboratories. The exercise has been designed to evaluate the capability of national laboratories to determine environmental levels of radionuclides in vegetable ash samples. The sample has been prepared by the Environmental Radiation Laboratory, from the University of Barcelona, and it contains the following radionuclides: Sr-90, Pu-238, Am-241, Th-230, Pb-210, U-238, Ra-226, K-40, Ra-228, TI-208, Cs- 137 and Co-60. Reference values have been established TROUGH the kind collaboration of three international laboratories of recognized experience: IAEA MEL and IRSN-Orsay. The results of the exercise were computed for 35 participating laboratories and their analytical performance was assessed using the z-score approach. Robust statistics of the participant's results was applied to obtain the median and standard deviation, to achieve a more complete and objetiva study of the laboratories' performance. Some difficulties encountered to dissolve the test sample caused a lower response of analyses involving radiochemical separation, thus some laboratories couldn't apply their routine methods and no conclusions on PU-238, Am-241 and Th-230 performances have been obtained. The exercise has revealed an homogeneous behaviour of laboratories, being statistical parameters from the results close to the reference values. The study has shown that participant laboratories perform radioactive determinations in vegetable ash samples with satisfactory quality levels. (Author) 6 refs

  4. CIEMAT Contribution to the PHEBEN-2 Project: Interpretation of the PHEBUS-FPT1. Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Herranz, L. E.; Pra, C. l. del; Rincon, A. M.

    2003-07-01

    This report summarises the CIEMAT contribution to the analysis of the FPT1 test of the PHEBUS-FP Project. The work carried out has been focussed on containment phenomena. the thermal hydraulic evolution and the aerosol behaviour has been simulated with CONTAIN 2.0 code, whereas the iodine chemistry has been modelled with IODE 4.2. In both cases a number of hypotheses and approximations have been adopted. The FPT1 experiment investigated core degradation and release, transport and behaviour of fission products and aerosols under the anticipated conditions for a low pressure accident sequence with a pipe break at the cold leg. The containment scenario was essentially characterised by a condensing and unsaturated atmosphere in contact with an acidic sump. CONTAIN 2.0 has provided an accurate picture of the thermo-hydraulic and aerosol behaviour, whereas IODE 4.2, although succeeded in predicting the overall iodine mass distribution, but it has been unable to capture the gaseous iodine evolution during the experiment. Steam input and condensation determined the thermal conditions of the vessel and made around 30% of particulate mass deplete onto condensing structures. Most of iodine was trapped by silver from the control rods and formed AgI in the sump. the deviations of predictions regarding gaseous iodine point out the need of further development of organics-iodine interaction models. Finally, it should be underlined that the simulation has shed light on experimental aspects as well. The measured steam input history should have been slightly different from the one specified in the final report: a new profile has been proposed. The samplings of airborne caesium (rather different from the {gamma}-spectrometry data) are the most reliable measurements. (Author) 10 refs.

  5. Characterization of the storage pool of the Neutron Standards Laboratory of CIEMAT, using Monte Carlo techniques

    Energy Technology Data Exchange (ETDEWEB)

    Campo B, X.; Mendez V, R.; Embid S, M. [Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas, Av. Complutense 40, 28040 Madrid (Spain); Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98060 Zacatecas (Mexico); Sanz G, J., E-mail: xandra.campo@ciemat.es [Universidad Nacional de Educacion a Distancia, Escuela Tecnica Superior de Ingenieros Industriales, C. Juan del Rosal 12, 28040 Madrid (Spain)

    2014-08-15

    Neutron Standards Laboratory of CIEMAT in Spain is a brand new irradiation facility, with {sup 241}Am-Be (185 GBq) and {sup 252}Cf (5 GBq) calibrated neutron sources which are stored in a water pool with a concrete cover. From this storage place an automated system is able to take the selected source and place it in the irradiation position, 4 m over the ground level and in the geometrical center of the Irradiation Room with 9 m (length) x 7.5 m (width) x 8 m (height). For calibration or irradiation purposes, detectors or materials can be placed on a bench but it is possible to use the pool (1.0 m x 1.5 m and more than 1.0 m depth) for long time irradiations in thermal neutron fields. For this reason it is essential to characterize the pool itself in terms of neutron spectrum. In this document, the main features of this facility are presented and the characterization of the storage pool in terms of neutron fluence rate and neutron spectrum has been carried out using simulations with MCNPX-2.7.e code. The MCNPX-2.7.e model has been validated using experimental measurements outside the pool (Bert hold LB6411). Inside the pool, the fluence rate decreases and the spectra is thermalized with the distance to the {sup 252}Cf source. This source predominates and the effect of the {sup 241}Am-Be source in these magnitudes is not shown until positions closer than 20 cm from it. (author)

  6. Liquid scintillation counting standardization of 125I in organic and inorganic samples by the CIEMAT/NIST method; Calibracion por centelleo liquido del 125I en muestras inorganicas y organicas, mediante el metodo CIEMAT/NIST

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Barquero, L.; Grau Malonda, A.; Los Arcos Merino, J. M.; Grau Carles, A.

    1994-07-01

    The liquid scintillation counting standardization of organic and inorganic samples of ''I25I by the CIEMAT/NIST method using five different scintillators is described. The discrepancies between experimental and computed efficiencies are lower than 1.4% and 1.7%, for inorganic and organic samples, respectively, in the interval 421-226 of quenching parameter. Both organic and inorganic solutions have been standardized in terms of activity concentration to an overall uncertainty of 0.76%. (Author) 14 refs.

  7. Profiles of Information Consumption and Production of CIEMAT Researches within the Period 2005-2007; Perfiles de Consumo y Produccion de Informacion de los Investigadores del CIEMAT durante el Periodo 2005-2007

    Energy Technology Data Exchange (ETDEWEB)

    Sanz, C.

    2010-03-03

    Given the importance of scientific and technological evaluation in the current international scene, the goal is to show CIEMAT researchers' profiles on information consumption and production through different biblio metric indicators, mainly quantitative. Taking further steps based on this data, margins of coincidence on both patterns will be carefully checked not only from a group perspective but also on an individual scale, in the most widely used scientific journals. This analysis shall reveal the information needs of researchers for the future design of documentary strategies. (Author) 21 refs.

  8. Fusion facility siting considerations

    International Nuclear Information System (INIS)

    Inherent in the fusion program's transition from hydrogen devices to commercial power machines is a general increase in the size and scope of succeeding projects. This growth will lead to increased emphasis on safety, environmental impact, and the external effects of fusion in general, and of each new device in particular. A critically important consideration in this regard is site selection. The purpose of this paper is to examine major siting issues that may affect the economics, safety, and environmental impact of fusion

  9. Fusion facility siting considerations

    Science.gov (United States)

    Bussell, G. T.

    1985-02-01

    Inherent in the fusion program's transition from hydrogen devices to commercial power machines is a general increase in the size and scope of succeeding projects. This growth will lead to increased emphasis on safety, environmental impact, and the external effects of fusion in general, and of each new device in particular. An important consideration in this regard is site selection. Major siting issues that may affect the economics, safety, and environmental impact of fusion are examined.

  10. Graphite for fusion energy applications

    International Nuclear Information System (INIS)

    Graphite is in widespread and beneficial use in present fusion energy devices. This report reflects the view of graphite materials scientists on using graphite in fusion devices. Graphite properties are discussed with emphasis on application to fusion reactors. This report is intended to be introductory and descriptive and is not intended to serve as a definitive information source

  11. Report on Thermo-Hydro-Mechanical Laboratory Tests Performed by CIEMAT on Febex Bentonite 2004-2008

    International Nuclear Information System (INIS)

    The results of the laboratory studies performed by CIEMAT with the FEBEX bentonite in the context of WP3.2 of the NF-PRO Project and of the Agreement ENRESA-CIEMAT Anexo V are presented and analysed in this report. They refer to the effect of the hydraulic gradient on the permeability of bentonite, the effect of the thermal gradient on the hydration kinetics of bentonite, and the repercussion of temperature on the hydro-mechanical properties of bentonite (swelling, permeability and water retention capacity). In all the cases the bentonite has been used compacted to densities expected in the engineered barrier of a high-level radioactive waste repository. The existence of threshold and critical hydraulic gradients has been observed, both of them dependent on bentonite density and water pressures. After more than seven years of hydration, the 40-cm high bentonite columns are far from full saturation, the thermal gradient additionally delaying the process, which is very slow. Temperatures below 100 degree centigrade slightly decrease the swelling and the water retention capacity of the bentonite and increase its permeability. The information obtained improves the knowledge on the behaviour of expansive clay and will help the development of constitutive models and the interpretation of the results obtained in the mock-up and the in situ tests. (Author) 35 refs

  12. Report on Thermo-Hydro-Mechanical Laboratory Tests Performed by CIEMAT on Febex Bentonite 2004-2008

    Energy Technology Data Exchange (ETDEWEB)

    Villar, M. V.; Gomez-Espina, R.

    2009-11-25

    The results of the laboratory studies performed by CIEMAT with the FEBEX bentonite in the context of WP3.2 of the NF-PRO Project and of the Agreement ENRESA-CIEMAT Anexo V are presented and analysed in this report. They refer to the effect of the hydraulic gradient on the permeability of bentonite, the effect of the thermal gradient on the hydration kinetics of bentonite, and the repercussion of temperature on the hydro-mechanical properties of bentonite (swelling, permeability and water retention capacity). In all the cases the bentonite has been used compacted to densities expected in the engineered barrier of a high-level radioactive waste repository. The existence of threshold and critical hydraulic gradients has been observed, both of them dependent on bentonite density and water pressures. After more than seven years of hydration, the 40-cm high bentonite columns are far from full saturation, the thermal gradient additionally delaying the process, which is very slow. Temperatures below 100 degree centigrade slightly decrease the swelling and the water retention capacity of the bentonite and increase its permeability. The information obtained improves the knowledge on the behaviour of expansive clay and will help the development of constitutive models and the interpretation of the results obtained in the mock-up and the in situ tests. (Author) 35 refs.

  13. Robotic-Assisted Device in Posterior Spinal Fusion for a High Risk Thoraculombar Fracture in Ankylosing Spondylitis

    OpenAIRE

    Suliman, Ali; Wollstein, Ronit; Bernfeld, Benjamin; Bruskin, Alexander

    2014-01-01

    Fractures in ankylosing spondylitis (AS) are often difficult to treat and surgical treatment may be fraught with complications. We describe the use of a robotic-assisted device in the surgical treatment of an unstable L1 fracture in an elderly patient with chronic lymphocytic leukemia and AS. The postoperative course was uneventful and the patient was discharged after 3 days. The use of a robotic-assisted device in spine surgery is particularly indicated in difficult high risk cases.

  14. TranS1 VEO system: a novel psoas-sparing device for transpsoas lumbar interbody fusion

    Directory of Open Access Journals (Sweden)

    Hardenbrook MA

    2013-06-01

    Full Text Available Mitchell A Hardenbrook,1,2 Larry E Miller,3,4 Jon E Block4 1Advanced Spine Institute of Greater Boston, North Billerica, MA, 2Department of Orthopedic Surgery, Tufts University School of Medicine, Boston, MA, 3Miller Scientific Consulting Inc, Arden, NC, 4The Jon Block Group, San Francisco, CA, USA Abstract: Minimally invasive approaches for lumbar interbody fusion have been popularized in recent years. The retroperitoneal transpsoas approach to the lumbar spine is a technique that allows direct lateral access to the intervertebral disc space while mitigating the complications associated with traditional anterior or posterior approaches. However, a common complication of this procedure is iatrogenic injury to the psoas muscle and surrounding nerves, resulting in postsurgical motor and sensory deficits. The TranS1 VEO system (TranS1 Inc, Raleigh, NC, USA utilizes a novel, minimally invasive transpsoas approach to the lumbar spine that allows direct visualization of the psoas and proximal nerves, potentially minimizing iatrogenic injury risk and resulting clinical morbidity. This paper describes the clinical uses, procedural details, and indications for use of the TranS1 VEO system. Keywords: fusion, lateral, lumbar, minimally invasive, transpsoas, VEO

  15. Preparation and LSC Standardization of ''89Sr (DNP) Using the CIEMAT/NIST Method; Preparacion del ''89Sr(DNP) y calibracion por centelleo liquido, mediante el metodo CIEMAT/NIST

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Barquero, L.; Los Arcos Merino, J. M.; Grau Malonda, A.

    1994-07-01

    A procedure for preparation of liquid scintillation counting samples of the strontium DNP complex, labelled with ''89Sr, is described, the chemical quench, the counting stability and spectral evolution of this compound is studied in six scintillators, Toluene, Toluene-alcohol, Dioxane-naphthalene, HiSafe II, Ultima- Gold and Instagel. The liquid scintillation standardization of 89Sr-DNP by the CIEMAT/NIST method, using HiSafe II and Ultima-Gold scintillators, has been carried out. The discrepancies between experimental and computed efficiencies are lower than 0.38% and 0.48%, respectively. The solution has been standardized in terms of activity concentration to an overall uncertainty of 0,38%. (Author) 10 refs.

  16. New linear plasma devices in the trilateral euregio cluster for an integrated approach to plasma surface interactions in fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Unterberg, B., E-mail: b.unterberg@fz-juelich.de [Institut fuer Energieforschung - Plasmaphysik, Forschungszentrum Juelich GmbH, Association EURATOM- Forschungszentrum Juelich, D-52425 Juelich (Germany); Jaspers, R. [Science and Technology of Nuclear Fusion, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Koch, R. [Laboratoire de Physique des Plasmas/Laboratorium voor Plasmafysica, ERM/KMS, EURATOM-Association, B-1000 Brussels (Belgium); Massaut, V. [SCK-CEN, Belgian Nuclear Research Centre, EURATOM-Association, Boeretang 200, 2400 Mol (Belgium); Rapp, J. [FOM-Institute for Plasma Physics Rijnhuizen, Association EURATOM-FOM, PO Box 1207, 3430 BE Nieuwegein (Netherlands); Reiter, D.; Kraus, S.; Kreter, A.; Philipps, V.; Reimer, H.; Samm, U.; Scheibl, L.; Schweer, B. [Institut fuer Energieforschung - Plasmaphysik, Forschungszentrum Juelich GmbH, Association EURATOM- Forschungszentrum Juelich, D-52425 Juelich (Germany); Schuurmans, J.; Uytdenhouwen, I. [SCK-CEN, Belgian Nuclear Research Centre, EURATOM-Association, Boeretang 200, 2400 Mol (Belgium); Al, R.; Berg, M.A. van den; Brons, S.; Eck, H.J.N. van; Goedheer, W.J. [FOM-Institute for Plasma Physics Rijnhuizen, Association EURATOM-FOM, PO Box 1207, 3430 BE Nieuwegein (Netherlands)

    2011-10-15

    New linear plasma devices are currently being constructed or planned in the Trilateral Euregio Cluster (TEC) to meet the challenges with respect to plasma surface interactions in DEMO and ITER: i) MAGNUM-PSI (FOM), a high particle and power flux device with super-conducting magnetic field coils which will reach ITER-like divertor conditions at high magnetic field, ii) the newly proposed linear plasma device JULE-PSI (FZJ), which will allow to expose toxic and neutron activated target samples to ITER-like fluences and ion energies including in vacuo analysis of neutron activated samples, and iii) the plasmatron VISION I, a compact plasma device which will be operated inside the tritium lab at SCK-CEN Mol, capable to investigate tritium plasmas and moderately activated wall materials. This contribution shows the capabilities of the new devices and their forerunner experiments (Pilot-PSI at FOM and PSI-2 Juelich at FZJ) in view of the main objectives of the new TEC program on plasma surface interactions.

  17. Devices for launching 0.1-g projectiles to 150 km/s or more to initiate fusion. Pt. 2

    International Nuclear Information System (INIS)

    The possibility of using a railgun accelerator to launch 0.1-g projectiles to hypervelocities (150 km/s or more) to initiate thermonuclear fusion is explored. The analysis reveals that a railgun with a plasma-arc armature is a viable approach to the goal. When calculating the railgun's probable performance, it was discovered that this launch system might possibly be designed to avoid adverse effects from boundary layer drag. An appendix provided by A.C. Buckingham summarizes his calculations that predict the amount of erosive drag between projectile and rail. Finally, it was found that certain properties of railgun and projectile materials can impose operational limits. Using these limits, a single- and multistage accelerator was designed. Within such limits, a railgun could accelerate a 0.1-g projectile to hypervelocities. (orig.)

  18. Biomechanical stability of a bioabsorbable self-retaining polylactic acid/nano-sized β-tricalcium phosphate cervical spine interbody fusion device in single-level anterior cervical discectomy and fusion sheep models

    Directory of Open Access Journals (Sweden)

    Cao L

    2012-11-01

    Full Text Available Lu Cao,1 Ping-Guo Duan,1 Xi-Lei Li,1 Feng-Lai Yuan,3 Ming-Dong Zhao,2 Wu Che,1 Hui-Ren Wang,1 Jian Dong11Department of Orthopedic Surgery, Zhongshan Hospital, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, China; 2Department of Orthopedic Surgery, Jinshan Hospital, Fudan University, Shanghai, China; 3Affiliated Third Hospital of Nantong University, Wuxi, ChinaPurpose: The aim of this study was to investigate the biomechanical stability provided by a novel, polylactic acid/nano-sized, β-tricalcium phosphate, bioabsorbable, self-retaining cervical fusion cage (BCFC.Methods: Quasistatic nonconstraining torques (maximum 1.5 NM induced flexion, extension, lateral bending (±1.5 NM, and axial rotation (±1.5 NM on 32 sheep cervical spines (C2–C5. The motion segment C3–C4 was first tested intact; the following groups were tested after complete discectomy: autologous tricortical iliac crest bone graft, Medtronic–Wego polyetheretherketone (PEEK cage, Solis PEEK cage, and BCFC. The autologous bone graft group was tested with an anterior plate. The mean range of motion (ROM was calculated from the load-displacement curves.Results: BCFC significantly decreased ROM in lateral bending and axial rotation compared to other implants, and no significant difference in ROM between two types of PEEK cages and BCFC could be observed in flexion and extension. Anterior cervical plate (ACP significantly decreased ROM in flexion and extension, but no significant difference in ROM between BCFC and bone graft plus ACP could be determined in lateral bending and axial rotation.Conclusion: The BCFC device showed better stability to autologous tricortical iliac crest bone graft and PEEK cages in single-level anterior cervical discectomy and fusion models and thus may be a potential alternative to the current PEEK cages.Keywords: biomechanics, cervical spine, cages, bioabsorbable, sheep

  19. The role of bone SPECT/CT in the evaluation of lumbar spinal fusion with metallic fixation devices

    DEFF Research Database (Denmark)

    Damgaard, Morten; Nimb, Lars; Madsen, Jan L

    2010-01-01

    PURPOSE: It is difficult to evaluate the stability of the lumbar spondylodesis with metallic fixation devices by conventional imaging methods such as radiography or magnetic resonance imaging. It is unknown whether single photon emission computed tomography/computed tomography (SPECT/CT) may be u...

  20. Ciemat Contribution to The International Standard Problem ISP-34: Contain Analysis of Fal-ISP 1 Test

    Energy Technology Data Exchange (ETDEWEB)

    Herranz, L. E.; Polo, J.

    1994-07-01

    CIEMAT, along with a great number of international laboratories, has participated in the open exercise of the first International Standard Problem addressing fission product transport issues. The FAL-ISP 1, aimed to study particle agglomeration, has been simulated with CONTAIN code. The therma hydraulic results obtained have been satisfactory and aerosol ones have been reasonably accurate. However, some discrepancies appeared between predictions and experimental data; these are essentially related to the injection phase of the experiment, where the major influence of input approximations took place. In addition, the rationalization of discrepancies pointed potential data inconsistencies. Some parametric studies showed the results sensitivity to input assumptions concerning aerosol characterization and default values in CONTAIN; in general, they confirmed the suitability of most of the approximations taken. (Author) 11 refs.

  1. Fundamental processes of plasma and reactive gas surface treatment for the recovery of hydrogen isotopes from carbon co-deposits in fusion devices

    Energy Technology Data Exchange (ETDEWEB)

    Moeller, Soeren

    2014-11-01

    The use of carbon-based plasma-facing wall components offers many advantages for plasma operation in magnetic confinement nuclear fusion devices. However, through reactions with the hydrogen based fusion plasma, carbon forms amorphous hydrogenated carbon co-deposits (a-C:H) in the vacuum vessels. If tritium is used to fuel the reactor, this co-deposition can quickly lead to an inacceptable high tritium inventory. Through co-deposition with carbon about 10% of the tritium injected into the reactor can be trapped. Even with other wall materials co-deposition can be significant. A method to recover the hydrogen isotopes from the co-deposits is necessary. The method has to be compatible with the requirements of the devices and nuclear fusion plasma operation. In this work thermo-chemical removal by neutral gases (TCR) and removal by plasmas is investigated. Models are developed to describe the involved processes of both removal methods. TCR is described using a reaction-diffusion model. Within this model the reactive gas diffuses into the co-deposits and subsequently reacts in a thermally activated process. The co-deposits are pyrolysed, forming volatile gases, e.g. CO{sub 2} and H{sub 2}O. These gases are pumped from the vacuum vessel and recycled. Applying the model to literature observations enables to connect data on exposure temperature, pressure, time and co-deposit properties. Two limits of TCR (reaction- or diffusion-limited) are identified. Plasma removal sputters co-deposits by their chemical and physical interaction with the impinging ions. The description uses a 0D plasma model from the literature which derives plasma parameters from the balance of input power to plasma power losses. The model is extended with descriptions of the plasma sheath and ion-surface interactions to derive the co-deposit removal rates. Plasma removal can be limited by this ion induced surface release rate or the rate of pumping of the released species. To test the models dedicated

  2. PREFACE: 15th Latin American Workshop on Plasma Physics (LAWPP 2014) and 21st IAEA TM on Research Using Small Fusion Devices (RUSFD)

    Science.gov (United States)

    Iván Vargas-Blanco, V.; Herrera-Velázquez, J. Julio E.

    2015-03-01

    Written contributions from participants of the Joint 15th Latin American Workshop on Plasma Physics (LAWPP 2014) - 21st IAEA Technical Meeting on Research Using Small Fusion Devices (21st IAEA TM RUSFD). The International Advisory Committees of the 15th Latin American Workshop on Plasma Physics (LAWPP 2014) and the 21st IAEA TM on Research Using Small Fusion Devices (RUSFD), agreed to carry out together this Joint LAWPP 2014 - 21st RUSFD in San José, Costa Rica, on 27-31 January 2014. The Joint LAWPP 2014 - 21st RUSFD meeting, organized by the Instituto Tecnológico de Costa Rica, Universidad Nacional de Costa Rica, and Ad Astra Rocket Company in collaboration with the International Atomic Energy Agency (IAEA). The Latin American Workshop on Plasma Physics (LAWPP) is a series of events which has been held periodically since 1982, with the purpose of providing a forum in which the research of the Latin American plasma physics community can be displayed, as well as fostering collaborations among plasma scientists within the region and with researchers from the rest of the world. Recognized plasma scientists from developed countries are specially invited to the meeting to present the state of the art on several "hot" topics related to plasma physics. It is an open meeting, with an International Advisory Committee, in which the working language is English. It was firstly held in 1982 in Cambuquira, Brazil, followed by workshops in Medellín, Colombia (1985), Santiago de Chile, Chile (1988), Buenos Aires, Argentina (1990), Mexico City, Mexico (1992), Foz do Iguaçu, Brazil (1994, combined with the International Congress on Plasma Physics (ICPP)), Caracas, Venezuela (1997), Tandil, Argentina (1998), La Serena, Chile (2000), Sao Pedro, Brazil (2003), Mexico City, Mexico (2005), Caracas, Venezuela (2007), Santiago de Chile, Chile (2010, combined with the ICPP) and Mar de Plata, Argentina (2011). The 21st IAEA TM on Research Using Small Fusion Devices is an ideal forum for

  3. Steady-state operation of magnetic fusion devices: Plasma control and plasma facing components. Report on the IAEA technical committee meeting held at Fukuoka, 25-29 October 1999

    International Nuclear Information System (INIS)

    An IAEA Technical Committee Meeting on Steady-State Operation of Magnetic Fusion Devices - Plasma Control and Plasma Facing Components was held at Fukuoka, Japan, from 25 to 29 October 1999. The meeting was the second IAEA Techical Committee Meeting on the subject, following the one held at Hefei, China, a year earlier. The meeting was attended by over 150 researchers from 10 countries

  4. SiGesDoC: The CIEMAT corporate document and records management system. A tool for managing, saving and disseminating knowledge; SiGesDoC: El sistema de gestion documental corporativa del CIEMAT. Una herramienta para la gestion, preservacion y difusion del conocimiento

    Energy Technology Data Exchange (ETDEWEB)

    Martin Santamaria, E.; Gonzalez Giralda, C.; Bustelo, C.; Gorostiza, C.

    2008-07-01

    The need to manage, save and disseminate technical scientific knowledge as part of the technology transfer process requires the implementation of Corporate Document and Records Management Systems that support a cultural change in the management of documentation generated in organizations as a result of their research work. In the CIEMAT, most knowledge is developed in R and D projects led by scientists and technologists and managed by the research support personnel and, therefore, it is very important to efficiently manage and control the life cycles of these projects. This article describes the implementation of a corporate document and records management system in the CIEMAT. (Author)

  5. PREFACE: 15th Latin American Workshop on Plasma Physics (LAWPP 2014) and 21st IAEA TM on Research Using Small Fusion Devices (RUSFD)

    Science.gov (United States)

    Iván Vargas-Blanco, V.; Herrera-Velázquez, J. Julio E.

    2015-03-01

    Written contributions from participants of the Joint 15th Latin American Workshop on Plasma Physics (LAWPP 2014) - 21st IAEA Technical Meeting on Research Using Small Fusion Devices (21st IAEA TM RUSFD). The International Advisory Committees of the 15th Latin American Workshop on Plasma Physics (LAWPP 2014) and the 21st IAEA TM on Research Using Small Fusion Devices (RUSFD), agreed to carry out together this Joint LAWPP 2014 - 21st RUSFD in San José, Costa Rica, on 27-31 January 2014. The Joint LAWPP 2014 - 21st RUSFD meeting, organized by the Instituto Tecnológico de Costa Rica, Universidad Nacional de Costa Rica, and Ad Astra Rocket Company in collaboration with the International Atomic Energy Agency (IAEA). The Latin American Workshop on Plasma Physics (LAWPP) is a series of events which has been held periodically since 1982, with the purpose of providing a forum in which the research of the Latin American plasma physics community can be displayed, as well as fostering collaborations among plasma scientists within the region and with researchers from the rest of the world. Recognized plasma scientists from developed countries are specially invited to the meeting to present the state of the art on several "hot" topics related to plasma physics. It is an open meeting, with an International Advisory Committee, in which the working language is English. It was firstly held in 1982 in Cambuquira, Brazil, followed by workshops in Medellín, Colombia (1985), Santiago de Chile, Chile (1988), Buenos Aires, Argentina (1990), Mexico City, Mexico (1992), Foz do Iguaçu, Brazil (1994, combined with the International Congress on Plasma Physics (ICPP)), Caracas, Venezuela (1997), Tandil, Argentina (1998), La Serena, Chile (2000), Sao Pedro, Brazil (2003), Mexico City, Mexico (2005), Caracas, Venezuela (2007), Santiago de Chile, Chile (2010, combined with the ICPP) and Mar de Plata, Argentina (2011). The 21st IAEA TM on Research Using Small Fusion Devices is an ideal forum for

  6. The role of bone SPECT/CT in the evaluation of lumbar spinal fusion with metallic fixation devices

    DEFF Research Database (Denmark)

    Damgaard, Morten; Nimb, Lars; Madsen, Jan L

    2010-01-01

    PURPOSE: It is difficult to evaluate the stability of the lumbar spondylodesis with metallic fixation devices by conventional imaging methods such as radiography or magnetic resonance imaging. It is unknown whether single photon emission computed tomography/computed tomography (SPECT/CT) may...... stabilizing lumbar surgery with metallic implants. The SPECT/CT findings were compared with observations from subsequent surgical reexploration. RESULTS: In 6 of 9 patients, the SPECT/CT fully or partially detected the vertebral level of loose pedicle screws. Of 9 cases, 2 were considered inconclusive...

  7. Fusion facility siting considerations

    Energy Technology Data Exchange (ETDEWEB)

    Bussell, G.T.

    1985-07-01

    Inherent in the fusion program's transition from hydrogen devices to commercial power machines is a general increase in the size and scope of succeeding projects. This growth will lead to increased emphasis on safety, environmental impact, and the external effects of fusion in general, and of each new device in particular. A critically important consideration in this regard is site selection. The purpose of this paper is to examine major siting issues that may affect the economics, safety, and environmental impact of fusion.

  8. Fusion facility siting considerations

    Energy Technology Data Exchange (ETDEWEB)

    Bussell, G.T.

    1985-01-01

    Inherent in the fusion program's transition from hydrogen devices to commercial power machines is a general increase in the size and scope of succeeding projects. This growth will lead to increased emphasis on safety, environmental impact, and the external effects of fusion in general, and of each new device in particular. A critically important consideration in this regard is site selection. The purpose of this paper is to examine major siting issues that may affect the economics, safety, and environmental impact of fusion.

  9. Compact fusion reactors

    CERN Document Server

    CERN. Geneva

    2015-01-01

    Fusion research is currently to a large extent focused on tokamak (ITER) and inertial confinement (NIF) research. In addition to these large international or national efforts there are private companies performing fusion research using much smaller devices than ITER or NIF. The attempt to achieve fusion energy production through relatively small and compact devices compared to tokamaks decreases the costs and building time of the reactors and this has allowed some private companies to enter the field, like EMC2, General Fusion, Helion Energy, Lawrenceville Plasma Physics and Lockheed Martin. Some of these companies are trying to demonstrate net energy production within the next few years. If they are successful their next step is to attempt to commercialize their technology. In this presentation an overview of compact fusion reactor concepts is given.

  10. Fundamental processes of plasma and reactive gas surface treatment for the recovery of hydrogen isotopes from carbon co-deposits in fusion devices

    International Nuclear Information System (INIS)

    The use of carbon-based plasma-facing wall components offers many advantages for plasma operation in magnetic confinement nuclear fusion devices. However, through reactions with the hydrogen based fusion plasma, carbon forms amorphous hydrogenated carbon co-deposits (a-C:H) in the vacuum vessels. If tritium is used to fuel the reactor, this co-deposition can quickly lead to an inacceptable high tritium inventory. Through co-deposition with carbon about 10% of the tritium injected into the reactor can be trapped. Even with other wall materials co-deposition can be significant. A method to recover the hydrogen isotopes from the co-deposits is necessary. The method has to be compatible with the requirements of the devices and nuclear fusion plasma operation. In this work thermo-chemical removal by neutral gases (TCR) and removal by plasmas is investigated. Models are developed to describe the involved processes of both removal methods. TCR is described using a reaction-diffusion model. Within this model the reactive gas diffuses into the co-deposits and subsequently reacts in a thermally activated process. The co-deposits are pyrolysed, forming volatile gases, e.g. CO2 and H2O. These gases are pumped from the vacuum vessel and recycled. Applying the model to literature observations enables to connect data on exposure temperature, pressure, time and co-deposit properties. Two limits of TCR (reaction- or diffusion-limited) are identified. Plasma removal sputters co-deposits by their chemical and physical interaction with the impinging ions. The description uses a 0D plasma model from the literature which derives plasma parameters from the balance of input power to plasma power losses. The model is extended with descriptions of the plasma sheath and ion-surface interactions to derive the co-deposit removal rates. Plasma removal can be limited by this ion induced surface release rate or the rate of pumping of the released species. To test the models dedicated experiments

  11. Study of the feasibility of applying laser-induced breakdown spectroscopy for in-situ characterization of deposited layers in fusion devices

    Science.gov (United States)

    Huber, A.; Schweer, B.; Philipps, V.; Leyte-Gonzales, R.; Gierse, N.; Zlobinski, M.; Brezinsek, S.; Kotov, V.; Mertens, P.; Samm, U.; Sergienko, G.

    2011-12-01

    This paper presents a feasibility study of laser-induced breakdown spectroscopy (LIBS) for the development of an in-situ diagnostic for the characterization of deposition layers on plasma-facing components in fusion devices. Preferentially, LIBS would be applied in the presence of a toroidal magnetic field and under high vacuum conditions. The impact of the laser-energy densities on the laser-induced plasma parameters and correspondingly on the number of emitted photons and on the reproducibility of the LIBS method has been studied in laboratory experiments and in TEXTOR on fine-grain graphite (EK98) as well as on bulk W samples coated with carbon and metallic-containing deposits. The effect of magnetic fields and of ambient pressures in the range from 2×10-4 Pa to 10 Pa on the carbon plasma plume produced by the LIBS technique has been studied on TEXTOR between plasma pulses. The possibility of applying this method to ITER is discussed.

  12. Control mechanism for attenuation of thermal energy pulses using cold circulators in the cryogenic distribution system of fusion devices in tokamak configuration

    Science.gov (United States)

    Bhattacharya, R.; Sarkar, B.; Vaghela, H.; Shah, N.

    2014-01-01

    Operation and control of superconducting (SC) magnets in the fusion devices having tokamak configuration opens up the domain of varying peak thermal energy environment as a function of time, commensurate with the plasma pulses. The varied thermal energy environment, thus propagated to upstream of the cooling system, is responsible for the system level instability of the overall cryogenic system. The cryogenic distribution system, the regime of first impact point, therefore, has to be tuned so as to stay at the nearly stable zone of operation. The configuration of the cryogenic distribution system, considered in the present study, involves a liquid helium (LHe) bath as a thermal buffer, LHe submerged heat exchangers and cold circulator apart from the valves for implementations of the precise controls. The cold circulator supplies the forced flow supercritical helium, used for the cooling of SC magnets. The transients of the thermal energy pulses can be attenuated in the cryogenic distribution system by various methodologies. One of the adopted methodologies in the present study is with the precise speed control of the cold circulators. The adopted methodology is applied to various configurations of arrangements of internal components in the distribution system for obtaining system responses with superior attenuation of energy pulses. The process simulation approach, assumptions, considered inputs and constraints, process modeling with different configuration as well as results to accomplish the control scheme for the attenuation of the thermal energy pulses are described.

  13. Results of the Interlaboratory Exercise CNS/CIEMAT-2008 among Environmental Radioactivity Laboratories (Phosphogypsum); Evaluacion de la Intercomparacion CSN/CIEMAT-2008 entre Laboratorios Nacionales de Radiactividad Ambiental (Fosfoyeso)

    Energy Technology Data Exchange (ETDEWEB)

    Romero, M. L.; Barrera, M.; Valino, F.

    2010-05-27

    The document describes the outcome of the CSN/CIEMAT-2008 interlaboratory test comparison among environmental radioactivity laboratories. The exercise was organised according to the ISO-43 and the ISO/IUPAC/AOAC. Aphosphogypsum material was used as a test sample, in an attempt to evaluate the performance of the laboratories analyzing NORM (Naturally-Occurring Radioactive Materials). The analysis required were: U-238, Th-234, U-234, Th-230, Ra-226, Pb-214, Bi-214, Pb-210, Po-210, Th-232 and U-235, and also gross alpha and gross beta activities. Reference values have been established according to the method of consensus of expert laboratories, with four international laboratories of credited experience: IAEA Seibersdorf, IAEA MEL, IRSN-Orsay and Sta.Teresa ENEA. The results of the exercise were computed for 34 answering laboratories and their analytical performance was assessed using the z-score. Robust statistics of the participants results was applied to obtain the median and standard deviation, to achieve a more complete and objective study of the laboratories performance. The exercise has shown an homogeneous behaviour of laboratories, being statistical parameters from the results close to the assigned Reference Values. Participant laboratories have demonstrated their ability to determine natural radionuclides in phosphogypsum samples (NORM material) with a satisfactory quality level. The scheme has also allowed examining the capability of laboratories to determine the activities of natural radionuclides at the equilibrium. (Author) 10 refs.

