WorldWideScience

Sample records for ciap-1 controls innate

  1. cIAP-1 controls innate immunity to C. pneumoniae pulmonary infection.

    Directory of Open Access Journals (Sweden)

    Hridayesh Prakash

    Full Text Available The resistance of epithelial cells infected with Chlamydophila pneumoniae for apoptosis has been attributed to the induced expression and increased stability of anti-apoptotic proteins called inhibitor of apoptosis proteins (IAPs. The significance of cellular inhibitor of apoptosis protein-1 (cIAP-1 in C. pneumoniae pulmonary infection and innate immune response was investigated in cIAP-1 knockout (KO mice using a novel non-invasive intra-tracheal infection method. In contrast to wildtype, cIAP-1 knockout mice failed to clear the infection from their lungs. Wildtype mice responded to infection with a strong inflammatory response in the lung. In contrast, the recruitment of macrophages was reduced in cIAP-1 KO mice compared to wildtype mice. The concentration of Interferon gamma (IFN-gamma was increased whereas that of Tumor Necrosis Factor (TNF-alpha was reduced in the lungs of infected cIAP-1 KO mice compared to infected wildtype mice. Ex vivo experiments on mouse peritoneal macrophages and splenocytes revealed that cIAP-1 is required for innate immune responses of these cells. Our findings thus suggest a new immunoregulatory role of cIAP-1 in the course of bacterial infection.

  2. Cellular inhibitor of apoptosis protein-1 (cIAP1) can regulate E2F1 transcription factor-mediated control of cyclin transcription.

    Science.gov (United States)

    Cartier, Jessy; Berthelet, Jean; Marivin, Arthur; Gemble, Simon; Edmond, Valérie; Plenchette, Stéphanie; Lagrange, Brice; Hammann, Arlette; Dupoux, Alban; Delva, Laurent; Eymin, Béatrice; Solary, Eric; Dubrez, Laurence

    2011-07-29

    The inhibitor of apoptosis protein cIAP1 (cellular inhibitor of apoptosis protein-1) is a potent regulator of the tumor necrosis factor (TNF) receptor family and NF-κB signaling pathways in the cytoplasm. However, in some primary cells and tumor cell lines, cIAP1 is expressed in the nucleus, and its nuclear function remains poorly understood. Here, we show that the N-terminal part of cIAP1 directly interacts with the DNA binding domain of the E2F1 transcription factor. cIAP1 dramatically increases the transcriptional activity of E2F1 on synthetic and CCNE promoters. This function is not conserved for cIAP2 and XIAP, which are cytoplasmic proteins. Chromatin immunoprecipitation experiments demonstrate that cIAP1 is recruited on E2F binding sites of the CCNE and CCNA promoters in a cell cycle- and differentiation-dependent manner. cIAP1 silencing inhibits E2F1 DNA binding and E2F1-mediated transcriptional activation of the CCNE gene. In cells that express a nuclear cIAP1 such as HeLa, THP1 cells and primary human mammary epithelial cells, down-regulation of cIAP1 inhibits cyclin E and A expression and cell proliferation. We conclude that one of the functions of cIAP1 when localized in the nucleus is to regulate E2F1 transcriptional activity.

  3. Molecular determinants of Smac mimetic induced degradation of cIAP1 and cIAP2.

    Science.gov (United States)

    Darding, M; Feltham, R; Tenev, T; Bianchi, K; Benetatos, C; Silke, J; Meier, P

    2011-08-01

    The inhibitors of apoptosis (IAP) proteins cIAP1 and cIAP2 have recently emerged as key ubiquitin-E3 ligases regulating innate immunity and cell survival. Much of our knowledge of these IAPs stems from studies using pharmacological inhibitors of IAPs, dubbed Smac mimetics (SMs). Although SMs stimulate auto-ubiquitylation and degradation of cIAPs, little is known about the molecular determinants through which SMs activate the E3 activities of cIAPs. In this study, we find that SM-induced rapid degradation of cIAPs requires binding to tumour necrosis factor (TNF) receptor-associated factor 2 (TRAF2). Moreover, our data reveal an unexpected difference between cIAP1 and cIAP2. Although SM-induced degradation of cIAP1 does not require cIAP2, degradation of cIAP2 critically depends on the presence of cIAP1. In addition, degradation of cIAP2 also requires the ability of the cIAP2 RING finger to dimerise and to bind to E2s. This has important implications because SM-mediated degradation of cIAP1 causes non-canonical activation of NF-κB, which results in the induction of cIAP2 gene expression. In the absence of cIAP1, de novo synthesised cIAP2 is resistant to the SM and suppresses TNFα killing. Furthermore, the cIAP2-MALT1 oncogene, which lacks cIAP2's RING, is resistant to SM treatment. The identification of mechanisms through which cancer cells resist SM treatment will help to improve combination therapies aimed at enhancing treatment response.

  4. cIAP1 regulates TNF-mediated cdc42 activation and filopodia formation.

    Science.gov (United States)

    Marivin, A; Berthelet, J; Cartier, J; Paul, C; Gemble, S; Morizot, A; Boireau, W; Saleh, M; Bertoglio, J; Solary, E; Dubrez, L

    2014-11-27

    Tumour necrosis factor-α (TNF) is a cytokine endowed with multiple functions, depending on the cellular and environmental context. TNF receptor engagement induces the formation of a multimolecular complex including the TNFR-associated factor TRAF2, the receptor-interaction protein kinase RIP1 and the cellular inhibitor of apoptosis cIAP1, the latter being essential for NF-κB activation. Here, we show that cIAP1 also regulates TNF-induced actin cytoskeleton reorganization through a cdc42-dependent, NF-κB-independent pathway. Deletion of cIAP1 prevents TNF-induced filopodia and cdc42 activation. The expression of cIAP1 or its E3-ubiquitin ligase-defective mutant restores the ability of cIAP1(-/-) MEFs to produce filopodia, whereas a cIAP1 mutant unable to bind TRAF2 does not. Accordingly, the silencing of TRAF2 inhibits TNF-mediated filopodia formation, whereas silencing of RIP1 does not. cIAP1 directly binds cdc42 and promotes its RhoGDIα-mediated stabilization. TNF decreases cIAP1-cdc42 interaction, suggesting that TNF-induced recruitment of cIAP1/TRAF2 to the receptor releases cdc42, which in turn triggers actin remodeling. cIAP1 also regulates cdc42 activation in response to EGF and HRas-V12 expression. A downregulation of cIAP1 altered the cell polarization, the cell adhesion to endothelial cells and cell intercalation, which are cdc42-dependent processes. Finally, we demonstrated that the deletion of cIAP1 regulated the HRas-V12-mediated transformation process, including anchorage-dependent cell growth, tumour growth in a xenograft model and the development of experimental metastasis in the lung.

  5. OTUB1 modulates c-IAP1 stability to regulate signalling pathways.

    Science.gov (United States)

    Goncharov, Tatiana; Niessen, Kyle; de Almagro, Maria Cristina; Izrael-Tomasevic, Anita; Fedorova, Anna V; Varfolomeev, Eugene; Arnott, David; Deshayes, Kurt; Kirkpatrick, Donald S; Vucic, Domagoj

    2013-04-17

    The cellular inhibitor of apoptosis (c-IAP) proteins are E3 ubiquitin ligases that are critical regulators of tumour necrosis factor (TNF) receptor (TNFR)-mediated signalling. Through their E3 ligase activity c-IAP proteins promote ubiquitination of receptor-interaction protein 1 (RIP1), NF-κB-inducing kinase (NIK) and themselves, and regulate the assembly of TNFR signalling complexes. Consequently, in the absence of c-IAP proteins, TNFR-mediated activation of NF-κB and MAPK pathways and the induction of gene expression are severely reduced. Here, we describe the identification of OTUB1 as a c-IAP-associated deubiquitinating enzyme that regulates c-IAP1 stability. OTUB1 disassembles K48-linked polyubiquitin chains from c-IAP1 in vitro and in vivo within the TWEAK receptor-signalling complex. Downregulation of OTUB1 promotes TWEAK- and IAP antagonist-stimulated caspase activation and cell death, and enhances c-IAP1 degradation. Furthermore, knockdown of OTUB1 reduces TWEAK-induced activation of canonical NF-κB and MAPK signalling pathways and modulates TWEAK-induced gene expression. Finally, suppression of OTUB1 expression in zebrafish destabilizes c-IAP (Birc2) protein levels and disrupts fish vasculature. These results suggest that OTUB1 regulates NF-κB and MAPK signalling pathways and TNF-dependent cell death by modulating c-IAP1 stability.

  6. Cellular inhibitors of apoptosis proteins cIAP1 and cIAP2 are required for efficient caspase-1 activation by the inflammasome.

    Science.gov (United States)

    Labbé, Katherine; McIntire, Christian R; Doiron, Karine; Leblanc, Philippe M; Saleh, Maya

    2011-12-23

    Pathogen and danger recognition by the inflammasome activates inflammatory caspases that mediate inflammation and cell death. The cellular inhibitor of apoptosis proteins (cIAPs) function in apoptosis and innate immunity, but their role in modulating the inflammasome and the inflammatory caspases is unknown. Here we report that the cIAPs are critical effectors of the inflammasome and are required for efficient caspase-1 activation. cIAP1, cIAP2, and the adaptor protein TRAF2 interacted with caspase-1-containing complexes and mediated the activating nondegradative K63-linked polyubiquitination of caspase-1. Deficiency in cIAP1 (encoded by Birc2) or cIAP2 (Birc3) impaired caspase-1 activation after spontaneous or agonist-induced inflammasome assembly, and Birc2(-/-) or Birc3(-/-) mice or mice administered with an IAP antagonist had a dampened response to inflammasome agonists and were resistant to peritonitis. Our results describe a role for the cIAPs in innate immunity and further demonstrate the evolutionary conservation between cell death and inflammation mechanisms.

  7. Enhancement of TRAIL cytotoxicity by AG-490 in human ALL cells is characterized by downregulation of cIAP-1 and cIAP-2 through inhibition of Jak2/Stat3

    Institute of Scientific and Technical Information of China (English)

    Paola Lanuti; Valeria Bertagnolo; Laura Pierdomenico; Adriana Bascelli; Eugenio Santavenere; Lapo Alinari; Silvano Capitani; Sebastiano Miscia; Marco Marchisio

    2009-01-01

    The ability of death-inducing tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) to selectively kill a variety of cancer cells has been largely described, but one of the major concerns with the treatment is the occur-rence of drug resistance and possible toxic side effects. Here, we report that TRAIL induces apoptosis in Jurkat and SUPT1 T cell lines and in human T-ALL blasts but not in healthy subject-derived peripheral blood mononuclear cells. In parallel, the treatment with TRAIL and Tyrphostin (AG-490), a selective Janus kinase 2 inhibitor, produces an evident enhancement of cytotoxicity, characterized by a significant inhibition of Stat3 phosphorylation compared to controls or to TRAIL alone-treated samples, and associated with a dramatic decrease of both cIAP-1 and cIAP-2 mRNA levels. Downregulation of cIAP-1 and cIAP-2 by specific small interference RNAs significantly amplifies TRAIL-reduced cytotoxicity. All together, these findings strongly indicate that cIAP-1 and cIAP-2 downregulation is a fundamental step in the signaling pathways mediating the combinatorial effect of TRAIL and AG-490 on T cell leu-kemia. These findings may help to open new routes for the development of less toxic pharmacological strategies in the treatment of patients affected by TRAIL-sensitive leukemias.

  8. Genetic control of the innate immune response

    Directory of Open Access Journals (Sweden)

    Sweet Matthew

    2003-06-01

    Full Text Available Abstract Background Susceptibility to infectious diseases is directed, in part, by the interaction between the invading pathogen and host macrophages. This study examines the influence of genetic background on host-pathogen interactions, by assessing the transcriptional responses of macrophages from five inbred mouse strains to lipopolysaccharide (LPS, a major determinant of responses to gram-negative microorganisms. Results The mouse strains examined varied greatly in the number, amplitude and rate of induction of genes expressed in response to LPS. The response was attenuated in the C3H/HeJlpsd strain, which has a mutation in the LPS receptor Toll-like receptor 4 (TLR4. Variation between mouse strains allowed clustering into early (C57Bl/6J and DBA/2J and delayed (BALB/c and C3H/ARC transcriptional phenotypes. There was no clear correlation between gene induction patterns and variation at the Bcg locus (Slc11A1 or propensity to bias Th1 versus Th2 T cell activation responses. Conclusion Macrophages from each strain responded to LPS with unique gene expression profiles. The variation apparent between genetic backgrounds provides insights into the breadth of possible inflammatory responses, and paradoxically, this divergence was used to identify a common transcriptional program that responds to TLR4 signalling, irrespective of genetic background. Our data indicates that many additional genetic loci control the nature and the extent of transcriptional responses promoted by a single pathogen-associated molecular pattern (PAMP, such as LPS.

  9. Effects of cIAP-1, cIAP-2 and XIAP triple knockdown on prostate cancer cell susceptibility to apoptosis, cell survival and proliferation

    Directory of Open Access Journals (Sweden)

    Dowling Catherine

    2009-06-01

    Full Text Available Abstract Background Manipulating apoptotic resistance represents an important strategy for the treatment of hormone refractory prostate cancer. We hypothesised that the Inhibitor of Apoptosis (IAP Proteins may be mediating this resistance and knockdown of cIAP-1, cIAP-2 and XIAP would increase sensitivity to apoptosis. Methods cIAP-1, cIAP-2 and XIAP where knocked down either individually or in combination using siRNA in androgen independent prostate cancer PC-3 cells as confirmed by real-time PCR and western blotting. Cells were then treated with TRAIL, Etoposide, or Tunicamycin, and apoptosis assessed by PI DNA staining. Apoptosis was confirmed with Annexin V labelling and measurement of PARP cleavage, and was inhibited using the pan-caspase inhibitor, zVAD.fmk. Clonogenic assays and assessment of ID-1 expression by western blotting were used to measure recovery and proliferation. Results PC-3 are resistant to TRAIL induced apoptosis and have elevated expression of cIAP-1, cIAP-2 and XIAP. Combined knockdown sensitised PC-3 to TRAIL induced apoptosis, but not to Etoposide or Tunicmycin, with corresponding increases in caspase activity and PARP cleavage which was inhibited by ZVAD.fmk. Triple knock down decreased proliferation which was confirmed by decreased ID-1 expression. Conclusion Simultaneous knock down of the IAPs not only sensitised the PC-3 to TRAIL but also inhibited their proliferation rates and clonogenic survival. The inability to alter sensitivity to other triggers of apoptosis suggests that this effect is specific for death receptor pathways and knock down might facilitate immune-surveillance mechanisms to counter cancer progression and, in combination with therapeutic approaches using TRAIL, could represent an important treatment strategy.

  10. Effects of cIAP-1, cIAP-2 and XIAP triple knockdown on prostate cancer cell susceptibility to apoptosis, cell survival and proliferation.

    LENUS (Irish Health Repository)

    Gill, Catherine

    2009-01-01

    BACKGROUND: Manipulating apoptotic resistance represents an important strategy for the treatment of hormone refractory prostate cancer. We hypothesised that the Inhibitor of Apoptosis (IAP) Proteins may be mediating this resistance and knockdown of cIAP-1, cIAP-2 and XIAP would increase sensitivity to apoptosis. METHODS: cIAP-1, cIAP-2 and XIAP where knocked down either individually or in combination using siRNA in androgen independent prostate cancer PC-3 cells as confirmed by real-time PCR and western blotting. Cells were then treated with TRAIL, Etoposide, or Tunicamycin, and apoptosis assessed by PI DNA staining. Apoptosis was confirmed with Annexin V labelling and measurement of PARP cleavage, and was inhibited using the pan-caspase inhibitor, zVAD.fmk. Clonogenic assays and assessment of ID-1 expression by western blotting were used to measure recovery and proliferation. RESULTS: PC-3 are resistant to TRAIL induced apoptosis and have elevated expression of cIAP-1, cIAP-2 and XIAP. Combined knockdown sensitised PC-3 to TRAIL induced apoptosis, but not to Etoposide or Tunicmycin, with corresponding increases in caspase activity and PARP cleavage which was inhibited by ZVAD.fmk. Triple knock down decreased proliferation which was confirmed by decreased ID-1 expression. CONCLUSION: Simultaneous knock down of the IAPs not only sensitised the PC-3 to TRAIL but also inhibited their proliferation rates and clonogenic survival. The inability to alter sensitivity to other triggers of apoptosis suggests that this effect is specific for death receptor pathways and knock down might facilitate immune-surveillance mechanisms to counter cancer progression and, in combination with therapeutic approaches using TRAIL, could represent an important treatment strategy.

  11. Role of the TWEAK-Fn14-cIAP1-NF-kB signaling axis in the regulation of myogenesis and muscle homeostasis

    Directory of Open Access Journals (Sweden)

    Emeka K Enwere

    2014-02-01

    Full Text Available Mammalian skeletal muscle maintains a robust regenerative capacity throughout life, due largely to the presence of a stem cell population known as satellite cells in the muscle milieu. In normal conditions, these cells remain quiescent; they are activated upon injury to become myoblasts, which proliferate extensively and eventually differentiate and fuse to form new multinucleated muscle fibers. Recent findings have identified some of the factors, including the cytokine TNFα-like weak inducer of apoptosis (TWEAK, which govern these cells’ decisions to proliferate, differentiate, or fuse. In this review, we will address the functions of TWEAK, its receptor Fn14, and the associated signal transduction molecule, the cellular inhibitor of apoptosis 1 (cIAP1, in the regulation of myogenesis. TWEAK signaling can activate the canonical NF-κB signaling pathway, which promotes myoblast proliferation and inhibits myogenesis. In addition, TWEAK activates the noncanonical NF-κB pathway, which, in contrast, promotes myogenesis by increasing myoblast fusion. Both pathways are regulated by cIAP1, which is an essential component of downstream signaling mediated by TWEAK and similar cytokines. This review will focus on the seemingly contradictory roles played by TWEAK during muscle regeneration, by highlighting the interplay between the two NF-κB pathways under physiological and pathological conditions. We will also discuss how myogenesis is negatively affected by chronic conditions which affect homeostasis of the skeletal muscle environment.

  12. c-IAP1在食管鳞癌中的表达及其对化疗敏感性的影响%c-IAP1 expression and tumor chemosensitivity in esophageal squamous cell carcinoma

    Institute of Scientific and Technical Information of China (English)

    许杨; 刘芳; 周兰萍; 赵晓航

    2011-01-01

    目的:探讨食管鳞癌细胞凋亡抑制蛋白1(c-IAP1)表达与化疗敏感性的相关性.方法:食管鳞癌组织芯片免疫组织化学染色,分析食管鳞癌组织及其配对癌旁食管上皮中c-IAP1的表达和定位及其与肿瘤,临床分级的关系.免疫印迹分析食管癌细胞C-IAP1和Smac表达,用RNA干扰技术敲降Smac表达,MTT法检测细胞对化疗药物敏感性的影响.统计分析采用卡方检验.结果:与癌旁食管上皮(54%,28/52)相比,c-IAP1在食管癌组织中高表达(67%,35/52),但与肿瘤病理分级、年龄和}生别无关.c-IAP1定位于组织细胞质和细胞核,在46%(24/52)的肿瘤组织中,细胞质c-IAP1表达水平显著高于配对癌旁食管上皮4%(2/52),具有统计学意义(P<0.001).食管癌EC0156、KYSE510、KYSE30、KYSE1 80和KYSE170细胞普遍表达c-IAP1,其中KYSE170细胞表达最高.经RNA干扰敲降Smac分子,可显著降低KYSE170细胞对化疗药物的敏感性.结论:c-IAP1蛋白在食管癌组织细胞质中表达率高,经化疗药物处理后,Smac介导c-IAP1降解,增加了食管癌细胞对化疗药物的敏感性,c-IAP1在调控食管癌化疗敏感性中发挥重要作用.%AIM: To investigate the expression of cellular inhibitor of apoptosis protein 1 (c-IAP1) in esophageal squamous cell carcinoma (ESCC) and to evaluate the correlation between c-IAP1 expression and chemosensitivity of ESCC cell lines.METHODS: Immunohistochemistry staining was performed to determine the expression of c-IAP1 in ESCC on tissue microarray.The chisquare test was used to analyze the correlation between c-IAP1 expression and clinicopathologic parameters of ESCC.The expression of c-IAP1and Smac in several ESCC cell lines was detected by Western blot.The chemosensitivity of ESCC cell lines was evaluated by RNA interference with Smac gene expression and MTT assay.RESULTS: c-IAP1 expression was found in 67%(35/52) of ESCC tissue specimens and in 54%(28/52) of tumor-adjacent normal tissue specimens.c-IAP1 expression was not correlated with age, gender, tumor stage (all P > 0.05).c-IAP1was localized to both the cytoplasm and nucleus.Cytoplasmic c-IAP1 expression was detected more frequently in ESCC than in tumor-adjacent tissue specimens [45% (24/52) vs 4% (2/52), P <0.001].c-IAP1 and Smac were widely expressed in ESCC cell lines, including EC0156, KYSE510,KYSE180, KYSE170, and KYSE30.Knockdown of Smac significantly reduced chemosensitivity of KYSE170 cell line to anticancer drugs.CONCLUSION: The expression of c-IAP1 was up-regulated in both ESCC cell lines and tumor tissue.Smac mediates the degradation of c-IAP1after cisplatin treatment, c-IAP1 and Smac might regulate chemosensitivity of ESCC cell lines.

  13. New insights into innate immune control of systemic candidiasis.

    Science.gov (United States)

    Lionakis, Michail S

    2014-08-01

    Systemic infection caused by Candida species is the fourth leading cause of nosocomial bloodstream infection in modern hospitals and carries high morbidity and mortality despite antifungal therapy. A recent surge of immunological studies in the mouse models of systemic candidiasis and the parallel discovery and phenotypic characterization of inherited genetic disorders in antifungal immune factors that are associated with enhanced susceptibility or resistance to the infection have provided new insights into the cellular and molecular basis of protective innate immune responses against Candida. In this review, the new developments in our understanding of how the mammalian immune system responds to systemic Candida challenge are synthesized and important future research directions are highlighted.

  14. Glial-cell-derived neuroregulators control type 3 innate lymphoid cells and gut defence.

    Science.gov (United States)

    Ibiza, Sales; García-Cassani, Bethania; Ribeiro, Hélder; Carvalho, Tânia; Almeida, Luís; Marques, Rute; Misic, Ana M; Bartow-McKenney, Casey; Larson, Denise M; Pavan, William J; Eberl, Gérard; Grice, Elizabeth A; Veiga-Fernandes, Henrique

    2016-07-21

    Group 3 innate lymphoid cells (ILC3) are major regulators of inflammation and infection at mucosal barriers. ILC3 development is thought to be programmed, but how ILC3 perceive, integrate and respond to local environmental signals remains unclear. Here we show that ILC3 in mice sense their environment and control gut defence as part of a glial–ILC3–epithelial cell unit orchestrated by neurotrophic factors. We found that enteric ILC3 express the neuroregulatory receptor RET. ILC3-autonomous Ret ablation led to decreased innate interleukin-22 (IL-22), impaired epithelial reactivity, dysbiosis and increased susceptibility to bowel inflammation and infection. Neurotrophic factors directly controlled innate Il22 downstream of the p38 MAPK/ERK-AKT cascade and STAT3 activation. Notably, ILC3 were adjacent to neurotrophic-factor-expressing glial cells that exhibited stellate-shaped projections into ILC3 aggregates. Glial cells sensed microenvironmental cues in a MYD88-dependent manner to control neurotrophic factors and innate IL-22. Accordingly, glial-intrinsic Myd88 deletion led to impaired production of ILC3-derived IL-22 and a pronounced propensity towards gut inflammation and infection. Our work sheds light on a novel multi-tissue defence unit, revealing that glial cells are central hubs of neuron and innate immune regulation by neurotrophic factor signals.

  15. Inhibitor of apoptosis (IAP) proteins in regulation of inflammation and innate immunity

    DEFF Research Database (Denmark)

    Damgaard, Rune B; Gyrd-Hansen, Mads

    2011-01-01

    as important regulators of innate immune signaling downstream of pattern recognition receptors (PRRs) such as Toll-like receptor 4 (TLR4), the nucleotide-binding oligomerization domain 1 (NOD1) and NOD2 receptors, and the retinoic acid-inducible gene (RIG)-I receptor. Recent evidence suggests that cIAP1, cIAP2......, and XIAP facilitate ubiquitin-dependent signaling activated by these PRRs and mediate activation of nuclear factor-kappa B (NF-kappaB) transcription factors as well as the MAP kinases p38 and JNK. Here, we review the current understanding of IAP-mediated PRR signaling and how IAP proteins might present...

  16. DDX3 functions in antiviral innate immunity through translational control of PACT.

    Science.gov (United States)

    Lai, Ming-Chih; Sun, H Sunny; Wang, Shainn-Wei; Tarn, Woan-Yuh

    2016-01-01

    It has emerged that DDX3 plays a role in antiviral innate immunity. However, the exact mechanism by which DDX3 functions in antiviral innate immunity remains to be determined. We found that the expression of the protein activator of the interferon-induced protein kinase (PACT) was regulated by DDX3 in human cells. PACT acts as a cellular activator of retinoic acid-inducible gene-I-like receptors in the sensing of viral RNAs. DDX3 facilitated the translation of PACT mRNA that may contain a structured 5' UTR. Knockdown of DDX3 decreased the viral RNA detection sensitivity of the cells. PACT partially rescued defects of interferon-β1 and chemokine (C-C motif) ligand 5/RANTES (regulated on activation normal T cell expressed and secreted) induction in DDX3-knockdown HEK293 cells. Therefore, DDX3 may participate in antiviral innate immunity, at least in part, by translational control of PACT. Moreover, we show that overexpression of the hepatitis C virus (HCV) core protein inhibited the translation of a reporter mRNA harboring the PACT 5' UTR. The HCV core protein was associated and colocalized with DDX3 in cytoplasmic stress granules, suggesting that the HCV core may abrogate the function of DDX3 by sequestering DDX3 in stress granules. The perturbation of DDX3 by viral proteins delineates a critical role for DDX3 in antiviral host defense.

  17. Dendritic Cells Coordinate Innate Immunity via MyD88 Signaling to Control Listeria monocytogenes Infection

    Directory of Open Access Journals (Sweden)

    Catharina Arnold-Schrauf

    2014-02-01

    Full Text Available Listeria monocytogenes (LM, a facultative intracellular Gram-positive pathogen, can cause life-threatening infections in humans. In mice, the signaling cascade downstream of the myeloid differentiation factor 88 (MyD88 is essential for proper innate immune activation against LM, as MyD88-deficient mice succumb early to infection. Here, we show that MyD88 signaling in dendritic cells (DCs is sufficient to mediate the protective innate response, including the production of proinflammatory cytokines, neutrophil infiltration, bacterial clearance, and full protection from lethal infection. We also demonstrate that MyD88 signaling by DCs controls the infection rates of CD8α+ cDCs and thus limits the spread of LM to the T cell areas. Furthermore, in mice expressing MyD88 in DCs, inflammatory monocytes, which are required for bacterial clearance, are activated independently of intrinsic MyD88 signaling. In conclusion, CD11c+ conventional DCs critically integrate pathogen-derived signals via MyD88 signaling during early infection with LM in vivo.

  18. Arginase 1 is an innate lymphoid cell-intrinsic metabolic checkpoint controlling type 2 inflammation

    Science.gov (United States)

    Monticelli, Laurel A; Buck, Michael D; Flamar, Anne-Laure; Saenz, Steven A; Wojno, Elia D Tait; Yudanin, Naomi A; Osborne, Lisa C; Hepworth, Matthew R; Tran, Sara V; Rodewald, Hans-Reimer; Shah, Hardik; Cross, Justin R; Diamond, Joshua M; Cantu, Edward; Christie, Jason D; Pearce, Erika L; Artis, David

    2016-01-01

    Group 2 innate lymphoid cells (ILC2s) regulate tissue inflammation and repair following activation by cell-extrinsic factors including host-derived cytokines. However, the cell-intrinsic metabolic pathways that control ILC2 function are undefined. Here we demonstrate that expression of the enzyme Arginase 1 (Arg1) is a conserved trait of murine and human ILC2s during acute or chronic lung inflammation. Deletion of murine ILC-intrinsic Arg1 abrogated type 2 lung inflammation by restraining ILC2 proliferation and dampening cytokine production. Mechanistically, inhibition of Arg1 enzymatic activity disrupted multiple components of ILC2 metabolic programming by altering arginine catabolism, impairing polyamine biosynthesis and reducing aerobic glycolysis. These data identify Arg1 as a key regulator of ILC2 bioenergetics, controlling proliferative capacity and pro-inflammatory functions that promote type 2 inflammation. PMID:27043409

  19. Maternal retinoids control type 3 innate lymphoid cells and set the offspring immunity

    Science.gov (United States)

    van de Pavert, Serge A.; Ferreira, Manuela; Domingues, Rita G.; Ribeiro, Hélder; Molenaar, Rosalie; Moreira-Santos, Lara; Almeida, Francisca F.; Ibiza, Sales; Barbosa, Inês; Goverse, Gera; Labão-Almeida, Carlos; Godinho-Silva, Cristina; Konijn, Tanja; Schooneman, Dennis; O'Toole, Tom; Mizee, Mark R.; Habani, Yasmin; Haak, Esther; Santori, Fabio R.; Littman, Dan R.; Schulte-Merker, Stefan; Dzierzak, Elaine; Simas, J. Pedro; Mebius, Reina E.; Veiga-Fernandes, Henrique

    2014-04-01

    The impact of nutritional status during fetal life on the overall health of adults has been recognized; however, dietary effects on the developing immune system are largely unknown. Development of secondary lymphoid organs occurs during embryogenesis and is considered to be developmentally programmed. Secondary lymphoid organ formation depends on a subset of type 3 innate lymphoid cells (ILC3) named lymphoid tissue inducer (LTi) cells. Here we show that mouse fetal ILC3s are controlled by cell-autonomous retinoic acid (RA) signalling in utero, which pre-sets the immune fitness in adulthood. We found that embryonic lymphoid organs contain ILC progenitors that differentiate locally into mature LTi cells. Local LTi cell differentiation was controlled by maternal retinoid intake and fetal RA signalling acting in a haematopoietic cell-autonomous manner. RA controlled LTi cell maturation upstream of the transcription factor RORγt. Accordingly, enforced expression of Rorgt restored maturation of LTi cells with impaired RA signalling, whereas RA receptors directly regulated the Rorgt locus. Finally, we established that maternal levels of dietary retinoids control the size of secondary lymphoid organs and the efficiency of immune responses in the adult offspring. Our results reveal a molecular link between maternal nutrients and the formation of immune structures required for resistance to infection in the offspring.

  20. Skin innate immune system

    Directory of Open Access Journals (Sweden)

    Berna Aksoy

    2013-06-01

    Full Text Available All multicellular organisms protect themselves from external universe and microorganisms by innate immune sytem that is constitutively present. Skin innate immune system has several different components composed of epithelial barriers, humoral factors and cellular part. In this review information about skin innate immune system and its components are presented to the reader. Innate immunity, which wasn’t adequately interested in previously, is proven to provide a powerfull early protection system, control many infections before the acquired immunity starts and directs acquired immunity to develop optimally

  1. Actin polymerization as a key innate immune effector mechanism to control Salmonella infection.

    Science.gov (United States)

    Man, Si Ming; Ekpenyong, Andrew; Tourlomousis, Panagiotis; Achouri, Sarra; Cammarota, Eugenia; Hughes, Katherine; Rizzo, Alessandro; Ng, Gilbert; Wright, John A; Cicuta, Pietro; Guck, Jochen R; Bryant, Clare E

    2014-12-09

    Salmonellosis is one of the leading causes of food poisoning worldwide. Controlling bacterial burden is essential to surviving infection. Nucleotide-binding oligomerization domain-like receptors (NLRs), such as NLRC4, induce inflammasome effector functions and play a crucial role in controlling Salmonella infection. Inflammasome-dependent production of IL-1β recruits additional immune cells to the site of infection, whereas inflammasome-mediated pyroptosis of macrophages releases bacteria for uptake by neutrophils. Neither of these functions is known to directly kill intracellular salmonellae within macrophages. The mechanism, therefore, governing how inflammasomes mediate intracellular bacterial-killing and clearance in host macrophages remains unknown. Here, we show that actin polymerization is required for NLRC4-dependent regulation of intracellular bacterial burden, inflammasome assembly, pyroptosis, and IL-1β production. NLRC4-induced changes in actin polymerization are physically manifested as increased cellular stiffness, and leads to reduced bacterial uptake, production of antimicrobial molecules, and arrested cellular migration. These processes act in concert to limit bacterial replication in the cell and dissemination in tissues. We show, therefore, a functional link between innate immunity and actin turnover in macrophages that underpins a key host defense mechanism for the control of salmonellosis.

  2. The miR-126-VEGFR2 axis controls the innate response to pathogen-associated nucleic acids.

    Science.gov (United States)

    Agudo, Judith; Ruzo, Albert; Tung, Navpreet; Salmon, Hélène; Leboeuf, Marylène; Hashimoto, Daigo; Becker, Christian; Garrett-Sinha, Lee-Ann; Baccarini, Alessia; Merad, Miriam; Brown, Brian D

    2014-01-01

    miR-126 is a microRNA expressed predominately by endothelial cells and controls angiogenesis. We found miR-126 was required for the innate response to pathogen-associated nucleic acids and that miR-126-deficient mice had greater susceptibility to infection with pseudotyped HIV. Profiling of miRNA indicated that miR-126 had high and specific expression by plasmacytoid dendritic cells (pDCs). Moreover, miR-126 controlled the survival and function of pDCs and regulated the expression of genes encoding molecules involved in the innate response, including Tlr7, Tlr9 and Nfkb1, as well as Kdr, which encodes the growth factor receptor VEGFR2. Deletion of Kdr in DCs resulted in reduced production of type I interferon, which supports the proposal of a role for VEGFR2 in miR-126 regulation of pDCs. Our studies identify the miR-126-VEGFR2 axis as an important regulator of the innate response that operates through multiscale control of pDCs.

  3. Innate immune control of EBV-infected B cells by invariant natural killer T cells.

    Science.gov (United States)

    Chung, Brian K; Tsai, Kevin; Allan, Lenka L; Zheng, Dong Jun; Nie, Johnny C; Biggs, Catherine M; Hasan, Mohammad R; Kozak, Frederick K; van den Elzen, Peter; Priatel, John J; Tan, Rusung

    2013-10-10

    Individuals with X-linked lymphoproliferative disease lack invariant natural killer T (iNKT) cells and are exquisitely susceptible to Epstein-Barr virus (EBV) infection. To determine whether iNKT cells recognize or regulate EBV, resting B cells were infected with EBV in the presence or absence of iNKT cells. The depletion of iNKT cells increased both viral titers and the frequency of EBV-infected B cells. However, EBV-infected B cells rapidly lost expression of the iNKT cell receptor ligand CD1d, abrogating iNKT cell recognition. To determine whether induced CD1d expression could restore iNKT recognition in EBV-infected cells, lymphoblastoid cell lines (LCL) were treated with AM580, a synthetic retinoic acid receptor-α agonist that upregulates CD1d expression via the nuclear protein, lymphoid enhancer-binding factor 1 (LEF-1). AM580 significantly reduced LEF-1 association at the CD1d promoter region, induced CD1d expression on LCL, and restored iNKT recognition of LCL. CD1d-expressing LCL elicited interferon γ secretion and cytotoxicity by iNKT cells even in the absence of exogenous antigen, suggesting an endogenous iNKT antigen is expressed during EBV infection. These data indicate that iNKT cells may be important for early, innate control of B cell infection by EBV and that downregulation of CD1d may allow EBV to circumvent iNKT cell-mediated immune recognition.

  4. OTULIN Restricts Met1-Linked Ubiquitination to Control Innate Immune Signaling

    DEFF Research Database (Denmark)

    Fiil, Berthe Katrine; Damgaard, Rune Busk; Wagner, Sebastian Alexander;

    2013-01-01

    Conjugation of Met1-linked polyubiquitin (Met1-Ub) by the linear ubiquitin chain assembly complex (LUBAC) is an important regulatory modification in innate immune signaling. So far, only few Met1-Ub substrates have been described, and the regulatory mechanisms have remained elusive. We recently i...

  5. Genetic control of the variable innate immune response to asymptomatic bacteriuria.

    Directory of Open Access Journals (Sweden)

    Jenny Grönberg-Hernández

    Full Text Available The severity of urinary tract infection (UTI reflects the quality and magnitude of the host response. While strong local and systemic innate immune activation occurs in patients with acute pyelonephritis, the response to asymptomatic bacteriuria (ABU is low. The immune response repertoire in ABU has not been characterized, due to the inherent problem to distinguish bacterial differences from host-determined variation. In this study, we investigated the host response to ABU and genetic variants affecting innate immune signaling and UTI susceptibility. Patients were subjected to therapeutic urinary tract inoculation with E. coli 83972 to ensure that they were exposed to the same E. coli strain. The innate immune response repertoire was characterized in urine samples, collected from each patient before and after inoculation with bacteria or PBS, if during the placebo arm of the study. Long-term E. coli 83972 ABU was established in 23 participants, who were followed for up to twelve months and the innate immune response was quantified in 233 urine samples. Neutrophil numbers increased in all but two patients and in an extended urine cytokine/chemokine analysis (31 proteins, the chemoattractants IL-8 and GRO-α, RANTES, Eotaxin-1 and MCP-1, the T cell chemoattractant and antibacterial peptide IP-10, inflammatory regulators IL-1-α and sIL-1RA and the T lymphocyte/dendritic cell product sIL-2Rα were detected and variably increased, compared to sterile samples. IL-6, which is associated with symptomatic UTI, remained low and numerous specific immune mediators were not detected. The patients were also genotyped for UTI-associated IRF3 and TLR4 promoter polymorphisms. Patients with ABU associated TLR4 polymorphisms had low neutrophil numbers, IL-6, IP-10, MCP-1 and sIL-2Rα concentrations. Patients with the ABU-associated IRF3 genotype had lower neutrophils, IL-6 and MCP-1 responses than the remaining group. The results suggest that the host

  6. Arterivirus and nairovirus ovarian tumor domain-containing deubiquitinases target activated RIG-I to control innate immune signaling

    NARCIS (Netherlands)

    P.B. van Kasteren (Puck ); C. Beugeling (Corrine); D.K. Ninaber (Dennis); N. Frias-Staheli (Natalia); S. van Boheemen (Sander); A. García-Sastre (Adolfo); E.J. Snijder (Eric); M.A. Kikkert (Myrna)

    2012-01-01

    textabstractThe innate immune response constitutes the first line of defense against viral infection and is extensively regulated through ubiquitination. The removal of ubiquitin from innate immunity signaling factors by deubiquitinating enzymes (DUBs) therefore provides a potential opportunity for

  7. Impact of innate immunity in a subset of children with autism spectrum disorders: a case control study

    Directory of Open Access Journals (Sweden)

    Cushing-Ruby Agnes

    2008-11-01

    Full Text Available Abstract Background Among patients with autism spectrum disorders (ASD evaluated in our clinic, there appears to be a subset that can be clinically distinguished from other ASD children because of frequent infections (usually viral accompanied by worsening behavioural symptoms and/or loss/decrease in acquired skills. This study assessed whether these clinical features of this ASD subset are associated with atopy, asthma, food allergy (FA, primary immunodeficiency (PID, or innate immune responses important in viral infections. Methods This study included the ASD children described above (ASD test, N = 26 and the following controls: ASD controls (N = 107, non-ASD controls with FA (N = 24, non-ASD controls with chronic rhinosinusitis/recurrent otitis media (CRS/ROM; N = 38, and normal controls (N = 43. We assessed prevalence of atopy, asthma, FA, CRS/ROM, and PID. Innate immune responses were assessed by measuring production of proinflammatory and counter-regulatory cytokines by peripheral blood mononuclear cells (PBMCs in response to agonists of Toll-like receptors (TLRs, with or without pre-treatment of lipopolysaccharide (LPS, a TLR4 agonist. Results Non-IgE mediated FA was equally prevalent in both ASD test and ASD control groups, occurring at higher frequency than in the non-ASD controls. Allergic rhinitis, atopic/non-atopic asthma, and atopic dermatitis were equally prevalent among the study groups except for the CRS/ROM group in which non-atopic asthma was more prevalent (52.6%. CRS/ROM and specific polysaccharide antibody deficiency (SPAD were more prevalent in the ASD test group than in the ASD control, FA, and normal control groups: 23.1% vs. Conclusion Clinical features of the ASD test group were not associated with atopy, asthma, FA, or PID in our study but may be associated with altered TLR responses mediating neuro-immune interactions.

  8. Multigenic control of measles vaccine immunity mediated by polymorphisms in measles receptor, innate pathway, and cytokine genes.

    Science.gov (United States)

    Kennedy, Richard B; Ovsyannikova, Inna G; Haralambieva, Iana H; O'Byrne, Megan M; Jacobson, Robert M; Pankratz, V Shane; Poland, Gregory A

    2012-03-09

    Measles infection and vaccine response are complex biological processes that involve both viral and host genetic factors. We have previously investigated the influence of genetic polymorphisms on vaccine immune response, including measles vaccines, and have shown that polymorphisms in HLA, cytokine, cytokine receptor, and innate immune response genes are associated with variation in vaccine response but do not account for all of the inter-individual variance seen in vaccinated populations. In the current study we report the findings of a multigenic analysis of measles vaccine immunity, indicating a role for the measles virus receptor CD46, innate pattern-recognition receptors (DDX58, TLR2, 4, 5, 7 and 8) and intracellular signaling intermediates (MAP3K7, NFKBIA), and key antiviral molecules (VISA, OAS2, MX1, PKR) as well as cytokines (IFNA1, IL4, IL6, IL8, IL12B) and cytokine receptor genes (IL2RB, IL6R, IL8RA) in the genetic control of both humoral and cellular immune responses. This multivariate approach provided additional insights into the genetic control of measles vaccine responses over and above the information gained by our previous univariate SNP association analyses.

  9. Retinoid X receptor alpha controls innate inflammatory responses through the up-regulation of chemokine expression.

    Science.gov (United States)

    Núñez, Vanessa; Alameda, Daniel; Rico, Daniel; Mota, Rubén; Gonzalo, Pilar; Cedenilla, Marta; Fischer, Thierry; Boscá, Lisardo; Glass, Christopher K; Arroyo, Alicia G; Ricote, Mercedes

    2010-06-01

    The retinoid X receptor alpha (RXRalpha) plays a central role in the regulation of many intracellular receptor signaling pathways and can mediate ligand-dependent transcription by forming homodimers or heterodimers with other nuclear receptors. Although several members of the nuclear hormone receptor superfamily have emerged as important regulators of macrophage gene expression, the existence in vivo of an RXR signaling pathway in macrophages has not been established. Here, we provide evidence that RXRalpha regulates the transcription of the chemokines Ccl6 and Ccl9 in macrophages independently of heterodimeric partners. Mice lacking RXRalpha in myeloid cells exhibit reduced levels of CCL6 and CCL9, impaired recruitment of leukocytes to sites of inflammation, and lower susceptibility to sepsis. These studies demonstrate that macrophage RXRalpha plays key roles in the regulation of innate immunity and represents a potential target for immunotherapy of sepsis.

  10. The Role of the Innate Immune System of the Liver in the Control of HBV and HCV

    Institute of Scientific and Technical Information of China (English)

    Jun Wu; Ruth Br(o)ring; J(o)rg F. Schlaak

    2008-01-01

    Hepatitis B virus (HBV) and Hepatitis C virus (HCV) infection are among the most frequent causes of chronic liver disease worldwide. As recent studies suggested that Toll like receptor (TLR)-based therapies may represent a promising approach in the treatment of HBV infection, we have studied the role of the local innate immune system of the liver as possible mediator of this effect. Murine non-parenchymal liver cells (NPC; Kupffer cells, KC; sinusoidal endothelial cells, LSEC) were isolated from C57/BL6 and stimulated by TLR 1-9 agonists. Supernatants were harvested and assayed for their antiviral activity against HBV in HBV-Met cells and HCV in the murine HCV replicon cell line MH1. Only supernatants from TLR 3 and -4 stimulated KC and TLR 3 stimulated LSEC were able to potently suppress HBV and HCV replication. By using neutralizing antibodies we could demonstrate that the TLR 3- but not the TLR 4 mediated effect is exclusively mediated through IFN-β. Our data indicate that TLR 3 and -4 mediated stimulation of NPC leads to production of IFN-β which can potently suppress HBV and HCV replication. This is of relevance for the local control of viral hepatitis infection by the innate immune system of the liver, the development of novel TLR-based therapeutic approaches and sheds new light on the viral crosstalk between HCV (TLR 3 stimulator) and HBV.

  11. Innate immune control of Salmonella enterica serovar Typhimurium: mechanisms contributing to combating systemic Salmonella infection.

    Science.gov (United States)

    Wick, Mary Jo

    2011-01-01

    Infections with Salmonella enterica serovars remain a serious problem worldwide. While serovar Typhi causes significant morbidity and mortality that is restricted to humans, serovar Typhimurium causes gastroenteritidis in humans and can also infect other animals. As mice with the susceptible Nramp1 locus get systemic infection with serovar Typhimurium, murine infection models using this serovar have been widely used to decipher the immune mechanisms required to survive systemic Salmonella infection. This review summarizes recent studies in murine infection models that have advanced our understanding of the events that occur during the first days after oral Salmonella infection. The pathways of bacterial penetration across the intestinal epithelium, bacterial spread to draining (mesenteric) lymph nodes and dissemination to systemic tissues is discussed. The response of myeloid cell populations, including dendritic cells, inflammatory monocytes and neutrophils, during the early stage of infection is also discussed. Finally, the mechanisms driving recruitment of myeloid cells to infected intestinal lymphoid tissues and what is known about Toll-like receptor signaling pathways in innate immunity to Salmonella infection is also discussed.

  12. The RNA-Editing Enzyme ADAR1 Controls Innate Immune Responses to RNA

    Directory of Open Access Journals (Sweden)

    Niamh M. Mannion

    2014-11-01

    Full Text Available The ADAR RNA-editing enzymes deaminate adenosine bases to inosines in cellular RNAs. Aberrant interferon expression occurs in patients in whom ADAR1 mutations cause Aicardi-Goutières syndrome (AGS or dystonia arising from striatal neurodegeneration. Adar1 mutant mouse embryos show aberrant interferon induction and die by embryonic day E12.5. We demonstrate that Adar1 embryonic lethality is rescued to live birth in Adar1; Mavs double mutants in which the antiviral interferon induction response to cytoplasmic double-stranded RNA (dsRNA is prevented. Aberrant immune responses in Adar1 mutant mouse embryo fibroblasts are dramatically reduced by restoring the expression of editing-active cytoplasmic ADARs. We propose that inosine in cellular RNA inhibits antiviral inflammatory and interferon responses by altering RLR interactions. Transfecting dsRNA oligonucleotides containing inosine-uracil base pairs into Adar1 mutant mouse embryo fibroblasts reduces the aberrant innate immune response. ADAR1 mutations causing AGS affect the activity of the interferon-inducible cytoplasmic isoform more severely than the nuclear isoform.

  13. Vitamin A Controls the Presence of RORγ+ Innate Lymphoid Cells and Lymphoid Tissue in the Small Intestine.

    Science.gov (United States)

    Goverse, Gera; Labao-Almeida, Carlos; Ferreira, Manuela; Molenaar, Rosalie; Wahlen, Sigrid; Konijn, Tanja; Koning, Jasper; Veiga-Fernandes, Henrique; Mebius, Reina E

    2016-06-15

    Changes in diet and microbiota have determining effects on the function of the mucosal immune system. For example, the active metabolite of vitamin A, retinoic acid (RA), has been described to maintain homeostasis in the intestine by its influence on both lymphocytes and myeloid cells. Additionally, innate lymphoid cells (ILCs), important producers of cytokines necessary for intestinal homeostasis, are also influenced by vitamin A in the small intestines. In this study, we show a reduction of both NCR(-) and NCR(+) ILC3 subsets in the small intestine of mice raised on a vitamin A-deficient diet. Additionally, the percentages of IL-22-producing ILCs were reduced in the absence of dietary vitamin A. Conversely, mice receiving additional RA had a specific increase in the NCR(-) ILC3 subset, which contains the lymphoid tissue inducer cells. The dependence of lymphoid tissue inducer cells on vitamin A was furthermore illustrated by impaired development of enteric lymphoid tissues in vitamin A-deficient mice. These effects were a direct consequence of ILC-intrinsic RA signaling, because retinoic acid-related orphan receptor γt-Cre × RARα-DN mice had reduced numbers of NCR(-) and NCR(+) ILC3 subsets within the small intestine. However, lymphoid tissue inducer cells were not affected in these mice nor was the formation of enteric lymphoid tissue, demonstrating that the onset of RA signaling might take place before retinoic acid-related orphan receptor γt is expressed on lymphoid tissue inducer cells. Taken together, our data show an important role for vitamin A in controlling innate lymphoid cells and, consequently, postnatal formed lymphoid tissues within the small intestines.

  14. Gene-gene interaction and functional impact of polymorphisms on innate immune genes in controlling Plasmodium falciparum blood infection level.

    Directory of Open Access Journals (Sweden)

    Madhumita Basu

    Full Text Available Genetic variations in toll-like receptors and cytokine genes of the innate immune pathways have been implicated in controlling parasite growth and the pathogenesis of Plasmodium falciparum mediated malaria. We previously published genetic association of TLR4 non-synonymous and TNF-α promoter polymorphisms with P.falciparum blood infection level and here we extend the study considerably by (i investigating genetic dependence of parasite-load on interleukin-12B polymorphisms, (ii reconstructing gene-gene interactions among candidate TLRs and cytokine loci, (iii exploring genetic and functional impact of epistatic models and (iv providing mechanistic insights into functionality of disease-associated regulatory polymorphisms. Our data revealed that carriage of AA (P = 0.0001 and AC (P = 0.01 genotypes of IL12B 3'UTR polymorphism was associated with a significant increase of mean log-parasitemia relative to rare homozygous genotype CC. Presence of IL12B+1188 polymorphism in five of six multifactor models reinforced its strong genetic impact on malaria phenotype. Elevation of genetic risk in two-component models compared to the corresponding single locus and reduction of IL12B (2.2 fold and lymphotoxin-α (1.7 fold expressions in patients'peripheral-blood-mononuclear-cells under TLR4Thr399Ile risk genotype background substantiated the role of Multifactor Dimensionality Reduction derived models. Marked reduction of promoter activity of TNF-α risk haplotype (C-C-G-G compared to wild-type haplotype (T-C-G-G with (84% and without (78% LPS stimulation and the loss of binding of transcription factors detected in-silico supported a causal role of TNF-1031. Significantly lower expression of IL12B+1188 AA (5 fold and AC (9 fold genotypes compared to CC and under-representation (P = 0.0048 of allele A in transcripts of patients' PBMCs suggested an Allele-Expression-Imbalance. Allele (A+1188C dependent differential stability (2 fold of IL12B-transcripts upon

  15. Posttranscriptional control of type I interferon genes by KSRP in the innate immune response against viral infection.

    Science.gov (United States)

    Lin, Wei-Jye; Zheng, Xiaojia; Lin, Chen-Chung; Tsao, Jun; Zhu, Xiaolin; Cody, James J; Coleman, Jennifer M; Gherzi, Roberto; Luo, Ming; Townes, Tim M; Parker, Jacqueline N; Chen, Ching-Yi

    2011-08-01

    Inherently unstable mRNAs contain AU-rich elements (AREs) in the 3' untranslated regions. Expression of ARE-containing type I interferon transcripts is robustly induced upon viral infection and rapidly shut off thereafter. Their transient accumulation is partly mediated through posttranscriptional regulation. Here we show that mouse embryonic fibroblasts derived from knockout mice deficient in KH-type splicing regulatory protein (KSRP), an RNA-binding protein required for ARE-mediated mRNA decay, produce higher levels of Ifna and Ifnb mRNAs in response to viral infection as a result of decreased mRNA decay. Functional analysis showed that KSRP is required for the decay of Ifna4 and Ifnb mRNAs by interaction with AREs. The increased IFN expression renders Ksrp(-)(/)(-) cells refractory to herpes simplex virus type 1 and vesicular stomatitis virus infection. These findings support a role of a posttranscriptional mechanism in the control of type I IFN expression and highlight the function of KSRP in innate immunity by negatively regulating IFN production.

  16. Altered Innate Immune Responses in Neutrophils from Patients with Well- and Suboptimally Controlled Asthma

    Directory of Open Access Journals (Sweden)

    Francesca S. M. Tang

    2015-01-01

    Full Text Available Background. Respiratory infections are a major cause of asthma exacerbations where neutrophilic inflammation dominates and is associated with steroid refractory asthma. Structural airway cells in asthma differ from nonasthmatics; however it is unknown if neutrophils differ. We investigated neutrophil immune responses in patients who have good (AGood and suboptimal (ASubopt asthma symptom control. Methods. Peripheral blood neutrophils from AGood (ACQ 0.75, n=7, and healthy controls (HC (n=9 were stimulated with bacterial (LPS (1 μg/mL, fMLF (100 nM, and viral (imiquimod (3 μg/mL, R848 (1.5 μg/mL, and poly I:C (10 μg/mL surrogates or live rhinovirus (RV 16 (MOI1. Cell-free supernatant was collected after 1 h for neutrophil elastase (NE and matrix metalloproteinase- (MMP- 9 measurements or after 24 h for CXCL8 release. Results. Constitutive NE was enhanced in AGood neutrophils compared to HC. fMLF stimulated neutrophils from ASubopt but not AGood produced 50% of HC levels. fMLF induced MMP-9 was impaired in ASubopt and AGood compared to HC. fMLF stimulated CXCL8 but not MMP-9 was positively correlated with FEV1 and FEV1/FVC. ASubopt and AGood responded similarly to other stimuli. Conclusions. Circulating neutrophils are different in asthma; however, this is likely to be related to airflow limitation rather than asthma control.

  17. Oocyte-specific differences in cell-cycle control create an innate susceptibility to meiotic errors.

    Science.gov (United States)

    Nagaoka, So Iha; Hodges, Craig A; Albertini, David F; Hunt, Patricia Ann

    2011-04-26

    Segregation of homologs at the first meiotic division (MI) is facilitated by crossovers and by a physical constraint imposed on sister kinetochores that facilitates monopolar attachment to the MI spindle. Recombination failure or premature separation of homologs results in univalent chromosomes at MI, and univalents constrained to form monopolar attachments should be inherently unstable and trigger the spindle assembly checkpoint (SAC). Although univalents trigger cell-cycle arrest in the male, this is not the case in mammalian oocytes. Because the spindle assembly portion of the SAC appears to function normally, two hypotheses have been proposed to explain the lack of response to univalents: (1) reduced stringency of the oocyte SAC to aberrant chromosome behavior, and (2) the ability of univalents to satisfy the SAC by forming bipolar attachments. The present study of Mlh1 mutant mice demonstrates that metaphase alignment is not a prerequisite for anaphase onset and provides strong evidence that MI spindle stabilization and anaphase onset require stable bipolar attachment of a critical mass--but not all--of chromosomes. We postulate that subtle differences in SAC-mediated control make the human oocyte inherently error prone and contribute to the age-related increase in aneuploidy.

  18. Innate immunity and non-Hodgkin's lymphoma (NHL related genes in a nested case-control study for gastric cancer risk.

    Directory of Open Access Journals (Sweden)

    Sue K Park

    Full Text Available OBJECTIVE: Genetic variants regulating the host immune system may contribute to the susceptibility for the development of gastric cancer. Little is known about the role of the innate immunity- and non-Hodgkin's lymphoma (NHL-related genes for gastric cancer risk. This nested case-control study was conducted to identify candidate genes for gastric cancer risk for future studies. METHODS: In the Discovery phase, 3,072 SNPs in 203 innate immunity- and 264 NHL-related genes using the Illumine GoldenGateTM OPA Panel were analyzed in 42 matched case-control sets selected from the Korean Multi-center Cancer Cohort (KMCC. Six significant SNPs in four innate immunity (DEFA6, DEFB1, JAK3, and ACAA1 and 11 SNPs in nine NHL-related genes (INSL3, CHMP7, BCL2L11, TNFRSF8, RAD50, CASP7, CHUK, CD79B, and CLDN9 with a permutated p-value <0.01 were re-genotyped in the Replication phase among 386 cases and 348 controls. Odds ratios (ORs for gastric cancer risk were estimated adjusting for age, smoking status, and H. pylori and CagA sero-positivity. Summarized ORs in the total study population (428 cases and 390 controls are presented using pooled- and meta-analyses. RESULTS: Four SNPS had no heterogeneity across the phases: in the meta-analysis, DEFA6 rs13275170 and DEFB1 rs2738169 had both a 1.3-fold increased odds ratio (OR for gastric cancer (95% CIs = 1.1-1.6; and 1.1-1.5, respectively. INSL3 rs10421916 and rs11088680 had both a 0.8-fold decreased OR for gastric cancer (95% CIs = 0.7-0.97; and 0.7-0.9, respectively. CONCLUSIONS: Our findings suggest that certain variants in the innate immunity and NHL-related genes affect the gastric cancer risk, perhaps by modulating infection-inflammation-immunity mechanisms that remain to be defined.

  19. Addiction, adolescence, and innate immune gene induction

    Directory of Open Access Journals (Sweden)

    Fulton T Crews

    2011-04-01

    Full Text Available Repeated drug use/abuse amplifies psychopathology, progressively reducing frontal lobe behavioral control and cognitive flexibility while simultaneously increasing limbic temporal lobe negative emotionality. The period of adolescence is a neurodevelopmental stage characterized by poor behavioral control as well as strong limbic reward and thrill seeking. Repeated drug abuse and/or stress during this stage increase the risk of addiction and elevate activator innate immune signaling in the brain. Nuclear factor-kappa-light-chain-enhancer of activated B cells (NF-κB is a key glial transcription factor that regulates proinflammatory chemokines, cytokines, oxidases, proteases, and other innate immune genes. Induction of innate brain immune gene expression (e.g., NF-κB facilitates negative affect, depression-like behaviors, and inhibits hippocampal neurogenesis. In addition, innate immune gene induction alters cortical neurotransmission consistent with loss of behavioral control. Studies with anti-oxidant, anti-inflammatory, and anti-depressant drugs as well as opiate antagonists link persistent innate immune gene expression to key behavioral components of addiction, e.g. negative affect-anxiety and loss of frontal cortical behavioral control. This review suggests that persistent and progressive changes in innate immune gene expression contribute to the development of addiction. Innate immune genes may represent a novel new target for addiction therapy.

  20. Protective Yeasts Control V. anguillarum Pathogenicity and Modulate the Innate Immune Response of Challenged Zebrafish (Danio rerio) Larvae

    Science.gov (United States)

    Caruffo, Mario; Navarrete, Natalie C.; Salgado, Oscar A.; Faúndez, Nelly B.; Gajardo, Miguel C.; Feijóo, Carmen G.; Reyes-Jara, Angélica; García, Katherine; Navarrete, Paola

    2016-01-01

    We investigated mechanisms involved in the protection of zebrafish (Danio rerio) larvae by two probiotic candidate yeasts, Debaryomyces hansenii 97 (Dh97) and Yarrowia lypolitica 242 (Yl242), against a Vibrio anguillarum challenge. We determined the effect of different yeast concentrations (104–107 CFU/mL) to: (i) protect larvae from the challenge, (ii) reduce the in vivo pathogen concentration and (iii) modulate the innate immune response of the host. To evaluate the role of zebrafish microbiota in protection, the experiments were performed in conventionally raised and germ-free larvae. In vitro co-aggregation assays were performed to determine a direct yeast-pathogen interaction. Results showed that both yeasts significantly increased the survival rate of conventionally raised larvae challenged with V. anguillarum. The concentration of yeasts in larvae tended to increase with yeast inoculum, which was more pronounced for Dh97. Better protection was observed with Dh97 at a concentration of 106 CFU/mL compared to 104 CFU/mL. In germ-free conditions V. anguillarum reached higher concentrations in larvae and provoked significantly more mortality than in conventional conditions, revealing the protective role of the host microbiota. Interestingly, yeasts were equally (Dh97) or more effective (Yl242) in protecting germ-free than conventionally-raised larvae, showing that protection can be exerted only by yeasts and is not necessarily related to modulation of the host microbiota. Although none of the yeasts co-aggregated with V. anguillarum, they were able to reduce its proliferation in conventionally raised larvae, reduce initial pathogen concentration in germ-free larvae and prevent the upregulation of key components of the inflammatory/anti-inflammatory response (il1b, tnfa, c3, mpx, and il10, respectively). These results show that protection by yeasts of zebrafish larvae challenged with V. anguillarum relates to an in vivo anti-pathogen effect, the modulation of

  1. Innate immune recognition of hepatitis B virus

    Institute of Scientific and Technical Information of China (English)

    Hong-Yan; Liu; Xiao-Yong; Zhang

    2015-01-01

    Hepatitis B virus(HBV) is a hepatotropic DNA virus and its infection results in acute or chronic hepatitis. It is reported that the host innate immune system contributes to viral control and liver pathology, while whether and how HBV can trigger the components of innate immunity remains controversial. In recent years, the data accumulated from HBV-infected patients, cellular and animal models have challenged the concept of a stealth virus for HBV infection. This editorial focuses on the current findings about the innate immune recognition to HBV. Such evaluation could help us to understand HBV immunopathogenesis and develop novel immune therapeutic strategies to combat HBV infection.

  2. Approaching archetypes: reconsidering innateness.

    Science.gov (United States)

    Goodwyn, Erik

    2010-09-01

    The question of innateness has hounded Jungian psychology since Jung originally postulated the archetype as an a priori structure within the psyche. During his life and after his death he was continually accused of Lamarckianism and criticized for his theory that the archetypes existed as prior structures. More recently, with the advent of genetic research and the human genome project, the idea that psychological structures can be innate has come under even harsher criticism even within Jungian thought. There appears to be a growing consensus that Jung's idea of innate psychological structures was misguided, and that perhaps the archetype-as-such should be abandoned for more developmental and 'emergent' theories of the psyche. The purpose of this essay is to question this conclusion, and introduce some literature on psychological innateness that appears relevant to this discussion.

  3. Innate Immunity and Neuroinflammation

    Directory of Open Access Journals (Sweden)

    Abhishek Shastri

    2013-01-01

    Full Text Available Inflammation of central nervous system (CNS is usually associated with trauma and infection. Neuroinflammation occurs in close relation to trauma, infection, and neurodegenerative diseases. Low-level neuroinflammation is considered to have beneficial effects whereas chronic neuroinflammation can be harmful. Innate immune system consisting of pattern-recognition receptors, macrophages, and complement system plays a key role in CNS homeostasis following injury and infection. Here, we discuss how innate immune components can also contribute to neuroinflammation and neurodegeneration.

  4. Innate immunity and neuroinflammation.

    Science.gov (United States)

    Shastri, Abhishek; Bonifati, Domenico Marco; Kishore, Uday

    2013-01-01

    Inflammation of central nervous system (CNS) is usually associated with trauma and infection. Neuroinflammation occurs in close relation to trauma, infection, and neurodegenerative diseases. Low-level neuroinflammation is considered to have beneficial effects whereas chronic neuroinflammation can be harmful. Innate immune system consisting of pattern-recognition receptors, macrophages, and complement system plays a key role in CNS homeostasis following injury and infection. Here, we discuss how innate immune components can also contribute to neuroinflammation and neurodegeneration.

  5. CXC Chemokine Ligand 10 Controls Viral Infection in the Central Nervous System: Evidence for a Role in Innate Immune Response through Recruitment and Activation of Natural Killer Cells

    OpenAIRE

    Trifilo, Matthew J.; Montalto-Morrison, Cynthia; Stiles, Linda N.; Hurst, Kelley R.; Hardison, Jenny L.; Manning, Jerry E.; Masters, Paul S.; Lane, Thomas E.

    2004-01-01

    How chemokines shape the immune response to viral infection of the central nervous system (CNS) has largely been considered within the context of recruitment and activation of antigen-specific lymphocytes. However, chemokines are expressed early following viral infection, suggesting an important role in coordinating innate immune responses. Herein, we evaluated the contributions of CXC chemokine ligand 10 (CXCL10) in promoting innate defense mechanisms following coronavirus infection of the C...

  6. Experimenting with Innate Immunity

    CERN Document Server

    Twycross, Jamie

    2010-01-01

    In a previous paper the authors argued the case for incorporating ideas from innate immunity into artificial immune systems (AISs) and presented an outline for a conceptual framework for such systems. A number of key general properties observed in the biological innate and adaptive immune systems were highlighted, and how such properties might be instantiated in artificial systems was discussed in detail. The next logical step is to take these ideas and build a software system with which AISs with these properties can be implemented and experimentally evaluated. This paper reports on the results of that step - the libtissue system.

  7. libtissue - implementing innate immunity

    CERN Document Server

    Twycross, Jamie

    2010-01-01

    In a previous paper the authors argued the case for incorporating ideas from innate immunity into articficial immune systems (AISs) and presented an outline for a conceptual framework for such systems. A number of key general properties observed in the biological innate and adaptive immune systems were hughlighted, and how such properties might be instantiated in artificial systems was discussed in detail. The next logical step is to take these ideas and build a software system with which AISs with these properties can be implemented and experimentally evaluated. This paper reports on the results of that step - the libtissue system.

  8. CXC chemokine ligand 10 controls viral infection in the central nervous system: evidence for a role in innate immune response through recruitment and activation of natural killer cells.

    Science.gov (United States)

    Trifilo, Matthew J; Montalto-Morrison, Cynthia; Stiles, Linda N; Hurst, Kelley R; Hardison, Jenny L; Manning, Jerry E; Masters, Paul S; Lane, Thomas E

    2004-01-01

    How chemokines shape the immune response to viral infection of the central nervous system (CNS) has largely been considered within the context of recruitment and activation of antigen-specific lymphocytes. However, chemokines are expressed early following viral infection, suggesting an important role in coordinating innate immune responses. Herein, we evaluated the contributions of CXC chemokine ligand 10 (CXCL10) in promoting innate defense mechanisms following coronavirus infection of the CNS. Intracerebral infection of RAG1(-/-) mice with a recombinant CXCL10-expressing murine coronavirus (mouse hepatitis virus) resulted in protection from disease and increased survival that correlated with a significant increase in recruitment and activation of natural killer (NK) cells within the CNS. Accumulation of NK cells resulted in a reduction in viral titers that was dependent on gamma interferon secretion. These results indicate that CXCL10 expression plays a pivotal role in defense following coronavirus infection of the CNS by enhancing innate immune responses.

  9. Corruption of Innate Immunity by Bacterial Proteases

    Science.gov (United States)

    Potempa, Jan; Pike, Robert N.

    2009-01-01

    The innate immune system of the human body has developed numerous mechanisms to control endogenous and exogenous bacteria and thus prevent infections by these microorganisms. These mechanisms range from physical barriers such as the skin or mucosal epithelium to a sophisticated array of molecules and cells that function to suppress or prevent bacterial infection. Many bacteria express a variety of proteases, ranging from non-specific and powerful enzymes that degrade many proteins involved in innate immunity to proteases that are extremely precise and specific in their mode of action. Here we have assembled a comprehensive picture of how bacterial proteases affect the host’s innate immune system to gain advantage and cause infection. This picture is far from being complete since the numbers of mechanisms utilized are as astonishing as they are diverse, ranging from degradation of molecules vital to innate immune mechanisms to subversion of the mechanisms to allow the bacterium to hide from the system or take advantage of it. It is vital that such mechanisms are elucidated to allow strategies to be developed to aid the innate immune system in controlling bacterial infections. PMID:19756242

  10. The complexity of Drosophila innate immunity

    Directory of Open Access Journals (Sweden)

    A Reumer

    2010-01-01

    Full Text Available Metazoans rely on efficient mechanisms to oppose infections caused by pathogens. The immediate and first-line defense mechanism(s in metazoans, referred to as the innate immune system, is initiated upon recognition of microbial intruders by germline encoded receptors and is executed by a set of rapid effector mechanisms. Adaptive immunity is restricted to vertebrate species and it is controlled and assisted by the innate immune system.Interestingly, most of the basic signaling cascades that regulate the primeval innate defense mechanism(s have been well conserved during evolution, for instance between humans and the fruit fly, Drosophila melanogaster. Being devoid of adaptive signaling and effector systems, Drosophila has become an established model system for studying pristine innate immune cascades and reactions. In general, an immune response is evoked when microorganisms pass the fruit fly’s physical barriers (e.g., cuticle, epithelial lining of gut and trachea, and it is mainly executed in the hemolymph, the equivalent of the mammalian blood. Innate immunity in the fruit fly consists of a phenoloxidase (PO response, a cellular response (hemocytes, an antiviral response, and the NF-κB dependent production of antimicrobial peptides referred to as the humoral response. The JAK/STAT and Jun kinase signaling cascades are also implicated in the defence against pathogens.

  11. Adaptation in the innate immune system and heterologous innate immunity.

    Science.gov (United States)

    Martin, Stefan F

    2014-11-01

    The innate immune system recognizes deviation from homeostasis caused by infectious or non-infectious assaults. The threshold for its activation seems to be established by a calibration process that includes sensing of microbial molecular patterns from commensal bacteria and of endogenous signals. It is becoming increasingly clear that adaptive features, a hallmark of the adaptive immune system, can also be identified in the innate immune system. Such adaptations can result in the manifestation of a primed state of immune and tissue cells with a decreased activation threshold. This keeps the system poised to react quickly. Moreover, the fact that the innate immune system recognizes a wide variety of danger signals via pattern recognition receptors that often activate the same signaling pathways allows for heterologous innate immune stimulation. This implies that, for example, the innate immune response to an infection can be modified by co-infections or other innate stimuli. This "design feature" of the innate immune system has many implications for our understanding of individual susceptibility to diseases or responsiveness to therapies and vaccinations. In this article, adaptive features of the innate immune system as well as heterologous innate immunity and their implications are discussed.

  12. Curating the innate immunity interactome.

    LENUS (Irish Health Repository)

    Lynn, David J

    2010-01-01

    The innate immune response is the first line of defence against invading pathogens and is regulated by complex signalling and transcriptional networks. Systems biology approaches promise to shed new light on the regulation of innate immunity through the analysis and modelling of these networks. A key initial step in this process is the contextual cataloguing of the components of this system and the molecular interactions that comprise these networks. InnateDB (http:\\/\\/www.innatedb.com) is a molecular interaction and pathway database developed to facilitate systems-level analyses of innate immunity.

  13. ALPK1 controls TIFA/TRAF6-dependent innate immunity against heptose-1,7-bisphosphate of gram-negative bacteria

    Science.gov (United States)

    Milivojevic, Milica; Kasper, Christoph Alexander; Tschon, Therese; Emmenlauer, Mario; Pique, Claudine

    2017-01-01

    During infection by invasive bacteria, epithelial cells contribute to innate immunity via the local secretion of inflammatory cytokines. These are directly produced by infected cells or by uninfected bystanders via connexin-dependent cell-cell communication. However, the cellular pathways underlying this process remain largely unknown. Here we perform a genome-wide RNA interference screen and identify TIFA and TRAF6 as central players of Shigella flexneri and Salmonella typhimurium-induced interleukin-8 expression. We show that threonine 9 and the forkhead-associated domain of TIFA are necessary for the oligomerization of TIFA in both infected and bystander cells. Subsequently, this process triggers TRAF6 oligomerization and NF-κB activation. We demonstrate that TIFA/TRAF6-dependent cytokine expression is induced by the bacterial metabolite heptose-1,7-bisphosphate (HBP). In addition, we identify alpha-kinase 1 (ALPK1) as the critical kinase responsible for TIFA oligomerization and IL-8 expression in response to infection with S. flexneri and S. typhimurium but also to Neisseria meningitidis. Altogether, these results clearly show that ALPK1 is a master regulator of innate immunity against both invasive and extracellular gram-negative bacteria. PMID:28222186

  14. Innate Immune Activation in Primary HIV-1 Infection

    OpenAIRE

    Chang, J. Judy; Altfeld, Marcus

    2010-01-01

    There is growing evidence highlighting the role of the immune response during acute HIV-1 infection on the control or development of disease. The adaptive immune responses do not appear until after the HIV-1 infection is already well established and as such the role of the earlier and faster responding innate immunity needs to be more closely scrutinized. In particular, two aspects of the innate immunity with growing developments will be examined in this review; type I IFNs and NK cells. Both...

  15. Innate immune memory in plants.

    Science.gov (United States)

    Reimer-Michalski, Eva-Maria; Conrath, Uwe

    2016-08-01

    The plant innate immune system comprises local and systemic immune responses. Systemic plant immunity develops after foliar infection by microbial pathogens, upon root colonization by certain microbes, or in response to physical injury. The systemic plant immune response to localized foliar infection is associated with elevated levels of pattern-recognition receptors, accumulation of dormant signaling enzymes, and alterations in chromatin state. Together, these systemic responses provide a memory to the initial infection by priming the remote leaves for enhanced defense and immunity to reinfection. The plant innate immune system thus builds immunological memory by utilizing mechanisms and components that are similar to those employed in the trained innate immune response of jawed vertebrates. Therefore, there seems to be conservation, or convergence, in the evolution of innate immune memory in plants and vertebrates.

  16. Nuclear Trafficking During Plant Innate Immunity

    Institute of Scientific and Technical Information of China (English)

    Jun Liu; Gitta Coaker

    2008-01-01

    Land plants possess innate immune systems that can control resistance against pathogen infection. Conceptually, there are two branches of the plant innate immune system. One branch recognizes conserved features of microbial pathogens, while a second branch specifically detects the presence of pathogen effector proteins by plant resistance (R) genes. Innate immunity controlled by plant R genes is called effector-triggered immunity. Although R genes can recognize all classes of plant pathogens, the majority can be grouped into one large family, encoding proteins with a nucleotide binding site and C-terminal leucine rich repeat domains. Despite the importance and number of R genes present in plants, we are just beginning to decipher the signaling events required to initiate defense responses. Recent exciting discoveries have implicated dynamic nuclear trafficking of plant R proteins to achieve effector-triggered immunity. Furthermore, there are several additional lines of evidence implicating nucleo-cyctoplasmic trafficking in plant disease resistance, as mutations in nucleoporins and importins can compromise resistance signaling. Taken together, these data illustrate the importance of nuclear trafficking in the manifestation of disease resistance mediated by R genes.

  17. Towards a Conceptual Framework for Innate Immunity

    CERN Document Server

    Twycross, Jamie

    2010-01-01

    Innate immunity now occupies a central role in immunology. However, artificial immune system models have largely been inspired by adaptive not innate immunity. This paper reviews the biological principles and properties of innate immunity and, adopting a conceptual framework, asks how these can be incorporated into artificial models. The aim is to outline a meta-framework for models of innate immunity.

