WorldWideScience

Sample records for chronic neurodegeneration models

  1. Insights into Mechanisms of Chronic Neurodegeneration

    Directory of Open Access Journals (Sweden)

    Abigail B. Diack

    2016-01-01

    Full Text Available Chronic neurodegenerative diseases such as Alzheimer’s disease (AD, Parkinson’s disease (PD, and prion diseases are characterised by the accumulation of abnormal conformers of a host encoded protein in the central nervous system. The process leading to neurodegeneration is still poorly defined and thus development of early intervention strategies is challenging. Unique amongst these diseases are Transmissible Spongiform Encephalopathies (TSEs or prion diseases, which have the ability to transmit between individuals. The infectious nature of these diseases has permitted in vivo and in vitro modelling of the time course of the disease process in a highly reproducible manner, thus early events can be defined. Recent evidence has demonstrated that the cell-to-cell spread of protein aggregates by a “prion-like mechanism” is common among the protein misfolding diseases. Thus, the TSE models may provide insights into disease mechanisms and testable hypotheses for disease intervention, applicable to a number of these chronic neurodegenerative diseases.

  2. Neurodegeneration severity can be predicted from early microglia alterations monitored in vivo in a mouse model of chronic glaucoma

    Directory of Open Access Journals (Sweden)

    Alejandra Bosco

    2015-05-01

    Full Text Available Microglia serve key homeostatic roles, and respond to neuronal perturbation and decline with a high spatiotemporal resolution. The course of all chronic CNS pathologies is thus paralleled by local microgliosis and microglia activation, which begin at early stages of the disease. However, the possibility of using live monitoring of microglia during early disease progression to predict the severity of neurodegeneration has not been explored. Because the retina allows live tracking of fluorescent microglia in their intact niche, here we investigated their early changes in relation to later optic nerve neurodegeneration. To achieve this, we used the DBA/2J mouse model of inherited glaucoma, which develops progressive retinal ganglion cell degeneration of variable severity during aging, and represents a useful model to study pathogenic mechanisms of retinal ganglion cell decline that are similar to those in human glaucoma. We imaged CX3CR1+/GFP microglial cells in vivo at ages ranging from 1 to 5 months by confocal scanning laser ophthalmoscopy (cSLO and quantified cell density and morphological activation. We detected early microgliosis at the optic nerve head (ONH, where axonopathy first manifests, and could track attenuation of this microgliosis induced by minocycline. We also observed heterogeneous and dynamic patterns of early microglia activation in the retina. When the same animals were aged and analyzed for the severity of optic nerve pathology at 10 months of age, we found a strong correlation with the levels of ONH microgliosis at 3 to 4 months. Our findings indicate that live imaging and monitoring the time course and levels of early retinal microgliosis and microglia activation in glaucoma could serve as indicators of future neurodegeneration severity.

  3. Neuroprotective effects and mechanisms of exercise in a chronic mouse model of Parkinson’s disease with moderate neurodegeneration

    OpenAIRE

    Lau, Yuen-Sum; Patki, Gaurav; Das-Panja, Kaberi; Le, Wei-dong; Ahmad, S. Omar

    2011-01-01

    The protective impact of exercise on neurodegenerative processes has not been confirmed, and the mechanisms underlying the benefit of exercise have not been determined in human Parkinson’s disease or in chronic animal disease models. This research examined the long-term neurological, behavioral, and mechanistic consequences of endurance exercise in experimental chronic parkinsonism. We used a chronic 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced mouse model of Parkinson’s disease with ...

  4. Restorative effect of endurance exercise on behavioral deficits in the chronic mouse model of Parkinson's disease with severe neurodegeneration

    OpenAIRE

    Lau Yuen-Sum; Kurz Max J; Pothakos Konstantinos

    2009-01-01

    Abstract Background Animal models of Parkinson's disease have been widely used for investigating the mechanisms of neurodegenerative process and for discovering alternative strategies for treating the disease. Following 10 injections with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP, 25 mg/kg) and probenecid (250 mg/kg) over 5 weeks in mice, we have established and characterized a chronic mouse model of Parkinson's disease (MPD), which displays severe long-term neurological and patholog...

  5. Restorative effect of endurance exercise on behavioral deficits in the chronic mouse model of Parkinson's disease with severe neurodegeneration

    Directory of Open Access Journals (Sweden)

    Lau Yuen-Sum

    2009-01-01

    Full Text Available Abstract Background Animal models of Parkinson's disease have been widely used for investigating the mechanisms of neurodegenerative process and for discovering alternative strategies for treating the disease. Following 10 injections with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP, 25 mg/kg and probenecid (250 mg/kg over 5 weeks in mice, we have established and characterized a chronic mouse model of Parkinson's disease (MPD, which displays severe long-term neurological and pathological defects resembling that of the human Parkinson's disease in the advanced stage. The behavioral manifestations in this chronic mouse model of Parkinson's syndrome remain uninvestigated. The health benefit of exercise in aging and in neurodegenerative disorders including the Parkinson's disease has been implicated; however, clinical and laboratory studies in this area are limited. In this research with the chronic MPD, we first conducted a series of behavioral tests and then investigated the impact of endurance exercise on the identified Parkinsonian behavioral deficits. Results We report here that the severe chronic MPD mice showed significant deficits in their gait pattern consistency and in learning the cued version of the Morris water maze. Their performances on the challenging beam and walking grid were considerably attenuated suggesting the lack of balance and motor coordination. Furthermore, their spontaneous and amphetamine-stimulated locomotor activities in the open field were significantly suppressed. The behavioral deficits in the chronic MPD lasted for at least 8 weeks after MPTP/probenecid treatment. When the chronic MPD mice were exercise-trained on a motorized treadmill 1 week before, 5 weeks during, and 8–12 weeks after MPTP/probenecid treatment, the behavioral deficits in gait pattern, spontaneous ambulatory movement, and balance performance were reversed; whereas neuronal loss and impairment in cognitive skill, motor coordination, and

  6. ENDURANCE EXERCISE PROMOTES CARDIORESPIRATORY REHABILITATION WITHOUT NEURORESTORATION IN THE CHRONIC MOUSE MODEL OF PARKINSONISM WITH SEVERE NEURODEGENERATION

    OpenAIRE

    Al-Jarrah, Muhammed; Pothakos, Konstantinos; Novikova, Lesya; Smirnova, Irina V; Kurz, Max J.; Stehno-Bittel, Lisa; Lau, Yuen-Sum

    2007-01-01

    Physical rehabilitation with endurance exercise for patients with Parkinson's disease has not been well established, although some clinical and laboratory reports suggest that exercise may produce neuroprotective effect and restore dopaminergic and motor functions. In this study, we used a chronic mouse model of Parkinsonism, which was induced by injecting male C57BL/6 mice with 10 doses of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (25 mg/kg) and probenecid (250 mg/kg) over five weeks. Thi...