  14. Report of Activities of the Association Euratom/Ciemat. Annual Report 2004

    International Nuclear Information System (INIS)

    The focal point of the work at the Spanish Association has been the flexible Heliac TJ-II, which at present is the only stellarator in operation in Europe. The main milestone of TJ-II operation has been the generation of plasmas sustained by NBI heating (which lead to a record in TJ-II stored energy) but significant physics results have been also obtained in the continuation of existing lines (improved confinement scenarios and the role of rational surfaces, iota scaling with boronized walls, turbulence studies, impurity transport and rotation experiments, suprathermal electrons studies, plasma wall effects). TJ-II improvements include the progress in the second NBI, the preparations for the Bernstein wave heating system, the installation of a Diagnostic NB and the fast camera (Ha) diagnostic (on temporal loan from PPPL- Princeton). Other activities of the Association include the Materials research programme, both in the areas of insulator materials properties and structural materials (with a new line open: studies of Tritium barriers during irradiation), the studies on the socio-economic impact of fusion and a reinforced participation in the EFDA technology work programme. The Association wants to increase technology activities and, along this line, a number of expression of interest have been submitted, leading to several task contracts : design of the European Dipole, design of the magnet for ITER field simulation on NBI test bed, IFMIF security analysis, Demo Blanket support system (finished), Main plasma reflectometry system (finished), Tritium retention/ removal studies. Finally, the Association has keep its involvement in the PhD programme Fusion and Plasma Physics that has been carried since 2001 in collaboration with several Universities and other Spanish research centres. (Author)

  15. Magnetic-confinement fusion

    Science.gov (United States)

    Ongena, J.; Koch, R.; Wolf, R.; Zohm, H.

    2016-05-01

    Our modern society requires environmentally friendly solutions for energy production. Energy can be released not only from the fission of heavy nuclei but also from the fusion of light nuclei. Nuclear fusion is an important option for a clean and safe solution for our long-term energy needs. The extremely high temperatures required for the fusion reaction are routinely realized in several magnetic-fusion machines. Since the early 1990s, up to 16 MW of fusion power has been released in pulses of a few seconds, corresponding to a power multiplication close to break-even. Our understanding of the very complex behaviour of a magnetized plasma at temperatures between 150 and 200 million °C surrounded by cold walls has also advanced substantially. This steady progress has resulted in the construction of ITER, a fusion device with a planned fusion power output of 500 MW in pulses of 400 s. ITER should provide answers to remaining important questions on the integration of physics and technology, through a full-size demonstration of a tenfold power multiplication, and on nuclear safety aspects. Here we review the basic physics underlying magnetic fusion: past achievements, present efforts and the prospects for future production of electrical energy. We also discuss questions related to the safety, waste management and decommissioning of a future fusion power plant.

  16. Results Assessment of Intercomparison Exercise CSN/CIEMAT-2010 among Spanish National Laboratories of Environmental Radioactivity (Diet Ashes); Evaluacion de la Intercomparacion CSN/CIEMAT-2010 entre los Laboratorios Nacionales de Radiactividad Ambiental (Ceniza de Dieta)

    Energy Technology Data Exchange (ETDEWEB)

    Gasco, C.; Trinidad, J. A.; Llaurado, M.; Suarez, J. A.

    2012-06-08

    This report describes the results assessment of the intercomparison exercise among environmental radioactivity laboratories, organised by Spanish Regulatory Institution (CSN) and prepared and evaluated by UAB and CIEMAT respectively. The exercise has been carried out following the international standards ISO-43 and ISO/IUPAC that provide a useful guide to perform proficiency tests and inter-laboratories comparisons. The selected matrix for this year (2010) was a diet ash obtained from the ashing of a whole fresh diet (breakfast, lunch and dinner), that was enriched with artificial radionuclides (Cs-137, Co-60,Fe-55,Ni-63,Sr-90,Am-241,Pu-238,Pu-239,240 y C-14) and contained natural radionuclides (U-234, U-238, U-natural Th-230, Th-234, Ra-226, Ra-228, Pb-210, Pb-212, Pb-214, Bi-214, Ac-228, Tl-208, K-40) at environmental level of activity concentration. The z-score test was applied to determine how much the laboratories differ from the reference value. The reference value for this exercise was the median of the results from the different laboratories and their standard deviations to achieve a more complete and objective study of the laboratories performance. The participant laboratories have demonstrated a satisfactory quality level for measuring the natural and artificial radionuclides content in this matrix. The reference values obtained through the medians show a negative bias for Pb-210 and Th-234 when comparing to the given values of external qualified laboratories from ENEA and IRSN and positive one for K-40. (Author)

  17. Results of the Interlaboratory Exercise CNS/CIEMAT-05 among Environmental Radioactivity Laboratories (Vegetable Ash); Evaluacion de la Intercomparacion CSN/CIEMAT-2005 entre Laboratorios Nacionales Radiactividad Ambiental (Ceniza Vegetal)

    Energy Technology Data Exchange (ETDEWEB)

    Romero Gonzalez, M. L.; Barrera Izquierdo, M.; Valino Garcia, F.

    2006-07-01

    The document describes the outcome of the CSN/CIEMAT-05 interlaboratory test comparison among environmental radioactivity laboratories. The exercise was organised according to the ISO-43 and the IUPAC {sup I}nternational harmonised protocol for the proficiency testing of analytical chemistry laboratories{sup .} The exercise has been designed to evaluate the capability of national laboratories to determine environmental levels of radionuclides in vegetable ash samples. The sample has been prepared by the Environmental Radiation Laboratory, from the University of Barcelona, and it contains the following radionuclides: Sr-90, Pu-238, Am-241, Th-230, Pb-210, U-238, Ra-226, K-40, Ra-228, TI-208, Cs- 137 and Co-60. Reference values have been established TROUGH the kind collaboration of three international laboratories of recognized experience: IAEA MEL and IRSN-Orsay. The results of the exercise were computed for 35 participating laboratories and their analytical performance was assessed using the z-score approach. Robust statistics of the participant's results was applied to obtain the median and standard deviation, to achieve a more complete and objetiva study of the laboratories' performance. Some difficulties encountered to dissolve the test sample caused a lower response of analyses involving radiochemical separation, thus some laboratories couldn't apply their routine methods and no conclusions on PU-238, Am-241 and Th-230 performances have been obtained. The exercise has revealed an homogeneous behaviour of laboratories, being statistical parameters from the results close to the reference values. The study has shown that participant laboratories perform radioactive determinations in vegetable ash samples with satisfactory quality levels. (Author) 6 refs.

  18. Results Assessment of Intercomparison Exercise CSN/CIEMAT-2010 among Spanish National Laboratories of Environmental Radioactivity (Diet Ashes)

    International Nuclear Information System (INIS)

    This report describes the results assessment of the intercomparison exercise among environmental radioactivity laboratories, organised by Spanish Regulatory Institution (CSN) and prepared and evaluated by UAB and CIEMAT respectively. The exercise has been carried out following the international standards ISO-43 and ISO/IUPAC that provide a useful guide to perform proficiency tests and inter-laboratories comparisons. The selected matrix for this year (2010) was a diet ash obtained from the ashing of a whole fresh diet (breakfast, lunch and dinner), that was enriched with artificial radionuclides (Cs-137, Co-60,Fe-55,Ni-63,Sr-90,Am-241,Pu-238,Pu-239,240 y C-14) and contained natural radionuclides (U-234, U-238, U-natural Th-230, Th-234, Ra-226, Ra-228, Pb-210, Pb-212, Pb-214, Bi-214, Ac-228, Tl-208, K-40) at environmental level of activity concentration. The z-score test was applied to determine how much the laboratories differ from the reference value. The reference value for this exercise was the median of the results from the different laboratories and their standard deviations to achieve a more complete and objective study of the laboratories performance. The participant laboratories have demonstrated a satisfactory quality level for measuring the natural and artificial radionuclides content in this matrix. The reference values obtained through the medians show a negative bias for Pb-210 and Th-234 when comparing to the given values of external qualified laboratories from ENEA and IRSN and positive one for K-40. (Author)

  19. 颈椎桥形连接融合器进行双节段以上椎间融合的效果评价%Above two-level segment interbody fusion with double-way connection intervertebral fusion device

    Institute of Scientific and Technical Information of China (English)

    傅宇; 傅云根; 罗嘉全; 曹盛生; 李俊宁; 徐文华

    2013-01-01

      背景:颈椎前路钢板置入内固定被认为是颈椎前路多节段椎间盘切除和融合的标准治疗,但是,颈前路植入钢板有着很多金属植入物相关并发症的风险。目的:分析和比较使用颈椎桥形连接融合器和 Cage 椎间融合器+颈椎前路钢板置入内固定进行颈椎前路2节段以上椎间融合的有效性。方法:纳入54例2节段以上颈椎间盘突出接受颈椎前路减压和融合治疗的患者,分别使用颈椎桥形连接融合器进行颈椎前路椎间融合(n=30)和 Cage 椎间融合器与颈椎前路钢板固定系统进行椎间融合(n=24)。使用日本骨科学会(JOA)量表系统评价临床结果,椎间融合后3,6个月依据X射线检查评价颈椎前凸角、椎体间高度和颈椎融合状态。结果与结论:对桥形连接融合器和Cage椎间融合器组的平均随访时间为6个月。两组患者均获得骨性融合,平均愈合时间为5.5个月。桥形连接融合器组平均 JOA 评分由治疗前(7.4±0.4)分,提高到治疗后3个月(14.3±0.5)分,治疗后6个月(14.5±0.8)分,Cage椎间融合器组平均JOA评分由治疗前(7.6±0.7)分,提高到治疗后3个月(13.9±0.4)分,治疗后6个月(14.0±0.6)分,且有显著性差异。治疗后两组的颈椎前凸角和椎间隙高度均较治疗前有显著性改善。说明该植入体植入后能有效恢复颈椎的生理曲度,避免出现螺钉钢板固定并发症,疗效确切。%  BACKGROUND: Anterior cervical spine plate fixation is believed to be the standard method for the treatment of cervical anterior segmental discectomy and fusion, however, anterior cervical plate implants has a lot of risk related to metal implants complications. OBJECTIVE: To analyze and compare the effectiveness of the application of double-way connection intervertebral fusion device and Cage intervertebral fusion device+anterior cervical plate fixation for anterior above two

  20. Fusion technology 1988. V. 2

    International Nuclear Information System (INIS)

    These proceedings comprise two volumes and contain both the invited lectures and the contributed papers presented at the Symposium. The relatively large number of 23 invited lectures gave a broad overview of the problems fusion tecnology is facing both now and in the future. Over half the papers presented in these two volumes concentrate on the technologies of future fusion devices, mainly possible Next Step devices, such as NET or ITER. refs.; figs.; tabs

  1. Fusion Simulation Program

    International Nuclear Information System (INIS)

    Many others in the fusion energy and advanced scientific computing communities participated in the development of this plan. The core planning team is grateful for their important contributions. This summary is meant as a quick overview the Fusion Simulation Program's (FSP's) purpose and intentions. There are several additional documents referenced within this one and all are supplemental or flow down from this Program Plan. The overall science goal of the DOE Office of Fusion Energy Sciences (FES) Fusion Simulation Program (FSP) is to develop predictive simulation capability for magnetically confined fusion plasmas at an unprecedented level of integration and fidelity. This will directly support and enable effective U.S. participation in International Thermonuclear Experimental Reactor (ITER) research and the overall mission of delivering practical fusion energy. The FSP will address a rich set of scientific issues together with experimental programs, producing validated integrated physics results. This is very well aligned with the mission of the ITER Organization to coordinate with its members the integrated modeling and control of fusion plasmas, including benchmarking and validation activities. (1). Initial FSP research will focus on two critical Integrated Science Application (ISA) areas: ISA1, the plasma edge; and ISA2, whole device modeling (WDM) including disruption avoidance. The first of these problems involves the narrow plasma boundary layer and its complex interactions with the plasma core and the surrounding material wall. The second requires development of a computationally tractable, but comprehensive model that describes all equilibrium and dynamic processes at a sufficient level of detail to provide useful prediction of the temporal evolution of fusion plasma experiments. The initial driver for the whole device model will be prediction and avoidance of discharge-terminating disruptions, especially at high performance, which are a critical

  2. Rencontre on fusion technology

    International Nuclear Information System (INIS)

    This report of a rencontre held to consider the technology of magnetic confinement fusion devices gives the agenda for the meeting and lists those topics which were identified as areas of research. These topics included materials, tritium, structures and heat transfer, neutronics and nuclear data, and corrosion problems. (UK)

  3. Fusion rings and fusion ideals

    DEFF Research Database (Denmark)

    Andersen, Troels Bak

    This dissertation investigates fusion rings, which are Grothendieck groups of rigid, monoidal, semisimple, abelian categories. Special interest is in rational fusion rings, i.e., fusion rings which admit a finite basis, for as commutative rings they may be presented as quotients of polynomial rings...... by the so-called fusion ideals. The fusion rings of Wess-Zumino-Witten models have been widely studied and are well understood in terms of precise combinatorial descriptions and explicit generating sets of the fusion ideals. They also appear in another, more general, setting via tilting modules for quantum...

  4. A new ICRF scenario for bulk ion heating in D-T plasmas: How to utilize intrinsic impurities in fusion devices in our favour

    CERN Document Server

    Kazakov, Y O; Van Eester, D; Bilato, R; Dumont, R; Lerche, E; Mantsinen, M; Messiaen, A

    2015-01-01

    A fusion reactor requires plasma pre-heating before the rate of deuterium-tritium fusion reactions becomes significant. In ITER, radiofrequency (RF) heating of 3He ions, additionally puffed into the plasma, is one of the main options considered for increasing bulk ion temperature during the ramp-up phase of the pulse. In this paper, we propose an alternative scenario for bulk ion heating with RF waves, which requires no extra 3He puff and profits from the presence of intrinsic Beryllium impurities in the plasma. The discussed method to heat Be impurities in D-T plasmas is shown to provide an even larger fraction of fuel ion heating.

  5. Membrane fusion

    DEFF Research Database (Denmark)

    Bendix, Pól Martin

    2015-01-01

    At Stanford University, Boxer lab, I worked on membrane fusion of small unilamellar lipid vesicles to flat membranes tethered to glass surfaces. This geometry closely resembles biological systems in which liposomes fuse to plasma membranes. The fusion mechanism was studied using DNA zippering...... between complementary strands linked to the two apposing membranes closely mimicking the zippering mechanism of SNARE fusion complexes....

  6. Controlled fusion and plasma physics

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    This document presents the several speeches that took place during the 22nd European Physical Society conference on Controlled Fusion and Plasma Physics in Bournemouth, UK, between the 2nd and 7th July 1995. The talks deal with new experiments carried out on several tokamaks, particularly Tore Supra, concerning plasma confinement and fusion. Some information on specific fusion devices or tokamak devices is provided, as well as results of experiments concerning plasma instability. Separate abstracts were prepared for all the 31 papers in this volume. (TEC).

  7. Progress in inertial fusion and fusion technology at DENIM

    International Nuclear Information System (INIS)

    ultrahigh strength materials. In addition to work performed in IFMIF-EVEDA safety and test cells, a large effort is being performed to define a Laboratory for Fusion Technology in collaboration with CIEMAT, that includes Remote Handling testing under irradiation, materials irradiation and characterization, advanced materials processing, liquid metal loop and laboratory for numerical simulation. (author)

  8. Characterization of scintillator materials for fast-ion loss detectors in nuclear fusion reactors

    Science.gov (United States)

    Jiménez-Ramos, M. C.; García López, J.; García-Muñoz, M.; Rodríguez-Ramos, M.; Carmona Gázquez, M.; Zurro, B.

    2014-08-01

    -particle losses on the AUG tokamak [9,10]. The same material supplied by other manufacturer (CIEMAT) has been used to compare the yields for both samples. We will refer to these screens as TGa and TGb for the corresponding to Sarnoff Co. and CIEMAT, respectively. The P46 is a rare earth oxide Y3Al5O12 (YAG) doped with Ce by 0.15% CeO2, manufactured by Proxitronic GmbH, Germany. The luminescence emission consists in a broad peak, centered at 550 nm with a stated decay time constant of 70 ns. [11]. The P46 has been widely applied to fusion plasma diagnostic and in particular to fast-ion loss detection on several devices such as TFTR and NSTX [12,13]. Finally, the P56 scintillator is a Eu doped Y2O3 powder substrate, Y2O3:Eu3+, manufactured by AST Corporation, England. Although this material has a high efficiency, its light emission has a long decay time of 2 ms [14], making the P56 unsuitable to follow the frequency of the MHD fluctuations.The samples were deposited using different processes directly by the manufacturers on 2 mm thick stainless steel plates. It is important to remind that reflections on the substrate may contribute to a luminescence enhancement of the thin scintillator screens. Therefore, the screens under study here as well as the experimental set-up were designed to mimic the real operation of a fast-ion loss detector.

  9. Alternate fusion concepts

    International Nuclear Information System (INIS)

    This review summarizes the status of alternate fusion concepts and plans for their future. The concepts selected for review are those employing electromagnetic confinement for which there have been reasonable predictions of net energy gain from pure fusion and which have shown significant recent development or are the subjects of ongoing international activity. They include advanced tokamaks, stellarators, the spherical torus, reversed-field pinch and dense z-field pinch devices, field reversed configuration, and spheromaks. In addition, an overall view of the status of each concept with respect to achieving ignition and to reactor designs is presented

  10. Biological performance of a polycaprolactone-based scaffold used as fusion cage device in a large animal model of spinal reconstructive surgery.

    Science.gov (United States)

    Abbah, Sunny A; Lam, Christopher X L; Hutmacher, Dietmar W; Goh, James C H; Wong, Hee-Kit

    2009-10-01

    A bioactive and bioresorbable scaffold fabricated from medical grade poly (epsilon-caprolactone) and incorporating 20% beta-tricalcium phosphate (mPCL-TCP) was recently developed for bone regeneration at load bearing sites. In the present study, we aimed to evaluate bone ingrowth into mPCL-TCP in a large animal model of lumbar interbody fusion. Six pigs underwent a 2-level (L3/4; L5/6) anterior lumbar interbody fusion (ALIF) implanted with mPCL-TCP + 0.6 mg rhBMP-2 as treatment group while four other pigs implanted with autogenous bone graft served as control. Computed tomographic scanning and histology revealed complete defect bridging in all (100%) specimen from the treatment group as early as 3 months. Histological evidence of continuing bone remodeling and maturation was observed at 6 months. In the control group, only partial bridging was observed at 3 months and only 50% of segments in this group showed complete defect bridging at 6 months. Furthermore, 25% of segments in the control group showed evidence of graft fracture, resorption and pseudoarthrosis. In contrast, no evidence of graft fractures, pseudoarthrosis or foreign body reaction was observed in the treatment group. These results reveal that mPCL-TCP scaffolds could act as bone graft substitutes by providing a suitable environment for bone regeneration in a dynamic load bearing setting such as in a porcine model of interbody spine fusion. PMID:19540586

  11. SPECT-CT同机图像融合的仪器质量控制方法探讨%Evaluation of the quality control methods of image fusion in hybrid SPECT-CT device

    Institute of Scientific and Technical Information of China (English)

    程木华; 张峰; 刘克放; 陈谊; 吴春兴; 陈维真

    2007-01-01

    目的 探讨SPECT-CT同机图像融合硬件配准误差的质量评价方法.方法 制作带外套点源、点线模型及用ECT模型,加注放射源后,在床有、无负重情况下,分别对模型进行SPECT-CT采集,然后进行SPECT-CT同机图像融合处理,分析两种图像融合偏差程度.结果 SPECT与CT旋转中心无偏移.在床无负重情况时,点源及点线源与外套无X、Y轴偏移.在床有负重情况下,融合图像Y轴偏移最大值为8.0 mm,X轴偏差无像素偏移.ECT模型可检测核医学"冷"区图像及整体图像融合情况,但不能进行定量测量偏移情况.结论 单点源模型可用于日常简单检测SPECT-CT图像融合硬件配准情况;点线源模型可用于准确定量分析图像融合硬件配匹程度;ECT模型可用图像融合质量综合分析.%Objective To evaluate the quality control method of the hardware match of hybrid SPECT-CT device.Methods A radioactive dot and a linear array of dots model with shell were made.The SPECT-CT tomography was performed in above two models and ECT Qc model with and without load on scan bed,the two kinds of images were fused and the excusive extent of fusion images between SPECT and CT image was analyzed.Results The rotate center between SPECT and CT device was consistent.The fusion image between the radioactive dot and its shell was no excursion in X and Y axis without the bed load,however.the maximal excursion in Y axis was more than 8.0 mm with bed load.The ECT model could be applied to analyze the image fusion of the radioactive"cold"area images and whole model image with the CT image,but the quantitatively analysis was not available.Condusions A radioactive dot with shell model may be used for the routine test of the fusion images in hybrid SPECT-CT device.A linear array of dots may be used for quantitatively analysis of the image fusion status,and the ECT model may be used for synthetically judge of the fusion image's quality.

  12. Fusion breeder

    International Nuclear Information System (INIS)

    The fusion breeder is a fusion reactor designed with special blankets to maximize the transmutation by 14 MeV neutrons of uranium-238 to plutonium or thorium to uranium-233 for use as a fuel for fission reactors. Breeding fissile fuels has not been a goal of the US fusion energy program. This paper suggests it is time for a policy change to make the fusion breeder a goal of the US fusion program and the US nuclear energy program. The purpose of this paper is to suggest this policy change be made and tell why it should be made, and to outline specific research and development goals so that the fusion breeder will be developed in time to meet fissile fuel needs

  13. The Anesthetic Implications of Aqueous Drainage Devices and Glaucoma: A Report of a Patient Undergoing Urgent Prone Cervical Decompression and Fusion.

    Science.gov (United States)

    Blackney, Kevin A; Zavodni, Zachary J; Saddawi-Konefka, Daniel

    2016-08-01

    The pathophysiology of glaucoma and perioperative visual loss is similar. A patient with glaucoma may be at increased risk of perioperative visual loss. For both, goals of management include optimizing ocular perfusion pressure and oxygen delivery. One treatment for refractory glaucoma is an aqueous drainage device; however, there is no published literature on the anesthetic management of patients with these devices. We present the case of a patient with recalcitrant glaucoma treated with an Ahmed Glaucoma Valve who underwent urgent prone surgery. Anesthetic implications of aqueous drainage devices and glaucoma are discussed, and recommendations are made. PMID:27258174

  14. Recent fusion research in the National Institute for Fusion Science

    International Nuclear Information System (INIS)

    The National Institute for Fusion Science (NIFS), which was established in 1989, promotes academic approaches toward the exploration of fusion science for steady-state helical reactor and realizes the establishment of a comprehensive understanding of toroidal plasmas as an inter-university research organization and a key center of worldwide fusion research. The Large Helical Device (LHD) Project, the Numerical Simulation Science Project, and the Fusion Engineering Project are organized for early realization of net current free fusion reactor, and their recent activities are described in this paper. The LHD has been producing high-performance plasmas comparable to those of large tokamaks, and several new findings with regard to plasma physics have been obtained. The numerical simulation science project contributes understanding and systemization of the physical mechanisms of plasma confinement in fusion plasmas and explores complexity science of a plasma for realization of the numerical test reactor. In the fusion engineering project, the design of the helical fusion reactor has progressed based on the development of superconducting coils, the blanket, fusion materials and tritium handling. (author)

  15. Peaceful Uses of Fusion

    Science.gov (United States)

    Teller, E.

    1958-07-03

    Applications of thermonuclear energy for peaceful and constructive purposes are surveyed. Developments and problems in the release and control of fusion energy are reviewed. It is pointed out that the future of thermonuclear power reactors will depend upon the construction of a machine that produces more electric energy than it consumes. The fuel for thermonuclear reactors is cheap and practically inexhaustible. Thermonuclear reactors produce less dangerous radioactive materials than fission reactors and, when once brought under control, are not as likely to be subject to dangerous excursions. The interaction of the hot plasma with magnetic fields opens the way for the direct production of electricity. It is possible that explosive fusion energy released underground may be harnessed for the production of electricity before the same feat is accomplished in controlled fusion processes. Applications of underground detonations of fission devices in mining and for the enhancement of oil flow in large low-specific-yield formations are also suggested.

  16. Medical Image Fusion

    Directory of Open Access Journals (Sweden)

    Mitra Rafizadeh

    2007-08-01

    Full Text Available Technological advances in medical imaging in the past two decades have enable radiologists to create images of the human body with unprecedented resolution. MRI, PET,... imaging devices can quickly acquire 3D images. Image fusion establishes an anatomical correlation between corresponding images derived from different examination. This fusion is applied either to combine images of different modalities (CT, MRI or single modality (PET-PET."nImage fusion is performed in two steps:"n1 Registration: spatial modification (eg. translation of model image relative to reference image in order to arrive at an ideal matching of both images. Registration methods are feature-based and intensity-based approaches."n2 Visualization: the goal of it is to depict the spatial relationship between the model image and refer-ence image. We can point out its clinical application in nuclear medicine (PET/CT.

  17. Laser inertial fusion

    International Nuclear Information System (INIS)

    Although the energy of the radiation pulses generated by the world's largest laser facilities approach the MJ limit, it is still lower than that calculated on means of the Lawson criterion for thermonuclear fusion. The severe energy requirements can be weakened by efficient pre-compression of laser targets and by non-linear conversion of laser radiation to shorter wavelengths. The homogeneity of the laser target irradiation can be improved by using multi-beam or indirect-drive laser schemes. The neodymium laser facilities such as Nova Upgrade in Livermore or Gekko XII in Osaca are still the most promising fusion drivers, but the chances of powerful iodine lasers such as ISKRA 5 in Arzamas and Asterix in Munich are also high. The prospects of these and other laser fusion drivers are critically assessed and the role of smaller devices as the Prague iodine laser Perun is discussed. (J.U.) 6 figs., 7 refs

  18. Fusion research at ORNL

    International Nuclear Information System (INIS)

    The ORNL Fusion Program includes the experimental and theoretical study of two different classes of magnetic confinement schemes - systems with helical magnetic fields, such as the tokamak and stellarator, and the ELMO Bumpy Torus (EBT) class of toroidally linked mirror systems; the development of technologies, including superconducting magnets, neutral atomic beam and radio frequency (rf) heating systems, fueling systems, materials, and diagnostics; the development of databases for atomic physics and radiation effects; the assessment of the environmental impact of magnetic fusion; and the design of advanced demonstration fusion devices. The program involves wide collaboration, both within ORNL and with other institutions. The elements of this program are shown. This document illustrates the program's scope; and aims by reviewing recent progress

  19. Mirror Fusion Test Facility

    International Nuclear Information System (INIS)

    On October 1, 1977 work began at LLL on the Mirror Fusion Test Facility (MFTF), an advanced experimental fusion device. Scheduled for operation in late 1981, MFTF is designed as an intermediate step between present mirror machines, such as 2XIIB, and an experimental fusion reactor. This design incorporates improved technology and a better theoretical understanding of how neutral beam injection, plasma guns, and gas injection into the plasma region compensate for cooling and particle losses. With the new facility, we expect to achieve a confinement factor (n tau) of 1012 particles . sm/cm3--a tenfold increase over 2XIIB n tau values--and to increase plasma temperature to over 500 million K. The following article describes this new facility and reports on progress in some of the R and D projects that are providing the technological base for its construction

  20. Device configuration-management system

    International Nuclear Information System (INIS)

    The Fusion Chamber System, a major component of the Magnetic Fusion Test Facility, contains several hundred devices which report status to the Supervisory Control and Diagnostic System for control and monitoring purposes. To manage the large number of diversity of devices represented, a device configuration management system was required and developed. Key components of this software tool include the MFTF Data Base; a configuration editor; and a tree structure defining the relationships between the subsystem devices. This paper will describe how the configuration system easily accomodates recognizing new devices, restructuring existing devices, and modifying device profile information

  1. Insulators for fusion applications

    International Nuclear Information System (INIS)

    Design studies for fusion devices and reactors have become more detailed in recent years and with this has come a better understanding of requirements and operating conditions for insulators in these machines. Ceramic and organic insulators are widely used for many components of fusion devices and reactors namely: radio frequency (RF) energy injection systems (BeO, Al2O3, Mg Al2O4, Si3N4); electrical insulation for the torus structure (SiC, Al2O3, MgO, Mg Al2O4, Si4Al2O2N6, Si3N4, Y2O3); lightly-shielded magnetic coils (MgO, MgAl2O4); the toroidal field coil (epoxies, polyimides), neutron shield (B4C, TiH2); high efficiency electrical generation; as well as the generation of very high temperatures for high efficiency hydrogen production processes (ZrO2 and Al2O3 - mat, graphite and carbon - felt). Timely development of insulators for fusion applications is clearly necessary. Those materials to be used in fusion machines should show high resistance to radiation damage and maintain their structural integrity. Now the need is urgent for a variety of radiation resistant materials, but much effort in these areas is required for insulators to be considered seriously by the design community. This document contains 14 papers from an IAEA meeting. It was the objective of this meeting to identify existing problems in analysing various situations of applications and requirements of electrical insulators and ceramics in fusion and to recommend strategies and different stages of implementation. This meeting was endorsed by the International Fusion Research Council

  2. Neutrons and fusion

    International Nuclear Information System (INIS)

    The production of energy from fusion reactions does not require neutrons in the fundamental sense that they are required in a fission reactor. Nevertheless, the dominant fusion reaction, that between deuterium and tritium, yields a 14 MeV neutron. To contrast a fusion reactor based on this reaction with the fission case, 3 x 1020 such neutrons produced per gigawatt of power. This is four times as many neutrons as in an equivalent fission reactor and they carry seven times the energy of the fission neutrons. Thus, they dominate the energy recovery problem and create technological problems comparable to the original plasma confinement problem as far as a practical power producing device is concerned. Further contrasts of the fusion and fission cases are presented to establish the general role of neutrons in fusion devices. Details of the energy deposition processes are discussed and those reactions necessary for producing additional tritium are outlined. The relatively high energy flux with its large intensity will activate almost any materials of which the reactor may be composed. This activation is examined from the point of view of decay heat, radiological safety, and long-term storage. In addition, a discussion of the deleterious effects of neutron interactions on materials is given in some detail; this includes the helium and hydrogen producing reactions and displacement rate of the lattice atoms. The various materials that have been proposed for structural purposes, for breeding, reflecting, and moderating neutrons, and for radiation shielding are reviewed from the nuclear standpoint. The specific reactions of interest are taken up for various materials and finally a report is given on the status and prospects of data for fusion studies

  3. Application of structural-mechanics methods to the design of large tandem-mirror fusion devices (MFTF-B). Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Karpenko, V.N.; Ng, D.S.

    1985-08-15

    The Mirror Fusion Test Facility (MFTF-B) at Lawrence Livermore National Laboratory requires state-of-the-art structural-mechanics methods to deal with access constraints for plasma heating and diagnostics, alignment requirements, and load complexity and variety. Large interactive structures required an integrated analytical approach to achieve a reasonable level of overall system optimization. The Tandem Magnet Generator (TMG) creates a magnet configuration for the EFFI calculation of electromagnetic-field forces that, coupled with other loads, form the input loading to magnet and vessel finite-element models. The analytical results provide the data base for detailed design of magnet, vessel, foundation, and interaction effects. 13 refs.

  4. Image fusion

    Science.gov (United States)

    Pavel, M.

    1993-01-01

    The topics covered include the following: a system overview of the basic components of a system designed to improve the ability of a pilot to fly through low-visibility conditions such as fog; the role of visual sciences; fusion issues; sensor characterization; sources of information; image processing; and image fusion.

  5. A new deflection technique applied to an existing scheme of electrostatic accelerator for high energy neutral beam injection in fusion reactor devices

    Energy Technology Data Exchange (ETDEWEB)

    Pilan, N., E-mail: nicola.pilan@igi.cnr.it; Antoni, V.; De Lorenzi, A.; Chitarin, G.; Veltri, P.; Sartori, E. [Consorzio RFX—Associazione EURATOM-ENEA per la Fusione, Corso Stati Uniti 4, 35127 Padova (Italy)

    2016-02-15

    A scheme of a neutral beam injector (NBI), based on electrostatic acceleration and magneto-static deflection of negative ions, is proposed and analyzed in terms of feasibility and performance. The scheme is based on the deflection of a high energy (2 MeV) and high current (some tens of amperes) negative ion beam by a large magnetic deflector placed between the Beam Source (BS) and the neutralizer. This scheme has the potential of solving two key issues, which at present limit the applicability of a NBI to a fusion reactor: the maximum achievable acceleration voltage and the direct exposure of the BS to the flux of neutrons and radiation coming from the fusion reactor. In order to solve these two issues, a magnetic deflector is proposed to screen the BS from direct exposure to radiation and neutrons so that the voltage insulation between the electrostatic accelerator and the grounded vessel can be enhanced by using compressed SF{sub 6} instead of vacuum so that the negative ions can be accelerated at energies higher than 1 MeV. By solving the beam transport with different magnetic deflector properties, an optimum scheme has been found which is shown to be effective to guarantee both the steering effect and the beam aiming.

  6. Advancing Fusion by Innovations: Smaller, Quicker, Cheaper

    DEFF Research Database (Denmark)

    Gryaznevich, Mikhail; Chuyanov, V. A.; Kingham, D.;

    2015-01-01

    On the path to Fusion power, the construction of ITER is on-going, however there is not much progress in performance improvements of tokamaks in the last 15 years, Fig.1. One possible reason for this stagnation is the lack of innovations in physics and technology that could be implemented...... with this approach in which progress is expected mainly from the increase in the size of a Fusion device. Such innovations could be easier to test and use in much smaller (and so cheaper and quicker to build) compact Fusion devices. In this paper we propose a new path to Fusion energy based on a compact high field...

  7. 椎间融合器临床试验分组及评价指标注册要求的变化%Change of Regulatory Requirement on Cohort Grouping and Endpoint Seting for Intervertebral Fusion Device Clinical Trail

    Institute of Scientific and Technical Information of China (English)

    郭晓磊

    2015-01-01

    结合国际主流监管机构技术要求与我国监管现状,目前常规的椎间融合器临床试验注册要求发生了简化,颈胸腰椎病患同组试验,并以影像学评价为主,较为合理地向减轻企业负担做出了尝试。%Combining technical requirement from main international administration and status quo of China administration, current regulatory requirement on clinical trail of conventional intervertebral fusion devices has been simplified. Cervical, thoracic and lumbar cases can be grouped into the same cohort, and primary endpoints are mainly based on imageology rather than clinical score. This is an attempt to rational y lessen industrial burdensome.

  8. [Fusion energy research

    International Nuclear Information System (INIS)

    This report discusses the following topics: principal parameters achieved in experimental devices (FY88); tokamak fusion test reactor; Princeton beta Experiment-Modification; S-1 Spheromak; current drive experiment; x-ray laser studies; spacecraft glow experiment; plasma deposition and etching of thin films; theoretical plasma; tokamak modeling; compact ignition tokamak; international thermonuclear experimental reactor; Engineering Department; Project Planning and Safety Office; quality assurance and reliability; and technology transfer

  9. Fusion development and technology

    International Nuclear Information System (INIS)

    This report discusses the following: superconducting magnet technology; high field superconductors; advanced magnetic system and divertor development; poloidal field coils; gyrotron development; commercial reactor studies--aries; ITER physics: alpha physics and alcator R ampersand D for ITER; lower hybrid current drive and heating in the ITER device; ITER superconducting PF scenario and magnet analysis; ITER systems studies; and safety, environmental and economic factors in fusion development

  10. (Fusion energy research)

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, C.A. (ed.)

    1988-01-01

    This report discusses the following topics: principal parameters achieved in experimental devices (FY88); tokamak fusion test reactor; Princeton beta Experiment-Modification; S-1 Spheromak; current drive experiment; x-ray laser studies; spacecraft glow experiment; plasma deposition and etching of thin films; theoretical plasma; tokamak modeling; compact ignition tokamak; international thermonuclear experimental reactor; Engineering Department; Project Planning and Safety Office; quality assurance and reliability; and technology transfer.