  18. The innate immune playbook for restricting West Nile virus infection.

    Science.gov (United States)

    Quicke, Kendra M; Suthar, Mehul S

    2013-10-30

    West Nile virus (WNV) is an emerging mosquito-borne flavivirus that causes annual epidemics of encephalitic disease throughout the world. Despite the ongoing risk to public health, no approved vaccines or therapies exist for use in humans to prevent or combat WNV infection. The innate immune response is critical for controlling WNV replication, limiting virus-induced pathology, and programming protective humoral and cell-mediated immunity to WNV infection. The RIG-I like receptors, Toll-like receptors, and Nod-like receptors detect and respond to WNV by inducing a potent antiviral defense program, characterized by production of type I IFN, IL-1β and expression of antiviral effector genes. Recent research efforts have focused on uncovering the mechanisms of innate immune sensing, antiviral effector genes that inhibit WNV, and countermeasures employed by WNV to antagonize innate immune cellular defenses. In this review, we highlight the major research findings pertaining to innate immune regulation of WNV infection.

  19. Crosstalk between innate and adaptive immunity inhepatitis B virus infection

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    Hepatitis B virus (HBV) infection is a major public health problem worldwide. HBV is not directly cytotoxic toinfected hepatocytes; the clinical outcome of infectionresults from complicated interactions between the virusand the host immune system. In acute HBV infection,initiation of a broad, vigorous immune response is responsiblefor viral clearance and self-limited inflammatoryliver disease. Effective and coordinated innate andadaptive immune responses are critical for viral clearanceand the development of long-lasting immunity. Chronichepatitis B patients fail to mount efficient innate andadaptive immune responses to the virus. In particular,HBV-specific cytotoxic T cells, which are crucial for HBVclearance, are hyporesponsiveness to HBV infection.Accumulating experimental evidence obtained fromthe development of animal and cell line models hashighlighted the importance of innate immunity in theearly control of HBV spread. The virus has evolvedimmune escape strategies, with higher HBV loads andHBV protein concentrations associated with increasingimpairment of immune function. Therefore, treatmentof HBV infection requires inhibition of HBV replicationand protein expression to restore the suppressedhost immunity. Complicated interactions exist notonly between innate and adaptive responses, but alsoamong innate immune cells and different components ofadaptive responses. Improved insight into these complexinteractions are important in designing new therapeuticstrategies for the treatment HBV infection. In thisreview, we summarize the current knowledge regardingthe cross-talk between the innate and adaptive immuneresponses and among different immunocytes in HBVinfection.

  20. The Innate Lymphoid Cell Precursor.

    Science.gov (United States)

    Ishizuka, Isabel E; Constantinides, Michael G; Gudjonson, Herman; Bendelac, Albert

    2016-05-20

    The discovery of tissue-resident innate lymphoid cell populations effecting different forms of type 1, 2, and 3 immunity; tissue repair; and immune regulation has transformed our understanding of mucosal immunity and allergy. The emerging complexity of these populations along with compounding issues of redundancy and plasticity raise intriguing questions about their precise lineage relationship. Here we review advances in mapping the emergence of these lineages from early lymphoid precursors. We discuss the identification of a common innate lymphoid cell precursor characterized by transient expression of the transcription factor PLZF, and the lineage relationships of innate lymphoid cells with conventional natural killer cells and lymphoid tissue inducer cells. We also review the rapidly growing understanding of the network of transcription factors that direct the development of these lineages.

  1. Crohn's disease:Innate immunodeficiency?

    Institute of Scientific and Technical Information of China (English)

    Jesus K Yamamoto-Furusho; Joshua R Korzenik

    2006-01-01

    In the past,Crohn's disease (CD) has been understood primarily as an immunologic disorder characterized by an abnormal T-cell response.Recent in vitro and in vivo data suggests that CD may instead be precipitated by innate immune dysfunction resulting from a combination of genetic and environmental factors.Some reports have demonstrated a defective immune response in a variety of other cellular components,including neutrophils,monocytes and dendritic cells.Recent studies of granulocyte-macrophage colony-stimulating factor (GMCSF) in CD,aiming to stimulate the innate immune system with the conception that an innate immune defect underlies the development of the disease,have been demonstrated a clinical benefit and reinforce this evolving understanding of the disease.

  2. GPCRs in invertebrate innate immunity.

    Science.gov (United States)

    Reboul, Jerome; Ewbank, Jonathan J

    2016-08-15

    G-protein coupled receptors (GPCRs) represent a privileged point of contact between cells and their surrounding environment. They have been widely adopted in vertebrates as mediators of signals involved in both innate and adaptive immunity. Invertebrates rely on innate immune defences to resist infection. We review here evidence from a number of different species, principally the genetically tractable Caenorhabditis elegans and Drosophila melanogaster that points to an important role for GPCRs in modulating innate immunity in invertebrates too. In addition to examples of GPCRs involved in regulating the expression of defence genes, we discuss studies in C. elegans addressing the role of GPCR signalling in pathogen aversive behaviour. Despite the many lacunae in our current knowledge, it is clear that GPCR signalling contributes to host defence across the animal kingdom.

  3. Plant innate immunity multicomponent model

    Directory of Open Access Journals (Sweden)

    Giuseppe eAndolfo

    2015-11-01

    Full Text Available Our understanding of plant–pathogen interactions is making rapid advances in order to address issues of global importance such as improving agricultural productivity and sustainable food security. Innate immunity has evolved in plants, resulting in a wide diversity of defence mechanisms adapted to specific threats. The postulated PTI/ETI model describes two perception layers of plant innate immune system, which belong to a first immunity component of defence response activation. To better describe the sophisticated defence system of plants, we propose a new model of plant immunity. This model considers the plant’s ability to distinguish the feeding behaviour of their many foes, such as a second component that modulates innate immunity. This hypothesis provides a new viewpoint highlighting the relevance of hormone crosstalk and primary metabolism in regulating plant defence against the different behaviours of pathogens with the intention to stimulate further interest in this research area.

  4. Innate immune activation in primary HIV-1 infection.

    Science.gov (United States)

    Chang, J Judy; Altfeld, Marcus

    2010-10-15

    There is growing evidence that highlights the role of the immune response during acute human immunodeficiency virus type 1 (HIV-1) infection in the control or development of disease. The adaptive immune responses do not appear until after HIV-1 infection is already well established, so the role of earlier and faster-responding innate immunity needs to be more closely scrutinized. In particular, 2 aspects of innate immunity for which there are growing research developments will be examined in this review: the actions of type I interferons and natural killer cells. These two components of the innate immune response contribute to viral control both by killing infected cells and by modulating other immune cells that develop. However, the role of interferon α in immune activation is a double-edged sword, causing recruitment of adaptive immune cells that can assist in viral control but concurrently contributing to immune activation-dependent disease progression. Understanding the complexity of how innate responses affect the outcome of HIV-1 infection will help in the development of vaccines that can use innate immunity to enhance viral control with minimal pathogenesis.

  5. Tuning innate immunity by translation.

    Science.gov (United States)

    Rauscher, Robert; Ignatova, Zoya

    2015-12-01

    In multicellular organisms, the epithelia is a contact surface with the surrounding environment and is exposed to a variety of adverse biotic (pathogenic) and abiotic (chemical) factors. Multi-layered pathways that operate on different time scales have evolved to preserve cellular integrity and elicit stress-specific response. Several stress-response programs are activated until a complete elimination of the stress is achieved. The innate immune response, which is triggered by pathogenic invasion, is rather harmful when active over a prolonged time, thus the response follows characteristic oscillatory trajectories. Here, we review different translation programs that function to precisely fine-tune the time at which various components of the innate immune response dwell between active and inactive. We discuss how different pro-inflammatory pathways are co-ordinated to temporally offset single reactions and to achieve an optimal balance between fighting pathogens and being less harmful for healthy cells.

  6. Innate immune interferon responses to human immunodeficiency virus-1 infection.

    Science.gov (United States)

    Hughes, Rose; Towers, Greg; Noursadeghi, Mahdad

    2012-07-01

    Type I interferon (IFN) responses represent the canonical host innate immune response to viruses, which serves to upregulate expression of antiviral restriction factors and augment adaptive immune defences. There is clear evidence for type I IFN activity in both acute and chronic HIV-1 infection in vivo, and plasmacytoid dendritic cells have been identified as one important source for these responses, through innate immune detection of viral RNA by Toll-like receptor 7. In addition, new insights into the molecular mechanisms that trigger induction of type I IFNs suggest innate immune receptors for viral DNA may also mediate these responses. It is widely recognised that HIV-1 restriction factors share the characteristic of IFN-inducible expression, and that the virus has evolved to counteract these antiviral mechanisms. However, in some target cells, such as macrophages, IFN can still effectively restrict virus. In this context, HIV-1 shows the ability to evade innate immune recognition and thereby avoid induction of type I IFN in order to successfully establish productive infection. The relative importance of evasion of innate immune detection and evasion of IFN-inducible restriction in the natural history of HIV-1 infection is not known, and the data suggest that type I IFN responses may play a role in both viral control and in the immunopathogenesis of progressive disease. Further study of the relationship between HIV-1 infection and type I IFN responses is required to unravel these issues and inform the development of novel therapeutics or vaccine strategies.

  7. The Epitranscriptome and Innate Immunity.

    Directory of Open Access Journals (Sweden)

    Mary A O'Connell

    2015-12-01

    Full Text Available Our knowledge of the variety and abundances of RNA base modifications is rapidly increasing. Modified bases have critical roles in tRNAs, rRNAs, translation, splicing, RNA interference, and other RNA processes, and are now increasingly detected in all types of transcripts. Can new biological principles associated with this diversity of RNA modifications, particularly in mRNAs and long non-coding RNAs, be identified? This review will explore this question by focusing primarily on adenosine to inosine (A-to-I RNA editing by the adenine deaminase acting on RNA (ADAR enzymes that have been intensively studied for the past 20 years and have a wide range of effects. Over 100 million adenosine to inosine editing sites have been identified in the human transcriptome, mostly in embedded Alu sequences that form potentially innate immune-stimulating dsRNA hairpins in transcripts. Recent research has demonstrated that inosine in the epitranscriptome and ADAR1 protein establish innate immune tolerance for host dsRNA formed by endogenous sequences. Innate immune sensors that detect viral nucleic acids are among the readers of epitranscriptome RNA modifications, though this does preclude a wide range of other modification effects.

  8. Immune regulation by pericytes: modulating innate and adaptive immunity

    DEFF Research Database (Denmark)

    Navarro, Rocio; Compte, Marta; Álvarez-Vallina, Luis;

    2016-01-01

    respond to a series of proinflammatory stimuli and are able to sense different types of danger through expression of functional pattern recognition receptors, contributing to the onset of innate immune responses. In this context, PC not only secrete a variety of chemokines, but they also overexpress...... adhesion molecules such as ICAM-1 and VCAM-1 involved in the control of immune cell trafficking across vessel walls. In addition to their role in innate immunity, pericytes are involved in adaptive immunity. It has been reported that interaction with PC anergizes T cells, attributed, at least in part...

  9. The innate immunity in the cnidarian Hydra vulgaris

    Directory of Open Access Journals (Sweden)

    B Altincicek

    2009-08-01

    Full Text Available Hydra vulgaris is currently receiving increased attention as a genetically tractable invertebrate model system for studying important processes of life such as the innate immune defense. Similar to complex animals, H. vulgaris polyps respond to injury by abrupt muscle contraction, by limited escape behavior, and by healing the damaged tissue. Simultaneously, cellular processes such as phagocytosis and programmed cell death as well as the massive production of antimicrobial peptides are induced. Recent studies identified several molecular pathways controlling these responses; however, the interdependence of innate immunity and, for example, regeneration and tissue remodeling is not well elucidated yet. H. vulgaris belongs to the Cnidaria representing the phylogenic sister group of bilaterian animals; hence, a better understanding of evolutionarily conserved as well as Hydra/Cnidaria-specific immune responses will provide deep insight into both origin and evolution of the animal innate immune system

  10. Post-translational control of IL-1β via the human papillomavirus type 16 E6 oncoprotein: a novel mechanism of innate immune escape mediated by the E3-ubiquitin ligase E6-AP and p53.

    Directory of Open Access Journals (Sweden)

    Martina Niebler

    Full Text Available Infections with high-risk human papillomaviruses (HPVs are causally involved in the development of anogenital cancer. HPVs apparently evade the innate immune response of their host cells by dysregulating immunomodulatory factors such as cytokines and chemokines, thereby creating a microenvironment that favors malignancy. One central key player in the immune surveillance interactome is interleukin-1 beta (IL-1β which not only mediates inflammation, but also links innate and adaptive immunity. Because of its pleiotropic physiological effects, IL-1β production is tightly controlled on transcriptional, post-translational and secretory levels. Here, we describe a novel mechanism how the high-risk HPV16 E6 oncoprotein abrogates IL-1β processing and secretion in a NALP3 inflammasome-independent manner. We analyzed IL-1β regulation in immortalized keratinocytes that harbor the HPV16 E6 and/or E7 oncogenes as well as HPV-positive cervical tumor cells. While in primary and in E7-immortalized human keratinocytes the secretion of IL-1β was highly inducible upon inflammasome activation, E6-positive cells did not respond. Western blot analyses revealed a strong reduction of basal intracellular levels of pro-IL-1β that was independent of dysregulation of the NALP3 inflammasome, autophagy or lysosomal activity. Instead, we demonstrate that pro-IL-1β is degraded in a proteasome-dependent manner in E6-positive cells which is mediated via the ubiquitin ligase E6-AP and p53. Conversely, in E6- and E6/E7-immortalized cells pro-IL-1β levels were restored by siRNA knock-down of E6-AP and simultaneous recovery of functional p53. In the context of HPV-induced carcinogenesis, these data suggest a novel post-translational mechanism of pro-IL-1β regulation which ultimately inhibits the secretion of IL-1β in virus-infected keratinocytes. The clinical relevance of our results was further confirmed in HPV-positive tissue samples, where a gradual decrease of IL-1

  11. Innate immune responses in central nervous system inflammation

    DEFF Research Database (Denmark)

    Finsen, Bente; Owens, Trevor

    2011-01-01

    In autoimmune diseases of the central nervous system (CNS), innate glial cell responses play a key role in determining the outcome of leukocyte infiltration. Access of leukocytes is controlled via complex interactions with glial components of the blood-brain barrier that include angiotensin II...

  12. Innate immunity in the pathogenesis of psoriasis.

    LENUS (Irish Health Repository)

    Sweeney, Cheryl M

    2011-12-01

    Psoriasis is a common, immune-mediated inflammatory skin disorder. T helper(h)1 and Th17 lymphocytes contribute to the pathogenesis of psoriasis through the release of inflammatory cytokines that promote further recruitment of immune cells, keratinocyte proliferation and sustained inflammation. The innate immune system is the first line of defence against infection and plays a crucial role in the initiation of the adaptive immune response. The presence of innate immune cells and their products in psoriatic skin plaques suggests a role for innate immunity in this disease. In addition, the innate immune system can direct the development of pathogenic Th cells in psoriasis. In this article, we will summarise the role of the innate immune system in psoriasis with particular emphasis on the role of cytokines, signalling pathways and cells of the innate immune system.

  13. Deciphering the Innate Lymphoid Cell Transcriptional Program

    Directory of Open Access Journals (Sweden)

    Cyril Seillet

    2016-10-01

    Full Text Available Innate lymphoid cells (ILCs are enriched at mucosal surfaces, where they provide immune surveillance. All ILC subsets develop from a common progenitor that gives rise to pre-committed progenitors for each of the ILC lineages. Currently, the temporal control of gene expression that guides the emergence of these progenitors is poorly understood. We used global transcriptional mapping to analyze gene expression in different ILC progenitors. We identified PD-1 to be specifically expressed in PLZF+ ILCp and revealed that the timing and order of expression of the transcription factors NFIL3, ID2, and TCF-1 was critical. Importantly, induction of ILC lineage commitment required only transient expression of NFIL3 prior to ID2 and TCF-1 expression. These findings highlight the importance of the temporal program that permits commitment of progenitors to the ILC lineage, and they expand our understanding of the core transcriptional program by identifying potential regulators of ILC development.

  14. Self-consuming innate immunity in Arabidopsis

    DEFF Research Database (Denmark)

    Hofius, Daniel; Mundy, John; Petersen, Morten

    2009-01-01

    Programmed cell death (PCD) associated with the pathogen-induced hypersensitive response (HR) is a hallmark of plant innate immunity. HR PCD is triggered upon recognition of pathogen effector molecules by host immune receptors either directly or indirectly via effector modulation of host targets....... However, it has been unclear by which molecular mechanisms plants execute PCD during innate immune responses. We recently examined HR PCD in autophagy-deficient Arabidopsis knockout mutants (atg) and find that PCD conditioned by one class of plant innate immune receptors is suppressed in atg mutants...... with innate immune responses in eukaryotes as well as of prodeath functions for the autophagy pathway in plants....

  15. Innate antiviral immune signaling, viral evasion and modulation by HIV-1.

    Science.gov (United States)

    Rustagi, Arjun; Gale, Michael

    2014-03-20

    The intracellular innate antiviral response in human cells is an essential component of immunity against virus infection. As obligate intracellular parasites, all viruses must evade the actions of the host cell's innate immune response in order to replicate and persist. Innate immunity is induced when pathogen recognition receptors of the host cell sense viral products including nucleic acid as "non-self". This process induces downstream signaling through adaptor proteins to activate latent transcription factors that drive the expression of genes encoding antiviral and immune modulatory effector proteins that restrict virus replication and regulate adaptive immunity. The interferon regulatory factors (IRFs) are transcription factors that play major roles in innate immunity. In particular, IRF3 is activated in response to infection by a range of viruses including RNA viruses, DNA viruses and retroviruses. Among these viruses, human immunodeficiency virus type 1 (HIV-1) remains a major global health problem mediating chronic infection in millions of people wherein recent studies show that viral persistence is linked with the ability of the virus to dysregulate and evade the innate immune response. In this review, we discuss viral pathogen sensing, innate immune signaling pathways and effectors that respond to viral infection, the role of IRF3 in these processes and how it is regulated by pathogenic viruses. We present a contemporary overview of the interplay between HIV-1 and innate immunity, with a focus on understanding how innate immune control impacts infection outcome and disease.

  16. Is inflammaging an auto[innate]immunity subclinical syndrome?

    Directory of Open Access Journals (Sweden)

    Giunta Sergio

    2006-12-01

    Full Text Available Abstract The low-grade, chronic, systemic inflammatory state that characterizes the aging process (inflammaging results from late evolutive-based expression of the innate immune system. Inflammaging is characterized by the complex set of five conditions which can be described as 1. low-grade, 2. controlled, 3. asymptomatic, 4. chronic, 5. systemic, inflammatory state, and fits with the antagonistic pleiotropy theory on the evolution of aging postulating that senescence is the late deleterious effect of genes (pro-inflammatory versus anti-inflammatorythat are beneficial in early life. Evolutionary programming of the innate immune system may act via selection on these genetic traits. Here I propose that the already acquired knowledge in this field may pave the way to a new chapter in the pathophysiology of autoimmunity: the auto-innate-immunity syndromes. Indeed, differently from the well known chapter of conventional autoimmune diseases and syndromes where the main actor is the adaptive immunity, inflammaging may constitute the subclinical paradigm of a new chapter of autoimmunity, namely that arising from an autoimmune inflammatory response of the innate-immune-system, an old actor of immunity and yet a new actor of autoimmunity, also acting as a major determinant of elderly frailty and age-associated diseases.

  17. The Innate Immune Playbook for Restricting West Nile Virus Infection

    Directory of Open Access Journals (Sweden)

    Kendra M. Quicke

    2013-10-01

    Full Text Available West Nile virus (WNV is an emerging mosquito-borne flavivirus that causes annual epidemics of encephalitic disease throughout the world. Despite the ongoing risk to public health, no approved vaccines or therapies exist for use in humans to prevent or combat WNV infection. The innate immune response is critical for controlling WNV replication, limiting virus-induced pathology, and programming protective humoral and cell-mediated immunity to WNV infection. The RIG-I like receptors, Toll-like receptors, and Nod-like receptors detect and respond to WNV by inducing a potent antiviral defense program, characterized by production of type I IFN, IL-1β and expression of antiviral effector genes. Recent research efforts have focused on uncovering the mechanisms of innate immune sensing, antiviral effector genes that inhibit WNV, and countermeasures employed by WNV to antagonize innate immune cellular defenses. In this review, we highlight the major research findings pertaining to innate immune regulation of WNV infection.

  18. Antimicrobial peptides in innate immune responses

    DEFF Research Database (Denmark)

    Sorensen, O.E.; Borregaard, N.; Cole, A.M.

    2008-01-01

    Antimicrobial peptides (AMPs) are ancient effector molecules in the innate immune response of eukaryotes. These peptides are important for the antimicrobial efficacy of phagocytes and for the innate immune response mounted by epithelia of humans and other mammals. AMPs are generated either by de ...

  19. Innate Defense against Fungal Pathogens.

    Science.gov (United States)

    Drummond, Rebecca A; Gaffen, Sarah L; Hise, Amy G; Brown, Gordon D

    2014-11-10

    Human fungal infections have been on the rise in recent years and proved increasingly difficult to treat as a result of the lack of diagnostics, effective antifungal therapies, and vaccines. Most pathogenic fungi do not cause disease unless there is a disturbance in immune homeostasis, which can be caused by modern medical interventions, disease-induced immunosuppression, and naturally occurring human mutations. The innate immune system is well equipped to recognize and destroy pathogenic fungi through specialized cells expressing a broad range of pattern recognition receptors (PRRs). This review will outline the cells and PRRs required for effective antifungal immunity, with a special focus on the major antifungal cytokine IL-17 and recently characterized antifungal inflammasomes.

  20. Innate immune response to viral infection.

    Science.gov (United States)

    Koyama, Shohei; Ishii, Ken J; Coban, Cevayir; Akira, Shizuo

    2008-09-01

    In viral infections the host innate immune system is meant to act as a first line defense to prevent viral invasion or replication before more specific protection by the adaptive immune system is generated. In the innate immune response, pattern recognition receptors (PRRs) are engaged to detect specific viral components such as viral RNA or DNA or viral intermediate products and to induce type I interferons (IFNs) and other pro-inflammatory cytokines in the infected cells and other immune cells. Recently these innate immune receptors and their unique downstream pathways have been identified. Here, we summarize their roles in the innate immune response to virus infection, discrimination between self and viral nucleic acids and inhibition by virulent factors and provide some recent advances in the coordination between innate and adaptive immune activation.

  1. Manipulation of Innate Immunity for Cancer Therapy in Dogs

    Directory of Open Access Journals (Sweden)

    Daniel Regan

    2015-12-01

    Full Text Available Over the last one to two decades, the field of cancer immunotherapy has rapidly progressed from early preclinical studies to a successful clinical reality and fourth major pillar of human cancer therapy. While current excitement in the field of immunotherapy is being driven by several major breakthroughs including immune checkpoint inhibitors and adoptive cell therapies, these advances stem from a foundation of pivotal studies demonstrating the immune systems role in tumor control and eradication. The following will be a succinct review on veterinary cancer immunotherapy as it pertains to manipulation of the innate immune system to control tumor growth and metastasis. In addition, we will provide an update on recent progress in our understanding of the innate immune system in veterinary tumor immunology, and how these gains may lead to novel therapies for the treatment of cancer in companion animals.

  2. Protein synthesis regulation, a pillar of strength for innate immunity?

    Science.gov (United States)

    Argüello, Rafael J; Rodriguez Rodrigues, Christian; Gatti, Evelina; Pierre, Philippe

    2015-02-01

    Recognition of pathogen derived molecules by Pattern Recognition Receptors (PRR) induces the production of cytokines (i.e. type I interferons) that stimulate the surrounding cells to transcribe and translate hundreds of genes, in order to prevent further infection and organize the immune response. Here, we report on the rising matter that metabolism sensing and gene expression control at the level of mRNA translation, allow swift responses that mobilize host defenses and coordinate innate responses to infection.

  3. Identification and validation of Ifit1 as an important innate immune bottleneck.

    Directory of Open Access Journals (Sweden)

    Jason E McDermott

    Full Text Available The innate immune system plays important roles in a number of disparate processes. Foremost, innate immunity is a first responder to invasion by pathogens and triggers early defensive responses and recruits the adaptive immune system. The innate immune system also responds to endogenous damage signals that arise from tissue injury. Recently it has been found that innate immunity plays an important role in neuroprotection against ischemic stroke through the activation of the primary innate immune receptors, Toll-like receptors (TLRs. Using several large-scale transcriptomic data sets from mouse and mouse macrophage studies we identified targets predicted to be important in controlling innate immune processes initiated by TLR activation. Targets were identified as genes with high betweenness centrality, so-called bottlenecks, in networks inferred from statistical associations between gene expression patterns. A small set of putative bottlenecks were identified in each of the data sets investigated including interferon-stimulated genes (Ifit1, Ifi47, Tgtp and Oasl2 as well as genes uncharacterized in immune responses (Axud1 and Ppp1r15a. We further validated one of these targets, Ifit1, in mouse macrophages by showing that silencing it suppresses induction of predicted downstream genes by lipopolysaccharide (LPS-mediated TLR4 activation through an unknown direct or indirect mechanism. Our study demonstrates the utility of network analysis for identification of interesting targets related to innate immune function, and highlights that Ifit1 can exert a positive regulatory effect on downstream genes.

  4. Innate Lymphoid Cells in Cancer.

    Science.gov (United States)

    Vallentin, Blandine; Barlogis, Vincent; Piperoglou, Christelle; Cypowyj, Sophie; Zucchini, Nicolas; Chéné, Matthieu; Navarro, Florent; Farnarier, Catherine; Vivier, Eric; Vély, Frédéric

    2015-10-01

    The world of lymphocytes has recently expanded. A group of cells, innate lymphoid cells (ILC), has been defined. It includes lymphoid cells that have been known for decades, such as natural killer (NK) cells and lymphoid tissue-inducer (LTi) cells. NK cells recognize a vast array of tumor cells, which they help to eliminate through cytotoxicity and the production of cytokines, such as IFNγ. Advances in our understanding of NK-cell biology have led to a growing interest in the clinical manipulation of these cells in cancer. The other ILCs are found mostly in the mucosae and mucosal-associated lymphoid tissues, where they rapidly initiate immune responses to pathogens without the need for specific sensitization. Here, we outline the basic features of ILCs and review the role of ILCs other than NK cells in cancer. Much of the role of these ILCs in cancer remains unknown, but several findings should lead to further efforts to dissect the contribution of different ILC subsets to the promotion, maintenance, or elimination of tumors at various anatomic sites. This will require the development of standardized reagents and protocols for monitoring the presence and function of ILCs in human blood and tissue samples.

  5. Genomic HIV RNA induces innate immune responses through RIG-I-dependent sensing of secondary-structured RNA

    NARCIS (Netherlands)

    Berg, R.K.; Melchjorsen, J.; Rintahaka, J.; Diget, E.; Søby, S.; Horan, K.A.; Gorelick, R.J.; Matikainen, S.; Larsen, C.S.; Ostergaard, L.; Paludan, S.R.; Mogensen, T.H.

    2012-01-01

    BACKGROUND: Innate immune responses have recently been appreciated to play an important role in the pathogenesis of HIV infection. Whereas inadequate innate immune sensing of HIV during acute infection may contribute to failure to control and eradicate infection, persistent inflammatory responses la

  6. Evasion of host antiviral innate immunity by HSV-1, an update

    OpenAIRE

    Su, Chenhe; Zhan, Guoqing; Zheng, Chunfu

    2016-01-01

    Herpes simplex virus type 1 (HSV-1) infection triggers a rapid induction of host innate immune responses. The type I interferon (IFN) signal pathway is a central aspect of host defense which induces a wide range of antiviral proteins to control infection of incoming pathogens. In some cases, viral invasion also induces DNA damage response, autophagy, endoplasmic reticulum stress, cytoplasmic stress granules and other innate immune responses, which in turn affect viral infection. However, HSV-...

  7. Cholangiopathy with Respect to Biliary Innate Immunity

    Directory of Open Access Journals (Sweden)

    Kenichi Harada

    2012-01-01

    Full Text Available Biliary innate immunity is involved in the pathogenesis of cholangiopathies in cases of biliary disease. Cholangiocytes possess Toll-like receptors (TLRs which recognize pathogen-associated molecular patterns (PAMPs and play a pivotal role in the innate immune response. Tolerance to bacterial PAMPs such as lipopolysaccharides is also important to maintain homeostasis in the biliary tree, but tolerance to double-stranded RNA (dsRNA is not found. Moreover, in primary biliary cirrhosis (PBC and biliary atresia, biliary innate immunity is closely associated with the dysregulation of the periductal cytokine milieu and the induction of biliary apoptosis and epithelial-mesenchymal transition (EMT, forming in disease-specific cholangiopathy. Biliary innate immunity is associated with the pathogenesis of various cholangiopathies in biliary diseases as well as biliary defense systems.

  8. Innate Immune Effectors in Mycobacterial Infection

    Directory of Open Access Journals (Sweden)

    Hiroyuki Saiga

    2011-01-01

    Full Text Available Tuberculosis, which is caused by infection with Mycobacterium tuberculosis (Mtb, remains one of the major bacterial infections worldwide. Host defense against Mtb is mediated by a combination of innate and adaptive immune responses. In the last 15 years, the mechanisms for activation of innate immunity have been elucidated. Toll-like receptors (TLRs have been revealed to be critical for the recognition of pathogenic microorganisms including mycobacteria. Subsequent studies further revealed that NOD-like receptors and C-type lectin receptors are responsible for the TLR-independent recognition of mycobacteria. Several molecules, such as active vitamin D3, secretary leukocyte protease inhibitor, and lipocalin 2, all of which are induced by TLR stimulation, have been shown to direct innate immune responses to mycobacteria. In addition, Irgm1-dependent autophagy has recently been demonstrated to eliminate intracellular mycobacteria. Thus, our understanding of the mechanisms for the innate immune response to mycobacteria is developing.

  9. MAP kinase cascades in Arabidopsis innate immunity

    DEFF Research Database (Denmark)

    Rasmussen, Magnus Wohlfahrt; Roux, Milena Edna; Petersen, Morten

    2012-01-01

    Plant mitogen-activated protein kinase (MAPK) cascades generally transduce extracellular stimuli into cellular responses. These stimuli include the perception of pathogen-associated molecular patterns (PAMPs) by host transmembrane pattern recognition receptors which trigger MAPK-dependent innate ...

  10. Cannabinoids and Innate Immunity: Taking a Toll on Neuroinflammation

    Directory of Open Access Journals (Sweden)

    Eric J. Downer

    2011-01-01

    Full Text Available The biologically active components of cannabis have therapeutic potential in neuroinflammatory disorders due to their anti-inflammatory propensity. Cannabinoids influence immune function in both the peripheral and the central nervous system (CNS, and the components of the cannabinoid system, the cannabinoid receptors and their endogenous ligands (endocannabinoids, have been detected on immune cells as well as in brain glia. Neuroinflammation is the complex innate immune response of neural tissue to control infection and eliminate pathogens, and Toll-like receptors (TLRs, a major family of pattern recognition receptors (PRRs that mediate innate immunity, have emerged as players in the neuroinflammatory processes underpinning various CNS diseases. This review will highlight evidence that cannabinoids interact with the immune system by impacting TLR-mediated signaling events, which may provide cues for devising novel therapeutic approaches for cannabinoid ligands.

  11. Antiviral defense in shrimp: from innate immunity to viral infection.

    Science.gov (United States)

    Wang, Pei-Hui; Huang, Tianzhi; Zhang, Xiaobo; He, Jian-Guo

    2014-08-01

    The culture of penaeid shrimp is rapidly developing as a major business endeavor worldwide. However, viral diseases have caused huge economic loss in penaeid shrimp culture industries. Knowledge of shrimp innate immunity and antiviral responses has made important progress in recent years, allowing the design of better strategies for the prevention and control of shrimp diseases. In this study, we have updated information on shrimp antiviral immunity and interactions between shrimp hosts and viral pathogens. Current knowledge and recent progress in immune signaling pathways (e.g., Toll/IMD-NF-κB and JAK-STAT signaling pathways), RNAi, phagocytosis, and apoptosis in shrimp antiviral immunity are discussed. The mechanism of viral infection in shrimp hosts and the interactions between viruses and shrimp innate immune systems are also analyzed.

  12. Innate immune sensing and response to influenza.

    Science.gov (United States)

    Pulendran, Bali; Maddur, Mohan S

    2015-01-01

    Influenza viruses pose a substantial threat to human and animal health worldwide. Recent studies in mouse models have revealed an indispensable role for the innate immune system in defense against influenza virus. Recognition of the virus by innate immune receptors in a multitude of cell types activates intricate signaling networks, functioning to restrict viral replication. Downstream effector mechanisms include activation of innate immune cells and, induction and regulation of adaptive immunity. However, uncontrolled innate responses are associated with exaggerated disease, especially in pandemic influenza virus infection. Despite advances in the understanding of innate response to influenza in the mouse model, there is a large knowledge gap in humans, particularly in immunocompromised groups such as infants and the elderly. We propose here, the need for further studies in humans to decipher the role of innate immunity to influenza virus, particularly at the site of infection. These studies will complement the existing work in mice and facilitate the quest to design improved vaccines and therapeutic strategies against influenza.

  13. Innate immunity against malaria parasites in Anopheles gambiae

    Institute of Scientific and Technical Information of China (English)

    Yang Chenand; Zhi-Hui Weng; Liangbiao Zheng

    2008-01-01

    Malaria continues to exert a huge toll in the world today, causing approximately 400 million cases and killing between 1-2 million people annually. Most of the malaria burden is borne by countries in Africa. For this reason, the major vector for malaria in this continent, Anopheles gambiae, is under intense study. With the completion of the draft sequence of this important vector, efforts are underway to develop novel control strategies.One promising area is to harness the power of the innate immunity of this mosquito species to block the transmission of the malaria parasites. Recent studies have demonstrated that Toll and Imd signaling pathways and other immunity-related genes (encoding proteins possibly function in recognition or as effector molecules) play significant roles in two different arms of innate immunity: level of infection intensity and melanization of Plasmodium oocysts.The challenges in the future are to understand how the functions of these different genes are coordinated in defense against malaria parasites, and if different arms of innate immunity are cross-regulated or coordinated.

  14. Gut vagal afferents differentially modulate innate anxiety and learned fear.

    Science.gov (United States)

    Klarer, Melanie; Arnold, Myrtha; Günther, Lydia; Winter, Christine; Langhans, Wolfgang; Meyer, Urs

    2014-05-21

    Vagal afferents are an important neuronal component of the gut-brain axis allowing bottom-up information flow from the viscera to the CNS. In addition to its role in ingestive behavior, vagal afferent signaling has been implicated modulating mood and affect, including distinct forms of anxiety and fear. Here, we used a rat model of subdiaphragmatic vagal deafferentation (SDA), the most complete and selective vagal deafferentation method existing to date, to study the consequences of complete disconnection of abdominal vagal afferents on innate anxiety, conditioned fear, and neurochemical parameters in the limbic system. We found that compared with Sham controls, SDA rats consistently displayed reduced innate anxiety-like behavior in three procedures commonly used in preclinical rodent models of anxiety, namely the elevated plus maze test, open field test, and food neophobia test. On the other hand, SDA rats exhibited increased expression of auditory-cued fear conditioning, which specifically emerged as attenuated extinction of conditioned fear during the tone re-exposure test. The behavioral manifestations in SDA rats were associated with region-dependent changes in noradrenaline and GABA levels in key areas of the limbic system, but not with functional alterations in the hypothalamus-pituitary-adrenal grand stress. Our study demonstrates that innate anxiety and learned fear are both subjected to visceral modulation through abdominal vagal afferents, possibly via changing limbic neurotransmitter systems. These data add further weight to theories emphasizing an important role of afferent visceral signals in the regulation of emotional behavior.

  15. The transcription factor ATF7 mediates lipopolysaccharide-induced epigenetic changes in macrophages involved in innate immunological memory.

    Science.gov (United States)

    Yoshida, Keisuke; Maekawa, Toshio; Zhu, Yujuan; Renard-Guillet, Claire; Chatton, Bruno; Inoue, Kentaro; Uchiyama, Takeru; Ishibashi, Ken-ichi; Yamada, Takuji; Ohno, Naohito; Shirahige, Katsuhiko; Okada-Hatakeyama, Mariko; Ishii, Shunsuke

    2015-10-01

    Immunological memory is thought to be mediated exclusively by lymphocytes. However, enhanced innate immune responses caused by a previous infection increase protection against reinfection, which suggests the presence of innate immunological memory. Here we identified an important role for the stress-response transcription factor ATF7 in innate immunological memory. ATF7 suppressed a group of genes encoding factors involved in innate immunity in macrophages by recruiting the histone H3K9 dimethyltransferase G9a. Treatment with lipopolysaccharide, which mimics bacterial infection, induced phosphorylation of ATF7 via the kinase p38, which led to the release of ATF7 from chromatin and a decrease in repressive histone H3K9me2 marks. A partially disrupted chromatin structure and increased basal expression of target genes were maintained for long periods, which enhanced resistance to pathogens. ATF7 might therefore be important in controlling memory in cells of the innate immune system.

  16. Two separate mechanisms of enforced viral replication balance innate and adaptive immune activation.

    Science.gov (United States)

    Shaabani, Namir; Khairnar, Vishal; Duhan, Vikas; Zhou, Fan; Tur, Rita Ferrer; Häussinger, Dieter; Recher, Mike; Tumanov, Alexei V; Hardt, Cornelia; Pinschewer, Daniel; Christen, Urs; Lang, Philipp A; Honke, Nadine; Lang, Karl S

    2016-02-01

    The induction of innate and adaptive immunity is essential for controlling viral infections. Limited or overwhelming innate immunity can negatively impair the adaptive immune response. Therefore, balancing innate immunity separately from activating the adaptive immune response would result in a better antiviral immune response. Recently, we demonstrated that Usp18-dependent replication of virus in secondary lymphatic organs contributes to activation of the innate and adaptive immune responses. Whether specific mechanisms can balance innate and adaptive immunity separately remains unknown. In this study, using lymphocytic choriomeningitis virus (LCMV) and replication-deficient single-cycle LCMV vectors, we found that viral replication of the initial inoculum is essential for activating virus-specific CD8(+) T cells. In contrast, extracellular distribution of virus along the splenic conduits is necessary for inducing systemic levels of type I interferon (IFN-I). Although enforced virus replication is driven primarily by Usp18, B cell-derived lymphotoxin beta contributes to the extracellular distribution of virus along the splenic conduits. Therefore, lymphotoxin beta regulates IFN-I induction independently of CD8(+) T-cell activity. We found that two separate mechanisms act together in the spleen to guarantee amplification of virus during infection, thereby balancing the activation of the innate and adaptive immune system.

  17. Innate Immune Activity in Glomerular Podocytes

    Science.gov (United States)

    Xia, Hong; Bao, Wenduona; Shi, Shaolin

    2017-01-01

    Glomerular podocytes are specialized in structure and play an essential role in glomerular filtration. In addition, podocyte stress can initiate glomerular damage by inducing the injury of other glomerular cell types. Studies have shown that podocytes possess the property of immune cells and may be involved in adaptive immunity. Emerging studies have also shown that podocytes possess signaling pathways of innate immune responses and that innate immune responses often result in podocyte injury. More recently, mitochondrial-derived damage-associated molecular patterns (mtDAMPs) have been shown to play a critical role in a variety of pathological processes in cells. In the present mini-review, we summarize the recent advances in the studies of innate immunity and its pathogenic role in podocytes, particularly, from the perspective of mtDAMPs. PMID:28228761

  18. Antimicrobial peptides in innate immune responses.

    Science.gov (United States)

    Sørensen, Ole E; Borregaard, Niels; Cole, Alexander M

    2008-01-01

    Antimicrobial peptides (AMPs) are ancient effector molecules in the innate immune response of eukaryotes. These peptides are important for the antimicrobial efficacy of phagocytes and for the innate immune response mounted by epithelia of humans and other mammals. AMPs are generated either by de novo synthesis or by proteolytic cleavage from antimicrobially inactive proproteins. Studies of human diseases and animal studies have given important clues to the in vivo role of AMPs. It is now evident that dysregulation of the generation of AMPs in innate immune responses plays a role in certain diseases like Crohn's disease and atopic dermatitis. AMPs are attractive candidates for development of novel antibiotics due to their in vivo activity profile and some peptides may serve as templates for further drug development.

  19. Fungal glycans and the innate immune recognition

    Directory of Open Access Journals (Sweden)

    Rodrigo Tinoco Figueiredo

    2014-10-01

    Full Text Available Polysaccharides such as α- and β-glucans, chitin and glycoproteins extensively modified with both N- and O-linked carbohydrates are the major components of fungal surfaces. The fungal cell wall is an excellent target for the action of antifungal agents, since most of its components are absent from mammalian cells. Recognition of these carbohydrate-containing molecules by the innate immune system triggers inflammatory responses and activation of microbicidal mechanisms by leukocytes. This review will discuss the structure of surface fungal glycoconjugates and polysaccharides and their recognition by innate immune receptors.

  20. Innate immune exploitation by a model herpesvirus

    Institute of Scientific and Technical Information of China (English)

    Pinghui FENG; Xiaonan DONG

    2010-01-01

    @@ Host innate immunity represents the first line of defense against invading pathogens and shapes the course and outcome of pathogen infection. Mammals have evolved an array of highly conserved pattern recognition receptors (PRRs) that monitor the presence of "non-self components or danger signals (Akira et al., 2006; Medzhitov, 2007). The innate immune signal transduction and viral regulation have been extensively reviewed elsewhere (Zhang et al., 2010), we therefore briefly summarize the signaling cascades that upregulate the transcription of antiviral inflammatory cytokines in response to viral infection.

  1. Arginine Metabolism in Myeloid Cells Shapes Innate and Adaptive Immunity

    Science.gov (United States)

    Rodriguez, Paulo C.; Ochoa, Augusto C.; Al-Khami, Amir A.

    2017-01-01

    Arginine metabolism has been a key catabolic and anabolic process throughout the evolution of the immune response. Accruing evidence indicates that arginine-catabolizing enzymes, mainly nitric oxide synthases and arginases, are closely integrated with the control of immune response under physiological and pathological conditions. Myeloid cells are major players that exploit the regulators of arginine metabolism to mediate diverse, although often opposing, immunological and functional consequences. In this article, we focus on the importance of arginine catabolism by myeloid cells in regulating innate and adaptive immunity. Revisiting this matter could result in novel therapeutic approaches by which the immunoregulatory nodes instructed by arginine metabolism can be targeted.

  2. Regulation of Toll-like receptor signaling in innate immunity

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Toll-like receptors sense invading pathogens by recognizing a wide variety of conserved pathogen-associated molecular patterns(PAMPs).The members of the TLR family selectively utilize adaptor proteins MyD88,TRIF,TIRAP and TRAM to activate overlapping but distinct signal transduction pathways which trigger production of different panels of mediators such as proinflammatory cytokines and type I interferon.These mediators not only control innate immunity but also direct subsequently developed adaptive immunity.TLR activation is strictly and finely regulated at multiple levels of the signal transduction pathways.

  3. Phenotype of NK-Like CD8(+) T Cells with Innate Features in Humans and Their Relevance in Cancer Diseases

    Science.gov (United States)

    Barbarin, Alice; Cayssials, Emilie; Jacomet, Florence; Nunez, Nicolas Gonzalo; Basbous, Sara; Lefèvre, Lucie; Abdallah, Myriam; Piccirilli, Nathalie; Morin, Benjamin; Lavoue, Vincent; Catros, Véronique; Piaggio, Eliane; Herbelin, André; Gombert, Jean-Marc

    2017-01-01

    Unconventional T cells are defined by their capacity to respond to signals other than the well-known complex of peptides and major histocompatibility complex proteins. Among the burgeoning family of unconventional T cells, innate-like CD8(+) T cells in the mouse were discovered in the early 2000s. This subset of CD8(+) T cells bears a memory phenotype without having encountered a foreign antigen and can respond to innate-like IL-12 + IL-18 stimulation. Although the concept of innate memory CD8(+) T cells is now well established in mice, whether an equivalent memory NK-like T-cell population exists in humans remains under debate. We recently reported that CD8(+) T cells responding to innate-like IL-12 + IL-18 stimulation and co-expressing the transcription factor Eomesodermin (Eomes) and KIR/NKG2A membrane receptors with a memory/EMRA phenotype may represent a new, functionally distinct innate T cell subset in humans. In this review, after a summary on the known innate CD8(+) T-cell features in the mouse, we propose Eomes together with KIR/NKG2A and CD49d as a signature to standardize the identification of this innate CD8(+) T-cell subset in humans. Next, we discuss IL-4 and IL-15 involvement in the generation of innate CD8(+) T cells and particularly its possible dependency on the promyelocytic leukemia zinc-finger factor expressing iNKT cells, an innate T cell subset well documented for its susceptibility to tumor immune subversion. After that, focusing on cancer diseases, we provide new insights into the potential role of these innate CD8(+) T cells in a physiopathological context in humans. Based on empirical data obtained in cases of chronic myeloid leukemia, a myeloproliferative syndrome controlled by the immune system, and in solid tumors, we observe both the possible contribution of innate CD8(+) T cells to cancer disease control and their susceptibility to tumor immune subversion. Finally, we note that during tumor progression, innate CD8(+) T

  4. Innate immune signalling of the zebrafish embryo

    NARCIS (Netherlands)

    Stockhammer, Oliver W.

    2010-01-01

    In the last decade the study of the innate immune system has gained renewed scientific momentum as a result of the discovery of essential receptor families, such as the Toll-like receptor (TLR) family, that are required for pathogen recognition. These receptors detect specific molecular structures o

  5. History of Innate Immunity in Neurodegenerative Disorders

    Directory of Open Access Journals (Sweden)

    Patrick eMcGeer

    2011-12-01

    Full Text Available The foundations of innate immunity in neurodegenerative disorders were first laid by Hortega in 1919. He identified and named microglia, recognizing them as cells of mesodermal origin. Van Furth in 1969 elaborated the monocyte phagocytic system with microglia as the brain representatives. Validation of these concepts did not occur until 1987 when HLA-DR was identified on activated microglia in a spectrum of neurological disorders. HLA-DR had already been established as a definitive marker of immunocompetent cells of mesodermal origin. It was soon determined that the observed inflammatory reaction was an innate immune response. A rapid expansion of the field took place as other markers of an innate immune response were found that were made by neurons, astrocytes, oligodendroglia and endothelial cells. The molecules included complement proteins and their regulators, inflammatory cytokines, chemokines, acute phase reactants, prostaglandins, proteases, protease inhibitors, coagulation factors, fibrinolytic factors, anaphylotoxins, integrins, free radical generators, and other unidentified neurotoxins. The Nimmerjahn movies demonstrated that resting microglia were constantly active, sampling the surround and responding rapidly to brain damage. Ways of reducing the neurotoxic innate immune response and stimulating a healing response continue to be sought as a means for ameliorating the pathology in a spectrum of chronic degenerative disorders.

  6. Innate immune functions in kidney transplantation

    NARCIS (Netherlands)

    Berger, Stefan Philip

    2009-01-01

    The innate immune system plays an important role in solid organ transplantation. This thesis focuses on the role of the lectin pathway of complement activation in kidney and simultaneous pancreas-kidney transplantation (SPKT) and describes the role of properdin in tubular complement activation and c

  7. An evaluation of the concept of innateness.

    Science.gov (United States)

    Mameli, Matteo; Bateson, Patrick

    2011-02-12

    The concept of innateness is often used in explanations and classifications of biological and cognitive traits. But does this concept have a legitimate role to play in contemporary scientific discourse? Empirical studies and theoretical developments have revealed that simple and intuitively appealing ways of classifying traits (e.g. genetically specified versus owing to the environment) are inadequate. They have also revealed a variety of scientifically interesting ways of classifying traits each of which captures some aspect of the innate/non-innate distinction. These include things such as whether a trait is canalized, whether it has a history of natural selection, whether it developed without learning or without a specific set of environmental triggers, whether it is causally correlated with the action of certain specific genes, etc. We offer an analogy: the term 'jade' was once thought to refer to a single natural kind; it was then discovered that it refers to two different chemical compounds, jadeite and nephrite. In the same way, we argue, researchers should recognize that 'innateness' refers not to a single natural kind but to a set of (possibly related) natural kinds. When this happens, it will be easier to progress in the field of biological and cognitive sciences.

  8. The evolution of innate lymphoid cells

    Science.gov (United States)

    Vivier, Eric; van de Pavert, Serge A; Cooper, Max D; Belz, Gabrielle T

    2017-01-01

    Innate lymphoid cells (ILCs) are the most recently discovered group of immune cells. Understanding their biology poses many challenges. We discuss here the current knowledge on the appearance of ILC subsets during evolution and propose how the connection between ILCs and T cells contributes to the robustness of immunity and hence to the fitness of the hosts. PMID:27328009

  9. Is there an innate need for children

    NARCIS (Netherlands)

    R. Veenhoven (Ruut)

    1974-01-01

    textabstractABSTRACT It is commonly assumed that we have an innate need for children, in particular, that women have a 'mother instinct'. This belief lives in the general public as well as among scientists. In this paper that theory is criticized on two grounds: Firstly, it is argued that the theory

  10. Innate immune responses to environmental allergens

    NARCIS (Netherlands)

    Kauffman, HF

    2006-01-01

    Aero-allergens, including plant pollens, house dust mite particles, fungal spores, and mycelium fragments, are continuously inhaled and deposited on the airway mucosa. These particles and their soluble components actively interact with innate recognition systems present in the mucosal layer (e.g., s

  11. Chitin modulates innate immune responses of keratinocytes.

    Directory of Open Access Journals (Sweden)

    Barbara Koller

    Full Text Available BACKGROUND: Chitin, after cellulose the second most abundant polysaccharide in nature, is an essential component of exoskeletons of crabs, shrimps and insects and protects these organisms from harsh conditions in their environment. Unexpectedly, chitin has been found to activate innate immune cells and to elicit murine airway inflammation. The skin represents the outer barrier of the human host defense and is in frequent contact with chitin-bearing organisms, such as house-dust mites or flies. The effects of chitin on keratinocytes, however, are poorly understood. METHODOLOGY/PRINCIPAL FINDINGS: We hypothesized that chitin stimulates keratinocytes and thereby modulates the innate immune response of the skin. Here we show that chitin is bioactive on primary and immortalized keratinocytes by triggering production of pro-inflammatory cytokines and chemokines. Chitin stimulation further induced the expression of the Toll-like receptor (TLR TLR4 on keratinocytes at mRNA and protein level. Chitin-induced effects were mainly abrogated when TLR2 was blocked, suggesting that TLR2 senses chitin on keratinocytes. CONCLUSIONS/SIGNIFICANCE: We speculate that chitin-bearing organisms modulate the innate immune response towards pathogens by upregulating secretion of cytokines and chemokines and expression of MyD88-associated TLRs, two major components of innate immunity. The clinical relevance of this mechanism remains to be defined.

  12. Genetics of innate immunity and UTI susceptibility.

    Science.gov (United States)

    Ragnarsdóttir, Bryndís; Lutay, Nataliya; Grönberg-Hernandez, Jenny; Köves, Bela; Svanborg, Catharina

    2011-07-12

    A functional and well-balanced immune response is required to resist most infections. Slight dysfunctions in innate immunity can turn the 'friendly' host defense into an unpleasant foe and give rise to disease. Beneficial and destructive forces of innate immunity have been discovered in the urinary tract and mechanisms by which they influence the severity of urinary tract infections (UTIs) have been elucidated. By modifying specific aspects of the innate immune response to UTI, genetic variation either exaggerates the severity of acute pyelonephritis to include urosepsis and renal scarring or protects against symptomatic disease by suppressing innate immune signaling, as in asymptomatic bacteriuria (ABU). Different genes are polymorphic in patients prone to acute pyelonephritis or ABU, respectively, and yet discussions of UTI susceptibility in clinical practice still focus mainly on social and behavioral factors or dysfunctional voiding. Is it not time for UTIs to enter the era of molecular medicine? Defining why certain individuals are protected from UTI while others have severe, recurrent infections has long been difficult, but progress is now being made, encouraging new approaches to risk assessment and therapy in this large and important patient group, as well as revealing promising facets of 'good' versus 'bad' inflammation.

  13. Biliary Innate Immunity: Function and Modulation

    Directory of Open Access Journals (Sweden)

    Kenichi Harada

    2010-01-01

    Full Text Available Biliary innate immunity is involved in the pathogenesis of cholangiopathies in patients with primary biliary cirrhosis (PBC and biliary atresia. Biliary epithelial cells possess an innate immune system consisting of the Toll-like receptor (TLR family and recognize pathogen-associated molecular patterns (PAMPs. Tolerance to bacterial PAMPs such as lipopolysaccharides is also important to maintain homeostasis in the biliary tree, but tolerance to double-stranded RNA (dsRNA is not found. In PBC, CD4-positive Th17 cells characterized by the secretion of IL-17 are implicated in the chronic inflammation of bile ducts and the presence of Th17 cells around bile ducts is causally associated with the biliary innate immune responses to PAMPs. Moreover, a negative regulator of intracellular TLR signaling, peroxisome proliferator-activated receptor-γ (PPARγ, is involved in the pathogenesis of cholangitis. Immunosuppression using PPARγ ligands may help to attenuate the bile duct damage in PBC patients. In biliary atresia characterized by a progressive, inflammatory, and sclerosing cholangiopathy, dsRNA viruses are speculated to be an etiological agent and to directly induce enhanced biliary apoptosis via the expression of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL. Moreover, the epithelial-mesenchymal transition (EMT of biliary epithelial cells is also evoked by the biliary innate immune response to dsRNA.

  14. Antimicrobial Peptides in Innate Immunity against Mycobacteria.

    Science.gov (United States)

    Shin, Dong-Min; Jo, Eun-Kyeong

    2011-10-01

    Antimicrobial peptides/proteins are ancient and naturallyoccurring antibiotics in innate immune responses in a variety of organisms. Additionally, these peptides have been recognized as important signaling molecules in regulation of both innate and adaptive immunity. During mycobacterial infection, antimicrobial peptides including cathelicidin, defensin, and hepcidin have antimicrobial activities against mycobacteria, making them promising candidates for future drug development. Additionally, antimicrobial peptides act as immunomodulators in infectious and inflammatory conditions. Multiple crucial functions of cathelicidins in antimycobacterial immune defense have been characterized not only in terms of direct killing of mycobacteria but also as innate immune regulators, i.e., in secretion of cytokines and chemokines, and mediating autophagy activation. Defensin families are also important during mycobacterial infection and contribute to antimycobacterial defense and inhibition of mycobacterial growth both in vitro and in vivo. Hepcidin, although its role in mycobacterial infection has not yet been characterized, exerts antimycobacterial effects in activated macrophages. The present review focuses on recent efforts to elucidate the roles of host defense peptides in innate immunity to mycobacteria.

  15. Innate immunity in inflammatory bowel disease

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The human intestinal tract is home to an enormous bacterial flora. The host defense against microorganisms can be divided into innate and adaptive immunity. The former is the most immediate line of response to immunologic challenges presented by bacteria, viruses, and fungi. The mucosal immune system has evolved to balance the need to respond to pathogens while co-existing with commensal bacteria and food antigens. In inflammatory bowel disease (IBD), this hyporesponsiveness or tolerance breaks-down and inflammation supervenes driven by the intestinal microbial flora. Bacteria contain compounds and are recognized by a variety of receptors, including Toll-like receptors (TLRs) and NODs (a family of intracellular bacterial sensors) and are potent stimuli of innate immune responses. Several mutations in these receptors have been associated with development of IBD.

  16. Innate lymphoid cells and the MHC.

    Science.gov (United States)

    Robinette, M L; Colonna, M

    2016-01-01

    Innate lymphoid cells (ILCs) are a new class of immune cells that include natural killer (NK) cells and appear to be the innate counterparts to CD4(+) helper T cells and CD8(+) cytotoxic T cells based on developmental and functional similarities. Like T cells, both NK cells and other ILCs also show connections to the major histocompatibility complex (MHC). In human and mouse, NK cells recognize and respond to classical and nonclassical MHC I molecules as well as structural homologues, whereas mouse ILCs have recently been shown to express MHC II. We describe the history of MHC I recognition by NK cells and discuss emerging roles for MHC II expression by ILC subsets, making comparisons between both mouse and human when possible.

  17. Salt, chloride, bleach, and innate host defense.

    Science.gov (United States)

    Wang, Guoshun; Nauseef, William M

    2015-08-01

    Salt provides 2 life-essential elements: sodium and chlorine. Chloride, the ionic form of chlorine, derived exclusively from dietary absorption and constituting the most abundant anion in the human body, plays critical roles in many vital physiologic functions, from fluid retention and secretion to osmotic maintenance and pH balance. However, an often overlooked role of chloride is its function in innate host defense against infection. Chloride serves as a substrate for the generation of the potent microbicide chlorine bleach by stimulated neutrophils and also contributes to regulation of ionic homeostasis for optimal antimicrobial activity within phagosomes. An inadequate supply of chloride to phagocytes and their phagosomes, such as in CF disease and other chloride channel disorders, severely compromises host defense against infection. We provide an overview of the roles that chloride plays in normal innate immunity, highlighting specific links between defective chloride channel function and failures in host defense.

  18. Role of innate immunity in neonatal infection.

    Science.gov (United States)

    Cuenca, Alex G; Wynn, James L; Moldawer, Lyle L; Levy, Ofer

    2013-02-01

    Newborns are at increased risk of infection due to genetic, epigenetic, and environmental factors. Herein we examine the roles of the neonatal innate immune system in host defense against bacterial and viral infections. Full-term newborns express a distinct innate immune system biased toward T(H)2-/T(H)17-polarizing and anti-inflammatory cytokine production with relative impairment in T(H)1-polarizing cytokine production that leaves them particularly vulnerable to infection with intracellular pathogens. In addition to these distinct features, preterm newborns also have fragile skin, impaired T(H)17-polarizing cytokine production, and deficient expression of complement and of antimicrobial proteins and peptides (APPs) that likely contribute to susceptibility to pyogenic bacteria. Ongoing research is identifying APPs, including bacterial/permeability-increasing protein and lactoferrin, as well as pattern recognition receptor agonists that may serve to enhance protective newborn and infant immune responses as stand-alone immune response modifiers or vaccine adjuvants.

  19. Heat Shock Protein and Innate Immunity

    Institute of Scientific and Technical Information of China (English)

    Min-FuTsan; BaochongGao

    2004-01-01

    In addition to serving as molecular chaperones, heat shock proteins (HSPs) have been implicated in autoimmune diseases, antigen presentation and tumor immunity. Extensive work in the last 10 years has also suggested that HSPs such as Hsp60, Hsp70, Hsp90 and gp96, may be potent activators of the innate immune system capable of inducing the production of pro-inflammatory cytokines by the monocyte-macrophage system, and the activation and maturation of dendritic cells via the Toll-like receptor 2 and 4 signal transduction pathways. However, recent evidence suggests that the reported cytokine effects of HSPs may be a result of the contaminating bacterial cell-wall products. This concise review summarizes the current controversy over the role of HSPs in innate immunity. Cellular & Molecular Immunology.

  20. Heat Shock Protein and Innate Immunity

    Institute of Scientific and Technical Information of China (English)

    Min-Fu Tsan; Baochong Gao

    2004-01-01

    In addition to serving as molecular chaperones, heat shock proteins (HSPs) have been implicated in autoimmune diseases, antigen presentation and tumor immunity. Extensive work in the last 10 years has also suggested that HSPs such as Hsp60, Hsp70, Hsp90 and gp96, may be potent activators of the innate immune system capable of inducing the production of pro-inflammatory cytokines by the monocyte-macrophage system, and the activation and maturation of dendritic cells via the Toll-like receptor 2 and 4 signal transduction pathways. However, recent evidence suggests that the reported cytokine effects of HSPs may be a result of the contaminating bacterial cell-wall products. This concise review summarizes the current controversy over the role of HSPs in innate immunity.

  1. Mitochondrial reactive oxygen species modulate innate immune response to influenza A virus in human nasal epithelium.

    Science.gov (United States)

    Kim, Sujin; Kim, Min-Ji; Park, Do Yang; Chung, Hyo Jin; Kim, Chang-Hoon; Yoon, Joo-Heon; Kim, Hyun Jik

    2015-07-01

    The innate immune system of the nasal epithelium serves as a first line of defense against invading respiratory viruses including influenza A virus (IAV). Recently, it was verified that interferon (IFN)-related immune responses play a critical role in local antiviral innate immunity. Reactive oxygen species (ROS) generation by exogenous pathogens has also been demonstrated in respiratory epithelial cells and modulation of ROS has been reported to be important for respiratory virus-induced innate immune mechanisms. Passage-2 normal human nasal epithelial (NHNE) cells were inoculated with IAV (WS/33, H1N1) to assess the sources of IAV-induced ROS and the relationship between ROS and IFN-related innate immune responses. Both STAT1 and STAT2 phosphorylation and the mRNA levels of IFN-stimulated genes, including Mx1, 2,5-OAS1, IFIT1, and CXCL10, were induced after IAV infection up to three days post infection. Similarly, we observed that mitochondrial ROS generation increased maximally at 2 days after IAV infection. After suppression of mitochondrial ROS generation, IAV-induced phosphorylation of STAT and mRNA levels of IFN-stimulated genes were attenuated and actually, viral titers of IAV were significantly higher in cases with scavenging ROS. Our findings suggest that mitochondrial ROS might be responsible for controlling IAV infection and may be potential sources of ROS generation, which is required to initiate an innate immune response in NHNE cells.

  2. Latest advances in innate antiviral defence

    OpenAIRE

    Irving, Aaron; Williams, Bryan RG

    2009-01-01

    Recent identification of key components in the pattern recognition receptor pathway of retinoic acid-inducible gene-1-like receptors, coupled with the characterisation of a new cytoplasmic DNA-sensing molecule, has led to a greater understanding of the role that viral nucleic acids play in activating innate immunity. This activation of type-I interferon is essential for both limiting viral infection and stimulating activation of the adaptive immune response.

  3. Innate immunity in Drosophila: Pathogens and pathways

    OpenAIRE

    Govind, Shubha

    2008-01-01

    Following in the footsteps of traditional developmental genetics, research over the last 15 years has shown that innate immunity against bacteria and fungi is governed largely by two NF-κB signal transduction pathways, Toll and IMD. Antiviral immunity appears to stem from RNA interference, whereas resistance against parasitoids is conferred by Toll signaling. The identification of these post-transcriptional regulatory mechanisms and the annotation of most Drosophila immunity genes have derive...

  4. Evolutionary genetics of insect innate immunity

    OpenAIRE

    Viljakainen, Lumi

    2015-01-01

    Patterns of evolution in immune defense genes help to understand the evolutionary dynamics between hosts and pathogens. Multiple insect genomes have been sequenced, with many of them having annotated immune genes, which paves the way for a comparative genomic analysis of insect immunity. In this review, I summarize the current state of comparative and evolutionary genomics of insect innate immune defense. The focus is on the conserved and divergent components of immunity with an emphasis on g...

  5. Innate immunity and primary biliary cirrhosis.

    Science.gov (United States)

    Selmi, Carlo; Lleo, Ana; Pasini, Simone; Zuin, Massimo; Gershwin, M Eric

    2009-02-01

    There has been a rapid growth in our understanding of the molecular bases of primary biliary cirrhosis (PBC). These efforts were initiated when the immunodominant mitochondrial autoantigen was cloned and sequenced. Using the recombinant cloned antigen as a tool, research has focused on the effector mechanisms of disease and the uniqueness of the primary target tissue, the intrahepatic bile ducts. Most recently, there have been experimental data suggesting that innate immunity changes may be critical to the initiation and perpetuation of the autoimmune injury, as in the case of the enhanced response of monocytes and memory B cells to infectious stimulation and environmental mimics. These observations are important as they help fill in the many gaps which remain on the most difficult subject of autoimmunity, etiology. Indeed, based on the available data, several experimental models of PBC have been developed. These models illustrate and suggest that PBC can be initiated by several mechanisms, all of which lead to loss of tolerance to the mitochondrial antigens. However, once this adaptive response develops, it appears that much of the subsequent pathology is exacerbated by innate responses. We suggest that future therapeutic efforts in PBC will depend heavily on understanding the nature of this innate immune responses and methodology to blunt their cytotoxicity.

  6. Heme on innate immunity and inflammation

    Directory of Open Access Journals (Sweden)

    Fabianno Ferreira Dutra

    2014-05-01

    Full Text Available Heme is an essential molecule expressed ubiquitously all through our tissues. Heme plays major functions in cellular physiology and metabolism as the prostetic group of diverse proteins. Once released from cells and from hemeproteins free heme causes oxidative damage and inflammation, thus acting as a prototypic damage-associated molecular pattern. In this context, free heme is a critical component of the pathological process of sterile and infectious hemolytic conditions including malaria, hemolytic anemias, ischemia-reperfusion and hemorrhage. The plasma scavanger proteins hemopexin and albumin reduce heme toxicity and are responsible for transporting free heme to intracellular compartments where it is catabolized by heme-oxygenase enzymes. Upon hemolysis or severe cellular damage the serum capacity to scavange heme may saturate and increase free heme to sufficient amounts to cause tissue damage in various organs. The mechanism by which heme causes reactive oxygen generation, activation of cells of the innate immune system and cell death are not fully understood. Although heme can directly promote lipid peroxidation by its iron atom, heme can also induce ROS generation and production of inflammatory mediators through the activation of selective signaling pathways. Heme activates innate immune cells such as macrophages and neutrophils through activation of innate immune receptors. The importance of these events has been demonstrated in infectious and non-infectious diseases models. In this review we will discuss the mechanisms behind heme-induced citotoxicity and inflammation and the consequences of these events on different tissues and diseases.

  7. Crohn's disease-Defect in innate defence

    Institute of Scientific and Technical Information of China (English)

    Michael Gersemann; Jan Wehkamp; Klaus Fellermann; Eduard Friedrich Stange

    2008-01-01

    Crohn's disease may prinicipally involve the whole gastrointestinal tract. Most commonly, the inflammation occurs in the small intestine and/or in the colon with stable disease location over the years. The pathogenesis of both disease phenotypes is complex, the likely primary defect lies in the innate rather than adaptive immunity, particularly in the chemical antimicrobial barrier of the mucosa Crohn's ileitis is associated with a reduced expression of the Wnt signalling pathway transcription factor T-cell factor 4 (TCF4) ,which is regulating Paneth cell differentiation. As a result, the alpha-defensins and principal Paneth cell products HD5 and HD6 are deficiently expressed in ileal disease, independent of current inflammation. In contrast, Crohn's colitis is typically associated with an impaired induction of the beta-defensins HBD2 and HBD3 caused by fewer gene copy numbers in the gene locus of the beta-defensins on chromosome 8. This ileal and colonic defect in innate defence mediated by a deficiency of the protective alpha- and betadefensins may enable the luminal microbes to invade the mucosa and trigger the inflammation. A better understanding of the exact molecular mechanisms behind ileal and colonic Crohn's disease may give rise to new therapeutic strategies based on a stimulation of the protective innate immune system.(C)2008 The WJG Press. All fights reserved.

  8. The Role of Innate Immunity in Conditioning Mosquito Susceptibility to West Nile Virus

    Directory of Open Access Journals (Sweden)

    Abhishek N. Prasad

    2013-12-01

    Full Text Available Arthropod-borne viruses (arboviruses represent an emerging threat to human and livestock health globally. In particular, those transmitted by mosquitoes present the greatest challenges to disease control efforts. An understanding of the molecular basis for mosquito innate immunity to arbovirus infection is therefore critical to investigations regarding arbovirus evolution, virus-vector ecology, and mosquito vector competence. In this review, we discuss the current state of understanding regarding mosquito innate immunity to West Nile virus. We draw from the literature with respect to other virus-vector pairings to attempt to draw inferences to gaps in our knowledge about West Nile virus and relevant vectors.

  9. [Mechanisms underlying interferon-mediated host innate immunity during influenza A virus infection].

    Science.gov (United States)

    Chen, Chao; Chi, Xiaojuan; Bai, Qingling; Chen, Jilong

    2015-12-01

    Influenza A virus can create acute respiratory infection in humans and animals throughout the world, and it is still one of the major causes of morbidity and mortality in humans worldwide. Numerous studies have shown that influenza A virus infection induces rapidly host innate immune response. Influenza A virus triggers the activation of signaling pathways that are dependent on host pattern recognition receptors (PRRs) including toll like receptors (TLRs) and RIG-I like receptors (RLRs). Using a variety of regulatory mechanisms, these signaling pathways activate downstream transcript factors that control expression of various interferons and cytokines, such as type I and type III interferons. Thus, these interferons stimulate the transcript of relevant interferon-stimulated genes (ISGs) and expression of the antiviral proteins, which are critical components of host innate immunity. In this review, we will highlight the mechanisms by which influenza A virus infection induces the interferon-mediated host innate immunity.

  10. Innate immune gene expression differentiates the early avian intestinal response between Salmonella and Campylobacter.

    Science.gov (United States)

    Shaughnessy, Ronan G; Meade, Kieran G; Cahalane, Sarah; Allan, Brenda; Reiman, Carla; Callanan, John J; O'Farrelly, Cliona

    2009-12-15

    Salmonella enterica serovar Typhimurium and Campylobacter jejuni are major human pathogens, yet colonise chickens without causing pathology. The aim of this study was to compare intestinal innate immune responses to both bacterial species, in a 4-week-old broiler chicken model. Challenged and control birds were sacrificed and tissue samples taken for histopathology and RNA extraction. No significant clinical or pathological changes were observed in response to infection with either bacterial species. Expression of selected genes involved in pathogen detection and the innate immune response were profiled in caecal tissues by quantitative real-time PCR. TLR4 and TLR21 gene expression was transiently increased in response to both bacterial species (Pimmune genes in both infection models shed light on the tailored responses of the host immune system to specific microbes. It is further evidence that innate regulation of these responses is an important prerequisite to preventing development of disease.

  11. Innate immune responses of salmonid fish to viral infections.

    Science.gov (United States)

    Collet, Bertrand

    2014-04-01

    Viruses are the most serious pathogenic threat to the production of the main aquacultured salmonid species the rainbow trout Oncorhynchus mykiss and the Atlantic salmon Salmo salar. The viral diseases Infectious Pancreatic Necrosis (IPN), Pancreatic Disease (PD), Infectious Haemorrhagic Necrosis (IHN), Viral Haemorrhagic Septicaemia (VHS), and Infectious Salmon Anaemia (ISA) cause massive economic losses to the global salmonid aquaculture industry every year. To date, no solution exists to treat livestock affected by a viral disease and only a small number of efficient vaccines are available to prevent infection. As a consequence, understanding the host immune response against viruses in these fish species is critical to develop prophylactic and preventive control measures. The innate immune response represents an important part of the host defence mechanism preventing viral replication after infection. It is a fast acting response designed to inhibit virus propagation immediately within the host, allowing for the adaptive specific immunity to develop. It has cellular and humoral components which act in synergy. This review will cover inflammation responses, the cell types involved, apoptosis, antimicrobial peptides. Particular attention will be given to the type I interferon system as the major player in the innate antiviral defence mechanism of salmonids. Viral evasion strategies will also be discussed.

  12. Innate immunity and protective neuroinflammation: new emphasis on the role of neuroimmune regulatory proteins.

    Science.gov (United States)

    Griffiths, M; Neal, J W; Gasque, P

    2007-01-01

    Brain inflammation due to infection, hemorrhage, and aging is associated with activation of the local innate immune system as expressed by infiltrating cells, resident glial cells, and neurons. The innate immune response relies on the detection of "nonself" and "danger-self" ligands behaving as "eat me signals" by a plethora of pattern recognition receptors (PRRs) expressed by professional and amateur phagocytes to promote the clearance of pathogens, toxic cell debris (amyloid fibrils, aggregated synucleins, prions), and apoptotic cells accumulating within the brain parenchyma and the cerebrospinal fluid (CSF). These PRRs (e.g., complement, TLR, CD14, scavenger receptors) are highly conserved between vertebrates and invertebrates and may represent the most ancestral innate scavenging system involved in tissue homeostasis. However, in some diseases, these protective mechanisms lead to neurodegeneration on the ground that several innate immune molecules have neurocytotoxic activities. The response is a "double-edged sword" representing a fine balance between protective and detrimental effects. Several key regulatory mechanisms have now been evidenced in the control of CNS innate immunity, and these could be harnessed to explore novel therapeutic avenues. We will herein provide new emphasis on the role of neuroimmune regulatory proteins (NIRegs), such as CD95L, TNF, CD200, CD47, sialic acids, CD55, CD46, fH, C3a, HMGB1, which are involved in silencing innate immunity at the cellular and molecular levels and suppression of inflammation. For instance, NIRegs may play an important role in controlling lymphocyte/macrophage/microglia hyperinflammatory responses, while sparing host defense and repair mechanisms. Moreover, NIRegs have direct beneficial effects on neurogenesis and contributing to brain tissue remodeling.

  13. The E3-ligase TRIM family of proteins regulates signaling pathways triggered by innate immune pattern-recognition receptors.

    Science.gov (United States)

    Versteeg, Gijs A; Rajsbaum, Ricardo; Sánchez-Aparicio, Maria Teresa; Maestre, Ana M; Valdiviezo, Julio; Shi, Mude; Inn, Kyung-Soo; Fernandez-Sesma, Ana; Jung, Jae; García-Sastre, Adolfo

    2013-02-21

    Innate immunity conferred by the type I interferon is critical for antiviral defense. To date only a limited number of tripartite motif (TRIM) proteins have been implicated in modulation of innate immunity and anti-microbial activity. Here we report the complementary DNA cloning and systematic analysis of all known 75 human TRIMs. We demonstrate that roughly half of the 75 TRIM-family members enhanced the innate immune response and that they do this at multiple levels in signaling pathways. Moreover, messenger RNA levels and localization of most of these TRIMs were found to be altered during viral infection, suggesting that their regulatory activities are highly controlled at both pre- and posttranscriptional levels. Taken together, our data demonstrate a very considerable dedication of this large protein family to the positive regulation of the antiviral response, which supports the notion that this family of proteins evolved as a component of innate immunity.