  7. Transgenic Drosophila model to study apolipoprotein E4-induced neurodegeneration.

    Science.gov (United States)

    Haddadi, Mohammad; Nongthomba, Upendra; Jahromi, Samaneh Reiszadeh; Ramesh, S R

    2016-03-15

    The ε4 isoform of apolipoprotein E (ApoE4) that is involved in neuron-glial lipid metabolism has been demonstrated as the main genetic risk factor in late-onset of Alzheimer's disease. However, the mechanism underlying ApoE4-mediated neurodegeneration remains unclear. We created a transgenic model of neurodegenerative disorder by expressing ε3 and ε4 isoforms of human ApoE in the Drosophila melanogaster. The genetic models exhibited progressive neurodegeneration, shortened lifespan and memory impairment. Genetic interaction studies between amyloid precursor protein and ApoE in axon pathology of the disease revealed that over expression of hApoE in Appl-expressing neurons of Drosophila brain causes neurodegeneration. Moreover, acute oxidative damage in the hApoE transgenic flies triggered a neuroprotective response of hApoE3 while chronic induction of oxidative damage accelerated the rate of neurodegeneration. This Drosophila model may facilitate analysis of the molecular and cellular events implicated in hApoE4 neurotoxicity.

  8. Neurodegeneration in an Animal Model of Chronic Amyloid-beta Oligomer Infusion Is Counteracted by Antibody Treatment Infused with Osmotic Pumps.

    Science.gov (United States)

    Sajadi, Ahmadali; Provost, Chloé; Pham, Brendon; Brouillette, Jonathan

    2016-01-01

    Decline in hippocampal-dependent explicit memory (memory for facts and events) is one of the earliest clinical symptom of Alzheimer's disease (AD). It is well established that synapse loss and ensuing neurodegeneration are the best predictors for memory impairments in AD. Latest studies have emphasized the neurotoxic role of soluble amyloid-beta oligomers (Aβo) that begin to accumulate in the human brain approximately 10 to 15 yr before the clinical symptoms become apparent. Many reports indicate that soluble Aβo correlate with memory deficits in AD models and humans. The Aβo-induced neurodegeneration observed in neuronal and brain slice cultures has been more challenging to reproduce in many animal models. The model of repeated Aβo infusions shown here overcome this issue and allow addressing two key domains for developing new disease modifying therapies: identify biological markers to diagnose early AD, and determine the molecular mechanisms underpinning Aβo-induced memory deficits at the onset of AD. Since soluble Aβo aggregate relatively fast into insoluble Aβ fibrils that correlate poorly with the clinical state of patients, soluble Aβo are prepared freshly and injected once per day during six days to produce marked cell death in the hippocampus. We used cannula specially design for simultaneous infusions of Aβo and continuous infusion of Aβo antibody (6E10) in the hippocampus using osmotic pumps. This innovative in vivo method can now be used in preclinical studies to validate the efficiency of new AD therapies that might prevent the deposition and neurotoxicity of Aβo in pre-dementia patients. PMID:27585306

  9. Chromosome 13 dementia syndromes as models of neurodegeneration

    DEFF Research Database (Denmark)

    Ghiso, J.; Revesz, T.; Holton, J.;

    2001-01-01

    . These issues argue for the primary importance of the amyloid deposits in the mechanism(s) of neuronal cell loss. We propose FBD and FDD, the chromosome 13 dementia syndromes, as models to study the molecular basis of neurofibrillary degeneration, cell death and amyloid formation in the brain.......Two hereditary conditions, familial British dementia (FBD) and familial Danish dementia (FDD), are associated with amyloid deposition in the central nervous system and neurodegeneration. The two amyloid proteins, ABri and ADan, are degradation products of the same precursor molecule BriPP bearing...

  10. Neurodegeneration after mild and repetitive traumatic brain injury: Chronic traumatic encepalopathy

    Directory of Open Access Journals (Sweden)

    Stanescu Ioana

    2015-09-01

    Full Text Available Repetitive brain trauma is associated with a progressive neurological deterioration, now termed as chronic traumatic encephalopathy (CTE. Although research on the long-term effects of TBI is advancing quickly, the incidence and prevalence of post-traumatic neurodegeneration and CTE are unknown. The incidence and prevalence of chronic traumatic encephalopathy and the genetic risk factors critical to its development are currently under research. CTE can be diagnosed only by post mortem neuropathological examination of the brain. Great efforts are being made to better understand the clinical signs and symptoms of CTE, obtained in most cases retrospectively from families of affected persons.Patients with CTE are described as having behavioral, mood, cognitive and motor impairments, occurring after a long latency from the traumatic events. Recent pathogenetic studies have provided new insights to CTE mechanisms, offering important clues in understanding neurodegenerative process and relations between physical factors and pathologic protein deposition. Further research is needed to better identify the genetic and environmental risk factors for CTE, as well as rehabilitation and treatment strategies.

  11. Chronic glucocorticoids exposure enhances neurodegeneration in the frontal cortex and hippocampus via NLRP-1 inflammasome activation in male mice.

    Science.gov (United States)

    Hu, Wen; Zhang, Yaodong; Wu, Wenning; Yin, Yanyan; Huang, Dake; Wang, Yuchan; Li, Weiping; Li, Weizu

    2016-02-01

    Neuroinflammation plays an important role in the pathogenesis of neurodegenerative diseases, such as Alzheimer's disease (AD) and depression. Chronic glucocorticoids (GCs) exposure has deleterious effects on the structure and function of neurons and is associated with development and progression of AD. However, little is known about the proinflammatory effects of chronic GCs exposure on neurodegeneration in brain. Therefore, the aim of this study was to evaluate the effects of chronic dexamethasone (DEX) treatment (5mg/kg, s.c. for 7, 14, 21 and 28 days) on behavior, neurodegeneration and neuroinflammatory parameters of nucleotide-binding oligomerization domain-like receptor pyrin domain-containing 1 (NLRP-1) inflammasome in male mice. The results showed that DEX treatment for 21 and 28 days significantly reduced the spontaneous motor activity and exploratory behavior of the mice. In addition, these mice showed significant neurodegeneration and a decrease of microtubule-associated protein 2 (MAP2) in the frontal cortex and hippocampus CA3. DEX treatment for 7, 14, 21 and 28 days significantly decreased the mRNA and protein expression of glucocorticoid receptor (GR). Moreover, DEX treatment for 21 and 28 days significantly increased the proteins expression of NLRP-1, Caspase-1, Caspase-5, apoptosis associated speck-like protein (ASC), nuclear factor-κB (NF-κB), p-NF-κB, interleukin-1β (IL-1β), IL-18 and IL-6 in the frontal cortex and hippocampus brain tissue. DEX treatment for 28 days also significantly increased the mRNA expression levels of NLRP-1, Caspase-1, ASC and IL-1β. These results suggest that chronic GCs exposure may increase brain inflammation via NLRP-1 inflammasome activation and induce neurodegeneration.

  12. Aging and Neurodegeneration: A Tangle of Models and Mechanisms

    Science.gov (United States)

    Chakrabarti, Sasanka; Mohanakumar, Kochupurackal P.