  11. On fusion driven systems (FDS) for transmutation

    Energy Technology Data Exchange (ETDEWEB)

    Aagren, O (Uppsala Univ., Aangstroem laboratory, div. of electricity, Uppsala (Sweden)); Moiseenko, V.E. (Inst. of Plasma Physics, National Science Center, Kharkov Inst. of Physics and Technology, Kharkov (Ukraine)); Noack, K. (Forschungszentrum Dresden-Rossendorf (Germany))

    2008-10-15

    This report gives a brief description of ongoing activities on fusion driven systems (FDS) for transmutation of the long-lived radioactive isotopes in the spent nuclear waste from fission reactors. Driven subcritical systems appears to be the only option for efficient minor actinide burning. Driven systems offer a possibility to increase reactor safety margins. A comparatively simple fusion device could be sufficient for a fusion-fission machine, and transmutation may become the first industrial application of fusion. Some alternative schemes to create strong fusion neutron fluxes are presented

  12. Migma fusion reactor

    International Nuclear Information System (INIS)

    Collisions of atomic and molecular ions of like charge are produced in a device including a magnetic field which decreases with the radial distance from its central axis and increases with the distance along the central axis from its center plane. Injected accelerated ion beams are mixed in an organized manner in precessing orbits designed to make them collide head-on or nearly so in the central region of the device continuously and automatically. Ions that have not undergone fusion are continuously and automatically returned by the field to the collision region. The collision probability is further increased by accelerating (rather than heating) the ions to an energy at which the reaction parameter (the product of the fusion cross-secton and the relative ion velocity) is maximized. The atomic nuclei are confined in the device by 'self-trapping' processes. By limiting the injection energy of deuterons to a particular range, it is possible to achieve a breeding effect. Means are presented to maintain the density of the organized ion mixture along with a geometrical configuration of the magnetic field-producing coils and the external electrical fields in such a manner that the charged nuclei resulting from the fusion reactions may have their energy directly converted into electric energy by a decelerating electric potential outside the magnetic field. (LL)

  13. Devices for launching 0. 1-g projectiles to 150 km/s or more to initiate fusion. Part 2. Railgun accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Hawke, R.S.

    1979-07-06

    The possibility of using a railgun accelerator to launch 0.1-g projectiles to hypervelocities (150 km/s or more) to initiate thermonuclear fusion is studied. The analysis revealed that a railgun with a plasma-arc armature is a viable approach to the goal. When calculating the railgun's probable performance, it was discovered that this launch system might possibly be designed to avoid adverse effects from boundary layer drag. An appendix provided by A.C. Buckingham summarizes his calculations that predict the amount of erosive drag between projectile and rail. Finally, it was found that certain properties of railgun and projectile materials can impose operational limits. Using these limits, single- and multistage accelerators were designed. Within such limits, a railgun could accelerate a 0.1-g projectile to hypervelocities.

  14. Devices for launching 0.1-g projectiles to 150 km/s or more to initiate fusion. Part 2. Railgun accelerators

    International Nuclear Information System (INIS)

    The possibility of using a railgun accelerator to launch 0.1-g projectiles to hypervelocities (150 km/s or more) to initiate thermonuclear fusion is studied. The analysis revealed that a railgun with a plasma-arc armature is a viable approach to the goal. When calculating the railgun's probable performance, it was discovered that this launch system might possibly be designed to avoid adverse effects from boundary layer drag. An appendix provided by A.C. Buckingham summarizes his calculations that predict the amount of erosive drag between projectile and rail. Finally, it was found that certain properties of railgun and projectile materials can impose operational limits. Using these limits, single- and multistage accelerators were designed. Within such limits, a railgun could accelerate a 0.1-g projectile to hypervelocities

  15. Cold fusion

    International Nuclear Information System (INIS)

    So called 'cold fusion phenomena' are not confirmed yet. Excess heat generation is very delicate one. Neutron generation is most reliable results, however, the records are erratic and the same results could not be repeated. So there is no reason to exclude the malfunction of testing instruments. The same arguments arise in recording 4He, 3He, 3H, which are not rich in quantity basically. An experiment where plenty of 4He were recorded is attached in appendix. The problem is that we are trying to search cold fusion which is permitted by nature or not. The famous tunneling effect in quantum mechanics will answer it, however, the most fusion rate is known to be negligible. The focus of this project is on the theme that how to increase that negligible fusion rate. 6 figs, 4 tabs, 1512 refs. (Author)

  16. Cold fusion

    Energy Technology Data Exchange (ETDEWEB)

    Suh, Suk Yong; Sung, Ki Woong; Kang, Joo Sang; Lee, Jong Jik [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-02-01

    So called `cold fusion phenomena` are not confirmed yet. Excess heat generation is very delicate one. Neutron generation is most reliable results, however, the records are erratic and the same results could not be repeated. So there is no reason to exclude the malfunction of testing instruments. The same arguments arise in recording {sup 4}He, {sup 3}He, {sup 3}H, which are not rich in quantity basically. An experiment where plenty of {sup 4}He were recorded is attached in appendix. The problem is that we are trying to search cold fusion which is permitted by nature or not. The famous tunneling effect in quantum mechanics will answer it, however, the most fusion rate is known to be negligible. The focus of this project is on the theme that how to increase that negligible fusion rate. 6 figs, 4 tabs, 1512 refs. (Author).

  17. Fusion energy

    International Nuclear Information System (INIS)

    The efforts of the Chemical Technology Division in fusion energy include the areas of fuel handling, processing, and containment. Current studies are concerned largely with the development of vacuum pumps for fusion reactors and experiments and with development and evaluation of techniques for recovering tritium from solid or liquid breeding blankets. In addition, a small effort is devoted to support of the ORNL design of a major Tokamak experiment, The Next Step (TNS)

  18. Radiation surveillance of exposed workers during activities of moving of the earth area of Montecillo; Vigilancia radiologica de los trabajadores expuestos durante las actividades de movimiento de tierras del area del Montecillo del CIEMAT

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz, M. T.; Alvarez, A.; Garcia, E.; Diaz, P.; Quinones, J.

    2013-07-01

    One of the objectives of this study was to limit the doses received by exposed workers and the public (in this case the workers of the CIEMATs buildings next to the work) by setting the appropriate criteria of optimization and protection.In addition was a theoretical evaluation of the dose inhalation, workers would have received if ALARA study protection measures has not been established. (Author)

  19. Simulation science for fusion plasmas

    International Nuclear Information System (INIS)

    The world fusion effort has embarked into a new age with the construction of ITER in Cadarache, France, which will be the first magnetic confinement fusion plasma experiment dominated by the self-heating of fusion reactions. In order to operate and control burning plasmas and next generation demo fusion reactors, an advanced capability for comprehensive integrated computer simulations that are fully verified and validated against experimental data will be necessary. The ultimate goal is to predict reliably the behaviour of plasmas in toroidal magnetic confinement devices on all relevant scales, both in time and space. In addition to developing a sophisticated integrated simulation codes, directed advanced research in fusion physics, applied mathematics, computer science and software is envisaged. In this paper we review the basic strategy and main research efforts at the Department of Simulation Science of the National Institute for Fusion Science (NIFS)- which is the Inter University Institute and the coordinating Center of Excellence for academic fusion research in Japan. We overview a simulation research at NIFS, in particular relation to experiments in the Large Helical Device (LHD), the world's largest superconducting heliotron device, as a National Users' facility (see Motojima et al.). Our main goal is understanding and systemizing the rich hierarchy of physical mechanisms in fusion plasmas, supported by exploring a basic science of complexity of plasma as a highly nonlinear, non-equilibrium, open system. The aim is to establish a simulation science as a new interdisciplinary field by fostering collaborative research in utilizing the large-scale supercomputer simulators. A concept of the hierarchy-renormalized simulation modelling will be invoked en route toward the LHD numerical test reactor.

  20. EURATOM strategy towards fusion energy

    International Nuclear Information System (INIS)

    Research and development (Research and Development) activities in controlled thermonuclear fusion have been carried out since the 60's of the last century aiming at providing a new clean, powerful, practically inexhaustive, safe, environmentally friend and economically attractive energy source for the sustainable development of our society.The EURATOM Fusion Programme (EFP) has the leadership of the magnetic confinement Research and Development activities due to the excellent results obtained on JET and other specialized devices, such as ASDEX-Upgrade, TORE SUPRA, FTU, TCV, TEXTOR, CASTOR, ISTTOK, MAST, TJ-II, W7-X, RFX and EXTRAP. JET is the largest tokamak in operation and the single device that can use deuterium and tritium mixes. It has produced 16 MW of fusion power, during 3 seconds, with an energy amplification of 0.6. The next steps of the EFP strategy towards fusion energy are ITER complemented by a vigorous Accompanying Programme, DEMO and a prototype of a fusion power plant. ITER, the first experimental fusion reactor, is a large-scale project (35-year duration, 10000 MEuros budget), developed in the frame of a very broad international collaboration, involving EURATOM, Japan, Russia Federation, United States of America, Korea, China and India. ITER has two main objectives: (i) to prove the scientific and technical viability of fusion energy by producing 500 MW, during 300 seconds and a energy amplification between 10 and 20; and (ii) to test the simultaneous and integrated operation of the technologies needed for a fusion reactor. The Accompanying Programme aims to prepare the ITER scientific exploitation and the DEMO design, including the development of the International Fusion Materials Irradiation Facility (IFMIF). A substantial part of this programme will be carried out in the frame of the Broader Approach, an agreement signed by EURATOM and Japan. The main goal of DEMO is to produce electricity, during a long time, from nuclear fusion reactions. The

  1. Data security on the national fusion grid

    Energy Technology Data Exchange (ETDEWEB)

    Burruss, Justine R.; Fredian, Tom W.; Thompson, Mary R.

    2005-06-01

    The National Fusion Collaboratory project is developing and deploying new distributed computing and remote collaboration technologies with the goal of advancing magnetic fusion energy research. This work has led to the development of the US Fusion Grid (FusionGrid), a computational grid composed of collaborative, compute, and data resources from the three large US fusion research facilities and with users both in the US and in Europe. Critical to the development of FusionGrid was the creation and deployment of technologies to ensure security in a heterogeneous environment. These solutions to the problems of authentication, authorization, data transfer, and secure data storage, as well as the lessons learned during the development of these solutions, may be applied outside of FusionGrid and scale to future computing infrastructures such as those for next-generation devices like ITER.

  2. Security on the US Fusion Grid

    Energy Technology Data Exchange (ETDEWEB)

    Burruss, Justin R.; Fredian, Tom W.; Thompson, Mary R.

    2005-06-01

    The National Fusion Collaboratory project is developing and deploying new distributed computing and remote collaboration technologies with the goal of advancing magnetic fusion energy research. This work has led to the development of the US Fusion Grid (FusionGrid), a computational grid composed of collaborative, compute, and data resources from the three large US fusion research facilities and with users both in the US and in Europe. Critical to the development of FusionGrid was the creation and deployment of technologies to ensure security in a heterogeneous environment. These solutions to the problems of authentication, authorization, data transfer, and secure data storage, as well as the lessons learned during the development of these solutions, may be applied outside of FusionGrid and scale to future computing infrastructures such as those for next-generation devices like ITER.

  3. Security on the US Fusion Grid

    International Nuclear Information System (INIS)

    The National Fusion Collaboratory project is developing and deploying new distributed computing and remote collaboration technologies with the goal of advancing magnetic fusion energy research. This work has led to the development of the US Fusion Grid (FusionGrid), a computational grid composed of collaborative, compute, and data resources from the three large US fusion research facilities and with users both in the US and in Europe. Critical to the development of FusionGrid was the creation and deployment of technologies to ensure security in a heterogeneous environment. These solutions to the problems of authentication, authorization, data transfer, and secure data storage, as well as the lessons learned during the development of these solutions, may be applied outside of FusionGrid and scale to future computing infrastructures such as those for next-generation devices like ITER

  4. TRITIUM ACCOUNTANCY IN FUSION SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Klein, J. E.; Farmer, D. A.; Moore, M. L.; Tovo, L. L.; Poore, A. S.; Clark, E. A.; Harvel, C. D.

    2014-03-06

    The US Department of Energy (DOE) has clearly defined requirements for nuclear material control and accountability (MC&A) of tritium whereas the International Atomic Energy Agency (IAEA) does not since tritium is not a fissile material. MC&A requirements are expected for tritium fusion machines and will be dictated by the host country or regulatory body where the machine is operated. Material Balance Areas (MBAs) are defined to aid in the tracking and reporting of nuclear material movements and inventories. Material subaccounts (MSAs) are established along with key measurement points (KMPs) to further subdivide a MBA to localize and minimize uncertainties in the inventory difference (ID) calculations for tritium accountancy. Fusion systems try to minimize tritium inventory which may require continuous movement of material through the MSAs. The ability of making meaningful measurements of these material transfers is described in terms of establishing the MSA structure to perform and reconcile ID calculations. For fusion machines, changes to the traditional ID equation will be discussed which includes breading, burn-up, and retention of tritium in the fusion device. The concept of “net” tritium quantities consumed or lost in fusion devices is described in terms of inventory taking strategies and how it is used to track the accumulation of tritium in components or fusion machines.

  5. Tritium accountancy in fusion systems

    Energy Technology Data Exchange (ETDEWEB)

    Klein, J.E.; Clark, E.A.; Harvel, C.D.; Farmer, D.A.; Tovo, L.L.; Poore, A.S. [Savannah River National Laboratory, Aiken, SC (United States); Moore, M.L. [Savannah River Nuclear Solutions, Aiken, SC (United States)

    2015-03-15

    The US Department of Energy (DOE) has clearly defined requirements for nuclear material control and accountability (MCA) of tritium whereas the International Atomic Energy Agency (IAEA) does not since tritium is not a fissile material. MCA requirements are expected for tritium fusion machines and will be dictated by the host country or regulatory body where the machine is operated. Material Balance Areas (MBA) are defined to aid in the tracking and reporting of nuclear material movements and inventories. Material sub-accounts (MSA) are established along with key measurement points (KMP) to further subdivide a MBA to localize and minimize uncertainties in the inventory difference (ID) calculations for tritium accountancy. Fusion systems try to minimize tritium inventory which may require continuous movement of material through the MSA. The ability of making meaningful measurements of these material transfers is described in terms of establishing the MSA structure to perform and reconcile ID calculations. For fusion machines, changes to the traditional ID equation will be discussed which includes breeding, burn-up, and retention of tritium in the fusion device. The concept of 'net' tritium quantities consumed or lost in fusion devices is described in terms of inventory taking strategies and how it is used to track the accumulation of tritium in components or fusion machines. (authors)

  6. Study of Adsorbents for the Capture of CO2 in Post-combustion. Contribution of CIEMAT to Module 4 of the CENITCO2 Project

    International Nuclear Information System (INIS)

    The main goal of CIEMAT within the CENIT-CO2 project has been the development of a process for CO2 capture from combustion flue gases by physical adsorption. In the first stage, screening studies to select promising adsorbents were carried out at laboratory scale, using simplified gas compositions. After that, pilot plant studies were performed using appropriate configurations of promising adsorbents under realistic conditions. CO2 adsorption cyclic capacity of different adsorbents has been studied. Lastly, for the adsorbent selected as most promising, its cyclic efficiency and selectivity for CO2 adsorption in the presence of other gaseous components (SO2, H2O, NO) of the combustion gas has been determined, as well as its performance along multiple sorption-desorption cycles in the presence of simulated combustion gas. None of the studied adsorbents, though being promising since they all have a capture efficiency of about 90%, seem to be susceptible of direct application to CO2 capture by physical adsorption under conditions representative of gases exiting the desulphurization tower of conventional pulverized coal combustion plants. As an alternative, the development of hybrid and regenerable solid sorbents (physical-chemical adsorption) is proposed or the application of new technologies under development such as the electrochemical promotion in capturing CO2. (Author) 33 refs.

  7. Calibration Human Voxel Phantoms for In Vivo Measurement of ''2 sup 4 sup 1 Am in Bone at the Whole Body Counter Facility of CIEMAT

    CERN Document Server

    Moraleda, M; Navarro, J F; Navarro, T

    2002-01-01

    The Whole Body Counting facility of CIEMAT is capable of carrying out In-Vivo measurements of radionuclides emitting X-rays and low energy gamma radiation internally deposited in the body. The system to use for this purpose consists of flour Low energy Germanium (LeGe) Camberra detectors working in the energy range from 10 to 1000 keV. Physical phantoms with a known contamination in the organ of interest are normally used for the calibration of the LEGe detection system. In this document we present a calibration method using the Monte Carlo technique (MCNP4C) over a voxel phantom obtained from a computerized tomography of a real human head. The phantom consists of 104017 (43x59x41) cubic voxels, 4 mn on each side, os specific tissues, but for this simulation only two types are taken into account: adipose tissue and hard bone. The skull is supposed to be contaminated with ''241 Am and the trajectories of the photons are simulated till they reach the germanium detectors. The detectors were also simulated in det...

  8. Socioeconomic Research on Fusion. Serf 1997-98

    International Nuclear Information System (INIS)

    Tin this study the environmental externalisation produced in some stages of a hypothetical fusion power plant have been studied. The results are the CIEMAT contribution in the macro task named External costs and benefits of the Socioeconomic Research on Fusion (SERF 1997-98) European project. For the externalisation economical assessment the Externe methodology has been applied. Lauffen, sited in the SW of Germany has been selected as the hypothetical location of the power plant. The technology, for two different models, was described by Max Planck Institute and the externalisation of the materials manufacturing, power plant construction and operation as well as accidents have been monetarily evaluated. The obtained results revealed that for the plant model which uses cooling water, the prevalent cause of external costs were the collective doses produced by the global dispersion of 14C emissions. External costs produced by radiological accidents represent low values, however the preliminary assessment performed for the external impacts caused by the ingestion of contaminated food stuff and water, point out that a more detailed analysis for this stage, is needed. It should be noted that the results presented in this study, are partial values since other potentially important stages such as disposal of radiological waste and decommissioning of the power plant, have not been included. (Author) 30 refs

  9. Socioeconomic Research on Fusion. SERF 1997-98

    Energy Technology Data Exchange (ETDEWEB)

    Saez, R.; Lechon, Y.; Cabal, H.; Lomba, L.; Palomino, I.; Recreo, F.; Robles, B.; Suanez, A.; Cancio, D. [Ciemat. Madrid (Spain)

    1999-09-01

    In this study the environmental externalities produced in some stages of a hypothetical fusion power plant have been studied. The results are the CIEMAT contribution in the macro task named External costs and benefits of the Socioeconomic Research on Fusion (SERF 1997-98) European project. For the externalities economical assessment the Externe methodology has been applied. Lauffen, sited in the SW of Germany has been selected as the hypothetical location of the power plant. The technology, for two different models, was described by Max Planck Institute and the externalities of the materials manufacturing, power plant construction and operation as well as accidents have been monetarily evaluated. The obtained results revealed that for the plant model which uses cooling water, the prevalent cause of external costs were collective doses produced by the global dispersion of 14C emissions. External costs produced by radiological accidents represent low values, however the preliminary assessment performed for the external impacts caused by the ingestion of contaminated foodstuff and water, point out that a more detailed analysis for this stage, is needed. It should be noted that the results presented in this study, are partial values since other potentially important stages such as disposal of radiological waste and decommissioning of the power plant, have not been included. (Author)

  10. New trends in fusion research

    CERN Document Server

    CERN. Geneva

    2004-01-01

    The efforts of the international fusion community aim at demonstrating the scientific feasibility of thermonuclear fusion energy power plants. Understanding the behavior of burning plasmas, i.e. plasmas with strong self-heating, represents a primary scientific challenge for fusion research and a new science frontier. Although integrated studies will only be possible, in new, dedicated experimental facilities, such as the International Tokamak Experimental Reactor (ITER), present devices can address specific issues in regimes relevant to burning plasmas. Among these are an improvement of plasma performance via a reduction of the energy and particle transport, an optimization of the path to ignition or to sustained burn using additional heating and a control of plasma-wall interaction and energy and particle exhaust. These lectures address recent advances in plasma science and technology that are relevant to the development of fusion energy. Mention will be made of the inertial confinement line of research, but...

  11. Fusion Machinery

    DEFF Research Database (Denmark)

    Sørensen, Jakob Balslev; Milosevic, Ira

    2015-01-01

    the vesicular SNARE VAMP2/synaptobrevin-2 and the target (plasma membrane) SNAREs SNAP25 and syntaxin-1 results in fusion and release of neurotransmitter, synchronized to the electrical activity of the cell by calcium influx and binding to synaptotagmin. Formation of the SNARE complex is tightly regulated...... and appears to start with syntaxin-1 bound to an SM (Sec1/Munc18-like) protein. Proteins of the Munc13-family are responsible for opening up syntaxin and allowing sequential binding of SNAP-25 and VAMP2/synaptobrevin-2. N- to C-terminal “zippering” of the SNARE domains leads to membrane fusion...

  12. Short fusion

    CERN Multimedia

    2002-01-01

    French and UK researchers are perfecting a particle accelerator technique that could aid the quest for fusion energy or make X-rays that are safer and produce higher-resolution images. Led by Dr Victor Malka from the Ecole Nationale Superieure des Techniques Avancees in Paris, the team has developed a better way of accelerating electrons over short distances (1 page).

  13. Magnetic fusion

    International Nuclear Information System (INIS)

    This document is a detailed lecture on thermonuclear fusion. The basic physics principles are recalled and the technological choices that have led to tokamaks or stellarators are exposed. Different aspects concerning thermonuclear reactors such as safety, economy and feasibility are discussed. Tore-supra is described in details as well as the ITER project

  14. Five-year clinical results of cervical total disc replacement compared with anterior discectomy and fusion for treatment of 2-level symptomatic degenerative disc disease: a prospective, randomized, controlled, multicenter investigational device exemption clinical trial.

    Science.gov (United States)

    Radcliff, Kris; Coric, Domagoj; Albert, Todd

    2016-08-01

    OBJECTIVE The purpose of this study was to report the outcome of a study of 2-level cervical total disc replacement (Mobi-C) versus anterior cervical discectomy and fusion (ACDF). Although the long-term outcome of single-level disc replacement has been extensively described, there have not been previous reports of the 5-year outcome of 2-level cervical disc replacement. METHODS This study reports the 5-year results of a prospective, randomized US FDA investigational device exemption (IDE) study conducted at 24 centers in patients with 2-level, contiguous, cervical spondylosis. Clinical outcomes at up to 60 months were evaluated, including validated outcome measures, incidence of reoperation, and adverse events. The complete study data and methodology were critically reviewed by 3 independent surgeon authors without affiliation with the IDE study or financial or institutional bias toward the study sponsor. RESULTS A total of 225 patients received the Mobi-C cervical total disc replacement device and 105 patients received ACDF. The Mobi-C and ACDF follow-up rates were 90.7% and 86.7%, respectively (p = 0.39), at 60 months. There was significant improvement in all outcome scores relative to baseline at all time points. The Mobi-C patients had significantly more improvement than ACDF patients in terms of Neck Disability Index score, SF-12 Physical Component Summary, and overall satisfaction with treatment at 60 months. The reoperation rate was significantly lower with Mobi-C (4%) versus ACDF (16%). There were no significant differences in the adverse event rate between groups. CONCLUSIONS Both cervical total disc replacement and ACDF significantly improved general and disease-specific measures compared with baseline. However, there was significantly greater improvement in general and disease-specific outcome measures and a lower rate of reoperation in the 2-level disc replacement patients versus ACDF control patients. Clinical trial registration no. NCT00389597

  15. Outlook for the fusion hybrid and tritium-breeding fusion reactors

    International Nuclear Information System (INIS)

    It is possible to use a nuclear fusion reactor, of a somewhat less technologically challenging design than that contemplated purely for the generation of electricity, by employing fusion-derived neutrons to drive useful nuclear reactions. One device based on this concept is called the fusion hybrid reactor, or, perhaps more explicitly, the fusion-fission hybrid reactor. Neutrons from a fusion core would react with fertile and fissible material in a blanket surrounding the core, with the consequent creation of both fissile material for conventional nuclear reactor fuel and heat for generating electricity. Another such device, called the tritium-breeding fusion reactor, would breed tritium by reaction with lithium targets around the core. This report examines future circumstances in which these reactors might be needed and advantageous. Based on their technical, economic, and social aspects, it discusses the program content and pace at which these applications ought to be pursued. 46 refs., 35 figs., 31 tabs

  16. European fusion energy research and international ITER project

    International Nuclear Information System (INIS)

    The scientific feasibility of fusion energy has been demonstrated in recent tokamak experiments in Europe, Japan and the United States. The basic features of the confinement of high temperature hydrogen plasmas by strong magnetic fields are reasonably well understood, which creates a high level of confidence in the performance of the next step fusion devices. The most powerful fusion device in the world is the Joint European Torus (JET), which has ensured the European Fusion Programme its leading position in international fusion research. The nest step fusion reactor, ITER (International Thermonuclear Experimental Reactor), is an international project involving the cooperation of the European Union, Japan, The Russian Federation and USA. The overall objective of ITER is to demonstrate the scientific and technological feasibility of fusion power for peaceful purposes. Membership in the European Union would automatically make Finland a participant in the Community Fusion Programme and the international ITER project. (orig.)

  17. Line voltage distortions due to operation of the power supply devices required for plasma heating and magnetic field generation in the W7X thermonuclear fusion experiment

    International Nuclear Information System (INIS)

    The operation of the W7-X plasma heating devices requires high voltage DC power supplies with a total electrical power of 40 MVA. For this purpose twelve-pulse AC/DC converters are projected. These converters enforce a non sinusoidal line current, whose harmonics are causing corresponding line voltage distortions. To evaluate the extent of these distortions, the reaction of the harmonic currents on the AC line, is investigated by numerical network analysis. This is done for both, the 20 kV-junction point of the converters and the 110 kV-line terminal of the electricity supply company. Furthermore the design of LC series-resonant circuits, projected for power factor correction and damping of the harmonic content of the line voltage, has been verified. The additional operation of the 1.5 MVA magnet power supplies also contributes, even though to a much smaller extent, to the line voltage distortion. The influence of these twelve-pulse AC/DC converters was investigated too. The numerical calculations have been done with the aid of the network simulation program 'Pspice'. In an equivalent circuit the transmission line network and the transformers are represented by their inductances respectively equivalent inductances. The rectifier units are simulated by a number of current sources, producing the current harmonics in amplitude, frequency and phase. The harmonics amplitudes of the plasma heating power supplies are frequency and phase. The harmonics amplitudes of the plasma heating power supplies are measured values given by the manufacturer. For the magnet power supplies, the harmonics are derived from the theoretical step like I(t) current shape by Fourier series decomposition. Due to the action of the LC circuits the achieved characteristic voltage quality values are far below the permissible values corresponding to the recommendations of VDE 0160. (orig.)

  18. Alternative approaches to fusion. [reactor design and reactor physics for Tokamak fusion reactors

    Science.gov (United States)

    Roth, R. J.

    1976-01-01

    The limitations of the Tokamak fusion reactor concept are discussed and various other fusion reactor concepts are considered that employ the containment of thermonuclear plasmas by magnetic fields (i.e., stellarators). Progress made in the containment of plasmas in toroidal devices is reported. Reactor design concepts are illustrated. The possibility of using fusion reactors as a power source in interplanetary space travel and electric power plants is briefly examined.

  19. Magnetic fusion; La fusion magnetique

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    This document is a detailed lecture on thermonuclear fusion. The basic physics principles are recalled and the technological choices that have led to tokamaks or stellarators are exposed. Different aspects concerning thermonuclear reactors such as safety, economy and feasibility are discussed. Tore-supra is described in details as well as the ITER project.

  20. Calibration Human Voxel Phantoms for In Vivo Measurement of ''241 Am in Bone at the Whole Body Counter Facility of CIEMAT

    International Nuclear Information System (INIS)

    The Whole Body Counting facility of CIEMAT is capable of carrying out In-Vivo measurements of radionuclides emitting X-rays and low energy gamma radiation internally deposited in the body. The system to use for this purpose consists of flour Low energy Germanium (LeGe) Camberra detectors working in the energy range from 10 to 1000 keV. Physical phantoms with a known contamination in the organ of interest are normally used for the calibration of the LEGe detection system. In this document we present a calibration method using the Monte Carlo technique (MCNP4C) over a voxel phantom obtained from a computerized tomography of a real human head. The phantom consists of 104017 (43x59x41) cubic voxels, 4 mn on each side, os specific tissues, but for this simulation only two types are taken into account: adipose tissue and hard bone. The skull is supposed to be contaminated with ''241 Am and the trajectories of the photons are simulated till they reach the germanium detectors. The detectors were also simulated in detail to obtain a good agreement with the reality. In order to verify the accuracy of this procedure to reproduce the experiments, the MCNP results are compared with laboratory measurements of a head phantom simulating an internal contamination of 1000 Bq of ''241 Am deposited in bone. Different relative positions source-detector were tried to look for the best counting geometry for measurement of a contaminated skull. Efficiency values are obtained and compared, resulting in the validation of the mathematical method for the assessment of internal contamination of American deposited in skeleton. (Author) 16 refs

  1. Calibration Human Voxel Phantoms for In Vivo Measurement of ''241 Am in Bone at the Whole Body Counter Facility of CIEMAT

    Energy Technology Data Exchange (ETDEWEB)

    Moraleda, M.; Lopez, M. A.; Gomez Ros, J. M.; Navarro, T.; Navarro, J. F.

    2002-07-01

    The Whole Body Counting facility of CIEMAT is capable of carrying out In-Vivo measurements of radionuclides emitting X-rays and low energy gamma radiation internally deposited in the body. The system to use for this purpose consists of flour Low energy Germanium (LeGe) Camberra detectors working in the energy range from 10 to 1000 keV. Physical phantoms with a known contamination in the organ of interest are normally used for the calibration of the LEGe detection system. In this document we present a calibration method using the Monte Carlo technique (MCNP4C) over a voxel phantom obtained from a computerized tomography of a real human head. The phantom consists of 104017 (43x59x41) cubic voxels, 4 mn on each side, os specific tissues, but for this simulation only two types are taken into account: adipose tissue and hard bone. The skull is supposed to be contaminated with ''241 Am and the trajectories of the photons are simulated till they reach the germanium detectors. The detectors were also simulated in detail to obtain a good agreement with the reality. In order to verify the accuracy of this procedure to reproduce the experiments, the MCNP results are compared with laboratory measurements of a head phantom simulating an internal contamination of 1000 Bq of ''241 Am deposited in bone. Different relative positions source-detector were tried to look for the best countring geometry for measurement of a contaminated skull. Efficiency values are obtained and compared, resulting in the validation of the mathematical method for the assessment of internal contamination of American deposited in skeleton. (Author) 16 refs.

  2. Tame Fusion

    Institute of Scientific and Technical Information of China (English)

    S.D. Scott

    2003-01-01

    The first section of this paper covers preliminaries. Essentially, the next four cover units. It is shown that a compatible nearring with DCCR is Nnilpotent if and only if every maximal right N-subgroup is a right ideal. The last five sections relate to fusion (I.e., N-groups minimal for being generated by Nsubgroups, where each is N-isomorphic to a given N-group). Right N-subgroups of a tame nearring N with DCCR, minimal for not annihilating a minimal ideal from the left, are self monogenic and N-isomorphic. That this holds for any collection of minimal ideals is significant. Here, the right N-subgroup involved is a 'fusion product' of the 'components'.

  3. Fusion rules of equivariantizations of fusion categories

    OpenAIRE

    Burciu, Sebastian; Natale, Sonia

    2012-01-01

    We determine the fusion rules of the equivariantization of a fusion category $\\mathcal{C}$ under the action of a finite group $G$ in terms of the fusion rules of $\\mathcal{C}$ and group-theoretical data associated to the group action. As an application we obtain a formula for the fusion rules in an equivariantization of a pointed fusion category in terms of group-theoretical data. This entails a description of the fusion rules in any braided group-theoretical fusion category.

  4. Cold Fusion

    OpenAIRE

    Zhang, Chu; Yue, Manyu; Yu, Huanzhang; Chen, Cheng

    2006-01-01

    Science can often result in technologies which can solve energy problems in societies. On March 23, 1989, two scientists Stanley Pons and Martin Fleischmann claimed at a press conference that they had been able to perform nuclear fusion at room temperature. Their claim was quickly investigated and checked by many scientists around the world. Their discovery generated a heated debate in the scientific literature and magazines in the next few years, and their work was criticized for being unsci...

  5. Carpal Fusion

    OpenAIRE

    Jalal Jalalshokouhi; Mohammad Hossein Herischi; Shahyar Pashaei; Ali Akbar Ameri

    2012-01-01

    Carpal fusion may be seen in hereditary and nonhereditary conditions such as acrocallosal syndrome,acromegaly, Apert syndrome, arthrogryposis, Carpenter syndrome, chromosomal abnormalities, ectrodactyly-ectodermal dysplasia-cleft (EEC) syndrome, the F form of acropectorovertebral dysgenesis or the F syndrome, fetal alcohol syndrome, Holt-Oram syndrome, Leopard syndrome, multiple synostosis syndrome, oligosyndactyly syndrome, Pfeiffer-like syndrome, scleroderma, split hand and foot malformatio...

  6. Materials requirements for fusion reactors

    International Nuclear Information System (INIS)

    Once the physics of fusion devices is understood, one or more experimental power reactors (EPR) are planned which will produce net electrical power. The structural material for the device will probably be a modification of an austenitic stainless steel. Unlike fission reactors, whose pressure boundaries are subjected to no or only light irradiation, the pressure boundary of a fusion reactor is subjected to high atomic displacement-damage and high production rates of transmutation products, e.g., helium and hydrogen. The design data base must include irradiated materials. Since in situ testing to obtain tensile, fatigue, creep, crack-growth, stress-rupture, and swelling data is currently impossible for fusion reactor conditions, a program of service-temperature irradiations in fission reactors followed by postirradiation testing, simulation of fusion conditions, and low-fluence 14 MeV neutron-irradiation tests are planned. For the Demonstration Reactor (DEMO) expected to be built within ten years after theEPR, higher heat fluxes may require the use of refractory metals, at least for the first 20 cm. A partial data base may be provided by high-flux 14 MeV neutron sources being planned. Many materials other than those for structural components will be required in the EPR and DEMO. These include superconducting magnets, insulators, neutron reflectors and shields, and breeding materials. The rest of the device should utilize conventional materials except that portion involved in tritium confinement and recovery

  7. FUSION WORLD

    Institute of Scientific and Technical Information of China (English)

    Caroline; 黄颖(翻译)

    2009-01-01

    Fusion World”科技展示体验中心是英国设计公司MET Studio为新加坡科技研究局(A*Star)的科学工程委员会(SERC)所设计的,位于启汇城的办公地点,用于展示该委员会的精选技术作品,以吸引潜在的客户和启汇城内的学生购买群体。

  8. Study of Adsorbents for the Capture of CO{sub 2} in Post-combustion. Contribution of CIEMAT to Module 4 of the CENITCO{sub 2} Project; Estudio de Adsorbentes para la Captura de CO{sub 2} en Postcombustion. Contribucion del CIEMAT al Modulo 4 del Proyecto CENITCO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz, E.; Marono, M.; Sanchez-Hervas, J. M.