  14. Characterization of Aedes aegypti innate-immune pathways that limit Chikungunya virus replication.

    Directory of Open Access Journals (Sweden)

    Melanie McFarlane

    2014-07-01

    Full Text Available Replication of arboviruses in their arthropod vectors is controlled by innate immune responses. The RNA sequence-specific break down mechanism, RNA interference (RNAi, has been shown to be an important innate antiviral response in mosquitoes. In addition, immune signaling pathways have been reported to mediate arbovirus infections in mosquitoes; namely the JAK/STAT, immune deficiency (IMD and Toll pathways. Very little is known about these pathways in response to chikungunya virus (CHIKV infection, a mosquito-borne alphavirus (Togaviridae transmitted by aedine species to humans resulting in a febrile and arthralgic disease. In this study, the contribution of several innate immune responses to control CHIKV replication was investigated. In vitro experiments identified the RNAi pathway as a key antiviral pathway. CHIKV was shown to repress the activity of the Toll signaling pathway in vitro but neither JAK/STAT, IMD nor Toll pathways were found to mediate antiviral activities. In vivo data further confirmed our in vitro identification of the vital role of RNAi in antiviral defence. Taken together these results indicate a complex interaction between CHIKV replication and mosquito innate immune responses and demonstrate similarities as well as differences in the control of alphaviruses and other arboviruses by mosquito immune pathways.

  15. Autophagy, inflammation and innate immunity in inflammatory myopathies.

    Directory of Open Access Journals (Sweden)

    Cristina Cappelletti

    Full Text Available Autophagy has a large range of physiological functions and its dysregulation contributes to several human disorders, including autoinflammatory/autoimmune diseases such as inflammatory myopathies (IIMs. In order to better understand the pathogenetic mechanisms of these muscular disorders, we sought to define the role of autophagic processes and their relation with the innate immune system in the three main subtypes of IIM, specifically sporadic inclusion body myositis (sIBM, polymyositis (PM, dermatomyositis (DM and juvenile dermatomyositis (JDM. We found that although the mRNA transcript levels of the autophagy-related genes BECN1, ATG5 and FBXO32 were similar in IIM and controls, autophagy activation in all IIM subgroups was suggested by immunoblotting results and confirmed by immunofluorescence. TLR4 and TLR3, two potent inducers of autophagy, were highly increased in IIM, with TLR4 transcripts significantly more expressed in PM and DM than in JDM, sIBM and controls, and TLR3 transcripts highly up-regulated in all IIM subgroups compared to controls. Co-localization between autophagic marker, LC3, and TLR4 and TLR3 was observed not only in sIBM but also in PM, DM and JDM muscle tissues. Furthermore, a highly association with the autophagic processes was observed in all IIM subgroups also for some TLR4 ligands, endogenous and bacterial HSP60, other than the high-mobility group box 1 (HMGB1. These findings indicate that autophagic processes are active not only in sIBM but also in PM, DM and JDM, probably in response to an exogenous or endogenous 'danger signal'. However, autophagic activation and regulation, and also interaction with the innate immune system, differ in each type of IIM. Better understanding of these differences may lead to new therapies for the different IIM types.

  16. Innate immune detection of flagellin positively and negatively regulates salmonella infection.

    Directory of Open Access Journals (Sweden)

    Marvin A Lai

    Full Text Available Salmonella enterica serovar Typhimurium is a flagellated bacterium and one of the leading causes of gastroenteritis in humans. Bacterial flagellin is required for motility and also a prime target of the innate immune system. Innate immune recognition of flagellin is mediated by at least two independent pathways, TLR5 and Naip5-Naip6/NlrC4/Caspase-1. The functional significance of each of the two independent flagellin recognition systems for host defense against wild type Salmonella infection is complex, and innate immune detection of flagellin contributes to both protection and susceptibility. We hypothesized that efficient modulation of flagellin expression in vivo permits Salmonella to evade innate immune detection and limit the functional role of flagellin-specific host innate defenses. To test this hypothesis, we used Salmonella deficient in the anti-sigma factor flgM, which overproduce flagella and are attenuated in vivo. In this study we demonstrate that flagellin recognition by the innate immune system is responsible for the attenuation of flgM(- S. Typhimurium, and dissect the contribution of each flagellin recognition pathway to bacterial clearance and inflammation. We demonstrate that caspase-1 controls mucosal and systemic infection of flgM(- S. Typhimurium, and also limits intestinal inflammation and injury. In contrast, TLR5 paradoxically promotes bacterial colonization in the cecum and systemic infection, but attenuates intestinal inflammation. Our results indicate that Salmonella evasion of caspase-1 dependent flagellin recognition is critical for establishing infection and that evasion of TLR5 and caspase-1 dependent flagellin recognition helps Salmonella induce intestinal inflammation and establish a niche in the inflamed gut.

  17. Innate immune detection of flagellin positively and negatively regulates salmonella infection.

    Science.gov (United States)

    Lai, Marvin A; Quarles, Ellen K; López-Yglesias, Américo H; Zhao, Xiaodan; Hajjar, Adeline M; Smith, Kelly D

    2013-01-01

    Salmonella enterica serovar Typhimurium is a flagellated bacterium and one of the leading causes of gastroenteritis in humans. Bacterial flagellin is required for motility and also a prime target of the innate immune system. Innate immune recognition of flagellin is mediated by at least two independent pathways, TLR5 and Naip5-Naip6/NlrC4/Caspase-1. The functional significance of each of the two independent flagellin recognition systems for host defense against wild type Salmonella infection is complex, and innate immune detection of flagellin contributes to both protection and susceptibility. We hypothesized that efficient modulation of flagellin expression in vivo permits Salmonella to evade innate immune detection and limit the functional role of flagellin-specific host innate defenses. To test this hypothesis, we used Salmonella deficient in the anti-sigma factor flgM, which overproduce flagella and are attenuated in vivo. In this study we demonstrate that flagellin recognition by the innate immune system is responsible for the attenuation of flgM(-) S. Typhimurium, and dissect the contribution of each flagellin recognition pathway to bacterial clearance and inflammation. We demonstrate that caspase-1 controls mucosal and systemic infection of flgM(-) S. Typhimurium, and also limits intestinal inflammation and injury. In contrast, TLR5 paradoxically promotes bacterial colonization in the cecum and systemic infection, but attenuates intestinal inflammation. Our results indicate that Salmonella evasion of caspase-1 dependent flagellin recognition is critical for establishing infection and that evasion of TLR5 and caspase-1 dependent flagellin recognition helps Salmonella induce intestinal inflammation and establish a niche in the inflamed gut.

  18. Innate immune cells in the pathogenesis of primary systemic vasculitis.

    Science.gov (United States)

    Misra, Durga Prasanna; Agarwal, Vikas

    2016-02-01

    Innate immune system forms the first line of defense against foreign substances. Neutrophils, eosinophils, erythrocytes, platelets, monocytes, macrophages, dendritic cells, γδ T cells, natural killer and natural killer T cells comprise the innate immune system. Genetic polymorphisms influencing the activation of innate immune cells predispose to development of vasculitis and influence its severity. Abnormally activated innate immune cells cross-talk with other cells of the innate immune system, present antigens more efficiently and activate T and B lymphocytes and cause tissue destruction via cell-mediated cytotoxicity and release of pro-inflammatory cytokines. These secreted cytokines further recruit other cells to the sites of vascular injury. They are involved in both the initiation as well as the perpetuation of vasculitis. Evidences suggest reversal of aberrant activation of immune cells in response to therapy. Understanding the role of innate immune cells in vasculitis helps understand the potential of therapeutic modulation of their activation to treat vasculitis.

  19. Innate lymphoid cells involve in tumorigenesis.

    Science.gov (United States)

    Tian, Zhiqiang; van Velkinburgh, Jennifer C; Wu, Yuzhang; Ni, Bing

    2016-01-01

    Innate lymphoid cells (ILCs) promptly initiate cytokine responses to pathogen exposure in the mucosa and mucosal-associated lymphoid tissues. ILCs were recently categorized as being of the lymphoid lineage and have been classified into three groups. ILCs play important roles in immunity against pathogens, and an anti-tumor immune-related function was recently demonstrated. In this review we discuss whether and how ILCs involve in the tumorigenesis, providing new insights into the mechanisms underlying the particular functions of ILCs as well as the potential targets for tumor intervention.

  20. FimH adhesin of type 1 fimbriae is a potent inducer of innate antimicrobial responses which requires TLR4 and type 1 interferon signalling.

    Directory of Open Access Journals (Sweden)

    Ali A Ashkar

    2008-12-01

    Full Text Available Components of bacteria have been shown to induce innate antiviral immunity via Toll-like receptors (TLRs. We have recently shown that FimH, the adhesin portion of type 1 fimbria, can induce the innate immune system via TLR4. Here we report that FimH induces potent in vitro and in vivo innate antimicrobial responses. FimH induced an innate antiviral state in murine macrophage and primary MEFs which was correlated with IFN-beta production. Moreover, FimH induced the innate antiviral responses in cells from wild type, but not from MyD88(-/-, Trif(-/-, IFN-alpha/betaR(-/- or IRF3(-/- mice. Vaginal delivery of FimH, but not LPS, completely protected wild type, but not MyD88(-/-, IFN-alpha/betaR(-/-, IRF3(-/- or TLR4(-/- mice from subsequent genital HSV-2 challenge. The FimH-induced innate antiviral immunity correlated with the production of IFN-beta, but not IFN-alpha or IFN-gamma. To examine whether FimH plays a role in innate immune induction in the context of a natural infection, the innate immune responses to wild type uropathogenic E. coli (UPEC and a FimH null mutant were examined in the urinary tract of C57Bl/6 (B6 mice and TLR4-deficient mice. While UPEC expressing FimH induced a robust polymorphonuclear response in B6, but not TLR4(-/- mice, mutant bacteria lacking FimH did not. In addition, the presence of TLR4 was essential for innate control of and protection against UPEC. Our results demonstrate that FimH is a potent inducer of innate antimicrobial responses and signals differently, from that of LPS, via TLR4 at mucosal surfaces. Our studies suggest that FimH can potentially be used as an innate microbicide against mucosal pathogens.

  1. Oxidative stress, innate immunity, and age-related macular degeneration

    Directory of Open Access Journals (Sweden)

    Wei Fan

    2016-05-01

    molecules, we have previously hypothesized that the tight homeostatic control of inflammation via the innate immune system is likely critical for avoidance of disease progression. However, the presence of a multitude of potential triggers of inflammation results in a sensitive balance in which perturbations thereof would subsequently alter the inflammatory state of the retina, leading to a state of chronic inflammation and pathologic progression. In this review, we will highlight the background literature surrounding the known genetic and environmental contributors to AMD risk, as well as a discussion of the potential mechanistic interplay of these factors that lead to disease pathogenesis with particular emphasis on the delicate control of inflammatory homeostasis and the centrality of the innate immune system in this process.

  2. Oxidative stress, innate immunity, and age-related macular degeneration.

    Science.gov (United States)

    Shaw, Peter X; Stiles, Travis; Douglas, Christopher; Ho, Daisy; Fan, Wei; Du, Hongjun; Xiao, Xu

    previously hypothesized that the tight homeostatic control of inflammation via the innate immune system is likely critical for avoidance of disease progression. However, the presence of a multitude of potential triggers of inflammation results in a sensitive balance in which perturbations thereof would subsequently alter the inflammatory state of the retina, leading to a state of chronic inflammation and pathologic progression. In this review, we will highlight the background literature surrounding the known genetic and environmental contributors to AMD risk, as well as a discussion of the potential mechanistic interplay of these factors that lead to disease pathogenesis with particular emphasis on the delicate control of inflammatory homeostasis and the centrality of the innate immune system in this process.

  3. A Role for PML in Innate Immunity

    Science.gov (United States)

    Lunardi, Andrea; Gaboli, Mirella; Giorgio, Marco; Rivi, Roberta; Bygrave, Anne; Antoniou, Michael; Drabek, Dubravka; Dzierzak, Elaine; Fagioli, Marta; Salmena, Leonardo; Botto, Marina; Cordon-Cardo, Carlos; Luzzatto, Lucio; Pelicci, Pier Giuseppe; Grosveld, Frank; Pandolfi, Pier Paolo

    2011-01-01

    The promyelocytic leukemia gene (PML) of acute promyelocytic leukemia is an established tumor suppressor gene with critical functions in growth suppression, induction of apoptosis, and cellular senescence. Interestingly, although less studied, PML seems to play a key role also in immune response to viral infection. Herein, we report that Pml −/− mice spontaneously develop an atypical invasive and lethal granulomatous lesion known as botryomycosis (BTM). In Pml −/− mice, BTM is the result of impaired function of macrophages, whereby they fail to become activated and are thus unable to clear pathogenic microorganisms. Accordingly, Pml −/− mice are resistant to lipopolysaccharide (LPS)–induced septic shock as a result of an ineffective production of cytokines and chemokines, suggesting a role for PML in the innate immune Toll-like receptor (TLR)/NF-κB prosurvival pathway. These results not only shed light on a new fundamental function of PML in innate immunity, but they also point to a proto-oncogenic role for PML in certain cellular and pathological contexts. PMID:21779477

  4. Innate immunity evasion by Dengue virus.

    Science.gov (United States)

    Morrison, Juliet; Aguirre, Sebastian; Fernandez-Sesma, Ana

    2012-03-01

    For viruses to productively infect their hosts, they must evade or inhibit important elements of the innate immune system, namely the type I interferon (IFN) response, which negatively influences the subsequent development of antigen-specific adaptive immunity against those viruses. Dengue virus (DENV) can inhibit both type I IFN production and signaling in susceptible human cells, including dendritic cells (DCs). The NS2B3 protease complex of DENV functions as an antagonist of type I IFN production, and its proteolytic activity is necessary for this function. DENV also encodes proteins that antagonize type I IFN signaling, including NS2A, NS4A, NS4B and NS5 by targeting different components of this signaling pathway, such as STATs. Importantly, the ability of the NS5 protein to bind and degrade STAT2 contributes to the limited host tropism of DENV to humans and non-human primates. In this review, we will evaluate the contribution of innate immunity evasion by DENV to the pathogenesis and host tropism of this virus.

  5. Salmonella Typhimurium type III secretion effectors stimulate innate immune responses in cultured epithelial cells.

    Directory of Open Access Journals (Sweden)

    Vincent M Bruno

    2009-08-01

    Full Text Available Recognition of conserved bacterial products by innate immune receptors leads to inflammatory responses that control pathogen spread but that can also result in pathology. Intestinal epithelial cells are exposed to bacterial products and therefore must prevent signaling through innate immune receptors to avoid pathology. However, enteric pathogens are able to stimulate intestinal inflammation. We show here that the enteric pathogen Salmonella Typhimurium can stimulate innate immune responses in cultured epithelial cells by mechanisms that do not involve receptors of the innate immune system. Instead, S. Typhimurium stimulates these responses by delivering through its type III secretion system the bacterial effector proteins SopE, SopE2, and SopB, which in a redundant fashion stimulate Rho-family GTPases leading to the activation of mitogen-activated protein (MAP kinase and NF-kappaB signaling. These observations have implications for the understanding of the mechanisms by which Salmonella Typhimurium induces intestinal inflammation as well as other intestinal inflammatory pathologies.

  6. The influence of probiotics on zebrafish Danio rerio innate immunity and hepatic stress.

    Science.gov (United States)

    Gioacchini, Giorgia; Giorgini, Elisabetta; Olivotto, Ike; Maradonna, Francesca; Merrifield, Daniel L; Carnevali, Oliana

    2014-04-01

    In this study, the effects of probiotic administration on zebrafish Danio rerio intestinal innate immunity and hepatic stress were evaluated. Zebrafish adults were treated for 10 days with the probiotic Lactobacillus rhamnosus IMC 501(®). To assess the effects at the molecular level, the mRNA levels of genes involved in the innate immune system, stress response, oxidative stress, and apoptosis were quantified by real-time polymerase chain reaction. An increase of biomarkers related to innate immune responses was observed in intestinal tissue from the probiotic-treated fish compared with the control fish. In addition, a decrease in the abundance of stress and apoptotic-related genes was observed in the liver of the probiotic-fed fish. Finally, imaging Fourier transform infrared analysis was conducted on liver sections and the data obtained confirmed that probiotic administration decreased oxidative stress levels, decreased DNA damage, and increased lipid saturation levels. Overall, the results show that probiotic administration may enhance zebrafish welfare by modulating the innate immune response and improving hepatic stress tolerance.

  7. Exosome RNA Released by Hepatocytes Regulates Innate Immune Responses to Hepatitis B Virus Infection

    Directory of Open Access Journals (Sweden)

    Takahisa Kouwaki

    2016-08-01

    Full Text Available The innate immune system is essential for controlling viral infection. Hepatitis B virus (HBV persistently infects human hepatocytes and causes hepatocellular carcinoma. However, the innate immune response to HBV infection in vivo remains unclear. Using a tree shrew animal model, we showed that HBV infection induced hepatic interferon (IFN-γ expression during early infection. Our in vitro study demonstrated that hepatic NK cells produced IFN-γ in response to HBV only in the presence of hepatic F4/80+ cells. Moreover, extracellular vesicles released from HBV-infected hepatocytes contained viral nucleic acids and induced NKG2D ligand expression in macrophages by stimulating MyD88, TICAM-1, and MAVS-dependent pathways. In addition, depletion of exosomes from extracellular vesicles markedly reduced NKG2D ligand expression, suggesting the importance of exosomes for NK cell activation. In contrast, infection of hepatocytes with HBV increased immunoregulatory microRNA levels in extracellular vesicles and exosomes, which were transferred to macrophages, thereby suppressing IL-12p35 mRNA expression in macrophages to counteract the host innate immune response. IFN-γ increased the hepatic expression of DDX60 and augmented the DDX60-dependent degradation of cytoplasmic HBV RNA. Our results elucidated the crucial role of exosomes in antiviral innate immune response against HBV.

  8. MAMPs/PAMPs - elicitors of innate immunity in plants

    DEFF Research Database (Denmark)

    Erbs, Gitte; Newman, Mari-Anne

    2009-01-01

    Patterns (MAMPs or PAMPs), are recognised by the plant innate immune systems Pattern Recognition Receptors (PRRs). General bacterial elicitors, like lipopolysaccharides (LPS), flagellin (Flg), elongation factor Tu (EF-Tu), cold shock protein (CSP), peptidoglycan (PGN) and the enzyme superoxide dismutase...... elicitors have, in recent years, been identified. Here, the current knowledge regarding bacterial elicitors of innate immunity in plants is presented...

  9. Innatism, Concept Formation, Concept Mastery and Formal Education

    Science.gov (United States)

    Winch, Christopher

    2015-01-01

    This article will consider the claim that the possession of concepts is innate rather than learned. Innatism about concept learning is explained through consideration of the work of Fodor and Chomsky. First, an account of concept formation is developed. Second the argument against the claim that concepts are learned through the construction of a…

  10. Innate immunological function of TH2 cells in vivo

    Science.gov (United States)

    Th2 cells produce IL-13 when stimulated by papain or house dust mites (HDM) and induce eosinophilic inflammation. This innate response of cells of the adaptive immune system is dependent on IL-33-, not T cell receptor-, based stimulation. While type 2 innate lymphoid cells (ILC2s) are the dominant ...

  11. Prognostic value of innate and adaptive immunity in colorectal cancer.

    Science.gov (United States)

    Grizzi, Fabio; Bianchi, Paolo; Malesci, Alberto; Laghi, Luigi

    2013-01-14

    Colorectal cancer (CRC) remains one of the major public health problems throughout the world. Originally depicted as a multi-step dynamical disease, CRC develops slowly over several years and progresses through cytologically distinct benign and malignant states, from single crypt lesions through adenoma, to malignant carcinoma with the potential for invasion and metastasis. Moving from histological observations since a long time, it has been recognized that inflammation and immunity actively participate in the pathogenesis, surveillance and progression of CRC. The advent of immunohistochemical techniques and of animal models has improved our understanding of the immune dynamical system in CRC. It is well known that immune cells have variable behavior controlled by complex interactions in the tumor microenvironment. Advances in immunology and molecular biology have shown that CRC is immunogenic and that host immune responses influence survival. Several lines of evidence support the concept that tumor stromal cells, are not merely a scaffold, but rather they influence growth, survival, and invasiveness of cancer cells, dynamically contributing to the tumor microenvironment, together with immune cells. Different types of immune cells infiltrate CRC, comprising cells of both the innate and adaptive immune system. A relevant issue is to unravel the discrepancy between the inhibitory effects on cancer growth exerted by the local immune response and the promoting effects on cancer proliferation, invasion, and dissemination induced by some types of inflammatory cells. Here, we sought to discuss the role played by innate and adaptive immune system in the local progression and metastasis of CRC, and the prognostic information that we can currently understand and exploit.

  12. Rotavirus Antagonism of the Innate Immune Response

    Directory of Open Access Journals (Sweden)

    Michelle M. Arnold

    2009-11-01

    Full Text Available Rotavirus is a primary cause of severe dehydrating gastroenteritis in infants and young children. The virus is sensitive to the antiviral effects triggered by the interferon (IFN-signaling pathway, an important component of the host cell innate immune response. To counteract these effects, rotavirus encodes a nonstructural protein (NSP1 that induces the degradation of proteins involved in regulating IFN expression, such as members of the IFN regulatory factor (IRF family. In some instances, NSP1 also subverts IFN expression by causing the degradation of a component of the E3 ubiquitin ligase complex responsible for activating NF-κB. By antagonizing multiple components of the IFN-induction pathway, NSP1 aids viral spread and contributes to rotavirus pathogenesis.

  13. Interactions between Innate Immunity, Microbiota, and Probiotics

    Directory of Open Access Journals (Sweden)

    GianMarco Giorgetti

    2015-01-01

    Full Text Available The term “microbiota” means genetic inheritance associated with microbiota, which is about 100 times larger than the guest. The tolerance of the resident bacterial flora is an important key element of immune cell function. A key role in the interaction between the host and the microbiota is played by Paneth cell, which is able to synthesize and secrete proteins and antimicrobial peptides, such as α/β defensins, cathelicidin, 14 β-glycosidases, C-type lectins, and ribonuclease, in response to various stimuli. Recent studies found probiotics able to preserve intestinal homeostasis by downmodulating the immune response and inducing the development of T regulatory cells. Specific probiotic strain, as well as probiotic-driven metabolic products called “postbiotics,” has been recently recognized and it is able to influence innate immunity. New therapeutic approaches based on probiotics are now available, and further treatments based on postbiotics will come in the future.

  14. Interactions between Innate Immunity, Microbiota, and Probiotics.

    Science.gov (United States)

    Giorgetti, GianMarco; Brandimarte, Giovanni; Fabiocchi, Federica; Ricci, Salvatore; Flamini, Paolo; Sandri, Giancarlo; Trotta, Maria Cristina; Elisei, Walter; Penna, Antonio; Lecca, Piera Giuseppina; Picchio, Marcello; Tursi, Antonio

    2015-01-01

    The term "microbiota" means genetic inheritance associated with microbiota, which is about 100 times larger than the guest. The tolerance of the resident bacterial flora is an important key element of immune cell function. A key role in the interaction between the host and the microbiota is played by Paneth cell, which is able to synthesize and secrete proteins and antimicrobial peptides, such as α/β defensins, cathelicidin, 14 β-glycosidases, C-type lectins, and ribonuclease, in response to various stimuli. Recent studies found probiotics able to preserve intestinal homeostasis by downmodulating the immune response and inducing the development of T regulatory cells. Specific probiotic strain, as well as probiotic-driven metabolic products called "postbiotics," has been recently recognized and it is able to influence innate immunity. New therapeutic approaches based on probiotics are now available, and further treatments based on postbiotics will come in the future.

  15. Innate immunity in resistance to HIV infection.

    Science.gov (United States)

    Biasin, Mara; Clerici, Mario; Piacentini, Luca

    2010-11-01

    Resistance to human immunodeficiency virus (HIV) infection in subjects who do not seroconvert despite multiple exposures to the virus and to the progression to AIDS in HIV‐infected individuals depends on multiple factors involving both the innate and the adaptive immune system. The contribution of natural immunity in preventing HIV infection has so far received little attention, but many recently published articles suggest a key role for Toll‐like receptors, natural killer cells, interleukin‐22, acute‐phase amyloid A protein, and APOBEC3G in conferring resistance to HIV infection. The study of these factors will shed light on HIV pathogenesis and contribute to the development of new therapeutic approaches to this elusive disease.

  16. Innate intersubjectivity: newborns' sensitivity to communication disturbance.

    Science.gov (United States)

    Nagy, Emese

    2008-11-01

    In most of our social life we communicate and relate to others. Successful interpersonal relating is crucial to physical and mental well-being and growth. This study, using the still-face paradigm, demonstrates that even human neonates (n = 90, 3-96 hr after birth) adjust their behavior according to the social responsiveness of their interaction partner. If the interaction partner becomes unresponsive, newborns will also change their behavior, decrease eye contact, and display signs of distress. Even after the interaction partner resumes responsiveness, the effects of the communication disturbance persist as a spillover. These results indicate that even newborn infants sensitively monitor the behavior of others and react as if they had innate expectations regarding rules of interpersonal interaction.

  17. Ocular Surface as Barrier of Innate Immunity

    Science.gov (United States)

    Bolaños-Jiménez, Rodrigo; Navas, Alejandro; López-Lizárraga, Erika Paulina; de Ribot, Francesc March; Peña, Alexandra; Graue-Hernández, Enrique O; Garfias, Yonathan

    2015-01-01

    Sight is one of the most important senses that human beings possess. The ocular system is a complex structure equipped with mechanisms that prevent or limit damage caused by physical, chemical, infectious and environmental factors. These mechanisms include a series of anatomical, cellular and humoral factors that have been a matter of study. The cornea is not only the most powerful and important lens of the optical system, but also, it has been involved in many other physiological and pathological processes apart from its refractive nature; the morphological and histological properties of the cornea have been thoroughly studied for the last fifty years; drawing attention in its molecular characteristics of immune response. This paper will review the anatomical and physiological aspects of the cornea, conjunctiva and lacrimal apparatus, as well as the innate immunity at the ocular surface. PMID:26161163

  18. MAP Kinase Cascades in Plant Innate Immunity

    Directory of Open Access Journals (Sweden)

    Magnus Wohlfahrt Rasmussen

    2012-07-01

    Full Text Available Plant mitogen-activated protein kinase (MAPK cascades generally transduce extracellular stimuli into cellular responses. These stimuli include the perception of pathogen-associated molecular patterns (PAMPs by host transmembrane pattern recognition receptors (PRRs which trigger MAPK-dependent innate immune responses. In the model Arabidopsis, molecular genetic evidence implicates a number of MAPK cascade components in PAMP signaling, and in responses to immunity-related phytohormones such as ethylene, jasmonate and salicylate. In a few cases, cascade components have been directly linked to the transcription of target genes or to the regulation of phytohormone synthesis. Thus MAPKs are obvious targets for bacterial effector proteins and are likely guardees of resistance (R proteins, which mediate defense signaling in response to the action of effectors, or effector-triggered immunity (ETI. This mini-review discusses recent progress in this field with a focus on the Arabidopsis MAPKs MPK3, 4, 6 and 11 in their apparent pathways.

  19. Natural innate and adaptive immunity to cancer.

    Science.gov (United States)

    Vesely, Matthew D; Kershaw, Michael H; Schreiber, Robert D; Smyth, Mark J

    2011-01-01

    The immune system can identify and destroy nascent tumor cells in a process termed cancer immunosurveillance, which functions as an important defense against cancer. Recently, data obtained from numerous investigations in mouse models of cancer and in humans with cancer offer compelling evidence that particular innate and adaptive immune cell types, effector molecules, and pathways can sometimes collectively function as extrinsic tumor-suppressor mechanisms. However, the immune system can also promote tumor progression. Together, the dual host-protective and tumor-promoting actions of immunity are referred to as cancer immunoediting. In this review, we discuss the current experimental and human clinical data supporting a cancer immunoediting process that provide the fundamental basis for further study of immunity to cancer and for the rational design of immunotherapies against cancer.

  20. Innate immunity in Drosophila: Pathogens and pathways

    Institute of Scientific and Technical Information of China (English)

    Shubha Govind

    2008-01-01

    Following in the footsteps of traditional developmental genetics, research over the last 15 years has shown that innate immunity against bacteria and fungi is governed largely by two NF-κB signal transduction pathways, Toll and IMD. Antiviral immunity appears to stem from RNA interference, whereas resistance against parasitoids is conferred by Toll signaling. The identification of these post-transcriptional regulatory mechanisms and the annotation of most Drosophila immunity genes have derived from functional genomic studies using "model" pathogens, intact animals and cell lines. The D. melanogaster host has thus provided the core information that can be used to study responses to natural microbial and metazoan pathogens as they become identified, as well as to test ideas of selection and evolutionary change. These analyses are of general importance to understanding mechanisms of other insect host-pathogen interactions and determinants of variation in host resistance.

  1. Defensins: natural component of human innate immunity.

    Science.gov (United States)

    Jarczak, Justyna; Kościuczuk, Ewa M; Lisowski, Paweł; Strzałkowska, Nina; Jóźwik, Artur; Horbańczuk, Jarosław; Krzyżewski, Józef; Zwierzchowski, Lech; Bagnicka, Emilia

    2013-09-01

    The widespread use of antibiotics has contributed to a huge increase in the number of resistant bacteria. New classes of drugs are therefore being developed of which defensins are a potential source. Defensins are a group of antimicrobial peptides found in different living organisms, involved in the first line of defense in their innate immune response against pathogens. This review summarizes the results of studies of this family of human antimicrobial peptides (AMPs). There is a special emphasis on describing the entire group and individual peptides, history of their discovery, their functions and expression sites. The results of the recent studies on the use of the biologically active peptides in human medicine are also presented. The pharmaceutical potential of human defensins cannot be ignored, especially considering their strong antimicrobial activity and properties such as low molecular weight, reduced immunogenicity, broad activity spectrum and resistance to proteolysis, but there are still many challenges and questions regarding the possibilities of their practical application.

  2. Innate immune defences in the human endometrium

    Directory of Open Access Journals (Sweden)

    Kelly Rodney W

    2003-11-01

    Full Text Available Abstract The human endometrium is an important site of innate immune defence, giving protection against uterine infection. Such protection is critical to successful implantation and pregnancy. Infection is a major cause of preterm birth and can also cause infertility and ectopic pregnancy. Natural anti-microbial peptides are key mediators of the innate immune system. These peptides, between them, have anti-bacterial, anti-fungal and anti-viral activity and are expressed at epithelial surfaces throughout the female genital tract. Two families of natural anti-microbials, the defensins and the whey acidic protein (WAP motif proteins, appear to be prominent in endometrium. The human endometrial epithelium expresses beta-defensins 1–4 and the WAP motif protein, secretory leukocyte protease inhibitor. Each beta-defensin has a different expression profile in relation to the stage of the menstrual cycle, providing potential protection throughout the cycle. Secretory leukocyte protease inhibitor is expressed during the secretory phase of the cycle and has a range of possible roles including anti-protease and anti-microbial activity as well as having effects on epithelial cell growth. The leukocyte populations in the endometrium are also a source of anti-microbial production. Neutrophils are a particularly rich source of alpha-defensins, lactoferrin, lysozyme and the WAP motif protein, elafin. The presence of neutrophils during menstruation will enhance anti-microbial protection at a time when the epithelial barrier is disrupted. Several other anti-microbials including the natural killer cell product, granulysin, are likely to have a role in endometrium. The sequential production of natural anti-microbial peptides by the endometrium throughout the menstrual cycle and at other sites in the female genital tract will offer protection from many pathogens, including those that are sexually transmitted.

  3. Innate immune response development in nestling tree swallows

    Science.gov (United States)

    Stambaugh, T.; Houdek, B.J.; Lombardo, M.P.; Thorpe, P.A.; Caldwell, Hahn D.

    2011-01-01

    We tracked the development of innate immunity in nestling Tree Swallows (Tachycineta bicolor) and compared it to that of adults using blood drawn from nestlings during days 6, 12, and 18 of the ???20-day nestling period and from adults. Innate immunity was characterized using an in vitro assay of the ability of whole blood to kill Escherichia coli. The ability of whole blood to kill E. coli increased as nestlings matured. Neither this component of innate immunity nor right wing chord length on day18 were as developed as in adults indicating that development of the innate immune system and growth both continued after fledging. Narrow sense heritability analyses suggest that females with strong immune responses produced nestlings with strong immune responses. These data suggest nestling Tree Swallows allocated sufficient energy to support rapid growth to enable fledging by day 18, but that further development of innate immunity occurred post-fledging. ?? 2011 by the Wilson Ornithological Society.

  4. Innate immune pattern recognition: a cell biological perspective.

    Science.gov (United States)

    Brubaker, Sky W; Bonham, Kevin S; Zanoni, Ivan; Kagan, Jonathan C

    2015-01-01

    Receptors of the innate immune system detect conserved determinants of microbial and viral origin. Activation of these receptors initiates signaling events that culminate in an effective immune response. Recently, the view that innate immune signaling events rely on and operate within a complex cellular infrastructure has become an important framework for understanding the regulation of innate immunity. Compartmentalization within this infrastructure provides the cell with the ability to assign spatial information to microbial detection and regulate immune responses. Several cell biological processes play a role in the regulation of innate signaling responses; at the same time, innate signaling can engage cellular processes as a form of defense or to promote immunological memory. In this review, we highlight these aspects of cell biology in pattern-recognition receptor signaling by focusing on signals that originate from the cell surface, from endosomal compartments, and from within the cytosol.

  5. Cancer Immunosurveillance by Tissue-Resident Innate Lymphoid Cells and Innate-like T Cells.

    Science.gov (United States)

    Dadi, Saïda; Chhangawala, Sagar; Whitlock, Benjamin M; Franklin, Ruth A; Luo, Chong T; Oh, Soyoung A; Toure, Ahmed; Pritykin, Yuri; Huse, Morgan; Leslie, Christina S; Li, Ming O

    2016-01-28

    Malignancy can be suppressed by the immune system in a process termed immunosurveillance. However, to what extent immunosurveillance occurs in spontaneous cancers and the composition of participating cell types remains obscure. Here, we show that cell transformation triggers a tissue-resident lymphocyte response in oncogene-induced murine cancer models. Non-circulating cytotoxic lymphocytes, derived from innate, T cell receptor (TCR)αβ, and TCRγδ lineages, expand in early tumors. Characterized by high expression of NK1.1, CD49a, and CD103, these cells share a gene-expression signature distinct from those of conventional NK cells, T cells, and invariant NKT cells. Generation of these lymphocytes is dependent on the cytokine IL-15, but not the transcription factor Nfil3 that is required for the differentiation of tumor-infiltrating NK cells, and IL-15 deficiency, but not Nfil3 deficiency, results in accelerated tumor growth. These findings reveal a tumor-elicited immunosurveillance mechanism that engages unconventional type-1-like innate lymphoid cells and type 1 innate-like T cells.

  6. The Enemy Within: Innate Surveillance-mediated Cell Death, the common mechanism of neurodegenerative disease

    Directory of Open Access Journals (Sweden)

    Robert Ian Richards

    2016-05-01

    Full Text Available Neurodegenerative diseases comprise an array of progressive neurological disorders all characterized by the selective death of neurons in the central nervous system. Although rare (familial and common (sporadic forms can occur for the same disease, it is unclear whether this reflects several distinct pathogenic pathways or the convergence of different causes into a common form of nerve cell death. Remarkably, neurodegenerative diseases are increasingly found to be accompanied by activation of the innate immune surveillance system normally associated with pathogen recognition and response. Innate surveillance is the cell’s quality control system for the purpose of detecting such danger signals and responding in an appropriate manner. Innate surveillance is an ‘intelligent system’, in that the manner of response is relevant to the magnitude and duration of the threat. If possible, the threat is dealt with within the cell in which it is detected, by degrading the danger signal(s and restoring homeostasis. If this is not successful then an inflammatory response is instigated that is aimed at restricting the spread of the threat by elevating degradative pathways, sensitizing neighboring cells, and recruiting specialized cell types to the site. If the danger signal persists, then the ultimate response can include not only the programmed cell death of the original cell, but the contents of this dead cell can also bring about the death of adjacent sensitized cells. These responses are clearly aimed at destroying the ability of the detected pathogen to propagate and spread. Innate surveillance comprises intracellular, extracellular, non-cell autonomous and systemic processes. Recent studies have revealed how multiple steps in these processes involve proteins that, through their mutation, have been linked to many familial forms of neurodegenerative disease. This suggests that individuals harboring these mutations may have an amplified response to

  7. Interleukin-21 receptor signalling is important for innate immune protection against HSV-2 infections.

    Directory of Open Access Journals (Sweden)

    Sine K Kratholm

    Full Text Available Interleukin (IL -21 is produced by Natural Killer T (NKT cells and CD4(+ T cells and is produced in response to virus infections, where IL-21 has been shown to be essential in adaptive immune responses. Cells from the innate immune system such as Natural Killer (NK cells and macrophages are also important in immune protection against virus. These cells express the IL-21 receptor (IL-21R and respond to IL-21 with increased cytotoxicity and cytokine production. Currently, however it is not known whether IL-21 plays a significant role in innate immune responses to virus infections. The purpose of this study was to investigate the role of IL-21 and IL-21R in the innate immune response to a virus infection. We used C57BL/6 wild type (WT and IL-21R knock out (KO mice in a murine vaginal Herpes Simplex Virus type 2 (HSV-2 infection model to show that IL-21 - IL-21R signalling is indeed important in innate immune responses against HSV-2. We found that the IL-21R was expressed in the vaginal epithelium in uninfected (u.i WT mice, and expression increased early after HSV-2 infection. IL-21R KO mice exhibited increased vaginal viral titers on day 2 and 3 post infection (p.i. and subsequently developed significantly higher disease scores and a lower survival rate compared to WT mice. In addition, WT mice infected with HSV-2 receiving intra-vaginal pre-treatment with murine recombinant IL-21 (mIL-21 had decreased vaginal viral titers on day 2 p.i., significantly lower disease scores, and a higher survival rate compared to infected untreated WT controls. Collectively our data demonstrate the novel finding that the IL-21R plays a critical role in regulating innate immune responses against HSV-2 infection.

  8. Emerging complexity and new roles for the RIG-I-like receptors in innate antiviral immunity

    Institute of Scientific and Technical Information of China (English)

    John; S.Errett; Michael; Gale; Jr.

    2015-01-01

    Innate immunity is critical for the control of virus infection and operates to restrict viral susceptibility and direct antiviral immunity for protection from acute or chronic viral-associated diseases including cancer. RIG-I like receptors(RLRs) are cytosolic RNA helicases that function as pathogen recognition receptors to detect RNA pathogen associated molecular patterns(PAMPs) of virus infection. The RLRs include RIG-I, MDA5, and LGP2. They function to recognize and bind to PAMP motifs within viral RNA in a process that directs the RLR to trigger downstream signaling cascades that induce innate immunity that controls viral replication and spread. Products of RLR signaling also serve to modulate the adaptive immune response to infection. Recent studies have additionally connected RLRs to signaling cascades that impart inflammatory and apoptotic responses to virus infection. Viral evasion of RLR signaling supports viral outgrowth and pathogenesis, including the onset of viral-associated cancer.

  9. New Players in the Same Old Game: Disturbance of Group 2 Innate Lymphoid Cells in HIV-1 and Mycobacterium leprae Co-infected Patients

    Science.gov (United States)

    Papotto, Pedro Henrique; Maeda, Solange; Tomimori, Jane; Xavier, Marília Brasil; Rizzo, Luiz Vicente; Kallas, Esper Georges; Carvalho, Karina Inácio

    2015-01-01

    Abstract Leprosy control is achieved through a fine-tuning of TH1 and TH2 immune response pattern balance. Given the increasing epidemiological overlay of HIV and M. leprae infections, immune response in co-infected patients consists in an important contemporary issue. Here we describe for the first time the innate lymphoid cells compartment in peripheral blood of leprosy and HIV/M. leprae co-infected patients, and show that co-infection increases group 2 innate lymphoid whilst decreasing group 1 innate lymphoid cells frequencies and function. PMID:26335023

  10. Enhancing Cancer Immunotherapy Via Activation of Innate Immunity.

    Science.gov (United States)

    Goldberg, Jacob L; Sondel, Paul M

    2015-08-01

    Given recent technological advances and advances in our understanding of cancer, immunotherapy of cancer is being used with clear clinical benefit. The immunosuppression accompanying cancer itself, as well as with current cancer treatment with radiation or chemotherapy, impairs adaptive immune effectors to a greater extent than innate effector cells. In addition to being less suppressed, innate immune cells are capable of being enhanced via immune-stimulatory regimens. Most strategies being investigated to promote innate immune responses against cancer do not require complex, patient-specific, ex vivo cellular or molecular creation of therapeutic agents; thus they can, generally, be used as "off the shelf" therapeutics that could be administered by most cancer clinics. Successful applications of innate immunotherapy in the clinic have effectively targeted components of the innate immune response. Preclinical data demonstrate how initiation of innate immune responses can lead to subsequent adaptive long-term cancer immunity. We hypothesize that integration of innate immune activation strategies into combination therapies for cancer treatment will lead to more effective and long-term clinical benefit.

  11. SNP discovery and molecular evolution in Anopheles gambiae, with special emphasis on innate immune system

    OpenAIRE

    Koutsos Anastasios; Morlais Isabelle; Simard Frédéric; Krishnakumar Sujatha; Cohuet Anna; Fontenille Didier; Mindrinos Michael; Kafatos Fotis C

    2008-01-01

    Abstract Background Anopheles innate immunity affects Plasmodium development and is a potential target of innovative malaria control strategies. The extent and distribution of nucleotide diversity in immunity genes might provide insights into the evolutionary forces that condition pathogen-vector interactions. The discovery of polymorphisms is an essential step towards association studies of susceptibility to infection. Results We sequenced coding fragments of 72 immune related genes in natur...

  12. Role of Natural Killer Cells in Innate Protection Against Lethal Ebola Virus Infection

    Science.gov (United States)

    2007-11-02

    acute, progressive hemorrhagic fever with mortality rates of up to 90% (1, 2). The key initiators of innate immunity, including monocytes, macrophages...particle vaccine (VRP) expressing Ebola VP40 or Lassa N (a gift of M.K. Hart, United States Army Medical Re- search Institute of Infectious Diseases...with VRP-encoding Ebola VP40 blocked IFN- se- cretion induced by the VLPs, whereas control sera from mice vaccinated with a VRP encoding the Lassa virus

  13. An innate antiviral pathway acting before interferons at epithelial surfaces

    DEFF Research Database (Denmark)

    Iversen, Marie B; Reinert, Line S; Thomsen, Martin K;

    2016-01-01

    Mucosal surfaces are exposed to environmental substances and represent a major portal of entry for microorganisms. The innate immune system is responsible for early defense against infections and it is believed that the interferons (IFNs) constitute the first line of defense against viruses. Here...... we identify an innate antiviral pathway that works at epithelial surfaces before the IFNs. The pathway is activated independently of known innate sensors of viral infections through a mechanism dependent on viral O-linked glycans, which induce CXCR3 chemokines and stimulate antiviral activity...

  14. The Hypothesis of the Human iNKT/Innate CD8(+) T-Cell Axis Applied to Cancer: Evidence for a Deficiency in Chronic Myeloid Leukemia

    Science.gov (United States)

    Jacomet, Florence; Cayssials, Emilie; Barbarin, Alice; Desmier, Deborah; Basbous, Sara; Lefèvre, Lucie; Levescot, Anaïs; Robin, Aurélie; Piccirilli, Nathalie; Giraud, Christine; Guilhot, François; Roy, Lydia; Herbelin, André; Gombert, Jean-Marc

    2017-01-01

    that are restored upon remission, thereby suggesting their possible contribution to disease control. More generally, our study strongly supports the existence of an innate iNKT/innate CD8(+) T-cell axis in humans and reveals its potential contribution to the restoration of tumor immune surveillance. PMID:28138330

  15. Interferon-inducible GTPases in cell autonomous and innate immunity.

    Science.gov (United States)

    Meunier, Etienne; Broz, Petr

    2016-02-01

    Detection and clearance of invading pathogens requires a coordinated response of the adaptive and innate immune system. Host cell, however, also features different mechanisms that restrict pathogen replication in a cell-intrinsic manner, collectively referred to as cell-autonomous immunity. In immune cells, the ability to unleash those mechanisms strongly depends on the activation state of the cell, which is controlled by cytokines or the detection of pathogen-associated molecular patterns by pattern-recognition receptors. The interferon (IFN) class of cytokines is one of the strongest inducers of antimicrobial effector mechanisms and acts against viral, bacterial and parasitic intracellular pathogens. This has been linked to the upregulation of several hundreds of IFN-stimulated genes, among them the so-called IFN-inducible GTPases. Two subfamilies of IFN-inducible GTPases, the immunity-related GTPases (IRGs) and the guanylate-binding proteins (GBPs), have gained attention due to their exceptional ability to specifically target intracellular vacuolar pathogens and restrict their replication by destroying their vacuolar compartment. Their repertoire has recently been expanded to the regulation of inflammasome complexes, which are cytosolic multi-protein complexes that control an inflammatory cell death called pyroptosis and the release of cytokines like interleukin-1β and interleukin-18. Here we discuss recent advances in understanding the function, the targeting and regulation of IRG and GBP proteins during microbial infections.

  16. Innate antioxidant activity of some traditional formulations

    Directory of Open Access Journals (Sweden)

    Gunpreet Kaur

    2017-01-01

    Full Text Available Herbal medicine is the oldest form of healthcare known to humanity. Recently, much attention is being directed toward the use of antioxidants. There are some very commonly used Ayurvedic preparations that might have inbuilt antioxidant activity, and their therapeutic potential can be partially attributable to its antioxidant activity. Hence, it was proposed to find out antioxidant activity of such common formulations. Estimation of innate antioxidant activity of some commonly used traditional formulations. In this study, five formulations were evaluated for antioxidant activity in comparison to gallic acid (standard using the in vitro reducing power method and superoxide radical scavenging activity by dimethyl sulfoxide method followed by calculation of scavenging activity and inhibitory concentration 50% (IC 50 . The result shows that Ayurvedic drug extracts possess good reducing power and antioxidant activity. Laxmivilas Ras shows higher reducing power ranging from 117 ± 0.021 to 0.176 ± 0.012 as compared to other extracts. The drug extracts were also found to be an efficient scavenger of superoxide radical. The IC 50 values for Laxmivilas Ras, Agnitundi Vati, Ajmodadi Churna, Tribhuvankirti Rasa, gallic acid (standard and Sitopladi Churna, were found to be 50.07, 98.41, 105.13, 116.39, 176.80, and 200.17, respectively. From this study, it can be concluded that the above Ayurvedic formulations possess antioxidant property. However, work could be initiated on the isolation and identification of these antioxidant components.

  17. Innate lymphoid cells in secondary lymphoid organs.

    Science.gov (United States)

    Bar-Ephraïm, Yotam E; Mebius, Reina E

    2016-05-01

    The family of innate lymphoid cells (ILCs) has attracted attention in recent years as its members are important regulators of immunity, while they can also cause pathology. In both mouse and man, ILCs were initially discovered in developing lymph nodes as lymphoid tissue inducer (LTi) cells. These cells form the prototypic members of the ILC family and play a central role in the formation of secondary lymphoid organs (SLOs). In the absence of LTi cells, lymph nodes (LN) and Peyer's Patches (PP) fail to form in mice, although the splenic white pulp can develop normally. Besides LTi cells, the ILC family encompasses helper-like ILCs with functional distinctions as seen by T-helper cells, as well as cytotoxic natural killer (NK) cells. ILCs are still present in adult SLOs where they have been shown to play a role in lymphoid tissue regeneration. Furthermore, ILCs were implicated to interact with adaptive lymphocytes and influence the adaptive immune response. Here, we review the recent literature on the role of ILCs in secondary lymphoid tissue from the formation of SLOs to mature SLOs in adults, during homeostasis and pathology.

  18. Gliadin Peptides as Triggers of the Proliferative and Stress/Innate Immune Response of the Celiac Small Intestinal Mucosa

    Directory of Open Access Journals (Sweden)

    Maria Vittoria Barone

    2014-11-01

    Full Text Available Celiac disease (CD is a frequent inflammatory intestinal disease, with a genetic background, caused by gliadin-containing food. Undigested gliadin peptides induce innate and adaptive T cell-mediated immune responses. The major mediator of the stress and innate immune response to gliadin peptides (i.e., peptide 31–43, P31–43 is the cytokine interleukin-15 (IL-15. The role of epithelial growth factor (EGF as a mediator of enterocyte proliferation and the innate immune response has been described. In this paper, we review the most recent literature on the mechanisms responsible for triggering the up-regulation of these mediators in CD by gliadin peptides. We will discuss the role of P31–43 in enterocyte proliferation, structural changes and the innate immune response in CD mucosa in cooperation with EGF and IL-15, and the mechanism of up-regulation of these mediators related to vesicular trafficking. We will also review the literature that focuses on constitutive alterations of the structure, signalling/proliferation and stress/innate immunity pathways of CD cells. Finally, we will discuss how these pathways can be triggered by gliadin peptide P31–43 in controls, mimicking the celiac cellular phenotype.

  19. Expression of innate immune genes, proteins and microRNAs in lung tissue of pigs infected experimentally with influenza virus (H1N2)

    DEFF Research Database (Denmark)

    Skovgaard, Kerstin; Cirera, Susanna; Vasby, Ditte;

    2013-01-01

    This study aimed at providing a better understanding of the involvement of innate immune factors, including miRNA, in the local host response to influenza virus infection. Twenty pigs were challenged by influenza A virus subtype H1N2. Expression of microRNA (miRNA), mRNA and proteins were...... results suggest that, in addition to a wide range of innate immune factors, miRNAs may also be involved in controlling acute influenza infection in pigs....

  20. Neural regulation of innate and adaptive immunity in the gut

    NARCIS (Netherlands)

    Dhawan, S.

    2017-01-01

    This thesis investigates the role of neurotransmitters acetylcholine (ACh) and norepinephrine (NE), in modulating the innate and adaptive immune function in the intestine, during physiological and pathophysiological conditions. Furthermore, this thesis attempts to advance our current understanding o

  1. The Innate Immune-Related Genes in Catfish

    Directory of Open Access Journals (Sweden)

    Weidong Liu

    2012-11-01

    Full Text Available Catfish is one of the most important aquaculture species in America (as well as in Asia and Africa. In recent years, the production of catfish has suffered massive financial losses due to pathogen spread and breakouts. Innate immunity plays a crucial role in increasing resistance to pathogenic organisms and has generated increasing interest in the past few years. This review summarizes the current understanding of innate immune-related genes in catfish, including pattern recognition receptors, antimicrobial peptides, complements, lectins, cytokines, transferrin and gene expression profiling using microarrays and next generation sequencing technologies. This review will benefit the understanding of innate immune system in catfish and further efforts in studying the innate immune-related genes in fish.

  2. Regulation of plant innate immunity by three proteins in a complex conserved across the plant and animal kingdoms.

    Science.gov (United States)

    Palma, Kristoffer; Zhao, Qingguo; Cheng, Yu Ti; Bi, Dongling; Monaghan, Jacqueline; Cheng, Wei; Zhang, Yuelin; Li, Xin

    2007-06-15

    Innate immunity against pathogen infection is an evolutionarily conserved process among multicellular organisms. Arabidopsis SNC1 encodes a Resistance protein that combines attributes of multiple mammalian pattern recognition receptors. Utilizing snc1 as an autoimmune model, we identified a discrete protein complex containing at least three members--MOS4 (Modifier Of snc1, 4), AtCDC5, and PRL1 (Pleiotropic Regulatory Locus 1)--that are all essential for plant innate immunity. AtCDC5 has DNA-binding activity, suggesting that this complex probably regulates defense responses through transcriptional control. Since the complex components along with their interactions are highly conserved from fission yeast to Arabidopsis and human, they may also have a yet-to-be-identified function in mammalian innate immunity.

  3. Characterization of gene expression regulated by human OTK18 using Drosophila melanogaster as a model system for innate immunity

    Indian Academy of Sciences (India)

    Cole R. Spresser; Sarah E. Marshall; Kimberly A. Carlson

    2008-08-01

    OTK18 is a human transcriptional suppressor implicated in the regulation of human immunodeficiency virus type-one infection of mononuclear phagocytes. It is ubiquitously expressed in all normal tissues, but its normal homeostatic function is yet to be characterized. One hypothesis is that OTK18 aids in the regulation of the innate immune system. To test this hypothesis, cDNA microarray analysis was performed on the total RNA extracted from Drosophila melanogaster embryonic Schneider 2 (S2) cells transfected with either pEGFP-OTK18 (enhanced green fluorescent protein) or empty vector controls (pEGFP-N3) for 6, 12 and 24 h. cDNA microarray analysis revealed differential expression of genes known to be important in regulation of Drosophila innate immunity. The expression levels of two genes, Metchnikowin and CG16708 were verified by quantitative real-time reverse transcription PCR. These results suggest a role for OTK18 in innate immunity.

  4. Integrating innate and adaptive immune cells: Mast cells as crossroads between regulatory and effector B and T cells.

    Science.gov (United States)

    Mekori, Yoseph A; Hershko, Alon Y; Frossi, Barbara; Mion, Francesca; Pucillo, Carlo E

    2016-05-05

    A diversity of immune mechanisms have evolved to protect normal tissues from infection, but from immune damage too. Innate cells, as well as adaptive cells, are critical contributors to the correct development of the immune response and of tissue homeostasis. There is a dynamic "cross-talk" between the innate and adaptive immunomodulatory mechanisms for an integrated control of immune damage as well as the development of the immune response. Mast cells have shown a great plasticity, modifying their behavior at different stages of immune response through interaction with effector and regulatory populations of adaptive immunity. Understanding the interplays among T effectors, regulatory T cells, B cells and regulatory B cells with mast cells will be critical in the future to assist in the development of therapeutic strategies to enhance and synergize physiological immune-modulator and -suppressor elements in the innate and adaptive immune system.

  5. Toward immunogenetic studies of amphibian chytridiomycosis: Linking innate and acquired immunity

    Science.gov (United States)

    Richmond, J.Q.; Savage, Anna E.; Zamudio, Kelly R.; Rosenblum, E.B.

    2009-01-01

    Recent declines in amphibian diversity and abundance have contributed significantly to the global loss of biodiversity. The fungal disease chytridiomycosis is widely considered to be a primary cause of these declines, yet the critical question of why amphibian species differ in susceptibility remains unanswered. Considerable evidence links environmental conditions and interspecific variability of the innate immune system to differential infection responses, but other sources of individual, population, or species-typical variation may also be important. In this article we review the preliminary evidence supporting a role for acquired immune defenses against chytridiomycosis, and advocate for targeted investigation of genes controlling acquired responses, as well as those that functionally bridge the innate and acquired immune systems. Immunogenetic data promise to answer key questions about chytridiomycosis susceptibility and host-pathogen coevolution, and will draw much needed attention to the importance of considering evolutionary processes in amphibian conservation management and practice. ?? 2009 by American Institute of Biological Sciences.

  6. Innate immune evasion by hepatitis C virus and West Nile virus

    Science.gov (United States)

    Keller, Brian C; Johnson, Cynthia L.; Erickson, Andrea Kaup; Gale, Michael

    2009-01-01

    Antiviral immunity in mammals involves several levels of surveillance and effector actions by host factors to detect viral pathogens, trigger α/β interferon production, and to mediate innate defenses within infected cells. Our studies have focused on understanding how these processes are regulated during infection by hepatitis C virus (HCV) and West Nile virus (WNV). Both viruses are members of the Flaviviridae and are human pathogens but they each mediate a very different disease and course of infection. Our results demonstrate common and unique innate immune interactions of each virus that govern antiviral immunity, and demonstrate the central role of α/β interferon immune defenses in controlling the outcome of infection. PMID:17702639

  7. Arabinogalactan Proteins from Baobab and Acacia Seeds Influence Innate Immunity of Human Keratinocytes in vitro.

    Science.gov (United States)

    Zahid, Abderrakib; Despres, Julie; Benard, Magalie; Nguema-Ona, Eric; Leprince, Jerome; Vaudry, David; Rihouey, Christophe; Vicré-Gibouin, Maité; Driouich, Azeddine; Follet-Gueye, Marie-Laure

    2016-10-13

    Plant derived arabinogalactan proteins (AGP) were repeatedly confirmed as immunologically as well as dermatologically active compounds. However little is currently known regarding their potential activity towards skin innate immunity. Here, we extracted and purified AGP from acacia (Acacia senegal) and baobab (Adansonia digitata) seeds to investigate their biological effects on the HaCaT keratinocyte cell line in an in vitro system. While AGP from both sources did not exhibit any cytotoxic effect, AGP from acacia seeds enhanced cell viability Moreover, real-time quantitative reverse transcription-polymerase chain reaction (qRT-PCR) analysis showed that AGP extracted from both species induced a substantial overexpression of hBD-2, TLR-5, and IL1-α genes. These data suggest that plant AGP, already known to control plant defensive processes, could also modulate skin innate immune responses. This article is protected by copyright. All rights reserved.

  8. Xenobiotic Receptor-Mediated Regulation of Intestinal Barrier Function and Innate Immunity

    Directory of Open Access Journals (Sweden)

    Harmit S. Ranhotra

    2016-07-01

    Full Text Available The molecular basis for the regulation of the intestinal barrier is a very fertile research area. A growing body of knowledge supports the targeting of various components of intestinal barrier function as means to treat a variety of diseases, including the inflammatory bowel diseases. Herein, we will summarize the current state of knowledge of key xenobiotic receptor regulators of barrier function, highlighting recent advances, such that the field and its future are succinctly reviewed. We posit that these receptors confer an additional dimension of host-microbe interaction in the gut, by sensing and responding to metabolites released from the symbiotic microbiota, in innate immunity and also in host drug metabolism. The scientific evidence for involvement of the receptors and its molecular basis for the control of barrier function and innate immunity regulation would serve as a rationale towards development of non-toxic probes and ligands as drugs.

  9. Mycobacteria and innate cells: critical encounter for immunogenicity

    Indian Academy of Sciences (India)

    Angelo Martino

    2008-03-01

    Protective immunity against mycobacterial infections such as Mycobacterium tuberculosis is mediated by interactions between specific T cells and activated macrophages. To date, many aspects of mycobacterial immunity have shown that innate cells are the key elements that substantially influence the subsequent adaptive host response. During the early phases of infection, phagocytic cells and innate lymphocyte subsets play a pivotal role. Here we summarize the findings of recent investigations on macrophages, dendritic cells and T lymphocytes in the response to mycobacteria.

  10. Innate immune functions of microglia isolated from human glioma patients

    Directory of Open Access Journals (Sweden)

    Grimm Elizabeth

    2006-03-01

    Full Text Available Abstract Background Innate immunity is considered the first line of host defense and microglia presumably play a critical role in mediating potent innate immune responses to traumatic and infectious challenges in the human brain. Fundamental impairments of the adaptive immune system in glioma patients have been investigated; however, it is unknown whether microglia are capable of innate immunity and subsequent adaptive anti-tumor immune responses within the immunosuppressive tumor micro-environment of human glioma patients. We therefore undertook a novel characterization of the innate immune phenotype and function of freshly isolated human glioma-infiltrating microglia (GIM. Methods GIM were isolated by sequential Percoll purification from patient tumors immediately after surgical resection. Flow cytometry, phagocytosis and tumor cytotoxicity assays were used to analyze the phenotype and function of these cells. Results GIM expressed significant levels of Toll-like receptors (TLRs, however they do not secrete any of the cytokines (IL-1β, IL-6, TNF-α critical in developing effective innate immune responses. Similar to innate macrophage functions, GIM can mediate phagocytosis and non-MHC restricted cytotoxicity. However, they were statistically less able to mediate tumor cytotoxicity compared to microglia isolated from normal brain. In addition, the expression of Fas ligand (FasL was low to absent, indicating that apoptosis of the incoming lymphocyte population may not be a predominant mode of immunosuppression by microglia. Conclusion We show for the first time that despite the immunosuppressive environment of human gliomas, GIM are capable of innate immune responses such as phagocytosis, cytotoxicity and TLR expression but yet are not competent in secreting key cytokines. Further understanding of these innate immune functions could play a critical role in understanding and developing effective immunotherapies to malignant human gliomas.

  11. Innate immune targets of hepatitis B virus infection.

    Science.gov (United States)

    Zou, Zhi-Qiang; Wang, Li; Wang, Kai; Yu, Ji-Guang

    2016-06-18

    Approximately 400 million people are chronically infected with hepatitis B virus (HBV) globally despite the widespread immunization of HBV vaccine and the development of antiviral therapies. The immunopathogenesis of HBV infection is initiated and driven by complexed interactions between the host immune system and the virus. Host immune responses to viral particles and proteins are regarded as the main determinants of viral clearance or persistent infection and hepatocyte injury. Innate immune system is the first defending line of host preventing from virus invasion. It is acknowledged that HBV has developed active tactics to escape innate immune recognition or actively interfere with innate immune signaling pathways and induce immunosuppression, which favor their replication. HBV reduces the expression of pattern-recognition receptors in the innate immune cells in humans. Also, HBV may interrupt different parts of antiviral signaling pathways, leading to the reduced production of antiviral cytokines such as interferons that contribute to HBV immunopathogenesis. A full comprehension of the mechanisms as to how HBV inactivates various elements of the innate immune response to initiate and maintain a persistent infection can be helpful in designing new immunotherapeutic methods for preventing and eradicating the virus. In this review, we aimed to summarize different branches the innate immune targeted by HBV infection. The review paper provides evidence that multiple components of immune responses should be activated in combination with antiviral therapy to disrupt the tolerance to HBV for eliminating HBV infection.

  12. Innate immune targets of hepatitis B virus infection

    Institute of Scientific and Technical Information of China (English)

    Zhi-Qiang; Zou; Li; Wang; Kai; Wang; Ji-Guang; Yu

    2016-01-01

    Approximately 400 million people are chronically infected with hepatitis B virus(HBV) globally despitethe widespread immunization of HBV vaccine and the development of antiviral therapies. The immunopathogenesis of HBV infection is initiated and driven by complexed interactions between the host immune system and the virus. Host immune responses to viral particles and proteins are regarded as the main determinants of viral clearance or persistent infection and hepatocyte injury. Innate immune system is the first defending line of host preventing from virus invasion. It is acknowledged that HBV has developed active tactics to escape innate immune recognition or actively interfere with innate immune signaling pathways and induce immunosuppression, which favor their replication. HBV reduces the expression of pattern-recognition receptors in the innate immune cells in humans. Also, HBV may interrupt different parts of antiviral signaling pathways, leading to the reduced production of antiviral cytokines such as interferons that contribute to HBV immunopathogenesis. A full comprehension of the mechanisms as to how HBV inactivates various elements of the innate immune response to initiate and maintain a persistent infection can be helpful in designing new immunotherapeutic methods for preventing and eradicating the virus. In this review, we aimed to summarize different branches the innate immune targeted by HBV infection. The review paper provides evidence that multiple components of immune responses should be activated in combination with antiviral therapy to disrupt the tolerance to HBV for eliminating HBV infection.

  13. Stress Hyperglycemia, Insulin Treatment, and Innate Immune Cells

    Directory of Open Access Journals (Sweden)

    Fangming Xiu

    2014-01-01

    Full Text Available Hyperglycemia (HG and insulin resistance are the hallmarks of a profoundly altered metabolism in critical illness resulting from the release of cortisol, catecholamines, and cytokines, as well as glucagon and growth hormone. Recent studies have proposed a fundamental role of the immune system towards the development of insulin resistance in traumatic patients. A comprehensive review of published literatures on the effects of hyperglycemia and insulin on innate immunity in critical illness was conducted. This review explored the interaction between the innate immune system and trauma-induced hypermetabolism, while providing greater insight into unraveling the relationship between innate immune cells and hyperglycemia. Critical illness substantially disturbs glucose metabolism resulting in a state of hyperglycemia. Alterations in glucose and insulin regulation affect the immune function of cellular components comprising the innate immunity system. Innate immune system dysfunction via hyperglycemia is associated with a higher morbidity and mortality in critical illness. Along with others, we hypothesize that reduction in morbidity and mortality observed in patients receiving insulin treatment is partially due to its effect on the attenuation of the immune response. However, there still remains substantial controversy regarding moderate versus intensive insulin treatment. Future studies need to determine the integrated effects of HG and insulin on the regulation of innate immunity in order to provide more effective insulin treatment regimen for these patients.

  14. Estrogen receptors regulate innate immune cells and signaling pathways.

    Science.gov (United States)

    Kovats, Susan

    2015-04-01

    Humans show strong sex differences in immunity to infection and autoimmunity, suggesting sex hormones modulate immune responses. Indeed, receptors for estrogens (ERs) regulate cells and pathways in the innate and adaptive immune system, as well as immune cell development. ERs are ligand-dependent transcription factors that mediate long-range chromatin interactions and form complexes at gene regulatory elements, thus promoting epigenetic changes and transcription. ERs also participate in membrane-initiated steroid signaling to generate rapid responses. Estradiol and ER activity show profound dose- and context-dependent effects on innate immune signaling pathways and myeloid cell development. While estradiol most often promotes the production of type I interferon, innate pathways leading to pro-inflammatory cytokine production may be enhanced or dampened by ER activity. Regulation of innate immune cells and signaling by ERs may contribute to the reported sex differences in innate immune pathways. Here we review the recent literature and highlight several molecular mechanisms by which ERs regulate the development or functional responses of innate immune cells.

  15. Infectious Disease: Connecting Innate Immunity to Biocidal Polymers.

    Science.gov (United States)

    Gabriel, Gregory J; Som, Abhigyan; Madkour, Ahmad E; Eren, Tarik; Tew, Gregory N

    2007-08-01

    Infectious disease is a critically important global healthcare issue. In the U.S. alone there are 2 million new cases of hospital-acquired infections annually leading to 90,000 deaths and 5 billion dollars of added healthcare costs. Couple these numbers with the appearance of new antibiotic resistant bacterial strains and the increasing occurrences of community-type outbreaks, and clearly this is an important problem. Our review attempts to bridge the research areas of natural host defense peptides (HDPs), a component of the innate immune system, and biocidal cationic polymers. Recently discovered peptidomimetics and other synthetic mimics of HDPs, that can be short oligomers as well as polymeric macromolecules, provide a unique link between these two areas. An emerging class of these mimics are the facially amphiphilic polymers that aim to emulate the physicochemical properties of HDPs but take advantage of the synthetic ease of polymers. These mimics have been designed with antimicrobial activity and, importantly, selectivity that rivals natural HDPs. In addition to providing some perspective on HDPs, selective mimics, and biocidal polymers, focus is given to the arsenal of biophysical techniques available to study their mode of action and interactions with phospholipid membranes. The issue of lipid type is highlighted and the important role of negative curvature lipids is illustrated. Finally, materials applications (for instance, in the development of permanently antibacterial surfaces) are discussed as this is an important part of controlling the spread of infectious disease.

  16. Polyphasic innate immune responses to acute and chronic LCMV infection: Innate immunity to acute & chronic viral infection

    OpenAIRE

    Norris, Brian A; Uebelhoer, Luke S.; Nakaya, Helder I.; Price, Aryn A; Grakoui, Arash; Pulendran, Bali

    2013-01-01

    Resolution of acute and chronic viral infections requires activation of innate cells to initiate and maintain adaptive immune responses. Here we report that infection with acute Armstrong (ARM) or chronic Clone 13 (C13) strains of lymphocytic choriomeningitis virus (LCMV) led to two distinct phases of innate immune response. During the first 72hr of infection, dendritic cells upregulated activation markers, and stimulated anti-viral CD8+ T cells, independent of viral strain. Seven days after ...

  17. HIV-1 evades innate immune recognition through specific cofactor recruitment

    Science.gov (United States)

    Rasaiyaah, Jane; Tan, Choon Ping; Fletcher, Adam J.; Price, Amanda J.; Blondeau, Caroline; Hilditch, Laura; Jacques, David A.; Selwood, David L.; James, Leo C.; Noursadeghi, Mahdad; Towers, Greg J.

    2013-11-01

    Human immunodeficiency virus (HIV)-1 is able to replicate in primary human macrophages without stimulating innate immunity despite reverse transcription of genomic RNA into double-stranded DNA, an activity that might be expected to trigger innate pattern recognition receptors. We reasoned that if correctly orchestrated HIV-1 uncoating and nuclear entry is important for evasion of innate sensors then manipulation of specific interactions between HIV-1 capsid and host factors that putatively regulate these processes should trigger pattern recognition receptors and stimulate type 1 interferon (IFN) secretion. Here we show that HIV-1 capsid mutants N74D and P90A, which are impaired for interaction with cofactors cleavage and polyadenylation specificity factor subunit 6 (CPSF6) and cyclophilins (Nup358 and CypA), respectively, cannot replicate in primary human monocyte-derived macrophages because they trigger innate sensors leading to nuclear translocation of NF-κB and IRF3, the production of soluble type 1 IFN and induction of an antiviral state. Depletion of CPSF6 with short hairpin RNA expression allows wild-type virus to trigger innate sensors and IFN production. In each case, suppressed replication is rescued by IFN-receptor blockade, demonstrating a role for IFN in restriction. IFN production is dependent on viral reverse transcription but not integration, indicating that a viral reverse transcription product comprises the HIV-1 pathogen-associated molecular pattern. Finally, we show that we can pharmacologically induce wild-type HIV-1 infection to stimulate IFN secretion and an antiviral state using a non-immunosuppressive cyclosporine analogue. We conclude that HIV-1 has evolved to use CPSF6 and cyclophilins to cloak its replication, allowing evasion of innate immune sensors and induction of a cell-autonomous innate immune response in primary human macrophages.

  18. Loss of CARD9-mediated innate activation attenuates severe influenza pneumonia without compromising host viral immunity.

    Science.gov (United States)

    Uematsu, Takayuki; Iizasa, Ei'ichi; Kobayashi, Noritada; Yoshida, Hiroki; Hara, Hiromitsu

    2015-12-02

    Influenza virus (IFV) infection is a common cause of severe viral pneumonia associated with acute respiratory distress syndrome (ARDS), which is difficult to control with general immunosuppressive therapy including corticosteroids due to the unfavorable effect on viral replication. Studies have suggested that the excessive activation of the innate immunity by IFV is responsible for severe pathologies. In this study, we focused on CARD9, a signaling adaptor known to regulate innate immune activation through multiple innate sensor proteins, and investigated its role in anti-IFV defense and lung pathogenesis in a mouse model recapitulating severe influenza pneumonia with ARDS. We found that influenza pneumonia was dramatically attenuated in Card9-deficient mice, which showed improved mortality with reduced inflammatory cytokines and chemokines in the infected lungs. However, viral clearance, type-I interferon production, and the development of anti-viral B and T cell immunity were not compromised by CARD9 deficiency. Syk or CARD9-deficient DCs but not macrophages showed impaired cytokine but not type-I interferon production in response to IFV in vitro, indicating a possible role for the Syk-CARD9 pathway in DCs in excessive inflammation of IFV-infected lungs. Therefore, inhibition of this pathway is an ideal therapeutic target for severe influenza pneumonia without affecting viral clearance.

  19. Hepatitis C Virus Evasion from RIG-I-Dependent Hepatic Innate Immunity

    Directory of Open Access Journals (Sweden)

    Helene Minyi Liu

    2010-01-01

    Full Text Available Exposure to hepatitis C virus (HCV usually results in persistent infection that often develops into chronic liver disease. Interferon-alpha (IFN treatment comprises the foundation of current approved therapy for chronic HCV infection but is limited in overall efficacy. IFN is a major effector of innate antiviral immunity and is naturally produced in response to viral infection when viral pathogen-associated molecular patterns (PAMPs are recognized as nonself and are bound by cellular pathogen recognition receptors (PRRs, including Toll-like receptors (TLRs and the RIG-I-like receptors (RLRs. Within hepatocytes, RIG-I is a major PRR of HCV infection wherein PAMP interactions serve to trigger intracellular signaling cascades in the infected hepatocyte to drive IFN production and the expression of interferon-stimulated genes (ISGs. ISGs function to limit virus replication, modulate the immune system, and to suppress virus spread. However, studies of HCV-host interactions have revealed several mechanisms of innate immune regulation and evasion that feature virus control of PRR signaling and regulation of hepatic innate immune programs that may provide a molecular basis for viral persistence.

  20. NFIL3 Orchestrates the Emergence of Common Helper Innate Lymphoid Cell Precursors

    Directory of Open Access Journals (Sweden)

    Wei Xu

    2015-03-01

    Full Text Available Innate lymphoid cells (ILCs are a family of effectors that originate from a common innate lymphoid cell progenitor. However, the transcriptional program that sets the identity of the ILC lineage remains elusive. Here, we show that NFIL3 is a critical regulator of the common helper-like innate lymphoid cell progenitor (CHILP. Cell-intrinsic Nfil3 ablation led to variably impaired development of fetal and adult ILC subsets. Conditional gene targeting demonstrated that NFIL3 exerted its function prior to ILC subset commitment. Accordingly, NFIL3 ablation resulted in loss of ID2+ CHILP and PLZF+ ILC progenitors. Nfil3 expression in lymphoid progenitors was under the control of the mesenchyme-derived hematopoietin IL-7, and NFIL3 exerted its function via direct Id2 regulation in the CHILP. Moreover, ectopic Id2 expression in Nfil3-null precursors rescued defective ILC lineage development in vivo. Our data establish NFIL3 as a key regulator of common helper-like ILC progenitors as they emerge during early lymphopoiesis.

  1. Association of the innate immunity and inflammation pathway with advanced prostate cancer risk.

    Directory of Open Access Journals (Sweden)

    Rémi Kazma

    Full Text Available Prostate cancer is the most frequent and second most lethal cancer in men in the United States. Innate immunity and inflammation may increase the risk of prostate cancer. To determine the role of innate immunity and inflammation in advanced prostate cancer, we investigated the association of 320 single nucleotide polymorphisms, located in 46 genes involved in this pathway, with disease risk using 494 cases with advanced disease and 536 controls from Cleveland, Ohio. Taken together, the whole pathway was associated with advanced prostate cancer risk (P = 0.02. Two sub-pathways (intracellular antiviral molecules and extracellular pattern recognition and four genes in these sub-pathways (TLR1, TLR6, OAS1, and OAS2 were nominally associated with advanced prostate cancer risk and harbor several SNPs nominally associated with advanced prostate cancer risk. Our results suggest that the innate immunity and inflammation pathway may play a modest role in the etiology of advanced prostate cancer through multiple small effects.

