WorldWideScience

Sample records for ciap-1 controls innate

  1. Cellular inhibitor of apoptosis protein-1 (cIAP1) can regulate E2F1 transcription factor-mediated control of cyclin transcription.

    Science.gov (United States)

    Cartier, Jessy; Berthelet, Jean; Marivin, Arthur; Gemble, Simon; Edmond, Valérie; Plenchette, Stéphanie; Lagrange, Brice; Hammann, Arlette; Dupoux, Alban; Delva, Laurent; Eymin, Béatrice; Solary, Eric; Dubrez, Laurence

    2011-07-29

    The inhibitor of apoptosis protein cIAP1 (cellular inhibitor of apoptosis protein-1) is a potent regulator of the tumor necrosis factor (TNF) receptor family and NF-κB signaling pathways in the cytoplasm. However, in some primary cells and tumor cell lines, cIAP1 is expressed in the nucleus, and its nuclear function remains poorly understood. Here, we show that the N-terminal part of cIAP1 directly interacts with the DNA binding domain of the E2F1 transcription factor. cIAP1 dramatically increases the transcriptional activity of E2F1 on synthetic and CCNE promoters. This function is not conserved for cIAP2 and XIAP, which are cytoplasmic proteins. Chromatin immunoprecipitation experiments demonstrate that cIAP1 is recruited on E2F binding sites of the CCNE and CCNA promoters in a cell cycle- and differentiation-dependent manner. cIAP1 silencing inhibits E2F1 DNA binding and E2F1-mediated transcriptional activation of the CCNE gene. In cells that express a nuclear cIAP1 such as HeLa, THP1 cells and primary human mammary epithelial cells, down-regulation of cIAP1 inhibits cyclin E and A expression and cell proliferation. We conclude that one of the functions of cIAP1 when localized in the nucleus is to regulate E2F1 transcriptional activity. PMID:21653699

  2. c-IAP1 Binds and Processes PCSK9 Protein: Linking the c-IAP1 in a TNF-α Pathway to PCSK9-Mediated LDLR Degradation Pathway

    Directory of Open Access Journals (Sweden)

    David Hornby

    2012-10-01

    Full Text Available Recent genetic studies have shown that PCSK9, one of the key genes in cholesterol metabolism, plays a critical role by controlling the level of low-density lipoprotein receptor. However, how PCSK9 mediates LDLR degradation is still unknown. By combining a shotgun proteomic method and differential analysis of natural occurring mutations of the PCSK9 gene, we found that an E3 ubiquitin ligase c-IAP1 binds and processes PCSK9 protein. One of the ‘gain-of-function’ mutations, S127R, is defective with respect to binding to c-IAP1, and thus has defective autocatalytic activity. Knockdown of c-IAP1 impairs PCSK9 processing and autocatalytic cleavage. In c-IAP1 null mouse embryonic fibroblasts (MEFs, there is a dramatic decrease in secreted mature PCSK9 protein accompanied by a significant increase in LDLR protein levels compared with matched wild-type MEF cells. c-IAP1 also acts as an E3 ligase for ubiquitination of PCSK9. Ubiquitin containing only lysine-27 mediated PCSK9 ubiquitination by c-IAP1. Given K27-linked polyubiquitination promotes lysosomal localization, the finding indicates the c-IAP1 acts on both secretion of PCSK9 and its lysosomal localization. The novel pathway described here will open new avenues for exploring novel disease treatments.

  3. shRNA Depletion of cIAP1 Sensitizes Human Ovarian Cancer Cells to Anticancer Agent-Induced Apoptosis.

    Science.gov (United States)

    Jin, Hong; Dong, You-Yuan; Zhang, Hong; Cui, Ying; Xie, Kai; Lou, Ge

    2014-01-01

    Emerging evidence suggests a potential role of cellular inhibitor of apoptosis protein 1 (cIAP1) in the development of human ovarian cancer. However, its function in the progression of ovarian cancer has not been clearly determined. Our study aimed to investigate the effect of cIAP1 gene depletion on the chemosensitivity of ovarian cancer cells. We developed a novel short hairpin RNA (shRNA) plasmid specifically targeting cIAP1. Cell proliferation, invasion, and apoptosis of the shRNA-transfected cells were evaluated using MTT, Transwell chamber, and flow cytometric assays, respectively. The concentration of MMP-9 in the supernatant was detected by ELISA. Targeted depletion of cIAP1 by shRNA significantly reduced expression levels of cIAP1 mRNA and protein, leading to inhibition of cell proliferation and invasion capability in SKOV3 cells. At the same time, cIAP1 downregulation decreased the secretion of MMP-9. shRNA depletion of cIAP1 enhanced chemosensitivity of ovarian cancer cells to Taxol and carboplatin-induced apoptosis. cIAP1 is associated with tumor progression in human ovarian cancer. Therefore, cIAP1 might be a potential target for therapeutic anticancer drugs. PMID:26168135

  4. Effects of cIAP-1, cIAP-2 and XIAP triple knockdown on prostate cancer cell susceptibility to apoptosis, cell survival and proliferation.

    LENUS (Irish Health Repository)

    Gill, Catherine

    2009-01-01

    BACKGROUND: Manipulating apoptotic resistance represents an important strategy for the treatment of hormone refractory prostate cancer. We hypothesised that the Inhibitor of Apoptosis (IAP) Proteins may be mediating this resistance and knockdown of cIAP-1, cIAP-2 and XIAP would increase sensitivity to apoptosis. METHODS: cIAP-1, cIAP-2 and XIAP where knocked down either individually or in combination using siRNA in androgen independent prostate cancer PC-3 cells as confirmed by real-time PCR and western blotting. Cells were then treated with TRAIL, Etoposide, or Tunicamycin, and apoptosis assessed by PI DNA staining. Apoptosis was confirmed with Annexin V labelling and measurement of PARP cleavage, and was inhibited using the pan-caspase inhibitor, zVAD.fmk. Clonogenic assays and assessment of ID-1 expression by western blotting were used to measure recovery and proliferation. RESULTS: PC-3 are resistant to TRAIL induced apoptosis and have elevated expression of cIAP-1, cIAP-2 and XIAP. Combined knockdown sensitised PC-3 to TRAIL induced apoptosis, but not to Etoposide or Tunicmycin, with corresponding increases in caspase activity and PARP cleavage which was inhibited by ZVAD.fmk. Triple knock down decreased proliferation which was confirmed by decreased ID-1 expression. CONCLUSION: Simultaneous knock down of the IAPs not only sensitised the PC-3 to TRAIL but also inhibited their proliferation rates and clonogenic survival. The inability to alter sensitivity to other triggers of apoptosis suggests that this effect is specific for death receptor pathways and knock down might facilitate immune-surveillance mechanisms to counter cancer progression and, in combination with therapeutic approaches using TRAIL, could represent an important treatment strategy.

  5. Effects of cIAP-1, cIAP-2 and XIAP triple knockdown on prostate cancer cell susceptibility to apoptosis, cell survival and proliferation

    Directory of Open Access Journals (Sweden)

    Dowling Catherine

    2009-06-01

    Full Text Available Abstract Background Manipulating apoptotic resistance represents an important strategy for the treatment of hormone refractory prostate cancer. We hypothesised that the Inhibitor of Apoptosis (IAP Proteins may be mediating this resistance and knockdown of cIAP-1, cIAP-2 and XIAP would increase sensitivity to apoptosis. Methods cIAP-1, cIAP-2 and XIAP where knocked down either individually or in combination using siRNA in androgen independent prostate cancer PC-3 cells as confirmed by real-time PCR and western blotting. Cells were then treated with TRAIL, Etoposide, or Tunicamycin, and apoptosis assessed by PI DNA staining. Apoptosis was confirmed with Annexin V labelling and measurement of PARP cleavage, and was inhibited using the pan-caspase inhibitor, zVAD.fmk. Clonogenic assays and assessment of ID-1 expression by western blotting were used to measure recovery and proliferation. Results PC-3 are resistant to TRAIL induced apoptosis and have elevated expression of cIAP-1, cIAP-2 and XIAP. Combined knockdown sensitised PC-3 to TRAIL induced apoptosis, but not to Etoposide or Tunicmycin, with corresponding increases in caspase activity and PARP cleavage which was inhibited by ZVAD.fmk. Triple knock down decreased proliferation which was confirmed by decreased ID-1 expression. Conclusion Simultaneous knock down of the IAPs not only sensitised the PC-3 to TRAIL but also inhibited their proliferation rates and clonogenic survival. The inability to alter sensitivity to other triggers of apoptosis suggests that this effect is specific for death receptor pathways and knock down might facilitate immune-surveillance mechanisms to counter cancer progression and, in combination with therapeutic approaches using TRAIL, could represent an important treatment strategy.

  6. Ceramide targets xIAP and cIAP1 to sensitize metastatic colon and breast cancer cells to apoptosis induction to suppress tumor progression

    International Nuclear Information System (INIS)

    Ceramide is a bioeffector that mediates various cellular processes, including apoptosis. However, the mechanism underlying ceramide function in apoptosis is apparently cell type-dependent and is not well-understood. We aimed at identifying molecular targets of ceramide in metastatic human colon and breast cancer cells, and determining the efficacy of ceramide analog in suppression of colon and breast cancer metastasis. The activity of and mechanism underlying ceramide as a cytotoxic agent, and as a sensitizer for Fas-mediated apoptosis was analyzed in human cell lines established from primary or metastatic colon and breast cancers. The efficacy of ceramide analog LCL85 in suppression of metastasis was examined in preclinical mouse tumor models. Exposure of human colon carcinoma cells to ceramide analog LCL85 results in apoptosis in a dose-dependent manner. Interestingly, a sublethal dose of LCL85 increased C16 ceramide content and overcame tumor cell resistance to Fas-mediated apoptosis. Subsequently, treatment of tumor cells with exogenous C16 ceramide resulted in increased tumor cell sensitivity to Fas-mediated apoptosis. LCL85 resembles Smac mimetic BV6 in sensitization of colon carcinoma cells to Fas-mediated apoptosis by inducing proteasomal degradation of cIAP1 and xIAP proteins. LCL85 also decreased xIAP1 and cIAP1 protein levels and sensitized metastatic human breast cancer cells to Fas-mediated apoptosis. Silencing xIAP and cIAP1 with specific siRNAs significantly increased the metastatic human colon carcinoma cell sensitivity to Fas-mediated apoptosis, suggesting that IAP proteins mediate apoptosis resistance in metastatic human colon carcinoma cells and ceramide induces IAP protein degradation to sensitize the tumor cells to apoptosis induction. Consistent with its apoptosis sensitization activity, subtoxic doses of LCL85 suppressed colon carcinoma cell metastatic potential in an experimental lung metastasis mouse model, as well as breast cancer growth and spontaneous lung metastasis in an orthotopic breast cancer mouse model. We have identified xIAP and cIAP1 as molecular targets of ceramide and determined that ceramide analog LCL85 is an effective sensitizer in overcoming resistance of human cell lines established from metastatic colon and breast cancers to apoptosis induction to suppress metastasis in vivo

  7. The transcription factor GATA3 controls cell fate and maintenance of type 2 innate lymphoid cells

    OpenAIRE

    Hoyler, Thomas; Klose, Christoph S.N.; Souabni, Abdallah; Turqueti-Neves, Adriana; Pfeifer, Dietmar; Rawlins, Emma L.; Voehringer, David; Busslinger, Meinrad; Diefenbach, Andreas

    2012-01-01

    Innate lymphoid cells (ILCs) reside at mucosal surfaces and control immunity to intestinal infections. Type 2 innate lymphoid cells (ILC2) produce cytokines such as IL-5 and IL-13 and are required for immune defense against helminth infections and are involved in the pathogenesis of airway hyperreactivity. Here, we have investigated the role of the transcription factor GATA3 for ILC2 differentiation and maintenance. We showed that ILC2 and their lineage-specified bone marrow precursor (ILC2P)...

  8. Glial-cell-derived neuroregulators control type 3 innate lymphoid cells and gut defence.

    Science.gov (United States)

    Ibiza, Sales; García-Cassani, Bethania; Ribeiro, Hélder; Carvalho, Tânia; Almeida, Luís; Marques, Rute; Misic, Ana M; Bartow-McKenney, Casey; Larson, Denise M; Pavan, William J; Eberl, Gérard; Grice, Elizabeth A; Veiga-Fernandes, Henrique

    2016-07-21

    Group 3 innate lymphoid cells (ILC3) are major regulators of inflammation and infection at mucosal barriers. ILC3 development is thought to be programmed, but how ILC3 perceive, integrate and respond to local environmental signals remains unclear. Here we show that ILC3 in mice sense their environment and control gut defence as part of a glial–ILC3–epithelial cell unit orchestrated by neurotrophic factors. We found that enteric ILC3 express the neuroregulatory receptor RET. ILC3-autonomous Ret ablation led to decreased innate interleukin-22 (IL-22), impaired epithelial reactivity, dysbiosis and increased susceptibility to bowel inflammation and infection. Neurotrophic factors directly controlled innate Il22 downstream of the p38 MAPK/ERK-AKT cascade and STAT3 activation. Notably, ILC3 were adjacent to neurotrophic-factor-expressing glial cells that exhibited stellate-shaped projections into ILC3 aggregates. Glial cells sensed microenvironmental cues in a MYD88-dependent manner to control neurotrophic factors and innate IL-22. Accordingly, glial-intrinsic Myd88 deletion led to impaired production of ILC3-derived IL-22 and a pronounced propensity towards gut inflammation and infection. Our work sheds light on a novel multi-tissue defence unit, revealing that glial cells are central hubs of neuron and innate immune regulation by neurotrophic factor signals. PMID:27409807

  9. Gene Expression Control by Glucocorticoid Receptors during Innate Immune Responses

    Directory of Open Access Journals (Sweden)

    André M. Xavier

    2016-04-01

    Full Text Available Glucocorticoids (GCs are potent anti-inflammatory compounds that have been extensively used in clinical practice for several decades. GCs effects on inflammation are generally mediated through GC receptors (GRs. Signal transduction through these nuclear receptors leads to dramatic changes in gene expression programs in different cell types, typically due to GR binding to DNA or to transcription modulators. During the last decade the view of GCs as exclusive anti-inflammatory molecules has been challenged. GR negative interference in pro-inflammatory gene expression was a landmark in terms of molecular mechanisms that suppress immune activity. In fact, GR can induce varied inhibitory molecules, including a negative regulator of Toll-like receptors (TLRs pathway, or subject key transcription factors, such as NF-B and AP-1, to a repressor mechanism. In contrast, the expression of some acute-phase proteins (APPs and other players of innate immunity generally requires GR signaling. Consequently, GRs must operate context-dependent inhibitory, permissive or stimulatory effects on host defense signaling triggered by pathogens or tissue damage. This review aims to disclose how contradictory or comparable effects on inflammatory gene expression can depend on pharmacological approach (including selective glucocorticoid receptor modulators; SEGRMs, cell culture, animal treatment or transgenic strategies used as models. Although the current view of GR-signaling integrated many advances in the field, some answers to important questions remain elusive.

  10. Control of the innate immune response by the mevalonate pathway.

    Science.gov (United States)

    Akula, Murali K; Shi, Man; Jiang, Zhaozhao; Foster, Celia E; Miao, David; Li, Annie S; Zhang, Xiaoman; Gavin, Ruth M; Forde, Sorcha D; Germain, Gail; Carpenter, Susan; Rosadini, Charles V; Gritsman, Kira; Chae, Jae Jin; Hampton, Randolph; Silverman, Neal; Gravallese, Ellen M; Kagan, Jonathan C; Fitzgerald, Katherine A; Kastner, Daniel L; Golenbock, Douglas T; Bergo, Martin O; Wang, Donghai

    2016-08-01

    Deficiency in mevalonate kinase (MVK) causes systemic inflammation. However, the molecular mechanisms linking the mevalonate pathway to inflammation remain obscure. Geranylgeranyl pyrophosphate, a non-sterol intermediate of the mevalonate pathway, is the substrate for protein geranylgeranylation, a protein post-translational modification that is catalyzed by protein geranylgeranyl transferase I (GGTase I). Pyrin is an innate immune sensor that forms an active inflammasome in response to bacterial toxins. Mutations in MEFV (encoding human PYRIN) result in autoinflammatory familial Mediterranean fever syndrome. We found that protein geranylgeranylation enabled Toll-like receptor (TLR)-induced activation of phosphatidylinositol-3-OH kinase (PI(3)K) by promoting the interaction between the small GTPase Kras and the PI(3)K catalytic subunit p110δ. Macrophages that were deficient in GGTase I or p110δ exhibited constitutive release of interleukin 1β that was dependent on MEFV but independent of the NLRP3, AIM2 and NLRC4 inflammasomes. In the absence of protein geranylgeranylation, compromised PI(3)K activity allows an unchecked TLR-induced inflammatory responses and constitutive activation of the Pyrin inflammasome. PMID:27270400

  11. Gene Expression Control by Glucocorticoid Receptors during Innate Immune Responses

    Science.gov (United States)

    Xavier, Andre Machado; Anunciato, Aparecida Kataryna Olimpio; Rosenstock, Tatiana Rosado; Glezer, Isaias

    2016-01-01

    Glucocorticoids (GCs) are potent anti-inflammatory compounds that have been extensively used in clinical practice for several decades. GC’s effects on inflammation are generally mediated through GC receptors (GRs). Signal transduction through these nuclear receptors leads to dramatic changes in gene expression programs in different cell types, typically due to GR binding to DNA or to transcription modulators. During the last decade, the view of GCs as exclusive anti-inflammatory molecules has been challenged. GR negative interference in pro-inflammatory gene expression was a landmark in terms of molecular mechanisms that suppress immune activity. In fact, GR can induce varied inhibitory molecules, including a negative regulator of Toll-like receptors pathway, or subject key transcription factors, such as NF-κB and AP-1, to a repressor mechanism. In contrast, the expression of some acute-phase proteins and other players of innate immunity generally requires GR signaling. Consequently, GRs must operate context-dependent inhibitory, permissive, or stimulatory effects on host defense signaling triggered by pathogens or tissue damage. This review aims to disclose how contradictory or comparable effects on inflammatory gene expression can depend on pharmacological approach (including selective GC receptor modulators; SEGRMs), cell culture, animal treatment, or transgenic strategies used as models. Although the current view of GR-signaling integrated many advances in the field, some answers to important questions remain elusive. PMID:27148162

  12. Inhibitor of apoptosis (IAP) proteins in regulation of inflammation and innate immunity

    DEFF Research Database (Denmark)

    Damgaard, Rune B; Gyrd-Hansen, Mads

    2011-01-01

    as important regulators of innate immune signaling downstream of pattern recognition receptors (PRRs) such as Toll-like receptor 4 (TLR4), the nucleotide-binding oligomerization domain 1 (NOD1) and NOD2 receptors, and the retinoic acid-inducible gene (RIG)-I receptor. Recent evidence suggests that c......IAP1, cIAP2, and XIAP facilitate ubiquitin-dependent signaling activated by these PRRs and mediate activation of nuclear factor-kappa B (NF-kappaB) transcription factors as well as the MAP kinases p38 and JNK. Here, we review the current understanding of IAP-mediated PRR signaling and how IAP proteins...

  13. First line of defense: Innate cell-mediated control of pulmonary Aspergillosis

    Directory of Open Access Journals (Sweden)

    Vanessa eEspinosa

    2016-03-01

    Full Text Available Mycotic infections and their effect on the human condition have been widely overlooked and poorly surveilled by many health organizations even though mortality rates have increased in recent years. The increased usage of immunosuppressive and myeloablative therapies for the treatment of malignant as well as non-malignant diseases has contributed significantly to the increased incidence of fungal infections. Invasive fungal infections have been found to be responsible for at least 1.5 million deaths worldwide. About 90% of these deaths can be attributed to Cryptococcus, Candida, Aspergillus, and Pneumocystis. A better understanding of how the host immune system contains fungal infection is likely to facilitate the development of much needed novel antifungal therapies. Innate cells are responsible for the rapid recognition and containment of fungal infections and have been found to play essential roles in defense against multiple fungal pathogens. In this review we summarize our current understanding of host-fungi interactions with a focus on mechanisms of innate cell-mediated recognition and control of pulmonary aspergillosis.

  14. Dendritic Cells Coordinate Innate Immunity via MyD88 Signaling to Control Listeria monocytogenes Infection

    Directory of Open Access Journals (Sweden)

    Catharina Arnold-Schrauf

    2014-02-01

    Full Text Available Listeria monocytogenes (LM, a facultative intracellular Gram-positive pathogen, can cause life-threatening infections in humans. In mice, the signaling cascade downstream of the myeloid differentiation factor 88 (MyD88 is essential for proper innate immune activation against LM, as MyD88-deficient mice succumb early to infection. Here, we show that MyD88 signaling in dendritic cells (DCs is sufficient to mediate the protective innate response, including the production of proinflammatory cytokines, neutrophil infiltration, bacterial clearance, and full protection from lethal infection. We also demonstrate that MyD88 signaling by DCs controls the infection rates of CD8α+ cDCs and thus limits the spread of LM to the T cell areas. Furthermore, in mice expressing MyD88 in DCs, inflammatory monocytes, which are required for bacterial clearance, are activated independently of intrinsic MyD88 signaling. In conclusion, CD11c+ conventional DCs critically integrate pathogen-derived signals via MyD88 signaling during early infection with LM in vivo.

  15. Toll Receptor-Mediated Hippo Signaling Controls Innate Immunity in Drosophila.

    Science.gov (United States)

    Liu, Bo; Zheng, Yonggang; Yin, Feng; Yu, Jianzhong; Silverman, Neal; Pan, Duojia

    2016-01-28

    The Hippo signaling pathway functions through Yorkie to control tissue growth and homeostasis. How this pathway regulates non-developmental processes remains largely unexplored. Here, we report an essential role for Hippo signaling in innate immunity whereby Yorkie directly regulates the transcription of the Drosophila IκB homolog, Cactus, in Toll receptor-mediated antimicrobial response. Loss of Hippo pathway tumor suppressors or activation of Yorkie in fat bodies, the Drosophila immune organ, leads to elevated cactus mRNA levels, decreased expression of antimicrobial peptides, and vulnerability to infection by Gram-positive bacteria. Furthermore, Gram-positive bacteria acutely activate Hippo-Yorkie signaling in fat bodies via the Toll-Myd88-Pelle cascade through Pelle-mediated phosphorylation and degradation of the Cka subunit of the Hippo-inhibitory STRIPAK PP2A complex. Our studies elucidate a Toll-mediated Hippo signaling pathway in antimicrobial response, highlight the importance of regulating IκB/Cactus transcription in innate immunity, and identify Gram-positive bacteria as extracellular stimuli of Hippo signaling under physiological settings. PMID:26824654

  16. Arginase 1 is an innate lymphoid-cell-intrinsic metabolic checkpoint controlling type 2 inflammation.

    Science.gov (United States)

    Monticelli, Laurel A; Buck, Michael D; Flamar, Anne-Laure; Saenz, Steven A; Tait Wojno, Elia D; Yudanin, Naomi A; Osborne, Lisa C; Hepworth, Matthew R; Tran, Sara V; Rodewald, Hans-Reimer; Shah, Hardik; Cross, Justin R; Diamond, Joshua M; Cantu, Edward; Christie, Jason D; Pearce, Erika L; Artis, David

    2016-06-01

    Group 2 innate lymphoid cells (ILC2s) regulate tissue inflammation and repair after activation by cell-extrinsic factors such as host-derived cytokines. However, the cell-intrinsic metabolic pathways that control ILC2 function are undefined. Here we demonstrate that expression of the enzyme arginase-1 (Arg1) during acute or chronic lung inflammation is a conserved trait of mouse and human ILC2s. Deletion of mouse ILC-intrinsic Arg1 abrogated type 2 lung inflammation by restraining ILC2 proliferation and dampening cytokine production. Mechanistically, inhibition of Arg1 enzymatic activity disrupted multiple components of ILC2 metabolic programming by altering arginine catabolism, impairing polyamine biosynthesis and reducing aerobic glycolysis. These data identify Arg1 as a key regulator of ILC2 bioenergetics that controls proliferative capacity and proinflammatory functions promoting type 2 inflammation. PMID:27043409

  17. Maternal retinoids control type 3 innate lymphoid cells and set the offspring immunity

    Science.gov (United States)

    van de Pavert, Serge A.; Ferreira, Manuela; Domingues, Rita G.; Ribeiro, Hélder; Molenaar, Rosalie; Moreira-Santos, Lara; Almeida, Francisca F.; Ibiza, Sales; Barbosa, Inês; Goverse, Gera; Labão-Almeida, Carlos; Godinho-Silva, Cristina; Konijn, Tanja; Schooneman, Dennis; O'Toole, Tom; Mizee, Mark R.; Habani, Yasmin; Haak, Esther; Santori, Fabio R.; Littman, Dan R.; Schulte-Merker, Stefan; Dzierzak, Elaine; Simas, J. Pedro; Mebius, Reina E.; Veiga-Fernandes, Henrique

    2014-04-01

    The impact of nutritional status during fetal life on the overall health of adults has been recognized; however, dietary effects on the developing immune system are largely unknown. Development of secondary lymphoid organs occurs during embryogenesis and is considered to be developmentally programmed. Secondary lymphoid organ formation depends on a subset of type 3 innate lymphoid cells (ILC3) named lymphoid tissue inducer (LTi) cells. Here we show that mouse fetal ILC3s are controlled by cell-autonomous retinoic acid (RA) signalling in utero, which pre-sets the immune fitness in adulthood. We found that embryonic lymphoid organs contain ILC progenitors that differentiate locally into mature LTi cells. Local LTi cell differentiation was controlled by maternal retinoid intake and fetal RA signalling acting in a haematopoietic cell-autonomous manner. RA controlled LTi cell maturation upstream of the transcription factor RORγt. Accordingly, enforced expression of Rorgt restored maturation of LTi cells with impaired RA signalling, whereas RA receptors directly regulated the Rorgt locus. Finally, we established that maternal levels of dietary retinoids control the size of secondary lymphoid organs and the efficiency of immune responses in the adult offspring. Our results reveal a molecular link between maternal nutrients and the formation of immune structures required for resistance to infection in the offspring.

  18. Neutrophil and Alveolar Macrophage-Mediated Innate Immune Control of Legionella pneumophila Lung Infection via TNF and ROS.

    Science.gov (United States)

    Ziltener, Pascal; Reinheckel, Thomas; Oxenius, Annette

    2016-04-01

    Legionella pneumophila is a facultative intracellular bacterium that lives in aquatic environments where it parasitizes amoeba. However, upon inhalation of contaminated aerosols it can infect and replicate in human alveolar macrophages, which can result in Legionnaires' disease, a severe form of pneumonia. Upon experimental airway infection of mice, L. pneumophila is rapidly controlled by innate immune mechanisms. Here we identified, on a cell-type specific level, the key innate effector functions responsible for rapid control of infection. In addition to the well-characterized NLRC4-NAIP5 flagellin recognition pathway, tumor necrosis factor (TNF) and reactive oxygen species (ROS) are also essential for effective innate immune control of L. pneumophila. While ROS are essential for the bactericidal activity of neutrophils, alveolar macrophages (AM) rely on neutrophil and monocyte-derived TNF signaling via TNFR1 to restrict bacterial replication. This TNF-mediated antibacterial mechanism depends on the acidification of lysosomes and their fusion with L. pneumophila containing vacuoles (LCVs), as well as caspases with a minor contribution from cysteine-type cathepsins or calpains, and is independent of NLRC4, caspase-1, caspase-11 and NOX2. This study highlights the differential utilization of innate effector pathways to curtail intracellular bacterial replication in specific host cells upon L. pneumophila airway infection. PMID:27105352

  19. Innate positive chemotaxis to pollen from crops and banker plants in predaceous biological control agents: towards new field lures?

    OpenAIRE

    Shu Li; Xiaoling Tan; Nicolas Desneux; Giovanni Benelli; Jing Zhao; Xinhai Li; Fan Zhang; Xiwu Gao; Su Wang

    2015-01-01

    Predator-prey interactions form the core of biological control of arthropod pests. Which tools can be used to monitor and collect carnivorous arthropods in natural habitats and targeted crops? Eco-friendly and effective field lures are urgently needed. In this research, we carried out olfactometer experiments assess innate positive chemotaxis to pollen of seven crop and banker plant by two important predatory biological control agents: the coccinellid Propylea japonica (Thunberg) and the anth...

  20. Specific ER quality control components required for biogenesis of the plant innate immune receptor EFR

    DEFF Research Database (Denmark)

    Li, Jing; Zhao-Hui, Chu; Batoux, Martine; Nekrasov, Vladimir; Roux, Milena; Chinchilla, Delphine; Zipfel, Cyril; Jones, Jonathan D G

    2009-01-01

    Plant innate immunity depends in part on recognition of pathogen-associated molecular patterns (PAMPs), such as bacterial flagellin, EF-Tu, and fungal chitin. Recognition is mediated by pattern-recognition receptors (PRRs) and results in PAMP-triggered immunity. EF-Tu and flagellin, and the derived....... ERD2B seems therefore to be a specific HDEL receptor for CRT3 that allows its retro-translocation from the Golgi to the ER. These data reveal a previously unsuspected role of a specific subset of ER-QC machinery components for PRR accumulation in plant innate immunity....

  1. Innate allorecognition

    OpenAIRE

    Oberbarnscheidt, Martin H.; Lakkis, Fadi G.

    2014-01-01

    Vertebrates mount strong adaptive immune responses to transplanted organs (allografts), but the mechanisms by which the innate immune system initiates this response are not completely understood. In anti-microbial immunity, non-self molecules associated with pathogens but not present in the host induce the maturation of innate antigen-presenting cells (APCs) by binding to germ-line-encoded receptors. Mature APCs then initiate the adaptive immune response by presenting microbial antigen and pr...

  2. Mosquito RNAi is the major innate immune pathway controlling arbovirus infection and transmission

    OpenAIRE

    Carol D. Blair

    2011-01-01

    Mosquito-borne arboviruses cause serious diseases in humans that are increasingly becoming public health problems, yet arbovirus infections cause minimal pathology in the mosquito vector, allowing persistent infections and lifelong virus transmission. The principal mosquito innate immune response to virus infections, RNAi, differs substantially from the human immune response and this difference could be the basis for the disparate outcomes of infection in the two hosts. Understanding the mosq...

  3. Impact of innate immunity in a subset of children with autism spectrum disorders: a case control study

    Directory of Open Access Journals (Sweden)

    Cushing-Ruby Agnes

    2008-11-01

    Full Text Available Abstract Background Among patients with autism spectrum disorders (ASD evaluated in our clinic, there appears to be a subset that can be clinically distinguished from other ASD children because of frequent infections (usually viral accompanied by worsening behavioural symptoms and/or loss/decrease in acquired skills. This study assessed whether these clinical features of this ASD subset are associated with atopy, asthma, food allergy (FA, primary immunodeficiency (PID, or innate immune responses important in viral infections. Methods This study included the ASD children described above (ASD test, N = 26 and the following controls: ASD controls (N = 107, non-ASD controls with FA (N = 24, non-ASD controls with chronic rhinosinusitis/recurrent otitis media (CRS/ROM; N = 38, and normal controls (N = 43. We assessed prevalence of atopy, asthma, FA, CRS/ROM, and PID. Innate immune responses were assessed by measuring production of proinflammatory and counter-regulatory cytokines by peripheral blood mononuclear cells (PBMCs in response to agonists of Toll-like receptors (TLRs, with or without pre-treatment of lipopolysaccharide (LPS, a TLR4 agonist. Results Non-IgE mediated FA was equally prevalent in both ASD test and ASD control groups, occurring at higher frequency than in the non-ASD controls. Allergic rhinitis, atopic/non-atopic asthma, and atopic dermatitis were equally prevalent among the study groups except for the CRS/ROM group in which non-atopic asthma was more prevalent (52.6%. CRS/ROM and specific polysaccharide antibody deficiency (SPAD were more prevalent in the ASD test group than in the ASD control, FA, and normal control groups: 23.1% vs. Conclusion Clinical features of the ASD test group were not associated with atopy, asthma, FA, or PID in our study but may be associated with altered TLR responses mediating neuro-immune interactions.

  4. OTULIN Restricts Met1-Linked Ubiquitination to Control Innate Immune Signaling

    DEFF Research Database (Denmark)

    Fiil, Berthe Katrine; Damgaard, Rune Busk; Wagner, Sebastian Alexander;

    2013-01-01

    Conjugation of Met1-linked polyubiquitin (Met1-Ub) by the linear ubiquitin chain assembly complex (LUBAC) is an important regulatory modification in innate immune signaling. So far, only few Met1-Ub substrates have been described, and the regulatory mechanisms have remained elusive. We recently...... identified that the ovarian tumor (OTU) family deubiquitinase OTULIN specifically disassembles Met1-Ub. Here, we report that OTULIN is critical for limiting Met1-Ub accumulation after nucleotide-oligomerization domain-containing protein 2 (NOD2) stimulation, and that OTULIN depletion augments signaling...

  5. Control of Dichotomic Innate and Adaptive Immune Responses by Artery Tertiary Lymphoid Organs in Atherosclerosis

    Directory of Open Access Journals (Sweden)

    Falk eWeih

    2012-07-01

    Full Text Available Tertiary lymphoid organs (TLOs emerge in tissues in response to nonresolving inflammation such as chronic infection, graft rejection, and autoimmune disease. We identified artery TLOs (ATLOs in the adventitia adjacent to atherosclerotic plaques of aged hyperlipidemic ApoE-/- mice. ATLOs are structured into T cell areas harboring conventional dendritic cells (cDCs and monocyte-derived DCs (mDCs; B cell follicles containing follicular dendritic cells (FDCs within activated germinal centers; and peripheral niches of plasma cells. ATLOs also show extensive neoangiogenesis, aberrant lymphangiogenesis, and high endothelial venule (HEV neogenesis. Newly formed conduit networks connect the external lamina of the artery with HEVs in T cell areas. ATLOs recruit and generate lymphocyte subsets with opposing activities including activated CD4+ and CD8+ effector T cells, natural and induced CD4+ T regulatory cells (nTregs; iTregs as well as B-1 and B-2 cells at different stages of differentiation. These data indicate that ATLOs organize dichotomic innate and adaptive immune responses in atherosclerosis. In this review we discuss the novel concept that dichotomic immune responses towards atherosclerosis-specific antigens are carried out by ATLOs in the adventitia of the arterial wall and that malfunction of the tolerogenic arm of ATLO immunity triggers transition from silent autoimmune reactivity to clinically overt disease.

  6. Vitamin A Controls the Presence of RORγ+ Innate Lymphoid Cells and Lymphoid Tissue in the Small Intestine.

    Science.gov (United States)

    Goverse, Gera; Labao-Almeida, Carlos; Ferreira, Manuela; Molenaar, Rosalie; Wahlen, Sigrid; Konijn, Tanja; Koning, Jasper; Veiga-Fernandes, Henrique; Mebius, Reina E

    2016-06-15

    Changes in diet and microbiota have determining effects on the function of the mucosal immune system. For example, the active metabolite of vitamin A, retinoic acid (RA), has been described to maintain homeostasis in the intestine by its influence on both lymphocytes and myeloid cells. Additionally, innate lymphoid cells (ILCs), important producers of cytokines necessary for intestinal homeostasis, are also influenced by vitamin A in the small intestines. In this study, we show a reduction of both NCR(-) and NCR(+) ILC3 subsets in the small intestine of mice raised on a vitamin A-deficient diet. Additionally, the percentages of IL-22-producing ILCs were reduced in the absence of dietary vitamin A. Conversely, mice receiving additional RA had a specific increase in the NCR(-) ILC3 subset, which contains the lymphoid tissue inducer cells. The dependence of lymphoid tissue inducer cells on vitamin A was furthermore illustrated by impaired development of enteric lymphoid tissues in vitamin A-deficient mice. These effects were a direct consequence of ILC-intrinsic RA signaling, because retinoic acid-related orphan receptor γt-Cre × RARα-DN mice had reduced numbers of NCR(-) and NCR(+) ILC3 subsets within the small intestine. However, lymphoid tissue inducer cells were not affected in these mice nor was the formation of enteric lymphoid tissue, demonstrating that the onset of RA signaling might take place before retinoic acid-related orphan receptor γt is expressed on lymphoid tissue inducer cells. Taken together, our data show an important role for vitamin A in controlling innate lymphoid cells and, consequently, postnatal formed lymphoid tissues within the small intestines. PMID:27183576

  7. Innate positive chemotaxis to pollen from crops and banker plants in predaceous biological control agents: towards new field lures?

    Science.gov (United States)

    Li, Shu; Tan, Xiaoling; Desneux, Nicolas; Benelli, Giovanni; Zhao, Jing; Li, Xinhai; Zhang, Fan; Gao, Xiwu; Wang, Su

    2015-01-01

    Predator-prey interactions form the core of biological control of arthropod pests. Which tools can be used to monitor and collect carnivorous arthropods in natural habitats and targeted crops? Eco-friendly and effective field lures are urgently needed. In this research, we carried out olfactometer experiments assess innate positive chemotaxis to pollen of seven crop and banker plant by two important predatory biological control agents: the coccinellid Propylea japonica (Thunberg) and the anthocorid Orius sauteri (Poppius). We compared the attractiveness of pollens from crops and banker plants to that of common prey homogenates (aphids and thrips, respectively). Attractiveness of the tested odor sources was checked via field trapping experiments conducted in organic apple orchards and by release-recapture assays in organic greenhouse tomato crops. Maize and canola pollen were attractive to both P. japonica and O. sauteri, in laboratory and field assays. P. japonica was highly attracted by balm mint pollen, whereas O. sauteri was attracted by alfalfa pollen. Our results encourage the use of pollen from crops and banker plants as low-cost and eco-friendly attractors to enhance the monitoring and attraction of arthropod predators in biological control programs. PMID:26235136

  8. Controllable versus uncontrollable stressors bi-directionally modulate conditioned but not innate fear.

    Science.gov (United States)

    Baratta, M V; Christianson, J P; Gomez, D M; Zarza, C M; Amat, J; Masini, C V; Watkins, L R; Maier, S F

    2007-06-01

    Fear conditioning and fear extinction play key roles in the development and treatment of anxiety-related disorders, yet there is little information concerning experiential variables that modulate these processes. Here we examined the impact of exposure to a stressor in a different environment on subsequent fear conditioning and extinction, and whether the degree of behavioral control that the subject has over the stressor is of importance. Rats received a session of either escapable (controllable) tail shock (ES), yoked inescapable (uncontrollable) tail shock (IS), or control treatment (home cage, HC) 7 days before fear conditioning in which a tone and foot shock were paired. Conditioning was measured 24 h later. In a second experiment rats received ES, IS or HC 24 h after contextual fear conditioning. Extinction then occurred every day beginning 7 days later until a criterion was reached. Spontaneous recovery of fear was assessed 14 days after extinction. IS potentiated fear conditioning when given before fear conditioning, and potentiated fear responding during extinction when given after conditioning. Importantly, ES potently interfered with later fear conditioning, decreased fear responding during fear extinction, and prevented spontaneous recovery of fear. Additionally, we examined if the activation of the ventral medial prefrontal cortex (mPFCv) by ES is critical for the protective effects of ES on later fear conditioning. Inactivation of the mPFCv with muscimol at the time of the initial experience with control prevented ES-induced reductions in later contextual and auditory fear conditioning. Finally, we explored if the protective effects of ES extended to an unconditioned fear stimulus, ferret odor. Unlike conditioned fear, prior ES increased the fear response to ferret odor to the same degree as did IS. PMID:17478046

  9. Altered Innate Immune Responses in Neutrophils from Patients with Well- and Suboptimally Controlled Asthma

    Directory of Open Access Journals (Sweden)

    Francesca S. M. Tang

    2015-01-01

    Full Text Available Background. Respiratory infections are a major cause of asthma exacerbations where neutrophilic inflammation dominates and is associated with steroid refractory asthma. Structural airway cells in asthma differ from nonasthmatics; however it is unknown if neutrophils differ. We investigated neutrophil immune responses in patients who have good (AGood and suboptimal (ASubopt asthma symptom control. Methods. Peripheral blood neutrophils from AGood (ACQ 0.75, n=7, and healthy controls (HC (n=9 were stimulated with bacterial (LPS (1 μg/mL, fMLF (100 nM, and viral (imiquimod (3 μg/mL, R848 (1.5 μg/mL, and poly I:C (10 μg/mL surrogates or live rhinovirus (RV 16 (MOI1. Cell-free supernatant was collected after 1 h for neutrophil elastase (NE and matrix metalloproteinase- (MMP- 9 measurements or after 24 h for CXCL8 release. Results. Constitutive NE was enhanced in AGood neutrophils compared to HC. fMLF stimulated neutrophils from ASubopt but not AGood produced 50% of HC levels. fMLF induced MMP-9 was impaired in ASubopt and AGood compared to HC. fMLF stimulated CXCL8 but not MMP-9 was positively correlated with FEV1 and FEV1/FVC. ASubopt and AGood responded similarly to other stimuli. Conclusions. Circulating neutrophils are different in asthma; however, this is likely to be related to airflow limitation rather than asthma control.

  10. Intestinal CD103+ dendritic cells are key players in the innate immune control of Cryptosporidium parvum infection in neonatal mice.

    Directory of Open Access Journals (Sweden)

    Louis Lantier

    Full Text Available Cryptosporidium parvum is a zoonotic protozoan parasite found worldwide, that develops only in the gastrointestinal epithelium and causes profuse diarrhea. Using a mouse model of C. parvum infection, we demonstrated by conditional depletion of CD11c+ cells that these cells are essential for the control of the infection both in neonates and adults. Neonates are highly susceptible to C. parvum but the infection is self-limited, whereas adults are resistant unless immunocompromised. We investigated the contribution of DC to the age-dependent susceptibility to infection. We found that neonates presented a marked deficit in intestinal CD103+ DC during the first weeks of life, before weaning, due to weak production of chemokines by neonatal intestinal epithelial cells (IEC. Increasing the number of intestinal CD103+ DC in neonates by administering FLT3-L significantly reduced susceptibility to the infection. During infections in neonates, the clearance of the parasite was preceded by a rapid recruitment of CD103+ DC mediated by CXCR3-binding chemokines produced by IEC in response to IFNγ. In addition to this key role in CD103+ DC recruitment, IFNγ is known to inhibit intracellular parasite development. We demonstrated that during neonatal infection CD103+ DC produce IL-12 and IFNγ in the lamina propria and the draining lymph nodes. Thus, CD103+DC are key players in the innate immune control of C. parvum infection in the intestinal epithelium. The relative paucity of CD103+ DC in the neonatal intestine contributes to the high susceptibility to intestinal infection.

  11. Role of the Aryl Hydrocarbon Receptor in Controlling Maintenance and Functional Programs of RORγt+ Innate Lymphoid Cells and Intraepithelial Lymphocytes

    OpenAIRE

    Kiss, Elina A.; Diefenbach, Andreas

    2012-01-01

    Mucosal retinoic receptor-related orphan receptor (ROR)γt-expressing innate lymphoid cells (ILC) play an important role in the defense against intestinal pathogens and in promoting epithelial homeostasis and adaptation, thereby effectively protecting the vertebrate host against intestinal inflammatory disorders. The functional activity of RORγt+ ILC is under the control of environmental cues. However, the molecular sensors for such environmental signals are largely unknown. Recently, the aryl...

  12. Interleukin-5–producing group 2 innate lymphoid cells control eosinophilia induced by interleukin-2 therapy

    OpenAIRE

    Van Gool, Frédéric; Molofsky, Ari B.; Morar, Malika M.; Rosenzwajg, Michelle; Liang, Hong-Erh; Klatzmann, David; Locksley, Richard M.; Bluestone, Jeffrey A.

    2014-01-01

    Tissue resident group 2 innate lymphoid cells are the main cells producing IL-5 and driving eosinophilia in response to low-dose IL-2 therapy.We described a novel cellular network activated during IL-2 treatment that may lead to a more efficient use of IL-2 in immunotherapy.

  13. Innate immune responses to Pseudomonas aeruginosa infection

    OpenAIRE

    Lavoie, Elise G.; Wangdi, Tamding; Kazmierczak, Barbara I.

    2011-01-01

    Innate immune responses play a critical role in controlling acute infections due to Pseudomonas aeruginosa in both mice and in humans. In this review we focus on innate immune recognition and clearance mechanisms that are important for controlling P. aeruginosa in the mammalian lung, with particular attention to those that influence the outcome of in vivo infection in murine models.

  14. Flt3 Ligand–treated Neonatal Mice Have Increased Innate Immunity Against Intracellular Pathogens and Efficiently Control Virus Infections

    OpenAIRE

    Vollstedt, Sabine; Franchini, Marco; Hefti, Hans P.; Odermatt, Bernhard; O'Keeffe, Meredith; Alber, Gottfried; Glanzmann, Bettina; Riesen, Matthias; Ackermann, Mathias; Suter, Mark

    2003-01-01

    Flt-3 ligand (FL), a hematopoetic growth factor, increases the number of dendritic cells (DCs), B cells, and natural killer cells in adult mice but the effect in neonates was unknown. We show that FL treatment of newborn mice induced a >100-fold increase in the innate resistance against infection with herpes simplex virus type 1 and Listeria monocytogenes. This resistance required interferon (IFN)-α/β for viral and interleukin (IL)-12 for bacterial infections. Long-term survival after viral b...

  15. Multigenic Control of Measles Vaccine Immunity Mediated by Polymorphisms in Measles Receptor, Innate Pathway, and Cytokine Genes

    OpenAIRE

    Kennedy, Richard B.; Ovsyannikova, Inna G.; Haralambieva, Iana H.; O’Byrne, Megan; Jacobson, Robert M.; Pankratz, V. Shane; Poland, Gregory A.

    2012-01-01

    Measles infection and vaccine response are complex biological processes that involve both viral and host genetic factors. We have previously investigated the influence of genetic polymorphisms on vaccine immune response, including measles vaccines, and have shown that polymorphisms in HLA, cytokine, cytokine receptor, and innate immune response genes are associated with variation in vaccine response but do not account for all of the inter-individual variance seen in vaccinated populations. In...

  16. Points of control exerted along the macrophage-endothelial cell-polymorphonuclear neutrophil axis by PECAM-1 in the innate immune response of acute colonic inflammation.

    Science.gov (United States)

    Sugimoto, Naohito; Rui, Tao; Yang, Min; Bharwani, Sulaiman; Handa, Osamu; Yoshida, Norimasa; Yoshikawa, Toshikazu; Kvietys, Peter R

    2008-08-01

    PECAM-1 is expressed on endothelial cells and leukocytes. Its extracellular domain has been implicated in leukocyte diapedesis. In this study, we used PECAM-1(-/-) mice and relevant cells derived from them to assess the role of PECAM-1 in an experimental model of acute colonic inflammation with a predominant innate immune response, i.e., 2,4,6-trinitrobenzine sulfonic acid (TNBS). Using chimeric approaches, we addressed the points of control exerted by PECAM-1 along the macrophage-endothelial cell-polymorphonuclear neutrophil (PMN) axis. In vivo, TNBS-induced colitis was ameliorated in PECAM-1(-/-) mice, an event attributed to PECAM-1 on hematopoietic cells rather than to PECAM-1 on endothelial cells. The in vivo innate immune response was mimicked in vitro by using a construct of the vascular-interstitial interface, i.e., PMN transendothelial migration was induced by colonic lavage fluid (CLF) from TNBS mice or macrophages (MPhi) challenged with CLF. Using the construct, we confirmed that endothelial cell PECAM-1 does not play a role in PMN transendothelial migration. Although MPhi activation (NF-kappaB nuclear binding) and function (keratinocyte-derived chemokine production) induced by CLF was diminished in PECAM-1(-/-) MPhi, this did not affect their ability to promote PMN transendothelial migration. By contrast, PECAM-1(-/-) PMN did not adhere to or migrate across endothelial cell monolayers in response to CLF. Further, as compared with PECAM-1(+/+) PMN, PECAM-1(-/-) PMN were less effective in orientating their CXCR2 receptors (polarization) in the direction of a chemotactic gradient. Collectively, our findings indicate that PECAM-1 modulation of PMN function (at a step before diapedesis) most likely contributes to the inflammation in a colitis model with a strong innate immune component. PMID:18641353

  17. Innate immunity and adjuvants

    OpenAIRE

    Akira, Shizuo

    2011-01-01

    Innate immunity was for a long time considered to be non-specific because the major function of this system is to digest pathogens and present antigens to the cells involved in acquired immunity. However, recent studies have shown that innate immunity is not non-specific, but is instead sufficiently specific to discriminate self from pathogens through evolutionarily conserved receptors, designated Toll-like receptors (TLRs). Indeed, innate immunity has a crucial role in early host defence aga...

  18. Combination Therapy With Reovirus and Anti-PD-1 Blockade Controls Tumor Growth Through Innate and Adaptive Immune Responses.

    Science.gov (United States)

    Rajani, Karishma; Parrish, Christopher; Kottke, Timothy; Thompson, Jill; Zaidi, Shane; Ilett, Liz; Shim, Kevin G; Diaz, Rosa-Maria; Pandha, Hardev; Harrington, Kevin; Coffey, Matt; Melcher, Alan; Vile, Richard

    2016-02-01

    Oncolytic reovirus can be delivered both systemically and intratumorally, in both preclinical models and in early phase clinical trials. Reovirus has direct oncolytic activity against a variety of tumor types and antitumor activity is directly associated with immune activation by virus replication in tumors. Immune mechanisms of therapy include both innate immune activation against virally infected tumor cells, and the generation of adaptive antitumor immune responses as a result of in vivo priming against tumor-associated antigens. We tested the combination of local oncolytic reovirus therapy with systemic immune checkpoint inhibition. We show that treatment of subcutaneous B16 melanomas with a combination of intravenous (i.v.) anti-PD-1 antibody and intratumoral (i.t.) reovirus significantly enhanced survival of mice compared to i.t. reovirus (P cells to kill reovirus-infected tumor cells, reduced T(reg) activity, and increased the adaptive CD8(+) T-cell-dependent antitumor T-cell response. PD-1 blockade also enhanced the antiviral immune response but through effector mechanisms which overlapped with but also differed from those affecting the antitumor response. Therefore, combination with checkpoint inhibition represents a readily translatable next step in the clinical development of reovirus viroimmunotherapy. PMID:26310630

  19. Tumor necrosis factor (TNF) receptor shedding controls thresholds of innate immune activation that balance opposing TNF functions in infectious and inflammatory diseases

    DEFF Research Database (Denmark)

    Xanthoulea, Sofia; Pasparakis, Manolis; Kousteni, Stavroula;

    2004-01-01

    Tumor necrosis factor (TNF) is a potent cytokine exerting critical functions in the activation and regulation of immune and inflammatory responses. Due to its pleiotropic activities, the amplitude and duration of TNF function must be tightly regulated. One of the mechanisms that may have evolved to...... modulate TNF function is the proteolytic cleavage of its cell surface receptors. In humans, mutations affecting shedding of the p55TNF receptor (R) have been linked with the development of the TNFR-associated periodic syndromes, disorders characterized by recurrent fever attacks and localized inflammation....... Here we show that knock-in mice expressing a mutated nonsheddable p55TNFR develop Toll-like receptor-dependent innate immune hyperreactivity, which renders their immune system more efficient at controlling intracellular bacterial infections. Notably, gain of function for antibacterial host defenses...

  20. Role of the aryl hydrocarbon receptor in controlling maintenance and functional programs of RORγt+ innate lymphoid cells and intraepithelial γδ T cells

    Directory of Open Access Journals (Sweden)

    Elina A. Kiss

    2012-05-01

    Full Text Available Mucosal RORγt-expressing innate lymphoid cells (ILC play an important role in the defense against intestinal pathogens and in promoting epithelial homeostasis and adaptation thereby effectively protecting the vertebrate host against intestinal inflammatory disorders. The functional activity of RORγt+ ILC is under the control of environmental cues. However, the molecular sensors for such environmental signals are largely unknown. Recently, the aryl hydrocarbon receptor (AhR has emerged as a master regulator for the postnatal maintenance of intestinal RORγt+ ILC and intraepithelial γδ T cells. AhR is a highly conserved transcription factor whose activity is regulated by environmental and dietary small molecule ligands. Here, we review the role of AhR signaling for the maintenance of intestinal immune cells and its impact on the immunological protection against intestinal infections and debilitating chronic inflammatory disorders.

  1. Innate immune recognition of hepatitis B virus

    Institute of Scientific and Technical Information of China (English)

    Hong-Yan; Liu; Xiao-Yong; Zhang

    2015-01-01

    Hepatitis B virus(HBV) is a hepatotropic DNA virus and its infection results in acute or chronic hepatitis. It is reported that the host innate immune system contributes to viral control and liver pathology, while whether and how HBV can trigger the components of innate immunity remains controversial. In recent years, the data accumulated from HBV-infected patients, cellular and animal models have challenged the concept of a stealth virus for HBV infection. This editorial focuses on the current findings about the innate immune recognition to HBV. Such evaluation could help us to understand HBV immunopathogenesis and develop novel immune therapeutic strategies to combat HBV infection.

  2. Approaching archetypes: reconsidering innateness.

    Science.gov (United States)

    Goodwyn, Erik

    2010-09-01

    The question of innateness has hounded Jungian psychology since Jung originally postulated the archetype as an a priori structure within the psyche. During his life and after his death he was continually accused of Lamarckianism and criticized for his theory that the archetypes existed as prior structures. More recently, with the advent of genetic research and the human genome project, the idea that psychological structures can be innate has come under even harsher criticism even within Jungian thought. There appears to be a growing consensus that Jung's idea of innate psychological structures was misguided, and that perhaps the archetype-as-such should be abandoned for more developmental and 'emergent' theories of the psyche. The purpose of this essay is to question this conclusion, and introduce some literature on psychological innateness that appears relevant to this discussion. PMID:20883307

  3. Arguing about innateness.

    Science.gov (United States)

    Valian, Virginia

    2014-07-01

    This paper lays out the components of a language acquisition model, the interconnections among the components, and the differing stances of nativism and empiricism about syntax. After demonstrating that parsimony cannot decide between the two stances, the paper analyzes nine examples of evidence that have been used to argue for or against nativism, concluding that most pieces of evidence are either irrelevant or suggest that language is special but need not invoke innate ideas. Two pieces of evidence - the development of home sign languages and the acquisition of Determiners - do show not just that language is special but that the child has innate syntactic content. The existential claim that nativism makes - there is at least one innate syntactic idea - is an easier claim to verify than the universal claim that empiricism makes - there are no innate syntactic ideas. PMID:25023498

  4. Innate immune responses and rapid control of inflammation in African green monkeys treated or not with interferon-alpha during primary SIVagm infection.

    Directory of Open Access Journals (Sweden)

    Béatrice Jacquelin

    2014-07-01

    Full Text Available Chronic immune activation (IA is considered as the driving force of CD4(+ T cell depletion and AIDS. Fundamental clues in the mechanisms that regulate IA could lie in natural hosts of SIV, such as African green monkeys (AGMs. Here we investigated the role of innate immune cells and IFN-α in the control of IA in AGMs. AGMs displayed significant NK cell activation upon SIVagm infection, which was correlated with the levels of IFN-α. Moreover, we detected cytotoxic NK cells in lymph nodes during the early acute phase of SIVagm infection. Both plasmacytoid and myeloid dendritic cell (pDC and mDC homing receptors were increased, but the maturation of mDCs, in particular of CD16+ mDCs, was more important than that of pDCs. Monitoring of 15 cytokines showed that those, which are known to be increased early in HIV-1/SIVmac pathogenic infections, such as IL-15, IFN-α, MCP-1 and CXCL10/IP-10, were significantly increased in AGMs as well. In contrast, cytokines generally induced in the later stage of acute pathogenic infection, such as IL-6, IL-18 and TNF-α, were less or not increased, suggesting an early control of IA. We then treated AGMs daily with high doses of IFN-α from day 9 to 24 post-infection. No impact was observed on the activation or maturation profiles of mDCs, pDCs and NK cells. There was also no major difference in T cell activation or interferon-stimulated gene (ISG expression profiles and no sign of disease progression. Thus, even after administration of high levels of IFN-α during acute infection, AGMs were still able to control IA, showing that IA control is independent of IFN-α levels. This suggests that the sustained ISG expression and IA in HIV/SIVmac infections involves non-IFN-α products.

  5. Innate immunity and adjuvants.

    Science.gov (United States)

    Akira, Shizuo

    2011-10-12

    Innate immunity was for a long time considered to be non-specific because the major function of this system is to digest pathogens and present antigens to the cells involved in acquired immunity. However, recent studies have shown that innate immunity is not non-specific, but is instead sufficiently specific to discriminate self from pathogens through evolutionarily conserved receptors, designated Toll-like receptors (TLRs). Indeed, innate immunity has a crucial role in early host defence against invading pathogens. Furthermore, TLRs were found to act as adjuvant receptors that create a bridge between innate and adaptive immunity, and to have important roles in the induction of adaptive immunity. This paradigm shift is now changing our thinking on the pathogenesis and treatment of infectious, immune and allergic diseases, as well as cancers. Besides TLRs, recent findings have revealed the presence of a cytosolic detector system for invading pathogens. I will review the mechanisms of pathogen recognition by TLRs and cytoplasmic receptors, and then discuss the roles of these receptors in the development of adaptive immunity in response to viral infection. PMID:21893536

  6. Tick Innate Immunity.

    Czech Academy of Sciences Publication Activity Database

    Kopáček, Petr; Hajdušek, Ondřej; Burešová, Veronika; Daffre, S.

    2010-01-01

    Roč. 708, - (2010), 137-162. ISSN 0065-2598 R&D Projects: GA ČR GAP506/10/2136; GA MŠk(CZ) LC06009 Institutional research plan: CEZ:AV0Z60220518 Keywords : tick * pathogen transmission * innate immunity Subject RIV: EC - Immunology Impact factor: 1.379, year: 2010

  7. Corruption of Innate Immunity by Bacterial Proteases

    Science.gov (United States)

    Potempa, Jan; Pike, Robert N.

    2009-01-01

    The innate immune system of the human body has developed numerous mechanisms to control endogenous and exogenous bacteria and thus prevent infections by these microorganisms. These mechanisms range from physical barriers such as the skin or mucosal epithelium to a sophisticated array of molecules and cells that function to suppress or prevent bacterial infection. Many bacteria express a variety of proteases, ranging from non-specific and powerful enzymes that degrade many proteins involved in innate immunity to proteases that are extremely precise and specific in their mode of action. Here we have assembled a comprehensive picture of how bacterial proteases affect the host’s innate immune system to gain advantage and cause infection. This picture is far from being complete since the numbers of mechanisms utilized are as astonishing as they are diverse, ranging from degradation of molecules vital to innate immune mechanisms to subversion of the mechanisms to allow the bacterium to hide from the system or take advantage of it. It is vital that such mechanisms are elucidated to allow strategies to be developed to aid the innate immune system in controlling bacterial infections. PMID:19756242

  8. Ontogeny of innate T lymphocytes - some innate lymphocytes are more innate then others

    Directory of Open Access Journals (Sweden)

    David eVermijlen

    2014-10-01

    Full Text Available Innate lymphocytes have recently received a lot of attention. However, there are different ideas about the definition of what is innate in lymphocytes. Lymphocytes without V(DJ-rearranged antigen receptors are now termed innate lymphoid cells (ILCs and include cells formerly known as NK cells. Also, lymphocytes that are innate should be able to recognize microbial or stress-induced patterns and react rapidly without prior sensitization, as opposed to adaptive immune responses. Formally, genuine innate lymphocytes would be present before or at birth. Here we review the ontogeny of human and mouse innate T lymphocyte populations. We focus on γδ T cells, which are prototype lymphocytes that often use their V(DJ rearrangement machinery to generate genetically encoded predetermined recombinations of antigen receptors. We make parallels between the development of γδ T cells with that of innate aβ T cells (invariant (iNKT and mucosa-associated invariant T (MAIT cells and compare this with the ontogeny of innate B cells and innate lymphoid cells (ILCs, including NK cells. We conclude that some subsets are more innate than others, i.e. innate lymphocytes that are made primarily early in utero during gestation while others are made after birth. In practice, a ranking of innateness by ontogeny has implications for the reconstitution of innate lymphocyte subsets after hematopoietic stem cell transplantation (HSCT.

  9. Ontogeny of innate T lymphocytes - some innate lymphocytes are more innate then others

    OpenAIRE

    David eVermijlen; Immo ePrinz

    2014-01-01

    Innate lymphocytes have recently received a lot of attention. However, there are different ideas about the definition of what is innate in lymphocytes. Lymphocytes without V(D)J-rearranged antigen receptors are now termed innate lymphoid cells (ILCs) and include cells formerly known as NK cells. Also, lymphocytes that are innate should be able to recognize microbial or stress-induced patterns and react rapidly without prior sensitization, as opposed to adaptive immune responses. Formally, gen...

  10. The complexity of Drosophila innate immunity

    Directory of Open Access Journals (Sweden)

    A Reumer

    2010-01-01

    Full Text Available Metazoans rely on efficient mechanisms to oppose infections caused by pathogens. The immediate and first-line defense mechanism(s in metazoans, referred to as the innate immune system, is initiated upon recognition of microbial intruders by germline encoded receptors and is executed by a set of rapid effector mechanisms. Adaptive immunity is restricted to vertebrate species and it is controlled and assisted by the innate immune system.Interestingly, most of the basic signaling cascades that regulate the primeval innate defense mechanism(s have been well conserved during evolution, for instance between humans and the fruit fly, Drosophila melanogaster. Being devoid of adaptive signaling and effector systems, Drosophila has become an established model system for studying pristine innate immune cascades and reactions. In general, an immune response is evoked when microorganisms pass the fruit fly’s physical barriers (e.g., cuticle, epithelial lining of gut and trachea, and it is mainly executed in the hemolymph, the equivalent of the mammalian blood. Innate immunity in the fruit fly consists of a phenoloxidase (PO response, a cellular response (hemocytes, an antiviral response, and the NF-κB dependent production of antimicrobial peptides referred to as the humoral response. The JAK/STAT and Jun kinase signaling cascades are also implicated in the defence against pathogens.

  11. ID’ing Innate and Innate-like Lymphoid Cells

    OpenAIRE

    Verykokakis, Mihalis; Zook, Erin C.; Kee, Barbara L.

    2014-01-01

    The immune system can be divided into innate and adaptive components that differ in their rate and mode of cellular activation, with innate immune cells being the first responders to invading pathogens. Recent advances in the identification and characterization of innate lymphoid cells have revealed reiterative developmental programs that result in cells with effector fates that parallel those of adaptive lymphoid cells and are tailored to effectively eliminate a broad spectrum of pathogenic ...

  12. Curating the innate immunity interactome.

    LENUS (Irish Health Repository)

    Lynn, David J

    2010-01-01

    The innate immune response is the first line of defence against invading pathogens and is regulated by complex signalling and transcriptional networks. Systems biology approaches promise to shed new light on the regulation of innate immunity through the analysis and modelling of these networks. A key initial step in this process is the contextual cataloguing of the components of this system and the molecular interactions that comprise these networks. InnateDB (http:\\/\\/www.innatedb.com) is a molecular interaction and pathway database developed to facilitate systems-level analyses of innate immunity.

  13. Ontogeny of Innate T Lymphocytes – Some Innate Lymphocytes are More Innate than Others

    OpenAIRE

    Vermijlen, David; Prinz, Immo

    2014-01-01

    Innate lymphocytes have recently received a lot of attention. However, there are different ideas about the definition of what is “innate” in lymphocytes. Lymphocytes without V(D)J-rearranged antigen receptors are now termed innate lymphoid cells (ILCs) and include cells formerly known as natural killer (NK) cells. Also, lymphocytes that are innate should be able to recognize microbial or stress-induced patterns and react rapidly without prior sensitization, as opposed to adaptive immune respo...

  14. T Cells Going Innate.

    Science.gov (United States)

    Seyda, Midas; Elkhal, Abdallah; Quante, Markus; Falk, Christine S; Tullius, Stefan G

    2016-08-01

    Natural killer (NK) cell receptors (NKRs) play a crucial role in the homeostasis of antigen-experienced T cells. Indeed, prolonged antigen stimulation may induce changes in the receptor repertoire of T cells to a profile that features NKRs. Chronic antigen exposure, at the same time, has been shown to trigger the loss of costimulatory CD28 molecules with recently reported intensified antigen thresholds of antigen-experienced CD8(+) T cells. In transplantation, NKRs have been shown to assist allograft rejection in a CD28-independent fashion. We discuss here a role for CD28-negative T cells that have acquired the competency of the NKR machinery, potentially promoting allorecognition either through T cell receptor (TCR) crossreactivity or independently from TCR recognition. Collectively, NKRs can bring about innate-like T cells by providing alternative costimulatory pathways that gain relevance in chronic inflammation, potentially leading to resistance to CD28-targeting immunosuppressants. PMID:27402226

  15. Opinion: Interactions of innate and adaptive lymphocytes

    OpenAIRE

    Gasteiger, Georg; Rudensky, Alexander Y.

    2014-01-01

    Innate lymphocytes, including natural killer (NK) cells and the recently discovered innate lymphoid cells (ILCs) have crucial roles during infection, tissue injury and inflammation. Innate signals regulate the activation and homeostasis of innate lymphocytes. Less well understood is the contribution of the adaptive immune system to the orchestration of innate lymphocyte responses. We review our current understanding of the interactions between adaptive and innate lymphocytes, and propose a mo...

  16. Development and function of group 2 innate lymphoid cells

    OpenAIRE

    Walker, Jennifer A.; Mckenzie, Andrew NJ

    2013-01-01

    The innate lymphoid cell (ILC) family has recently expanded with the discovery of type-2 innate lymphoid cells (ILC2). These cells arise from lymphoid progenitors in the bone marrow and, under the control of the transcriptional regulators RORα and Gata3, they mature to give rise to IL-5, IL-9 and IL-13 producing ILC2. These cells are critical components of the innate immune response to parasitic worm infections and have also been implicated in the pathogenesis of asthma and allergy. Recent ad...