    2010-07-01

    The main goal of CIEMAT within the CENIT-CO{sub 2} project has been the development of a process for CO{sub 2} capture from combustion flue gases by physical adsorption. In the first stage, screening studies to select promising adsorbents were carried out at laboratory scale, using simplified gas compositions. After that, pilot plant studies were performed using appropriate configurations of promising adsorbents under realistic conditions. CO{sub 2} adsorption cyclic capacity of different adsorbents has been studied. Lastly, for the adsorbent selected as most promising, its cyclic efficiency and selectivity for CO{sub 2} adsorption in the presence of other gaseous components (SO{sub 2}, H{sub 2}O, NO) of the combustion gas has been determined, as well as its performance along multiple sorption-desorption cycles in the presence of simulated combustion gas. None of the studied adsorbents, though being promising since they all have a capture efficiency of about 90%, seem to be susceptible of direct application to CO{sub 2} capture by physical adsorption under conditions representative of gases exiting the desulphurization tower of conventional pulverized coal combustion plants. As an alternative, the development of hybrid and regenerable solid sorbents (physical-chemical adsorption) is proposed or the application of new technologies under development such as the electrochemical promotion in capturing CO{sub 2}. (Author) 33 refs.

  9. Carpal Fusion

    Directory of Open Access Journals (Sweden)

    Jalal Jalalshokouhi*

    2012-05-01

    Full Text Available Carpal fusion may be seen in hereditary and nonhereditary conditions such as acrocallosal syndrome,acromegaly, Apert syndrome, arthrogryposis, Carpenter syndrome, chromosomal abnormalities, ectrodactyly-ectodermal dysplasia-cleft (EEC syndrome, the F form of acropectorovertebral dysgenesis or the F syndrome, fetal alcohol syndrome, Holt-Oram syndrome, Leopard syndrome, multiple synostosis syndrome, oligosyndactyly syndrome, Pfeiffer-like syndrome, scleroderma, split hand and foot malformation, Stickler syndrome, thalidomide embryopathy, Turner syndrome and many other conditions as mentioned in Rubinstein-Taybi's book. Sometimes there is no known causative disease.Diagnosis is usually made by plain X-ray during studying a syndrome or congenital disease or could be an incidental finding like our patients. Hand bone anomalies are more common in syndromes or other congenital or non-hereditary conditions, but polydactyly, syndactyly or oligodactyly and carpal fusions are interesting. X-ray is the modality of choice, but MRI and X-ray CT with multiplanar reconstructions may be used for diagnosis.

  10. Contributions to the 20. EPS conference on controlled fusion and plasma physics

    International Nuclear Information System (INIS)

    The Conference covers research on different aspects of plasma physics and fusion technology, like technical aspects of Tokamak devices; plasma instabilities and impurities, development and testing of materials for fusion reactors etc

  11. Basics of Fusion-Fissison Research Facility (FFRF) as a Fusion Neutron Source

    Energy Technology Data Exchange (ETDEWEB)

    Leonid E. Zakharov

    2011-06-03

    FFRF, standing for the Fusion-Fission Research Facility represents an option for the next step project of ASIPP (Hefei, China) aiming to a first fusion-fission multifunctional device [1]. FFRF strongly relies on new, Lithium Wall Fusion plasma regimes, the development of which has already started in the US and China. With R/a=4/1m/m, Ipl=5 MA, Btor=4-6 T, PDT=50- 100 MW, Pfission=80-4000MW, 1 m thick blanket, FFRF has a unique fusion mission of a stationary fusion neutron source. Its pioneering mission of merging fusion and fission consists in accumulation of design, experimental, and operational data for future hybrid applications.

  12. Catalysed fusion

    CERN Document Server

    Farley, Francis

    2012-01-01

    A sizzling romance and a romp with subatomic particles at CERN. Love, discovery and adventure in the city where nations meet and beams collide. Life in a large laboratory. As always, the challenges are the same. Who leads? Who follows? Who succeeds? Who gets the credit? Who gets the women or the men? Young Jeremy arrives in CERN and joins the quest for green energy. Coping with baffling jargon and manifold dangers, he is distracted by radioactive rats, lovely ladies and an unscrupulous rival. Full of doubts and hesitations, he falls for a dazzling Danish girl, who leads him astray. His brilliant idea leads to a discovery and a new route to cold fusion. But his personal life is scrambled. Does it bring fame or failure? Tragedy or triumph?

  13. Medical Image Fusion Using Discrete Wavelet Transform

    OpenAIRE

    Nayera Nahvi; Deep Mittal

    2014-01-01

    Medical image fusion is the process of registering and combining multiple images from single or multiple imaging modalities to improve the imaging quality and reduce randomness and redundancy in order to increase the clinical applicability of medical images for diagnosis and assessment of medical problems. Multimodal medical image fusion algorithms and devices have shown notable achievements in improving clinical accuracy of decisions based on medical images. The domain where ...

  14. Data storage system for fusion experiment

    International Nuclear Information System (INIS)

    An appropriate archiving and an effective using of experimental data are examined in the field of fusion research. Several computer systems in tokamak type fusion experimental devices are reviewed, and then, indispensable functions and optimum utilizing form of data storage system are discussed from the standpoint of computer technology. According to these considerations, the data storage system was made in the JFT-2M tokamak. (author)

  15. Integrated Simulation and Optimization of Fusion Systems: the Fusion Simulation Project

    Science.gov (United States)

    Batchelor, Donald B.

    2004-05-01

    Advanced experimental devices for fusion energy research are very large in the $1B class, the next major step being construction of ITER, a tokamak device capable of producing several hundred megawatts of fusion power. The plasmas in such devices are extremely far from thermal equilibrium and support a vast number of physical processes that must be controlled and coordinated to successfully achieve the conditions required for fusion. Simulation is a key element in the research program needed to understand experimental results from devices and compare these results to theory, to plan and design experiments on the devices, and to invent and evaluate new, higher performing confinement concepts. There are a number of fundamental computational challenges in such simulation: extreme range of time scales - wall equilibration time/electron cyclotron time O(10^14), extreme range of space scales - machine radius/electron gyroradius O(10^4), extreme plasma anisotropy - mean free path in magnetic field parallel/perpendicular O(10^10), strong non-linear coupling, sensitivity to geometric details, and high dimensionality. To deal with this challenge, several classes of fusion physics sub-disciplines and related simulation codes have been developed. There is not at present a single code, or code set, that integrates these sub-disciplines in their generality. The talk will describe the various approaches to fusion plasma simulation and progress toward bringing together the various models so as to treat the plasma more self-consistently. In particular, the fusion community is planning a comprehensive Fusion Simulation Project (FSP) whose ultimate goal ( 15 years) is to predict reliably the behavior of plasma discharges in toroidal magnetic fusion devices on all relevant time and space scales.

  16. Fusion with laser inertial confinement

    International Nuclear Information System (INIS)

    The main principles of the laser inertial confinement fusion are reviewed; first experiments were carried out at the CEA in 1977 with the PHEBUS device and an indirect attack implosion scheme which has the advantage of a better irradiation uniformity. Researches are concerning now the conversion of laser radiation into X radiation inside the cavity and the parametric instabilities, the implosion through X radiation, the symmetry of the irradiation and the hydrodynamic instabilities. The development of a mega-joule level device is under study

  17. Design of Fusion Safety Data Base

    Science.gov (United States)

    Aoki, Isao; Seki, Yasushi

    1994-03-01

    This report presents a data base architecture with its circumstance which is designed to be used for safety design and analysis studies. Design of Fusion Safety Data Base has been carried out to take into account a great number of published references on operation and control of fusion energy and engineering features to secure safety of fusion devices. Data Base of Fiscal Year 1993 - which has been established over an extended year - realized on PC (Personal Computer) peripherals is reported. The concept of data base architecture with its attributive issues and a manipulating way for users are also shown.

  18. Status report on controlled thermonuclear fusion

    International Nuclear Information System (INIS)

    The International Fusion Research Council (IFRC), an advisory body to the International Atomic Energy Agency, reports on the current status of fusion; this report updates its 1978 status report. This report contains a General Overview and Executive Summary, and reports on all current approaches to fusion throughout the world; a series of technical reports is to be published elsewhere. This report is timely in that it not only shows progress which has occurred over the past, but interfaces with possible future devices, in particular the International Thermonuclear Experimental Reactor (ITER), whose conceptual design phase is nearing completion. 5 refs, 6 figs

  19. 23. IAEA Fusion Energy Conference. Book of Abstracts

    International Nuclear Information System (INIS)

    The 23rd IAEA Fusion Energy Conference (FEC 2010) is aimed at providing a forum for discussing driving physics and technology issues as well as innovative aspects of direct relevance to fusion as a source of nuclear energy. With a number of next step fusion devices being implemented, such as inter alia the International Thermonuclear Experimental Reactor (ITER, Cadarache, France) and the National Ignition Facility (NIF, Livermore, USA), and the need to demonstrate the technological feasibility of fusion power plants together with the economical viability of fusion energy production, the fusion community is now facing new challenges. The resolution of these challenges will dictate research orientations in the present and coming decades. The scientific scope of the FEC 2010 is, therefore, to reflect the priorities set by this new era in fusion energy research. The conference aims to be a platform where results of research and development efforts on national as well as international fusion experiments, shaped by these new priorities, will help in pinpointing the worldwide degree of advances in fusion theory, experiments, technology, engineering, safety and socio-economics. Furthermore, the conference also aims to set these results against the backdrop of the requirements for a net energy producing fusion device and a fusion power plant in general, and to help in defining the way forward

  20. Fusion energy

    International Nuclear Information System (INIS)

    The main purpose of the International Thermonuclear Experimental Reactor (ITER) is to develop an experimental fusion reactor through the united efforts of many technologically advanced countries. The ITER terms of reference, issued jointly by the European Community, Japan, the USSR, and the United States, call for an integrated international design activity and constitute the basis of current activities. Joint work on ITER is carried out under the auspices of the International Atomic Energy Agency (IAEA), according to the terms of quadripartite agreement reached between the European Community, Japan, the USSR, and the United States. The site for joint technical work sessions is at the MaxPlanck Institute of Plasma Physics. Garching, Federal Republic of Germany. The ITER activities have two phases: a definition phase performed in 1988 and the present design phase (1989--1990). During the definition phase, a set of ITER technical characteristics and supporting research and development (R ampersand D) activities were developed and reported. The present conceptual design phase of ITER lasts until the end of 1990. The objectives of this phase are to develop the design of ITER, perform a safety and environmental analysis, develop site requirements, define future R ampersand D needs, and estimate cost, manpower, and schedule for construction and operation. A final report will be submitted at the end of 1990. This paper summarizes progress in the ITER program during the 1989 design phase

  1. Super-diffusion scalings - space versus fusion

    Science.gov (United States)

    Savin, Sergey; Budaev, Vyacheslav; Silin, Victor

    2016-07-01

    In the plasma kinetics, looking at the plasma waves interactions with the particles, most people use the Boltzman nonlinear approach for a variate of the waves, which could be interpreted as a "turbulence". We have now a theory for ion-sound turbulence [Silin e. a., 2011] that predicts fast heating of the ions: it can be either in fusion devices , magnetosphere or solar plasma. The ion heating could result into the power lowers for the turbulent spectra. We compare the theory predictions with the experimental data both from the fusion laboratory devices and from space plasma data, discussing their applicability to the solar plasma.

  2. Fusion energy

    International Nuclear Information System (INIS)

    Studies of cryosorption pumping of hydrogen with molecular sieves at temperatures between 16 and 35 K indicate that type Na-Y sieve gives significantly higher average pumping speeds than the more conventional type 5A sieve. Apparently, pump speeds are affected by diffusion rates into the crystallite particles, and the larger pore openings in the Na-Y sieve permit higher diffusion rates. Measurements of the rate of tritium sorption from liquid lithium by yttrium coupons gave encouragingly high values despite the stagnant lithium in the contact device

  3. Advances in the real-time interpretation of fusion experiments

    International Nuclear Information System (INIS)

    The National Fusion Collaboratory Project is developing a persistent infrastructure to enable scientific collaboration for all aspects of magnetic fusion energy research by creating a robust, user-friendly collaborative environment and deploying this to the more than one thousand fusion scientists in forty institutions who perform magnetic fusion research in the US. Work specifically focusing on advancing real-time interpretation of fusion experiments includes collocated collaboration in tokamak control rooms via shared display walls, remote collaboration using Internet based audio and video, and pseudo-real-time data analysis via the National Fusion Energy Grid (FusionGrid). The technologies being developed and deployed will also scale to the next generation experimental devices such as ITER

  4. Nuclear fusion - Inexhaustible source of energy for tomorrow

    International Nuclear Information System (INIS)

    The purpose of this paper is to provide a general description of nuclear fusion as an energy option for the future and to clarify to some extent the various issues - scientific, technological, economic and environmental - which are likely to be relevant to controlled thermonuclear fusion. Section 1 describes the world energy problem and some advantages of nuclear fusion compared to other energy options. Sections 2 and 3 describe the fundamentals of fusion energy, plasma confinement, heating and technological aspects of fusion researches. Some plasma confinement schemes (tokamak, stellarator, inertial confinement fusion) are described. The main experimental results and parameter devices are cited to illustrate the state of the art as of 1989. Various engineering problems associated with reactor design, magnetic systems, materials, plasma purity, fueling, blankets, environment, economics and safety are discussed. A description of both bilateral and multilateral efforts in fusion research under the auspices of the IAEA is presented in Section 4. (author). 11 refs, 4 figs, 1 tab

  5. Bemerkungen zur "kalten Fusion"

    CERN Document Server

    Kuehne, R W

    2006-01-01

    Steven Jones et al. reported to have observed nuclear fusion at room temperature. They observed this "cold fusion" by electrolyzing heavy water. Later experiments confirmed these observations. These experiments confirmed the generation of strong electric fields within the deuterided metals. These electric fields accelerate the deuterons to keV energies and allow the observed nuclear fusion. Roman Sioda and I suggested a theoretical description of this nuclear fusion. Our "extended micro hot fusion" scenario explains how nuclear fusion can be generated over a long time within deuterided metals. Moreover we predicted the explosion of large pieces of deuterided metals. This article reviews the "cold fusion" work of Steven Jones et al. and discusses the fracto-fusion scenario. I show that the extended micro hot fusion scenario can explain the observed neutron emissions, neutron bursts, and heat bursts.

  6. Collective Thomson scattering capabilities to diagnose fusion plasmas

    DEFF Research Database (Denmark)

    Korsholm, Søren Bang; Bindslev, Henrik; Furtula, Vedran;

    2010-01-01

    Collective Thomson scattering (CTS) is a versatile technique for diagnosing fusion plasmas. In particular, experiments on diagnosing the ion temperature and fast ion velocity distribution have been executed on a number of fusion devices. In this article the main aim is to describe the technique...

  7. THE CHALLENGE OF CIEMAT INTERNAL DOSIMETRY SERVICE FOR ACCREDITATION ACCORDING TO ISO/IEC 17025 STANDARD, FOR IN VIVO AND IN VITRO MONITORING AND DOSE ASSESSMENT OF INTERNAL EXPOSURES.

    Science.gov (United States)

    Lopez, M A; Martin, R; Hernandez, C; Navarro, J F; Navarro, T; Perez, B; Sierra, I

    2016-09-01

    The accreditation of an Internal Dosimetry Service (IDS) according to ISO/IEC 17025 Standard is a challenge. The aim of this process is to guarantee the technical competence for the monitoring of radionuclides incorporated in the body and for the evaluation of the associated committed effective dose E(50). This publication describes the main accreditation issues addressed by CIEMAT IDS regarding all the procedures involving good practice in internal dosimetry, focussing in the difficulties to ensure the traceability in the whole process, the appropriate calculation of detection limit of measurement techniques, the validation of methods (monitoring and dose assessments), the description of all the uncertainty sources and the interpretation of monitoring data to evaluate the intake and the committed effective dose. PMID:26433182

  8. Contributions to the 14th Symposium on fusion technology

    International Nuclear Information System (INIS)

    The ENEA contributions to the 14. Symposium on fusion technology is represented by 15 papers. They are dealing mainly with the FTU (Frascati Tokamak Upgrade), a device under construction, through which high densities and confinement times will be obtained

  9. Review of fusion synfuels

    International Nuclear Information System (INIS)

    Thermonuclear fusion offers an inexhaustible source of energy for the production of hydrogen from water. Depending on design, electric generation efficiencies of approx. 40 to 60% and hydrogen production efficiencies by high-temperature electrolysis of approx. 50 to 65% are projected for fusion reactors using high-temperatures blankets. Fusion/coal symbiotic systems appear economically promising for the first generation of commercial fusion synfuels plants. Coal production requirements and the environmental effects of large-scale coal usage would be greatly reduced by a fusion/coal system. In the long term, there could be a gradual transition to an inexhaustible energy system based solely on fusion

  10. Environmental Development Plan (EDP). Magnetic fusion program

    International Nuclear Information System (INIS)

    The Environmental Development Plan (EDP) for magnetic fusion briefly describes the present status of this energy technology and identifies potential areas of concern relevant to the health and safety of workers, the general public, and the natural and man-made environment. It also addresses socioeconomic implications. This plan identifies research and development needed to solve anticipated problems in a timely fashion so that design and operational decisions can be made with reasonably relevant data on which to base such decisions. The principal Environmental Health and Safety (EH and S) concern is radiation exposure resulting directly and indirectly from the deuterium-tritium fusion reaction to be used in early fusion devices. Potentials for personnel and environmental exposure to tritium and neutron-activated materials necessitate special consideration in the selection of materials and development of techniques to minimize escape of radioactivity and ameliorate the consequences of contamination events. The potential for accidents is reviewed in some detail. The presence of magnetic fields up to several hundred Gauss in occupied areas of magnetic fusion reactors raises the question of possible health consequences. Magnetic fusion reactors may require large amounts of special materials whose price and availability must be considered. This EDP addresses only EH and S issues relevant to first generation, pure fusion, central electric power stations for commercial applications. It does not consider possible alternate, nonelectrical applications or fusion-fission hybrids

  11. Fusion Canada issue 23

    International Nuclear Information System (INIS)

    A short bulletin from the National Fusion Program highlighting in this issue TdeV tokamak updates, fusion research in Korea, CCFM program review, TdeV divertor plasma, and CFFTP program review. 4 figs

  12. Fusion Canada issue 20

    International Nuclear Information System (INIS)

    Fusion Canada's publication of the National Fusion Program. Included in this issue is the CFFTP Industrial Impact Study, CCFM/TdeV Update:helium pumping, research funds, and deuterium in beryllium - high temperature behaviour. 3 figs

  13. Fission--fusion systems: classification and critique

    International Nuclear Information System (INIS)

    A useful classification scheme for hybrid systems is described and some common features that the scheme makes apparent are pointed out. The early history of fusion-fission systems is reviewed. Some designs are described along with advantages and disadvantages of each. The extension to low and moderate Q devices is noted. (U.S.)

  14. Bemerkungen zur "kalten Fusion"

    OpenAIRE

    Kuehne, Rainer W.

    2006-01-01

    Steven Jones et al. reported to have observed nuclear fusion at room temperature. They observed this "cold fusion" by electrolyzing heavy water. Later experiments confirmed these observations. These experiments confirmed the generation of strong electric fields within the deuterided metals. These electric fields accelerate the deuterons to keV energies and allow the observed nuclear fusion. Roman Sioda and I suggested a theoretical description of this nuclear fusion. Our "extended micro hot f...

  15. Cold fusion research

    International Nuclear Information System (INIS)

    I am pleased to forward to you the Final Report of the Cold Fusion Panel. This report reviews the current status of cold fusion and includes major chapters on Calorimetry and Excess Heat, Fusion Products and Materials Characterization. In addition, the report makes a number of conclusions and recommendations, as requested by the Secretary of Energy

  16. Towards cognitive image fusion

    NARCIS (Netherlands)

    Toet, A.; Hogervorst, M.A.; Nikolov, S.G.; Lewis, J.J.; Dixon, T.D.; Bull, D.R.; Canagarajah, C.N.

    2010-01-01

    The increasing availability and deployment of imaging sensors operating in multiple spectral bands has led to a large research effort in image fusion, resulting in a plethora of pixel-level image fusion algorithms. However, the cognitive aspects of multisensor image fusion have not received much att

  17. Towards cognitive image fusion

    NARCIS (Netherlands)

    Toet, A.; Hogervorst, M.A.; Nikolov, S.G.; Lewis, J.; Dixon, T.; Bull, D.; Canagarajah, N.

    2007-01-01

    The increasing availability and deployment of imaging sensors operating in multiple spectral bands has led to a large research effort in image fusion, resulting in a plethora of pixel-level image fusion algorithms. However, the cognitive aspects of multisensor image fusion have not received much att

  18. Fusion technology program

    International Nuclear Information System (INIS)

    The report summarizes work performed in the following areas: system and safety studies for fusion reactors; nuclear data for fusion reactors; neutronics calculations for fusion reactors; radiation damage of vanadium alloys and stainless steel 316; facility for in-pile crack growth measurement; niobium tin magnet for Sultan - stage II; development of NET conductor; and development of ceramic tritium breeding materials

  19. Magneto-Inertial Fusion

    International Nuclear Information System (INIS)

    In this community white paper, we describe an approach to achieving fusion which employs a hybrid of elements from the traditional magnetic and inertial fusion concepts, called magneto-inertial fusion (MIF). The status of MIF research in North America at multiple institutions is summarized including recent progress, research opportunities, and future plans

  20. Fusion Canada issue 18

    International Nuclear Information System (INIS)

    A short bulletin from the National Fusion Program. Included in this issue is a report on the ITER agreement signed with the EDA, the robotic maintenance for NET, the CFFTP Fusion Pilot Study, the new IEA joint programs on environment, safety and economic aspects of fusion power, and a review by the CCFM advisory committee. 3 figs

  1. The role of energetic particles in fusion plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Pinches, S D [Max-Planck Institut fuer Plasmaphysik, EURATOM-Assoziation, Boltzmannstrasse 2, D-85748 Garching (Germany); Berk, H L [Institute for Fusion Studies, University of Texas at Austin, Austin, TX, 78712 (United States); Borba, D N [Centro de Fusao Nuclear, Associacao EURATOM/IST, Instituto Superior Tecnico, Av Rovisco Pais, 1049-001 Lisbon (Portugal); Breizman, B N [Institute for Fusion Studies, University of Texas at Austin, Austin, TX, 78712 (United States); Briguglio, S [Associazione EURATOM-ENEA sulla Fusione, Via E Fermi 45, CP 65-00044 Frascati (Italy); Fasoli, A [CRPP, EPFL, CH 1015 Lausanne (Switzerland); Fogaccia, G [Associazione EURATOM-ENEA sulla Fusione, Via E Fermi 45, CP 65-00044 Frascati (Italy); Gryaznevich, M P [EURATOM/UKAEA Fusion Association, Culham Science Centre, OX14 3DB (United Kingdom); Kiptily, V [EURATOM/UKAEA Fusion Association, Culham Science Centre, OX14 3DB (United Kingdom); Mantsinen, M J [Helsinki University of Technology, Association Euratom-Tekes (Finland); Sharapov, S E [EURATOM/UKAEA Fusion Association, Culham Science Centre, OX14 3DB (United Kingdom); Testa, D [CRPP, EPFL, CH 1015 Lausanne (Switzerland); Vann, R G L [Department of Physics, University of Warwick, Coventry, CV4 7AL (United Kingdom); Vlad, G [Associazione EURATOM-ENEA sulla Fusione, Via E Fermi 45, CP 65-00044 Frascati (Italy); Zonca, F [Associazione EURATOM-ENEA sulla Fusione, Via E Fermi 45, CP 65-00044 Frascati (Italy)

    2004-12-01

    In the burning fusion plasmas of next step devices such as ITER (2001 ITER-FEAT Outline Design Report IAEA/ITER EDA/DS/18 (Vienna: IAEA) p 21), the majority of the heating of the fusing fuel will come from the plasma self-heating by fusion born {alpha} -particles. Recent advances in theoretical understanding, together with the development of new diagnostic techniques, make this a timely opportunity to survey the role of energetic particles in fusion plasmas and how it projects to future burning plasma devices.

  2. Magnetized target fusion and fusion propulsion.

    Energy Technology Data Exchange (ETDEWEB)

    Kirkpatrick, R. C. (Ronald C.)

    2001-01-01

    Magnetized target fusion (MTF) is a thermonuclear fusion concept that is intermediate between the two mainline approaches, magnetic confinement and inertial confinement fusion (MCF and ICF). MTF incorporates some aspects of each and offers advantages over each of the mainline approaches. First, it provides a means of reducing the driver power requirements, thereby admitting a wider range of drivers than ICF. Second, the magnetic field is only used for insulation, not confinement, and the plasma is wall confined, so that plasma instabilities are traded in for hydrodynamic instabilities. However, the degree of compression required to reach fusion conditions is lower than for ICF, so that hydrodynamic instabilities are much less threatening. The standoff driver innovation proposes to dynamically form the target plasma and a gaseous shell that compresses and confines the target plasma. Therefore, fusion target fabrication is traded in for a multiplicity of plasma guns, which must work in synchrony. The standoff driver embodiment of MTF leads to a fusion propulsion system concept that is potentially compact and lightweight. We will discuss the underlying physics of MTF and some of the details of the fusion propulsion concept using the standoff driver approach. We discuss here the optimization of an MTF target design for space propulsion.

  3. Thermal Resonance Fusion

    OpenAIRE

    Dong, Bao-Guo

    2015-01-01

    We first show a possible mechanism to create a new type of nuclear fusion, thermal resonance fusion, i.e. low energy nuclear fusion with thermal resonance of light nuclei or atoms, such as deuterium or tritium. The fusion of two light nuclei has to overcome the Coulomb barrier between these two nuclei to reach up to the interacting region of nuclear force. We found nuclear fusion could be realized with thermal vibrations of crystal lattice atoms coupling with light atoms at low energy by reso...

  4. Fusion applications study: FAME

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, K.R.

    1986-01-01

    Fusion has a wide spectrum of applications that appear technically possible and may become economically feasible. Near-term (approx. 2000) application for production of nuclear fuels and useful radioisotopes is an economically attractive possibility as soon as fusion is ready. Electricity production will remain a prime, large-scale application of fusion. In the longer term, as fossil fuels dwindle, production of hydrogen could become a major application. Additional applications some of which have not even been conceived of yet, will add to this potential richness and diversity of fusion. It is the purpose of the fusion applications study - FMAE - to innovate, investigate, and evaluate these potential applications.

  5. Viral membrane fusion

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, Stephen C., E-mail: harrison@crystal.harvard.edu

    2015-05-15

    Membrane fusion is an essential step when enveloped viruses enter cells. Lipid bilayer fusion requires catalysis to overcome a high kinetic barrier; viral fusion proteins are the agents that fulfill this catalytic function. Despite a variety of molecular architectures, these proteins facilitate fusion by essentially the same generic mechanism. Stimulated by a signal associated with arrival at the cell to be infected (e.g., receptor or co-receptor binding, proton binding in an endosome), they undergo a series of conformational changes. A hydrophobic segment (a “fusion loop” or “fusion peptide”) engages the target-cell membrane and collapse of the bridging intermediate thus formed draws the two membranes (virus and cell) together. We know of three structural classes for viral fusion proteins. Structures for both pre- and postfusion conformations of illustrate the beginning and end points of a process that can be probed by single-virion measurements of fusion kinetics. - Highlights: • Viral fusion proteins overcome the high energy barrier to lipid bilayer merger. • Different molecular structures but the same catalytic mechanism. • Review describes properties of three known fusion-protein structural classes. • Single-virion fusion experiments elucidate mechanism.

  6. Viral membrane fusion

    International Nuclear Information System (INIS)

    Membrane fusion is an essential step when enveloped viruses enter cells. Lipid bilayer fusion requires catalysis to overcome a high kinetic barrier; viral fusion proteins are the agents that fulfill this catalytic function. Despite a variety of molecular architectures, these proteins facilitate fusion by essentially the same generic mechanism. Stimulated by a signal associated with arrival at the cell to be infected (e.g., receptor or co-receptor binding, proton binding in an endosome), they undergo a series of conformational changes. A hydrophobic segment (a “fusion loop” or “fusion peptide”) engages the target-cell membrane and collapse of the bridging intermediate thus formed draws the two membranes (virus and cell) together. We know of three structural classes for viral fusion proteins. Structures for both pre- and postfusion conformations of illustrate the beginning and end points of a process that can be probed by single-virion measurements of fusion kinetics. - Highlights: • Viral fusion proteins overcome the high energy barrier to lipid bilayer merger. • Different molecular structures but the same catalytic mechanism. • Review describes properties of three known fusion-protein structural classes. • Single-virion fusion experiments elucidate mechanism

  7. 23rd IAEA Fusion Energy Conference: Summary Of Sessions EX/C and ICC

    Energy Technology Data Exchange (ETDEWEB)

    Hawryluk, R J [PPPL

    2011-01-05

    An overview is given of recent experimental results in the areas of innovative confinement concepts, operational scenarios and confinement experiments as presented at the 2010 IAEA Fusion Energy Conference. Important new findings are presented from fusion devices worldwide, with a strong focus towards the scientific and technical issues associated with ITER and W7-X devices, presently under construction.

  8. 23rd IAEA Fusion Energy Conference: Summary Of Sessions EX/C and ICC

    International Nuclear Information System (INIS)

    An overview is given of recent experimental results in the areas of innovative confinement concepts, operational scenarios and confinement experiments as presented at the 2010 IAEA Fusion Energy Conference. Important new findings are presented from fusion devices worldwide, with a strong focus towards the scientific and technical issues associated with ITER and W7-X devices, presently under construction.

  9. The fusion breeder

    International Nuclear Information System (INIS)

    The fusion breeder is a fusion reactor designed with special blankets to maximize the transmutation by 14 MeV neutrons of uranium-238 to plutonium or thorium to uranium-233 for use as a fuel for fission reactors. Breeding fissile fuels has not been a goal of the U.S. fusion energy program. This paper suggests it is time for a policy change to make the fusion breeder a goal of the U.S. fusion program and the U.S. nuclear energy program. There is wide agreement that many approaches will work and will produce fuel for five equal-sized LWRs, and some approach as many as 20 LWRs at electricity costs within 20% of those at today's price of uranium ($30/lb of U3O8). The blankets designed to suppress fissioning, called symbiotes, fusion fuel factories, or just fusion breeders, will have safety characteristics more like pure fusion reactors and will support as many as 15 equal power LWRs. The blankets designed to maximize fast fission of fertile material will have safety characteristics more like fission reactors and will support 5 LWRs. This author strongly recommends development of the fission suppressed blanket type, a point of view not agreed upon by everyone. There is, however, wide agreement that, to meet the market price for uranium which would result in LWR electricity within 20% of today's cost with either blanket type, fusion components can cost severalfold more than would be allowed for pure fusion to meet the goal of making electricity alone at 20% over today's fission costs. Also widely agreed is that the critical-pathitem for the fusion breeder is fusion development itself; however, development of fusion breeder specific items (blankets, fuel cycle) should be started now in order to have the fusion breeder by the time the rise in uranium prices forces other more costly choices

  10. Materials research for fusion

    Science.gov (United States)

    Knaster, J.; Moeslang, A.; Muroga, T.

    2016-05-01

    Fusion materials research started in the early 1970s following the observation of the degradation of irradiated materials used in the first commercial fission reactors. The technological challenges of fusion energy are intimately linked with the availability of suitable materials capable of reliably withstanding the extremely severe operational conditions of fusion reactors. Although fission and fusion materials exhibit common features, fusion materials research is broader. The harder mono-energetic spectrum associated with the deuterium-tritium fusion neutrons (14.1 MeV compared to average for fission neutrons) releases significant amounts of hydrogen and helium as transmutation products that might lead to a (at present undetermined) degradation of structural materials after a few years of operation. Overcoming the historical lack of a fusion-relevant neutron source for materials testing is an essential pending step in fusion roadmaps. Structural materials development, together with research on functional materials capable of sustaining unprecedented power densities during plasma operation in a fusion reactor, have been the subject of decades of worldwide research efforts underpinning the present maturity of the fusion materials research programme.

  11. Economics of fusion research

    International Nuclear Information System (INIS)

    This report provides the results of a study of methods of economic analysis applied to the evaluation of fusion research. The study recognizes that a hierarchy of economic analyses of research programs exists: standard benefit-cost analysis, expected value of R and D information, and expected utility analysis. It is shown that standard benefit-cost analysis, as commonly applied to research programs, is inadequate for the evaluation of a high technology research effort such as fusion research. A methodology for performing an expected value analysis is developed and demonstrated and an overview of an approach to perform an expected utility analysis of fusion research is presented. In addition, a potential benefit of fusion research, not previously identified, is discussed and rough estimates of its magnitude are presented. This benefit deals with the effect of a fusion research program on optimal fossil fuel consumption patterns. The results of this study indicate that it is both appropriate and possible to perform an expected value analysis of fusion research in order to assess the economics of a fusion research program. The results indicate further that the major area of benefits of fusion research is likely due to the impact of a fusion research program on optimal fossil fuel consumption patterns and it is recommended that this benefit be included in future assessments of fusion research economics

  12. Economics of fusion research

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    1977-10-15

    This report provides the results of a study of methods of economic analysis applied to the evaluation of fusion research. The study recognizes that a hierarchy of economic analyses of research programs exists: standard benefit-cost analysis, expected value of R and D information, and expected utility analysis. It is shown that standard benefit-cost analysis, as commonly applied to research programs, is inadequate for the evaluation of a high technology research effort such as fusion research. A methodology for performing an expected value analysis is developed and demonstrated and an overview of an approach to perform an expected utility analysis of fusion research is presented. In addition, a potential benefit of fusion research, not previously identified, is discussed and rough estimates of its magnitude are presented. This benefit deals with the effect of a fusion research program on optimal fossil fuel consumption patterns. The results of this study indicate that it is both appropriate and possible to perform an expected value analysis of fusion research in order to assess the economics of a fusion research program. The results indicate further that the major area of benefits of fusion research is likely due to the impact of a fusion research program on optimal fossil fuel consumption patterns and it is recommended that this benefit be included in future assessments of fusion research economics.

  13. Fusion of Nonionic Vesicles

    DEFF Research Database (Denmark)

    Bulut, Sanja; Oskolkova, M. Z.; Schweins, R.;

    2010-01-01

    We present an experimental study of vesicle fusion using light and neutron scattering to monitor fusion events. Vesicles are reproducibly formed with an extrusion procedure using an single amphiphile triethylene glycol mono-n-decyl ether in water. They show long-term stability for temperatures...... around 20 C, but at temperatures above 26 C we observe an increase in the scattered intensity due to fusion. The system is unusually well suited for the study of basic mechanisms of vesicle fusion. The vesicles are flexible with a bending rigidity of only a few k(H)T. The monolayer spontaneous curvature......, Ho, depends strongly on temperature in a known way and is thus tunable. For temperatures where H-0 > 0 vesicles tyre long-term stable, while in the range H-0 fusion rate increases the more negative the Spontaneous curvature Through a quantitative;analysis of the fusion rate we arrive tit...

  14. Muon Catalyzed Fusion

    Science.gov (United States)

    Armour, Edward A.G.

    2007-01-01

    Muon catalyzed fusion is a process in which a negatively charged muon combines with two nuclei of isotopes of hydrogen, e.g, a proton and a deuteron or a deuteron and a triton, to form a muonic molecular ion in which the binding is so tight that nuclear fusion occurs. The muon is normally released after fusion has taken place and so can catalyze further fusions. As the muon has a mean lifetime of 2.2 microseconds, this is the maximum period over which a muon can participate in this process. This article gives an outline of the history of muon catalyzed fusion from 1947, when it was first realised that such a process might occur, to the present day. It includes a description of the contribution that Drachrnan has made to the theory of muon catalyzed fusion and the influence this has had on the author's research.

  15. Fusion research principles

    CERN Document Server

    Dolan, Thomas James

    2013-01-01

    Fusion Research, Volume I: Principles provides a general description of the methods and problems of fusion research. The book contains three main parts: Principles, Experiments, and Technology. The Principles part describes the conditions necessary for a fusion reaction, as well as the fundamentals of plasma confinement, heating, and diagnostics. The Experiments part details about forty plasma confinement schemes and experiments. The last part explores various engineering problems associated with reactor design, vacuum and magnet systems, materials, plasma purity, fueling, blankets, neutronics

  16. Magnetic fusion technology

    CERN Document Server

    Dolan, Thomas J

    2014-01-01

    Magnetic Fusion Technology describes the technologies that are required for successful development of nuclear fusion power plants using strong magnetic fields. These technologies include: ? magnet systems, ? plasma heating systems, ? control systems, ? energy conversion systems, ? advanced materials development, ? vacuum systems, ? cryogenic systems, ? plasma diagnostics, ? safety systems, and ? power plant design studies. Magnetic Fusion Technology will be useful to students and to specialists working in energy research.