  2. The innate and adaptive infiltrating immune systems as targets for breast cancer immunotherapy.

    Science.gov (United States)

    Law, Andrew M K; Lim, Elgene; Ormandy, Christopher J; Gallego-Ortega, David

    2017-04-01

    A cancer cell-centric view has long dominated the field of cancer biology. Research efforts have focussed on aberrant cancer cell signalling pathways and on changes to cancer cell DNA. Mounting evidence demonstrates that many cancer-associated cell types within the tumour stroma co-evolve and support tumour growth and development, greatly modifying cancer cell behaviour, facilitating invasion and metastasis and controlling dormancy and sensitivity to drug therapy. Thus, these stromal cells represent potential targets for cancer therapy. Among these cell types, immune cells have emerged as a promising target for therapy. The adaptive and the innate immune system play an important role in normal mammary development and breast cancer. The number of infiltrating adaptive immune system cells with tumour-rejecting capacity, primarily, T lymphocytes, is lower in breast cancer compared with other cancer types, but infiltration occurs in a large proportion of cases. There is strong evidence demonstrating the importance of the immunosuppressive role of the innate immune system during breast cancer progression. A consideration of components of both the innate and the adaptive immune system is essential for the design and development of immunotherapies in breast cancer. In this review, we focus on the importance of immunosuppressive myeloid-derived suppressor cells (MDSCs) as potential targets for breast cancer therapy.

  3. Microbial Degradation of Cellular Kinases Impairs Innate Immune Signaling and Paracrine TNFα Responses.

    Science.gov (United States)

    Barth, Kenneth; Genco, Caroline Attardo

    2016-10-04

    The NFκB and MAPK signaling pathways are critical components of innate immunity that orchestrate appropriate immune responses to control and eradicate pathogens. Their activation results in the induction of proinflammatory mediators, such as TNFα a potent bioactive molecule commonly secreted by recruited inflammatory cells, allowing for paracrine signaling at the site of an infection. In this study we identified a novel mechanism by which the opportunistic pathogen Porphyromonas gingivalis dampens innate immune responses by disruption of kinase signaling and degradation of inflammatory mediators. The intracellular immune kinases RIPK1, TAK1, and AKT were selectively degraded by the P. gingivalis lysine-specific gingipain (Kgp) in human endothelial cells, which correlated with dysregulated innate immune signaling. Kgp was also observed to attenuate endothelial responsiveness to TNFα, resulting in a reduction in signal flux through AKT, ERK and NFκB pathways, as well as a decrease in downstream proinflammatory mRNA induction of cytokines, chemokines and adhesion molecules. A deficiency in Kgp activity negated decreases to host cell kinase protein levels and responsiveness to TNFα. Given the essential role of kinase signaling in immune responses, these findings highlight a unique mechanism of pathogen-induced immune dysregulation through inhibition of cell activation, paracrine signaling, and dampened cellular proinflammatory responses.

  4. Association of the innate immunity and inflammation pathway with advanced prostate cancer risk.

    Science.gov (United States)

    Kazma, Rémi; Mefford, Joel A; Cheng, Iona; Plummer, Sarah J; Levin, Albert M; Rybicki, Benjamin A; Casey, Graham; Witte, John S

    2012-01-01

    Prostate cancer is the most frequent and second most lethal cancer in men in the United States. Innate immunity and inflammation may increase the risk of prostate cancer. To determine the role of innate immunity and inflammation in advanced prostate cancer, we investigated the association of 320 single nucleotide polymorphisms, located in 46 genes involved in this pathway, with disease risk using 494 cases with advanced disease and 536 controls from Cleveland, Ohio. Taken together, the whole pathway was associated with advanced prostate cancer risk (P = 0.02). Two sub-pathways (intracellular antiviral molecules and extracellular pattern recognition) and four genes in these sub-pathways (TLR1, TLR6, OAS1, and OAS2) were nominally associated with advanced prostate cancer risk and harbor several SNPs nominally associated with advanced prostate cancer risk. Our results suggest that the innate immunity and inflammation pathway may play a modest role in the etiology of advanced prostate cancer through multiple small effects.

  5. Innate immune suppression enables frequent transfection with RNA encoding reprogramming proteins.

    Directory of Open Access Journals (Sweden)

    Matthew Angel

    Full Text Available BACKGROUND: Generating autologous pluripotent stem cells for therapeutic applications will require the development of efficient DNA-free reprogramming techniques. Transfecting cells with in vitro-transcribed, protein-encoding RNA is a straightforward method of directly expressing high levels of reprogramming proteins without genetic modification. However, long-RNA transfection triggers a potent innate immune response characterized by growth inhibition and the production of inflammatory cytokines. As a result, repeated transfection with protein-encoding RNA causes cell death. METHODOLOGY/PRINCIPAL FINDINGS: RNA viruses have evolved methods of disrupting innate immune signaling by destroying or inhibiting specific proteins to enable persistent infection. Starting from a list of known viral targets, we performed a combinatorial screen to identify siRNA cocktails that could desensitize cells to exogenous RNA. We show that combined knockdown of interferon-beta (Ifnb1, Eif2ak2, and Stat2 rescues cells from the innate immune response triggered by frequent long-RNA transfection. Using this technique, we were able to transfect primary human fibroblasts every 24 hours with RNA encoding the reprogramming proteins Oct4, Sox2, Klf4, and Utf1. We provide evidence that the encoded protein is active, and we show that expression can be maintained for many days, through multiple rounds of cell division. CONCLUSIONS/SIGNIFICANCE: Our results demonstrate that suppressing innate immunity enables frequent transfection with protein-encoding RNA. This technique represents a versatile tool for investigating expression dynamics and protein interactions by enabling precise control over levels and timing of protein expression. Our finding also opens the door for the development of reprogramming and directed-differentiation methods based on long-RNA transfection.

  6. Genomic regulation of senescence and innate immunity signaling in the retinal pigment epithelium.

    Science.gov (United States)

    Chaum, Edward; Winborn, Christina S; Bhattacharya, Sujoy

    2015-06-01

    The tumor suppressor p53 is a major regulator of genes important for cell cycle arrest, senescence, apoptosis, and innate immunity, and has recently been implicated in retinal aging. In this study we sought to identify the genetic networks that regulate p53 function in the retina using quantitative trait locus (QTL) analysis. First we examined age-associated changes in the activation and expression levels of p53; known p53 target proteins and markers of innate immune system activation in primary retinal pigment epithelial (RPE) cells that were harvested from young and aged human donors. We observed increased expression of p53, activated caspase-1, CDKN1A, CDKN2A (p16INK4a), TLR4, and IFNα in aged primary RPE cell lines. We used the Hamilton Eye Institute (HEI) retinal dataset ( www.genenetwork.org ) to identify genomic loci that modulate expression of genes in the p53 pathway in recombinant inbred BXD mouse strains using a QTL systems biology-based approach. We identified a significant trans-QTL on chromosome 1 (region 172-177 Mb) that regulates the expression of Cdkn1a. Many of the genes in this QTL locus are involved in innate immune responses, including Fc receptors, interferon-inducible family genes, and formin 2. Importantly, we found an age-related increase in FCGR3A and FMN2 and a decrease in IFI16 levels in RPE cultures. There is a complex multigenic innate immunity locus that controls expression of genes in the p53 pathway in the RPE, which may play an important role in modulating age-related changes in the retina.

  7. DMPD: Innate immunity minireview series: making biochemical sense of nucleic acidsensors that trigger antiviral innate immunity. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17395579 Innate immunity minireview series: making biochemical sense of nucleic acidsensor...007 Mar 29. (.png) (.svg) (.html) (.csml) Show Innate immunity minireview series: making biochemical sense of nucleic acidsensor...itle Innate immunity minireview series: making biochemical sense of nucleic acidsensors that trigger antivir

  8. Convergence of the innate and adaptive immunity during human aging

    Directory of Open Access Journals (Sweden)

    Branca Isabel Pereira

    2016-11-01

    Full Text Available Aging is associated with profound changes in the human immune system, a phenomenon referred to as immunosenescence. This complex immune remodeling affects the adaptive immune system and the CD8+ T cell compartment in particular, leading to the accumulation of terminally differentiated T cells, which can rapidly exert their effector functions at the expenses of a limited proliferative potential. In this review we will discuss evidence suggesting that senescent αβCD8+ T cells acquire the hallmarks of innate-like T cells and use recently acquired NK cell receptors as an alternative mechanism to mediate rapid effector functions. These cells concomitantly lose expression of co-stimulatory receptors and exhibit decreased TCR signaling suggesting a functional shift away from antigen specific activation. The convergence of innate and adaptive features in senescent T cells challenges the classic division between innate and adaptive immune systems. Innate-like T cells are particularly important for stress and tumor surveillance and we propose a new role for these cells in aging, where the acquisition of innate-like functions may represent a beneficial adaptation to an increased burden of malignancy with age, although it may also pose a higher risk of autoimmune disorders.

  9. Sunitinib treatment enhances metastasis of innately drug resistant breast tumors

    Science.gov (United States)

    Wragg, Joseph W; Heath, Victoria L; Bicknell, Roy

    2017-01-01

    Anti-angiogenic therapies have failed to confer survival benefits in patients with metastatic breast cancer (mBC). However, to date there has not been an inquiry into roles for acquired versus innate drug resistance in this setting. In this study, we report roles for these distinct phenotypes in determining therapeutic response in a murine model of mBC resistance to the anti-angiogenic tyrosine kinase inhibitor sunitinib. Using tumor measurement and vascular patterning approaches, we differentiated tumors displaying innate versus acquired resistance. Bioluminescent imaging of tumor metastases to the liver, lungs and spleen revealed that sunitinib administration enhances metastasis, but only in tumors displaying innate resistance to therapy. Transcriptomic analysis of tumors displaying acquired versus innate resistance allowed the identification of specific biomarkers, many of which have a role in angiogenesis. In particular, aquaporin-1 upregulation occurred in acquired resistance, mTOR in innate resistance, and pleiotrophin in both settings, suggesting their utility as candidate diagnostics to predict drug response or to design tactics to circumvent resistance. Our results unravel specific features of antiangiogenic resistance, with potential therapeutic implications. PMID:28011623

  10. Innate Immune Signaling by, and Genetic Adjuvants for DNA Vaccination.

    Science.gov (United States)

    Kobiyama, Kouji; Jounai, Nao; Aoshi, Taiki; Tozuka, Miyuki; Takeshita, Fumihiko; Coban, Cevayir; Ishii, Ken J

    2013-01-01

    DNA vaccines can induce both humoral and cellular immune responses. Although some DNA vaccines are already licensed for infectious diseases in animals, they are not licensed for human use because the risk and benefit of DNA vaccines is still controversial. Indeed, in humans, the immunogenicity of DNA vaccines is lower than that of other traditional vaccines. To develop the use of DNA vaccines in the clinic, various approaches are in progress to enhance or improve the immunogenicity of DNA vaccines. Recent studies have shown that immunogenicity of DNA vaccines are regulated by innate immune responses via plasmid DNA recognition through the STING-TBK1 signaling cascade. Similarly, molecules that act as dsDNA sensors that activate innate immune responses through STING-TBK1 have been identified and used as genetic adjuvants to enhance DNA vaccine immunogenicity in mouse models. However, the mechanisms that induce innate immune responses by DNA vaccines are still unclear. In this review, we will discuss innate immune signaling upon DNA vaccination and genetic adjuvants of innate immune signaling molecules.

  11. Alemtuzumab treatment alters circulating innate immune cells in multiple sclerosis

    Science.gov (United States)

    Ahmetspahic, Diana; Ruck, Tobias; Schulte-Mecklenbeck, Andreas; Schwarte, Kathrin; Jörgens, Silke; Scheu, Stefanie; Windhagen, Susanne; Graefe, Bettina; Melzer, Nico; Klotz, Luisa; Arolt, Volker; Wiendl, Heinz; Meuth, Sven G.

    2016-01-01

    Objective: To characterize changes in myeloid and lymphoid innate immune cells in patients with relapsing-remitting multiple sclerosis (MS) during a 6-month follow-up after alemtuzumab treatment. Methods: Circulating innate immune cells including myeloid cells and innate lymphoid cells (ILCs) were analyzed before and 6 and 12 months after onset of alemtuzumab treatment. Furthermore, a potential effect on granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin (IL)–23 production by myeloid cells and natural killer (NK) cell cytolytic activity was determined. Results: In comparison to CD4+ T lymphocytes, myeloid and lymphoid innate cell subsets of patients with MS expressed significantly lower amounts of CD52 on their cell surface. Six months after CD52 depletion, numbers of circulating plasmacytoid dendritic cells (DCs) and conventional DCs were reduced compared to baseline. GM-CSF and IL-23 production in DCs remained unchanged. Within the ILC compartment, the subset of CD56bright NK cells specifically expanded under alemtuzumab treatment, but their cytolytic activity did not change. Conclusions: Our findings demonstrate that 6 months after alemtuzumab treatment, specific DC subsets are reduced, while CD56bright NK cells expanded in patients with MS. Thus, alemtuzumab specifically restricts the DC compartment and expands the CD56bright NK cell subset with potential immunoregulatory properties in MS. We suggest that remodeling of the innate immune compartment may promote long-term efficacy of alemtuzumab and preserve immunocompetence in patients with MS. PMID:27766281

  12. Local Innate Responses to TLR Ligands in the Chicken Trachea

    Directory of Open Access Journals (Sweden)

    Neda Barjesteh

    2016-07-01

    Full Text Available The chicken upper respiratory tract is the portal of entry for respiratory pathogens, such as avian influenza virus (AIV. The presence of microorganisms is sensed by pathogen recognition receptors (such as Toll-like receptors (TLRs of the innate immune defenses. Innate responses are essential for subsequent induction of potent adaptive immune responses, but little information is available about innate antiviral responses of the chicken trachea. We hypothesized that TLR ligands induce innate antiviral responses in the chicken trachea. Tracheal organ cultures (TOC were used to investigate localized innate responses to TLR ligands. Expression of candidate genes, which play a role in antiviral responses, was quantified. To confirm the antiviral responses of stimulated TOC, chicken macrophages were treated with supernatants from stimulated TOC, prior to infection with AIV. The results demonstrated that TLR ligands induced the expression of pro-inflammatory cytokines, type I interferons and interferon stimulated genes in the chicken trachea. In conclusion, TLR ligands induce functional antiviral responses in the chicken trachea, which may act against some pathogens, such as AIV.

  13. Viral degradasome hijacks mitochondria to suppress innate immunity

    Institute of Scientific and Technical Information of China (English)

    Ramansu Goswami; Tanmay Majumdar; Jayeeta Dhar; Saurabh Chattopadhyay; Sudip K Bandyopadhyay; Valentina Verbovetskaya; Ganes C Sen

    2013-01-01

    The balance between the innate immunity of the host and the ability of a pathogen to evade it strongly influences pathogenesis and virulence.The two nonstructural (NS) proteins,NS1 and NS2,of respiratory syncytial virus (RSV) are critically required for RSV virulence.Together,they strongly suppress the type Ⅰ interferon (IFN)-mediated innate immunity of the host cells by degrading or inhibiting multiple cellular factors required for either IFN induction or response pathways,including RIG-I,IRF3,IRF7,TBK1 and STAT2.Here,we provide evidence for the existence of a large and heterogeneous degradative complex assembled by the NS proteins,which we named "NS-degradasome" (NSD).The NSD is roughly ~300-750 kD in size,and its degradative activity was enhanced by the addition of purified mitochondria in vitro.Inside the cell,the majority of the NS proteins and the substrates of the NSD translocated to the mitochondria upon RSV infection.Genetic and pharmacological evidence shows that optimal suppression of innate immunity requires mitochondrial MAVS and mitochondrial motility.Together,we propose a novel paradigm in which the mitochondria,known to be importantfor the innate immune activation of the host,are also important for viral suppression of the innate immunity.

  14. INNATE, ADAPTIVE AND INTRINSIC IMMUNITY IN HUMAN IMMUNODEFICIENCY VIRUS INFECTION

    Directory of Open Access Journals (Sweden)

    Suneth S. Perera

    2012-01-01

    Full Text Available The first line of defence of the innate immune system functions by recognizing highly conserved sets of molecular structures specific to the microbes, termed pathogen-associated molecular patterns, or PAMPs via the germ line-encoded receptors Pattern-Recognition Receptors (PRRs. In addition to the innate immune system, the vertebrates have also evolved a second line of defence termed adaptive immune system, which uses a diverse set of somatically rearranged receptors T-Cell Receptors (TCRs and B Cell Receptors (BCRs, which have the inherent ability to effectively recognise diverse antigens. The innate and adaptive immune systems are functionally tied in with the intrinsic immunity, which comprises of endogenous antiviral factors. Thus, this effective response to diverse microbial infections, including HIV, requires a coordinated interaction at several functional levels between innate, adaptive and intrinsic immune systems. This review provides a snapshot of roles played by the innate, adaptive and the intrinsic immune systems during HIV-infection, along with discussing recent developments highlighting the genomic basis of these responses and their regulation by micro-RNA (miRNAs.

  15. Innate Immune Signaling by, Genetic Adjuvants for, DNA Vaccination

    Directory of Open Access Journals (Sweden)

    Kouji Kobiyama

    2013-07-01

    Full Text Available DNA vaccines can induce both humoral and cellular immune responses. Although some DNA vaccines are already licensed for infectious diseases in animals, they are not licensed for human use because the risk and benefit of DNA vaccines is still controversial. Indeed, in humans, the immunogenicity of DNA vaccines is lower than that of other traditional vaccines. To develop the use of DNA vaccines in the clinic, various approaches are in progress to enhance or improve the immunogenicity of DNA vaccines. Recent studies have shown that immunogenicity of DNA vaccines are regulated by innate immune responses via plasmid DNA recognition through the STING-TBK1 signaling cascade. Similarly, molecules that act as dsDNA sensors that activate innate immune responses through STING-TBK1 have been identified and used as genetic adjuvants to enhance DNA vaccine immunogenicity in mouse models. However, the mechanisms that induce innate immune responses by DNA vaccines are still unclear. In this review, we will discuss innate immune signaling upon DNA vaccination and genetic adjuvants of innate immune signaling molecules.

  16. Early interferon-γ production in human lymphocyte subsets in response to nontyphoidal Salmonella demonstrates inherent capacity in innate cells.

    Directory of Open Access Journals (Sweden)

    Tonney S Nyirenda

    Full Text Available BACKGROUND: Nontyphoidal Salmonellae frequently cause life-threatening bacteremia in sub-Saharan Africa. Young children and HIV-infected adults are particularly susceptible. High case-fatality rates and increasing antibiotic resistance require new approaches to the management of this disease. Impaired cellular immunity caused by defects in the T helper 1 pathway lead to intracellular disease with Salmonella that can be countered by IFNγ administration. This report identifies the lymphocyte subsets that produce IFNγ early in Salmonella infection. METHODOLOGY: Intracellular cytokine staining was used to identify IFNγ production in blood lymphocyte subsets of ten healthy adults with antibodies to Salmonella (as evidence of immunity to Salmonella, in response to stimulation with live and heat-killed preparations of the D23580 invasive African isolate of Salmonella Typhimurium. The absolute number of IFNγ-producing cells in innate, innate-like and adaptive lymphocyte subpopulations was determined. PRINCIPAL FINDINGS: Early IFNγ production was found in the innate/innate-like lymphocyte subsets: γδ-T cells, NK cells and NK-like T cells. Significantly higher percentages of such cells produced IFNγ compared to adaptive αβ-T cells (Student's t test, P<0.001 and ≤0.02 for each innate subset compared, respectively, with CD4(+- and CD8(+-T cells. The absolute numbers of IFNγ-producing cells showed similar differences. The proportion of IFNγ-producing γδ-T cells, but not other lymphocytes, was significantly higher when stimulated with live compared with heat-killed bacteria (P<0.0001. CONCLUSION/SIGNIFICANCE: Our findings indicate an inherent capacity of innate/innate-like lymphocyte subsets to produce IFNγ early in the response to Salmonella infection. This may serve to control intracellular infection and reduce the threat of extracellular spread of disease with bacteremia which becomes life-threatening in the absence of protective antibody

  17. Endotoxemia is associated with altered innate and adaptive immune responses in untreated HIV-1 infected individuals.

    Directory of Open Access Journals (Sweden)

    Anne Roslev Bukh

    Full Text Available BACKGROUND: Microbial translocation may contribute to the immunopathogenesis in HIV infection. We investigated if microbial translocation and inflammation were associated with innate and adaptive immune responses in adults with HIV. METHODOLOGY/PRINCIPAL FINDINGS: This was an observational cohort study. Sera from HIV-infected and HIV-uninfected individuals were analyzed for microbial translocation (soluble CD14, lipopolysaccharides [LPS], endotoxin core antibody, and anti-α-galactosyl antibodies and inflammatory markers (high sensitivity C-reactive protein, IL-6, IL-1 receptor antagonist, soluble tumor necrosis factor receptor II, and IL-10 with enzyme-linked immunosorbent assays. Peripheral blood mononuclear cells (PBMC from HIV-infected persons and healthy controls (primed with single-stranded HIV-1-derived RNA were stimulated with LPS, and cytokine production was measured. Finally, HIV-infected patients were immunized with Prevnar 7vPnC±CpG 7909 followed by Pneumo Novum PPV-23. Effects of microbial translocation and inflammation on immunization were analyzed in a predictive regression model. We included 96 HIV-infected individuals, 76 on highly active antiretroviral therapy (HAART, 20 HAART-naive, and 50 healthy controls. Microbial translocation and inflammatory markers were higher among HIV-infected persons than controls. Cytokine levels following LPS stimulation were increased in PBMCs from HAART-naive compared to HAART-treated HIV-infected persons. Further, RNA-priming of PBMCs from controls acted synergistically with LPS to augment cytokine responses. Finally, high serum LPS levels predicted poor vaccine responses among HAART-naive, but not among HAART-treated HIV-infected individuals. CONCLUSIONS/SIGNIFICANCE: LPS acts synergistically with HIV RNA to stimulate innate immune responses in vitro and increasing serum LPS levels seem to predict poor antibody responses after vaccination among HAART-naive HIV-infected persons. Thus, our

  18. Innate immune response to viral infection of the lungs.

    Science.gov (United States)

    See, Hayley; Wark, Peter

    2008-12-01

    Viral respiratory tract infections are the most common infectious illnesses, though they are usually self-limiting and confined to the respiratory tract. The rapid identification of viruses and their effective elimination with minimal local and systemic inflammation is a testament to the efficiency of the innate immune response within the airways and lungs. A failure of this response appears to occur in those with asthma and chronic obstructive pulmonary disease, where viral infection is an important trigger for acute exacerbations. The innate immune response to viruses requires their early detection through pathogen recognition receptors and the recruitment of the efficient antiviral response that is centred around the release of type 1 interferons. The airway epithelium provides both a barrier and an early detector for viruses, and interacts closely with cells of the innate immune response, especially macrophages and dendritic cells, to eliminate infection and trigger a specific adaptive immune response.

  19. Hepatic stellate cells and innate immunity in alcoholic liver disease

    Institute of Scientific and Technical Information of China (English)

    Yang-Gun Suh; Won-Il Jeong

    2011-01-01

    Constant alcohol consumption is a major cause of chronic liver disease, and there has been a growing concern regarding the increased mortality rates worldwide. Alcoholic liver diseases (ALDs) range from mild to more severe conditions, such as steatosis, steatohepatitis, fibrosis, cirrhosis, and hepatocellular carcinoma. The liver is enriched with innate immune cells (e.g. natural killer cells and Kupffer cells) and hepatic stellate cells (HSCs), and interestingly, emerging evidence suggests that innate immunity contributes to the development of ALDs (e.g. steatohepatitis and liver fibrosis). Indeed, HSCs play a crucial role in alcoholic steatosis via production of endocannabinoid and retinol metabolites. This review describes the roles of the innate immunity and HSCs in the pathogenesis of ALDs, and suggests therapeutic targets and strategies to assist in the reduction of ALD.

  20. Probiotics promote gut health through stimulation of epithelial innate immunity.

    Science.gov (United States)

    Pagnini, Cristiano; Saeed, Rubina; Bamias, Giorgos; Arseneau, Kristen O; Pizarro, Theresa T; Cominelli, Fabio

    2010-01-05

    Probiotic formulations are widely available and have a variety of proposed beneficial effects, including promotion of gut health. The mechanisms of action of probiotic bacteria in the intestine are still unclear but are generally attributed to an antiinflammatory effect. Here, we demonstrate that the multiple probiotic formulation VSL#3 prevents the onset of intestinal inflammation by local stimulation of epithelial innate immune responses (i.e., increased production of epithelial-derived TNF-alpha and restoration of epithelial barrier function in vivo). We also demonstrate that probiotic bacteria stimulate epithelial production of TNF-alpha and activate NF-kappaB in vitro. Our results support the hypothesis that probiotics promote gut health through stimulation, rather than suppression, of the innate immune system. Furthermore, our findings provide the perspective that defects in innate immunity may play a critical role in the pathogenesis and progression of intestinal disorders, such as inflammatory bowel disease.

  1. Innateness and culture in the evolution of language.

    Science.gov (United States)

    Kirby, Simon; Dowman, Mike; Griffiths, Thomas L

    2007-03-20

    Human language arises from biological evolution, individual learning, and cultural transmission, but the interaction of these three processes has not been widely studied. We set out a formal framework for analyzing cultural transmission, which allows us to investigate how innate learning biases are related to universal properties of language. We show that cultural transmission can magnify weak biases into strong linguistic universals, undermining one of the arguments for strong innate constraints on language learning. As a consequence, the strength of innate biases can be shielded from natural selection, allowing these genes to drift. Furthermore, even when there is no natural selection, cultural transmission can produce apparent adaptations. Cultural transmission thus provides an alternative to traditional nativist and adaptationist explanations for the properties of human languages.

  2. Cheetahs have a stronger constitutive innate immunity than leopards

    Science.gov (United States)

    Heinrich, Sonja K.; Hofer, Heribert; Courtiol, Alexandre; Melzheimer, Jörg; Dehnhard, Martin; Czirják, Gábor Á.; Wachter, Bettina

    2017-01-01

    As a textbook case for the importance of genetics in conservation, absence of genetic variability at the major histocompatibility complex (MHC) is thought to endanger species viability, since it is considered crucial for pathogen resistance. An alternative view of the immune system inspired by life history theory posits that a strong response should evolve in other components of the immune system if there is little variation in the MHC. In contrast to the leopard (Panthera pardus), the cheetah (Acinonyx jubatus) has a relatively low genetic variability at the MHC, yet free-ranging cheetahs are healthy. By comparing the functional competence of the humoral immune system of both species in sympatric populations in Namibia, we demonstrate that cheetahs have a higher constitutive innate but lower induced innate and adaptive immunity than leopards. We conclude (1) immunocompetence of cheetahs is higher than previously thought; (2) studying both innate and adaptive components of immune systems will enrich conservation science. PMID:28333126

  3. The roles of antimicrobial peptides in innate host defense.

    Science.gov (United States)

    Diamond, Gill; Beckloff, Nicholas; Weinberg, Aaron; Kisich, Kevin O

    2009-01-01

    Antimicrobial peptides (AMPs) are multi-functional peptides whose fundamental biological role in vivo has been proposed to be the elimination of pathogenic microorganisms, including Gram-positive and -negative bacteria, fungi, and viruses. Genes encoding these peptides are expressed in a variety of cells in the host, including circulating phagocytic cells and mucosal epithelial cells, demonstrating a wide range of utility in the innate immune system. Expression of these genes is tightly regulated; they are induced by pathogens and cytokines as part of the host defense response, and they can be suppressed by bacterial virulence factors and environmental factors which can lead to increased susceptibility to infection. New research has also cast light on alternative functionalities, including immunomodulatory activities, which are related to their unique structural characteristics. These peptides represent not only an important component of innate host defense against microbial colonization and a link between innate and adaptive immunity, but also form a foundation for the development of new therapeutic agents.

  4. Beyond empiricism: informing vaccine development through innate immunity research.

    Science.gov (United States)

    Levitz, Stuart M; Golenbock, Douglas T

    2012-03-16

    Although a great public heath success, vaccines provide suboptimal protection in some patient populations and are not available to protect against many infectious diseases. Insights from innate immunity research have led to a better understanding of how existing vaccines work and have informed vaccine development. New adjuvants and delivery systems are being designed based upon their capacity to stimulate innate immune sensors and target antigens to dendritic cells, the cells responsible for initiating adaptive immune responses. Incorporating these adjuvants and delivery systems in vaccines can beneficially alter the quantitative and qualitative nature of the adaptive immune response, resulting in enhanced protection.

  5. Inflammatory bowel disease related innate immunity and adaptive immunity

    Science.gov (United States)

    Huang, Yuan; Chen, Zhonge

    2016-01-01

    Inflammatory bowel disease (IBD) is a chronic nonspecific intestinal inflammatory disease, including ulcerative colitis (UC) and Crohn’s disease (CD). Its pathogenesis remains not yet clear. Current researchers believe that after environmental factors act on individuals with genetic susceptibility, an abnormal intestinal immune response is launched under stimulation of intestinal flora. However, previous studies only focused on adaptive immunity in the pathogenesis of IBD. Currently, roles of innate immune response in the pathogenesis of intestinal inflammation have also drawn much attention. In this study, IBD related innate immunity and adaptive immunity were explained, especially the immune mechanisms in the pathogenesis of IBD. PMID:27398134

  6. Innate immune responses to Helicobacter pylori infection: an overview.

    Science.gov (United States)

    Patel, Milan K; Trombly, Melanie I; Kurt-Jones, Evelyn A

    2012-01-01

    Innate immune receptors detect Helicobacter pylori infection and trigger downstream signaling events that result in the production of cytokines and interferon-β. This chapter gives an overview of the receptors and their roles in responding to H. pylori infection and details the downstream signaling events. The tools that have been developed to study the innate immune response to H. pylori are also discussed. Understanding the immune response to H. pylori is critical to develop better treatments for H. pylori-induced disease states including gastric malignancies and cancer.

  7. Interactions between the intestinal microbiota and innate lymphoid cells.

    Science.gov (United States)

    Chen, Vincent L; Kasper, Dennis L

    2014-01-01

    The mammalian intestine must manage to contain 100 trillion intestinal bacteria without inducing inappropriate immune responses to these microorganisms. The effects of the immune system on intestinal microorganisms are numerous and well-characterized, and recent research has determined that the microbiota influences the intestinal immune system as well. In this review, we first discuss the intestinal immune system and its role in containing and maintaining tolerance to commensal organisms. We next introduce a category of immune cells, the innate lymphoid cells, and describe their classification and function in intestinal immunology. Finally, we discuss the effects of the intestinal microbiota on innate lymphoid cells.

  8. MAP Kinase 4 Substrates and Plant Innate Immunity

    DEFF Research Database (Denmark)

    Rasmussen, Magnus Wohlfahrt

    recognition, which also induce its localization to cytoplasmic processing bodies. All three proteins; PAT1, AOC3 and eIF4E also interacts with MPK4 in vivo although the functional outcome of these interactions are still elusive. The thesis comprise a general introduction to plant innate immunity followed...... by two review articles “MAP kinase cascades in Arabidopsis innate immunity” published in Frontiers in Plant Science and “mRNA decay in plant immunity” under revision for Cellular and Molecular Life Science. Together these sections gives a comprehensive overview of Arabidopsis defense signaling...

  9. Expansion of CD25+ Innate Lymphoid Cells Reduces Atherosclerosis

    Science.gov (United States)

    Engelbertsen, Daniel; Foks, Amanda C.; Alberts-Grill, Noah; Kuperwaser, Felicia; Chen, Tao; Lederer, James A.; Jarolim, Petr; Grabie, Nir; Lichtman, Andrew H.

    2015-01-01

    Objective Innate lymphoid cells (ILCs) are a newly discovered subset of immune cells that promote tissue homeostasis and protect against pathogens. ILCs produce cytokines also produced by T lymphocytes that have been shown to affect atherosclerosis, but the influence of ILCs on atherosclerosis has not been explored. Approach and Results We demonstrate that CD25+ ILCs that produce type 2 cytokines (ILC2s) are present in the aorta of atherosclerotic immunodeficient ldlr−/−rag1−/− mice. To investigate the role of ILCs in atherosclerosis, ldlr−/−rag1−/− mice were concurrently fed an atherogenic diet and treated with either ILC-depleting anti-CD90.2 antibodies or with IL-2/anti-IL-2 complexes that expand CD25+ ILCs. Lesion development was not affected by anti-CD90.2 treatment, but was reduced in IL-2/anti-IL-2 -treated mice. These IL-2 treated mice had reduced VLDL cholesterol and increased triglycerides compared to controls and reduced apolipoprotein B100 gene expression in the liver. IL-2/anti-IL-2 treatment caused expansion of ILC2s in aorta and other tissues, elevated levels of IL-5, systemic eosinophila and hepatic eosinophilic inflammation. Blockade of IL-5 reversed the IL-2-complex-induced eosinophilia but did not change lesion size. Conclusions This study demonstrates that expansion of CD25-expressing ILCs by IL-2/anti-IL-2 complexes leads to a reduction in VLDL cholesterol and atherosclerosis. Global depletion of ILCs by anti-CD90.2 did not significantly affect lesion size indicating that different ILC subsets may have divergent effects on atherosclerosis. PMID:26494229

  10. Innate phase behavior in the desert locust, Schistocerca gregaria

    Institute of Scientific and Technical Information of China (English)

    Moshe Guershon; Amir Ayali

    2012-01-01

    Detailed aspects of the transition from the solitarious to the gregarious phase in the framework of locust ecology are undoubtedly most important for understanding locust phase polyphenism.Nevertheless,due to obvious difficulties in studying the sotitarious phase in nature,such information is limited and mostly available from research carried out under laboratory conditions.In the current study,we examined the dispersal patterns of newly hatched locust nymphs in a laboratory setup that simulated seminatural conditions.This was carried out with no previous manipulation of the nymphs other than controlling their parental density.We comparatively tested the spatial distribution of newly hatched nymphs on perches located at different ranges within an emergence arena,and the expected Poisson (random) distribution.Hatchlings were found to disperse among the perches in a pattern significantly different from that expected by random.Irrespective of their parents' phase,the observed distributions of all nymphs were clearly clumped,similar or close to those expected for gregarious locusts.It seems that rather than emerging with a parentally derived and predetermined phase,hatchlings have an independent default or innate behavioral state,which reflects at least tolerance if not attraction to conspecifics.The typical phase behavior may later become dominant under the appropriate environmental conditions.These results imply novel perspectives on locust phase transformation,which contribute to our understanding of the formation of locust crowds under field conditions.These should be considered in any rationale for developing a preventative management strategy of locust populations.

  11. Autophagy Is an Innate Mechanism Associated with Leprosy Polarization

    Science.gov (United States)

    Andrade, Priscila Ribeiro; Ferreira, Helen; Nery, José Augusto da Costa; Côrte-Real, Suzana; da Silva, Gilberto Marcelo Sperandio; Rosa, Patricia Sammarco; Fabri, Mario; Sarno, Euzenir Nunes

    2017-01-01

    Leprosy is a chronic infectious disease that may present different clinical forms according to the immune response of the host. Levels of IFN-γ are significantly raised in paucibacillary tuberculoid (T-lep) when compared with multibacillary lepromatous (L-lep) patients. IFN-γ primes macrophages for inflammatory activation and induces the autophagy antimicrobial mechanism. The involvement of autophagy in the immune response against Mycobacterium leprae remains unexplored. Here, we demonstrated by different autophagic assays that LC3-positive autophagosomes were predominantly observed in T-lep when compared with L-lep lesions and skin-derived macrophages. Accumulation of the autophagic receptors SQSTM1/p62 and NBR1, expression of lysosomal antimicrobial peptides and colocalization analysis of autolysosomes revealed an impairment of the autophagic flux in L-lep cells, which was restored by IFN-γ or rapamycin treatment. Autophagy PCR array gene-expression analysis revealed a significantly upregulation of autophagy genes (BECN1, GPSM3, ATG14, APOL1, and TPR) in T-lep cells. Furthermore, an upregulation of autophagy genes (TPR, GFI1B and GNAI3) as well as LC3 levels was observed in cells of L-lep patients that developed type 1 reaction (T1R) episodes, an acute inflammatory condition associated with increased IFN-γ levels. Finally, we observed increased BCL2 expression in L-lep cells that could be responsible for the blockage of BECN1-mediated autophagy. In addition, in vitro studies demonstrated that dead, but not live M. leprae can induce autophagy in primary and lineage human monocytes, and that live mycobacteria can reduce the autophagy activation triggered by dead mycobacteria, suggesting that M. leprae may hamper the autophagic machinery as an immune escape mechanism. Together, these results indicate that autophagy is an important innate mechanism associated with the M. leprae control in skin macrophages. PMID:28056107

  12. Serum proteomics reveals systemic dysregulation of innate immunity in type 1 diabetes

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Qibin; Fillmore, Thomas L.; Schepmoes, Athena A.; Clauss, Therese RW; Gritsenko, Marina A.; Mueller, Patricia W.; Rewers, Marian; Atkinson, Mark A.; Smith, Richard D.; Metz, Thomas O.

    2013-01-14

    Using global liquid chromatography-mass spectrometry (LC-MS)-based proteomics analyses, we identified 24 serum proteins significantly variant between those with type 1 diabetes and healthy controls. Functionally, these proteins represent innate immune responses, the activation cascade of complement, inflammatory responses and blood coagulation. Targeted verification analyses were performed on 52 surrogate peptides representing these proteins with serum samples from an antibody standardization program cohort of 100 healthy control and 50 type 1 diabetic subjects, and 16 peptides were verified having very good discriminating power, with areas under the receiver operator characteristic curve ≥ 0.8. Further validation with blinded serum samples from an independent cohort (10 healthy control and 10 type 1 diabetic) demonstrated that peptides from platelet basic protein and C1 inhibitor achieved both 100% sensitivity and 100% specificity for classification of samples. The disease specificity of these proteins was assessed using serum from 50 age matched type 2 diabetic individuals, and a subset of proteins, particularly C1 inhibitor were exceptionally good discriminators between these two forms of diabetes. The panel of biomarkers distinguishing those with type 1 diabetes from healthy control and type 2 diabetes suggests dysregulated innate immune responses may be associated with the development of this disorder.

  13. Serum proteomics reveals systemic dysregulation of innate immunity in type 1 diabetes.

    Science.gov (United States)

    Zhang, Qibin; Fillmore, Thomas L; Schepmoes, Athena A; Clauss, Therese R W; Gritsenko, Marina A; Mueller, Patricia W; Rewers, Marian; Atkinson, Mark A; Smith, Richard D; Metz, Thomas O

    2013-01-14

    Using global liquid chromatography-mass spectrometry (LC-MS)-based proteomics analyses, we identified 24 serum proteins that were significantly variant between those with type 1 diabetes (T1D) and healthy controls. Functionally, these proteins represent innate immune responses, the activation cascade of complement, inflammatory responses, and blood coagulation. Targeted verification analyses were performed on 52 surrogate peptides representing these proteins, with serum samples from an antibody standardization program cohort of 100 healthy control and 50 type 1 diabetic subjects. 16 peptides were verified as having very good discriminating power, with areas under the receiver operating characteristic curve ≥ 0.8. Further validation with blinded serum samples from an independent cohort (10 healthy control and 10 type 1 diabetics) demonstrated that peptides from platelet basic protein and C1 inhibitor achieved both 100% sensitivity and 100% specificity for classification of samples. The disease specificity of these proteins was assessed using sera from 50 age-matched type 2 diabetic individuals, and a subset of proteins, C1 inhibitor in particular, were exceptionally good discriminators between these two forms of diabetes. The panel of biomarkers distinguishing those with T1D from healthy controls and those with type 2 diabetes suggests that dysregulated innate immune responses may be associated with the development of this disorder.

  14. GPA-9 is a novel regulator of innate immunity against Escherichia coli foods in adult Caenorhabditis elegans.

    Science.gov (United States)

    Hahm, Jeong-Hoon; Kim, Sunhee; Paik, Young-Ki

    2011-04-01

    Innate immune responses to pathogens are governed by the nervous system. Here, we investigated the molecular mechanism underlying innate immunity in Caenorhabditis elegans against Escherichia coli OP50, a standard laboratory C. elegans food. Longevity was compared in worms fed live or UV-killed OP50 at low or high density food condition (HDF). Expression of the antimicrobial gene lys-8 was approximately 5-fold higher in worms fed live OP50, suggesting activation of innate immunity upon recognition of OP50 metabolites. Lifespan was extended and SOD-3 mRNA levels were increased in gpa-9-overexpressing gpa-9XS worms under HDF in association with robust induction of insulin/IGF-1 signaling (IIS). Expression of ins-7 and daf-28 that control lys-8 expression was reduced in gpa-9XS, indicating that GPA-9-mediated immunity is due in part to ins-7 and daf-28 downregulation. Our results suggest that OP50 metabolites in amphid neurons elicit innate immunity through the IIS pathway, and identify GPA-9 as a novel regulator of both the immune system and aging in C. elegans.

  15. MiR-146 and miR-125 in the regulation of innate immunity and inflammation

    Science.gov (United States)

    Lee, Hye-Mi; Kim, Tae Sung; Jo, Eun-Kyeong

    2016-01-01

    Innate immune responses are primary, relatively limited, and specific responses to numerous pathogens and toxic molecules. Protein expression involved in these innate responses must be tightly regulated at both transcriptional level and post-transcriptional level to avoid the development of excessive inflammation that can be potentially harmful to the host. MicroRNAs are small noncoding RNAs (∼22 nucleotides [nts]) that participate in the regulation of numerous physiological responses by targeting specific messenger RNAs to suppress their translation. Recent work has shown that several negative regulators of transcription including microRNAs play important roles in inhibiting the exacerbation of inflammatory responses and in the maintenance of immunological homeostasis. This emerging research area will provide new insights on how microRNAs regulate innate immune signaling. It might show that dysregulation of microRNA synthesis is associated with the pathogenesis of inflammatory and infectious diseases. In this review, we focused on miR-146 and miR-125 and described the roles these miRNAs in modulating innate immune signaling. These microRNAs can control inflammatory responses and the outcomes of pathogenic infections. [BMB Reports 2016; 49(6): 311-318] PMID:26996343

  16. Epithelial NEMO links innate immunity to chronic intestinal inflammation.

    Science.gov (United States)

    Nenci, Arianna; Becker, Christoph; Wullaert, Andy; Gareus, Ralph; van Loo, Geert; Danese, Silvio; Huth, Marion; Nikolaev, Alexei; Neufert, Clemens; Madison, Blair; Gumucio, Deborah; Neurath, Markus F; Pasparakis, Manolis

    2007-03-29

    Deregulation of intestinal immune responses seems to have a principal function in the pathogenesis of inflammatory bowel disease. The gut epithelium is critically involved in the maintenance of intestinal immune homeostasis-acting as a physical barrier separating luminal bacteria and immune cells, and also expressing antimicrobial peptides. However, the molecular mechanisms that control this function of gut epithelial cells are poorly understood. Here we show that the transcription factor NF-kappaB, a master regulator of pro-inflammatory responses, functions in gut epithelial cells to control epithelial integrity and the interaction between the mucosal immune system and gut microflora. Intestinal epithelial-cell-specific inhibition of NF-kappaB through conditional ablation of NEMO (also called IkappaB kinase-gamma (IKKgamma)) or both IKK1 (IKKalpha) and IKK2 (IKKbeta)-IKK subunits essential for NF-kappaB activation-spontaneously caused severe chronic intestinal inflammation in mice. NF-kappaB deficiency led to apoptosis of colonic epithelial cells, impaired expression of antimicrobial peptides and translocation of bacteria into the mucosa. Concurrently, this epithelial defect triggered a chronic inflammatory response in the colon, initially dominated by innate immune cells but later also involving T lymphocytes. Deficiency of the gene encoding the adaptor protein MyD88 prevented the development of intestinal inflammation, demonstrating that Toll-like receptor activation by intestinal bacteria is essential for disease pathogenesis in this mouse model. Furthermore, NEMO deficiency sensitized epithelial cells to tumour-necrosis factor (TNF)-induced apoptosis, whereas TNF receptor-1 inactivation inhibited intestinal inflammation, demonstrating that TNF receptor-1 signalling is crucial for disease induction. These findings demonstrate that a primary NF-kappaB signalling defect in intestinal epithelial cells disrupts immune homeostasis in the gastrointestinal tract

  17. Dental metal-induced innate reactivity in keratinocytes.

    Science.gov (United States)

    Rachmawati, Dessy; Buskermolen, Jeroen K; Scheper, Rik J; Gibbs, Susan; von Blomberg, B Mary E; van Hoogstraten, Ingrid M W

    2015-12-25

    Gold, nickel, copper and mercury, i.e. four metals frequently used in dental applications, were explored for their capacity to induce innate immune activation in keratinocytes (KC). Due to their anatomical location the latter epithelial cells are key in primary local irritative responses of skin and mucosa. Fresh foreskin-derived keratinocytes and skin and gingiva KC cell lines were studied for IL-8 release as a most sensitive parameter for NF-kB activation. First, we verified that viral-defense mediating TLR3 is a key innate immune receptor in both skin- and mucosa derived keratinocytes. Second, we found that, in line with our earlier finding that ionized gold can mimic viral dsRNA in triggering TLR3, gold is very effective in KC activation. It would appear that epithelial TLR3 can play a key role in both skin- and mucosa localized irritation reactivities to gold. Subsequently we found that not only gold, but also nickel, copper and mercury salts can activate innate immune reactivity in keratinocytes, although the pathways involved remain unclear. Although current alloys have been optimized for minimal leakage of metal ions, secondary factors such as mechanical friction and acidity may still facilitate such leakage. Subsequently, these metal ions may create local irritation, itching and swelling by triggering innate immune reactions, potentially also facilitating the development of metal specific adaptive immunity.

  18. Interleukin-17 and innate immunity in infections and chronic inflammation.

    Science.gov (United States)

    Isailovic, Natasa; Daigo, Kenji; Mantovani, Alberto; Selmi, Carlo

    2015-06-01

    Interleukin 17 (IL-17) includes several cytokines among which IL-17A is considered as one of the major pro-inflammatory cytokine being central to the innate and adaptive immune responses. IL-17 is produced by unconventional T cells, members of innate lymphoid cells (ILCs), mast cells, as well as typical innate immune cells, such as neutrophils and macrophages located in the epithelial barriers and characterised by a rapid response to infectious agents by recruiting neutrophils as first line of defence and inducing the production of antimicrobial peptides. Th17 responses appear pivotal in chronic and acute infections by bacteria, parasites, and fungi, as well as in autoimmune and chronic inflammatory diseases, including rheumatoid arthritis, psoriasis, and psoriatic arthritis. The data discussed in this review cumulatively indicate that innate-derived IL-17 constitutes a major element in the altered immune response against self antigens or the perpetuation of inflammation, particularly at mucosal sites. New drugs targeting the IL17 pathway include brodalumab, ixekizumab, and secukinumab and their use in psoriatic disease is expected to dramatically impact our approach to this systemic condition.

  19. Role of innate immunity in the pathogenesis of otitis media.

    Science.gov (United States)

    Mittal, Rahul; Kodiyan, Joyson; Gerring, Robert; Mathee, Kalai; Li, Jian-Dong; Grati, M'hamed; Liu, Xue Zhong

    2014-12-01

    Otitis media (OM) is a public health problem in both developed and developing countries. It is the leading cause of hearing loss and represents a significant healthcare burden. In some cases, acute OM progresses to chronic suppurative OM (CSOM), characterized by effusion and discharge, despite antimicrobial therapy. The emergence of antibiotic resistance and potential ototoxicity of antibiotics has created an urgent need to design non-conventional therapeutic strategies against OM based on modern insights into its pathophysiology. In this article, we review the role of innate immunity as it pertains to OM and discuss recent advances in understanding the role of innate immune cells in protecting the middle ear. We also discuss the mechanisms utilized by pathogens to subvert innate immunity and thereby overcome defensive responses. A better knowledge about bacterial virulence and host resistance promises to reveal novel targets to design effective treatment strategies against OM. The identification and characterization of small natural compounds that can boost innate immunity may provide new avenues for the treatment of OM. There is also a need to design novel methods for targeted delivery of these compounds into the middle ear, allowing higher therapeutic doses and minimizing systemic side effects.

  20. Innate, adaptive and regulatory responses in schistosomiasis: Relationship to allergy

    NARCIS (Netherlands)

    Hartgers, F.C.; Smits, H.H.; Kleij, D. van der; Yazdanbakhsh, M.

    2006-01-01

    Helminth infections have profound effects on the immune system. Here, recent insights in the molecular interactions between schistosomes and the host are described with respect to adaptive but also with respect to innate immune responses. Furthermore, the different mechanisms of immune hyporesponsiv

  1. Innate immune responses in hepatitis B virus (HBV) infection.

    Science.gov (United States)

    Busca, Aurelia; Kumar, Ashok

    2014-02-07

    Hepatitis B virus (HBV) infection has a low rate of chronicity compared to HCV infection, but chronic liver inflammation can evolve to life threatening complications. Experimental data from HBV infected chimpanzees and HBV transgenic mice have indicated that cytotoxic T cells are the main cell type responsible for inhibition of viral replication, but also for hepatocyte lysis during chronic HBV infection. Their lower activation and impaired function in later stages of infection was suggested as a possible mechanism that allowed for low levels of viral replication. The lack of an interferon response in these models also indicated the importance of adaptive immunity in clearing the infection. Increased knowledge of the signalling pathways and pathogen associated molecular patterns that govern activation of innate immunity in the early stages of viral infections in general has led to a re-evaluation of the innate immune system in HBV infection. Numerous studies have shown that HBV employs active strategies to evade innate immune responses and induce immunosuppression. Some of the immune components targeted by HBV include dendritic cells, natural killer cells, T regulatory cells and signalling pathways of the interferon response. This review will present the current understanding of innate immunity in HBV infection and of the challenges associated with clearing of the HBV infection.

  2. Paramyxovirus activation and inhibition of innate immune responses.

    Science.gov (United States)

    Parks, Griffith D; Alexander-Miller, Martha A

    2013-12-13

    Paramyxoviruses represent a remarkably diverse family of enveloped nonsegmented negative-strand RNA viruses, some of which are the most ubiquitous disease-causing viruses of humans and animals. This review focuses on paramyxovirus activation of innate immune pathways, the mechanisms by which these RNA viruses counteract these pathways, and the innate response to paramyxovirus infection of dendritic cells (DC). Paramyxoviruses are potent activators of extracellular complement pathways, a first line of defense that viruses must face during natural infections. We discuss mechanisms by which these viruses activate and combat complement to delay neutralization. Once cells are infected, virus replication drives type I interferon (IFN) synthesis that has the potential to induce a large number of antiviral genes. Here we describe four approaches by which paramyxoviruses limit IFN induction: by limiting synthesis of IFN-inducing aberrant viral RNAs, through targeted inhibition of RNA sensors, by providing viral decoy substrates for cellular kinase complexes, and through direct blocking of the IFN promoter. In addition, paramyxoviruses have evolved diverse mechanisms to disrupt IFN signaling pathways. We describe three general mechanisms, including targeted proteolysis of signaling factors, sequestering cellular factors, and upregulation of cellular inhibitors. DC are exceptional cells with the capacity to generate adaptive immunity through the coupling of innate immune signals and T cell activation. We discuss the importance of innate responses in DC following paramyxovirus infection and their consequences for the ability to mount and maintain antiviral T cells.

  3. Innate immune responses in hepatitis C virus infection.

    Science.gov (United States)

    Li, Kui; Lemon, Stanley M

    2013-01-01

    Hepatitis C virus (HCV) is a major causative agent of chronic hepatitis and hepatocellular carcinoma worldwide and thus poses a significant public health threat. A hallmark of HCV infection is the extraordinary ability of the virus to persist in a majority of infected people. Innate immune responses represent the front line of defense of the human body against HCV immediately after infection. They also play a crucial role in orchestrating subsequent HCV-specific adaptive immunity that is pivotal for viral clearance. Accumulating evidence suggests that the host has evolved multifaceted innate immune mechanisms to sense HCV infection and elicit defense responses, while HCV has developed elaborate strategies to circumvent many of these. Defining the interplay of HCV with host innate immunity reveals mechanistic insights into hepatitis C pathogenesis and informs approaches to therapy. In this review, we summarize recent advances in understanding innate immune responses to HCV infection, focusing on induction and effector mechanisms of the interferon antiviral response as well as the evasion strategies of HCV.

  4. Activation of innate immunity during systemic Candida infections

    NARCIS (Netherlands)

    Ifrim, D.C.

    2015-01-01

    Despite the increased knowledge on the mechanisms of Candida recognition and the networks of innate and adaptive host defense activated during infection, much remains to be learned regarding the distinctive modulatory effects of Candida spp on host immune responses. We showed that the chronic exposu

  5. Heat Shock Proteins: Stimulators of Innate and Acquired Immunity

    Directory of Open Access Journals (Sweden)

    Camilo A. Colaco

    2013-01-01

    Full Text Available Adjuvants were reintroduced into modern immunology as the dirty little secret of immunologists by Janeway and thus began the molecular definition of innate immunity. It is now clear that the binding of pathogen-associated molecular patterns (PAMPs by pattern recognition receptors (PRRs on antigen presenting cells (APCs activates the innate immune response and provides the host with a rapid mechanism for detecting infection by pathogens and initiates adaptive immunity. Ironically, in addition to advancing the basic science of immunology, Janeway’s revelation on induction of the adaptive system has also spurred an era of rational vaccine design that exploits PRRs. Thus, defined PAMPs that bind to known PRRs are being specifically coupled to antigens to improve their immunogenicity. However, while PAMPs efficiently activate the innate immune response, they do not mediate the capture of antigen that is required to elicit the specific responses of the acquired immune system. Heat shock proteins (HSPs are molecular chaperones that are found complexed to client polypeptides and have been studied as potential cancer vaccines. In addition to binding PRRs and activating the innate immune response, HSPs have been shown to both induce the maturation of APCs and provide chaperoned polypeptides for specific triggering of the acquired immune response.

  6. Activation of the innate immune system in atherosclerotic disease

    NARCIS (Netherlands)

    Oude Nijhuis, M.M.; Keulen, J.K. van; Pasterkamp, G.; Quax, P.H.; Kleijn, D.P.V. de

    2007-01-01

    Innate immunity is the first line of defence against invading micro-organisms. The family of Toll-like receptors (TLRs) recognizes pathogen-associated molecular patterns (PAMPs) that are carried by the invading micro-organisms. Infectious pathogens have been implicated to play an important role in a

  7. Fungal strategies for overcoming host innate immune response.

    NARCIS (Netherlands)

    Chai, L.; Netea, M.G.; Vonk, A.G.; Kullberg, B.J.

    2009-01-01

    A successful pathogen is one that is able to effectively survive and evade detection by the host innate immune defense. Fungal pathogens have adopted strategies which evade host defense and eventually cause disease in at-risk patients. Shielding of stimulatory surface recognition molecules, shedding

  8. Induction and suppression of the innate antiviral responses by picornaviruses

    NARCIS (Netherlands)

    Feng, Q.

    2014-01-01

    On the front line of innate antiviral immune reactions is the type I interferon (IFN-α/β) system. IFN-α/β are small signaling molecules that can be produced by virtually all nucleated cells in our body upon virus infections, and induce a so-called “antiviral state” in neighboring cells by activating

  9. The immunobiology of Campylobacter jejuni: Innate immunity and autoimmune diseases.

    Science.gov (United States)

    Phongsisay, Vongsavanh

    2016-04-01

    The Gram-negative bacterium Campylobacter jejuni causes gastroenteritis and Guillain-Barré syndrome in humans. Recent advances in the immunobiology of C. jejuni have been made. This review summarizes C. jejuni-binding innate receptors and highlights the role of innate immunity in autoimmune diseases. This human pathogen produces a variety of glycoconjugates, including human ganglioside-like determinants and multiple activators of Toll-like receptors (TLRs). Furthermore, C. jejuni targets MyD88, NLRP3 inflammasome, TIR-domain-containing adapter-inducing interferon-β (TRIF), sialic acid-binding immunoglobulin-like lectins (Siglecs), macrophage galactose-type lectin (MGL), and immunoglobulin-like receptors (TREM2, LMIR5/CD300b). The roles of these innate receptors and signaling molecules have been extensively studied. MyD88-mediated TLR activation or inflammasome-dependent IL-1β secretion is essential for autoimmune induction. TRIF mediates the production of type I interferons that promote humoral immune responses and immunoglobulin class-switching. Siglec-1 and Siglec-7 interact directly with gangliosides. Siglec-1 activation enhances phagocytosis and inflammatory responses. MGL internalizes GalNAc-containing glycoconjugates. TREM2 is well-known for its role in phagocytosis. LMIR5 recognizes C. jejuni components and endogenous sulfoglycolipids. Several lines of evidence from animal models of autoimmune diseases suggest that simultaneous activation of innate immunity in the presence of autoreactive lymphocytes or antigen mimicry may link C. jejuni to immunopathology.

  10. Trained immunity: a memory for innate host defense

    NARCIS (Netherlands)

    Netea, M.G.; Quintin, J.; Meer, J.W.M. van der

    2011-01-01

    Immune responses in vertebrates are classically divided into innate and adaptive, with only the latter being able to build up immunological memory. However, although lacking adaptive immune responses, plants and invertebrates are protected against reinfection with pathogens, and invertebrates even d

  11. Evolution of innate and adaptive immune systems in jawless vertebrates.

    Science.gov (United States)

    Kasamatsu, Jun

    2013-01-01

    Because jawless vertebrates are the most primitive vertebrates, they have been studied to gain understanding of the evolutionary processes that gave rise to the innate and adaptive immune systems in vertebrates. Jawless vertebrates have developed lymphocyte-like cells that morphologically resemble the T and B cells of jawed vertebrates, but they express variable lymphocyte receptors (VLRs) instead of the T and B cell receptors that specifically recognize antigens in jawed vertebrates. These VLRs act as antigen receptors, diversity being generated in their antigen-binding sites by assembly of highly diverse leucine-rich repeat modules. Therefore, jawless vertebrates have developed adaptive immune systems based on the VLRs. Although pattern recognition receptors, including Toll-like receptors (TLRs) and Rig-like receptors (RLRs), and their adaptor genes are conserved in jawless vertebrates, some transcription factor and inflammatory cytokine genes in the TLR and RLR pathways are not present. However, like jawed vertebrates, the initiation of adaptive immune responses in jawless vertebrates appears to require prior activation of the innate immune system. These observations imply that the innate immune systems of jawless vertebrates have a unique molecular basis that is distinct from that of jawed vertebrates. Altogether, although the molecular details of the innate and adaptive immune systems differ between jawless and jawed vertebrates, jawless vertebrates have developed versions of these immune systems that are similar to those of jawed vertebrates.

  12. Breakdown of the innate immune system by bacterial proteases

    NARCIS (Netherlands)

    Laarman, A.J.

    2011-01-01

    Bacteria have developed many strategies to circumvent our immune system to survive and colonize human tissues. One of these strategies is by secreting proteases that specifically target the innate immune system. Aureolysin is a metalloprotease from Staphylococcus aureus which target the main compone

  13. Neural regulation of innate and adaptive immunity in the gut

    OpenAIRE

    Dhawan, S.

    2017-01-01

    This thesis investigates the role of neurotransmitters acetylcholine (ACh) and norepinephrine (NE), in modulating the innate and adaptive immune function in the intestine, during physiological and pathophysiological conditions. Furthermore, this thesis attempts to advance our current understanding of the gut-brain immune axis, also known as the cholinergic anti-inflammatory pathway, coined largely due to the cholinergic nature of the vagus nerve.

  14. Role of innate immunity in the pathogenesis of otitis media

    Directory of Open Access Journals (Sweden)

    Rahul Mittal

    2014-12-01

    Full Text Available Otitis media (OM is a public health problem in both developed and developing countries. It is the leading cause of hearing loss and represents a significant healthcare burden. In some cases, acute OM progresses to chronic suppurative OM (CSOM, characterized by effusion and discharge, despite antimicrobial therapy. The emergence of antibiotic resistance and potential ototoxicity of antibiotics has created an urgent need to design non-conventional therapeutic strategies against OM based on modern insights into its pathophysiology. In this article, we review the role of innate immunity as it pertains to OM and discuss recent advances in understanding the role of innate immune cells in protecting the middle ear. We also discuss the mechanisms utilized by pathogens to subvert innate immunity and thereby overcome defensive responses. A better knowledge about bacterial virulence and host resistance promises to reveal novel targets to design effective treatment strategies against OM. The identification and characterization of small natural compounds that can boost innate immunity may provide new avenues for the treatment of OM. There is also a need to design novel methods for targeted delivery of these compounds into the middle ear, allowing higher therapeutic doses and minimizing systemic side effects.

  15. Hypoxia, innate immunity and infection in the lung.

    LENUS (Irish Health Repository)

    Schaible, Bettina

    2012-02-01

    The mucosal surface of the lung is the key interface between the external atmosphere and the bloodstream. Normally, this well oxygenated tissue is maintained in state of sterility by a number of innate immune processes. These include a physical and dynamic mucus barrier, the production of microbiocidal peptides and the expression of specific pattern recognition receptors on alveolar epithelial cells and resident macrophages and dendritic cells which recognise microbial structures and initiate innate immune responses which promote the clearance of potentially infectious agents. In a range of diseases, the mucosal surface of the lung experiences decreased oxygen tension leading to localised areas of prominent hypoxia which can impact upon innate immune and subsequent infectious and inflammatory processes. Under these conditions, the lung is generally more susceptible to infection and subsequent inflammation. In the current review, we will discuss recent data pertaining to the role of hypoxia in regulating both host and pathogen in the lung during pulmonary disease and how this contributes to innate immunity, infection and inflammation.

  16. Relationships between innate immunity in bivalve molluscs and environmental pollution

    Directory of Open Access Journals (Sweden)

    MI Girón-Pérez

    2010-06-01

    Full Text Available The immune system of invertebrates, such as molluscs consists of innate mechanisms very effective against antigens commonly present in the environment. However, these defense strategies could be altered by pollutants. This review is focused mainly on the effect of metals, PCB, pesticides, PAHs, and others environmental pollutant on immune response of molluscs.

  17. Pattern Recognition Receptors in Innate Immunity, Host Defense, and Immunopathology

    Science.gov (United States)

    Suresh, Rahul; Mosser, David M.

    2013-01-01

    Infection by pathogenic microbes initiates a set of complex interactions between the pathogen and the host mediated by pattern recognition receptors. Innate immune responses play direct roles in host defense during the early stages of infection, and they also exert a profound influence on the generation of the adaptive immune responses that ensue.…

  18. Mitochondrial DNA in the regulation of innate immune responses

    Directory of Open Access Journals (Sweden)

    Chunju Fang

    2015-10-01

    Full Text Available Abstract Mitochondrion is known as the energy factory of the cell, which is also a unique mammalian organelle and considered to be evolved from aerobic prokaryotes more than a billion years ago. Mitochondrial DNA, similar to that of its bacterial ancestor’s, consists of a circular loop and contains significant number of unmethylated DNA as CpG islands. The innate immune system plays an important role in the mammalian immune response. Recent research has demonstrated that mitochondrial DNA (mtDNA activates several innate immune pathways involving TLR9, NLRP3 and STING signaling, which contributes to the signaling platforms and results in effector responses. In addition to facilitating antibacterial immunity and regulating antiviral signaling, mounting evidence suggests that mtDNA contributes to inflammatory diseases following cellular damage and stress. Therefore, in addition to its well-appreciated roles in cellular metabolism and energy production, mtDNA appears to function as a key member in the innate immune system. Here, we highlight the emerging roles of mtDNA in innate immunity.

  19. Lipopolysaccharide induces apoptosis of cytotrophoblasts by activating an innate immune reaction in vitro

    Institute of Scientific and Technical Information of China (English)

    LI Si-yang; SHANG Tao; LI Shu-juan; RUI Guang-hai; LI Qiu-ling

    2007-01-01

    Background Enhanced apoptosis of cytotrophoblasts in early pregnancy is associated with high risk of intrauterine growth retardation and preeclampsia, which are two common pregnant complications. Its etiological factors remain unclear. Cytotrophoblasts share some traits with innate immune cells and may show response to lipopolysaccharide. This study was conducted to demonstrate whether lipopolysaccharide has apoptosis-inducing effects on cytotrophoblast and the role of innate immune reaction in this process.Methods Cytotrophoblasts were isolated from early pregnant villous tissues and cultured with serum-free medium.Subsequently, cytotrophoblasts were treated with lipopolysaccharide at the concentrations of 0 (control), 25, 50, 100 and 200 ng/ml for 24 hours. Apoptosis of cytotrophoblasts was determined by light microscopy, Hoechst 33258 DNA staining with a fluorescent microscope, transmission electron microscope and annexin V-fluorescein isothiocyanate-conjugated /propidium iodide (PI) staining with flow cytometry. Then expression of caspase-3 was detected by Western blot. Confocal immunofluorescence technique was used to detect tumor necrosis factor α expression in cytotrophoblasts. The levels of tumor necrosis factor α in the culture medium were detected by enzyme-linked immunosorbent assay.Results Under light, fluorescence microscope and transmission electron microscope, characteristic alternations of apoptosis in cytotrophoblasts were observed after lipopolysaccharide treatment. Flow cytometry results showed that lipopolysaccharide significantly increased apoptosis indexes of cytotrophoblasts. Significant statistical differences were found in the above groups (P≤0.01). The mean relative densities of bands corresponding to caspase-3 were significantly increased in groups treated with lipopolysaccharide, as compared with the normal control (P<0.001). Tumor necrosis factor α expression was found to increase in cytotrophoblasts by confocal

  20. Novel innate cancer killing activity in humans

    Directory of Open Access Journals (Sweden)

    Lovato James

    2011-08-01

    Full Text Available Abstract Background In this study, we pilot tested an in vitro assay of cancer killing activity (CKA in circulating leukocytes of 22 cancer cases and 25 healthy controls. Methods Using a human cervical cancer cell line, HeLa, as target cells, we compared the CKA in circulating leukocytes, as effector cells, of cancer cases and controls. The CKA was normalized as percentages of total target cells during selected periods of incubation time and at selected effector/target cell ratios in comparison to no-effector-cell controls. Results Our results showed that CKA similar to that of our previous study of SR/CR mice was present in human circulating leukocytes but at profoundly different levels in individuals. Overall, males have a significantly higher CKA than females. The CKA levels in cancer cases were lower than that in healthy controls (mean ± SD: 36.97 ± 21.39 vs. 46.28 ± 27.22. Below-median CKA was significantly associated with case status (odds ratio = 4.36; 95% Confidence Interval = 1.06, 17.88 after adjustment of gender and race. Conclusions In freshly isolated human leukocytes, we were able to detect an apparent CKA in a similar manner to that of cancer-resistant SR/CR mice. The finding of CKA at lower levels in cancer patients suggests the possibility that it may be of a consequence of genetic, physiological, or pathological conditions, pending future studies with larger sample size.

  1. Altered lymphocyte proliferation and innate immune function in scrapie 139A- and ME7-infected mice.

    Science.gov (United States)

    Cho, In Soo; Spinner, Daryl S; Kascsak, Richard J; Meeker, H Cliff; Kim, Bo Sook; Park, Seung Yong; Schuller-Levis, Georgia; Park, Eunkyue

    2013-06-01

    Lymphoid organs play an important role in prion disease development and progression. While the role of lymphoid organs and changes in immune-related genes have been extensively investigated in scrapie-infected animals, innate immunity has not. Previous studies examined lymphocyte function in scrapie-infected C3H/HeJ mice, which exhibit defects in lipopolysaccharide (LPS) response now known to result from a mutation in Toll-like receptor (TLR) 4. We examined immune function in scrapie-infected CD1 mice, which are LPS responders. Lymphocyte proliferation from CD1 mice infected with either 139A or ME7 scrapie was measured in response to concanavalin (Con) A or LPS at 1 and 3 months after infection. Following LPS exposure, mice infected 3 months with ME7, but not 139A, demonstrated significantly decreased lymphocyte proliferation compared to controls. After Con A exposure, lymphocyte proliferation in scrapie-infected mice did not differ from controls. Gender-specific comparison of lymphocyte proliferation showed significant decreases in mitogenic responses in females infected 3 months with either 139A or ME7, compared to controls. Males infected for 3 months with ME7, but not 139A, showed significantly decreased proliferation after lymphocyte exposure to LPS, but not Con A. Neither gender showed changes in lymphocyte proliferation after 1 month of scrapie infection. Innate immune activation of peritoneal macrophages was determined via production of nitric oxide (NO), IL-6, and TNF-α after exposure to TLR ligands. TNF-α and IL-6 production were reduced in macrophages from females infected with either scrapie strain for 3 months, while NO production after TLR agonist plus IFN-γ exposure was decreased in both females and males infected for 3 months with 139A, compared to ME7. These data demonstrated altered innate immunity, suggesting hormonal and/or other gender-specific regulation may contribute to gender differences in some immune functions. Our data demonstrate

  2. Cloning changes the response to obesity of innate immune factors in blood, liver, and adipose tissues in domestic pigs.

    Science.gov (United States)

    Rødgaard, Tina; Skovgaard, Kerstin; Stagsted, Jan; Heegaard, Peter M H

    2013-06-01

    The objective of this study was to evaluate the usefulness of cloned pigs as porcine obesity models reflecting obesity-associated changes in innate immune factor gene expression profiles. Liver and adipose tissue expression of 43 innate immune genes as well as serum concentrations of six immune factors were analyzed in lean and diet-induced obese cloned domestic pigs and compared to normal domestic pigs (obese and lean). The number of genes affected by obesity was lower in cloned animals than in control animals. All genes affected by obesity in adipose tissues of clones were downregulated; both upregulation and downregulation were observed in the controls. Cloning resulted in a less differentiated adipose tissue expression pattern. Finally, the serum concentrations of two acute-phase proteins (APPs), haptoglobin (HP) and orosomucoid (ORM), were increased in obese clones as compared to obese controls as well as lean clones and controls. Generally, the variation in phenotype between individual pigs was not reduced in cloned siblings as compared to normal siblings. Therefore, we conclude that cloning limits both the number of genes responding to obesity as well as the degree of tissue-differentiated gene expression, concomitantly with an increase in APP serum concentrations only seen in cloned, obese pigs. This may suggest that the APP response seen in obese, cloned pigs is a consequence of the characteristic skewed gene response to obesity in cloned pigs, as described in this work. This should be taken into consideration when using cloned animals as models for innate responses to obesity.

  3. DMPD: Peptidoglycan signaling in innate immunity and inflammatory disease. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 15802263 Peptidoglycan signaling in innate immunity and inflammatory disease. McDon...) (.csml) Show Peptidoglycan signaling in innate immunity and inflammatory disease. PubmedID 15802263 Title ...Peptidoglycan signaling in innate immunity and inflammatory disease. Authors McDo

  4. DMPD: An arms race: innate antiviral responses and counteracting viral strategies. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18031256 An arms race: innate antiviral responses and counteracting viral strategie...s. Schroder M, Bowie AG. Biochem Soc Trans. 2007 Dec;35(Pt 6):1512-4. (.png) (.svg) (.html) (.csml) Show An arms race: innate anti...viral responses and counteracting viral strategies. PubmedID 18031256 Title An arms race: innate anti

  5. Functional differences between human NKp44- and NKp44+ RORC+ innate lymphoid cells

    NARCIS (Netherlands)

    K. Hoorweg (Kerim); C.P. Peters (Charlotte); F.H.J. Cornelissen (Ferry); P. Aparicio-Domingo (Patricia); N. Papazian (Natalie); G. Kazemier (Geert); J.M. Mjösberg (Jenny); H. Spits (Hergen); T. Cupedo (Tom)

    2012-01-01

    textabstractHuman RORC+ lymphoid tissue inducer cells are part of a rapidly expanding family of innate lymphoid cells (ILC) that participate in innate and adaptive immune responses as well as in lymphoid tissue (re) modeling. The assessment of a potential role for innate lymphocyte-derived cytokines

  6. DMPD: Innate immune responses: crosstalk of signaling and regulation of genetranscription. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 16753195 Innate immune responses: crosstalk of signaling and regulation of genetran...l) (.csml) Show Innate immune responses: crosstalk of signaling and regulation of genetranscription. PubmedI...D 16753195 Title Innate immune responses: crosstalk of signaling and regulation o

  7. Unravelling the nature of non-specific effects of vaccines-A challenge for innate immunologists

    DEFF Research Database (Denmark)

    Jensen, Kristoffer Jarlov; Benn, Christine Stabell; van Crevel, Reinout

    2016-01-01

    ) of vaccines, including heterologous T-cell reactivity and innate immune memory or 'trained innate immunity', which involves epigenetic reprogramming of innate immune cells. Here, we review the epidemiological evidence for NSE as well as human, animal and in vitro immunological data that could explain...

  8. DMPD: Triggering the innate antiviral response through IRF-3 activation. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17395583 Triggering the innate antiviral response through IRF-3 activation. Hiscott...g the innate antiviral response through IRF-3 activation. PubmedID 17395583 Title Triggering the innate anti...viral response through IRF-3 activation. Authors Hiscott J. Publication J Biol Ch

  9. The role of dendritic cell subsets and innate immunity in the pathogenesis of type 1 diabetes and other autoimmune diseases

    OpenAIRE

    Price, Jeffrey D; Tarbell, Kristin V.

    2015-01-01

    Dendritic cells (DCs) are key antigen presenting cells that have an important role in autoimmune pathogenesis. DCs control both steady-state T cell tolerance and activation of pathogenic responses. The balance between these two outcomes depends on several factors, including genetic susceptibility, environmental signals that stimulate varied innate responses, and which DC subset is presenting antigen. Although the specific DC phenotype can diverge depending on the tissue location and context, ...

  10. The Role of Dendritic Cell Subsets and Innate Immunity in the Pathogenesis of Type 1 Diabetes and Other Autoimmune Diseases

    OpenAIRE

    Price, Jeffrey D; Tarbell, Kristin V.

    2015-01-01

    Dendritic cells (DCs) are key antigen-presenting cells that have an important role in autoimmune pathogenesis. DCs control both steady-state T cell tolerance and activation of pathogenic responses. The balance between these two outcomes depends on several factors, including genetic susceptibility, environmental signals that stimulate varied innate responses, and which DC subset is presenting antigen. Although the specific DC phenotype can diverge depending on the tissue location and context, ...