  17. Innate immune memory in plants.

    Science.gov (United States)

    Reimer-Michalski, Eva-Maria; Conrath, Uwe

    2016-08-01

    The plant innate immune system comprises local and systemic immune responses. Systemic plant immunity develops after foliar infection by microbial pathogens, upon root colonization by certain microbes, or in response to physical injury. The systemic plant immune response to localized foliar infection is associated with elevated levels of pattern-recognition receptors, accumulation of dormant signaling enzymes, and alterations in chromatin state. Together, these systemic responses provide a memory to the initial infection by priming the remote leaves for enhanced defense and immunity to reinfection. The plant innate immune system thus builds immunological memory by utilizing mechanisms and components that are similar to those employed in the trained innate immune response of jawed vertebrates. Therefore, there seems to be conservation, or convergence, in the evolution of innate immune memory in plants and vertebrates. PMID:27264335

  18. Nuclear Trafficking During Plant Innate Immunity

    Institute of Scientific and Technical Information of China (English)

    Jun Liu; Gitta Coaker

    2008-01-01

    Land plants possess innate immune systems that can control resistance against pathogen infection. Conceptually, there are two branches of the plant innate immune system. One branch recognizes conserved features of microbial pathogens, while a second branch specifically detects the presence of pathogen effector proteins by plant resistance (R) genes. Innate immunity controlled by plant R genes is called effector-triggered immunity. Although R genes can recognize all classes of plant pathogens, the majority can be grouped into one large family, encoding proteins with a nucleotide binding site and C-terminal leucine rich repeat domains. Despite the importance and number of R genes present in plants, we are just beginning to decipher the signaling events required to initiate defense responses. Recent exciting discoveries have implicated dynamic nuclear trafficking of plant R proteins to achieve effector-triggered immunity. Furthermore, there are several additional lines of evidence implicating nucleo-cyctoplasmic trafficking in plant disease resistance, as mutations in nucleoporins and importins can compromise resistance signaling. Taken together, these data illustrate the importance of nuclear trafficking in the manifestation of disease resistance mediated by R genes.

  19. Ozone and Pulmonary Innate Immunity

    OpenAIRE

    Hollingsworth, John W.; Kleeberger, Steven R.; Foster, W. Michael

    2007-01-01

    Ambient ozone (O3) is a commonly encountered environmental air pollutant with considerable impact on public health. Many other inhaled environmental toxicants can substantially affect pulmonary immune responses. Therefore, it is of considerable interest to better understand the complex interaction between environmental airway irritants and immunologically based human disease. The innate immune system represents the first line of defense against microbial pathogens. Intact innate immunity requ...

  20. Towards a Conceptual Framework for Innate Immunity

    CERN Document Server

    Twycross, Jamie

    2010-01-01

    Innate immunity now occupies a central role in immunology. However, artificial immune system models have largely been inspired by adaptive not innate immunity. This paper reviews the biological principles and properties of innate immunity and, adopting a conceptual framework, asks how these can be incorporated into artificial models. The aim is to outline a meta-framework for models of innate immunity.

  1. IL-1β, IL-4 and IL-12 control the fate of group 2 innate lymphoid cells in human airway inflammation in the lungs.

    Science.gov (United States)

    Bal, Suzanne M; Bernink, Jochem H; Nagasawa, Maho; Groot, Jelle; Shikhagaie, Medya M; Golebski, Kornel; van Drunen, Cornelis M; Lutter, Rene; Jonkers, Rene E; Hombrink, Pleun; Bruchard, Melanie; Villaudy, Julien; Munneke, J Marius; Fokkens, Wytske; Erjefält, Jonas S; Spits, Hergen; Ros, Xavier Romero

    2016-06-01

    Group 2 innate lymphoid cells (ILC2s) secrete type 2 cytokines, which protect against parasites but can also contribute to a variety of inflammatory airway diseases. We report here that interleukin 1β (IL-1β) directly activated human ILC2s and that IL-12 induced the conversion of these activated ILC2s into interferon-γ (IFN-γ)-producing ILC1s, which was reversed by IL-4. The plasticity of ILCs was manifested in diseased tissues of patients with severe chronic obstructive pulmonary disease (COPD) or chronic rhinosinusitis with nasal polyps (CRSwNP), which displayed IL-12 or IL-4 signatures and the accumulation of ILC1s or ILC2s, respectively. Eosinophils were a major cellular source of IL-4, which revealed cross-talk between IL-5-producing ILC2s and IL-4-producing eosinophils. We propose that IL-12 and IL-4 govern ILC2 functional identity and that their imbalance results in the perpetuation of type 1 or type 2 inflammation. PMID:27111145

  2. Innate immune recognition of cancer.

    Science.gov (United States)

    Woo, Seng-Ryong; Corrales, Leticia; Gajewski, Thomas F

    2015-01-01

    The observation that a subset of cancer patients show evidence for spontaneous CD8+ T cell priming against tumor-associated antigens has generated renewed interest in the innate immune pathways that might serve as a bridge to an adaptive immune response to tumors. Manipulation of this endogenous T cell response with therapeutic intent-for example, using blocking antibodies inhibiting PD-1/PD-L1 (programmed death-1/programmed death ligand 1) interactions-is showing impressive clinical results. As such, understanding the innate immune mechanisms that enable this T cell response has important clinical relevance. Defined innate immune interactions in the cancer context include recognition by innate cell populations (NK cells, NKT cells, and γδ T cells) and also by dendritic cells and macrophages in response to damage-associated molecular patterns (DAMPs). Recent evidence has indicated that the major DAMP driving host antitumor immune responses is tumor-derived DNA, sensed by the stimulator of interferon gene (STING) pathway and driving type I IFN production. A deeper knowledge of the clinically relevant innate immune pathways involved in the recognition of tumors is leading toward new therapeutic strategies for cancer treatment. PMID:25622193

  3. Crosstalk between innate and adaptive immunity inhepatitis B virus infection

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    Hepatitis B virus (HBV) infection is a major public health problem worldwide. HBV is not directly cytotoxic toinfected hepatocytes; the clinical outcome of infectionresults from complicated interactions between the virusand the host immune system. In acute HBV infection,initiation of a broad, vigorous immune response is responsiblefor viral clearance and self-limited inflammatoryliver disease. Effective and coordinated innate andadaptive immune responses are critical for viral clearanceand the development of long-lasting immunity. Chronichepatitis B patients fail to mount efficient innate andadaptive immune responses to the virus. In particular,HBV-specific cytotoxic T cells, which are crucial for HBVclearance, are hyporesponsiveness to HBV infection.Accumulating experimental evidence obtained fromthe development of animal and cell line models hashighlighted the importance of innate immunity in theearly control of HBV spread. The virus has evolvedimmune escape strategies, with higher HBV loads andHBV protein concentrations associated with increasingimpairment of immune function. Therefore, treatmentof HBV infection requires inhibition of HBV replicationand protein expression to restore the suppressedhost immunity. Complicated interactions exist notonly between innate and adaptive responses, but alsoamong innate immune cells and different components ofadaptive responses. Improved insight into these complexinteractions are important in designing new therapeuticstrategies for the treatment HBV infection. In thisreview, we summarize the current knowledge regardingthe cross-talk between the innate and adaptive immuneresponses and among different immunocytes in HBVinfection.

  4. Plant innate immunity multicomponent model

    Directory of Open Access Journals (Sweden)

    Giuseppe eAndolfo

    2015-11-01

    Full Text Available Our understanding of plant–pathogen interactions is making rapid advances in order to address issues of global importance such as improving agricultural productivity and sustainable food security. Innate immunity has evolved in plants, resulting in a wide diversity of defence mechanisms adapted to specific threats. The postulated PTI/ETI model describes two perception layers of plant innate immune system, which belong to a first immunity component of defence response activation. To better describe the sophisticated defence system of plants, we propose a new model of plant immunity. This model considers the plant’s ability to distinguish the feeding behaviour of their many foes, such as a second component that modulates innate immunity. This hypothesis provides a new viewpoint highlighting the relevance of hormone crosstalk and primary metabolism in regulating plant defence against the different behaviours of pathogens with the intention to stimulate further interest in this research area.

  5. Crohn's disease:Innate immunodeficiency?

    Institute of Scientific and Technical Information of China (English)

    Jesus K Yamamoto-Furusho; Joshua R Korzenik

    2006-01-01

    In the past,Crohn's disease (CD) has been understood primarily as an immunologic disorder characterized by an abnormal T-cell response.Recent in vitro and in vivo data suggests that CD may instead be precipitated by innate immune dysfunction resulting from a combination of genetic and environmental factors.Some reports have demonstrated a defective immune response in a variety of other cellular components,including neutrophils,monocytes and dendritic cells.Recent studies of granulocyte-macrophage colony-stimulating factor (GMCSF) in CD,aiming to stimulate the innate immune system with the conception that an innate immune defect underlies the development of the disease,have been demonstrated a clinical benefit and reinforce this evolving understanding of the disease.

  6. GPCRs in invertebrate innate immunity.

    Science.gov (United States)

    Reboul, Jerome; Ewbank, Jonathan J

    2016-08-15

    G-protein coupled receptors (GPCRs) represent a privileged point of contact between cells and their surrounding environment. They have been widely adopted in vertebrates as mediators of signals involved in both innate and adaptive immunity. Invertebrates rely on innate immune defences to resist infection. We review here evidence from a number of different species, principally the genetically tractable Caenorhabditis elegans and Drosophila melanogaster that points to an important role for GPCRs in modulating innate immunity in invertebrates too. In addition to examples of GPCRs involved in regulating the expression of defence genes, we discuss studies in C. elegans addressing the role of GPCR signalling in pathogen aversive behaviour. Despite the many lacunae in our current knowledge, it is clear that GPCR signalling contributes to host defence across the animal kingdom. PMID:27262554

  7. The Innate Lymphoid Cell Precursor.

    Science.gov (United States)

    Ishizuka, Isabel E; Constantinides, Michael G; Gudjonson, Herman; Bendelac, Albert

    2016-05-20

    The discovery of tissue-resident innate lymphoid cell populations effecting different forms of type 1, 2, and 3 immunity; tissue repair; and immune regulation has transformed our understanding of mucosal immunity and allergy. The emerging complexity of these populations along with compounding issues of redundancy and plasticity raise intriguing questions about their precise lineage relationship. Here we review advances in mapping the emergence of these lineages from early lymphoid precursors. We discuss the identification of a common innate lymphoid cell precursor characterized by transient expression of the transcription factor PLZF, and the lineage relationships of innate lymphoid cells with conventional natural killer cells and lymphoid tissue inducer cells. We also review the rapidly growing understanding of the network of transcription factors that direct the development of these lineages. PMID:27168240

  8. The microbiome and innate immunity.

    Science.gov (United States)

    Thaiss, Christoph A; Zmora, Niv; Levy, Maayan; Elinav, Eran

    2016-07-01

    The intestinal microbiome is a signalling hub that integrates environmental inputs, such as diet, with genetic and immune signals to affect the host's metabolism, immunity and response to infection. The haematopoietic and non-haematopoietic cells of the innate immune system are located strategically at the host-microbiome interface. These cells have the ability to sense microorganisms or their metabolic products and to translate the signals into host physiological responses and the regulation of microbial ecology. Aberrations in the communication between the innate immune system and the gut microbiota might contribute to complex diseases. PMID:27383981

  9. Analysis of innate defences against Plasmodium falciparum in immunodeficient mice

    Directory of Open Access Journals (Sweden)

    Van Rooijen Nico

    2010-07-01

    Full Text Available Abstract Background Mice with genetic deficiencies in adaptive immunity are used for the grafting of human cells or pathogens, to study human diseases, however, the innate immune responses to xenografts in these mice has received little attention. Using the NOD/SCID Plasmodium falciparum mouse model an analysis of innate defences responsible for the substantial control of P. falciparum which remains in such mice, was performed. Methods NOD/SCID mice undergoing an immunomodulatory protocol that includes, clodronate-loaded liposomes to deplete macrophages and an anti-polymorphonuclear leukocytes antibody, were grafted with human red blood cells and P. falciparum. The systematic and kinetic analysis of the remaining innate immune responses included the number and phenotype of peripheral blood leukocytes as well as inflammatory cytokines/chemokines released in periphery. The innate responses towards the murine parasite Plasmodium yoelii were used as a control. Results Results show that 1 P. falciparum induces a strong inflammation characterized by an increase in circulating leukocytes and the release of inflammatory cytokines; 2 in contrast, the rodent parasite P. yoelii, induces a far more moderate inflammation; 3 human red blood cells and the anti-inflammatory agents employed induce low-grade inflammation; and 4 macrophages seem to bear the most critical function in controlling P. falciparum survival in those mice, whereas polymorphonuclear and NK cells have only a minor role. Conclusions Despite the use of an immunomodulatory treatment, immunodeficient NOD/SCID mice are still able to mount substantial innate responses that seem to be correlated with parasite clearance. Those results bring new insights on the ability of innate immunity from immunodeficient mice to control xenografts of cells of human origin and human pathogens.

  10. Innate lymphoid cells drive interleukin-23-dependent innate intestinal pathology

    OpenAIRE

    Buonocore, Sofia; Ahern, Philip P.; Uhlig, Holm H; Ivanov, Ivaylo I.; Dan R. Littman; Maloy, Kevin J.; Powrie, Fiona

    2010-01-01

    The key role of IL-23 in the pathogenesis of autoimmune and chronic inflammatory disorders is supported by the identification of IL-23R susceptibility alleles associated with IBD, psoriasis and ankylosing spondylitis. IL-23 driven inflammation has primarily been linked to the actions of Th17 cells 1 . Somewhat overlooked, IL-23 also has inflammatory effects on innate immune cells 2 and can drive T cell- independent colitis. However the downstream cellular and molecular pathways involved in th...

  11. Development of innate lymphoid cells.

    Science.gov (United States)

    Zook, Erin C; Kee, Barbara L

    2016-06-21

    Innate lymphoid cells (ILCs) are a family of immune effector cells that have important roles in host defense, metabolic homeostasis and tissue repair but can also contribute to inflammatory diseases such as asthma and colitis. These cells can be categorized into three groups on the basis of the transcription factors that direct their function and the cytokines they produce, which parallel the effector functions of T lymphocytes. The hierarchy of cell-fate-restriction events that occur as common lymphoid progenitors become committed to each of the ILC lineages further underscores the relationship between these innate immune cells and T lymphocytes. In this Review we discuss the developmental program of ILCs and transcription factors that guide ILC lineage specification and commitment. PMID:27328007

  12. Innate immunity to Legionella pneumophila

    OpenAIRE

    Massis, Liliana M.; Zamboni, Dario S

    2011-01-01

    Innate immune cells, such as macrophages, are highly adapted to rapidly recognize infections by distinct pathogens, including viruses, bacteria, fungi and protozoa. This recognition is mediated by pattern recognition receptors (PRRs), which are found in host cell surface membranes and the host cell cytoplasm. PRRs include protein families such as the Toll-like receptors (TLRs), Nod-like receptors (NLRs), RIG-I-like receptors (RLRs) and sensors of cytosolic DNA. The activation of these PRRs by...

  13. Innate Immunity to Legionella Pneumophila

    OpenAIRE

    Massis, Liliana M.; Zamboni, Dario S

    2011-01-01

    Innate immune cells, such as macrophages, are highly adapted to rapidly recognize infections by distinct pathogens, including viruses, bacteria, fungi, and protozoa. This recognition is mediated by pattern recognition receptors (PRRs), which are found in host cell surface membranes and the host cell cytoplasm. PRRs include protein families such as the toll-like receptors, nod-like receptors, RIG-I-like receptors, and sensors of cytosolic DNA. The activation of these PRRs by pathogen-associate...

  14. The innate immunity in the cnidarian Hydra vulgaris

    Directory of Open Access Journals (Sweden)

    B Altincicek

    2009-08-01

    Full Text Available Hydra vulgaris is currently receiving increased attention as a genetically tractable invertebrate model system for studying important processes of life such as the innate immune defense. Similar to complex animals, H. vulgaris polyps respond to injury by abrupt muscle contraction, by limited escape behavior, and by healing the damaged tissue. Simultaneously, cellular processes such as phagocytosis and programmed cell death as well as the massive production of antimicrobial peptides are induced. Recent studies identified several molecular pathways controlling these responses; however, the interdependence of innate immunity and, for example, regeneration and tissue remodeling is not well elucidated yet. H. vulgaris belongs to the Cnidaria representing the phylogenic sister group of bilaterian animals; hence, a better understanding of evolutionarily conserved as well as Hydra/Cnidaria-specific immune responses will provide deep insight into both origin and evolution of the animal innate immune system

  15. The Epitranscriptome and Innate Immunity.

    Directory of Open Access Journals (Sweden)

    Mary A O'Connell

    2015-12-01

    Full Text Available Our knowledge of the variety and abundances of RNA base modifications is rapidly increasing. Modified bases have critical roles in tRNAs, rRNAs, translation, splicing, RNA interference, and other RNA processes, and are now increasingly detected in all types of transcripts. Can new biological principles associated with this diversity of RNA modifications, particularly in mRNAs and long non-coding RNAs, be identified? This review will explore this question by focusing primarily on adenosine to inosine (A-to-I RNA editing by the adenine deaminase acting on RNA (ADAR enzymes that have been intensively studied for the past 20 years and have a wide range of effects. Over 100 million adenosine to inosine editing sites have been identified in the human transcriptome, mostly in embedded Alu sequences that form potentially innate immune-stimulating dsRNA hairpins in transcripts. Recent research has demonstrated that inosine in the epitranscriptome and ADAR1 protein establish innate immune tolerance for host dsRNA formed by endogenous sequences. Innate immune sensors that detect viral nucleic acids are among the readers of epitranscriptome RNA modifications, though this does preclude a wide range of other modification effects.

  16. Post-translational control of IL-1β via the human papillomavirus type 16 E6 oncoprotein: a novel mechanism of innate immune escape mediated by the E3-ubiquitin ligase E6-AP and p53.

    Directory of Open Access Journals (Sweden)

    Martina Niebler

    Full Text Available Infections with high-risk human papillomaviruses (HPVs are causally involved in the development of anogenital cancer. HPVs apparently evade the innate immune response of their host cells by dysregulating immunomodulatory factors such as cytokines and chemokines, thereby creating a microenvironment that favors malignancy. One central key player in the immune surveillance interactome is interleukin-1 beta (IL-1β which not only mediates inflammation, but also links innate and adaptive immunity. Because of its pleiotropic physiological effects, IL-1β production is tightly controlled on transcriptional, post-translational and secretory levels. Here, we describe a novel mechanism how the high-risk HPV16 E6 oncoprotein abrogates IL-1β processing and secretion in a NALP3 inflammasome-independent manner. We analyzed IL-1β regulation in immortalized keratinocytes that harbor the HPV16 E6 and/or E7 oncogenes as well as HPV-positive cervical tumor cells. While in primary and in E7-immortalized human keratinocytes the secretion of IL-1β was highly inducible upon inflammasome activation, E6-positive cells did not respond. Western blot analyses revealed a strong reduction of basal intracellular levels of pro-IL-1β that was independent of dysregulation of the NALP3 inflammasome, autophagy or lysosomal activity. Instead, we demonstrate that pro-IL-1β is degraded in a proteasome-dependent manner in E6-positive cells which is mediated via the ubiquitin ligase E6-AP and p53. Conversely, in E6- and E6/E7-immortalized cells pro-IL-1β levels were restored by siRNA knock-down of E6-AP and simultaneous recovery of functional p53. In the context of HPV-induced carcinogenesis, these data suggest a novel post-translational mechanism of pro-IL-1β regulation which ultimately inhibits the secretion of IL-1β in virus-infected keratinocytes. The clinical relevance of our results was further confirmed in HPV-positive tissue samples, where a gradual decrease of IL-1

  17. Innate immunity in the pathogenesis of psoriasis.

    LENUS (Irish Health Repository)

    Sweeney, Cheryl M

    2011-12-01

    Psoriasis is a common, immune-mediated inflammatory skin disorder. T helper(h)1 and Th17 lymphocytes contribute to the pathogenesis of psoriasis through the release of inflammatory cytokines that promote further recruitment of immune cells, keratinocyte proliferation and sustained inflammation. The innate immune system is the first line of defence against infection and plays a crucial role in the initiation of the adaptive immune response. The presence of innate immune cells and their products in psoriatic skin plaques suggests a role for innate immunity in this disease. In addition, the innate immune system can direct the development of pathogenic Th cells in psoriasis. In this article, we will summarise the role of the innate immune system in psoriasis with particular emphasis on the role of cytokines, signalling pathways and cells of the innate immune system.

  18. Innate lymphoid cells and the skin

    OpenAIRE

    Salimi, Maryam; Ogg, Graham

    2014-01-01

    Innate lymphoid cells are an emerging family of effector cells that contribute to lymphoid organogenesis, metabolism, tissue remodelling and protection against infections. They maintain homeostatic immunity at barrier surfaces such as lung, skin and gut (Nature 464:1367–1371, 2010, Nat Rev Immunol 13: 145–149, 2013). Several human and mouse studies suggest a role for innate lymphoid cells in inflammatory skin conditions including atopic eczema and psoriasis. Here we review the innate lymphoid...

  19. InnateDB: facilitating systems-level analyses of the mammalian innate immune response

    OpenAIRE

    Lynn, David J.; Winsor, Geoffrey L.; Chan, Calvin; Richard, Nicolas; Laird, Matthew R; Barsky, Aaron; Gardy, Jennifer L; Roche, Fiona M.; Chan, Timothy H W; Shah, Naisha; Lo, Raymond; Naseer, Misbah; Que, Jaimmie; Yau, Melissa; Acab, Michael

    2008-01-01

    Although considerable progress has been made in dissecting the signaling pathways involved in the innate immune response, it is now apparent that this response can no longer be productively thought of in terms of simple linear pathways. InnateDB (www.innatedb.ca) has been developed to facilitate systems-level analyses that will provide better insight into the complex networks of pathways and interactions that govern the innate immune response. InnateDB is a publicly available, manually curate...

  20. Is inflammaging an auto[innate]immunity subclinical syndrome?

    Directory of Open Access Journals (Sweden)

    Giunta Sergio

    2006-12-01

    Full Text Available Abstract The low-grade, chronic, systemic inflammatory state that characterizes the aging process (inflammaging results from late evolutive-based expression of the innate immune system. Inflammaging is characterized by the complex set of five conditions which can be described as 1. low-grade, 2. controlled, 3. asymptomatic, 4. chronic, 5. systemic, inflammatory state, and fits with the antagonistic pleiotropy theory on the evolution of aging postulating that senescence is the late deleterious effect of genes (pro-inflammatory versus anti-inflammatorythat are beneficial in early life. Evolutionary programming of the innate immune system may act via selection on these genetic traits. Here I propose that the already acquired knowledge in this field may pave the way to a new chapter in the pathophysiology of autoimmunity: the auto-innate-immunity syndromes. Indeed, differently from the well known chapter of conventional autoimmune diseases and syndromes where the main actor is the adaptive immunity, inflammaging may constitute the subclinical paradigm of a new chapter of autoimmunity, namely that arising from an autoimmune inflammatory response of the innate-immune-system, an old actor of immunity and yet a new actor of autoimmunity, also acting as a major determinant of elderly frailty and age-associated diseases.

  1. Cerebral Innate Immunity in Drosophila Melanogaster

    Directory of Open Access Journals (Sweden)

    Brian P. Leung

    2015-03-01

    Full Text Available Modeling innate immunity in Drosophila melanogaster has a rich history that includes ground-breaking discoveries in pathogen detection and signaling. These studies revealed the evolutionary conservation of innate immune pathways and mechanisms of pathogen detection, resulting in an explosion of findings in the innate immunity field. In D. melanogaster, studies have focused primarily on responses driven by the larval fat body and hemocytes, analogs to vertebrate liver and macrophages, respectively. Aside from pathogen detection, many recent mammalian studies associate innate immune pathways with development and disease pathogenesis. Importantly, these studies stress that the innate immune response is integral to maintain central nervous system (CNS health. Microglia, which are the vertebrate CNS mononuclear phagocytes, drive vertebrate cerebral innate immunity. The invertebrate CNS contains microglial-like cells-ensheathing glia and reticular glia-that could be used to answer basic questions regarding the evolutionarily conserved innate immune processes in CNS development and health. A deeper understanding of the relationship between D. melanogaster phagocytic microglial-like cells and vertebrate microglia will be key to answering basic and translational questions related to cerebral innate immunity.

  2. Innate immunity underlies symbiotic relationships.

    Science.gov (United States)

    Kisseleva, E P

    2014-12-01

    Here, the modern data regarding interactions between normal microbiota and barrier tissues in plants, humans and animals are reviewed. The main homeostatic mechanisms responsible for interactions between epithelium and innate immune cells with symbiotic bacteria are described. A key step in this process is recognition of soluble microbial products by ligation to pattern-recognition receptors expressed on the host cells. As a result, epithelial cells secrete mucus, antibacterial peptides and immunoregulatory molecules. The main outcomes from immunological reactions towards symbiotic bacteria involve development of conditions for formation and maintenance of microbial biocenosis as well as providing safety for the host. Also, it is considered important to preserve and transfer beneficial bacteria to progeny. PMID:25716721

  3. Blurring Borders: Innate Immunity with Adaptive Features

    Directory of Open Access Journals (Sweden)

    K. Kvell

    2007-01-01

    Full Text Available Adaptive immunity has often been considered the penultimate of immune capacities. That system is now being deconstructed to encompass less stringent rules that govern its initiation, actual effector activity, and ambivalent results. Expanding the repertoire of innate immunity found in all invertebrates has greatly facilitated the relaxation of convictions concerning what actually constitutes innate and adaptive immunity. Two animal models, incidentally not on the line of chordate evolution (C. elegans and Drosophila, have contributed enormously to defining homology. The characteristics of specificity and memory and whether the antigen is pathogenic or nonpathogenic reveal considerable information on homology, thus deconstructing the more fundamentalist view. Senescence, cancer, and immunosuppression often associated with mammals that possess both innate and adaptive immunity also exist in invertebrates that only possess innate immunity. Strict definitions become blurred casting skepticism on the utility of creating rigid definitions of what innate and adaptive immunity are without considering overlaps.

  4. Innate immune activation in intestinal homeostasis.

    Science.gov (United States)

    Harrison, Oliver J; Maloy, Kevin J

    2011-01-01

    Loss of intestinal immune regulation leading to aberrant immune responses to the commensal microbiota are believed to precipitate the chronic inflammation observed in the gastrointestinal tract of patients with inflammatory bowel diseases (IBD), Crohn's disease and ulcerative colitis. Innate immune receptors that recognize conserved components derived from the microbiota are widely expressed by both epithelial cells and leucocytes of the gastrointestinal tract and play a key role in host protection from infectious pathogens; yet precisely how pathogenic and commensal microbes are distinguished is not understood. Furthermore, aberrant innate immune activation may also drive intestinal pathology, as patients with IBD exhibit extensive infiltration of innate immune cells to the inflamed intestine, and polymorphisms in many innate immunity genes influence susceptibility to IBD. Thus, a balanced interaction between the microbiota and innate immune activation is required to maintain a healthy mutualistic relationship between the microbiota and the host, which when disturbed can result in intestinal inflammation. PMID:21912101

  5. Crosstalk Between Reverse Cholesterol Transport and Innate Immunity

    OpenAIRE

    Azzam, Kathleen M.; Fessler, Michael B.

    2012-01-01

    Although lipid metabolism and host defense are widely considered to be very divergent disciplines, compelling evidence suggests that host cell handling of self- and microbe-derived (e.g., lipopolysaccharide) lipids may have common evolutionary roots, and that they indeed may be inseparable processes. The innate immune response and the homeostatic network controlling cellular sterol levels are now known to reciprocally regulate one another, with important implications for several common diseas...

  6. Identification and Validation of Ifit1 as an Important Innate Immune Bottleneck

    Energy Technology Data Exchange (ETDEWEB)

    McDermott, Jason E.; Vartanian, Keri B.; Mitchell, Hugh D.; Stevens, S.L.; Sanfilippo, Antonio P.; Stenzel-Poore, Mary

    2012-06-20

    The innate immune system plays important roles in a number of disparate processes. Foremost, innate immunity is a first responder to invasion by pathogens and triggers early defensive responses and recruits the adaptive immune system. The innate immune system also responds to endogenous damage signals that arise from tissue injury. Recently it has been found that innate immunity plays an important role in neuroprotection against ischemic stroke through the activation of the primary innate immune receptors, Toll-like receptors (TLRs). Using several large-scale transcriptomic data sets from mouse and mouse macrophage studies we identified targets predicted to be important in controlling innate immune processes initiated by TLR activation. Targets were identified as genes with high betweenness centrality, so-called bottlenecks, in networks inferred from statistical associations between gene expression patterns. A small set of putative bottlenecks were identified in each of the data sets investigated including interferon-stimulated genes (Ifit1, Ifi47, Tgtp and Oasl2) as well as genes uncharacterized in immune responses (Axud1 and Ppp1r15a). We further validated one of these targets, Ifit1, in mouse macrophages by showing that silencing it suppresses induction of predicted downstream genes by lipopolysaccharide (LPS)-mediated TLR4 activation through an unknown direct or indirect mechanism. Our study demonstrates the utility of network analysis for identification of interesting targets related to innate immune function, and highlights that Ifit1 can exert a positive regulatory effect on downstream genes.

  7. Genomic HIV RNA induces innate immune responses through RIG-I-dependent sensing of secondary-structured RNA

    NARCIS (Netherlands)

    Berg, R.K.; Melchjorsen, J.; Rintahaka, J.; Diget, E.; Søby, S.; Horan, K.A.; Gorelick, R.J.; Matikainen, S.; Larsen, C.S.; Ostergaard, L.; Paludan, S.R.; Mogensen, T.H.

    2012-01-01

    BACKGROUND: Innate immune responses have recently been appreciated to play an important role in the pathogenesis of HIV infection. Whereas inadequate innate immune sensing of HIV during acute infection may contribute to failure to control and eradicate infection, persistent inflammatory responses la

  8. [Innate immunity primary immunodeficiencies and infections].

    Science.gov (United States)

    Duchamp, M; Miot, C; Bustamante, J C; Picard, C

    2016-07-01

    The diagnosis of primary immunodeficiency diseases (PIDs) is important for the early and adaptive care of patients and their families. Among the various known PIDs, a number of them concern the innate immune system, which involve a set of cells and mechanisms involved in the host defense by a nonspecific and fast response. The majority of patients with innate immunity defects have a predisposition to one isolated type of infection (bacterial, viral, or fungal), dependent on the genetic defect involved. This article describes the different PIDs involving innate immunity and the immunological investigations allowing for their diagnosis. PMID:27266636

  9. Self-consuming innate immunity in Arabidopsis

    DEFF Research Database (Denmark)

    Hofius, Daniel; Mundy, John; Petersen, Morten

    2009-01-01

    . However, it has been unclear by which molecular mechanisms plants execute PCD during innate immune responses. We recently examined HR PCD in autophagy-deficient Arabidopsis knockout mutants (atg) and find that PCD conditioned by one class of plant innate immune receptors is suppressed in atg mutants....... Intriguingly, HR triggered by another class of immune receptors with different genetic requirements is not compromised, indicating that only a specific subset of immune receptors engage the autophagy pathway for HR execution. Thus, our work provides a primary example of autophagic cell death associated with...... innate immune responses in eukaryotes as well as of prodeath functions for the autophagy pathway in plants....

  10. Wired for behavior: from development to function of innate limbic system circuitry

    OpenAIRE

    Katie eSokolowski; Corbin, Joshua G.

    2012-01-01

    The limbic system of the brain regulates a number of behaviors that are essential for the survival of all vertebrate species including humans. The limbic system predominantly controls appropriate responses to stimuli with social, emotional or motivational salience, which includes innate behaviors such as mating, aggression and defense. Activation of circuits regulating these innate behaviors begins in the periphery with sensory stimulation (primarily via the olfactory system in rodents), and ...

  11. Deciphering the transcriptional switches of innate lymphoid cell programming: the right factors at the right time

    OpenAIRE

    Lim, Alfred W.Y.; McKenzie, Andrew N.J.

    2015-01-01

    Innate lymphoid cells (ILCs) are increasingly recognised as an innate immune counterpart of adaptive TH cells. In addition to their similar effector cytokine production, there is a strong parallel between the transcription factors that control the differentiation of TH1, TH2 and TH17 cells and ILC Groups 1, 2 and 3, respectively. Here, we review the transcriptional circuit that specifies the development of a common ILC progenitor and its subsequent programming into distinct ILC groups. Notch,...

  12. Loss of CARD9-mediated innate activation attenuates severe influenza pneumonia without compromising host viral immunity

    OpenAIRE

    Takayuki Uematsu; Ei’ichi Iizasa; Noritada Kobayashi; Hiroki Yoshida; Hiromitsu Hara

    2015-01-01

    Influenza virus (IFV) infection is a common cause of severe viral pneumonia associated with acute respiratory distress syndrome (ARDS), which is difficult to control with general immunosuppressive therapy including corticosteroids due to the unfavorable effect on viral replication. Studies have suggested that the excessive activation of the innate immunity by IFV is responsible for severe pathologies. In this study, we focused on CARD9, a signaling adaptor known to regulate innate immune acti...

  13. Innate intelligence: its origins and problems

    Science.gov (United States)

    Morgan, Lon

    1998-01-01

    Animal Magnetism and Radionics were among several occult practices used during the 19th century for the treatment of disease. D.D. Palmer was exposed to these teachings and derived many of his ideas about health from the folk medicine practices of his time. As a ‘magnetic healer’ Palmer believed he was correcting an undefined fifth force in the body that is otherwise unknown to science. Palmer believed he could influence this fifth force, termed Innate Intelligence, and that it was the explanation for the presence or absence of health. Today, Innate Intelligence remains an untestable enigma that isolates chiropractic and impedes its acceptance as a legitimate health science. The concept of Innate is derived directly from the occult practices of another era. It carries a high penalty in divisiveness and lack of logical coherence. The chiropractic profession must decide whether the concept of Innate should be retained.

  14. Innate B cells: oxymoron or validated concept?

    OpenAIRE

    Ware, Carl F.; Chris Benedict

    2012-01-01

    B lymphocytes promote the initial innate interferon response to viral pathogens without the need for antigen receptor activation. B cell dependent IFN production requires the cytokine, lymphotoxin-β. The LTβ pathway is well known to regulate lymphoid organogenesis and homeostasis by differentiating stromal cells and macrophages. However, in response to viral pathogens these same B cell-regulated populations rapidly produce type 1 interferons. Thus, B cells act as innate effector cells via LTβ...

  15. Innate Lymphoid Cells in the Skin

    OpenAIRE

    Kim, Brian S.

    2014-01-01

    Innate lymphoid cells (ILCs) are part of a heterogeneous family of innate immune cells with newly identified roles in mediating immunity, tissue homeostasis and pathologic inflammation. Here, we review recent studies delineating the roles of ILCs in the pathogenesis of multiple inflammatory skin disorders and their unique effector functions. Finally, we address how these studies have informed our understanding of the regulation of ILCs and the therapeutic potential of targeting these cells in...

  16. Trauma: the role of the innate immune system

    Directory of Open Access Journals (Sweden)

    Rijkers GT

    2006-05-01

    Full Text Available Abstract Immune dysfunction can provoke (multiple organ failure in severely injured patients. This dysfunction manifests in two forms, which follow a biphasic pattern. During the first phase, in addition to the injury by trauma, organ damage is caused by the immune system during a systemic inflammatory response. During the second phase the patient is more susceptible for sepsis due to host defence failure (immune paralysis. The pathophysiological model outlined in this review encompasses etiological factors and the contribution of the innate immune system in the end organ damage. The etiological factors can be divided into intrinsic (genetic predisposition and physiological status and extrinsic components (type of injury or "traumaload" and surgery or "intervention load". Of all the factors, the intervention load is the only one which, can be altered by the attending emergency physician. Adjustment of the therapeutic approach and choice of the most appropriate treatment strategy can minimize the damage caused by the immune response and prevent the development of immunological paralysis. This review provides a pathophysiological basis for the damage control concept, in which a staged approach of surgery and post-traumatic immunomonitoring have become important aspects of the treatment protocol. The innate immune system is the main objective of immunomonitoring as it has the most prominent role in organ failure after trauma. Polymorphonuclear phagocytes and monocytes are the main effector-cells of the innate immune system in the processes that lead to organ failure. These cells are controlled by cytokines, chemokines, complement factors and specific tissue signals. The contribution of tissue barrier integrity and its interaction with the innate immune system is further evaluated.

  17. Innate immunity against malaria parasites in Anopheles gambiae

    Institute of Scientific and Technical Information of China (English)

    Yang Chenand; Zhi-Hui Weng; Liangbiao Zheng

    2008-01-01

    Malaria continues to exert a huge toll in the world today, causing approximately 400 million cases and killing between 1-2 million people annually. Most of the malaria burden is borne by countries in Africa. For this reason, the major vector for malaria in this continent, Anopheles gambiae, is under intense study. With the completion of the draft sequence of this important vector, efforts are underway to develop novel control strategies.One promising area is to harness the power of the innate immunity of this mosquito species to block the transmission of the malaria parasites. Recent studies have demonstrated that Toll and Imd signaling pathways and other immunity-related genes (encoding proteins possibly function in recognition or as effector molecules) play significant roles in two different arms of innate immunity: level of infection intensity and melanization of Plasmodium oocysts.The challenges in the future are to understand how the functions of these different genes are coordinated in defense against malaria parasites, and if different arms of innate immunity are cross-regulated or coordinated.

  18. Vitally important - does early innate immunity predict recruitment and adult innate immunity?

    Science.gov (United States)

    Vermeulen, Anke; Müller, Wendt; Eens, Marcel

    2016-03-01

    The immune system is one of the most important adaptations that has evolved to protect animals from a wide range of pathogens they encounter from early life onwards. During the early developmental period this is particularly true for the innate immunity, as other components of the immune system are, as yet, poorly developed. But innate immunity may not only be crucial for early life survival, but may also have long-lasting effects, for example if early life immunity reflects the functioning of the immune system as a whole. For this reason, we investigated the importance of four constitutive innate immune parameters (natural antibodies, complement activity, concentrations of haptoglobin, and concentrations of nitric oxide) for recruitment in free-living great tits. We compared nestling immunity of recruits with nestling immunity of their nonrecruited siblings. We also investigated within individual consistency of these innate immune parameters for those individuals that recruited, which may be taken as a measure of immune capacity. In accordance with previous studies, we found a clear effect of tarsus length and a trend for body mass on the likelihood to recruit. Nevertheless, we found no evidence that higher levels of constitutive innate immunity as a nestling facilitated local recruitment. Furthermore, individual innate immunity was not consistent across life stages, that is to say, nestling immune parameters did not determine, or respectively, reflect adult innate immune parameters. This plasticity in innate immune components may explain why we did not find long-lasting survival benefits. PMID:26929818

  19. The transcription factor ATF7 mediates lipopolysaccharide-induced epigenetic changes in macrophages involved in innate immunological memory.

    Science.gov (United States)

    Yoshida, Keisuke; Maekawa, Toshio; Zhu, Yujuan; Renard-Guillet, Claire; Chatton, Bruno; Inoue, Kentaro; Uchiyama, Takeru; Ishibashi, Ken-ichi; Yamada, Takuji; Ohno, Naohito; Shirahige, Katsuhiko; Okada-Hatakeyama, Mariko; Ishii, Shunsuke

    2015-10-01

    Immunological memory is thought to be mediated exclusively by lymphocytes. However, enhanced innate immune responses caused by a previous infection increase protection against reinfection, which suggests the presence of innate immunological memory. Here we identified an important role for the stress-response transcription factor ATF7 in innate immunological memory. ATF7 suppressed a group of genes encoding factors involved in innate immunity in macrophages by recruiting the histone H3K9 dimethyltransferase G9a. Treatment with lipopolysaccharide, which mimics bacterial infection, induced phosphorylation of ATF7 via the kinase p38, which led to the release of ATF7 from chromatin and a decrease in repressive histone H3K9me2 marks. A partially disrupted chromatin structure and increased basal expression of target genes were maintained for long periods, which enhanced resistance to pathogens. ATF7 might therefore be important in controlling memory in cells of the innate immune system. PMID:26322480

  20. Symmetry is in the eye of the `beeholder': innate preference for bilateral symmetry in flower-naïve bumblebees

    Science.gov (United States)

    Rodríguez, Ivana; Gumbert, Andreas; Hempel de Ibarra, Natalie; Kunze, Jan; Giurfa, Martin

    Bilateral symmetry has been considered as an indicator of phenotypic and genotypic quality supporting innate preferences for highly symmetric partners. Insect pollinators preferentially visit flowers of a particular symmetry type, thus leading to the suggestion that they have innate preferences for symmetrical flowers or flower models. Here we show that flower-naïve bumblebees (Bombus terrestris), with no experience of symmetric or asymmetric patterns and whose visual experience was accurately controlled, have innate preferences for bilateral symmetry. The presence of color cues did not influence the bees' original preference. Our results thus show that bilateral symmetry is innately preferred in the context of food search, a fact that supports the selection of symmetry in flower displays. Furthermore, such innate preferences indicate that the nervous system of naïve animals may be primed to respond to relevant sensory cues in the environment.

  1. Two separate mechanisms of enforced viral replication balance innate and adaptive immune activation.

    Science.gov (United States)

    Shaabani, Namir; Khairnar, Vishal; Duhan, Vikas; Zhou, Fan; Tur, Rita Ferrer; Häussinger, Dieter; Recher, Mike; Tumanov, Alexei V; Hardt, Cornelia; Pinschewer, Daniel; Christen, Urs; Lang, Philipp A; Honke, Nadine; Lang, Karl S

    2016-02-01

    The induction of innate and adaptive immunity is essential for controlling viral infections. Limited or overwhelming innate immunity can negatively impair the adaptive immune response. Therefore, balancing innate immunity separately from activating the adaptive immune response would result in a better antiviral immune response. Recently, we demonstrated that Usp18-dependent replication of virus in secondary lymphatic organs contributes to activation of the innate and adaptive immune responses. Whether specific mechanisms can balance innate and adaptive immunity separately remains unknown. In this study, using lymphocytic choriomeningitis virus (LCMV) and replication-deficient single-cycle LCMV vectors, we found that viral replication of the initial inoculum is essential for activating virus-specific CD8(+) T cells. In contrast, extracellular distribution of virus along the splenic conduits is necessary for inducing systemic levels of type I interferon (IFN-I). Although enforced virus replication is driven primarily by Usp18, B cell-derived lymphotoxin beta contributes to the extracellular distribution of virus along the splenic conduits. Therefore, lymphotoxin beta regulates IFN-I induction independently of CD8(+) T-cell activity. We found that two separate mechanisms act together in the spleen to guarantee amplification of virus during infection, thereby balancing the activation of the innate and adaptive immune system. PMID:26553386

  2. Antimicrobial peptides in innate immune responses

    DEFF Research Database (Denmark)

    Sorensen, O.E.; Borregaard, N.; Cole, A.M.

    2008-01-01

    novo synthesis or by proteolytic cleavage from antimicrobially inactive proproteins. Studies of human diseases and animal studies have given important clues to the in vivo role of AMPs. It is now evident that dysregulation of the generation of AMPs in innate immune responses plays a role in certain......Antimicrobial peptides (AMPs) are ancient effector molecules in the innate immune response of eukaryotes. These peptides are important for the antimicrobial efficacy of phagocytes and for the innate immune response mounted by epithelia of humans and other mammals. AMPs are generated either by de...... diseases like Crohn's disease and atopic dermatitis. AMPs are attractive candidates for development of novel antibiotics due to their in vivo activity profile and some peptides may serve as templates for further drug development Udgivelsesdato: 2008...

  3. Group 2 innate lymphoid cells and asthma

    OpenAIRE

    Hiroki Kabata; Kazuyo Moro; Shigeo Koyasu; Koichiro Asano

    2015-01-01

    Group 2 innate lymphoid cells (ILC2s) are recently identified cell populations that produce type 2 cytokines such as IL-5 and IL-13 in response to epithelial cell-derived cytokines. Although ILC2s were initially reported to play a key role in the anti-helminth innate immunity, we now have greater interest in their role in asthma and other allergic diseases. In various asthma mouse models, ILC2s provoke eosinophilic inflammation accompanied by airway hyperresponsiveness independent of acquired...

  4. InnateDB: facilitating systems-level analyses of the mammalian innate immune response.

    Science.gov (United States)

    Lynn, David J; Winsor, Geoffrey L; Chan, Calvin; Richard, Nicolas; Laird, Matthew R; Barsky, Aaron; Gardy, Jennifer L; Roche, Fiona M; Chan, Timothy H W; Shah, Naisha; Lo, Raymond; Naseer, Misbah; Que, Jaimmie; Yau, Melissa; Acab, Michael; Tulpan, Dan; Whiteside, Matthew D; Chikatamarla, Avinash; Mah, Bernadette; Munzner, Tamara; Hokamp, Karsten; Hancock, Robert E W; Brinkman, Fiona S L

    2008-01-01

    Although considerable progress has been made in dissecting the signaling pathways involved in the innate immune response, it is now apparent that this response can no longer be productively thought of in terms of simple linear pathways. InnateDB (www.innatedb.ca) has been developed to facilitate systems-level analyses that will provide better insight into the complex networks of pathways and interactions that govern the innate immune response. InnateDB is a publicly available, manually curated, integrative biology database of the human and mouse molecules, experimentally verified interactions and pathways involved in innate immunity, along with centralized annotation on the broader human and mouse interactomes. To date, more than 3500 innate immunity-relevant interactions have been contextually annotated through the review of 1000 plus publications. Integrated into InnateDB are novel bioinformatics resources, including network visualization software, pathway analysis, orthologous interaction network construction and the ability to overlay user-supplied gene expression data in an intuitively displayed molecular interaction network and pathway context, which will enable biologists without a computational background to explore their data in a more systems-oriented manner. PMID:18766178

  5. GATA-3 Function in Innate and Adaptive Immunity.

    OpenAIRE

    Tindemans, Irma; Serafini, Nicolas; Di Santo, James P.; Hendriks, Rudi W

    2014-01-01

    : The zinc-finger transcription factor GATA-3 has received much attention as a master regulator of T helper 2 (Th2) cell differentiation, during which it controls interleukin-4 (IL-4), IL-5, and IL-13 expression. More recently, GATA-3 was shown to contribute to type 2 immunity through regulation of group 2 innate lymphoid cell (ILC2) development and function. Furthermore, during thymopoiesis, GATA-3 represses B cell potential in early T cell precursors, activates TCR signaling in pre-T cells,...

  6. Rainbow Trout Innate Immunity against Flavobacterium psychrophilum

    Science.gov (United States)

    Flavobacterium psychrophilum infection is associated with significant loss of rainbow trout production in the U.S. and other parts of the world. In 2005, a selective breeding program was initiated at the National Center for Cool and Cold Water Aquaculture to improve rainbow trout innate resistance ...

  7. Biliary Innate Immunity: Function and Modulation

    Directory of Open Access Journals (Sweden)

    Kenichi Harada

    2010-01-01

    Full Text Available Biliary innate immunity is involved in the pathogenesis of cholangiopathies in patients with primary biliary cirrhosis (PBC and biliary atresia. Biliary epithelial cells possess an innate immune system consisting of the Toll-like receptor (TLR family and recognize pathogen-associated molecular patterns (PAMPs. Tolerance to bacterial PAMPs such as lipopolysaccharides is also important to maintain homeostasis in the biliary tree, but tolerance to double-stranded RNA (dsRNA is not found. In PBC, CD4-positive Th17 cells characterized by the secretion of IL-17 are implicated in the chronic inflammation of bile ducts and the presence of Th17 cells around bile ducts is causally associated with the biliary innate immune responses to PAMPs. Moreover, a negative regulator of intracellular TLR signaling, peroxisome proliferator-activated receptor-γ (PPARγ, is involved in the pathogenesis of cholangitis. Immunosuppression using PPARγ ligands may help to attenuate the bile duct damage in PBC patients. In biliary atresia characterized by a progressive, inflammatory, and sclerosing cholangiopathy, dsRNA viruses are speculated to be an etiological agent and to directly induce enhanced biliary apoptosis via the expression of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL. Moreover, the epithelial-mesenchymal transition (EMT of biliary epithelial cells is also evoked by the biliary innate immune response to dsRNA.

  8. Innate lymphoid cells in inflammation and repair

    NARCIS (Netherlands)

    J.M. Munneke

    2016-01-01

    Innate lymphoid cells’ (ILC’s) zijn cellen met een lymfoïde morfologie, die anders dan T- en B-lymfocyten worden gekenmerkt door afwezigheid van antigeenspecifieke receptoren. Samen met ‘natural killer’ (NK)-cellen worden ze daarom tot het aangeboren (lymfocytaire) immuunsysteem gerekend. Zoals NK-

  9. The evolution of innate lymphoid cells.

    Science.gov (United States)

    Vivier, Eric; van de Pavert, Serge A; Cooper, Max D; Belz, Gabrielle T

    2016-06-21

    Innate lymphoid cells (ILCs) are the most recently discovered group of immune cells. Understanding their biology poses many challenges. We discuss here the current knowledge on the appearance of ILC subsets during evolution and propose how the connection between ILCs and T cells contributes to the robustness of immunity and hence to the fitness of the hosts. PMID:27328009

  10. The biology of human innate lymphoid cells

    NARCIS (Netherlands)

    J.H.J. Bernink

    2016-01-01

    In this thesis I performed studies to investigate the contribution of human innate lymphoid cells (ILCs) in maintaining the mucosal homeostasis, initiating and/or propagating inflammatory responses, but also - when not properly regulated - how these cells contribute to immunopathology. First I descr

  11. Adrenergic regulation of innate immunity: a review

    Directory of Open Access Journals (Sweden)

    Angela eScanzano

    2015-08-01

    Full Text Available The sympathetic nervous system has a major role in the brain-immune cross-talk, but few information exist on the sympathoadrenergic regulation of innate immune system.The aim of this review is to summarize available knowledge regarding the sympathetic modulation of the innate immune response, providing a rational background for the possible repurposing of adrenergic drugs as immunomodulating agents.The cells of immune system express adrenoceptors (AR, which represent the target for noradrenaline and adrenaline. In human neutrophils, adrenaline and noradrenaline inhibit migration, CD11b/CD18 expression, and oxidative metabolism, possibly through β-AR, although the role of α1- and α2-AR requires further investigation. Natural Killer express β-AR, which are usually inhibitory. Monocytes express β-AR and their activation is usually antiinflammatory. On murine Dentritic cells (DC, β-AR mediate sympathetic influence on DC-T cells interactions. In human DC β2-AR may affect Th1/2 differentiation of CD4+ T cells. In microglia and in astrocytes, β2-AR dysregulation may contribute to neuroinflammation in autoimmune and neurodegenerative disease.In conclusion, extensive evidence supports a critical role for adrenergic mechanisms in the regulation of innate immunity, in peripheral tissues as well as in the CNS. Sympathoadrenergic pathways in the innate immune system may represent novel antiinflammatory and immunomodulating targets with significant therapeutic potential.

  12. Copycat innate lymphoid cells dampen gut inflammation.

    OpenAIRE

    Magri, Giuliana; Cerutti, Andrea

    2015-01-01

    The mechanisms whereby the gut mucosa tolerates trillions of commensal bacteria without developing inflammation remain poorly understood. A recent Science article reveals that gut innate lymphoid cells constrain inflammatory T cell responses to commensal bacteria by adopting a strategy usually deployed by thymic epithelial cells to negatively select self-reactive T cells.

  13. Cytokine signaling in the differentiation of innate effector cells

    OpenAIRE

    Huang, Hua; Li, Yapeng; Qi, Xiaopeng

    2013-01-01

    Innate effector cells, including innate effector cells of myeloid and lymphoid lineages, are crucial components of various types of immune responses. Bone marrow progenitors differentiate into many subsets of innate effector cells after receiving instructional signals often provided by cytokines. Signal transducer and activator of transcription (STATs) have been shown to be essential in the differentiation of various types of innate effector cells. In this review, we focus specifically on the...

  14. Cigarette smoking and innate immunity

    OpenAIRE

    Scott David A

    2005-01-01

    Abstract Background We examined female sedentary smokers' additional cardiovascular disease (CVD) risk behaviors and their associations to smoking cessation. Methods This study was part of a randomized controlled trial testing the effectiveness of exercise and nicotine gum in smoking cessation. Included in the analyses were 148 participants. Dietary habits and alcohol consumption were measured as additional CVD risk behaviors. High-fat diet and heavy alcohol use were considered those risk beh...

  15. Universal expression and dual function of the atypical chemokine receptor D6 on innate-like B cells in mice

    OpenAIRE

    Hansell, Chris A H; Schiering, Chris; Kinstrie, Ross; Ford, Laura; Bordon, Yvonne; McInnes, Iain B; Goodyear, Carl S.; Nibbs, Robert J B

    2011-01-01

    Mouse innate-like B cells are a heterogeneous collection of multifunctional cells that control infection, play housekeeping roles, contribute to adaptive immunity, and suppress inflammation. We show that, amongst leukocytes, chemokine internalisation by the D6 receptor is a unique and universal feature of all known innate-like B cell populations and, to our knowledge, the most effective unifying marker of these cells. Moreover, we identify novel D6active B1 cell subsets, including those we te...

  16. Innate immunity in inflammatory bowel disease

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The human intestinal tract is home to an enormous bacterial flora. The host defense against microorganisms can be divided into innate and adaptive immunity. The former is the most immediate line of response to immunologic challenges presented by bacteria, viruses, and fungi. The mucosal immune system has evolved to balance the need to respond to pathogens while co-existing with commensal bacteria and food antigens. In inflammatory bowel disease (IBD), this hyporesponsiveness or tolerance breaks-down and inflammation supervenes driven by the intestinal microbial flora. Bacteria contain compounds and are recognized by a variety of receptors, including Toll-like receptors (TLRs) and NODs (a family of intracellular bacterial sensors) and are potent stimuli of innate immune responses. Several mutations in these receptors have been associated with development of IBD.

  17. CNS Remyelination and the Innate Immune System

    Science.gov (United States)

    McMurran, Christopher E.; Jones, Clare A.; Fitzgerald, Denise C.; Franklin, Robin J. M.

    2016-01-01

    A misguided inflammatory response is frequently implicated in myelin damage. Particularly prominent among myelin diseases, multiple sclerosis (MS) is an autoimmune condition, with immune–mediated damage central to its etiology. Nevertheless, a robust inflammatory response is also essential for the efficient regeneration of myelin sheaths after such injury. Here, we discuss the functions of inflammation that promote remyelination, and how these have been experimentally disentangled from the pathological facets of the immune response. We focus on the contributions that resident microglia and monocyte-derived macrophages make to remyelination and compare the roles of these two populations of innate immune cells. Finally, the current literature is framed in the context of developing therapies that manipulate the innate immune response to promote remyelination in clinical myelin disease. PMID:27200350

  18. The Role of Innate Immunity in Conditioning Mosquito Susceptibility to West Nile Virus

    Directory of Open Access Journals (Sweden)

    Abhishek N. Prasad

    2013-12-01

    Full Text Available Arthropod-borne viruses (arboviruses represent an emerging threat to human and livestock health globally. In particular, those transmitted by mosquitoes present the greatest challenges to disease control efforts. An understanding of the molecular basis for mosquito innate immunity to arbovirus infection is therefore critical to investigations regarding arbovirus evolution, virus-vector ecology, and mosquito vector competence. In this review, we discuss the current state of understanding regarding mosquito innate immunity to West Nile virus. We draw from the literature with respect to other virus-vector pairings to attempt to draw inferences to gaps in our knowledge about West Nile virus and relevant vectors.

  19. Respiratory epithelial cells orchestrate pulmonary innate immunity

    OpenAIRE

    Whitsett, Jeffrey A.; Alenghat, Theresa

    2014-01-01

    The epithelial surfaces of the lungs are in direct contact with the environment and are subjected to dynamic physical forces as airway tubes and alveoli are stretched and compressed during ventilation. Mucociliary clearance in conducting airways, reduction of surface tension in the alveoli, and maintenance of near sterility have been accommodated by the evolution of a multi-tiered innate host-defense system. The biophysical nature of pulmonary host defenses are integrated with the ability of ...

  20. Innate Immune Activation in Intestinal Homeostasis

    OpenAIRE

    Harrison, Oliver J.; Maloy, Kevin J.

    2011-01-01

    Loss of intestinal immune regulation leading to aberrant immune responses to the commensal microbiota are believed to precipitate the chronic inflammation observed in the gastrointestinal tract of patients with inflammatory bowel diseases (IBD), Crohn's disease and ulcerative colitis. Innate immune receptors that recognize conserved components derived from the microbiota are widely expressed by both epithelial cells and leucocytes of the gastrointestinal tract and play a key role in host prot...

  1. Iron in Innate Immunity: Starve the Invaders

    OpenAIRE

    Ganz, Tomas

    2009-01-01

    Iron is essential for nearly all living organisms. Innate immunity effectively restricts iron availability to microbial invaders. Some microbes have evolved effective countermeasures that blunt the effect of iron restriction. Recent epidemiologic studies have highlighted the potentiating effect of iron on microbial infections. Laboratory studies have focused on specific immune mechanisms that mediate iron withholding from microbes constitutively and in response to infections. Specialized infl...

  2. Prion Disease and the Innate Immune System

    Directory of Open Access Journals (Sweden)

    Barry M. Bradford

    2012-11-01

    Full Text Available Prion diseases or transmissible spongiform encephalopathies are a unique category of infectious protein-misfolding neurodegenerative disorders. Hypothesized to be caused by misfolding of the cellular prion protein these disorders possess an infectious quality that thrives in immune-competent hosts. While much has been discovered about the routing and critical components involved in the peripheral pathogenesis of these agents there are still many aspects to be discovered. Research into this area has been extensive as it represents a major target for therapeutic intervention within this group of diseases. The main focus of pathological damage in these diseases occurs within the central nervous system. Cells of the innate immune system have been proven to be critical players in the initial pathogenesis of prion disease, and may have a role in the pathological progression of disease. Understanding how prions interact with the host innate immune system may provide us with natural pathways and mechanisms to combat these diseases prior to their neuroinvasive stage. We present here a review of the current knowledge regarding the role of the innate immune system in prion pathogenesis.

  3. Complementarity and redundancy of IL-22-producing innate lymphoid cells.

    Science.gov (United States)

    Rankin, Lucille C; Girard-Madoux, Mathilde J H; Seillet, Cyril; Mielke, Lisa A; Kerdiles, Yann; Fenis, Aurore; Wieduwild, Elisabeth; Putoczki, Tracy; Mondot, Stanislas; Lantz, Olivier; Demon, Dieter; Papenfuss, Anthony T; Smyth, Gordon K; Lamkanfi, Mohamed; Carotta, Sebastian; Renauld, Jean-Christophe; Shi, Wei; Carpentier, Sabrina; Soos, Tim; Arendt, Christopher; Ugolini, Sophie; Huntington, Nicholas D; Belz, Gabrielle T; Vivier, Eric

    2016-02-01

    Intestinal T cells and group 3 innate lymphoid cells (ILC3 cells) control the composition of the microbiota and gut immune responses. Within the gut, ILC3 subsets coexist that either express or lack the natural cytoxicity receptor (NCR) NKp46. We identified here the transcriptional signature associated with the transcription factor T-bet-dependent differentiation of NCR(-) ILC3 cells into NCR(+) ILC3 cells. Contrary to the prevailing view, we found by conditional deletion of the key ILC3 genes Stat3, Il22, Tbx21 and Mcl1 that NCR(+) ILC3 cells were redundant for the control of mouse colonic infection with Citrobacter rodentium in the presence of T cells. However, NCR(+) ILC3 cells were essential for cecal homeostasis. Our data show that interplay between intestinal ILC3 cells and adaptive lymphocytes results in robust complementary failsafe mechanisms that ensure gut homeostasis. PMID:26595889

  4. Characterization of Aedes aegypti innate-immune pathways that limit Chikungunya virus replication.

    Directory of Open Access Journals (Sweden)

    Melanie McFarlane

    2014-07-01

    Full Text Available Replication of arboviruses in their arthropod vectors is controlled by innate immune responses. The RNA sequence-specific break down mechanism, RNA interference (RNAi, has been shown to be an important innate antiviral response in mosquitoes. In addition, immune signaling pathways have been reported to mediate arbovirus infections in mosquitoes; namely the JAK/STAT, immune deficiency (IMD and Toll pathways. Very little is known about these pathways in response to chikungunya virus (CHIKV infection, a mosquito-borne alphavirus (Togaviridae transmitted by aedine species to humans resulting in a febrile and arthralgic disease. In this study, the contribution of several innate immune responses to control CHIKV replication was investigated. In vitro experiments identified the RNAi pathway as a key antiviral pathway. CHIKV was shown to repress the activity of the Toll signaling pathway in vitro but neither JAK/STAT, IMD nor Toll pathways were found to mediate antiviral activities. In vivo data further confirmed our in vitro identification of the vital role of RNAi in antiviral defence. Taken together these results indicate a complex interaction between CHIKV replication and mosquito innate immune responses and demonstrate similarities as well as differences in the control of alphaviruses and other arboviruses by mosquito immune pathways.

  5. Autophagy, inflammation and innate immunity in inflammatory myopathies.

    Directory of Open Access Journals (Sweden)

    Cristina Cappelletti

    Full Text Available Autophagy has a large range of physiological functions and its dysregulation contributes to several human disorders, including autoinflammatory/autoimmune diseases such as inflammatory myopathies (IIMs. In order to better understand the pathogenetic mechanisms of these muscular disorders, we sought to define the role of autophagic processes and their relation with the innate immune system in the three main subtypes of IIM, specifically sporadic inclusion body myositis (sIBM, polymyositis (PM, dermatomyositis (DM and juvenile dermatomyositis (JDM. We found that although the mRNA transcript levels of the autophagy-related genes BECN1, ATG5 and FBXO32 were similar in IIM and controls, autophagy activation in all IIM subgroups was suggested by immunoblotting results and confirmed by immunofluorescence. TLR4 and TLR3, two potent inducers of autophagy, were highly increased in IIM, with TLR4 transcripts significantly more expressed in PM and DM than in JDM, sIBM and controls, and TLR3 transcripts highly up-regulated in all IIM subgroups compared to controls. Co-localization between autophagic marker, LC3, and TLR4 and TLR3 was observed not only in sIBM but also in PM, DM and JDM muscle tissues. Furthermore, a highly association with the autophagic processes was observed in all IIM subgroups also for some TLR4 ligands, endogenous and bacterial HSP60, other than the high-mobility group box 1 (HMGB1. These findings indicate that autophagic processes are active not only in sIBM but also in PM, DM and JDM, probably in response to an exogenous or endogenous 'danger signal'. However, autophagic activation and regulation, and also interaction with the innate immune system, differ in each type of IIM. Better understanding of these differences may lead to new therapies for the different IIM types.

  6. Respiratory epithelial cells orchestrate pulmonary innate immunity.

    Science.gov (United States)

    Whitsett, Jeffrey A; Alenghat, Theresa

    2015-01-01

    The epithelial surfaces of the lungs are in direct contact with the environment and are subjected to dynamic physical forces as airway tubes and alveoli are stretched and compressed during ventilation. Mucociliary clearance in conducting airways, reduction of surface tension in the alveoli, and maintenance of near sterility have been accommodated by the evolution of a multi-tiered innate host-defense system. The biophysical nature of pulmonary host defenses are integrated with the ability of respiratory epithelial cells to respond to and 'instruct' the professional immune system to protect the lungs from infection and injury. PMID:25521682

  7. Four Pathways Involving Innate Immunity in the Pathogenesis of Preeclampsia

    OpenAIRE

    Bounds, Kelsey R.; Newell-Rogers, M. Karen; Mitchell, Brett M.

    2015-01-01

    The maternal innate immune system plays an important role both in normal pregnancy as well as hypertensive disorders of pregnancy including preeclampsia (PE). We propose four pathways that involve excessive innate immunity that lead to most forms of PE. Pre-existing endothelial dysfunction plus pregnancy leads to an excessive innate immune response resulting in widespread inflammation, placental and renal dysfunction, vasoconstriction, and PE. Placental dysfunction due to shallow trophoblast ...

  8. Exposure - dependent effects of ethanol on the innate immune system

    OpenAIRE

    Goral, Joanna; Karavitis, John; Kovacs, Elizabeth J.

    2008-01-01

    Extensive evidence indicates that ethanol (alcohol) has immunomodulatory properties. Many of its effects on innate immune response are dose-dependent, with acute or moderate use associated with attenuated inflammatory responses, and heavy ethanol consumption linked with augmentation of inflammation. Ethanol may modify innate immunity via functional alterations of the cells of the innate immune system. Mounting evidence indicates that ethanol can diversely affect antigen recognition and intrac...

  9. HIV-1 evades innate immune recognition through specific cofactor recruitment

    OpenAIRE

    Jane Rasaiyaah; Choon Ping Tan; Fletcher, Adam J.; Price, Amanda J.; Caroline Blondeau; Laura Hilditch; Jacques, David A.; Selwood, David L.; James, Leo C.; Mahdad Noursadeghi; Towers, Greg J.

    2013-01-01

    Human immunodeficiency virus (HIV)-1 is able to replicate in primary human macrophages without stimulating innate immunity despite reverse transcription of genomic RNA into double-stranded DNA, an activity that might be expected to trigger innate pattern recognition receptors. We reasoned that if correctly orchestrated HIV-1 uncoating and nuclear entry is important for evasion of innate sensors then manipulation of specific interactions between HIV-1 capsid and host factors that putatively re...

  10. Sterile inflammation - do innate lymphoid cell subsets play a role?

    OpenAIRE

    Walsh, Patrick

    2012-01-01

    PUBLISHED The recent identification of several novel innate lymphoid cell (iLC) subsets has increased our understanding of the mechanisms which link the innate and adaptive immune systems. While the contribution of these subsets toward the pathogenesis of human disease remains largely to be determined, it seems likely that they will play a particularly important role in sterile inflammatory settings where the innate response is seen as a critical mediator of inflammation. Several recent st...

  11. In vivo dynamics of innate immune sentinels in the CNS

    OpenAIRE

    Nayak, Debasis; Zinselmeyer, Bernd H.; Corps, Kara N.; McGavern, Dorian B.