  17. Status of fusion maintenance

    International Nuclear Information System (INIS)

    Effective maintenance will be an essential ingredient in determining fusion system productivity. This level of productivity will result only after close attention is paid to the entire system as an entity and appropriate integration of the elements is made. The status of fusion maintenance is reviewed in the context of the entire system. While there are many challenging developmental tasks ahead in fusion maintenance, the required technologies are available in several high-technology industries, including nuclear fission

  18. Filter Bank Fusion frames

    OpenAIRE

    Chebira, Amina; Fickus, Matthew; Mixon, Dustin G.

    2011-01-01

    In this paper we characterize and construct novel oversampled filter banks implementing fusion frames. A fusion frame is a sequence of orthogonal projection operators whose sum can be inverted in a numerically stable way. When properly designed, fusion frames can provide redundant encodings of signals which are optimally robust against certain types of noise and erasures. However, up to this point, few implementable constructions of such frames were known; we show how to construct them using ...

  19. Frontiers in fusion research

    CERN Document Server

    Kikuchi, Mitsuru

    2011-01-01

    Frontiers in Fusion Research provides a systematic overview of the latest physical principles of fusion and plasma confinement. It is primarily devoted to the principle of magnetic plasma confinement, that has been systematized through 50 years of fusion research. Frontiers in Fusion Research begins with an introduction to the study of plasma, discussing the astronomical birth of hydrogen energy and the beginnings of human attempts to harness the Sun's energy for use on Earth. It moves on to chapters that cover a variety of topics such as: * charged particle motion, * plasma kinetic theory, *

  20. Fusion reactor safety

    International Nuclear Information System (INIS)

    Nuclear fusion could soon become a viable energy source. Work in plasma physics, fusion technology and fusion safety is progressing rapidly in a number of Member States and international collaboration continues on work aiming at the demonstration of fusion power generation. Safety of fusion reactors and technological and radiological aspects of waste management are important aspects in the development and design of fusion machines. In order to provide an international forum to review and discuss the status and the progress made since 1983 in programmes related to operational safety aspects of fusion reactors, their waste management and decommissioning concepts, the IAEA had organized the Technical Committee on ''Fusion Reactor Safety'' in Culham, 3-7 November 1986. All presentations of this meeting were divided into four sessions: 1. Statements on National-International Fusion Safety Programmes (5 papers); 2. Operation and System Safety (15 papers); 3. Waste Management and Decommissioning (5 papers); 4. Environmental Impacts (6 papers). A separate abstract was prepared for each of these 31 papers. Refs, figs, tabs

  1. Laser fusion program overview

    International Nuclear Information System (INIS)

    This program is structured to proceed through a series of well defined fusion milestones to proof of the scientific feasibility, of laser fusion with the Shiva Nova system. Concurrently, those key technical areas, such as advanced lasers, which are required to progress beyond proof of feasibility, are being studied. We have identified and quantified the opportunities and key technical issues in military applications, such as weapons effects simulations, and in civilian applications, such as central-station electric power production. We summarize the current status and future plans for the laser fusion program at LLL, emphasizing the civilian applications of laser fusion

  2. Linear magnetic fusion: summary of Seattle workshop

    International Nuclear Information System (INIS)

    The linear-geometry magnetic confinement concept is among the oldest used in the study of high-temperature plasmas. However, it has generally been discounted as a suitable approach for demonstrating controlled thermonuclear fusion because rapid losses from the plasma column ends necessitate very long devices. Further, the losses and how to overcome them have not yet received parametric experimental study, nor do facilities exist with which such definitive experiments could be performed. Nonetheless, the important positive attribute, simplicity, together with the appearance of several ideas for reducing end losses have provided motivation for continued research on linear magnetic fusion (LMF). These motivations led to the LMF workshop, held in Seattle, March 9--11, 1977, which explored the potential of LMF as an alternate approach to fusion. A broad range of LMF aspects were addressed, including radial and axial losses, stability and equilibrium, heating, technology, and reactor considerations. The conclusions drawn at the workshop are summarized

  3. The 22nd symposium on fusion technology

    International Nuclear Information System (INIS)

    The Symposium on Fusion Technology (SOFT) was held at the Marina Congress Center, Helsinki, Finland, from 9th to 13th September 2002. It was organized by the Association Euratom-Tekes and hosted by the VTT Technical Research Centre of Finland, Fortum Nuclear Services Ltd. and PrizzTech Oy. The sympoisum included invited and contributed papers as well as poster presentations and an industrial and R and D exhibition. The main topics included all aspects of fusion technology: current and future devices, plasma facing components, plasma heating and current drive, plasma engineering and control, diagnostics, data acquisition and remote participation, magnets and power supplies, fuel cycle, remote handling, vessel, blanket and shield, safety and environment, power plant and socio-economic studies, inertial fusion energy, and transfer of technology. The number of invited speakers was 15, selected presentations 22 and poster presentations 404. The abstracts of the presentations and posters are included in this book. (orig.)

  4. Fusion tritium program in the United States

    International Nuclear Information System (INIS)

    The fusion technology development program for tritium in the US is centered around the Tritium Systems Test Assembly (TSTA) at Los Alamos National Labortory. Objectives of this project are to develop and demonstrate the fuel cycle for processing the reactor exhaust gas (unburned deuterium and tritium plus impurities), and the necessary personnel and environemntal protection systems for the next generation of fusion devices. The TSTA is a full-scale system for an INTOR/ITER sized machine. That is, TSTA has the capacity to process tritium in a closed loop mode at the rate of 1 kg per day, requiring a tritium inventory of about 100 g. The TSTA program also interacts with all other tritium-related fusion technology programs in the US and all major programs abroad. This report is a summary of the results and interactions of the TSTA program since a previous summary was published and an overview of related tritium programs

  5. Membrane fusion machines of paramyxoviruses: capture of intermediates of fusion

    OpenAIRE

    Charles J Russell; Theodore S Jardetzky; Lamb, Robert A.

    2001-01-01

    Peptides derived from heptad repeat regions adjacent to the fusion peptide and transmembrane domains of many viral fusion proteins form stable helical bundles and inhibit fusion specifically. Paramyxovirus SV5 fusion (F) protein-mediated fusion and its inhibition by the peptides N-1 and C-1 were analyzed. The temperature dependence of fusion by F suggests that thermal energy, destabilizing proline residues and receptor binding by the hemagglutinin–neuraminidase (HN) protein collectively contr...

  6. Nuclear fusion inside condense matters

    Institute of Scientific and Technical Information of China (English)

    HE Jing-tang

    2007-01-01

    This article describes in detail the nuclear fusion inside condense matters--the Fleischmann-Pons effect, the reproducibility of cold fusions, self-consistentcy of cold fusions and the possible applications.

  7. Estimation of Total Fusion Reactivity and Contribution from Suprathermal Tail using 3-parameter Dagum Ion Speed Distribution

    CERN Document Server

    Majumdar, Rudrodip

    2016-01-01

    Thermonuclear fusion reactivity is a pivotal quantity in the studies pertaining to fusion energy production, fusion ignition and energy break-even analysis in both inertially and magnetically confined systems. Although nuclear fusion reactivity and thereafter the power density of a magnetic confinement fusion reactor and the fulfillment of the ignition criterion are quantitatively determined by assuming the ion speed distribution to be Maxwellian, a significant population of suprathermal ions,with energy greater than the quasi-Maxwellian background plasma temperature, is generated by the fusion reactions and auxiliary heating in the fusion devices. In the current work 3-parameter Dagum speed distribution has been introduced to include the effect of suprathermal ion population in the calculation of total fusion reactivity. The extent of enhancement in the fusion reactivity, at different back-ground temperatures of the fusion fuel plasma, due to the suprathermal ion population has also been discussed.

  8. Controlled Fusion and Plasma Physics

    International Nuclear Information System (INIS)

    This new book by Kenro Miyamoto provides an up-to-date overview of the status of fusion research and the important parts of the underlying plasma physics at a moment where, due to the start of ITER construction, an important step in fusion research has been made and many new research workers will enter the field. For them, and also for interested graduate students and physicists in other fields, the book provides a good introduction into fusion physics as, on the whole, the presentation of the material is quite appropriate for getting acquainted with the field on the basis of just general knowledge in physics. There is overlap with Miyamoto's earlier book Plasma Physics for Nuclear Fusion (MIT Press, Cambridge, USA, 1989) but only in a few sections on subjects which have not evolved since. The presentation is subdivided into two parts of about equal length. The first part, following a concise survey of the physics basis of thermonuclear fusion and of plasmas in general, covers the various magnetic configurations studied for plasma confinement (tokamak; reversed field pinch; stellarator; mirror-type geometries) and introduces the specific properties of plasmas in these devices. Plasma confinement in tokamaks is treated in particular detail, in compliance with the importance of this field in fusion research. This includes a review of the ITER concept and of the rationale for the choice of ITER's parameters. In the second part, selected topics in fusion plasma physics (macroscopic instabilities; propagation of waves; kinetic effects such as energy transfer between waves and particles including microscopic instabilities as well as plasma heating and current drive; transport phenomena induced by turbulence) are presented systematically. While the emphasis is on displaying the essential physics, deeper theoretical analysis is also provided here. Every chapter is complemented by a few related problems, but only partial hints for their solution are given. A selection of

  9. Temperature measurement methods during direct heat arterial tissue fusion.

    Science.gov (United States)

    Cezo, James D; Kramer, Eric; Taylor, Kenneth D; Ferguson, Virginia; Rentschler, Mark E

    2013-09-01

    Fusion of biological tissues through direct and indirect heating is a growing area of medical research, yet there are still major gaps in understanding this procedure. Several companies have developed devices which fuse blood vessels, but little is known about the tissue's response to the stimuli. The need for accurate measurements of tissue behavior during tissue fusion is essential for the continued development and improvement of energy delivery devices. An experimental study was performed to measure the temperatures experienced during tissue fusion and the resulting burst pressure of the fused arteries. An array of thermocouples was placed in the lumen of a porcine splenic artery segment and sealed using a ConMed Altrus thermal fusion device. The temperatures within the tissue, in the device, and at the tissue-device interface were recorded. These measurements were then analyzed to calculate the temperature profile in the lumen of the artery. The temperature in the artery at the site of tissue fusion was measured to range from 142 to 163 °C using the ConMed Altrus. The corresponding burst pressure for arteries fused at this temperature was measured as 416 ± 79 mmHg. This study represents the first known experimental measurement of temperature at the site of vessel sealing found in the literature.

  10. Fusion helps diversification

    NARCIS (Netherlands)

    S. Liang; Z. Ren; M. de Rijke

    2014-01-01

    A popular strategy for search result diversification is to first retrieve a set of documents utilizing a standard retrieval method and then rerank the results. We adopt a different perspective on the problem, based on data fusion. Starting from the hypothesis that data fusion can improve performance

  11. Controlled Nuclear Fusion.

    Science.gov (United States)

    Glasstone, Samuel

    This publication is one of a series of information booklets for the general public published by The United States Atomic Energy Commission. Among the topics discussed are: Importance of Fusion Energy; Conditions for Nuclear Fusion; Thermonuclear Reactions in Plasmas; Plasma Confinement by Magnetic Fields; Experiments With Plasmas; High-Temperature…

  12. Fusion product spectra

    International Nuclear Information System (INIS)

    Accurate fusion product data is required for most fusion plasma simulations. The energy broadening of reaction products is demonstrated to be more complicated than the usual Gaussian broadening. The accurate integrals are performed to obtain , , and for all binary reactions in the four- and five-nucleon systems. Reaction cross sections were developed using R-Matrix models that include most recent measurements

  13. Controlled thermonuclear fusion

    CERN Document Server

    Bobin, Jean Louis

    2014-01-01

    The book is a presentation of the basic principles and main achievements in the field of nuclear fusion. It encompasses both magnetic and inertial confinements plus a few exotic mechanisms for nuclear fusion. The state-of-the-art regarding thermonuclear reactions, hot plasmas, tokamaks, laser-driven compression and future reactors is given.

  14. Fusion reactor materials

    International Nuclear Information System (INIS)

    At the Belgian Nuclear Research Centre SCK-CEN, activities related to fusion focus on environmental tolerance of opto-electronic components. The objective of this program is to contribute to the knowledge on the behaviour, during and after neutron irradiation, of fusion-reactor materials and components. The main scientific activities for 1997 are summarized

  15. Nuclear fusion in Jupiter

    International Nuclear Information System (INIS)

    We study nuclear fusion occurring according to conventional wisdom in the planet Jupiter. In particular, we consider if in a standard evolutionary model of Jupiter a significant part of Jupiter's luminosity has been due to nuclear fusion at any time during its evolution. Nuclear rate equations in dense matter allowing for screening and pressure effects have been integrated in time

  16. FUSION03, Concluding Remarks

    OpenAIRE

    Balantekin, A. B.

    2004-01-01

    Fusion reactions below the Coulomb barrier provide new insights into multidimensional quantum tunneling, nuclear reaction dynamics and nuclear structure. These reactions are also of considerable interest to nuclear astrophysics. In this summary recent developments in the field are reviewed and open questions related to subbarrier fusion are presented.

  17. Two Horizons of Fusion

    Science.gov (United States)

    Lo, Mun Ling; Chik, Pakey Pui Man

    2016-01-01

    In this paper, we aim to differentiate the internal and external horizons of "fusion." "Fusion" in the internal horizon relates to the structure and meaning of the object of learning as experienced by the learner. It clarifies the interrelationships among an object's critical features and aspects. It also illuminates the…

  18. Thermal Resonance Fusion

    CERN Document Server

    Dong, Bao-Guo

    2015-01-01

    We first show a possible mechanism to create a new type of nuclear fusion, thermal resonance fusion, i.e. low energy nuclear fusion with thermal resonance of light nuclei or atoms, such as deuterium or tritium. The fusion of two light nuclei has to overcome the Coulomb barrier between these two nuclei to reach up to the interacting region of nuclear force. We found nuclear fusion could be realized with thermal vibrations of crystal lattice atoms coupling with light atoms at low energy by resonance to overcome this Coulomb barrier. Thermal resonances combining with tunnel effects can greatly enhance the probability of the deuterium fusion to the detectable level. Our low energy nuclear fusion mechanism research - thermal resonance fusion mechanism results demonstrate how these light nuclei or atoms, such as deuterium, can be fused in the crystal of metal, such as Ni or alloy, with synthetic thermal vibrations and resonances at different modes and energies experimentally. The probability of tunnel effect at dif...

  19. Magnetic fusion theory effort

    International Nuclear Information System (INIS)

    The present publication is a comprehensive listing of the magnetic fusion theory effort. It updates the last publication, ERDA 77-18, and gives data on the FY 1977 and FY 1978 budgets. There is a section devoted to the National Magnetic Fusion Computer Center

  20. Fusion of biological membranes

    Indian Academy of Sciences (India)

    K Katsov; M Müller; M Schick

    2005-06-01

    The process of membrane fusion has been examined by Monte Carlo simulation, and is found to be very different than the conventional picture. The differences in mechanism lead to several predictions, in particular that fusion is accompanied by transient leakage. This prediction has recently been verified. Self-consistent field theory is applied to examine the free energy barriers in the different scenarios.

  1. Fusion Power Deployment

    International Nuclear Information System (INIS)

    Fusion power plants could be part of a future portfolio of non-carbon dioxide producing energy supplies such as wind, solar, biomass, advanced fission power, and fossil energy with carbon dioxide sequestration. In this paper, we discuss key issues that could impact fusion energy deployment during the last half of this century. These include geographic issues such as resource availability, scale issues, energy storage requirements, and waste issues. The resource needs and waste production associated with fusion deployment in the U.S. should not pose serious problems. One important feature of fusion power is the fact that a fusion power plant should be locatable within most local or regional electrical distribution systems. For this reason, fusion power plants should not increase the burden of long distance power transmission to our distribution system. In contrast to fusion power, regional factors could play an important role in the deployment of renewable resources such as wind, solar and biomass or fossil energy with CO2 sequestration. We examine the role of these regional factors and their implications for fusion power deployment

  2. Fusion Canada issue 22

    International Nuclear Information System (INIS)

    A short bulletin from the National Fusion Program highlighting in this issue a bi-lateral meeting between Canada and Japan, water and hydrogen detritiation, in-situ tokamak surface analysis, an update of CCFM/TdeV and tritium accounting Industry guidance in Fusion, fast probe for plasma-surface interaction. 4 figs

  3. Magnetic Fusion Program Plan

    International Nuclear Information System (INIS)

    This Plan reflects the present conditions of the energy situation and is consistent with national priorities for the support of basic and applied research. It is realistic in taking advantage of the technical position that the United States has already established in fusion research to make cost-effective progress toward the development of fusion power as a future energy option

  4. Tight p-fusion frames

    OpenAIRE

    Bachoc, Christine; Ehler, Martin

    2012-01-01

    Fusion frames enable signal decompositions into weighted linear subspace components. For positive integers p, we introduce p-fusion frames, a sharpening of the notion of fusion frames. Tight p-fusion frames are closely related to the classical notions of designs and cubature formulas in Grassmann spaces and are analyzed with methods from harmonic analysis in the Grassmannians. We define the p-fusion frame potential, derive bounds for its value, and discuss the connections to tight p-fusion fr...

  5. Fusion Energy Division annual progress report, period ending December 31, 1989

    Energy Technology Data Exchange (ETDEWEB)

    Sheffield, J.; Baker, C.C.; Saltmarsh, M.J.

    1991-07-01

    The Fusion Program of Oak Ridge National Laboratory (ORNL) carries out research in most areas of magnetic confinement fusion. The program is directed toward the development of fusion as an energy source and is a strong and vital component of both the US fusion program and the international fusion community. Issued as the annual progress report of the ORNL Fusion Energy Division, this report also contains information from components of the Fusion Program that are carried out by other ORNL organizations (about 15% of the program effort). The areas addressed by the Fusion Program and discussed in this report include the following: Experimental and theoretical research on magnetic confinement concepts, engineering and physics of existing and planned devices, including remote handling, development and testing of diagnostic tools and techniques in support of experiments, assembly and distribution to the fusion community of databases on atomic physics and radiation effects, development and testing of technologies for heating and fueling fusion plasmas, development and testing of superconducting magnets for containing fusion plasmas, development and testing of materials for fusion devices, and exploration of opportunities to apply the unique skills, technology, and techniques developed in the course of this work to other areas. Highlights from program activities are included in this report.

  6. Fusion Energy Division: Annual progress report, period ending December 31, 1987

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, O.B. Jr.; Berry, L.A.; Sheffield, J.

    1988-11-01

    The Fusion Program of Oak Ridge National Laboratory (ORNL), a major part of the national fusion program, carries out research in nearly all areas of magnetic fusion. Collaboration among staff from ORNL, Martin Marietta Energy Systems, Inc., private industry, the academic community, and other fusion laboratories, in the United States and abroad, is directed toward the development of fusion as an energy source. This report documents the program's achievements during 1987. Issued as the annual progress report of the ORNL Fusion Energy Division, it also contains information from components of the Fusion Program that are external to the division (about 15% of the program effort). The areas addressed by the Fusion Program include the following: experimental and theoretical research on magnetic confinement concepts, engineering and physics of existing and planned devices, development and testing of diagnostic tools and techniques in support of experiments, assembly and distribution to the fusion community of databases on atomic physics and radiation effects, development and testing of technologies for heating and fueling fusion plasmas, development and testing of superconducting magnets for containing fusion plasmas, and development and testing of materials for fusion devices. Highlights from program activities are included in this report. 126 figs., 15 tabs.

  7. Fusion Energy Division progress report, 1 January 1990--31 December 1991

    Energy Technology Data Exchange (ETDEWEB)

    Sheffield, J.; Baker, C.C.; Saltmarsh, M.J.

    1994-03-01

    The Fusion Program of the Oak Ridge National Laboratory (ORNL), a major part of the national fusion program, encompasses nearly all areas of magnetic fusion research. The program is directed toward the development of fusion as an economical and environmentally attractive energy source for the future. The program involves staff from ORNL, Martin Marietta Energy systems, Inc., private industry, the academic community, and other fusion laboratories, in the US and abroad. Achievements resulting from this collaboration are documented in this report, which is issued as the progress report of the ORNL Fusion Energy Division; it also contains information from components for the Fusion Program that are external to the division (about 15% of the program effort). The areas addressed by the Fusion Program include the following: experimental and theoretical research on magnetic confinement concepts; engineering and physics of existing and planned devices, including remote handling; development and testing of diagnostic tools and techniques in support of experiments; assembly and distribution to the fusion community of databases on atomic physics and radiation effects; development and testing of technologies for heating and fueling fusion plasmas; development and testing of superconducting magnets for containing fusion plasmas; development and testing of materials for fusion devices; and exploration of opportunities to apply the unique skills, technology, and techniques developed in the course of this work to other areas (about 15% of the Division`s activities). Highlights from program activities during 1990 and 1991 are presented.

  8. Fusion Energy Division annual progress report, period ending December 31, 1989

    International Nuclear Information System (INIS)

    The Fusion Program of Oak Ridge National Laboratory (ORNL) carries out research in most areas of magnetic confinement fusion. The program is directed toward the development of fusion as an energy source and is a strong and vital component of both the US fusion program and the international fusion community. Issued as the annual progress report of the ORNL Fusion Energy Division, this report also contains information from components of the Fusion Program that are carried out by other ORNL organizations (about 15% of the program effort). The areas addressed by the Fusion Program and discussed in this report include the following: Experimental and theoretical research on magnetic confinement concepts, engineering and physics of existing and planned devices, including remote handling, development and testing of diagnostic tools and techniques in support of experiments, assembly and distribution to the fusion community of databases on atomic physics and radiation effects, development and testing of technologies for heating and fueling fusion plasmas, development and testing of superconducting magnets for containing fusion plasmas, development and testing of materials for fusion devices, and exploration of opportunities to apply the unique skills, technology, and techniques developed in the course of this work to other areas. Highlights from program activities are included in this report

  9. Fusion Energy Division: Annual progress report, period ending December 31, 1987

    International Nuclear Information System (INIS)

    The Fusion Program of Oak Ridge National Laboratory (ORNL), a major part of the national fusion program, carries out research in nearly all areas of magnetic fusion. Collaboration among staff from ORNL, Martin Marietta Energy Systems, Inc., private industry, the academic community, and other fusion laboratories, in the United States and abroad, is directed toward the development of fusion as an energy source. This report documents the program's achievements during 1987. Issued as the annual progress report of the ORNL Fusion Energy Division, it also contains information from components of the Fusion Program that are external to the division (about 15% of the program effort). The areas addressed by the Fusion Program include the following: experimental and theoretical research on magnetic confinement concepts, engineering and physics of existing and planned devices, development and testing of diagnostic tools and techniques in support of experiments, assembly and distribution to the fusion community of databases on atomic physics and radiation effects, development and testing of technologies for heating and fueling fusion plasmas, development and testing of superconducting magnets for containing fusion plasmas, and development and testing of materials for fusion devices. Highlights from program activities are included in this report. 126 figs., 15 tabs

  10. Fusion Energy Division progress report, 1 January 1990--31 December 1991

    International Nuclear Information System (INIS)

    The Fusion Program of the Oak Ridge National Laboratory (ORNL), a major part of the national fusion program, encompasses nearly all areas of magnetic fusion research. The program is directed toward the development of fusion as an economical and environmentally attractive energy source for the future. The program involves staff from ORNL, Martin Marietta Energy systems, Inc., private industry, the academic community, and other fusion laboratories, in the US and abroad. Achievements resulting from this collaboration are documented in this report, which is issued as the progress report of the ORNL Fusion Energy Division; it also contains information from components for the Fusion Program that are external to the division (about 15% of the program effort). The areas addressed by the Fusion Program include the following: experimental and theoretical research on magnetic confinement concepts; engineering and physics of existing and planned devices, including remote handling; development and testing of diagnostic tools and techniques in support of experiments; assembly and distribution to the fusion community of databases on atomic physics and radiation effects; development and testing of technologies for heating and fueling fusion plasmas; development and testing of superconducting magnets for containing fusion plasmas; development and testing of materials for fusion devices; and exploration of opportunities to apply the unique skills, technology, and techniques developed in the course of this work to other areas (about 15% of the Division's activities). Highlights from program activities during 1990 and 1991 are presented

  11. FUSION OF MEDICAL IMAGES

    Directory of Open Access Journals (Sweden)

    ALINE APARECIDA DE OLIVEIRA

    2013-08-01

    Full Text Available The use of image multiple modalities to achieve medical diagnosis has been commom practice lately. Nowadays the most used practice is medical image fusion, that is integrating information from several different methods within the same image. This paper aims at showing aplication and functionality of medical image fusion process such as Computed Tomography, Magnetic Resonance Imaging, Positron Emission Tomography and Doppler U.S. Image fusion process can be perfomed by pixel to pixel, region to region as well as based on decision taking. Free softwares can be found in the internet and images can be obtained either in separated or conneceted equipments. The choice of processes depends on several factors and the purpose of fusion as well as characteristics and conditions of each method should be taken into consideration. Currently equipment manufacturers are investing at improving the quality and detection capacity of images aiming at upgrading the fusion process which makes image interpretation more evident and trustworthy.

  12. Some fusion perspectives

    International Nuclear Information System (INIS)

    Some of the concepts of nuclear fusion reactions, advanced fusion fuels, environmental impacts, etc., are explored using the following general outline: I. Principles of Fusion (Nuclear Fuels and Reactions, Lawson Condition, n tau vs T, Nuclear Burn Characteristics); II. Magnetic Mirror Possibilities (the Ion Layer and Electron Layer, Exponential Build-up at MeV energies, Lorentz trapping at GeV energies); III. Pellet Fuel Fusion Prospects (Advanced Pellet Fuel Fusion Prospects, Burn Characteristics and Applications, Excitation-heating Prospects for Runaway Ion Temperatures). Inasmuch as the outline is very skeletal, a significant research and development effort may be in order to evaluate these prospects in more detail and hopefully ''harness the H-bomb'' for peaceful applications, the author concludes. 28 references

  13. Filter Bank Fusion Frames

    CERN Document Server

    Chebira, Amina; Mixon, Dustin G

    2010-01-01

    In this paper we characterize and construct novel oversampled filter banks implementing fusion frames. A fusion frame is a sequence of orthogonal projection operators whose sum can be inverted in a numerically stable way. When properly designed, fusion frames can provide redundant encodings of signals which are optimally robust against certain types of noise and erasures. However, up to this point, few implementable constructions of such frames were known; we show how to construct them using oversampled filter banks. In this work, we first provide polyphase domain characterizations of filter bank fusion frames. We then use these characterizations to construct filter bank fusion frame versions of discrete wavelet and Gabor transforms, emphasizing those specific finite impulse response filters whose frequency responses are well-behaved.

  14. 桥形椎间锁定融合器(ROI-C)在颈椎病前路减压融合术中应用的临床研究%Bridge Intervertebral Fusion Lock Device (ROI - C) in Cervical Spondylosis Anterior Decompression Fusion Application in Clinical Research

    Institute of Scientific and Technical Information of China (English)

    何彦国

    2015-01-01

    objective to study and analyze the bridge between vertebra locking fusion in cervical spondylosis application of the clinical effect of anterior decompression fusion.Methods to collect a total of 100 patients with cervical spondylosis, randomly divided into observation group and control group, the 50 cases, control group patients with cage combined anterior internal fixation with titanium plate, observation group carries on the bridge a locked intervertebral fusion, both before and after operation for X-ray inspection, two group of patients with cervical physiological curvature and lesion intervertebral height, the incidence of dysphagia observation and comparison.Results the observation group of patients with cervical physiological curvature of the improvement of the degree of improvement and pathology of the intervertebral height was significantly higher than that of control group, the incidence of dysphagia in patients with significantly lower than the control group,P<0.05).Conclusion in the cervical spine anterior decompression fusion, application of bridge intervertebral target fusion can make cervical physiological curvature and pathological changes of intervertebral height effectively restore, and lower the incidence of postoperative patients with dysphagia, shorter operation time, simple operation, is worthy of popularization and application.%目的:研究和分析桥形椎间锁定融合器在颈椎病前路减压融合术中应用的临床效果。方法收集颈椎病患者共100例,随机分为观察组与对照组,各50例,对照组患者进行cage联合前路钛板内固定,观察组进行桥形椎间锁定融合器固定,手术前后均进行了X线片的检查,将两组患者的颈椎生理曲度、病变椎间高度、吞咽困难发生率等进行观察和对比。结果观察组患者的颈椎生理曲度的改善程度、病变椎间高度的改善程度明显高于对照组,患者的吞咽困难发生

  15. Industry's role in inertial fusion

    International Nuclear Information System (INIS)

    This paper is an address to the Tenth Symposium on Fusion Engineering. The speaker first addressed the subject of industry's role in inertial fusion three years earlier in 1980, outlining programs that included participation in the Shiva construction project, and the industrial participants' program set up in the laser fusion program to bring industrial scientists and engineers into the laboratory to work on laser fusion. The speaker is now the president of KMS Fusion, Inc., the primary industrial participant in the inertial fusion program. The outlook for fusion energy and the attitude of the federal government toward the fusion program is discussed

  16. A direct fusion drive for rocket propulsion

    Science.gov (United States)

    Razin, Yosef S.; Pajer, Gary; Breton, Mary; Ham, Eric; Mueller, Joseph; Paluszek, Michael; Glasser, Alan H.; Cohen, Samuel A.

    2014-12-01

    The Direct Fusion Drive (DFD), a compact, anuetronic fusion engine, will enable more challenging exploration missions in the solar system. The engine proposed here uses a deuterium-helium-3 reaction to produce fusion energy by employing a novel field-reversed configuration (FRC) for magnetic confinement. The FRC has a simple linear solenoid coil geometry yet generates higher plasma pressure, hence higher fusion power density, for a given magnetic field strength than other magnetic-confinement plasma devices. Waste heat generated from the plasma's Bremsstrahlung and synchrotron radiation is recycled to maintain the fusion temperature. The charged reaction products, augmented by additional propellant, are exhausted through a magnetic nozzle. A 1 MW DFD is presented in the context of a mission to deploy the James Webb Space Telescope (6200 kg) from GPS orbit to a Sun-Earth L2 halo orbit in 37 days using just 353 kg of propellant and about half a kilogram of 3He. The engine is designed to produce 40 N of thrust with an exhaust velocity of 56.5 km/s and has a specific power of 0.18 kW/kg.

  17. The materials production and processing facility at the Spanish National Centre for fusion technologies (TechnoFusion)

    International Nuclear Information System (INIS)

    In response to the urgent request from the EU Fusion Program, a new facility (TechnoFusion) for research and development of fusion materials has been planned with support from the Regional Government of Madrid and the Ministry of Science and Innovation of Spain. TechnoFusion, the National Centre for Fusion Technologies, aims screening different technologies relevant for ITER and DEMO environments while promoting the contribution of international companies and research groups into the Fusion Programme. For this purpose, the centre will be provided with a large number of unique facilities for the manufacture, testing (a triple-beam multi-ion irradiation, a plasma-wall interaction device, a remote handling for under ionizing radiation testing) and analysis of critical fusion materials. Particularly, the objectives, semi-industrial scale capabilities and present status of the TechnoFusion Materials Production and Processing (MPP) facility are presented. Previous studies revealed that the MPP facility will be a very promising infrastructure for the development of new materials and prototypes demanded by the fusion technology and therefore some of them will be here briefly summarized.

  18. Introduction to magnetic confinement fusion diagnostics

    International Nuclear Information System (INIS)

    These notes present a brief survey of some of the current diagnostic techniques used in magnetic fusion plasma devices. To give an idea of the range of parameters and geometries encountered the parameters of four representative experiments - PLT, TMX, ZT-40 and EBT-I(S) - are given. The central issue of all experiments is to understand the flow of power which can be summarized by two volume integrated equations for the ions and electrons

  19. Investigation of film MHD-flows as applied to the problem of development of liquid metal limiters and collector devices of a divertor in a fusion reactor-tokamak

    International Nuclear Information System (INIS)

    MHD-flows in a horizontal channel of rectangular cross section are investigated. The investigations are performed as applied to the problem of creation of liquid metal limiters and collector devices of a divertor in thermonuclear devices. Experiences have been performed with In-Ga-Sn alloy in the ranges of Froude number 1.3-2.103, Hartmann number 0-4.102, flow rates 0.25-4.2 m/s and magnetic induction 0-1.5 T. It has been found that magnetic field leads to suppression of disturbances on a free flow surface. At low flow rates (up to 1 m/s) and great Hartmann numbers (4.102) the stable flow rate is realized. The stable flow mode is realized as well as with the growth of electric current

  20. A Case Study on Ubiquitous Social Networking: Fusion Mobile

    OpenAIRE

    Visanen, Kristine

    2009-01-01

    This thesis deals with the challenges and opportunities inherent in building a prototype capable of supporting ubiquitous social networking applications on mobile devices. The challenges in the design of mobile application are investigated through a case study that develops a prototype, Fusion Mobile, which is an application for mobile social networking and media sharing. This research is carried out within the context of an ongoing research project P2P-FUSION, which addresses current diff...

  1. Nuclear Fusion Award 2009 speech Nuclear Fusion Award 2009 speech

    Science.gov (United States)

    Sabbagh, Steven Anthony

    2011-01-01

    This is an exceptional moment in my career, and so I want to thank all of my teachers, colleagues and mentors who have made this possible. From my co-authors and myself, many thanks to the International Atomic Energy Agency, IOP Publishing, the Nuclear Fusion journal team, and the selection committee for the great honor of receiving this award. Also gratitude to Kikuchi-sensei, not only for the inventive and visionary creation of this award, but also for being a key mentor dating back to his efforts in producing high neutron output in JT-60U. It was also a great honor to receive the award directly from IAEA Deputy Director General Burkart during the 23rd IAEA Fusion Energy Conference in Daejeon. Receiving the award at this venue is particularly exciting as Daejeon is home to the new, next-generation KSTAR tokamak device that will lead key magnetic fusion research areas going forward. I would also like to thank the mayor of Daejeon, Dr Yum Hong-Chul, and all of the meeting organizers for giving us all a truly spectacular and singular welcoming event during which the award was presented. The research leading to the award would not have been possible without the support of the US Department of Energy, and I thank the Department for the continued funding of this research. Special mention must be made to a valuable co-author who is no longer with us, Professor A. Bondeson, who was a significant pioneer in resistive wall mode (RWM) research. I would like to thank my wife, Mary, for her infinite patience and encouragement. Finally, I would like to personally thank all of you that have approached and congratulated me directly. There are no units to measure how important your words have been in this regard. When notified that our paper had been shortlisted for the 2009 Nuclear Fusion Award, my co-authors responded echoing how I felt—honored to be included in such a fine collection of research by colleagues. It was unfathomable—would this paper follow the brilliant work

  2. On the fusion triple product and fusion power gain of tokamak pilot plants and reactors

    Science.gov (United States)

    Costley, A. E.

    2016-06-01

    The energy confinement time of tokamak plasmas scales positively with plasma size and so it is generally expected that the fusion triple product, nTτ E, will also increase with size, and this has been part of the motivation for building devices of increasing size including ITER. Here n, T, and τ E are the ion density, ion temperature and energy confinement time respectively. However, tokamak plasmas are subject to operational limits and two important limits are a density limit and a beta limit. We show that when these limits are taken into account, nTτ E becomes almost independent of size; rather it depends mainly on the fusion power, P fus. In consequence, the fusion power gain, Q fus, a parameter closely linked to nTτ E is also independent of size. Hence, P fus and Q fus, two parameters of critical importance in reactor design, are actually tightly coupled. Further, we find that nTτ E is inversely dependent on the normalised beta, β N; an unexpected result that tends to favour lower power reactors. Our findings imply that the minimum power to achieve fusion reactor conditions is driven mainly by physics considerations, especially energy confinement, while the minimum device size is driven by technology and engineering considerations. Through dedicated R&D and parallel developments in other fields, the technology and engineering aspects are evolving in a direction to make smaller devices feasible.