    2016-01-01

    The research on aging and age-related diseases, especially the neurodegenerative diseases, is on the fast track. However, the results have so far not been translated to actual benefit for the patients in terms of treatment or diagnosis of age-related degenerative diseases including those of the CNS. As far as the prevention of the cognitive decline during non-pathological aging is concerned, there is nothing much to offer other than calorie restriction and physical exercise. Needless to say, the benefits are not up to our expectations. However, over the years at the experimental level it has been possible to identify several cellular and molecular mechanisms that are intricately associated with aging in general and neurodegenerative diseases in particular. These include oxidative stress and altered redox-signaling, mitochondrial dysfunction, inflammation, proteotoxicity and altered gene expressions. These inter-dependent pathways mediate cellular senescence and often culminate in programmed cell death like apoptosis and autophagy, and in the context of brain these changes are manifested clinically as cognitive decline and pathologically as neurodegeneration. This special issue provides the readers with glimpses of this complex scenario from different angles primarily in the context of brain and also attempts to identify the potential drug targets against neurodegenerative diseases. PMID:27114843

  13. Correlated Inflammatory Responses and Neurodegeneration in Peptide-Injected Animal Models of Alzheimer’s Disease

    OpenAIRE

    McLarnon, James G

    2014-01-01

    Animal models of Alzheimer's disease (AD) which emphasize activation of microglia may have particular utility in correlating proinflammatory activity with neurodegeneration. This paper reviews injection of amyloid- β (A β ) into rat brain as an alternative AD animal model to the use of transgenic animals. In particular, intrahippocampal injection of Aβ 1-42 peptide demonstrates prominent microglial mobilization and activation accompanied by a significant loss of granule cell neurons. Furtherm...

  14. Mitochondrial optic neuropathy: In vivo model of neurodegeneration and neuroprotective strategies

    Directory of Open Access Journals (Sweden)

    Julio C Rojas

    2010-03-01

    Full Text Available Julio C Rojas, Francisco Gonzalez-LimaDepartments of Psychology, Pharmacology and Toxicology, University of Texas at Austin, Austin, TX, USAAbstract: This review summarizes the characteristics of a rodent toxicologic model of optic neuropathy induced by the mitochondrial complex I inhibitor rotenone. This model has been developed to fulfill the demand for a drug-screening tool providing a sound mechanistic context to address the role of mitochondrial dysfunction in the pathogenesis of neurodegenerative disorders. It features biochemical, structural, and functional retinal deficits that resemble those of patients with Leber’s hereditary optic neuropathy, a mitochondrial disease characterized by selective degeneration of retinal ganglion cells, and for which an environmental component is believed to play a major triggering role. The available data support the efficiency, sensitivity, and versatility of the model for providing insights into the mechanisms of neurodegeneration, including mitochondrial dysfunction, oxidative stress and excitotoxicity. Screening work with this model has provided proof-of-principle that interventions targeting the electron transport chain, such as USP methylene blue and near-infrared light therapy, are effective at preventing neurodegeneration induced by mitochondrial dysfunction in vivo. Prospective developments of this model include the use of neuronal reporter genes for in vivo non-invasive assessment of retinal degeneration at different time points, and its combination with genetic approaches to elucidate the synergism of environmental and genetic factors in neurodegeneration.Keywords: animal model, neuroprotection, mitochondrial dysfunction, visual function, oxidative stress, cytochrome oxidase

  15. Pantethine rescues a Drosophila model for pantothenate kinase–associated neurodegeneration

    OpenAIRE

    Rana, Anil; Seinen, Erwin; Siudeja, Katarzyna; Muntendam, Remco; Srinivasan, Balaji; Van der Want, Johannes J.; Hayflick, Susan; Reijngoud, Dirk-Jan; Kayser, Oliver; Sibon, Ody C.M

    2010-01-01

    Pantothenate kinase–associated neurodegeneration (PKAN), a progressive neurodegenerative disorder, is associated with impairment of pantothenate kinase function. Pantothenate kinase is the first enzyme required for de novo synthesis of CoA, an essential metabolic cofactor. The pathophysiology of PKAN is not understood, and there is no cure to halt or reverse the symptoms of this devastating disease. Recently, we and others presented a PKAN Drosophila model, and we demonstrated that impaired f...

  16. The db/db mouse: a useful model for the study of diabetic retinal neurodegeneration.

    Directory of Open Access Journals (Sweden)

    Patricia Bogdanov

    Full Text Available BACKGROUND: To characterize the sequential events that are taking place in retinal neurodegeneration in a murine model of spontaneous type 2 diabetes (db/db mouse. METHODS: C57BLKsJ-db/db mice were used as spontaneous type 2 diabetic animal model, and C57BLKsJ-db/+ mice served as the control group. To assess the chronological sequence of the abnormalities the analysis was performed at different ages (8, 16 and 24 weeks. The retinas were evaluated in terms of morphological and functional abnormalities [electroretinography (ERG]. Histological markers of neurodegeneration (glial activation and apoptosis were evaluated by immunohistochemistry. In addition glutamate levels and glutamate/aspartate transporter (GLAST expression were assessed. Furthermore, to define gene expression changes associated with early diabetic retinopathy a transcriptome analyses was performed at 8 week. Furthermore, an additional interventional study to lower blood glucose levels was performed. RESULTS: Glial activation was higher in diabetic than in non diabetic mice in all the stages (p<0.01. In addition, a progressive loss of ganglion cells and a significant reduction of neuroretinal thickness were also observed in diabetic mice. All these histological hallmarks of neurodegeneration were less pronounced at week 8 than at week 16 and 24. Significant ERG abnormalities were present in diabetic mice at weeks 16 and 24 but not at week 8. Moreover, we observed a progressive accumulation of glutamate in diabetic mice associated with an early downregulation of GLAST. Morphological and ERG abnormalities were abrogated by lowering blood glucose levels. Finally, a dysregulation of several genes related to neurotransmission and oxidative stress such as UCP2 were found at week 8. CONCLUSIONS: Our results suggest that db/db mouse reproduce the features of the neurodegenerative process that occurs in the human diabetic eye. Therefore, it seems an appropriate model for investigating the

  17. Neuroprotective Effects of Citicoline in in Vitro Models of Retinal Neurodegeneration

    Directory of Open Access Journals (Sweden)

    Andrea Matteucci

    2014-04-01

    Full Text Available In recent years, citicoline has been the object of remarkable interest as a possible neuroprotectant. The aim of this study was to investigate if citicoline affected cell survival in primary retinal cultures and if it exerted neuroprotective activity in conditions modeling retinal neurodegeneration. Primary retinal cultures, obtained from rat embryos, were first treated with increasing concentrations of citicoline (up to 1000 µM and analyzed in terms of apoptosis and caspase activation and characterized by immunocytochemistry to identify neuronal and glial cells. Subsequently, excitotoxic concentration of glutamate or High Glucose-containing cell culture medium (HG was administered as well-known conditions modeling neurodegeneration. Glutamate or HG treatments were performed in the presence or not of citicoline. Neuronal degeneration was evaluated in terms of apoptosis and loss of synapses. The results showed that citicoline did not cause any damage to the retinal neuroglial population up to 1000 µM. At the concentration of 100 µM, it was able to counteract neuronal cell damage both in glutamate- and HG-treated retinal cultures by decreasing proapoptotic effects and contrasting synapse loss. These data confirm that citicoline can efficiently exert a neuroprotective activity. In addition, the results suggest that primary retinal cultures, under conditions inducing neurodegeneration, may represent a useful system to investigate citicoline neuroprotective mechanisms.