    2012-01-01

    The innate immune system is comprised of cellular sentinels that often serve as the first responders to injury and invading pathogens. Our basic understanding of innate immunity is derived from research conducted in peripheral lymphoid tissues. However, it is now recognized that most non-lymphoid tissues throughout the body are equipped with specialized innate immune cells that are uniquely adapted to the niches in which they reside. The central nervous system (CNS) is a particularly interest...

  12. Recognition Strategies of Group 3 Innate Lymphoid Cells

    OpenAIRE

    Killig, Monica; Glatzer, Timor; Romagnani, Chiara

    2014-01-01

    During the early phase of an inflammatory response, innate cells can use different strategies to sense environmental danger. These include the direct interaction of specific activating receptors with pathogen-encoded/danger molecules or the engagement of cytokine receptors by pro-inflammatory mediators produced by antigen presenting cells in the course of the infection. These general recognition strategies, which have been extensively described for innate myeloid cells, are shared by innate l...

  13. Role of group 3 innate lymphoid cells in antibody production

    OpenAIRE

    Magri, Giuliana; Cerutti, Andrea

    2015-01-01

    Innate lymphoid cells (ILCs) constitute a heterogeneous family of effector lymphocytes of the innate immune system that mediate lymphoid organogenesis, tissue repair, immunity and inflammation. The initial view that ILCs exert their protective functions solely during the innate phase of an immune response has been recently challenged by evidence indicating that ILCs shape adaptive immunity by establishing both contactdependent and contact-independent interactions with multiple ...

  14. Oxidative stress, innate immunity, and age-related macular degeneration

    Directory of Open Access Journals (Sweden)

    Wei Fan

    2016-05-01

    molecules, we have previously hypothesized that the tight homeostatic control of inflammation via the innate immune system is likely critical for avoidance of disease progression. However, the presence of a multitude of potential triggers of inflammation results in a sensitive balance in which perturbations thereof would subsequently alter the inflammatory state of the retina, leading to a state of chronic inflammation and pathologic progression. In this review, we will highlight the background literature surrounding the known genetic and environmental contributors to AMD risk, as well as a discussion of the potential mechanistic interplay of these factors that lead to disease pathogenesis with particular emphasis on the delicate control of inflammatory homeostasis and the centrality of the innate immune system in this process.

  15. Oxidative stress, innate immunity, and age-related macular degeneration

    Science.gov (United States)

    Shaw, Peter X.; Stiles, Travis; Douglas, Christopher; Ho, Daisy; Fan, Wei; Du, Hongjun; Xiao, Xu

    2016-01-01

    previously hypothesized that the tight homeostatic control of inflammation via the innate immune system is likely critical for avoidance of disease progression. However, the presence of a multitude of potential triggers of inflammation results in a sensitive balance in which perturbations thereof would subsequently alter the inflammatory state of the retina, leading to a state of chronic inflammation and pathologic progression. In this review, we will highlight the background literature surrounding the known genetic and environmental contributors to AMD risk, as well as a discussion of the potential mechanistic interplay of these factors that lead to disease pathogenesis with particular emphasis on the delicate control of inflammatory homeostasis and the centrality of the innate immune system in this process. PMID:27239555

  16. Innate Immune Function of TH2 Cells in vivo

    OpenAIRE

    Guo, Liying; Huang, Yuefeng; Chen, Xi; Hu-Li, Jane; Joseph F. Urban; Paul, William E.

    2015-01-01

    Type 2 helper T (TH) cells produce interleukin 13 (IL-13) when stimulated by papain or house dust mites (HDM) and induce eosinophilic inflammation. This innate response is dependent on IL-33 but not T cell antigen receptors (TCRs). While type 2 innate lymphoid cells (ILC2s) are the dominant innate producers of IL-13 in naïve animals, we show here that in helminth-infected mice, TH2 cell numbers increased and became major mediators of innate type II responses. TH2 cells made important contribu...

  17. Group 2 innate lymphoid cells and asthma.

    Science.gov (United States)

    Kabata, Hiroki; Moro, Kazuyo; Koyasu, Shigeo; Asano, Koichiro

    2015-07-01

    Group 2 innate lymphoid cells (ILC2s) are recently identified cell populations that produce type 2 cytokines such as IL-5 and IL-13 in response to epithelial cell-derived cytokines. Although ILC2s were initially reported to play a key role in the anti-helminth innate immunity, we now have greater interest in their role in asthma and other allergic diseases. In various asthma mouse models, ILC2s provoke eosinophilic inflammation accompanied by airway hyperresponsiveness independent of acquired immunity. Moreover, recent mouse studies show that ILC2s also promote acquired immunity and Th2 polarization, and various cytokines and lipid mediators influence the functions of ILC2s. Although ILC2s have also been identified in humans, studies on the role of human ILC2s in asthma are very limited. Thus far, human studies have shown that there is a slight difference in responsiveness and production of cytokines between mouse and human ILC2s, and it has been suggested that ILC2s are involved in allergic-type asthma and the exacerbation of asthma. In this review, we focus on mouse and human ILC2s, and discuss their role in asthma. PMID:26117253

  18. Innate immunomodulation to trypanosomatid parasite infections.

    Science.gov (United States)

    Dos-Santos, A L A; Carvalho-Kelly, L F; Dick, C F; Meyer-Fernandes, J R

    2016-08-01

    The recognition of invading pathogens by the innate immune system is essential for host protection against human parasites and the initiation of an effective adaptive immune response. Innate immune cells such as macrophages and dendritic cells (DCs) are involved in the first line of defense against protozoan parasites via sensing the invaders through pattern recognition receptors (PRRs), such as Toll-like receptors (TLRs). Activation of macrophages and dendritic cells starts with the interaction between microbial ligands (pathogen-associated molecular patterns - PAMPs) and PRRs, and these activated cells influence the overall immune response. Trypanosomatid PAMPs are sensed by TLRs; for example, TLR2 recognizes alkylacylglycerol and lipophosphoglycan in Trypanosoma cruzi and Leishmania, respectively; TLR2/TLR4 recognize glycoisnositolphospholipids and glycosylphosphatidyl inositol in Trypanosoma species; and TLR9 recognizes genomic DNA in Trypanosoma. TLR signaling includes the recruitment of different adaptor molecules that activate various transcription factors, such as NF-kB, IRF3/7, and MAP kinases, to induce the production of pro-inflammatory cytokines and type I interferons. Moreover, activated macrophages and dendritic cells produce ROS and NOS, which limit pathogen survival, and large amounts of cytokines; additionally, antigen presentation enhances the adaptive immune response. In this review, we highlight the recent findings on PAMP recognition in trypanosomatid infections and the signaling pathways activated by PRRs. PMID:27223816

  19. Group 2 innate lymphoid cells and asthma

    Directory of Open Access Journals (Sweden)

    Hiroki Kabata

    2015-07-01

    Full Text Available Group 2 innate lymphoid cells (ILC2s are recently identified cell populations that produce type 2 cytokines such as IL-5 and IL-13 in response to epithelial cell-derived cytokines. Although ILC2s were initially reported to play a key role in the anti-helminth innate immunity, we now have greater interest in their role in asthma and other allergic diseases. In various asthma mouse models, ILC2s provoke eosinophilic inflammation accompanied by airway hyperresponsiveness independent of acquired immunity. Moreover, recent mouse studies show that ILC2s also promote acquired immunity and Th2 polarization, and various cytokines and lipid mediators influence the functions of ILC2s. Although ILC2s have also been identified in humans, studies on the role of human ILC2s in asthma are very limited. Thus far, human studies have shown that there is a slight difference in responsiveness and production of cytokines between mouse and human ILC2s, and it has been suggested that ILC2s are involved in allergic-type asthma and the exacerbation of asthma. In this review, we focus on mouse and human ILC2s, and discuss their role in asthma.

  20. Wired for behavior: from development to function of innate limbic system circuitry

    Directory of Open Access Journals (Sweden)

    Katie eSokolowski

    2012-04-01

    Full Text Available The limbic system of the brain regulates a number of behaviors that are essential for the survival of all vertebrate species including humans. The limbic system predominantly controls appropriate responses to stimuli with social, emotional or motivational salience, which includes innate behaviors such as mating, aggression and defense. Activation of circuits regulating these innate behaviors begins in the periphery with sensory stimulation (primarily via the olfactory system in rodents, and is then processed in the brain by a set of delineated structures that primarily includes the amygdala and hypothalamus. While the basic neuroanatomy of these connections is well established, much remains unknown about how information is processed within innate circuits and how genetic hierarchies regulate development and function of these circuits. Utilizing innovative technologies including channel rhodopsin-based circuit manipulation and genetic manipulation in rodents, recent studies have begun to answer these central questions. In this article we review the current understanding of how limbic circuits regulate sexually dimorphism and how these circuits are established and shaped during pre- and post-natal development. We also discuss how understanding developmental processes of innate circuit formation may inform behavioral alterations observed in neurodevelopmental disorders, such as autism spectrum disorders, which are characterized by limbic system dysfunction.

  1. An innate antiviral pathway acting before interferons at epithelial surfaces

    DEFF Research Database (Denmark)

    Iversen, Marie B; Reinert, Line S; Thomsen, Martin K;

    2015-01-01

    we identify an innate antiviral pathway that works at epithelial surfaces before the IFNs. The pathway is activated independently of known innate sensors of viral infections through a mechanism dependent on viral O-linked glycans, which induce CXCR3 chemokines and stimulate antiviral activity in a...

  2. Innate B Cells Tell ILC How It's Done.

    Science.gov (United States)

    Nguyen, Trang T T; Baumgarth, Nicole

    2016-07-19

    Innate lymphoid cells (ILCs) are known as first responders to infections and as instructors of subsequent CD4(+) T cell cytokine profiles. In this issue of Immunity, Fan and colleagues now demonstrate that even earlier responding innate-like B cells (NKB) induce these protective ILC responses. PMID:27438761

  3. Role of Innate Lymphoid Cells in Lung Disease

    NARCIS (Netherlands)

    Marashian, SayedMehran; Mortaz, Esmaeil; Jamaati, HamidReza; Alavi-Moghaddam, Mostafa; Kiani, Arda; Abedini, Atefeh; Garssen, Johan; M Adcock, Ian; Velayati, AliAkbar

    2015-01-01

    Innate lymphoid cells (ILCs) are identified as novel population of hematopoietic cells which protect the body by coordinating the innate immune response against a wide range of threats including infections, tissue damages and homeostatic disturbances. ILCs, particularly ILC2 cells, are found through

  4. Innate immunological function of TH2 cells in vivo

    Science.gov (United States)

    Th2 cells produce IL-13 when stimulated by papain or house dust mites (HDM) and induce eosinophilic inflammation. This innate response of cells of the adaptive immune system is dependent on IL-33-, not T cell receptor-, based stimulation. While type 2 innate lymphoid cells (ILC2s) are the dominant ...

  5. Rotavirus Antagonism of the Innate Immune Response

    Directory of Open Access Journals (Sweden)

    Michelle M. Arnold

    2009-11-01

    Full Text Available Rotavirus is a primary cause of severe dehydrating gastroenteritis in infants and young children. The virus is sensitive to the antiviral effects triggered by the interferon (IFN-signaling pathway, an important component of the host cell innate immune response. To counteract these effects, rotavirus encodes a nonstructural protein (NSP1 that induces the degradation of proteins involved in regulating IFN expression, such as members of the IFN regulatory factor (IRF family. In some instances, NSP1 also subverts IFN expression by causing the degradation of a component of the E3 ubiquitin ligase complex responsible for activating NF-κB. By antagonizing multiple components of the IFN-induction pathway, NSP1 aids viral spread and contributes to rotavirus pathogenesis.

  6. Innate immunity in Drosophila: Pathogens and pathways

    Institute of Scientific and Technical Information of China (English)

    Shubha Govind

    2008-01-01

    Following in the footsteps of traditional developmental genetics, research over the last 15 years has shown that innate immunity against bacteria and fungi is governed largely by two NF-κB signal transduction pathways, Toll and IMD. Antiviral immunity appears to stem from RNA interference, whereas resistance against parasitoids is conferred by Toll signaling. The identification of these post-transcriptional regulatory mechanisms and the annotation of most Drosophila immunity genes have derived from functional genomic studies using "model" pathogens, intact animals and cell lines. The D. melanogaster host has thus provided the core information that can be used to study responses to natural microbial and metazoan pathogens as they become identified, as well as to test ideas of selection and evolutionary change. These analyses are of general importance to understanding mechanisms of other insect host-pathogen interactions and determinants of variation in host resistance.

  7. Innate immune response development in nestling tree swallows

    Science.gov (United States)

    Stambaugh, T.; Houdek, B.J.; Lombardo, M.P.; Thorpe, P.A.; Caldwell, Hahn D.

    2011-01-01

    We tracked the development of innate immunity in nestling Tree Swallows (Tachycineta bicolor) and compared it to that of adults using blood drawn from nestlings during days 6, 12, and 18 of the ???20-day nestling period and from adults. Innate immunity was characterized using an in vitro assay of the ability of whole blood to kill Escherichia coli. The ability of whole blood to kill E. coli increased as nestlings matured. Neither this component of innate immunity nor right wing chord length on day18 were as developed as in adults indicating that development of the innate immune system and growth both continued after fledging. Narrow sense heritability analyses suggest that females with strong immune responses produced nestlings with strong immune responses. These data suggest nestling Tree Swallows allocated sufficient energy to support rapid growth to enable fledging by day 18, but that further development of innate immunity occurred post-fledging. ?? 2011 by the Wilson Ornithological Society.

  8. DMPD: Role of phosphoinositide 3-kinase in innate immunity. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17827709 Role of phosphoinositide 3-kinase in innate immunity. Hazeki K, Nigorikawa...sitide 3-kinase in innate immunity. PubmedID 17827709 Title Role of phosphoinositide 3-kinase in innate immunity

  9. Innate immune defences in the human endometrium

    Directory of Open Access Journals (Sweden)

    Kelly Rodney W

    2003-11-01

    Full Text Available Abstract The human endometrium is an important site of innate immune defence, giving protection against uterine infection. Such protection is critical to successful implantation and pregnancy. Infection is a major cause of preterm birth and can also cause infertility and ectopic pregnancy. Natural anti-microbial peptides are key mediators of the innate immune system. These peptides, between them, have anti-bacterial, anti-fungal and anti-viral activity and are expressed at epithelial surfaces throughout the female genital tract. Two families of natural anti-microbials, the defensins and the whey acidic protein (WAP motif proteins, appear to be prominent in endometrium. The human endometrial epithelium expresses beta-defensins 1–4 and the WAP motif protein, secretory leukocyte protease inhibitor. Each beta-defensin has a different expression profile in relation to the stage of the menstrual cycle, providing potential protection throughout the cycle. Secretory leukocyte protease inhibitor is expressed during the secretory phase of the cycle and has a range of possible roles including anti-protease and anti-microbial activity as well as having effects on epithelial cell growth. The leukocyte populations in the endometrium are also a source of anti-microbial production. Neutrophils are a particularly rich source of alpha-defensins, lactoferrin, lysozyme and the WAP motif protein, elafin. The presence of neutrophils during menstruation will enhance anti-microbial protection at a time when the epithelial barrier is disrupted. Several other anti-microbials including the natural killer cell product, granulysin, are likely to have a role in endometrium. The sequential production of natural anti-microbial peptides by the endometrium throughout the menstrual cycle and at other sites in the female genital tract will offer protection from many pathogens, including those that are sexually transmitted.

  10. Cloning Changes the Response to Obesity of Innate Immune Factors in Blood, Liver, and Adipose Tissues in Domestic Pigs

    DEFF Research Database (Denmark)

    Højbøge, Tina Rødgaard; Skovgaard, Kerstin; Stagsted, Jan;

    2013-01-01

    upregulation and downregulation were observed in the controls. Cloning resulted in a less differentiated adipose tissue expression pattern. Finally, the serum concentrations of two acute-phase proteins (APPs), haptoglobin (HP) and orosomucoid (ORM), were increased in obese clones as compared to obese controls......The objective of this study was to evaluate the usefulness of cloned pigs as porcine obesity models reflecting obesity-associated changes in innate immune factor gene expression profiles. Liver and adipose tissue expression of 43 innate immune genes as well as serum concentrations of six immune...

  11. Antigen-specific interferon-gamma responses and innate cytokine balance in TB-IRIS.

    Directory of Open Access Journals (Sweden)

    Odin Goovaerts

    Full Text Available BACKGROUND: Tuberculosis-associated immune reconstitution inflammatory syndrome (TB-IRIS remains a poorly understood complication in HIV-TB patients receiving antiretroviral therapy (ART. TB-IRIS could be associated with an exaggerated immune response to TB-antigens. We compared the recovery of IFNγ responses to recall and TB-antigens and explored in vitro innate cytokine production in TB-IRIS patients. METHODS: In a prospective cohort study of HIV-TB co-infected patients treated for TB before ART initiation, we compared 18 patients who developed TB-IRIS with 18 non-IRIS controls matched for age, sex and CD4 count. We analyzed IFNγ ELISpot responses to CMV, influenza, TB and LPS before ART and during TB-IRIS. CMV and LPS stimulated ELISpot supernatants were subsequently evaluated for production of IL-12p70, IL-6, TNFα and IL-10 by Luminex. RESULTS: Before ART, all responses were similar between TB-IRIS patients and non-IRIS controls. During TB-IRIS, IFNγ responses to TB and influenza antigens were comparable between TB-IRIS patients and non-IRIS controls, but responses to CMV and LPS remained significantly lower in TB-IRIS patients. Production of innate cytokines was similar between TB-IRIS patients and non-IRIS controls. However, upon LPS stimulation, IL-6/IL-10 and TNFα/IL-10 ratios were increased in TB-IRIS patients compared to non-IRIS controls. CONCLUSION: TB-IRIS patients did not display excessive IFNγ responses to TB-antigens. In contrast, the reconstitution of CMV and LPS responses was delayed in the TB-IRIS group. For LPS, this was linked with a pro-inflammatory shift in the innate cytokine balance. These data are in support of a prominent role of the innate immune system in TB-IRIS.

  12. The Enemy within: Innate Surveillance-Mediated Cell Death, the Common Mechanism of Neurodegenerative Disease

    Science.gov (United States)

    Richards, Robert I.; Robertson, Sarah A.; O'Keefe, Louise V.; Fornarino, Dani; Scott, Andrew; Lardelli, Michael; Baune, Bernhard T.

    2016-01-01

    Neurodegenerative diseases comprise an array of progressive neurological disorders all characterized by the selective death of neurons in the central nervous system. Although, rare (familial) and common (sporadic) forms can occur for the same disease, it is unclear whether this reflects several distinct pathogenic pathways or the convergence of different causes into a common form of nerve cell death. Remarkably, neurodegenerative diseases are increasingly found to be accompanied by activation of the innate immune surveillance system normally associated with pathogen recognition and response. Innate surveillance is the cell's quality control system for the purpose of detecting such danger signals and responding in an appropriate manner. Innate surveillance is an “intelligent system,” in that the manner of response is relevant to the magnitude and duration of the threat. If possible, the threat is dealt with within the cell in which it is detected, by degrading the danger signal(s) and restoring homeostasis. If this is not successful then an inflammatory response is instigated that is aimed at restricting the spread of the threat by elevating degradative pathways, sensitizing neighboring cells, and recruiting specialized cell types to the site. If the danger signal persists, then the ultimate response can include not only the programmed cell death of the original cell, but the contents of this dead cell can also bring about the death of adjacent sensitized cells. These responses are clearly aimed at destroying the ability of the detected pathogen to propagate and spread. Innate surveillance comprises intracellular, extracellular, non-cell autonomous and systemic processes. Recent studies have revealed how multiple steps in these processes involve proteins that, through their mutation, have been linked to many familial forms of neurodegenerative disease. This suggests that individuals harboring these mutations may have an amplified response to innate

  13. Interleukin-21 receptor signalling is important for innate immune protection against HSV-2 infections.

    Directory of Open Access Journals (Sweden)

    Sine K Kratholm

    Full Text Available Interleukin (IL -21 is produced by Natural Killer T (NKT cells and CD4(+ T cells and is produced in response to virus infections, where IL-21 has been shown to be essential in adaptive immune responses. Cells from the innate immune system such as Natural Killer (NK cells and macrophages are also important in immune protection against virus. These cells express the IL-21 receptor (IL-21R and respond to IL-21 with increased cytotoxicity and cytokine production. Currently, however it is not known whether IL-21 plays a significant role in innate immune responses to virus infections. The purpose of this study was to investigate the role of IL-21 and IL-21R in the innate immune response to a virus infection. We used C57BL/6 wild type (WT and IL-21R knock out (KO mice in a murine vaginal Herpes Simplex Virus type 2 (HSV-2 infection model to show that IL-21 - IL-21R signalling is indeed important in innate immune responses against HSV-2. We found that the IL-21R was expressed in the vaginal epithelium in uninfected (u.i WT mice, and expression increased early after HSV-2 infection. IL-21R KO mice exhibited increased vaginal viral titers on day 2 and 3 post infection (p.i. and subsequently developed significantly higher disease scores and a lower survival rate compared to WT mice. In addition, WT mice infected with HSV-2 receiving intra-vaginal pre-treatment with murine recombinant IL-21 (mIL-21 had decreased vaginal viral titers on day 2 p.i., significantly lower disease scores, and a higher survival rate compared to infected untreated WT controls. Collectively our data demonstrate the novel finding that the IL-21R plays a critical role in regulating innate immune responses against HSV-2 infection.

  14. New Players in the Same Old Game: Disturbance of Group 2 Innate Lymphoid Cells in HIV-1 and Mycobacterium leprae Co-infected Patients.

    Directory of Open Access Journals (Sweden)

    Pedro Henrique Papotto

    Full Text Available Leprosy control is achieved through a fine-tuning of TH1 and TH2 immune response pattern balance. Given the increasing epidemiological overlay of HIV and M. leprae infections, immune response in co-infected patients consists in an important contemporary issue. Here we describe for the first time the innate lymphoid cells compartment in peripheral blood of leprosy and HIV/M. leprae co-infected patients, and show that co-infection increases group 2 innate lymphoid whilst decreasing group 1 innate lymphoid cells frequencies and function.

  15. Emerging complexity and new roles for the RIG-I-like receptors in innate antiviral immunity

    Institute of Scientific and Technical Information of China (English)

    John; S.Errett; Michael; Gale; Jr.

    2015-01-01

    Innate immunity is critical for the control of virus infection and operates to restrict viral susceptibility and direct antiviral immunity for protection from acute or chronic viral-associated diseases including cancer. RIG-I like receptors(RLRs) are cytosolic RNA helicases that function as pathogen recognition receptors to detect RNA pathogen associated molecular patterns(PAMPs) of virus infection. The RLRs include RIG-I, MDA5, and LGP2. They function to recognize and bind to PAMP motifs within viral RNA in a process that directs the RLR to trigger downstream signaling cascades that induce innate immunity that controls viral replication and spread. Products of RLR signaling also serve to modulate the adaptive immune response to infection. Recent studies have additionally connected RLRs to signaling cascades that impart inflammatory and apoptotic responses to virus infection. Viral evasion of RLR signaling supports viral outgrowth and pathogenesis, including the onset of viral-associated cancer.

  16. Dissociation of Innate Immune Responses in Microglia Infected with Listeria monocytogenes

    OpenAIRE

    Frande-Cabanes, Elisabet; Fernandez-Prieto, Lorena; Calderon-Gonzalez, Ricardo; Rodríguez-Del Río, Estela; Yañez-Diaz, Sonsoles; López-Fanarraga, Monica; Alvarez-Domínguez, Carmen

    2013-01-01

    Microglia, the innate immune cells of the brain, plays a central role in cerebral listeriosis. Here, we present evidence that microglia control Listeria infection differently than macrophages. Infection of primary microglial cultures and murine cell lines with Listeria resulted in a dual function of the two gene expression programmes involved in early and late immune responses in macrophages. Whereas the bacterial gene hly seems responsible for both transcriptional programmes in macrophages, ...

  17. Profiling Carbohydrate-Receptor Interaction with Recombinant Innate Immunity Receptor-Fc Fusion Proteins*

    OpenAIRE

    Hsu, Tsui-Ling; Cheng, Shih-Chin; Yang, Wen-Bin; Chin, See-Wen; Bo-hua CHEN; Huang, Ming-Ting; Hsieh, Shie-Liang; Wong, Chi-Huey

    2009-01-01

    The recognition of bacteria, viruses, fungi, and other microbes is controlled by host immune cells, which are equipped with many innate immunity receptors, such as Toll-like receptors, C-type lectin receptors, and immunoglobulin-like receptors. Our studies indicate that the immune modulating properties of many herbal drugs, for instance, the medicinal fungus Reishi (Ganoderma lucidum) and Cordyceps sinensis, could be attributed to their polysaccharide components. These polysaccharides specifi...

  18. Induction of Innate Immune Genes in Brain Create the Neurobiology of Addiction

    OpenAIRE

    Crews, FT; Zou, Jian; Qin, Liya

    2011-01-01

    Addiction occurs through repeated abuse of drugs that progressively reduce behavioral control and cognitive flexibility while increasing limbic negative emotion. Recent discoveries indicate neuroimmune signaling underlies addiction and co-morbid depression. Low threshold microglia undergo progressive stages of innate immune activation involving astrocytes and neurons with repeated drug abuse, stress, and/or cell damage signals. Increased brain NF-κB transcription of proinflammatory chemokines...

  19. Gliadin Peptides as Triggers of the Proliferative and Stress/Innate Immune Response of the Celiac Small Intestinal Mucosa

    Directory of Open Access Journals (Sweden)

    Maria Vittoria Barone

    2014-11-01

    Full Text Available Celiac disease (CD is a frequent inflammatory intestinal disease, with a genetic background, caused by gliadin-containing food. Undigested gliadin peptides induce innate and adaptive T cell-mediated immune responses. The major mediator of the stress and innate immune response to gliadin peptides (i.e., peptide 31–43, P31–43 is the cytokine interleukin-15 (IL-15. The role of epithelial growth factor (EGF as a mediator of enterocyte proliferation and the innate immune response has been described. In this paper, we review the most recent literature on the mechanisms responsible for triggering the up-regulation of these mediators in CD by gliadin peptides. We will discuss the role of P31–43 in enterocyte proliferation, structural changes and the innate immune response in CD mucosa in cooperation with EGF and IL-15, and the mechanism of up-regulation of these mediators related to vesicular trafficking. We will also review the literature that focuses on constitutive alterations of the structure, signalling/proliferation and stress/innate immunity pathways of CD cells. Finally, we will discuss how these pathways can be triggered by gliadin peptide P31–43 in controls, mimicking the celiac cellular phenotype.

  20. Innate lymphoid cells in secondary lymphoid organs.

    Science.gov (United States)

    Bar-Ephraïm, Yotam E; Mebius, Reina E

    2016-05-01

    The family of innate lymphoid cells (ILCs) has attracted attention in recent years as its members are important regulators of immunity, while they can also cause pathology. In both mouse and man, ILCs were initially discovered in developing lymph nodes as lymphoid tissue inducer (LTi) cells. These cells form the prototypic members of the ILC family and play a central role in the formation of secondary lymphoid organs (SLOs). In the absence of LTi cells, lymph nodes (LN) and Peyer's Patches (PP) fail to form in mice, although the splenic white pulp can develop normally. Besides LTi cells, the ILC family encompasses helper-like ILCs with functional distinctions as seen by T-helper cells, as well as cytotoxic natural killer (NK) cells. ILCs are still present in adult SLOs where they have been shown to play a role in lymphoid tissue regeneration. Furthermore, ILCs were implicated to interact with adaptive lymphocytes and influence the adaptive immune response. Here, we review the recent literature on the role of ILCs in secondary lymphoid tissue from the formation of SLOs to mature SLOs in adults, during homeostasis and pathology. PMID:27088915

  1. Characterization of gene expression regulated by human OTK18 using Drosophila melanogaster as a model system for innate immunity

    Indian Academy of Sciences (India)

    Cole R. Spresser; Sarah E. Marshall; Kimberly A. Carlson

    2008-08-01

    OTK18 is a human transcriptional suppressor implicated in the regulation of human immunodeficiency virus type-one infection of mononuclear phagocytes. It is ubiquitously expressed in all normal tissues, but its normal homeostatic function is yet to be characterized. One hypothesis is that OTK18 aids in the regulation of the innate immune system. To test this hypothesis, cDNA microarray analysis was performed on the total RNA extracted from Drosophila melanogaster embryonic Schneider 2 (S2) cells transfected with either pEGFP-OTK18 (enhanced green fluorescent protein) or empty vector controls (pEGFP-N3) for 6, 12 and 24 h. cDNA microarray analysis revealed differential expression of genes known to be important in regulation of Drosophila innate immunity. The expression levels of two genes, Metchnikowin and CG16708 were verified by quantitative real-time reverse transcription PCR. These results suggest a role for OTK18 in innate immunity.

  2. Testicular defense systems: immune privilege and innate immunity.

    Science.gov (United States)

    Zhao, Shutao; Zhu, Weiwei; Xue, Shepu; Han, Daishu

    2014-09-01

    The mammalian testis possesses a special immunological environment because of its properties of remarkable immune privilege and effective local innate immunity. Testicular immune privilege protects immunogenic germ cells from systemic immune attack, and local innate immunity is important in preventing testicular microbial infections. The breakdown of local testicular immune homeostasis may lead to orchitis, an etiological factor of male infertility. The mechanisms underlying testicular immune privilege have been investigated for a long time. Increasing evidence shows that both a local immunosuppressive milieu and systemic immune tolerance are involved in maintaining testicular immune privilege status. The mechanisms underlying testicular innate immunity are emerging based on the investigation of the pattern recognition receptor-mediated innate immune response in testicular cells. This review summarizes our current understanding of testicular defense mechanisms and identifies topics that merit further investigation. PMID:24954222

  3. Xenobiotic Receptor-Mediated Regulation of Intestinal Barrier Function and Innate Immunity

    Directory of Open Access Journals (Sweden)

    Harmit S. Ranhotra

    2016-07-01

    Full Text Available The molecular basis for the regulation of the intestinal barrier is a very fertile research area. A growing body of knowledge supports the targeting of various components of intestinal barrier function as means to treat a variety of diseases, including the inflammatory bowel diseases. Herein, we will summarize the current state of knowledge of key xenobiotic receptor regulators of barrier function, highlighting recent advances, such that the field and its future are succinctly reviewed. We posit that these receptors confer an additional dimension of host-microbe interaction in the gut, by sensing and responding to metabolites released from the symbiotic microbiota, in innate immunity and also in host drug metabolism. The scientific evidence for involvement of the receptors and its molecular basis for the control of barrier function and innate immunity regulation would serve as a rationale towards development of non-toxic probes and ligands as drugs.

  4. Characterization and Quantification of Innate Lymphoid Cell Subsets in Human Lung.

    Directory of Open Access Journals (Sweden)

    Katrien C De Grove

    Full Text Available Innate lymphoid cells (ILC are a new family of innate immune cells that have emerged as important regulators of tissue homeostasis and inflammation. However, limited data are available concerning the relative abundance and characteristics of ILC in the human lung.The aim of this study was to characterize and enumerate the different ILC subsets in human lung by multi-color flow cytometry.Within the CD45+ Lin- CD127+ pulmonary ILC population, we identified group 1 (ILC1, group 2 (ILC2 and group 3 (ILC3 innate lymphoid cells using specific surface markers (i.e. IL12Rβ2, CRTH2 and CD117 respectively and key transcription factors (i.e. T-bet, GATA-3 and RORγT respectively. Based on the presence of NKp44, ILC3 were further subdivided in natural cytotoxicity receptor (NCR+ and NCR- ILC3. In addition, we demonstrated the production of signature cytokines IFN-γ, IL-5, IL-17A, IL-22 and GM-CSF in the pulmonary ILC population. Interestingly, we observed a tendency to a higher frequency of NCR- ILC3 in lungs of patients with chronic obstructive pulmonary disease (COPD compared with controls.We show that the three main ILC subsets are present in human lung. Importantly, the relative abundance of ILC subsets tended to change in COPD patients in comparison to control individuals.

  5. [Stimulation of the antiviral innate immune response by pyrimidine biosynthesis inhibitors: a surprise of phenotypic screening].

    Science.gov (United States)

    Vidalain, Pierre-Olivier; Lucas-Hourani, Marianne; Helynck, Olivier; Tangy, Frédéric; Munier-Lehmann, Hélène

    2015-01-01

    RNA viruses are responsible for major human diseases such as flu, bronchitis, dengue, hepatitis C or measles. They also represent an emerging threat because of increased worldwide exchanges and human populations penetrating more and more natural ecosystems. Recent progresses in our understanding of cellular pathways controlling viral replication suggest that compounds targeting host cell functions, rather than the virus itself, could inhibit a large panel of RNA viruses. In particular, several academic laboratories and private companies are now seeking molecules that stimulate the host innate antiviral response. One appealing strategy is to identify molecules that induce the large cluster of antiviral genes known as Interferon-Stimulated Genes (ISGs). To reach this goal, we have developed a phenotypic assay based on human cells transfected with a luciferase reporter gene under control of an interferon-stimulated response element (ISRE). This system was used in a high-throughput screening of chemical libraries comprising around 54,000 compounds. Among validated hits, compound DD264 was shown to boost the innate immune response in cell cultures, and displayed a broad-spectrum antiviral activity. While deciphering its mode of action, DD264 was found to target the fourth enzyme of de novo pyrimidine biosynthesis, namely the dihydroorotate dehydrogenase (DHODH). Thus, our data unraveled a yet unsuspected link between pyrimidine biosynthesis and the innate antiviral response. PMID:25658737

  6. Trappin-2/Elafin Modulate Innate Immune Responses of Human Endometrial Epithelial Cells to PolyI∶C

    OpenAIRE

    Drannik, Anna G.; Kakon Nag; Xiao-Dan Yao; Henrick, Bethany M.; Jean-Michel Sallenave; Rosenthal, Kenneth L

    2012-01-01

    BACKGROUND: Upon viral recognition, innate and adaptive antiviral immune responses are initiated by genital epithelial cells (ECs) to eradicate or contain viral infection. Such responses, however, are often accompanied by inflammation that contributes to acquisition and progression of sexually transmitted infections (STIs). Hence, interventions/factors enhancing antiviral protection while reducing inflammation may prove beneficial in controlling the spread of STIs. Serine antiprotease trappin...

  7. Testicular defense systems: immune privilege and innate immunity

    OpenAIRE

    Zhao, Shutao; Zhu, Weiwei; Xue, Shepu; Han, Daishu

    2014-01-01

    The mammalian testis possesses a special immunological environment because of its properties of remarkable immune privilege and effective local innate immunity. Testicular immune privilege protects immunogenic germ cells from systemic immune attack, and local innate immunity is important in preventing testicular microbial infections. The breakdown of local testicular immune homeostasis may lead to orchitis, an etiological factor of male infertility. The mechanisms underlying testicular immune...

  8. The Innate Immune-Related Genes in Catfish

    OpenAIRE

    Weidong Liu; Xianggang Gao; Yunfeng Li; Hao Su; Xueguang Liu; Chongbo He; Lei Gao

    2012-01-01

    Catfish is one of the most important aquaculture species in America (as well as in Asia and Africa). In recent years, the production of catfish has suffered massive financial losses due to pathogen spread and breakouts. Innate immunity plays a crucial role in increasing resistance to pathogenic organisms and has generated increasing interest in the past few years. This review summarizes the current understanding of innate immune-related genes in catfish, including pattern recognition receptor...

  9. Innate Lymphoid Cells: Roles In Tumour Genesis And Progression

    OpenAIRE

    Jovanovic Ivan; Gajovic Nevena; Radosavljevic Gordana; Pantic Jelena; Pejnovic Nada; Arsenijevic Nebojsa; Lukic Miodrag L.

    2015-01-01

    Innate lymphoid cells (ILCs) represent the most recently identified members of the innate immune system. These cells play important roles in inflammation, tissue remodelling and metabolic disease. ILCs can be subdivided into three major groups according to their cytokine production. The role of ILCs in tumourigenesis and tumour progression is not completely clarified. In this review, we discuss whether and how ILCs are involved in tumour genesis, growth and metastasis.

  10. Diversity, function, and transcriptional regulation of gut innate lymphocytes

    OpenAIRE

    Rankin, Lucille; Groom, Joanna; Mielke, Lisa A.; Seillet, Cyril; Belz, Gabrielle T.

    2013-01-01

    The innate immune system plays a critical early role in host defense against viruses, bacteria, and tumor cells. Until recently, natural killer (NK) cells and lymphoid tissue inducer (LTi) cells were the primary members of the innate lymphocyte family: NK cells form the front-line interface between the external environment and the adaptive immune system, while LTi cells are essential for secondary lymphoid tissue formation. More recently, it has become apparent that the composition of this fa...

  11. Innate Lymphoid Cells: Roles In Tumour Genesis And Progression

    Directory of Open Access Journals (Sweden)

    Jovanovic Ivan

    2015-06-01

    Full Text Available Innate lymphoid cells (ILCs represent the most recently identified members of the innate immune system. These cells play important roles in inflammation, tissue remodelling and metabolic disease. ILCs can be subdivided into three major groups according to their cytokine production. The role of ILCs in tumourigenesis and tumour progression is not completely clarified. In this review, we discuss whether and how ILCs are involved in tumour genesis, growth and metastasis.

  12. Regulation of the adaptive immune system by innate lymphoid cells

    OpenAIRE

    Hepworth, Matthew R.; Sonnenberg, Gregory F.

    2014-01-01

    Innate lymphoid cells (ILCs) are a group of lymphocytes that promote rapid cytokine-dependent innate immunity, inflammation and tissue repair. In addition, a growing body of evidence suggests ILCs can influence adaptive immune cell responses. During fetal development a subset of ILCs orchestrate the generation and maturation of secondary lymphoid tissues. Following birth, ILCs continue to modulate adaptive immune cell responses indirectly through interactions with stromal cells in lymphoid ti...

  13. Innate lymphoid cells in the defense against infections

    OpenAIRE

    Diefenbach, Andreas

    2013-01-01

    Barrier surfaces are under constant attack by potentially dangerous microbes. Interestingly, mucosal tissues contain a large number of innate lymphocytes now collectively referred to as innate lymphoid cells (ILCs). Different groups of ILCs are being distinguished, each of which produce an array of cytokines strikingly resembling the profile of the various T helper cell effector subsets. Over the last couple of years, evidence has been emerging that the various ILC subsets play...

  14. Beyond NK Cells: The Expanding Universe of Innate Lymphoid Cells

    OpenAIRE

    Cella, Marina; Miller, Hannah; Song, Christina

    2014-01-01

    For a long time, natural killer (NK) cells were thought to be the only innate immune lymphoid population capable of responding to invading pathogens under the influence of changing environmental cues. In the last few years, an increasing amount of evidence has shown that a number of different innate lymphoid cell (ILC) populations found at mucosal sites rapidly respond to locally produced cytokines in order to establish or maintain homeostasis. These ILC populations closely mirror the phenoty...

  15. Aging of the Human Innate Immune System in HIV Infection

    OpenAIRE

    Zapata, Heidi J; Shaw, Albert C.

    2014-01-01

    HIV infection is associated with a chronic inflammatory state arising from multiple factors, including innate immune recognition of HIV, increased microbial translocation, and release of endogenous ligands from damaged cells (such as CD4 T cells). In many respects, this heightened pro-inflammatory environment resembles that associated with aging in the absence of HIV infection, and evidence of dysregulated innate immune responses can be found in not only older HIV-negative a...

  16. Innate immunity and organ transplantation: focus on lung transplantation

    OpenAIRE

    Kreisel, Daniel; Goldstein, Daniel R.

    2012-01-01

    Ischemia reperfusion injury that occurs with solid organ transplantation activates the innate immune system to induce inflammation. This leads to enhanced acute allograft rejection, impaired transplant tolerance and accelerated progression of chronic rejection. In this review, we discuss the innate immune signaling pathways that have been shown to play a role in organ transplantation. In particular, we focus on Toll-like receptor signaling pathways and how they have influenced outcomes after ...

  17. The innate immune response in ischemic acute kidney injury

    OpenAIRE

    Jang, Hye Ryoun; Rabb, Hamid

    2008-01-01

    Kidney ischemia reperfusion injury is a major cause of morbidity in both allograft and native kidneys. Ischemia reperfusion-induced acute kidney injury is characterized by early, allo-antigen independent inflammation. Major components of the innate immune system are activated and participate in the pathogenesis of acute kidney injury, plus prime the allograft kidney for rejection. Soluble members of innate immunity implicated in acute kidney injury include the complement system, cytokines, an...

  18. Innate immune functions of microglia isolated from human glioma patients

    Directory of Open Access Journals (Sweden)

    Grimm Elizabeth

    2006-03-01

    Full Text Available Abstract Background Innate immunity is considered the first line of host defense and microglia presumably play a critical role in mediating potent innate immune responses to traumatic and infectious challenges in the human brain. Fundamental impairments of the adaptive immune system in glioma patients have been investigated; however, it is unknown whether microglia are capable of innate immunity and subsequent adaptive anti-tumor immune responses within the immunosuppressive tumor micro-environment of human glioma patients. We therefore undertook a novel characterization of the innate immune phenotype and function of freshly isolated human glioma-infiltrating microglia (GIM. Methods GIM were isolated by sequential Percoll purification from patient tumors immediately after surgical resection. Flow cytometry, phagocytosis and tumor cytotoxicity assays were used to analyze the phenotype and function of these cells. Results GIM expressed significant levels of Toll-like receptors (TLRs, however they do not secrete any of the cytokines (IL-1β, IL-6, TNF-α critical in developing effective innate immune responses. Similar to innate macrophage functions, GIM can mediate phagocytosis and non-MHC restricted cytotoxicity. However, they were statistically less able to mediate tumor cytotoxicity compared to microglia isolated from normal brain. In addition, the expression of Fas ligand (FasL was low to absent, indicating that apoptosis of the incoming lymphocyte population may not be a predominant mode of immunosuppression by microglia. Conclusion We show for the first time that despite the immunosuppressive environment of human gliomas, GIM are capable of innate immune responses such as phagocytosis, cytotoxicity and TLR expression but yet are not competent in secreting key cytokines. Further understanding of these innate immune functions could play a critical role in understanding and developing effective immunotherapies to malignant human gliomas.

  19. Mycobacteria and innate cells: critical encounter for immunogenicity

    Indian Academy of Sciences (India)

    Angelo Martino

    2008-03-01

    Protective immunity against mycobacterial infections such as Mycobacterium tuberculosis is mediated by interactions between specific T cells and activated macrophages. To date, many aspects of mycobacterial immunity have shown that innate cells are the key elements that substantially influence the subsequent adaptive host response. During the early phases of infection, phagocytic cells and innate lymphocyte subsets play a pivotal role. Here we summarize the findings of recent investigations on macrophages, dendritic cells and T lymphocytes in the response to mycobacteria.

  20. Dendritic Cells and Innate Immunity in Kidney Transplantation

    OpenAIRE

    Zhuang, Quan; Lakkis, Fadi G.

    2015-01-01

    Summary This review summarizes emerging concepts related to the roles of dendritic cells and innate immunity in organ transplant rejection. First, it highlights the primary role that recipient, rather than donor, dendritic cells have in rejection and reviews their origin and function in the transplanted kidney. Second, it introduces the novel concept that recognition of allogeneic non-self by host monocytes (referred to here as innate allorecognition) is necessary for initiating rejection by ...

  1. Stress Hyperglycemia, Insulin Treatment, and Innate Immune Cells

    Directory of Open Access Journals (Sweden)

    Fangming Xiu

    2014-01-01

    Full Text Available Hyperglycemia (HG and insulin resistance are the hallmarks of a profoundly altered metabolism in critical illness resulting from the release of cortisol, catecholamines, and cytokines, as well as glucagon and growth hormone. Recent studies have proposed a fundamental role of the immune system towards the development of insulin resistance in traumatic patients. A comprehensive review of published literatures on the effects of hyperglycemia and insulin on innate immunity in critical illness was conducted. This review explored the interaction between the innate immune system and trauma-induced hypermetabolism, while providing greater insight into unraveling the relationship between innate immune cells and hyperglycemia. Critical illness substantially disturbs glucose metabolism resulting in a state of hyperglycemia. Alterations in glucose and insulin regulation affect the immune function of cellular components comprising the innate immunity system. Innate immune system dysfunction via hyperglycemia is associated with a higher morbidity and mortality in critical illness. Along with others, we hypothesize that reduction in morbidity and mortality observed in patients receiving insulin treatment is partially due to its effect on the attenuation of the immune response. However, there still remains substantial controversy regarding moderate versus intensive insulin treatment. Future studies need to determine the integrated effects of HG and insulin on the regulation of innate immunity in order to provide more effective insulin treatment regimen for these patients.

  2. Innate immune reconstitution with suppression of HIV-1

    Science.gov (United States)

    Scully, Eileen P.; Lockhart, Ainsley; Garcia-Beltran, Wilfredo; Palmer, Christine D.; Musante, Chelsey; Rosenberg, Eric; Allen, Todd M.; Chang, J. Judy; Bosch, Ronald J.; Altfeld, Marcus

    2016-01-01

    Progressive HIV-1 infection leads to both profound immune suppression and pathologic inflammation in the majority of infected individuals. While adaptive immune dysfunction, as evidenced by CD4+ T cell depletion and exhaustion, has been extensively studied, less is known about the functional capacity of innate immune cell populations in the context of HIV-1 infection. Given the broad susceptibility to opportunistic infections and the dysregulated inflammation observed in progressive disease, we hypothesized that there would be significant changes in the innate cellular responses. Using a cohort of patients with multiple samplings before and after antiretroviral therapy (ART) initiation, we demonstrated increased responses to innate immune stimuli following viral suppression, as measured by the production of inflammatory cytokines. Plasma viral load itself had the strongest association with this change in innate functional capacity. We further identified epigenetic modifications in the TNFA promoter locus in monocytes that are associated with viremia, suggesting a molecular mechanism for the observed changes in innate immune function following initiation of ART. These data indicate that suppression of HIV-1 viremia is associated with changes in innate cellular function that may in part determine the restoration of protective immune responses. PMID:27158667

  3. Innate immune targets of hepatitis B virus infection

    Science.gov (United States)

    Zou, Zhi-Qiang; Wang, Li; Wang, Kai; Yu, Ji-Guang

    2016-01-01

    Approximately 400 million people are chronically infected with hepatitis B virus (HBV) globally despite the widespread immunization of HBV vaccine and the development of antiviral therapies. The immunopathogenesis of HBV infection is initiated and driven by complexed interactions between the host immune system and the virus. Host immune responses to viral particles and proteins are regarded as the main determinants of viral clearance or persistent infection and hepatocyte injury. Innate immune system is the first defending line of host preventing from virus invasion. It is acknowledged that HBV has developed active tactics to escape innate immune recognition or actively interfere with innate immune signaling pathways and induce immunosuppression, which favor their replication. HBV reduces the expression of pattern-recognition receptors in the innate immune cells in humans. Also, HBV may interrupt different parts of antiviral signaling pathways, leading to the reduced production of antiviral cytokines such as interferons that contribute to HBV immunopathogenesis. A full comprehension of the mechanisms as to how HBV inactivates various elements of the innate immune response to initiate and maintain a persistent infection can be helpful in designing new immunotherapeutic methods for preventing and eradicating the virus. In this review, we aimed to summarize different branches the innate immune targeted by HBV infection. The review paper provides evidence that multiple components of immune responses should be activated in combination with antiviral therapy to disrupt the tolerance to HBV for eliminating HBV infection. PMID:27330680

  4. Innate immune targets of hepatitis B virus infection.

    Science.gov (United States)

    Zou, Zhi-Qiang; Wang, Li; Wang, Kai; Yu, Ji-Guang

    2016-06-18

    Approximately 400 million people are chronically infected with hepatitis B virus (HBV) globally despite the widespread immunization of HBV vaccine and the development of antiviral therapies. The immunopathogenesis of HBV infection is initiated and driven by complexed interactions between the host immune system and the virus. Host immune responses to viral particles and proteins are regarded as the main determinants of viral clearance or persistent infection and hepatocyte injury. Innate immune system is the first defending line of host preventing from virus invasion. It is acknowledged that HBV has developed active tactics to escape innate immune recognition or actively interfere with innate immune signaling pathways and induce immunosuppression, which favor their replication. HBV reduces the expression of pattern-recognition receptors in the innate immune cells in humans. Also, HBV may interrupt different parts of antiviral signaling pathways, leading to the reduced production of antiviral cytokines such as interferons that contribute to HBV immunopathogenesis. A full comprehension of the mechanisms as to how HBV inactivates various elements of the innate immune response to initiate and maintain a persistent infection can be helpful in designing new immunotherapeutic methods for preventing and eradicating the virus. In this review, we aimed to summarize different branches the innate immune targeted by HBV infection. The review paper provides evidence that multiple components of immune responses should be activated in combination with antiviral therapy to disrupt the tolerance to HBV for eliminating HBV infection. PMID:27330680

  5. Acquired and innate immunity to polyaromatic hydrocarbons

    International Nuclear Information System (INIS)

    Polyaromatic hydrocarbons are ubiquitous environmental pollutants that are potent mutagens and carcinogens. Researchers have taken advantage of these properties to investigate the mechanisms by which chemicals cause cancer of the skin and other organs. When applied to the skin of mice, several carcinogenic polyaromatic hydrocarbons have also been shown to interact with the immune system, stimulating immune responses and resulting in the development of antigen-specific T-cell-mediated immunity. Development of cell-mediated immunity is strain-specific and is governed by Ah receptor genes and by genes located within the major histocompatibility complex. CD8+ T cells are effector cells in the response, whereas CD4+ T cells down-regulate immunity. Development of an immune response appears to have a protective effect since strains of mice that develop a cell-mediated immune response to carcinogenic polyaromatic hydrocarbons are less likely to develop tumors when subjected to a polyaromatic hydrocarbon skin carcinogenesis protocol than mice that fail to develop an immune response. With respect to innate immunity, TLR4-deficient C3H/HeJ mice are more susceptible to polyaromatic hydrogen skin tumorigenesis than C3H/HeN mice in which TLR4 is normal. These findings support the hypothesis that immune responses, through their interactions with chemical carcinogens, play an active role in the prevention of chemical skin carcinogenesis during the earliest stages. Efforts to augment immune responses to the chemicals that cause tumors may be a productive approach to the prevention of tumors caused by these agents

  6. Proteasome function shapes innate and adaptive immune responses.

    Science.gov (United States)

    Kammerl, Ilona E; Meiners, Silke

    2016-08-01

    The proteasome system degrades more than 80% of intracellular proteins into small peptides. Accordingly, the proteasome is involved in many essential cellular functions, such as protein quality control, transcription, immune responses, cell signaling, and apoptosis. Moreover, degradation products are loaded onto major histocompatibility class I molecules to communicate the intracellular protein composition to the immune system. The standard 20S proteasome core complex contains three distinct catalytic active sites that are exchanged upon stimulation with inflammatory cytokines to form the so-called immunoproteasome. Immunoproteasomes are constitutively expressed in immune cells and have different proteolytic activities compared with standard proteasomes. They are rapidly induced in parenchymal cells upon intracellular pathogen infection and are crucial for priming effective CD8(+) T-cell-mediated immune responses against infected cells. Beyond shaping these adaptive immune reactions, immunoproteasomes also regulate the function of immune cells by degradation of inflammatory and immune mediators. Accordingly, they emerge as novel regulators of innate immune responses. The recently unraveled impairment of immunoproteasome function by environmental challenges and by genetic variations of immunoproteasome genes might represent a currently underestimated risk factor for the development and progression of lung diseases. In particular, immunoproteasome dysfunction will dampen resolution of infections, thereby promoting exacerbations, may foster autoimmunity in chronic lung diseases, and possibly contributes to immune evasion of tumor cells. Novel pharmacological tools, such as site-specific inhibitors of the immunoproteasome, as well as activity-based probes, however, hold promises as innovative therapeutic drugs for respiratory diseases and biomarker profiling, respectively. PMID:27343191

  7. Type 2 Innate Lymphoid Cells: Friends or Foes—Role in Airway Allergic Inflammation and Asthma

    OpenAIRE

    Abbas Pishdadian; Abdol-Reza Varasteh; Mojtaba Sankian

    2012-01-01

    Innate-like lymphocytes (ILLs) and innate lymphoid cells (ILCs) are two newly characterized families of lymphocytes with limited and no rearranged antigen receptors, respectively. These soldiers provide a first line of defense against foreign insults by triggering a prompt innate immune response and bridging the gap of innate and adaptive immunity. Type 2 innate lymphoid cells (ILCs2) are newly identified members of the ILC family that play a key role in type 2 immune responses by prompt prod...

  8. G9a regulates group 2 innate lymphoid cell development by repressing the group 3 innate lymphoid cell program.

    Science.gov (United States)

    Antignano, Frann; Braam, Mitchell; Hughes, Michael R; Chenery, Alistair L; Burrows, Kyle; Gold, Matthew J; Oudhoff, Menno J; Rattray, David; Halim, Timotheus Y; Cait, Alissa; Takei, Fumio; Rossi, Fabio M; McNagny, Kelly M; Zaph, Colby

    2016-06-27

    Innate lymphoid cells (ILCs) are emerging as important regulators of homeostatic and disease-associated immune processes. Despite recent advances in defining the molecular pathways that control development and function of ILCs, the epigenetic mechanisms that regulate ILC biology are unknown. Here, we identify a role for the lysine methyltransferase G9a in regulating ILC2 development and function. Mice with a hematopoietic cell-specific deletion of G9a (Vav.G9a(-/-) mice) have a severe reduction in ILC2s in peripheral sites, associated with impaired development of immature ILC2s in the bone marrow. Accordingly, Vav.G9a(-/-) mice are resistant to the development of allergic lung inflammation. G9a-dependent dimethylation of histone 3 lysine 9 (H3K9me2) is a repressive histone mark that is associated with gene silencing. Genome-wide expression analysis demonstrated that the absence of G9a led to increased expression of ILC3-associated genes in developing ILC2 populations. Further, we found high levels of G9a-dependent H3K9me2 at ILC3-specific genetic loci, demonstrating that G9a-mediated repression of ILC3-associated genes is critical for the optimal development of ILC2s. Together, these results provide the first identification of an epigenetic regulatory mechanism in ILC development and function. PMID:27298444

  9. NFIL3 Orchestrates the Emergence of Common Helper Innate Lymphoid Cell Precursors

    Directory of Open Access Journals (Sweden)

    Wei Xu

    2015-03-01

    Full Text Available Innate lymphoid cells (ILCs are a family of effectors that originate from a common innate lymphoid cell progenitor. However, the transcriptional program that sets the identity of the ILC lineage remains elusive. Here, we show that NFIL3 is a critical regulator of the common helper-like innate lymphoid cell progenitor (CHILP. Cell-intrinsic Nfil3 ablation led to variably impaired development of fetal and adult ILC subsets. Conditional gene targeting demonstrated that NFIL3 exerted its function prior to ILC subset commitment. Accordingly, NFIL3 ablation resulted in loss of ID2+ CHILP and PLZF+ ILC progenitors. Nfil3 expression in lymphoid progenitors was under the control of the mesenchyme-derived hematopoietin IL-7, and NFIL3 exerted its function via direct Id2 regulation in the CHILP. Moreover, ectopic Id2 expression in Nfil3-null precursors rescued defective ILC lineage development in vivo. Our data establish NFIL3 as a key regulator of common helper-like ILC progenitors as they emerge during early lymphopoiesis.

  10. Getting to PTI of bacterial RNAs: Triggering plant innate immunity by extracellular RNAs from bacteria.

    Science.gov (United States)

    Park, Yong-Soon; Lee, Boyoung; Ryu, Choong-Min

    2016-07-01

    Defense against diverse biotic and abiotic stresses requires the plant to distinguish between self and non-self signaling molecules. Pathogen/microbe-associated molecular patterns (PAMPs/MAMPs) are pivotal for triggering innate immunity in plants. Unlike in animals and humans, the precise roles of nucleic acids in plant innate immunity are unclear. We therefore investigated the effects of infiltration of total Pseudomonas syringae pv. tomato DC3000 (Pto DC3000) RNAs into Arabidopsis plants. The pathogen population was 10-fold lower in bacterial RNAs pre-treated Arabidopsis plants than in the control. Bacterial RNAs purity was confirmed by physical (sonication) and chemical (RNase A and proteinase K digestion) methods. The perception of bacterial RNAs, especially rRNAs, positively regulated mitogen-activated protein kinase (MAPK) and induced a reactive oxygen species burst, callose deposition, salicylic acid (SA) and jasmonic acid (JA) signaling, and defense-related genes. Therefore, bacterial RNAs function as a new MAMP that activates plant innate immunity, providing a new paradigm for plant-microbe interactions. PMID:27301792

  11. A novel approach for emerging and antibiotic resistant infections: Innate defense regulators as an agnostic therapy.

    Science.gov (United States)

    North, John R; Takenaka, Shunsuke; Rozek, Annett; Kielczewska, Agnieszka; Opal, Steven; Morici, Lisa A; Finlay, B Brett; Schaber, Christopher J; Straube, Richard; Donini, Oreola

    2016-05-20

    Innate Defense Regulators (IDRs) are short synthetic peptides that target the host innate immune system via an intracellular adaptor protein which functions at key signaling nodes. In this work, further details of the mechanism of action of IDRs have been discovered. The studies reported here show that the lead clinical IDR, SGX94, has broad-spectrum activity against Gram-negative and Gram-positive bacterial infections caused by intracellular or extracellular bacteria and also complements the actions of standard of care antibiotics. Based on in vivo and primary cell culture studies, this activity is shown to result from the primary action of SGX94 on tissue-resident cells and subsequent secondary signaling to activate myeloid-derived cells, resulting in enhanced bacterial clearance and increased survival. Data from non-clinical and clinical studies also show that SGX94 treatment modulates pro-inflammatory and anti-inflammatory cytokine levels, thereby mitigating the deleterious inflammatory consequences of innate immune activation. Since they act through host pathways to provide both broad-spectrum anti-infective capability as well as control of inflammation, IDRs are unlikely to be impacted by resistance mechanisms and offer potential clinical advantages in the fight against emerging and antibiotic resistant bacterial infections. PMID:27015977

  12. THE INNATE IMMUNITY IN BOVINE MASTITIS: THE ROLE OF PATTERN-RECOGNITION RECEPTORS

    Directory of Open Access Journals (Sweden)

    Fernando Nogueira de Souza

    2012-01-01

    Full Text Available Mastitis is the most costly disease for dairy farmers and industry, which are mainly caused by the entry of bacteria to the teat canal. Shortly after the entry of the invading bacteria, the innate immunity recognizes the invading pathogen through pattern recognition receptors and initiates the inflammatory response necessary to eliminate the invading bacteria. This initial inflammatory response releases cytokines and chemoattractants for the rapid and massive influx of neutrophils from the blood to the site of infection which form the first line of cellular defense against bacteria This article reviewed the role of the most recent knowledge regarding the innate immunity in bovine mastitis focusing in the two major mastitis pathogens: Escherichia coli and Staphylococcus aureus the S. aureus appears to mostly circumvent the host immune response, as the Toll-Like Receptors (TLRs signaling pathways. The Intramammary Infections (IMIs by this bacteria result in a very moderate host response with minimal observable innate immune response, which are related to well-known ability to this pathogen to establish chronic IMI. Otherwise, E. coli elicits a strong and earlier response, mainly through TLR4, that is associated with the severity of the mastitis and the clinical manifestation commonly observed in dairy cows infected with this pathogen. Suboptimal and dysfunctional mammary defenses may contribute to the development of severe acute inflammation or chronic mastitis that adversely affects the milk production and quality. Thus, a better understanding of mastitis pathogen interaction to the host may be useful for future control of mastitis.

  13. Loss of CARD9-mediated innate activation attenuates severe influenza pneumonia without compromising host viral immunity.

    Science.gov (United States)

    Uematsu, Takayuki; Iizasa, Ei'ichi; Kobayashi, Noritada; Yoshida, Hiroki; Hara, Hiromitsu

    2015-01-01

    Influenza virus (IFV) infection is a common cause of severe viral pneumonia associated with acute respiratory distress syndrome (ARDS), which is difficult to control with general immunosuppressive therapy including corticosteroids due to the unfavorable effect on viral replication. Studies have suggested that the excessive activation of the innate immunity by IFV is responsible for severe pathologies. In this study, we focused on CARD9, a signaling adaptor known to regulate innate immune activation through multiple innate sensor proteins, and investigated its role in anti-IFV defense and lung pathogenesis in a mouse model recapitulating severe influenza pneumonia with ARDS. We found that influenza pneumonia was dramatically attenuated in Card9-deficient mice, which showed improved mortality with reduced inflammatory cytokines and chemokines in the infected lungs. However, viral clearance, type-I interferon production, and the development of anti-viral B and T cell immunity were not compromised by CARD9 deficiency. Syk or CARD9-deficient DCs but not macrophages showed impaired cytokine but not type-I interferon production in response to IFV in vitro, indicating a possible role for the Syk-CARD9 pathway in DCs in excessive inflammation of IFV-infected lungs. Therefore, inhibition of this pathway is an ideal therapeutic target for severe influenza pneumonia without affecting viral clearance. PMID:26627732

  14. HIV-1 evades innate immune recognition through specific cofactor recruitment

    Science.gov (United States)

    Rasaiyaah, Jane; Tan, Choon Ping; Fletcher, Adam J.; Price, Amanda J.; Blondeau, Caroline; Hilditch, Laura; Jacques, David A.; Selwood, David L.; James, Leo C.; Noursadeghi, Mahdad; Towers, Greg J.

    2013-11-01

    Human immunodeficiency virus (HIV)-1 is able to replicate in primary human macrophages without stimulating innate immunity despite reverse transcription of genomic RNA into double-stranded DNA, an activity that might be expected to trigger innate pattern recognition receptors. We reasoned that if correctly orchestrated HIV-1 uncoating and nuclear entry is important for evasion of innate sensors then manipulation of specific interactions between HIV-1 capsid and host factors that putatively regulate these processes should trigger pattern recognition receptors and stimulate type 1 interferon (IFN) secretion. Here we show that HIV-1 capsid mutants N74D and P90A, which are impaired for interaction with cofactors cleavage and polyadenylation specificity factor subunit 6 (CPSF6) and cyclophilins (Nup358 and CypA), respectively, cannot replicate in primary human monocyte-derived macrophages because they trigger innate sensors leading to nuclear translocation of NF-κB and IRF3, the production of soluble type 1 IFN and induction of an antiviral state. Depletion of CPSF6 with short hairpin RNA expression allows wild-type virus to trigger innate sensors and IFN production. In each case, suppressed replication is rescued by IFN-receptor blockade, demonstrating a role for IFN in restriction. IFN production is dependent on viral reverse transcription but not integration, indicating that a viral reverse transcription product comprises the HIV-1 pathogen-associated molecular pattern. Finally, we show that we can pharmacologically induce wild-type HIV-1 infection to stimulate IFN secretion and an antiviral state using a non-immunosuppressive cyclosporine analogue. We conclude that HIV-1 has evolved to use CPSF6 and cyclophilins to cloak its replication, allowing evasion of innate immune sensors and induction of a cell-autonomous innate immune response in primary human macrophages.

  15. HIV-1 evades innate immune recognition through specific cofactor recruitment.

    Science.gov (United States)

    Rasaiyaah, Jane; Tan, Choon Ping; Fletcher, Adam J; Price, Amanda J; Blondeau, Caroline; Hilditch, Laura; Jacques, David A; Selwood, David L; James, Leo C; Noursadeghi, Mahdad; Towers, Greg J

    2013-11-21

    Human immunodeficiency virus (HIV)-1 is able to replicate in primary human macrophages without stimulating innate immunity despite reverse transcription of genomic RNA into double-stranded DNA, an activity that might be expected to trigger innate pattern recognition receptors. We reasoned that if correctly orchestrated HIV-1 uncoating and nuclear entry is important for evasion of innate sensors then manipulation of specific interactions between HIV-1 capsid and host factors that putatively regulate these processes should trigger pattern recognition receptors and stimulate type 1 interferon (IFN) secretion. Here we show that HIV-1 capsid mutants N74D and P90A, which are impaired for interaction with cofactors cleavage and polyadenylation specificity factor subunit 6 (CPSF6) and cyclophilins (Nup358 and CypA), respectively, cannot replicate in primary human monocyte-derived macrophages because they trigger innate sensors leading to nuclear translocation of NF-κB and IRF3, the production of soluble type 1 IFN and induction of an antiviral state. Depletion of CPSF6 with short hairpin RNA expression allows wild-type virus to trigger innate sensors and IFN production. In each case, suppressed replication is rescued by IFN-receptor blockade, demonstrating a role for IFN in restriction. IFN production is dependent on viral reverse transcription but not integration, indicating that a viral reverse transcription product comprises the HIV-1 pathogen-associated molecular pattern. Finally, we show that we can pharmacologically induce wild-type HIV-1 infection to stimulate IFN secretion and an antiviral state using a non-immunosuppressive cyclosporine analogue. We conclude that HIV-1 has evolved to use CPSF6 and cyclophilins to cloak its replication, allowing evasion of innate immune sensors and induction of a cell-autonomous innate immune response in primary human macrophages. PMID:24196705

  16. DMPD: Innate immunity minireview series: making biochemical sense of nucleic acidsensors that trigger antiviral innate immunity. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17395579 Innate immunity minireview series: making biochemical sense of nucleic acidsensor...007 Mar 29. (.png) (.svg) (.html) (.csml) Show Innate immunity minireview series: making biochemical sense of nucleic acidsensor...itle Innate immunity minireview series: making biochemical sense of nucleic acidsensors that trigger antivir

  17. INNATE, ADAPTIVE AND INTRINSIC IMMUNITY IN HUMAN IMMUNODEFICIENCY VIRUS INFECTION

    Directory of Open Access Journals (Sweden)

    Suneth S. Perera

    2012-01-01

    Full Text Available The first line of defence of the innate immune system functions by recognizing highly conserved sets of molecular structures specific to the microbes, termed pathogen-associated molecular patterns, or PAMPs via the germ line-encoded receptors Pattern-Recognition Receptors (PRRs. In addition to the innate immune system, the vertebrates have also evolved a second line of defence termed adaptive immune system, which uses a diverse set of somatically rearranged receptors T-Cell Receptors (TCRs and B Cell Receptors (BCRs, which have the inherent ability to effectively recognise diverse antigens. The innate and adaptive immune systems are functionally tied in with the intrinsic immunity, which comprises of endogenous antiviral factors. Thus, this effective response to diverse microbial infections, including HIV, requires a coordinated interaction at several functional levels between innate, adaptive and intrinsic immune systems. This review provides a snapshot of roles played by the innate, adaptive and the intrinsic immune systems during HIV-infection, along with discussing recent developments highlighting the genomic basis of these responses and their regulation by micro-RNA (miRNAs.