  11. Polymorphisms in innate immunity genes and lung cancer risk in Xuanwei, China

    Energy Technology Data Exchange (ETDEWEB)

    Shen, M.; Vermeulen, R.; Rajaraman, P.; Menashe, I.; He, X.Z.; Chapman, R.S.; Yeager, M.; Thomas, G.; Burdett, L.; Hutchinson, A.; Yuenger, J.; Chanock, S.; Lan, Q. [NCI, Bethesda, MD (United States)

    2009-05-15

    The high incidence of lung cancer in Xuanwei County, China has been attributed to exposure to indoor smoky coal emissions that contain polycyclic aromatic hydrocarbons (PAHs). The inflammatory response induced by coal smoke components may promote lung tumor development. We studied the association between single nucleotide polymorphisms (SNPs) in genes involved in innate immunity and lung cancer risk in a population-based case-control study (122 cases and 122 controls) in Xuanwei. A total of 1,360 tag SNPs in 149 gene regions were included in the analysis. FCER2 rs7249320 was the most significant SNP (OR: 0.30; 95% Cl: 0.16-0.55; P: 0.0001; false discovery rate value, 0.13) for variant carriers. The gene regions ALOX12B/ALOX15B and KLK2 were associated with increased lung cancer risk globally (false discovery rate value < 0.15). In addition, there were positive interactions between KLK15 rs3745523 and smoky coal use (OR: 9.40; P-interaction = 0.07) and between FCER2 rs7249320 and KLK2 rs2739476 (OR: 10.77; P-interaction = 0.003). Our results suggest that genetic polymorphisms in innate immunity genes may play a role in the genesis of lung cancer caused by PAH-containing coal smoke. Integrin/receptor and complement pathways as well as IgE regulation are particularly noteworthy.

  12. Innate immunity drives the initiation of a murine model of primary biliary cirrhosis.

    Directory of Open Access Journals (Sweden)

    Chao-Hsuan Chang

    Full Text Available Invariant natural killer T (iNKT cells play complex roles in bridging innate and adaptive immunity by engaging with glycolipid antigens presented by CD1d. Our earlier work suggested that iNKT cells were involved in the initiation of the original loss of tolerance in primary biliary cirrhosis (PBC. To address this issue in more detail and, in particular, to focus on whether iNKT cells activated by a Th2-biasing agonist (2s,3s,4r-1-O-(α-D-galactopyranosyl-N-tetracosanoyl-2-amino-1,3,4-nonanetriol (OCH, can influence the development of PBC in a xenobiotic-induced PBC murine model. Groups of mice were treated with either OCH or, as a control, α-galactosylceramide (α-GalCer and thence serially followed for cytokine production, markers of T cell activation, liver histopathology and anti-mitochondrial antibody responses. Further, additional groups of CD1d deleted mice were similarly studied. Our data indicate that administration of OCH has a dramatic influence with exacerbation of portal inflammation and hepatic fibrosis similar to mice treated with α-GalCer. Further, iNKT cell deficient CD1d knockout mice have decreased inflammatory portal cell infiltrates and reduced anti-mitochondrial antibody responses. We submit that activation of iNKT cells can occur via overlapping and/or promiscuous pathways and highlight the critical role of innate immunity in the natural history of autoimmune cholangitis. These data have implications for humans with PBC and emphasize that therapeutic strategies must focus not only on suppressing adaptive responses, but also innate immunity.

  13. Effect of Oral Administration of Enterococcus faecium Ef1 on Innate Immunity of Sucking Piglets

    Directory of Open Access Journals (Sweden)

    Wei-fen Li, Yi Huang§, Ya-li Li, Qin Huang, Zhi-wen Cui, Dong-you Yu, Imran R. Rajput and Cai-hong Hu*

    2013-01-01

    Full Text Available The objective of this study was to evaluate the effect of orally administered Enterococcus faecium EF1 on innate immune responses of jejunal mucosa in newborn piglets. Twenty-four commercial crossbred healthy newborn piglets were randomly divided into two groups, control (T0 and treatment (T1 group. Each group consists of 12 piglets. T1 was administered sterilized skim milk 2 ml piglet-1 day-1 with addition of E. faecium EF1 (5~6×108 cfu/ml by oral gavage on alternative odd days (1st, 3rd and 5th after birth. T0 fed with the same volume of sterilized skim milk without probiotics. The merciful killing of piglets at the 25th day after birth was performed to collect the samples of jejunal mucosa to measure the innate cytokine responses and the Toll-like receptors gene expression by quantitative real time PCR. The results showed that TGF-β1 and TNF-α concentrations increased and mRNA expression levels also improved significantly in T1 as compared to T0. While, the production of IFN-γ and IL-8 decreased significantly in T1 and gene expression modification was not observed. In addition, TLR (Toll-like receptor 2 and TLR 9 transcription levels were up-regulated in treatment (T1 group. These findings revealed that oral administration of E. faecium EF1 was effective to activate innate immunity and could modulate the TLRs expression in jejunal mucosa of piglets.

  14. Positive and negative innate immune responses in zebrafish under light emitting diodes conditions.

    Science.gov (United States)

    Zheng, Jia-Lang; Yuan, Shuang-Shuang; Li, Wei-Ye; Wu, Chang-Wen

    2016-09-01

    Certain light emitting diodes (LEDs) have become popular in fish farming beacause of a promoting effect on growth and reproduction. However, little information is available on innate immune responses in related tissues under LEDs conditions. The present study assessed the effects of a white fluorescent bulb (the control) and two different light-emitting diodes (LEDs: blue, LDB, peak at 450 nm; red, LDR, 630 nm) on growth and innate immune responses in the serum, liver and ovary of zebrafish for 8 weeks. LDB significantly enhanced specific growth rate (SGR), food intake (FI), and serum globulin levels. In contrast, LDR sharply inhibited SGR, FI, and the levels of albumin and globulin. Under LDB condition, there was an increase in protein levels of alkaline phophatase (AKP) and protein and activity levels of lysozyme (LZM) in the liver, and the levels of mRNA, protein, and activity of LZM in the ovary. Under LDR condition, LZM was dramatically down-regulated at mRNA, protein and activity levels in the ovary, suggesting that LZM was regulated at a transcriptional level. In the liver of the LDR group, though AKP mRNA levels sharply increased, its protein and activity levels significantly declined, indicating that AKP was regulated at translational level. Furthermore, a positive correlation between transcription factor NF-κB RelA mRNA levels and expression levels of AKP and LZM was observed in the liver and ovary, implying a transcriptional regulation of NF-κB RelA. In conclusion, the present study demonstrated a positive effect of LDB and negative effect of LDR on fish growth and innate immune responses, possibly associated with modifications at transcriptional, translational, and post-translational levels, and the transcriptional regulation of the NF-κB signaling molecule.

  15. Attack, parry and riposte: molecular fencing between the innate immune system and human herpesviruses.

    Science.gov (United States)

    Le-Trilling, V T K; Trilling, M

    2015-07-01

    Once individuals acquire one of the eight human-pathogenic herpesviruses, the upcoming relationship is predefined to last lifelong. Despite the fact that acute phases of herpesviral replication are usually confined and controlled by a concerted action of all branches of the healthy immune system, sterile immunity is never reached. To accomplish this, herpesviruses evolved the unique ability to outlast episodes of efficient immunity in a dormant state called latency and a remarkable array of immune antagonists which counteract most (if not all) relevant aspects of intrinsic, innate and adaptive immune responses. Certain psychological and physiological conditions (such as stress, immuno-suppression or pregnancy) predispose for viral reactivation which can lead to recurrent disease and virus spread. One important pillar of immunity is the innate immune system. The leading cytokines of the innate immune response are interferons (IFN). IFNs reinforce intrinsic immunity, induce a cell-intrinsic antiviral state and recruit and orchestrate adaptive immunity. Consistently, individuals lacking a functional IFN system suffer from otherwise harmless opportunists and live-attenuated vaccines. The selective pressure elicited by IFNs drove herpesviruses to evolve numerous IFN antagonistic gene products. A molecular in-depth understanding of (herpes-) viral IFN antagonists might allow the design of novel antiviral drugs which reconstitute IFN responses by blocking the antagonistic function and thereby help the host to help himself. Additionally, virus mutants lacking immune evasins constitute promising candidates for vaccine viruses. Here we summarize the current knowledge on IFN antagonistic strategies of the eight human herpesviruses and try to decipher common strategies.

  16. Innate immunity against moulds: lessons learned from invertebrate models.

    Science.gov (United States)

    Ben-Ami, Ronen

    2011-01-01

    The emergence over the past two decades of invasive mycoses as a significant problem in immunocompromised patients underscores the importance of deciphering innate immunity against filamentous fungi. However, the complexity and cost of traditionally used mammalian model hosts presents a bottleneck that has limited the rate of advances in this field. In contrast, invertebrate model hosts have several important advantages, including simple immune systems, genetic tractability, and amenity to high-throughput experiments. The application of these models to studies of host-pathogen interactions is contingent on two tenets: (1) host innate defenses are preserved across widely disparate taxa, and (2) similar fungal virulence factors are operative in insects and in mammals. Validation of these principles paved the way for the use of invertebrates as facile models for studying invasive mould infections. These studies have helped shape our understanding of human pattern recognition receptors, phagocytic cell function and antimicrobial proteins, and their roles in host defense against filamentous fungi.

  17. Glycoconjugates as elicitors or suppressors of plant innate immunity

    DEFF Research Database (Denmark)

    Silipo, Alba; Erbs, Gitte; Shinya, Tomonori

    2010-01-01

    Innate immunity is the first line of defense against invading microorganisms in vertebrates and the only line of defense in invertebrates and plants. Bacterial glyco-conjugates, such as lipopolysaccharides (LPS) from the outer membrane of Gram-negative bacteria and peptidoglycan (PGN) from the cell...... walls of both Gram-positive and Gram-negative bacteria, and fungal and oomycete glycoconjugates such as oligosaccharides derived from the cell wall components ß-glucan, chitin and chitosan, have been found to act as elicitors of plant innate immunity. These conserved indispensable microbe...... review the current knowledge about the bacterial MAMPs LPS and PGN, the fungal MAMPs ß-glucan, chitin and chitosan oligosaccharides and the bacterial suppressors EPS and cyclic glucan, with particular reference to the chemical structures of these molecules, the PRRs involved in their recognition (where...

  18. [Regulation of innate immunity during xenogenic changes in blood circulation].

    Science.gov (United States)

    Shevchenko, V S

    2001-01-01

    Calcium-dependent innate immune response with participation of the superfamily of immunoglobulins to several intra- and extracorporal xenobiotics were studied at 216 recipients during synthetic cardiac valves implantation or veins transplantation in coronary arteries. It was shown that immediate immune response to xenobiotics was manifested by generation of the antitissue anodical autoprecipitin with specificity to the surface cell membrane component. This reaction initiated and regulated the subsequent dynamics of the two different fibrinogen autoimmune complexes formation, resulting in development of the immunogenic damages of blood circulation. Correction of these rapid innate immune responses is important for prevention and normalisation of the xenogenic damages of blood circulation during trans- and implantation on the heart impaired with endocarditis or aterosclerosis.

  19. Review: Gp-340/DMBT1 in mucosal innate immunity

    DEFF Research Database (Denmark)

    Madsen, Jens; Mollenhauer, Jan; Holmskov, Uffe

    2010-01-01

    Deleted in Malignant Brain Tumour 1 (DMBT1) is a gene that encodes alternatively spliced proteins involved in mucosal innate immunity. It also encodes a glycoprotein with a molecular mass of 340 kDa, and is referred to as gp-340 (DMBT1(gp340)) and salivary agglutinin (DMBT1(SAG)). DMBT1(gp340...... proteins, including serum and secretory IgA, C1q, lactoferrin, MUC5B and trefoil factor 2 (TFF2), all molecules with involvement in innate immunity and/or wound-healing processes. Recent generation of Dmbt1-deficient mice has provided the research field of DMBT1 with a model that allows research...... to progress from in vitro studies to in vivo functional studies of the multifunctional proteins encoded by the DMBT1 gene....

  20. Sublethal Heavy Metal Stress Stimulates Innate Immunity in Tomato

    Directory of Open Access Journals (Sweden)

    Nilanjan Chakraborty

    2015-01-01

    Full Text Available Effect of sublethal heavy metal stress as plant biotic elicitor for triggering innate immunity in tomato plant was investigated. Copper in in vivo condition induced accumulation of defense enzymes like peroxidase (PO, polyphenol oxidase (PPO, phenylalanine ammonia-lyase (PAL, and β-1,3 glucanase along with higher accumulation of total phenol, antioxidative enzymes (catalase and ascorbate peroxidase, and total chlorophyll content. Furthermore, the treatment also induced nitric oxide (NO production which was confirmed by realtime visualization of NO burst using a fluorescent probe 4,5-diaminofluorescein diacetate (DAF-2DA and spectrophotometric analysis. The result suggested that the sublethal dose of heavy metal can induce an array of plant defense responses that lead to the improvement of innate immunity in plants.

  1. Innate immune programming by endotoxin and its pathological consequences

    Directory of Open Access Journals (Sweden)

    Matt eMorris

    2015-01-01

    Full Text Available Monocytes and macrophages play pivotal roles in inflammation and homeostasis. Recent studies suggest dynamic programming of macrophages and monocytes may give rise to distinct memory states. Lipopolysaccharide (LPS, a classical pattern recognition molecule, dynamically programs innate immune responses. Emerging studies have revealed complex dynamics of cellular responses to LPS, with high doses causing acute, resolving inflammation, while lower doses are associated with low-grade and chronic non-resolving inflammation. These phenomena hints at dynamic complexities of intra-cellular signaling circuits downstream of the Toll-like-receptor 4 (TLR4. In this review, we examine pathological effects of varying LPS doses with respect to the dynamics of innate immune responses and key molecular regulatory circuits responsible for these effects.

  2. Regulation of antiviral innate immunity by deubiquitinase CYLD

    Institute of Scientific and Technical Information of China (English)

    Minying Zhang; Andrew J Lee; Xuefeng Wu; Shao-Cong Sun

    2011-01-01

    An antiviral innate immune response involves induction of type Ⅰ interferons (IFNs) and their subsequent autocrine and paracrine actions,but the underlying regulatory mechanisms are incompletely understood.Here we report that CYLD,a deubiquitinase that specifically digests lysine 63-1inked ubiquitin chains,is required for antiviral host defense.Loss of CYLD renders mice considerably more susceptible to infection by vesicular stomatitis virus (VSV).Consistently,CYLD-deficient dendritic cells are more sensitive to VSV infection.This functional defect was not due to lack of type I IFN production but rather because of attenuated IFN receptor signaling.In the absence of CYLD,IFN-β is ineffective in the induction of antiviral genes and protection of cells from viral infection.These findings establish CYLD as a novel regulator of antiviral innate immunity and suggest a role for CYLD in regulating IFN receptor signaling.

  3. Crosstalk between microbiota, pathogens and the innate immune responses.

    Science.gov (United States)

    Günther, Claudia; Josenhans, Christine; Wehkamp, Jan

    2016-08-01

    Research in the last decade has convincingly demonstrated that the microbiota is crucial in order to prime and orchestrate innate and adaptive immune responses of their host and influence barrier function as well as multiple developmental and metabolic parameters of the host. Reciprocally, host reactions and immune responses instruct the composition of the microbiota. This review summarizes recent evidence from experimental and human studies which supports these arms of mutual relationship and crosstalk between host and resident microbiota, with a focus on innate immune responses in the gut, the role of cell death pathways and antimicrobial peptides. We also provide some recent examples on how dysbiosis and pathogens can act in concert to promote intestinal infection, inflammatory pathologies and cancer. The future perspectives of these combined research efforts include the discovery of protective species within the microbiota and specific traits and factors of microbes that weaken or enforce host intestinal homeostasis.

  4. Select Drosophila glomeruli mediate innate olfactory attraction and aversion.

    Science.gov (United States)

    Semmelhack, Julia L; Wang, Jing W

    2009-05-14

    Fruitflies show robust attraction to food odours, which usually excite several glomeruli. To understand how the representation of such odours leads to behaviour, we used genetic tools to dissect the contribution of each activated glomerulus. Apple cider vinegar triggers robust innate attraction at a relatively low concentration, which activates six glomeruli. By silencing individual glomeruli, here we show that the absence of activity in two glomeruli, DM1 and VA2, markedly reduces attraction. Conversely, when each of these two glomeruli was selectively activated, flies showed as robust an attraction to vinegar as wild-type flies. Notably, a higher concentration of vinegar excites an additional glomerulus and is less attractive to flies. We show that activation of the extra glomerulus is necessary and sufficient to mediate the behavioural switch. Together, these results indicate that individual glomeruli, rather than the entire pattern of active glomeruli, mediate innate behavioural output.

  5. Bilingualism changes children's beliefs about what is innate.

    Science.gov (United States)

    Byers-Heinlein, Krista; Garcia, Bianca

    2015-03-01

    Young children engage in essentialist reasoning about natural kinds, believing that many traits are innately determined. This study investigated whether personal experience with second language acquisition could alter children's essentialist biases. In a switched-at-birth paradigm, 5- and 6-year-old monolingual and simultaneous bilingual children expected that a baby's native language, an animal's vocalizations, and an animal's physical traits would match those of a birth rather than of an adoptive parent. We predicted that sequential bilingual children, who had been exposed to a new language after age 3, would show greater understanding that languages are learned. Surprisingly, sequential bilinguals showed reduced essentialist beliefs about all traits: they were significantly more likely than other children to believe that human language, animal vocalizations, and animal physical traits would be learned through experience rather than innately endowed. These findings suggest that bilingualism in the preschool years can profoundly change children's essentialist biases.

  6. Soluble Host Defense Lectins in Innate Immunity to Influenza Virus

    Directory of Open Access Journals (Sweden)

    Wy Ching Ng

    2012-01-01

    Full Text Available Host defenses against viral infections depend on a complex interplay of innate (nonspecific and adaptive (specific components. In the early stages of infection, innate mechanisms represent the main line of host defense, acting to limit the spread of virus in host tissues prior to the induction of the adaptive immune response. Serum and lung fluids contain a range of lectins capable of recognizing and destroying influenza A viruses (IAV. Herein, we review the mechanisms by which soluble endogenous lectins mediate anti-IAV activity, including their role in modulating IAV-induced inflammation and disease and their potential as prophylactic and/or therapeutic treatments during severe IAV-induced disease.

  7. The role of the innate immune system in granulomatous disorders

    Directory of Open Access Journals (Sweden)

    Helen Josephine Petersen

    2013-05-01

    Full Text Available The dynamic structure of the granuloma serves to protect the body from microbiological challenge. This organised aggregate of immune cells seeks to contain this challenge and protect against dissemination, giving host immune cells a chance to eradicate the threat. A number of systemic diseases are characterised by this specialised inflammatory process and granulomas have been shown to develop at multiple body sites and in various tissues. Central to this process is the macrophage and the arms of the innate immune response. This review seeks to explore how the innate immune response drives this inflammatory process in a contrast of diseases, particularly those with a component of immunodeficiency. By understanding the genes and inflammatory mechanisms behind this specialised immune response, will guide research in in the development of novel therapeutics to combat granulomatous diseases.

  8. Sublethal heavy metal stress stimulates innate immunity in tomato.

    Science.gov (United States)

    Chakraborty, Nilanjan; Chandra, Swarnendu; Acharya, Krishnendu

    2015-01-01

    Effect of sublethal heavy metal stress as plant biotic elicitor for triggering innate immunity in tomato plant was investigated. Copper in in vivo condition induced accumulation of defense enzymes like peroxidase (PO), polyphenol oxidase (PPO), phenylalanine ammonia-lyase (PAL), and β-1,3 glucanase along with higher accumulation of total phenol, antioxidative enzymes (catalase and ascorbate peroxidase), and total chlorophyll content. Furthermore, the treatment also induced nitric oxide (NO) production which was confirmed by realtime visualization of NO burst using a fluorescent probe 4,5-diaminofluorescein diacetate (DAF-2DA) and spectrophotometric analysis. The result suggested that the sublethal dose of heavy metal can induce an array of plant defense responses that lead to the improvement of innate immunity in plants.

  9. Innate and adaptive immunity in inflammatory bowel disease

    Institute of Scientific and Technical Information of China (English)

    Britta Siegmund; Martin Zeitz

    2011-01-01

    Inflammatory bowel diseases are the consequence of a dysregulated mucosal immune system. The mucosal immune system consists of two arms, innate and adaptive immunity, that have been studied separately for a long time. Functional studies from in vivo models of intestinal inflammation as well as results from genome-wide association studies strongly suggest a cross-regulation of both arms. The present review will illustrate this interaction by selecting examples from innate immunity and adaptive immunity, and their direct impact on each other. Broadening our view by focusing on the cross-regulated areas of the mucosal immune system will not only facilitate our understanding of disease, but furthermore will allow identification of future therapeutic targets.

  10. Innate and adaptive immunity in inflammatory bowel disease

    Institute of Scientific and Technical Information of China (English)

    BrittaSiegmund; MartinZeitz

    2011-01-01

    Inflammatory bowel diseases are the consequence of a dysregulated mucosal immune system. The mucosal immune system consists of two arms, innate and adaptive immunity, that have been studied separately for a long time. Functional studies from in vivo models of intestinal inflammation as well as results from genome-wide association studies strongly suggest a crossregulation of both arms. The present review will illustrate this interaction by selecting examples from innate immunity and adaptive immunity, and their direct impact on each other. Broadening our view by focusing on the cross-regulated areas of the mucosal immune system will not only facilitate our understanding of disease, but furthermore will allow identification of future therapeutic targets.

  11. Functional genomics studies on the innate immunity of disease vectors

    Institute of Scientific and Technical Information of China (English)

    Luke A. Baton; Lindsey Garver; Zhiyong Xi; George Dimopoulos

    2008-01-01

    The increasing availability of genome sequences and the development of high-throughput techniques for gene expression profiling and functional characterization are transforming the study of innate immunity and other areas of insect biology. Already,functional genomic approaches have enabled a quantum advance in the characterization of mosquito immune responses to malaria parasite infection, and similar high-throughput functional genomic studies of other vector-pathogen interactions can be expected in the near future. The application of microarray-based and other expression analyses provide genomewide transcriptional profiles that can be used to identify insect immune system components that are differentially regulated upon exposure to various classes of pathogens, including many important etiologic agents of human and animal diseases. The role of infection-responsive or other candidate immune genes identified through comparative genomic approaches can then be functionally characterized, either in vivo, for instance in adult mosquitoes, or in vitro using cell lines. In most insect vectors of human pathogens, germ-line transgenesis is still technically difficult and maintenance of multiple transgenic lines logistically demanding.Consequently, transient RNA interference (RNAi)-mediated gene-silencing has rapidly become the method of choice for functional characterization of candidate innate immune genes. The powerful combination of transcriptional profiling in conjunction with assays using RNAi to determine gene function, and identify regulatory pathways, together with downstream cell biological approaches to determine protein localization and interactions,will continue to provide novel insights into the role of insect innate immunity in a variety of vector-pathogen interactions. Here we review advances in functional genomics studies of innate immunity in the insect disease vectors, over the past decade, with a particular focus on the Anopheles mosquito and its

  12. Regulation of hepatic innate immunity by hepatitis C virus

    OpenAIRE

    Stacy M Horner; Gale, Michael

    2013-01-01

    Hepatitis C virus (HCV) is a global public health problem involving chronic infection of the liver in over 170 million people. Chronic HCV causes liver disease and is linked with liver cancer. Viral innate immune evasion strategies and human genetic determinants underlie the transition of acute HCV infection to viral persistence and the support of chronic infection. Host genetic factors, such as sequence polymorphisms in IFNL3, a gene in the host interferon system, can influence both the outc...

  13. Plasmodium activates the innate immune response of Anopheles gambiae mosquitoes.

    OpenAIRE

    Richman, A M; Dimopoulos, G; Seeley, D; Kafatos, F C

    1997-01-01

    Innate immune-related gene expression in the major disease vector mosquito Anopheles gambiae has been analyzed following infection by the malaria parasite, Plasmodium berghei. Substantially increased levels of mRNAs encoding the antibacterial peptide defensin and a putative Gram-negative bacteria-binding protein (GNBP) are observed 20-30 h after ingestion of an infected blood-meal, at a time which indicates that this induction is a response to parasite invasion of the midgut epithelium. The i...

  14. Creationism and innatism of teachers in 26 countries

    OpenAIRE

    2012-01-01

    International audience; Analyzing teachers' conceptions in 26 countries, our work identifies correlations between beliefs in creationism and in innatism, as well as correlations with strong believing in God, practising religion and some political opinions (anti-secularism, for a strong central power). We used the questionnaire validated in the BIOHEAD-Citizen project and we added to the data collected by this project (in 18 countries) those then collected in 8 other countries. The sampling is...

  15. Cell walls of Saccharomyces cerevisiae differentially modulated innate immunity and glucose metabolism during late systemic inflammation.

    Directory of Open Access Journals (Sweden)

    Bushansingh Baurhoo

    Full Text Available BACKGROUND: Salmonella causes acute systemic inflammation by using its virulence factors to invade the intestinal epithelium. But, prolonged inflammation may provoke severe body catabolism and immunological diseases. Salmonella has become more life-threatening due to emergence of multiple-antibiotic resistant strains. Mannose-rich oligosaccharides (MOS from cells walls of Saccharomyces cerevisiae have shown to bind mannose-specific lectin of Gram-negative bacteria including Salmonella, and prevent their adherence to intestinal epithelial cells. However, whether MOS may potentially mitigate systemic inflammation is not investigated yet. Moreover, molecular events underlying innate immune responses and metabolic activities during late inflammation, in presence or absence of MOS, are unknown. METHODS AND PRINCIPAL FINDINGS: Using a Salmonella LPS-induced systemic inflammation chicken model and microarray analysis, we investigated the effects of MOS and virginiamycin (VIRG, a sub-therapeutic antibiotic on innate immunity and glucose metabolism during late inflammation. Here, we demonstrate that MOS and VIRG modulated innate immunity and metabolic genes differently. Innate immune responses were principally mediated by intestinal IL-3, but not TNF-α, IL-1 or IL-6, whereas glucose mobilization occurred through intestinal gluconeogenesis only. MOS inherently induced IL-3 expression in control hosts. Consequent to LPS challenge, IL-3 induction in VIRG hosts but not differentially expressed in MOS hosts revealed that MOS counteracted LPS's detrimental inflammatory effects. Metabolic pathways are built to elucidate the mechanisms by which VIRG host's higher energy requirements were met: including gene up-regulations for intestinal gluconeogenesis (PEPCK and liver glycolysis (ENO2, and intriguingly liver fatty acid synthesis through ATP citrate synthase (CS down-regulation and ATP citrate lyase (ACLY and malic enzyme (ME up-regulations. However, MOS host

  16. Genetic Determinism and the Innate-Acquired Distinction in Medicine.

    Science.gov (United States)

    Kronfeldner, Maria E

    2009-06-01

    This article illustrates in which sense genetic determinism is still part of the contemporary interactionist consensus in medicine. Three dimensions of this consensus are discussed: kinds of causes, a continuum of traits ranging from monogenetic diseases to car accidents, and different kinds of determination due to different norms of reaction. On this basis, this article explicates in which sense the interactionist consensus presupposes the innate-acquired distinction. After a descriptive Part 1, Part 2 reviews why the innate-acquired distinction is under attack in contemporary philosophy of biology. Three arguments are then presented to provide a limited and pragmatic defense of the distinction: an epistemic, a conceptual, and a historical argument. If interpreted in a certain manner, and if the pragmatic goals of prevention and treatment (ideally specifying what medicine and health care is all about) are taken into account, then the innate-acquired distinction can be a useful epistemic tool. It can help, first, to understand that genetic determination does not mean fatalism, and, second, to maintain a system of checks and balances in the continuing nature-nurture debates.

  17. Toward understanding of rice innate immunity against Magnaporthe oryzae.

    Science.gov (United States)

    Azizi, P; Rafii, M Y; Abdullah, S N A; Nejat, N; Maziah, M; Hanafi, M M; Latif, M A; Sahebi, M

    2016-01-01

    The blast fungus, Magnaporthe oryzae, causes serious disease on a wide variety of grasses including rice, wheat and barley. The recognition of pathogens is an amazing ability of plants including strategies for displacing virulence effectors through the adaption of both conserved and variable pathogen elicitors. The pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) and effector-triggered immunity (ETI) were reported as two main innate immune responses in plants, where PTI gives basal resistance and ETI confers durable resistance. The PTI consists of extracellular surface receptors that are able to recognize PAMPs. PAMPs detect microbial features such as fungal chitin that complete a vital function during the organism's life. In contrast, ETI is mediated by intracellular receptor molecules containing nucleotide-binding (NB) and leucine rich repeat (LRR) domains that specifically recognize effector proteins produced by the pathogen. To enhance crop resistance, understanding the host resistance mechanisms against pathogen infection strategies and having a deeper knowledge of innate immunity system are essential. This review summarizes the recent advances on the molecular mechanism of innate immunity systems of rice against M. oryzae. The discussion will be centered on the latest success reported in plant-pathogen interactions and integrated defense responses in rice.

  18. Antimicrobial Peptides as Mediators of Innate Immunity in Teleosts

    Directory of Open Access Journals (Sweden)

    Barbara A. Katzenback

    2015-09-01

    Full Text Available Antimicrobial peptides (AMPs have been identified throughout the metazoa suggesting their evolutionarily conserved nature and their presence in teleosts is no exception. AMPs are short (18–46 amino acids, usually cationic, amphipathic peptides. While AMPs are diverse in amino acid sequence, with no two AMPs being identical, they collectively appear to have conserved functions in the innate immunity of animals towards the pathogens they encounter in their environment. Fish AMPs are upregulated in response to pathogens and appear to have direct broad-spectrum antimicrobial activity towards both human and fish pathogens. However, an emerging role for AMPs as immunomodulatory molecules has become apparent—the ability of AMPs to activate the innate immune system sheds light onto the multifaceted capacity of these small peptides to combat pathogens through direct and indirect means. Herein, this review focuses on the role of teleost AMPs as modulators of the innate immune system and their regulation in response to pathogens or other exogenous molecules. The capacity to regulate AMP expression by exogenous factors may prove useful in modulating AMP expression in fish to prevent disease, particularly in aquaculture settings where crowded conditions and environmental stress pre-dispose these fish to infection.

  19. Innate immune recognition and activation during HIV infection

    Directory of Open Access Journals (Sweden)

    Larsen Carsten S

    2010-06-01

    Full Text Available Abstract The pathogenesis of HIV infection, and in particular the development of immunodeficiency, remains incompletely understood. Whichever intricate molecular mechanisms are at play between HIV and the host, it is evident that the organism is incapable of restricting and eradicating the invading pathogen. Both innate and adaptive immune responses are raised, but they appear to be insufficient or too late to eliminate the virus. Moreover, the picture is complicated by the fact that the very same cells and responses aimed at eliminating the virus seem to play deleterious roles by driving ongoing immune activation and progressive immunodeficiency. Whereas much knowledge exists on the role of adaptive immunity during HIV infection, it has only recently been appreciated that the innate immune response also plays an important part in HIV pathogenesis. In this review, we present current knowledge on innate immune recognition and activation during HIV infection based on studies in cell culture, non-human primates, and HIV-infected individuals, and discuss the implications for the understanding of HIV immunopathogenesis.

  20. Plant scents modify innate colour preference in foraging swallowtail butterflies

    Science.gov (United States)

    Yoshida, Mina; Itoh, Yuki; Ômura, Hisashi; Arikawa, Kentaro; Kinoshita, Michiyo

    2015-01-01

    Flower-visiting insects exhibit innate preferences for particular colours. A previous study demonstrated that naive Papilio xuthus females prefer yellow and red, whereas males are more attracted to blue. Here, we demonstrate that the innate colour preference can be modified by olfactory stimuli in a sexually dimorphic manner. Naive P. xuthus were presented with four coloured discs: blue, green, yellow and red. The innate colour preference (i.e. the colour first landed on) of the majority of individuals was blue. When scent from essential oils of either orange flower or lily was introduced to the room, females’ tendency to select the red disc increased. Scents of lavender and flowering potted Hibiscus rosa-sinensis, however, were less effective. Interestingly, the odour of the non-flowering larval host plant, Citrus unshiu, shifted the preference to green in females. In males, however, all plant scents were less effective than in females, such that blue was always the most favoured colour. These observations indicate that interactions between visual and olfactory cues play a more prominent role in females. PMID:26179802

  1. Hepatitis C, Innate Immunity and Alcohol: Friends or Foes?

    Directory of Open Access Journals (Sweden)

    Natalia A. Osna

    2015-02-01

    Full Text Available Hepatitis C and alcohol are the most widespread causes of liver disease worldwide. Approximately 80% of patients with a history of hepatitis C and alcohol abuse develop chronic liver injury. Alcohol consumption in hepatitis C virus (HCV-infected patients exacerbates liver disease leading to rapid progression of fibrosis, cirrhosis and even hepatocellular carcinoma. Hepatocytes are the main sites of HCV-infection and ethanol metabolism, both of which generate oxidative stress. Oxidative stress levels affect HCV replication and innate immunity, resulting in a greater susceptibility for HCV-infection and virus spread in the alcoholic patients. In this review paper, we analyze the effects of ethanol metabolism and other factors on HCV replication. In addition, we illustrate the mechanisms of how HCV hijacks innate immunity and how ethanol exposure regulates this process. We also clarify the effects of HCV and ethanol metabolism on interferon signaling—a crucial point for activation of anti-viral genes to protect cells from virus—and the role that HCV- and ethanol-induced impairments play in adaptive immunity which is necessary for recognition of virally-infected hepatocytes. In conclusion, ethanol exposure potentiates the suppressive effects of HCV on innate immunity, which activates viral spread in the liver and finally, leads to impairments in adaptive immunity. The dysregulation of immune response results in impaired elimination of HCV-infected cells, viral persistence, progressive liver damage and establishment of chronic infection that worsens the outcomes of chronic hepatitis C in alcoholic patients.

  2. Lipoglycans contribute to innate immune detection of mycobacteria.

    Directory of Open Access Journals (Sweden)

    Shyam Krishna

    Full Text Available Innate immune recognition is based on the detection, by pattern recognition receptors (PRRs, of molecular structures that are unique to microorganisms. Lipoglycans are macromolecules specific to the cell envelope of mycobacteria and related genera. They have been described to be ligands, as purified molecules, of several PRRs, including the C-type lectins Mannose Receptor and DC-SIGN, as well as TLR2. However, whether they are really sensed by these receptors in the context of a bacterium infection remains unclear. To address this question, we used the model organism Mycobacterium smegmatis to generate mutants altered for the production of lipoglycans. Since their biosynthesis cannot be fully abrogated, we manipulated the biosynthesis pathway of GDP-Mannose to obtain some strains with either augmented (∼1.7 fold or reduced (∼2 fold production of lipoglycans. Interestingly, infection experiments demonstrated a direct correlation between the amount of lipoglycans in the bacterial cell envelope on one hand and the magnitude of innate immune signaling in TLR2 reporter cells, monocyte/macrophage THP-1 cell line and human dendritic cells, as revealed by NF-κB activation and IL-8 production, on the other hand. These data establish that lipoglycans are bona fide Microbe-Associated Molecular Patterns contributing to innate immune detection of mycobacteria, via TLR2 among other PRRs.

  3. The microglial "activation" continuum: from innate to adaptive responses

    Directory of Open Access Journals (Sweden)

    Nikolic Veljko

    2005-10-01

    Full Text Available Abstract Microglia are innate immune cells of myeloid origin that take up residence in the central nervous system (CNS during embryogenesis. While classically regarded as macrophage-like cells, it is becoming increasingly clear that reactive microglia play more diverse roles in the CNS. Microglial "activation" is often used to refer to a single phenotype; however, in this review we consider that a continuum of microglial activation exists, with phagocytic response (innate activation at one end and antigen presenting cell function (adaptive activation at the other. Where activated microglia fall in this spectrum seems to be highly dependent on the type of stimulation provided. We begin by addressing the classical roles of peripheral innate immune cells including macrophages and dendritic cells, which seem to define the edges of this continuum. We then discuss various types of microglial stimulation, including Toll-like receptor engagement by pathogen-associated molecular patterns, microglial challenge with myelin epitopes or Alzheimer's β-amyloid in the presence or absence of CD40L co-stimulation, and Alzheimer disease "immunotherapy". Based on the wide spectrum of stimulus-specific microglial responses, we interpret these cells as immune cells that demonstrate remarkable plasticity following activation. This interpretation has relevance for neurodegenerative/neuroinflammatory diseases where reactive microglia play an etiological role; in particular viral/bacterial encephalitis, multiple sclerosis and Alzheimer disease.

  4. Toll-like receptors in invertebrate innate immunity

    Directory of Open Access Journals (Sweden)

    L Zheng

    2005-08-01

    Full Text Available Among invertebrates, innate immunity is the only defense mechanism against harmful non-self agents.In response to recognition of microbial pattern molecules, Drosophila melanogaster activates either theToll or Imd pathway, leading to the translocation of NF-kB (or Rel transcription factors from the cytoplasmto the nucleus and the subsequent production of antimicrobial peptides, which provide systemic innateimmunity. Toll-like receptors (TLRs are characterized by an extracellular leucine rich repeat (LRRdomain and an intracellular Toll/interleukin-1 receptor (TIR domain. TLRs are found from cnidarians tomammals. Here we argue that TLR mediated innate immunity developed during an early stage ofevolution when organisms acquired a body cavity. This is supported by the distributions of TLR and Relgenes in the animal kingdom. Further, TLR mediated immunity appears to have developed independentlyin invertebrates and vertebrates. Recent studies have shown that microbial molecules, with the potentialto signal through TLR, can be beneficial to host survival. Studies on this signaling pathway could opendoors to a better understanding of the origins of innate immunity in invertebrates and potentialtransmission blocking strategies aimed at ameliorating vector-borne diseases.

  5. Antimicrobial Peptides as Mediators of Innate Immunity in Teleosts.

    Science.gov (United States)

    Katzenback, Barbara A

    2015-09-25

    Antimicrobial peptides (AMPs) have been identified throughout the metazoa suggesting their evolutionarily conserved nature and their presence in teleosts is no exception. AMPs are short (18-46 amino acids), usually cationic, amphipathic peptides. While AMPs are diverse in amino acid sequence, with no two AMPs being identical, they collectively appear to have conserved functions in the innate immunity of animals towards the pathogens they encounter in their environment. Fish AMPs are upregulated in response to pathogens and appear to have direct broad-spectrum antimicrobial activity towards both human and fish pathogens. However, an emerging role for AMPs as immunomodulatory molecules has become apparent-the ability of AMPs to activate the innate immune system sheds light onto the multifaceted capacity of these small peptides to combat pathogens through direct and indirect means. Herein, this review focuses on the role of teleost AMPs as modulators of the innate immune system and their regulation in response to pathogens or other exogenous molecules. The capacity to regulate AMP expression by exogenous factors may prove useful in modulating AMP expression in fish to prevent disease, particularly in aquaculture settings where crowded conditions and environmental stress pre-dispose these fish to infection.

  6. The Role of Plasmacytoid Dendritic Cells in Innate and Adaptive Immune Responses against Alpha Herpes Virus Infections

    Directory of Open Access Journals (Sweden)

    Philipp Schuster

    2011-01-01

    Full Text Available In 1999, two independent groups identified plasmacytoid dendritic cells (PDC as major type I interferon- (IFN- producing cells in the blood. Since then, evidence is accumulating that PDC are a multifunctional cell population effectively coordinating innate and adaptive immune responses. This paper focuses on the role of different immune cells and their interactions in the surveillance of alpha herpes virus infections, summarizes current knowledge on PDC surface receptors and their role in direct cell-cell contacts, and develops a risk factor model for the clinical implications of herpes simplex and varicella zoster virus reactivation. Data from studies involving knockout mice and cell-depletion experiments as well as human studies converge into a “spider web”, in which the direct and indirect crosstalk between many cell populations tightly controls acute, latent, and recurrent alpha herpes virus infections. Notably, cells involved in innate immune regulations appear to shape adaptive immune responses more extensively than previously thought.

  7. Polymorphisms in key innate immune genes and their effects on measles vaccine responses and vaccine failure in children from Mozambique.

    Science.gov (United States)

    Clifford, Holly D; Hayden, Catherine M; Khoo, Siew-Kim; Naniche, Denise; Mandomando, Inacio M; Zhang, Guicheng; Richmond, Peter; Le Souëf, Peter N

    2012-09-21

    Despite an effective vaccine, measles remains a major health problem globally, particularly in developing countries. More than 30% of children show primary vaccine failure and therefore remain vulnerable to measles. Genetic variation in key innate pathogen recognition receptors, such as the measles cell entry receptors CD46 and SLAM, measles attachment receptor DC-SIGN, the antiviral toll-like receptors (TLR)3, TLR7 and TLR8, and the cytosolic antiviral receptor RIG-I, may significantly affect measles IgG antibody responses. Measles is still highly prevalent in developing countries such as those in Africa however there is no previous data on the effect of these innate immune genes in a resident African population. Polymorphisms (n=29) in the candidate genes were genotyped in a cohort of vaccinated children (n=238) aged 6 months-14 years from Mozambique, Africa who either had vaccine failure and contracted measles (cases; n=66) or controls (n=172). Contrasting previous associations with measles responses in Caucasians and/or strong evidence for candidacy, we found little indication that these key innate immune genes affect measles IgG responses in our cohort of Mozambican children. We did however identify that CD46 and TLR8 variants may be involved in the occurrence of measles vaccine failure. This study highlights the importance of genetic studies in resident, non-Caucasian populations, from areas where determining the factors that may affect measles control is of a high priority.

  8. Innate invariant NKT cells recognize Mycobacterium tuberculosis-infected macrophages, produce interferon-gamma, and kill intracellular bacteria.

    Directory of Open Access Journals (Sweden)

    Isabel Sada-Ovalle

    2008-12-01

    Full Text Available Cellular immunity to Mycobacterium tuberculosis (Mtb requires a coordinated response between the innate and adaptive arms of the immune system, resulting in a type 1 cytokine response, which is associated with control of infection. The contribution of innate lymphocytes to immunity against Mtb remains controversial. We established an in vitro system to study this question. Interferon-gamma is produced when splenocytes from uninfected mice are cultured with Mtb-infected macrophages, and, under these conditions, bacterial replication is suppressed. This innate control of bacterial replication is dependent on CD1d-restricted invariant NKT (iNKT cells, and their activation requires CD1d expression by infected macrophages as well as IL-12 and IL-18. We show that iNKT cells, even in limiting quantities, are sufficient to restrict Mtb replication. To determine whether iNKT cells contribute to host defense against tuberculosis in vivo, we adoptively transferred iNKT cells into mice. Primary splenic iNKT cells obtained from uninfected mice significantly reduce the bacterial burden in the lungs of mice infected with virulent Mtb by the aerosol route. Thus, iNKT cells have a direct bactericidal effect, even in the absence of synthetic ligands such as alpha-galactosylceramide. Our finding that iNKT cells protect mice against aerosol Mtb infection is the first evidence that CD1d-restricted NKT cells mediate protection against Mtb in vivo.

  9. The effect of iron loading and iron chelation on the innate immune response and subclinical organ injury during human endotoxemia: a randomized trial

    NARCIS (Netherlands)

    Eijk, L.T.G.J. van; Heemskerk, S.; Pluijm, R.W. van der; Wijk, S.M. van; Peters, W.H.M.; Hoeven, J.G. van der; Kox, M.; Swinkels, D.W.; Pickkers, P.

    2014-01-01

    In this double-blind randomized placebo-controlled trial involving 30 healthy male volunteers we investigated the acute effects of iron loading (single dose of 1.25 mg/kg iron sucrose) and iron chelation therapy (single dose of 30 mg/kg deferasirox) on iron parameters, oxidative stress, the innate i

  10. Innate and adaptive immune responses in HCV infections.

    Science.gov (United States)

    Heim, Markus H; Thimme, Robert

    2014-11-01

    Hepatitis C virus has been identified a quarter of a decade ago as a leading cause of chronic viral hepatitis that can lead to cirrhosis and hepatocellular carcinoma. Only a minority of patients can clear the virus spontaneously during acute infection. Elimination of HCV during acute infection correlates with a rapid induction of innate, especially interferon (IFN) induced genes, and a delayed induction of adaptive immune responses. However, the majority of patients is unable to clear the virus and develops viral persistence in face of an ongoing innate and adaptive immune response. The virus has developed several strategies to escape these immune responses. For example, to escape innate immunity, the HCV NS3/4A protease can efficiently cleave and inactivate two important signalling molecules in the sensory pathways that react to HCV pathogen-associated molecular patterns (PAMPs) to induce IFNs, i.e., the mitochondrial anti-viral signalling protein (MAVS) and the Toll-IL-1 receptor-domain-containing adaptor-inducing IFN-β (TRIF). Despite these escape mechanisms, IFN-stimulated genes (ISGs) are induced in a large proportion of patients with chronic infection. Of note, chronically HCV infected patients with constitutive IFN-stimulated gene (ISG) expression have a poor response to treatment with pegylated IFN-α (PegIFN-α) and ribavirin. The mechanisms that protect HCV from IFN-mediated innate immune reactions are not entirely understood, but might involve blockade of ISG protein translation at the ribosome, localization of viral replication to cell compartments that are not accessible to anti-viral IFN-stimulated effector systems, or direct antagonism of effector systems by viral proteins. Escape from adaptive immune responses can be achieved by emergence of viral escape mutations that avoid recognition by antibodies and T cells. In addition, chronic infection is characterized by the presence of functionally and phenotypically altered NK and T cell responses that

  11. Innate immune response in experimentally induced bovine intramammary infection with Staphylococcus simulans and S. epidermidis

    Directory of Open Access Journals (Sweden)

    Simojoki Heli

    2011-03-01

    Full Text Available Abstract Coagulase-negative staphylococci (CNS are in several countries the most common bacteria isolated in subclinical mastitis. To investigate the innate immune response of cows to infections with two common mastitis-causing CNS species, Staphylococcus epidermidis and Staphylococcus simulans, experimental intramammary infection was induced in eight cows using a crossover design. The milk somatic cell count (SCC, N-acetyl-β-D-glucosaminidase (NAGase activity, milk amyloid A (MAA, serum amyloid A (SAA and proinflammatory cytokines interleukin (IL-1β, IL-8, and tumor necrosis factor α (TNF-α were determined at several time points before and after challenge. All cows became infected and showed mild to moderate clinical signs of mastitis. The spontaneous elimination rate of the 16 infections was 31.3%, with no difference between species. Infections triggered a local cytokine response in the experimental udder quarters, but cytokines were not detected in the uninfected control quarters or in systemic circulation. The innate local immune response for S. simulans was slightly stronger, with significantly higher concentrations of IL-1β and IL-8. The IL-8 response could be divided into early, delayed, or combined types of response. The CNS species or persistency of infection was not associated with the type of IL-8 response. No significant differences were seen between spontaneously eliminated or persistent infections.

  12. The cell surface receptor Slamf6 modulates innate immune responses during Citrobacter rodentium-induced colitis.

    Science.gov (United States)

    van Driel, Boaz; Wang, Guoxing; Liao, Gongxian; Halibozek, Peter J; Keszei, Marton; O'Keeffe, Michael S; Bhan, Atul K; Wang, Ninghai; Terhorst, Cox

    2015-09-01

    The homophilic cell surface receptors CD150 (Slamf1) and CD352 (Slamf6) are known to modulate adaptive immune responses. Although the Th17 response was enhanced in Slamf6(-/-) C57BL/6 mice upon oral infection with Citrobacter rodentium, the pathologic consequences are indistinguishable from an infection of wild-type C57BL/6 mice. Using a reporter-based binding assay, we show that Slamf6 can engage structures on the outer cell membrane of several Gram(-) bacteria. Therefore, we examined whether Slamf6, like Slamf1, is also involved in innate responses to bacteria and regulates peripheral inflammation by assessing the outcome of C. rodentium infections in Rag(-/-) mice. Surprisingly, the pathology and immune responses in the lamina propria of C. rodentium-infected Slamf6(-/-) Rag(-/-) mice were markedly reduced as compared with those of Rag(-/-) mice. Infiltration of inflammatory phagocytes into the lamina propria was consistently lower in Slamf6(-/-) Rag(-/-) mice than in Rag(-/-) animals. Concomitant with the reduced systemic translocation of the bacteria was an enhanced production of IL-22, suggesting that Slamf6 suppresses a mucosal protective program. Furthermore, administering a mAb (330) that inhibits bacterial interactions with Slamf6 to Rag(-/-) mice ameliorated the infection compared with a control antibody. We conclude that Slamf6-mediated interactions of colonic innate immune cells with specific Gram(-) bacteria reduce mucosal protection and enhance inflammation, contributing to lethal colitis that is caused by C. rodentium infections in Rag(-/-) mice.

  13. Activation of unfolded protein response and autophagy during HCV infection modulates innate immune response.

    Science.gov (United States)

    Estrabaud, Emilie; De Muynck, Simon; Asselah, Tarik

    2011-11-01

    Autophagy, a process for catabolizing cytoplasmic components, has been implicated in the modulation of interactions between RNA viruses and their host. However, the mechanism underlying the functional role of autophagy in the viral life cycle still remains unclear. Hepatitis C virus (HCV) is a single-stranded, positive-sense, membrane-enveloped RNA virus that can cause chronic liver disease. Here we report that HCV induces the unfolded protein response (UPR), which in turn activates the autophagic pathway to promote HCV RNA replication in human hepatoma cells. Further analysis revealed that the entire autophagic process through to complete autolysosome maturation was required to promote HCV RNA replication and that it did so by suppressing innate antiviral immunity. Gene silencing or activation of the UPR-autophagy pathway activated or repressed, respectively, IFN-β activation mediated by an HCV-derived pathogen-associated molecular pattern (PAMP). Similar results were achieved with a PAMP derived from Dengue virus (DEV), indicating that HCV and DEV may both exploit the UPR-autophagy pathway to escape the innate immune response. Taken together, these results not only define the physiological significance of HCV-induced autophagy, but also shed light on the knowledge of host cellular responses upon HCV infection as well as on exploration of therapeutic targets for controlling HCV infection.

  14. Can We Translate Vitamin D Immunomodulating Effect on Innate and Adaptive Immunity to Vaccine Response?

    Directory of Open Access Journals (Sweden)

    Pierre Olivier Lang

    2015-03-01

    Full Text Available Vitamin D (VitD, which is well known for its classic role in the maintenance of bone mineral density, has now become increasingly studied for its extra-skeletal roles. It has an important influence on the body’s immune system and modulates both innate and adaptive immunity and regulates the inflammatory cascade. In this review our aim was to describe how VitD might influence immune responsiveness and its potential modulating role in vaccine immunogenicity. In the first instance, we consider the literature that may provide molecular and genetic support to the idea that VitD status may be related to innate and/or adaptive immune response with a particular focus on vaccine immunogenicity and then discuss observational studies and controlled trials of VitD supplementation conducted in humans. Finally, we conclude with some knowledge gaps surrounding VitD and vaccine response, and that it is still premature to recommend “booster” of VitD at vaccination time to enhance vaccine response.

  15. TRPV1 Antagonism by Capsazepine Modulates Innate Immune Response in Mice Infected with Plasmodium berghei ANKA

    Directory of Open Access Journals (Sweden)

    Elizabeth S. Fernandes

    2014-01-01

    Full Text Available Thousands of people suffer from severe malaria every year. The innate immune response plays a determinant role in host’s defence to malaria. Transient receptor potential vanilloid 1 (TRPV1 modulates macrophage-mediated responses in sepsis, but its role in other pathogenic diseases has never been addressed. We investigated the effects of capsazepine, a TRPV1 antagonist, in malaria. C57BL/6 mice received 105 red blood cells infected with Plasmodium berghei ANKA intraperitoneally. Noninfected mice were used as controls. Capsazepine or vehicle was given intraperitoneally for 6 days. Mice were culled on day 7 after infection and blood and spleen cell phenotype and activation were evaluated. Capsazepine decreased circulating but not spleen F4/80+Ly6G+ cell numbers as well as activation of both F4/80+and F4/80+Ly6G+ cells in infected animals. In addition, capsazepine increased circulating but not spleen GR1+ and natural killer (NK population, without interfering with natural killer T (NKT cell numbers and blood NK and NKT activation. However, capsazepine diminished CD69 expression in spleen NKT but not NK cells. Infection increased lipid peroxidation and the release of TNFα and IFNγ, although capsazepine-treated group exhibited lower levels of lipid peroxidation and TNFα. Capsazepine treatment did not affect parasitaemia. Overall, TRPV1 antagonism modulates the innate immune response to malaria.

  16. Hemagglutinin from the H5N1 virus activates Janus kinase 3 to dysregulate innate immunity.

    Directory of Open Access Journals (Sweden)

    Wei Xu

    Full Text Available Highly pathogenic avian influenza viruses (HPAIVs cause severe disease in humans. There are no effective vaccines or antiviral therapies currently available to control fatal outbreaks due in part to the lack of understanding of virus-mediated immunopathology. In our study, we used hemagglutinin (HA of H5N1 virus to investigate the related signaling pathways and their relationship to dysregulated innate immune reaction. We found the HA of H5N1 avian influenza triggered an abnormal innate immune signalling in the pulmonary epithelial cells, through an unusual process involving activation of Janus kinase 3 (JAK3 that is exclusively associated with γc chain and is essential for signaling via all γc cytokine receptors. By using a selective JAK3 inhibitor and JAK3 knockout mice, we have, for the first time, demonstrated the ability to target active JAK3 to counteract injury to the lungs and protect immunocytes from acute hypercytokinemia -induced destruction following the challenge of H5N1 HA in vitro and in vivo. On the basis of the present data, it appears that the efficacy of selective JAK3 inhibition is likely based on its ability to block multiple cytokines and protect against a superinflammatory response to pathogen-associated molecular patterns (PAMPs attack. Our findings highlight the potential value of selective JAK3 inhibitor in treating the fatal immunopathology caused by H5N1 challenge.

  17. Role of neutrophils in innate immunity: a systems biology-level approach.

    Science.gov (United States)

    Kobayashi, Scott D; DeLeo, Frank R

    2009-01-01

    The innate immune system is the first line of host defense against invading microorganisms. Polymorphonuclear leukocytes (PMNs or neutrophils) are the most abundant leukocyte in humans and essential to the innate immune response against invading pathogens. Compared with the acquired immune response, which requires time to develop and is dependent on previous interaction with specific microbes, the ability of neutrophils to kill microorganisms is immediate, non-specific, and not dependent on previous exposure to microorganisms. Historically, studies on PMN-pathogen interaction focused on the events leading to killing of microorganisms, such as recruitment/chemotaxis, transmigration, phagocytosis, and activation, whereas post-phagocytosis sequelae were infrequently considered. In addition, it was widely accepted that human neutrophils possessed limited capacity for new gene transcription and thus, relatively little biosynthetic capacity. This notion has changed dramatically within the past decade. Further, there is now more effort directed to understand the events occurring in PMNs after killing of microbes. Herein we review the systems biology-level approaches that have been used to gain an enhanced view of the role of neutrophils during host-pathogen interaction. We anticipate that these and future systems-level studies will ultimately provide information critical to our understanding, treatment, and control of diseases caused by pathogenic microorganisms.

  18. Cationic amino acid transporter 2 enhances innate immunity during Helicobacter pylori infection.

    Directory of Open Access Journals (Sweden)

    Daniel P Barry

    Full Text Available Once acquired, Helicobacter pylori infection is lifelong due to an inadequate innate and adaptive immune response. Our previous studies indicate that interactions among the various pathways of arginine metabolism in the host are critical determinants of outcomes following infection. Cationic amino acid transporter 2 (CAT2 is essential for transport of L-arginine (L-Arg into monocytic immune cells during H. pylori infection. Once within the cell, this amino acid is utilized by opposing pathways that lead to elaboration of either bactericidal nitric oxide (NO produced from inducible NO synthase (iNOS, or hydrogen peroxide, which causes macrophage apoptosis, via arginase and the polyamine pathway. Because of its central role in controlling L-Arg availability in macrophages, we investigated the importance of CAT2 in vivo during H. pylori infection. CAT2(-/- mice infected for 4 months exhibited decreased gastritis and increased levels of colonization compared to wild type mice. We observed suppression of gastric macrophage levels, macrophage expression of iNOS, dendritic cell activation, and expression of granulocyte-colony stimulating factor in CAT2(-/- mice suggesting that CAT2 is involved in enhancing the innate immune response. In addition, cytokine expression in CAT2(-/- mice was altered from an antimicrobial Th1 response to a Th2 response, indicating that the transporter has downstream effects on adaptive immunity as well. These findings demonstrate that CAT2 is an important regulator of the immune response during H. pylori infection.

  19. Endocannabinoids alleviate proinflammatory conditions by modulating innate immune response in muller glia during inflammation.

    Science.gov (United States)

    Krishnan, Gopinath; Chatterjee, Nivedita

    2012-11-01

    Muller cells play a prominent role in inflammatory conditions of the retina. They are part of the retinal innate immune response. The endocannabinoid system functions as an immune modulator in both the peripheral immune system as well as the central nervous system. We hypothesized that the neuroprotective ability of exogenous endocannabinoids in the retina is partially mediated through Muller glia. This study reports that exposure to endocannabinoids in activated but not resting primary human Muller glia inhibit production of several proinflammatory cytokines, while elevating anti-inflammatory mediators. Cytokine generation in activated Muller glia is regulated by endocannabinoids through the mitogen-activated protein kinase (MAPK) family at multiple signaling stages. Anandamide (AEA) acts to control MAPK phosphorylation through MKP-1. Both AEA and 2-arachidonoylglycerol (2-AG) inhibit the transcription factor NF-κB and increases the regulatory protein, IL1-R-associated kinase 1-binding protein 1. Endocannabinoids also increase expression of Tristetraprolin in activated Muller cells, which is implicated in affecting AU-rich proinflammatory cytokine mRNA. We demonstrate that exogenous application of AEA and 2-AG aid in retinal cell survival under inflammatory conditions by creating an anti-inflammatory milieu. Endocannabinoids or synthetic cannabinoid therapy may therefore orchestrate a molecular switch to bias the innate immune system suchthat the balance of pro- and anti-inflammatory cytokine generation creates a prosurvival milieu.

  20. Bidirectional Regulation of Innate and Learned Behaviors That Rely on Frequency Discrimination by Cortical Inhibitory Neurons.

    Directory of Open Access Journals (Sweden)

    Mark Aizenberg

    2015-12-01

    Full Text Available The ability to discriminate tones of different frequencies is fundamentally important for everyday hearing. While neurons in the primary auditory cortex (AC respond differentially to tones of different frequencies, whether and how AC regulates auditory behaviors that rely on frequency discrimination remains poorly understood. Here, we find that the level of activity of inhibitory neurons in AC controls frequency specificity in innate and learned auditory behaviors that rely on frequency discrimination. Photoactivation of parvalbumin-positive interneurons (PVs improved the ability of the mouse to detect a shift in tone frequency, whereas photosuppression of PVs impaired the performance. Furthermore, photosuppression of PVs during discriminative auditory fear conditioning increased generalization of conditioned response across tone frequencies, whereas PV photoactivation preserved normal specificity of learning. The observed changes in behavioral performance were correlated with bidirectional changes in the magnitude of tone-evoked responses, consistent with predictions of a model of a coupled excitatory-inhibitory cortical network. Direct photoactivation of excitatory neurons, which did not change tone-evoked response magnitude, did not affect behavioral performance in either task. Our results identify a new function for inhibition in the auditory cortex, demonstrating that it can improve or impair acuity of innate and learned auditory behaviors that rely on frequency discrimination.

  1. Depletion of dendritic cells enhances innate anti-bacterial host defense through modulation of phagocyte homeostasis.

    Directory of Open Access Journals (Sweden)

    Stella E Autenrieth

    2012-02-01

    Full Text Available Dendritic cells (DCs as professional antigen-presenting cells play an important role in the initiation and modulation of the adaptive immune response. However, their role in the innate immune response against bacterial infections is not completely defined. Here we have analyzed the role of DCs and their impact on the innate anti-bacterial host defense in an experimental infection model of Yersinia enterocolitica (Ye. We used CD11c-diphtheria toxin (DT mice to deplete DCs prior to severe infection with Ye. DC depletion significantly increased animal survival after Ye infection. The bacterial load in the spleen of DC-depleted mice was significantly lower than that of control mice throughout the infection. DC depletion was accompanied by an increase in the serum levels of CXCL1, G-CSF, IL-1α, and CCL2 and an increase in the numbers of splenic phagocytes. Functionally, splenocytes from DC-depleted mice exhibited an increased bacterial killing capacity compared to splenocytes from control mice. Cellular studies further showed that this was due to an increased production of reactive oxygen species (ROS by neutrophils. Adoptive transfer of neutrophils from DC-depleted mice into control mice prior to Ye infection reduced the bacterial load to the level of Ye-infected DC-depleted mice, suggesting that the increased number of phagocytes with additional ROS production account for the decreased bacterial load. Furthermore, after incubation with serum from DC-depleted mice splenocytes from control mice increased their bacterial killing capacity, most likely due to enhanced ROS production by neutrophils, indicating that serum factors from DC-depleted mice account for this effect. In summary, we could show that DC depletion triggers phagocyte accumulation in the spleen and enhances their anti-bacterial killing capacity upon bacterial infection.

  2. Associative learning for danger avoidance nullifies innate positive chemotaxis to host olfactory stimuli in a parasitic wasp

    Science.gov (United States)

    Benelli, Giovanni; Stefanini, Cesare; Giunti, Giulia; Geri, Serena; Messing, Russell H.; Canale, Angelo

    2014-09-01

    Animals rely on associative learning for a wide range of purposes, including danger avoidance. This has been demonstrated for several insects, including cockroaches, mosquitoes, drosophilid flies, paper wasps, stingless bees, bumblebees and honeybees, but less is known for parasitic wasps. We tested the ability of Psyttalia concolor (Hymenoptera: Braconidae) females to associate different dosages of two innately attractive host-induced plant volatiles (HIPVs), ethyl octanoate and decanal, with danger (electric shocks). We conducted an associative treatment involving odours and shocks and two non-associative controls involving shocks but not odours and odours but not shocks. In shock-only and odour-only trained wasps, females preferred on HIPV-treated than on blank discs. In associative-trained wasps, however, P. concolor's innate positive chemotaxis for HIPVs was nullified (lowest HIPV dosage tested) or reversed (highest HIPV dosage tested). This is the first report of associative learning of olfactory cues for danger avoidance in parasitic wasps, showing that the effects of learning can override innate positive chemotaxes.

  3. Effect of Lactobacillus plantarum C014 on Innate Immune Response and Disease Resistance against Aeromonas hydrophila in Hybrid Catfish

    Directory of Open Access Journals (Sweden)

    Sureerat Butprom

    2013-01-01

    Full Text Available A bacterial strain isolated from intestines of hybrid catfish (Clarias gariepinus Male × Clarias macrocephalus Female exhibited an in vitro inhibitory effect on a fish pathogen, Aeromonas hydrophila TISTR 1321. By using the 16S rDNA sequence analysis, it was identified as Lactobacillus plantarum C014. To examine whether L. plantarum C014 had potential for use as an immunostimulant and biocontrol agent in hybrid catfish, the fish diet supplemented with L. plantarum C014 (107 CFU/g diet was prepared and used for the in vivo investigation of its effect on innate immune response and disease resistance of hybrid catfish. Two innate immune response parameters, phagocytic activity of blood leukocytes and plasma lysozyme activity, were significantly enhanced in the treated fish after 45 days of feeding. Feeding the fish with the L. plantarum C014 supplemented diet for 45 days before challenging them with A. hydrophila at the dose of LD50 could reduce the mortality rate of the fish from 50% (in control group to 0% (in treated group. Based on its origin and beneficial effect on innate immune response and disease resistance, L. plantarum C014 may be a potential candidate for use as a natural and safe immunostimulant and biocontrol agent in hybrid catfish.

  4. Learning from the Messengers: Innate Sensing of Viruses and Cytokine Regulation of Immunity — Clues for Treatments and Vaccines

    Directory of Open Access Journals (Sweden)

    Jesper Melchjorsen

    2013-01-01

    Full Text Available Virus infections are a major global public health concern, and only via substantial knowledge of virus pathogenesis and antiviral immune responses can we develop and improve medical treatments, and preventive and therapeutic vaccines. Innate immunity and the shaping of efficient early immune responses are essential for control of viral infections. In order to trigger an efficient antiviral defense, the host senses the invading microbe via pattern recognition receptors (PRRs, recognizing distinct conserved pathogen-associated molecular patterns (PAMPs. The innate sensing of the invading virus results in intracellular signal transduction and subsequent production of interferons (IFNs and proinflammatory cytokines. Cytokines, including IFNs and chemokines, are vital molecules of antiviral defense regulating cell activation, differentiation of cells, and, not least, exerting direct antiviral effects. Cytokines shape and modulate the immune response and IFNs are principle antiviral mediators initiating antiviral response through induction of antiviral proteins. In the present review, I describe and discuss the current knowledge on early virus–host interactions, focusing on early recognition of virus infection and the resulting expression of type I and type III IFNs, proinflammatory cytokines, and intracellular antiviral mediators. In addition, the review elucidates how targeted stimulation of innate sensors, such as toll-like receptors (TLRs and intracellular RNA and DNA sensors, may be used therapeutically. Moreover, I present and discuss data showing how current antimicrobial therapies, including antibiotics and antiviral medication, may interfere with, or improve, immune response.

  5. Deficiency in Either 4E-BP1 or 4E-BP2 Augments Innate Antiviral Immune Responses

    Science.gov (United States)

    Nehdi, Atef; Sean, Polen; Linares, Izzar; Colina, Rodney; Jaramillo, Maritza; Alain, Tommy

    2014-01-01

    Genetic deletion of both 4E-BP1 and 4E-BP2 was found to protect cells against viral infections. Here we demonstrate that the individual loss of either 4E-BP1 or 4E-BP2 in mouse embryonic fibroblasts (MEFs) is sufficient to confer viral resistance. shRNA-mediated silencing of 4E-BP1 or 4E-BP2 renders MEFs resistant to viruses, and compared to wild type cells, MEFs knockout for either 4E-BP1 or 4E-BP2 exhibit enhanced translation of Irf-7 and consequently increased innate immune response to viruses. Accordingly, the replication of vesicular stomatitis virus, encephalomyocarditis virus, influenza virus and Sindbis virus is markedly suppressed in these cells. Importantly, expression of either 4E-BP1 or 4E-BP2 in double knockout or respective single knockout cells diminishes their resistance to viral infection. Our data show that loss of 4E-BP1 or 4E-BP2 potentiates innate antiviral immunity. These results provide further evidence for translational control of innate immunity and support targeting translational effectors as an antiviral strategy. PMID:25531441

  6. Modulating the innate immune response to influenza A virus: potential therapeutic use of anti-inflammatory drugs

    Directory of Open Access Journals (Sweden)

    Irene eRamos

    2015-07-01

    Full Text Available Infection by influenza A viruses (IAV is frequently characterized by robust inflammation that is usually more pronounced in the case of avian influenza. It is becoming clearer that the morbidity and pathogenesis caused by IAV is a consequence of this inflammatory response, with several components of the innate immune system acting as the main players. It has been postulated that using a therapeutic approach to limit the innate immune response in combination with antiviral drugs has the potential to diminish symptoms and tissue damage caused by IAV infection. Indeed, some anti-inflammatory agents have been shown to be effective in animal models at reducing IAV pathology as a proof of principle. The main challenge in developing such therapies is to selectively modulate signaling pathways that contribute to lung injury while maintaining the ability of the host cells to mount an antiviral response to control virus replication. However, the dissection of those pathways is very complex given the numerous components regulated by the same factors (i.e. NF kappa B transcription factors and the large number of players involved in this regulation, some of which may be undescribed or unknown. This article provides a comprehensive review of the current knowledge regarding the innate immune responses associated with tissue damage by IAV infection, the understanding of which is essential for the development of effective immunomodulatory drugs. Furthermore, we summarize the recent advances on the development and evaluation of such drugs as well as the lessons learned from those studies.

  7. Associative learning for danger avoidance nullifies innate positive chemotaxis to host olfactory stimuli in a parasitic wasp.

    Science.gov (United States)

    Benelli, Giovanni; Stefanini, Cesare; Giunti, Giulia; Geri, Serena; Messing, Russell H; Canale, Angelo

    2014-09-01

    Animals rely on associative learning for a wide range of purposes, including danger avoidance. This has been demonstrated for several insects, including cockroaches, mosquitoes, drosophilid flies, paper wasps, stingless bees, bumblebees and honeybees, but less is known for parasitic wasps. We tested the ability of Psyttalia concolor (Hymenoptera: Braconidae) females to associate different dosages of two innately attractive host-induced plant volatiles (HIPVs), ethyl octanoate and decanal, with danger (electric shocks). We conducted an associative treatment involving odours and shocks and two non-associative controls involving shocks but not odours and odours but not shocks. In shock-only and odour-only trained wasps, females preferred on HIPV-treated than on blank discs. In associative-trained wasps, however, P. concolor's innate positive chemotaxis for HIPVs was nullified (lowest HIPV dosage tested) or reversed (highest HIPV dosage tested). This is the first report of associative learning of olfactory cues for danger avoidance in parasitic wasps, showing that the effects of learning can override innate positive chemotaxes.

  8. Expression of innate immune complement regulators on brain epithelial cells during human bacterial meningitis

    Directory of Open Access Journals (Sweden)

    Gasque Philippe

    2006-09-01

    Full Text Available Abstract Background In meningitis, the cerebrospinal fluid contains high levels of innate immune molecules (e.g. complement which are essential to ward off the infectious challenge and to promote the infiltration of phagocytes (neutrophils, monocytes. However, epithelial cells of either the ependymal layer, one of the established niche for adult neural stem cells, or of the choroid plexus may be extremely vulnerable to bystander attack by cytotoxic and cytolytic complement components. Methods In this study, we assessed the capacity of brain epithelial cells to express membrane-bound complement regulators (ie, CD35, CD46, CD55 and CD59 in vitro and in situ by immunostaining of control and meningitis human brain tissue sections. Results Double immunofluorescence experiments for ependymal cell markers (GFAP, S100, ZO-1, E-cadherin and complement regulators indicated that the human ependymal cell line model was strongly positive for CD55, CD59 compared to weak stainings for CD46 and CD35. In tissues, we found that CD55 was weakly expressed in control choroid plexus and ependyma but was abundantly expressed in meningitis. Anti-CD59 stained both epithelia in apical location while increased CD59 staining was solely demonstrated in inflamed choroid plexus. CD46 and CD35 were not detected in control tissue sections. Conversely, in meningitis, the ependyma, subependyma and choroid plexus epithelia were strongly stained for CD46 and CD35. Conclusion This study delineates for the first time the capacity of brain ependymal and epithelial cells to respond to and possibly sustain the innate complement-mediated inflammatory insult.

  9. Innate immune responses of Drosophila melanogaster are altered by spaceflight.

    Directory of Open Access Journals (Sweden)

    Oana Marcu

    Full Text Available Alterations and impairment of immune responses in humans present a health risk for space exploration missions. The molecular mechanisms underpinning innate immune defense can be confounded by the complexity of the acquired immune system of humans. Drosophila (fruit fly innate immunity is simpler, and shares many similarities with human innate immunity at the level of molecular and genetic pathways. The goals of this study were to elucidate fundamental immune processes in Drosophila affected by spaceflight and to measure host-pathogen responses post-flight. Five containers, each containing ten female and five male fruit flies, were housed and bred on the space shuttle (average orbit altitude of 330.35 km for 12 days and 18.5 hours. A new generation of flies was reared in microgravity. In larvae, the immune system was examined by analyzing plasmatocyte number and activity in culture. In adults, the induced immune responses were analyzed by bacterial clearance and quantitative real-time polymerase chain reaction (qPCR of selected genes following infection with E. coli. The RNA levels of relevant immune pathway genes were determined in both larvae and adults by microarray analysis. The ability of larval plasmatocytes to phagocytose E. coli in culture was attenuated following spaceflight, and in parallel, the expression of genes involved in cell maturation was downregulated. In addition, the level of constitutive expression of pattern recognition receptors and opsonins that specifically recognize bacteria, and of lysozymes, antimicrobial peptide (AMP pathway and immune stress genes, hallmarks of humoral immunity, were also reduced in larvae. In adults, the efficiency of bacterial clearance measured in vivo following a systemic infection with E. coli post-flight, remained robust. We show that spaceflight altered both cellular and humoral immune responses in Drosophila and that the disruption occurs at multiple interacting pathways.

  10. Marginal zone B-cells, a gatekeeper of innate immunity.

    Science.gov (United States)

    Zouali, Moncef; Richard, Yolande

    2011-01-01

    To maintain the integrity of an organism constantly challenged by pathogens, the immune system is endowed with a variety of cell types. B lymphocytes were initially thought to only play a role in the adaptive branch of immunity. However, a number of converging observations revealed that two B-cell subsets, marginal zone (MZ) and B1 cells, exhibit unique developmental and functional characteristics, and can contribute to innate immune responses. In addition to their capacity to mount a local antibody response against type-2 T-cell-independent (TI-2) antigens, MZ B-cells can participate to T-cell-dependent (TD) immune responses through the capture and import of blood-borne antigens to follicular areas of the spleen. Here, we discuss the multiple roles of MZ B-cells in humans, non-human primates, and rodents. We also summarize studies - performed in transgenic mice expressing fully human antibodies on their B-cells and in macaques whose infection with Simian immunodeficiency virus (SIV) represents a suitable model for HIV-1 infection in humans - showing that infectious agents have developed strategies to subvert MZ B-cell functions. In these two experimental models, we observed that two microbial superantigens for B-cells (protein A from Staphylococcus aureus and protein L from Peptostreptococcus magnus) as well as inactivated AT-2 virions of HIV-1 and infectious SIV preferentially deplete innate-like B-cells - MZ B-cells and/or B1 B-cells - with different consequences on TI and TD antibody responses. These data revealed that viruses and bacteria have developed strategies to deplete innate-like B-cells during the acute phase of infection and to impair the antibody response. Unraveling the intimate mechanisms responsible for targeting MZ B-cells in humans will be important for understanding disease pathogenesis and for designing novel vaccine strategies.

  11. Marginal zone B-cells, a gatekeeper of innate immunity

    Directory of Open Access Journals (Sweden)

    Moncef eZOUALI

    2011-12-01

    Full Text Available To maintain the integrity of an organism constantly challenged by pathogens, the immune system is endowed with a variety of cell types. B-lymphocytes were initially thought to only play a role in the adaptative branch of immunity. However, a number of converging observations revealed that two B-cell subsets, marginal zone (MZ and B1 cells, exhibit unique developmental and functional characteristics, and can contribute to innate immune responses. In addition to their capacity to mount local antibody response against type 2 T-independent (TI-2 antigens, MZ B-cells can participate to T-dependent (TD immune response through the capture and import of blood-borne antigens to follicular areas of the spleen. Here, we discuss the multiple roles of MZ B-cells in rodents and primates. We also summarize studies —performed in transgenic mice expressing fully human antibodies on their B-cells and macaques whose infection with Simian Immunodeficiency Virus (SIV represents a suitable model for HIV-1 infection in humans— showing that infectious agents have developed strategies to subvert MZ B-cell functions. In these two experimental models, we observed that two microbial superantigens for B-cells (protein A from Staphylococcus aureus and protein L from Peptostreptococcus magnus as well as inactivated AT-2 virions of HIV-1 and infectious SIV preferentially deplete innate-like B-cells —MZ B-cells and/or B1 B-cells— with different consequences on TI and TD antibody responses. These data revealed that viruses and bacteria have developed strategies to deplete innate-like B-cells during the acute phase of infection and to impair the antibody response. Unraveling the intimate mechanisms responsible for targeting MZ B-cells in humans will be important for understanding disease pathogenesis and for designing novel vaccine strategies.