  18. Ku70 alleviates neurodegeneration in Drosophila models of Huntington's disease.

    Directory of Open Access Journals (Sweden)

    Takuya Tamura

    Full Text Available DNA damage accumulates in genome DNA during the long life of neurons, thus DNA damage repair is indispensable to keep normal functions of neurons. We previously reported that Ku70, a critical molecule for DNA double strand break (DSB repair, is involved in the pathology of Huntington's disease (HD. Mutant huntingtin (Htt impaired Ku70 function via direct interaction, and Ku70 supplementation recovered phenotypes of a mouse HD model. In this study, we generate multiple Drosophila HD models that express mutant huntingtin (Htt in eye or motor neuron by different drivers and show various phenotypes. In such fly models, Ku70 co-expression recovers lifespan, locomotive activity and eye degeneration. In contrast, Ku70 reduction by heterozygous null mutation or siRNA-mediated knock down accelerates lifespan shortening and locomotion disability. These results collectively support that Ku70 is a critical mediator of the HD pathology and a candidate therapeutic target in HD.

  19. Implanted neural electrodes cause chronic, local inflammation that is correlated with local neurodegeneration

    Science.gov (United States)

    McConnell, George C.; Rees, Howard D.; Levey, Allan I.; Gutekunst, Claire-Anne; Gross, Robert E.; Bellamkonda, Ravi V.

    2009-10-01

    Prosthetic devices that are controlled by intracortical electrodes recording one's 'thoughts' are a reality today, and no longer merely in the realm of science fiction. However, widespread clinical use of implanted electrodes is hampered by a lack of reliability in chronic recordings, independent of the type of electrodes used. One major hypothesis has been that astroglial scar electrically impedes the electrodes. However, there is a temporal discrepancy between stabilization of scar's electrical properties and recording failure with recording failure lagging by 1 month. In this study, we test a possible explanation for this discrepancy: the hypothesis that chronic inflammation, due to the persistent presence of the electrode, causes a local neurodegenerative state in the immediate vicinity of the electrode. Through modulation of chronic inflammation via stab wound, electrode geometry and age-matched control, we found that after 16 weeks, animals with an increased level of chronic inflammation were associated with increased neuronal and dendritic, but not axonal, loss. We observed increased neuronal and dendritic loss 16 weeks after implantation compared to 8 weeks after implantation, suggesting that the local neurodegenerative state is progressive. After 16 weeks, we observed axonal pathology in the form of hyperphosphorylation of the protein tau in the immediate vicinity of the microelectrodes (as observed in Alzheimer's disease and other tauopathies). The results of this study suggest that a local, late onset neurodegenerative disease-like state surrounds the chronic electrodes and is a potential cause for chronic recording failure. These results also inform strategies to enhance our capability to attain reliable long-term recordings from implantable electrodes in the CNS.

  20. Investigation of redox status in chronic cerebral hypoperfusion-induced neurodegeneration in rats

    Directory of Open Access Journals (Sweden)

    Anil Kumar Saxena

    2015-06-01

    Full Text Available Aging related reduction in cerebral blood flow (CBF has been linked with neurodegenerative disorders including Alzheimer's disease and dementia. Experimentally, a condition of chronic cerebral hypoperfusion due to reduced CBF can be induced by permanent bilateral occlusion of common carotid arteries (2-vessel occlusion, 2VO in rats. Since oxidative stress, leading to neuronal apoptosis and death, is one of the mechanisms, which is thought to play a significant role in chronic degenerative neurological disorders, the present study was planned to assess the ROS status by measuring the levels of anti-oxidant enzymes that might occur during chronic cerebral hypoperfusion. Antioxidant enzymes namely glutathione peroxidase (GPx, superoxide dismutase (SOD, and catalase were measured in the brain tissue at eight weeks of 2VO induction in rats. Results show significantly elevated levels of GPx, SOD, and catalase enzymes as compared with the control group. It is possible that compensatory rise in antioxidant enzymes occurs in response to increased oxidative stress following ischemic insult.

  1. Correlated Inflammatory Responses and Neurodegeneration in Peptide-Injected Animal Models of Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    James G. McLarnon

    2014-01-01

    Full Text Available Animal models of Alzheimer’s disease (AD which emphasize activation of microglia may have particular utility in correlating proinflammatory activity with neurodegeneration. This paper reviews injection of amyloid-β (Aβ into rat brain as an alternative AD animal model to the use of transgenic animals. In particular, intrahippocampal injection of Aβ1-42 peptide demonstrates prominent microglial mobilization and activation accompanied by a significant loss of granule cell neurons. Furthermore, pharmacological inhibition of inflammatory reactivity is demonstrated by a broad spectrum of drugs with a common endpoint in conferring neuroprotection in peptide-injected animals. Peptide-injection models provide a focus on glial cell responses to direct peptide injection in rat brain and offer advantages in the study of the mechanisms underlying neuroinflammation in AD brain.

  2. Impaired Coenzyme A metabolism affects histone and tubulin acetylation in Drosophila and human cell models of pantothenate kinase associated neurodegeneration

    NARCIS (Netherlands)

    Siudeja, Katarzyna; Srinivasan, Balaji; Xu, Lanjun; Rana, Anil; de Jong, Jannie; Nollen, Ellen A. A.; Jackowski, Suzanne; Sanford, Lynn; Hayflick, Susan; Sibon, Ody C. M.

    2011-01-01

    Pantothenate kinase-associated neurodegeneration (PKAN is a neurodegenerative disease with unresolved pathophysiology. Previously, we observed reduced Coenzyme A levels in a Drosophila model for PKAN. Coenzyme A is required for acetyl-Coenzyme A synthesis and acyl groups from the latter are transfer

  3. TSPO in a murine model of Sandhoff disease: presymptomatic marker of neurodegeneration and disease pathophysiology.

    Science.gov (United States)

    Loth, Meredith K; Choi, Judy; McGlothan, Jennifer L; Pletnikov, Mikhail V; Pomper, Martin G; Guilarte, Tomás R

    2016-01-01

    Translocator protein (18 kDa), formerly known as the peripheral benzodiazepine receptor (PBR), has been extensively used as a biomarker of active brain disease and neuroinflammation. TSPO expression increases dramatically in glial cells, particularly in microglia and astrocytes, as a result of brain injury, and this phenomenon is a component of the hallmark response of the brain to injury. In this study, we used a mouse model of Sandhoff disease (SD) to assess the longitudinal expression of TSPO as a function of disease progression and its relationship to behavioral and neuropathological endpoints. Focusing on the presymptomatic period of the disease, we used ex vivo [(3)H]DPA-713 quantitative autoradiography and in vivo [(125)I]IodoDPA-713 small animal SPECT imaging to show that brain TSPO levels markedly increase prior to physical and behavioral manifestation of disease. We further show that TSPO upregulation coincides with early neuronal GM2 ganglioside aggregation and is associated with ongoing neurodegeneration and activation of both microglia and astrocytes. In brain regions with increased TSPO levels, there is a differential pattern of glial cell activation with astrocytes being activated earlier than microglia during the progression of disease. Immunofluorescent confocal imaging confirmed that TSPO colocalizes with both microglia and astrocyte markers, but the glial source of the TSPO response differs by brain region and age in SD mice. Notably, TSPO colocalization with the astrocyte marker GFAP was greater than with the microglia marker, Mac-1. Taken together, our findings have significant implications for understanding TSPO glial cell biology and for detecting neurodegeneration prior to clinical expression of disease.