  18. Trained immunity: A smart way to enhance innate immune defence.

    Science.gov (United States)

    van der Meer, Jos W M; Joosten, Leo A B; Riksen, Niels; Netea, Mihai G

    2015-11-01

    The innate arm of the immune system is generally viewed as primitive and non-specific and - in contrast to the adaptive immune arm - not to possess memory. However in plants and invertebrate animals that lack adaptive immunity, innate immunity will exhibit a prolonged enhanced functional state after adequate priming. A similar enhancement of function of the innate immunity has occasionally been described in vertebrates, including humans. Over the past few years we have studied this phenomenon in greater detail and we have coined the term 'Trained (innate) immunity' (TI). TI can be induced by a variety of stimuli, of which we have studied BCG and β-glucan in greater detail. The non-specific protective effects of BCG that have been observed in vaccination studies in the literature are probably due to TI. Monocytes and macrophages are among the main cells of the innate immune arm that can be trained. We have discovered that both BCG (via NOD2 signalling) and β-glucan (via dectin-1) induce epigenetic reprogramming, in particular stable changes in histone trimethylation at H3K4. These epigenetic changes lead to cellular activation, enhanced cytokine production and a change in the metabolic state of the cell with a shift from oxidative phosphorylation to aerobic glycolysis. TI is not only important for host defence and vaccine responses, but most probably also for diseases like atherosclerosis. Modulation of TI is a promising area for new treatments. PMID:26597205

  19. Viral degradasome hijacks mitochondria to suppress innate immunity

    Institute of Scientific and Technical Information of China (English)

    Ramansu Goswami; Tanmay Majumdar; Jayeeta Dhar; Saurabh Chattopadhyay; Sudip K Bandyopadhyay; Valentina Verbovetskaya; Ganes C Sen

    2013-01-01

    The balance between the innate immunity of the host and the ability of a pathogen to evade it strongly influences pathogenesis and virulence.The two nonstructural (NS) proteins,NS1 and NS2,of respiratory syncytial virus (RSV) are critically required for RSV virulence.Together,they strongly suppress the type Ⅰ interferon (IFN)-mediated innate immunity of the host cells by degrading or inhibiting multiple cellular factors required for either IFN induction or response pathways,including RIG-I,IRF3,IRF7,TBK1 and STAT2.Here,we provide evidence for the existence of a large and heterogeneous degradative complex assembled by the NS proteins,which we named "NS-degradasome" (NSD).The NSD is roughly ~300-750 kD in size,and its degradative activity was enhanced by the addition of purified mitochondria in vitro.Inside the cell,the majority of the NS proteins and the substrates of the NSD translocated to the mitochondria upon RSV infection.Genetic and pharmacological evidence shows that optimal suppression of innate immunity requires mitochondrial MAVS and mitochondrial motility.Together,we propose a novel paradigm in which the mitochondria,known to be importantfor the innate immune activation of the host,are also important for viral suppression of the innate immunity.

  20. Endotoxemia is associated with altered innate and adaptive immune responses in untreated HIV-1 infected individuals.

    Directory of Open Access Journals (Sweden)

    Anne Roslev Bukh

    Full Text Available BACKGROUND: Microbial translocation may contribute to the immunopathogenesis in HIV infection. We investigated if microbial translocation and inflammation were associated with innate and adaptive immune responses in adults with HIV. METHODOLOGY/PRINCIPAL FINDINGS: This was an observational cohort study. Sera from HIV-infected and HIV-uninfected individuals were analyzed for microbial translocation (soluble CD14, lipopolysaccharides [LPS], endotoxin core antibody, and anti-α-galactosyl antibodies and inflammatory markers (high sensitivity C-reactive protein, IL-6, IL-1 receptor antagonist, soluble tumor necrosis factor receptor II, and IL-10 with enzyme-linked immunosorbent assays. Peripheral blood mononuclear cells (PBMC from HIV-infected persons and healthy controls (primed with single-stranded HIV-1-derived RNA were stimulated with LPS, and cytokine production was measured. Finally, HIV-infected patients were immunized with Prevnar 7vPnC±CpG 7909 followed by Pneumo Novum PPV-23. Effects of microbial translocation and inflammation on immunization were analyzed in a predictive regression model. We included 96 HIV-infected individuals, 76 on highly active antiretroviral therapy (HAART, 20 HAART-naive, and 50 healthy controls. Microbial translocation and inflammatory markers were higher among HIV-infected persons than controls. Cytokine levels following LPS stimulation were increased in PBMCs from HAART-naive compared to HAART-treated HIV-infected persons. Further, RNA-priming of PBMCs from controls acted synergistically with LPS to augment cytokine responses. Finally, high serum LPS levels predicted poor vaccine responses among HAART-naive, but not among HAART-treated HIV-infected individuals. CONCLUSIONS/SIGNIFICANCE: LPS acts synergistically with HIV RNA to stimulate innate immune responses in vitro and increasing serum LPS levels seem to predict poor antibody responses after vaccination among HAART-naive HIV-infected persons. Thus, our

  1. Hepatic stellate cells and innate immunity in alcoholic liver disease

    Institute of Scientific and Technical Information of China (English)

    Yang-Gun Suh; Won-Il Jeong

    2011-01-01

    Constant alcohol consumption is a major cause of chronic liver disease, and there has been a growing concern regarding the increased mortality rates worldwide. Alcoholic liver diseases (ALDs) range from mild to more severe conditions, such as steatosis, steatohepatitis, fibrosis, cirrhosis, and hepatocellular carcinoma. The liver is enriched with innate immune cells (e.g. natural killer cells and Kupffer cells) and hepatic stellate cells (HSCs), and interestingly, emerging evidence suggests that innate immunity contributes to the development of ALDs (e.g. steatohepatitis and liver fibrosis). Indeed, HSCs play a crucial role in alcoholic steatosis via production of endocannabinoid and retinol metabolites. This review describes the roles of the innate immunity and HSCs in the pathogenesis of ALDs, and suggests therapeutic targets and strategies to assist in the reduction of ALD.

  2. Innate lymphoid cell function in the context of adaptive immunity.

    Science.gov (United States)

    Bando, Jennifer K; Colonna, Marco

    2016-06-21

    Innate lymphoid cells (ILCs) are a family of innate immune cells that have diverse functions during homeostasis and disease. Subsets of ILCs have phenotypes that mirror those of polarized helper T cell subsets in their expression of core transcription factors and effector cytokines. Given the similarities between these two classes of lymphocytes, it is important to understand which functions of ILCs are specialized and which are redundant with those of T cells. Here we discuss genetic mouse models that have been used to delineate the contributions of ILCs versus those of T cells and review the current understanding of the specialized in vivo functions of ILCs. PMID:27328008

  3. Transcriptional Regulatory Network for the Development of Innate Lymphoid Cells

    OpenAIRE

    Chao Zhong; Jinfang Zhu

    2015-01-01

    Recent studies on innate lymphoid cells (ILCs) have expanded our knowledge about the innate arm of the immune system. Helper-like ILCs share both the “innate” feature of conventional natural killer (cNK) cells and the “helper” feature of CD4+ T helper (Th) cells. With this combination, helper-like ILCs are capable of initiating early immune responses similar to cNK cells, but via secretion of a set of effector cytokines similar to those produced by Th cells. Although many studies have reveale...

  4. Dissecting Phaseolus vulgaris innate immune system against Colletotrichum lindemuthianum infection.

    Directory of Open Access Journals (Sweden)

    Paula Rodrigues Oblessuc

    Full Text Available BACKGROUND: The genus Colletotrichum is one of the most economically important plant pathogens, causing anthracnose on a wide range of crops including common beans (Phaseolus vulgaris L.. Crop yield can be dramatically decreased depending on the plant cultivar used and the environmental conditions. This study aimed to identify potential genetic components of the bean immune system to provide environmentally friendly control measures against this fungus. METHODOLOGY AND PRINCIPAL FINDINGS: As the common bean is not amenable to reverse genetics to explore functionality and its genome is not fully curated, we used putative Arabidopsis orthologs of bean expressed sequence tag (EST to perform bioinformatic analysis and experimental validation of gene expression to identify common bean genes regulated during the incompatible interaction with C. lindemuthianum. Similar to model pathosystems, Gene Ontology (GO analysis indicated that hormone biosynthesis and signaling in common beans seem to be modulated by fungus infection. For instance, cytokinin and ethylene responses were up-regulated and jasmonic acid, gibberellin, and abscisic acid responses were down-regulated, indicating that these hormones may play a central role in this pathosystem. Importantly, we have identified putative bean gene orthologs of Arabidopsis genes involved in the plant immune system. Based on experimental validation of gene expression, we propose that hypersensitive reaction as part of effector-triggered immunity may operate, at least in part, by down-regulating genes, such as FLS2-like and MKK5-like, putative orthologs of the Arabidopsis genes involved in pathogen perception and downstream signaling. CONCLUSIONS/SIGNIFICANCE: We have identified specific bean genes and uncovered metabolic processes and pathways that may be involved in the immune response against pathogens. Our transcriptome database is a rich resource for mining novel defense-related genes, which enabled us to

  5. Innate phase behavior in the desert locust, Schistocerca gregaria

    Institute of Scientific and Technical Information of China (English)

    Moshe Guershon; Amir Ayali

    2012-01-01

    Detailed aspects of the transition from the solitarious to the gregarious phase in the framework of locust ecology are undoubtedly most important for understanding locust phase polyphenism.Nevertheless,due to obvious difficulties in studying the sotitarious phase in nature,such information is limited and mostly available from research carried out under laboratory conditions.In the current study,we examined the dispersal patterns of newly hatched locust nymphs in a laboratory setup that simulated seminatural conditions.This was carried out with no previous manipulation of the nymphs other than controlling their parental density.We comparatively tested the spatial distribution of newly hatched nymphs on perches located at different ranges within an emergence arena,and the expected Poisson (random) distribution.Hatchlings were found to disperse among the perches in a pattern significantly different from that expected by random.Irrespective of their parents' phase,the observed distributions of all nymphs were clearly clumped,similar or close to those expected for gregarious locusts.It seems that rather than emerging with a parentally derived and predetermined phase,hatchlings have an independent default or innate behavioral state,which reflects at least tolerance if not attraction to conspecifics.The typical phase behavior may later become dominant under the appropriate environmental conditions.These results imply novel perspectives on locust phase transformation,which contribute to our understanding of the formation of locust crowds under field conditions.These should be considered in any rationale for developing a preventative management strategy of locust populations.

  6. Genetic Polymorphisms in Inflammasome-Dependent Innate Immunity among Pediatric Patients with Severe Renal Parenchymal Infections

    Science.gov (United States)

    Cheng, Chi-Hui; Lee, Yun-Shien; Chang, Chee-Jen; Lin, Jui-Che; Lin, Tzou-Yien

    2015-01-01

    Background Inflammasome innate immune response activation has been demonstrated in various inflammatory diseases and microbial infections. However, to our knowledge, no study has examined the inflammasome-dependent pathways in patients with urinary tract infection. Defective or variant genes associated with innate immunity are believed to alter the host’s susceptibility to microbial infection. This study investigated genetic polymorphisms in genes encoding inflammasomes and the subsequent released cytokines in pediatric patients with severe renal parenchymal infections. Methodology This study included patients diagnosed with acute pyelonephritis (APN) and acute lobar nephronia (ALN) who had no underlying disease or structural anomalies other than vesicoureteral reflux (VUR). Single nucleotide polymorphism (SNP) genotyping was performed in the genes associated with inflammasome formation and activation (NLRP3, CARD8) and subsequent IL–1β cytokine generation (IL–1β). Principal Findings A total of 40 SNPs were selected for initial genotyping. Analysis of samples from 48 patients each and 96 controls revealed that only nine SNPs (five SNPs in NLRP3; three SNPs in CARD8; one SNP in IL–1β) had heterozygosity rates >0.01. Hardy–Weinberg equilibrium was satisfied for the observed genotype frequencies of these SNPs. Analysis excluding patients with VUR, a well-known risk factor for severe UTIs, revealed a lower frequency of the CC genotype in NLRP3 (rs4612666) in patients with APN and ALN than in controls. Correction for multiple-SNP testing showed that the non-VUR subgroup of the APN+ALN combined patient groups remained significantly different from the control group (P < 0.0055). Conclusions This study is the first to suggest that the inflammasome-dependent innate immunity pathway is associated with the pathogenesis of pediatric severe renal parenchymal infections. Further investigation is warranted to clarify its pathogenic mechanism. PMID:26444566

  7. MiR-146 and miR-125 in the regulation of innate immunity and inflammation.

    Science.gov (United States)

    Lee, Hye-Mi; Kim, Tae Sung; Jo, Eun-Kyeong

    2016-06-01

    Innate immune responses are primary, relatively limited, and specific responses to numerous pathogens and toxic molecules. Protein expression involved in these innate responses must be tightly regulated at both transcriptional level and post-transcriptional level to avoid the development of excessive inflammation that can be potentially harmful to the host. MicroRNAs are small noncoding RNAs (~22 nucleotides [nts]) that participate in the regulation of numerous physiological responses by targeting specific messenger RNAs to suppress their translation. Recent work has shown that several negative regulators of transcription including microRNAs play important roles in inhibiting the exacerbation of inflammatory responses and in the maintenance of immunological homeostasis. This emerging research area will provide new insights on how microRNAs regulate innate immune signaling. It might show that dysregulation of microRNA synthesis is associated with the pathogenesis of inflammatory and infectious diseases. In this review, we focused on miR-146 and miR-125 and described the roles these miRNAs in modulating innate immune signaling. These microRNAs can control inflammatory responses and the outcomes of pathogenic infections. [BMB Reports 2016; 49(6): 311-318]. PMID:26996343

  8. Universal expression and dual function of the atypical chemokine receptor D6 on innate-like B cells in mice

    Science.gov (United States)

    Hansell, Chris A. H.; Schiering, Chris; Kinstrie, Ross; Ford, Laura; Bordon, Yvonne; McInnes, Iain B.; Goodyear, Carl S.; Nibbs, Robert J. B.

    2011-01-01

    Mouse innate-like B cells are a heterogeneous collection of multifunctional cells that control infection, play housekeeping roles, contribute to adaptive immunity, and suppress inflammation. We show that, amongst leukocytes, chemokine internalisation by the D6 receptor is a unique and universal feature of all known innate-like B cell populations and, to our knowledge, the most effective unifying marker of these cells. Moreover, we identify novel D6active B1 cell subsets, including those we term B1d, which lack CD5 and CD11b but exhibit typical B1 cell properties, including spontaneous ex vivo production of IgM, interleukin-10, and anti-phosphorylcholine antibody. The unprecedented opportunity to examine D6 on primary cells has allowed us to clarify its ligand specificity and show that, consistent with a scavenging role, D6 internalises chemokines but cannot induce Ca2+ fluxes or chemotaxis. Unexpectedly, however, D6 can also suppress the function of CXCR5, a critical chemokine receptor in innate-like B cell biology. This is associated with a reduction in B1 cells and circulating class-switched anti-phosphorylcholine antibody in D6-deficient mice. Thus, we identify a unifying marker of innate-like B cells; describe novel B1 cell subsets; reveal a dual role for D6; and provide the first evidence of defects in resting D6-deficient mice. PMID:21450903

  9. Dectin-1-Dependent Interleukin-22 Contributes to Early Innate Lung Defense against Aspergillus fumigatus

    OpenAIRE

    Gessner, Melissa A.; Werner, Jessica L.; Lilly, Lauren M.; Nelson, Michael P.; Metz, Allison E.; Dunaway, Chad W; Chan, Yvonne R.; Ouyang, Wenjun; Brown, Gordon D.; Weaver, Casey T.; Steele, Chad

    2012-01-01

    We have previously reported that mice deficient in the beta-glucan receptor Dectin-1 displayed increased susceptibility to Aspergillus fumigatus lung infection in the presence of lower interleukin 23 (IL-23) and IL-17A production in the lungs and have reported a role for IL-17A in lung defense. As IL-23 is also thought to control the production of IL-22, we examined the role of Dectin-1 in IL-22 production, as well as the role of IL-22 in innate host defense against A. fumigatus. Here, we sho...

  10. Group 3 innate lymphoid cells continuously require the transcription factor GATA3 after commitment

    OpenAIRE

    Zhong, Chao; Cui, Kairong; Wilhelm, Christoph; Hu, Gangqing; Mao, Kairui; Belkaid, Yasmine; Zhao, Keji; Zhu, Jinfang

    2015-01-01

    The transcription factor GATA3 is indispensable for the development of all interleukin-7 receptor α (IL-7Rα)-expressing innate lymphoid cells (ILCs). However, the functional role of low GATA3 expression in committed ILC3s has not been identified. We report that GATA3 regulates homeostasis of ILC3s by controlling IL-7Rα expression. In addition, GATA3 is critical for the development of the NKp46+ ILC3 subset by regulating the balance between the transcription factors T-bet and RORγt. Alhough GA...

  11. The immunobiology of Campylobacter jejuni: Innate immunity and autoimmune diseases.

    Science.gov (United States)

    Phongsisay, Vongsavanh

    2016-04-01

    The Gram-negative bacterium Campylobacter jejuni causes gastroenteritis and Guillain-Barré syndrome in humans. Recent advances in the immunobiology of C. jejuni have been made. This review summarizes C. jejuni-binding innate receptors and highlights the role of innate immunity in autoimmune diseases. This human pathogen produces a variety of glycoconjugates, including human ganglioside-like determinants and multiple activators of Toll-like receptors (TLRs). Furthermore, C. jejuni targets MyD88, NLRP3 inflammasome, TIR-domain-containing adapter-inducing interferon-β (TRIF), sialic acid-binding immunoglobulin-like lectins (Siglecs), macrophage galactose-type lectin (MGL), and immunoglobulin-like receptors (TREM2, LMIR5/CD300b). The roles of these innate receptors and signaling molecules have been extensively studied. MyD88-mediated TLR activation or inflammasome-dependent IL-1β secretion is essential for autoimmune induction. TRIF mediates the production of type I interferons that promote humoral immune responses and immunoglobulin class-switching. Siglec-1 and Siglec-7 interact directly with gangliosides. Siglec-1 activation enhances phagocytosis and inflammatory responses. MGL internalizes GalNAc-containing glycoconjugates. TREM2 is well-known for its role in phagocytosis. LMIR5 recognizes C. jejuni components and endogenous sulfoglycolipids. Several lines of evidence from animal models of autoimmune diseases suggest that simultaneous activation of innate immunity in the presence of autoreactive lymphocytes or antigen mimicry may link C. jejuni to immunopathology. PMID:26709064

  12. Hypoxia, innate immunity and infection in the lung.

    LENUS (Irish Health Repository)

    Schaible, Bettina

    2012-02-01

    The mucosal surface of the lung is the key interface between the external atmosphere and the bloodstream. Normally, this well oxygenated tissue is maintained in state of sterility by a number of innate immune processes. These include a physical and dynamic mucus barrier, the production of microbiocidal peptides and the expression of specific pattern recognition receptors on alveolar epithelial cells and resident macrophages and dendritic cells which recognise microbial structures and initiate innate immune responses which promote the clearance of potentially infectious agents. In a range of diseases, the mucosal surface of the lung experiences decreased oxygen tension leading to localised areas of prominent hypoxia which can impact upon innate immune and subsequent infectious and inflammatory processes. Under these conditions, the lung is generally more susceptible to infection and subsequent inflammation. In the current review, we will discuss recent data pertaining to the role of hypoxia in regulating both host and pathogen in the lung during pulmonary disease and how this contributes to innate immunity, infection and inflammation.

  13. Hypoxia, innate immunity and infection in the lung.

    Science.gov (United States)

    Schaible, Bettina; Schaffer, Kirsten; Taylor, Cormac T

    2010-12-31

    The mucosal surface of the lung is the key interface between the external atmosphere and the bloodstream. Normally, this well oxygenated tissue is maintained in state of sterility by a number of innate immune processes. These include a physical and dynamic mucus barrier, the production of microbiocidal peptides and the expression of specific pattern recognition receptors on alveolar epithelial cells and resident macrophages and dendritic cells which recognise microbial structures and initiate innate immune responses which promote the clearance of potentially infectious agents. In a range of diseases, the mucosal surface of the lung experiences decreased oxygen tension leading to localised areas of prominent hypoxia which can impact upon innate immune and subsequent infectious and inflammatory processes. Under these conditions, the lung is generally more susceptible to infection and subsequent inflammation. In the current review, we will discuss recent data pertaining to the role of hypoxia in regulating both host and pathogen in the lung during pulmonary disease and how this contributes to innate immunity, infection and inflammation. PMID:20709192

  14. Developmental acquisition of regulomes underlies innate lymphoid cell functionality

    Science.gov (United States)

    Innate lymphoid cells (ILCs) play key roles in host defense, barrier integrity, and homeostasis, and they mirror adaptive CD4+ T helper (Th) cell subtypes in both usages of effector molecules and ·transcription factors. To better understand ILC subsets and their relationship with Th cells, we measur...

  15. Innate protection from graft-versus-host disease

    NARCIS (Netherlands)

    T. Cupedo (Tom)

    2014-01-01

    textabstractIn this issue of Blood, Hazenberg and Spits provide a detailed overview of human innate lymphoid cell (ILC) subsets and their development and distribution throughout the human body, discussing these cells in the context of human disease. In the same issue, Munneke et al for the first tim

  16. Relationships between innate immunity in bivalve molluscs and environmental pollution

    OpenAIRE

    MI Girón-Pérez

    2010-01-01

    The immune system of invertebrates, such as molluscs consists of innate mechanisms very effective against antigens commonly present in the environment. However, these defense strategies could be altered by pollutants. This review is focused mainly on the effect of metals, PCB, pesticides, PAHs, and others environmental pollutant on immune response of molluscs.

  17. Relationships between innate immunity in bivalve molluscs and environmental pollution

    Directory of Open Access Journals (Sweden)

    MI Girón-Pérez

    2010-06-01

    Full Text Available The immune system of invertebrates, such as molluscs consists of innate mechanisms very effective against antigens commonly present in the environment. However, these defense strategies could be altered by pollutants. This review is focused mainly on the effect of metals, PCB, pesticides, PAHs, and others environmental pollutant on immune response of molluscs.

  18. Pattern Recognition Receptors in Innate Immunity, Host Defense, and Immunopathology

    Science.gov (United States)

    Suresh, Rahul; Mosser, David M.

    2013-01-01

    Infection by pathogenic microbes initiates a set of complex interactions between the pathogen and the host mediated by pattern recognition receptors. Innate immune responses play direct roles in host defense during the early stages of infection, and they also exert a profound influence on the generation of the adaptive immune responses that ensue.…

  19. Innate immune system targets asthma-linked fungus for destruction

    OpenAIRE

    Whyte, Barry James

    2008-01-01

    A new study shows that the innate immune system of humans is capable of killing a fungus linked to airway inflammation, chronic rhinosinusitis, and bronchial asthma. Researchers at Mayo Clinic and the Virginia Bioinformatics Institute at Virginia Tech have revealed that eosinophils, a particular type of white blood cell, exert a strong immune response against the environmental fungus Alternaria alternata.

  20. Bacterial lipopolysaccharides in plant and mammalian innate immunity.

    Science.gov (United States)

    De Castro, Cristina; Holst, Otto; Lanzetta, Rosa; Parrilli, Michelangelo; Molinaro, Antonio

    2012-10-01

    This mini-review gives a structural view on the lipopolysaccharides (LPSs), the endotoxin from Gram negative bacteria, paying attention on the features that are relevant for their activity as elicitors of the innate immune system of humans, animals and plants. PMID:22533617

  1. Breakdown of the innate immune system by bacterial proteases

    NARCIS (Netherlands)

    Laarman, A.J.

    2011-01-01

    Bacteria have developed many strategies to circumvent our immune system to survive and colonize human tissues. One of these strategies is by secreting proteases that specifically target the innate immune system. Aureolysin is a metalloprotease from Staphylococcus aureus which target the main compone

  2. Innate Immune Response to Intramammary Mycoplasma bovis Infection

    Science.gov (United States)

    Mastitis caused by Mycoplasma bovis is a growing concern for the dairy industry. M. bovis intramammary infection commonly results in an untreatable case of chronic mastitis. The innate immune system is responsible for initial recognition of, and immediate host responses to, infectious pathogens. ...

  3. Does the microbial environment determine innate immunity in earthworms?

    Czech Academy of Sciences Publication Activity Database

    Bilej, Martin; Dvořák, Jiří; Mančíková, Veronika; Šilerová, Marcela; Procházková, Petra; Roubalová, Radka; Škanta, František; Elhottová, Dana; Koubová, Anna; Pižl, Václav

    České Budějovice: Institute of Soil Biology, BC ASCR, 2013. s. 13. ISBN 978-80-86525-23-5. [Central European Workshop on Soil Zoology /12./. 08.04.2013-11.04.2013, České Budějovice] Institutional support: RVO:60077344 ; RVO:61388971 Keywords : microbial environment * innate immunity * earthworms Subject RIV: EC - Immunology

  4. Restriction of Zika Virus by Host Innate Immunity.

    Science.gov (United States)

    Xie, Xuping; Shan, Chao; Shi, Pei-Yong

    2016-05-11

    Recent epidemics of Zika virus (ZIKV) have brought increasing concerns of heightened disease severity and neurotropism. In this issue of Cell Host & Microbe, Lazear et al. (2016) and Bayer et al. (2016) show that innate immunity can restrict ZIKV infection and disease development. PMID:27173920

  5. Mitochondrial DNA in the regulation of innate immune responses.

    Science.gov (United States)

    Fang, Chunju; Wei, Xiawei; Wei, Yuquan

    2016-01-01

    Mitochondrion is known as the energy factory of the cell, which is also a unique mammalian organelle and considered to be evolved from aerobic prokaryotes more than a billion years ago. Mitochondrial DNA, similar to that of its bacterial ancestor’s, consists of a circular loop and contains significant number of unmethylated DNA as CpG islands. The innate immune system plays an important role in the mammalian immune response. Recent research has demonstrated that mitochondrial DNA (mtDNA) activates several innate immune pathways involving TLR9, NLRP3 and STING signaling, which contributes to the signaling platforms and results in effector responses. In addition to facilitating antibacterial immunity and regulating antiviral signaling, mounting evidence suggests that mtDNA contributes to inflammatory diseases following cellular damage and stress. Therefore, in addition to its well-appreciated roles in cellular metabolism and energy production,mtDNA appears to function as a key member in the innate immune system. Here, we highlight the emerging roles of mtDNA in innate immunity. PMID:26498951

  6. Stress and Humoral Innate Immune Response of Gilthead Seabream Sparus aurata Cultured in Sea Cages.

    Science.gov (United States)

    Salati, Fulvio; Roncarati, Alessandra; Angelucci, Giulia; Fenza, Alessandra; Meluzzi, Adele

    2016-09-01

    Innate and acquired immune responses of Gilthead Seabream Sparus aurata was studied under normal culture and short-term stressful conditions for 18 months in offshore sea cages in Alghero Bay, Italy. Every 45 d, 50 fish were sampled and divided into two groups: fish in the first group (normal culture conditions) were bled after harvesting; fish in the second group were put into a tank under stressful conditions (crowding and confinement) and bled after 2 h. Innate humoral immunity, such as complement-like, hemagglutination, and lysozyme activities, was determined in the sera of both groups. Pathogen challenge was not performed, but the specific humoral immune response was assessed against the most common pathogens affecting cultured fish in Sardinia. Stressed fish, compared with the control, showed a lower lysozyme activity against Vibrio (Listonella) anguillarum, which was not clearly correlated with temperatures. Complement-like activity differed between the first and second half of the study and, at the end of the trial, a slightly higher activity was recorded in the controls than in the stressed fish. Hemagglutination activity was mainly higher in the stressed fish than in control fish. Confinement, crowding, and cold water temperature caused decreased lysozyme activity in short-term stressed Gilthead Seabream compared with those reared normally. The specific humoral immune response, against V. anguillarum, Tenacibaculum mesophilum, Enterococcus Seriolicida, and Aeromonas sobria, fluctuated during the rearing period, particularly during the first year of culture. Received October 12, 2015; accepted March 24, 2016. PMID:27485027

  7. Functional Differences Between Human NKp44— and NKp44+ RORC+ Innate Lymphoid Cells

    OpenAIRE

    Kerim eHoorweg; Ferry eCornelissen; Patricia eAparicio-Domingo; Natalie ePapazian; Geert eKazemier; Hergen eSpits; Tom eCupedo

    2012-01-01

    Human RORC+ lymphoid tissue inducer cells are part of a rapidly expanding family of innate lymphoid cells (ILC) that participate in innate and adaptive immune responses as well as in lymphoid tissue (re) modeling. The assessment of a potential role for innate lymphocyte-derived cytokines in human homeostasis and disease is hampered by a poor characterization of RORC+ innate cell subsets and a lack of knowledge on the distribution of these cells in adults. Here we show that functionally distin...

  8. Functional Differences between Human NKp44− and NKp44+ RORC+ Innate Lymphoid Cells

    OpenAIRE

    Hoorweg, Kerim; Peters, Charlotte P.; Cornelissen, Ferry; Aparicio-Domingo, Patricia; Papazian, Natalie; Kazemier, Geert; Mjösberg, Jenny M.; Spits, Hergen; Cupedo, Tom

    2012-01-01

    Human RORC+ lymphoid tissue inducer cells are part of a rapidly expanding family of innate lymphoid cells (ILC) that participate in innate and adaptive immune responses as well as in lymphoid tissue (re) modeling. The assessment of a potential role for innate lymphocyte-derived cytokines in human homeostasis and disease is hampered by a poor characterization of RORC+ innate cell subsets and a lack of knowledge on the distribution of these cells in adults. Here we show that functionally distin...

  9. Novel innate cancer killing activity in humans

    Directory of Open Access Journals (Sweden)

    Lovato James

    2011-08-01

    Full Text Available Abstract Background In this study, we pilot tested an in vitro assay of cancer killing activity (CKA in circulating leukocytes of 22 cancer cases and 25 healthy controls. Methods Using a human cervical cancer cell line, HeLa, as target cells, we compared the CKA in circulating leukocytes, as effector cells, of cancer cases and controls. The CKA was normalized as percentages of total target cells during selected periods of incubation time and at selected effector/target cell ratios in comparison to no-effector-cell controls. Results Our results showed that CKA similar to that of our previous study of SR/CR mice was present in human circulating leukocytes but at profoundly different levels in individuals. Overall, males have a significantly higher CKA than females. The CKA levels in cancer cases were lower than that in healthy controls (mean ± SD: 36.97 ± 21.39 vs. 46.28 ± 27.22. Below-median CKA was significantly associated with case status (odds ratio = 4.36; 95% Confidence Interval = 1.06, 17.88 after adjustment of gender and race. Conclusions In freshly isolated human leukocytes, we were able to detect an apparent CKA in a similar manner to that of cancer-resistant SR/CR mice. The finding of CKA at lower levels in cancer patients suggests the possibility that it may be of a consequence of genetic, physiological, or pathological conditions, pending future studies with larger sample size.

  10. Functional differences between human NKp44- and NKp44+ RORC+ innate lymphoid cells

    NARCIS (Netherlands)

    K. Hoorweg (Kerim); C.P. Peters (Charlotte); F.H.J. Cornelissen (Ferry); P. Aparicio-Domingo (Patricia); N. Papazian (Natalie); G. Kazemier (Geert); J.M. Mjösberg (Jenny); H. Spits (Hergen); T. Cupedo (Tom)

    2012-01-01

    textabstractHuman RORC+ lymphoid tissue inducer cells are part of a rapidly expanding family of innate lymphoid cells (ILC) that participate in innate and adaptive immune responses as well as in lymphoid tissue (re) modeling. The assessment of a potential role for innate lymphocyte-derived cytokines

  11. DMPD: Peptidoglycan signaling in innate immunity and inflammatory disease. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 15802263 Peptidoglycan signaling in innate immunity and inflammatory disease. McDon...) (.csml) Show Peptidoglycan signaling in innate immunity and inflammatory disease. PubmedID 15802263 Title ...Peptidoglycan signaling in innate immunity and inflammatory disease. Authors McDo

  12. DMPD: Innate immune responses during infection. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 15576198 Innate immune responses during infection. Ulevitch RJ, Mathison JC, da Sil...va Correia J. Vaccine. 2004 Dec 6;22 Suppl 1:S25-30. (.png) (.svg) (.html) (.csml) Show Innate immune response...s during infection. PubmedID 15576198 Title Innate immune responses during infection. Authors Ulevitch RJ,

  13. DMPD: Innate immune responses: crosstalk of signaling and regulation of genetranscription. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 16753195 Innate immune responses: crosstalk of signaling and regulation of genetran...l) (.csml) Show Innate immune responses: crosstalk of signaling and regulation of genetranscription. PubmedI...D 16753195 Title Innate immune responses: crosstalk of signaling and regulation o

  14. DMPD: Innate immune response to viral infection. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18694646 Innate immune response to viral infection. Koyama S, Ishii KJ, Coban C, Ak...ira S. Cytokine. 2008 Sep;43(3):336-41. Epub 2008 Aug 9. (.png) (.svg) (.html) (.csml) Show Innate immune response... to viral infection. PubmedID 18694646 Title Innate immune response to viral infection. Authors Koyama

  15. DMPD: Cytosolic DNA recognition for triggering innate immune responses. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18280611 Cytosolic DNA recognition for triggering innate immune responses. Takaoka ...) Show Cytosolic DNA recognition for triggering innate immune responses. PubmedID 18280611 Title Cytosolic D...NA recognition for triggering innate immune responses. Authors Takaoka A, Taniguc

  16. A rice lectin receptor-like kinase that is involved in innate immune responses also contributes to seed germination

    OpenAIRE

    Cheng, Xiaoyan; Wu, Yan; Guo, Jianping; Du, Bo; Chen, Rongzhi; Zhu, Lili; He, Guangcun

    2013-01-01

    Seed germination and innate immunity both have significant effects on plant life spans because they control the plant's entry into the ecosystem and provide defenses against various external stresses, respectively. Much ecological evidence has shown that seeds with high vigor are generally more tolerant of various environmental stimuli in the field than those with low vigor. However, there is little genetic evidence linking germination and immunity in plants. Here, we show that the rice lecti...

  17. Genotype-specific regulation of oral innate immunity by T2R38 taste receptor.

    Science.gov (United States)

    Gil, Sucheol; Coldwell, Susan; Drury, Jeanie L; Arroyo, Fabiola; Phi, Tran; Saadat, Sanaz; Kwong, Danny; Chung, Whasun Oh

    2015-12-01

    The bitter taste receptor T2R38 has been shown to regulate mucosal innate immune responses in the upper airway epithelium. Furthermore, SNPs in T2R38 influence the sensitivity to 6-n-propylthiouracil (PROP) and are associated with caries risk/protection. However, no study has been reported on the role of T2R38 in the innate immune responses to oral bacteria. We hypothesize that T2R38 regulates oral innate immunity and that this regulation is genotype-specific. Primary gingival epithelial cells carrying three common genotypes, PAV/PAV (PROP super-taster), AVI/PAV (intermediate) and AVI/AVI (non-taster) were stimulated with cariogenic bacteria Streptococcus mutans, periodontal pathogen Porphyromonas gingivalis or non-pathogen Fusobacterium nucleatum. QRT-PCR analyzed T2R38 mRNA, and T2R38-specific siRNA and ELISA were utilized to evaluate induction of hBD-2 (antimicrobial peptide), IL-1α and IL-8 in various donor-lines. Experiments were set up in duplicate and repeated three times. T2R38 mRNA induction in response to S. mutans was highest in PAV/PAV (4.3-fold above the unstimulated controls; p<0.05), while lowest in AVI/AVI (1.2-fold). In PAV/PAV, hBD-2 secretion in response to S. mutans was decreased by 77% when T2R38 was silenced. IL-1α secretion was higher in PAV/PAV compared to AVI/PAV or AVI/AVI with S. mutans stimulation, but it was reduced by half when T2R38 was silenced (p<0.05). In response to P. gingivalis, AVI/AVI showed 4.4-fold increase (p<0.05) in T2R38 expression, whereas the levels in PAV/PAV and AVI/PAV remained close to that of the controls. Secretion levels of IL-1α and IL-8 decreased in AVI/AVI in response to P. gingivalis when T2R38 was silenced (p<0.05), while the changes were not significant in PAV/PAV. Our data suggest that the regulation of gingival innate immunity by T2R38 is genotype-dependent and that the ability to induce a high level of hBD-2 by PAV/PAV carriers may be a reason for protection against caries in this group. PMID

  18. Notch signaling in group 3 innate lymphoid cells modulates their plasticity.

    Science.gov (United States)

    Chea, Sylvestre; Perchet, Thibaut; Petit, Maxime; Verrier, Thomas; Guy-Grand, Delphine; Banchi, Elena-Gaia; Vosshenrich, Christian A J; Di Santo, James P; Cumano, Ana; Golub, Rachel

    2016-01-01

    The Notch signaling pathway is conserved throughout evolution, and it controls various processes, including cell fate determination, differentiation, and proliferation. Innate lymphoid cells (ILCs) are lymphoid cells lacking antigen receptors that fulfill effector and regulatory functions in innate immunity and tissue remodeling. Type 3 ILCs (ILC3s) reinforce the epithelial barrier and maintain homeostasis with intestinal microbiota. We demonstrated that the population of natural cytotoxicity receptor-positive (NCR(+)) ILC3s in mice is composed of two subsets that have distinct developmental requirements. A major subset depended on the activation of Notch2 in NCR(-) ILC3 precursors in the lamina propria of the small intestine to stimulate expression of the genes encoding the transcription factors T-bet, RORγt, and aryl hydrocarbon receptor (AhR). Notch signaling contributed to the transition of NCR(-) cells into NCR(+) cells, the more proinflammatory subset, in a cell-autonomous manner. In the absence of Notch signaling, this subset of NCR(-) ILC3s did not acquire the gene expression profile of NCR(+) ILC3s. A second subset of NCR(+) ILC3s did not depend on Notch for their development or for increased transcription factor abundance; however, their production of cytokines and cell surface abundance of NCRs were decreased in the absence of Notch signaling. Together, our data suggest that Notch is a regulator of the plasticity of ILC3s by controlling NCR(+) cell fate. PMID:27141929

  19. Positive and negative innate immune responses in zebrafish under light emitting diodes conditions.

    Science.gov (United States)

    Zheng, Jia-Lang; Yuan, Shuang-Shuang; Li, Wei-Ye; Wu, Chang-Wen

    2016-09-01

    Certain light emitting diodes (LEDs) have become popular in fish farming beacause of a promoting effect on growth and reproduction. However, little information is available on innate immune responses in related tissues under LEDs conditions. The present study assessed the effects of a white fluorescent bulb (the control) and two different light-emitting diodes (LEDs: blue, LDB, peak at 450 nm; red, LDR, 630 nm) on growth and innate immune responses in the serum, liver and ovary of zebrafish for 8 weeks. LDB significantly enhanced specific growth rate (SGR), food intake (FI), and serum globulin levels. In contrast, LDR sharply inhibited SGR, FI, and the levels of albumin and globulin. Under LDB condition, there was an increase in protein levels of alkaline phophatase (AKP) and protein and activity levels of lysozyme (LZM) in the liver, and the levels of mRNA, protein, and activity of LZM in the ovary. Under LDR condition, LZM was dramatically down-regulated at mRNA, protein and activity levels in the ovary, suggesting that LZM was regulated at a transcriptional level. In the liver of the LDR group, though AKP mRNA levels sharply increased, its protein and activity levels significantly declined, indicating that AKP was regulated at translational level. Furthermore, a positive correlation between transcription factor NF-κB RelA mRNA levels and expression levels of AKP and LZM was observed in the liver and ovary, implying a transcriptional regulation of NF-κB RelA. In conclusion, the present study demonstrated a positive effect of LDB and negative effect of LDR on fish growth and innate immune responses, possibly associated with modifications at transcriptional, translational, and post-translational levels, and the transcriptional regulation of the NF-κB signaling molecule. PMID:27452972

  20. Skin-Specific Unsaturated Fatty Acids Boost the Staphylococcus aureus Innate Immune Response.

    Science.gov (United States)

    Nguyen, Minh Thu; Hanzelmann, Dennis; Härtner, Thomas; Peschel, Andreas; Götz, Friedrich

    2016-01-01

    Antimicrobial fatty acids (AFAs) protect the human epidermis against invasion by pathogenic bacteria. In this study, we questioned whether human skin fatty acids (FAs) can be incorporated into the lipid moiety of lipoproteins and whether such incorporation would have an impact on innate immune stimulation in the model organism Staphylococcus aureus USA300 JE2. This organism synthesized only saturated FAs. However, when feeding USA300 with unsaturated FAs present on human skin (C16:1, C18:1, or C18:2), those were taken up, elongated stepwise by two carbon units, and finally found in the bacterial (phospho)lipid fraction. They were also observed in the lipid moiety of lipoproteins. When USA300 JE2 was fed with the unsaturated FAs, the cells and cell lysates showed an increased innate immune activation with various immune cells and peripheral blood mononuclear cells (PBMCs). Immune activation was highest with linoleic acid (C18:2). There are several pieces of evidence that the enhanced immune stimulating effect was due to the incorporation of unsaturated FAs in lipoproteins. First, the enhanced stimulation was dependent on Toll-like receptor 2 (TLR2). Second, an lgt mutant, unable to carry out lipidation of prolipoproteins, was unable to carry out immune stimulation when fed with unsaturated FAs. Third, the supplied FAs did not significantly affect growth, protein release, or expression of the model lipoprotein Lpl1. Although S. aureus is unable to synthesize unsaturated FAs, it incorporates long-chain unsaturated FAs into its lipoproteins, with the effect that the cells are better recognized by the innate immune system. This is an additional mechanism how our skin controls bacterial colonization and infection. PMID:26502910

  1. Innate immunity drives the initiation of a murine model of primary biliary cirrhosis.

    Directory of Open Access Journals (Sweden)

    Chao-Hsuan Chang

    Full Text Available Invariant natural killer T (iNKT cells play complex roles in bridging innate and adaptive immunity by engaging with glycolipid antigens presented by CD1d. Our earlier work suggested that iNKT cells were involved in the initiation of the original loss of tolerance in primary biliary cirrhosis (PBC. To address this issue in more detail and, in particular, to focus on whether iNKT cells activated by a Th2-biasing agonist (2s,3s,4r-1-O-(α-D-galactopyranosyl-N-tetracosanoyl-2-amino-1,3,4-nonanetriol (OCH, can influence the development of PBC in a xenobiotic-induced PBC murine model. Groups of mice were treated with either OCH or, as a control, α-galactosylceramide (α-GalCer and thence serially followed for cytokine production, markers of T cell activation, liver histopathology and anti-mitochondrial antibody responses. Further, additional groups of CD1d deleted mice were similarly studied. Our data indicate that administration of OCH has a dramatic influence with exacerbation of portal inflammation and hepatic fibrosis similar to mice treated with α-GalCer. Further, iNKT cell deficient CD1d knockout mice have decreased inflammatory portal cell infiltrates and reduced anti-mitochondrial antibody responses. We submit that activation of iNKT cells can occur via overlapping and/or promiscuous pathways and highlight the critical role of innate immunity in the natural history of autoimmune cholangitis. These data have implications for humans with PBC and emphasize that therapeutic strategies must focus not only on suppressing adaptive responses, but also innate immunity.

  2. Effect of Oral Administration of Enterococcus faecium Ef1 on Innate Immunity of Sucking Piglets

    Directory of Open Access Journals (Sweden)

    Wei-fen Li, Yi Huang§, Ya-li Li, Qin Huang, Zhi-wen Cui, Dong-you Yu, Imran R. Rajput and Cai-hong Hu*

    2013-01-01

    Full Text Available The objective of this study was to evaluate the effect of orally administered Enterococcus faecium EF1 on innate immune responses of jejunal mucosa in newborn piglets. Twenty-four commercial crossbred healthy newborn piglets were randomly divided into two groups, control (T0 and treatment (T1 group. Each group consists of 12 piglets. T1 was administered sterilized skim milk 2 ml piglet-1 day-1 with addition of E. faecium EF1 (5~6×108 cfu/ml by oral gavage on alternative odd days (1st, 3rd and 5th after birth. T0 fed with the same volume of sterilized skim milk without probiotics. The merciful killing of piglets at the 25th day after birth was performed to collect the samples of jejunal mucosa to measure the innate cytokine responses and the Toll-like receptors gene expression by quantitative real time PCR. The results showed that TGF-β1 and TNF-α concentrations increased and mRNA expression levels also improved significantly in T1 as compared to T0. While, the production of IFN-γ and IL-8 decreased significantly in T1 and gene expression modification was not observed. In addition, TLR (Toll-like receptor 2 and TLR 9 transcription levels were up-regulated in treatment (T1 group. These findings revealed that oral administration of E. faecium EF1 was effective to activate innate immunity and could modulate the TLRs expression in jejunal mucosa of piglets.

  3. Nod/Ripk2 signaling in dendritic cells activates IL-17A–secreting innate lymphoid cells and drives colitis in T-bet−/−.Rag2−/− (TRUC) mice

    OpenAIRE

    Ermann, Joerg; Staton, Tracy; Glickman, Jonathan N.; de Waal Malefyt, Rene; Glimcher, Laurie H.

    2014-01-01

    Disease mechanisms in inflammatory bowel disease (IBD) are incompletely understood. In this study, we analyzed the role of IL-17A–secreting innate lymphoid cells (ILCs) in a mouse model of microbiota-driven innate immune-mediated colitis. We report that the pathogenic IL-17A response in ILCs is controlled indirectly by microbial stimulation of dendritic cells (DCs) via the nucleotide-binding oligomerization domain containing (Nod)/receptor-interacting serine-threonine kinase 2 (Ripk2) signali...

  4. Regulation of antiviral innate immunity by deubiquitinase CYLD

    Institute of Scientific and Technical Information of China (English)

    Minying Zhang; Andrew J Lee; Xuefeng Wu; Shao-Cong Sun

    2011-01-01

    An antiviral innate immune response involves induction of type Ⅰ interferons (IFNs) and their subsequent autocrine and paracrine actions,but the underlying regulatory mechanisms are incompletely understood.Here we report that CYLD,a deubiquitinase that specifically digests lysine 63-1inked ubiquitin chains,is required for antiviral host defense.Loss of CYLD renders mice considerably more susceptible to infection by vesicular stomatitis virus (VSV).Consistently,CYLD-deficient dendritic cells are more sensitive to VSV infection.This functional defect was not due to lack of type I IFN production but rather because of attenuated IFN receptor signaling.In the absence of CYLD,IFN-β is ineffective in the induction of antiviral genes and protection of cells from viral infection.These findings establish CYLD as a novel regulator of antiviral innate immunity and suggest a role for CYLD in regulating IFN receptor signaling.

  5. Sublethal Heavy Metal Stress Stimulates Innate Immunity in Tomato

    Directory of Open Access Journals (Sweden)

    Nilanjan Chakraborty

    2015-01-01

    Full Text Available Effect of sublethal heavy metal stress as plant biotic elicitor for triggering innate immunity in tomato plant was investigated. Copper in in vivo condition induced accumulation of defense enzymes like peroxidase (PO, polyphenol oxidase (PPO, phenylalanine ammonia-lyase (PAL, and β-1,3 glucanase along with higher accumulation of total phenol, antioxidative enzymes (catalase and ascorbate peroxidase, and total chlorophyll content. Furthermore, the treatment also induced nitric oxide (NO production which was confirmed by realtime visualization of NO burst using a fluorescent probe 4,5-diaminofluorescein diacetate (DAF-2DA and spectrophotometric analysis. The result suggested that the sublethal dose of heavy metal can induce an array of plant defense responses that lead to the improvement of innate immunity in plants.

  6. Automated analyses of innate olfactory behaviors in rodents.

    Science.gov (United States)

    Qiu, Qiang; Scott, Aaron; Scheerer, Hayley; Sapkota, Nirjal; Lee, Daniel K; Ma, Limei; Yu, C Ron

    2014-01-01

    Olfaction based behavioral experiments are important for the investigation of sensory coding, perception, decision making and memory formation. The predominant experimental paradigms employ forced choice operant assays, which require associative learning and reinforced training. Animal performance in these assays not only reflects odor perception but also the confidence in decision making and memory. In this study, we describe a versatile and automated setup, "Poking-Registered Olfactory Behavior Evaluation System" (PROBES), which can be adapted to perform multiple olfactory assays. In addition to forced choice assays, we employ this system to examine animal's innate ability for odor detection, discrimination and preference without elaborate training procedures. These assays provide quantitative measurements of odor discrimination and robust readouts of odor preference. Using PROBES, we find odor detection thresholds are at lower concentrations in naïve animals than those determined by forced choice assays. PROBES-based automated assays provide an efficient way of analyzing innate odor-triggered behaviors. PMID:24699673

  7. Automated analyses of innate olfactory behaviors in rodents.

    Directory of Open Access Journals (Sweden)

    Qiang Qiu

    Full Text Available Olfaction based behavioral experiments are important for the investigation of sensory coding, perception, decision making and memory formation. The predominant experimental paradigms employ forced choice operant assays, which require associative learning and reinforced training. Animal performance in these assays not only reflects odor perception but also the confidence in decision making and memory. In this study, we describe a versatile and automated setup, "Poking-Registered Olfactory Behavior Evaluation System" (PROBES, which can be adapted to perform multiple olfactory assays. In addition to forced choice assays, we employ this system to examine animal's innate ability for odor detection, discrimination and preference without elaborate training procedures. These assays provide quantitative measurements of odor discrimination and robust readouts of odor preference. Using PROBES, we find odor detection thresholds are at lower concentrations in naïve animals than those determined by forced choice assays. PROBES-based automated assays provide an efficient way of analyzing innate odor-triggered behaviors.

  8. Bilingualism changes children's beliefs about what is innate.

    Science.gov (United States)

    Byers-Heinlein, Krista; Garcia, Bianca

    2015-03-01

    Young children engage in essentialist reasoning about natural kinds, believing that many traits are innately determined. This study investigated whether personal experience with second language acquisition could alter children's essentialist biases. In a switched-at-birth paradigm, 5- and 6-year-old monolingual and simultaneous bilingual children expected that a baby's native language, an animal's vocalizations, and an animal's physical traits would match those of a birth rather than of an adoptive parent. We predicted that sequential bilingual children, who had been exposed to a new language after age 3, would show greater understanding that languages are learned. Surprisingly, sequential bilinguals showed reduced essentialist beliefs about all traits: they were significantly more likely than other children to believe that human language, animal vocalizations, and animal physical traits would be learned through experience rather than innately endowed. These findings suggest that bilingualism in the preschool years can profoundly change children's essentialist biases. PMID:25546698

  9. Monocyte-derived dendritic cells in innate and adaptive immunity.

    Science.gov (United States)

    León, Beatriz; Ardavín, Carlos

    2008-01-01

    Monocytes have been classically considered essential elements in relation with innate immune responses against pathogens, and inflammatory processes caused by external aggressions, infection and autoimmune disease. However, although their potential to differentiate into dendritic cells (DCs) was discovered 14 years ago, their functional relevance with regard to adaptive immune responses has only been uncovered very recently. Studies performed over the last years have revealed that monocyte-derived DCs play an important role in innate and adaptive immunity, due to their microbicidal potential, capacity to stimulate CD4(+) and CD8(+) T-cell responses and ability to regulate Immunoglobulin production by B cells. In addition, monocyte-derived DCs not only constitute a subset of DCs formed at inflammatory foci, as previously thought, but also comprise different subsets of DCs located in antigen capture areas, such as the skin and the intestinal, respiratory and reproductive tracts. PMID:18362945

  10. Beyond NK cells: the expanding universe of Innate Lymphoid Cells.

    Directory of Open Access Journals (Sweden)

    Marina eCella

    2014-06-01

    Full Text Available For a long time NK cells were thought to be the only immune innate lymphoid population capable of responding to invading pathogens under the influence of changing environmental cues. In the last few years, an increasing amount of evidence has shown that a number of different Innate Lymphoid Cells found at mucosal sites rapidly respond to locally produced cytokines in order to establish or maintain homeostasis. ILC populations closely mirror the phenotype of adaptive Thelper subsets in their ability to secrete soluble factors. Early in the immune response, ILCs are responsible for setting the stage to mount an adaptive T cell response appropriate to the incoming insult. Here we review the diversity of ILC subsets and discuss similarities and differences between ILCs and NK cells in function and key transcriptional factors required for their development.

  11. Innate and adaptive immunity in inflammatory bowel disease

    Institute of Scientific and Technical Information of China (English)

    Britta Siegmund; Martin Zeitz

    2011-01-01

    Inflammatory bowel diseases are the consequence of a dysregulated mucosal immune system. The mucosal immune system consists of two arms, innate and adaptive immunity, that have been studied separately for a long time. Functional studies from in vivo models of intestinal inflammation as well as results from genome-wide association studies strongly suggest a cross-regulation of both arms. The present review will illustrate this interaction by selecting examples from innate immunity and adaptive immunity, and their direct impact on each other. Broadening our view by focusing on the cross-regulated areas of the mucosal immune system will not only facilitate our understanding of disease, but furthermore will allow identification of future therapeutic targets.

  12. Innate and adaptive immunity in inflammatory bowel disease

    Institute of Scientific and Technical Information of China (English)

    BrittaSiegmund; MartinZeitz

    2011-01-01

    Inflammatory bowel diseases are the consequence of a dysregulated mucosal immune system. The mucosal immune system consists of two arms, innate and adaptive immunity, that have been studied separately for a long time. Functional studies from in vivo models of intestinal inflammation as well as results from genome-wide association studies strongly suggest a crossregulation of both arms. The present review will illustrate this interaction by selecting examples from innate immunity and adaptive immunity, and their direct impact on each other. Broadening our view by focusing on the cross-regulated areas of the mucosal immune system will not only facilitate our understanding of disease, but furthermore will allow identification of future therapeutic targets.

  13. Cell walls of Saccharomyces cerevisiae differentially modulated innate immunity and glucose metabolism during late systemic inflammation.

    Directory of Open Access Journals (Sweden)

    Bushansingh Baurhoo

    Full Text Available BACKGROUND: Salmonella causes acute systemic inflammation by using its virulence factors to invade the intestinal epithelium. But, prolonged inflammation may provoke severe body catabolism and immunological diseases. Salmonella has become more life-threatening due to emergence of multiple-antibiotic resistant strains. Mannose-rich oligosaccharides (MOS from cells walls of Saccharomyces cerevisiae have shown to bind mannose-specific lectin of Gram-negative bacteria including Salmonella, and prevent their adherence to intestinal epithelial cells. However, whether MOS may potentially mitigate systemic inflammation is not investigated yet. Moreover, molecular events underlying innate immune responses and metabolic activities during late inflammation, in presence or absence of MOS, are unknown. METHODS AND PRINCIPAL FINDINGS: Using a Salmonella LPS-induced systemic inflammation chicken model and microarray analysis, we investigated the effects of MOS and virginiamycin (VIRG, a sub-therapeutic antibiotic on innate immunity and glucose metabolism during late inflammation. Here, we demonstrate that MOS and VIRG modulated innate immunity and metabolic genes differently. Innate immune responses were principally mediated by intestinal IL-3, but not TNF-α, IL-1 or IL-6, whereas glucose mobilization occurred through intestinal gluconeogenesis only. MOS inherently induced IL-3 expression in control hosts. Consequent to LPS challenge, IL-3 induction in VIRG hosts but not differentially expressed in MOS hosts revealed that MOS counteracted LPS's detrimental inflammatory effects. Metabolic pathways are built to elucidate the mechanisms by which VIRG host's higher energy requirements were met: including gene up-regulations for intestinal gluconeogenesis (PEPCK and liver glycolysis (ENO2, and intriguingly liver fatty acid synthesis through ATP citrate synthase (CS down-regulation and ATP citrate lyase (ACLY and malic enzyme (ME up-regulations. However, MOS host

  14. Advances in innate lymphoid cells%固有淋巴细胞研究进展

    Institute of Scientific and Technical Information of China (English)

    彭慧; 田志刚

    2015-01-01

    长期以来,自然杀伤( NK)细胞被认为是固有免疫系统中唯一属于淋巴谱系的细胞群体,然而近来研究揭示人和小鼠体内存在着多种类型的固有淋巴细胞( ILC)。这些新发现的ILC群体主要分布于黏膜屏障部位,尽管数量较少,但在抵抗病原体入侵和维持组织器官稳态等方面发挥重要作用。 ILC发育分化早期存在着共同前体,但在后期阶段受不同转录因子调控,成为表型和功能不同的ILC成员。不同ILC亚群有着不同的细胞因子分泌谱,依据辅助性T细胞亚群的分类方法, ILC家族可以分成三类。 ILC多样性的发现极大地丰富了固有免疫的内涵,也为我们研究固有免疫和适应性免疫之间的联系开辟了新途径。%Natural killer (NK) cells have long been considered the only representative of lymphocyte lineages among the innate immune system ,but recent studies have revealed that several types of innate lymphoid cells ( ILC ) exist in both humans and mice.These newly identified ILC populations were mainly distributed at mucosal barriers ,regardless of their rarity ,they play important roles in the defense against pathogens and in the maintenance of tissue or organ homeostasis .In the early stages of ILC development ,a common ILC lineage-restricted progenitor exists and under the control of different transcription factors ,the progenitor can later give rise to different ILC subsets with distinct phenotypes and functions.Different ILC subsets exhibit distinct cytokine secretion profiles ,based on the categorization of helper T cell subsets , ILC family has been further classified into three groups.The finding of diverse ILC extremely enriches the content of innate immunity ,and also provides new insights into links between innate and adaptive immunity .

  15. Genetic Analysis of Innate Immunity in Crohn's Disease and Ulcerative Colitis Identifies Two Susceptibility Loci Harboring CARD9 and IL18RAP

    OpenAIRE

    Zhernakova, Alexandra; Festen, Eleanora M.; Franke, Lude; Trynka, Gosia; Diemen, Cleo C van; Monsuur, Alienke J.; Bevova, Marianna; Nijmeijer, Rian M.; van ‘t Slot, Ruben; Heijmans, Roel; Boezen, H. Marike; van Heel, David A; van Bodegraven, Adriaan A.; Stokkers, Pieter C. F.; Wijmenga, Cisca

    2008-01-01

    The two main phenotypes of inflammatory bowel disease (IBD)—Crohn's disease (CD) and ulcerative colitis (UC)—are chronic intestinal inflammatory disorders with a complex genetic background. Using a three-stage design, we performed a functional candidate-gene analysis of innate immune pathway in IBD. In phase I, we typed 354 SNPs from 85 innate immunity genes in 520 Dutch IBD patients (284 CD, 236 UC) and 808 controls. In phase II, ten autosomal SNPs showing association at p < 0.006 in phase I...

  16. Stress Hyperglycemia, Insulin Treatment, and Innate Immune Cells

    OpenAIRE

    Fangming Xiu; Mile Stanojcic; Li Diao; Marc G. Jeschke

    2014-01-01

    Hyperglycemia (HG) and insulin resistance are the hallmarks of a profoundly altered metabolism in critical illness resulting from the release of cortisol, catecholamines, and cytokines, as well as glucagon and growth hormone. Recent studies have proposed a fundamental role of the immune system towards the development of insulin resistance in traumatic patients. A comprehensive review of published literatures on the effects of hyperglycemia and insulin on innate immunity in critical illness wa...

  17. Hypoxia, innate immunity and infection in the lung

    OpenAIRE

    Schaible, Bettina; Schaffer, Kirsten; Taylor, Cormac T.

    2010-01-01

    The mucosal surface of the lung is the key interface between the external atmosphere and the bloodstream. Normally, this well oxygenated tissue is maintained in state of sterility by a number of innate immune processes. These include a physical and dynamic mucus barrier, the production of microbiocidal peptides and the expression of specific pattern recognition receptors on alveolar epithelial cells and resident macrophages and dendritic cells which recognise microbial structures and initiate...

  18. Functional genomics studies on the innate immunity of disease vectors

    Institute of Scientific and Technical Information of China (English)

    Luke A. Baton; Lindsey Garver; Zhiyong Xi; George Dimopoulos

    2008-01-01

    The increasing availability of genome sequences and the development of high-throughput techniques for gene expression profiling and functional characterization are transforming the study of innate immunity and other areas of insect biology. Already,functional genomic approaches have enabled a quantum advance in the characterization of mosquito immune responses to malaria parasite infection, and similar high-throughput functional genomic studies of other vector-pathogen interactions can be expected in the near future. The application of microarray-based and other expression analyses provide genomewide transcriptional profiles that can be used to identify insect immune system components that are differentially regulated upon exposure to various classes of pathogens, including many important etiologic agents of human and animal diseases. The role of infection-responsive or other candidate immune genes identified through comparative genomic approaches can then be functionally characterized, either in vivo, for instance in adult mosquitoes, or in vitro using cell lines. In most insect vectors of human pathogens, germ-line transgenesis is still technically difficult and maintenance of multiple transgenic lines logistically demanding.Consequently, transient RNA interference (RNAi)-mediated gene-silencing has rapidly become the method of choice for functional characterization of candidate innate immune genes. The powerful combination of transcriptional profiling in conjunction with assays using RNAi to determine gene function, and identify regulatory pathways, together with downstream cell biological approaches to determine protein localization and interactions,will continue to provide novel insights into the role of insect innate immunity in a variety of vector-pathogen interactions. Here we review advances in functional genomics studies of innate immunity in the insect disease vectors, over the past decade, with a particular focus on the Anopheles mosquito and its

  19. Deciphering cellular states of innate tumor drug responses

    OpenAIRE

    Graudens, Esther; Boulanger, Virginie; Mollard, Cindy; Mariage-Samson, Régine; Barlet, Xavier; Grémy, Guilaine; Couillault, Christine; Lajémi, Malika; Piatier-Tonneau, Dominique; Zaborski, Patrick; Eveno, Eric; Auffray, Charles; Imbeaud, Sandrine

    2006-01-01

    Background The molecular mechanisms underlying innate tumor drug resistance, a major obstacle to successful cancer therapy, remain poorly understood. In colorectal cancer (CRC), molecular studies have focused on drug-selected tumor cell lines or individual candidate genes using samples derived from patients already treated with drugs, so that very little data are available prior to drug treatment. Results Transcriptional profiles of clinical samples collected from CRC patients prior to their ...

  20. Probiotics promote gut health through stimulation of epithelial innate immunity

    OpenAIRE

    Pagnini, Cristiano; Saeed, Rubina; Bamias, Giorgos; Arseneau, Kristen O.; Pizarro, Theresa T.; Cominelli, Fabio

    2009-01-01

    Probiotic formulations are widely available and have a variety of proposed beneficial effects, including promotion of gut health. The mechanisms of action of probiotic bacteria in the intestine are still unclear but are generally attributed to an antiinflammatory effect. Here, we demonstrate that the multiple probiotic formulation VSL#3 prevents the onset of intestinal inflammation by local stimulation of epithelial innate immune responses (i.e., increased production of epithelial-derived TNF...

  1. Occupational exposure alters innate and adaptive immune responses

    OpenAIRE

    Sahlander, Karin

    2010-01-01

    The farming environment is contaminated with high levels of organic dust. Especially pig barn facilities are highly polluted with airborne inhalable organic dust containing high amounts of molecular patterns from bacteria and fungi known to activate cells of the innate immunity through pattern recognition receptors (PRRs). Some hours of exposure in pig barn environment leads to an intensive upper and lower airway inflammation with systemic influences in previously unexposed ...

  2. TLR2 Promoter Hypermethylation Creates Innate Immune Dysbiosis

    OpenAIRE

    Benakanakere, M.; Abdolhosseini, M.; Hosur, K.; Finoti, L.S.; Kinane, D F

    2015-01-01

    Periodontitis is a common chronic inflammatory disease that is initiated by a complex microbial biofilm that poses significant health and financial burdens globally. Porphyromonas gingivalis is a predominant pathogen that maintains chronic inflammatory periodontitis. Toll-like receptors (TLRs) play an important role in periodontitis by recognizing pathogens and maintaining tissue homeostasis. Deficiencies in TLR expression and downstream signaling may reduce the host’s innate defenses against...

  3. Hemocyte differentiation mediates innate immune memory in Anopheles gambiae mosquitoes.

    Science.gov (United States)

    Rodrigues, Janneth; Brayner, Fábio André; Alves, Luiz Carlos; Dixit, Rajnikant; Barillas-Mury, Carolina

    2010-09-10

    Mosquito midgut invasion by ookinetes of the malaria parasite Plasmodium disrupts the barriers that normally prevent the gut microbiota from coming in direct contact with epithelial cells. This triggers a long-lived response characterized by increased abundance of granulocytes, a subpopulation of hemocytes that circulates in the insect's hemocoel, and enhanced immunity to bacteria that indirectly reduces survival of Plasmodium parasites upon reinfection. In mosquitoes, differentiation of hemocytes was necessary and sufficient to confer innate immune memory. PMID:20829487

  4. Hemocyte Differentiation Mediates Innate Immune Memory in Anopheles gambiae Mosquitoes

    Science.gov (United States)

    Rodrigues, Janneth; Brayner, Fábio André; Alves, Luiz Carlos; Dixit, Rajnikant; Barillas-Mury, Carolina

    2012-01-01

    Mosquito midgut invasion by ookinetes of the malaria parasite Plasmodium disrupts the barriers that normally prevent the gut microbiota from coming in direct contact with epithelial cells. This triggers a long-lived response characterized by increased abundance of granulocytes, a subpopulation of hemocytes, circulating in the insect’s hemocoel, and enhanced immunity to bacteria that indirectly reduces survival of Plasmodium parasites upon reinfection. In mosquitoes, differentiation of hemocytes was necessary and sufficient to confer innate immune memory. PMID:20829487

  5. Innate immune targets of hepatitis B virus infection

    OpenAIRE

    Zou, Zhi-Qiang; Wang, Li; Kai WANG; Yu, Ji-Guang

    2016-01-01

    Approximately 400 million people are chronically infected with hepatitis B virus (HBV) globally despite the widespread immunization of HBV vaccine and the development of antiviral therapies. The immunopathogenesis of HBV infection is initiated and driven by complexed interactions between the host immune system and the virus. Host immune responses to viral particles and proteins are regarded as the main determinants of viral clearance or persistent infection and hepatocyte injury. Innate immun...