  3. Fusion Simulation Program Execution Plan

    International Nuclear Information System (INIS)

    The overall science goal of the FSP is to develop predictive simulation capability for magnetically confined fusion plasmas at an unprecedented level of integration and fidelity. This will directly support and enable effective U.S. participation in research related to the International Thermonuclear Experimental Reactor (ITER) and the overall mission of delivering practical fusion energy. The FSP will address a rich set of scientific issues together with experimental programs, producing validated integrated physics results. This is very well aligned with the mission of the ITER Organization to coordinate with its members the integrated modeling and control of fusion plasmas, including benchmarking and validation activities. [1]. Initial FSP research will focus on two critical areas: 1) the plasma edge and 2) whole device modeling including disruption avoidance. The first of these problems involves the narrow plasma boundary layer and its complex interactions with the plasma core and the surrounding material wall. The second requires development of a computationally tractable, but comprehensive model that describes all equilibrium and dynamic processes at a sufficient level of detail to provide useful prediction of the temporal evolution of fusion plasma experiments. The initial driver for the whole device model (WDM) will be prediction and avoidance of discharge-terminating disruptions, especially at high performance, which are a critical impediment to successful operation of machines like ITER. If disruptions prove unable to be avoided, their associated dynamics and effects will be addressed in the next phase of the FSP. The FSP plan targets the needed modeling capabilities by developing Integrated Science Applications (ISAs) specific to their needs. The Pedestal-Boundary model will include boundary magnetic topology, cross-field transport of multi-species plasmas, parallel plasma transport, neutral transport, atomic physics and interactions with the plasma wall

  4. Fusion Programme SCK-CEN - Annual report 2009

    Energy Technology Data Exchange (ETDEWEB)

    Massaut, V.

    2009-10-15

    This report summarizes the Research and Development work carried out at SCK-CEN on fusion technology in the year 2009. This covers mostly the work done under the EFDA agreement as well as the new developments carried out within the so-called Broader Approach of fusion such as - studies on structural and first wall materials for ITER and DEMO - studies and testing on the radiation resistance of instruments and componenets for the diagnostic and remote handling - development of irradiation devices and systems for the testing of fusion materials under representative environment.

  5. Fusion Studies in Japan

    Science.gov (United States)

    Ogawa, Yuichi

    2016-05-01

    A new strategic energy plan decided by the Japanese Cabinet in 2014 strongly supports the steady promotion of nuclear fusion development activities, including the ITER project and the Broader Approach activities from the long-term viewpoint. Atomic Energy Commission (AEC) in Japan formulated the Third Phase Basic Program so as to promote an experimental fusion reactor project. In 2005 AEC has reviewed this Program, and discussed on selection and concentration among many projects of fusion reactor development. In addition to the promotion of ITER project, advanced tokamak research by JT-60SA, helical plasma experiment by LHD, FIREX project in laser fusion research and fusion engineering by IFMIF were highly prioritized. Although the basic concept is quite different between tokamak, helical and laser fusion researches, there exist a lot of common features such as plasma physics on 3-D magnetic geometry, high power heat load on plasma facing component and so on. Therefore, a synergetic scenario on fusion reactor development among various plasma confinement concepts would be important.

  6. Superconductivity and fusion energy—the inseparable companions

    Science.gov (United States)

    Bruzzone, Pierluigi

    2015-02-01

    Although superconductivity will never produce energy by itself, it plays an important role in energy-related applications both because of its saving potential (e.g., power transmission lines and generators), and its role as an enabling technology (e.g., for nuclear fusion energy). The superconducting magnet’s need for plasma confinement has been recognized since the early development of fusion devices. As long as the research and development of plasma burning was carried out on pulsed devices, the technology of superconducting fusion magnets was aimed at demonstrations of feasibility. In the latest generation of plasma devices, which are larger and have longer confinement times, the superconducting coils are a key enabling technology. The cost of a superconducting magnet system is a major portion of the overall cost of a fusion plant and deserves significant attention in the long-term planning of electricity supply; only cheap superconducting magnets will help fusion get to the energy market. In this paper, the technology challenges and design approaches for fusion magnets are briefly reviewed for past, present, and future projects, from the early superconducting tokamaks in the 1970s, to the current ITER (International Thermonuclear Experimental Reactor) and W7-X projects and future DEMO (Demonstration Reactor) projects. The associated cryogenic technology is also reviewed: 4.2 K helium baths, superfluid baths, forced-flow supercritical helium, and helium-free designs. Open issues and risk mitigation are discussed in terms of reliability, technology, and cost.

  7. Fusion research in Hungary

    International Nuclear Information System (INIS)

    Hungarian fusion research started in the 1970s, when the idea of installing a small tokamak experiment emerged. In return to computer equipment a soviet tokamak was indeed sent to Hungary and started to operate as MT-1 at the Central Research Institute for Physics (KFKI) in 1979. Major research topics included diagnostic development, edge plasma studies and investigation of disruptions. Following a major upgrade in 1992 (new vacuum vessel, active position control and PC network based data acquisition system) the MT-1M tokamak was used for the study of transport processes with trace impurity injection, micropellet ablation studies, X-ray tomography and laser blow-off diagnostic development. Although funding ceased in the middle of the 90's the group was held alive by collaborations with EU fusion labs: FZ -Juelich, IPP-Garching and CRPP-EPFL Lausanne. In 1998 the machine was dismantled due to reorganization of the Hungarian Academy of Sciences. New horizons opened to fusion research from 1999, when Hungary joined EURATOM and a fusion Association was formed. Since then fusion physics studies are done in collaboration with major EU fusion laboratories, Hungarian researchers also play an active role in JET diagnostics upgrade and ITER design. Major topics are pellet ablation studies, plasma turbulence diagnosis using Beam Emission Spectroscopy and other techniques, tomography and plasma diagnostics using various neutral beams. In fusion relevant technology R and D Hungary has less records. Before joining EURATOM some materials irradiation studies were done at the Budapest Research Reactor at KFKI-AEKI. The present day fusion technology programme focuses still on irradiation studies, nuclear material database and electromagnetic testing techniques. Increasing the fusion technology research activities is a difficult task, as the competition in Hungarian industry is very strong and the interest of organizations in long-term investments into R and D is rather weak and

  8. 24. IAEA Fusion Energy Conference. Programme and Book of Abstracts

    International Nuclear Information System (INIS)

    The International Atomic Energy Agency (IAEA) fosters the exchange of scientific and technical results in nuclear fusion research through its series of Fusion Energy Conferences. The 24th IAEA Fusion Energy Conference (FEC 2012) aims to provide a forum for the discussion of key physics and technology issues as well as innovative concepts of direct relevance to fusion as a source of nuclear energy. With a number of next-step fusion devices currently being implemented - such as the International Thermonuclear Experimental Reactor (ITER) in Cadarache, France, and the National Ignition Facility (NIF) in Livermore, USA - and in view of the concomitant need to demonstrate the technological feasibility of fusion power plants as well as the economical viability of this method of energy production, the fusion community is now facing new challenges. The resolution of these challenges will dictate research orientations in the present and coming decades. The scientific scope of FEC 2012 is, therefore, intended to reflect the priorities of this new era in fusion energy research. The conference aims to be a platform for sharing the results of research and development efforts in both national and international fusion experiments that have been shaped by these new priorities, and thereby help in pinpointing worldwide advances in fusion theory, experiments, technology, engineering, safety and socio-economics. Furthermore, the conference will also set these results against the backdrop of the requirements for a net energy producing fusion device and a fusion power plant in general, and will thus help in defining the way forward. With the participation of international organizations such as the ITER International Organization and EURATOM, as well as the collaboration of more than forty countries and several research institutes, including those working on smaller plasma devices, it is expected that this conference will, as in the past, serve to identify possibilities and means for a

  9. Control of Fusion and Solubility in Fusion Systems

    CERN Document Server

    Craven, David A

    2009-01-01

    In this article, we consider the control of fusion in fusion systems, proving three previously known, non-trivial results in a new, largely elementary way. We then reprove a result of Aschbacher, that the product of two strongly closed subgroups is strongly closed; to do this, we consolidate the theory of quotients of fusion systems into a consistent theory. We move on considering p-soluble fusion systems, and prove that they are constrained, allowing us to effectively characterize fusion systems of p-soluble groups. This leads us to recast Thompson Factorization for Qd(p)-free fusion systems, and consider Thompson Factorization for more general fusion systems.

  10. Remote sensing image fusion

    CERN Document Server

    Alparone, Luciano; Baronti, Stefano; Garzelli, Andrea

    2015-01-01

    A synthesis of more than ten years of experience, Remote Sensing Image Fusion covers methods specifically designed for remote sensing imagery. The authors supply a comprehensive classification system and rigorous mathematical description of advanced and state-of-the-art methods for pansharpening of multispectral images, fusion of hyperspectral and panchromatic images, and fusion of data from heterogeneous sensors such as optical and synthetic aperture radar (SAR) images and integration of thermal and visible/near-infrared images. They also explore new trends of signal/image processing, such as

  11. On Exotic Saturated Fusion Systems

    Institute of Scientific and Technical Information of China (English)

    Jun LIAO

    2016-01-01

    In this paper, we prove that a product F1 × F2 of saturated fusion systems is exotic if and only if at least one of the factors is exotic. This result provides a method to construct new exotic fusion systems by known exotic fusion systems. We also investigate central products of saturated fusion systems.

  12. Fusion Systems for Profinite Groups

    OpenAIRE

    Stancu, Radu; Symonds, Peter

    2012-01-01

    We introduce the notion of a pro-fusion system on a pro-p group, which generalizes the notion of a fusion system on a finite p-group. We also prove a version of Alperin's Fusion Theorem for pro-fusion systems.

  13. Fusion Energy Division progress report, January 1, 1992--December 31, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Sheffield, J.; Baker, C.C.; Saltmarsh, M.J.; Shannon, T.E.

    1995-09-01

    The report covers all elements of the ORNL Fusion Program, including those implemented outside the division. Non-fusion work within FED, much of which is based on the application of fusion technologies and techniques, is also discussed. The ORNL Fusion Program includes research and development in most areas of magnetic fusion research. The program is directed toward the development of fusion as an energy source and is a strong and vital component of both the US and international fusion efforts. The research discussed in this report includes: experimental and theoretical research on magnetic confinement concepts; engineering and physics of existing and planned devices; development and testing of plasma diagnostic tools and techniques; assembly and distribution of databases on atomic physics and radiation effects; development and testing of technologies for heating and fueling fusion plasmas; and development and testing of materials for fusion devices. The activities involving the use of fusion technologies and expertise for non-fusion applications ranged from semiconductor manufacturing to environmental management.

  14. Fusion Energy Division progress report, January 1, 1992--December 31, 1994

    International Nuclear Information System (INIS)

    The report covers all elements of the ORNL Fusion Program, including those implemented outside the division. Non-fusion work within FED, much of which is based on the application of fusion technologies and techniques, is also discussed. The ORNL Fusion Program includes research and development in most areas of magnetic fusion research. The program is directed toward the development of fusion as an energy source and is a strong and vital component of both the US and international fusion efforts. The research discussed in this report includes: experimental and theoretical research on magnetic confinement concepts; engineering and physics of existing and planned devices; development and testing of plasma diagnostic tools and techniques; assembly and distribution of databases on atomic physics and radiation effects; development and testing of technologies for heating and fueling fusion plasmas; and development and testing of materials for fusion devices. The activities involving the use of fusion technologies and expertise for non-fusion applications ranged from semiconductor manufacturing to environmental management

  15. Fusion technology programme

    International Nuclear Information System (INIS)

    KfK participates to the Fusion Technology Programme of the European Community. Most of the work in progress addresses the Next European Torus (NET) and the long term technology aspects as defined in the 82/86 programme. A minor part serves to preparation of future contributions and to design studies on fusion concepts in a wider perspective. The Fusion Technology Programme of Euratom covers mainly aspects of nuclear engineering. Plasma engineering, heating, refueling and vacuum technology are at present part of the Physics Programme. In view of NET, integration of the different areas of work will be mandatory. KfK is therefore prepared to address technical aspects beyond the actual scope of the physics experiments. The technology tasks are reported project wise under title and code of the Euratom programme. Most of the projects described here are shared with other European fusion laboratories as indicated in the table annexed to this report. (orig./GG)

  16. Cell fusions in mammals

    DEFF Research Database (Denmark)

    Larsson, Lars-Inge; Bjerregaard, Bolette; Talts, Jan Fredrik

    2008-01-01

    Cell fusions are important to fertilization, placentation, development of skeletal muscle and bone, calcium homeostasis and the immune defense system. Additionally, cell fusions participate in tissue repair and may be important to cancer development and progression. A large number of factors appear...... to regulate cell fusions, including receptors and ligands, membrane domain organizing proteins, proteases, signaling molecules and fusogenic proteins forming alpha-helical bundles that bring membranes close together. The syncytin family of proteins represent true fusogens and the founding member, syncytin-1......, has been documented to be involved in fusions between placental trophoblasts, between cancer cells and between cancer cells and host ells. We review the literature with emphasis on the syncytin family and propose that syncytins may represent universal fusogens in primates and rodents, which work...

  17. Label Fusion Strategy Selection

    Directory of Open Access Journals (Sweden)

    Nicolas Robitaille

    2012-01-01

    Full Text Available Label fusion is used in medical image segmentation to combine several different labels of the same entity into a single discrete label, potentially more accurate, with respect to the exact, sought segmentation, than the best input element. Using simulated data, we compared three existing label fusion techniques—STAPLE, Voting, and Shape-Based Averaging (SBA—and observed that none could be considered superior depending on the dissimilarity between the input elements. We thus developed an empirical, hybrid technique called SVS, which selects the most appropriate technique to apply based on this dissimilarity. We evaluated the label fusion strategies on two- and three-dimensional simulated data and showed that SVS is superior to any of the three existing methods examined. On real data, we used SVS to perform fusions of 10 segmentations of the hippocampus and amygdala in 78 subjects from the ICBM dataset. SVS selected SBA in almost all cases, which was the most appropriate method overall.

  18. Cold nuclear fusion

    Directory of Open Access Journals (Sweden)

    Huang Zhenqiang Huang Yuxiang

    2013-10-01

    Full Text Available In normal temperature condition, the nuclear force constraint inertial guidance method, realize the combination of deuterium and tritium, helium and lithium... And with a magnetic moment of light nuclei controlled cold nuclear collide fusion, belongs to the nuclear energy research and development in the field of applied technology "cold nuclear collide fusion". According to the similarity of the nuclear force constraint inertial guidance system, the different velocity and energy of the ion beam mixing control, developed ion speed dc transformer, it is cold nuclear fusion collide, issue of motivation and the nuclear power plant start-up fusion and power transfer system of the important equipment, so the merger to apply for a patent

  19. Optical Fiber Fusion Splicing

    CERN Document Server

    Yablon, Andrew D

    2005-01-01

    This book is an up-to-date treatment of optical fiber fusion splicing incorporating all the recent innovations in the field. It provides a toolbox of general strategies and specific techniques that the reader can apply when optimizing fusion splices between novel fibers. It specifically addresses considerations important for fusion splicing of contemporary specialty fibers including dispersion compensating fiber, erbium-doped gain fiber, polarization maintaining fiber, and microstructured fiber. Finally, it discusses the future of optical fiber fusion splicing including silica and non-silica based optical fibers as well as the trend toward increasing automation. Whilst serving as a self-contained reference work, abundant citations from the technical literature will enable readers to readily locate primary sources.

  20. Fusion Revisits CERN

    CERN Multimedia

    2001-01-01

    It's going to be a hot summer at CERN. At least in the Main Building, where from 13 July to 20 August an exhibition is being hosted on nuclear fusion, the energy of the Stars. Nuclear fusion is the engine driving the stars but also a potential source of energy for mankind. The exhibition shows the different nuclear fusion techniques and research carried out on the subject in Europe. Inaugurated at CERN in 1993, following collaboration between Lausanne's CRPP-EPFL and CERN, with input from Alessandro Pascolini of Italy's INFN, this exhibition has travelled round Europe before being revamped and returning to CERN. 'Fusion, Energy of the Stars', from 13 July onwards, Main Building

  1. Fusion plasma physics

    CERN Document Server

    Stacey, Weston M

    2012-01-01

    This revised and enlarged second edition of the popular textbook and reference contains comprehensive treatments of both the established foundations of magnetic fusion plasma physics and of the newly developing areas of active research. It concludes with a look ahead to fusion power reactors of the future. The well-established topics of fusion plasma physics -- basic plasma phenomena, Coulomb scattering, drifts of charged particles in magnetic and electric fields, plasma confinement by magnetic fields, kinetic and fluid collective plasma theories, plasma equilibria and flux surface geometry, plasma waves and instabilities, classical and neoclassical transport, plasma-materials interactions, radiation, etc. -- are fully developed from first principles through to the computational models employed in modern plasma physics. The new and emerging topics of fusion plasma physics research -- fluctuation-driven plasma transport and gyrokinetic/gyrofluid computational methodology, the physics of the divertor, neutral ...

  2. Fusion technology development

    International Nuclear Information System (INIS)

    This report includes information on the following chapters: (1) conceptual design studies, (2) magnetics, (3) plasma heating, fueling, and exhaust, (4) materials for fusion reactors, (5) alternate applications, and (6) environment and safety

  3. Fusion reactor materials

    International Nuclear Information System (INIS)

    This is the fifteenth in a series of semiannual technical progress reports on fusion reactor materials. This report combines research and development activities which were previously reported separately in the following progress reports: Alloy Development for Irradiation Performance; Damage Analysis and Fundamental Studies; Special purpose Materials. These activities are concerned principally with the effects of the neutronic and chemical environment on the properties and performance of reactor materials; together they form one element of the overall materials programs being conducted in support of the Magnetic Fusion Energy Program of the U.S. Department of Energy. The Fusion Reactor Materials Program is a national effort involving several national laboratories, universities, and industries. The purpose of this series of reports is to provide a working technical record for the use of the program participants, and to provide a means of communicating the efforts of materials scientists to the rest of the fusion community, both nationally and worldwide

  4. Fusion technology (FT)

    International Nuclear Information System (INIS)

    The annual report of tha fusion technology (FT) working group discusses the projects carried out by the participating institutes in the fields of 1) fuel injection and plasma heating, 2) magnetic field technology, and 3) systems investigations. (HK)

  5. Research and development toward realization of nuclear fusion power

    International Nuclear Information System (INIS)

    At National Institute for Fusion Science (NIFS), a part of National Institutes of Natural Sciences (NINS), conducts fundamental research of nuclear fusion power, which can generate energy from seawater. The research is centered on three main projects: (1) Large Helical Device (LHD) experiments, (2) computational simulations for experimental reactors, and (3) nuclear fusion engineering. This article introduces the basic principle of nuclear fusion power and the technologies that have been developed up to now, and then discusses future prospects. At first, in order to explain why human beings needs nuclear fusion power, the advantages of nuclear fusion power are described in comparison with other energy sources in terms of energy demand, available resources, carbon dioxide emission, and so on. Then, the current technological status of Helical method, which is being developed at our institute, and Tokamak method and other methods, which are being developed worldwide, as well as the reaction conditions for nuclear fusion are introduced. Furthermore, the future possibilities of nuclear fusion power mainly with Helical method but also with Tokamak method, as well as the outlook for the establishment of prototype reactor are discussed. (S.K.)

  6. Fusion research in India

    International Nuclear Information System (INIS)

    The economic growth of our country demands a rapid increase in the energy output. Fusion is one such alternate clean source of energy to contribute in the energy mix towards the second half of the century, with a virtually inexhaustible fuel supply. The environmental impact of fusion would be acceptable and relatively safe. These advantages have driven the world fusion research programme since its inception. Till a pure fusion energy source is available, it is worthwhile to develop it for the benefit of conventional fission fuel preparation and other various usages. Indian National Fusion Programme was initiated by indigenously developing the first Indian Tokamak, ADITYA, successfully commissioned in 1989 and has been generating interesting scientific results on various topics. The next major program at Institute for Plasma Research (IPR) has been to construct a Steady State Superconducting Tokamak (SST-1) by mix of import and indigenous development. After successful engineering validation of the subsystems in integrated operations, successful machine operation has been continued. Since then, the machine has been upgraded with a graphite first wall. As a strategy towards leapfrogging to save time, IPR and Department of Atomic Energy (DAE) decided on India’s participation in the International Thermonuclear Experimental Reactor (ITER) as a full partner, unique features of which will be its ability to operate for long durations and at power levels ∼500 MW sufficient to demonstrate the physics of burning plasma in a power plant like environment. It will also serve as a test-bed for additional fusion power plant technologies. To accelerate the domestic fusion research programme with integration of knowledge gained from ITER, we would embark upon design of a smaller fusion machine which will use already available technologies to produce controlled fusion reactions and use it as an energetic neutron source for test of materials developed for future fusion reactors

  7. Economically competitive fusion

    Directory of Open Access Journals (Sweden)

    David J. Ward

    2008-12-01

    Full Text Available Not since the oil crisis of the 1970s has the perception that energy is a crucial and precious resource been as strong as it is today. The need for a new approach to world energy supply, driven by concerns over resources, pollution, and security, is leading to a reappraisal of fusion. Fusion has enormous potential and major safety and environmental advantages, and hence could make a large difference to energy supplies.

  8. Cold nuclear fusion

    OpenAIRE

    Huang Zhenqiang Huang Yuxiang

    2013-01-01

    In normal temperature condition, the nuclear force constraint inertial guidance method, realize the combination of deuterium and tritium, helium and lithium... And with a magnetic moment of light nuclei controlled cold nuclear collide fusion, belongs to the nuclear energy research and development in the field of applied technology "cold nuclear collide fusion". According to the similarity of the nuclear force constraint inertial guidance system, the different velocity and energy of the ion be...

  9. Economically competitive fusion

    OpenAIRE

    Ward, David J.; Dudarev, Sergei L.

    2008-01-01

    Not since the oil crisis of the 1970s has the perception that energy is a crucial and precious resource been as strong as it is today. The need for a new approach to world energy supply, driven by concerns over resources, pollution, and security, is leading to a reappraisal of fusion. Fusion has enormous potential and major safety and environmental advantages, and hence could make a large difference to energy supplies.

  10. Photovoltaic device

    Science.gov (United States)

    Reese, Jason A.; Keenihan, James R.; Gaston, Ryan S.; Kauffmann, Keith L.; Langmaid, Joseph A.; Lopez, Leonardo C.; Maak, Kevin D.; Mills, Michael E.; Ramesh, Narayan; Teli, Samar R.

    2015-06-02

    The present invention is premised upon an improved photovoltaic device ("PV device"), more particularly to an improved photovoltaic device with a multilayered photovoltaic cell assembly and a body portion joined at an interface region and including an intermediate layer, at least one interconnecting structural member, relieving feature, unique component geometry, or any combination thereof.

  11. Concentration device

    DEFF Research Database (Denmark)

    2013-01-01

    A concentration device (2) for filter filtration concentration of particles (4) from a volume of a fluid (6). The concentration device (2) comprises a filter (8) configured to filter particles (4) of a predefined size in the volume of the fluid (6). The concentration device (2) comprises...

  12. 22. IAEA fusion energy conference: 'Celebrating fifty years of fusion... entering into the burning plasma era'. Book of abstracts

    International Nuclear Information System (INIS)

    Recognizing the prominent global role of nuclear energy, and based on the expectation that nuclear fusion will be able to provide an abundant source of energy, the International Atomic Energy Agency (IAEA) supports the exchange of scientific and technical information on fusion research through conferences, meetings and projects. The 22nd IAEA Fusion Energy Conference (FEC 2008) provides a forum to present and discuss current progress and developments in fusion experiments, theory and technology. The second United Nations Conference on the Peaceful Uses of Atomic Energy, held in Geneva in 1958, proved to be an important event for fusion research. This conference featured the participation of 61 countries, with 21 countries exhibiting fusion devices, fission reactors, alternative concepts and models of nuclear power plants. For the first time the Soviet Union, the United Kingdom and the USA declassified their fusion research and shared their results and experience providing for a global awareness of the enormous challenges that nuclear fusion need to overcome in order to one day serve as a practically inexhaustible and clean energy source for the benefit of all humanity. Since then, remarkable progress in fusion research has been made, doubling the achieved fusion triple product every 1.8 years since the mid 1960s. The main goal for the future is to demonstrate that the energy released by the controlled thermonuclear fusion of deuterium and tritium will exceed the energy necessary to initiate and maintain the burning process. This is expected to be demonstrated by the International Thermonuclear Experimental Reactor (ITER) being built at Cadarache, France, as a joint venture between China, the European Union, India, Japan, the Republic of Korea, the Russian Federation and the USA. The study of the engineering requirements and the physics of the burning fusion plasma will lead to the first demonstration reactor for fusion. The worldwide effort in fusion has now

  13. Conference on Norwegian fusion research

    International Nuclear Information System (INIS)

    The question of instituting a systematic research programme in Norway on aspects of thermonuclear and plasma physics has been raised. The conference here reported was intended to provide basic information on the status of fusion research internationally and to discuss a possible Norwegian programme. The main contributions covered the present status of fusion research, international cooperation, fusion research in small countries and minor laboratories, fusion research in Denmark and Sweden, and a proposed fusion experiment in Bergen. (JIW)

  14. Perspectives of fusion power

    International Nuclear Information System (INIS)

    New and practically inexhaustible sources of energy must be developed for the period when oil, coal and uranium will become scarce and expensive. Nuclear fusion holds great promise as one of these practically inexhaustible energy sources. Based on the deuteriumtritium reaction with tritium obtained from naturally occuring lithium, which is also widely available in Europe, the accessible energy resources in the world are 3.1012 to 3.1016 toe; based on the deuterium-deuterium reaction, the deuterium content of the oceans corresponds to 1020 toe. It is presently envisaged that in order to establish fusion as a large-scale energy source, three major thresholds must be reached: - Scientific feasibility, - Technical feasibility, i.e. the proof that the basic technical problems of the fusion reactor can be solved. - Commercial feasibility, i.e. proof that fusion power reactors can be built on an industrial scale, can be operated reliably and produce usable energy at prices competitive with other energy sources. From the above it is clear that the route to commercial fusion will be long and costly and involve the solution of extremely difficult technical problems. In view of the many steps which have to be taken, it appears unlikely that commercial fusion power will be in general use within the next 50 years and by that time world-wide expenditure on research, development and demonstration may well have exceeded 100 Bio ECU. (author)

  15. Energy from inertial fusion

    International Nuclear Information System (INIS)

    This book contains 22 articles on inertial fusion energy (IFE) research and development written in the framework of an international collaboration of authors under the guidance of an advisory group on inertial fusion energy set up in 1991 to advise the IAEA. It describes the actual scientific, engineering and technological developments in the field of inertial confinement fusion (ICF). It also identifies ways in which international co-operation in ICF could be stimulated. The book is intended for a large audience and provides an introduction to inertial fusion energy and an overview of the various technologies needed for IFE power plants to be developed. It contains chapters on (i) the fundamentals of IFE; (ii) inertial confinement target physics; (iii) IFE power plant design principles (requirements for power plant drivers, solid state laser drivers, gas laser drivers, heavy ion drivers, and light ion drivers, target fabrication and positioning, reaction chamber systems, power generation and conditioning and radiation control, materials management and target materials recovery), (iv) special design issues (radiation damage in structural materials, induced radioactivity, laser driver- reaction chamber interfaces, ion beam driver-reaction chamber interfaces), (v) inertial fusion energy development strategy, (vi) safety and environmental impact, (vii) economics and other figures of merit; (viii) other uses of inertial fusion (both those involving and not involving implosions); and (ix) international activities. Refs, figs and tabs

  16. Fusion Technology for ITER, the ITER Project. Further Development Towards a DEMO Fusion Power Plant (3/4)

    CERN Document Server

    CERN. Geneva

    2011-01-01

    This is the second half of a lecture series on fusion and will concentrate on fusion technology. The early phase of fusion development was concentrated on physics. However, during the 1980s it was realized that if one wanted to enter the area of fusion reactor plasmas, even in an experimental machine, a significant advance in fusion technologies would be needed. After several conceptual studies of reactor class fusion devices in the 1980s the engineering design phase of ITER started in earnest during the 1990s. The design team was in the beginning confronted with many challenges in the fusion technology area as well as in physics for which no readily available solution existed and in a few cases it was thought that solutions may be impossible to find. However, after the initial 3 years of intensive design and R&D work in an international framework utilizing basic fusion technology R&D from the previous decade it became clear that for all problems a conceptual solution could be found and further devel...

  17. Genetically modified mesenchymal stem cells induce mechanically stable posterior spine fusion

    OpenAIRE

    Sheyn, D; Rüthemann, M; Mizrahi, O; Kallai, I; Zilberman, Y.; Tawackoli, W; Kanim, L E A; Zhao, L; Bae, H; Pelled, G.; Snedeker, J G; Gazit, D.

    2010-01-01

    Most spine fusion procedures involve the use of prosthetic fixation devices combined with autologous bone grafts rather than biological treatment. We had shown that spine fusion could be achieved by injection of bone morphogenetic protein-2 (BMP-2)-expressing mesenchymal stem cells (MSCs) into the paraspinal muscle. In this study, we hypothesized that posterior spinal fusion achieved using genetically modified MSCs would be mechanically comparable to that realized using a mechanical fixation....

  18. Advanced fusion reactor

    Energy Technology Data Exchange (ETDEWEB)

    Tomita, Yukihiro [National Inst. for Fusion Science, Toki, Gifu (Japan)

    2003-04-01

    The main subjects on fusion research are now on D-T fueled fusion, mainly due to its high fusion reaction rate. However, many issues are still remained on the wall loading by the 14 MeV neutrons. In the case of D-D fueled fusion, the neutron wall loading is still remained, though the technology related to tritium breeding is not needed. The p-{sup 6}Li and p-{sup 11}B fueled fusions are not estimated to be the next generation candidate until the innovated plasma confinement technologies come in useful to achieve the high performance plasma parameters. The fusion reactor of D-{sup 3}He fuels has merits on the smaller neutron wall loading and tritium handling. However, there are difficulties on achieving the high temperature plasma more than 100 keV. Furthermore the high beta plasma is needed to decrease synchrotron radiation loss. In addition, the efficiency of the direct energy conversion from protons coming out from fusion reaction is one of the key parameters in keeping overall power balance. Therefore, open magnetic filed lines should surround the plasma column. In this paper, we outlined the design of the commercial base reactor (ARTEMIS) of 1 GW electric output power configured by D-{sup 3}He fueled FRC (Field Reversed Configuration). The ARTEMIS needs 64 kg of {sup 3}He per a year. On the other hand, 1 million tons of {sup 3}He is estimated to be in the moon. The {sup 3}He of about 10{sup 23} kg are to exist in gaseous planets such as Jupiter and Saturn. (Y. Tanaka)

  19. Academic Training: New Trends in Fusion Research

    CERN Document Server

    Françoise Benz

    2004-01-01

    11, 12 and 13 October 2004-2005 ACADEMIC TRAINING PROGRAMME LECTURE SERIES 11 October from 11.00 to 12.00 hrs, 12 and 13 October from 10.00 to 12.00 hrs - 11 and 12 October in the Main Auditorium, bldg. 500, 13 October in the Theory Conference Room, bldg. 4 New Trends in Fusion Research A. FASOLI / EPFL, Lausanne, CH The efforts of the international fusion community aim at demonstrating the scientific feasibility of thermonuclear fusion energy power plants. Understanding the behavior of burning plasmas, i.e. plasmas with strong self-heating, represents a primary scientific challenge for fusion research and a new science frontier. Although integrated studies will only be possible, in new, dedicated experimental facilities, such as the International Tokamak Experimental Reactor (ITER), present devices can address specific issues in regimes relevant to burning plasmas. Among these are an improvement of plasma performance via a reduction of the energy and particle transport, an optimization of the path to i...

  20. Academic Training: New Trends in Fusion Research

    CERN Document Server

    Françoise Benz

    2004-01-01

    11, 12 and 13 October 2004-2005 ACADEMIC TRAINING PROGRAMME LECTURE SERIES 11 October from 11.00 to 12.00 hrs, 12 and 13 October from 10.00 to 12.00 hrs - 11 and 12 October in the Main Auditorium, bldg. 500, 13 October in the TH Amphitheatre New Trends in Fusion Research A. FASOLI / EPFL, Lausanne, CH The efforts of the international fusion community aim at demonstrating the scientific feasibility of thermonuclear fusion energy power plants. Understanding the behavior of burning plasmas, i.e. plasmas with strong self-heating, represents a primary scientific challenge for fusion research and a new science frontier. Although integrated studies will only be possible, in new, dedicated experimental facilities, such as the International Tokamak Experimental Reactor (ITER), present devices can address specific issues in regimes relevant to burning plasmas. Among these are an improvement of plasma performance via a reduction of the energy and particle transport, an optimization of the path to ignition or to su...

  1. Cost Accounting System for fusion studies

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, W.R.; Keeton, D.C.; Thomson, S.L.

    1985-12-01

    A Cost Accounting System that is applicable to all magnetic fusion reactor design studies has been developed. This system provides: (1) definitions of the elements of cost and methods for the combination of these elements to form a cost estimate; (2) a Code of Accounts that uses a functional arrangement for identification of the plant components; and (3) definitions and methods to analyze actual cost data so that the data can be directly reported into this Cost Accounting System. The purpose of the Cost Accounting System is to provide the structure for the development of a fusion cost data base and for the development of validated cost estimating procedures. This system has been developed through use at the Fusion Engineering Design Center (FEDC) and has been applied to different confinement concepts (tokamaks and tandem mirrors) and to different types of projects (experimental devices and commercial power plants). The use of this Cost Accounting System by all magnetic fusion projects will promote the development of a common cost data base, allow the direct comparison of cost estimates, and ultimately establish the cost credibility of the program.

  2. Cost Accounting System for fusion studies

    International Nuclear Information System (INIS)

    A Cost Accounting System that is applicable to all magnetic fusion reactor design studies has been developed. This system provides: (1) definitions of the elements of cost and methods for the combination of these elements to form a cost estimate; (2) a Code of Accounts that uses a functional arrangement for identification of the plant components; and (3) definitions and methods to analyze actual cost data so that the data can be directly reported into this Cost Accounting System. The purpose of the Cost Accounting System is to provide the structure for the development of a fusion cost data base and for the development of validated cost estimating procedures. This system has been developed through use at the Fusion Engineering Design Center (FEDC) and has been applied to different confinement concepts (tokamaks and tandem mirrors) and to different types of projects (experimental devices and commercial power plants). The use of this Cost Accounting System by all magnetic fusion projects will promote the development of a common cost data base, allow the direct comparison of cost estimates, and ultimately establish the cost credibility of the program

  3. Development of an in-situ diagnostic for the measurement of the hydrogen content of amorphous hydrocarbon layers in fusion devices; Entwicklung einer In-situ-Messmethode zur Bestimmung des Wasserstoffgehalts amorpher Kohlenwasserstoffschichten in Fusionsanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Irrek, F.