  4. Neurodegeneration and motor dysfunction in a conditional model of Parkinson's disease.

    Science.gov (United States)

    Nuber, Silke; Petrasch-Parwez, Elisabeth; Winner, Beate; Winkler, Jürgen; von Hörsten, Stephan; Schmidt, Thorsten; Boy, Jana; Kuhn, Melanie; Nguyen, Huu P; Teismann, Peter; Schulz, Jörg B; Neumann, Manuela; Pichler, Bernd J; Reischl, Gerald; Holzmann, Carsten; Schmitt, Ina; Bornemann, Antje; Kuhn, Wilfried; Zimmermann, Frank; Servadio, Antonio; Riess, Olaf

    2008-03-01

    Alpha-synuclein (alpha-syn) has been implicated in the pathogenesis of many neurodegenerative disorders, including Parkinson's disease. These disorders are characterized by various neurological and psychiatric symptoms based on progressive neuropathological alterations. Whether the neurodegenerative process might be halted or even reversed is presently unknown. Therefore, conditional mouse models are powerful tools to analyze the relationship between transgene expression and progression of the disease. To explore whether alpha-syn solely originates and further incites these alterations, we generated conditional mouse models by using the tet-regulatable system. Mice expressing high levels of human wild-type alpha-syn in midbrain and forebrain regions developed nigral and hippocampal neuropathology, including reduced neurogenesis and neurodegeneration in absence of fibrillary inclusions, leading to cognitive impairment and progressive motor decline. Turning off transgene expression in symptomatic mice halted progression but did not reverse the symptoms. Thus, our data suggest that approaches targeting alpha-syn-induced pathological pathways might be of benefit rather in early disease stages. Furthermore, alpha-syn-associated cytotoxicity is independent of filamentous inclusion body formation in our conditional mouse model. PMID:18322092

  5. Pantethine rescues a Drosophila model for pantothenate kinase-associated neurodegeneration.

    Science.gov (United States)

    Rana, Anil; Seinen, Erwin; Siudeja, Katarzyna; Muntendam, Remco; Srinivasan, Balaji; van der Want, Johannes J; Hayflick, Susan; Reijngoud, Dirk-Jan; Kayser, Oliver; Sibon, Ody C M

    2010-04-13

    Pantothenate kinase-associated neurodegeneration (PKAN), a progressive neurodegenerative disorder, is associated with impairment of pantothenate kinase function. Pantothenate kinase is the first enzyme required for de novo synthesis of CoA, an essential metabolic cofactor. The pathophysiology of PKAN is not understood, and there is no cure to halt or reverse the symptoms of this devastating disease. Recently, we and others presented a PKAN Drosophila model, and we demonstrated that impaired function of pantothenate kinase induces a neurodegenerative phenotype and a reduced lifespan. We have explored this Drosophila model further and have demonstrated that impairment of pantothenate kinase is associated with decreased levels of CoA, mitochondrial dysfunction, and increased protein oxidation. Furthermore, we searched for compounds that can rescue pertinent phenotypes of the Drosophila PKAN model and identified pantethine. Pantethine feeding restores CoA levels, improves mitochondrial function, rescues brain degeneration, enhances locomotor abilities, and increases lifespan. We show evidence for the presence of a de novo CoA biosynthesis pathway in which pantethine is used as a precursor compound. Importantly, this pathway is effective in the presence of disrupted pantothenate kinase function. Our data suggest that pantethine may serve as a starting point to develop a possible treatment for PKAN. PMID:20351285

  6. Pantethine rescues a Drosophila model for pantothenate kinase–associated neurodegeneration

    Science.gov (United States)

    Rana, Anil; Seinen, Erwin; Siudeja, Katarzyna; Muntendam, Remco; Srinivasan, Balaji; van der Want, Johannes J.; Hayflick, Susan; Reijngoud, Dirk-Jan; Kayser, Oliver; Sibon, Ody C. M.

    2010-01-01

    Pantothenate kinase–associated neurodegeneration (PKAN), a progressive neurodegenerative disorder, is associated with impairment of pantothenate kinase function. Pantothenate kinase is the first enzyme required for de novo synthesis of CoA, an essential metabolic cofactor. The pathophysiology of PKAN is not understood, and there is no cure to halt or reverse the symptoms of this devastating disease. Recently, we and others presented a PKAN Drosophila model, and we demonstrated that impaired function of pantothenate kinase induces a neurodegenerative phenotype and a reduced lifespan. We have explored this Drosophila model further and have demonstrated that impairment of pantothenate kinase is associated with decreased levels of CoA, mitochondrial dysfunction, and increased protein oxidation. Furthermore, we searched for compounds that can rescue pertinent phenotypes of the Drosophila PKAN model and identified pantethine. Pantethine feeding restores CoA levels, improves mitochondrial function, rescues brain degeneration, enhances locomotor abilities, and increases lifespan. We show evidence for the presence of a de novo CoA biosynthesis pathway in which pantethine is used as a precursor compound. Importantly, this pathway is effective in the presence of disrupted pantothenate kinase function. Our data suggest that pantethine may serve as a starting point to develop a possible treatment for PKAN. PMID:20351285

  7. Oral microbiome link to neurodegeneration in glaucoma.

    Directory of Open Access Journals (Sweden)

    Konstantin Astafurov

    Full Text Available BACKGROUND: Glaucoma is a progressive optic nerve degenerative disease that often leads to blindness. Local inflammatory responses are implicated in the pathology of glaucoma. Although inflammatory episodes outside the CNS, such as those due to acute systemic infections, have been linked to central neurodegeneration, they do not appear to be relevant to glaucoma. Based on clinical observations, we hypothesized that chronic subclinical peripheral inflammation contributes to neurodegeneration in glaucoma. METHODS: Mouthwash specimens from patients with glaucoma and control subjects were analyzed for the amount of bacteria. To determine a possible pathogenic mechanism, low-dose subcutaneous lipopolysaccharide (LPS was administered in two separate animal models of glaucoma. Glaucomatous neurodegeneration was assessed in the retina and optic nerve two months later. Changes in gene expression of toll-like receptor 4 (TLR4 signaling pathway and complement as well as changes in microglial numbers and morphology were analyzed in the retina and optic nerve. The effect of pharmacologic blockade of TLR4 with naloxone was determined. FINDINGS: Patients with glaucoma had higher bacterial oral counts compared to control subjects (p<0.017. Low-dose LPS administration in glaucoma animal models resulted in enhancement of axonal degeneration and neuronal loss. Microglial activation in the optic nerve and retina as well as upregulation of TLR4 signaling and complement system were observed. Pharmacologic blockade of TLR4 partially ameliorated the enhanced damage. CONCLUSIONS: The above findings suggest that the oral microbiome contributes to glaucoma pathophysiology. A plausible mechanism by which increased bacterial loads can lead to neurodegeneration is provided by experiments in animal models of the disease and involves activation of microglia in the retina and optic nerve, mediated through TLR4 signaling and complement upregulation. The finding that commensal