  6. MicroRNAs in Rice Innate Immunity.

    Science.gov (United States)

    Baldrich, Patricia; San Segundo, Blanca

    2016-12-01

    MicroRNAs (miRNAs) are short regulatory non-coding RNAs that guide gene silencing in most eukaryotes. They regulate gene expression by triggering sequence-specific cleavage or translational repression of target transcripts. Plant miRNAs are known to play important roles in a wide range of developmental processes. Increasing evidence also supports that the modulation of miRNA levels plays an important role in reprogramming plant responses to abiotic stress (drought, cold, salinity and nutrient deficiency) and biotic stress (antibacterial resistance). Most of these studies were carried out in the model plant Arabidopsis thaliana. During the last years, the adoption of high-throughput sequencing technologies has significantly contributed to uncover multiple miRNAs while allowing miRNA profiling in plants. However, although a plethora of rice miRNAs have been shown to be regulated by pathogen infection, the biological function remains largely unknown for most of them. In this review, we summarize our current understanding on the contribution of miRNAs to rice immunity and discuss their potential applications in rice biotechnology. A better understanding of the miRNA species controlling rice immunity may lead to practical biotechnological applications leading to the development of appropriate strategies for rice protection. PMID:26897721

  7. A committed hemopoietic precursor to innate lymphoid cells

    Science.gov (United States)

    Constantinides, Michael G.; McDonald, Benjamin D.; Verhoef, Philip A.; Bendelac, Albert

    2014-01-01

    Innate lymphoid cells (ILC) specialize in the rapid secretion of polarized sets of cytokines and chemokines to combat infection and promote tissue repair at mucosal barriers.1–9 Their diversity and similarities with previously characterized NK cells and lymphoid tissue inducers (LTi) have prompted a provisional classification of all innate lymphocytes into groups 1, 2 and 3 based solely on cytokine properties,10 but their developmental pathways and lineage relationships remain elusive. Using lineage tracing and transfer studies, we identified and characterized a novel subset of lymphoid precursors in fetal liver and adult bone marrow that transiently expressed high amounts of PLZF, a transcription factor previously associated with NKT cell development.11,12 PLZFhigh cells were committed ILC progenitors with multiple ILC1, ILC2 and ILC3 potential at the clonal level. They excluded classical LTi and NK cells, but included a peculiar subset of NK1.1+DX5− ‘NK-like’ cells residing in the liver. Deletion of PLZF markedly altered the development of several ILC subsets, but not LTi or NK cells. PLZFhigh precursors also expressed high amounts of Id2 and GATA3, as well as TOX, a known regulator of PLZF-independent NK and LTi lineages.13 These findings establish novel lineage relationships between ILC, NK and LTi cells, and identify the common precursor to ILC, termed ILCP. They also reveal the broad, defining role of PLZF in the differentiation of innate lymphocytes. PMID:24509713

  8. Antimicrobial Peptides as Mediators of Innate Immunity in Teleosts.

    Science.gov (United States)

    Katzenback, Barbara A

    2015-01-01

    Antimicrobial peptides (AMPs) have been identified throughout the metazoa suggesting their evolutionarily conserved nature and their presence in teleosts is no exception. AMPs are short (18-46 amino acids), usually cationic, amphipathic peptides. While AMPs are diverse in amino acid sequence, with no two AMPs being identical, they collectively appear to have conserved functions in the innate immunity of animals towards the pathogens they encounter in their environment. Fish AMPs are upregulated in response to pathogens and appear to have direct broad-spectrum antimicrobial activity towards both human and fish pathogens. However, an emerging role for AMPs as immunomodulatory molecules has become apparent-the ability of AMPs to activate the innate immune system sheds light onto the multifaceted capacity of these small peptides to combat pathogens through direct and indirect means. Herein, this review focuses on the role of teleost AMPs as modulators of the innate immune system and their regulation in response to pathogens or other exogenous molecules. The capacity to regulate AMP expression by exogenous factors may prove useful in modulating AMP expression in fish to prevent disease, particularly in aquaculture settings where crowded conditions and environmental stress pre-dispose these fish to infection. PMID:26426065

  9. Antimicrobial Peptides as Mediators of Innate Immunity in Teleosts

    Directory of Open Access Journals (Sweden)

    Barbara A. Katzenback

    2015-09-01

    Full Text Available Antimicrobial peptides (AMPs have been identified throughout the metazoa suggesting their evolutionarily conserved nature and their presence in teleosts is no exception. AMPs are short (18–46 amino acids, usually cationic, amphipathic peptides. While AMPs are diverse in amino acid sequence, with no two AMPs being identical, they collectively appear to have conserved functions in the innate immunity of animals towards the pathogens they encounter in their environment. Fish AMPs are upregulated in response to pathogens and appear to have direct broad-spectrum antimicrobial activity towards both human and fish pathogens. However, an emerging role for AMPs as immunomodulatory molecules has become apparent—the ability of AMPs to activate the innate immune system sheds light onto the multifaceted capacity of these small peptides to combat pathogens through direct and indirect means. Herein, this review focuses on the role of teleost AMPs as modulators of the innate immune system and their regulation in response to pathogens or other exogenous molecules. The capacity to regulate AMP expression by exogenous factors may prove useful in modulating AMP expression in fish to prevent disease, particularly in aquaculture settings where crowded conditions and environmental stress pre-dispose these fish to infection.

  10. Toward understanding of rice innate immunity against Magnaporthe oryzae.

    Science.gov (United States)

    Azizi, P; Rafii, M Y; Abdullah, S N A; Nejat, N; Maziah, M; Hanafi, M M; Latif, M A; Sahebi, M

    2016-01-01

    The blast fungus, Magnaporthe oryzae, causes serious disease on a wide variety of grasses including rice, wheat and barley. The recognition of pathogens is an amazing ability of plants including strategies for displacing virulence effectors through the adaption of both conserved and variable pathogen elicitors. The pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) and effector-triggered immunity (ETI) were reported as two main innate immune responses in plants, where PTI gives basal resistance and ETI confers durable resistance. The PTI consists of extracellular surface receptors that are able to recognize PAMPs. PAMPs detect microbial features such as fungal chitin that complete a vital function during the organism's life. In contrast, ETI is mediated by intracellular receptor molecules containing nucleotide-binding (NB) and leucine rich repeat (LRR) domains that specifically recognize effector proteins produced by the pathogen. To enhance crop resistance, understanding the host resistance mechanisms against pathogen infection strategies and having a deeper knowledge of innate immunity system are essential. This review summarizes the recent advances on the molecular mechanism of innate immunity systems of rice against M. oryzae. The discussion will be centered on the latest success reported in plant-pathogen interactions and integrated defense responses in rice. PMID:25198435

  11. Innate immune recognition and activation during HIV infection

    Directory of Open Access Journals (Sweden)

    Larsen Carsten S

    2010-06-01

    Full Text Available Abstract The pathogenesis of HIV infection, and in particular the development of immunodeficiency, remains incompletely understood. Whichever intricate molecular mechanisms are at play between HIV and the host, it is evident that the organism is incapable of restricting and eradicating the invading pathogen. Both innate and adaptive immune responses are raised, but they appear to be insufficient or too late to eliminate the virus. Moreover, the picture is complicated by the fact that the very same cells and responses aimed at eliminating the virus seem to play deleterious roles by driving ongoing immune activation and progressive immunodeficiency. Whereas much knowledge exists on the role of adaptive immunity during HIV infection, it has only recently been appreciated that the innate immune response also plays an important part in HIV pathogenesis. In this review, we present current knowledge on innate immune recognition and activation during HIV infection based on studies in cell culture, non-human primates, and HIV-infected individuals, and discuss the implications for the understanding of HIV immunopathogenesis.

  12. Requirements for innate immune pathways in environmentally induced autoimmunity.

    Science.gov (United States)

    Pollard, Kenneth Michael; Kono, Dwight H

    2013-01-01

    There is substantial evidence that environmental triggers in combination with genetic and stochastic factors play an important role in spontaneous autoimmune disease. Although the specific environmental agents and how they promote autoimmunity remain largely unknown, in part because of diverse etiologies, environmentally induced autoimmune models can provide insights into potential mechanisms. Studies of idiopathic and environmentally induced systemic autoimmunity show that they are mediated by common adaptive immune response genes. By contrast, although the innate immune system is indispensable for autoimmunity, there are clear differences in the molecular and cellular innate components that mediate specific systemic autoimmune diseases, suggesting distinct autoimmune-promoting pathways. Some of these differences may be related to the bifurcation of toll-like receptor signaling that distinguishes interferon regulatory factor 7-mediated type I interferon production from nuclear factor-κB-driven proinflammatory cytokine expression. Accordingly, idiopathic and pristane-induced systemic autoimmunity require both type I interferon and proinflammatory cytokines whereas the less aggressive mercury-induced autoimmunity, although dependent on nucleic acid-binding toll-like receptors, does not require type I interferon but needs proinflammatory cytokines. Scavenger receptors and the inflammasome may contribute to silica-induced autoimmunity. Greater understanding of the innate mechanisms responsible for idiopathic and environmentally induced autoimmunity should yield new information into the processes that instigate and drive systemic autoimmunity. PMID:23557436

  13. Recognition strategies of group 3 innate lymphoid cells

    Directory of Open Access Journals (Sweden)

    Monica eKillig

    2014-04-01

    Full Text Available During the early phase of an inflammatory response, innate cells can use different strategies to sense environmental danger. These include the direct interaction of specific activating receptors (actR with pathogen-encoded/danger molecules or the engagement of cytokine receptors by pro-inflammatory mediators produced by antigen presenting cells (APC in the course of the infection. These general recognition strategies, which have been extensively described for innate myeloid cells, are shared by innate lymphoid cells (ILC, such as Natural Killer (NK cells. The family of ILC has recently expanded with the discovery of group 2 (ILC2 and group 3 ILC (ILC3, which play an important role in the defense against extracellular pathogens. Although ILC3 and NK cells share some phenotypic characteristics, the recognition strategies employed by the various ILC3 subsets have been only partially characterized. In this review, we will describe and comparatively discuss how ILC3 sense environmental cues and how the triggering of different receptors may regulate their functional behavior during an immune response.

  14. Toll-like receptors in invertebrate innate immunity

    Directory of Open Access Journals (Sweden)

    L Zheng

    2005-08-01

    Full Text Available Among invertebrates, innate immunity is the only defense mechanism against harmful non-self agents.In response to recognition of microbial pattern molecules, Drosophila melanogaster activates either theToll or Imd pathway, leading to the translocation of NF-kB (or Rel transcription factors from the cytoplasmto the nucleus and the subsequent production of antimicrobial peptides, which provide systemic innateimmunity. Toll-like receptors (TLRs are characterized by an extracellular leucine rich repeat (LRRdomain and an intracellular Toll/interleukin-1 receptor (TIR domain. TLRs are found from cnidarians tomammals. Here we argue that TLR mediated innate immunity developed during an early stage ofevolution when organisms acquired a body cavity. This is supported by the distributions of TLR and Relgenes in the animal kingdom. Further, TLR mediated immunity appears to have developed independentlyin invertebrates and vertebrates. Recent studies have shown that microbial molecules, with the potentialto signal through TLR, can be beneficial to host survival. Studies on this signaling pathway could opendoors to a better understanding of the origins of innate immunity in invertebrates and potentialtransmission blocking strategies aimed at ameliorating vector-borne diseases.

  15. The implication of SUMO in intrinsic and innate immunity.

    Science.gov (United States)

    Hannoun, Zara; Maarifi, Ghizlane; Chelbi-Alix, Mounira K

    2016-06-01

    Since its discovery, SUMOylation has emerged as a key post-translational modification involved in the regulation of host-virus interactions. SUMOylation has been associated with the replication of a large number of viruses, either through the direct modification of viral proteins or through the modulation of cellular proteins implicated in antiviral defense. SUMO can affect protein function via covalent or non-covalent binding. There is growing evidence that SUMO regulates several host proteins involved in intrinsic and innate immunity, thereby contributing to the process governing interferon production during viral infection; as well as the interferon-activated Jak/STAT pathway. Unlike the interferon-mediated innate immune response, intrinsic antiviral resistance is mediated by constitutively expressed antiviral proteins (defined as restriction factors), which confer direct viral resistance through a variety of mechanisms. The aim of this review is to evaluate the role of SUMO in intrinsic and innate immunity; highlighting the involvement of the TRIM family proteins, with a specific focus on the mechanism through which SUMO affects i- interferon production upon viral infection, ii-interferon Jak/STAT signaling and biological responses, iii-the relationship between restriction factors and RNA viruses. PMID:27157810

  16. The Role of Plasmacytoid Dendritic Cells in Innate and Adaptive Immune Responses against Alpha Herpes Virus Infections

    Directory of Open Access Journals (Sweden)

    Philipp Schuster

    2011-01-01

    Full Text Available In 1999, two independent groups identified plasmacytoid dendritic cells (PDC as major type I interferon- (IFN- producing cells in the blood. Since then, evidence is accumulating that PDC are a multifunctional cell population effectively coordinating innate and adaptive immune responses. This paper focuses on the role of different immune cells and their interactions in the surveillance of alpha herpes virus infections, summarizes current knowledge on PDC surface receptors and their role in direct cell-cell contacts, and develops a risk factor model for the clinical implications of herpes simplex and varicella zoster virus reactivation. Data from studies involving knockout mice and cell-depletion experiments as well as human studies converge into a “spider web”, in which the direct and indirect crosstalk between many cell populations tightly controls acute, latent, and recurrent alpha herpes virus infections. Notably, cells involved in innate immune regulations appear to shape adaptive immune responses more extensively than previously thought.

  17. Phosphorylation-dependent differential regulation of plant growth, cell death, and innate immunity by the regulatory receptor-like kinase BAK1

    DEFF Research Database (Denmark)

    Schwessinger, Benjamin; Roux, Milena; Kadota, Yasuhiro;

    2011-01-01

    Plants rely heavily on receptor-like kinases (RLKs) for perception and integration of external and internal stimuli. The Arabidopsis regulatory leucine-rich repeat RLK (LRR-RLK) BAK1 is involved in steroid hormone responses, innate immunity, and cell death control. Here, we describe the different...

  18. Interplay between Interferon-Mediated Innate Immunity and Porcine Reproductive and Respiratory Syndrome Virus

    Directory of Open Access Journals (Sweden)

    Mingyuan Han

    2012-04-01

    Full Text Available Innate immunity is the first line of defense against viral infection, and in turn, viruses have evolved to evade host immune surveillance. As a result, viruses may persist in host and develop chronic infections. Type I interferons (IFN-α/β are among the most potent antiviral cytokines triggered by viral infections. Porcine reproductive and respiratory syndrome (PRRS is a disease of pigs that is characterized by negligible induction of type I IFNs and viral persistence for an extended period. For IFN production, RIG-I/MDA5 and JAK-STAT pathways are two major signaling pathways, and recent studies indicate that PRRS virus is armed to modulate type I IFN responses during infection. This review describes the viral strategies for modulation of type I IFN responses. At least three non‑structural proteins (Nsp1, Nsp2, and Nsp11 and a structural protein (N nucleocapsid protein have been identified and characterized to play roles in the IFN suppression and NF-κB pathways. Nsp’s are early proteins while N is a late protein, suggesting that additional signaling pathways may be involved in addition to the IFN pathway. The understanding of molecular bases for virus-mediated modulation of host innate immune signaling will help us design new generation vaccines and control PRRS.

  19. TRPV1 Antagonism by Capsazepine Modulates Innate Immune Response in Mice Infected with Plasmodium berghei ANKA

    Directory of Open Access Journals (Sweden)

    Elizabeth S. Fernandes

    2014-01-01

    Full Text Available Thousands of people suffer from severe malaria every year. The innate immune response plays a determinant role in host’s defence to malaria. Transient receptor potential vanilloid 1 (TRPV1 modulates macrophage-mediated responses in sepsis, but its role in other pathogenic diseases has never been addressed. We investigated the effects of capsazepine, a TRPV1 antagonist, in malaria. C57BL/6 mice received 105 red blood cells infected with Plasmodium berghei ANKA intraperitoneally. Noninfected mice were used as controls. Capsazepine or vehicle was given intraperitoneally for 6 days. Mice were culled on day 7 after infection and blood and spleen cell phenotype and activation were evaluated. Capsazepine decreased circulating but not spleen F4/80+Ly6G+ cell numbers as well as activation of both F4/80+and F4/80+Ly6G+ cells in infected animals. In addition, capsazepine increased circulating but not spleen GR1+ and natural killer (NK population, without interfering with natural killer T (NKT cell numbers and blood NK and NKT activation. However, capsazepine diminished CD69 expression in spleen NKT but not NK cells. Infection increased lipid peroxidation and the release of TNFα and IFNγ, although capsazepine-treated group exhibited lower levels of lipid peroxidation and TNFα. Capsazepine treatment did not affect parasitaemia. Overall, TRPV1 antagonism modulates the innate immune response to malaria.

  20. Can We Translate Vitamin D Immunomodulating Effect on Innate and Adaptive Immunity to Vaccine Response?

    Directory of Open Access Journals (Sweden)

    Pierre Olivier Lang

    2015-03-01

    Full Text Available Vitamin D (VitD, which is well known for its classic role in the maintenance of bone mineral density, has now become increasingly studied for its extra-skeletal roles. It has an important influence on the body’s immune system and modulates both innate and adaptive immunity and regulates the inflammatory cascade. In this review our aim was to describe how VitD might influence immune responsiveness and its potential modulating role in vaccine immunogenicity. In the first instance, we consider the literature that may provide molecular and genetic support to the idea that VitD status may be related to innate and/or adaptive immune response with a particular focus on vaccine immunogenicity and then discuss observational studies and controlled trials of VitD supplementation conducted in humans. Finally, we conclude with some knowledge gaps surrounding VitD and vaccine response, and that it is still premature to recommend “booster” of VitD at vaccination time to enhance vaccine response.

  1. Chronic Activation of Innate Immunity Correlates With Poor Prognosis in Cancer Patients Treated With Oncolytic Adenovirus.

    Science.gov (United States)

    Taipale, Kristian; Liikanen, Ilkka; Juhila, Juuso; Turkki, Riku; Tähtinen, Siri; Kankainen, Matti; Vassilev, Lotta; Ristimäki, Ari; Koski, Anniina; Kanerva, Anna; Diaconu, Iulia; Cerullo, Vincenzo; Vähä-Koskela, Markus; Oksanen, Minna; Linder, Nina; Joensuu, Timo; Lundin, Johan; Hemminki, Akseli

    2016-02-01

    Despite many clinical trials conducted with oncolytic viruses, the exact tumor-level mechanisms affecting therapeutic efficacy have not been established. Currently there are no biomarkers available that would predict the clinical outcome to any oncolytic virus. To assess the baseline immunological phenotype and find potential prognostic biomarkers, we monitored mRNA expression levels in 31 tumor biopsy or fluid samples from 27 patients treated with oncolytic adenovirus. Additionally, protein expression was studied from 19 biopsies using immunohistochemical staining. We found highly significant changes in several signaling pathways and genes associated with immune responses, such as B-cell receptor signaling (P < 0.001), granulocyte macrophage colony-stimulating factor (GM-CSF) signaling (P < 0.001), and leukocyte extravasation signaling (P < 0.001), in patients surviving a shorter time than their controls. In immunohistochemical analysis, markers CD4 and CD163 were significantly elevated (P = 0.020 and P = 0.016 respectively), in patients with shorter than expected survival. Interestingly, T-cell exhaustion marker TIM-3 was also found to be significantly upregulated (P = 0.006) in patients with poor prognosis. Collectively, these data suggest that activation of several functions of the innate immunity before treatment is associated with inferior survival in patients treated with oncolytic adenovirus. Conversely, lack of chronic innate inflammation at baseline may predict improved treatment outcome, as suggested by good overall prognosis. PMID:26310629

  2. Innate immunity is a key factor for the resolution of inflammation in asthma

    Directory of Open Access Journals (Sweden)

    Cindy Barnig

    2015-03-01

    Full Text Available The resolution of inflammation is an integral and natural part of the physiological response to tissue injury, infection and allergens or other noxious stimuli. Resolution is now recognised as an active process with highly regulated cellular and biochemical events. Recent discoveries have highlighted that innate inflammatory cells have bimodal effector functions during the inflammatory response, including active roles during the resolution process. Several mediators displaying potent pro-resolving actions have recently been uncovered. Lipoxin A4, the lead member of this new class of pro-resolving mediators, has anti-inflammatory actions on type 2 innate lymphoid cells and pro-resolving actions through natural killer cells in asthma immunobiology. Eosinophils are also able to control crucial aspects of resolution through the generation of pro-resolving mediators. Uncontrolled asthma has been associated with a defect in the generation of specialised pro-resolving mediators, including lipoxin A4 and protectin D1. Thus, bioactive stable analogue mimetics of these mediators that can harness endogenous resolution mechanisms for inflammation may offer new therapeutic strategies for asthma and airway inflammation associated diseases.

  3. Cationic amino acid transporter 2 enhances innate immunity during Helicobacter pylori infection.

    Directory of Open Access Journals (Sweden)

    Daniel P Barry

    Full Text Available Once acquired, Helicobacter pylori infection is lifelong due to an inadequate innate and adaptive immune response. Our previous studies indicate that interactions among the various pathways of arginine metabolism in the host are critical determinants of outcomes following infection. Cationic amino acid transporter 2 (CAT2 is essential for transport of L-arginine (L-Arg into monocytic immune cells during H. pylori infection. Once within the cell, this amino acid is utilized by opposing pathways that lead to elaboration of either bactericidal nitric oxide (NO produced from inducible NO synthase (iNOS, or hydrogen peroxide, which causes macrophage apoptosis, via arginase and the polyamine pathway. Because of its central role in controlling L-Arg availability in macrophages, we investigated the importance of CAT2 in vivo during H. pylori infection. CAT2(-/- mice infected for 4 months exhibited decreased gastritis and increased levels of colonization compared to wild type mice. We observed suppression of gastric macrophage levels, macrophage expression of iNOS, dendritic cell activation, and expression of granulocyte-colony stimulating factor in CAT2(-/- mice suggesting that CAT2 is involved in enhancing the innate immune response. In addition, cytokine expression in CAT2(-/- mice was altered from an antimicrobial Th1 response to a Th2 response, indicating that the transporter has downstream effects on adaptive immunity as well. These findings demonstrate that CAT2 is an important regulator of the immune response during H. pylori infection.

  4. The Lipid-Modifying Enzyme SMPDL3B Negatively Regulates Innate Immunity

    Directory of Open Access Journals (Sweden)

    Leonhard X. Heinz

    2015-06-01

    Full Text Available Lipid metabolism and receptor-mediated signaling are highly intertwined processes that cooperate to fulfill cellular functions and safeguard cellular homeostasis. Activation of Toll-like receptors (TLRs leads to a complex cellular response, orchestrating a diverse range of inflammatory events that need to be tightly controlled. Here, we identified the GPI-anchored Sphingomyelin Phosphodiesterase, Acid-Like 3B (SMPDL3B in a mass spectrometry screening campaign for membrane proteins co-purifying with TLRs. Deficiency of Smpdl3b in macrophages enhanced responsiveness to TLR stimulation and profoundly changed the cellular lipid composition and membrane fluidity. Increased cellular responses could be reverted by re-introducing affected ceramides, functionally linking membrane lipid composition and innate immune signaling. Finally, Smpdl3b-deficient mice displayed an intensified inflammatory response in TLR-dependent peritonitis models, establishing its negative regulatory role in vivo. Taken together, our results identify the membrane-modulating enzyme SMPDL3B as a negative regulator of TLR signaling that functions at the interface of membrane biology and innate immunity.

  5. Modulating the innate immune response to influenza A virus: potential therapeutic use of anti-inflammatory drugs

    Directory of Open Access Journals (Sweden)

    Irene eRamos

    2015-07-01

    Full Text Available Infection by influenza A viruses (IAV is frequently characterized by robust inflammation that is usually more pronounced in the case of avian influenza. It is becoming clearer that the morbidity and pathogenesis caused by IAV is a consequence of this inflammatory response, with several components of the innate immune system acting as the main players. It has been postulated that using a therapeutic approach to limit the innate immune response in combination with antiviral drugs has the potential to diminish symptoms and tissue damage caused by IAV infection. Indeed, some anti-inflammatory agents have been shown to be effective in animal models at reducing IAV pathology as a proof of principle. The main challenge in developing such therapies is to selectively modulate signaling pathways that contribute to lung injury while maintaining the ability of the host cells to mount an antiviral response to control virus replication. However, the dissection of those pathways is very complex given the numerous components regulated by the same factors (i.e. NF kappa B transcription factors and the large number of players involved in this regulation, some of which may be undescribed or unknown. This article provides a comprehensive review of the current knowledge regarding the innate immune responses associated with tissue damage by IAV infection, the understanding of which is essential for the development of effective immunomodulatory drugs. Furthermore, we summarize the recent advances on the development and evaluation of such drugs as well as the lessons learned from those studies.

  6. Korean mistletoe enriched diet enhances innate immune response in kelp grouper, Epinephelus bruneus against Philasterides dicentrarchi.

    Science.gov (United States)

    Harikrishnan, Ramasamy; Balasundaram, Chellam; Heo, Moon-Soo

    2011-12-29

    The present study investigated the immunostimulatory effect of Korean mistletoe Viscum album extract (KM-E) on innate immune response in kelp grouper Epinephelus bruneus against Philasterides dicentrarchi. Kelp grouper were divided into four groups of 25 each and fed with 0 (control), 0.5, 1.0, and 2.0% enriched diets with Korean mistletoe extract (KM-E). After feeding for 30 days, the fish were injected intraperitoneally (i.p.) with 100 μl of P. dicentrarchi (4.2 × 10(7)ciliates/ml) to study the immune responses at weeks 1, 2, and 4. The respiratory burst activity did not significantly enhance when fed with 0.5% and 1.0% supplementation diets on week 1 when compared to control diet. On weeks 2 and 4, the respiratory burst activity significantly increased with 1.0% and 2.0% diets. The phagocytic activity significantly enhanced with 1.0% and 2.0% diets, but not with 0.5% diet at any time. When fed with 1.0% KM-E-diet the lysozyme activity did not significantly vary at any week whereas with 1.0% and 2.0% diets it was significantly enhanced. The total protein level significantly increased with 1.0% and 2.0% KM-E-diets from weeks 1 to 4 as compared to control. The present study suggests that 1.0% or 2.0% KM-E-supplementation diet positively enhances the innate immune response in E. bruneus against P. dicentrarchi infection. PMID:21807463

  7. Expression of innate immune complement regulators on brain epithelial cells during human bacterial meningitis

    Directory of Open Access Journals (Sweden)

    Gasque Philippe

    2006-09-01

    Full Text Available Abstract Background In meningitis, the cerebrospinal fluid contains high levels of innate immune molecules (e.g. complement which are essential to ward off the infectious challenge and to promote the infiltration of phagocytes (neutrophils, monocytes. However, epithelial cells of either the ependymal layer, one of the established niche for adult neural stem cells, or of the choroid plexus may be extremely vulnerable to bystander attack by cytotoxic and cytolytic complement components. Methods In this study, we assessed the capacity of brain epithelial cells to express membrane-bound complement regulators (ie, CD35, CD46, CD55 and CD59 in vitro and in situ by immunostaining of control and meningitis human brain tissue sections. Results Double immunofluorescence experiments for ependymal cell markers (GFAP, S100, ZO-1, E-cadherin and complement regulators indicated that the human ependymal cell line model was strongly positive for CD55, CD59 compared to weak stainings for CD46 and CD35. In tissues, we found that CD55 was weakly expressed in control choroid plexus and ependyma but was abundantly expressed in meningitis. Anti-CD59 stained both epithelia in apical location while increased CD59 staining was solely demonstrated in inflamed choroid plexus. CD46 and CD35 were not detected in control tissue sections. Conversely, in meningitis, the ependyma, subependyma and choroid plexus epithelia were strongly stained for CD46 and CD35. Conclusion This study delineates for the first time the capacity of brain ependymal and epithelial cells to respond to and possibly sustain the innate complement-mediated inflammatory insult.

  8. Innate immune function in placenta and cord blood of hepatitis C--seropositive mother-infant dyads.

    Directory of Open Access Journals (Sweden)

    Christine Waasdorp Hurtado

    Full Text Available Vertical transmission accounts for the majority of pediatric cases of hepatitis C viral (HCV infection. In contrast to the adult population who develop persistent viremia in approximately 80% of cases following exposure, the rate of mother-to-child transmission (2-6% is strikingly low. Protection from vertical transmission likely requires the coordination of multiple components of the immune system. Placenta and decidua provide a direct connection between mother and infant. We hypothesized that innate immune responses would differ across the three compartments (decidua, placenta and cord blood and that hepatitis C exposure would modify innate immunity in these tissues. The study was comprised of HCV-infected and healthy control mother and infant pairs from whom cord blood, placenta and decidua were collected with isolation of mononuclear cells. Multiparameter flow cytometry was performed to assess the phenotype, intracellular cytokine production and cytotoxicity of the cells. In keeping with a model where the maternal-fetal interface provides antiviral protection, we found a gradient in proportional frequencies of NKT and gammadelta-T cells being higher in placenta than cord blood. Cytotoxicity of NK and NKT cells was enhanced in placenta and placental NKT cytotoxicity was further increased by HCV infection. HCV exposure had multiple effects on innate cells including a decrease in activation markers (CD69, TRAIL and NKp44 on NK cells and a decrease in plasmacytoid dendritic cells in both placenta and cord blood of exposed infants. In summary, the placenta represents an active innate immunological organ that provides antiviral protection against HCV transmission in the majority of cases; the increased incidence in preterm labor previously described in HCV-seropositive mothers may be related to enhanced cytotoxicity of NKT cells.

  9. Enhanced Innate Inflammation Induced by Anti-BTLA Antibody in Dual Insult Model of Hemorrhagic Shock/Sepsis.

    Science.gov (United States)

    Cheng, Tingting; Bai, Jianwen; Chung, Chun-Shiang; Chen, Yaping; Biron, Bethany M; Ayala, Alfred

    2016-01-01

    Sepsis following hemorrhagic shock is a common clinical condition, in which innate immune system suffers from severe suppression. B and T lymphocyte attenuator (BTLA) is an immune-regulatory coinhibitory receptor expressed not only on adaptive, but also on innate immune cells. Our previous data showed that BTLA gene deficient mice were protected from septic mortality when compared with wild-type control C57BL/6 mice. Here, we extended our study by treating C57BL/6 mice with an anti-BTLA monoclonal antibody (clone 6A6; reported to have the ability to neutralize or agonize/potentiate BTLA signaling) in a mouse model of hemorrhagic shock (Hem) followed by sepsis induced by cecal ligation and puncture (CLP); positing initially that if BTLA engagement was neutralized, like gene deficiency, an anti-BTLA mAb would have the similar effects on the inflammatory response/morbidity in these mice after such insults. Here, we report that BTLA expression is elevated on innate immune cells after Hem/CLP. However, anti-BTLA antibody treatment increased cytokine (TNF-α, IL-12, IL-10)/chemokine (KC, MIP-2, MCP-1) levels and inflammatory cells (neutrophils, macrophages, dendritic cells) recruitment in the peritoneal cavity, which in turn aggravated organ injury and elevated these animals' mortality in Hem/CLP. When compared with the protective effects of our previous study using BTLA gene deficient mice in a model of lethal septic challenge, we further confirmed BTLA's contribution to enhanced innate cell recruitment, elevated IL-10 levels, and reduced survival, and that engagement of antibody with BTLA potentiates/exacerbates the pathophysiology in Hem/sepsis. PMID:26674453

  10. Innate immune responses of Drosophila melanogaster are altered by spaceflight.

    Directory of Open Access Journals (Sweden)

    Oana Marcu

    Full Text Available Alterations and impairment of immune responses in humans present a health risk for space exploration missions. The molecular mechanisms underpinning innate immune defense can be confounded by the complexity of the acquired immune system of humans. Drosophila (fruit fly innate immunity is simpler, and shares many similarities with human innate immunity at the level of molecular and genetic pathways. The goals of this study were to elucidate fundamental immune processes in Drosophila affected by spaceflight and to measure host-pathogen responses post-flight. Five containers, each containing ten female and five male fruit flies, were housed and bred on the space shuttle (average orbit altitude of 330.35 km for 12 days and 18.5 hours. A new generation of flies was reared in microgravity. In larvae, the immune system was examined by analyzing plasmatocyte number and activity in culture. In adults, the induced immune responses were analyzed by bacterial clearance and quantitative real-time polymerase chain reaction (qPCR of selected genes following infection with E. coli. The RNA levels of relevant immune pathway genes were determined in both larvae and adults by microarray analysis. The ability of larval plasmatocytes to phagocytose E. coli in culture was attenuated following spaceflight, and in parallel, the expression of genes involved in cell maturation was downregulated. In addition, the level of constitutive expression of pattern recognition receptors and opsonins that specifically recognize bacteria, and of lysozymes, antimicrobial peptide (AMP pathway and immune stress genes, hallmarks of humoral immunity, were also reduced in larvae. In adults, the efficiency of bacterial clearance measured in vivo following a systemic infection with E. coli post-flight, remained robust. We show that spaceflight altered both cellular and humoral immune responses in Drosophila and that the disruption occurs at multiple interacting pathways.

  11. Yersinia type III effectors perturb host innate immune responses.

    Science.gov (United States)

    Pha, Khavong; Navarro, Lorena

    2016-02-26

    The innate immune system is the first line of defense against invading pathogens. Innate immune cells recognize molecular patterns from the pathogen and mount a response to resolve the infection. The production of proinflammatory cytokines and reactive oxygen species, phagocytosis, and induced programmed cell death are processes initiated by innate immune cells in order to combat invading pathogens. However, pathogens have evolved various virulence mechanisms to subvert these responses. One strategy utilized by Gram-negative bacterial pathogens is the deployment of a complex machine termed the type III secretion system (T3SS). The T3SS is composed of a syringe-like needle structure and the effector proteins that are injected directly into a target host cell to disrupt a cellular response. The three human pathogenic Yersinia spp. (Y. pestis, Y. enterocolitica, and Y. pseudotuberculosis) are Gram-negative bacteria that share in common a 70 kb virulence plasmid which encodes the T3SS. Translocation of the Yersinia effector proteins (YopE, YopH, YopT, YopM, YpkA/YopO, and YopP/J) into the target host cell results in disruption of the actin cytoskeleton to inhibit phagocytosis, downregulation of proinflammatory cytokine/chemokine production, and induction of cellular apoptosis of the target cell. Over the past 25 years, studies on the Yersinia effector proteins have unveiled tremendous knowledge of how the effectors enhance Yersinia virulence. Recently, the long awaited crystal structure of YpkA has been solved providing further insights into the activation of the YpkA kinase domain. Multisite autophosphorylation by YpkA to activate its kinase domain was also shown and postulated to serve as a mechanism to bypass regulation by host phosphatases. In addition, novel Yersinia effector protein targets, such as caspase-1, and signaling pathways including activation of the inflammasome were identified. In this review, we summarize the recent discoveries made on Yersinia

  12. Candesartan ameliorates impaired fear extinction induced by innate immune activation.

    Science.gov (United States)

    Quiñones, María M; Maldonado, Lizette; Velazquez, Bethzaly; Porter, James T

    2016-02-01

    Patients with post-traumatic stress disorder (PTSD) tend to show signs of a relatively increased inflammatory state suggesting that activation of the immune system may contribute to the development of PTSD. In the present study, we tested whether activation of the innate immune system can disrupt acquisition or recall of auditory fear extinction using an animal model of PTSD. Male adolescent rats received auditory fear conditioning in context A. The next day, an intraperitoneal injection of lipopolysaccharide (LPS; 100 μg/kg) prior to auditory fear extinction in context B impaired acquisition and recall of extinction. LPS (100 μg/kg) given after extinction training did not impair extinction recall suggesting that LPS did not affect consolidation of extinction. In contrast to cued fear extinction, contextual fear extinction was not affected by prior injection of LPS (100 μg/kg). Although LPS also reduced locomotion, we could dissociate the effects of LPS on extinction and locomotion by using a lower dose of LPS (50 μg/kg) which impaired locomotion without affecting extinction. In addition, 15 h after an injection of 250 μg/kg LPS in adult rats, extinction learning and recall were impaired without affecting locomotion. A sub-chronic treatment with candesartan, an angiotensin II type 1 receptor blocker, prevented the LPS-induced impairment of extinction in adult rats. Our results demonstrate that activation of the innate immune system can disrupt auditory fear extinction in adolescent and adult animals. These findings also provide direction for clinical studies of novel treatments that modulate the innate immune system for stress-related disorders like PTSD. PMID:26520214

  13. TLR2 Promoter Hypermethylation Creates Innate Immune Dysbiosis

    Science.gov (United States)

    Benakanakere, M.; Abdolhosseini, M.; Hosur, K.; Finoti, L.S.

    2015-01-01

    Periodontitis is a common chronic inflammatory disease that is initiated by a complex microbial biofilm that poses significant health and financial burdens globally. Porphyromonas gingivalis is a predominant pathogen that maintains chronic inflammatory periodontitis. Toll-like receptors (TLRs) play an important role in periodontitis by recognizing pathogens and maintaining tissue homeostasis. Deficiencies in TLR expression and downstream signaling may reduce the host’s innate defenses against pathogens, leading to bacterial persistence and exacerbated inflammation, which are now being better appreciated in disease pathologies. In the case of periodontitis, gingival epithelial cells form the first line of defense against pathogens. Innate immune dysregulation in these cells relates to severe disease pathology. We recently identified a blunted TLR2 expression in certain gingival epithelial cells expressing diminished cytokine signaling upon P. gingivalis stimulation. Upon detailed analysis of the TLR2 promoter CpG Island, we noted higher CpG methylation in this dysregulated cell type. When these cells were treated with DNA methyltransferase inhibitor, TLR2 mRNA and cytokine expression were significantly increased. If TLR2 expression plasmid was ectopically expressed in dysfunctional cells prior to P. gingivalis stimulation, the cytokine expression was increased, confirming the requirement of TLR2 in the P. gingivalis–mediated inflammatory response. We designed a chronic in vitro infection model to test if P. gingivalis can induce DNA methylation in normal gingival epithelial cells that express higher TLR2 upon agonist stimulation. Chronic treatment of normal epithelial cells with P. gingivalis introduced de novo DNA methylation within the cells. In addition, increased DNA methylation was observed in the gingiva of mice infected with P. gingivalis in a periodontitis oral gavage model. Moreover, tissues obtained from periodontitis patients also exhibited

  14. What can pestiviral endonucleases teach us about innate immunotolerance?

    Science.gov (United States)

    Lussi, Carmela; Schweizer, Matthias

    2016-06-01

    Pestiviruses including bovine viral diarrhea virus (BVDV), border disease virus (BDV) and classical swine fever virus (CSFV), occur worldwide and are important pathogens of livestock. A large part of their success can be attributed to the induction of central immunotolerance including B- and T-cells upon fetal infection leading to the generation of persistently infected (PI) animals. In the past few years, it became evident that evasion of innate immunity is a central element to induce and maintain persistent infection. Hence, the viral non-structural protease N(pro) heads the transcription factor IRF-3 for proteasomal degradation, whereas an extracellularly secreted, soluble form of the envelope glycoprotein E(rns) degrades immunostimulatory viral single- and double-stranded RNA, which makes this RNase unique among viral endoribonucleases. We propose that these pestiviral interferon (IFN) antagonists maintain a state of innate immunotolerance mainly pertaining its viral nucleic acids, in contrast to the well-established immunotolerance of the adaptive immune system, which is mainly targeted at proteins. In particular, the unique extension of 'self' to include the viral genome by degrading immunostimulatory viral RNA by E(rns) is reminiscent of various host nucleases that are important to prevent inappropriate IFN activation by the host's own nucleic acids in autoimmune diseases such as Aicardi-Goutières syndrome or systemic lupus erythematosus. This mechanism of "innate tolerance" might thus provide a new facet to the role of extracellular RNases in the sustained prevention of the body's own immunostimulatory RNA to act as a danger-associated molecular pattern that is relevant across various species. PMID:27021825

  15. Marginal zone B-cells, a gatekeeper of innate immunity.

    Science.gov (United States)

    Zouali, Moncef; Richard, Yolande

    2011-01-01

    To maintain the integrity of an organism constantly challenged by pathogens, the immune system is endowed with a variety of cell types. B lymphocytes were initially thought to only play a role in the adaptive branch of immunity. However, a number of converging observations revealed that two B-cell subsets, marginal zone (MZ) and B1 cells, exhibit unique developmental and functional characteristics, and can contribute to innate immune responses. In addition to their capacity to mount a local antibody response against type-2 T-cell-independent (TI-2) antigens, MZ B-cells can participate to T-cell-dependent (TD) immune responses through the capture and import of blood-borne antigens to follicular areas of the spleen. Here, we discuss the multiple roles of MZ B-cells in humans, non-human primates, and rodents. We also summarize studies - performed in transgenic mice expressing fully human antibodies on their B-cells and in macaques whose infection with Simian immunodeficiency virus (SIV) represents a suitable model for HIV-1 infection in humans - showing that infectious agents have developed strategies to subvert MZ B-cell functions. In these two experimental models, we observed that two microbial superantigens for B-cells (protein A from Staphylococcus aureus and protein L from Peptostreptococcus magnus) as well as inactivated AT-2 virions of HIV-1 and infectious SIV preferentially deplete innate-like B-cells - MZ B-cells and/or B1 B-cells - with different consequences on TI and TD antibody responses. These data revealed that viruses and bacteria have developed strategies to deplete innate-like B-cells during the acute phase of infection and to impair the antibody response. Unraveling the intimate mechanisms responsible for targeting MZ B-cells in humans will be important for understanding disease pathogenesis and for designing novel vaccine strategies. PMID:22566852

  16. Glycoconjugates as elicitors or suppressors of plant innate immunity

    DEFF Research Database (Denmark)

    Silipo, Alba; Erbs, Gitte; Shinya, Tomonori;

    2010-01-01

    walls of both Gram-positive and Gram-negative bacteria, and fungal and oomycete glycoconjugates such as oligosaccharides derived from the cell wall components ß-glucan, chitin and chitosan, have been found to act as elicitors of plant innate immunity. These conserved indispensable microbe...... review the current knowledge about the bacterial MAMPs LPS and PGN, the fungal MAMPs ß-glucan, chitin and chitosan oligosaccharides and the bacterial suppressors EPS and cyclic glucan, with particular reference to the chemical structures of these molecules, the PRRs involved in their recognition (where...

  17. Role of heat shock protein 70 in innate alloimmunity

    Directory of Open Access Journals (Sweden)

    Walter G. eLand

    2012-01-01

    Full Text Available This article briefly describes our own experience with the proven demonstration of heat shock protein 70 in reperfused renal allografts from brain-deaddonors and reflects about its potential role as a typical damage-associated molecular pattern (DAMP in the setting of innate alloimmunity. In fact, our group was able to demonstrate a dramatic up-regulation of heat shock protein 70 expression after postischemic reperfusion of renal allografts. Of note, up-regulation of this stress protein expression, although to a lesser extent, was already observed after cold storage of the organ indicating that this molecule is already induced in the stressed organism of a brain-dead donor. However, whether or not the dramatic up-regulation of heat shock protein 70 expression contributes to mounting an innate alloimmune response cannot be judged in view of these clinical findings.Nevertheless, heat shock protein 70, since generated in association with postischemic reperfusion-induced allograft injury, can be called a typical DAMP - as can everymolecule be termed a DAMP that is generated in associationwith any stressful tissue injury regardless of its final positive or negative regulatory function within the innate immune response elicited by it.In fact, as we discuss in this article, the context-dependent, even contradistinctive activities of heat shock protein 70 reflect the biological phenomenon that, throughout evolution, mammals have developed an elaborate network of positive and negative regulatory mechanisms, which provide balance between defensive and protective measures against unwarranted destruction of the host. In this sense, up-regulated expression of heat shock protein 70 in an injured allograft might reflect a pure protective response against the severe oxidative injury of a reperfused donor organ. On the other hand, up-regulated expression of this stress protein in an injured allograft might reflect a(futile attempt of the innate immune system to

  18. Kinetics of the excessive cellular innate immune response after injury

    OpenAIRE

    Hietbrink, F

    2008-01-01

    Organ failure is a severe complication frequently seen in injured patients, with mortality rates of up to 80%. Failure of function of one or more organs after trauma occurs during an early phase (0-3 days) and/or a late phase (>7 days). Neutrophils and monocytes (both leukocytes and important effector cells of the innate immune system) are essential in the pathophysiology of organ failure after trauma. It is thought that early phase organ failure is caused by the excessive activation of the a...

  19. Human neutrophil elastase inhibitors in innate and adaptive immunity.

    Science.gov (United States)

    Fitch, P M; Roghanian, A; Howie, S E M; Sallenave, J-M

    2006-04-01

    Recent evidence shows that human neutrophil elastase inhibitors can be synthesized locally at mucosal sites. In addition to efficiently targeting bacterial and host enzymes, they can be released in the interstitium and in the lumen of mucosa, where they have been shown to have antimicrobial activities, and to activate innate immune responses. This review will address more particularly the pleiotropic functions of low-molecular-mass neutrophil elastase inhibitors [SLPI (secretory leucocyte proteinase inhibitor) and elafin] and, more specifically, their role in the development of the adaptive immune response. PMID:16545094

  20. Synthetic Organic Electrochemistry: An Enabling and Innately Sustainable Method.

    Science.gov (United States)

    Horn, Evan J; Rosen, Brandon R; Baran, Phil S

    2016-05-25

    While preparative electrolysis of organic molecules has been an active area of research over the past century, modern synthetic chemists have generally been reluctant to adopt this technology. In fact, electrochemical methods possess many benefits over traditional reagent-based transformations, such as high functional group tolerance, mild conditions, and innate scalability and sustainability. In this Outlook we highlight illustrative examples of electrochemical reactions in the context of the synthesis of complex molecules, showcasing the intrinsic benefits of electrochemical reactions versus traditional reagent-based approaches. Our hope is that this field will soon see widespread adoption in the synthetic community. PMID:27280164

  1. Filoviruses and the balance of innate, adaptive, and inflammatory responses.

    Science.gov (United States)

    Mohamadzadeh, Mansour; Chen, Lieping; Olinger, Gene G; Pratt, William D; Schmaljohn, Alan L

    2006-01-01

    The Filoviruses Marburg virus and Ebola virus are among the deadliest of human pathogens, causing fulminant hemorrhagic fevers typified by overmatched specific immune responses and profuse inflammatory responses. Keys to both vaccination and treatment may reside, first, in the understanding of immune dysfunctions that parallel Filoviral disease and, second, in devising ways to redirect and restore normal immune function as well as to mitigate inflammation. Here, we describe how Filoviral infections may subvert innate immune responses through perturbances of dendritic cells and neutrophils, with particular emphasis on the downstream effects on adaptive immunity and inflammation. We suggest that pivotal events may be subject to therapeutic intervention as Filoviruses encounter immune processes. PMID:17201655

  2. Role of the innate immunity in female reproductive tract

    Directory of Open Access Journals (Sweden)

    Fatemehsadat Amjadi

    2014-01-01

    Full Text Available The mucosal immune system in the female reproductive tract (FRT is well equipped to meet the sexually transmitted pathogens, allogeneic sperm, and the immunologically distinct fetus. Analysis of the FRT indicates that epithelial cells provide a physical barrier against pathogens and microbial infections as well as secretions containing anti-microbial peptides, cytokines, and chemokines which recruit and activate immune cells. Epithelial and immune cells confer protection in part through Toll-like receptors. The aim of this literature is to review the diverse components of the innate immune system, contributing to an exclusive protection system throughout the FRT.

  3. Biology and Metabolism of Sepsis: Innate Immunity, Bioenergetics, and Autophagy.

    Science.gov (United States)

    Lewis, Anthony J; Billiar, Timothy R; Rosengart, Matthew R

    2016-06-01

    Sepsis is a complex, heterogeneous physiologic condition that represents a significant public health concern. While many insights into the pathophysiology of sepsis have been elucidated over the past decades of research, important questions remain. This article serves as a review of several important areas in sepsis research. Understanding the innate immune response has been at the forefront as of late, especially in the context of cytokine-directed therapeutic trials. Cellular bioenergetic changes provide insight into the development of organ dysfunction in sepsis. Autophagy and mitophagy perform crucial cell housekeeping and stress response functions. Finally, age-related changes and their potential impact on the septic response are reviewed. PMID:27093228

  4. Complement Activation Pathways: A Bridge between Innate and Adaptive Immune Responses in Asthma

    OpenAIRE

    Wills-Karp, Marsha

    2007-01-01

    Although it is widely accepted that allergic asthma is driven by T helper type 2 (Th2)-polarized immune responses to innocuous environmental allergens, the mechanisms driving these aberrant immune responses remain elusive. Recent recognition of the importance of innate immune pathways in regulating adaptive immune responses have fueled investigation into the role of innate immune pathways in the pathogenesis of asthma. The phylogenetically ancient innate immune system, the complement system, ...

  5. HIV-1 evades innate immune recognition through specific co-factor recruitment

    OpenAIRE

    Rasaiyaah, Jane; Tan, Choon Ping; Fletcher, Adam J.; Price, Amanda J.; Blondeau, Caroline; Hilditch, Laura; Jacques, David A.; Selwood, David L.; James, Leo C.; Noursadeghi, Mahdad; Towers, Greg J.

    2013-01-01

    HIV-1 is able to replicate in primary human macrophages without stimulating innate immunity despite reverse transcription of genomic RNA into double stranded DNA, an activity that might be expected to trigger innate pattern recognition receptors (PRRs). We hypothesized that, if correctly orchestrated HIV-1 uncoating and nuclear entry is important for evasion of innate sensors, then manipulation of specific interactions between HIV-1 capsid (CA) and host factors that putatively regulate these ...

  6. Shades of grey-the blurring view of innate and adaptive immunity

    OpenAIRE

    Lanier, LL

    2013-01-01

    This special issue of Nature Reviews Immunology focuses on the types of lymphocyte that blur the traditional boundaries between the innate and adaptive immune systems. The development and functional properties of 'innate-like' B and T cells and natural killer (NK) cells are reviewed and the emerging understanding of newly discovered innate lymphoid cells (ILCs) is considered. © 2013 Macmillan Publishers Limited. All rights reserved.

  7. NFIL3 Orchestrates the Emergence of Common Helper Innate Lymphoid Cell Precursors

    OpenAIRE

    Wei Xu; Rita G. Domingues; Diogo Fonseca-Pereira; Manuela Ferreira; Hélder Ribeiro; Silvia Lopez-Lastra; Yasutaka Motomura; Lara Moreira-Santos; Franck Bihl; Véronique Braud; Barbara Kee; Hugh Brady; Mark C. Coles; Christian Vosshenrich; Masato Kubo

    2015-01-01

    International audience Innate lymphoid cells (ILCs) are a family of effectors that originate from a common innate lymphoid cell progenitor. However, the transcriptional program that sets the identity of the ILC lineage remains elusive. Here, we show that NFIL3 is a critical regulator of the common helper-like innate lymphoid cell progenitor (CHILP). Cell-intrinsic Nfil3 ablation led to variably impaired development of fetal and adult ILC subsets. Conditional gene targeting demonstrated tha...

  8. Sterile inflammation – do innate lymphoid cell subsets play a role?

    OpenAIRE

    Shane E Russell; Walsh, Patrick T.

    2012-01-01

    The recent identification of several novel innate lymphoid cell (iLC) subsets has increased our understanding of the mechanisms which link the innate and adaptive immune systems. While the contribution of these subsets toward the pathogenesis of human disease remains largely to be determined, it seems likely that they will play a particularly important role in sterile inflammatory settings where the innate response is seen as a critical mediator of inflammation. Several recent studies have hi...

  9. Sterile Inflammation-Do innate lymphoid cell subsets play a role?

    OpenAIRE

    Shane E Russell; Walsh, Patrick T.

    2012-01-01

    The recent identification of several novel innate lymphoid cell subsets (iLCs) has increased our understanding of the mechanisms which link the innate and adaptive immune systems. While the contribution of these subsets towards the pathogenesis of human disease remains largely to be determined, it seems likely that they will play a particularly important role in sterile inflammatory settings where the innate response is seen as a critical mediator of inflammation. Several recent studies have ...

  10. Interleukin-7 receptor blockade suppresses adaptive and innate inflammatory responses in experimental colitis

    Directory of Open Access Journals (Sweden)

    Willis Cynthia R

    2012-10-01

    Full Text Available Abstract Background Interleukin-7 (IL-7 acts primarily on T cells to promote their differentiation, survival, and homeostasis. Under disease conditions, IL-7 mediates inflammation through several mechanisms and cell types. In humans, IL-7 and its receptor (IL-7R are increased in diseases characterized by inflammation such as atherosclerosis, rheumatoid arthritis, psoriasis, multiple sclerosis, and inflammatory bowel disease. In mice, overexpression of IL-7 results in chronic colitis, and T-cell adoptive transfer studies suggest that memory T cells expressing high amounts of IL-7R drive colitis and are maintained and expanded with IL-7. The studies presented here were undertaken to better understand the contribution of IL-7R in inflammatory bowel disease in which colitis was induced with a bacterial trigger rather than with adoptive transfer. Methods We examined the contribution of IL-7R on inflammation and disease development in two models of experimental colitis: Helicobacter bilis (Hb-induced colitis in immune-sufficient Mdr1a−/− mice and in T- and B-cell-deficient Rag2−/− mice. We used pharmacological blockade of IL-7R to understand the mechanisms involved in IL-7R-mediated inflammatory bowel disease by analyzing immune cell profiles, circulating and colon proteins, and colon gene expression. Results Treatment of mice with an anti-IL-7R antibody was effective in reducing colitis in Hb-infected Mdr1a−/− mice by reducing T-cell numbers as well as T-cell function. Down regulation of the innate immune response was also detected in Hb-infected Mdr1a−/− mice treated with an anti-IL-7R antibody. In Rag2−/− mice where colitis was triggered by Hb-infection, treatment with an anti-IL-7R antibody controlled innate inflammatory responses by reducing macrophage and dendritic cell numbers and their activity. Conclusions Results from our studies showed that inhibition of IL-7R successfully ameliorated inflammation and disease development

  11. Isolation of Lymphocytes and Their Innate Immune Characterizations from Liver, Intestine, Lung and Uterus

    Institute of Scientific and Technical Information of China (English)

    Jianhong Zhang; Zhongjun Dong; Rongbin Zhou; Deming Luo; Haiming Wei; Zhigang Tian

    2005-01-01

    In steady-state conditions, the number and distribution of lymphocyte populations are under homeostatic control.New lymphocytes are continuously produced in primary and secondary lymphoid organs and then achieve immune-competence within different tissues, and they must challenge with resident cells for survival. The first step in the study of tissue lymphoid cells is their isolation in intact and viable form appropriate for establishment of in vitro culture systems. For reasons of simplicity, cell purity, cell yields and various purposes, lymphocytes obtained from different tissues in different labs were subjected to diverse protocols. To fully elucidate the nature of the local immune system as well as to adequately study the innate role of lymphocytes in liver, intestine, lung and uterus, we briefly reviewed the characterization of resident lymphocytes, and additional information on those cells from non-lymphoid tissues by using the recommended operation procedure was also presented.

  12. Modulation of Toll-like receptor signaling in innate immunity by natural products.

    Science.gov (United States)

    Chen, Luxi; Yu, Jianhua

    2016-08-01

    For centuries, natural products and their derivatives have provided a rich source of compounds for the development of new immunotherapies in the treatment of human disease. Many of these compounds are currently undergoing clinical trials, particularly as anti-oxidative, anti-microbial, and anti-cancer agents. However, the function and mechanism of natural products in how they interact with our immune system has yet to be extensively explored. Natural immune modulators may provide the key to control and ultimately defeat disorders affecting the immune system. They can either up- or down-regulate the immune response with few undesired adverse effects. In this review, we summarize the recent advancements made in utilizing natural products for immunomodulation and their important molecular targets, members of the Toll-like receptor (TLR) family, in the innate immune system. PMID:26899347

  13. Potential of Helper-Dependent Adenoviral Vectors in Modulating Airway Innate Immunity

    Institute of Scientific and Technical Information of China (English)

    Rahul Kushwah; Huibi Cao; Jim Hu

    2007-01-01

    Innate immune responses form the first line of defense against foreign insults and recently significant advances have been made in our understanding of the initiation of innate immune response along with its ability to modulate inflammation. In airway diseases such as asthma, COPD and cystic fibrosis, over reacting of the airway innate immune responses leads to cytokine imbalance and airway remodeling or damage. Helper-dependent adenoviral vectors have the potential to deliver genes to modulate airway innate immune responses and have many advantages over its predecessors. However, there still are a few limitations that need to be addressed prior to their use in clinical applications.

  14. Innate-Type and Acquired-Type Allergy Regulated by IL-33

    OpenAIRE

    Tomohiro Yoshimoto; Kazufumi Matsushita

    2014-01-01

    We propose two types of allergic response: IgE-dependent and IgE-independent, and designate these as 'acquired-type allergy' and 'innate-type allergy', respectively. IL-33 stimulates both innate (basophils, mast cells, or group 2 innate lymphoid cells) and acquired (Th2 cells) allergy-related cells to induce and/or augment Th2 cytokine production, which leads to eosinophilic inflammation in vivo. Thus, IL-33 is an essential regulator for both 'innate-type allergy' and 'acquired-type allergy',...

  15. Innate-Type and Acquired-Type Allergy Regulated by IL-33

    Directory of Open Access Journals (Sweden)

    Tomohiro Yoshimoto

    2014-01-01

    Full Text Available We propose two types of allergic response: IgE-dependent and IgE-independent, and designate these as 'acquired-type allergy' and 'innate-type allergy', respectively. IL-33 stimulates both innate (basophils, mast cells, or group 2 innate lymphoid cells and acquired (Th2 cells allergy-related cells to induce and/or augment Th2 cytokine production, which leads to eosinophilic inflammation in vivo. Thus, IL-33 is an essential regulator for both 'innate-type allergy' and 'acquired-type allergy', and might be an attractive therapeutic target for allergic diseases.

  16. Sliver nanoparticles accelerate skin wound healing in mice (Mus musculus through suppression of innate immune system

    Directory of Open Access Journals (Sweden)

    Mohammad Saeed Heydarnejad

    2013-09-01

    Full Text Available   Objective(s: This study aimed to find the effects of silver nanoparticles (Ag-NPs (40 nm on skin wound healing in mice Mus musculus when innate immune system has been suppressed.   Materials and Methods: A group of 50 BALB/c mice of about 8 weeks (weighting 24.2±3.0 g were randomly divided into two groups: Ag-NPs and control group, each with 25 mice. Once a day at the same time, a volume of 50 microliters from the nanosilver solution (10ppm was applied to the wound bed in the Ag-NPs group while in the untreated (control group no nanosilver solution was used but the wound area was washed by a physiological solution. The experiment lasted for 14. Transforming growth factor beta (TGF-β, complement component C3, and two other immune system factors involving in inflammation, namely C-reactive protein (CRP and rheumatoid factor (RF in sera of both groups were assessed and then confirmed by complement CH50 level of the blood. Results: The results show that wound healing is a complex process involving coordinated interactions between diverse immunological and biological systems and that Ag-NPs significantly accelerated wound healing and reduce scar appearance through suppression of immune system as indicated by decreasing levels of all inflammatory factors measured in this study. Conclusion: Exposure of mice to Ag-NPs can result in significant changes in innate immune function at the molecular levels. The study improves our understanding of nanoparticle interaction with components of the immune system and suggests that Ag-NPs have strong anti-inflammatory effects on skin wound healing and reduce scarring.

  17. Budesonide and formoterol reduce early innate anti-viral immune responses in vitro.

    Directory of Open Access Journals (Sweden)

    Janet M Davies

    Full Text Available Asthma is a chronic inflammatory airways disease in which respiratory viral infections frequently trigger exacerbations. Current treatment of asthma with combinations of inhaled corticosteroids and long acting beta2 agonists improves asthma control and reduces exacerbations but what impact this might have on innate anti-viral immunity is unclear. We investigated the in vitro effects of asthma drugs on innate anti-viral immunity. Peripheral blood mononuclear cells (PBMC from healthy and asthmatic donors were cultured for 24 hours with the Toll-like receptor 7 agonist, imiquimod, or rhinovirus 16 (RV16 in the presence of budesonide and/or formoterol. Production of proinflammatory cytokines and expression of anti-viral intracellular signalling molecules were measured by ELISA and RT-PCR respectively. In PBMC from healthy donors, budesonide alone inhibited IP-10 and IL-6 production induced by imiquimod in a concentration-dependent manner and the degree of inhibition was amplified when budesonide and formoterol were used in combination. Formoterol alone had little effect on these parameters, except at high concentrations (10⁻⁶ M when IL-6 production increased. In RV16 stimulated PBMC, the combination of budesonide and formoterol inhibited IFNα and IP-10 production in asthmatic as well as healthy donors. Combination of budesonide and formoterol also inhibited RV16-stimulated expression of the type I IFN induced genes myxovirus protein A and 2', 5' oligoadenylate synthetise. Notably, RV16 stimulated lower levels of type Myxovirus A and oligoadenylate synthase in PBMC of asthmatics than control donors. These in vitro studies demonstrate that combinations of drugs commonly used in asthma therapy inhibit both early pro-inflammatory cytokines and key aspects of the type I IFN pathway. These findings suggest that budesonide and formoterol curtail excessive inflammation induced by rhinovirus infections in patients with asthma, but whether this inhibits

  18. Leukotriene B4 Enhances NOD2-Dependent Innate Response against Influenza Virus Infection.

    Directory of Open Access Journals (Sweden)

    Manon Le Bel

    Full Text Available Leukotriene B4 (LTB4, a central mediator of inflammation, is well known for its chemoattractant properties on effectors cells of the immune system. LTB4 also has the ability to control microbial infection by improving host innate defenses through the release of antimicrobial peptides and modulation of intracellular Toll-like receptors (TLRs expression in response to agonist challenge. In this report, we provide evidences that LTB4 acts on nucleotide-binging oligomerization domain 2 (NOD2 pathway to enhance immune response against influenza A infection. Infected mice receiving LTB4 show improved survival, lung architecture and reduced lung viral loads as compared to placebo-treated animals. NOD2 and its downstream adaptor protein IPS-1 have been found to be essential for LTB4-mediated effects against IAV infection, as absence of NOD2 or IPS-1 diminished its capacity to control viral infection. Treatment of IAV-infected mice with LTB4 induces an increased activation of IPS-1-IRF3 axis leading to an enhanced production of IFNβ in lungs of infected mice. LTB4 also has the ability to act on the RICK-NF-κB axis since administration of LTB4 to mice challenged with MDP markedly increases the secretion of IL-6 and TNFα in lungs of mice. TAK1 appears to be essential to the action of LTB4 on NOD2 pathway since pretreatment of MEFs with TAK1 inhibitor prior stimulation with IAV or MDP strongly abrogated the potentiating effects of LTB4 on both IFNβ and cytokine secretion. Together, our results demonstrate that LTB4, through its ability to activate TAK1, potentiates both IPS-1 and RICK axis of the NOD2 pathway to improve host innate responses.

  19. Transcriptional Regulatory Network for the Development of Innate Lymphoid Cells

    Directory of Open Access Journals (Sweden)

    Chao Zhong

    2015-01-01

    Full Text Available Recent studies on innate lymphoid cells (ILCs have expanded our knowledge about the innate arm of the immune system. Helper-like ILCs share both the “innate” feature of conventional natural killer (cNK cells and the “helper” feature of CD4+ T helper (Th cells. With this combination, helper-like ILCs are capable of initiating early immune responses similar to cNK cells, but via secretion of a set of effector cytokines similar to those produced by Th cells. Although many studies have revealed the functional similarity between helper-like ILCs and Th cells, some aspects of ILCs including the development of this lineage remain elusive. It is intriguing that the majority of transcription factors involved in multiple stages of T cell development, differentiation, and function also play critical roles during ILC development. Regulators such as Id2, GATA-3, Nfil3, TOX, and TCF-1 are expressed and function at various stages of ILC development. In this review, we will summarize the expression and functions of these transcription factors shared by ILCs and Th cells. We will also propose a complex transcriptional regulatory network for the lineage commitment of ILCs.

  20. Neuronal basis of innate olfactory attraction to ethanol in Drosophila.

    Directory of Open Access Journals (Sweden)

    Andrea Schneider

    Full Text Available The decision to move towards a mating partner or a food source is essential for life. The mechanisms underlying these behaviors are not well understood. Here, we investigated the role of octopamine - the invertebrate analogue of noradrenaline - in innate olfactory attraction to ethanol. We confirmed that preference is caused via an olfactory stimulus by dissecting the function of the olfactory co-receptor Orco (formally known as OR83b. Orco function is not required for ethanol recognition per se, however it plays a role in context dependent recognition of ethanol. Odor-evoked ethanol preference requires the function of Tbh (Tyramine β hydroxalyse, the rate-limiting enzyme of octopamine synthesis. In addition, neuronal activity in a subset of octopaminergic neurons is necessary for olfactory ethanol preference. Notably, a specific neuronal activation pattern of tyraminergic/octopaminergic neurons elicit preference and is therefore sufficient to induce preference. In contrast, dopamine dependent increase in locomotor activity is not sufficient for olfactory ethanol preference. Consistent with the role of noradrenaline in mammalian drug induced rewards, we provide evidence that in adult Drosophila the octopaminergic neurotransmitter functions as a reinforcer and that the molecular dissection of the innate attraction to ethanol uncovers the basic properties of a response selection system.