    2008-07-15

    A diagnostic method, the laser-induced thermal desorption spectroscopy (LDS), is developed to measure in situ the hydrogen inventory in the surface of plasma-facing components in fusion experiments. Its capabilities will be demonstrated in TEXTOR. In LDS, during the plasma discharge a laser beam is used to heat a spot on a surface close to the plasma to a temperature of 1400 to 2100 K to a depth of 100 {mu}m. Trapped hydrogen will be released into the plasma where it emits line radiation. The emitted H{sub a}-light is quantitatively measured. The amount of released hydrogen is calculated from the intensity of this emission using conversion factors (S/XB){sub eff}. The laser light (Nd:YAG, 1064 nm) is conducted via light fibres. At TEXTOR, a 5 mm{sup 2} sized homogeneous laser spot is created with a pulse duration of 1.5 ms, and an Energy of 5 J, typically. Below the laser spot a volume of at most 1 mm{sup 3} is desorbed. The generated temperature is calculated numerically and indirectly deduced from surface changings. Depending on the conditions during the layer formation the hydrogen content of the hydrocarbon layer will vary and different fractions of the released molecules (H{sub 2}, CH{sub 4}, C{sub 2}H{sub 4}) are created during the laser heating. The release of atomic hydrogen by laser desorption was not found. The emitted light is measured by means of narrow-band interference filters and a CCD-camera. The fraction of the light emission which lies outside the observation volume is estimated using simulations of the emission by the neutral gas transport Monte Carlo code EIRENE for each molecular fraction. Conversion factors (S/XB){sub eff} were measured in various reference plasmas (T{sub e}=22-30 eV, n{sub e}=1-11 x 10{sup 18} m{sup -3} and T{sub e}=50-74 eV, n{sub e}=1-5 x 10{sup 18} m{sup -3}) by desorbing prepared graphite samples which release a known amount of hydrogen with a known molecular distribution. LDS measurements were carried out in TEXTOR at

  4. Fusion power plant studies in Europe

    International Nuclear Information System (INIS)

    The European fusion programme is reactor oriented and it is aimed at the successive demonstration of the scientific, the technological and the economic feasibility of fusion power. For a reactor-oriented fusion development programme, it is essential to have a clear idea of the ultimate goal of the programme, namely a series of models of fusion power plants, in order to define the correct strategy and to assess the pertinence of the on-going activities. The European Power Plant Conceptual Study (PPCS) has been a study of conceptual designs for commercial fusion power plants. It focused on five power plant models, named PPCS A, B, AB, C and D, which are illustrative of a wider spectrum of possibilities. They are all based on the tokamak concept and they have approximately the same net electrical power output, 1500 MWe. These span a range from relatively near-term, based on limited technology and plasma physics extrapolations, to an advanced conception. All five PPCS plant models differ substantially from the models that formed the basis of earlier European studies. They also differ from one another, which lead to differences in economic performance and in the details of safety and environmental impacts. The main emphasis of the PPCS was on system integration. Systems analyses were used to produce self-consistent plant parameter sets with approximately optimal economic characteristics for all models. In the PPCS models, the favourable, inherent, features of fusion have been exploited to provide substantial safety and environmental advantages. The broad features of the safety and environmental conclusions of previous studies have been confirmed and demonstrated with increased confidence. The PPCS study highlighted the need for specific design and R and D activities, in addition to those already underway within the European long term R and D programme, as well as the need to clarify the concept of DEMO, the device that will bridge the gap between ITER and the first

  5. Fusion technology programme

    International Nuclear Information System (INIS)

    In 1982, KfK joined the fusion programme of EURATOM as a further association introducing its experience in nuclear technology. KfK closely cooperates with IPP Garching, the two institutions forming a research unit aiming at planning and realization of future development steps of fusion. KfK has combined its forces in the Nuclear Fusion Project (PKF) with participation of several KfK departments to the project tasks. Previous work of KfK in magnetic fusion has addressed mainly superconducting magnets, plasma heating by cluster ions and studies on structural materials. At present, emphasis of our work has concentrated increasingly on the nuclear part, i.e. the first wall and blanket structures and the elements of the tritium extraction and purification system. Associated to this component development are studies of remote maintenance and safety. Most of the actual work addresses NET, the next step to a demonstration of fusion feasibility. NET is supposed to follow JET, the operating plasma physics experiment of Euratom, on the 1990's. Detailed progress of the work in the past half year is described in this report. (orig./GG)

  6. Lateral Lumbar Interbody Fusion.

    Science.gov (United States)

    Pawar, Abhijit; Hughes, Alexander; Girardi, Federico; Sama, Andrew; Lebl, Darren; Cammisa, Frank

    2015-12-01

    The lateral lumbar interbody fusion (LLIF) is a relatively new technique that allows the surgeon to access the intervertebral space from a direct lateral approach either anterior to or through the psoas muscle. This approach provides an alternative to anterior lumbar interbody fusion with instrumentation, posterior lumbar interbody fusion, and transforaminal lumbar interbody fusion for anterior column support. LLIF is minimally invasive, safe, better structural support from the apophyseal ring, potential for coronal plane deformity correction, and indirect decompression, which have has made this technique popular. LLIF is currently being utilized for a variety of pathologies including but not limited to adult de novo lumbar scoliosis, central and foraminal stenosis, spondylolisthesis, and adjacent segment degeneration. Although early clinical outcomes have been good, the potential for significant neurological and vascular vertebral endplate complications exists. Nevertheless, LLIF is a promising technique with the potential to more effectively treat complex adult de novo scoliosis and achieve predictable fusion while avoiding the complications of traditional anterior surgery and posterior interbody techniques. PMID:26713134

  7. Fusion: Energy for the future

    International Nuclear Information System (INIS)

    Fusion, which occurs in the sun and the stars, is a process of transforming matter into energy. If we can harness the fusion process on Earth, it opens the way to assuring that future generations will not want for heat and electric power. The purpose of this booklet is to introduce the concept of fusion energy as a viable, environmentally sustainable energy source for the twenty-first century. The booklet presents the basic principles of fusion, the global research and development effort in fusion, and Canada's programs for fusion research and development

  8. Physics of magnetic confinement fusion

    OpenAIRE

    Wagner F

    2013-01-01

    Fusion is the energy source of the universe. The local conditions in the core of the Sun allow the transfer of mass into energy, which is finally released in the form of radiation. Technical fusion melts deuterons and tritons to helium releasing large amounts of energy per fusion process. Because of the conditions for fusion, which will be deduced, the fusion fuel is in the plasma state. Here we report on the confinement of fusion plasmas by magnetic fields. Different confinement concepts — t...

  9. Microfluidic Device

    Science.gov (United States)

    Tai, Yu-Chong (Inventor); Zheng, Siyang (Inventor); Lin, Jeffrey Chun-Hui (Inventor); Kasdan, Harvey L. (Inventor)

    2016-01-01

    Described herein are particular embodiments relating to a microfluidic device that may be utilized for cell sensing, counting, and/or sorting. Particular aspects relate to a microfabricated device that is capable of differentiating single cell types from dense cell populations. One particular embodiment relates a device and methods of using the same for sensing, counting, and/or sorting leukocytes from whole, undiluted blood samples.

  10. Alternate laser fusion drivers

    International Nuclear Information System (INIS)

    One objective of research on inertial confinement fusion is the development of a power generating system based on this concept. Realization of this goal will depend on the availability of a suitable laser or other system to drive the power plant. The primary laser systems used for laser fusion research, Nd3+: Glass and CO2, have characteristics which may preclude their use for this application. Glass lasers are presently perceived to be incapable of sufficiently high average power operation and the CO2 laser may be limited by and issues associated with target coupling. These general perceptions have encouraged a search for alternatives to the present systems. The search for new lasers has been directed generally towards shorter wavelengths; most of the new lasers discovered in the past few years have been in the visible and ultraviolet region of the spectrum. Virtually all of them have been advocated as the most promising candidate for a fusion driver at one time or another

  11. Fusion technology development plan

    International Nuclear Information System (INIS)

    This Fusion Technology Development Plan (FTDP) has been prepared to show how the technology development program conducted by the Division of Development and Technology of the Office of Fusion Energy supports the overall magnetic fusion energy program as delineated in the March 17, 1983, DOE testimony before the Energy Research and Production Subcommittee of the House Committee on Science and Technology. A first draft of this plan distributed for comment in November 1981. since that draft was prepared, changes in expectations for funding in the program have led us to develop a set of priorities based on critical technology issues. These critical issues and the priority ranking of technology development efforts was accomplished with help from each of the major program participants

  12. Sensor Data Fusion

    DEFF Research Database (Denmark)

    Plascencia, Alfredo; Stepán, Petr

    2006-01-01

    The main contribution of this paper is to present a sensor fusion approach to scene environment mapping as part of a Sensor Data Fusion (SDF) architecture. This approach involves combined sonar array with stereo vision readings.  Sonar readings are interpreted using probability density functions...... to the occupied and empty regions. Scale Invariant Feature Transform (SIFT) feature descriptors are interpreted using gaussian probabilistic error models. The use of occupancy grids is proposed for representing the sensor readings. The Bayesian estimation approach is applied to update the sonar array......  and the SIFT descriptors' uncertainty grids. The sensor fusion yields a significant reduction in the uncertainty of the occupancy grid compared to the individual sensor readings....

  13. Multibiometrics Belief Fusion

    CERN Document Server

    Kisku, Dakshina Ranjan; Gupta, Phalguni

    2010-01-01

    This paper proposes a multimodal biometric system through Gaussian Mixture Model (GMM) for face and ear biometrics with belief fusion of the estimated scores characterized by Gabor responses and the proposed fusion is accomplished by Dempster-Shafer (DS) decision theory. Face and ear images are convolved with Gabor wavelet filters to extracts spatially enhanced Gabor facial features and Gabor ear features. Further, GMM is applied to the high-dimensional Gabor face and Gabor ear responses separately for quantitive measurements. Expectation Maximization (EM) algorithm is used to estimate density parameters in GMM. This produces two sets of feature vectors which are then fused using Dempster-Shafer theory. Experiments are conducted on multimodal database containing face and ear images of 400 individuals. It is found that use of Gabor wavelet filters along with GMM and DS theory can provide robust and efficient multimodal fusion strategy.

  14. Fusion Reactor Materials

    Energy Technology Data Exchange (ETDEWEB)

    Decreton, M

    2002-04-01

    The objective of SCK-CEN's programme on fusion reactor materials is to contribute to the knowledge on the radiation-induced behaviour of fusion reactor materials and components as well as to help the international community in building the scientific and technical basis needed for the construction of the future reactor. Ongoing projects include: the study of the mechanical and chemical (corrosion) behaviour of structural materials under neutron irradiation and water coolant environment; the investigation of the characteristics of irradiated first wall material such as beryllium; investigations on the management of materials resulting from the dismantling of fusion reactors including waste disposal. Progress and achievements in these areas in 2001 are discussed.

  15. The Fusion of Point and Linear Objects in Navigation

    OpenAIRE

    Andrzej Banachowicz; Adam Wolski

    2013-01-01

    There are great many human activities where problems dealt with are based on data from a number of sources or where we lack certain data to solve a problem correctly. Such situations also occur in navigation, where we have to combine data from diverse navigational devices with archival data, including images. This article discusses a problem of the fusion of position data from shipboard devices with those retrieved from a hydrographic data base, the data being of varying accuracy. These consi...

  16. Quantitative Characterization of Phosphor Detector for Fusion Plasmas

    International Nuclear Information System (INIS)

    Experiments made to characterize phosphor screens with application as broadband radiation detectors, are described. Several radiation sources, covering the spectral range between the ultraviolet and X ray, were used. In addition, details are given of three original phosphor-screen-based detectors that were designed for use as broadband detectors in magnetically confined fusion devices. The first measurements obtained with these detectors in plasmas created in the TJ-II stellarator device are presented together with the analysis performed. (Author)

  17. Joint Multi-Focus Fusion and Bayer ImageRestoration

    Institute of Scientific and Technical Information of China (English)

    Ling Guo; Bin Yang; Chao Yang

    2015-01-01

    In this paper, a joint multifocus image fusion and Bayer pattern image restoration algorithm for raw images of single-sensor colorimaging devices is proposed. Different from traditional fusion schemes, the raw Bayer pattern images are fused before colorrestoration. Therefore, the Bayer image restoration operation is only performed one time. Thus, the proposed algorithm is moreefficient than traditional fusion schemes. In detail, a clarity measurement of Bayer pattern image is defined for raw Bayer patternimages, and the fusion operator is performed on superpixels which provide powerful grouping cues of local image feature. Theraw images are merged with refined weight map to get the fused Bayer pattern image, which is restored by the demosaicingalgorithm to get the full resolution color image. Experimental results demonstrate that the proposed algorithm can obtain betterfused results with more natural appearance and fewer artifacts than the traditional algorithms.

  18. Generalized Lawson Criteria for Inertial Confinement Fusion

    Energy Technology Data Exchange (ETDEWEB)

    Tipton, Robert E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-08-27

    The Lawson Criterion was proposed by John D. Lawson in 1955 as a general measure of the conditions necessary for a magnetic fusion device to reach thermonuclear ignition. Over the years, similar ignition criteria have been proposed which would be suitable for Inertial Confinement Fusion (ICF) designs. This paper will compare and contrast several ICF ignition criteria based on Lawson’s original ideas. Both analytical and numerical results will be presented which will demonstrate that although the various criteria differ in some details, they are closely related and perform similarly as ignition criteria. A simple approximation will also be presented which allows the inference of each ignition parameter directly from the measured data taken on most shots fired at the National Ignition Facility (NIF) with a minimum reliance on computer simulations. Evidence will be presented which indicates that the experimentally inferred ignition parameters on the best NIF shots are very close to the ignition threshold.

  19. Fusion bonding of silicon nitride surfaces

    DEFF Research Database (Denmark)

    Reck, Kasper; Østergaard, Christian; Thomsen, Erik Vilain;

    2011-01-01

    While silicon nitride surfaces are widely used in many micro electrical mechanical system devices, e.g. for chemical passivation, electrical isolation or environmental protection, studies on fusion bonding of two silicon nitride surfaces (Si3N4–Si3N4 bonding) are very few and highly application...... results on bonding of thin and thick Si3N4 layers. The new results include high temperature bonding without any pretreatment, along with improved bonding ability achieved by thermal oxidation and chemical pretreatment. The bonded wafers include both unprocessed and processed wafers with a total silicon...... nitride thickness of up to 440 nm. Measurements of bonding strength, void characterization, oxidation rate and surface roughness are also presented. Bonding strengths for stoichiometric low pressure chemical vapor deposition Si3N4–Si3N4 direct fusion bonding in excess of 2 J cm−2 are found...

  20. Advanced fusion concepts program

    International Nuclear Information System (INIS)

    While the prospects for the eventual development of a tokamak-based fusion reactor appear promising at the present time, the Department of Energy maintains a vigorous program in alternate magnetic fusion concepts. Several of the concepts presently supported include the toroidal reversed field pinch, Tormac, Elmo Bumpy Torus, and various linear options. Recent technical accomplishments and program evaluations indicate that the possibility now exists for undertaking the next development stage, a proof-of-principle experiment, for a few of the most promising alternate concepts

  1. Atomic data for fusion

    International Nuclear Information System (INIS)

    This report provides a handbook of recommended cross-section and rate-coefficient data for inelastic collisions between hydrogen, helium and lithium atoms, molecules and ions, and encompasses more than 400 different reactions of primary interest in fusion research. Published experimental and theoretical data have been collected and evaluated, and the recommended data are presented in tabular, graphical and parametrized form. Processes include excitation and spectral line emission, charge exchange, ionization, stripping, dissociation and particle interchange reactions. The range of collision energies is appropriate to applications in fusion-energy research

  2. Small mirror fusion reactors

    International Nuclear Information System (INIS)

    Basic requirements for the pilot plants are that they produce a net product and that they have a potential for commercial upgrade. We have investigated a small standard mirror fusion-fission hybrid, a two-component tandem mirror hybrid, and two versions of a field-reversed mirror fusion reactor--one a steady state, single cell reactor with a neutral beam-sustained plasma, the other a moving ring field-reversed mirror where the plasma passes through a reaction chamber with no energy addition

  3. Cold fusion in perspective

    International Nuclear Information System (INIS)

    Since early April a great deal of excitement has been created over the Fleischmann/Pons cold fusion experiment, which if it performs as advertised, could turn out to be mankind's best hope of heading off the energy crisis scheduled for early in the next century. Dozens of groups around the world are now attempting to duplicate the experiment to see if Fleischmann and Pons' discovery is an experimental mistake, an unknown electrochemical effect or a new kind of fusion reaction. This article puts the experiment into the perspective of today and looks at how it might affect the energy scene tomorrow if it should turn out to be commercially exploitable. (author)

  4. The European Fusion Programme

    International Nuclear Information System (INIS)

    The European Fusion Programme is coordinated by Euratom and represents a long term cooperative project of Member States of the European Communities in the field of fusion, designed to lead to the joint construction of prototypes. The main lines of the programme proposed for 1982 to 1986 are: (1) the continuation of a strong effort on tokamaks with emphasis on JET construction, operation and upgrading, (2) conceptual design of NET and development of the related technology, and (3) further work on two alternative magnetic confinement systems. The current status and future plans for this programme are discussed in the paper. (author)

  5. Fusiones transfronterizas intracomunitarias

    OpenAIRE

    Garcia Wintzer, Laura

    2015-01-01

    A lo largo de este trabajo llevará a cabo un estudio sobre las fusiones transfronterizas intracomunitarias. Dado que es una figura relativamente nueva en el ordenamiento jurídico, tanto a nivel español como europeo, se ha considerado oportuno estudiar dicha operación desde diferentes perspectivas. La elección de las fusiones transfronterizas intracomunitarias como objeto de es-tudio viene a partir de la valoración de las diferentes modificaciones estructurales existentes en el ámbito mercanti...

  6. Atomic data for fusion

    Energy Technology Data Exchange (ETDEWEB)

    Hunter, H.T.; Kirkpatrick, M.I.; Alvarez, I.; Cisneros, C.; Phaneuf, R.A. (eds.); Barnett, C.F.

    1990-07-01

    This report provides a handbook of recommended cross-section and rate-coefficient data for inelastic collisions between hydrogen, helium and lithium atoms, molecules and ions, and encompasses more than 400 different reactions of primary interest in fusion research. Published experimental and theoretical data have been collected and evaluated, and the recommended data are presented in tabular, graphical and parametrized form. Processes include excitation and spectral line emission, charge exchange, ionization, stripping, dissociation and particle interchange reactions. The range of collision energies is appropriate to applications in fusion-energy research.

  7. Fusion Reactor Materials

    Energy Technology Data Exchange (ETDEWEB)

    Decreton, M

    2000-07-01

    SCK-CEN's research and development programme on fusion reactor materials includes: (1) the study of the mechanical behaviour of structural materials under neutron irradiation (including steels, inconel, molybdenum, chromium); (2) the determination and modelling of the characteristics of irradiated first wall materials such as beryllium; (3) the detection of abrupt electrical degradation of insulating ceramics under high temperature and neutron irradiation; (4) the study of the dismantling and waste disposal strategy for fusion reactors.; (5) a feasibility study for the testing of blanket modules under neutron radiation. Main achievements in these topical areas in the year 1999 are summarised.

  8. Implication des peptides de fusion des glycoprotéines de fusion virales de classe I dans la fusion membranaire

    OpenAIRE

    Brasseur R.; Charloteaux B.; Lins L.; Lorin A.

    2007-01-01

    The implication of fusion peptides of class I viral fusion glycoproteins in the membrane fusion. Viral infection involves fusion between the viral envelope and the target cell plasmic membrane. The fusion is induced by a glycoprotein anchored in the viral envelope. After activation, the glycoprotein undergoes a conformational change inducing the exposure of a region named « fusion peptide » essential for the fusion process. Studies on glycoproteins and on isolated fusion peptides have allowed...

  9. Service-oriented architecture of adaptive, intelligent data acquisition and processing systems for long-pulse fusion experiments

    International Nuclear Information System (INIS)

    The data acquisition systems used in long-pulse fusion experiments need to implement data reduction and pattern recognition algorithms in real time. In order to accomplish these operations, it is essential to employ software tools that allow for hot swap capabilities throughout the temporal evolution of the experiments. This is very important because processing needs are not equal during different phases of the experiment. The intelligent test and measurement system (ITMS) developed by UPM and CIEMAT is an example of a technology for implementing scalable data acquisition and processing systems based on PXI and CompactPCI hardware. In the ITMS platform, a set of software tools allows the user to define the processing algorithms associated with the different experimental phases using state machines driven by software events. These state machines are specified using the State Chart XML (SCXML) language. The software tools are developed using JAVA, JINI, an SCXML engine and several LabVIEW applications. Within this schema, it is possible to execute data acquisition and processing applications in an adaptive way. The power of SCXML semantics and the ability to work with XML user-defined data types allow for very easy programming of the ITMS platform. With this approach, the ITMS platform is a suitable solution for implementing scalable data acquisition and processing systems based on a service-oriented model with the ability to easily implement remote participation applications.

  10. Services oriented architecture for adaptive and intelligent data acquisition and processing systems in long pulse fusion experiments

    International Nuclear Information System (INIS)

    Data acquisition systems used in long pulse fusion experiments require to implement data reduction and pattern recognition algorithms in real time. In order to accomplish these operations is essential to dispose software tools that allow hot swap capabilities throughout the temporal evolution of the experiments. This is very important because the processing needs are not equal in the different experiment's phases. The intelligent test and measurement system (ITMS) developed by UPM and CIEMAT is an example of technology for implementing scalable data acquisition and processing systems based in PXI and compact PCI hardware. In the ITMS platform a set of software tools allows the user to define the processing associated with the different experiment's phases using state machines driven by software events. These state machines are specified using State Chart XML (SCXML) language. The software tools are developed using: JAVA, JINI, a SCXML engine and several LabVIEW applications. With this schema it is possible to execute data acquisition and processing applications in an adaptive way. The powerful of SCXML semantics and the possibility of to work with XML user defined data types allow a very easy programming of ITMS platform. With this approach ITMS platform is a suitable solution for implementing scalable data acquisition and processing systems, based in a services oriented model, with ease possibility for implement remote participation applications. (authors)

  11. Service-oriented architecture of adaptive, intelligent data acquisition and processing systems for long-pulse fusion experiments

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, J. [Grupo de Investigacion en Instrumentacion y Acustica Aplicada. Universidad Politecnica de Madrid, Crta. Valencia Km-7 Madrid 28031 (Spain); Ruiz, M., E-mail: mariano.ruiz@upm.e [Grupo de Investigacion en Instrumentacion y Acustica Aplicada. Universidad Politecnica de Madrid, Crta. Valencia Km-7 Madrid 28031 (Spain); Barrera, E.; Lopez, J.M.; Arcas, G. de [Grupo de Investigacion en Instrumentacion y Acustica Aplicada. Universidad Politecnica de Madrid, Crta. Valencia Km-7 Madrid 28031 (Spain); Vega, J. [Asociacion EURATOM/CIEMAT para Fusion, Madrid (Spain)

    2010-07-15

    The data acquisition systems used in long-pulse fusion experiments need to implement data reduction and pattern recognition algorithms in real time. In order to accomplish these operations, it is essential to employ software tools that allow for hot swap capabilities throughout the temporal evolution of the experiments. This is very important because processing needs are not equal during different phases of the experiment. The intelligent test and measurement system (ITMS) developed by UPM and CIEMAT is an example of a technology for implementing scalable data acquisition and processing systems based on PXI and CompactPCI hardware. In the ITMS platform, a set of software tools allows the user to define the processing algorithms associated with the different experimental phases using state machines driven by software events. These state machines are specified using the State Chart XML (SCXML) language. The software tools are developed using JAVA, JINI, an SCXML engine and several LabVIEW applications. Within this schema, it is possible to execute data acquisition and processing applications in an adaptive way. The power of SCXML semantics and the ability to work with XML user-defined data types allow for very easy programming of the ITMS platform. With this approach, the ITMS platform is a suitable solution for implementing scalable data acquisition and processing systems based on a service-oriented model with the ability to easily implement remote participation applications.

  12. Quantitative Characterization of Phosphor Detector for Fusion Plasmas; Caracterizacion Cuantitativa de Detectores Luminiscentes para Plasmas de Fusion

    Energy Technology Data Exchange (ETDEWEB)

    Baciero, A.; Zurro, B.; McCarthy, K. J.

    2004-07-01

    Experiments made to characterize phosphor screens with application as broadband radiation detectors, are described. Several radiation sources, covering the spectral range between the ultraviolet and X ray, were used. In addition, details are given of three original phosphor-screen-based detectors that were designed for use as broadband detectors in magnetically confined fusion devices. The first measurements obtained with these detectors in plasmas created in the TJ-II stellarator device are presented together with the analysis performed. (Author)

  13. Drivers for light ion fusion

    International Nuclear Information System (INIS)

    The light ion approach to inertial confinement fusion requires the production of 1013 to 1014 watt and 106 to 107 joule pulses. The accelerator technology developed in the particle beam fusion program is capable of fulfilling these requirements

  14. Accelerator and fusion research division

    International Nuclear Information System (INIS)

    This report contains brief discussions on research topics in the following area: Heavy-Ion Fusion Accelerator Research; Magnetic Fusion Energy; Advanced Light Source; Center for Beam Physics; Superconducting Magnets; and Bevalac Operations

  15. Fusion in the energy system

    DEFF Research Database (Denmark)

    Fusion energy is the fundamental energy source of the Universe, as the energy of the Sun and the stars are produced by fusion of e.g. hydrogen to helium. Fusion energy research is a strongly international endeavor aiming at realizing fusion energy production in power plants on Earth. Reaching...... this goal, mankind will have a sustainable base load energy source with abundant resources, having no CO2 release, and with no longlived radioactive waste. This presentation will describe the basics of fusion energy production and the status and future prospects of the research. Considerations...... of integration into the future electricity system and socio-economic studies of fusion energy will be presented, referring to the programme of Socio-Economic Research on Fusion (SERF) under the European Fusion Energy Agreement (EFDA)....

  16. Multisensor data fusion algorithm development

    Energy Technology Data Exchange (ETDEWEB)

    Yocky, D.A.; Chadwick, M.D.; Goudy, S.P.; Johnson, D.K.

    1995-12-01

    This report presents a two-year LDRD research effort into multisensor data fusion. We approached the problem by addressing the available types of data, preprocessing that data, and developing fusion algorithms using that data. The report reflects these three distinct areas. First, the possible data sets for fusion are identified. Second, automated registration techniques for imagery data are analyzed. Third, two fusion techniques are presented. The first fusion algorithm is based on the two-dimensional discrete wavelet transform. Using test images, the wavelet algorithm is compared against intensity modulation and intensity-hue-saturation image fusion algorithms that are available in commercial software. The wavelet approach outperforms the other two fusion techniques by preserving spectral/spatial information more precisely. The wavelet fusion algorithm was also applied to Landsat Thematic Mapper and SPOT panchromatic imagery data. The second algorithm is based on a linear-regression technique. We analyzed the technique using the same Landsat and SPOT data.

  17. Extreme Lateral Interbody Fusion Procedure

    Medline Plus

    Full Text Available ... for spine surgery called XLIF, extreme lateral interbody fusion. Dr. Juan Uribe will perform the procedure. Dr. ... A better term would be extreme lateral interbody fusion. This is a procedure that has been performed ...

  18. Tokamak Fusion Test Reactor. Final conceptual design report

    International Nuclear Information System (INIS)

    The TFTR is the first U.S. magnetic confinement device planned to demonstrate the fusion of D-T at reactor power levels. This report addresses the physics objectives and the engineering goals of the TFTR project. Technical, cost, and schedule aspects of the project are included

  19. Application of coincidence techniques to fusion product measurements

    International Nuclear Information System (INIS)

    Measurement of two products of a fusion reaction in coincidence is proposed. Possible detector arrays and sample count rates have been evaluated for reactions in the TFR and TEXT tokamaks and in the TFTR neutral beamlines. The count rates indicate that this method is feasible on existing devices

  20. Simulation science for fusion plasmas

    OpenAIRE

    Sudo, S.; Skoric, M.M.; Watanabe, T-H.; Todo, Y.; Ishizawa, A.; Miura, H; Ito, A; Ohtani, H.; Usami, S.; Nakamura, H; ITO, Atsushi; Ishiguro, S.; Tomita, Y.; Takayama, A.; M. Sato

    2008-01-01

    The world fusion effort has embarked into a new age with the construction of ITER in Cadarache, France, which will be the first magnetic confinement fusion plasma experiment dominated by the self-heating of fusion reactions. In order to operate and control burning plasmas and next generation demo fusion reactors, an advanced capability for comprehensive integrated computer simulations that are fully verified and validated against experimental data will be necessary. The ultimate goal is to pr...

  1. Fusion in the energy system

    OpenAIRE

    Grohnheit, Poul Erik

    2009-01-01

    Fusion energy is the fundamental energy source of the Universe, as the energy of the Sun and the stars are produced by fusion of e.g. hydrogen to helium. Fusion energy research is a strongly international endeavor aiming at realizing fusion energy production in power plants on Earth. Reaching this goal, mankind will have a sustainable base load energy source with abundant resources, having no CO2 release, and with no longlived radioactive waste. This presentation will describe the basics of f...

  2. Fusion development and technology

    International Nuclear Information System (INIS)

    This report discusses the following topics: superconducting magnet technology high field superconductors; advanced magnetic system and divertor development; poloidal field coils; gyrotron development; commercial reactor studies -- Aries; ITER physics; ITER superconducting PF scenario and magnet analysis; and safety, environmental and economic factors in fusion development

  3. Muon catalyzed fusion

    Energy Technology Data Exchange (ETDEWEB)

    Ishida, K. [Advanced Meson Science Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Nagamine, K. [Muon Science Laboratory, IMSS-KEK, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Matsuzaki, T. [Advanced Meson Science Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Kawamura, N. [Muon Science Laboratory, IMSS-KEK, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan)

    2005-12-15

    The latest progress of muon catalyzed fusion study at the RIKEN-RAL muon facility (and partly at TRIUMF) is reported. The topics covered are magnetic field effect, muon transfer to {sup 3}He in solid D/T and ortho-para effect in dd{mu} formation.

  4. Intelligence Fusion [video

    OpenAIRE

    Center for Homeland Defense and Security Naval Postgraduate School; France, Paul

    2016-01-01

    Paul France is the Homeland Security Field Operations Manager for the state of Wisconsin. He is a current participant in the Naval Postgraduate School's Homeland Security Master's Program and is working on a thesis entitled 'Preventing Terrorism through Information Sharing Using TEW Systems and Intelligence Fusion Centers.

  5. Towards nuclear fusion reactors

    International Nuclear Information System (INIS)

    In the middle of 21st century, the population on the earth is expected to double, and the energy that mankind consumes to triple. The nuclear fusion which is said the ultimate energy source for mankind is expected to solve this energy problem. As for fusion reactors, fuel materials exist inexhaustibly, distributing evenly, they have high safety in principle, the product of burning is harmless nonradioactive substance that does not require the treatment and disposal, and the attenuation of induced radioactivity due to neutrons is quick and the effect to global environment is little. The basic plan of second stage nuclear fusion research and development was decided in 1975, aiming at attaining the critical plasma condition. JT-60 has attained it in 1987. The project of international thermonuclear fusion experimental reactor (ITER) was started, and the conceptual design was carried out. Under such background, the third stage basic plan was decided in 1992, and its objective is self ignition condition, long time burning and the basis of the reactor engineering technology. The engineering design of the ITER is investigated. (K.I.)

  6. Bouillabaisse sushi fusion power

    CERN Multimedia

    2004-01-01

    "If avant-garde cuisine is any guide, Japanese-French fusion does not work all that well. And the interminable discussions over the International Thermonuclear Experimental Reactor (ITER) suggest that what is true of cooking is true of physics" (1 page)

  7. International fusion og spaltning

    DEFF Research Database (Denmark)

    Hansen, Lone L.

    Bogen analyserer de nye muligheder fra 2007 i europæisk ret med hensyn til fusion eller spaltning mellem aktieselskaber og anpartsselskaber med hjemsted i forskellige europæiske lande. Bogen gennemgår de nye muligheder for strukturændringer, der herved er opstået mulighed for, og den sætter fokus...

  8. Fusion technology programme

    International Nuclear Information System (INIS)

    KfK is involved in the European Fusion Programme predominantly in the NET and Fusion Technology part. The following fields of activity are covered: Studies for NET, alternative confinement concepts, and needs and issues of integral testing. Research on structural materials. Development of superconducting magnets. Gyrotron development (part of the Physics Programme). Nuclear technology (breeding materials, blanket design, tritium technology, safety and environmental aspects of fusion, remote maintenance). Reported here are status and results of work under contracts with the CEC within the NET and Technology Programme. The aim of the major part of this R and D work is the support of NET, some areas (e.g. materials, safety and environmental impact, blanket design) have a wider scope and address problems of a demonstration reactor. In the current working period, several new proposals have been elaborated to be implemented into the 85/89 Euratom Fusion Programme. New KfK contributions relate to materials research (dual beam and fast reactor irradiations, ferritic steels), to blanket engineering (MHD-effects) and to safety studies (e.g. magnet safety). (orig./GG)

  9. Fusion og frasigelse

    DEFF Research Database (Denmark)

    Hansen, Lone L.

    2012-01-01

    Artiklen analyserer, i hvilket omfang reglerne om beskyttelse af lønmodtagere ved virksomhedsoverdragelse også finder anvendelse ved selskabsretliug fusion og spaltning. Der sættes fokus på forskrifterne om erhververens frasigelse af overdragerens kollektive overenskomster, og det efterprøves, om...

  10. Status of inertial fusion

    International Nuclear Information System (INIS)

    The technology advancement to high-power beams has also given birth to new technologies. That class of Free Electron Lasers that employs rf linacs, synchrotrons, and storage rings - although the use the tools of High Energy Physics (HEP) - was developed well behind the kinetic energy frontier. The induction linac, however, is something of an exception; it was born directly from the needs of the magnetic fusion program, and was not motivated by a high-energy physics application. The heavy-ion approach to inertial fusion starts with picking from the rich menu of accelerator technologies those that have, ab initio, the essential ingredients needed for a power plant driver: multigap acceleration - which leads to reliability/lifetime; electrical efficiency; repetition rate; and beams that can be reliably focused over a suitably long distance. The report describes the programs underway in Heavy Ion Fusion Accelerator Research as well as listing expected advances in driver, target, and beam quality areas in the inertial fusion power program

  11. Fusion energy studies

    International Nuclear Information System (INIS)

    The following topics are considered: (1) cryosorption vacuum pumping for fusion reactors, (2) TNS support studies, (3) tritium recovery from irradiated Li-Al and SAP, (4) actinide oxides, nitrides, and carbides, and (5) transition metal-actinide-C phase equilibria

  12. Fusion Canada issue 21

    International Nuclear Information System (INIS)

    A short bulletin from the National Fusion Program highlighting in this issue Europe proposes Canada's participation in ITER, tritium for JET, CCFM/TdeV-Tokamak helium pumping and TdeV update, ITER-related R and D at CFFTP, ITER Deputy Director visits Canada, NFP Director to Chair IFRC, Award for Akira Hirose. 3 figs

  13. Fusion reactor materials

    International Nuclear Information System (INIS)

    This paper discuses the following topics on fusion reactor materials: irradiation, facilities, test matrices, and experimental methods; dosimetry, damage parameters, and activation calculations; materials engineering and design requirements; fundamental mechanical behavior; radiation effects; development of structural alloys; solid breeding materials; and ceramics

  14. Mars manned fusion spaceship

    Science.gov (United States)

    Hedrick, James; Buchholtz, Brent; Ward, Paul; Freuh, Jim; Jensen, Eric

    1991-01-01

    Fusion Propulsion has an enormous potential for space exploration in the near future. In the twenty-first century, a usable and efficient fusion rocket will be developed and in use. Because of the great distance between other planets and Earth, efficient use of time, fuel, and payload is essential. A nuclear spaceship would provide greater fuel efficiency, less travel time, and a larger payload. Extended missions would give more time for research, experiments, and data acquisition. With the extended mission time, a need for an artificial environment exists. The topics of magnetic fusion propulsion, living modules, artificial gravity, mass distribution, space connection, and orbital transfer to Mars are discussed. The propulsion system is a magnetic fusion reactor based on a tandem mirror design. This allows a faster, shorter trip time and a large thrust to weight ratio. The fuel proposed is a mixture of deuterium and helium-3. Helium-3 can be obtained from lunar mining. There will be minimal external radiation from the reactor resulting in a safe, efficient propulsion system.