  8. Impaired Coenzyme A metabolism affects histone and tubulin acetylation in Drosophila and human cell models of pantothenate kinase associated neurodegeneration

    OpenAIRE

    Siudeja, Katarzyna; Srinivasan, Balaji; Xu, Lanjun; Rana, Anil; de Jong, Jannie; Nollen, Ellen A. A.; Jackowski, Suzanne; Sanford, Lynn; Hayflick, Susan; Sibon, Ody C.M

    2011-01-01

    Pantothenate kinase-associated neurodegeneration (PKAN is a neurodegenerative disease with unresolved pathophysiology. Previously, we observed reduced Coenzyme A levels in a Drosophila model for PKAN. Coenzyme A is required for acetyl-Coenzyme A synthesis and acyl groups from the latter are transferred to lysine residues of proteins, in a reaction regulated by acetyltransferases. The tight balance between acetyltransferases and their antagonistic counterparts histone deacetylases is a well-kn...

  9. Moringa oleifera Mitigates Memory Impairment and Neurodegeneration in Animal Model of Age-Related Dementia

    Directory of Open Access Journals (Sweden)

    Chatchada Sutalangka

    2013-01-01

    Full Text Available To date, the preventive strategy against dementia is still essential due to the rapid growth of its prevalence and the limited therapeutic efficacy. Based on the crucial role of oxidative stress in age-related dementia and the antioxidant and nootropic activities of Moringa oleifera, the enhancement of spatial memory and neuroprotection of M. oleifera leaves extract in animal model of age-related dementia was determined. The possible underlying mechanism was also investigated. Male Wistar rats, weighing 180–220 g, were orally given M. oleifera leaves extract at doses of 100, 200, and 400 mg/kg at a period of 7 days before and 7 days after the intracerebroventricular administration of AF64A bilaterally. Then, they were assessed memory, neuron density, MDA level, and the activities of SOD, CAT, GSH-Px, and AChE in hippocampus. The results showed that the extract improved spatial memory and neurodegeneration in CA1, CA2, CA3, and dentate gyrus of hippocampus together with the decreased MDA level and AChE activity but increased SOD and CAT activities. Therefore, our data suggest that M. oleifera leaves extract is the potential cognitive enhancer and neuroprotectant. The possible mechanism might occur partly via the decreased oxidative stress and the enhanced cholinergic function. However, further explorations concerning active ingredient(s are still required.

  10. Yeast proteinopathy models: a robust tool for deciphering the basis of neurodegeneration

    Directory of Open Access Journals (Sweden)

    Amit Shrestha

    2015-11-01

    Full Text Available Protein quality control or proteostasis is an essential determinant of basic cell health and aging. Eukaryotic cells have evolved a number of proteostatic mechanisms to ensure that proteins retain functional conformation, or are rapidly degraded when proteins misfold or self-aggregate. Disruption of proteostasis is now widely recognized as a key feature of aging related illness, specifically neurodegenerative disease. For example, Alzheimer’s disease, Huntington’s disease, Parkinson’s disease and Amyotrophic Lateral Sclerosis (ALS each target and afflict distinct neuronal cell subtypes, yet this diverse array of human pathologies share the defining feature of aberrant protein aggregation within the affected cell population. Here, we review the use of budding yeast as a robust proxy to study the intersection between proteostasis and neurodegenerative disease. The humanized yeast model has proven to be an amenable platform to identify both, conserved proteostatic mechanisms across eukaryotic phyla and novel disease specific molecular dysfunction. Moreover, we discuss the intriguing concept that yeast specific proteins may be utilized as bona fide therapeutic agents, to correct proteostasis errors across various forms of neurodegeneration.

  11. Chronic Intraventricular Administration of 1-Methyl-4-Phenylpyridinium as a Progressive Model of Parkinson’s Disease

    OpenAIRE

    Sonsalla, Patricia K.; Zeevalk, Gail D.; German, Dwight C.

    2008-01-01

    Animal models of Parkinson’s disease (PD) that more closely exhibit the chronic neuropathology seen in the human condition are needed in order to reveal processes involved with progressive neurodegeneration and for testing potential interventions for retarding dopamine (DA) neuronal loss. Here we describe the recently developed chronic rat model of PD in which 1-methyl-4-phenylpyridinium ion (MPP+) is infused chronically into the lateral cerebral ventricle. We review features of this model th...

  12. Pantethine rescues a Drosophila model for pantothenate kinase-associated neurodegeneration

    NARCIS (Netherlands)

    Rana, Anil; Seinen, Erwin; Siudeja, Katarzyna; Muntendam, Remco; Srinivasan, Balaji; van der Want, Johannes J.; Hayflick, Susan; Reijngoud, Dirk-Jan; Kayser, Oliver; Sibon, Ody C. M.

    2010-01-01

    Pantothenate kinase-associated neurodegeneration (PKAN), a progressive neurodegenerative disorder, is associated with impairment of pantothenate kinase function. Pantothenate kinase is the first enzyme required for de novo synthesis of CoA, an essential metabolic cofactor. The pathophysiology of PKA

  13. Protein kinase Cδ upregulation in microglia drives neuroinflammatory responses and dopaminergic neurodegeneration in experimental models of Parkinson's disease.

    Science.gov (United States)

    Gordon, Richard; Singh, Neeraj; Lawana, Vivek; Ghosh, Anamitra; Harischandra, Dilshan S; Jin, Huajun; Hogan, Colleen; Sarkar, Souvarish; Rokad, Dharmin; Panicker, Nikhil; Anantharam, Vellareddy; Kanthasamy, Anumantha G; Kanthasamy, Arthi

    2016-09-01

    at Ser536. Furthermore, both genetic ablation and siRNA-mediated knockdown of PKCδ attenuated NFκB activation, suggesting that PKCδ regulates NFκB activation subsequent to microglial exposure to inflammatory stimuli. To further investigate the pivotal role of PKCδ in microglial activation in vivo, we utilized pre-clinical models of PD. We found that PKCδ deficiency attenuated the proinflammatory response in the mouse substantia nigra, reduced locomotor deficits and recovered mice from sickness behavior in an LPS-induced neuroinflammation model of PD. Likewise, we found that PKCδ knockout mice treated with MPTP displayed a dampened microglial inflammatory response. Moreover, PKCδ knockout mice exhibited reduced susceptibility to the neurotoxin-induced dopaminergic neurodegeneration and associated motor impairments. Taken together, our studies propose a pivotal role for PKCδ in PD pathology, whereby sustained PKCδ activation drives sustained microglial inflammatory responses and concomitant dopaminergic neurotoxicity consequently leading to neurobehavioral deficits. We conclude that inhibiting PKCδ activation may represent a novel therapeutic strategy in PD treatment. PMID:27151770

  14. Neurodegeneration progresses despite complete elimination of clinical relapses in a mouse model of multiple sclerosis

    OpenAIRE

    Hampton, David W; Serio, Andrea; Pryce, Gareth; Al-Izki, Sarah; Franklin, Robin Jm; Giovannoni, Gavin; Baker, David; Chandran, Siddharthan

    2013-01-01

    BackgoundMultiple Sclerosis has two clinical phases reflecting distinct but inter-related pathological processes: focal inflammation drives the relapse-remitting stage and neurodegeneration represents the principal substrate of secondary progression. In contrast to the increasing number of effective anti-inflammatory disease modifying treatments for relapse-remitting disease, the absence of therapies for progressive disease represents a major unmet clinical need. This raises the unanswered qu...