  12. The Role of Innate Immunity and Aeroallergens in Chronic Rhinosinusitis.

    Science.gov (United States)

    London, Nyall R; Tharakan, Anuj; Ramanathan, Murugappan

    2016-01-01

    Allergy has been inferred to contribute to the pathophysiology of chronic rhinosinusitis (CRS) although this role is controversial and the mechanism is debated. Furthermore, the role of aeroallergens in CRS is poorly defined and has been postulated to contribute to CRS through direct penetration in the sinuses or downstream systemic consequences. Common aeroallergens implicated in chronic rhinosinusitis include air pollution/second hand smoke, dust mite and pollen [1,2,3]. One emerging potential mechanism whereby aeroallergens contribute to CRS is through sinonasal epithelial barrier disruption (fig. 1). Characterization of cytokine disruption of sinonasal epithelial cell barrier has been described including interleukin (IL)-4 and IL-13, as well as aeroallergens such as house dust mite and cigarette smoke. Recent results have demonstrated severe barrier disruption in response to direct application of either particulate matter (PM) or house dust mite (HDM) to sinonasal epithelial cells. Sinonasal epithelial barrier disruption may contribute to CRS by enabling the perpetual and chronic exposure of inflammatory allergens and stimuli. The sinonasal epithelial barrier plays a significant role in innate immune host defense. Mechanisms of innate immune defense include pattern recognition receptors (PRRs), secreted endogenous antimicrobials and inflammatory cytokines that aid in repair mechanisms including IL-33. Here we discuss recent evidence implicating aeroallergens and dysregulated host innate immune responses in the development of CRS. 1Fig. 1. Aeroallergens and inflammatory stimuli disrupt sinonasal epithelial barrier function. These agents act to destabilize the barrier through stimulating endocytosis and destruction of cell junction proteins via oxidative stress and MyD88-dependent mechanisms. Furthermore, aeroallergens and inflammatory stimuli induce secretion of IL-25, IL-33, and TSLP from sinonasal epithelial cells.F01.

  13. Yersinia type Ⅲ effectors perturb host innate immune responses

    Institute of Scientific and Technical Information of China (English)

    Khavong Pha; Lorena Navarro

    2016-01-01

    The innate immune system is the first line of defense against invading pathogens. Innate immune cells recognize molecular patterns from the pathogen and mount a response to resolve the infection. The production of proinflammatory cytokines and reactive oxygen species, phagocytosis, and induced programmed cell death are processes initiated by innate immune cells in order to combat invading pathogens. However, pathogens have evolved various virulence mechanisms to subvert these responses. One strategy utilized by Gram-negative bacterial pathogens is the deployment of a complex machine termed the type Ⅲ secretion system(T3SS). The T3SS is composed of a syringe-like needle structure and the effector proteins that are injected directly into a target host cell to disrupt a cellular response. The three human pathogenic Yersinia spp.(Y. pestis, Y. enterocolitica, and Y. pseudotuberculosis) are Gramnegative bacteria that share in common a 70 kb virulence plasmid which encodes the T3 SS. Translocation of the Yersinia effector proteins(YopE, YopH, YopT, YopM, YpkA/YopO, and YopP/J) into the target host cell results in disruption of the actin cytoskeleton to inhibit phagocytosis, downregulation of proinflammatory cytokine/chemokine production, and induction of cellular apoptosis of the target cell. Over the past 25 years, studies on the Yersinia effector proteins have unveiled tremendous knowledge of how the effectors enhance Yersinia virulence. Recently, the long awaited crystal structure of YpkA has been solved providing further insights into the activation of the YpkA kinase domain. Multisite autophosphorylation by YpkA to activate its kinase domain was also shown and postulated to serve as a mechanism to bypass regulation by host phosphatases. In addition, novel Yersinia effector protein targets, such as caspase-1, and signaling pathways including activation of the inflammasome were identified. In this review, we summarize the recent discoveries made on Yersinia effector

  14. Innate immune function in placenta and cord blood of hepatitis C--seropositive mother-infant dyads.

    Directory of Open Access Journals (Sweden)

    Christine Waasdorp Hurtado

    Full Text Available Vertical transmission accounts for the majority of pediatric cases of hepatitis C viral (HCV infection. In contrast to the adult population who develop persistent viremia in approximately 80% of cases following exposure, the rate of mother-to-child transmission (2-6% is strikingly low. Protection from vertical transmission likely requires the coordination of multiple components of the immune system. Placenta and decidua provide a direct connection between mother and infant. We hypothesized that innate immune responses would differ across the three compartments (decidua, placenta and cord blood and that hepatitis C exposure would modify innate immunity in these tissues. The study was comprised of HCV-infected and healthy control mother and infant pairs from whom cord blood, placenta and decidua were collected with isolation of mononuclear cells. Multiparameter flow cytometry was performed to assess the phenotype, intracellular cytokine production and cytotoxicity of the cells. In keeping with a model where the maternal-fetal interface provides antiviral protection, we found a gradient in proportional frequencies of NKT and gammadelta-T cells being higher in placenta than cord blood. Cytotoxicity of NK and NKT cells was enhanced in placenta and placental NKT cytotoxicity was further increased by HCV infection. HCV exposure had multiple effects on innate cells including a decrease in activation markers (CD69, TRAIL and NKp44 on NK cells and a decrease in plasmacytoid dendritic cells in both placenta and cord blood of exposed infants. In summary, the placenta represents an active innate immunological organ that provides antiviral protection against HCV transmission in the majority of cases; the increased incidence in preterm labor previously described in HCV-seropositive mothers may be related to enhanced cytotoxicity of NKT cells.

  15. Innate immune function in placenta and cord blood of hepatitis C--seropositive mother-infant dyads.

    Science.gov (United States)

    Hurtado, Christine Waasdorp; Golden-Mason, Lucy; Brocato, Megan; Krull, Mona; Narkewicz, Michael R; Rosen, Hugo R

    2010-08-30

    Vertical transmission accounts for the majority of pediatric cases of hepatitis C viral (HCV) infection. In contrast to the adult population who develop persistent viremia in approximately 80% of cases following exposure, the rate of mother-to-child transmission (2-6%) is strikingly low. Protection from vertical transmission likely requires the coordination of multiple components of the immune system. Placenta and decidua provide a direct connection between mother and infant. We hypothesized that innate immune responses would differ across the three compartments (decidua, placenta and cord blood) and that hepatitis C exposure would modify innate immunity in these tissues. The study was comprised of HCV-infected and healthy control mother and infant pairs from whom cord blood, placenta and decidua were collected with isolation of mononuclear cells. Multiparameter flow cytometry was performed to assess the phenotype, intracellular cytokine production and cytotoxicity of the cells. In keeping with a model where the maternal-fetal interface provides antiviral protection, we found a gradient in proportional frequencies of NKT and gammadelta-T cells being higher in placenta than cord blood. Cytotoxicity of NK and NKT cells was enhanced in placenta and placental NKT cytotoxicity was further increased by HCV infection. HCV exposure had multiple effects on innate cells including a decrease in activation markers (CD69, TRAIL and NKp44) on NK cells and a decrease in plasmacytoid dendritic cells in both placenta and cord blood of exposed infants. In summary, the placenta represents an active innate immunological organ that provides antiviral protection against HCV transmission in the majority of cases; the increased incidence in preterm labor previously described in HCV-seropositive mothers may be related to enhanced cytotoxicity of NKT cells.

  16. Enhanced Innate Inflammation Induced by Anti-BTLA Antibody in Dual Insult Model of Hemorrhagic Shock/Sepsis.

    Science.gov (United States)

    Cheng, Tingting; Bai, Jianwen; Chung, Chun-Shiang; Chen, Yaping; Biron, Bethany M; Ayala, Alfred

    2016-01-01

    Sepsis following hemorrhagic shock is a common clinical condition, in which innate immune system suffers from severe suppression. B and T lymphocyte attenuator (BTLA) is an immune-regulatory coinhibitory receptor expressed not only on adaptive, but also on innate immune cells. Our previous data showed that BTLA gene deficient mice were protected from septic mortality when compared with wild-type control C57BL/6 mice. Here, we extended our study by treating C57BL/6 mice with an anti-BTLA monoclonal antibody (clone 6A6; reported to have the ability to neutralize or agonize/potentiate BTLA signaling) in a mouse model of hemorrhagic shock (Hem) followed by sepsis induced by cecal ligation and puncture (CLP); positing initially that if BTLA engagement was neutralized, like gene deficiency, an anti-BTLA mAb would have the similar effects on the inflammatory response/morbidity in these mice after such insults. Here, we report that BTLA expression is elevated on innate immune cells after Hem/CLP. However, anti-BTLA antibody treatment increased cytokine (TNF-α, IL-12, IL-10)/chemokine (KC, MIP-2, MCP-1) levels and inflammatory cells (neutrophils, macrophages, dendritic cells) recruitment in the peritoneal cavity, which in turn aggravated organ injury and elevated these animals' mortality in Hem/CLP. When compared with the protective effects of our previous study using BTLA gene deficient mice in a model of lethal septic challenge, we further confirmed BTLA's contribution to enhanced innate cell recruitment, elevated IL-10 levels, and reduced survival, and that engagement of antibody with BTLA potentiates/exacerbates the pathophysiology in Hem/sepsis.

  17. Self/not self, innate immunity, danger, cancer potential

    Science.gov (United States)

    Cooper, Edwin L.

    2010-03-01

    Self/not self is an important hypothesis that has guided research in immunology. It is closely connected to adaptive immunity (restricted to vertebrates) and innate immunity (found in vertebrates and invertebrates). Self/not self is now being challenged and investigators are turning to the danger hypothesis to guide and open new areas of research. Emerging information suggests that genes involved in development of cancer are present in Drosophila and C. elegans. Short life span may not preclude the presence of genes that are related to the development of cancer.

  18. Role of heat shock protein 70 in innate alloimmunity

    Directory of Open Access Journals (Sweden)

    Walter G. eLand

    2012-01-01

    Full Text Available This article briefly describes our own experience with the proven demonstration of heat shock protein 70 in reperfused renal allografts from brain-deaddonors and reflects about its potential role as a typical damage-associated molecular pattern (DAMP in the setting of innate alloimmunity. In fact, our group was able to demonstrate a dramatic up-regulation of heat shock protein 70 expression after postischemic reperfusion of renal allografts. Of note, up-regulation of this stress protein expression, although to a lesser extent, was already observed after cold storage of the organ indicating that this molecule is already induced in the stressed organism of a brain-dead donor. However, whether or not the dramatic up-regulation of heat shock protein 70 expression contributes to mounting an innate alloimmune response cannot be judged in view of these clinical findings.Nevertheless, heat shock protein 70, since generated in association with postischemic reperfusion-induced allograft injury, can be called a typical DAMP - as can everymolecule be termed a DAMP that is generated in associationwith any stressful tissue injury regardless of its final positive or negative regulatory function within the innate immune response elicited by it.In fact, as we discuss in this article, the context-dependent, even contradistinctive activities of heat shock protein 70 reflect the biological phenomenon that, throughout evolution, mammals have developed an elaborate network of positive and negative regulatory mechanisms, which provide balance between defensive and protective measures against unwarranted destruction of the host. In this sense, up-regulated expression of heat shock protein 70 in an injured allograft might reflect a pure protective response against the severe oxidative injury of a reperfused donor organ. On the other hand, up-regulated expression of this stress protein in an injured allograft might reflect a(futile attempt of the innate immune system to

  19. Human breast milk and the gastrointestinal innate immune system.

    Science.gov (United States)

    Jakaitis, Brett M; Denning, Patricia W

    2014-06-01

    The gastrointestinal (GI) tract is a large potential portal for multiple infectious agents to enter the human body. The GI system performs multiple functions as part of the neonate's innate immune system, providing critical defense during a vulnerable period. Multiple mechanisms and actions are enhanced by the presence of human breast milk. Bioactive factors found in human milk work together to create and maintain an optimal and healthy environment, allowing the intestines to deliver ideal nutrition to the host and afford protection by a variety of mechanisms.

  20. Interleukin-7 receptor blockade suppresses adaptive and innate inflammatory responses in experimental colitis

    Directory of Open Access Journals (Sweden)

    Willis Cynthia R

    2012-10-01

    Full Text Available Abstract Background Interleukin-7 (IL-7 acts primarily on T cells to promote their differentiation, survival, and homeostasis. Under disease conditions, IL-7 mediates inflammation through several mechanisms and cell types. In humans, IL-7 and its receptor (IL-7R are increased in diseases characterized by inflammation such as atherosclerosis, rheumatoid arthritis, psoriasis, multiple sclerosis, and inflammatory bowel disease. In mice, overexpression of IL-7 results in chronic colitis, and T-cell adoptive transfer studies suggest that memory T cells expressing high amounts of IL-7R drive colitis and are maintained and expanded with IL-7. The studies presented here were undertaken to better understand the contribution of IL-7R in inflammatory bowel disease in which colitis was induced with a bacterial trigger rather than with adoptive transfer. Methods We examined the contribution of IL-7R on inflammation and disease development in two models of experimental colitis: Helicobacter bilis (Hb-induced colitis in immune-sufficient Mdr1a−/− mice and in T- and B-cell-deficient Rag2−/− mice. We used pharmacological blockade of IL-7R to understand the mechanisms involved in IL-7R-mediated inflammatory bowel disease by analyzing immune cell profiles, circulating and colon proteins, and colon gene expression. Results Treatment of mice with an anti-IL-7R antibody was effective in reducing colitis in Hb-infected Mdr1a−/− mice by reducing T-cell numbers as well as T-cell function. Down regulation of the innate immune response was also detected in Hb-infected Mdr1a−/− mice treated with an anti-IL-7R antibody. In Rag2−/− mice where colitis was triggered by Hb-infection, treatment with an anti-IL-7R antibody controlled innate inflammatory responses by reducing macrophage and dendritic cell numbers and their activity. Conclusions Results from our studies showed that inhibition of IL-7R successfully ameliorated inflammation and disease development

  1. 5-Lipoxygenase deficiency impairs innate and adaptive immune responses during fungal infection.

    Directory of Open Access Journals (Sweden)

    Adriana Secatto

    Full Text Available 5-Lipoxygenase-derived products have been implicated in both the inhibition and promotion of chronic infection. Here, we sought to investigate the roles of endogenous 5-lipoxygenase products and exogenous leukotrienes during Histoplasma capsulatum infection in vivo and in vitro. 5-LO deficiency led to increased lung CFU, decreased nitric oxide production and a deficient primary immune response during active fungal infection. Moreover, H. capsulatum-infected 5-LO(-/- mice showed an intense influx of neutrophils and an impaired ability to generate and recruit effector T cells to the lung. The fungal susceptibility of 5-LO(-/- mice correlated with a lower rate of macrophage ingestion of IgG-H. capsulatum relative to WT macrophages. Conversely, exogenous LTB4 and LTC4 restored macrophage phagocytosis in 5-LO deficient mice. Our results demonstrate that leukotrienes are required to control chronic fungal infection by amplifying both the innate and adaptive immune response during histoplasmosis.

  2. Prostaglandin E₂ constrains systemic inflammation through an innate lymphoid cell-IL-22 axis.

    Science.gov (United States)

    Duffin, Rodger; O'Connor, Richard A; Crittenden, Siobhan; Forster, Thorsten; Yu, Cunjing; Zheng, Xiaozhong; Smyth, Danielle; Robb, Calum T; Rossi, Fiona; Skouras, Christos; Tang, Shaohui; Richards, James; Pellicoro, Antonella; Weller, Richard B; Breyer, Richard M; Mole, Damian J; Iredale, John P; Anderton, Stephen M; Narumiya, Shuh; Maizels, Rick M; Ghazal, Peter; Howie, Sarah E; Rossi, Adriano G; Yao, Chengcan

    2016-03-18

    Systemic inflammation, which results from the massive release of proinflammatory molecules into the circulatory system, is a major risk factor for severe illness, but the precise mechanisms underlying its control are not fully understood. We observed that prostaglandin E2 (PGE2), through its receptor EP4, is down-regulated in human systemic inflammatory disease. Mice with reduced PGE2 synthesis develop systemic inflammation, associated with translocation of gut bacteria, which can be prevented by treatment with EP4 agonists. Mechanistically, we demonstrate that PGE2-EP4 signaling acts directly on type 3 innate lymphoid cells (ILCs), promoting their homeostasis and driving them to produce interleukin-22 (IL-22). Disruption of the ILC-IL-22 axis impairs PGE2-mediated inhibition of systemic inflammation. Hence, the ILC-IL-22 axis is essential in protecting against gut barrier dysfunction, enabling PGE2-EP4 signaling to impede systemic inflammation.

  3. Isolation of Lymphocytes and Their Innate Immune Characterizations from Liver, Intestine, Lung and Uterus

    Institute of Scientific and Technical Information of China (English)

    Jianhong Zhang; Zhongjun Dong; Rongbin Zhou; Deming Luo; Haiming Wei; Zhigang Tian

    2005-01-01

    In steady-state conditions, the number and distribution of lymphocyte populations are under homeostatic control.New lymphocytes are continuously produced in primary and secondary lymphoid organs and then achieve immune-competence within different tissues, and they must challenge with resident cells for survival. The first step in the study of tissue lymphoid cells is their isolation in intact and viable form appropriate for establishment of in vitro culture systems. For reasons of simplicity, cell purity, cell yields and various purposes, lymphocytes obtained from different tissues in different labs were subjected to diverse protocols. To fully elucidate the nature of the local immune system as well as to adequately study the innate role of lymphocytes in liver, intestine, lung and uterus, we briefly reviewed the characterization of resident lymphocytes, and additional information on those cells from non-lymphoid tissues by using the recommended operation procedure was also presented.

  4. Modulation of Toll-like receptor signaling in innate immunity by natural products.

    Science.gov (United States)

    Chen, Luxi; Yu, Jianhua

    2016-08-01

    For centuries, natural products and their derivatives have provided a rich source of compounds for the development of new immunotherapies in the treatment of human disease. Many of these compounds are currently undergoing clinical trials, particularly as anti-oxidative, anti-microbial, and anti-cancer agents. However, the function and mechanism of natural products in how they interact with our immune system has yet to be extensively explored. Natural immune modulators may provide the key to control and ultimately defeat disorders affecting the immune system. They can either up- or down-regulate the immune response with few undesired adverse effects. In this review, we summarize the recent advancements made in utilizing natural products for immunomodulation and their important molecular targets, members of the Toll-like receptor (TLR) family, in the innate immune system.

  5. Circadian transcription factor BMAL1 regulates innate immunity against select RNA viruses.

    Science.gov (United States)

    Majumdar, Tanmay; Dhar, Jayeeta; Patel, Sonal; Kondratov, Roman; Barik, Sailen

    2017-02-01

    BMAL1 (brain and muscle ARNT-like protein 1, also known as MOP3 or ARNT3) belongs to the family of the basic helix-loop-helix (bHLH)-PAS domain-containing transcription factors, and is a key component of the molecular oscillator that generates circadian rhythms. Here, we report that BMAL1-deficient cells are significantly more susceptible to infection by two major respiratory viruses of the Paramyxoviridae family, namely RSV and PIV3. Embryonic fibroblasts from Bmal1(-/-) mice produced nearly 10-fold more progeny virus than their wild type controls. These results were supported by animal studies whereby pulmonary infection of RSV produced a more severe disease and morbidity in Bmal1(-/-)mice. These results show that BMAL1 can regulate cellular innate immunity against specific RNA viruses.

  6. Innate-Type and Acquired-Type Allergy Regulated by IL-33

    Directory of Open Access Journals (Sweden)

    Tomohiro Yoshimoto

    2014-01-01

    Full Text Available We propose two types of allergic response: IgE-dependent and IgE-independent, and designate these as 'acquired-type allergy' and 'innate-type allergy', respectively. IL-33 stimulates both innate (basophils, mast cells, or group 2 innate lymphoid cells and acquired (Th2 cells allergy-related cells to induce and/or augment Th2 cytokine production, which leads to eosinophilic inflammation in vivo. Thus, IL-33 is an essential regulator for both 'innate-type allergy' and 'acquired-type allergy', and might be an attractive therapeutic target for allergic diseases.

  7. Viral infection: an evolving insight into the signal transduction pathways responsible for the innate immune response.

    Science.gov (United States)

    Kotwal, Girish J; Hatch, Steven; Marshall, William L

    2012-01-01

    The innate immune response is initiated by the interaction of stereotypical pathogen components with genetically conserved receptors for extracytosolic pathogen-associated molecular patterns (PAMPs) or intracytosolic nucleic acids. In multicellular organisms, this interaction typically clusters signal transduction molecules and leads to their activations, thereby initiating signals that activate innate immune effector mechanisms to protect the host. In some cases programmed cell death-a fundamental form of innate immunity-is initiated in response to genotoxic or biochemical stress that is associated with viral infection. In this paper we will summarize innate immune mechanisms that are relevant to viral pathogenesis and outline the continuing evolution of viral mechanisms that suppress the innate immunity in mammalian hosts. These mechanisms of viral innate immune evasion provide significant insight into the pathways of the antiviral innate immune response of many organisms. Examples of relevant mammalian innate immune defenses host defenses include signaling to interferon and cytokine response pathways as well as signaling to the inflammasome. Understanding which viral innate immune evasion mechanisms are linked to pathogenesis may translate into therapies and vaccines that are truly effective in eliminating the morbidity and mortality associated with viral infections in individuals.

  8. Potential of Helper-Dependent Adenoviral Vectors in Modulating Airway Innate Immunity

    Institute of Scientific and Technical Information of China (English)

    Rahul Kushwah; Huibi Cao; Jim Hu

    2007-01-01

    Innate immune responses form the first line of defense against foreign insults and recently significant advances have been made in our understanding of the initiation of innate immune response along with its ability to modulate inflammation. In airway diseases such as asthma, COPD and cystic fibrosis, over reacting of the airway innate immune responses leads to cytokine imbalance and airway remodeling or damage. Helper-dependent adenoviral vectors have the potential to deliver genes to modulate airway innate immune responses and have many advantages over its predecessors. However, there still are a few limitations that need to be addressed prior to their use in clinical applications.

  9. Innate immune responses of young bulls to a novel environment.

    Science.gov (United States)

    Razzuoli, Elisabetta; Olzi, Emilio; Calà, Pietro; Cafazzo, Simona; Magnani, Diego; Vitali, Andrea; Lacetera, Nicola; Archetti, Laura; Lazzara, Fabrizio; Ferrari, Angelo; Nanni Costa, Leonardo; Amadori, Massimo

    2016-04-01

    Animal welfare during transportation has been investigated in several studies, as opposed to post-transportation phases. In this study, we evaluated the effect of a novel environment after transportation on 26 Friesian bulls, 242 ± 42 day-old, from ten different dairy farms. Animals were shipped to a breeding center in different seasons, and selected parameters of innate immunity (serum bactericidal activity, hemolytic complement, serum albumin, α, β, and γ-globulins, interleukin-6, TNF-α) were monitored before and after the arrival at days--4/0/4/15/30. Our results showed significant differences of IL-6 and TNF-α protein levels at destination in December (94 ± 1.3 pg/ml) and June (+788 pg/ml), respectively. Moreover, the serum levels of these cytokines increased between days 0 and 15 after the arrival, the modulation of IL-6 being in agreement with established models of physical and/or psychological stress. Concerning the modulation of albumin, alpha and beta-globulins, the highest levels were detected in April, whereas a significant decrease was observed between day 15 and 30 after arrival; on the contrary, γ-globulin levels significantly increased after day 15. The results of this study highlight the occurrence of innate immune responses of young bulls to the combined effects of climate (season) and novel farming conditions.

  10. TH2, allergy and group 2 innate lymphoid cells.

    Science.gov (United States)

    Licona-Limón, Paula; Kim, Lark Kyun; Palm, Noah W; Flavell, Richard A

    2013-06-01

    The initiation of type 2 immune responses by the epithelial cell-derived cytokines IL-25, IL-33 and TSLP has been an area of extensive research in the past decade. Such studies have led to the identification of a new innate lymphoid subset that produces the canonical type 2 cytokines IL-5, IL-9 and IL-13 in response to IL-25 and IL-33. These group 2 or type 2 innate lymphoid cells (ILC2 cells) represent a critical source of type 2 cytokines in vivo and serve an important role in orchestrating the type 2 response to helminths and allergens. Further characterization of ILC2 cell biology will enhance the understanding of type 2 responses and may identify new treatments for asthma, allergies and parasitic infections. Interactions between ILC2 cells and the adaptive immune system, as well as examination of potential roles for ILC2 cells in the maintenance of homeostasis, promise to be particularly fruitful areas of future research.

  11. Antimicrobial proteins and polypeptides in pulmonary innate defence

    Directory of Open Access Journals (Sweden)

    Taggart Clifford C

    2006-02-01

    Full Text Available Abstract Inspired air contains a myriad of potential pathogens, pollutants and inflammatory stimuli. In the normal lung, these pathogens are rarely problematic. This is because the epithelial lining fluid in the lung is rich in many innate immunity proteins and peptides that provide a powerful anti-microbial screen. These defensive proteins have anti-bacterial, anti- viral and in some cases, even anti-fungal properties. Their antimicrobial effects are as diverse as inhibition of biofilm formation and prevention of viral replication. The innate immunity proteins and peptides also play key immunomodulatory roles. They are involved in many key processes such as opsonisation facilitating phagocytosis of bacteria and viruses by macrophages and monocytes. They act as important mediators in inflammatory pathways and are capable of binding bacterial endotoxins and CPG motifs. They can also influence expression of adhesion molecules as well as acting as powerful anti-oxidants and anti-proteases. Exciting new antimicrobial and immunomodulatory functions are being elucidated for existing proteins that were previously thought to be of lesser importance. The potential therapeutic applications of these proteins and peptides in combating infection and preventing inflammation are the subject of ongoing research that holds much promise for the future.

  12. Innate immunity probed by lipopolysaccharides affinity strategy and proteomics.

    Science.gov (United States)

    Giangrande, Chiara; Colarusso, Lucia; Lanzetta, Rosa; Molinaro, Antonio; Pucci, Piero; Amoresano, Angela

    2013-01-01

    Lipopolysaccharides (LPSs) are ubiquitous and vital components of the cell surface of Gram-negative bacteria that have been shown to play a relevant role in the induction of the immune-system response. In animal and plant cells, innate immune defenses toward microorganisms are triggered by the perception of pathogen associated molecular patterns. These are conserved and generally indispensable microbial structures such as LPSs that are fundamental in the Gram-negative immunity recognition. This paper reports the development of an integrated strategy based on lipopolysaccharide affinity methodology that represents a new starting point to elucidate the molecular mechanisms elicited by bacterial LPS and involved in the different steps of innate immunity response. Biotin-tagged LPS was immobilized on streptavidin column and used as a bait in an affinity capture procedure to identify protein partners from human serum specifically interacting with this effector. The complex proteins/lipopolysaccharide was isolated and the protein partners were fractionated by gel electrophoresis and identified by mass spectrometry. This procedure proved to be very effective in specifically binding proteins functionally correlated with the biological role of LPS. Proteins specifically bound to LPS essentially gathered within two functional groups, regulation of the complement system (factor H, C4b, C4BP, and alpha 2 macroglobulin) and inhibition of LPS-induced inflammation (HRG and Apolipoproteins). The reported strategy might have important applications in the elucidation of biological mechanisms involved in the LPSs-mediated molecular recognition and anti-infection responses.

  13. Plasmodium activates the innate immune response of Anopheles gambiae mosquitoes.

    Science.gov (United States)

    Richman, A M; Dimopoulos, G; Seeley, D; Kafatos, F C

    1997-01-01

    Innate immune-related gene expression in the major disease vector mosquito Anopheles gambiae has been analyzed following infection by the malaria parasite, Plasmodium berghei. Substantially increased levels of mRNAs encoding the antibacterial peptide defensin and a putative Gram-negative bacteria-binding protein (GNBP) are observed 20-30 h after ingestion of an infected blood-meal, at a time which indicates that this induction is a response to parasite invasion of the midgut epithelium. The induction is dependent upon the ingestion of infective, sexual-stage parasites, and is not due to opportunistic co-penetration of resident gut micro-organisms into the hemocoel. The response is activated following infection both locally (in the midgut) and systemically (in remaining tissues, presumably fat body and/or hemocytes). The observation that Plasmodium can trigger a molecularly defined immune response in the vector constitutes an important advance in our understanding of parasite-vector interactions that are potentially involved in malaria transmission, and extends knowledge of the innate immune system of insects to encompass responses to protozoan parasites. PMID:9321391

  14. Practical and innate carbon-hydrogen functionalization of heterocycles.

    Science.gov (United States)

    Fujiwara, Yuta; Dixon, Janice A; O'Hara, Fionn; Funder, Erik Daa; Dixon, Darryl D; Rodriguez, Rodrigo A; Baxter, Ryan D; Herlé, Bart; Sach, Neal; Collins, Michael R; Ishihara, Yoshihiro; Baran, Phil S

    2012-12-06

    Nitrogen-rich heterocyclic compounds have had a profound effect on human health because these chemical motifs are found in a large number of drugs used to combat a broad range of diseases and pathophysiological conditions. Advances in transition-metal-mediated cross-coupling have simplified the synthesis of such molecules; however, C-H functionalization of medicinally important heterocycles that does not rely on pre-functionalized starting materials is an underdeveloped area. Unfortunately, the innate properties of heterocycles that make them so desirable for biological applications--such as aqueous solubility and their ability to act as ligands--render them challenging substrates for direct chemical functionalization. Here we report that zinc sulphinate salts can be used to transfer alkyl radicals to heterocycles, allowing for the mild (moderate temperature, 50 °C or less), direct and operationally simple formation of medicinally relevant C-C bonds while reacting in a complementary fashion to other innate C-H functionalization methods (Minisci, borono-Minisci, electrophilic aromatic substitution, transition-metal-mediated C-H insertion and C-H deprotonation). We prepared a toolkit of these reagents and studied their reactivity across a wide range of heterocycles (natural products, drugs and building blocks) without recourse to protecting-group chemistry. The reagents can even be used in tandem fashion in a single pot in the presence of water and air.

  15. Feliform carnivores have a distinguished constitutive innate immune response.

    Science.gov (United States)

    Heinrich, Sonja K; Wachter, Bettina; Aschenborn, Ortwin H K; Thalwitzer, Susanne; Melzheimer, Jörg; Hofer, Heribert; Czirják, Gábor Á

    2016-05-15

    Determining the immunological phenotype of endangered and threatened populations is important to identify those vulnerable to novel pathogens. Among mammals, members of the order Carnivora are particularly threatened by diseases. We therefore examined the constitutive innate immune system, the first line of protection against invading microbes, of six free-ranging carnivore species; the black-backed jackal (Canis mesomelas), the brown hyena (Hyena brunnea), the caracal (Caracal caracal), the cheetah (Acinonyx jubatus), the leopard (Panthera pardus) and the lion (Panthera leo) using a bacterial killing assay. The differences in immune responses amongst the six species were independent of their foraging behaviour, body mass or social organisation but reflected their phylogenetic relatedness. The bacterial killing capacity of black-backed jackals, a member of the suborder Caniformia, followed the pattern established for a wide variety of vertebrates. In contrast, the five representatives of the suborder Feliformia demonstrated a killing capacity at least an order of magnitude higher than any species reported previously, with a particularly high capacity in caracals and cheetahs. Our results suggest that the immunocompetence of threatened felids such as the cheetah has been underestimated and its assessment ought to consider both innate and adaptive components of the immune system.

  16. Feliform carnivores have a distinguished constitutive innate immune response

    Directory of Open Access Journals (Sweden)

    Sonja K. Heinrich

    2016-05-01

    Full Text Available Determining the immunological phenotype of endangered and threatened populations is important to identify those vulnerable to novel pathogens. Among mammals, members of the order Carnivora are particularly threatened by diseases. We therefore examined the constitutive innate immune system, the first line of protection against invading microbes, of six free-ranging carnivore species; the black-backed jackal (Canis mesomelas, the brown hyena (Hyena brunnea, the caracal (Caracal caracal, the cheetah (Acinonyx jubatus, the leopard (Panthera pardus and the lion (Panthera leo using a bacterial killing assay. The differences in immune responses amongst the six species were independent of their foraging behaviour, body mass or social organisation but reflected their phylogenetic relatedness. The bacterial killing capacity of black-backed jackals, a member of the suborder Caniformia, followed the pattern established for a wide variety of vertebrates. In contrast, the five representatives of the suborder Feliformia demonstrated a killing capacity at least an order of magnitude higher than any species reported previously, with a particularly high capacity in caracals and cheetahs. Our results suggest that the immunocompetence of threatened felids such as the cheetah has been underestimated and its assessment ought to consider both innate and adaptive components of the immune system.

  17. Activated Type 2 Innate Lymphoid Cells regulate Beige Fat Biogenesis

    Science.gov (United States)

    Lee, Min-Woo; Odegaard, Justin I.; Mukundan, Lata; Qiu, Yifu; Molofsky, Ari B.; Nussbaum, Jesse C.; Yun, Karen; Locksley, Richard M.; Chawla, Ajay

    2014-01-01

    SUMMARY Type 2 innate lymphoid cells (ILC2s), an innate source of the type 2 cytokines interleukin (IL)-5 and -13, participate in the maintenance of tissue homeostasis. Although type 2 immunity is critically important for mediating metabolic adaptations to environmental cold, the functions of ILC2s in beige or brown fat development are poorly defined. We report here that activation of ILC2s by IL-33 is sufficient to promote the growth of functional beige fat in thermoneutral mice. Mechanistically, ILC2 activation results in the proliferation of bipotential adipocyte precursors (APs) and their subsequent commitment to the beige fat lineage. Loss- and gain-of-function studies reveal that ILC2-and eosinophil-derived type 2 cytokines stimulate signaling via the IL-4Rα in PDGFRα+ APs to promote beige fat biogenesis. Together, our results highlight a critical role for ILC2s and type 2 cytokines in the regulation of adipocyte precursor numbers and fate, and as a consequence, adipose tissue homeostasis. PMID:25543153

  18. Neuronal basis of innate olfactory attraction to ethanol in Drosophila.

    Directory of Open Access Journals (Sweden)

    Andrea Schneider

    Full Text Available The decision to move towards a mating partner or a food source is essential for life. The mechanisms underlying these behaviors are not well understood. Here, we investigated the role of octopamine - the invertebrate analogue of noradrenaline - in innate olfactory attraction to ethanol. We confirmed that preference is caused via an olfactory stimulus by dissecting the function of the olfactory co-receptor Orco (formally known as OR83b. Orco function is not required for ethanol recognition per se, however it plays a role in context dependent recognition of ethanol. Odor-evoked ethanol preference requires the function of Tbh (Tyramine β hydroxalyse, the rate-limiting enzyme of octopamine synthesis. In addition, neuronal activity in a subset of octopaminergic neurons is necessary for olfactory ethanol preference. Notably, a specific neuronal activation pattern of tyraminergic/octopaminergic neurons elicit preference and is therefore sufficient to induce preference. In contrast, dopamine dependent increase in locomotor activity is not sufficient for olfactory ethanol preference. Consistent with the role of noradrenaline in mammalian drug induced rewards, we provide evidence that in adult Drosophila the octopaminergic neurotransmitter functions as a reinforcer and that the molecular dissection of the innate attraction to ethanol uncovers the basic properties of a response selection system.

  19. Hantaan virus triggers TLR4-dependent innate immune responses.

    Science.gov (United States)

    Yu, Hai-Tao; Jiang, Hong; Zhang, Ye; Nan, Xue-Ping; Li, Yu; Wang, Wei; Jiang, Wei; Yang, Dong-Qiang; Su, Wen-Jing; Wang, Jiu-Ping; Wang, Ping-Zhong; Bai, Xue-Fan

    2012-10-01

    The innate immune response induced by Hantavirus is responsible for endothelial cell dysfunction and viral pathogenicity. Recent studies demonstrate that TLR4 expression is upregulated and mediates the secretion of several cytokines in Hantaan virus (HTNV)-infected endothelial cells. To examine viral interactions with host endothelial cells and characterize the innate antiviral responses associated with Toll-like receptors, we selected TLR4 as the target molecule to investigate anti-hantavirus immunity. TLR4 mRNA-silenced EVC-304 (EVC-304 TLR4-) cells and EVC-304 cells were used to investigate signaling molecules downstream of TLR4. The expression of the adaptor protein TRIF was higher in HTNV-infected EVC-304 cells than in EVC-304 TLR4- cells. However, there was no apparent difference in the expression of MyD88 in either cell line. The transcription factors for NF-κB and IRF-3 were translocated from the cytoplasm into the nucleus in HTNV-infected EVC-304 cells, but not in HTNV-infected EVC-304 TLR4- cells. Our results demonstrate that TLR4 may play an important role in the antiviral immunity of the host against HTNV infection through an MyD88-independent signaling pathway.

  20. Differential activity of innate defense antimicrobial peptides against Nocardia species

    Directory of Open Access Journals (Sweden)

    Wagner Dirk

    2010-02-01

    Full Text Available Abstract Background Members of the genus Nocardia are ubiquitous environmental saprophytes capable to cause human pulmonary, disseminated and cutaneous nocardiosis or bovine mastitis. Innate immunity appears to play an important role in early defense against Nocardia species. To elucidate the contribution of antimicrobial peptides (AMPs in innate defense against Nocardia, the activity of human α-defensins human neutrophil peptides (HNPs 1-3, human β-defensin (hBD-3 and cathelicidin LL-37 as well as bovine β-defensins lingual and tracheal antimicrobial peptides (LAP, TAP and bovine neutrophil-derived indolicidin against four important Nocardia species was investigated. Results Whereas N. farcinica ATCC 3318 and N. nova ATCC 33726 were found to be susceptible to all investigated human and bovine AMPs, N. asteroides ATCC 19247 was killed exclusively by neutrophil-derived human α-defensins HNP 1-3 and bovine indolicidin. N. brasiliensis ATCC 19296 was found to exhibit complete resistance to investigated human AMPs and to be susceptible only to bovine indolicidin. Conclusion Selected AMPs are capable to contribute to the first line of defense against Nocardia, yet, susceptibility appears to vary across different Nocardia species. Obtained results of neutrophil-derived AMPs to possess the broadest antinocardial spectrum are remarkable, since nocardiosis is characterized by a neutrophil-rich infiltrate in vivo.

  1. Innate preferences for flower features in the hawkmoth Macroglossum stellatarum

    Science.gov (United States)

    Kelber

    1997-01-01

    The diurnal hawkmoth Macroglossum stellatarum is known to feed from a variety of flower species of almost all colours, forms and sizes. A newly eclosed imago, however, has to find its first flower by means of an innate flower template. This study investigates which visual flower features are represented in this template and their relative importance. Newly eclosed imagines were tested for their innate preferences, using artificial flowers made out of coloured paper or projected onto a screen through interference filters. The moths were found to have a strong preference for 440 nm and a weaker preference for 540 nm. The attractiveness of a colour increases with light intensity. The background colour, as well as the spectral composition of the ambient illumination, influences the choice behaviour. Blue paper disks against a yellowish background are chosen much more often than the same disks against a bluish background. Similarly, under ultraviolet-rich illumination, the preference for 540 nm is much more pronounced than under yellowish illumination. Disks of approximately 32 mm in diameter are preferred to smaller and larger ones, and a sectored pattern is more attractive than a ring pattern. Pattern preferences are less pronounced with coloured than with black-and-white patterns. Tests using combinations of two parameters reveal that size is more important than colour and that colour is more important than pattern.

  2. Autophagy, Innate Immunity and Tissue Repair in Acute Kidney Injury

    Directory of Open Access Journals (Sweden)

    Pu Duann

    2016-05-01

    Full Text Available Kidney is a vital organ with high energy demands to actively maintain plasma hemodynamics, electrolytes and water homeostasis. Among the nephron segments, the renal tubular epithelium is endowed with high mitochondria density for their function in active transport. Acute kidney injury (AKI is an important clinical syndrome and a global public health issue with high mortality rate and socioeconomic burden due to lack of effective therapy. AKI results in acute cell death and necrosis of renal tubule epithelial cells accompanied with leakage of tubular fluid and inflammation. The inflammatory immune response triggered by the tubular cell death, mitochondrial damage, associative oxidative stress, and the release of many tissue damage factors have been identified as key elements driving the pathophysiology of AKI. Autophagy, the cellular mechanism that removes damaged organelles via lysosome-mediated degradation, had been proposed to be renoprotective. An in-depth understanding of the intricate interplay between autophagy and innate immune response, and their roles in AKI pathology could lead to novel therapies in AKI. This review addresses the current pathophysiology of AKI in aspects of mitochondrial dysfunction, innate immunity, and molecular mechanisms of autophagy. Recent advances in renal tissue regeneration and potential therapeutic interventions are also discussed.

  3. Focusing on Ciona intestinalis (Tunicata innate immune system. Evolutionary implications

    Directory of Open Access Journals (Sweden)

    N Parrinello

    2009-03-01

    Full Text Available Phylogenetic analyses based on molecular data provide compelling evidence that ascidians are of critical importance for studying chordate immune system evolution. The Ciona intestinalis draft genome sequence allows searches for phylogenetic relationships, gene cloning and expression of immunorelevant molecules. Acidians lack of the pivotal components of the vertebrate recombinatory adaptive immunity, i.e., MHC, TCRs and dimeric immunoglobulins. However, bioinformatic sequence analyses recognized genic elements indicating the essential features of the Ig superfamily and ancestor proto-MHC genes, suggesting a primitive pre-duplication and pre-recombination status. C. intestinalis genes for individuality in the absence of MHC could encode diverse molecular markers, including a wide panel of complement factors that could be responsible for self-nonself discrimination. Genome analysis reveals a number of innate immunity vertebrate-like genes which encode Toll-like and virus receptors, complement pathways components and receptors, CD94/NK-receptor-like, lectins, TNF, IL1-R, collagens. However, pure homology seeking for vertebrate-specific immunorelevant molecules is of limited value, and functional screening methods may be a more promising approach for tracing the immune system evolution. C. intestinalis, which displays acute and chronic inflammatory reactions, is a model organism for studying innate immunity genes expression and functions.

  4. John Stuart Mill, innate differences, and the regulation of reproduction.

    Science.gov (United States)

    Paul, Diane B; Day, Benjamin

    2008-06-01

    In this paper, we show that the question of the relative importance of innate characteristics and institutional arrangements in explaining human difference was vehemently contested in Britain during the first half of the nineteenth century. Thus Sir Francis Galton's work of the 1860s should be seen as an intervention in a pre-existing controversy. The central figure in these earlier debates-as well as many later ones-was the philosopher and economist John Stuart Mill. In Mill's view, human nature was fundamentally shaped by history and culture, factors that accounted for most mental and behavioral differences between men and women and among people of different classes, nationalities, and races. Indeed, Mill's whole program of social reform depended on the assumption that human differences were not fixed by nature. To identify the leading figures in these disputes about difference and the concrete context in which they occurred, we explore three debates in which Mill played a key role: over the capacities and rights of women, the viability of peasant proprietorship in India and Ireland, and the status of black labor in Jamaica. The last two draw our attention to the important colonial context of the nature-nurture debate. We also show that ideas that for us seem of a piece were not always linked for these earlier thinkers, nor did views on innateness necessarily have the political correlates that we now take for granted.

  5. Genetic adaptation of the antibacterial human innate immunity network

    Directory of Open Access Journals (Sweden)

    Lazarus Ross

    2011-07-01

    Full Text Available Abstract Background Pathogens have represented an important selective force during the adaptation of modern human populations to changing social and other environmental conditions. The evolution of the immune system has therefore been influenced by these pressures. Genomic scans have revealed that immune system is one of the functions enriched with genes under adaptive selection. Results Here, we describe how the innate immune system has responded to these challenges, through the analysis of resequencing data for 132 innate immunity genes in two human populations. Results are interpreted in the context of the functional and interaction networks defined by these genes. Nucleotide diversity is lower in the adaptors and modulators functional classes, and is negatively correlated with the centrality of the proteins within the interaction network. We also produced a list of candidate genes under positive or balancing selection in each population detected by neutrality tests and showed that some functional classes are preferential targets for selection. Conclusions We found evidence that the role of each gene in the network conditions the capacity to evolve or their evolvability: genes at the core of the network are more constrained, while adaptation mostly occurred at particular positions at the network edges. Interestingly, the functional classes containing most of the genes with signatures of balancing selection are involved in autoinflammatory and autoimmune diseases, suggesting a counterbalance between the beneficial and deleterious effects of the immune response.

  6. Antimicrobial peptides: key components of the innate immune system.

    Science.gov (United States)

    Pasupuleti, Mukesh; Schmidtchen, Artur; Malmsten, Martin

    2012-06-01

    Life-threatening infectious diseases are on their way to cause a worldwide crisis, as treating them effectively is becoming increasingly difficult due to the emergence of antibiotic resistant strains. Antimicrobial peptides (AMPs) form an ancient type of innate immunity found universally in all living organisms, providing a principal first-line of defense against the invading pathogens. The unique diverse function and architecture of AMPs has attracted considerable attention by scientists, both in terms of understanding the basic biology of the innate immune system, and as a tool in the design of molecular templates for new anti-infective drugs. AMPs are gene-encoded short (antimicrobial activity. AMPs have been the subject of natural evolution, as have the microbes, for hundreds of millions of years. Despite this long history of co-evolution, AMPs have not lost their ability to kill or inhibit the microbes totally, nor have the microbes learnt to avoid the lethal punch of AMPs. AMPs therefore have potential to provide an important breakthrough and form the basis for a new class of antibiotics. In this review, we would like to give an overview of cationic antimicrobial peptides, origin, structure, functions, and mode of action of AMPs, which are highly expressed and found in humans, as well as a brief discussion about widely abundant, well characterized AMPs in mammals, in addition to pharmaceutical aspects and the additional functions of AMPs.

  7. Budesonide and formoterol reduce early innate anti-viral immune responses in vitro.

    Directory of Open Access Journals (Sweden)

    Janet M Davies

    Full Text Available Asthma is a chronic inflammatory airways disease in which respiratory viral infections frequently trigger exacerbations. Current treatment of asthma with combinations of inhaled corticosteroids and long acting beta2 agonists improves asthma control and reduces exacerbations but what impact this might have on innate anti-viral immunity is unclear. We investigated the in vitro effects of asthma drugs on innate anti-viral immunity. Peripheral blood mononuclear cells (PBMC from healthy and asthmatic donors were cultured for 24 hours with the Toll-like receptor 7 agonist, imiquimod, or rhinovirus 16 (RV16 in the presence of budesonide and/or formoterol. Production of proinflammatory cytokines and expression of anti-viral intracellular signalling molecules were measured by ELISA and RT-PCR respectively. In PBMC from healthy donors, budesonide alone inhibited IP-10 and IL-6 production induced by imiquimod in a concentration-dependent manner and the degree of inhibition was amplified when budesonide and formoterol were used in combination. Formoterol alone had little effect on these parameters, except at high concentrations (10⁻⁶ M when IL-6 production increased. In RV16 stimulated PBMC, the combination of budesonide and formoterol inhibited IFNα and IP-10 production in asthmatic as well as healthy donors. Combination of budesonide and formoterol also inhibited RV16-stimulated expression of the type I IFN induced genes myxovirus protein A and 2', 5' oligoadenylate synthetise. Notably, RV16 stimulated lower levels of type Myxovirus A and oligoadenylate synthase in PBMC of asthmatics than control donors. These in vitro studies demonstrate that combinations of drugs commonly used in asthma therapy inhibit both early pro-inflammatory cytokines and key aspects of the type I IFN pathway. These findings suggest that budesonide and formoterol curtail excessive inflammation induced by rhinovirus infections in patients with asthma, but whether this inhibits

  8. Bordetella pertussis infection exacerbates influenza virus infection through pertussis toxin-mediated suppression of innate immunity.

    Directory of Open Access Journals (Sweden)

    Victor I Ayala

    Full Text Available Pertussis (whooping cough is frequently complicated by concomitant infections with respiratory viruses. Here we report the effect of Bordetella pertussis infection on subsequent influenza virus (PR8 infection in mouse models and the role of pertussis toxin (PT in this effect. BALB/c mice infected with a wild-type strain of B. pertussis (WT and subsequently (up to 14 days later infected with PR8 had significantly increased pulmonary viral titers, lung pathology and mortality compared to mice similarly infected with a PT-deficient mutant strain (ΔPT and PR8. Substitution of WT infection by intranasal treatment with purified active PT was sufficient to replicate the exacerbating effects on PR8 infection in BALB/c and C57/BL6 mice, but the effects of PT were lost when toxin was administered 24 h after virus inoculation. PT had no effect on virus titers in primary cultures of murine tracheal epithelial cells (mTECs in vitro, suggesting the toxin targets an early immune response to increase viral titers in the mouse model. However, type I interferon responses were not affected by PT. Whole genome microarray analysis of gene expression in lung tissue from PT-treated and control PR8-infected mice at 12 and 36 h post-virus inoculation revealed that PT treatment suppressed numerous genes associated with communication between innate and adaptive immune responses. In mice depleted of alveolar macrophages, increase of pulmonary viral titers by PT treatment was lost. PT also suppressed levels of IL-1β, IL-12, IFN-γ, IL-6, KC, MCP-1 and TNF-α in the airways after PR8 infection. Furthermore PT treatment inhibited early recruitment of neutrophils and NK cells to the airways. Together these findings demonstrate that infection with B. pertussis through PT activity predisposes the host to exacerbated influenza infection by countering protective innate immune responses that control virus titers.

  9. Leukotriene B4 Enhances NOD2-Dependent Innate Response against Influenza Virus Infection.

    Directory of Open Access Journals (Sweden)

    Manon Le Bel

    Full Text Available Leukotriene B4 (LTB4, a central mediator of inflammation, is well known for its chemoattractant properties on effectors cells of the immune system. LTB4 also has the ability to control microbial infection by improving host innate defenses through the release of antimicrobial peptides and modulation of intracellular Toll-like receptors (TLRs expression in response to agonist challenge. In this report, we provide evidences that LTB4 acts on nucleotide-binging oligomerization domain 2 (NOD2 pathway to enhance immune response against influenza A infection. Infected mice receiving LTB4 show improved survival, lung architecture and reduced lung viral loads as compared to placebo-treated animals. NOD2 and its downstream adaptor protein IPS-1 have been found to be essential for LTB4-mediated effects against IAV infection, as absence of NOD2 or IPS-1 diminished its capacity to control viral infection. Treatment of IAV-infected mice with LTB4 induces an increased activation of IPS-1-IRF3 axis leading to an enhanced production of IFNβ in lungs of infected mice. LTB4 also has the ability to act on the RICK-NF-κB axis since administration of LTB4 to mice challenged with MDP markedly increases the secretion of IL-6 and TNFα in lungs of mice. TAK1 appears to be essential to the action of LTB4 on NOD2 pathway since pretreatment of MEFs with TAK1 inhibitor prior stimulation with IAV or MDP strongly abrogated the potentiating effects of LTB4 on both IFNβ and cytokine secretion. Together, our results demonstrate that LTB4, through its ability to activate TAK1, potentiates both IPS-1 and RICK axis of the NOD2 pathway to improve host innate responses.

  10. Innate Immunity and the Inter-exposure Interval Determine the Dynamics of Secondary Influenza Virus Infection and Explain Observed Viral Hierarchies.

    Directory of Open Access Journals (Sweden)

    Pengxing Cao

    2015-08-01

    Full Text Available Influenza is an infectious disease that primarily attacks the respiratory system. Innate immunity provides both a very early defense to influenza virus invasion and an effective control of viral growth. Previous modelling studies of virus-innate immune response interactions have focused on infection with a single virus and, while improving our understanding of viral and immune dynamics, have been unable to effectively evaluate the relative feasibility of different hypothesised mechanisms of antiviral immunity. In recent experiments, we have applied consecutive exposures to different virus strains in a ferret model, and demonstrated that viruses differed in their ability to induce a state of temporary immunity or viral interference capable of modifying the infection kinetics of the subsequent exposure. These results imply that virus-induced early immune responses may be responsible for the observed viral hierarchy. Here we introduce and analyse a family of within-host models of re-infection viral kinetics which allow for different viruses to stimulate the innate immune response to different degrees. The proposed models differ in their hypothesised mechanisms of action of the non-specific innate immune response. We compare these alternative models in terms of their abilities to reproduce the re-exposure data. Our results show that 1 a model with viral control mediated solely by a virus-resistant state, as commonly considered in the literature, is not able to reproduce the observed viral hierarchy; 2 the synchronised and desynchronised behaviour of consecutive virus infections is highly dependent upon the interval between primary virus and challenge virus exposures and is consistent with virus-dependent stimulation of the innate immune response. Our study provides the first mechanistic explanation for the recently observed influenza viral hierarchies and demonstrates the importance of understanding the host response to multi-strain viral infections

  11. Innate immune responses in ALV-J infected chicks and chickens with hemangioma in vivo

    Directory of Open Access Journals (Sweden)

    Min eFeng

    2016-05-01

    Full Text Available Avian leukosis virus subgroup J (ALV-J infection can cause tumors and immunosuppression. Since the precise mechanism of the innate immune response induced by ALV-J is unknown, we investigated the antiviral innate immune responses induced by ALV-J in chicks and chickens that had developed tumors. Spleen levels of interleukin-6 (IL-6, IL-10, IL-1β and interferon-β (IFN-β were not significantly different between the infected chick groups and the control groups from 1 day post hatch to 7 days post hatch. However, IL-6, IL-1β and IFN-β protein levels in the three clinical samples with hemangiomas were dramatically increased compared to the healthy samples. In addition, the anti-inflammatory cytokine IL-10 increased sharply in two of three clinical samples. We also found a more than 20-fold up-regulation of ISG12-1 mRNA at 1 day post infection (d.p.i. and a 2-fold up-regulation of ZC3HAV1 mRNA at 4 d.p.i. However, there were no statistical differences in ISG12-1 and ZC3HAV1 mRNA expression levels in the tumorigenesis phase. ALV-J infection induced a significant increase of Toll-like receptor 7 (TLR-7 at 1 d.p.i. and dramatically increased the mRNA levels of melanoma differentiation-associated gene 5 (MDA5 in the tumorigenesis phase. Moreover, the protein levels of interferon regulatory factor 1 (IRF-1 and signal transducer and activator of transcription 1 (STAT1 were decreased in chickens with tumors. These results suggest that ALV-J was primarily recognized by chicken TLR7 and MDA5 at early and late in vivo infection stages, respectively. ALV-J strain SCAU-HN06 did not induce any significant antiviral innate immune response in one week old chicks. However, interferon-stimulated genes were not induced normally during the late phase of ALV-J infection due to a reduction of IRF1 and STAT1 expression.

  12. Effector Mechanisms of Neutrophils within the Innate Immune System in Response to Mycobacterium tuberculosis Infection

    Science.gov (United States)

    Warren, Eric; Teskey, Garrett; Venketaraman, Vishwanath

    2017-01-01

    Neutrophils have a significant yet controversial role in the innate immune response to Mycobacterium tuberculosis (M. tb) infection, which is not yet fully understood. In addition to neutrophils’ well-known effector mechanisms, they may also help control infection of M. tb through the formation of neutrophil extracellular traps (NETs), which are thought to further promote the killing of M. tb by resident alveolar macrophages. Cytokines such as IFN-γ have now been shown to serve an immunomodulatory role in neutrophil functioning in conjunction to its pro-inflammatory function. Additionally, the unique transcriptional changes of neutrophils may be used to differentiate between infection with M. tb and other bacterial and chronic rheumatological diseases such as Systemic Lupus Erythematosus. Adversely, during the innate immune response to M. tb, inappropriate phagocytosis of spent neutrophils can result in nonspecific damage to host cells due to necrotic lysis. Furthermore, some individuals have been shown to be more genetically susceptible to tuberculosis (TB) due to a “Trojan Horse” phenomenon whereby neutrophils block the ability of resident macrophages to kill M. tb. Despite these aforementioned negative consequences, through the scope of this review we will provide evidence to support the idea that neutrophils, while sometimes damaging, can also be an important component in warding off M. tb infection. This is exemplified in immunocompromised individuals, such as those with human immunodeficiency virus (HIV) infection or Type 2 diabetes mellitus. These individuals are at an increased risk of developing tuberculosis (TB) due to a diminished innate immune response associated with decreased levels of glutathione. Consequently, there has been a worldwide effort to limit and contain M. tb infection through the use of antibiotics and vaccinations. However, due to several significant limitations, the current bacille Calmette-Guerin vaccine (BCG, vaccine against

  13. Innate Immune Responses in ALV-J Infected Chicks and Chickens with Hemangioma In Vivo.

    Science.gov (United States)

    Feng, Min; Dai, Manman; Xie, Tingting; Li, Zhenhui; Shi, Meiqing; Zhang, Xiquan

    2016-01-01

    Avian leukosis virus subgroup J (ALV-J) infection can cause tumors and immunosuppression. Since the precise mechanism of the innate immune response induced by ALV-J is unknown, we investigated the antiviral innate immune responses induced by ALV-J in chicks and chickens that had developed tumors. Spleen levels of interleukin-6 (IL-6), IL-10, IL-1β, and interferon-β (IFN-β) were not significantly different between the infected chick groups and the control groups from 1 day post hatch to 7 days post hatch. However, IL-6, IL-1β, and IFN-β protein levels in the three clinical samples with hemangiomas were dramatically increased compared to the healthy samples. In addition, the anti-inflammatory cytokine IL-10 increased sharply in two of three clinical samples. We also found a more than 20-fold up-regulation of ISG12-1 mRNA at 1 day post infection (d.p.i.) and a twofold up-regulation of ZC3HAV1 mRNA at 4 d.p.i. However, there were no statistical differences in ISG12-1 and ZC3HAV1 mRNA expression levels in the tumorigenesis phase. ALV-J infection induced a significant increase of Toll-like receptor 7 (TLR-7) at 1 d.p.i. and dramatically increased the mRNA levels of melanoma differentiation-associated gene 5 (MDA5) in the tumorigenesis phase. Moreover, the protein levels of interferon regulatory factor 1 (IRF-1) and signal transducer and activator of transcription 1 (STAT1) were decreased in chickens with tumors. These results suggest that ALV-J was primarily recognized by chicken TLR7 and MDA5 at early and late in vivo infection stages, respectively. ALV-J strain SCAU-HN06 did not induce any significant antiviral innate immune response in 1 week old chicks. However, interferon-stimulated genes were not induced normally during the late phase of ALV-J infection due to a reduction of IRF1 and STAT1 expression.

  14. The role of CNS TLR2 activation in mediating innate versus adaptive neuroinflammation.

    Science.gov (United States)

    Luz, Avital; Fainstein, Nina; Einstein, Ofira; Ben-Hur, Tamir

    2015-11-01

    Toll-like receptor 2 (TLR2) is expressed on immune cells in the periphery and the CNS and mediates both innate and adaptive immune responses. Recent studies have implicated TLR2 in systemic pathogenesis of adaptive immunity in experimental autoimmune encephalomyelitis (EAE). In addition, TLR2 is expressed on oligodendrocyte progenitor cells and its activation inhibits their differentiation and myelination. We investigated the roles of CNS TLR2 activation in mediating neuro-inflammatory responses in intact versus EAE animals. We examined the effects of intra-cerebro-ventricular (ICV) injection of Zymosan, a TLR2 agonist, on naive versus EAE animals. The neuro-inflammatory response was characterized by immune-fluorescent staining for IBA-1+ microglia/macrophages and CD3+ T cells, and by semi-quantitative real time PCR for TLR2 and immune cytokines. The nature of the immune cells isolated from EAE brain tissue was assessed by their proliferative response to the PLP peptide autoantigen. Survival and clinical scores were monitored; demyelination and axonal loss were quantified by Gold-Black and Bielschowsky stains. Our findings showed that Zymosan injection in naïve mice induced a massive neuro-inflammatory response without any clinical manifestations. In EAE mice, ICV Zymosan induced a severe acute toxic response with 80% mortality. Surviving animals returned to pre-injection clinical score, and their course of disease was not altered as compared to control EAE group. Demyelination and axonal loss were not affected by ICV Zymosan injection. Quantification of immune response in the brain by real time PCR, immunofluorescent stains and proliferative response to PLP peptide suggested that TLR2 activation induces innate but not adaptive immune response. We conclude that EAE mice are hypersensitive to CNS TLR2 activation with a severe toxic response. This might represent the susceptibility of multiple sclerosis patients to even trivial infections. As CNS TLR2 activation

  15. Effector Mechanisms of Neutrophils within the Innate Immune System in Response to Mycobacterium tuberculosis Infection

    Directory of Open Access Journals (Sweden)

    Eric Warren

    2017-02-01

    Full Text Available Neutrophils have a significant yet controversial role in the innate immune response to Mycobacterium tuberculosis (M. tb infection, which is not yet fully understood. In addition to neutrophils’ well-known effector mechanisms, they may also help control infection of M. tb through the formation of neutrophil extracellular traps (NETs, which are thought to further promote the killing of M. tb by resident alveolar macrophages. Cytokines such as IFN-γ have now been shown to serve an immunomodulatory role in neutrophil functioning in conjunction to its pro-inflammatory function. Additionally, the unique transcriptional changes of neutrophils may be used to differentiate between infection with M. tb and other bacterial and chronic rheumatological diseases such as Systemic Lupus Erythematosus. Adversely, during the innate immune response to M. tb, inappropriate phagocytosis of spent neutrophils can result in nonspecific damage to host cells due to necrotic lysis. Furthermore, some individuals have been shown to be more genetically susceptible to tuberculosis (TB due to a “Trojan Horse” phenomenon whereby neutrophils block the ability of resident macrophages to kill M. tb. Despite these aforementioned negative consequences, through the scope of this review we will provide evidence to support the idea that neutrophils, while sometimes damaging, can also be an important component in warding off M. tb infection. This is exemplified in immunocompromised individuals, such as those with human immunodeficiency virus (HIV infection or Type 2 diabetes mellitus. These individuals are at an increased risk of developing tuberculosis (TB due to a diminished innate immune response associated with decreased levels of glutathione. Consequently, there has been a worldwide effort to limit and contain M. tb infection through the use of antibiotics and vaccinations. However, due to several significant limitations, the current bacille Calmette-Guerin vaccine (BCG

  16. Interferon and IL-27 antagonize the function of group 2 innate lymphoid cells and type 2 innate immune responses.

    Science.gov (United States)

    Moro, Kazuyo; Kabata, Hiroki; Tanabe, Masanobu; Koga, Satoshi; Takeno, Natsuki; Mochizuki, Miho; Fukunaga, Koichi; Asano, Koichiro; Betsuyaku, Tomoko; Koyasu, Shigeo

    2016-01-01

    Group 2 innate lymphoid cells (ILC2 cells) are type 2 cytokine-producing cells of the innate immune system with important roles in helminth infection and allergic inflammation. Here we found that tissue-resident ILC2 cells proliferated in situ without migrating during inflammatory responses. Both type I and type II interferons and interleukin 27 (IL-27) suppressed ILC2 function in a manner dependent on the transcription factor STAT1. ILC2-mediated lung inflammation was enhanced in the absence of the interferon-γ (IFN-γ) receptor on ILC2 cells in vivo. IFN-γ effectively suppressed the function of tissue-resident ILC2 cells but not that of inflammatory ILC2 cells, and IL-27 suppressed tissue-resident ILC2 cells but not tissue-resident TH2 cells during lung inflammation induced by Alternaria alternata. Our results demonstrate that suppression mediated by interferon and IL-27 is a negative feedback mechanism for ILC2 function in vivo.

  17. Implication of PMLIV in both intrinsic and innate immunity.

    Directory of Open Access Journals (Sweden)

    Faten El Asmi

    2014-02-01

    Full Text Available PML/TRIM19, the organizer of nuclear bodies (NBs, has been implicated in the antiviral response to diverse RNA and DNA viruses. Several PML isoforms generated from a single PML gene by alternative splicing, share the same N-terminal region containing the RBCC/tripartite motif but differ in their C-terminal sequences. Recent studies of all the PML isoforms reveal the specific functions of each. The knockout of PML renders mice more sensitive to vesicular stomatitis virus (VSV. Here we report that among PML isoforms (PMLI to PMLVIIb, only PMLIII and PMLIV confer resistance to VSV. Unlike PMLIII, whose anti-VSV activity is IFN-independent, PMLIV can act at two stages: it confers viral resistance directly in an IFN-independent manner and also specifically enhances IFN-β production via a higher activation of IRF3, thus protecting yet uninfected cells from oncoming infection. PMLIV SUMOylation is required for both activities. This demonstrates for the first time that PMLIV is implicated in innate immune response through enhanced IFN-β synthesis. Depletion of IRF3 further demonstrates the dual activity of PMLIV, since it abrogated PMLIV-induced IFN synthesis but not PMLIV-induced inhibition of viral proteins. Mechanistically, PMLIV enhances IFN-β synthesis by regulating the cellular distribution of Pin1 (peptidyl-prolyl cis/trans isomerase, inducing its recruitment to PML NBs where both proteins colocalize. The interaction of SUMOylated PMLIV with endogenous Pin1 and its recruitment within PML NBs prevents the degradation of activated IRF3, and thus potentiates IRF3-dependent production of IFN-β. Whereas the intrinsic antiviral activity of PMLIV is specific to VSV, its effect on IFN-β synthesis is much broader, since it affects a key actor of innate immune pathways. Our results show that, in addition to its intrinsic anti-VSV activity, PMLIV positively regulates IFN-β synthesis in response to different inducers, thus adding PML/TRIM19 to the

  18. Aberrant innate immune activation following tissue injury impairs pancreatic regeneration.

    Directory of Open Access Journals (Sweden)

    Alexandra E Folias

    Full Text Available Normal tissue architecture is disrupted following injury, as resident tissue cells become damaged and immune cells are recruited to the site of injury. While injury and inflammation are critical to tissue remodeling, the inability to resolve this response can lead to the destructive complications of chronic inflammation. In the pancreas, acinar cells of the exocrine compartment respond to injury by transiently adopting characteristics of progenitor cells present during embryonic development. This process of de-differentiation creates a window where a mature and stable cell gains flexibility and is potentially permissive to changes in cellular fate. How de-differentiation can turn an acinar cell into another cell type (such as a pancreatic β-cell, or a cell with cancerous potential (as in cases of deregulated Kras activity is of interest to both the regenerative medicine and cancer communities. While it is known that inflammation and acinar de-differentiation increase following pancreatic injury, it remains unclear which immune cells are involved in this process. We used a combination of genetically modified mice, immunological blockade and cellular characterization to identify the immune cells that impact pancreatic regeneration in an in vivo model of pancreatitis. We identified the innate inflammatory response of macrophages and neutrophils as regulators of pancreatic regeneration. Under normal conditions, mild innate inflammation prompts a transient de-differentiation of acinar cells that readily dissipates to allow normal regeneration. However, non-resolving inflammation developed when elevated pancreatic levels of neutrophils producing interferon-γ increased iNOS levels and the pro-inflammatory response of macrophages. Pancreatic injury improved following in vivo macrophage depletion, iNOS inhibition as well as suppression of iNOS levels in macrophages via interferon-γ blockade, supporting the impairment in regeneration and the

  19. MECHANISMS OF ANTIINFECTIOUS FUNCTIONS OF INNATE IMMUNITY: ROLE OF TOLL-LIKE RECEPTORS

    Directory of Open Access Journals (Sweden)

    S. I. Suskov

    2012-01-01

    Full Text Available This review describes the main role of toll-like receptors of innate immunity for pathogen recognition; signaling; production of inflammatory response. Also Interrelation of innate and adaptive Immunity in conditions of pathology and organ transplantation were considered. 

  20. Long-term activation of the innate immune system in atherosclerosis.

    Science.gov (United States)

    Christ, Anette; Bekkering, Siroon; Latz, Eicke; Riksen, Niels P

    2016-08-01

    Efforts to reverse the pathologic consequences of vulnerable plaques are often stymied by the complex treatment resistant pro-inflammatory environment within the plaque. This suggests that pro-atherogenic stimuli, such as LDL cholesterol and high fat diets may impart longer lived signals on (innate) immune cells that persist even after reversing the pro-atherogenic stimuli. Recently, a series of studies challenged the traditional immunological paradigm that innate immune cells cannot display memory characteristics. Epigenetic reprogramming in these myeloid cell subsets, after exposure to certain stimuli, has been shown to alter the expression of genes upon re-exposure. This phenomenon has been termed trained innate immunity or innate immune memory. The changed responses of 'trained' innate immune cells can confer nonspecific protection against secondary infections, suggesting that innate immune memory has likely evolved as an ancient mechanism to protect against pathogens. However, dysregulated processes of immunological imprinting mediated by trained innate immunity may also be detrimental under certain conditions as the resulting exaggerated immune responses could contribute to autoimmune and inflammatory diseases, such as atherosclerosis. Pro-atherogenic stimuli most likely cause epigenetic modifications that persist for prolonged time periods even after the initial stimulus has been removed. In this review we discuss the concept of trained innate immunity in the context of a hyperlipidemic environment and atherosclerosis. According to this idea the epigenome of myeloid (progenitor) cells is presumably modified for prolonged periods of time, which, in turn, could evoke a condition of continuous immune cell over-activation.

  1. Virus-cell fusion as a trigger of innate immunity dependent on the adaptor STING

    NARCIS (Netherlands)

    Holm, C.K.; Jensen, S.B.; Jakobsen, M.R.; Cheshenko, N.; Horan, K.A.; Moeller, H.B.; Gonzalez-Dosal, R.; Rasmussen, S.B.; Christensen, M.H.; Yarovinsky, T.O.; Rixon, F.J.; Herold, B.C.; Fitzgerald, K.A.; Paludan, S.R.

    2012-01-01

    The innate immune system senses infection by detecting either evolutionarily conserved molecules essential for the survival of microbes or the abnormal location of molecules. Here we demonstrate the existence of a previously unknown innate detection mechanism induced by fusion between viral envelope

  2. Exploring the Innate Immune System: Using Complement-Medicated Cell Lysis in the Classroom

    Science.gov (United States)

    Fuller, Kevin G.

    2008-01-01

    The protein complement pathway comprises an important part of the innate immunity. The use of serum to demonstrate complement-mediated destruction across a series of bacterial dilutions allows an instructor to introduce a number of important biological concepts such as bacterial growth, activation cascades, and adaptive versus innate immunity.

  3. The innate and adaptive immune response to avian influenza virus infections and vaccines

    Science.gov (United States)

    Protective immunity against viruses is mediated by the early innate immune responses and later on by the adaptive immune responses. The early innate immunity is designed to contain and limit virus replication in the host, primarily through cytokine and interferon production. Most all cells are cap...

  4. Antiviral antibodies target adenovirus to phagolysosomes and amplify the innate immune response.

    Science.gov (United States)

    Zaiss, Anne K; Vilaysane, Akosua; Cotter, Matthew J; Clark, Sharon A; Meijndert, H Christopher; Colarusso, Pina; Yates, Robin M; Petrilli, Virginie; Tschopp, Jurg; Muruve, Daniel A

    2009-06-01

    Adenovirus is a nonenveloped dsDNA virus that activates intracellular innate immune pathways. In vivo, adenovirus-immunized mice displayed an enhanced innate immune response and diminished virus-mediated gene delivery following challenge with the adenovirus vector AdLacZ suggesting that antiviral Abs modulate viral interactions with innate immune cells. Under naive serum conditions in vitro, adenovirus binding and internalization in macrophages and the subsequent activation of innate immune mechanisms were inefficient. In contrast to the neutralizing effect observed in nonhematopoietic cells, adenovirus infection in the presence of antiviral Abs significantly increased FcR-dependent viral internalization in macrophages. In direct correlation with the increased viral internalization, antiviral Abs amplified the innate immune response to adenovirus as determined by the expression of NF-kappaB-dependent genes, type I IFNs, and caspase-dependent IL-1beta maturation. Immune serum amplified TLR9-independent type I IFN expression and enhanced NLRP3-dependent IL-1beta maturation in response to adenovirus, confirming that antiviral Abs specifically amplify intracellular innate pathways. In the presence of Abs, confocal microscopy demonstrated increased targeting of adenovirus to LAMP1-positive phagolysosomes in macrophages but not epithelial cells. These data show that antiviral Abs subvert natural viral tropism and target the adenovirus to phagolysosomes and the intracellular innate immune system in macrophages. Furthermore, these results illustrate a cross-talk where the adaptive immune system positively regulates the innate immune system and the antiviral state.

  5. Another armament in gut immunity: lymphotoxin-mediated crosstalk between innate lymphoid and dendritic cells.

    Science.gov (United States)

    Spits, H

    2011-07-21

    Innate lymphoid cells (ILCs) are novel players in innate immunity. Tumanov et al. (Tumanov et al., 2011) demonstrate that crosstalk between ILCs and dendritic cells involving membrane-bound lymphotoxin in ILCs and its receptor is critical for protection against colitogenic bacteria.

  6. DMPD: IRAK1: a critical signaling mediator of innate immunity. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17890055 IRAK1: a critical signaling mediator of innate immunity. Gottipati S, Rao ...NL, Fung-Leung WP. Cell Signal. 2008 Feb;20(2):269-76. Epub 2007 Aug 23. (.png) (.svg) (.html) (.csml) Show IRAK1: a critica...l signaling mediator of innate immunity. PubmedID 17890055 Title IRAK1: a critical signaling

  7. DMPD: Cytosolic DNA recognition for triggering innate immune responses. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18280611 Cytosolic DNA recognition for triggering innate immune responses. Takaoka ...A, Taniguchi T. Adv Drug Deliv Rev. 2008 Apr 29;60(7):847-57. Epub 2007 Dec 31. (.png) (.svg) (.html) (.csml) Show Cytosolic DNA reco...gnition for triggering innate immune responses. PubmedID 18280611 Title Cytosolic DNA reco

  8. Role of innate signalling pathways in the immunogenicity of alphaviral replicon-based vaccines

    Directory of Open Access Journals (Sweden)

    Chen Margaret

    2011-01-01

    Full Text Available Abstract Background Alphaviral replicon-based vectors induce potent immune responses both when given as viral particles (VREP or as DNA (DREP. It has been suggested that the strong immune stimulatory effect induced by these types of vectors is mediated by induction of danger signals and activation of innate signalling pathways due to the replicase activity. To investigate the innate signalling pathways involved, mice deficient in either toll-like receptors or downstream innate signalling molecules were immunized with DREP or VREP. Results We show that the induction of a CD8+ T cell response did not require functional TLR3 or MyD88 signalling. However, IRF3, converging several innate signalling pathways and important for generation of pro-inflammatory cytokines and type I IFNs, was needed for obtaining a robust primary immune response. Interestingly, type I interferon (IFN, induced by most innate signalling pathways, had a suppressing effect on both the primary and memory T cell responses after DREP and VREP immunization. Conclusions We show that alphaviral replicon-based vectors activate multiple innate signalling pathways, which both activate and restrict the induced immune response. These results further show that there is a delicate balance in the strength of innate signalling and induction of adaptive immune responses that should be taken into consideration when innate signalling molecules, such as type I IFNs, are used as vaccine adjuvant.