  15. Fusion reactor materials

    Energy Technology Data Exchange (ETDEWEB)

    none,

    1989-01-01

    This paper discuses the following topics on fusion reactor materials: irradiation, facilities, test matrices, and experimental methods; dosimetry, damage parameters, and activation calculations; materials engineering and design requirements; fundamental mechanical behavior; radiation effects; development of structural alloys; solid breeding materials; and ceramics.

  16. The fusion applications study: FAME (Fusion Applications and Market Evaluation)

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, K.R.

    1986-01-01

    In recent years, the fusion program has made a great deal of progress on the understanding of plasma physics. The primary mission of the fusion program in the past has been the generation of central station electricity. The demand for electricity, however, has slackened in recent years, fossil fuel prices are low, and the need to develop an assured, economical, long-term energy supply for the United States is no longer perceived as an immediate need. Fusion has the potential for a wide variety of nonelectric application including the breeding of fissile fuels and tritium, production of hydrogen and other chemical products, transmutation or burning of various nuclear and chemical products, transmutation or burning of various nuclear and chemical wastes, generation of process heat, production of many useful radioisotopes, radiation processing of materials, medical diagnosis and treatment, and space power and propulsion. To understand the many possible applications of fusion, GA Technologies has begun a fusion applications study for the U.S. Department of Energy's Office of Fusion Energy (DOE OFE) called FAME for Fusion Applications and Market Evaluation. The objective of this project is to investigate, evaluate, and summarize the potential applications of fusion energy, and to identify promising directions for future work on fusion applications. This study includes a broad survey of the possible uses of fusion and the products that could be obtained from a fusion reactor. The potential markets for these products are being assessed. 1 ref.

  17. Coil Design and Related Studies for the Fusion-Fission Reactor Concept SFLM Hybrid

    OpenAIRE

    Hagnestål, Anders

    2012-01-01

    A fusion-fission (hybrid) reactor is a combination of a fusion device and a subcritical fission reactor, where the fusion device acts as a neutron source and the power is mainly produced in the fission core. Hybrid reactors may be suitable for transmutation of transuranic isotopes in the spent nuclear fuel, due to the safety margin on criticality imposed by the subcritical fission core. The SFLM Hybrid project is a theoretical project that aims to point out the possibilities with steady-state...

  18. Application of high power microwave vacuum electron devices

    International Nuclear Information System (INIS)

    High power microwave vacuum electron devices can work at high frequency, high peak and average power. They have been widely used in military and civil microwave electron systems, such as radar, communication,countermeasure, TV broadcast, particle accelerators, plasma heating devices of fusion, microwave sensing and microwave heating. In scientific research, high power microwave vacuum electron devices are used mainly on high energy particle accelerator and fusion research. The devices include high peak power klystron, CW and long pulse high power klystron, multi-beam klystron,and high power gyrotron. In national economy, high power microwave vacuum electron devices are used mainly on weather and navigation radar, medical and radiation accelerator, TV broadcast and communication system. The devices include high power pulse and CW klystron, extended interaction klystron, traveling wave tube (TWT), magnetron and induced output tube (IOT). The state of art, common technology problems and trends of high power microwave vacuum electron devices are introduced in this paper. (authors)

  19. Fusion Research Center, theory program. Progress report

    International Nuclear Information System (INIS)

    The Texas FRC theory program is directed primarily toward understanding the initiation, heating, and confinement of tokamak plasmas. It supports and complements the experimental programs on the TEXT and PRETEXT devices, as well as providing information generally applicable to the national tokamak program. A significant fraction of the Center's work has been carried out in collaboration with, or as a part of, the program of the Institute for Fusion Studies (IFS). During the past twelve months, 14 FRC theory reports and 12 IFS reports with partial FRC support have been issued

  20. Commercial application of laser fusion

    International Nuclear Information System (INIS)

    The fundamentals of laser-induced fusion, some laser-fusion reactor concepts, and attendant means of utilizing the thermonuclear energy for commercial electric power generation are discussed. Theoretical fusion-pellet microexplosion energy release characteristics are described and the effects of pellet design options on pellet-microexplosion characteristics are discussed. The results of analyses to assess the engineering feasibility of reactor cavities for which protection of cavity components is provided either by suitable ablative materials or by diversion of plasmas by magnetic fields are presented. Two conceptual laser-fusion electric generating stations, based on different laser-fusion reactor concepts, are described

  1. Stau-catalyzed Nuclear Fusion

    OpenAIRE

    Hamaguchi, K.; Hatsuda, T.(Theoretical Research Division, Nishina Center, RIKEN, Saitama, 351-0198, Japan); Yanagida, T. T.

    2006-01-01

    We point out that the stau may play a role of a catalyst for nuclear fusions if the stau is a long-lived particle as in the scenario of gravitino dark matter. In this letter, we consider d d fusion under the influence of stau where the fusion is enhanced because of a short distance between the two deuterons. We find that one chain of the d d fusion may release an energy of O(10) GeV per stau. We discuss problems of making the stau-catalyzed nuclear fusion of practical use with the present tec...

  2. Enhanced image capture through fusion

    Science.gov (United States)

    Burt, Peter J.; Hanna, Keith; Kolczynski, Raymond J.

    1993-01-01

    Image fusion may be used to combine images from different sensors, such as IR and visible cameras, to obtain a single composite with extended information content. Fusion may also be used to combine multiple images from a given sensor to form a composite image in which information of interest is enhanced. We present a general method for performing image fusion and show that this method is effective for diverse fusion applications. We suggest that fusion may provide a powerful tool for enhanced image capture with broad utility in image processing and computer vision.

  3. Controlled fusion and plasma physics

    CERN Document Server

    Miyamoto, Kenro

    2006-01-01

    Resulting from ongoing, international research into fusion processes, the International Tokamak Experimental Reactor (ITER) is a major step in the quest for a new energy source.The first graduate-level text to cover the details of ITER, Controlled Fusion and Plasma Physics introduces various aspects and issues of recent fusion research activities through the shortest access path. The distinguished author breaks down the topic by first dealing with fusion and then concentrating on the more complex subject of plasma physics. The book begins with the basics of controlled fusion research, foll

  4. Fusion Probability in Dinuclear System

    CERN Document Server

    Hong, Juhee

    2015-01-01

    Fusion can be described by the time evolution of a dinuclear system with two degrees of freedom, the relative motion and transfer of nucleons. In the presence of the coupling between two collective modes, we solve the Fokker-Planck equation in a locally harmonic approximation. The potential of a dinuclear system has the quasifission barrier and the inner fusion barrier, and the escape rates can be calculated by the Kramers' model. To estimate the fusion probability, we calculate the quasifission rate and the fusion rate. We investigate the coupling effects on the fusion probability and the cross section of evaporation residue.

  5. Structural materials for fusion magnets

    International Nuclear Information System (INIS)

    Of major technical and cost impact to Magnetic Fusion Energy development are the materials for the magnet structure. Those materials and fabrication techniques that are attractive to fusion magnets are discussed and relative comparisons made. Considerations such as strength, toughness, and joining techniques are balanced against recommended design criteria to reach an optimum design. Several examples of material selection are cited for large fusion magnets such as Base II, the Mirror Fusion Test Facility, the Toroidal Fusion Test Facility, and the Large Coil Project

  6. Ferroelectric devices

    CERN Document Server

    Uchino, Kenji

    2009-01-01

    Updating its bestselling predecessor, Ferroelectric Devices, Second Edition assesses the last decade of developments-and setbacks-in the commercialization of ferroelectricity. Field pioneer and esteemed author Uchino provides insight into why this relatively nascent and interdisciplinary process has failed so far without a systematic accumulation of fundamental knowledge regarding materials and device development.Filling the informational void, this collection of information reviews state-of-the-art research and development trends reflecting nano and optical technologies, environmental regulat

  7. Physics of magnetic confinement fusion

    Directory of Open Access Journals (Sweden)

    Wagner F.

    2013-06-01

    Full Text Available Fusion is the energy source of the universe. The local conditions in the core of the Sun allow the transfer of mass into energy, which is finally released in the form of radiation. Technical fusion melts deuterons and tritons to helium releasing large amounts of energy per fusion process. Because of the conditions for fusion, which will be deduced, the fusion fuel is in the plasma state. Here we report on the confinement of fusion plasmas by magnetic fields. Different confinement concepts — tokamaks and stellarators — will be introduced and described. The first fusion reactor, ITER, and the most modern stellarator, Wendelstein 7-X, are under construction. Their basic features and objectives will be presented.

  8. Characterization of fusion genes and the significantly expressed fusion isoforms in breast cancer by hybrid sequencing

    OpenAIRE

    Weirather, Jason L.; Afshar, Pegah Tootoonchi; Clark, Tyson A.; Tseng, Elizabeth; Powers, Linda S.; Underwood, Jason G; Zabner, Joseph; Korlach, Jonas; Wong, Wing Hung; Au, Kin Fai

    2015-01-01

    We developed an innovative hybrid sequencing approach, IDP-fusion, to detect fusion genes, determine fusion sites and identify and quantify fusion isoforms. IDP-fusion is the first method to study gene fusion events by integrating Third Generation Sequencing long reads and Second Generation Sequencing short reads. We applied IDP-fusion to PacBio data and Illumina data from the MCF-7 breast cancer cells. Compared with the existing tools, IDP-fusion detects fusion genes at higher precision and ...

  9. New Characterizations of Fusion Bases and Riesz Fusion Bases in Hilbert Spaces

    OpenAIRE

    Asgari, Mohammad Sadegh

    2012-01-01

    In this paper we investigate a new notion of bases in Hilbert spaces and similar to fusion frame theory we introduce fusion bases theory in Hilbert spaces. We also introduce a new definition of fusion dual sequence associated with a fusion basis and show that the operators of a fusion dual sequence are continuous projections. Next we define the fusion biorthogonal sequence, Bessel fusion basis, Hilbert fusion basis and obtain some characterizations of them. we study orthonormal fusion systems...

  10. Reduced, tame and exotic fusion systems

    DEFF Research Database (Denmark)

    Andersen, K.K.S.; Oliver, Bob; Ventura, Joana

    We define here two new classes of saturated fusion systems, reduced fusion systems and tame fusion systems. These are motivated by our attempts to better understand and search for exotic fusion systems: fusion systems which are not the fusion systems of any finite group. Our main theorems say...... that every saturated fusion system reduces to a reduced fusion system which is tame only if the original one is realizable, and that every reduced fusion system which is not tame is the reduction of some exotic (nonrealizable) fusion system....

  11. The design of a cervical vertebra titanium plate-interbody fusion cage

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Objective: To study the biomechanical feature of a newly designed cervical vertebra internal fixation device and its clinical applications Methods: Some functional spinal units were fixed respectively with titanium plate, fusion cage and new device designed by ourselves, then a controlled biomechanical study including flexion, extension, torsion and lateral bending was performed and the results were analyzed. Results: As to the mechanical performance, fusion cage showed poor performance in extension test and so did the titanium plate in the distortion test. However, the new device showed good performance in every test. Conclusion: Both simple titanium plate fixation and simple fusion cage fixation have biomechanical defaults, but they are complementary. The titanium plate-interbody fusion cage avoids the defaults and has specific advantages.

  12. Medical Image Fusion: A survey of the state of the art

    CERN Document Server

    James, A P

    2014-01-01

    Medical image fusion is the process of registering and combining multiple images from single or multiple imaging modalities to improve the imaging quality and reduce randomness and redundancy in order to increase the clinical applicability of medical images for diagnosis and assessment of medical problems. Multi-modal medical image fusion algorithms and devices have shown notable achievements in improving clinical accuracy of decisions based on medical images. This review article provides a factual listing of methods and summarizes the broad scientific challenges faced in the field of medical image fusion. We characterize the medical image fusion research based on (1) the widely used image fusion methods, (2) imaging modalities, and (3) imaging of organs that are under study. This review concludes that even though there exists several open ended technological and scientific challenges, the fusion of medical images has proved to be useful for advancing the clinical reliability of using medical imaging for medi...

  13. Evaluation of a committed fusion site. Final report

    International Nuclear Information System (INIS)

    This report is divided into five technical sections. Section 2 is a summary. In Section 3, which covers device and site analyses the major characteristics of devices that might be placed at the site, as envisioned by major fusion laboratories, are described; the characteristics of a site (baseline site) which would accommodate these devices are defined; and various approaches to a committed site meeting the baseline site requirements are discussed. Section 4 describes the scenarios selected to represent possible site development outcomes; these scenarios are evaluated with respect to comparative cost and schedule effects. Section 5 presents a brief evaluation of the effects fusion-fission hybrids might have on the committed site. Major conclusions and recommendations are discussed in Section 6

  14. Desirable engineering features of the next-generation tokamak device

    International Nuclear Information System (INIS)

    Recent scoping studies examined a series of superconducting, long-pulse Driven Current Tokamak (DCT) devices. One class of options is an ignited, D-T burning device designated DCT-8. It was concluded that the DCT-8 is a most attracttive engineering option to adequately bridge the gap between the Tokamak Fusion Test Reactor (TFTR) and the Engineering Test Reactor

  15. Alternate laser fusion drivers

    International Nuclear Information System (INIS)

    Over the past few years, several laser systems have been considered as possible laser fusion drivers. Recently, there has been an increasing effort to evaluate these systems in terms of a reactor driver application. The specifications for such a system have become firmer and generally more restrictive. Several of the promising candidates such as the group VI laser, the metal vapor excimers and some solid state lasers can be eliminated on the basis of inefficiency. New solid state systems may impact the long range development of a fusion driver. Of the short wavelength gas lasers, the KrF laser used in conjunction with Raman compression and pulse stacking techniques is the most promising approach. Efficiencies approaching 10% may be possible with this system. While technically feasible, these approaches are complex and costly and are unsatisfying in an aethetic sense. A search for new lasers with more compelling features is still needed

  16. Fusion theory and computations

    International Nuclear Information System (INIS)

    It is proposed to carry out theoretical studies of the equilibrium, stability, transport and heating properties of high-temperature fusion plasmas. Continued emphasis will be placed on the effective interface of fusion theory and computations with the local Alcator, Versator, Constance and Torex experimental programs. The proposed research includes but will not be limited to the following types of studies: (a) investigation of RF heating of toroidal plasmas, (b) investigation of the MHD equilibrium and stability properties of tokamak plasmas, (c) develop the basic understanding of a wide variety of non-linear and turbulent phenomena, including stochastic magnetic fields, clumps and nonlinear saturation of linear instabilities, (d) investigate the effects of ambipolar fields on transport and stability properties of toroidal plasmas. Investigate high-beat stability properties of tandem-mirror systems, and (e) investigation of the MHD equilibrium and stability properties of Torsatron/Stellarator configurations

  17. Pulsed fusion reactors

    International Nuclear Information System (INIS)

    This summer school specialized in examining specific fusion center systems. Papers on scientific feasibility are first presented: confinement of high-beta plasma, liners, plasma focus, compression and heating and the use of high power electron beams for thermonuclear reactors. As for technological feasibility, lectures were on the theta-pinch toroidal reactors, toroidal diffuse pinch, electrical engineering problems in pulsed magnetically confined reactors, neutral gas layer for heat removal, the conceptual design of a series of laser fusion power plants with ''Saturn'', implosion experiments and the problem of the targets, the high brightness lasers for plasma generation, and topping and bottoming cycles. Some problems common to pulsed reactors were examined: energy storage and transfer, thermomechanical and erosion effects in the first wall and blanket, the problems of tritium production, radiation damage and neutron activation in blankets, and the magnetic and inertial confinement

  18. Adaptive sensor fusion

    Science.gov (United States)

    Kadar, Ivan

    1995-07-01

    A perceptual reasoning system adaptively extracting, associating, and fusing information from multiple sources, at various levels of abstraction, is considered as the building block for the next generation of surveillance systems. A system architecture is presented which makes use of both centralized and distributed predetection fusion combined with intelligent monitor and control coupling both on-platform and off-board track and decision level fusion results. The goal of this system is to create a `gestalt fused sensor system' whose information product is greater than the sum of the information products from the individual sensors and has performance superior to either individual or a sub-group of combined sensors. The application of this architectural concept to the law enforcement arena (e.g. drug interdiction) utilizing multiple spatially and temporally diverse surveillance platforms and/or information sources, is used to illustrate the benefits of the adaptive perceptual reasoning system concept.

  19. Fusion technology programme

    International Nuclear Information System (INIS)

    The KfK-Association has continued work on 17 R and D contracts of the Fusion Technology Programme. An effort of 94 manyears per year is at present contributed by 10 KfK departments, covering all aereas defined in the Fusion Technology Programme. The dominant part of the work is directed towards the need of the NET design or supporting experiments. Some additional effort addresses long term technological issues and system studies relevant to DEMO or confinement schemes alternative to tokamaks. Direct contribution to the NET team has increased by augmentation of NET study contracts and delegation of personnel, three KfK delegates being at present members of the NET team. In reverse, specifications and design guidelines worked out by NET have started to have an impact on the current R and D-work in the laboratory. (orig./GG)

  20. Fusion Data Grid Service

    Science.gov (United States)

    Shasharina, Svetlana; Wang, Nanbor

    2004-11-01

    Simulations and experiments in the fusion and plasma physics community generate large datasets at remote sites. Visualization and analysis of these datasets are difficult because of the incompatibility among the various data formats adopted by simulation, experiments, and analysis tools, and the large sizes of analyzed data. Grids and Web Services technologies are capable of providing solutions for such heterogeneous settings, but need to be customized to the field-specific needs and merged with distributed technologies currently used by the community. This paper describes how we are addressing these issues in the Fusion Grid Service under development. We also present performance results of relevant data transfer mechanisms including binary SOAP, DIME, GridFTP and MDSplus and CORBA. We will describe the status of data converters (between HDF5 and MDSplus data types), developed in collaboration with MIT (J. Stillerman). Finally, we will analyze bottlenecks of MDSplus data transfer mechanism (work performed in collaboration with General Atomics (D. Schissel and M. Qian).

  1. Confidence driven TGV fusion

    OpenAIRE

    Ntouskos, Valsamis; Pirri, Fiora

    2016-01-01

    We introduce a novel model for spatially varying variational data fusion, driven by point-wise confidence values. The proposed model allows for the joint estimation of the data and the confidence values based on the spatial coherence of the data. We discuss the main properties of the introduced model as well as suitable algorithms for estimating the solution of the corresponding biconvex minimization problem and their convergence. The performance of the proposed model is evaluated considering...

  2. Heavy ion fusion III

    International Nuclear Information System (INIS)

    This report updates Heavy Ion Fusion, JSR-82-302, dated January, 1983. During the last four years, program management and direction has been changed and the overall Inertial Confinement Program has been reviewed. This report therefore concentrates on accelerator physics issues, how the program has addressed those issues during the last four years, and how it will be addressing them in the future. 8 refs., 3 figs

  3. Posterior instrumentation and fusion

    OpenAIRE

    Deniz Olgun, Z.; Yazici, Muharrem

    2012-01-01

    The purpose of surgery for adolescent idiopathic scoliosis, which characteristically includes thoracic hypokyphosis and all three columns of the spine, is the achievement of a balanced spine while preserving as many motion segments as possible and avoiding neurologic damage. Many approaches have been defined in the treatment of this common disease. Posterior-only surgery, instrumentation and fusion have become the preferred technique in many centers throughout the world due to simplicity of a...

  4. Fusion Reactor Materials

    International Nuclear Information System (INIS)

    SCK-CEN's programme on fusion reactor materials includes studies (1) to investigate fracture mechanics of neutron-irradiated beryllium; (2) to describe the helium behaviour in irradiated beryllium at atomic scale; (3) to define the kinetics of beryllium reacting with air or steam; (3) to perform a feasibility study for the testing of integrated blanket modules under neutron irradiation. Progress and achievements in 1997 are reported

  5. Fundamentals of plasma physics and controlled fusion

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, Kenro

    2000-10-01

    The present lecture note was written to fill a gap between text books for undergraduates and specific review articles written by specialists for their young colleagues. The note may be divided in three parts. The first part is on basic characteristics of a plasma in a magnetic field. The second part describes plasma confinement and heating with an emphasis on magnetohydrodynamic instabilities. In addition, propagation of plasma waves, plasma heating by electromagnetic waves are given. The third part is devoted to various specific concepts of nuclear fusion. Emphases are placed on toroidal devices, especially on tokamak devices and stellarators. One might feel heavy mathematics glimpsing the present note, especially in the part treating magnetohydrodynamic instabilities. (author)

  6. Software problems in magnetic fusion research

    International Nuclear Information System (INIS)

    The main world effort in magnetic fusion research involves studying the plasma in a Tokamak device. Four large Tokamaks are under construction (TFTR in USA, JET in Europe, T15 in USSR and JT60 in Japan). To understand the physical phenomena that occur in these costly devices, it is generally necessary to carry out extensive numerical calculations. These computer simulations make use of sophisticated numerical methods and demand high power computers. As a consequence they represent a substantial investment. To reduce software costs, the computer codes are more and more often exhanged among scientists. Standardization (STANDARD FORTRAN, OLYMPUS system) and good documentation (CPC program library) are proposed to make codes exportable. Centralized computing centers would also help in the exchange of codes and ease communication between the staff at different laboratories. (orig.)

  7. Looking back at half a century of fusion research

    International Nuclear Information System (INIS)

    This article gives a short overview of the origins of nuclear fusion and of its development as a potential source of terrestrial energy. The main milestones of the fusion history are: -) the Einstein's prediction that mass can be converted into energy; -) the complete understanding of the main fusion reactions in the sun and stars in late 1920; -) many different magnetic configurations were proposed in the early years of fusion research: the earliest magnetic confinement devices in the U.K were toroidal pinches, the stellarator was invented in the U.S.A and the helical heliotron in Japan ; -) the success of the Russian tokamak T-3 to produce hot enough plasmas opened the way to the construction of very large tokamaks: JET (U.K), TFTR (Usa), JT-60 (Japan) and Tore-supra (France); -) an alternative approach to fusion: the inertial confinement; and -) the ITER project. After many years, the scientific feasibility of thermonuclear fusion via the magnetic confinement route has been demonstrated and the next generation of inertial confinement experiments is expected to reach a similar position. (A.C.)

  8. Future of fusion implementation

    International Nuclear Information System (INIS)

    For fusion to become available for commercial use in the 21st century, R and D must be undertaken now. But it is hard to justify these expenditures with a cost/benefit oriented assessment methodology, because of both the time-frame and the uncertainty of the future benefits. Focusing on the factors most relevant for current consideration of fusion's commercial prospects, i.e., consumption levels and the outcomes for fission, solar, and coal, many possible futures of the US energy system are posited and analyzed under various assumptions about costs. The Reference Energy System approach was modified to establish both an appropriate degree of detail and explicit time dependence, and a computer code used to organize the relevant data and to perform calculations of system cost (annual and discounted present value), resource use, and residuals that are implied by the consumptions levels and technology mix in each scenario. Not unreasonable scenarios indicate benefits in the form of direct cost savings, which may well exceed R and D costs, which could be attributed to the implementation of fusion

  9. Solenoidal fusion system

    International Nuclear Information System (INIS)

    This invention discloses apparatus and methods to produce nuclear fusion utilizing fusible material in the form of high energy ion beams confined in magnetic fields. For example, beams of deuterons and tritons are injected in the same direction relative to the axis of a vacuum chamber. The ion beams are confined by the magnetic fields of long solenoids. The products of the fusion reactions, such as neutrons and alpha particles, escape to the wall surrounding the vacuum chamber, producing heat. The momentum of the deuterons is approximately equal to the momentum of the tritons, so that both types of ions follow the same path in the confining magnetic field. The velocity of the deuteron is sufficiently greater than the velocity of the triton so that overtaking collisions occur at a relative velocity which produces a high fusion reaction cross section. Electrons for space charge neutralization are obtained by ionization of residual gas in the vacuum chamber, and additionally from solid material (Irradiated with ultra-violet light or other energetic radiation) adjacent to the confinement region. For start-up operation, injected high-energy molecular ions can be dissociated by intense laser beam, producing trapping via change of charge state. When sufficiently intense deuteron and triton beams have been produced, the laser beam can be removed, and subsequent change of charge state can be achieved by collisions

  10. Stabilized Spheromak Fusion Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, T

    2007-04-03

    The U.S. fusion energy program is focused on research with the potential for studying plasmas at thermonuclear temperatures, currently epitomized by the tokamak-based International Thermonuclear Experimental Reactor (ITER) but also continuing exploratory work on other plasma confinement concepts. Among the latter is the spheromak pursued on the SSPX facility at LLNL. Experiments in SSPX using electrostatic current drive by coaxial guns have now demonstrated stable spheromaks with good heat confinement, if the plasma is maintained near a Taylor state, but the anticipated high current amplification by gun injection has not yet been achieved. In future experiments and reactors, creating and maintaining a stable spheromak configuration at high magnetic field strength may require auxiliary current drive using neutral beams or RF power. Here we show that neutral beam current drive soon to be explored on SSPX could yield a compact spheromak reactor with current drive efficiency comparable to that of steady state tokamaks. Thus, while more will be learned about electrostatic current drive in coming months, results already achieved in SSPX could point to a productive parallel development path pursuing auxiliary current drive, consistent with plans to install neutral beams on SSPX in the near future. Among possible outcomes, spheromak research could also yield pulsed fusion reactors at lower capital cost than any fusion concept yet proposed.

  11. Heavy ion fusion

    International Nuclear Information System (INIS)

    With controlled thermonuclear fusion holding out the possibility of a prolific and clean new source of energy, the goal remains elusive after many years of continual effort. While the conventional Tokamak route with magnetic confinement continues to hit the headlines, other alternatives are now becoming competitive. One possible solution is to confine the thermonuclear fuel pellet by high power beams. Current research and perspectives for future work in such inertial confinement was the subject of the 'Prospects for Heavy Ion Fusion' European Research Conference held in Aghia Pelaghia, Crete, last year. Its main focus was on the potential of heavy ion accelerators as well as recent advances in target physics with high power lasers and light ion beams. Carlo Rubbia declared that high energy accelerators, with their high efficiency, are the most promising approach to economical fusion energy production. However the need for cost saving in the driver accelerator requires new ideas in target design tailored to the particularities of heavy ion beams, which need to be pushed to the limits of high current and phase space density at the same time

  12. Fusion engineering design center

    International Nuclear Information System (INIS)

    In the spring of 1985, the Department of Energy (DOE) directed the Design Center to take a lead responsibility in assessing the engineering feasibility of a very compact tokamak experiment with copper coils. Following this assessment, the Design Center studied the Ignitor concept at the request of DOE and arrived at a design configuration. Many features of this configuration have been incorporated into the national baseline conceptual design for a Compact Ignition Tokamak (CIT). The Design Center continued to participate in the mirror program by contributing to the Minimars design effort, a two-year program to develop and describe an attractive tandem mirror reactor concept. The Design Center's principal role is in configuration definition of the candidate concepts. The Design Center continues to lead the engineering activities for the International Tokamak Reactor program. Advanced commercial tokamaks were studied by the Design Center as part of the Tokamak Power Systems Studies project coordinated by the DOE Office of Fusion Energy. The Design Center also provided design integration of the US effort. A cost accounting system that is applicable to all magnetic fusion reactor design studies was developed and applied to different confinement concepts and types of projects. The system provides the structure for development of a fusion cost database and validated cost estimating procedures

  13. Superconductivity for mirror fusion

    International Nuclear Information System (INIS)

    Mirror experiments have led the way in applying superconductivity to fusion research because of unique requirements for high and steady magnetic fields. The first significant applications were Baseball II at LLL and IMP at ORNL, which used multifilamentary niobium--titanium and niobium--tin tape, respectively. Now the USSR at Kurchatov is building a smaller baseball coil with a 6.5 mm square multifilamentary niobium--titanium superconductor similar to the Baseball II conductor. However, the largest advance in fusion magnets will be used in the Mirror Fusion Test Facility (MFTF) now under construction at LLL. Improvements in the technology of the previous LLL experiment, Baseball II, have been made using new conductor joining techniques, a ventilated wrap-around copper stabilizer, and stronger structural welding methods. The MFTF coil winding is proceeding on a separate former to allow parallel construction of the main structure. Not only does this shorten the project schedule to equal that of other conventional constructions, but a second vacuum barrier is created between the magnet helium and the plasma environment for reliable operation

  14. Effects of ROCK inhibitor Y-27632 on cell fusion through a microslit.

    Science.gov (United States)

    Wada, Ken-Ichi; Hosokawa, Kazuo; Ito, Yoshihiro; Maeda, Mizuo

    2015-11-01

    We previously reported a direct cytoplasmic transfer method using a microfluidic device, in which cell fusion was induced through a microslit (slit-through-fusion) by the Sendai virus envelope (HVJ-E) to prevent nuclear mixing. However, the method was impractical due to low efficiency of slit-through-fusion formation and insufficient prevention of nuclear mixing. The purpose of this study was to establish an efficient method for inducing slit-through-fusion without nuclear mixing. We hypothesized that modulation of cytoskeletal component can decrease nuclear migration through the microslit considering its functions. Here we report that supplementation with Y-27632, a specific ROCK inhibitor, significantly enhances cell fusion induction and prevention of nuclear mixing. Supplementation with Y-27632 increased the formation of slit-through-fusion efficiency by more than twofold. Disruption of F-actin by Y-27632 prevented nuclear migration between fused cells through the microslit. These two effects of Y-27632 led to promotion of the slit-through-fusion without nuclear mixing with a 16.5-fold higher frequency compared to our previous method (i.e., cell fusion induction by HVJ-E without supplementation with Y-27632). We also confirmed that mitochondria were successfully transferred to the fusion partner under conditions of Y-27632 supplementation. These findings demonstrate the practicality of our cell fusion system in producing direct cytoplasmic transfer between live cells.

  15. A fusion power plant without plasma-material interactions

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, S.A.

    1997-04-01

    A steady-state fusion power plant is described which avoids the deleterious plasma-material interactions found in D-T fueled tokamaks. It is based on driven p-{sup 11}B fusion in a high-beta closed-field device, the field-reversed configuration (FRC), anchored in a gas-dynamic trap (GDT). The plasma outflow on the open magnetic-field lines is cooled by radiation in the GDT, then channeled through a magnetic nozzle, promoting 3-body recombination in the expansion region. The resulting supersonic neutral exhaust stream flows through a turbine, generating electricity.

  16. Conceptual design study of a scyllac fusion test reactor

    International Nuclear Information System (INIS)

    The report describes a conceptual design study of a fusion test reactor based on the Scyllac toroidal theta-pinch approach to fusion. It is not the first attempt to describe the physics and technology required for demonstrating scientific feasibility of the approach, but it is the most complete design in the sense that the physics necessary to achieve the device goals is extrapolated from experimentally tested MHD theories of toroidal systems,and it uses technological systems whose engineering performance has been carefully calculated to ensure that they meet the machine requirements

  17. Conceptual design study of a scyllac fusion test reactor

    Energy Technology Data Exchange (ETDEWEB)

    Thomassen, K.I. (comp.)

    1975-07-01

    The report describes a conceptual design study of a fusion test reactor based on the Scyllac toroidal theta-pinch approach to fusion. It is not the first attempt to describe the physics and technology required for demonstrating scientific feasibility of the approach, but it is the most complete design in the sense that the physics necessary to achieve the device goals is extrapolated from experimentally tested MHD theories of toroidal systems,and it uses technological systems whose engineering performance has been carefully calculated to ensure that they meet the machine requirements.

  18. Fusion roadmap in Korea

    International Nuclear Information System (INIS)

    The KSTAR (Korea Superconducting Tokamak Advanced Research) project started in 1995 as a first major step of “National Fusion Energy Development Plan” and, as a following step, Korea joined the ITER program. Korean Fusion Energy Development Promotion Law (FEDPL) was enacted in 2007 to promote a long-term cooperative fusion research and development among participating industries, universities and research institutes. And a conceptual design study for a steady-state Korean fusion demonstration reactor (K-DEMO) has been initiated in 2012 and “the Report on K-DEMO R and D Plan” was submitted to the Government of Korea in 2013. One special concept of K-DEMO is a two-staged development plan. At first, K-DEMO is designed to demonstrate a net electricity generation (Qeng > 1) and a self-sustained tritium cycle (Tritium breeding ratio, TBR > 1.05), and it is also designed to be used as a component test facility. Then, at its second stage, a major upgrade is carried out by replacing in-vessel components and the net electric generation shall be on the order of 500 MWe. After a thorough 0-D system analysis, the major radius and minor radius are chosen to be 6.8 m and 2.1 m, respectively, considering practical engineering feasibilities. In order to minimize the deflection of wave and maximize the efficiency, a top launch high frequency (> 200 GHz) electron cyclotron current drive (ECCD) system is considered and, for matching the high frequency ECCD, a high magnetic field is required and the peak magnetic field can approach to 16 T with the magnetic field at the plasma center above 7 T. K-DEMO incorporates a vertical maintenance design. Pressurized water is the most prominent choice for the main coolant of K-DEMO when considering balance of plant development details. Considering the plasma performance and the peak heat flux in the divertor system, a conventional W-type double-null divertor system becomes the reference choice of K-DEMO. The current status on the KSTAR

  19. The challenges of fusion

    International Nuclear Information System (INIS)

    The new boss of the world's biggest fusion experiment cannot afford to fail. Kaname Ikeda will soon be a name on many physicists' lips. Though the outgoing Japanese ambassador to Croatia and former science administrator is not currently widely known, that will all change when he starts work later this month as director general of the International Thermonuclear Experimental Reactor (ITER). Set to be built at Cadarache near Marseille in southern France - assuming the ITER treaty is ratified - this Euro10bn facility is designed to show that fusion could be turned into a practical energy source.To do so would be huge achievement. Fusion reactors could play a massive role in meeting the world's rapidly growing demand for energy. They promise to be environmentally friendly and relatively safe to operate, while the raw materials they need are plentiful. However, early progress in fusion research led plasma physicists to be over optimistic about this energy source, and a commercial fusion plant remains as far off in the future as it was back in the 1970s. Ikeda therefore has a tough job on his hands, as he readily admits in our interview with him (see p12; print version only). It will be no mean feat to build ITER on time and to budget, and Ikeda will have to draw heavily on his undoubted diplomatic skills to ensure that everyone involved in this complex international project gets on. ITER is hugely ambitious in engineering terms, with vast superconducting magnets needed to confine a deuterium-tritium plasma within a doughnut-shaped 'tokamak' vessel. Numerous technical challenges will have to be addressed to ensure ITER fulfils its goal of releasing more energy than it consumes. These include choosing which material to line the inner wall of the tokamak with, overcoming the accumulation of radioactive tritium on this surface, and controlling the properties of the plasma. Fortunately, such issues are being addressed at the recently upgraded Joint European Torus near Oxford

  20. Inertial fusion energy; L'energie de fusion inertielle

    Energy Technology Data Exchange (ETDEWEB)

    Decroisette, M.; Andre, M.; Bayer, C.; Juraszek, D. [CEA Bruyeres-le-Chatel, Dir. des Systemes d' Information (CEA/DIF), 91 (France); Le Garrec, B. [CEA Centre d' Etudes Scientifiques et Techniques d' Aquitaine, 33 - Le Barp (France); Deutsch, C. [Paris-11 Univ., 91 - Orsay (France); Migus, A. [Institut d' Optique Centre scientifique, 91 - Orsay (France)

    2005-07-01

    We first recall the scientific basis of inertial fusion and then describe a generic fusion reactor with the different components: the driver, the fusion chamber, the material treatment unit, the target factory and the turbines. We analyse the options proposed at the present time for the driver and for target irradiation scheme giving the state of art for each approach. We conclude by the presentation of LMJ (laser Megajoule) and NIF (national ignition facility) projects. These facilities aim to demonstrate the feasibility of laboratory DT ignition, first step toward Inertial Fusion Energy. (authors)