  15. Neuroprotection of erythropoietin in a model of neurodegeneration in the immature rat brain after hyperoxie exposure

    OpenAIRE

    Löber, Rebekka

    2011-01-01

    The exposition of hyperoxie contributes to apoptotic neurodegeneration in the immature rat brain by inhibiting growth factor signaling cascades and inducing apoptitic pathways by the caspase cascade. The exogen application of erythropoietin is able to reduce the apoptotic damage by inducing BDNF and his protective signaling cascades by ERK 1/2 and Akt and to decrease the activity of the caspase cascade. Erythropoietin is a promising candidate for neuroprotection in the immature brain.

  16. Modeling and imaging cardiac sympathetic neurodegeneration in Parkinson’s disease

    OpenAIRE

    Joers, Valerie; Emborg, Marina E.

    2014-01-01

    Parkinson’s disease (PD) is currently recognized as a multisystem disorder affecting several components of the central and peripheral nervous system. This new understanding of PD helps explain the complexity of the patients’ symptoms while challenges researchers to identify new diagnostic and therapeutic strategies. Cardiac neurodegeneration and dysautonomia affect PD patients and are associated with orthostatic hypotension, fatigue, and abnormal control of electrical heart activity. They can...

  17. Nasal Administration of Quercetin Liposomes Improves Memory Impairment and Neurodegeneration in Animal Model of Alzheimer's Disease

    Directory of Open Access Journals (Sweden)

    Terdthai Tong-un

    2010-01-01

    Full Text Available Problem statement: At present, the development of protective strategy against Alzheimer’s Disease (AD is increasing its importance due to the high prevalence of AD, a limitation of therapeutic efficacy and its high impacts on economic and social aspects. The development of the preventive and therapeutic strategy to protect against the path physiology induced by free radicals in AD from antioxidant has gained very much concentration. Quercetin, one of the flavonoids in fruits and vegetables, has a powerful antioxidant activity both in vitro and in vivo. However, poor absorption, rapid metabolism and limited ability to cross the blood-brain-barrier are obstacles to its use for treatment of AD. Liposome’s have been used as an effective delivery system to the brain. Advantages associated with the nasal administration over oral route include higher bioavailability due to no first pass hepatic metabolism and rapid absorption leading to shorter time to onset of effect. Based on all these points, the possible effects of quercetin liposomes via nasal route on improving cognitive behavior and neurodegeneration in animal model of Alzheimer’s disease were investigated. Approach: Male Wistar rats were pretreated with quercetin liposome’s, containing 0.5 mg of quercetin in 20 μL (dose = 20 μg, via intranasal route once daily continually for 2 weeks before and 1 week after AF64A administration. Learning and memory was evaluated using the Morris water maze test at 7 days after the AF64A administration and then the rats were sacrificed for determining the density of neurons and cholinergic neurons in hippocampus using histological and immunohistochemical techniques. Results: Nasal administration of quercetin liposome’s significantly prevented changes of spatial memory of AF64A treated rats. The cognitive enhancement of quercetin liposome’s was found to be related to its ability to inhibit the degeneration of neurons and cholinergic neurons in hippocampus

  18. Novel Food Supplement "CP1" Improves Motor Deficit, Cognitive Function, and Neurodegeneration in Animal Model of Parkinson's Disease.

    Science.gov (United States)

    Wattanathorn, Jintanaporn; Sutalangka, Chatchada

    2016-08-01

    Based on pivotal roles of oxidative stress, dopaminergic and cholinergic systems on the pathophysiology of Parkinson's disease (PD), the searching for functional food for patients attacked with PD from Cyperus rotundus and Zingiber officinale, the substances possessing antioxidant activity, and the suppression effects on monoamine oxidase B (MAO-B) and acetylcholinesterase (AChE) have been considered. In this study, we aimed to determine the effect of the combined extract of C. rotundus and Z. officinale (CP1) to improve motor and memory deficits, neurodegeneration, oxidative stress, and functions of both cholinergic and dopaminergic systems in the animal model of PD induced by 6-hydroxydopamine hydrochloride (6-OHDA). Male Wistar rats, weighing 180-220 g, were induced unilateral lesion at right substantia nigra by 6-OHDA and were orally given CP1 at doses of 100, 200, and 300 mg/kg body weight for 14 days after 6-OHDA injection. The results showed that the 6-OHDA rats treated with CP1 increased spatial memory, but decreased neurodegeneration, malondialdehyde level, and AChE activity in hippocampus. The decreased motor disorder and neurodegeneration in substantia nigra together with the enhanced catalase activity, but decreased MAO-B activity in striatum, were also observed. The memory enhancing effect of CP1 might occur through the improved oxidative stress and the enhanced cholinergic function, whereas the effect to improve motor disorder of CP1 might occur through the enhanced dopaminergic function in striatum by decreasing the degeneration of dopaminergic neurons and the suppression of MAO-B. Therefore, CP1 is the potential functional food against PD. However, further researches in clinical trial and drug interactions are essential.

  19. Pantethine treatment is effective in recovering the disease phenotype induced by ketogenic diet in a pantothenate kinase-associated neurodegeneration mouse model.

    Science.gov (United States)

    Brunetti, Dario; Dusi, Sabrina; Giordano, Carla; Lamperti, Costanza; Morbin, Michela; Fugnanesi, Valeria; Marchet, Silvia; Fagiolari, Gigliola; Sibon, Ody; Moggio, Maurizio; d'Amati, Giulia; Tiranti, Valeria

    2014-01-01

    Pantothenate kinase-associated neurodegeneration, caused by mutations in the PANK2 gene, is an autosomal recessive disorder characterized by dystonia, dysarthria, rigidity, pigmentary retinal degeneration and brain iron accumulation. PANK2 encodes the mitochondrial enzyme pantothenate kinase type 2, responsible for the phosphorylation of pantothenate or vitamin B5 in the biosynthesis of co-enzyme A. A Pank2 knockout (Pank2(-/-)) mouse model did not recapitulate the human disease but showed azoospermia and mitochondrial dysfunctions. We challenged this mouse model with a low glucose and high lipid content diet (ketogenic diet) to stimulate lipid use by mitochondrial beta-oxidation. In the presence of a shortage of co-enzyme A, this diet could evoke a general impairment of bioenergetic metabolism. Only Pank2(-/-) mice fed with a ketogenic diet developed a pantothenate kinase-associated neurodegeneration-like syndrome characterized by severe motor dysfunction, neurodegeneration and severely altered mitochondria in the central and peripheral nervous systems. These mice also showed structural alteration of muscle morphology, which was comparable with that observed in a patient with pantothenate kinase-associated neurodegeneration. We here demonstrate that pantethine administration can prevent the onset of the neuromuscular phenotype in mice suggesting the possibility of experimental treatment in patients with pantothenate kinase-associated neurodegeneration. PMID:24316510

  20. Pantothenate kinase-associated neurodegeneration: altered mitochondria membrane potential and defective respiration in Pank2 knock-out mouse model.