  9. Innate immune memory: towards a better understanding of host defense mechanisms

    NARCIS (Netherlands)

    Quintin, J.; Cheng, S.C.; Meer, J.W. van der; Netea, M.G.

    2014-01-01

    Innate immunity is classically defined as unable to build up immunological memory. Recently however, the assumption of the lack of immunological memory within innate immune responses has been reconsidered. Plants and invertebrates lacking adaptive immune system can be protected against secondary inf

  10. Innate Immune Memory: Activation of Macrophage Killing Ability by Developmental Duties.

    Science.gov (United States)

    Schneider, David; Tate, Ann Thomas

    2016-06-20

    Innate immune systems in many taxa exhibit hallmarks of memory in response to previous microbial exposure. A new study demonstrates that innate immune memory in Drosophila embryonic macrophages can also be induced by the successful engulfment of apoptotic cells, highlighting the importance of early exposure events for developing responsive immune systems.

  11. Another Armament in Gut Immunity: Lymphotoxin-Mediated Crosstalk between Innate Lymphoid and Dendritic Cells

    NARCIS (Netherlands)

    H. Spits

    2011-01-01

    Innate lymphoid cells (ILCs) are novel players in innate immunity. Tumanov et al. (Tumanov et al., 2011) demonstrate that crosstalk between ILCs and dendritic cells involving membrane-bound lymphotoxin in ILCs and its receptor is critical for protection against colitogenic bacteria

  12. Asthma is associated with multiple alterations in anti-viral innate signalling pathways.

    Directory of Open Access Journals (Sweden)

    Antonia L Pritchard

    Full Text Available BACKGROUND: Human rhinovirus (HRV infection is a major trigger for asthma exacerbations. Anti-viral immunity appears to be abnormal in asthma, with immune dysfunction reported in both airway structural cells and migratory, bone marrow derived cells. Though decreased capacity to produce anti-viral interferons (IFNs has been reported in asthma, a detailed analysis of the molecular events involved has not been undertaken. OBJECTIVE: To compare the molecular pathway controlling type I IFN synthesis in HRV-stimulated peripheral blood mononuclear cells (PBMC from asthmatic and healthy subjects. METHODS: PBMC from 22 allergic asthmatics and 20 healthy donors were cultured with HRV for 24 hours. Multiple components of the Toll-like receptor (TLR, IFN regulatory and NFκβ pathways were compared at the mRNA and protein level. RESULTS: Multiple deficiencies in the innate immune response to HRV were identified in asthma, with significantly lower expression of IFNα, IFNβ and interferon stimulated genes than in healthy subjects. This was accompanied by reduced expression of intra-cellular signalling molecules including interferon regulatory factors (IRF1, IRF7, NF-κB family members (p50, p52, p65 and IκKα and STAT1, and by reduced responsiveness to TLR7/TLR8 activation. These observations could not be attributed to alterations in the numbers of dendritic cell (DC subsets in asthma or baseline expression of the viral RNA sensing receptors TLR7/TLR8. In healthy subjects, blocking the activity of type-I IFN or depleting plasmacytoid DC recapitulated many of the abnormalities observed in asthma. CONCLUSIONS: Multiple abnormalities in innate anti-viral signalling pathways were identified in asthma, with deficiencies in both IFN-dependent and IFN-independent molecules identified.

  13. Resistance to intestinal Entamoeba histolytica infection is conferred by innate immunity and Gr-1+ cells.

    Science.gov (United States)

    Asgharpour, Amon; Gilchrist, Carol; Baba, Duza; Hamano, Shinjiro; Houpt, Eric

    2005-08-01

    Establishment of intestinal infection with Entamoeba histolytica depends on the mouse strain; C57BL/6 mice are highly resistant, and C3H/HeJ mice are relatively susceptible. We found that resistance to intestinal infection was independent of lymphocyte activity or H-2 haplotype and occurred in the first hours to days postchallenge according to in vivo imaging. At 18 h postchallenge, the ceca of resistant C57BL/6 mice were histologically unremarkable, in contrast to the severe inflammation observed in susceptible C3H/HeJ mice. Comparison of cecal gene expression in C3H/HeJ and C57BL/6 mice demonstrated that there was parasite-induced upregulation of proinflammatory and neutrophil chemotaxis transcripts and there was downregulation of transforming growth factor beta signaling molecules. Pretreatment with dexamethasone abrogated the partial resistance of C3H/HeJ or CBA mice through an innate, lymphocyte-independent mechanism, but it had no effect on the high-level resistance of C57BL/6 mice. Similarly, administration of a neutrophil-depleting anti-Gr-1 monoclonal antibody (RB6-8C5) decreased the partial resistance of CBA mice and led to severe pathology compared to control antibody-treated mice, but it had no effect on C57BL/6 resistance. These data indicate that there are discrete mechanisms of innate resistance to E. histolytica depending on the host background and, in contrast to other reports, imply that neutrophils are protective and not damaging in intestinal amebiasis.

  14. RIP1 suppresses innate immune necrotic as well as apoptotic cell death during mammalian parturition.

    Science.gov (United States)

    Kaiser, William J; Daley-Bauer, Lisa P; Thapa, Roshan J; Mandal, Pratyusha; Berger, Scott B; Huang, Chunzi; Sundararajan, Aarthi; Guo, Hongyan; Roback, Linda; Speck, Samuel H; Bertin, John; Gough, Peter J; Balachandran, Siddharth; Mocarski, Edward S

    2014-05-27

    The pronecrotic kinase, receptor interacting protein (RIP1, also called RIPK1) mediates programmed necrosis and, together with its partner, RIP3 (RIPK3), drives midgestational death of caspase 8 (Casp8)-deficient embryos. RIP1 controls a second vital step in mammalian development immediately after birth, the mechanism of which remains unresolved. Rip1(-/-) mice display perinatal lethality, accompanied by gross immune system abnormalities. Here we show that RIP1 K45A (kinase dead) knockin mice develop normally into adulthood, indicating that development does not require RIP1 kinase activity. In the face of complete RIP1 deficiency, cells develop sensitivity to RIP3-mixed lineage kinase domain-like-mediated necroptosis as well as to Casp8-mediated apoptosis activated by diverse innate immune stimuli (e.g., TNF, IFN, double-stranded RNA). When either RIP3 or Casp8 is disrupted in combination with RIP1, the resulting double knockout mice exhibit slightly prolonged survival over RIP1-deficient animals. Surprisingly, triple knockout mice with combined RIP1, RIP3, and Casp8 deficiency develop into viable and fertile adults, with the capacity to produce normal levels of myeloid and lymphoid lineage cells. Despite the combined deficiency, these mice sustain a functional immune system that responds robustly to viral challenge. A single allele of Rip3 is tolerated in Rip1(-/-)Casp8(-/-)Rip3(+/-) mice, contrasting the need to eliminate both alleles of either Rip1 or Rip3 to rescue midgestational death of Casp8-deficient mice. These observations reveal a vital kinase-independent role for RIP1 in preventing pronecrotic as well as proapoptotic signaling events associated with life-threatening innate immune activation at the time of mammalian parturition.

  15. The role of innate immunity in spontaneous regression of cancer

    Directory of Open Access Journals (Sweden)

    J A Thomas

    2011-01-01

    Full Text Available Nature has provided us with infections - acute and chronic - and these infections have both harmful and beneficial effects on the human system. Worldwide, a number of chronic infections are associated with a risk of cancer, but it is also known that cancer regresses when associated with acute infections such as bacterial, viral, fungal, protozoal, etc. Acute infections are known to cure chronic diseases since the time of Hippocrates. The benefits of these fever producing acute infections has been applied in cancer vaccinology such as the Coley′s toxins. Immune cells like the natural killer cells, macrophages and dendritic cells have taken greater precedence in cancer immunity than ever before. This review provides an insight into the benefits of fever and its role in prevention of cancer, the significance of common infections in cancer regression, the dual nature of our immune system and the role of the often overlooked primary innate immunity in tumor immunology and spontaneous regression of cancer.

  16. Peyer's patch innate lymphoid cells regulate commensal bacteria expansion.

    Science.gov (United States)

    Hashiguchi, Masaaki; Kashiwakura, Yuji; Kojima, Hidefumi; Kobayashi, Ayano; Kanno, Yumiko; Kobata, Tetsuji

    2015-05-01

    Anatomical containment of commensal bacteria in the intestinal mucosa is promoted by innate lymphoid cells (ILCs). However, the mechanism by which ILCs regulate bacterial localization to specific regions remains unknown. Here we show that Peyer's patch (PP) ILCs robustly produce IL-22 and IFN-γ in the absence of exogenous stimuli. Antibiotic treatment of mice decreased both IL-22+ and IFN-γ+ cells in PPs. Blockade of both IL-2 and IL-23 signaling in vitro lowered IL-22 and IFN-γ production. PP ILCs induced mRNA expression of the antibacterial proteins RegIIIβ and RegIIIγ in intestinal epithelial cells. Furthermore, in vivo depletion of ILCs rather than T cells altered bacterial composition and allowed bacterial proliferation in PPs. Collectively, our results show that ILCs regulate the expansion of commensal bacteria in PPs.

  17. Regulation of intestinal health and disease by innate lymphoid cells.

    Science.gov (United States)

    Sonnenberg, Gregory F

    2014-09-01

    Innate lymphoid cells (ILCs) are a recently appreciated immune cell population that is constitutively found in the healthy mammalian gastrointestinal (GI) tract and associated lymphoid tissues. Translational studies have revealed that alterations in ILC populations are associated with GI disease in patients, such as inflammatory bowel disease, HIV infection and colon cancer, suggesting a potential role for ILCs in either maintaining intestinal health or promoting intestinal disease. Mouse models identified that ILCs have context-dependent protective and pathologic functions either during the steady state, or following infection, inflammation or tissue damage. This review will discuss the associations of altered intestinal ILCs with human GI diseases, and the functional consequences of targeting ILCs in mouse models. Collectively, our current understanding of ILCs suggests that the development of novel therapeutic strategies to modulate ILC responses will be of significant clinical value to prevent or treat human GI diseases.

  18. Bridging Innate and Adaptive Antitumor Immunity Targeting Glycans

    Science.gov (United States)

    Pashov, Anastas; Monzavi-Karbassi, Bejatolah; Raghava, Gajendra P. S.; Kieber-Emmons, Thomas

    2010-01-01

    Effective immunotherapy for cancer depends on cellular responses to tumor antigens. The role of major histocompatibility complex (MHC) in T-cell recognition and T-cell receptor repertoire selection has become a central tenet in immunology. Structurally, this does not contradict earlier findings that T-cells can differentiate between small hapten structures like simple glycans. Understanding T-cell recognition of antigens as defined genetically by MHC and combinatorially by T cell receptors led to the “altered self” hypothesis. This notion reflects a more fundamental principle underlying immune surveillance and integrating evolutionarily and mechanistically diverse elements of the immune system. Danger associated molecular patterns, including those generated by glycan remodeling, represent an instance of altered self. A prominent example is the modification of the tumor-associated antigen MUC1. Similar examples emphasize glycan reactivity patterns of antigen receptors as a phenomenon bridging innate and adaptive but also humoral and cellular immunity and providing templates for immunotherapies. PMID:20617150

  19. [ROLE OF INNATE IMMUNITY FACTORS IN PERIODONTITIS PATHOGENESIS].

    Science.gov (United States)

    Gankovskaya, L V; Khelminskaya, N M; Molchanova, E A; Svitich, O A

    2016-01-01

    Chronic generalized periodontitis (CGP) is a disease of periodontium tissues supporting tooth induced by bacteria, that is characterized by the presence of processes of inflammation with destruction of bone tissue. The knowledge of molecular mechanisms of CGP pathogenesis facilitates creation of the most effective methods of therapy of this disease. Bacterial infection is a primary factor in periodontitis etiology, however is not sufficient for its start and subsequent development. It is known, that bacterial factors induce alocal inflammationreaction and.activate the system of innate immunity through activation of Toll-like receptors (TLR), located on the surface of resident cells and leukocytes. Activation of these cells results in production of pro-inflammatory cytokines and recruitment of phagocytes and lymphocytes into the inflammation zone. In review we examined the known data regarding factors of immune protection of periodontium including cell populations and cytokines, as well as mechanisms of tissue destruction, that support the tooth. Perspectives of therapy are also discussed

  20. Alphacoronavirus protein 7 modulates host innate immune response.

    Science.gov (United States)

    Cruz, Jazmina L G; Becares, Martina; Sola, Isabel; Oliveros, Juan Carlos; Enjuanes, Luis; Zúñiga, Sonia

    2013-09-01

    Innate immune response is the first line of antiviral defense resulting, in most cases, in pathogen clearance with minimal clinical consequences. Viruses have developed diverse strategies to subvert host defense mechanisms and increase their survival. In the transmissible gastroenteritis virus (TGEV) as a model, we previously reported that accessory gene 7 counteracts the host antiviral response by associating with the catalytic subunit of protein phosphatase 1 (PP1c). In the present work, the effect of the absence of gene 7 on the host cell, during infection, was further analyzed by transcriptomic analysis. The pattern of gene expression of cells infected with a recombinant mutant TGEV, lacking gene 7 expression (rTGEV-Δ7), was compared to that of cells infected with the parental virus (rTGEV-wt). Genes involved in the immune response, the interferon response, and inflammation were upregulated during TGEV infection in the absence of gene 7. An exacerbated innate immune response during infection with rTGEV-Δ7 virus was observed both in vitro and in vivo. An increase in macrophage recruitment and activation in lung tissues infected with rTGEV-Δ7 virus was observed compared to cells infected with the parental virus. In summary, the absence of protein 7 both in vitro and in vivo led to increased proinflammatory responses and acute tissue damage after infection. In a porcine animal model, which is immunologically similar to humans, we present a novel example of how viral proteins counteract host antiviral pathways to determine the infection outcome and pathogenesis.

  1. Role of Innate Lymphoid Cells in Lung Disease

    Directory of Open Access Journals (Sweden)

    SayedMehran Marashian

    2015-10-01

    Full Text Available  Innate lymphoid cells (ILCs are identified as novel population of hematopoietic cells which protect the body by coordinating the innate immune response against a wide range of threats including infections, tissue damages and homeostatic disturbances. ILCs, particularly ILC2 cells, are found throughout the body including the brain. ILCs are morphologically similar to lymphocytes, express and release high levels of T-helper (Th1, Th2 and Th17 cytokines but do not express classical cell-surface markers that are associated with other immune cell lineages.Three types of ILCs (ILC1, 2 & 3 have been reported depending upon the cytokines produced. ILC1 cells encompass natural killer (NK cells and interferon (IFN-g releasing cells; ILC2 cells release the Th2 cytokines, IL-5, IL-9 and IL-13 in response to IL-25 and IL-33; and ILC3 cells which release IL-17 and IL-22. ILC2 cells have been implicated inmucosal reactions occurring in animal models of allergic asthma and virus-induced lung disorders resulting in the regulation of airway remodeling and tissue homeostasis.There is evidence for increased ILC2 cell numbers in allergic responses in man but little is known about the role of ILCs in chronic obstructive pulmonary disease (COPD. Further understanding of the characteristics of ILCs such as their origin, location and phenotypes and function would help to clarify the role of these cells in the pathogenesis of various lung diseases.In this review we will focus on the role of ILC2 cells and consider their origin, function,location and possible role in the pathogenesis of the chronic inflammatory disorders such as asthma and COPD.   

  2. Bacterial and Fungal Pattern Recognition Receptors in Homologous Innate Signaling Pathways of Insects and Mammals

    Directory of Open Access Journals (Sweden)

    Bethany A Stokes

    2015-01-01

    Full Text Available In response to bacterial and fungal infections in insects and mammals, distinct families of innate immune pattern recognition receptors initiate highly complex intracellular signaling cascades. Those cascades induce a variety of immune functions that restrain the spread of microbes in the host. Insect and mammalian innate immune receptors include molecules that recognize conserved microbial molecular patterns. Innate immune recognition leads to the recruitment of adaptor molecules forming multi-protein complexes that include kinases, transcription factors and other regulatory molecules. Innate immune signaling cascades induce the expression of genes encoding antimicrobial peptides and other key factors that mount and regulate the immune response against microbial challenge. In this review, we summarize our current understanding of the bacterial and fungal pattern recognition receptors for homologous innate signaling pathways of insects and mammals in an effort to provide a framework for future studies.

  3. Innate and adaptive immune responses in allergic contact dermatitis and autoimmune skin diseases.

    Science.gov (United States)

    Edele, Fanny; Esser, Philipp R; Lass, Christian; Laszczyk, Melanie N; Oswald, Eva; Strüh, Christian M; Rensing-Ehl, Anne; Martin, Stefan F

    2007-12-01

    Allergic contact dermatitis is induced by chemicals or metal ions. A hallmark of this T cell mediated skin disease is the activation of the innate immune system by contact allergens. This immune response results in inflammation and is a prerequisite for the activation of the adaptive immune system with tissue-specific migration of effector and regulatory T cells. Recent studies have begun to address in detail the innate immune cells as well as the innate receptors on these cells and the associated signaling pathways which lead to skin inflammation. We review here recent findings regarding innate and adaptive immune responses and immune regulation of contact dermatitis and other skin diseases as well as recent developments towards an in vitro assessment of the allergenic potential of chemicals. The elucidation of the innate inflammatory pathways, cellular components and mediators will help to identify new drug targets for more efficient treatment of allergic contact dermatitis and hopefully also for its prevention.

  4. Promising Targets for Cancer Immunotherapy: TLRs, RLRs, and STING-Mediated Innate Immune Pathways

    Science.gov (United States)

    Li, Kai; Qu, Shuai; Chen, Xi; Wu, Qiong; Shi, Ming

    2017-01-01

    Malignant cancers employ diverse and intricate immune evasion strategies, which lead to inadequately effective responses of many clinical cancer therapies. However, emerging data suggest that activation of the tolerant innate immune system in cancer patients is able, at least partially, to counteract tumor-induced immunosuppression, which indicates triggering of the innate immune response as a novel immunotherapeutic strategy may result in improved therapeutic outcomes for cancer patients. The promising innate immune targets include Toll-like Receptors (TLRs), RIG-I-like Receptors (RLRs), and Stimulator of Interferon Genes (STING). This review discusses the antitumor properties of TLRs, RLRs, and STING-mediated innate immune pathways, as well as the promising innate immune targets for potential application in cancer immunotherapy. PMID:28216575

  5. Functions of innate immune cells and commensal bacteria in gut homeostasis.

    Science.gov (United States)

    Kayama, Hisako; Takeda, Kiyoshi

    2016-02-01

    The intestinal immune system remains unresponsive to beneficial microbes and dietary antigens while activating pro-inflammatory responses against pathogens for host defence. In intestinal mucosa, abnormal activation of innate immunity, which directs adaptive immune responses, causes the onset and/or progression of inflammatory bowel diseases. Thus, innate immunity is finely regulated in the gut. Multiple innate immune cell subsets have been identified in both murine and human intestinal lamina propria. Some innate immune cells play a key role in the maintenance of gut homeostasis by preventing inappropriate adaptive immune responses while others are associated with the pathogenesis of intestinal inflammation through development of Th1 and Th17 cells. In addition, intestinal microbiota and their metabolites contribute to the regulation of innate/adaptive immune responses. Accordingly, perturbation of microbiota composition can trigger intestinal inflammation by driving inappropriate immune responses.

  6. The development of innate lymphoid cells requires TOX-dependent generation of a common innate lymphoid cell progenitor.

    Science.gov (United States)

    Seehus, Corey R; Aliahmad, Parinaz; de la Torre, Brian; Iliev, Iliyan D; Spurka, Lindsay; Funari, Vincent A; Kaye, Jonathan

    2015-06-01

    Diverse innate lymphoid cell (ILC) subtypes have been defined on the basis of effector function and transcription factor expression. ILCs derive from common lymphoid progenitors, although the transcriptional pathways that lead to ILC-lineage specification remain poorly characterized. Here we found that the transcriptional regulator TOX was required for the in vivo differentiation of common lymphoid progenitors into ILC lineage-restricted cells. In vitro modeling demonstrated that TOX deficiency resulted in early defects in the survival or proliferation of progenitor cells, as well as ILC differentiation at a later stage. In addition, comparative transcriptome analysis of bone marrow progenitors revealed that TOX-deficient cells failed to upregulate many genes of the ILC program, including genes that are targets of Notch, which indicated that TOX is a key determinant of early specification to the ILC lineage.

  7. Cirrhosis-induced defects in innate pulmonary defenses against Streptococcus pneumoniae

    Directory of Open Access Journals (Sweden)

    Vander Top Elizabeth A

    2007-10-01

    Full Text Available Abstract Background The risk of mortality from pneumonia caused by Streptococcus pneumoniae is increased in patients with cirrhosis. However, the specific pneumococcal virulence factors and host immune defects responsible for this finding have not been clearly established. This study used a cirrhotic rat model of pneumococcal pneumonia to identify defect(s in innate pulmonary defenses in the cirrhotic host and to determine the impact of the pneumococcal toxin pneumolysin on these defenses in the setting of severe cirrhosis. Results No cirrhosis-associated defects in mucociliary clearance of pneumococci were found in these studies, but early intrapulmonary killing of the organisms before the arrival of neutrophils was significantly impaired. This defect was exacerbated by pneumolysin production in cirrhotic but not in control rats. Neutrophil-mediated killing of a particularly virulent type 3 pneumococcal strain also was significantly diminished within the lungs of cirrhotic rats with ascites. Levels of lysozyme and complement component C3 were both significantly reduced in bronchoalveolar lavage fluid from cirrhotic rats. Finally, complement deposition was reduced on the surface of pneumococci recovered from the lungs of cirrhotic rats in comparison to organisms recovered from the lungs of control animals. Conclusion Increased mortality from pneumococcal pneumonia in this cirrhotic host is related to defects in both early pre-neutrophil- and later neutrophil-mediated pulmonary killing of the organisms. The fact that pneumolysin production impaired pre-neutrophil-mediated pneumococcal killing in cirrhotic but not control rats suggests that pneumolysin may be particularly detrimental to this defense mechanism in the severely cirrhotic host. The decrease in neutrophil-mediated killing of pneumococci within the lungs of the cirrhotic host is related to insufficient deposition of host proteins such as complement C3 on their surfaces. Pneumolysin

  8. Role of xanthine oxidase, lactoperoxidase, and NO in the innate immune system of mammary secretion during active involution in dairy cows: manipulation with casein hydrolyzates.

    Science.gov (United States)

    Silanikove, Nissim; Shapiro, Fira; Shamay, Avi; Leitner, Gabriel

    2005-05-01

    The aims of this study were to test whether xanthine oxidase, lactoperoxidase, and NO are components of the innate immune system of mammary secretion during active involution in dairy cows, and whether the innate immune system is activated by casein hydrolysates. Our laboratory has shown recently that infusion of CNH into mammary glands induced involution and was associated with earlier increases in the concentrations of components of the innate immune system. Intact casein is inactive and served as control. Half of the glands of 8 Holstein cows scheduled for dry off (approximately 60 days before parturition) were injected for 3 days with a single dose of casein hydrolyzates and the contralateral glands with a single dose of intact casein with the same concentration. Involution elicited marked increases in xanthine oxidase and lactoperoxidase activities, and accumulation of urate and nitrate. NO and H(2)O(2) were constantly produced in the mammary gland secretion. Nitrite formed either by autooxidation of NO or by conversion of nitrate to nitrite by xanthine oxidase was converted into the powerful nitric dioxide radical by lactoperoxidase and H(2)O(2) that is derived from the metabolism of xanthine oxidase. Nitric dioxide is most likely responsible for the formation of nitrosothiols on thiol-bearing groups, which allows an extended NO presence in mammary secretion. Nitrite is effectively converted to nitrate, which accumulated in the range of approximately 25 microM -1 mM from the start of the experiment to the complete involution of glands. The mammary secretion in all glands was bactericidal and bacteriostatic during established involution, and this appeared sooner and more acutely in glands treated with casein hydrolyzates, within 8 to 24 h. It is concluded that xanthine oxidase, lactoperoxidase, and NO are components of the mammary innate immune system that form bactericidal and bacteriostatic activities in mammary secretions. The innate immune system play a

  9. Cutting edge: IL-17-secreting innate lymphoid cells are essential for host defense against fungal infection.

    Science.gov (United States)

    Gladiator, André; Wangler, Nicolette; Trautwein-Weidner, Kerstin; LeibundGut-Landmann, Salomé

    2013-01-15

    IL-17-mediated immunity has emerged as a crucial host defense mechanism against fungal infections. Although Th cells are generally thought to act as the major source of IL-17 in response to Candida albicans, we show that fungal control is mediated by IL-17-secreting innate lymphoid cells (ILCs) and not by Th17 cells. By using a mouse model of oropharyngeal candidiasis we found that IL-17A and IL-17F, which are both crucial for pathogen clearance, are produced promptly upon infection in an IL-23-dependent manner, and that ILCs in the oral mucosa are the main source for these cytokines. Ab-mediated depletion of ILCs in RAG1-deficient mice or ILC deficiency in retinoic acid-related orphan receptor c(-/-) mice resulted in a complete failure to control the infection. Taken together, our data uncover the cellular basis for the IL-23/IL-17 axis, which acts right at the onset of infection when it is most needed for fungal control and host protection.

  10. IL-15 participates in the respiratory innate immune response to influenza virus infection.

    Directory of Open Access Journals (Sweden)

    Katherine C Verbist

    Full Text Available Following influenza infection, natural killer (NK cells function as interim effectors by suppressing viral replication until CD8 T cells are activated, proliferate, and are mobilized within the respiratory tract. Thus, NK cells are an important first line of defense against influenza virus. Here, in a murine model of influenza, we show that virally-induced IL-15 facilitates the trafficking of NK cells into the lung airways. Blocking IL-15 delays NK cell entry to the site of infection and results in a disregulated control of early viral replication. By the same principle, viral control by NK cells can be therapeutically enhanced via intranasal administration of exogenous IL-15 in the early days post influenza infection. In addition to controlling early viral replication, this IL-15-induced mobilization of NK cells to the lung airways has important downstream consequences on adaptive responses. Primarily, depletion of responding NK1.1+ NK cells is associated with reduced immigration of influenza-specific CD8 T cells to the site of infection. Together this work suggests that local deposits of IL-15 in the lung airways regulate the coordinated innate and adaptive immune responses to influenza infection and may represent an important point of immune intervention.

  11. Amino acid catabolism: a pivotal regulator of innate and adaptive immunity.

    Science.gov (United States)

    McGaha, Tracy L; Huang, Lei; Lemos, Henrique; Metz, Richard; Mautino, Mario; Prendergast, George C; Mellor, Andrew L

    2012-09-01

    Enhanced amino acid catabolism is a common response to inflammation, but the immunologic significance of altered amino acid consumption remains unclear. The finding that tryptophan catabolism helped maintain fetal tolerance during pregnancy provided novel insights into the significance of amino acid metabolism in controlling immunity. Recent advances in identifying molecular pathways that enhance amino acid catabolism and downstream mechanisms that affect immune cells in response to inflammatory cues support the notion that amino acid catabolism regulates innate and adaptive immune cells in pathologic settings. Cells expressing enzymes that degrade amino acids modulate antigen-presenting cell and lymphocyte functions and reveal critical roles for amino acid- and catabolite-sensing pathways in controlling gene expression, functions, and survival of immune cells. Basal amino acid catabolism may contribute to immune homeostasis that prevents autoimmunity, whereas elevated amino acid catalytic activity may reinforce immune suppression to promote tumorigenesis and persistence of some pathogens that cause chronic infections. For these reasons, there is considerable interest in generating novel drugs that inhibit or induce amino acid consumption and target downstream molecular pathways that control immunity. In this review, we summarize recent developments and highlight novel concepts and key outstanding questions in this active research field.

  12. DMPD: Nod1 and Nod2 in innate immunity and human inflammatory disorders. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18031249 Nod1 and Nod2 in innate immunity and human inflammatory disorders. Le Bour...w Nod1 and Nod2 in innate immunity and human inflammatory disorders. PubmedID 18031249 Title Nod1 and Nod2 i...n innate immunity and human inflammatory disorders. Authors Le Bourhis L, Benko S

  13. DMPD: Innate immune sensing of pathogens and danger signals by cell surface Toll-likereceptors. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17275324 Innate immune sensing of pathogens and danger signals by cell surface Toll... Show Innate immune sensing of pathogens and danger signals by cell surface Toll-likereceptors. PubmedID 172...75324 Title Innate immune sensing of pathogens and danger signals by cell surface

  14. Tim-3: An activation marker and activation limiter of innate immune cells

    Directory of Open Access Journals (Sweden)

    Gencheng eHan

    2013-12-01

    Full Text Available Tim-3 was initially identified on activated Th1, Th17, and Tc1 cells and induces T cell death or exhaustion after binding to its ligand, Gal-9. The observed relationship between dysregulated Tim-3 expression on T cells and the progression of many clinical diseases has identified this molecule as an important target for intervention in adaptive immunity. Recent data have shown that it also plays critical roles in regulating the activities of macrophages, monocytes, dendritic cells, mast cells, natural killer cells, and endothelial cells. Although the underlying mechanisms remain unclear, dysregulation of Tim-3 expression on these innate immune cells leads to an excessive or inhibited inflammatory response and subsequent autoimmune damage or viral or tumor evasion. In this review, we focus on the expression and function of Tim-3 on innate immune cells and discuss 1 how Tim-3 is expressed and regulated on different innate immune cells; 2 how it affects the activity of different innate immune cells; and 3 how dysregulated Tim-3 expression on innate immune cells affects adaptive immunity and disease progression. Tim-3 is involved in the optimal activation of innate immune cells through its varied expression. A better understanding of the physiopathological role of the Tim-3 pathway in innate immunity will shed new light on the pathogenesis of clinical diseases, such as autoimmune diseases, chronic viral infections, and cancer, and suggest new approaches to intervention.

  15. Effects of Cortisol Administered through Slow-Release Implants on Innate Immune Responses in Rainbow Trout (Oncorhynchus mykiss

    Directory of Open Access Journals (Sweden)

    R. Cortés

    2013-01-01

    Full Text Available Cortisol is a key hormone in the fish stress response with a well-known ability to regulate several physiological functions, including energy metabolism and the immune system. However, data concerning cortisol effects on fish innate immune system using a more controlled increase in cortisol levels isolated from any other stress related signaling is scarce. The present study describes the effect of doses of cortisol corresponding to acute and chronic levels on the complement and lysozyme activity in plasma of the rainbow trout (Oncorhynchus mykiss. We also evaluated the effects of these cortisol levels (from intraperitoneally implanted hydrocortisone on the mRNA levels quantified by RT-qPCR of selected key immune-related genes in the liver, head kidney, and spleen. For that purpose, 60 specimens of rainbow trout were divided in to two groups: a control group injected with a coconut oil implant and another group injected with the same implant and cortisol (50 μg cortisol/g body weight. Our results demonstrate the role of cortisol as a modulator of the innate immune response without the direct contribution of other stress axes. Our results also show a relationship between the complement and lysozyme activity in plasma and mRNA levels in liver, supporting the important role of this organ in producing these immune system proteins after a rise of cortisol in the fish plasma.

  16. Dietary supplementation with two Lamiaceae herbs-(oregano and sage modulates innate immunity parameters in Lumbric us terrestris

    Directory of Open Access Journals (Sweden)

    D A Vattem

    2013-01-01

    Full Text Available Introduction: Lamiaceae herbs have are well known for their immunomodulatory effects, however, the mechanism by which they effect innate immune system is not clearly understood. Objective: The effect of dietary supplementation with two Lamiaceae herbs (oregano and sage modulation of on innate immunological parameters was investigated in Lumbricus terrestris. Materials and Methods: Animals were fed (ad libitum on herbs supplemented diet [(0.1% (w/v and 0.5% (w/v] for 6 days. Changes in immune competent cell counts, viability, and relative neutrophil-like cell counts were determined in response to herb treatment. Changes in nitric oxide, phagocytic activity, and respiratory burst index were also determined in response to herb treatment relative to control. Additionally, effect of herb co-treatment cyclophosphamide (50 mg/kg-BW induced immunosuppression was also evaluated. Results: Our results suggested abrogation of CP-induced immunosuppression in response to co-treatment with herbs. Significant increase in nitric oxide-mediated immune-competent cell counts, viability, and differentiation into neutrophil-like cells were observed in response to dietary supplementation with Lamiaceae herbs. Significantly higher phagocytic activity relative to control was also noted in response to dietary intake of oregano and sage. However, the respiratory burst index did not increase exponentially in response to herb treatments, suggesting a potential enhancement in pathogen recognition and antioxidant defenses. Conclusion: Lamiaceae herbs may have potential immune-modulatory properties important for human health and merits further investigation.

  17. Dietary Administration of Lactobacillus plantarum Enhanced Growth Performance and Innate Immune Response of Siberian Sturgeon, Acipenser baerii.

    Science.gov (United States)

    Pourgholam, Moheb Ali; Khara, Hossein; Safari, Reza; Sadati, Mohammad Ali Yazdani; Aramli, Mohammad Sadegh

    2016-03-01

    We investigated the effects of Lactobacillus plantarum used as a dietary supplement on the growth performance and innate immune response in juvenile Siberian sturgeon Acipenser baerii. Juvenile fish (14.6 ± 2.3 g) were fed three experimental diets prepared by supplementing a basal diet with L. plantarum at different concentrations [1 × 10(7), 1 × 10(8) and 1 × 10(9) colony-forming units (cfu) g(-1)] and a control (non-supplemented basal) diet for 8 weeks. Growth performance indices were increased in fish fed the 1 × 10(8) cfu g(-1) L. plantarum diet compared to the other groups. There was an increased innate immune response in fish fed the experimental diets. The highest levels of lysozyme activity, total immunoglobulin (IgM) and complement component 3 (C3) were observed in fish fed the diet containing L. plantarum at a concentration of 1 × 10(8) cfu g(-1), but there was no significant difference in the level of complement component 4 (C4) in fish fed the experimental diets or the control diet. The present study underlying some positive effects (growth performance and immune indices) of dietary administration of L. plantarum at a concentration of 1 × 10(8) cfu g(-1) in the Siberian sturgeon.

  18. Oral microbiota and host innate immune response in bisphosphonate-related osteonecrosis of the jaw

    Institute of Scientific and Technical Information of China (English)

    Smruti Pushalkar; Deepak Saxena; Xin Li; Zoya Kurago; Lalitha V Ramanathapuram; Satoko Matsumura; Kenneth E Fleisher; Robert Glickman; Wenbo Yan; Yihong Li

    2014-01-01

    Bacterial biofilms have emerged as potential critical triggers in the pathogenesis of bisphosphonate (BP)-related osteonecrosis of the jaw (ONJ) or BRONJ. BRONJ lesions have shown to be heavily colonized by oral bacteria, most of these difficult to cultivate and presents many clinical challenges. The purpose of this study was to characterize the bacterial diversity in BRONJ lesions and to determine host immune response. We examined tissue specimens from three cohorts (n530);patients with periodontal disease without a history of BP therapy (Control, n510), patients with periodontal disease having history of BP therapy but without ONJ (BP, n55) and patients with BRONJ (BRONJ, n515). Denaturing gradient gel electrophoresis of polymerase chain reaction (PCR)-amplified 16S rRNA gene fragments revealed less bacterial diversity in BRONJ than BP and Control cohorts. Sequence analysis detected six phyla with predominant affiliation to Firmicutes in BRONJ (71.6%), BP (70.3%) and Control (59.1%). Significant differences (P,0.05) in genera were observed, between Control/BP, Control/BRONJ and BP/BRONJ cohorts. Enzyme-linked immunosorbent assay (ELISA) results indicated that the levels of myeloperoxidase were significantly lower, whereas interleukin-6 and tumor necrosis factor-alpha levels were moderately elevated in BRONJ patients as compared to Controls. PCR array showed significant changes in BRONJ patients with downregulation of host genes, such as nucleotide-binding oligomerization domain containing protein 2, and cathepsin G, the key modulators for antibacterial response and upregulation of secretory leukocyte protease inhibitor, proteinase 3 and conserved helix–loop–helix ubiquitous kinase. The results suggest that colonization of unique bacterial communities coupled with deficient innate immune response is likely to impact the pathogenesis of ONJ.

  19. Drosophila 14-3-3ε has a crucial role in anti-microbial peptide secretion and innate immunity.

    Science.gov (United States)

    Shandala, Tetyana; Woodcock, Joanna M; Ng, Yeap; Biggs, Lisa; Skoulakis, Efthimios M C; Brooks, Doug A; Lopez, Angel F

    2011-07-01

    The secretion of anti-microbial peptides is recognised as an essential step in innate immunity, but there is limited knowledge of the molecular mechanism controlling the release of these effectors from immune response cells. Here, we report that Drosophila 14-3-3ε mutants exhibit reduced survival when infected with either Gram-positive or Gram-negative bacteria, indicating a functional role for 14-3-3ε in innate immunity. In 14-3-3ε mutants, there was a reduced release of the anti-microbial peptide Drosomycin into the haemolymph, which correlated with an accumulation of Drosomycin-containing vesicles near the plasma membrane of cells isolated from immune response tissues. Drosomycin appeared to be delivered towards the plasma membrane in Rab4- and Rab11-positive vesicles and smaller Rab11-positive vesicles. RNAi silencing of Rab11 and Rab4 significantly blocked the anterograde delivery of Drosomycin from the perinuclear region to the plasma membrane. However, in 14-3-3ε mutants there was an accumulation of small Rab11-positive vesicles near the plasma membrane. This vesicular phenotype was similar to that observed in response to the depletion of the vesicular Syntaxin protein Syx1a. In wild-type Drosophila immune tissue, 14-3-3ε was detected adjacent to Rab11, and partially overlapping with Syx1a, on vesicles near the plasma membrane. We conclude that 14-3-3ε is required for Rab11-positive vesicle function, which in turn enables antimicrobial peptide secretion during an innate immune response.

  20. The role of innate lymphoid cells in healthy and inflamed skin

    DEFF Research Database (Denmark)

    Bonefeld, Charlotte M.; Geisler, Carsten

    2016-01-01

    The skin constitutes the interface between the organism and the environment, and it protects the body from harmful substances in the environment via physical, chemical and immunological barriers. The immunological barrier of the skin comprises both cells from the innate and the adaptive immune...... system. During the last years, it has become clear that innate lymphoid cells play a role in homeostasis and inflammation of the skin in humans and mice. In this review, we will discuss the role of innate lymphoid cells in healthy and inflamed skin with special focus on their role in atopic dermatitis....

  1. Phosphorylation-dependent differential regulation of plant growth, cell death, and innate immunity by the regulatory receptor-like kinase BAK1

    DEFF Research Database (Denmark)

    Schwessinger, Benjamin; Roux, Milena; Kadota, Yasuhiro;

    2011-01-01

    Plants rely heavily on receptor-like kinases (RLKs) for perception and integration of external and internal stimuli. The Arabidopsis regulatory leucine-rich repeat RLK (LRR-RLK) BAK1 is involved in steroid hormone responses, innate immunity, and cell death control. Here, we describe the different......Plants rely heavily on receptor-like kinases (RLKs) for perception and integration of external and internal stimuli. The Arabidopsis regulatory leucine-rich repeat RLK (LRR-RLK) BAK1 is involved in steroid hormone responses, innate immunity, and cell death control. Here, we describe...... the differential regulation of three different BAK1-dependent signaling pathways by a novel allele of BAK1, bak1-5. Innate immune signaling mediated by the BAK1-dependent RKs FLS2 and EFR is severely compromised in bak1-5 mutant plants. However, bak1-5 mutants are not impaired in BR signaling or cell death control...... of FLS2 or EFR with BAK1 in planta, revealing another pathway specific mechanistic difference. The specific suppression of FLS2- and EFR-dependent signaling in bak1-5 is not due to a differential interaction of BAK1-5 with the respective ligand-binding RK but requires BAK1-5 kinase activity. Overall our...

  2. Science Signaling Podcast for 3 May 2016: Innate lymphoid cell plasticity.

    Science.gov (United States)

    Vivier, Eric; Golub, Rachel; VanHook, Annalisa M

    2016-05-03

    This Podcast features an interview with Rachel Golub and Eric Vivier, authors of two Research Articles that appear in the 3 May 2016 issue of Science Signaling, about plasticity of innate lymphoid cells (ILCs). ILCs are related to the T cells and B cells of the adaptive immune system, and they regulate immune responses by secreting cytokines. ILCs are a heterogeneous population of cells that can be classified into several subtypes. Type 3 ILCs (ILC3s) can be further subdivided into distinct subpopulations. Chea et al found that Notch signaling controlled the relative proportions of different ILC3 subtypes in the mouse intestine. A related study by Viant et al reports that the Notch and transforming growth factor-β (TGF-β) signaling pathways antagonize one another to control the balance between different subsets of ILC3s. Both studies demonstrate that ILC3 fate is plastic and can be influenced by signals present in the microenvironment of these tissue-resident cells.Listen to Podcast.

  3. A Role for Innate Immunity in the Development of Hypertension

    Science.gov (United States)

    Gomolak, Jessica R.; Didion, Sean P.

    2014-01-01

    Clinically, Angiotensin II (Ang II) has been implicated in some forms of hypertension and linked to vascular injury. Experimentally, chronic Ang II infusion leads to an increase in blood pressure, resulting in impaired endothelial function and vascular hypertrophy. Ang II also upregulates the activity and expression of a number of inflammatory molecules, including nuclear factor kappa B (NFκB) and pro-inflammatory cytokines, such as interleukin-6 (IL-6). More recently, it has been reported that Ang II is associated with upregulation of toll-like receptor TLR expression, specifically TLR4. Classical TLR4 signaling is mediated in large part by the effector protein myeloid differentiation factor 88 (MyD88), with resultant activation of NFκB, a transcription factor that promotes expression of a number of inflammatory gene products, including IL-6. A role for IL-6 has been previously implicated in the vascular dysfunction associated with Ang II-dependent hypertension. It is not known whether the MyD88 signaling pathway represents a cellular mechanism by which Ang II promotes endothelial dysfunction via NFκB activation and increases in IL-6. Taken together, we propose to mechanistically elucidate the role of innate immune signaling in Ang II-dependent hypertension. We hypothesize MyD88-deficiency will prevent the activation and transcription of NFκB-related gene products, including IL-6, thereby limiting Ang II-dependent hypertension and vascular complications. PMID:25441337

  4. The Innate Immune System in Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Allal Boutajangout

    2013-01-01

    Full Text Available Alzheimer’s disease (AD is the leading cause for dementia in the world. It is characterized by two biochemically distinct types of protein aggregates: amyloid β (Aβ peptide in the forms of parenchymal amyloid plaques and congophilic amyloid angiopathy (CAA and aggregated tau protein in the form of intraneuronal neurofibrillary tangles (NFT. Several risk factors have been discovered that are associated with AD. The most well-known genetic risk factor for late-onset AD is apolipoprotein E4 (ApoE4 (Potter and Wisniewski (2012, and Verghese et al. (2011. Recently, it has been reported by two groups independently that a rare functional variant (R47H of TREM2 is associated with the late-onset risk of AD. TREM2 is expressed on myeloid cells including microglia, macrophages, and dendritic cells, as well as osteoclasts. Microglia are a major part of the innate immune system in the CNS and are also involved in stimulating adaptive immunity. Microglia express several Toll-like receptors (TLRs and are the resident macrophages of the central nervous system (CNS. In this review, we will focus on the recent advances regarding the role of TREM2, as well as the effects of TLRs 4 and 9 on AD.

  5. The image schema and innate archetypes: theoretical and clinical implications.

    Science.gov (United States)

    Merchant, John

    2016-02-01

    Based in contemporary neuroscience, Jean Knox's 2004 JAP paper 'From archetypes to reflective function' honed her position on image schemas, thereby introducing a model for archetypes which sees them as 'reliably repeated early developmental achievements' and not as genetically inherited, innate psychic structures. The image schema model is used to illustrate how the analyst worked with a patient who began life as an unwanted pregnancy, was adopted at birth and as an adult experienced profound synchronicities, paranormal/telepathic phenomena and visions. The classical approach to such phenomena would see the intense affectivity arising out of a ruptured symbiotic mother-infant relationship constellating certain archetypes which set up the patient's visions. This view is contrasted with Knox's model which sees the archetype an sich as a developmentally produced image schema underpinning the emergence of later imagery. The patient's visions can then be understood to arise from his psychoid body memory related to his traumatic conception and birth. The contemporary neuroscience which supports this view is outlined and a subsequent image schema explanation is presented. Clinically, the case material suggests that a pre-birth perspective needs to be explored in all analytic work. Other implications of Knox's image schema model are summarized.

  6. Polysaccharides isolated from Acai fruit induce innate immune responses.

    Directory of Open Access Journals (Sweden)

    Jeff Holderness

    Full Text Available The Açaí (Acai fruit is a popular nutritional supplement that purportedly enhances immune system function. These anecdotal claims are supported by limited studies describing immune responses to the Acai polyphenol fraction. Previously, we characterized γδ T cell responses to both polyphenol and polysaccharide fractions from several plant-derived nutritional supplements. Similar polyphenol and polysaccharide fractions are found in Acai fruit. Thus, we hypothesized that one or both of these fractions could activate γδ T cells. Contrary to previous reports, we did not identify agonist activity in the polyphenol fraction; however, the Acai polysaccharide fraction induced robust γδ T cell stimulatory activity in human, mouse, and bovine PBMC cultures. To characterize the immune response to Acai polysaccharides, we fractionated the crude polysaccharide preparation and tested these fractions for activity in human PBMC cultures. The largest Acai polysaccharides were the most active in vitro as indicated by activation of myeloid and γδ T cells. When delivered in vivo, Acai polysaccharide induced myeloid cell recruitment and IL-12 production. These results define innate immune responses induced by the polysaccharide component of Acai and have implications for the treatment of asthma and infectious disease.

  7. Neuropathogenesis of Chikungunya infection: astrogliosis and innate immune activation.

    Science.gov (United States)

    Inglis, Fiona M; Lee, Kim M; Chiu, Kevin B; Purcell, Olivia M; Didier, Peter J; Russell-Lodrigue, Kasi; Weaver, Scott C; Roy, Chad J; MacLean, Andrew G

    2016-04-01

    Chikungunya, "that which bends up" in the Makonde dialect, is an emerging global health threat, with increasing incidence of neurological complications. Until 2013, Chikungunya infection had been largely restricted to East Africa and the Indian Ocean, with cases within the USA reported to be from foreign travel. However, in 2014, over 1 million suspected cases were reported in the Americas, and a recently infected human could serve as an unwitting reservoir for the virus resulting in an epidemic in the continental USA. Chikungunya infection is increasingly being associated with neurological sequelae. In this study, we sought to understand the role of astrocytes in the neuropathogenesis of Chikungunya infection. Even after virus has been cleared form the circulation, astrocytes were activated with regard to TLR2 expression. In addition, white matter astrocytes were hypertrophic, with increased arbor volume in gray matter astrocytes. Combined, these would alter the number and distribution of synapses that each astrocyte would be capable of forming. These results provide the first evidence that Chikungunya infection induces morphometric and innate immune activation of astrocytes in vivo. Perturbed glia-neuron signaling could be a major driving factor in the development of Chikungunya-associated neuropathology.

  8. Initial Immunopathogenesis of Multiple Sclerosis: Innate Immune Response

    Directory of Open Access Journals (Sweden)

    Norma Y. Hernández-Pedro

    2013-01-01

    Full Text Available Multiple sclerosis (MS is an inflammatory, demyelinating, and neurodegenerative disease of the central nervous system. The hallmark to MS is the demyelinated plaque, which consists of a well-demarcated hypocellular area characterized by the loss of myelin, the formation of astrocytic scars, and the mononuclear cell infiltrates concentrated in perivascular spaces composed of T cells, B lymphocytes, plasma cells, and macrophages. Activation of resident cells initiates an inflammatory cascade, leading to tissue destruction, demyelination, and neurological deficit. The immunological phenomena that lead to the activation of autoreactive T cells to myelin sheath components are the result of multiple and complex interactions between environment and genetic background conferring individual susceptibility. Within the CNS, an increase of TLR expression during MS is observed, even in the absence of any apparent microbial involvement. In the present review, we focus on the role of the innate immune system, the first line of defense of the organism, as promoter and mediator of cross reactions that generate molecular mimicry triggering the inflammatory response through an adaptive cytotoxic response in MS.

  9. Initial immunopathogenesis of multiple sclerosis: innate immune response.

    Science.gov (United States)

    Hernández-Pedro, Norma Y; Espinosa-Ramirez, Guillermo; de la Cruz, Verónica Pérez; Pineda, Benjamín; Sotelo, Julio

    2013-01-01

    Multiple sclerosis (MS) is an inflammatory, demyelinating, and neurodegenerative disease of the central nervous system. The hallmark to MS is the demyelinated plaque, which consists of a well-demarcated hypocellular area characterized by the loss of myelin, the formation of astrocytic scars, and the mononuclear cell infiltrates concentrated in perivascular spaces composed of T cells, B lymphocytes, plasma cells, and macrophages. Activation of resident cells initiates an inflammatory cascade, leading to tissue destruction, demyelination, and neurological deficit. The immunological phenomena that lead to the activation of autoreactive T cells to myelin sheath components are the result of multiple and complex interactions between environment and genetic background conferring individual susceptibility. Within the CNS, an increase of TLR expression during MS is observed, even in the absence of any apparent microbial involvement. In the present review, we focus on the role of the innate immune system, the first line of defense of the organism, as promoter and mediator of cross reactions that generate molecular mimicry triggering the inflammatory response through an adaptive cytotoxic response in MS.

  10. Transgenesis and reverse genetics of mosquito innate immunity.

    Science.gov (United States)

    Shin, Sang Woon; Kokoza, Vladimir A; Raikhel, Alexander S

    2003-11-01

    In recent years, mosquito molecular biology has been a scene of astounding achievements, namely the development of genetic transformation, characterization of inducible tissue-specific promoters, and acquirement of mosquito genome sequences. However, the lack of a complete genetic tool box for mosquitoes remains a serious obstacle in our ability to study essential mosquito-specific mechanisms. Unlike Drosophila, very few null mutations for mosquito genes exist. The development of reverse-genetic analyses based on RNAi and transgenic techniques will help to compensate for these deficiencies and aid in identification of critical genes in important regulatory pathways. The study of mosquito innate immunity is one example and described here. In this study, we combine mosquito transgenesis with reverse genetics. The advantage of transgenesis is the ability to establish genetically stable, dominant-negative and overexpression phenotypes. Using the blood-meal-activated vitellogenin gene (Vg) promoter, we have generated transgenic mosquitoes with blood-meal-activated, overexpressed antimicrobial peptides, Defensin A and Cecropin A. Moreover, we have recently generated a transgenic dominant-negative Relish mosquito strain, which after taking a blood meal, becomes immune-deficient to infection by Gram-negative bacteria. The latter accomplishment has opened the door to a reverse-genetic approach in mosquitoes based on transgenesis.

  11. Bridging Innate and Adaptive Antitumor Immunity Targeting Glycans

    Directory of Open Access Journals (Sweden)

    Anastas Pashov

    2010-01-01

    Full Text Available Effective immunotherapy for cancer depends on cellular responses to tumor antigens. The role of major histocompatibility complex (MHC in T-cell recognition and T-cell receptor repertoire selection has become a central tenet in immunology. Structurally, this does not contradict earlier findings that T-cells can differentiate between small hapten structures like simple glycans. Understanding T-cell recognition of antigens as defined genetically by MHC and combinatorially by T cell receptors led to the “altered self” hypothesis. This notion reflects a more fundamental principle underlying immune surveillance and integrating evolutionarily and mechanistically diverse elements of the immune system. Danger associated molecular patterns, including those generated by glycan remodeling, represent an instance of altered self. A prominent example is the modification of the tumor-associated antigen MUC1. Similar examples emphasize glycan reactivity patterns of antigen receptors as a phenomenon bridging innate and adaptive but also humoral and cellular immunity and providing templates for immunotherapies.

  12. Danger, diversity and priming in innate antiviral immunity.

    Science.gov (United States)

    Collins, Susan E; Mossman, Karen L

    2014-10-01

    The prototypic response to viral infection involves the recognition of pathogen-associated molecular patterns (PAMPs) by pattern recognition receptors (PRRs), leading to the activation of transcription factors such as IRF3 and NFkB and production of type 1 IFN. While this response can lead to the induction of hundreds of IFN-stimulated genes (ISGs) and recruitment and activation of immune cells, such a comprehensive response is likely inappropriate for routine low level virus exposure. Moreover, viruses have evolved a plethora of immune evasion strategies to subvert antiviral signalling. There is emerging evidence that cells have developed very sensitive methods of detecting not only specific viral PAMPS, but also more general danger or stress signals associated with viral entry and replication. Such stress-induced cellular responses likely serve to prime cells to respond to further PAMP stimulation or allow for a rapid and localized intracellular response independent of IFN production and its potential immune sequelae. This review discusses diversity in innate antiviral players and pathways, the role of "danger" sensing, and how alternative pathways, such as the IFN-independent pathway, may serve to prime cells for further pathogen attack.

  13. Chromogranin A-derived peptides are involved in innate immunity.

    Science.gov (United States)

    Aslam, R; Atindehou, M; Lavaux, T; Haïkel, Y; Schneider, F; Metz-Boutigue, M-H

    2012-01-01

    New endogenous antimicrobial peptides (AMPs) derived from chromogranin A (CgA) are secreted by nervous, endocrine and immune cells during stress. They display antimicrobial activities by lytic effects at micromolar range using a pore-forming mechanism against Gram-positive bacteria, filamentous fungi and yeasts. These AMPs can also penetrate quickly into neutrophils (without lytic effects), where, similarly to "cell penetrating peptides", they interact with cytoplasmic calmodulin, and induce calcium influx via Store Operated Channels therefore triggering neutrophils activation. Staphylococcus aureus and Salmonella enteritis are bacteria responsible for severe infections. We investigated here the effects of S. aureus and S. enteritis bacterial proteases on CgA-derived peptides and evaluated their antimicrobial activities. We showed that the Glu-C protease produced by S. aureus V8 induces the loss of the AMPs antibacterial activities and produces new antifungal peptides. In addition, four antimicrobial CGA-derived peptides (chromofungin, procatestatin, human/bovine catestatin) are degraded when treated with bacterial supernatants from S. aureus and S. enteritis, whereas, cateslytin, the short active form of catestatin, resists to this degradation. Finally, we demonstrate that several antimicrobial CgA-derived peptides are able to act synergistically with antibiotics against bacteria and fungi indicating their roles in innate defense.

  14. Some parameters of innate immunity in senile group patients with eye injury

    Directory of Open Access Journals (Sweden)

    I. K. Namazova

    2012-01-01

    Full Text Available Purpose: Investigation of the parameters of innate immunity in senile group patients with eye injury.Methods: Standard ophthalmologic and immunologic study of 12 patients aged 63±11 with eye injury complicated by inflamma- tion. Immunological study of peripheral blood, tear and conjunctival scraping from the injured eye and the binate eye was carried out on 1-3 days after the injury. the parameters of innate local immunity was determined in the result of immune-cytological study of the conjunctival scraping by assessing phagocytosis of neutrophils and index of neutrophils/lymphocytes (INL, immunofluorescent counting of NK-cells CD56+ (panel of monoclonal antibodies of company «Sorbent» Ltd., Russia. the concentration of transferrin (a set of «Human» Company, Germany in the blood and lacrimal fluid was assayed by the biochemical analyzer (Bioscreen MS-500. the results obtained were processed by the method of variational statistics.Results: As a result of the conducted studies there has been detected a decrease in the amount of transferrin both in blood and lacrimal fluid by almost 2 times (p <0,001. there was recorded the rise in the INL index at the systemic (3,8±0,1 and local (4.9±0.4 level, reflecting a compensatory, more pronounced activity of nonspecific protection factors of general and local immunity in the acute stage of inflammation. the level of phagocytosis in the blood of the examined patients was reduced relative to the control (p<0.001. In the scraping material of the injured eye the phagocytosis percentage was 16.4±0.9%. the results of a comparative study of the content of NK-cells (СD56+, revealed reduction in the average value of this parameter in the blood of the patients with eye injury relative to the control (p<0.001, and in the conjunctival scraping the level of СD56+-lymphocytes increased, amounting to 2-3 in the field of vision.Conclusion: In the senile group patients with an eye injury there is an activation of

  15. Innate gamma/delta T-cells during HIV infection: Terra relatively Incognita in novel vaccination strategies?

    Science.gov (United States)

    Agrati, Chiara; D'Offizi, Gianpiero; Gougeon, Marie-Lise; Malkovsky, Miroslav; Sacchi, Alessandra; Casetti, Rita; Bordoni, Veronica; Cimini, Eleonora; Martini, Federico

    2011-01-01

    HIV replication. Scarce evidences are available on the involvement of mucosal gamma/delta T-cells during the early phases of HIV infection. In particular, the relative cause/effect links between HIV infection, destruction of the mucosal physical barrier, nonspecific activation of the immune system, and mucosal innate cell activation and effector functions, are still not completely defined. In order to attain an effective manipulation of innate immune cells, aiming at the induction of an effective adaptive immunity against HIV, any information on the role of mucosal antiviral factors and innate immune cells will be very important. The aim of this review is to summarize the information on the role of gamma/delta T-cells during HIV infection, from the general circulating population to mucosal sites, in order to better describe areas deserving increased attention. In particular, strategies enhancing gamma/delta T-cell functions may open the possibility to formulate new immunotherapeutic regimens, which could impact the improvement of immune control of HIV disease.

  16. Microarray expression analysis of genes involved in innate immune memory in peritoneal macrophages

    Directory of Open Access Journals (Sweden)

    Keisuke Yoshida

    2016-03-01

    Full Text Available Immunological memory has been believed to be a feature of the adaptive immune system for long period, but recent reports suggest that the innate immune system also exhibits memory-like reaction. Although evidence of innate immune memory is accumulating, no in vivo experimental data has clearly implicated a molecular mechanism, or even a cell-type, for this phenomenon. In this study of data deposited into Gene Expression Omnibus (GEO under GSE71111, we analyzed the expression profile of peritoneal macrophages isolated from mice pre-administrated with toll-like receptor (TLR ligands, mimicking pathogen infection. In these macrophages, increased expression of a group of innate immunity-related genes was sustained over a long period of time, and these genes overlapped with ATF7-regulated genes. We conclude that ATF7 plays an important role in innate immune memory in macrophages.

  17. Innate immunity and chronic immune activation in HCV/HIV-1 co-infection.

    Science.gov (United States)

    Gonzalez, Veronica D; Landay, Alan L; Sandberg, Johan K

    2010-04-01

    Innate immune responses are critical in the defense against viral infections. NK cells, myeloid and plasmacytoid dendritic cells, and invariant CD1d-restricted NKT cells mediate both effector and regulatory functions in this early immune response. In chronic uncontrolled viral infections such as HCV and HIV-1, these essential immune functions are compromised and can become a double edged sword contributing to the immunopathogenesis of viral disease. In particular, recent findings indicate that innate immune responses play a central role in the chronic immune activation which is a primary driver of HIV-1 disease progression. HCV/HIV-1 co-infection is affecting millions of people and is associated with faster viral disease progression. Here, we review the role of innate immunity and chronic immune activation in HCV and HIV-1 infection, and discuss how mechanisms of innate immunity may influence protection as well as immunopathogenesis in the HCV/HIV-1 co-infected human host.

  18. Innate and discretionary accruals quality and corporate governance: A case study of Tehran Stock Exchange

    Directory of Open Access Journals (Sweden)

    Hossein Panahian

    2012-09-01

    Full Text Available In this paper, we present an empirical study to find the relationship between discretionary accruals quality as well as innate accruals quality and portion of non-executive board of directors, concentration of ownership ratio and board size in Tehran Stock Exchange. The survey selects 118 qualified stocks from this exchange and using a random technique chooses 42 firms. The study implements two linear regression techniques to estimate the first part of the information and then using structural equation modeling examines six hypotheses. Based on the results of this survey we can conclude that an increase on non-executive members positively influences on discretionary accruals quality and negatively influences innate accruals quality. Concentration of ownership ratio positively influences on discretionary accruals quality and negatively impacts on innate accruals quality. Finally, size of board of directors negatively impacts discretionary accruals quality and positively influences on innate accruals quality.

  19. Expression of innate immune genes, proteins and microRNAs in lung tissue of pigs infected experimentally with influenza virus (H1N2)

    DEFF Research Database (Denmark)

    Skovgaard, Kerstin; Cirera, Susanna; Vasby, Ditte

    2013-01-01

    This study aimed at providing a better understanding of the involvement of innate immune factors, including miRNA, in the local host response to influenza virus infection. Twenty pigs were challenged by influenza A virus subtype H1N2. Expression of microRNA (miRNA), mRNA and proteins were...... results suggest that, in addition to a wide range of innate immune factors, miRNAs may also be involved in controlling acute influenza infection in pigs....... differentiation associated protein-5), IFN and IFN-induced genes (IFN-β, IFN-γ, IRF7, STAT1, ISG15 and OASL), cytokines (IL-1 β, IL-1RN, IL-6, IL-7, IL-10, IL-12A, TNF-α, CCL2, CCL3 and CXCL10) and several acute phase proteins. Likewise, the following miRNAs were differentially expressed in one or more time...

  20. Transgenerational epigenetic effects on innate immunity in broilers: an underestimated field to be explored?

    Science.gov (United States)

    Berghof, T V L; Parmentier, H K; Lammers, A

    2013-11-01

    Transgenerational epigenetics is becoming more and more important for understanding the variation of physiological responses of individuals to the environment and the inheritance of these responses based on all mechanisms other than the actual DNA nucleotide sequence. Transgenerational epigenetics is the phenomenon that the information of the environment of (usually) a female animal is translated into memory-like responses preparing the offspring. As a consequence, individuals of the next generation may show different phenotypic traits depending whether their mothers were kept under different environmental conditions. This may result in either positive or negative effects on the next-generation individuals, which is different from individuals from mothers that have been kept in a different environment. Transgenerational epigenetic effects have been proposed and indicated for specific immune (T cell and antibody) responses (especially in mammals, but also in birds) and innate immunity (nonvertebrates), but surprisingly very little is known of transgenerational effects on innate immunity in chickens. Given the short lifespan of the chicken and therefore the likely dependence of chicken on innate immune mechanisms, more attention should be given to this arm of immunity and mechanisms of inheritance including transgenerational effects that can be initiated in the breeder generation. In addition, it is becoming evident that innate immunity also underlies metabolic disorders in broilers. In the current paper, we will argue that although very little is known of transgenerational effects of innate immunity in poultry, more attention should be given to this type of study. We will illustrate examples of transgenerational epigenetics, and finally propose strategies that should reveal the presence of transgenerational epigenetic effects on innate immunity in chickens and strategies to modulate breeder birds such that these effects positively affect innate immunity of broilers

  1. Trained innate immunity as underlying mechanism for the long-term, nonspecific effects of vaccines

    DEFF Research Database (Denmark)

    Blok, Bastiaan A; Arts, Rob J W; van Crevel, Reinout;

    2015-01-01

    provide protection against certain infections in vaccination models independently of lymphocytes. This process is regulated through epigenetic reprogramming of innate immune cells and has been termed "trained immunity." It has been hypothesized that induction of trained immunity is responsible...... for the protective, nonspecific effects induced by vaccines, such as BCG, measles vaccination, and other whole-microorganism vaccines. In this review, we will present the mechanisms of trained immunity responsible for the long-lasting effects of vaccines on the innate immune system....

  2. Ambivalent Role of the Innate Immune Response in Rabies Virus Pathogenesis▿†

    OpenAIRE

    Chopy, Damien; Pothlichet, Julien; Lafage, Mireille; Mégret, Françoise; Fiette, Laurence; Si-Tahar, Mustapha; Lafon, Monique

    2011-01-01

    The neurotropic rabies virus (RABV) has developed several evasive strategies, including immunoevasion, to successfully infect the nervous system (NS) and trigger a fatal encephalomyelitis. Here we show that expression of LGP2, a protein known as either a positive or negative regulator of the RIG-I-mediated innate immune response, is restricted in the NS. We used a new transgenic mouse model (LGP2 TG) overexpressing LGP2 to impair the innate immune response to RABV and thus revealed the role o...

  3. Vpu-Deficient HIV Strains Stimulate Innate Immune Signaling Responses in Target Cells

    OpenAIRE

    Doehle, Brian P.; Chang, Kristina; Fleming, Lamar; McNevin, John; Hladik, Florian; McElrath, M. Juliana; Gale, Michael

    2012-01-01

    Acute virus infection induces a cell-intrinsic innate immune response comprising our first line of immunity to limit virus replication and spread, but viruses have developed strategies to overcome these defenses. HIV-1 is a major public health problem; however, the virus-host interactions that regulate innate immune defenses against HIV-1 are not fully defined. We have recently identified the viral protein Vpu to be a key determinant responsible for HIV-1 targeting and degradation of interfer...

  4. Viral Infection: An Evolving Insight into the Signal Transduction Pathways Responsible for the Innate Immune Response

    OpenAIRE

    Kotwal, Girish J.; Steven Hatch; Marshall, William L.

    2012-01-01

    The innate immune response is initiated by the interaction of stereotypical pathogen components with genetically conserved receptors for extracytosolic pathogen-associated molecular patterns (PAMPs) or intracytosolic nucleic acids. In multicellular organisms, this interaction typically clusters signal transduction molecules and leads to their activations, thereby initiating signals that activate innate immune effector mechanisms to protect the host. In some cases programmed cell death—a funda...

  5. MicroRNAs, Innate Immunity and Ventricular Rupture in Human Myocardial Infarction

    Directory of Open Access Journals (Sweden)

    Nina Zidar

    2011-01-01

    Full Text Available MicroRNAs are non-coding RNAs, functionioning as post-transcriptional regulators of gene expression. Some microRNAs have been demonstrated to play a role in regulation of innate immunity. After myocardial infarction (MI, innate immunity is activated leading to an acute inflammatory reaction. There is evidence that an intense inflammatory reaction might contribute to the development of ventricular rupture (VR after MI.

  6. Innate immune response to pulmonary contusion: Identification of cell-type specific inflammatory responses

    OpenAIRE

    Hoth, J. Jason; Wells, Jonathan D.; Yoza, Barbara K.; McCall, Charles E.

    2012-01-01

    Lung injury from pulmonary contusion is a common traumatic injury, predominantly seen after blunt chest trauma such as in vehicular accidents. The local and systemic inflammatory response to injury includes activation of innate immune receptors, elaboration of a variety inflammatory mediators, and recruitment of inflammatory cells to the injured lung. Using a mouse model of pulmonary contusion, we had previously shown that innate immune Toll like receptors 2 and 4 (TLR2 and TLR4) mediate the ...

  7. Altered Polarization, Morphology, and Impaired Innate Immunity Germane to Resident Peritoneal Macrophages in Mice with Long-Term Type 2 Diabetes

    Directory of Open Access Journals (Sweden)

    Hui-Fang Liu

    2012-01-01

    Full Text Available Type 2 diabetes (T2D is associated with perturbed innate immunity. Macrophages, bridging innate immunity and metabolic disturbances, play important roles in controlling immune homeostasis. However, the effect of long-term diabetic milieu (DM on the functions and phenotypes of macrophages is still not clear. In this study, we used resident peritoneal macrophages (RPMs from 5-month-old db/db mice to investigate the changes of macrophages. It was found that RPMs in db/db mice significantly reduced phagocytosis and adhesion capacity. After standardization with body weight, the number of F4/80+ RPMs markedly reduced in db/db mice, and, furthermore, the macrophages skewed to M2-polarizated macrophages. The results of morphology found that the RPMs shape of db/db mice was nearly round, but the RPMs shape of control mice was spindle-shaped and irregular. In this study, we found the cell numbers, morphology, and innate immunity functions of RPMs in 5-month-old type 2 diabetic mice (db/db mice obtained by abdominal cavity lavage were significantly altered. Importantly, we also found the remarkably increased M2-RPMs in diabetic mice for the first time.

  8. Does baseline innate immunity change with age? A multi-year study in great tits.

    Science.gov (United States)

    Vermeulen, Anke; Eens, Marcel; Van Dongen, Stefan; Müller, Wendt

    2017-03-16

    Throughout their life animals progressively accumulate mostly detrimental changes in cells, tissues and their functions, causing a decrease in individual performance and ultimately an increased risk of death. The latter may be amplified if it also leads to a deterioration of the immune system which forms the most important protection against the permanent threat of pathogens and infectious diseases. Here, we investigated how four baseline innate immune parameters (natural antibodies, complement activity, concentrations of haptoglobin and concentrations of nitric oxide) changed with age in free-living great tits (Parus major). We applied both cross-sectional and longitudinal approaches as birds were sampled for up to three years of their lives. Three out of the four selected innate immune parameters were affected by age. However, the shape of the response curves differed strongly among the innate immune parameters. Natural antibody levels increased during early life until mid-age to decrease thereafter when birds aged. Complement activity was highest in young birds, while levels slightly decreased with increasing age. Haptoglobin levels on the other hand, showed a linear, but highly variable increase with age, while nitric oxide concentrations were unaffected by age. The observed differences among the four studied innate immune traits not only indicate the importance of considering several immune traits at the same time, but also highlight the complexity of innate immunity. Unraveling the functional significance of the observed changes in innate immunity is thus a challenging next step.

  9. The Role of TOX in the Development of Innate Lymphoid Cells

    Directory of Open Access Journals (Sweden)

    Corey R. Seehus

    2015-01-01

    Full Text Available TOX, an evolutionarily conserved member of the HMG-box family of proteins, is essential for the development of various cells of both the innate and adaptive immune system. TOX is required for the development of CD4+ T lineage cells in the thymus, including natural killer T and T regulatory cells, as well as development of natural killer cells and fetal lymphoid tissue inducer cells, the latter required for lymph node organogenesis. Recently, we have identified a broader role for TOX in the innate immune system, demonstrating that this nuclear protein is required for generation of bone marrow progenitors that have potential to give rise to all innate lymphoid cells. Innate lymphoid cells, classified according to transcription factor expression and cytokine secretion profiles, derive from common lymphoid progenitors in the bone marrow and require Notch signals for their development. We discuss here the role of TOX in specifying CLP toward an innate lymphoid cell fate and hypothesize a possible role for TOX in regulating Notch gene targets during innate lymphoid cell development.

  10. The Role of TOX in the Development of Innate Lymphoid Cells.

    Science.gov (United States)

    Seehus, Corey R; Kaye, Jonathan

    2015-01-01

    TOX, an evolutionarily conserved member of the HMG-box family of proteins, is essential for the development of various cells of both the innate and adaptive immune system. TOX is required for the development of CD4(+) T lineage cells in the thymus, including natural killer T and T regulatory cells, as well as development of natural killer cells and fetal lymphoid tissue inducer cells, the latter required for lymph node organogenesis. Recently, we have identified a broader role for TOX in the innate immune system, demonstrating that this nuclear protein is required for generation of bone marrow progenitors that have potential to give rise to all innate lymphoid cells. Innate lymphoid cells, classified according to transcription factor expression and cytokine secretion profiles, derive from common lymphoid progenitors in the bone marrow and require Notch signals for their development. We discuss here the role of TOX in specifying CLP toward an innate lymphoid cell fate and hypothesize a possible role for TOX in regulating Notch gene targets during innate lymphoid cell development.

  11. Distinct populations of innate CD8+ T cells revealed in a CXCR3 reporter mouse.

    Science.gov (United States)

    Oghumu, Steve; Dong, Ran; Varikuti, Sanjay; Shawler, Todd; Kampfrath, Thomas; Terrazas, Cesar A; Lezama-Davila, Claudio; Ahmer, Brian M M; Whitacre, Caroline C; Rajagopalan, Sanjay; Locksley, Richard; Sharpe, Arlene H; Satoskar, Abhay R

    2013-03-01

    CXCR3, expressed mainly on activated T and NK cells, is implicated in a host of immunological conditions and can contribute either to disease resolution or pathology. We report the generation and characterization of a novel CXCR3 internal ribosome entry site bicistronic enhanced GFP reporter (CIBER) mouse in which enhanced GFP expression correlates with surface levels of CXCR3. Using CIBER mice, we identified two distinct populations of innate CD8(+) T cells based on constitutive expression of CXCR3. We demonstrate that CXCR3(+) innate CD8(+) T cells preferentially express higher levels of Ly6C and CD122, but lower levels of CCR9 compared with CXCR3(-) innate CD8(+) T cells. Furthermore, we show that CXCR3(+) innate CD8(+) T cells express higher transcript levels of antiapoptotic but lower levels of proapoptotic factors, respond more robustly to IL-2 and IL-15, and produce significantly more IFN-γ and granzyme B. Interestingly, CXCR3(+) innate CD8(+) T cells do not respond to IL-12 or IL-18 alone, but produce significant amounts of IFN-γ on stimulation with a combination of these cytokines. Taken together, these findings demonstrate that CXCR3(+) and CXCR3(-) innate CD8(+) T cells are phenotypically and functionally distinct. These newly generated CIBER mice provide a novel tool for studying the role of CXCR3 and CXCR3-expressing cells in vivo.