  1. Autophagy, Innate Immunity and Tissue Repair in Acute Kidney Injury

    Science.gov (United States)

    Duann, Pu; Lianos, Elias A.; Ma, Jianjie; Lin, Pei-Hui

    2016-01-01

    Kidney is a vital organ with high energy demands to actively maintain plasma hemodynamics, electrolytes and water homeostasis. Among the nephron segments, the renal tubular epithelium is endowed with high mitochondria density for their function in active transport. Acute kidney injury (AKI) is an important clinical syndrome and a global public health issue with high mortality rate and socioeconomic burden due to lack of effective therapy. AKI results in acute cell death and necrosis of renal tubule epithelial cells accompanied with leakage of tubular fluid and inflammation. The inflammatory immune response triggered by the tubular cell death, mitochondrial damage, associative oxidative stress, and the release of many tissue damage factors have been identified as key elements driving the pathophysiology of AKI. Autophagy, the cellular mechanism that removes damaged organelles via lysosome-mediated degradation, had been proposed to be renoprotective. An in-depth understanding of the intricate interplay between autophagy and innate immune response, and their roles in AKI pathology could lead to novel therapies in AKI. This review addresses the current pathophysiology of AKI in aspects of mitochondrial dysfunction, innate immunity, and molecular mechanisms of autophagy. Recent advances in renal tissue regeneration and potential therapeutic interventions are also discussed. PMID:27153058

  2. Avian Bornaviruses Escape Recognition by the Innate Immune System

    Directory of Open Access Journals (Sweden)

    Antje Reuter

    2010-04-01

    Full Text Available Like other pathogens that readily persist in animal hosts, members of the Bornaviridae family have evolved effective mechanisms to evade the innate immune response. The prototype of this virus family, Borna disease virus employs an unusual replication strategy that removes the triphosphates from the 5’ termini of the viral RNA genome. This strategy allows the virus to avoid activation of RIG-I and other innate immune response receptors in infected cells. Here we determined whether the newly discovered avian bornaviruses (ABV might use a similar strategy to evade the interferon response. We found that de novo infection of QM7 and CEC32 quail cells with two different ABV strains was efficiently inhibited by exogenous chicken IFN-α. IFN-α also reduced the viral load in QM7 and CEC32 cells persistently infected with both ABV strains, suggesting that ABV is highly sensitive to type I IFN. Although quail cells persistently infected with ABV contained high levels of viral RNA, the supernatants of infected cultures did not contain detectable levels of biologically active type I IFN. RNA from cells infected with ABV failed to induce IFN-β synthesis if transfected into human cells. Furthermore, genomic RNA of ABV was susceptible to 5’-monophosphate-specific RNase, suggesting that it lacks 5’-triphospates like BDV. These results indicate that bornaviruses of mammals and birds use similar strategies to evade the host immune response.

  3. Innate Immunity and Immune Evasion by Enterovirus 71

    Directory of Open Access Journals (Sweden)

    Prabuddha S. Pathinayake

    2015-12-01

    Full Text Available Enterovirus 71 (EV71 is a major infectious disease affecting millions of people worldwide and it is the main etiological agent for outbreaks of hand foot and mouth disease (HFMD. Infection is often associated with severe gastroenterological, pulmonary, and neurological diseases that are most prevalent in children. Currently, no effective vaccine or antiviral drugs exist against EV71 infection. A lack of knowledge on the molecular mechanisms of EV71 infection in the host and the virus-host interactions is a major constraint to developing specific antiviral strategies against this infection. Previous studies have identified and characterized the function of several viral proteins produced by EV71 that interact with the host innate immune proteins, including type I interferon signaling and microRNAs. These interactions eventually promote efficient viral replication and increased susceptibility to the disease. In this review we discuss the functions of EV71 viral proteins in the modulation of host innate immune responses to facilitate viral replication.

  4. Innate Immunity and Immune Evasion by Enterovirus 71.

    Science.gov (United States)

    Pathinayake, Prabuddha S; Hsu, Alan C-Y; Wark, Peter A B

    2015-12-01

    Enterovirus 71 (EV71) is a major infectious disease affecting millions of people worldwide and it is the main etiological agent for outbreaks of hand foot and mouth disease (HFMD). Infection is often associated with severe gastroenterological, pulmonary, and neurological diseases that are most prevalent in children. Currently, no effective vaccine or antiviral drugs exist against EV71 infection. A lack of knowledge on the molecular mechanisms of EV71 infection in the host and the virus-host interactions is a major constraint to developing specific antiviral strategies against this infection. Previous studies have identified and characterized the function of several viral proteins produced by EV71 that interact with the host innate immune proteins, including type I interferon signaling and microRNAs. These interactions eventually promote efficient viral replication and increased susceptibility to the disease. In this review we discuss the functions of EV71 viral proteins in the modulation of host innate immune responses to facilitate viral replication. PMID:26694447

  5. Innate immunity probed by lipopolysaccharides affinity strategy and proteomics.

    Science.gov (United States)

    Giangrande, Chiara; Colarusso, Lucia; Lanzetta, Rosa; Molinaro, Antonio; Pucci, Piero; Amoresano, Angela

    2013-01-01

    Lipopolysaccharides (LPSs) are ubiquitous and vital components of the cell surface of Gram-negative bacteria that have been shown to play a relevant role in the induction of the immune-system response. In animal and plant cells, innate immune defenses toward microorganisms are triggered by the perception of pathogen associated molecular patterns. These are conserved and generally indispensable microbial structures such as LPSs that are fundamental in the Gram-negative immunity recognition. This paper reports the development of an integrated strategy based on lipopolysaccharide affinity methodology that represents a new starting point to elucidate the molecular mechanisms elicited by bacterial LPS and involved in the different steps of innate immunity response. Biotin-tagged LPS was immobilized on streptavidin column and used as a bait in an affinity capture procedure to identify protein partners from human serum specifically interacting with this effector. The complex proteins/lipopolysaccharide was isolated and the protein partners were fractionated by gel electrophoresis and identified by mass spectrometry. This procedure proved to be very effective in specifically binding proteins functionally correlated with the biological role of LPS. Proteins specifically bound to LPS essentially gathered within two functional groups, regulation of the complement system (factor H, C4b, C4BP, and alpha 2 macroglobulin) and inhibition of LPS-induced inflammation (HRG and Apolipoproteins). The reported strategy might have important applications in the elucidation of biological mechanisms involved in the LPSs-mediated molecular recognition and anti-infection responses. PMID:22752448

  6. Genetic adaptation of the antibacterial human innate immunity network

    Directory of Open Access Journals (Sweden)

    Lazarus Ross

    2011-07-01

    Full Text Available Abstract Background Pathogens have represented an important selective force during the adaptation of modern human populations to changing social and other environmental conditions. The evolution of the immune system has therefore been influenced by these pressures. Genomic scans have revealed that immune system is one of the functions enriched with genes under adaptive selection. Results Here, we describe how the innate immune system has responded to these challenges, through the analysis of resequencing data for 132 innate immunity genes in two human populations. Results are interpreted in the context of the functional and interaction networks defined by these genes. Nucleotide diversity is lower in the adaptors and modulators functional classes, and is negatively correlated with the centrality of the proteins within the interaction network. We also produced a list of candidate genes under positive or balancing selection in each population detected by neutrality tests and showed that some functional classes are preferential targets for selection. Conclusions We found evidence that the role of each gene in the network conditions the capacity to evolve or their evolvability: genes at the core of the network are more constrained, while adaptation mostly occurred at particular positions at the network edges. Interestingly, the functional classes containing most of the genes with signatures of balancing selection are involved in autoinflammatory and autoimmune diseases, suggesting a counterbalance between the beneficial and deleterious effects of the immune response.

  7. Regulation of intestinal homeostasis by innate and adaptive immunity.

    Science.gov (United States)

    Kayama, Hisako; Takeda, Kiyoshi

    2012-11-01

    The intestine is a unique tissue where an elaborate balance is maintained between tolerance and immune responses against a variety of environmental factors such as food and the microflora. In a healthy individual, the microflora stimulates innate and adaptive immune systems to maintain gut homeostasis. However, the interaction of environmental factors with particular genetic backgrounds can lead to dramatic changes in the composition of the microflora (i.e. dysbiosis). Many of the specific commensal-bacterial products and the signaling pathways they trigger have been characterized. The role of T(h)1, T(h)2 and T(h)17 cells in inflammatory bowel disease has been widely investigated, as has the contribution of epithelial cells and subsets of dendritic cells and macrophages. To date, multiple regulatory cells in adaptive immunity, such as regulatory T cells and regulatory B cells, have been shown to maintain gut homeostasis by preventing inappropriate innate and adaptive immune responses to commensal bacteria. Additionally, regulatory myeloid cells have recently been identified that prevent intestinal inflammation by inhibiting T-cell proliferation. An increasing body of evidence has shown that multiple regulatory mechanisms contribute to the maintenance of gut homeostasis. PMID:22962437

  8. Autophagy, Innate Immunity and Tissue Repair in Acute Kidney Injury

    Directory of Open Access Journals (Sweden)

    Pu Duann

    2016-05-01

    Full Text Available Kidney is a vital organ with high energy demands to actively maintain plasma hemodynamics, electrolytes and water homeostasis. Among the nephron segments, the renal tubular epithelium is endowed with high mitochondria density for their function in active transport. Acute kidney injury (AKI is an important clinical syndrome and a global public health issue with high mortality rate and socioeconomic burden due to lack of effective therapy. AKI results in acute cell death and necrosis of renal tubule epithelial cells accompanied with leakage of tubular fluid and inflammation. The inflammatory immune response triggered by the tubular cell death, mitochondrial damage, associative oxidative stress, and the release of many tissue damage factors have been identified as key elements driving the pathophysiology of AKI. Autophagy, the cellular mechanism that removes damaged organelles via lysosome-mediated degradation, had been proposed to be renoprotective. An in-depth understanding of the intricate interplay between autophagy and innate immune response, and their roles in AKI pathology could lead to novel therapies in AKI. This review addresses the current pathophysiology of AKI in aspects of mitochondrial dysfunction, innate immunity, and molecular mechanisms of autophagy. Recent advances in renal tissue regeneration and potential therapeutic interventions are also discussed.

  9. Developmental Acquisition of Regulomes Underlies Innate Lymphoid Cell Functionality.

    Science.gov (United States)

    Shih, Han-Yu; Sciumè, Giuseppe; Mikami, Yohei; Guo, Liying; Sun, Hong-Wei; Brooks, Stephen R; Urban, Joseph F; Davis, Fred P; Kanno, Yuka; O'Shea, John J

    2016-05-19

    Innate lymphoid cells (ILCs) play key roles in host defense, barrier integrity, and homeostasis and mirror adaptive CD4(+) T helper (Th) cell subtypes in both usage of effector molecules and transcription factors. To better understand the relationship between ILC subsets and their Th cell counterparts, we measured genome-wide chromatin accessibility. We find that chromatin in proximity to effector genes is selectively accessible in ILCs prior to high-level transcription upon activation. Accessibility of these regions is acquired in a stepwise manner during development and changes little after in vitro or in vivo activation. Conversely, dramatic chromatin remodeling occurs in naive CD4(+) T cells during Th cell differentiation using a type-2-infection model. This alteration results in a substantial convergence of Th2 cells toward ILC2 regulomes. Our data indicate extensive sharing of regulatory circuitry across the innate and adaptive compartments of the immune system, in spite of their divergent developing pathways. PMID:27156451

  10. Differential activity of innate defense antimicrobial peptides against Nocardia species

    Directory of Open Access Journals (Sweden)

    Wagner Dirk

    2010-02-01

    Full Text Available Abstract Background Members of the genus Nocardia are ubiquitous environmental saprophytes capable to cause human pulmonary, disseminated and cutaneous nocardiosis or bovine mastitis. Innate immunity appears to play an important role in early defense against Nocardia species. To elucidate the contribution of antimicrobial peptides (AMPs in innate defense against Nocardia, the activity of human α-defensins human neutrophil peptides (HNPs 1-3, human β-defensin (hBD-3 and cathelicidin LL-37 as well as bovine β-defensins lingual and tracheal antimicrobial peptides (LAP, TAP and bovine neutrophil-derived indolicidin against four important Nocardia species was investigated. Results Whereas N. farcinica ATCC 3318 and N. nova ATCC 33726 were found to be susceptible to all investigated human and bovine AMPs, N. asteroides ATCC 19247 was killed exclusively by neutrophil-derived human α-defensins HNP 1-3 and bovine indolicidin. N. brasiliensis ATCC 19296 was found to exhibit complete resistance to investigated human AMPs and to be susceptible only to bovine indolicidin. Conclusion Selected AMPs are capable to contribute to the first line of defense against Nocardia, yet, susceptibility appears to vary across different Nocardia species. Obtained results of neutrophil-derived AMPs to possess the broadest antinocardial spectrum are remarkable, since nocardiosis is characterized by a neutrophil-rich infiltrate in vivo.

  11. Innate Immune Responses in ALV-J Infected Chicks and Chickens with Hemangioma In Vivo

    Science.gov (United States)

    Feng, Min; Dai, Manman; Xie, Tingting; Li, Zhenhui; Shi, Meiqing; Zhang, Xiquan

    2016-01-01

    Avian leukosis virus subgroup J (ALV-J) infection can cause tumors and immunosuppression. Since the precise mechanism of the innate immune response induced by ALV-J is unknown, we investigated the antiviral innate immune responses induced by ALV-J in chicks and chickens that had developed tumors. Spleen levels of interleukin-6 (IL-6), IL-10, IL-1β, and interferon-β (IFN-β) were not significantly different between the infected chick groups and the control groups from 1 day post hatch to 7 days post hatch. However, IL-6, IL-1β, and IFN-β protein levels in the three clinical samples with hemangiomas were dramatically increased compared to the healthy samples. In addition, the anti-inflammatory cytokine IL-10 increased sharply in two of three clinical samples. We also found a more than 20-fold up-regulation of ISG12-1 mRNA at 1 day post infection (d.p.i.) and a twofold up-regulation of ZC3HAV1 mRNA at 4 d.p.i. However, there were no statistical differences in ISG12-1 and ZC3HAV1 mRNA expression levels in the tumorigenesis phase. ALV-J infection induced a significant increase of Toll-like receptor 7 (TLR-7) at 1 d.p.i. and dramatically increased the mRNA levels of melanoma differentiation-associated gene 5 (MDA5) in the tumorigenesis phase. Moreover, the protein levels of interferon regulatory factor 1 (IRF-1) and signal transducer and activator of transcription 1 (STAT1) were decreased in chickens with tumors. These results suggest that ALV-J was primarily recognized by chicken TLR7 and MDA5 at early and late in vivo infection stages, respectively. ALV-J strain SCAU-HN06 did not induce any significant antiviral innate immune response in 1 week old chicks. However, interferon-stimulated genes were not induced normally during the late phase of ALV-J infection due to a reduction of IRF1 and STAT1 expression.

  12. Aberrant innate immune activation following tissue injury impairs pancreatic regeneration.

    Directory of Open Access Journals (Sweden)

    Alexandra E Folias

    Full Text Available Normal tissue architecture is disrupted following injury, as resident tissue cells become damaged and immune cells are recruited to the site of injury. While injury and inflammation are critical to tissue remodeling, the inability to resolve this response can lead to the destructive complications of chronic inflammation. In the pancreas, acinar cells of the exocrine compartment respond to injury by transiently adopting characteristics of progenitor cells present during embryonic development. This process of de-differentiation creates a window where a mature and stable cell gains flexibility and is potentially permissive to changes in cellular fate. How de-differentiation can turn an acinar cell into another cell type (such as a pancreatic β-cell, or a cell with cancerous potential (as in cases of deregulated Kras activity is of interest to both the regenerative medicine and cancer communities. While it is known that inflammation and acinar de-differentiation increase following pancreatic injury, it remains unclear which immune cells are involved in this process. We used a combination of genetically modified mice, immunological blockade and cellular characterization to identify the immune cells that impact pancreatic regeneration in an in vivo model of pancreatitis. We identified the innate inflammatory response of macrophages and neutrophils as regulators of pancreatic regeneration. Under normal conditions, mild innate inflammation prompts a transient de-differentiation of acinar cells that readily dissipates to allow normal regeneration. However, non-resolving inflammation developed when elevated pancreatic levels of neutrophils producing interferon-γ increased iNOS levels and the pro-inflammatory response of macrophages. Pancreatic injury improved following in vivo macrophage depletion, iNOS inhibition as well as suppression of iNOS levels in macrophages via interferon-γ blockade, supporting the impairment in regeneration and the

  13. Circulating levels of the innate and humoral immune regulators CD14 and CD23 are associated with adult glioma

    OpenAIRE

    Zhou, Mi; Wiemels, Joseph L.; Bracci, Paige; Wrensch, Margaret R.; McCoy, Lucie; Rice, Terri; Sison, Jennette; Patoka, Joseph; Wiencke, John K.

    2010-01-01

    Allergy history has been consistently inversely associated with glioma risk. Two serologic markers, soluble CD23 (sCD23) and soluble CD14 (sCD14), are part of the innate and adaptive humoral immune systems and modulate allergic responses in opposite directions, with sCD23 enhancing and sCD14 blunting inflammatory responses. We measured sCD23 and sCD14 in serum from blood that was drawn at a single time point from 1079 glioma patients post diagnosis and 736 healthy controls. Glioma was strongl...

  14. Human type 1 innate lymphoid cells accumulate in inflamed mucosal tissues

    NARCIS (Netherlands)

    Bernink, J.H.; Peters, C.P.; Munneke, M.; Velde, A.A. te; Meijer, S.L.; Weijer, K.; Hreggvidsdottir, H.S.; Heinsbroek, S.E.; Legrand, N.; Buskens, C.J.; Bemelman, W.A.; Mjosberg, J.M.; Spits, H.

    2013-01-01

    Innate lymphoid cells (ILCs) are effectors of innate immunity and regulators of tissue modeling. Recently identified ILC populations have a cytokine expression pattern that resembles that of the helper T cell subsets T(H)2, T(H)17 and T(H)22. Here we describe a distinct ILC subset similar to T(H)1 c

  15. Another Armament in Gut Immunity: Lymphotoxin-Mediated Crosstalk between Innate Lymphoid and Dendritic Cells

    NARCIS (Netherlands)

    H. Spits

    2011-01-01

    Innate lymphoid cells (ILCs) are novel players in innate immunity. Tumanov et al. (Tumanov et al., 2011) demonstrate that crosstalk between ILCs and dendritic cells involving membrane-bound lymphotoxin in ILCs and its receptor is critical for protection against colitogenic bacteria

  16. DMPD: An arms race: innate antiviral responses and counteracting viral strategies. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18031256 An arms race: innate antiviral responses and counteracting viral strategie...s. Schroder M, Bowie AG. Biochem Soc Trans. 2007 Dec;35(Pt 6):1512-4. (.png) (.svg) (.html) (.csml) Show An arms race...: innate antiviral responses and counteracting viral strategies. PubmedID 18031256 Title An arms race

  17. MECHANISMS OF ANTIINFECTIOUS FUNCTIONS OF INNATE IMMUNITY: ROLE OF TOLL-LIKE RECEPTORS

    Directory of Open Access Journals (Sweden)

    S. I. Suskov

    2012-05-01

    Full Text Available This review describes the main role of toll-like receptors of innate immunity for pathogen recognition; signaling; production of inflammatory response. Also Interrelation of innate and adaptive Immunity in conditions of pathology and organ transplantation were considered. 

  18. The relationship between metabolism and the autophagy machinery during the innate immune response

    OpenAIRE

    Martinez, Jennifer; Verbist, Katherine; Wang, Ruoning; Green, Douglas R.

    2013-01-01

    The innate immune response is shaped by multiple factors, including both traditional autophagy and LC3-associated phagocytosis (LAP). As the autophagic machinery is engaged during times of nutrient stress, arising from scarcity or pathogens, we examine how autophagy, specifically LAP, and cellular metabolism together influence macrophage function and the innate immune response.

  19. Exploring the Innate Immune System: Using Complement-Medicated Cell Lysis in the Classroom

    Science.gov (United States)

    Fuller, Kevin G.

    2008-01-01

    The protein complement pathway comprises an important part of the innate immunity. The use of serum to demonstrate complement-mediated destruction across a series of bacterial dilutions allows an instructor to introduce a number of important biological concepts such as bacterial growth, activation cascades, and adaptive versus innate immunity.

  20. Interaction of Streptococcus agalactiae and cellular innate immunity in colonization and disease

    Directory of Open Access Journals (Sweden)

    Sybille eLandwehr-Kenzel

    2014-10-01

    Full Text Available Streptococcus agalactiae (Group B streptococcus, GBS is highly adapted to humans, where it is a normal constituent of the intestinal and vaginal flora. Yet, GBS has highly invasive potential and causes excessive inflammation, sepsis and death at the beginning of life, in the elderly and in diabetic patients. Thus GBS is a model pathobiont that thrives in the healthy host, but has not lost its potential virulence during coevolution with mankind. It remains incompletely understood how the innate immune system contains GBS in the natural niches, the intestinal and genital tracts, and which molecular events underlie breakdown of mucocutaneous resistance. Newborn infants between days seven and 90 of life are at risk of a particularly striking sepsis manifestation (late onset disease, LOD, where the transition from colonization to invasion and dissemination, and thus from health to severe sepsis is typically fulminant and not predictable. The great majority of late-onset sepsis cases is caused by one clone, GBS ST-17, which expresses HvgA as a signature virulence factor and adhesin. In mice, HvgA promotes the crossing of both the mucosal and the blood brain barrier. Expression levels of HvgA and other GBS virulence factors, such as pili and toxins, are regulated by the upstream two-component control system CovR/S. This in turn is modulated by acidic epithelial pH, high glucose levels and during the passage through the mouse intestine. After invasion, GBS has the ability to subvert innate immunity by mechanisms like GAPDH-dependent induction of IL-10 and β-protein binding to the inhibitory phagocyte receptors sialic acid binding immunoglobulin-like lectin 5 and 14. On the host side, sensing of GBS nucleic acids and lipopeptides by both Toll-like receptors (TLRs and the inflammasome appears to be critical for host resistance against GBS. Yet, comprehensive models on the interplay between GBS and human immune cells at the colonizing site are just

  1. Tyrosinase, a new innate humoral immune parameter in large yellow croaker ( Pseudosciaena crocea R)

    Science.gov (United States)

    Wang, Shuhong; Wang, Yilei; Zhang, Ziping; Xie, Fangjing; Lin, Peng; Tai, Zhengang

    2009-09-01

    We evaluated the immune response to infection with a pathogen in large yellow croaker ( Pseudosciaena crocea Richardson). The fish were given an intraperitoneal (i.p.) injection of Vibrio parahaemolyticus or sterile sea water (control). We collected blood sera from the fish 0.17, 1, 2, 4, 8, 12, or 16 d after injection (dpi). We measured tyrosinase activity and the concentrations of lysozyme, NOS, and antibodies. Serum tyrosinase activity was significantly higher at 0.17 and 4 dpi than in the control group, and peaked at 8 dpi. Lysozyme activity was significantly higher at 2 and 12 dpi than in the control group, but lower at 16 dpi. There is no statistical difference in the level of nitric oxides synthase (NOS) activity or antibodies between the control and injection groups. This is the first report of the tyrosinase activity in the serum of large yellow croaker. Our results indicate that tyrosinase plays an important role in the immediate immune defense against V. parahaemolyticus in large yellow croaker. Tyrosinase is a candidate parameter for investigation of fish innate immune defense.

  2. Innate immune cell response upon Candida albicans infection.

    Science.gov (United States)

    Qin, Yulin; Zhang, Lulu; Xu, Zheng; Zhang, Jinyu; Jiang, Yuan-Ying; Cao, Yongbing; Yan, Tianhua

    2016-07-01

    Candida albicans is a polymorphic fungus which is the predominant cause of superficial and deep tissue fungal infections. This microorganism has developed efficient strategies to invade the host and evade host defense systems. However, the host immune system will be prepared for defense against the microbe by recognition of receptors, activation of signal transduction pathways and cooperation of immune cells. As a consequence, C. albicans could either be eliminated by immune cells rapidly or disseminate hematogenously, leading to life-threatening systemic infections. The interplay between Candida albicans and the host is complex, requiring recognition of the invaded pathogens, activation of intricate pathways and collaboration of various immune cells. In this review, we will focus on the effects of innate immunity that emphasize the first line protection of host defense against invaded C. albicans including the basis of receptor-mediated recognition and the mechanisms of cell-mediated immunity. PMID:27078171

  3. MAMPs/PAMPs - elicitors of innate immunity in plants

    DEFF Research Database (Denmark)

    Erbs, Gitte; Newman, Mari-Anne

    2009-01-01

    Plants perceive several general elicitors from both host and non-host pathogens. These elicitors are essential structures for pathogen survival and are for that reason conserved among pathogens. These conserved microbe-specific molecules, also referred to as Microbe or Pathogen Associated Molecular...... (SodM) are known to act as MAMPs and induce immune responses in plants or plant cells (Gómez-Gómez and Boller, 2000; Erbs and Newman, 2003; Felix and Boller, 2003; Kunze et al., 2004; Watt et al., 2006, Gust et al., 2007; Erbs et al., unpublished). The corresponding PRRs for some of these bacterial...... Patterns (MAMPs or PAMPs), are recognised by the plant innate immune systems Pattern Recognition Receptors (PRRs). General bacterial elicitors, like lipopolysaccharides (LPS), flagellin (Flg), elongation factor Tu (EF-Tu), cold shock protein (CSP), peptidoglycan (PGN) and the enzyme superoxide dismutase...

  4. Innate response activator B cells: origins and functions.

    Science.gov (United States)

    Chousterman, Benjamin G; Swirski, Filip K

    2015-10-01

    Innate response activator (IRA) B cells are a subset of B-1a derived B cells that produce the growth factors granulocyte macrophage colony stimulating factor and IL-3. In mouse models of sepsis and pneumonia, B-1a B cells residing in serosal sites recognize bacteria, migrate to the spleen or lung, and differentiate to IRA B cells that then contribute to the host response by amplifying inflammation and producing polyreactive IgM. In atherosclerosis, IRA B cells accumulate in the spleen, where they promote extramedullary hematopoiesis and activate classical dendritic cells. In this review, we focus on the ontogeny and function of IRA B cells in acute and chronic inflammation. PMID:25957266

  5. The role of innate immunity in spontaneous regression of cancer

    Directory of Open Access Journals (Sweden)

    J A Thomas

    2011-01-01

    Full Text Available Nature has provided us with infections - acute and chronic - and these infections have both harmful and beneficial effects on the human system. Worldwide, a number of chronic infections are associated with a risk of cancer, but it is also known that cancer regresses when associated with acute infections such as bacterial, viral, fungal, protozoal, etc. Acute infections are known to cure chronic diseases since the time of Hippocrates. The benefits of these fever producing acute infections has been applied in cancer vaccinology such as the Coley′s toxins. Immune cells like the natural killer cells, macrophages and dendritic cells have taken greater precedence in cancer immunity than ever before. This review provides an insight into the benefits of fever and its role in prevention of cancer, the significance of common infections in cancer regression, the dual nature of our immune system and the role of the often overlooked primary innate immunity in tumor immunology and spontaneous regression of cancer.

  6. Type 2 Innate Lymphoid Cells: Friends or Foes—Role in Airway Allergic Inflammation and Asthma

    Directory of Open Access Journals (Sweden)

    Abbas Pishdadian

    2012-01-01

    Full Text Available Innate-like lymphocytes (ILLs and innate lymphoid cells (ILCs are two newly characterized families of lymphocytes with limited and no rearranged antigen receptors, respectively. These soldiers provide a first line of defense against foreign insults by triggering a prompt innate immune response and bridging the gap of innate and adaptive immunity. Type 2 innate lymphoid cells (ILCs2 are newly identified members of the ILC family that play a key role in type 2 immune responses by prompt production of type 2 cytokines (especially IL-5 and IL-13 in response to antigen-induced IL-25/33 and by recruiting type 2 “immune franchise.” Regarding the two different roles of type 2 cytokines, helminth expulsion and type 2-related diseases, here we review the latest advances in ILC2 biology and examine the pivotal role of resident ILCs2 in allergen-specific airway inflammation and asthma.

  7. Role of Innate Lymphoid Cells in Lung Disease

    Directory of Open Access Journals (Sweden)

    SayedMehran Marashian

    2015-10-01

    Full Text Available  Innate lymphoid cells (ILCs are identified as novel population of hematopoietic cells which protect the body by coordinating the innate immune response against a wide range of threats including infections, tissue damages and homeostatic disturbances. ILCs, particularly ILC2 cells, are found throughout the body including the brain. ILCs are morphologically similar to lymphocytes, express and release high levels of T-helper (Th1, Th2 and Th17 cytokines but do not express classical cell-surface markers that are associated with other immune cell lineages.Three types of ILCs (ILC1, 2 & 3 have been reported depending upon the cytokines produced. ILC1 cells encompass natural killer (NK cells and interferon (IFN-g releasing cells; ILC2 cells release the Th2 cytokines, IL-5, IL-9 and IL-13 in response to IL-25 and IL-33; and ILC3 cells which release IL-17 and IL-22. ILC2 cells have been implicated inmucosal reactions occurring in animal models of allergic asthma and virus-induced lung disorders resulting in the regulation of airway remodeling and tissue homeostasis.There is evidence for increased ILC2 cell numbers in allergic responses in man but little is known about the role of ILCs in chronic obstructive pulmonary disease (COPD. Further understanding of the characteristics of ILCs such as their origin, location and phenotypes and function would help to clarify the role of these cells in the pathogenesis of various lung diseases.In this review we will focus on the role of ILC2 cells and consider their origin, function,location and possible role in the pathogenesis of the chronic inflammatory disorders such as asthma and COPD.   

  8. Innate immune defences in the human uterus during pregnancy.

    Science.gov (United States)

    King, A E; Kelly, R W; Sallenave, J-M; Bocking, A D; Challis, J R G

    2007-01-01

    The prevention of uterine infection is critical to appropriate fetal development and term delivery. The innate immune system is one component of the uterine environment and has a role in prevention of uterine infection. Natural antimicrobials are innate immune molecules with anti-bacterial, anti-viral and anti-fungal activity. We discuss two groups of natural antimicrobials in relation to pregnancy: (i) the defensins; and (ii) the whey acidic protein motif containing proteins, secretory leukocyte protease inhibitor (SLPI) and elafin. Human beta-defensins (HBD) 1-3 are expressed by placental and chorion trophoblast, amnion epithelium and decidua in term and preterm pregnancy. Elafin shows a similar pattern of localisation while SLPI is produced only by amnion epithelium and decidua. Evidence suggests that there is aberrant production of some natural antimicrobials in pathologic conditions of pregnancy. In preterm premature rupture of membranes (PPROM) levels of SLPI and elafin are reduced in amniotic fluid and fetal membranes, respectively. Elafin and HBD3 increase in chorioamnionitis and levels of the alpha-defensins, HNP1-3, increase in maternal plasma and amniotic fluid in women affected by microbial invasion of the uterus. In vitro culture studies have suggested a mechanism for increased production of natural antimicrobials in chorioamnionitis. Elafin, SLPI, HBD2 and 3 are all upregulated by inflammatory molecules in cells derived from gestational tissues. In summary, production of natural antimicrobials at key sites within the pregnant uterus suggests an important role in prevention of uterine infection during pregnancy and labour. Aberrant production of these molecules in PPROM and chorioamnionitis suggests that they also have a role in pathologic conditions. In particular, upregulation of these molecules by inflammatory molecules present in chorioamnionitis will ensure a robust response to infection. PMID:17664005

  9. Cirrhosis-induced defects in innate pulmonary defenses against Streptococcus pneumoniae

    Directory of Open Access Journals (Sweden)

    Vander Top Elizabeth A

    2007-10-01

    Full Text Available Abstract Background The risk of mortality from pneumonia caused by Streptococcus pneumoniae is increased in patients with cirrhosis. However, the specific pneumococcal virulence factors and host immune defects responsible for this finding have not been clearly established. This study used a cirrhotic rat model of pneumococcal pneumonia to identify defect(s in innate pulmonary defenses in the cirrhotic host and to determine the impact of the pneumococcal toxin pneumolysin on these defenses in the setting of severe cirrhosis. Results No cirrhosis-associated defects in mucociliary clearance of pneumococci were found in these studies, but early intrapulmonary killing of the organisms before the arrival of neutrophils was significantly impaired. This defect was exacerbated by pneumolysin production in cirrhotic but not in control rats. Neutrophil-mediated killing of a particularly virulent type 3 pneumococcal strain also was significantly diminished within the lungs of cirrhotic rats with ascites. Levels of lysozyme and complement component C3 were both significantly reduced in bronchoalveolar lavage fluid from cirrhotic rats. Finally, complement deposition was reduced on the surface of pneumococci recovered from the lungs of cirrhotic rats in comparison to organisms recovered from the lungs of control animals. Conclusion Increased mortality from pneumococcal pneumonia in this cirrhotic host is related to defects in both early pre-neutrophil- and later neutrophil-mediated pulmonary killing of the organisms. The fact that pneumolysin production impaired pre-neutrophil-mediated pneumococcal killing in cirrhotic but not control rats suggests that pneumolysin may be particularly detrimental to this defense mechanism in the severely cirrhotic host. The decrease in neutrophil-mediated killing of pneumococci within the lungs of the cirrhotic host is related to insufficient deposition of host proteins such as complement C3 on their surfaces. Pneumolysin

  10. Divergent adaptive and innate immunological responses are observed in humans following blunt trauma

    Directory of Open Access Journals (Sweden)

    Lentsch Alex B

    2010-01-01

    Full Text Available Abstract Background The immune response to trauma has traditionally been modeled to consist of the systemic inflammatory response syndrome (SIRS followed by the compensatory anti-inflammatory response syndrome (CARS. We investigated these responses in a homogenous cohort of male, severe blunt trauma patients admitted to a University Hospital surgical intensive care unit (SICU. After obtaining consent, peripheral blood was drawn up to 96 hours following injury. The enumeration and functionality of both myeloid and lymphocyte cell populations were determined. Results Neutrophil numbers were observed to be elevated in trauma patients as compared to healthy controls. Further, neutrophils isolated from trauma patients had increased raft formation and phospho-Akt. Consistent with this, the neutrophils had increased oxidative burst compared to healthy controls. In direct contrast, blood from trauma patients contained decreased naïve T cell numbers. Upon activation with a T cell specific mitogen, trauma patient T cells produced less IFN-gamma as compared to those from healthy controls. Consistent with these results, upon activation, trauma patient T cells were observed to have decreased T cell receptor mediated signaling. Conclusions These results suggest that following trauma, there are concurrent and divergent immunological responses. These consist of a hyper-inflammatory response by the innate arm of the immune system concurrent with a hypo-inflammatory response by the adaptive arm.

  11. DMPD: Innate immune sensing of pathogens and danger signals by cell surface Toll-likereceptors. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17275324 Innate immune sensing of pathogens and danger signals by cell surface Toll... Show Innate immune sensing of pathogens and danger signals by cell surface Toll-likereceptors. PubmedID 172...75324 Title Innate immune sensing of pathogens and danger signals by cell surface

  12. DMPD: Regulation of innate immunity by suppressor of cytokine signaling (SOCS)proteins. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18406369 Regulation of innate immunity by suppressor of cytokine signaling (SOCS)pr...svg) (.html) (.csml) Show Regulation of innate immunity by suppressor of cytokine signaling (SOCS)proteins. ...PubmedID 18406369 Title Regulation of innate immunity by suppressor of cytokine s

  13. DMPD: Toll-like receptors are key participants in innate immune responses. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18064347 Toll-like receptors are key participants in innate immune responses. Aranc...Epub 2007 Nov 21. (.png) (.svg) (.html) (.csml) Show Toll-like receptors are key participants in innate immune response...s. PubmedID 18064347 Title Toll-like receptors are key participants in innate immune response

  14. DMPD: Heterogeneity of TLR-induced responses in dendritic cells: from innate toadaptive immunity. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 15481153 Heterogeneity of TLR-induced responses in dendritic cells: from innate toa...w Heterogeneity of TLR-induced responses in dendritic cells: from innate toadaptive immunity. PubmedID 15481...153 Title Heterogeneity of TLR-induced responses in dendritic cells: from innate

  15. DMPD: Nod1 and Nod2 in innate immunity and human inflammatory disorders. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18031249 Nod1 and Nod2 in innate immunity and human inflammatory disorders. Le Bour...w Nod1 and Nod2 in innate immunity and human inflammatory disorders. PubmedID 18031249 Title Nod1 and Nod2 in innate immunity and hum...an inflammatory disorders. Authors Le Bourhis L, Benko S

  16. Tim-3: An activation marker and activation limiter of innate immune cells

    Directory of Open Access Journals (Sweden)

    Gencheng eHan

    2013-12-01

    Full Text Available Tim-3 was initially identified on activated Th1, Th17, and Tc1 cells and induces T cell death or exhaustion after binding to its ligand, Gal-9. The observed relationship between dysregulated Tim-3 expression on T cells and the progression of many clinical diseases has identified this molecule as an important target for intervention in adaptive immunity. Recent data have shown that it also plays critical roles in regulating the activities of macrophages, monocytes, dendritic cells, mast cells, natural killer cells, and endothelial cells. Although the underlying mechanisms remain unclear, dysregulation of Tim-3 expression on these innate immune cells leads to an excessive or inhibited inflammatory response and subsequent autoimmune damage or viral or tumor evasion. In this review, we focus on the expression and function of Tim-3 on innate immune cells and discuss 1 how Tim-3 is expressed and regulated on different innate immune cells; 2 how it affects the activity of different innate immune cells; and 3 how dysregulated Tim-3 expression on innate immune cells affects adaptive immunity and disease progression. Tim-3 is involved in the optimal activation of innate immune cells through its varied expression. A better understanding of the physiopathological role of the Tim-3 pathway in innate immunity will shed new light on the pathogenesis of clinical diseases, such as autoimmune diseases, chronic viral infections, and cancer, and suggest new approaches to intervention.

  17. Dietary Administration of Lactobacillus plantarum Enhanced Growth Performance and Innate Immune Response of Siberian Sturgeon, Acipenser baerii.

    Science.gov (United States)

    Pourgholam, Moheb Ali; Khara, Hossein; Safari, Reza; Sadati, Mohammad Ali Yazdani; Aramli, Mohammad Sadegh

    2016-03-01

    We investigated the effects of Lactobacillus plantarum used as a dietary supplement on the growth performance and innate immune response in juvenile Siberian sturgeon Acipenser baerii. Juvenile fish (14.6 ± 2.3 g) were fed three experimental diets prepared by supplementing a basal diet with L. plantarum at different concentrations [1 × 10(7), 1 × 10(8) and 1 × 10(9) colony-forming units (cfu) g(-1)] and a control (non-supplemented basal) diet for 8 weeks. Growth performance indices were increased in fish fed the 1 × 10(8) cfu g(-1) L. plantarum diet compared to the other groups. There was an increased innate immune response in fish fed the experimental diets. The highest levels of lysozyme activity, total immunoglobulin (IgM) and complement component 3 (C3) were observed in fish fed the diet containing L. plantarum at a concentration of 1 × 10(8) cfu g(-1), but there was no significant difference in the level of complement component 4 (C4) in fish fed the experimental diets or the control diet. The present study underlying some positive effects (growth performance and immune indices) of dietary administration of L. plantarum at a concentration of 1 × 10(8) cfu g(-1) in the Siberian sturgeon. PMID:26686864

  18. Dietary supplementation with two Lamiaceae herbs-(oregano and sage modulates innate immunity parameters in Lumbric us terrestris

    Directory of Open Access Journals (Sweden)

    D A Vattem

    2013-01-01

    Full Text Available Introduction: Lamiaceae herbs have are well known for their immunomodulatory effects, however, the mechanism by which they effect innate immune system is not clearly understood. Objective: The effect of dietary supplementation with two Lamiaceae herbs (oregano and sage modulation of on innate immunological parameters was investigated in Lumbricus terrestris. Materials and Methods: Animals were fed (ad libitum on herbs supplemented diet [(0.1% (w/v and 0.5% (w/v] for 6 days. Changes in immune competent cell counts, viability, and relative neutrophil-like cell counts were determined in response to herb treatment. Changes in nitric oxide, phagocytic activity, and respiratory burst index were also determined in response to herb treatment relative to control. Additionally, effect of herb co-treatment cyclophosphamide (50 mg/kg-BW induced immunosuppression was also evaluated. Results: Our results suggested abrogation of CP-induced immunosuppression in response to co-treatment with herbs. Significant increase in nitric oxide-mediated immune-competent cell counts, viability, and differentiation into neutrophil-like cells were observed in response to dietary supplementation with Lamiaceae herbs. Significantly higher phagocytic activity relative to control was also noted in response to dietary intake of oregano and sage. However, the respiratory burst index did not increase exponentially in response to herb treatments, suggesting a potential enhancement in pathogen recognition and antioxidant defenses. Conclusion: Lamiaceae herbs may have potential immune-modulatory properties important for human health and merits further investigation.

  19. Oral microbiota and host innate immune response in bisphosphonate-related osteonecrosis of the jaw

    Institute of Scientific and Technical Information of China (English)

    Smruti Pushalkar; Deepak Saxena; Xin Li; Zoya Kurago; Lalitha V Ramanathapuram; Satoko Matsumura; Kenneth E Fleisher; Robert Glickman; Wenbo Yan; Yihong Li

    2014-01-01

    Bacterial biofilms have emerged as potential critical triggers in the pathogenesis of bisphosphonate (BP)-related osteonecrosis of the jaw (ONJ) or BRONJ. BRONJ lesions have shown to be heavily colonized by oral bacteria, most of these difficult to cultivate and presents many clinical challenges. The purpose of this study was to characterize the bacterial diversity in BRONJ lesions and to determine host immune response. We examined tissue specimens from three cohorts (n530);patients with periodontal disease without a history of BP therapy (Control, n510), patients with periodontal disease having history of BP therapy but without ONJ (BP, n55) and patients with BRONJ (BRONJ, n515). Denaturing gradient gel electrophoresis of polymerase chain reaction (PCR)-amplified 16S rRNA gene fragments revealed less bacterial diversity in BRONJ than BP and Control cohorts. Sequence analysis detected six phyla with predominant affiliation to Firmicutes in BRONJ (71.6%), BP (70.3%) and Control (59.1%). Significant differences (P,0.05) in genera were observed, between Control/BP, Control/BRONJ and BP/BRONJ cohorts. Enzyme-linked immunosorbent assay (ELISA) results indicated that the levels of myeloperoxidase were significantly lower, whereas interleukin-6 and tumor necrosis factor-alpha levels were moderately elevated in BRONJ patients as compared to Controls. PCR array showed significant changes in BRONJ patients with downregulation of host genes, such as nucleotide-binding oligomerization domain containing protein 2, and cathepsin G, the key modulators for antibacterial response and upregulation of secretory leukocyte protease inhibitor, proteinase 3 and conserved helix–loop–helix ubiquitous kinase. The results suggest that colonization of unique bacterial communities coupled with deficient innate immune response is likely to impact the pathogenesis of ONJ.

  20. CD8αα innate-type lymphocytes in the intestinal epithelium mediate mucosal immunity

    OpenAIRE

    Kaer, Luc Van; Scott Algood, Holly M.; Singh, Kshipra; Parekh, Vrajesh V.; Greer, Michael J.; Piazuelo, M. Blanca; Weitkamp, Jörn-Hendrik; Matta, Pranathi; Chaturvedi, Rupesh; Wilson, Keith T.; Olivares-Villagómez, Danyvid

    2014-01-01

    Innate immune responses are critical for mucosal immunity. Here we describe an innate lymphocyte population, iCD8α cells, characterized by expression of CD8α homodimers. iCD8α cells exhibit innate functional characteristics such as the capacity to engulf and kill bacteria. Development of iCD8α cells depends on expression of interleukin-2 receptor γ chain (IL-2Rγc), IL-15, and the major histocompatibility complex (MHC) class Ib protein H2-T3, also known as the thymus leukemia antigen or TL. Wh...

  1. Trained innate immunity as underlying mechanism for the long-term, nonspecific effects of vaccines

    DEFF Research Database (Denmark)

    Blok, Bastiaan A; Arts, Rob J W; van Crevel, Reinout;

    2015-01-01

    An increasing body of evidence shows that the innate immune system has adaptive characteristics that involve a heterologous memory of past insults. Both experimental models and proof-of-principle clinical trials show that innate immune cells, such as monocytes, macrophages, and NK cells, can...... protective, nonspecific effects induced by vaccines, such as BCG, measles vaccination, and other whole-microorganism vaccines. In this review, we will present the mechanisms of trained immunity responsible for the long-lasting effects of vaccines on the innate immune system....

  2. Innate immune modulation in chronic obstructive pulmonary disease: moving closer toward vitamin D therapy.

    Science.gov (United States)

    Heulens, Nele; Korf, Hannelie; Janssens, Wim

    2015-05-01

    Chronic obstructive pulmonary disease (COPD) is one of the most common respiratory diseases and a major cause of morbidity and mortality worldwide. Disturbed innate immune processes characterize the pathogenesis of COPD. Vitamin D deficiency is very common in COPD patients and has been associated with disease severity. Interestingly, mechanistic evidence from animal and in vitro studies has demonstrated important innate immunomodulatory functions of vitamin D, including anti-inflammatory, antioxidative, and antimicrobial functions. This review discusses in detail how the innate immunomodulatory functions of vitamin D may have therapeutic potential in COPD patients. The remaining challenges associated with vitamin D therapy in COPD patients are also discussed. PMID:25755208

  3. Unravelling the nature of non-specific effects of vaccines-A challenge for innate immunologists

    DEFF Research Database (Denmark)

    Jensen, Kristoffer Jarlov; Benn, Christine Stabell; van Crevel, Reinout

    2016-01-01

    Epidemiological observations have shown that vaccines can influence morbidity and mortality more than can be ascribed to target-disease immunity. A growing number of immunological studies have helped identify possible biological mechanisms to explain these so-called nonspecific effects (NSE) of...... vaccines, including heterologous T-cell reactivity and innate immune memory or 'trained innate immunity', which involves epigenetic reprogramming of innate immune cells. Here, we review the epidemiological evidence for NSE as well as human, animal and in vitro immunological data that could explain these...... NSE, and discuss priorities for future epidemiologic and immunologic studies to further unravel the biology and optimize the benefits of current and new vaccines....

  4. Science Signaling Podcast for 3 May 2016: Innate lymphoid cell plasticity.

    Science.gov (United States)

    Vivier, Eric; Golub, Rachel; VanHook, Annalisa M

    2016-01-01

    This Podcast features an interview with Rachel Golub and Eric Vivier, authors of two Research Articles that appear in the 3 May 2016 issue of Science Signaling, about plasticity of innate lymphoid cells (ILCs). ILCs are related to the T cells and B cells of the adaptive immune system, and they regulate immune responses by secreting cytokines. ILCs are a heterogeneous population of cells that can be classified into several subtypes. Type 3 ILCs (ILC3s) can be further subdivided into distinct subpopulations. Chea et al found that Notch signaling controlled the relative proportions of different ILC3 subtypes in the mouse intestine. A related study by Viant et al reports that the Notch and transforming growth factor-β (TGF-β) signaling pathways antagonize one another to control the balance between different subsets of ILC3s. Both studies demonstrate that ILC3 fate is plastic and can be influenced by signals present in the microenvironment of these tissue-resident cells.Listen to Podcast. PMID:27141927

  5. MAP Kinase 4 Substrates and Plant Innate Immunity

    DEFF Research Database (Denmark)

    Rasmussen, Magnus Wohlfahrt

    . For example, Arabidopsis MPK4 regulates the expression of a subset of defense genes via at least one WRKY transcription factor. We report here that MPK4 is found in complexes in vivo with (i) PAT1, component of the mRNA decapping machinery, (ii) AOC3, a component in the biosynthesis pathway of JA and (iii) e......IF4E, a component in the translational initiation protein complex. For PAT1 and eIF4E we show that MPK4 phosphorylates specific Ser and Thr residues in vitro, and that MPK4 also phosphorylates AOC3 at an unmapped residue. Specific in vivo phosphorylation for PAT1 is shown in response to pathogen...... recognition, which also induce its localization to cytoplasmic processing bodies. All three proteins; PAT1, AOC3 and eIF4E also interacts with MPK4 in vivo although the functional outcome of these interactions are still elusive. The thesis comprise a general introduction to plant innate immunity followed...

  6. Polysaccharides isolated from Acai fruit induce innate immune responses.

    Directory of Open Access Journals (Sweden)

    Jeff Holderness

    Full Text Available The Açaí (Acai fruit is a popular nutritional supplement that purportedly enhances immune system function. These anecdotal claims are supported by limited studies describing immune responses to the Acai polyphenol fraction. Previously, we characterized γδ T cell responses to both polyphenol and polysaccharide fractions from several plant-derived nutritional supplements. Similar polyphenol and polysaccharide fractions are found in Acai fruit. Thus, we hypothesized that one or both of these fractions could activate γδ T cells. Contrary to previous reports, we did not identify agonist activity in the polyphenol fraction; however, the Acai polysaccharide fraction induced robust γδ T cell stimulatory activity in human, mouse, and bovine PBMC cultures. To characterize the immune response to Acai polysaccharides, we fractionated the crude polysaccharide preparation and tested these fractions for activity in human PBMC cultures. The largest Acai polysaccharides were the most active in vitro as indicated by activation of myeloid and γδ T cells. When delivered in vivo, Acai polysaccharide induced myeloid cell recruitment and IL-12 production. These results define innate immune responses induced by the polysaccharide component of Acai and have implications for the treatment of asthma and infectious disease.

  7. Functional properties of flagellin as a stimulator of innate immunity.

    Science.gov (United States)

    Lu, Yuan; Swartz, James R

    2016-01-01

    We report the development of a well-defined flagellin-based nanoparticle stimulator and also provide a new mechanism of action model explaining how flagellin-triggered innate immunity has evolved to favor localized rather than potentially debilitating systemic immune stimulation. Cell-free protein synthesis (CFPS) was used to facilitate mutational analysis and precisely orientated display of flagellin on Hepatitis B core (HBc) protein virus-like particles (VLPs). The need for product stability and an understanding of mechanism of action motivated investigations indicating that the D0 domain of flagellin is sensitive to amino acid sequence independent hydrolysis - apparently due to the need for structural flexibility during natural flagellin polymerization. When D0-stabilized flagellin was attached to HBc VLPs with the D0 domain facing outward, flagellin's tendency to polymerize caused the VLPs to precipitate. However, attaching the D0 domain to the VLP surface produced a stable nanoparticle adjuvant. Surprisingly, attaching only 2 flagellins per VLP provided the same 1 pM potency as did VLPs with about 33 attached flagellins suggesting that the TLR5 receptor is highly effective in delivering its intracellular signal. These observations suggest that flagellin's protease sensitivity, tendency to aggregate, and very high affinity for TLR5 receptors limit its systemic distribution to favor localized immune stimulation. PMID:26755208

  8. Cinobufagin Modulates Human Innate Immune Responses and Triggers Antibacterial Activity.

    Science.gov (United States)

    Xie, Shanshan; Spelmink, Laura; Codemo, Mario; Subramanian, Karthik; Pütsep, Katrin; Henriques-Normark, Birgitta; Olliver, Marie

    2016-01-01

    The traditional Chinese medicine Chan-Su is widely used for treatment of cancer and cardiovascular diseases, but also as a remedy for infections such as furunculosis, tonsillitis and acute pharyngitis. The clinical use of Chan-Su suggests that it has anti-infective effects, however, the mechanism of action is incompletely understood. In particular, the effect on the human immune system is poorly defined. Here, we describe previously unrecognized immunomodulatory activities of cinobufagin (CBG), a major bioactive component of Chan-Su. Using human monocyte-derived dendritic cells (DCs), we show that LPS-induced maturation and production of a number of cytokines was potently inhibited by CBG, which also had a pro-apoptotic effect, associated with activation of caspase-3. Interestingly, CBG triggered caspase-1 activation and significantly enhanced IL-1β production in LPS-stimulated cells. Finally, we demonstrate that CBG upregulates gene expression of the antimicrobial peptides (AMPs) hBD-2 and hBD-3 in DCs, and induces secretion of HNP1-3 and hCAP-18/LL-37 from neutrophils, potentiating neutrophil antibacterial activity. Taken together, our data indicate that CBG modulates the inflammatory phenotype of DCs in response to LPS, and triggers an antibacterial innate immune response, thus proposing possible mechanisms for the clinical effects of Chan-Su in anti-infective therapy. PMID:27529866

  9. The image schema and innate archetypes: theoretical and clinical implications.

    Science.gov (United States)

    Merchant, John

    2016-02-01

    Based in contemporary neuroscience, Jean Knox's 2004 JAP paper 'From archetypes to reflective function' honed her position on image schemas, thereby introducing a model for archetypes which sees them as 'reliably repeated early developmental achievements' and not as genetically inherited, innate psychic structures. The image schema model is used to illustrate how the analyst worked with a patient who began life as an unwanted pregnancy, was adopted at birth and as an adult experienced profound synchronicities, paranormal/telepathic phenomena and visions. The classical approach to such phenomena would see the intense affectivity arising out of a ruptured symbiotic mother-infant relationship constellating certain archetypes which set up the patient's visions. This view is contrasted with Knox's model which sees the archetype an sich as a developmentally produced image schema underpinning the emergence of later imagery. The patient's visions can then be understood to arise from his psychoid body memory related to his traumatic conception and birth. The contemporary neuroscience which supports this view is outlined and a subsequent image schema explanation is presented. Clinically, the case material suggests that a pre-birth perspective needs to be explored in all analytic work. Other implications of Knox's image schema model are summarized. PMID:26785413

  10. Host recognition of Clostridium difficile and the innate immune response.

    Science.gov (United States)

    Cowardin, Carrie A; Petri, William A

    2014-12-01

    Clostridium difficile is a Gram-positive, spore forming bacillus and the most common cause of antibiotic-associated diarrhea in the United States. Clinical outcomes of C. difficile infection (CDI) range from asymptomatic colonization to pseudomembranous colitis, sepsis and death. Disease is primarily mediated by the action of the Rho-glucosylating toxins A and B, which induce potent pro-inflammatory signaling within the host. The role of this inflammatory response during infection is just beginning to be appreciated, with recent data suggesting inflammatory markers correlate closely with disease severity. In addition to the toxins, multiple innate immune signaling pathways have been implicated in establishing an inflammatory response during infection. In intoxication-based models of disease, inflammation typically enhances pathogenesis, while protection from infection seems to require some level of inflammatory response. Thus, the host immune response plays a key role in shaping the course of infection and a balanced inflammatory response which eradicates infection without damaging host tissues is likely required for successful resolution of disease. PMID:25223264

  11. Neuropathogenesis of Chikungunya infection: astrogliosis and innate immune activation.

    Science.gov (United States)

    Inglis, Fiona M; Lee, Kim M; Chiu, Kevin B; Purcell, Olivia M; Didier, Peter J; Russell-Lodrigue, Kasi; Weaver, Scott C; Roy, Chad J; MacLean, Andrew G

    2016-04-01

    Chikungunya, "that which bends up" in the Makonde dialect, is an emerging global health threat, with increasing incidence of neurological complications. Until 2013, Chikungunya infection had been largely restricted to East Africa and the Indian Ocean, with cases within the USA reported to be from foreign travel. However, in 2014, over 1 million suspected cases were reported in the Americas, and a recently infected human could serve as an unwitting reservoir for the virus resulting in an epidemic in the continental USA. Chikungunya infection is increasingly being associated with neurological sequelae. In this study, we sought to understand the role of astrocytes in the neuropathogenesis of Chikungunya infection. Even after virus has been cleared form the circulation, astrocytes were activated with regard to TLR2 expression. In addition, white matter astrocytes were hypertrophic, with increased arbor volume in gray matter astrocytes. Combined, these would alter the number and distribution of synapses that each astrocyte would be capable of forming. These results provide the first evidence that Chikungunya infection induces morphometric and innate immune activation of astrocytes in vivo. Perturbed glia-neuron signaling could be a major driving factor in the development of Chikungunya-associated neuropathology. PMID:26419894

  12. Activation of the reward system boosts innate and adaptive immunity.

    Science.gov (United States)

    Ben-Shaanan, Tamar L; Azulay-Debby, Hilla; Dubovik, Tania; Starosvetsky, Elina; Korin, Ben; Schiller, Maya; Green, Nathaniel L; Admon, Yasmin; Hakim, Fahed; Shen-Orr, Shai S; Rolls, Asya

    2016-08-01

    Positive expectations contribute to the clinical benefits of the placebo effect. Such positive expectations are mediated by the brain's reward system; however, it remains unknown whether and how reward system activation affects the body's physiology and, specifically, immunity. Here we show that activation of the ventral tegmental area (VTA), a key component of the reward system, strengthens immunological host defense. We used 'designer receptors exclusively activated by designer drugs' (DREADDs) to directly activate dopaminergic neurons in the mouse VTA and characterized the subsequent immune response after exposure to bacteria (Escherichia coli), using time-of-flight mass cytometry (CyTOF) and functional assays. We found an increase in innate and adaptive immune responses that were manifested by enhanced antibacterial activity of monocytes and macrophages, reduced in vivo bacterial load and a heightened T cell response in the mouse model of delayed-type hypersensitivity. By chemically ablating the sympathetic nervous system (SNS), we showed that the reward system's effects on immunity are, at least partly, mediated by the SNS. Thus, our findings establish a causal relationship between the activity of the VTA and the immune response to bacterial infection. PMID:27376577

  13. Innate Immunity and Inflammation in NAFLD/NASH.

    Science.gov (United States)

    Arrese, Marco; Cabrera, Daniel; Kalergis, Alexis M; Feldstein, Ariel E

    2016-05-01

    Inflammation and hepatocyte injury and death are the hallmarks of nonalcoholic steatohepatitis (NASH), the progressive form of nonalcoholic fatty liver disease (NAFLD), which is a currently burgeoning public health problem. Innate immune activation is a key factor in triggering and amplifying hepatic inflammation in NAFLD/NASH. Thus, identification of the underlying mechanisms by which immune cells in the liver recognize cell damage signals or the presence of pathogens or pathogen-derived factors that activate them is relevant from a therapeutic perspective. In this review, we present new insights into the factors promoting the inflammatory response in NASH including sterile cell death processes resulting from lipotoxicity in hepatocytes as well as into the altered gut-liver axis function, which involves translocation of bacterial products into portal circulation as a result of gut leakiness. We further delineate the key immune cell types involved and how they recognize both damage-associated molecular patterns or pathogen-associated molecular patterns through binding of surface-expressed pattern recognition receptors, which initiate signaling cascades leading to injury amplification. The relevance of modulating these inflammatory signaling pathways as potential novel therapeutic strategies for the treatment of NASH is summarized. PMID:26841783

  14. INTERACTIONS OF PATHOGENIC BACTERIA WITH INNATE IMMUNE REACTIONS OF HOST

    Directory of Open Access Journals (Sweden)

    F. Yu. Garib

    2012-01-01

    Full Text Available Abstract. «Efficacy» of pathogens interaction with the immunity system is manifested by broad spreading of many bacterial infections including tuberculosis first of all and in activation of known and emergent pathogens. The refined mechanisms of avoiding of bacteria from recognizing by immune system as creation of obstacles for phagocytosis and intracellular killing, using of secretory systems like “syringe” for inoculation into host cells deregulated substances, suppression or enhancing of inflammatory response, activation of inhibitory receptors to suppress respiratory explosion in phagosome, decreasing of synthesis of proinflammatory cytokines by influences to inflammasomes, stimulation of cytokines production suppres sed of innate response, damage of key molecules on intracellular signal routes, manipulation with apoptosis and auto phagia with the aim of surviving and replication inside the host cells, blocking of processing and presentation of bacterial antigens have been evolutionary developed. The study of interaction between host and parasite allows to understand new facts characterized “logic of live being” on the pathogen level and to use their mechanisms of evasion for resolving of actual problems raised in human society, for example, development of original vaccines and principally new drugs for immune system correction in case of diseases such as oncogenic tumors, autoimmune and allergic diseases as well as infectious diseases which are difficult to prevent and treat. Moreover, it was proved that permanent interaction with microorganisms including pathogenic ones is useful for human being because bacterial substances “train” immune system of people and assist its evolutionary improvement.

  15. Gliadin-mediated proliferation and innate immune activation in celiac disease are due to alterations in vesicular trafficking.

    Directory of Open Access Journals (Sweden)

    M Vittoria Barone

    Full Text Available BACKGROUND AND OBJECTIVES: Damage to intestinal mucosa in celiac disease (CD is mediated both by inflammation due to adaptive and innate immune responses, with IL-15 as a major mediator of the innate immune response, and by proliferation of crypt enterocytes as an early alteration of CD mucosa causing crypts hyperplasia. We have previously shown that gliadin peptide P31-43 induces proliferation of cell lines and celiac enterocytes by delaying degradation of the active epidermal growth factor receptor (EGFR due to delayed maturation of endocytic vesicles. IL-15 is increased in the intestine of patients affected by CD and has pleiotropic activity that ultimately results in immunoregulatory cross-talk between cells belonging to the innate and adaptive branches of the immune response. Aims of this study were to investigate the role of P31-43 in the induction of cellular proliferation and innate immune activation. METHODS/PRINCIPAL FINDINGS: Cell proliferation was evaluated by bromodeoxyuridine (BrdU incorporation both in CaCo-2 cells and in biopsies from active CD cases and controls. We used real-time PCR to evaluate IL-15 mRNA levels and FACS as well as ELISA and Western Blot (WB analysis to measure protein levels and distribution in CaCo-2 cells. Gliadin and P31-43 induce a proliferation of both CaCo-2 cells and CD crypt enterocytes that is dependent on both EGFR and IL-15 activity. In CaCo-2 cells, P31-43 increased IL-15 levels on the cell surface by altering intracellular trafficking. The increased IL-15 protein was bound to IL15 receptor (IL-15R alpha, did not require new protein synthesis and functioned as a growth factor. CONCLUSION: In this study, we have shown that P31-43 induces both increase of the trans-presented IL-15/IL5R alpha complex on cell surfaces by altering the trafficking of the vesicular compartments as well as proliferation of crypt enterocytes with consequent remodelling of CD mucosa due to a cooperation of IL-15 and EGFR.

  16. Microarray expression analysis of genes involved in innate immune memory in peritoneal macrophages

    Directory of Open Access Journals (Sweden)

    Keisuke Yoshida

    2016-03-01

    Full Text Available Immunological memory has been believed to be a feature of the adaptive immune system for long period, but recent reports suggest that the innate immune system also exhibits memory-like reaction. Although evidence of innate immune memory is accumulating, no in vivo experimental data has clearly implicated a molecular mechanism, or even a cell-type, for this phenomenon. In this study of data deposited into Gene Expression Omnibus (GEO under GSE71111, we analyzed the expression profile of peritoneal macrophages isolated from mice pre-administrated with toll-like receptor (TLR ligands, mimicking pathogen infection. In these macrophages, increased expression of a group of innate immunity-related genes was sustained over a long period of time, and these genes overlapped with ATF7-regulated genes. We conclude that ATF7 plays an important role in innate immune memory in macrophages.

  17. Sterile Inflammation-Do innate lymphoid cell subsets play a role?

    Directory of Open Access Journals (Sweden)

    Shane E Russell

    2012-08-01

    Full Text Available The recent identification of several novel innate lymphoid cell subsets (iLCs has increased our understanding of the mechanisms which link the innate and adaptive immune systems. While the contribution of these subsets towards the pathogenesis of human disease remains largely to be determined, it seems likely that they will play a particularly important role in sterile inflammatory settings where the innate response is seen as a critical mediator of inflammation. Several recent studies have highlighted the role of endogenous damage associated molecular patterns such as IL-33, IL-1 and IL-1 in promoting lymphoid cell responses. This review discusses the influence of such endogenous danger signals on novel iLCs such as Lymphoid Tissue-inducer (LTi cells, innate type 2 helper cells and  T cells and explores how these responses may contribute to the development of an inflammatory response in a sterile setting.

  18. The role of innate immunity cells in coeliac disease: response of PBMC to gliadin digest

    Czech Academy of Sciences Publication Activity Database

    Tučková, Ludmila; Jelínková, Lenka; Cinová, Jana; Zídek, Zdeněk; Tlaskalová, Helena

    Praha, 2003, s. 52. [Annual Meeting of Espghan /36./. Praha (CZ), 04.06.2003-07.06.2003] Institutional research plan: CEZ:AV0Z5020903 Keywords : innate * immunity * cell Subject RIV: EE - Microbiology, Virology

  19. Innate and discretionary accruals quality and corporate governance: A case study of Tehran Stock Exchange

    Directory of Open Access Journals (Sweden)

    Hossein Panahian

    2012-09-01

    Full Text Available In this paper, we present an empirical study to find the relationship between discretionary accruals quality as well as innate accruals quality and portion of non-executive board of directors, concentration of ownership ratio and board size in Tehran Stock Exchange. The survey selects 118 qualified stocks from this exchange and using a random technique chooses 42 firms. The study implements two linear regression techniques to estimate the first part of the information and then using structural equation modeling examines six hypotheses. Based on the results of this survey we can conclude that an increase on non-executive members positively influences on discretionary accruals quality and negatively influences innate accruals quality. Concentration of ownership ratio positively influences on discretionary accruals quality and negatively impacts on innate accruals quality. Finally, size of board of directors negatively impacts discretionary accruals quality and positively influences on innate accruals quality.

  20. Synergistic innate and adaptive immune response to combination immunotherapy with anti-tumor antigen antibodies and extended serum half-life IL-2.