  12. The role of dendritic cell subsets and innate immunity in the pathogenesis of type 1 diabetes and other autoimmune diseases

    Directory of Open Access Journals (Sweden)

    Jeffrey D. Price

    2015-06-01

    Full Text Available Dendritic cells (DCs are key antigen presenting cells that have an important role in autoimmune pathogenesis. DCs control both steady-state T cell tolerance and activation of pathogenic responses. The balance between these two outcomes depends on several factors, including genetic susceptibility, environmental signals that stimulate varied innate responses, and which DC subset is presenting antigen. Although the specific DC phenotype can diverge depending on the tissue location and context, there are 4 main subsets identified in both mouse and human: conventional cDC1 and cDC2, plasmacytoid DCs, and monocyte-derived DCs. In this review, we will discuss the role of these subsets in autoimmune pathogenesis and regulation, as well as the genetic and environmental signals that influence their function. Specific topics to be addressed include: impact of susceptibility loci on DC subsets, alterations in DC subset development, the role of infection- and host-derived innate inflammatory signals, and the role of the intestinal microbiota on DC phenotype. The effects of these various signals on disease progression and the relative effects of DC subset composition and maturation level of DCs will be examined. These areas will be explored using examples from several autoimmune diseases but will focus mainly on type 1 diabetes.

  13. Molecular interaction between natural IgG and ficolin - mechanistic insights on adaptive-innate immune crosstalk

    Science.gov (United States)

    Panda, Saswati; Zhang, Jing; Yang, Lifeng; Anand, Ganesh S.; Ding, Jeak L.

    2014-01-01

    Recently, we found that natural IgG (nIgG; a non-specific immunoglobulin of adaptive immunity) is not quiescent, but plays a crucial role in immediate immune defense by collaborating with ficolin (an innate immune protein). However, how the nIgG and ficolin interplay and what factors control the complex formation during infection is unknown. Here, we found that mild acidosis and hypocalcaemia induced by infection- inflammation condition increased the nIgG:ficolin complex formation. Hydrogen-deuterium exchange mass spectrometry delineated the binding interfaces to the CH2-CH3 region of nIgG Fc and P-subdomain of ficolin FBG domain. Infection condition exposes novel binding sites. Site-directed mutagenesis and surface plasmon resonance analyses of peptides, derived from nIgG and ficolin, defined the interacting residues between the proteins. These results provide mechanistic insights on the interaction between two molecules representing the adaptive and innate immune pathways, prompting potential development of immunomodulatory/prophylactic peptides tunable to prevailing infection conditions.

  14. Effects of n-3 PUFAs on Intestinal Mucosa Innate Immunity and Intestinal Microbiota in Mice after Hemorrhagic Shock Resuscitation

    Directory of Open Access Journals (Sweden)

    Feng Tian

    2016-09-01

    Full Text Available n-3 polyunsaturated fatty acids (PUFAs can improve the function of the intestinal barrier after damage from ischemia-reperfusion or hemorrhagic shock resuscitation (HSR. However, the effects of n-3 PUFAs on intestinal microbiota and the innate immunity of the intestinal mucosa after HSR remain unclear. In the present study, 40 C57BL/6J mice were randomly assigned to five groups: control, sham, HSR, HSR + n-3 PUFAs and HSR + n-6 PUFAs. Mice were sacrificed 12 h after HSR. Liver, spleen, mesenteric lymph nodes and terminal ileal tissues were collected. Intestinal mucosae were scraped aseptically. Compared with the HSR group, the number of goblet cells increased, expression of mucin 2 was restored and disturbed intestinal microbiota were partly stabilized in the PUFA-administered groups, indicating that both n-3 and n-6 PUFAs reduced overproliferation of Gammaproteobacteria while promoting the growth of Bacteroidetes. Notably, n-3 PUFAs had an advantage over n-6 PUFAs in improving ileal tissue levels of lysozyme after HSR. Thus, PUFAs, especially n-3 PUFAs, partly improved the innate immunity of intestinal mucosa in mice after HSR. These findings suggest a clinical rationale for providing n-3 PUFAs to patients recovering from ischemia-reperfusion.

  15. The extraembryonic serosa is a frontier epithelium providing the insect egg with a full-range innate immune response.

    Science.gov (United States)

    Jacobs, Chris G C; Spaink, Herman P; van der Zee, Maurijn

    2014-12-09

    Drosophila larvae and adults possess a potent innate immune response, but the response of Drosophila eggs is poor. In contrast to Drosophila, eggs of the beetle Tribolium are protected by a serosa, an extraembryonic epithelium that is present in all insects except higher flies. In this study, we test a possible immune function of this frontier epithelium using Tc-zen1 RNAi-mediated deletion. First, we show that bacteria propagate twice as fast in serosa-less eggs. Then, we compare the complete transcriptomes of wild-type, control RNAi, and Tc-zen1 RNAi eggs before and after sterile or septic injury. Infection induces genes involved in Toll and IMD-signaling, melanisation, production of reactive oxygen species and antimicrobial peptides in wild-type eggs but not in serosa-less eggs. Finally, we demonstrate constitutive and induced immune gene expression in the serosal epithelium using in situ hybridization. We conclude that the serosa provides insect eggs with a full-range innate immune response.

  16. Plasmacytoid Dendritic Cells Act as the Most Competent Cell Type in Linking Antiviral Innate and Adaptive Immune Responses

    Institute of Scientific and Technical Information of China (English)

    Zheng Zhang; Fu-Sheng Wang

    2005-01-01

    Appropriate in vivo control of plasmacytoid dendritic cell (pDC) recruitment and activation is a fundamental requirement for defense against viral infection. During this process, a pivotal event that influences the outcome of viral infection is the production of high levels of type I interferon by pDCs. In particular, recent research findings showed that pDCs not only shape the nature of innate resistance, but are also responsible for the successful transition from innate to adaptive immunity for viral resistance. In addition, pDCs can differentiate into antigen presenting cells that may regulate tolerance to a given pathogen. Importantly, in a series of recent clinical studies,pDCs appeared to be defective in number and function in conditions of chronic viral diseases such as infected with HIV-1, HBV or HCV. pDC-associated clinical antiviral therapy is also emerging. This review describes research findings exanining the functional and antiviral properties of in vivo pDC plasticity.

  17. Germline variation in NCF4, an innate immunity gene, is associated with an increased risk of colorectal cancer.

    Science.gov (United States)

    Ryan, Bríd M; Zanetti, Krista A; Robles, Ana I; Schetter, Aaron J; Goodman, Julie; Hayes, Richard B; Huang, Wen-Yi; Gunter, Mark J; Yeager, Meredith; Burdette, Laurie; Berndt, Sonja I; Harris, Curtis C

    2014-03-15

    Chronic inflammation has been implicated in the etiology of colorectal adenoma and cancer; however, few key inflammatory genes mediating this relationship have been identified. In this study, we investigated the association of germline variation in innate immunity genes in relation to the risk of colorectal neoplasia. Our study was based on the analysis of samples collected from the prostate, lung, colorectal and ovarian (PLCO) Cancer Screening Trial. We investigated the association between 196 tag single nucleotide polymorphisms (SNPs) in 20 key innate immunity genes with risk of advanced colorectal adenoma and cancer in 719 adenoma cases, 481 cancer cases and 719 controls. Logistic regression was used to estimate odds ratios (OR) and 95% confidence intervals (CIs). After Bonferroni correction, the AG/GG genotype of rs5995355, which is upstream of NCF4, was associated with an increased risk of colorectal cancer (OR = 2.43, 95% CI = 1.73-3.39; p immune response. While not definitive, our analyses suggest that the variant allele does not affect expression of NCF4, but rather modulates activity of the NADPH complex. Additional studies on the functional consequences of rs5995355 in NCF4 may help to clarify the mechanistic link between inflammation and colorectal cancer.

  18. Adeno-associated virus activates an innate immune response in normal human cells but not in osteosarcoma cells.

    Science.gov (United States)

    Laredj, Leila N; Beard, Peter

    2011-12-01

    Adeno-associated virus (AAV) is a small, DNA-containing dependovirus with promising potential as a gene delivery vehicle. Given the variety of applications of AAV-based vectors in the treatment of genetic disorders, numerous studies have focused on the immunogenicity of recombinant AAV. In general, AAV vectors appear not to induce strong inflammatory responses. We have found that AAV2, when it infects the osteosarcoma cells U2OS, can initiate part of its replicative cycle in the absence of helper virus. This does not occur in untransformed cells. We set out to test whether the cellular innate antiviral defenses control this susceptibility and found that, in nonimmune normal human fibroblasts, AAV2 induces type I interferon production and release and the accumulation of nuclear promyelocytic leukemia bodies. AAV fails to mobilize this defense pathway in the U2OS cells. This permissiveness is in large part due to impairment of the viral sensing machinery in these cells. Our investigations point to Toll-like receptor 9 as a potential intracellular sensor that detects AAV2 and triggers the antiviral state in AAV-infected untransformed cells. Efficient sensing of the AAV genome and the ensuing activation of an innate antiviral response are thus crucial cellular events dictating the parvovirus infectivity in host cells.

  19. Human milk hyaluronan enhances innate defense of the intestinal epithelium.

    Science.gov (United States)

    Hill, David R; Rho, Hyunjin K; Kessler, Sean P; Amin, Ripal; Homer, Craig R; McDonald, Christine; Cowman, Mary K; de la Motte, Carol A

    2013-10-04

    Breast-feeding is associated with enhanced protection from gastrointestinal disease in infants, mediated in part by an array of bioactive glycan components in milk that act through molecular mechanisms to inhibit enteric pathogen infection. Human milk contains hyaluronan (HA), a glycosaminoglycan polymer found in virtually all mammalian tissues. We have shown that synthetic HA of a specific size range promotes expression of antimicrobial peptides in intestinal epithelium. We hypothesize that hyaluronan from human milk also enhances innate antimicrobial defense. Here we define the concentration of HA in human milk during the first 6 months postpartum. Importantly, HA isolated from milk has a biological function. Treatment of HT-29 colonic epithelial cells with human milk HA at physiologic concentrations results in time- and dose-dependent induction of the antimicrobial peptide human β-defensin 2 and is abrogated by digestion of milk HA with a specific hyaluronidase. Milk HA induction of human β-defensin 2 expression is also reduced in the presence of a CD44-blocking antibody and is associated with a specific increase in ERK1/2 phosphorylation, suggesting a role for the HA receptor CD44. Furthermore, oral administration of human milk-derived HA to adult, wild-type mice results in induction of the murine Hβ D2 ortholog in intestinal mucosa and is dependent upon both TLR4 and CD44 in vivo. Finally, treatment of cultured colonic epithelial cells with human milk HA enhances resistance to infection by the enteric pathogen Salmonella typhimurium. Together, our observations suggest that maternally provided HA stimulates protective antimicrobial defense in the newborn.

  20. Of pheromones and kairomones: what receptors mediate innate emotional responses?

    Science.gov (United States)

    Fortes-Marco, Lluis; Lanuza, Enrique; Martinez-Garcia, Fernando

    2013-09-01

    Some chemicals elicit innate emotionally laden behavioral responses. Pheromones mediate sexual attraction, parental care or agonistic confrontation, whereas predators' kairomones elicit defensive behaviors in their preys. This essay explores the hypothesis that the detection of these semiochemicals relies on highly specific olfactory and/or vomeronasal receptors. The V1R, V2R, and formyl-peptide vomeronasal receptors bind their ligands in highly specific and sensitive way, thus being good candidates for pheromone- or kairomone-detectors (e.g., secreted and excreted proteins, peptides and lipophilic volatiles). The olfactory epithelium also expresses specific receptors, for example trace amine-associated receptors (TAAR) and guanylyl cyclase receptors (GC-D and other types), some of which bind kairomones and putative pheromones. However, most of the olfactory neurons express canonical olfactory receptors (ORs) that bind many ligands with different affinity, being not suitable for mediating responses to pheromones and kairomones. In this respect, trimethylthiazoline (TMT) is considered a fox-derived kairomone for mice and rats, but it seems to be detected by canonical ORs. Therefore, we have reassessed the kairomonal nature of TMT by analyzing the behavioral responses of outbred (CD1) and inbred mice (C57BL/J6) to TMT. Our results confirm that both mouse strains avoid TMT, which increases immobility in C57BL/J6, but not CD1 mice. However, mice of both strains sniff at TMT throughout the test and show no trace of TMT-induced contextual conditioning (immobility or avoidance). This suggests that TMT is not a kairomone but, similar to a loud noise, in high concentrations it induces aversion and stress as unspecific responses to a strong olfactory stimulation.

  1. The Behavioural Biogeosciences: Moving Beyond Evolutionary Adaptation and Innate Reasoning

    Science.gov (United States)

    Glynn, P. D.

    2014-12-01

    Human biases and heuristics reflect adaptation over our evolutionary past to frequently experienced situations that affected our survival and that provided sharp distinguished feedbacks at the level of the individual. Human behavior, however, is not well adapted to the more diffusely experienced (i.e. less immediately/locally acute) problems and issues that scientists and society often seek to address today. Several human biases are identified that affect how science is conducted and used. These biases include an innate discounting of less visible phenomena/systems and of long-term perspectives; as well as a general lack of consideration of the coupling between the resources that we use and the waste that we consequently produce. Other biases include strong beliefs in human exceptionalism and separatedness from "nature". Francis Bacon (The New Organon, 1620) provided a classification of the factors, of the "idols of the mind", that bias pursuit of greater knowledge. How can we address these biases and the factors that affect behaviour and pursuit of knowledge; and ultimately impact the sustainability and resilience of human societies, resources and environments? A process for critical analysis is proposed that solicits explicit accounting and cognizance of these potential human biases and factors. Seeking a greater diversity of independant perspectives is essential: in both the conduct of science and in its application to the management of natural resources and environments. Accountability, traceability and structured processes are critical in this endeavor. The scientific methods designed during the industrial revolution are necessary, but insufficient, in addressing the issues of today. A new area of study in "the behavioral biogeosciences" is suggested that counters, or at least closely re-evaluates, our normal (i.e. adapted) human priorities of observation and study, as well as our judgements and decision-making.

  2. Beta-endorphin neuron regulates stress response and innate immunity to prevent breast cancer growth and progression.

    Science.gov (United States)

    Sarkar, Dipak K; Zhang, Changqing

    2013-01-01

    Body and mind interact extensively with each other to control health. Emerging evidence suggests that chronic neurobehavioral stress can promote various tumor growth and progression. The biological reaction to stress involves a chemical cascade initiated within the central nervous system and extends to the periphery, encompassing the immune, endocrine, and autonomic systems. Activation of sympathetic nervous system, such as what happens in the "fight or flight" response, downregulates tumor-suppressive genes, inhibits immune function, and promotes tumor growth. On the other hand, an optimistic attitude or psychological intervention helps cancer patients to survive longer via increase in β-endorphin neuronal suppression of stress hormone levels and sympathetic outflows and activation of parasympathetic control of tumor suppressor gene and innate immune cells to destroy and clear tumor cells.

  3. Modulation of innate immune responses by influenza-specific ovine polyclonal antibodies used for prophylaxis.

    Directory of Open Access Journals (Sweden)

    Catherine Rinaldi

    Full Text Available In the event of a novel influenza A virus pandemic, prophylaxis mediated by antibodies provides an adjunct control option to vaccines and antivirals. This strategy is particularly pertinent to unvaccinated populations at risk during the lag time to produce and distribute an effective vaccine. Therefore, development of effective prophylactic therapies is of high importance. Although previous approaches have used systemic delivery of monoclonal antibodies or convalescent sera, available supply is a serious limitation. Here, we have investigated intranasal delivery of influenza-specific ovine polyclonal IgG antibodies for their efficacy against homologous influenza virus challenge in a mouse model. Both influenza-specific IgG and F(ab'2 reduced clinical scores, body weight loss and lung viral loads in mice treated 1 hour before virus exposure. Full protection from disease was also observed when antibody was delivered up to 3 days prior to virus infection. Furthermore, effective prophylaxis was independent of a strong innate immune response. This strategy presents a further option for prophylactic intervention against influenza A virus using ruminants to generate a bulk supply that could potentially be used in a pandemic setting, to slow virus transmission and reduce morbidity associated with a high cytokine phenotype.

  4. Biofilm-derived Legionella pneumophila evades the innate immune response in macrophages.

    Science.gov (United States)

    Abu Khweek, Arwa; Fernández Dávila, Natalia S; Caution, Kyle; Akhter, Anwari; Abdulrahman, Basant A; Tazi, Mia; Hassan, Hoda; Novotny, Laura A; Bakaletz, Lauren O; Amer, Amal O

    2013-01-01

    Legionella pneumophila, the causative agent of Legionnaire's disease, replicates in human alveolar macrophages to establish infection. There is no human-to-human transmission and the main source of infection is L. pneumophila biofilms established in air conditioners, water fountains, and hospital equipments. The biofilm structure provides protection to the organism from disinfectants and antibacterial agents. L. pneumophila infection in humans is characterized by a subtle initial immune response, giving time for the organism to establish infection before the patient succumbs to pneumonia. Planktonic L. pneumophila elicits a strong immune response in murine, but not in human macrophages enabling control of the infection. Interactions between planktonic L. pneumophila and murine or human macrophages have been studied for years, yet the interface between biofilm-derived L. pneumophila and macrophages has not been explored. Here, we demonstrate that biofilm-derived L. pneumophila replicates significantly more in murine macrophages than planktonic bacteria. In contrast to planktonic L. pneumophila, biofilm-derived L. pneumophila lacks flagellin expression, do not activate caspase-1 or -7 and trigger less cell death. In addition, while planktonic L. pneumophila is promptly delivered to lysosomes for degradation, most biofilm-derived bacteria were enclosed in a vacuole that did not fuse with lysosomes in murine macrophages. This study advances our understanding of the innate immune response to biofilm-derived L. pneumophila and closely reproduces the natural mode of infection in human.

  5. An Overview of the Role of Innate Lymphoid Cells in Gut Infections and Inflammation

    Directory of Open Access Journals (Sweden)

    Silvia Sedda

    2014-01-01

    Full Text Available Innate lymphoid cells (ILCs are a group of hematopoietic cells devoid of antigen receptors that have important functions in lymphoid organogenesis, in the defense against extracellular pathogens, and in the maintenance of the epithelial barrier. Three distinct groups of ILCs have been identified on the basis of phenotypic and functional criteria and termed ILCs1, ILCs2, and ILCs3. Specifically, ILCs1 express the transcription factor T-bet and secrete T helper type-1- (Th1- related cytokines, ILCs2 are dependent on the transcription factor RORα and express Gata-3 and the chemokine receptor homologous molecule (CRTH2 and produce Th2-related cytokines, and ILCs3 express the transcription factor RORγt and synthesize interleukin- (IL- 17, IL-22, and, under specific stimuli, interferon-γ. ILCs represent a relatively small population in the gut, but accumulating evidence suggests that these cells could play a decisive role in orchestrating both protective and detrimental immune responses. In this review, we will summarize the present knowledge on the distribution of ILCs in the intestinal mucosa, with particular focus on their role in the control of both infections and effector cytokine response in immune-mediated pathologies.

  6. PAR-1 contributes to the innate immune response during viral infection.

    Science.gov (United States)

    Antoniak, Silvio; Owens, A Phillip; Baunacke, Martin; Williams, Julie C; Lee, Rebecca D; Weithäuser, Alice; Sheridan, Patricia A; Malz, Ronny; Luyendyk, James P; Esserman, Denise A; Trejo, JoAnn; Kirchhofer, Daniel; Blaxall, Burns C; Pawlinski, Rafal; Beck, Melinda A; Rauch, Ursula; Mackman, Nigel

    2013-03-01

    Coagulation is a host defense system that limits the spread of pathogens. Coagulation proteases, such as thrombin, also activate cells by cleaving PARs. In this study, we analyzed the role of PAR-1 in coxsackievirus B3-induced (CVB3-induced) myocarditis and influenza A infection. CVB3-infected Par1(-/-) mice expressed reduced levels of IFN-β and CXCL10 during the early phase of infection compared with Par1(+/+) mice that resulted in higher viral loads and cardiac injury at day 8 after infection. Inhibition of either tissue factor or thrombin in WT mice also significantly increased CVB3 levels in the heart and cardiac injury compared with controls. BM transplantation experiments demonstrated that PAR-1 in nonhematopoietic cells protected mice from CVB3 infection. Transgenic mice overexpressing PAR-1 in cardiomyocytes had reduced CVB3-induced myocarditis. We found that cooperative signaling between PAR-1 and TLR3 in mouse cardiac fibroblasts enhanced activation of p38 and induction of IFN-β and CXCL10 expression. Par1(-/-) mice also had decreased CXCL10 expression and increased viral levels in the lung after influenza A infection compared with Par1(+/+) mice. Our results indicate that the tissue factor/thrombin/PAR-1 pathway enhances IFN-β expression and contributes to the innate immune response during single-stranded RNA viral infection.

  7. Tactics used by HIV-1 to evade host innate, adaptive, and intrinsic immunities

    Institute of Scientific and Technical Information of China (English)

    LU Lu; YU Fei; DU Lan-ying; XU Wei; JIANG Shi-bo

    2013-01-01

    Objective To review the mechanisms by which HIV evades different components of the host immune system.Data sources This review is based on data obtained from published articles from 1991 to 2012.To perform the PubMed literature search,the following key words were input:HIV and immune evasion.Study selection Articles containing information related to HIV immune evasion were selected.Results Although HIV is able to induce vigorous antiviral immune responses,viral replication cannot be fully controlled,and neither pre-existing infected cells nor latent HIV infection can be completely eradicated.Like many other enveloped viruses,HIV can escape recognition by the innate and adaptive immune systems.Recent findings have demonstrated that HIV can also successfully evade host restriction factors,the components of intrinsic immune system,such as APOBEC3G (apolipoprotein B mRNA-editing enzyme,catalytic polypeptide-like 3G),TRIM5α (tripartite motif 5-α),tetherin,and SAMHD1 (SAM-domain HD-domain containing protein).Conclusions HIV immune evasion plays an important role in HIV pathcgenesis.Fully understanding the tactics deployed by HIV to evade various components of the host immune systems will allow for the development of novel strategies aimed toward the prevention and cure of HIV/AIDS.

  8. MicroRNA-146a: A dominant, negative regulator of the innate immune response

    Directory of Open Access Journals (Sweden)

    Stephanie eBooth

    2014-11-01

    Full Text Available MicroRNAs (miRNAs are a class of small non-coding RNA molecules that can play critical roles as regulators of numerous pathways and biological processes including the immune response. Emerging as one of the most important miRNAs to orchestrate immune and inflammatory signaling, often through its recognized target genes, IRAK1 and TRAF6, is microRNA-146a (miR-146a. MiR-146a is one, of a small number of miRNAs, whose expression is strongly induced following challenge of cells with bacterial endotoxin, and prolonged expression has been linked to immune tolerance, implying that it acts as a fine tuning mechanism to prevent an overstimulation of the inflammatory response. In other cells, miR-146a has been shown to play a role in the control of the differentiation of megakaryocytic and monocytic lineages, adaptive immunity and cancer. In this review, we discuss the central role prescribed to miR-146a in innate immunity. We particularly focus on the role played by miR-146a in the regulation and signaling mediated by one of the main pattern recognition receptors, Toll/IL-1 receptors (TLRs. Additionally, we also discuss the role of miR-146a in several classes of autoimmune pathologies where this miRNA has been shown to be dysregulated, as well as its potential role in the pathobiology of neurodegenerative diseases.

  9. Age- and disease-related innate immunity of human leukocytes ex vivo.

    Science.gov (United States)

    Jatczak, Bogna; Leszek, Jerzy; Siemieniec, Iwona; Sochocka, Marta; Wiśniewska, Agnieszka; Tarkowski, Radosław; Bębenek, Marek; Błach-Olszewska, Zofia

    2012-01-01

    Two mechanisms of innate immunity, i.e. resistance to viral infection and the production of cytokines by leukocytes, were compared in blood isolated from four groups of donors: healthy young (19-35 years old), healthy elderly (over 60), elderly Alzheimer's disease (AD) patients, and elderly patients with alimentary tract cancer (CA). Peripheral blood leukocytes (PBLs) were isolated by gradient centrifugation in Gradisol G. The degree of resistance was calculated from the kinetics of vesicular stomatitis virus (VSV) replication in the PBLs. Cytokine (TNFα, IFNα, IFNγ, IL-12, and IL-10) levels were determined by ELISA. The antiviral resistance of the PBLs varied, but a difference was observed only between the young and elderly groups and not between the healthy elderly controls and those with AD or cancer. Differences observed in all the groups concerned the ability and intensity of cytokine production. The most impressive results were obtained for spontaneous TNF and IFNα release. While TNF was released spontaneously by the PBLs of the elderly CA patients and the young healthy group, it was usually undetected in the AD and only sometimes in the healthy elderly group. Leukocytes isolated from the elderly groups responded to VSV infection with more intense IFNα and IFNγ production than the younger group.

  10. Transfer of innate resistance and susceptibility to Leishmania donovani infection in mouse radiation bone marrow chimaeras

    Energy Technology Data Exchange (ETDEWEB)

    Crocker, P.R.; Blackwell, J.M.; Bradley, D.J. (London School of Hygiene and Tropical Medicine (UK))

    1984-07-01

    Reciprocal radiation bone marrow chimaeras were made between H-2-compatible strains of mice innately resistant or susceptible to visceral leishmaniasis. In initial experiments, susceptibility but not resistance to Leishmania donovani could be transferred with donor bone marrow into irradiated recipients. In subsequent experiments it was possible to transfer both resistance and susceptibility. This was achieved either by selecting more radiosensitive mouse strains as susceptible recipients, or alternatively by increasing the irradiation dose for the susceptible recipients used in the initial experiments. Using the higher irradiation dose, successful transfer of resistance and susceptibility between congenic mice carrying the Lshsup(r) and Lshsup(s) alleles on the more radioresistant B10 genetic background provided firm evidence that the results obtained in this study were specifically related to expression of the Lsh gene. It is concluded that Lsh gene-controlled resistance and susceptibility to L. donovani is determined by bone marrow-derived cells. The cell type(s) involved is likely to be of the macrophage lineage.

  11. Flt3 Ligand Regulates the Development of Innate Lymphoid Cells in Fetal and Adult Mice.

    Science.gov (United States)

    Baerenwaldt, Anne; von Burg, Nicole; Kreuzaler, Matthias; Sitte, Selina; Horvath, Edit; Peter, Annick; Voehringer, David; Rolink, Antonius G; Finke, Daniela

    2016-03-15

    Flt3 ligand (Flt3L) promotes survival of lymphoid progenitors in the bone marrow and differentiation of dendritic cells (DCs), but its role in regulating innate lymphoid cells (ILCs) during fetal and adult life is not understood. By using Flt3L knockout and transgenic mice, we demonstrate that Flt3L controls ILC numbers by regulating the pool of α4β7(-) and α4β7(+) lymphoid tissue inducer cell progenitors in the fetal liver and common lymphoid progenitors in the bone marrow. Deletion of flt3l severely reduced the number of fetal liver progenitors and lymphoid tissue inducer cells in the neonatal intestine, resulting in impaired development of Peyer's patches. In the adult intestine, NK cells and group 2 and 3 ILCs were severely reduced. This effect occurred independently of DCs as ILC numbers were normal in mice in which DCs were constitutively deleted. Finally, we could show that administration of Flt3L increased the number of NKp46(-) group 3 ILCs in wild-type and even in Il7(-/-) mice, which generally have reduced numbers of ILCs. Taken together, Flt3L significantly contributes to ILC and Peyer's patches development by targeting lymphoid progenitor cells during fetal and adult life.

  12. Type 3 innate lymphoid cells maintain intestinal epithelial stem cells after tissue damage.

    Science.gov (United States)

    Aparicio-Domingo, Patricia; Romera-Hernandez, Monica; Karrich, Julien J; Cornelissen, Ferry; Papazian, Natalie; Lindenbergh-Kortleve, Dicky J; Butler, James A; Boon, Louis; Coles, Mark C; Samsom, Janneke N; Cupedo, Tom

    2015-10-19

    Disruption of the intestinal epithelial barrier allows bacterial translocation and predisposes to destructive inflammation. To ensure proper barrier composition, crypt-residing stem cells continuously proliferate and replenish all intestinal epithelial cells within days. As a consequence of this high mitotic activity, mucosal surfaces are frequently targeted by anticancer therapies, leading to dose-limiting side effects. The cellular mechanisms that control tissue protection and mucosal healing in response to intestinal damage remain poorly understood. Type 3 innate lymphoid cells (ILC3s) are regulators of homeostasis and tissue responses to infection at mucosal surfaces. We now demonstrate that ILC3s are required for epithelial activation and proliferation in response to small intestinal tissue damage induced by the chemotherapeutic agent methotrexate. Multiple subsets of ILC3s are activated after intestinal tissue damage, and in the absence of ILC3s, epithelial activation is lost, correlating with increased pathology and severe damage to the intestinal crypts. Using ILC3-deficient Lgr5 reporter mice, we show that maintenance of intestinal stem cells after damage is severely impaired in the absence of ILC3s or the ILC3 signature cytokine IL-22. These data unveil a novel function of ILC3s in limiting tissue damage by preserving tissue-specific stem cells.

  13. RNA sensors of the innate immune system and their detection of pathogens.

    Science.gov (United States)

    Chen, Nanhua; Xia, Pengpeng; Li, Shuangjie; Zhang, Tangjie; Wang, Tony T; Zhu, Jianzhong

    2017-04-04

    The innate immune system plays a critical role in pathogen recognition and initiation of protective immune response through the recognition of pathogen associated molecular patterns (PAMPs) by its pattern recognition receptors (PRRs). Nucleic acids including RNA and DNA have been recognized as very important PAMPs of pathogens especially for viruses. RNA are the major PAMPs of RNA viruses, to which most severe disease causing viruses belong thus posing a tougher challenge to human and animal health. Therefore, the understanding of the immune biology of RNA PRRs is critical for control of pathogen infections especially for RNA virus infections. RNA PRRs are comprised of TLR3, TLR7, TLR8, RIG-I, MDA5, NLRP3, NOD2, and some other minorities. This review introduces these RNA PRRs by describing the cellular localizations, ligand recognitions, activation mechanisms, cell signaling pathways, and recognition of pathogens; the cross-talks between various RNA PRRs are also reviewed. The deep insights of these RNA PRRs can be utilized to improve anti-viral immune response. © 2017 IUBMB Life, 2017.

  14. Plantago major treatment enhanced innate antioxidant activity in experimental acetaminophen toxicity

    Institute of Scientific and Technical Information of China (English)

    Farida; Hussan; Rina; Haryani; Osman; Basah; Mohd; Rai; zul; Mohd; Yusof; Nur; Aqilah; Kamaruddin; Faizah; Othman

    2015-01-01

    Objective: To determine the ef ect of Plantago major(P. major) extract on the liver injury following acetaminophen(APAP) toxicity. Methods: The male Sprague Dawley rats(n = 38) were randomly divided into normal control(n = 6) and experiment(n = 32) groups. The latter was subdivided into four groups and induced with APAP(1 000 mg/kg) per oral, followed by P. major extract and N-acetylcysteine orally to the respective groups for six days. Results: On the seventh day, the serum bilirubin, liver enzymes and tissue malondialdehyde were increased in APAP groups whereas the total protein in serum, tissue superoxide dismutase and glutathione levels were reduced. The plant extract treatment reduced the histological deteriorations such as aggregation of hepatocellular cords, formation of binucleated cells and vacuolisation of the cells with scanty cytoplasm. It also revealed signii cant reduction of malondialdehyde and increased level of superoxide dismutase and glutathione. The i ndings in the extract treated groups were comparable to the group treated with N-acetylcysteine. Conclusions: In conclusion, P. major can enhance innate antioxidant activity and ameliorate the APAP-induced liver injury.

  15. Plantago major treatment enhanced innate antioxidant activity in experimental acetaminophen toxicity

    Institute of Scientific and Technical Information of China (English)

    Farida Hussan; Rina Haryani Osman Basah; Mohd Rafizul Mohd Yusof; Nur Aqilah Kamaruddin; Faizah Othman

    2015-01-01

    To determine the effect of Plantago major (P. major) extract on the liver injury following acetaminophen (APAP) toxicity. Methods: The male Sprague Dawley rats (n = 38) were randomly divided into normal control (n= 6) and experiment (n = 32) groups. The latter was subdivided into four groups and induced with APAP (1000 mg/kg) per oral, followed by P. major extract and N-acetylcysteine orally to the respective groups for six days. Results: On the seventh day, the serum bilirubin, liver enzymes and tissue malondialdehyde were increased in APAP groups whereas the total protein in serum, tissue superoxide dismutase and glutathione levels were reduced. The plant extract treatment reduced the histological deteriorations such as aggregation of hepatocellular cords, formation of binucleated cells and vacuolisation of the cells with scanty cytoplasm. It also revealed significant reduction of malondialdehyde and increased level of superoxide dismutase and glutathione. The findings in the extract treated groups were comparable to the group treated with N-acetylcysteine. Conclusions: In conclusion, P. major can enhance innate antioxidant activity and ameliorate the APAP-induced liver injury.

  16. AIM2 inflammasome in infection, cancer, and autoimmunity: Role in DNA sensing, inflammation, and innate immunity.

    Science.gov (United States)

    Man, Si Ming; Karki, Rajendra; Kanneganti, Thirumala-Devi

    2016-02-01

    Recognition of DNA by the cell is an important immunological signature that marks the initiation of an innate immune response. AIM2 is a cytoplasmic sensor that recognizes dsDNA of microbial or host origin. Upon binding to DNA, AIM2 assembles a multiprotein complex called the inflammasome, which drives pyroptosis and proteolytic cleavage of the proinflammatory cytokines pro-IL-1β and pro-IL-18. Release of microbial DNA into the cytoplasm during infection by Francisella, Listeria, Mycobacterium, mouse cytomegalovirus, vaccinia virus, Aspergillus, and Plasmodium species leads to activation of the AIM2 inflammasome. In contrast, inappropriate recognition of cytoplasmic self-DNA by AIM2 contributes to the development of psoriasis, dermatitis, arthritis, and other autoimmune and inflammatory diseases. Inflammasome-independent functions of AIM2 have also been described, including the regulation of the intestinal stem cell proliferation and the gut microbiota ecology in the control of colorectal cancer. In this review we provide an overview of the latest research on AIM2 inflammasome and its role in infection, cancer, and autoimmunity.

  17. The molding of personality: a newborn's innate characteristics in interaction with parents' personalities.

    Science.gov (United States)

    Aleksandrowicz, M K; Aleksandrowicz, D R

    1975-01-01

    This report describes a girl who was studied by means of the Brazelton Neonatal Behavioral Assessment Scale from her 1st until her 28th day of life, observed at the age of 1 year, and, at the age of 1 1/2 years, was seen in a psychiatric family interview. The examinational data and history (obtained from the parents) present a picture of deviant development with exceptionally low orientation responsiveness and high excitability from the first hours of life. Carmel showed little ability to quiet herself and little response to soothing attempts. Motor development was normal throughout, physical health and growth were satisfactory, and intellectual development (assessed on the Vineland scale) was average. Carmel's continuous, inconsolable crying and lack of responsiveness led to a family adjustment with the passive, somewhat disorganized mother moving into the background and the anxious father taking over. He developed a way of keeping activity. This physical stimulation, coupled with overprotection (the father's tendency to interpose himself between the girl and other people) as well as controlling all frustration, resulted in a precarious balance at the price of Carmel's reduced autonomy, delay in adaptive ego functions, and severe stranger anxiety. The case illustrates the interaction between innate characteristics and parental attitudes, and the need for preventive counseling based on understanding a child's idiosyncratic behavior patterns.

  18. NF-kappaB links innate immunity to the hypoxic response through transcriptional regulation of HIF-1alpha.

    Science.gov (United States)

    Rius, Jordi; Guma, Monica; Schachtrup, Christian; Akassoglou, Katerina; Zinkernagel, Annelies S; Nizet, Victor; Johnson, Randall S; Haddad, Gabriel G; Karin, Michael

    2008-06-05

    The hypoxic response is an ancient stress response triggered by low ambient oxygen (O2) (ref. 1) and controlled by hypoxia-inducible transcription factor-1 (HIF-1), whose alpha subunit is rapidly degraded under normoxia but stabilized when O2-dependent prolyl hydroxylases (PHDs) that target its O2-dependent degradation domain are inhibited. Thus, the amount of HIF-1alpha, which controls genes involved in energy metabolism and angiogenesis, is regulated post-translationally. Another ancient stress response is the innate immune response, regulated by several transcription factors, among which NF-kappaB plays a central role. NF-kappaB activation is controlled by IkappaB kinases (IKK), mainly IKK-beta, needed for phosphorylation-induced degradation of IkappaB inhibitors in response to infection and inflammation. IKK-beta is modestly activated in hypoxic cell cultures when PHDs that attenuate its activation are inhibited. However, defining the relationship between NF-kappaB and HIF-1alpha has proven elusive. Using in vitro systems, it was reported that HIF-1alpha activates NF-kappaB, that NF-kappaB controls HIF-1alpha transcription and that HIF-1alpha activation may be concurrent with inhibition of NF-kappaB. Here we show, with the use of mice lacking IKK-beta in different cell types, that NF-kappaB is a critical transcriptional activator of HIF-1alpha and that basal NF-kappaB activity is required for HIF-1alpha protein accumulation under hypoxia in cultured cells and in the liver and brain of hypoxic animals. IKK-beta deficiency results in defective induction of HIF-1alpha target genes including vascular endothelial growth factor. IKK-beta is also essential for HIF-1alpha accumulation in macrophages experiencing a bacterial infection. Hence, IKK-beta is an important physiological contributor to the hypoxic response, linking it to innate immunity and inflammation.

  19. Innate immunity and inflammation in ageing: a key for understanding age-related diseases

    Directory of Open Access Journals (Sweden)

    Colonna-Romano Giuseppina

    2005-05-01

    Full Text Available Abstract The process of maintaining life for the individual is a constant struggle to preserve his/her integrity. This can come at a price when immunity is involved, namely systemic inflammation. Inflammation is not per se a negative phenomenon: it is the response of the immune system to the invasion of viruses or bacteria and other pathogens. During evolution the human organism was set to live 40 or 50 years; today, however, the immune system must remain active for much a longer time. This very long activity leads to a chronic inflammation that slowly but inexorably damages one or several organs: this is a typical phenomenon linked to ageing and it is considered the major risk factor for age-related chronic diseases. Alzheimer's disease, atherosclerosis, diabetes and even sarcopenia and cancer, just to mention a few – have an important inflammatory component, though disease progression seems also dependent on the genetic background of individuals. Emerging evidence suggests that pro-inflammatory genotypes are related to unsuccessful ageing, and, reciprocally, controlling inflammatory status may allow a better chance of successful ageing. In other words, age-related diseases are "the price we pay" for a life-long active immune system: this system has also the potential to harm us later, as its fine tuning becomes compromised. Our immune system has evolved to control pathogens, so pro-inflammatory responses are likely to be evolutionarily programmed to resist fatal infections with pathogens aggressively. Thus, inflammatory genotypes are an important and necessary part of the normal host responses to pathogens in early life, but the overproduction of inflammatory molecules might also cause immune-related inflammatory diseases and eventually death later. Therefore, low responder genotypes involved in regulation of innate defence mechanisms, might better control inflammatory responses and age-related disease development, resulting in an increased

  20. Ambivalent role of the innate immune response in rabies virus pathogenesis.

    Science.gov (United States)

    Chopy, Damien; Pothlichet, Julien; Lafage, Mireille; Mégret, Françoise; Fiette, Laurence; Si-Tahar, Mustapha; Lafon, Monique

    2011-07-01

    The neurotropic rabies virus (RABV) has developed several evasive strategies, including immunoevasion, to successfully infect the nervous system (NS) and trigger a fatal encephalomyelitis. Here we show that expression of LGP2, a protein known as either a positive or negative regulator of the RIG-I-mediated innate immune response, is restricted in the NS. We used a new transgenic mouse model (LGP2 TG) overexpressing LGP2 to impair the innate immune response to RABV and thus revealed the role of the RIG-I-mediated innate immune response in RABV pathogenesis. After infection, LGP2 TG mice exhibited reduced expression of inflammatory/chemoattractive molecules, beta interferon (IFN-β), and IFN-stimulated genes in their NS compared to wild-type (WT) mice, demonstrating the inhibitory function of LGP2 in the innate immune response to RABV. Surprisingly, LGP2 TG mice showed more viral clearance in the brain and lower morbidity than WT mice, indicating that the host innate immune response, paradoxically, favors RABV neuroinvasiveness and morbidity. LGP2 TG mice exhibited similar neutralizing antibodies and microglia activation to those of WT mice but showed a reduction of infiltrating CD4(+) T cells and less disappearance of infiltrating CD8(+) T cells. This occurred concomitantly with reduced neural expression of the IFN-inducible protein B7-H1, an immunoevasive protein involved in the elimination of infiltrated CD8(+) T cells. Our study shows that the host innate immune response favors the infiltration of T cells and, at the same time, promotes CD8(+) T cell elimination. Thus, to a certain extent, RABV exploits the innate immune response to develop its immunoevasive strategy.

  1. c-di-GMP enhances protective innate immunity in a murine model of pertussis.

    Directory of Open Access Journals (Sweden)

    Shokrollah Elahi

    Full Text Available Innate immunity represents the first line of defense against invading pathogens in the respiratory tract. Innate immune cells such as monocytes, macrophages, dendritic cells, NK cells, and granulocytes contain specific pathogen-recognition molecules which induce the production of cytokines and subsequently activate the adaptive immune response. c-di-GMP is a ubiquitous second messenger that stimulates innate immunity and regulates biofilm formation, motility and virulence in a diverse range of bacterial species with potent immunomodulatory properties. In the present study, c-di-GMP was used to enhance the innate immune response against pertussis, a respiratory infection mainly caused by Bordetella pertussis. Intranasal treatment with c-di-GMP resulted in the induction of robust innate immune responses to infection with B. pertussis characterized by enhanced recruitment of neutrophils, macrophages, natural killer cells and dendritic cells. The immune responses were associated with an earlier and more vigorous expression of Th1-type cytokines, as well as an increase in the induction of nitric oxide in the lungs of treated animals, resulting in significant reduction of bacterial numbers in the lungs of infected mice. These results demonstrate that c-di-GMP is a potent innate immune stimulatory molecule that can be used to enhance protection against bacterial respiratory infections. In addition, our data suggest that priming of the innate immune system by c-di-GMP could further skew the immune response towards a Th1 type phenotype during subsequent infection. Thus, our data suggest that c-di-GMP might be useful as an adjuvant for the next generation of acellular pertussis vaccine to mount a more protective Th1 phenotype immune response, and also in other systems where a Th1 type immune response is required.

  2. Innate recognition of pheromone and food odors in moths: a common mechanism in the antennal lobe?

    Directory of Open Access Journals (Sweden)

    Joshua P Martin

    2010-09-01

    Full Text Available The survival of an animal often depends on an innate response to a particular sensory stimulus. For an adult male moth, two categories of odors are innately attractive: pheromone released by conspecific females, and the floral scents of certain, often co-evolved, plants. These odors consist of multiple volatiles in characteristic mixtures. Here, we review evidence that both categories of odors are processed as sensory objects, and we suggest a mechanism in the primary olfactory center, the antennal lobe (AL, that encodes the configuration of these mixtures and may underlie recognition of innately attractive odors. In the pheromone system, mixtures of two or three volatiles elicit upwind flight. Peripheral changes are associated with behavioral changes in speciation, and suggest the existence of a pattern recognition mechanism for pheromone mixtures in the AL. Moths are similarly innately attracted to certain floral scents. Though floral scents consist of multiple volatiles that activate a broad array of receptor neurons, only a smaller subset, numerically comparable to pheromone mixtures, is necessary and sufficient to elicit behavior. Both pheromone and floral scent mixtures that produce attraction to the odor source elicit synchronous action potentials in particular populations of output (projection neurons (PNs in the AL. We propose a model in which the synchronous output of a population of PNs encodes the configuration of an innately attractive mixture, and thus comprises an innate mechanism for releasing odor-tracking behavior. The particular example of olfaction in moths may inform the general question of how sensory objects trigger innate responses.

  3. Adenovirus Vector-Derived VA-RNA-Mediated Innate Immune Responses

    Directory of Open Access Journals (Sweden)

    Hiroyuki Mizuguchi

    2011-07-01

    Full Text Available The major limitation of the clinical use of replication-incompetent adenovirus (Ad vectors is the interference by innate immune responses, including induction of inflammatory cytokines and interferons (IFN, following in vivo application of Ad vectors. Ad vector-induced production of inflammatory cytokines and IFNs also results in severe organ damage and efficient induction of acquired immune responses against Ad proteins and transgene products. Ad vector-induced innate immune responses are triggered by the recognition of Ad components by pattern recognition receptors (PRRs. In order to reduce the side effects by Ad vector-induced innate immune responses and to develop safer Ad vectors, it is crucial to clarify which PRRs and which Ad components are involved in Ad vector-induced innate immune responses. Our group previously demonstrated that myeloid differentiating factor 88 (MyD88 and toll-like receptor 9 (TLR9 play crucial roles in the Ad vector-induced inflammatory cytokine production in mouse bone marrow-derived dendritic cells. Furthermore, our group recently found that virus associated-RNAs (VA-RNAs, which are about 160 nucleotide-long non-coding small RNAs encoded in the Ad genome, are involved in IFN production through the IFN-β promoter stimulator-1 (IPS-1-mediated signaling pathway following Ad vector transduction. The aim of this review is to highlight the Ad vector-induced innate immune responses following transduction, especially VA-RNA-mediated innate immune responses. Our findings on the mechanism of Ad vector-induced innate immune responses should make an important contribution to the development of safer Ad vectors, such as an Ad vector lacking expression of VA-RNAs.

  4. Inhibition of Translation Initiation by Protein 169: A Vaccinia Virus Strategy to Suppress Innate and Adaptive Immunity and Alter Virus Virulence.

    Directory of Open Access Journals (Sweden)

    Pavla Strnadova

    2015-09-01

    Full Text Available Vaccinia virus (VACV is the prototypic orthopoxvirus and the vaccine used to eradicate smallpox. Here we show that VACV strain Western Reserve protein 169 is a cytoplasmic polypeptide expressed early during infection that is excluded from virus factories and inhibits the initiation of cap-dependent and cap-independent translation. Ectopic expression of protein 169 causes the accumulation of 80S ribosomes, a reduction of polysomes, and inhibition of protein expression deriving from activation of multiple innate immune signaling pathways. A virus lacking 169 (vΔ169 replicates and spreads normally in cell culture but is more virulent than parental and revertant control viruses in intranasal and intradermal murine models of infection. Intranasal infection by vΔ169 caused increased pro-inflammatory cytokines and chemokines, infiltration of pulmonary leukocytes, and lung weight. These alterations in innate immunity resulted in a stronger CD8+ T-cell memory response and better protection against virus challenge. This work illustrates how inhibition of host protein synthesis can be a strategy for virus suppression of innate and adaptive immunity.

  5. Modulation of innate immune responses and induction of oxidative stress biomarkers in Pangasianodon hypophthalmus following an experimental infection with dactylogyrid monogeneans.

    Science.gov (United States)

    Kumar, Saurav; Raman, R P; Prasad, K Pani; Srivastava, P P; Kumar, Sanath; Rajendran, K V

    2017-04-01

    Modulation of innate immune activity and oxidative stress response of Pangasianodon hypophthalmus through experimental infection with (Thaparocleidus sp.) dactylogyrid monogenean was studied. A standard cohabitation method was used to infect healthy experimental fish. After 14 days, dactylogyrid (gill monogenean) infested fish were sampled and categorised into three different infected groups namely (T1) low (50 mean dactylogyrid per gill arch per fish) along with a control group T0 (un-infested fish). Serum and tissues (gills and liver) were collected from experimental fish and analyzed for markers of innate immune and oxidative stress, respectively. The results showed that respiratory burst activity, myeloperoxidase level, serum lysozyme, α-2 macroglobulin and total serum immunoglobulin level were significantly (p hypophthalmus by lowering albumin, total serum antiprotease and ceruloplasmin and inducing respiratory burst activity, phagocytic activity, myeloperoxidase, lysozyme, α-2 macroglobulin and total immunoglobulins, but also the oxidative stress biomarkers. The baseline data obtained in the present study will be valuable in understanding the host-parasite relationship and the dynamics of innate, oxidative stress responses and susceptibility of P. hypophthalmus to different degrees of parasitosis.

  6. Regulatory T-cell depletion in the gut caused by integrin β7 deficiency exacerbates DSS colitis by evoking aberrant innate immunity.

    Science.gov (United States)

    Zhang, H L; Zheng, Y J; Pan, Y D; Xie, C; Sun, H; Zhang, Y H; Yuan, M Y; Song, B L; Chen, J F

    2016-03-01

    Integrin α4β7 controls lymphocyte trafficking into the gut and has essential roles in inflammatory bowel disease (IBD). The α4β7-blocking antibody vedolizumab is approved for IBD treatment; however, high dose of vedolizumab aggravates colitis in a small percentage of patients. Herein, we show that integrin β7 deficiency results in colonic regulatory T (Treg) cell depletion and exacerbates dextran sulfate sodium (DSS) colitis by evoking aberrant innate immunity. In DSS-treated β7-deficient mice, the loss of colonic Treg cells induces excessive macrophage infiltration in the colon via upregulation of colonic epithelial intercellular adhesion molecule 1 and increases proinflammatory cytokine expression, thereby exacerbating DSS-induced colitis. Moreover, reconstitution of the colonic Treg cell population in β7-deficient mice suppresses aberrant innate immune response in the colon and attenuates DSS colitis. Thus, integrin α4β7 is essential for suppression of DSS colitis as it regulates the colonic Treg cell population and innate immunity.

  7. Innate Immune Signalling Genetics of Pain, Cognitive Dysfunction and Sickness Symptoms in Cancer Pain Patients Treated with Transdermal Fentanyl.

    Directory of Open Access Journals (Sweden)

    Daniel T Barratt

    Full Text Available Common adverse symptoms of cancer and chemotherapy are a major health burden; chief among these is pain, with opioids including transdermal fentanyl the mainstay of treatment. Innate immune activation has been implicated generally in pain, opioid analgesia, cognitive dysfunction, and sickness type symptoms reported by cancer patients. We aimed to determine if genetic polymorphisms in neuroimmune activation pathways alter the serum fentanyl concentration-response relationships for pain control, cognitive dysfunction, and other adverse symptoms, in cancer pain patients. Cancer pain patients (468 receiving transdermal fentanyl were genotyped for 31 single nucleotide polymorphisms in 19 genes: CASP1, BDNF, CRP, LY96, IL6, IL1B, TGFB1, TNF, IL10, IL2, TLR2, TLR4, MYD88, IL6R, OPRM1, ARRB2, COMT, STAT6 and ABCB1. Lasso and backward stepwise generalised linear regression were used to identify non-genetic and genetic predictors, respectively, of pain control (average Brief Pain Inventory < 4, cognitive dysfunction (Mini-Mental State Examination ≤ 23, sickness response and opioid adverse event complaint. Serum fentanyl concentrations did not predict between-patient variability in these outcomes, nor did genetic factors predict pain control, sickness response or opioid adverse event complaint. Carriers of the MYD88 rs6853 variant were half as likely to have cognitive dysfunction (11/111 than wild-type patients (69/325, with a relative risk of 0.45 (95% CI: 0.27 to 0.76 when accounting for major non-genetic predictors (age, Karnofsky functional score. This supports the involvement of innate immune signalling in cognitive dysfunction, and identifies MyD88 signalling pathways as a potential focus for predicting and reducing the burden of cognitive dysfunction in cancer pain patients.

  8. Suppression of Immunotherapy on Group 2 Innate Lymphoid Cells in Allergic Rhinitis

    Institute of Scientific and Technical Information of China (English)

    Da-Chuan Fan; Xiang-Dong Wang; Cheng-Shuo Wang; Yang Wang; Fei-Fei Cao; Luo Zhang

    2016-01-01

    Background:Group 2 innate lymphoid cells (ILC2s) are regarded as a novel population of lineage-negative cells that induce innate Type 2 responses by producing the critical Th2-type cytokines interleukin (IL)-5 and IL-13.ILC2s as key players in the development of allergic rhinitis (AR) have been proved,however,the effect of subcutaneous immunotherapy (SCIT) with dermatophagoides pteronyssinus extract (Der p-SCIT) on ILC2s in AR patients is not clear.This study aimed to investigate the response of ILC2s of peripheral blood in house dust mites (HDM)-sensitized Chinese patients with AR who received SCIT with Der P extract.Methods:Seven healthy controls without symptoms of AR who had negative reactions to any of the allergens from skin-prick testing,nine patients diagnosed with persistent AR according to the Allergic Rhinitis and its Impact on Asthma (ARIA) guidelines,and 24 AR patients who received Der p-SCIT for 1.0-3.5 years were recruited for the study.ILC2s in the peripheral blood were evaluated using flow cytometry.The severity of their symptoms of all participants was rated based on the Total 5 symptom score.Results:Among 40 participants,9 AR patients were assigned to the untreated group,24 AR patients receiving Der p-SCIT were assigned to the immunotherapy group,and 7 healthy controls without symptoms of AR were assigned to healthy control group.The mean Total 5 symptom score of immunotherapy group was significantly lower than that of untreated group (4.3 ± 1.4 vs.10.1 ± 2.5,P < 0.001).Similarly,the levels of ILC2s in the peripheral blood of immunotherapy group were significantly reduced compared with that in untreated group (P < 0.001),but were not significantly different from healthy controls (P =0.775).Further subgroup analysis based on the duration of SCIT therapy (1.0-2.0 years [SCIT1-2],2.0-3.0 years [SCIT2-3],and 3.0-3.5 years [SCIT3-3.5]) showed that the percentage of ILC2s was not significantly different between SCIT1-2,SCIT2-3,and SCIT3

  9. Innate Immune Responses to Engineered Nanomaterials During Allergic Airway Inflammation

    Science.gov (United States)

    Shipkowski, Kelly Anne

    disease would modulate the innate immune response to MWCNTs. We hypothesized that Th2 cytokines and the allergic asthmatic microenvironment would alter MWCNT-induced inflammasome activation and IL- 1beta secretion both in vitro and in vivo. In vitro, THP-1 cells, a human monocytic cell line, were differentiated into macrophages and exposed to MWCNTs and or recombinant Th2 cytokines, specifically IL-4 and/or IL-13. Exposure of THP-1 cells to MWCNTs alone caused dose-dependent secretion of IL-1beta, while co-exposure to IL-4 and/or IL-13 suppressed MWCNT-induced IL-1beta. Further analysis determined that IL-4 and IL-13 were phosphorylating the protein signal transducer and activator of transcription 6 (STAT6) and subsequently inhibiting inflammasome activation and function through suppression of caspase-1, a cysteine protease responsible for cleavage of pro-IL-1beta into an active, secretable form. In vivo, wild-type C57BL6 mice were sensitized intranasally with HDM allergen and exposed to MWCNTs via oropharyngeal aspiration. Treatment with MWCNTs alone induced secretion of IL-1beta in the bronchoalveolar lavage fluid (BALF) one day post-exposure, while sensitization with HDM prior to MWCNT exposure suppressed MWCNT-induced IL-1beta. Immunohistochemical (IHC) analysis of lung sections from exposed animals showed that HDM sensitization inhibited MWCNT-induced pro-casapse-1 protein expression, responsible for inflammasome activation, in the airway epithelium and macrophages. MWCNT exposure combined with HDM sensitization increased inflammatory cell infiltration and subsequent acute lung inflammation and chronic fibrosis. Analysis of the systemic effects of MWCNT exposure during allergic airway sensitization showed that MWCNTs and/or HDM allergen upregulated STAT3 mRNA expression in the lungs, liver, and spleen of exposed animals, and at the same induced mixed T helper (Th) responses in the different tissues. Collectively, these data suggest that the allergic microenvironment

  10. SAP-Dependent and -Independent Regulation of Innate T Cell Development Involving SLAMF Receptors.

    Science.gov (United States)

    De Calisto, Jaime; Wang, Ninghai; Wang, Guoxing; Yigit, Burcu; Engel, Pablo; Terhorst, Cox

    2014-01-01

    Signaling lymphocytic activation molecule (SLAM)-associated protein (SAP) plays an essential role in the immune system mediating the function of several members of the SLAM family (SLAMF) of receptors, whose expression is essential for T, NK, and B-cell responses. Additionally, the expression of SAP in double-positive thymocytes is mandatory for natural killer T (NKT) cells and, in mouse, for innate CD8(+) T cell development. To date, only two members of the SLAMF of receptors, Slamf1 and Slamf6, have been shown to positively cooperate during NKT cell differentiation in mouse. However, it is less clear whether other members of this family may also participate in the development of these innate T cells. Here, we show that Slamf[1 + 6](-/-) and Slamf[1 + 5 + 6](-/-) B6 mice have ~70% reduction of NKT cells compared to wild-type B6 mice. Unexpectedly, the proportion of innate CD8(+) T cells slightly increased in the Slamf[1 + 5 + 6](-/-) , but not in the Slamf[1 + 6](-/-) strain, suggesting that Slamf5 may function as a negative regulator of innate CD8(+) T cell development. Accordingly, Slamf5(-/-) B6 mice showed an exclusive expansion of innate CD8(+) T cells, but not NKT cells. Interestingly, the SAP-independent Slamf7(-/-) strain showed an expansion of both splenic innate CD8(+) T cells and thymic NKT cells. On the other hand, and similar to what was recently shown in Slamf3(-/-) BALB/c mice, the proportions of thymic promyelocytic leukemia zinc finger (PLZF(hi)) NKT cells and innate CD8(+) T cells significantly increased in the SAP-independent Slamf8(-/-) BALB/c strain. In summary, these results show that NKT and innate CD8(+) T cell development can be regulated in a SAP-dependent and -independent fashion by SLAMF receptors, in which Slamf1, Slamf6, and Slamf8 affect development of NKT cells, and that Slamf5, Slamf7, and Slamf8 affect the development of innate CD8(+) T cells.

  11. SAP-independent and -dependent regulation of innate T cell development involving SLAMF receptors

    Directory of Open Access Journals (Sweden)

    Jaime eDe Calisto

    2014-04-01

    Full Text Available Signaling lymphocytic activation molecule (SLAM-associated protein (SAP plays an essential role in the immune system mediating the function of several members of the SLAM family (SLAMF of receptors, whose expression is essential for T, NK, and B cell responses. Additionally, the expression of SAP in double-positive (DP thymocytes is mandatory for natural killer T (NKT cells and, in mouse, for innate CD8+ T cell development. To date, only two members of the SLAMF of receptors, Slamf1 and Slamf6, have been shown to positively cooperate during NKT cell differentiation in mouse. However, it is less clear whether other members of this family may also participate in the development of these innate T cells. Here, we show that Slamf[1+6]-/- and Slamf[1+5+6]-/- B6 mice have an approximately 70% reduction of NKT cells compared to wild-type (WT B6 mice. Unexpectedly, the proportion of innate CD8+ T cells slightly increased in the Slamf[1+5+6]-/-, but not in the Slamf[1+6]-/- strain, suggesting that Slamf5 may function as a negative regulator of innate CD8+ T cell development. Accordingly, Slamf5-/- B6 mice showed an exclusive expansion of innate CD8+ T cells, but not NKT cells. Interestingly, the SAP-independent Slamf7-/- strain showed an expansion of both splenic innate CD8+ T cells and thymic NKT cells. On the other hand, and similar to what was recently shown in Slamf3-/- BALB/c mice, the proportions of thymic PLZFhi NKT cells and innate CD8+ T cells significatively increased in the SAP-independent Slamf8-/- BALB/c strain. In summary, these results show that NKT and innate CD8+ T cell development can be regulated in a SAP-dependent and -independent fashion by SLAMF receptors, in which Slamf1, Slamf6, and Slamf8 affect development of NKT cells, and that Slamf5, Slamf7, and Slamf8 affect the development of innate CD8+ T cells.

  12. Spirulina elicits the activation of innate immunity and increases resistance against Vibrio alginolyticus in shrimp.

    Science.gov (United States)

    Chen, Yu-Yuan; Chen, Jiann-Chu; Tayag, Carina Miranda; Li, Hui-Fang; Putra, Dedi Fazriansyah; Kuo, Yi-Hsuan; Bai, Jia-Chin; Chang, Yu-Hsuan

    2016-08-01

    The effect of Spirulina dried powder (SDP) on the immune response of white shrimp Litopenaeus vannamei was studied in vitro and in vivo. Incubating shrimp haemocytes in 0.5 mg ml(-1) SDP caused the degranulation of haemocytes and a reduction in the percentage of large cells within 30 min. Shrimp haemocytes incubated in 1 mg ml(-1) SDP significantly increased their phenoloxidase (PO) activity, serine proteinase activity, and respiratory burst activity (RB, release of superoxide anion). A recombinant protein of lipopolysaccharide and β-1,3-glucan binding protein (LGBP) of the white shrimp was produced, named rLvLGBP, and examined for its binding with SDP. An ELISA binding assay showed that rLvLGBP binds to SDP with a dissociation constant of 0.0507 μM. In another experiment, shrimp fed diets containing SDP at 0 (control), 30, and 60 g kg(-1) after four weeks were examined for LGBP transcript level and lysozyme activity, as well as phagocytic activity, clearance efficiency, and resistance to Vibrio alginolyticus. These parameters were significantly higher in shrimp receiving diets containing SDP at 60 g kg(-1) or 30 g kg(-1) than in controls. In conclusion, shrimp haemocytes receiving SDP provoked the activation of innate immunity as evidenced by the recognition and binding of LGBP, degranulation of haemocytes, reduction in the percentage of large cells, increases in PO activity, serine proteinase activity, superoxide anion levels, and up-regulated LGBP transcript levels. Shrimp receiving diets containing SDP had increased lysozyme activity and resistance against V. alginolyticus infection. This study showed the mechanism underlying the immunostimulatory action of Spirulina and its immune response in shrimp.

  13. The role of LOX-1 on innate immunity against Aspergillus keratitis in mice

    Science.gov (United States)

    He, Kun; Yue, Li-Hui; Zhao, Gui-Qiu; Li, Cui; Lin, Jing; Jiang, Nan; Wang, Qian; Xu, Qiang; Peng, Xu-Dong; Hu, Li-Ting; Zhang, Jie

    2016-01-01

    AIM To explore the effects of lectin-like ox-LDL receptor (LOX-1) on innate immunity against Aspergillus fumigatus (A. fumigatus ) in mice cornea. METHODS The mRNA levels of LOX-1 were tested in normal and A. fumigatus infected corneas of C57BL/6 and BALB/c mice. The expression of LOX-1, pro-inflammatory cytokines TNF-α, CXCL1 and IL-6, anti-inflammatory cytokines IL-10, and matrix metalloproteinase 9 (MMP9) were tested with treatment with LOX-1 neutralizing antibody or control IgG in A. fumigatus infected corneas of C57BL/6. Macrophages and neutrophils were extracted from susceptible C57BL/6 mice, and pretreated with LOX-1 neutralizing antibody or IgG, then stimulated with A. fumigatus. The mRNA levels of LOX-1, TNF-α, CXCL1, IL-6, IL-10 and MMP9 were evaluated by polymerase chain reaction. RESULTS The expression of LOX-1 was significantly increased in C57BL/6 mice corneas after A. fumigatus infection compared with BABL/c mice. After treatment with LOX-1 neutralizing antibody, the expression of LOX-1, TNF-α, CXCL1, IL-6, MMP9 and IL-10 in C57BL/6 corneas were significantly decreased compared with treatment with control IgG; the expression of LOX-1, CXCL1, IL-6 and IL-10 were significantly decreased in macrophages, while TNF-α and MMP9 expressions had no change; LOX-1, TNF-α, CXCL1, IL-6, MMP9 and IL-10 expressions were significantly decreased in neutrophils. CONCLUSION The expression of LOX-1 can affect the expression of pro-inflammatory and anti-inflammatory cytokines in fungal infected corneas, macrophages and neutrophils of C57BL/6. LOX-1 inhibition rebalances the inflammatory response of fungal keratitis in mice. PMID:27672585

  14. Neutrophil extracellular traps as innate immune reaction against the emerging apicomplexan parasite Besnoitia besnoiti.

    Directory of Open Access Journals (Sweden)

    Tamara Muñoz Caro

    Full Text Available Besnoitia besnoiti infection in cattle is an important emerging protozoan disease in Europe causing economic losses and severe clinical signs, such as generalized dermatitis, orchitis, and vulvitis in affected animals. Neutrophil extracellular trap (NET formation was recently demonstrated as an important effector mechanism of PMN acting against several invading pathogens. In the present study, interactions of bovine PMN with tachyzoites of B. besnoiti were investigated in this respect in vitro. For the demonstration and quantification of NETs, extracellular DNA was stained by Sytox Orange or Pico Green. Fluorescent illustrations as well as scanning electron microscopy analyses (SEM showed PMN-promoted NET formation rapidly being induced upon contact with B. besnoiti tachyzoites. Co-localization of extracellular DNA with histones, neutrophil elastase (NE and myeloperoxidase (MPO in parasite entrapping structures confirmed the classical characteristics of NET. Exposure of PMN to viable, UV attenuated and dead tachyzoites showed a significant induction of NET formation, but even tachyzoite homogenates significantly promoted NETs when compared to negative controls. NETs were abolished by DNase treatment and were reduced after PMN preincubation with NADPH oxidase-, NE- and MPO-inhibitors. Tachyzoite-triggered NET formation led to parasite entrapment as quantitative assays indicated that about one third of tachyzoites were immobilized in NETs. In consequence, tachyzoites were hampered from active invasion of host cells. Thus, transfer of tachyzoites, previously being confronted with PMN, to adequate host cells resulted in significantly reduced infection rates when compared to PMN-free infection controls. To our knowledge, we here report for the first time B. besnoiti-induced NET formation. Our results indicate that PMN-triggered extracellular traps may represent an important effector mechanism of the host early innate immune response against B

  15. Age-dependent variation in innate immune responses to porcine epidemic diarrhea virus infection in suckling versus weaned pigs.

    Science.gov (United States)

    Annamalai, Thavamathi; Saif, Linda J; Lu, Zhongyan; Jung, Kwonil

    2015-12-15

    Porcine epidemic diarrhea (PED) is an enteric coronaviral infection that causes severe morbidity and mortality in suckling pigs, but less severe disease in older pigs. Consequently, it causes significant economic losses to the pork industry. There are limited studies on the innate immune responses to PED virus (PEDV) in pigs. The aims of our study were to investigate differences in innate immune responses to PEDV infection in suckling and weaned pigs and to examine if disease severity coincides with reduced innate immune responses. Weaned 26-day-old pigs (n=20) and 9-day-old nursing pigs (n=20) were assigned to PEDV inoculated or uninoculated control groups. The pigs were observed daily for clinical signs, virus shedding and were euthanized at post-inoculation days (PIDs) 1 and 5 to assay immune responses. Blood samples were collected at PIDs 1, 3 and 5. The natural killer (NK) cell frequencies, NK cell activities (lysis of target K562 tumor cells in vitro), CD3+CD4+ T cell and CD3+CD8+ T cell frequencies were measured in blood and ileum at PIDs 1 and 5. The PEDV infected suckling pigs showed severe diarrhea and vomiting at PID 1, whereas the PEDV infected weaned pigs showed milder clinical signs starting at PID 3. PEDV infected suckling pigs had significantly higher diarrhea scores, earlier fecal PEDV RNA shedding and significantly higher viremia (viral RNA in serum) compared to weaned pigs. There was no mortality in either infected suckling or infected weaned pigs. The control pigs not inoculated with PEDV did not show any clinical signs and no detectable fecal or serum PEDV RNA. Strikingly, PEDV infected suckling pigs had significantly lower NK cell frequencies, undetectable NK cell activity and lower IFNγ producing NK cells in blood and ileum compared to PEDV infected weaned pigs. Pro-inflammatory cytokine profiles of PEDV infected suckling pigs differed from those of PEDV infected weaned pigs and coincided with onset of fecal PEDV RNA shedding and serum PEDV

  16. Human Respiratory Syncytial Virus: Role of Innate Immunity in Clearance and Disease Progression.

    Science.gov (United States)

    Farrag, Mohamed A; Almajhdi, Fahad N

    2016-01-01

    Human respiratory syncytial virus (HRSV) infections have worldwide records. The virus is responsible for bronchiolitis, pneumonia, and asthma in humans of different age groups. Premature infants, young children, and immunocompromised individuals are prone to severe HRSV infection that may lead to death. Based on worldwide estimations, millions of cases were reported in both developed and developing countries. In fact, HRSV symptoms develop mainly as a result of host immune response. Due to inability to establish long lasting adaptive immunity, HRSV infection is recurrent and hence impairs vaccine development. Once HRSV attached to the airway epithelia, interaction with the host innate immune components starts. HRSV interaction with pulmonary innate defenses is crucial in determining the disease outcome. Infection of alveolar epithelial cells triggers a cascade of events that lead to recruitment and activation of leukocyte populations. HRSV clearance is mediated by a number of innate leukocytes, including macrophages, natural killer cells, eosinophils, dendritic cells, and neutrophils. Regulation of these cells is mediated by cytokines, chemokines, and other immune mediators. Although the innate immune system helps to clear HRSV infection, it participates in disease progression such as bronchiolitis and asthma. Resolving the mechanisms by which HRSV induces pathogenesis, different possible interactions between the virus and immune components, and immune cells interplay are essential for developing new effective vaccines. Therefore, the current review focuses on how the pulmonary innate defenses mediate HRSV clearance and to what extent they participate in disease progression. In addition, immune responses associated with HRSV vaccines will be discussed.

  17. [Innate immune mechanisms against recombinant adeno-associated virus vectors--a review].

    Science.gov (United States)

    Diao, Yong; Xu, Ruian

    2012-05-04

    Recombinant adeno-associated virus (rAAV) is one of the most commonly used vectors for gene therapy. Despite the promising safety profile demonstrated in preclinical trials, the clinic efficacy of using rAAV was hampered by undesired response from the immune system. It is important to understand the mechanisms that lead to the induction of immune response against rAAV. Although a crucial role for innate immunity is shaping adaptive immune responses, the innate immune to rAAV was ignored in the past. Till now, at least three human cell types (dendritic cells, macrophages and endothelial cells) were discovered to be involved in sensing rAAV infection. The engagement of TLR9 by rAAV vector genomes triggers the activation of NF-kappaB signaling cascades, leading to the induction of pro-inflammatory cytokine genes. The viral capsid components are detected by TLR2, and this leads to the production of type I interferon mediated by interferon regulatory factors (IRFs) pathway. Self-complementary rAAV vectors induced higher TLR9 dependent innate immune response than single stranded rAAV. This review highlights the recent findings regarding the innate immune responses to rAAV vectors, the signaling pathways involved, and the impacts of innate immunity on the adaptive immune response to rAAV and its transgene expression.

  18. Toll-like receptor 11-initiated innate immune response in male mouse germ cells.

    Science.gov (United States)

    Chen, Qiaoyuan; Zhu, Weiwei; Liu, Zhenghui; Yan, Keqin; Zhao, Shutao; Han, Daishu

    2014-02-01

    Toxoplasma gondii and uropathogenic Escherichia coli (UPEC) may infect the testis and impair testicular function. Mechanisms underlying testicular innate immune response to these two pathogens remain to be clarified. The present study examined the function of TLR11, which can be recognized by T. gondii-derived profilin and UPEC, in initiating innate immune response in male mouse germ cells. TLR11 is predominantly expressed in spermatids. Profilin and UPEC induced the expressions of different inflammatory cytokine profiles in the germ cells. In particular, profilin induced the expressions of macrophage chemotactic protein 1 (MCP1), interleukin 12 (IL12), and interferon gamma (IFNG) through nuclear factor KB (NFKB) activation. UPEC induced the expressions of MCP1, IL12, and IFNG, as well as tumor necrosis factor alpha (TNFA), IL6, and IFNB, through the activation of NFKB, IFN regulatory factor 3, and mitogen-activated protein kinases. Evidence showed that profilin induced the innate response in male germ cells through TLR11 signaling, and UPEC triggered the response through TLR11 and other TLR-signaling pathways. We also provided evidence that local injection of profilin or UPEC induces the innate immune response in the germ cells. Data describe TLR11-mediated innate immune function of male germ cells in response to T. gondii profilin and UPEC stimulations. This system may play a role in testicular defense against T. gondii and UPEC infections in mice.

  19. Group 3 innate lymphoid cells mediate intestinal selection of commensal bacteria-specific CD4+ T cells

    Science.gov (United States)

    Hepworth, Matthew R.; Fung, Thomas C.; Masur, Samuel H.; Kelsen, Judith R.; McConnell, Fiona M.; Dubrot, Juan; Withers, David R.; Hugues, Stephanie; Farrar, Michael A.; Reith, Walter; Eberl, Gerard; Baldassano, Robert N.; Laufer, Terri M.; Elson, Charles O.; Sonnenberg, Gregory F.

    2015-01-01

    Inflammatory CD4+ T cell responses to self or commensal bacteria underlie the pathogenesis of autoimmunity and inflammatory bowel disease (IBD), respectively. While selection of self-specific T cells in the thymus limits responses to tissue antigens, the mechanisms that control selection of commensal bacteria-specific T cells remain poorly understood. Here we demonstrate that group 3 innate lymphoid cell (ILC3)-intrinsic expression of major histocompatibility complex class II (MHCII) is regulated similarly to thymic epithelial cells, and that MHCII+ ILC3s directly induce cell death of activated commensal bacteria-specific T cells. Further, MHCII on human colonic ILC3s was reduced in pediatric IBD patients. Collectively, these results define a selection pathway for commensal bacteria-specific CD4+ T cells in the intestine, and suggest that this process is dysregulated in human IBD. PMID:25908663

  20. Innate and Adaptive Immune Response to Pneumonia Virus of Mice in a Resistant and a Susceptible Mouse Strain

    Directory of Open Access Journals (Sweden)

    Ellen R. T. Watkiss

    2013-01-01

    Full Text Available Respiratory syncytial virus (RSV is the leading cause of infant bronchiolitis. The closely related pneumonia virus of mice (PVM causes a similar immune-mediated disease in mice, which allows an analysis of host factors that lead to severe illness. This project was designed to compare the immune responses to lethal and sublethal doses of PVM strain 15 in Balb/c and C57Bl/6 mice. Balb/c mice responded to PVM infection with an earlier and stronger innate response that failed to control viral replication. Production of inflammatory cyto- and chemokines, as well as infiltration of neutrophils and IFN-γ secreting natural killer cells into the lungs, was more predominant in Balb/c mice. In contrast, C57Bl/6 mice were capable of suppressing both viral replication and innate inflammatory responses. After a sublethal infection, PVM-induced IFN-γ production by splenocytes was stronger early during infection and weaker at late time points in C57Bl/6 mice when compared to Balb/c mice. Furthermore, although the IgG levels were similar and the mucosal IgA titres lower, the virus neutralizing antibody titres were higher in C57Bl/6 mice than in Balb/c mice. Overall, the difference in susceptibility of these two strains appeared to be related not to an inherent T helper bias, but to the capacity of the C57Bl/6 mice to control both viral replication and the immune response elicited by PVM.