    Science.gov (United States)

    Zhu, Eric F; Gai, Shuning A; Opel, Cary F; Kwan, Byron H; Surana, Rishi; Mihm, Martin C; Kauke, Monique J; Moynihan, Kelly D; Angelini, Alessandro; Williams, Robert T; Stephan, Matthias T; Kim, Jacob S; Yaffe, Michael B; Irvine, Darrell J; Weiner, Louis M; Dranoff, Glenn; Wittrup, K Dane

    2015-04-13

    Cancer immunotherapies under development have generally focused on either stimulating T cell immunity or driving antibody-directed effector functions of the innate immune system such as antibody-dependent cell-mediated cytotoxicity (ADCC). We find that a combination of an anti-tumor antigen antibody and an untargeted IL-2 fusion protein with delayed systemic clearance induces significant tumor control in aggressive isogenic tumor models via a concerted innate and adaptive response involving neutrophils, NK cells, macrophages, and CD8(+) T cells. This combination therapy induces an intratumoral "cytokine storm" and extensive lymphocyte infiltration. Adoptive transfer of anti-tumor T cells together with this combination therapy leads to robust cures of established tumors and development of immunological memory. PMID:25873172

  1. Lipoxin A4 regulates natural killer cell and type 2 innate lymphoid cell activation in asthma

    OpenAIRE

    Barnig, C.; Cernadas, M; Dutile, S.; Liu, X.; Perrella, M A; Kazani, S.; Wechsler, M.E.; Israel, E; Levy, B.D.

    2013-01-01

    Asthma is a prevalent disease of chronic inflammation in which endogenous counter-regulatory signaling pathways are dysregulated. Recent evidence suggests that innate lymphoid cells (ILCs), including natural killer (NK) cells and type 2 innate lymphoid cells (ILC2), can participate in the regulation of allergic airways responses, in particular airway mucosal inflammation. Here, we have identified both NK cells and ILC2 in human lung and peripheral blood in healthy and asthmatic subjects. NK c...

  2. A Novel Polysaccharide in Insects Activates the Innate Immune System in Mouse Macrophage RAW264 Cells

    OpenAIRE

    Takashi Ohta; Atsushi Ido; Kie Kusano; Chiemi Miura; Takeshi Miura

    2014-01-01

    A novel water-soluble polysaccharide was identified in the pupae of the melon fly (Bactrocera cucurbitae) as a molecule that activates the mammalian innate immune response. We attempted to purify this innate immune activator using nitric oxide (NO) production in mouse RAW264 macrophages as an indicator of immunostimulatory activity. A novel acidic polysaccharide was identified, which we named "dipterose", with a molecular weight of 1.01 × 10(6) and comprising nine monosaccharides. Dipterose w...

  3. The participation of cortical amygdala in innate, odor-driven behavior

    OpenAIRE

    Root, Cory M.; Denny, Christine A.; Hen, René; Axel, Richard

    2014-01-01

    Innate behaviors are observed in naïve animals without prior learning or experience, suggesting that the neural circuits that mediate these behaviors are genetically determined and stereotyped. The neural circuits that convey olfactory information from the sense organ to the cortical and subcortical olfactory centers have been anatomically defined 1-3 but the specific pathways responsible for innate responses to volatile odors have not been identified. We have devised genetic strategies that ...

  4. The innate immune response of equine bronchial epithelial cells is altered by training

    OpenAIRE

    Frellstedt, Linda; Gosset, Philippe; Kervoaze, Gwenola; Hans, Aymeric; Desmet, Christophe; Pirottin, Dimitri; Bureau, Fabrice; Lekeux, Pierre; Art, Tatiana

    2015-01-01

    AbstractRespiratory diseases, including inflammatory airway disease (IAD), viral and bacterial infections, are common problems in exercising horses. The airway epithelium constitutes a major physical barrier against airborne infections and plays an essential role in the lung innate immune response mainly through toll-like receptor (TLR) activation. The aim of this study was to develop a model for the culture of equine bronchial epithelial cells (EBEC) in vitro and to explore EBEC innate immun...

  5. Innate lymphoid cells in the initiation, regulation and resolution of inflammation

    OpenAIRE

    Sonnenberg, Gregory F.; Artis, David

    2015-01-01

    A previously unappreciated cell type of the innate immune system, termed innate lymphoid cells (ILCs), has been characterized in mice and humans, and found to profoundly influence the induction, regulation and resolution of inflammation. ILCs play an important role in these processes in murine models of infection, inflammatory disease and tissue repair. Further, disease association studies in defined patient populations have identified significant alterations in ILC responses, suggesting a po...

  6. Innate Lymphoid Cells: Balancing Immunity, Inflammation, and Tissue Repair in the Intestine

    OpenAIRE

    Wojno, Elia D. Tait; Artis, David

    2012-01-01

    Innate lymphoid cells (ILCs) are a recently described group of innate immune cells that can regulate immunity, inflammation, and tissue repair in multiple anatomical compartments, particularly the barrier surfaces of the skin, airways, and intestine. Broad categories of ILCs have been defined based on transcription factor expression and the ability to produce distinct patterns of effector molecules. Recent studies have revealed that ILC populations can regulate commensal bacterial communities...

  7. Hidden talents of natural killers: NK cells in innate and adaptive immunity

    OpenAIRE

    Cooper, Megan A.; Colonna, Marco; Yokoyama, Wayne M.

    2009-01-01

    Natural killer (NK) cells are innate immune lymphocytes capable of killing target cells and producing immunoregulatory cytokines. Herein, we discuss recent studies that indicate that NK cells span the conventional boundaries between innate and adaptive immunity. For example, it was recently discovered that NK cells have the capacity for memory-like responses, a property that was previously thought to be limited to adaptive immunity. NK cells have also been identified in multiple tissues, and ...

  8. Lymphotoxin organizes contributions to host defense and metabolic illness from innate lymphoid cells

    OpenAIRE

    Upadhyay, Vaibhav; Fu, Yang-Xin

    2013-01-01

    The lymphotoxin (LT)-pathway is a unique constituent branch of the Tumor Necrosis Superfamily (TNFSF). Use of LT is a critical mechanism by which fetal innate lymphoid cells regulate lymphoid organogenesis. Within recent years, adult innate lymphoid cells have been discovered to utilize this same pathway to regulate IL-22 and IL-23 production for host defense. Notably, genetic studies have linked polymorphisms in the genes encoding LTα to several phenotypes contributing to metabolic syndrome....

  9. Innate lymphoid cells and natural killer T cells in the gastrointestinal tract immune system

    OpenAIRE

    Enrique Montalvillo; José Antonio Garrote; David Bernardo; Eduardo Arranz

    2014-01-01

    The gastrointestinal tract is equipped with a highly specialized intrinsic immune system. However, the intestine is exposed to a high antigenic burden that requires a fast, nonspecific response -so-called innate immunity- to maintain homeostasis and protect the body from incoming pathogens. In the last decade multiple studies helped to unravel the particular developmental requirements and specific functions of the cells that play a role in innate immunity. In this review we shall focus on inn...

  10. A stromal cell niche for human and mouse type 3 innate lymphoid cells ¶

    OpenAIRE

    Hoorweg, Kerim; Narang, Priyanka; Li, Zhi; Thuery, Anne; Papazian, Natalie; Withers, David R; Coles, Mark C.; Cupedo, Tom

    2015-01-01

    Adaptive immunity critically depends on the functional compartmentalization of secondary lymphoid organs. Mesenchymal stromal cells create and maintain specialized niches that support survival, activation and expansion of T and B cells, and integrated analysis of lymphocytes and their niche has been instrumental in understanding adaptive immunity. Lymphoid organs are also home to type 3 innate lymphoid cells (ILC3), innate effector cells essential for barrier immunity. However, a specialized ...

  11. Endoplasmic Reticulum Aminopeptidase-1 Functions Regulate Key Aspects of the Innate Immune Response

    OpenAIRE

    Aldhamen, Yasser A; Seregin, Sergey S.; Rastall, David P. W.; Charles F Aylsworth; Pepelyayeva, Yuliya; Busuito, Christopher J.; Godbehere-Roosa, Sarah; Kim, Sungjin; Amalfitano, Andrea

    2013-01-01

    Endoplasmic reticulum aminopeptidase-1 (ERAP1) is a multifunctional, ubiquitously expressed enzyme whose peptide-trimming role during antigen processing for presentation by MHC I molecules is well established, however, a role for ERAP1 in modulating global innate immune responses has not been described to date. Here we demonstrate that, relative to wild type mice, mice lacking ERAP1 exhibit exaggerated innate immune responses early during pathogen recognition, as characterized by increased ac...

  12. Genome-Wide RNAi Screens in C. elegans to Identify Genes Influencing Lifespan and Innate Immunity.

    Science.gov (United States)

    Sinha, Amit; Rae, Robbie

    2016-01-01

    RNA interference is a rapid, inexpensive, and highly effective tool used to inhibit gene function. In C. elegans, whole genome screens have been used to identify genes involved with numerous traits including aging and innate immunity. RNAi in C. elegans can be carried out via feeding, soaking, or injection. Here we outline protocols used to maintain, grow, and carry out RNAi via feeding in C. elegans and determine whether the inhibited genes are essential for lifespan or innate immunity. PMID:27581293

  13. Age-dependent changes in innate immune phenotype and function in rhesus macaques (Macaca mulatta

    Directory of Open Access Journals (Sweden)

    Mark Asquith

    2012-06-01

    Full Text Available Aged individuals are more susceptible to infections due to a general decline in immune function broadly referred to as immune senescence. While age-related changes in the adaptive immune system are well documented, aging of the innate immune system remains less well understood, particularly in nonhuman primates. A more robust understanding of age-related changes in innate immune function would provide mechanistic insight into the increased susceptibility of the elderly to infection. Rhesus macaques have proved a critical translational model for aging research, and present a unique opportunity to dissect age-dependent modulation of the innate immune system. We examined age-related changes in: (i innate immune cell frequencies; (ii expression of pattern recognition receptors (PRRs and innate signaling molecules; (iii cytokine responses of monocytes and dendritic cells (DC following stimulation with PRR agonists; and (iv plasma cytokine levels in this model. We found marked changes in both the phenotype and function of innate immune cells. This included an age-associated increased frequency of myeloid DC (mDC. Moreover, we found toll-like receptor (TLR agonists lipopolysaccharide (TLR4, fibroblast stimulating ligand-1 (TLR2/6, and ODN2006 (TLR7/9 induced reduced cytokine responses in aged mDC. Interestingly, with the exception of the monocyte-derived TNFα response to LPS, which increased with age, TNFα, IL-6, and IFNα responses declined with age. We also found that TLR4, TLR5, and innate negative regulator, sterile alpha and TIR motif containing protein (SARM, were all expressed at lower levels in young animals. By contrast, absent in melanoma 2 and retinoic acid-inducible gene I expression was lowest in aged animals. Together, these observations indicate that several parameters of innate immunity are significantly modulated by age and contribute to differential immune function in aged macaques.

  14. Potential role of odontoblasts in the innate immune response of the dental pulp

    OpenAIRE

    Tetiana Haniastuti

    2008-01-01

    Background: Odontoblasts are the cells lining of tooth’s hard structure at the dentin-pulp border, which become the first cells encountered oral microorganisms entering dentin. However, they do not only form a physical barrier by producing dentin, but also provide an innate immune barrier for the tooth. Purpose: The aim of this review was to discuss the potential role of odontoblasts in the innate immune response of the dental pulp. Reviews: Recent studies have proven that odontoblasts expres...

  15. Immunology primer for neurosurgeons and neurologists part 2: Innate brain immunity

    OpenAIRE

    Blaylock, Russell L.

    2013-01-01

    Over the past several decades we have learned a great deal about microglia and innate brain immunity. While microglia are the principle innate immune cells, other cell types also play a role, including invading macrophages, astrocytes, neurons, and endothelial cells. The fastest reacting cell is the microglia and despite its name, resting microglia (also called ramified microglia) are in fact quite active. Motion photomicrographs demonstrate a constant movement of ramified microglial foot pro...

  16. Innate immune response to pulmonary contusion: Identification of cell-type specific inflammatory responses

    OpenAIRE

    Hoth, J. Jason; Wells, Jonathan D.; Yoza, Barbara K.; McCall, Charles E.

    2012-01-01

    Lung injury from pulmonary contusion is a common traumatic injury, predominantly seen after blunt chest trauma such as in vehicular accidents. The local and systemic inflammatory response to injury includes activation of innate immune receptors, elaboration of a variety inflammatory mediators, and recruitment of inflammatory cells to the injured lung. Using a mouse model of pulmonary contusion, we had previously shown that innate immune Toll like receptors 2 and 4 (TLR2 and TLR4) mediate the ...

  17. Age-dependent changes in innate immune phenotype and function in rhesus macaques (Macaca mulatta)

    OpenAIRE

    Asquith, Mark; Haberthur, Kristen; Brown, Monica; Engelmann, Flora; Murphy, Ashleigh; Al-Mahdi, Zainab; Messaoudi, Ilhem

    2012-01-01

    Aged individuals are more susceptible to infections due to a general decline in immune function broadly referred to as immune senescence. While age-related changes in the adaptive immune system are well documented, aging of the innate immune system remains less well understood, particularly in nonhuman primates. A more robust understanding of age-related changes in innate immune function would provide mechanistic insight into the increased susceptibility of the elderly to infection. Rhesus ma...

  18. Age-dependent changes in innate immune phenotype and function in rhesus macaques (Macaca mulatta).

    Science.gov (United States)

    Asquith, Mark; Haberthur, Kristen; Brown, Monica; Engelmann, Flora; Murphy, Ashleigh; Al-Mahdi, Zainab; Messaoudi, Ilhem

    2012-01-01

    Aged individuals are more susceptible to infections due to a general decline in immune function broadly referred to as immune senescence. While age-related changes in the adaptive immune system are well documented, aging of the innate immune system remains less well understood, particularly in nonhuman primates. A more robust understanding of age-related changes in innate immune function would provide mechanistic insight into the increased susceptibility of the elderly to infection. Rhesus macaques have proved a critical translational model for aging research, and present a unique opportunity to dissect age-dependent modulation of the innate immune system. We examined age-related changes in: (i) innate immune cell frequencies; (ii) expression of pattern recognition receptors (PRRs) and innate signaling molecules; (iii) cytokine responses of monocytes and dendritic cells (DC) following stimulation with PRR agonists; and (iv) plasma cytokine levels in this model. We found marked changes in both the phenotype and function of innate immune cells. This included an age-associated increased frequency of myeloid DC (mDC). Moreover, we found toll-like receptor (TLR) agonists lipopolysaccharide (TLR4), fibroblast stimulating ligand-1 (TLR2/6), and ODN2006 (TLR7/9) induced reduced cytokine responses in aged mDC. Interestingly, with the exception of the monocyte-derived TNFα response to LPS, which increased with age, TNFα, IL-6, and IFNα responses declined with age. We also found that TLR4, TLR5, and innate negative regulator, sterile alpha and TIR motif containing protein (SARM), were all expressed at lower levels in young animals. By contrast, absent in melanoma 2 and retinoic acid-inducible gene I expression was lowest in aged animals. Together, these observations indicate that several parameters of innate immunity are significantly modulated by age and contribute to differential immune function in aged macaques. PMID:22953039

  19. Diacylated lipopeptide from Mycoplasma synoviae mediates TLR15 induced innate immune responses

    OpenAIRE

    Oven, Irena; Resman Rus, Katarina; Dušanić, Daliborka; Benčina, Dušan; Keeler, Calvin L.; Narat, Mojca

    2013-01-01

    Avian-specific toll like receptor 15 (TLR15) is functionally equivalent to a group of TLR2 family proteins that the mammalian innate immune system utilizes to recognize a broad spectrum of microbe-associated molecular patterns, including bacterial lipoproteins. In this study we examined the role of chicken TLR2 family members in the innate immune response to the avian pathogenic bacterium, Mycoplasma synoviae. We found that Mycoplasma synoviae, and specifically the N-terminal diacylated lipop...

  20. Ambivalent role of the innate immune response in rabies virus pathogenesis.

    OpenAIRE

    Chopy, Damien; Pothlichet, Julien; Lafage, Mireille; Mégret, Françoise; Fiette, Laurence; Si-Tahar, Mustapha; Lafon, Monique

    2011-01-01

    The neurotropic rabies virus (RABV) has developed several evasive strategies, including immunoevasion, to successfully infect the nervous system (NS) and trigger a fatal encephalomyelitis. Here we show that expression of LGP2, a protein known as either a positive or negative regulator of the RIG-I-mediated innate immune response, is restricted in the NS. We used a new transgenic mouse model (LGP2 TG) overexpressing LGP2 to impair the innate immune response to RABV and thus revealed the role o...

  1. Mice, men and the relatives: cross-species studies underpin innate immunity

    OpenAIRE

    Bryant, Clare E.; Monie, Tom P.

    2012-01-01

    The innate immune response is the first line of defence against infection. Germ-line-encoded receptors recognize conserved molecular motifs from both exogenous and endogenous sources. Receptor activation results in the initiation of a pro-inflammatory immune response that enables the resolution of infection. Understanding the inner workings of the innate immune system is a fundamental requirement in the search to understand the basis of health and disease. The development of new vaccinations,...

  2. Type I Alveolar Epithelial Cells Mount Innate Immune Responses during Pneumococcal Pneumonia

    OpenAIRE

    Yamamoto, Kazuko; Ferrari, Joseph D.; Cao, Yuxia; Ramirez, Maria I.; Jones, Matthew R.; Quinton, Lee J.; Mizgerd, Joseph P.

    2012-01-01

    Pneumonia results from bacteria in the alveoli. The alveolar epithelium consists of type II cells, which secrete surfactant and associated proteins, and type I cells, which constitute 95% of the surface area and met anatomic and structural needs. Other than constitutively expressed surfactant proteins, it is unknown whether alveolar epithelial cells have distinct roles in innate immunity. Since innate immunity gene induction depends on NF-κB RelA (also known as p65) during pneumonia, we gener...

  3. Stimulated Innate Resistance of Lung Epithelium Protects Mice Broadly against Bacteria and Fungi

    OpenAIRE

    Evans, Scott E; Scott, Brenton L.; Clement, Cecilia G; Larson, Derek T.; Kontoyiannis, Dimitrios; Lewis, Russell E.; LaSala, P. Rocco; Pawlik, Jennifer; Peterson, Johnny W.; Chopra, Ashok K.; Klimpel, Gary; Bowden, Gabriela; Höök, Magnus; Xu, Yi; Tuvim, Michael J

    2009-01-01

    Pneumonia is a serious problem worldwide. We recently demonstrated that innate defense mechanisms of the lung are highly inducible against pneumococcal pneumonia. To determine the breadth of protection conferred by stimulation of lung mucosal innate immunity, and to identify cells and signaling pathways activated by this treatment, mice were treated with an aerosolized bacterial lysate, then challenged with lethal doses of bacterial and fungal pathogens. Mice were highly protected against a b...

  4. Plasmacytoid Dendritic Cells Act as the Most Competent Cell Type in Linking Antiviral Innate and Adaptive Immune Responses

    Institute of Scientific and Technical Information of China (English)

    Zheng Zhang; Fu-Sheng Wang

    2005-01-01

    Appropriate in vivo control of plasmacytoid dendritic cell (pDC) recruitment and activation is a fundamental requirement for defense against viral infection. During this process, a pivotal event that influences the outcome of viral infection is the production of high levels of type I interferon by pDCs. In particular, recent research findings showed that pDCs not only shape the nature of innate resistance, but are also responsible for the successful transition from innate to adaptive immunity for viral resistance. In addition, pDCs can differentiate into antigen presenting cells that may regulate tolerance to a given pathogen. Importantly, in a series of recent clinical studies,pDCs appeared to be defective in number and function in conditions of chronic viral diseases such as infected with HIV-1, HBV or HCV. pDC-associated clinical antiviral therapy is also emerging. This review describes research findings exanining the functional and antiviral properties of in vivo pDC plasticity.

  5. Innate recognition of cell wall β-glucans drives invariant Natural Killer T (iNKT) cell responses against fungi

    Science.gov (United States)

    Cohen, Nadia R.; Tatituri, Raju V.V.; Rivera, Amariliz; Watts, Gerald F.M.; Kim, Edy Y.; Chiba, Asako; Fuchs, Beth B.; Mylonakis, Eleftherios; Besra, Gurdyal S.; Levitz, Stuart M.; Brigl, Manfred; Brenner, Michael B.

    2016-01-01

    SUMMARY iNKT cells are innate T lymphocytes recognizing endogenous and foreign lipid antigens presented in the MHC-like molecule CD1d. The semi-invariant iNKT cell TCR can detect certain bacterial and parasitic lipids, and drive iNKT cell responses. How iNKT cells respond to fungi, however, is unknown. We found that CD1d-deficient mice, which lack iNKT cells, poorly control infection with the fungal pathogen Aspergillus fumigatus. Furthermore, A. fumigatus rapidly activates iNKT cells in vivo and in vitro in the presence of APCs. Surprisingly, despite a requirement for CD1d recognition, the anti-fungal iNKT cell response does not require fungal lipids. Instead, Dectin-1 and MyD88-mediated responses to β-1,3 glucans, major fungal cell-wall polysaccharides, trigger IL-12 production by APCs that drives self-reactive iNKT cells to secrete IFN-γ. Innate recognition of β-1,3 glucans also drives iNKT cell responses against Candida, Histoplasma and Alternaria, suggesting that this mechanism may broadly define the basis for anti-fungal iNKT cell responses. PMID:22100160

  6. Phagocytic and signaling innate immune receptors: are they dysregulated in cystic fibrosis in the fight against Pseudomonas aeruginosa?

    Science.gov (United States)

    Sallenave, Jean-Michel

    2014-07-01

    Cystic fibrosis (CF) is a genetic disease that affects mainly the lung and the digestive system, causing progressive disability and organ failure. The most prevalent CFTR mutation dF508 (which constitutes 70% of all mutations) results in an incorrect targeting of the CFTR molecule to the membrane. It is now a well-accepted concept that mucosal innate immune responses are dysregulated in cystic fibrosis through a cycle of infectious and inflammatory episodes. However, although much work has focused on the late consequences of chronic lung inflammation in CF, very little is known on the early events leading to infection and colonization, such as that of Pseudomonas aeruginosa (P.a). We review here the involvement of a range of innate phagocytic/signaling receptors in the control of this pathogen (mannose receptor, complement receptor-3, Toll-like receptors, etc.) and evaluate the possibility that the activity of some of these receptors may be dysregulated in cystic fibrosis, potentially explaining the florid infections encountered in this disease. PMID:24508137

  7. Circulating levels of the innate and humoral immune regulators CD14 and CD23 are associated with adult glioma.

    Science.gov (United States)

    Zhou, Mi; Wiemels, Joseph L; Bracci, Paige M; Wrensch, Margaret R; McCoy, Lucie S; Rice, Terri; Sison, Jennette D; Patoka, Joseph S; Wiencke, John K

    2010-10-01

    Allergy history has been consistently inversely associated with glioma risk. Two serologic markers, soluble CD23 (sCD23) and soluble CD14 (sCD14), are part of the innate and adaptive humoral immune systems and modulate allergic responses in opposite directions, with sCD23 enhancing and sCD14 blunting inflammatory responses. We measured sCD23 and sCD14 in serum from blood that was drawn at a single time point from 1,079 glioma patients postdiagnosis and 736 healthy controls. Glioma was strongly associated with high sCD14 [highest versus lowest quartile odds ratio (OR), 3.94; 95% confidence interval (95% CI), 2.98-5.21] and low sCD23 (lowest versus highest quartile OR, 2.5; 95% CI, 1.89-3.23). Results were consistent across glioma histologic types and grades, but were strongest for glioblastoma. Whereas temozolomide treatment was not associated with either sCD14 or sCD23 levels among cases, those taking dexamethasone had somewhat lower sCD23 levels than those not taking dexamethasone. However, sCD23 was associated with case status regardless of dexamethasone treatment. These results augment the long-observed association between allergies and glioma and support a role for the innate and adaptive humoral functions of the immune system, in particular immunoregulatory proteins, in gliomagenesis. PMID:20719886

  8. The timing of IFNβ production affects early innate responses to Listeria monocytogenes and determines the overall outcome of lethal infection.

    Directory of Open Access Journals (Sweden)

    Francesca Pontiroli

    Full Text Available Dendritic cells (DCs and natural killer (NK cells are essential components of the innate immunity and play a crucial role in the first phase of host defense against infections and tumors. Listeria monocytogenes (Lm is an intracellular pathogen that colonizes the cytosol of eukaryotic cells. Recent findings have shown Lm specifically in splenic CD8a(+ DCs shortly after intravenous infection. We examined gene expression profiles of mouse DCs exposed to Lm to elucidate the molecular mechanisms underlying DCs interaction with Lm. Using a functional genomics approach, we found that Lm infection induced a cluster of late response genes including type I IFNs and interferon responsive genes (IRGs in DCs. Type I INFs were produced at the maximal level only at 24 h post infection indicating that the regulation of IFNs in the context of Lm infection is delayed compared to the rapid response observed with viral pathogens. We showed that during Lm infection, IFNγ production and cytotoxic activity were severely impaired in NK cells compared to E. coli infection. These defects were restored by providing an exogenous source of IFNβ during the initial phase of bacterial challenge. Moreover, when treated with IFNβ during early infection, NK cells were able to reduce bacterial titer in the spleen and significantly improve survival of infected mice. These findings show that the timing of IFNβ production is fundamental to the efficient control of the bacterium during the early innate phase of Lm infection.

  9. Trade-offs between acquired and innate immune defenses in humans

    Science.gov (United States)

    McDade, Thomas W.; Georgiev, Alexander V.; Kuzawa, Christopher W.

    2016-01-01

    Immune defenses provide resistance against infectious disease that is critical to survival. But immune defenses are costly, and limited resources allocated to immunity are not available for other physiological or developmental processes. We propose a framework for explaining variation in patterns of investment in two important subsystems of anti-pathogen defense: innate (non-specific) and acquired (specific) immunity. The developmental costs of acquired immunity are high, but the costs of maintenance and activation are relatively low. Innate immunity imposes lower upfront developmental costs, but higher operating costs. Innate defenses are mobilized quickly and are effective against novel pathogens. Acquired responses are less effective against novel exposures, but more effective against secondary exposures due to immunological memory. Based on their distinct profiles of costs and effectiveness, we propose that the balance of investment in innate versus acquired immunity is variable, and that this balance is optimized in response to local ecological conditions early in development. Nutritional abundance, high pathogen exposure and low signals of extrinsic mortality risk during sensitive periods of immune development should all favor relatively higher levels of investment in acquired immunity. Undernutrition, low pathogen exposure, and high mortality risk should favor innate immune defenses. The hypothesis provides a framework for organizing prior empirical research on the impact of developmental environments on innate and acquired immunity, and suggests promising directions for future research in human ecological immunology. PMID:26739325

  10. The Role of TOX in the Development of Innate Lymphoid Cells

    Directory of Open Access Journals (Sweden)

    Corey R. Seehus

    2015-01-01

    Full Text Available TOX, an evolutionarily conserved member of the HMG-box family of proteins, is essential for the development of various cells of both the innate and adaptive immune system. TOX is required for the development of CD4+ T lineage cells in the thymus, including natural killer T and T regulatory cells, as well as development of natural killer cells and fetal lymphoid tissue inducer cells, the latter required for lymph node organogenesis. Recently, we have identified a broader role for TOX in the innate immune system, demonstrating that this nuclear protein is required for generation of bone marrow progenitors that have potential to give rise to all innate lymphoid cells. Innate lymphoid cells, classified according to transcription factor expression and cytokine secretion profiles, derive from common lymphoid progenitors in the bone marrow and require Notch signals for their development. We discuss here the role of TOX in specifying CLP toward an innate lymphoid cell fate and hypothesize a possible role for TOX in regulating Notch gene targets during innate lymphoid cell development.

  11. Trade-offs between acquired and innate immune defenses in humans.

    Science.gov (United States)

    McDade, Thomas W; Georgiev, Alexander V; Kuzawa, Christopher W

    2016-01-01

    Immune defenses provide resistance against infectious disease that is critical to survival. But immune defenses are costly, and limited resources allocated to immunity are not available for other physiological or developmental processes. We propose a framework for explaining variation in patterns of investment in two important subsystems of anti-pathogen defense: innate (non-specific) and acquired (specific) immunity. The developmental costs of acquired immunity are high, but the costs of maintenance and activation are relatively low. Innate immunity imposes lower upfront developmental costs, but higher operating costs. Innate defenses are mobilized quickly and are effective against novel pathogens. Acquired responses are less effective against novel exposures, but more effective against secondary exposures due to immunological memory. Based on their distinct profiles of costs and effectiveness, we propose that the balance of investment in innate versus acquired immunity is variable, and that this balance is optimized in response to local ecological conditions early in development. Nutritional abundance, high pathogen exposure and low signals of extrinsic mortality risk during sensitive periods of immune development should all favor relatively higher levels of investment in acquired immunity. Undernutrition, low pathogen exposure, and high mortality risk should favor innate immune defenses. The hypothesis provides a framework for organizing prior empirical research on the impact of developmental environments on innate and acquired immunity, and suggests promising directions for future research in human ecological immunology. PMID:26739325

  12. Functional Differences Between Human NKp44— and NKp44+ RORC+ Innate Lymphoid Cells

    Directory of Open Access Journals (Sweden)

    Kerim eHoorweg

    2012-04-01

    Full Text Available Human RORC+ lymphoid tissue inducer cells are part of a rapidly expanding family of innate lymphoid cells (ILC that participate in innate and adaptive immune responses as well as in lymphoid tissue (re modeling. The assessment of a potential role for innate lymphocyte-derived cytokines in human homeostasis and disease is hampered by a poor characterization of RORC+ innate cell subsets and a lack of knowledge on the distribution of these cells in adults. Here we show that functionally distinct subsets of human RORC+ innate lymphoid cells differentially produce IL-17a or IL-22. Both subsets have an activated phenotype and can be distinguished based on the presence or absence of the natural cytotoxicity receptor NKp44. NKp44+ IL-22 producing cells are present in tonsils while NKp44— IL-17a producing cells are present in fetal developing lymph nodes. Development of human intestinal NKp44+ ILC is a programmed event that is independent of bacterial colonization and these cells colonize the fetal intestine during the second trimester. NKp44— ILC remain present throughout adulthood in peripheral non-inflamed lymph nodes as resting, non-cytokine producing cells. However, upon stimulation lymph node ILC have the capacity to swiftly initiate cytokine transcription indicating that secondary human lymphoid organs function as a reservoir for innate lymphoid cells capable of participating in inflammatory responses.

  13. Role of innate immune system in systemic sclerosis.

    Science.gov (United States)

    Fullard, Nicola; O'Reilly, Steven

    2015-09-01

    Recognition of microbial or viral compounds is crucial to elicit an immune response and pattern recognition receptors (PRRs) form the first line of defence. An important family of PRRs are the Toll-like receptors (TLRs) with numerous evidences indicating their crucial role in identifying microbial or viral compounds. However, the danger theory, where the innate immune system responds to danger signals such as proteins released during damage or necrosis rather than only non-self is gaining ground. Indeed, TLRs are able to recognise endogenous molecules and have been implicated as key players in numerous autoimmune diseases including systemic sclerosis (SSc). TLR2 is known to be upregulated in SSc and has been shown to respond to the endogenous ligand amyloid A resulting in increased IL-6 secretion. TLR4 is now known to respond to a variety of endogenous ligands including fibronectin, containing alternatively spliced exons encoding type III repeat extra domain (EDA). EDA is only expressed upon tissue damage, and elevated levels can be found in SSc patients, idiopathic pulmonary fibrosis and cardiac allograft fibrosis, while deletion of EDA or TLR4 in mice reduces their fibrotic response. Further, stimulation of TLR8 with single-stranded RNA leads to increased expression of TIMP-1. This has been shown to require both IRAK4 and NF-κB with evidence suggesting autoantibodies bind to RNA to stimulate TIMP-1 production in monocytes. Therefore, TLR-mediated signalling provides numerous potential therapeutic targets for development of therapies for the treatment of multi-systemic autoimmune diseases. PMID:26159672

  14. Fish immunity and parasite infections: from innate immunity to immunoprophylactic prospects.

    Science.gov (United States)

    Alvarez-Pellitero, Pilar

    2008-12-15

    The increasing economic importance of fish parasitoses for aquaculture and fisheries has enhanced the interest in the defence mechanisms against these infections. Both innate and adaptive immune responses are mounted by fish to control parasite infections, and several mechanisms described for mammalian parasitoses have also been demonstrated in teleosts. Innate immune initiation relies on the recognition of pathogen-associated molecular patterns (PAMPs) by pathogen recognizing receptors (PRRs). A number of PRRs, mainly Toll-like receptors (TLRs), have been characterized in fish, and some molecules susceptible of functioning as PAMPs are known for some fish parasites. A lectin-carbohydrate interaction has also been described in some host fish-parasite systems, thus probably involving C-type lectin receptors. Inflammatory reactions involving cellular reactions, as phagocytosis and phagocyte activity (including oxidative mechanisms), as well as complement activity, are modulated by many fish parasites, including mainly ciliates, flagellates and myxozoans. Besides complement, a number of humoral immune factors (peroxidases, lysozyme, acute-phase proteins) are also implicated in the response to some parasites. Among adaptive responses, most data deal with the presence of B lymphocytes and the production of specific antibodies (Abs). Although an increasing number of T-cell markers have been described for teleosts, the specific characterization of those involved in their response is far from being obtained. Gene expression studies have demonstrated the involvement of other mediators of the innate and adaptive responses, i.e., cytokines [interleukins (IL-1, IL-8), tumor necrosis factor (TNF), interferon (IFN)], chemokines (CXC, CC), as well as several oxidative enzymes [inducible nitric oxide synthase (iNOS), cyclo-oxygenase 2 (COX-2)]. Information is scarcer for factors more directly linked to adaptive responses, such as major histocompatibility (MH) receptors, T cell

  15. Risk factors that may modify the innate and adaptive immune responses in periodontal diseases.

    Science.gov (United States)

    Knight, Ellie T; Liu, Jenny; Seymour, Gregory J; Faggion, Clovis M; Cullinan, Mary P

    2016-06-01

    Plaque-induced periodontal diseases occur in response to the accumulation of dental plaque. Disease manifestation and progression is determined by the nature of the immune response to the bacterial complexes in plaque. In general, predisposing factors for these periodontal diseases can be defined as those factors which retain or hinder the removal of plaque and, depending upon the nature of the immune response to this plaque, the disease will either remain stable and not progress or it may progress and result in chronic periodontitis. In contrast, modifying factors can be defined as those factors that alter the nature or course of the inflammatory lesion. These factors do not cause the disease but rather modify the chronic inflammatory response, which, in turn, is determined by the nature of the innate and adaptive immune responses and the local cytokine and inflammatory mediator networks. Chronic inflammation is characterized by vascular, cellular and repair responses within the tissues. This paper will focus on how common modifying factors, such as smoking, stress, hormonal changes, diabetes, metabolic syndrome and HIV/AIDS, influence each of these responses, together with treatment implications. As treatment planning in periodontics requires an understanding of the etiology and pathogenesis of the disease, it is important for all modifying factors to be taken into account. For some of these, such as smoking, stress and diabetic control, supportive health behavior advice within the dental setting should be an integral component for overall patient management. PMID:27045429

  16. Flt3 Ligand Regulates the Development of Innate Lymphoid Cells in Fetal and Adult Mice.

    Science.gov (United States)

    Baerenwaldt, Anne; von Burg, Nicole; Kreuzaler, Matthias; Sitte, Selina; Horvath, Edit; Peter, Annick; Voehringer, David; Rolink, Antonius G; Finke, Daniela

    2016-03-15

    Flt3 ligand (Flt3L) promotes survival of lymphoid progenitors in the bone marrow and differentiation of dendritic cells (DCs), but its role in regulating innate lymphoid cells (ILCs) during fetal and adult life is not understood. By using Flt3L knockout and transgenic mice, we demonstrate that Flt3L controls ILC numbers by regulating the pool of α4β7(-) and α4β7(+) lymphoid tissue inducer cell progenitors in the fetal liver and common lymphoid progenitors in the bone marrow. Deletion of flt3l severely reduced the number of fetal liver progenitors and lymphoid tissue inducer cells in the neonatal intestine, resulting in impaired development of Peyer's patches. In the adult intestine, NK cells and group 2 and 3 ILCs were severely reduced. This effect occurred independently of DCs as ILC numbers were normal in mice in which DCs were constitutively deleted. Finally, we could show that administration of Flt3L increased the number of NKp46(-) group 3 ILCs in wild-type and even in Il7(-/-) mice, which generally have reduced numbers of ILCs. Taken together, Flt3L significantly contributes to ILC and Peyer's patches development by targeting lymphoid progenitor cells during fetal and adult life. PMID:26851220

  17. Chitosan nanoparticles: A positive modulator of innate immune responses in plants

    Science.gov (United States)

    Chandra, Swarnendu; Chakraborty, Nilanjan; Dasgupta, Adhiraj; Sarkar, Joy; Panda, Koustubh; Acharya, Krishnendu

    2015-10-01

    The immunomodulatory role of the natural biopolymer, chitosan, has already been demonstrated in plants, whilst its nanoparticles have only been examined for biomedical applications. In our present study, we have investigated the possible ability and mechanism of chitosan nanoparticles (CNP) to induce and augment immune responses in plants. CNP-treatment of leaves produced significant improvement in the plant’s innate immune response through induction of defense enzyme activity, upregulation of defense related genes including that of several antioxidant enzymes as well as elevation of the levels of total phenolics. It is also possible that the extracellular localization of CNP may also play a role in the observed upregulation of defense response in plants. Nitric oxide (NO), an important signaling molecule in plant defense, was also observed to increase following CNP treatment. However, such CNP-mediated immuno-stimulation was significantly mitigated when NO production was inhibited, indicating a possible role of NO in such immune induction. Taken together, our results suggest that CNP may be used as a more effective phytosanitary or disease control agent compared to natural chitosan for sustainable organic cultivation.

  18. An Overview of the Role of Innate Lymphoid Cells in Gut Infections and Inflammation

    Directory of Open Access Journals (Sweden)

    Silvia Sedda

    2014-01-01

    Full Text Available Innate lymphoid cells (ILCs are a group of hematopoietic cells devoid of antigen receptors that have important functions in lymphoid organogenesis, in the defense against extracellular pathogens, and in the maintenance of the epithelial barrier. Three distinct groups of ILCs have been identified on the basis of phenotypic and functional criteria and termed ILCs1, ILCs2, and ILCs3. Specifically, ILCs1 express the transcription factor T-bet and secrete T helper type-1- (Th1- related cytokines, ILCs2 are dependent on the transcription factor RORα and express Gata-3 and the chemokine receptor homologous molecule (CRTH2 and produce Th2-related cytokines, and ILCs3 express the transcription factor RORγt and synthesize interleukin- (IL- 17, IL-22, and, under specific stimuli, interferon-γ. ILCs represent a relatively small population in the gut, but accumulating evidence suggests that these cells could play a decisive role in orchestrating both protective and detrimental immune responses. In this review, we will summarize the present knowledge on the distribution of ILCs in the intestinal mucosa, with particular focus on their role in the control of both infections and effector cytokine response in immune-mediated pathologies.

  19. Transfer of innate resistance and susceptibility to Leishmania donovani infection in mouse radiation bone marrow chimaeras

    Energy Technology Data Exchange (ETDEWEB)

    Crocker, P.R.; Blackwell, J.M.; Bradley, D.J. (London School of Hygiene and Tropical Medicine (UK))

    1984-07-01

    Reciprocal radiation bone marrow chimaeras were made between H-2-compatible strains of mice innately resistant or susceptible to visceral leishmaniasis. In initial experiments, susceptibility but not resistance to Leishmania donovani could be transferred with donor bone marrow into irradiated recipients. In subsequent experiments it was possible to transfer both resistance and susceptibility. This was achieved either by selecting more radiosensitive mouse strains as susceptible recipients, or alternatively by increasing the irradiation dose for the susceptible recipients used in the initial experiments. Using the higher irradiation dose, successful transfer of resistance and susceptibility between congenic mice carrying the Lshsup(r) and Lshsup(s) alleles on the more radioresistant B10 genetic background provided firm evidence that the results obtained in this study were specifically related to expression of the Lsh gene. It is concluded that Lsh gene-controlled resistance and susceptibility to L. donovani is determined by bone marrow-derived cells. The cell type(s) involved is likely to be of the macrophage lineage.

  20. Transfer of innate resistance and susceptibility to Leishmania donovani infection in mouse radiation bone marrow chimaeras

    International Nuclear Information System (INIS)

    Reciprocal radiation bone marrow chimaeras mere made between H-2-compatible strains of mice innately resistant or susceptible to visceral leishmaniasis. In initial experiments, susceptibility but not resistance to Leishmania donovani could be transferred with donor bone marrow into irradiated recipients. In subsequent experiments it was possible to transfer both resistance and susceptibility. This was achieved either by selecting more radiosensitive mouse strains as susceptible recipients, or alternatively by increasing the irradiation dose for the susceptible recipients used in the initial experiments. Using the higher irradiation dose, successful transfer of resistance and susceptibility between congenic mice carrying the Lshsup(r) and Lshsup(s) alleles on the more radioresistant B10 genetic background provided firm evidence that the results obtained in this study were specifically related to expression of the Lsh gene. It is concluded that Lsh gene-controlled resistance and susceptibility to L. donovani is determined by bone marrow-derived cells. The cell type(s) involved is likely to be of the macrophage lineage. (author)

  1. Tactics used by HIV-1 to evade host innate, adaptive, and intrinsic immunities

    Institute of Scientific and Technical Information of China (English)

    LU Lu; YU Fei; DU Lan-ying; XU Wei; JIANG Shi-bo

    2013-01-01

    Objective To review the mechanisms by which HIV evades different components of the host immune system.Data sources This review is based on data obtained from published articles from 1991 to 2012.To perform the PubMed literature search,the following key words were input:HIV and immune evasion.Study selection Articles containing information related to HIV immune evasion were selected.Results Although HIV is able to induce vigorous antiviral immune responses,viral replication cannot be fully controlled,and neither pre-existing infected cells nor latent HIV infection can be completely eradicated.Like many other enveloped viruses,HIV can escape recognition by the innate and adaptive immune systems.Recent findings have demonstrated that HIV can also successfully evade host restriction factors,the components of intrinsic immune system,such as APOBEC3G (apolipoprotein B mRNA-editing enzyme,catalytic polypeptide-like 3G),TRIM5α (tripartite motif 5-α),tetherin,and SAMHD1 (SAM-domain HD-domain containing protein).Conclusions HIV immune evasion plays an important role in HIV pathcgenesis.Fully understanding the tactics deployed by HIV to evade various components of the host immune systems will allow for the development of novel strategies aimed toward the prevention and cure of HIV/AIDS.

  2. Behavioral consequences of innate preferences and olfactory learning in hawkmoth-flower interactions.

    Science.gov (United States)

    Riffell, Jeffrey A; Alarcón, Ruben; Abrell, Leif; Davidowitz, Goggy; Bronstein, Judith L; Hildebrand, John G

    2008-03-01

    Spatiotemporal variability in floral resources can have ecological and evolutionary consequences for both plants and the pollinators on which they depend. Seldom, however, can patterns of flower abundance and visitation in the field be linked with the behavioral mechanisms that allow floral visitors to persist when a preferred resource is scarce. To explore these mechanisms better, we examined factors controlling floral preference in the hawkmoth Manduca sexta in the semiarid grassland of Arizona. Here, hawkmoths forage primarily on flowers of the bat-adapted agave, Agave palmeri, but shift to the moth-adapted flowers of their larval host plant, Datura wrightii, when these become abundant. Both plants emit similar concentrations of floral odor, but scent composition, nectar, and flower reflectance are distinct between the two species, and A. palmeri flowers provide six times as much chemical energy as flowers of D. wrightii. Behavioral experiments with both naïve and experienced moths revealed that hawkmoths learn to feed from agave flowers through olfactory conditioning but readily switch to D. wrightii flowers, for which they are the primary pollinator, based on an innate odor preference. Behavioral flexibility and the olfactory contrast between flowers permit the hawkmoths to persist within a dynamic environment, while at the same time to function as the major pollinator of one plant species. PMID:18305169

  3. Biofilm-derived Legionella pneumophila evades the innate immune response in macrophages

    Directory of Open Access Journals (Sweden)

    Arwa eAbu Khweek

    2013-05-01

    Full Text Available Legionella pneumophila, the causative agent of Legionnaire’s disease, replicates in human alveolar macrophages to establish infection. There is no human-to-human transmission and the main source of infection is L. pneumophila biofilms established in air conditioners, water fountains, and hospital equipments. The biofilm structure provides protection to the organism from disinfectants and antibacterial agents. L. pneumophila infection in humans is characterized by a subtle initial immune response, giving time for the organism to establish infection before the patient succumbs to pneumonia. Planktonic L. pneumophila elicits a strong immune response in murine, but not in human macrophages enabling control of the infection. Interactions between planktonic L. pneumophila and murine or human macrophages have been studied for years, yet the interface between biofilm-derived L. pneumophila and macrophages has not been explored. Here, we demonstrate that biofilm-derived L. pneumophila replicates significantly more in murine macrophages than planktonic bacteria. In contrast to planktonic L. pneumophila, biofilm-derived L. pneumophila lacks flagellin expression, do not activate caspase-1 or 7 and trigger less cell death. In addition, while planktonic L. pneumophila is promptly delivered to lysosomes for degradation, most biofilm-derived bacteria were enclosed in a vacuole that did not fuse with lysosomes in murine macrophages. This study advances our understanding of the innate immune response to biofilm-derived L. pneumophila and closely reproduces the natural mode of infection in human.

  4. Biofilm-derived Legionella pneumophila evades the innate immune response in macrophages.

    Science.gov (United States)

    Abu Khweek, Arwa; Fernández Dávila, Natalia S; Caution, Kyle; Akhter, Anwari; Abdulrahman, Basant A; Tazi, Mia; Hassan, Hoda; Novotny, Laura A; Bakaletz, Lauren O; Amer, Amal O

    2013-01-01

    Legionella pneumophila, the causative agent of Legionnaire's disease, replicates in human alveolar macrophages to establish infection. There is no human-to-human transmission and the main source of infection is L. pneumophila biofilms established in air conditioners, water fountains, and hospital equipments. The biofilm structure provides protection to the organism from disinfectants and antibacterial agents. L. pneumophila infection in humans is characterized by a subtle initial immune response, giving time for the organism to establish infection before the patient succumbs to pneumonia. Planktonic L. pneumophila elicits a strong immune response in murine, but not in human macrophages enabling control of the infection. Interactions between planktonic L. pneumophila and murine or human macrophages have been studied for years, yet the interface between biofilm-derived L. pneumophila and macrophages has not been explored. Here, we demonstrate that biofilm-derived L. pneumophila replicates significantly more in murine macrophages than planktonic bacteria. In contrast to planktonic L. pneumophila, biofilm-derived L. pneumophila lacks flagellin expression, do not activate caspase-1 or -7 and trigger less cell death. In addition, while planktonic L. pneumophila is promptly delivered to lysosomes for degradation, most biofilm-derived bacteria were enclosed in a vacuole that did not fuse with lysosomes in murine macrophages. This study advances our understanding of the innate immune response to biofilm-derived L. pneumophila and closely reproduces the natural mode of infection in human. PMID:23750338

  5. Innate immunity and inflammation in ageing: a key for understanding age-related diseases

    Directory of Open Access Journals (Sweden)

    Colonna-Romano Giuseppina

    2005-05-01

    Full Text Available Abstract The process of maintaining life for the individual is a constant struggle to preserve his/her integrity. This can come at a price when immunity is involved, namely systemic inflammation. Inflammation is not per se a negative phenomenon: it is the response of the immune system to the invasion of viruses or bacteria and other pathogens. During evolution the human organism was set to live 40 or 50 years; today, however, the immune system must remain active for much a longer time. This very long activity leads to a chronic inflammation that slowly but inexorably damages one or several organs: this is a typical phenomenon linked to ageing and it is considered the major risk factor for age-related chronic diseases. Alzheimer's disease, atherosclerosis, diabetes and even sarcopenia and cancer, just to mention a few – have an important inflammatory component, though disease progression seems also dependent on the genetic background of individuals. Emerging evidence suggests that pro-inflammatory genotypes are related to unsuccessful ageing, and, reciprocally, controlling inflammatory status may allow a better chance of successful ageing. In other words, age-related diseases are "the price we pay" for a life-long active immune system: this system has also the potential to harm us later, as its fine tuning becomes compromised. Our immune system has evolved to control pathogens, so pro-inflammatory responses are likely to be evolutionarily programmed to resist fatal infections with pathogens aggressively. Thus, inflammatory genotypes are an important and necessary part of the normal host responses to pathogens in early life, but the overproduction of inflammatory molecules might also cause immune-related inflammatory diseases and eventually death later. Therefore, low responder genotypes involved in regulation of innate defence mechanisms, might better control inflammatory responses and age-related disease development, resulting in an increased

  6. Adenovirus Vector-Derived VA-RNA-Mediated Innate Immune Responses

    Directory of Open Access Journals (Sweden)

    Hiroyuki Mizuguchi

    2011-07-01

    Full Text Available The major limitation of the clinical use of replication-incompetent adenovirus (Ad vectors is the interference by innate immune responses, including induction of inflammatory cytokines and interferons (IFN, following in vivo application of Ad vectors. Ad vector-induced production of inflammatory cytokines and IFNs also results in severe organ damage and efficient induction of acquired immune responses against Ad proteins and transgene products. Ad vector-induced innate immune responses are triggered by the recognition of Ad components by pattern recognition receptors (PRRs. In order to reduce the side effects by Ad vector-induced innate immune responses and to develop safer Ad vectors, it is crucial to clarify which PRRs and which Ad components are involved in Ad vector-induced innate immune responses. Our group previously demonstrated that myeloid differentiating factor 88 (MyD88 and toll-like receptor 9 (TLR9 play crucial roles in the Ad vector-induced inflammatory cytokine production in mouse bone marrow-derived dendritic cells. Furthermore, our group recently found that virus associated-RNAs (VA-RNAs, which are about 160 nucleotide-long non-coding small RNAs encoded in the Ad genome, are involved in IFN production through the IFN-β promoter stimulator-1 (IPS-1-mediated signaling pathway following Ad vector transduction. The aim of this review is to highlight the Ad vector-induced innate immune responses following transduction, especially VA-RNA-mediated innate immune responses. Our findings on the mechanism of Ad vector-induced innate immune responses should make an important contribution to the development of safer Ad vectors, such as an Ad vector lacking expression of VA-RNAs.

  7. Innate recognition of pheromone and food odors in moths: a common mechanism in the antennal lobe?

    Directory of Open Access Journals (Sweden)

    Joshua P Martin

    2010-09-01

    Full Text Available The survival of an animal often depends on an innate response to a particular sensory stimulus. For an adult male moth, two categories of odors are innately attractive: pheromone released by conspecific females, and the floral scents of certain, often co-evolved, plants. These odors consist of multiple volatiles in characteristic mixtures. Here, we review evidence that both categories of odors are processed as sensory objects, and we suggest a mechanism in the primary olfactory center, the antennal lobe (AL, that encodes the configuration of these mixtures and may underlie recognition of innately attractive odors. In the pheromone system, mixtures of two or three volatiles elicit upwind flight. Peripheral changes are associated with behavioral changes in speciation, and suggest the existence of a pattern recognition mechanism for pheromone mixtures in the AL. Moths are similarly innately attracted to certain floral scents. Though floral scents consist of multiple volatiles that activate a broad array of receptor neurons, only a smaller subset, numerically comparable to pheromone mixtures, is necessary and sufficient to elicit behavior. Both pheromone and floral scent mixtures that produce attraction to the odor source elicit synchronous action potentials in particular populations of output (projection neurons (PNs in the AL. We propose a model in which the synchronous output of a population of PNs encodes the configuration of an innately attractive mixture, and thus comprises an innate mechanism for releasing odor-tracking behavior. The particular example of olfaction in moths may inform the general question of how sensory objects trigger innate responses.

  8. Innate Immune Signalling Genetics of Pain, Cognitive Dysfunction and Sickness Symptoms in Cancer Pain Patients Treated with Transdermal Fentanyl.

    Directory of Open Access Journals (Sweden)

    Daniel T Barratt

    Full Text Available Common adverse symptoms of cancer and chemotherapy are a major health burden; chief among these is pain, with opioids including transdermal fentanyl the mainstay of treatment. Innate immune activation has been implicated generally in pain, opioid analgesia, cognitive dysfunction, and sickness type symptoms reported by cancer patients. We aimed to determine if genetic polymorphisms in neuroimmune activation pathways alter the serum fentanyl concentration-response relationships for pain control, cognitive dysfunction, and other adverse symptoms, in cancer pain patients. Cancer pain patients (468 receiving transdermal fentanyl were genotyped for 31 single nucleotide polymorphisms in 19 genes: CASP1, BDNF, CRP, LY96, IL6, IL1B, TGFB1, TNF, IL10, IL2, TLR2, TLR4, MYD88, IL6R, OPRM1, ARRB2, COMT, STAT6 and ABCB1. Lasso and backward stepwise generalised linear regression were used to identify non-genetic and genetic predictors, respectively, of pain control (average Brief Pain Inventory < 4, cognitive dysfunction (Mini-Mental State Examination ≤ 23, sickness response and opioid adverse event complaint. Serum fentanyl concentrations did not predict between-patient variability in these outcomes, nor did genetic factors predict pain control, sickness response or opioid adverse event complaint. Carriers of the MYD88 rs6853 variant were half as likely to have cognitive dysfunction (11/111 than wild-type patients (69/325, with a relative risk of 0.45 (95% CI: 0.27 to 0.76 when accounting for major non-genetic predictors (age, Karnofsky functional score. This supports the involvement of innate immune signalling in cognitive dysfunction, and identifies MyD88 signalling pathways as a potential focus for predicting and reducing the burden of cognitive dysfunction in cancer pain patients.

  9. IL-25 simultaneously elicits distinct populations of innate lymphoid cells and multipotent progenitor type 2 (MPPtype2) cells

    OpenAIRE

    Saenz, Steven A.; Siracusa, Mark C.; Monticelli, Laurel A.; Ziegler, Carly G. K.; Kim, Brian S.; Brestoff, Jonathan R.; Peterson, Lance W.; Wherry, E. John; Goldrath, Ananda W; Bhandoola, Avinash; Artis, David

    2013-01-01

    The predominantly epithelial cell–derived cytokines IL-25, IL-33, and thymic stromal lymphopoietin (TSLP) can promote CD4+ Th2 cell–dependent immunity, inflammation, and tissue repair at barrier surfaces through the induction of multiple innate immune cell populations. IL-25 and IL-33 were previously shown to elicit four innate cell populations, named natural helper cells, nuocytes, innate type 2 helper cells, and multipotent progenitor type 2 (MPPtype2) cells, now collectively termed group 2...

  10. SAP-independent and -dependent regulation of innate T cell development involving SLAMF receptors

    Directory of Open Access Journals (Sweden)

    Jaime eDe Calisto

    2014-04-01

    Full Text Available Signaling lymphocytic activation molecule (SLAM-associated protein (SAP plays an essential role in the immune system mediating the function of several members of the SLAM family (SLAMF of receptors, whose expression is essential for T, NK, and B cell responses. Additionally, the expression of SAP in double-positive (DP thymocytes is mandatory for natural killer T (NKT cells and, in mouse, for innate CD8+ T cell development. To date, only two members of the SLAMF of receptors, Slamf1 and Slamf6, have been shown to positively cooperate during NKT cell differentiation in mouse. However, it is less clear whether other members of this family may also participate in the development of these innate T cells. Here, we show that Slamf[1+6]-/- and Slamf[1+5+6]-/- B6 mice have an approximately 70% reduction of NKT cells compared to wild-type (WT B6 mice. Unexpectedly, the proportion of innate CD8+ T cells slightly increased in the Slamf[1+5+6]-/-, but not in the Slamf[1+6]-/- strain, suggesting that Slamf5 may function as a negative regulator of innate CD8+ T cell development. Accordingly, Slamf5-/- B6 mice showed an exclusive expansion of innate CD8+ T cells, but not NKT cells. Interestingly, the SAP-independent Slamf7-/- strain showed an expansion of both splenic innate CD8+ T cells and thymic NKT cells. On the other hand, and similar to what was recently shown in Slamf3-/- BALB/c mice, the proportions of thymic PLZFhi NKT cells and innate CD8+ T cells significatively increased in the SAP-independent Slamf8-/- BALB/c strain. In summary, these results show that NKT and innate CD8+ T cell development can be regulated in a SAP-dependent and -independent fashion by SLAMF receptors, in which Slamf1, Slamf6, and Slamf8 affect development of NKT cells, and that Slamf5, Slamf7, and Slamf8 affect the development of innate CD8+ T cells.

  11. Innate immune system still works at diapause, a physiological state of dormancy in insects

    International Nuclear Information System (INIS)

    Highlights: → Two major types of cells are present in the body fluid isolated from the thoracic region of a diapausing pupa. → Phagocytosis and encapsulation by these cells were observed when latex beads as foreign targets were microinjected into a pupa. → Such behavior by these cells was still observed even when pupae were continuously chilled at 4 oC. → Innate cellular reactions can work in diapausing insects in a dormant state. -- Abstract: Diapause is most often observed in insects and is a physiologically dormant state different from other types of dormancy, such as hibernation. It allows insects to survive in harsh environments or extend longevity. In general, larval, pupal, or adult non-diapausing insects possess an innate immune system preventing the invasion of microorganisms into their bodies; however, it is unclear whether this system works under the dormant condition of diapause. We here report the occurrence of innate cellular reactions during diapause using pupae of a giant silkmoth, Samia cynthia pryeri. Scanning electron microscopic analysis demonstrated the presence of two major types of cells in the body fluid isolated from the thoracic region of a pupa. Phagocytosis and encapsulation, characteristics of innate cellular reactions, by these cells were observed when latex beads as foreign targets were microinjected into the internal portion of a pupa. Such behavior by these cells was still observed even when pupae were continuously chilled at 4 oC. Our results indicate that innate cellular reactions can work in diapausing insects in a dormant state.

  12. Beyond receptors and signaling: epigenetic factors in the regulation of innate immunity

    Science.gov (United States)

    Mehta, Stuti; Jeffrey, Kate L

    2016-01-01

    The interaction of innate immune cells with pathogens leads to changes in gene expression that elicit our body’s first line of defense against infection. Although signaling pathways and transcription factors have a central role, it is becoming increasingly clear that epigenetic factors, in the form of DNA or histone modifications, as well as noncoding RNAs, are critical for generating the necessary cell lineage as well as context-specific gene expression in diverse innate immune cell types. Much of the epigenetic landscape is set during cellular differentiation; however, pathogens and other environmental triggers also induce changes in histone modifications that can either promote tolerance or ‘train’ innate immune cells for a more robust antigen-independent secondary response. Here we review the important contribution of epigenetic factors to the initiation, maintenance and training of innate immune responses. In addition, we explore how pathogens have hijacked these mechanisms for their benefit and the potential of small molecules targeting chromatin machinery as a way to boost or subdue the innate immune response in disease. PMID:25559622

  13. Lactic acid bacteria activating innate immunity improve survival in bacterial infection model of silkworm.

    Science.gov (United States)

    Nishida, Satoshi; Ono, Yasuo; Sekimizu, Kazuhisa

    2016-01-01

    Lactic acid bacteria (LAB) have been thought to be helpful for human heath in the gut as probiotics. It recently was noted that activity of LAB stimulating immune systems is important. Innate immune systems are conserved in mammals and insects. Silkworm has innate immunity in response to microbes. Microbe-associated molecular pattern (ex. peptidoglycan and β-glucan) induces a muscle contraction of silkworm larva. In this study, we established an efficient method to isolate lactic acid bacteria derived from natural products. We selected a highly active LAB to activate the innate immunity in silkworm by using the silkworm muscle contraction assay, as well. The assay revealed that Lactococcus lactis 11/19-B1 was highly active on the stimulation of the innate immunity in silkworm. L. lactis 11/19-B1 solely fermented milk with casamino acid and glucose. This strain would be a starter strain to make yogurt. Compared to commercially available yogurt LAB, L. lactis 11/19-B1 has higher activity on silkworm contraction. Silkworm normally ingested an artificial diet mixed with L. lactis 11/19-B1 or a yogurt fermented with L. lactis 11/19-B1. Interestingly, silkworms that ingested the LAB showed tolerance against the pathogenicity of Pseudomonas aeruginosa. These data suggest that Lactococcus lactis 11/19-B1 would be expected to be useful for making yogurt and probiotics to activate innate immunity. PMID:26971556

  14. Injury to Allografts: innate immune pathways to acute and chronic rejection

    International Nuclear Information System (INIS)

    An emerging body of evidence suggests that innate immunity, as the first line of host defense against invading pathogens or their components [pathogen-associated molecular patterns, (PAMPs)], plays also a critical role in acute and chronic allograft rejection. Injury to the donor organ induces an inflammatory milieu in the allograft, which appears to be the initial key event for activation of the innate immune system. Injury-induced generation of putative endogenous molecular ligand, in terms of damaged/danger-associated molecular patterns (DAMPs) such as heat shock proteins, are recognized by Toll-like receptors (TLRs), a family of pattern recognition receptors on cells of innate immunity. Acute allograft injury (e.g. oxidative stress during donor brain-death condition, post-ischemic reperfusion injury in the recipient) includes DAMPs which may interact with, and activate, innate TLR-bearing dendritic cells (DCs) which, in turn, via direct allo-recognition through donor-derived DCs and indirect allo-recogntion through recipient-derived DCs, initiate the recipient's adaptive alloimmune response leading to acute allograft rejection. Chronic injurious events in the allograft (e.g. hypertension, hyperlipidemia, CMV infection, administration of cell-toxic drugs [calcineurin-inhibitors]) induce the generation of DAMPs, which may interact with and activate innate TLR-bearing vascular cells (endothelial cells, smooth muscle cells) which, in turn, contribute to the development of atherosclerosis of donor organ vessels (alloatherosclerosis), thus promoting chronic allograft rejection. (author)

  15. Role of glial cells in innate immunity and their role in CNS demyelination.

    Science.gov (United States)

    Sriram, Subramaniam

    2011-10-28

    The adaptive and innate arms of the immune system are the two pillars of host defense against environmental pathogens. Multiple sclerosis (MS) is an inflammatory demyelinating disease of the CNS which is considered to be autoimmune and is thought to result from breakdown in the usual checks and balances of the adaptive immune response. The major pathological outcome of the disease is "the MS plaque" a unique feature of CNS demyelination characterized by the destruction of oligodendrocytes with loss of myelin and underlying axons. The MS plaque is not seen in other inflammatory disorders of the CNS. The prevailing opinion suggests that MS is mediated by the activation of an adaptive immune response which targets neural antigens. Currently, the role of an innate immune in the development of the lesions in MS has remained unclear. We explore the potential cellular elements of the innate immune system and in particular glial cells, which are likely candidates in inducing the specific pathological picture that is evident in MS. Activated microglia and the release of molecules which are detrimental to oligodendrocyte have been suggested as mechanisms by which innate immunity causes demyelination in MS. However a microglia/macrophage centric model does not explain the specificity of lesion development in MS. We propose that activation pathways of receptors of the innate immune system present on oligodendrocytes and astrocytes rather than microglia are central to the pathogenesis of demyelination seen in MS. PMID:21907419

  16. Human Respiratory Syncytial Virus: Role of Innate Immunity in Clearance and Disease Progression.

    Science.gov (United States)

    Farrag, Mohamed A; Almajhdi, Fahad N

    2016-01-01

    Human respiratory syncytial virus (HRSV) infections have worldwide records. The virus is responsible for bronchiolitis, pneumonia, and asthma in humans of different age groups. Premature infants, young children, and immunocompromised individuals are prone to severe HRSV infection that may lead to death. Based on worldwide estimations, millions of cases were reported in both developed and developing countries. In fact, HRSV symptoms develop mainly as a result of host immune response. Due to inability to establish long lasting adaptive immunity, HRSV infection is recurrent and hence impairs vaccine development. Once HRSV attached to the airway epithelia, interaction with the host innate immune components starts. HRSV interaction with pulmonary innate defenses is crucial in determining the disease outcome. Infection of alveolar epithelial cells triggers a cascade of events that lead to recruitment and activation of leukocyte populations. HRSV clearance is mediated by a number of innate leukocytes, including macrophages, natural killer cells, eosinophils, dendritic cells, and neutrophils. Regulation of these cells is mediated by cytokines, chemokines, and other immune mediators. Although the innate immune system helps to clear HRSV infection, it participates in disease progression such as bronchiolitis and asthma. Resolving the mechanisms by which HRSV induces pathogenesis, different possible interactions between the virus and immune components, and immune cells interplay are essential for developing new effective vaccines. Therefore, the current review focuses on how the pulmonary innate defenses mediate HRSV clearance and to what extent they participate in disease progression. In addition, immune responses associated with HRSV vaccines will be discussed. PMID:26679242

  17. Immune polarization by hookworms: taking cues from T helper type 2, type 2 innate lymphoid cells and alternatively activated macrophages.

    Science.gov (United States)

    Nair, Meera G; Herbert, De'Broski R

    2016-06-01

    Cellular and molecular investigation of parasitic helminth infections has greatly accelerated the understanding of type 2 immune responses. However, there remains considerable debate regarding the specific leucocytes that kill parasites and whether these mechanisms are distinct from those responsible for tissue repair. Herein, we chronicle discoveries over the past decade highlighting current paradigms in type 2 immunity with a particular emphasis upon how CD4(+) T helper type 2 cells, type 2 innate lymphoid cells and alternatively activated macrophages coordinately control helminth-induced parasitism. Primarily, this review will draw from studies of the murine nematode parasite Nippostrongylus brasiliensis, which bears important similarities to the human hookworms Ancylostoma duodenale and Necator americanus. Given that one or more hookworm species currently infect millions of individuals across the globe, we propose that vaccine and/or pharmaceutical-based cure strategies targeting these affected human populations should incorporate the conceptual advances outlined herein. PMID:26928141

  18. Dietary Consumption of Black Raspberries or Their Anthocyanin Constituents Alters Innate Immune Cell Trafficking in Esophageal Cancer.

    Science.gov (United States)

    Peiffer, Daniel S; Wang, Li-Shu; Zimmerman, Noah P; Ransom, Benjamin W S; Carmella, Steven G; Kuo, Chieh-Ti; Chen, Jo-Hsin; Oshima, Kiyoko; Huang, Yi-Wen; Hecht, Stephen S; Stoner, Gary D

    2016-01-01

    Freeze-dried black raspberries (BRB), their component anthocyanins (AC), and a metabolite of BRB ACs, protocatechuic acid (PCA), inhibit the development of esophageal cancer in rats induced by the carcinogen, N-nitrosomethylbenzylamine (NMBA). All three components reduce inflammation in the esophagus and in plasma. The present study determined the relation of changes in inflammatory markers to infiltration of innate immune cells into NMBA-treated esophagus. Rats were injected with NMBA (0.35 mg/kg) for 5 weeks while on control diet. Following NMBA treatment, rats were fed diets containing 6.1% BRB powder, an AC-rich fraction of BRBs (3.8 μmol/g), or 500 ppm PCA. At weeks 15, 25, and 35, inflammatory biomarker expression in the plasma and esophagus was quantified, and infiltration of immune cells in the esophagus was examined. At all three time points, BRB, AC, and PCA similarly affected cytokine production in the esophagus and plasma of NMBA-treated rats, relative to the NMBA-only control. These included decreased expression of the proinflammatory cytokine IL1β and increased expression of the anti-inflammatory cytokine IL10. Moreover, all three diets also increased the expression of IL12, a cytokine that activates both cytolytic natural killer and CD8(+) T cells. In addition, the three diets also decreased infiltration of both macrophages and neutrophils into the esophagus. Overall, our results suggest that another mechanism by which BRBs, ACs, and PCA inhibit NMBA-induced esophageal tumorigenesis is by altering cytokine expression and innate immune cell trafficking into tumor tissues. PMID:26603620

  19. Innate and Adaptive Immune Response to Pneumonia Virus of Mice in a Resistant and a Susceptible Mouse Strain

    Directory of Open Access Journals (Sweden)

    Ellen R. T. Watkiss

    2013-01-01

    Full Text Available Respiratory syncytial virus (RSV is the leading cause of infant bronchiolitis. The closely related pneumonia virus of mice (PVM causes a similar immune-mediated disease in mice, which allows an analysis of host factors that lead to severe illness. This project was designed to compare the immune responses to lethal and sublethal doses of PVM strain 15 in Balb/c and C57Bl/6 mice. Balb/c mice responded to PVM infection with an earlier and stronger innate response that failed to control viral replication. Production of inflammatory cyto- and chemokines, as well as infiltration of neutrophils and IFN-γ secreting natural killer cells into the lungs, was more predominant in Balb/c mice. In contrast, C57Bl/6 mice were capable of suppressing both viral replication and innate inflammatory responses. After a sublethal infection, PVM-induced IFN-γ production by splenocytes was stronger early during infection and weaker at late time points in C57Bl/6 mice when compared to Balb/c mice. Furthermore, although the IgG levels were similar and the mucosal IgA titres lower, the virus neutralizing antibody titres were higher in C57Bl/6 mice than in Balb/c mice. Overall, the difference in susceptibility of these two strains appeared to be related not to an inherent T helper bias, but to the capacity of the C57Bl/6 mice to control both viral replication and the immune response elicited by PVM.

  20. Morphological and Cellular Features of Innate Immune Reaction in Helicobacter pylori Gastritis: A Brief Review.

    Science.gov (United States)

    Ieni, Antonio; Barresi, Valeria; Rigoli, Luciana; Fedele, Francesco; Tuccari, Giovanni; Caruso, Rosario Alberto

    2016-01-01

    Innate and adaptive immunity are both involved in acute and chronic inflammatory processes. The main cellular players in the innate immune system are macrophages, mast cells, dendritic cells, neutrophils, eosinophils, and natural killer (NK), which offer antigen-independent defense against infection. Helicobacter pylori (H. pylori) infection presents peculiar characteristics in gastric mucosa infrequently occurring in other organs; its gastric colonization determines a causal role in both gastric carcinomas and mucosa-associated lymphoid tissue lymphoma. In contrast, an active role for Epstein-Barr virus (EBV) has been identified only in 9% of gastric carcinomas. The aim of the present review is to discuss the role of cellular morphological effectors in innate immunity during H. pylori infection and gastric carcinogenesis. PMID:26784180

  1. IL-17A in Human Respiratory Diseases: Innate or Adaptive Immunity? Clinical Implications

    Directory of Open Access Journals (Sweden)

    Dominique M. A. Bullens

    2013-01-01

    Full Text Available Since the discovery of IL-17 in 1995 as a T-cell cytokine, inducing IL-6 and IL-8 production by fibroblasts, and the report of a separate T-cell lineage producing IL-17(A, called Th17 cells, in 2005, the role of IL-17 has been studied in several inflammatory diseases. By inducing IL-8 production and subsequent neutrophil attraction towards the site of inflammation, IL-17A can link adaptive and innate immune responses. More specifically, its role in respiratory diseases has intensively been investigated. We here review its role in human respiratory diseases and try to unravel the question whether IL-17A only provides a link between the adaptive and innate respiratory immunity or whether this cytokine might also be locally produced by innate immune cells. We furthermore briefly discuss the possibility to reduce local IL-17A production as a treatment option for respiratory diseases.

  2. Toxin-mediated effects on the innate mucosal defenses: implications for enteric vaccines

    DEFF Research Database (Denmark)

    Glenn, Gregory M; Francis, David H; Danielsen, E Michael

    2009-01-01

    mucosal barrier as a key step in enteric pathogen survival. We review key observations relevant to the roles of LT and cholera toxin in protective immunity and the effects of these toxins on innate mucosal defenses. We suggest either that toxin-mediated fluid secretion mechanically disrupts the mucus...... layer or that toxins interfere with innate mucosal defenses by other means. Such a breach gives pathogens access to the enterocyte, leading to binding and pathogenicity by enterotoxigenic E. coli (ETEC) and other organisms. Given the common exposure to LT(+) ETEC by humans visiting or residing in...... regions of endemicity, barrier disruption should frequently render the gut vulnerable to ETEC and other enteric infections. Conversely, toxin immunity would be expected to block this process by protecting the innate mucosal barrier. Years ago, Peltola et al. (Lancet 338:1285-1289, 1991) observed...

  3. Morphological and Cellular Features of Innate Immune Reaction in Helicobacter pylori Gastritis: A Brief Review

    Directory of Open Access Journals (Sweden)

    Antonio Ieni

    2016-01-01

    Full Text Available Innate and adaptive immunity are both involved in acute and chronic inflammatory processes. The main cellular players in the innate immune system are macrophages, mast cells, dendritic cells, neutrophils, eosinophils, and natural killer (NK, which offer antigen-independent defense against infection. Helicobacter pylori (H. pylori infection presents peculiar characteristics in gastric mucosa infrequently occurring in other organs; its gastric colonization determines a causal role in both gastric carcinomas and mucosa-associated lymphoid tissue lymphoma. In contrast, an active role for Epstein-Barr virus (EBV has been identified only in 9% of gastric carcinomas. The aim of the present review is to discuss the role of cellular morphological effectors in innate immunity during H. pylori infection and gastric carcinogenesis.

  4. Atg5 Is Essential for the Development and Survival of Innate Lymphocytes.

    Science.gov (United States)

    O'Sullivan, Timothy E; Geary, Clair D; Weizman, Orr-El; Geiger, Theresa L; Rapp, Moritz; Dorn, Gerald W; Overholtzer, Michael; Sun, Joseph C

    2016-05-31

    Autophagy is an essential cellular survival mechanism that is required for adaptive lymphocyte development; however, its role in innate lymphoid cell (ILC) development remains unknown. Furthermore, the conditions that promote lymphocyte autophagy during homeostasis are poorly understood. Here, we demonstrate that Atg5, an essential component of the autophagy machinery, is required for the development of mature natural killer (NK) cells and group 1, 2, and 3 innate ILCs. Although inducible ablation of Atg5 was dispensable for the homeostasis of lymphocyte precursors and mature lymphocytes in lymphoreplete mice, we found that autophagy is induced in both adaptive and innate lymphocytes during homeostatic proliferation in lymphopenic hosts to promote their survival by limiting cell-intrinsic apoptosis. Induction of autophagy through metformin treatment following homeostatic proliferation increased lymphocyte numbers through an Atg5-dependent mechanism. These findings highlight the essential role for autophagy in ILC development and lymphocyte survival during lymphopenia. PMID:27210760

  5. Mixing signals: Molecular turn ons and turn offs for innate γδ Τ cells

    Directory of Open Access Journals (Sweden)

    Vasileios eBekiaris

    2014-12-01

    Full Text Available Lymphocytes of the gamma delta (γδ T cell lineage are evolutionary conserved and although they express rearranged antigen-specific receptors a large proportion respond as innate effectors. γδ T cells are poised to combat infection by responding rapidly to cytokine stimuli similar to innate lymphoid cells. This potential to initiate strong inflammatory responses necessitates inhibitory signals are balanced with activation signals. Here, we discuss some of the key mechanisms that regulate the development, activation and inhibition of innate γδ T cells in light of recent evidence that the inhibitory Ig-superfamily member B and T lymphocyte attenuator (BTLA restricts their differentiation and effector function.

  6. Trained immunity: A program of innate immune memory in health and disease.

    Science.gov (United States)

    Netea, Mihai G; Joosten, Leo A B; Latz, Eicke; Mills, Kingston H G; Natoli, Gioacchino; Stunnenberg, Hendrik G; O'Neill, Luke A J; Xavier, Ramnik J

    2016-04-22

    The general view that only adaptive immunity can build immunological memory has recently been challenged. In organisms lacking adaptive immunity, as well as in mammals, the innate immune system can mount resistance to reinfection, a phenomenon termed "trained immunity" or "innate immune memory." Trained immunity is orchestrated by epigenetic reprogramming, broadly defined as sustained changes in gene expression and cell physiology that do not involve permanent genetic changes such as mutations and recombination, which are essential for adaptive immunity. The discovery of trained immunity may open the door for novel vaccine approaches, new therapeutic strategies for the treatment of immune deficiency states, and modulation of exaggerated inflammation in autoinflammatory diseases. PMID:27102489

  7. Circulating innate lymphoid cells are unchanged in response to DAC HYP therapy.

    Science.gov (United States)

    Gillard, Geoffrey O; Saenz, Steven A; Huss, David J; Fontenot, Jason D

    2016-05-15

    Innate lymphoid cells (ILCs) play an important role in immunity, inflammation, and tissue remodeling and their dysregulation is implicated in autoimmune and inflammatory disorders. We analyzed the impact of daclizumab, a humanized monoclonal anti-CD25 antibody, on circulating natural killer (NK) cells and ILCs in a cohort of multiple sclerosis patients. An increase in CD56(bright) NK cells and CD56(hi)CD16(intermediate) transitional NK cells was observed. No significant change in total ILCs or major ILC subpopulations was observed. These results refine our understanding of the impact of daclizumab on innate lymphoid cell populations. PMID:27138097

  8. Role of group 3 innate lymphoid cells during experimental otitis media in a rat model.

    Science.gov (United States)

    Cho, Chang Gun; Gong, Sung Ho; Kim, Hee-Bok; Song, Jae-Jun; Park, Joo Hyun; Lim, Yun-Sung; Park, Seok-Won

    2016-09-01

    The objective of this study was to evaluate the role of group 3 innate lymphoid cells (ILC3) in the middle ear (ME) mucosal response to bacterial infection in a rat model. To confirm the role of ILC3 in bacterially induced otitis media (OM), the serum concentrations of IL-17 and IL-22 were determined by ELISA, and the tissue expression of IL-17 and IL-22 in infected ME mucosa was assessed by immunohistochemical staining. Immunohistochemical staining of specific cell surface markers was also assessed to confirm the origin of the cells expressing IL-17 and IL-22. Twenty Sprague-Dawley rats were used in the surgically-induced animal model of OM. OM was induced by inoculation of non-typeable Haemophilus influenzae into the ME cavity of the rats. The rats were divided into four experimental groups: three infected groups and one control group. Infected groups were subdivided into sets of 5 rats, one for each of the three time points (1, 4 and 7 days post-inoculation). For determination of rat IL-17 and IL-22 levels in infected rats and control rats, infected or control ME mucosa sections were analyzed by immunohistochemistry with specific antibodies directed against IL-17 and IL-22. Immunohistochemical staining for CD3, RORγt, and NKp46 were also conducted on the samples to confirm the origin of cells expressing IL-17 and IL-22. IL-17 and IL-22 serum concentrations were significantly increased in the infected rats compared to control rats. Immunohistochemical staining revealed increased IL-17 and IL-22 expressions in all infected ME mucosae from the first day after inoculation. In addition, the results of tissue staining for the specific surface markers were negative for CD3 and NKp46, but were highly positive for RORγt. IL-17 and IL-22 revealed their association with the bacterially induced proliferative and hyperplastic responses of ME mucosa, which are characteristic features in pathogenesis of OM. Surface marker examination showed that the source cells for IL-17

  9. Innate immunity of surfactant proteins A and D in urinary tract infection with uropathogenic Escherichia coli.

    Science.gov (United States)

    Hu, Fengqi; Ding, Guohua; Zhang, Zhiyong; Gatto, Louis A; Hawgood, Samuel; Poulain, Francis R; Cooney, Robert N; Wang, Guirong

    2016-01-01

    To investigate the effects of surfactant proteins A and D (SP-A and SP-D, respectively) in urinary tract infection (UTI), SP-A and SP-D double knockout (SP-A/D KO) and wild type (WT) C57BL/6 female mice were infected with uropathogenic Escherichia coli by intravesical inoculation. Compared with WT mice SP-A/D KO mice showed increased susceptibility to UTI, as evidenced by higher bacterial CFU, more infiltrating neutrophils and severe pathological changes. Keratinocyte-derived chemokine increased in the kidney of WT mice but not in SP-A/D KO mice 24 h post-infection. Compared with control, the level of IL-17 was elevated in the kidney of infected WT and SP-A/D KO mice and the level of IL-17 was higher in the infected SP-A/D KO mice than in infected WT mice 24 and 48 h post-infection. The basal level of p38 MAPK phosphorylation in SP-A/D KO mice was higher than in WT mice. The phosphorylated p38 level was elevated in the kidney of WT mice post infection but not in SP-A/D KO mice. Furthermore, in vitro growth of uropathogenic E. coli was inhibited by SP-A and SP-D. We conclude that SP-A and SP-D function as mediators of innate immunity by inhibiting bacterial growth and modulating renal inflammation in part by regulating p38 MAPK-related pathway in murine UTI. PMID:26511057

  10. Standardized extract of Tinospora crispa stimulates innate and adaptive immune responses in Balb/c mice.

    Science.gov (United States)

    Ahmad, Waqas; Jantan, Ibrahim; Kumolosasi, Endang; Bukhari, Syed Nasir Abbas

    2016-03-01

    Standardized extract of Tinospora crispa has been shown to exhibit immunostimulatory effects on innate immune responses in Wistar-Kyoto rats by enhancing neutrophil and T cell-mediated immunity. In this study the immunostimulatory effects of T. crispa were further investigated on the cellular immune response by determining its effect on nitric oxide (NO) production ability, peritoneal macrophage phagocytosis and delayed type hypersensitivity (DTH), whereas the humoral immune response was evaluated through the measurement of serum immunoglobulins (IgG and IgM) and serum lysozyme levels. Male Balb/c mice were immunized with 200 μL of 5 × 10(9) sheep red blood cells (sRBCs) per mL on day 0 and orally administered with 50, 100 and 200 mg per kg of ethanol extract of T. crispa for 14 days. Syringin and magnoflorine were qualitatively and quantitatively analyzed in the extract as chemical markers by using a validated reversed-phase high performance liquid chromatography method. T. crispa extract (TCE) considerably improved the peritoneal macrophages' ability to engulf FITC-labeled E. coli in a dose-dependent manner. TCE also dose-dependently promoted NO production in peritoneal macrophages activated by a lipopolysaccharide (LPS) and markedly potentiated the sRBS-induced swelling rate of the mice paw in DTH. The extract significantly enhanced the level of serum immunoglobulins, showing maximum activity at 100 mg kg(-1). Compared to the control groups, the serum lysozyme level and myeloperoxidase (MPO) activity were significantly higher in extract-treated groups. These findings suggest that T. crispa possesses strong immunostimulatory activities and might act as a natural immunomodulator as well as a potential nutraceutical for the modulation of the immune response. PMID:26839149

  11. Controlling

    OpenAIRE

    Lohnická, Jitka

    2009-01-01

    This thesis deals with the description and analysis of controlling methods in one unnamed company, which is the subsidiary of multinational corporation. Controlling, its function, objectives and controlling methods are theoretically defined in the thesis. The practical part of the thesis is focused on methods of planning in the company, its system of calculations, responsibility centres and reporting.

  12. DMPD: Glucocorticoids and the innate immune system: crosstalk with the toll-likereceptor signaling network. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17576036 Glucocorticoids and the innate immune system: crosstalk with the toll-like...07 May 13. (.png) (.svg) (.html) (.csml) Show Glucocorticoids and the innate immune system: crosstalk with t...he toll-likereceptor signaling network. PubmedID 17576036 Title Glucocorticoids a

  13. DMPD: Innate immunity and toll-like receptors: clinical implications of basic scienceresearch. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 15069387 Innate immunity and toll-like receptors: clinical implications of basic sc...te immunity and toll-like receptors: clinical implications of basic scienceresearch. PubmedID 15069387 Title... Innate immunity and toll-like receptors: clinical implications of basic sciencer

  14. Human metapneumovirus M2-2 protein inhibits innate immune response in monocyte-derived dendritic cells.

    Directory of Open Access Journals (Sweden)

    Junping Ren

    Full Text Available Human metapneumovirus (hMPV is a leading cause of lower respiratory infection in young children, the elderly and immunocompromised patients. Repeated hMPV infections occur throughout life. However, immune evasion mechanisms of hMPV infection are largely unknown. Recently, our group has demonstrated that hMPV M2-2 protein, an important virulence factor, contributes to immune evasion in airway epithelial cells by targeting the mitochondrial antiviral-signaling protein (MAVS. Whether M2-2 regulates the innate immunity in human dendritic cells (DC, an important family of immune cells controlling antigen presenting, is currently unknown. We found that human DC infected with a virus lacking M2-2 protein expression (rhMPV-ΔM2-2 produced higher levels of cytokines, chemokines and IFNs, compared to cells infected with wild-type virus (rhMPV-WT, suggesting that M2-2 protein inhibits innate immunity in human DC. In parallel, we found that myeloid differentiation primary response gene 88 (MyD88, an essential adaptor for Toll-like receptors (TLRs, plays a critical role in inducing immune response of human DC, as downregulation of MyD88 by siRNA blocked the induction of immune regulatory molecules by hMPV. Since M2-2 is a cytoplasmic protein, we investigated whether M2-2 interferes with MyD88-mediated antiviral signaling. We found that indeed M2-2 protein associated with MyD88 and inhibited MyD88-dependent gene transcription. In this study, we also identified the domains of M2-2 responsible for its immune inhibitory function in human DC. In summary, our results demonstrate that M2-2 contributes to hMPV immune evasion by inhibiting MyD88-dependent cellular responses in human DC.

  15. Trappin-2/elafin modulate innate immune responses of human endometrial epithelial cells to PolyI:C.

    Directory of Open Access Journals (Sweden)

    Anna G Drannik

    Full Text Available BACKGROUND: Upon viral recognition, innate and adaptive antiviral immune responses are initiated by genital epithelial cells (ECs to eradicate or contain viral infection. Such responses, however, are often accompanied by inflammation that contributes to acquisition and progression of sexually transmitted infections (STIs. Hence, interventions/factors enhancing antiviral protection while reducing inflammation may prove beneficial in controlling the spread of STIs. Serine antiprotease trappin-2 (Tr and its cleaved form, elafin (E, are alarm antimicrobials secreted by multiple cells, including genital epithelia. METHODOLOGY AND PRINCIPAL FINDINGS: We investigated whether and how each Tr and E (Tr/E contribute to antiviral defenses against a synthetic mimic of viral dsRNA, polyinosine-polycytidylic acid (polyI:C and vesicular stomatitis virus. We show that delivery of a replication-deficient adenovector expressing Tr gene (Ad/Tr to human endometrial epithelial cells, HEC-1A, resulted in secretion of functional Tr, whereas both Tr/E were detected in response to polyI:C. Moreover, Tr/E were found to significantly reduce viral replication by either acting directly on virus or through enhancing polyI:C-driven antiviral protection. The latter was associated with reduced levels of pro-inflammatory factors IL-8, IL-6, TNFα, lowered expression of RIG-I, MDA5 and attenuated NF-κB activation. Interestingly, enhanced polyI:C-driven antiviral protection of HEC-Ad/Tr cells was partially mediated through IRF3 activation, but not associated with higher induction of IFNβ, suggesting multiple antiviral mechanisms of Tr/E and the involvement of alternative factors or pathways. CONCLUSIONS AND SIGNIFICANCE: This is the first evidence of both Tr/E altering viral binding/entry, innate recognition and mounting of antiviral and inflammatory responses in genital ECs that could have significant implications for homeostasis of the female genital tract.

  16. Trappin-2/Elafin Modulate Innate Immune Responses of Human Endometrial Epithelial Cells to PolyI∶C

    Science.gov (United States)

    Drannik, Anna G.; Nag, Kakon; Yao, Xiao-Dan; Henrick, Bethany M.; Sallenave, Jean-Michel; Rosenthal, Kenneth L.

    2012-01-01

    Background Upon viral recognition, innate and adaptive antiviral immune responses are initiated by genital epithelial cells (ECs) to eradicate or contain viral infection. Such responses, however, are often accompanied by inflammation that contributes to acquisition and progression of sexually transmitted infections (STIs). Hence, interventions/factors enhancing antiviral protection while reducing inflammation may prove beneficial in controlling the spread of STIs. Serine antiprotease trappin-2 (Tr) and its cleaved form, elafin (E), are alarm antimicrobials secreted by multiple cells, including genital epithelia. Methodology and Principal Findings We investigated whether and how each Tr and E (Tr/E) contribute to antiviral defenses against a synthetic mimic of viral dsRNA, polyinosine-polycytidylic acid (polyI∶C) and vesicular stomatitis virus. We show that delivery of a replication-deficient adenovector expressing Tr gene (Ad/Tr) to human endometrial epithelial cells, HEC-1A, resulted in secretion of functional Tr, whereas both Tr/E were detected in response to polyI∶C. Moreover, Tr/E were found to significantly reduce viral replication by either acting directly on virus or through enhancing polyI∶C-driven antiviral protection. The latter was associated with reduced levels of pro-inflammatory factors IL-8, IL-6, TNFα, lowered expression of RIG-I, MDA5 and attenuated NF-κB activation. Interestingly, enhanced polyI∶C-driven antiviral protection of HEC-Ad/Tr cells was partially mediated through IRF3 activation, but not associated with higher induction of IFNβ, suggesting multiple antiviral mechanisms of Tr/E and the involvement of alternative factors or pathways. Conclusions and Significance This is the first evidence of both Tr/E altering viral binding/entry, innate recognition and mounting of antiviral and inflammatory responses in genital ECs that could have significant implications for homeostasis of the female genital tract. PMID:22545145

  17. The Differential Interaction of Brucella and Ochrobactrum with Innate Immunity Reveals Traits Related to the Evolution of Stealthy Pathogens

    Science.gov (United States)

    Chacón-Díaz, Carlos; Quesada-Lobo, Lucía; Martirosyan, Anna; Guzmán-Verri, Caterina; Iriarte, Maite; Mancek-Keber, Mateja; Jerala, Roman; Gorvel, Jean Pierre; Moriyón, Ignacio; Moreno, Edgardo; Chaves-Olarte, Esteban

    2009-01-01

    Background During evolution, innate immunity has been tuned to recognize pathogen-associated molecular patterns. However, some α-Proteobacteria are stealthy intracellular pathogens not readily detected by this system. Brucella members follow this strategy and are highly virulent, but other Brucellaceae like Ochrobactrum are rhizosphere inhabitants and only opportunistic pathogens. To gain insight into the emergence of the stealthy strategy, we compared these two phylogenetically close but biologically divergent bacteria. Methodology/Principal Findings In contrast to Brucella abortus, Ochrobactrum anthropi did not replicate within professional and non-professional phagocytes and, whereas neutrophils had a limited action on B. abortus, they were essential to control O. anthropi infections. O. anthropi triggered proinflammatory responses markedly lower than Salmonella enterica but higher than B. abortus. In macrophages and dendritic cells, the corresponding lipopolysaccharides reproduced these grades of activation, and binding of O. anthropi lipopolysaccharide to the TLR4 co-receptor MD-2 and NF-κB induction laid between those of B. abortus and enteric bacteria lipopolysaccharides. These differences correlate with reported variations in lipopolysaccharide core sugars, sensitivity to bactericidal peptides and outer membrane permeability. Conclusions/Significance The results suggest that Brucellaceae ancestors carried molecules not readily recognized by innate immunity, so that non-drastic variations led to the emergence of stealthy intracellular parasites. They also suggest that some critical envelope properties, like selective permeability, are profoundly altered upon modification of pathogen-associated molecular patterns, and that this represents a further adaptation to the host. It is proposed that this adaptive trend is relevant in other intracellular α-Proteobacteria like Bartonella, Rickettsia, Anaplasma, Ehrlichia and Wolbachia. PMID:19529776

  18. Should Coaches Believe in Innate Ability? The Importance of Leadership Mindset

    Science.gov (United States)

    Chase, Melissa A.

    2010-01-01

    The purpose of this article is to examine how individuals' personal beliefs about the antecedents of leadership ability influence their leadership behavior and ultimate effectiveness. The relevant literature is reviewed to highlight current thinking in relation to the debate over whether leadership is innate or learned. A leadership mindset that…

  19. Modelling the innate immune response against avian influenza virus in chicken

    NARCIS (Netherlands)

    Hagenaars, T.J.; Fischer, E.A.J.; Jansen, C.A.; Rebel, J.M.J.; Spekreijse, D.; Vervelde, L.; Backer, J.A.; Jong, de M.C.M.; Koets, A.P.

    2016-01-01

    At present there is limited understanding of the host immune response to (low pathogenic) avian influenza virus infections in poultry. Here we develop a mathematical model for the innate immune response to avian influenza virus in chicken lung, describing the dynamics of viral load, interferon-α,

  20. Carp (Cyprinus carpio L.) innate immune factors are present before hatching

    NARCIS (Netherlands)

    Huttenhuis, B.T.; Grou, C.P.O.; Taverne-Thiele, J.J.; Taverne, N.; Rombout, J.H.W.M.

    2006-01-01

    Expression of the innate immune factors, complement factor 3 (C3), ¿2-macroglobulin (¿2M), serum amyloid A (SAA) and a complement factor 1 r/s ¿ mannose binding lectin associated serine protease-like molecule (C1/MASP2), was determined with Real Time Quantitative-PCR in carp (Cyprinus carpio L.) ont

  1. The Activation and Suppression of Plant Innate Immunity by Parasitic Nematodes

    NARCIS (Netherlands)

    Goverse, A.; Smant, G.

    2014-01-01

    Plant-parasitic nematodes engage in prolonged and intimate relationships with their host plants, often involving complex alterations in host cell morphology and function. It is puzzling how nematodes can achieve this, seemingly without activating the innate immune system of their hosts. Secretions r

  2. Nuclear sensing of viral DNA, epigenetic regulation of herpes simplex virus infection, and innate immunity

    Energy Technology Data Exchange (ETDEWEB)

    Knipe, David M., E-mail: david_knipe@hms.harvard.edu

    2015-05-15

    Herpes simplex virus (HSV) undergoes a lytic infection in epithelial cells and a latent infection in neuronal cells, and epigenetic mechanisms play a major role in the differential gene expression under the two conditions. HSV viron DNA is not associated with histones but is rapidly loaded with heterochromatin upon entry into the cell. Viral proteins promote reversal of the epigenetic silencing in epithelial cells while the viral latency-associated transcript promotes additional heterochromatin in neuronal cells. The cellular sensors that initiate the chromatinization of foreign DNA have not been fully defined. IFI16 and cGAS are both essential for innate sensing of HSV DNA, and new evidence shows how they work together to initiate innate signaling. IFI16 also plays a role in the heterochromatinization of HSV DNA, and this review will examine how IFI16 integrates epigenetic regulation and innate sensing of foreign viral DNA to show how these two responses are related. - Highlights: • HSV lytic and latent gene expression is regulated differentially by epigenetic processes. • The sensors of foreign DNA have not been defined fully. • IFI16 and cGAS cooperate to sense viral DNA in HSV-infected cells. • IFI16 plays a role in both innate sensing of HSV DNA and in restricting its expression.

  3. Nuclear sensing of viral DNA, epigenetic regulation of herpes simplex virus infection, and innate immunity

    International Nuclear Information System (INIS)

    Herpes simplex virus (HSV) undergoes a lytic infection in epithelial cells and a latent infection in neuronal cells, and epigenetic mechanisms play a major role in the differential gene expression under the two conditions. HSV viron DNA is not associated with histones but is rapidly loaded with heterochromatin upon entry into the cell. Viral proteins promote reversal of the epigenetic silencing in epithelial cells while the viral latency-associated transcript promotes additional heterochromatin in neuronal cells. The cellular sensors that initiate the chromatinization of foreign DNA have not been fully defined. IFI16 and cGAS are both essential for innate sensing of HSV DNA, and new evidence shows how they work together to initiate innate signaling. IFI16 also plays a role in the heterochromatinization of HSV DNA, and this review will examine how IFI16 integrates epigenetic regulation and innate sensing of foreign viral DNA to show how these two responses are related. - Highlights: • HSV lytic and latent gene expression is regulated differentially by epigenetic processes. • The sensors of foreign DNA have not been defined fully. • IFI16 and cGAS cooperate to sense viral DNA in HSV-infected cells. • IFI16 plays a role in both innate sensing of HSV DNA and in restricting its expression

  4. On the trail of innate immune responses: Plasmacytoid dendritic cells and beyond

    NARCIS (Netherlands)

    M. Balzarolo

    2013-01-01

    Our study sheds new light on pDCs development and function, and might provide new clues for optimizing infection and cancer therapy by harnessing pDC cytotoxicity through TRAIL. Furthermore, this study provides interesting clues to understand the innate immune responses towards bacterial nucleic aci

  5. NK cells and cancer: You can teach innate cells new tricks

    OpenAIRE

    Morvan, MG; Lanier, LL

    2015-01-01

    © 2016 Macmillan Publishers Limited. Natural killer (NK) cells are the prototype innate lymphoid cells endowed with potent cytolytic function that provide host defence against microbial infection and tumours. Here, we review evidence for the role of NK cells in immune surveillance against cancer and highlight new therapeutic approaches for targeting NK cells in the treatment of cancer.

  6. The expanding family of innate lymphoid cells: regulators and effectors of immunity and tissue remodeling

    NARCIS (Netherlands)

    H. Spits; J.P. Di Santo

    2011-01-01

    Research has identified what can be considered a family of innate lymphoid cells (ILCs) that includes not only natural killer (NK) cells and lymphoid tissue-inducer (LTi) cells but also cells that produce interleukin 5 (IL-5), IL-13, IL-17 and/or IL-22. These ILC subsets are developmentally related,

  7. Gata3 drives development of RORγt+ group 3 innate lymphoid cells

    NARCIS (Netherlands)

    N. Serafini (Nicolas); R.G.J. Klein Wolterink (Roel); N. Satoh-Takayama (Naoko); W. Xu (Weiwei); C.A. Vosshenrich (Christian); R.W. Hendriks (Rudi); J.P. di Santo (James)

    2014-01-01

    textabstractGroup 3 innate lymphoid cells (ILC3) include IL-22-producing NKp46+ cells and IL-17A/IL-22-producing CD4+ lymphoid tissue inducerlike cells that express RORγt and are implicated in protective immunity at mucosal surfaces. Whereas the transcription factor Gata3 is essential for T cell and

  8. The Synthesis of of Empiricism and Innatism in Berkeley's Doctrine of Notions

    Czech Academy of Sciences Publication Activity Database

    Hill, James

    2010-01-01

    Roč. 21, č. 21 (2010), s. 3-15. ISSN 1947-3737 R&D Projects: GA ČR(CZ) GAP401/10/1504 Institutional research plan: CEZ:AV0Z90090514 Keywords : empiricism * innatism * notions Subject RIV: AA - Philosophy ; Religion http://people.hsc.edu/berkeleystudies/issues/BS%20No%20021/BS_021_Hill_Article.pdf

  9. Enhanced innate immune responses in a brood parasitic cowbird species: Degranulation and oxidative burst

    Science.gov (United States)

    Design and functionality of the immune system may play a key role in the success of invasive species. We examined the relative effectiveness of functional innate immune defenses in the brown-headed cowbird (Molothrus ater, Icteridae), an invasive avian species that has shown unusual resistance to i...

  10. Toll-like receptor 2 signaling in response to brain injury: an innate bridge to neuroinflammation

    DEFF Research Database (Denmark)

    Babcock, Alicia; Wirenfeldt, Martin; Holm, Thomas;

    2006-01-01

    -mutant mice. Consistent with the fact that responses in knock-out mice had all returned to wild-type levels by 8 d, there was no evidence for effects on neuronal plasticity at 20 d. These results identify a role for TLR2 signaling in the early glial response to brain injury, acting as an innate bridge to...

  11. Adaptive and innate immune reactions regulating mast cell activation: from receptor-mediated signaling to responses

    DEFF Research Database (Denmark)

    Tkaczyk, Christine; Jensen, Bettina M; Iwaki, Shoko; Gilfillan, Alasdair M

    2006-01-01

    In this article, we have described studies that have demonstrated that mast cells can be activated as a consequence of adaptive and innate immune reactions and that these responses can be modified by ligands for other receptors expressed on the surface of mast cells. These various stimuli differe...

  12. Innate immunity is not related to the sex of adult Tree Swallows during the nestling period

    Science.gov (United States)

    Houdek, Bradley J.; Lombardo, Michael P.; Thorpe, Patrick A.; Hahn, D. Caldwell

    2011-01-01

    Evolutionary theory predicts that exposure to more diverse pathogens will result in the evolution of a more robust immune response. We predicted that during the breeding season the innate immune function of female Tree Swallows (Tachycineta bicolor) should be more effective than that of males because (1) the transmission of sexually transmitted microbes during copulation puts females at greater risk because ejaculates move from males to females, (2) females copulate with multiple males, exposing them to the potentially pathogenic microbes in semen, and (3) females spend more time in the nest than do males so may be more exposed to nest microbes and ectoparasites that can be vectors of bacterial and viral pathogens. In addition, elevated testosterone in males may suppress immune function. We tested our prediction during the 2009 breeding season with microbicidal assays in vitro to assess the ability of the innate immune system to kill Escherichia coli. The sexes did not differ in the ability of their whole blood to kill E. coli. We also found no significant relationships between the ability of whole blood to kill E. coli and the reproductive performance or the physical condition of males or females. These results indicate that during the nestling period there are no sexual differences in this component of the innate immune system. In addition, they suggest that there is little association between this component of innate immunity and the reproductive performance and physical condition during the nestling period of adult Tree Swallows.

  13. Role of innate immune cells and their products in lung immunopathology.

    Science.gov (United States)

    Suzuki, Tomoko; Chow, Chung-Wai; Downey, Gregory P

    2008-01-01

    The lung, with its enormous surface area, is literally 'bathed in a sea' of potential toxins that include pathogenic microorganisms, allergens, and pollutants. To preserve homeostasis and protect itself from injury, the lung has evolved intricate defense systems that guard it from these injurious agents. This chapter will focus on the innate component of the immune system that represents the first line of defense against microbial pathogens and pollutants. The innate immune system of the lung is diverse and includes structural cells such as epithelial cells and fibroblasts as well as itinerant leukocytes such as neutrophils, monocytes, and macrophages. Dendritic cells and mast cells, although of hematopoietic origin, are resident in the lung and help sense and orchestrate immune responses in the lung. Cells of the innate immune system secrete various soluble factors that are directly or indirectly microbicidal and/or modulate the inflammatory response. Among these soluble factors, proteinases and anti-proteinases factor prominently and exert both physiological and pathological effects on the function of diverse cell types in the lung. In concert with the adaptive immune system, the innate immune system of the lung is highly effective in combating invading microbial pathogens as evidenced by the rarity with which healthy humans succumb to lung infections. PMID:18272422

  14. Innate and adaptive immune responses to in utero infection with bovine viral diarrhea virus

    Science.gov (United States)

    Infection of pregnant cows with noncytopathic (ncp) BVDV induces rapid innate and adaptive immune responses resulting in clearance of the virus in less than 3 weeks. Seven to 14 days after inoculation of the cow, ncpBVDV crosses the placenta and induces a fetal viremia. Establishment of persistent ...

  15. Brief report: Enrichment of activated group 3 innate lymphoid cells in psoriatic arthritis synovial fluid

    NARCIS (Netherlands)

    Leijten, Emmerik F A; van Kempen, Tessa S.; Boes, Marianne; Michels-van Amelsfort, Jocea M R; Hijnen, Dirkjan; Hartgring, Sarita A Y; van Roon, Joel A G; Wenink, Mark H.; Radstake, Timothy R D J

    2015-01-01

    OBJECTIVE: Innate lymphoid cells (ILCs) are a recently discovered group of cells that are essential to epithelial homeostasis and are implicated in psoriasis pathogenesis, yet they have never been reported in psoriatic arthritis (PsA). METHODS: ILC classes and subsets were characterized in the perip

  16. On the modulation of innate immunity by plant-parasitic cyst nematodes

    NARCIS (Netherlands)

    Postma, W.J.

    2013-01-01

    Plant-parasitic cyst nematodes are major agricultural pests worldwide. These obligate endoparasites invade the roots of host plants where they transform cells near the vascular cylinder into a permanent feeding site. Plants possess a multilayered innate immune system consisting of different types of

  17. Brain innate immunity in the regulation of neuroinflammation: therapeutic strategies by modulating CD200-CD200R interaction involve the cannabinoid system.

    Science.gov (United States)

    Hernangómez, Miriam; Carrillo-Salinas, Francisco J; Mecha, Miriam; Correa, Fernando; Mestre, Leyre; Loría, Frida; Feliú, Ana; Docagne, Fabian; Guaza, Carmen

    2014-01-01

    The central nervous system (CNS) innate immune response includes an arsenal of molecules and receptors expressed by professional phagocytes, glial cells and neurons that is involved in host defence and clearance of toxic and dangerous cell debris. However, any uncontrolled innate immune responses within the CNS are widely recognized as playing a major role in the development of autoimmune disorders and neurodegeneration, with multiple sclerosis (MS) Alzheimer's disease (AD) being primary examples. Hence, it is important to identify the key regulatory mechanisms involved in the control of CNS innate immunity and which could be harnessed to explore novel therapeutic avenues. Neuroimmune regulatory proteins (NIReg) such as CD95L, CD200, CD47, sialic acid, complement regulatory proteins (CD55, CD46, fH, C3a), HMGB1, may control the adverse immune responses in health and diseases. In the absence of these regulators, when neurons die by apoptosis, become infected or damaged, microglia and infiltrating immune cells are free to cause injury as well as an adverse inflammatory response in acute and chronic settings. We will herein provide new emphasis on the role of the pair CD200-CD200R in MS and its experimental models: experimental autoimmune encephalomyelitis (EAE) and Theiler's virus induced demyelinating disease (TMEV-IDD). The interest of the cannabinoid system as inhibitor of inflammation prompt us to introduce our findings about the role of endocannabinoids (eCBs) in promoting CD200-CD200 receptor (CD200R) interaction and the benefits caused in TMEV-IDD. Finally, we also review the current data on CD200-CD200R interaction in AD, as well as, in the aging brain. PMID:24588829

  18. Innate lymphoid cells and natural killer T cells in the gastrointestinal tract immune system

    Directory of Open Access Journals (Sweden)

    Enrique Montalvillo

    2014-05-01

    Full Text Available The gastrointestinal tract is equipped with a highly specialized intrinsic immune system. However, the intestine is exposed to a high antigenic burden that requires a fast, nonspecific response -so-called innate immunity- to maintain homeostasis and protect the body from incoming pathogens. In the last decade multiple studies helped to unravel the particular developmental requirements and specific functions of the cells that play a role in innate immunity. In this review we shall focus on innate lymphoid cells, a newly discovered, heterogeneous set of cells that derive from an Id2-dependent lymphoid progenitor cell population. These cells have been categorized on the basis of the pattern of cytokines that they secrete, and the transcription factors that regulate their development and functions. Innate lymphoid cells play a role in the early response to pathogens, the anatomical contention of the commensal flora, and the maintenance of epithelial integrity. Amongst the various innate lymphoid cells we shall lay emphasis on a subpopulation with several peculiarities, namely that of natural killer T cells, a subset of T lymphocytes that express both T-cell and NK-cell receptors. The most numerous fraction of the NKT population are the so-called invariant NKT or iNKT cells. These iNKT cells have an invariant TCR and recognize the glycolipidic structures presented by the CD1d molecule, a homolog of class-I MHC molecules. Following activation they rapidly acquire cytotoxic activity and secrete both Th1 and Th2 cytokines, including IL-17. While their specific role is not yet established, iNKT cells take part in a great variety of intestinal immune responses ranging from oral tolerance to involvement in a number of gastrointestinal conditions.

  19. Analysis of stop-gain and frameshift variants in human innate immunity genes.

    Directory of Open Access Journals (Sweden)

    Antonio Rausell

    2014-07-01

    Full Text Available Loss-of-function variants in innate immunity genes are associated with Mendelian disorders in the form of primary immunodeficiencies. Recent resequencing projects report that stop-gains and frameshifts are collectively prevalent in humans and could be responsible for some of the inter-individual variability in innate immune response. Current computational approaches evaluating loss-of-function in genes carrying these variants rely on gene-level characteristics such as evolutionary conservation and functional redundancy across the genome. However, innate immunity genes represent a particular case because they are more likely to be under positive selection and duplicated. To create a ranking of severity that would be applicable to innate immunity genes we evaluated 17,764 stop-gain and 13,915 frameshift variants from the NHLBI Exome Sequencing Project and 1,000 Genomes Project. Sequence-based features such as loss of functional domains, isoform-specific truncation and nonsense-mediated decay were found to correlate with variant allele frequency and validated with gene expression data. We integrated these features in a Bayesian classification scheme and benchmarked its use in predicting pathogenic variants against Online Mendelian Inheritance in Man (OMIM disease stop-gains and frameshifts. The classification scheme was applied in the assessment of 335 stop-gains and 236 frameshifts affecting 227 interferon-stimulated genes. The sequence-based score ranks variants in innate immunity genes according to their potential to cause disease, and complements existing gene-based pathogenicity scores. Specifically, the sequence-based score improves measurement of functional gene impairment, discriminates across different variants in a given gene and appears particularly useful for analysis of less conserved genes.

  20. MMP-9 cleaves SP-D and abrogates its innate immune functions in vitro.

    Directory of Open Access Journals (Sweden)

    Preston E Bratcher

    Full Text Available Possession of a properly functioning innate immune system in the lung is vital to prevent infections due to the ongoing exposure of the lung to pathogens. While mechanisms of pulmonary innate immunity have been well studied, our knowledge of how these systems are altered in disease states, leading to increased susceptibility to infections, is limited. One innate immune protein in the lung, the pulmonary collectin SP-D, has been shown to be important in innate immune defense, as well as clearance of allergens and apoptotic cells. MMP-9 is a protease with a wide variety of substrates, and has been found to be dysregulated in a myriad of lung diseases ranging from asthma to cystic fibrosis; in many of these conditions, there are decreased levels of SP-D. Our results indicate that MMP-9 is able to cleave SP-D in vitro and this cleavage leads to loss of its innate immune functions, including its abilities to aggregate bacteria and increase phagocytosis by mouse alveolar macrophages. However, MMP-9-cleaved SP-D was still detected in a solid-phase E. coli LPS-binding assay, while NE-cleaved SP-D was not. In addition, MMP-9 seems to cleave SP-D much more efficiently than NE at physiological levels of calcium. Previous studies have shown that in several diseases, including cystic fibrosis and asthma, patients have increased expression of MMP-9 in the lungs as well as decreased levels of intact SP-D. As patients suffering from many of the diseases in which MMP-9 is over-expressed can be more susceptible to pulmonary infections, it is possible that MMP-9 cleavage of SP-D may contribute to this phenotype.

  1. Obligate brood parasites show more functionally effective innate immune responses: an eco-immunological hypothesis

    Science.gov (United States)

    Hahn, D. Caldwell; Summers, Scott G.; Genovese, Kenneth J.; He, Haiqi; Kogut, Michael H.

    2013-01-01

    Immune adaptations of obligate brood parasites attracted interest when three New World cowbird species (Passeriformes, Icteridae, genus Molothrus) proved unusually resistant to West Nile virus. We have used cowbirds as models to investigate the eco-immunological hypothesis that species in parasite-rich environments characteristically have enhanced immunity as a life history adaptation. As part of an ongoing program to understand the cowbird immune system, in this study we measured degranulation and oxidative burst, two fundamental responses of the innate immune system. Innate immunity provides non-specific, fast-acting defenses against a variety of invading pathogens, and we hypothesized that innate immunity experiences particularly strong selection in cowbirds, because their life history strategy exposes them to diverse novel and unpredictable parasites. We compared the relative effectiveness of degranulation and oxidative burst responses in two cowbird species and one related, non-parasitic species. Both innate immune defenses were significantly more functionally efficient in the two parasitic cowbird species than in the non-parasitic red-winged blackbird (Icteridae, Agelaius phoeniceus). Additionally, both immune defenses were more functionally efficient in the brown-headed cowbird (M. ater), an extreme host-generalist brood parasite, than in the bronzed cowbird (M. aeneus), a moderate host-specialist with lower exposure to other species and their parasites. Thus the relative effectiveness of these two innate immune responses corresponds to the diversity of parasites in the niche of each species and to their relative resistance to WNV. This study is the first use of these two specialized assays in a comparative immunology study of wild avian species.

  2. Innate and adaptive immunity at Mucosal Surfaces of the Female Reproductive Tract: Stratification and Integration of Immune Protection against the Transmission of Sexually Transmitted Infections

    OpenAIRE

    Hickey, DK; Patel, MV; Fahey, JV; Wira, CR

    2011-01-01

    This review examines the multiple levels of pre-existing immunity in the upper and lower female reproductive tract. In addition, we highlight the need for further research of innate and adaptive immune protection of mucosal surfaces in the female reproductive tract. Innate mechanisms include the mucus lining, a tight epithelial barrier and the secretion of antimicrobial peptides and cytokines by epithelial and innate immune cells. Stimulation of the innate immune system also serves to bridge ...

  3. IMPROVING POULTRY INNATE IMMUNITY THROUGH NOVEL IMMUNOLOGICAL AND GENOMICS STRATEGIES

    Science.gov (United States)

    With increasing demand for poultry products including meat and eggs as a major protein source in the American diet, poultry industry is facing new challenges for producing healthy chickens. One of the major challenges is the disease control, specially those infections that are caused by pathogens e...

  4. Autophagy and Retromer Components in Plant Innate Immunity

    DEFF Research Database (Denmark)

    Munch, David

    -hormone salicylic acid. Here, I present data that make it clear that NPR1 does not directly regulate autophagy, but instead control stress responses that indirectly activate autophagy. The observations presented will also clarify why autophagy has been described as being both a pro-death and pro-life pathway under...

  5. An innate immune system-mimicking, real-time biosensing of infectious bacteria.

    Science.gov (United States)

    Seo, Sung-Min; Jeon, Jin-Woo; Kim, Tae-Yong; Paek, Se-Hwan

    2015-09-01

    An animal cell-based biosensor was investigated to monitor bacterial contamination in an unattended manner by mimicking the innate immune response. The cells (RAW 264.7 cell line) were first attached onto the solid surfaces of a 96-well microtiter plate and co-incubated in the culture medium with a sample that might contain bacterial contaminants. As Toll-like receptors were present on the cell membrane surfaces, they acted as a sentinel by binding to pathogen-associated molecular patterns (PAMPs) of any contaminant. Such biological recognition initiates signal transmission along various pathways to produce different proinflammatory mediators, one of which, tumor necrosis factor-α (TNF-α) was measured using an immunosensor. To demonstrate automated bacterium monitoring, a capture antibody specific for TNF-α was immobilized on an optical fiber sensor tip and then used to measure complex formation in a label-free sensor system (e.g., Octet Red). The sensor response time depended significantly on the degree of agitation of the culture medium, controlling the biological recognition and further autocrine/paracrine signaling by cytokines. The response, particularly under non-agitated conditions, was also influenced by the medium volume, revealing a local gradient change of the cytokine concentration and also acidity, caused by bacterial growth near the bottom surfaces. A biosensor system retaining 50 μL medium and not employing agitation could be used for the early detection of bacterial contamination. This novel biosensing model was applied to the real-time monitoring of different bacteria, Shigella sonnei, Staphylococcus aureus, and Listeria monocytogenes. They (<100 CFU mL(-1)) could be detected automatically within the working time. Such analysis was carried out without any manual handling regardless of the bacterial species, suggesting the concept of non-targeted bacterial real-time monitoring. This technique was further applied to real sample testing (e

  6. Organic trace mineral supplementation enhances local and systemic innate immune responses and modulates oxidative stress in broiler chickens.

    Science.gov (United States)

    Echeverry, H; Yitbarek, A; Munyaka, P; Alizadeh, M; Cleaver, A; Camelo-Jaimes, G; Wang, P; O, K; Rodriguez-Lecompte, J C

    2016-03-01

    The effect of organic trace mineral supplementation on performance, intestinal morphology, immune organ weights (bursa of Fabricius and spleen), expression of innate immune response related genes, blood heterophils/lymphocytes ratio, chemical metabolic panel, natural antibodies (IgG), and oxidative stress of broiler chickens was studied. A total of 1,080 day-old male broilers were assigned to 1 of 3 dietary treatments, which included basal diet with Monensin (control), control diet supplemented with bacitracin methylene disalicylate (BMD), and BMD diet supplemented with organic trace minerals (OTM). No difference in feed conversion ratio was observed among treatments; ileum histomorphological analysis showed a lower crypt depth, higher villi height/crypt depth ratio, and lower villi width in the OTM treatment compared to control. Furthermore, OTM treatment resulted in higher uric acid and lower plasma malondehaldehyde (MDA), indicating lower oxidative stress. Gene expression analysis showed that OTM treatment resulted in up-regulations of TLR2 bin the ileum, and TLR2b, TLR4, and IL-12p35 in the bursa of Fabricius, and down-regulation of TLR2b and TLR4 in the cecal tonsils. In the spleen, OTM treatment resulted in up-regulation of IL-10. In conclusion, OTM supplementation to broiler diets may have beneficial effects on intestinal development, immune system status, and survival by improving ileum histomorphological parameters, modulation of Toll-like receptors and anti-inflammatory cytokines, and decreasing level of MDA, which in conjunction could enhance health status. PMID:26740133

  7. DMPD: Toll-like receptors, RIG-I-like RNA helicases and the antiviral innate immuneresponse. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17667934 Toll-like receptors, RIG-I-like RNA helicases and the antiviral innate immuneresponse...g) (.svg) (.html) (.csml) Show Toll-like receptors, RIG-I-like RNA helicases and the antiviral innate immuneresponse...nd the antiviral innate immuneresponse. Authors Thompson AJ, Locarnini SA. Publication Immunol Cell Biol. 20

  8. Dissecting Phaseolus vulgaris Innate Immune System against Colletotrichum lindemuthianum Infection

    OpenAIRE

    Oblessuc, Paula Rodrigues; Borges, Aline; Chowdhury, Bablu; Caldas, Danielle Gregório Gomes; Tsai, Siu Mui; Camargo, Luis Eduardo Aranha; Melotto, Maeli

    2012-01-01

    Background The genus Colletotrichum is one of the most economically important plant pathogens, causing anthracnose on a wide range of crops including common beans (Phaseolus vulgaris L.). Crop yield can be dramatically decreased depending on the plant cultivar used and the environmental conditions. This study aimed to identify potential genetic components of the bean immune system to provide environmentally friendly control measures against this fungus. Methodology and Principal Findings As t...

  9. Control of Dichotomic Innate and Adaptive Immune Responses by Artery Tertiary Lymphoid Organs in Atherosclerosis

    OpenAIRE

    Falk eWeih; Rolf eGräbner; Desheng eHu; Michael eBeer; Andreas Johann Habenicht

    2012-01-01

    Tertiary lymphoid organs (TLOs) emerge in tissues in response to nonresolving inflammation such as chronic infection, graft rejection, and autoimmune disease. We identified artery TLOs (ATLOs) in the adventitia adjacent to atherosclerotic plaques of aged hyperlipidemic ApoE-/- mice. ATLOs are structured into T cell areas harboring conventional dendritic cells (cDCs) and monocyte-derived DCs (mDCs); B cell follicles containing follicular dendritic cells (FDCs) within activated germinal centers...

  10. Maternal retinoids control type 3 innate lymphoid cells and set the offspring immunity

    NARCIS (Netherlands)

    van de Pavert, Serge A; Ferreira, Manuela; Domingues, Rita G; Ribeiro, Hélder; Molenaar, Rosalie; Moreira-Santos, Lara; Almeida, Francisca F; Ibiza, Sales; Barbosa, Inês; Goverse, Gera; Labão-Almeida, Carlos; Godinho-Silva, Cristina; Konijn, Tanja; Schooneman, Dennis; O'Toole, Tom; Mizee, Mark R; Habani, Yasmin; Haak, Esther; Santori, Fabio R; Littman, Dan R; Schulte-Merker, Stefan; Dzierzak, Elaine; Simas, J Pedro; Mebius, Reina E; Veiga-Fernandes, Henrique

    2014-01-01

    The impact of nutritional status during fetal life on the overall health of adults has been recognized; however, dietary effects on the developing immune system are largely unknown. Development of secondary lymphoid organs occurs during embryogenesis and is considered to be developmentally programme

  11. Modulation of Innate Immune Mechanisms to Enhance Leishmania Vaccine-Induced Immunity: Role of Coinhibitory Molecules

    Science.gov (United States)

    Gannavaram, Sreenivas; Bhattacharya, Parna; Ismail, Nevien; Kaul, Amit; Singh, Rakesh; Nakhasi, Hira L.

    2016-01-01

    No licensed human vaccines are currently available against any parasitic disease including leishmaniasis. Several antileishmanial vaccine formulations have been tested in various animal models, including genetically modified live-attenuated parasite vaccines. Experimental infection studies have shown that Leishmania parasites utilize a broad range of strategies to undermine effector properties of host phagocytic cells, i.e., dendritic cells (DCs) and macrophages (MΦ). Furthermore, Leishmania parasites have evolved strategies to actively inhibit TH1 polarizing functions of DCs and to condition the infected MΦ toward anti-inflammatory/alternative/M2 phenotype. The altered phenotype of phagocytic cells is characterized by decreased production of antimicrobial reactive oxygen, nitrogen molecules, and pro-inflammatory cytokines, such as IFN-γ, IL-12, and TNF-α. These early events limit the activation of TH1-effector cells and set the stage for pathogenesis. Furthermore, this early control of innate immunity by the virulent parasites results in substantial alteration in the adaptive immunity characterized by reduced proliferation of CD4+ and CD8+ T cells and TH2-biased immunity that results in production of anti-inflammatory cytokines, such as TGF-β, and IL-10. More recent studies have also documented the induction of coinhibitory ligands, such as CTLA-4, PD-L1, CD200, and Tim-3, that induce exhaustion and/or non-proliferation in antigen-experienced T cells. Most of these studies focus on viral infections in chronic phase, thus limiting the direct application of these results to parasitic infections and much less to parasitic vaccines. However, these studies suggest that vaccine-induced protective immunity can be modulated using strategies that enhance the costimulation that might reduce the threshold necessary for T cell activation and conversely by strategies that reduce or block inhibitory molecules, such as PD-L1 and CD200. In this review, we will focus on the

  12. Aircraft Abnormal Conditions Detection, Identification, and Evaluation Using Innate and Adaptive Immune Systems Interaction

    Science.gov (United States)

    Al Azzawi, Dia

    Abnormal flight conditions play a major role in aircraft accidents frequently causing loss of control. To ensure aircraft operation safety in all situations, intelligent system monitoring and adaptation must rely on accurately detecting the presence of abnormal conditions as soon as they take place, identifying their root cause(s), estimating their nature and severity, and predicting their impact on the flight envelope. Due to the complexity and multidimensionality of the aircraft system under abnormal conditions, these requirements are extremely difficult to satisfy using existing analytical and/or statistical approaches. Moreover, current methodologies have addressed only isolated classes of abnormal conditions and a reduced number of aircraft dynamic parameters within a limited region of the flight envelope. This research effort aims at developing an integrated and comprehensive framework for the aircraft abnormal conditions detection, identification, and evaluation based on the artificial immune systems paradigm, which has the capability to address the complexity and multidimensionality issues related to aircraft systems. Within the proposed framework, a novel algorithm was developed for the abnormal conditions detection problem and extended to the abnormal conditions identification and evaluation. The algorithm and its extensions were inspired from the functionality of the biological dendritic cells (an important part of the innate immune system) and their interaction with the different components of the adaptive immune system. Immunity-based methodologies for re-assessing the flight envelope at post-failure and predicting the impact of the abnormal conditions on the performance and handling qualities are also proposed and investigated in this study. The generality of the approach makes it applicable to any system. Data for artificial immune system development were collected from flight tests of a supersonic research aircraft within a motion-based flight

  13. Sumoylation coordinates the repression of inflammatory and anti-viral gene-expression programs during innate sensing.

    Science.gov (United States)

    Decque, Adrien; Joffre, Olivier; Magalhaes, Joao G; Cossec, Jack-Christophe; Blecher-Gonen, Ronnie; Lapaquette, Pierre; Silvin, Aymeric; Manel, Nicolas; Joubert, Pierre-Emmanuel; Seeler, Jacob-Sebastian; Albert, Matthew L; Amit, Ido; Amigorena, Sebastian; Dejean, Anne

    2016-02-01

    Innate sensing of pathogens initiates inflammatory cytokine responses that need to be tightly controlled. We found here that after engagement of Toll-like receptors (TLRs) in myeloid cells, deficient sumoylation caused increased secretion of transcription factor NF-κB-dependent inflammatory cytokines and a massive type I interferon signature. In mice, diminished sumoylation conferred susceptibility to endotoxin shock and resistance to viral infection. Overproduction of several NF-κB-dependent inflammatory cytokines required expression of the type I interferon receptor, which identified type I interferon as a central sumoylation-controlled hub for inflammation. Mechanistically, the small ubiquitin-like modifier SUMO operated from a distal enhancer of the gene encoding interferon-β (Ifnb1) to silence both basal and stimulus-induced activity of the Ifnb1 promoter. Therefore, sumoylation restrained inflammation by silencing Ifnb1 expression and by strictly suppressing an unanticipated priming by type I interferons of the TLR-induced production of inflammatory cytokines. PMID:26657003

  14. Innate Immunity in multiple sclerosis white matter lesions: expression of natural cytotoxicity triggering receptor 1 (NCR1

    Directory of Open Access Journals (Sweden)

    Durrenberger Pascal F

    2012-01-01

    Full Text Available Abstract Background Pathogenic or regulatory effects of natural killer (NK cells are implicated in many autoimmune diseases, but evidence in multiple sclerosis (MS and its murine models remains equivocal. In an effort to illuminate this, we have here analysed expression of the prototypic NK cell marker, NCR1 (natural cytotoxicity triggering receptor; NKp46; CD335, an activating receptor expressed by virtually all NK cells and therefore considered a pan-marker for NK cells. The only definitive ligand of NCR1 is influenza haemagglutinin, though there are believed to be others. In this study, we investigated whether there were differences in NCR1+ cells in the peripheral blood of MS patients and whether NCR1+ cells are present in white matter lesions. Results We first investigated the expression of NCR1 on peripheral blood mononuclear cells and found no significant difference between healthy controls and MS patients. We then investigated mRNA levels in central nervous system (CNS tissue from MS patients: NCR1 transcripts were increased more than 5 times in active disease lesions. However when we performed immunohistochemical staining of this tissue, few NCR1+ NK cells were identified. Rather, the major part of NCR1 expression was localised to astrocytes, and was considerably more pronounced in MS patients than controls. In order to further validate de novo expression of NCR1 in astrocytes, we used an in vitro staining of the human astrocytoma U251 cell line grown to model whether cell stress could be associated with expression of NCR1. We found up-regulation of NCR1 expression in U251 cells at both the mRNA and protein levels. Conclusions The data presented here show very limited expression of NCR1+ NK cells in MS lesions, the majority of NCR1 expression being accounted for by expression on astrocytes. This is compatible with a role of this cell-type and NCR1 ligand/receptor interactions in the innate immune response in the CNS in MS patients. This

  15. The activation and suppression of plant innate immunity by parasitic nematodes.

    Science.gov (United States)

    Goverse, Aska; Smant, Geert

    2014-01-01

    Plant-parasitic nematodes engage in prolonged and intimate relationships with their host plants, often involving complex alterations in host cell morphology and function. It is puzzling how nematodes can achieve this, seemingly without activating the innate immune system of their hosts. Secretions released by infective juvenile nematodes are thought to be crucial for host invasion, for nematode migration inside plants, and for feeding on host cells. In the past, much of the research focused on the manipulation of developmental pathways in host plants by plant-parasitic nematodes. However, recent findings demonstrate that plant-parasitic nematodes also deliver effectors into the apoplast and cytoplasm of host cells to suppress plant defense responses. In this review, we describe the current insights in the molecular and cellular mechanisms underlying the activation and suppression of host innate immunity by plant-parasitic nematodes along seven critical evolutionary and developmental transitions in plant parasitism. PMID:24906126

  16. TFEB and TFE3 cooperate in the regulation of the innate immune response in activated macrophages.

    Science.gov (United States)

    Pastore, Nunzia; Brady, Owen A; Diab, Heba I; Martina, José A; Sun, Lu; Huynh, Tuong; Lim, Jeong-A; Zare, Hossein; Raben, Nina; Ballabio, Andrea; Puertollano, Rosa

    2016-08-01

    The activation of transcription factors is critical to ensure an effective defense against pathogens. In this study we identify a critical and complementary role of the transcription factors TFEB and TFE3 in innate immune response. By using a combination of chromatin immunoprecipitation, CRISPR-Cas9-mediated genome-editing technology, and in vivo models, we determined that TFEB and TFE3 collaborate with each other in activated macrophages and microglia to promote efficient autophagy induction, increased lysosomal biogenesis, and transcriptional upregulation of numerous proinflammatory cytokines. Furthermore, secretion of key mediators of the inflammatory response (CSF2, IL1B, IL2, and IL27), macrophage differentiation (CSF1), and macrophage infiltration and migration to sites of inflammation (CCL2) was significantly reduced in TFEB and TFE3 deficient cells. These new insights provide us with a deeper understanding of the transcriptional regulation of the innate immune response. PMID:27171064

  17. Innate lymphoid cells as regulators of immunity, inflammation and tissue homeostasis.

    Science.gov (United States)

    Klose, Christoph S N; Artis, David

    2016-06-21

    Research over the last 7 years has led to the formal identification of innate lymphoid cells (ILCs), increased the understanding of their tissue distribution and has established essential functions of ILCs in diverse physiological processes. These include resistance to pathogens, the regulation of autoimmune inflammation, tissue remodeling, cancer and metabolic homeostasis. Notably, many ILC functions appear to be regulated by mechanisms distinct from those of other innate and adaptive immune cells. In this Review, we focus on how group 2 ILC (ILC2) and group 3 ILC (ILC3) responses are regulated and how these cells interact with other immune and non-immune cells to mediate their functions. We highlight experimental evidence from mouse models and patient-based studies that have elucidated the effects of ILCs on the maintenance of tissue homeostasis and the consequences for health and disease. PMID:27328006

  18. NK cells and type 1 innate lymphoid cells: partners in host defense.

    Science.gov (United States)

    Spits, Hergen; Bernink, Jochem H; Lanier, Lewis

    2016-06-21

    Innate lymphoid cells (ILCs) are effectors and regulators of innate immunity and tissue modeling and repair. Researchers have identified subsets of ILCs with differing functional activities, capacities to produce cytokines and transcription factors required for development and function. Natural killer (NK) cells represent the prototypical member of the ILC family. Together with ILC1s, NK cells constitute group 1 ILCs, which are characterized by their capacity to produce interferon-γ and their functional dependence on the transcription factor T-bet. NK cells and ILC1s are developmentally distinct but share so many features that they are difficult to distinguish, particularly under conditions of infection and inflammation. Here we review current knowledge of NK cells and the various ILC1 subsets. PMID:27328005

  19. Innate Immunity Evasion by Enteroviruses: Insights into Virus-Host Interaction

    Directory of Open Access Journals (Sweden)

    Xiaobo Lei

    2016-01-01

    Full Text Available Enterovirus genus includes multiple important human pathogens, such as poliovirus, coxsackievirus, enterovirus (EV A71, EV-D68 and rhinovirus. Infection with EVs can cause numerous clinical conditions including poliomyelitis, meningitis and encephalitis, hand-foot-and-mouth disease, acute flaccid paralysis, diarrhea, myocarditis and respiratory illness. EVs, which are positive-sense single-stranded RNA viruses, trigger activation of the host antiviral innate immune responses through pathogen recognition receptors such as retinoic acid-inducible gene (RIG-I-likeand Toll-like receptors. In turn, EVs have developed sophisticated strategies to evade host antiviral responses. In this review, we discuss the interplay between the host innate immune responses and EV infection, with a primary focus on host immune detection and protection against EV infection and viral strategies to evade these antiviral immune responses.

  20. Neutrophilic dermatoses and autoinflammatory diseases with skin involvement--innate immune disorders.

    Science.gov (United States)

    Navarini, Alexander A; Satoh, Takashi K; French, Lars E

    2016-01-01

    Neutrophilic dermatoses (NDs) such as Sweet's syndrome and pyoderma gangrenosum were first described more than 50 years ago and grouped based on their clinical features combined with the typical, neutrophil-rich cutaneous inflammation. In contrast, the recently identified autoinflammatory diseases (ADs) that are also associated with neutrophil granulocyte infiltration of the skin were first characterized based on their genetic architecture. Though both the older ND and the newer AD encompass distinct conditions, they can be seen as parts of a spectrum of innate inflammation. Both groups of diseases show so many overlapping clinical, pathogenetic, histologic, and genetic features that together they should likely be considered as innate immune disorders. PMID:26620372