    Science.gov (United States)

    Brunetti, Dario; Dusi, Sabrina; Morbin, Michela; Uggetti, Andrea; Moda, Fabio; D'Amato, Ilaria; Giordano, Carla; d'Amati, Giulia; Cozzi, Anna; Levi, Sonia; Hayflick, Susan; Tiranti, Valeria

    2012-12-15

    Neurodegeneration with brain iron accumulation (NBIA) comprises a group of neurodegenerative disorders characterized by high brain content of iron and presence of axonal spheroids. Mutations in the PANK2 gene, which encodes pantothenate kinase 2, underlie an autosomal recessive inborn error of coenzyme A metabolism, called pantothenate kinase-associated neurodegeneration (PKAN). PKAN is characterized by dystonia, dysarthria, rigidity and pigmentary retinal degeneration. The pathogenesis of this disorder is poorly understood and, although PANK2 is a mitochondrial protein, perturbations in mitochondrial bioenergetics have not been reported. A knock-out (KO) mouse model of PKAN exhibits retinal degeneration and azoospermia, but lacks any neurological phenotype. The absence of a clinical phenotype has partially been explained by the different cellular localization of the human and murine PANK2 proteins. Here we demonstrate that the mouse Pank2 protein localizes to mitochondria, similar to its human orthologue. Moreover, we show that Pank2-defective neurons derived from KO mice have an altered mitochondrial membrane potential, a defect further corroborated by the observations of swollen mitochondria at the ultra-structural level and by the presence of defective respiration. PMID:22983956

  1. Pantothenate kinase-associated neurodegeneration: altered mitochondria membrane potential and defective respiration in Pank2 knock-out mouse model.

    Science.gov (United States)

    Brunetti, Dario; Dusi, Sabrina; Morbin, Michela; Uggetti, Andrea; Moda, Fabio; D'Amato, Ilaria; Giordano, Carla; d'Amati, Giulia; Cozzi, Anna; Levi, Sonia; Hayflick, Susan; Tiranti, Valeria

    2012-12-15

    Neurodegeneration with brain iron accumulation (NBIA) comprises a group of neurodegenerative disorders characterized by high brain content of iron and presence of axonal spheroids. Mutations in the PANK2 gene, which encodes pantothenate kinase 2, underlie an autosomal recessive inborn error of coenzyme A metabolism, called pantothenate kinase-associated neurodegeneration (PKAN). PKAN is characterized by dystonia, dysarthria, rigidity and pigmentary retinal degeneration. The pathogenesis of this disorder is poorly understood and, although PANK2 is a mitochondrial protein, perturbations in mitochondrial bioenergetics have not been reported. A knock-out (KO) mouse model of PKAN exhibits retinal degeneration and azoospermia, but lacks any neurological phenotype. The absence of a clinical phenotype has partially been explained by the different cellular localization of the human and murine PANK2 proteins. Here we demonstrate that the mouse Pank2 protein localizes to mitochondria, similar to its human orthologue. Moreover, we show that Pank2-defective neurons derived from KO mice have an altered mitochondrial membrane potential, a defect further corroborated by the observations of swollen mitochondria at the ultra-structural level and by the presence of defective respiration.

  2. Apolipoprotein E-mimetics inhibit neurodegeneration and restore cognitive functions in a transgenic Drosophila model of Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Svetlana Sarantseva

    Full Text Available BACKGROUND: Mutations of the amyloid precursor protein gene (APP are found in familial forms of Alzheimer's disease (AD and some lead to the elevated production of amyloid-beta-protein (Abeta. While Abeta has been implicated in the causation of AD, the exact role played by Abeta and its APP precursor are still unclear. PRINCIPAL FINDINGS: In our study, Drosophila melanogaster transgenics were established as a model to analyze AD-like pathology caused by APP overexpression. We demonstrated that age related changes in the levels and pattern of synaptic proteins accompanied progressive neurodegeneration and impairment of cognitive functions in APP transgenic flies, but that these changes may be independent from the generation of Abeta. Using novel peptide mimetics of Apolipoprotein-E, COG112 or COG133 proved to be neuroprotective and significantly improved the learning and memory of APP transgenic flies. CONCLUSIONS: The development of neurodegeneration and cognitive deficits was corrected by injections of COG112 or COG133, novel mimetics of apolipoprotein-E (apoE with neuroprotective activities.

  3. A new in vivo model of pantothenate kinase-associated neurodegeneration reveals a surprising role for transcriptional regulation in pathogenesis.

    Directory of Open Access Journals (Sweden)

    Varun ePandey

    2013-09-01

    Full Text Available Pantothenate Kinase-Associated Neurodegeneration (PKAN is a neurodegenerative disorder with a poorly understood molecular mechanism. It is caused by mutations in Pantothenate Kinase, the first enzyme in the Coenzyme A (CoA biosynthetic pathway. Here, we developed a Drosophila model of PKAN (tim-fbl flies that allows us to continuously monitor the modeled disease in the brain. In tim-fbl flies, downregulation of fumble, the Drosophila PanK homologue in the cells containing a circadian clock results in characteristic features of PKAN such as developmental lethality, hypersensitivity to oxidative stress, and diminished life span. Despite quasi-normal circadian transcriptional rhythms, tim-fbl flies display brain-specific aberrant circadian locomotor rhythms, and a unique transcriptional signature. Comparison with expression data from flies exposed to paraquat demonstrates that, as previously suggested, pathways others than oxidative stress are affected by PANK downregulation. Surprisingly we found a significant decrease in the expression of key components of the photoreceptor recycling pathways, which could lead to retinal degeneration, a hallmark of PKAN. Importantly, these defects are not accompanied by changes in structural components in eye genes suggesting that changes in gene expression in the eye precede and may cause the retinal degeneration. Indeed tim-fbl flies have diminished response to light transitions, and their altered day/night patterns of activity demonstrates defects in light perception. This suggest that retinal lesions are not solely due to oxidative stress and demonstrates a role for the transcriptional response to CoA deficiency underlying the defects observed in dPanK deficient flies. Moreover, in the present study we developed a new fly model that can be applied to other diseases and that allows the assessment of neurodegeneration in the brains of living flies.

  4. Ethanol-Induced Neurodegeneration and Glial Activation in the Developing Brain

    Directory of Open Access Journals (Sweden)

    Mariko Saito

    2016-08-01

    Full Text Available Ethanol induces neurodegeneration in the developing brain, which may partially explain the long-lasting adverse effects of prenatal ethanol exposure in fetal alcohol spectrum disorders (FASD. While animal models of FASD show that ethanol-induced neurodegeneration is associated with glial activation, the relationship between glial activation and neurodegeneration has not been clarified. This review focuses on the roles of activated microglia and astrocytes in neurodegeneration triggered by ethanol in rodents during the early postnatal period (equivalent to the third trimester of human pregnancy. Previous literature indicates that acute binge-like ethanol exposure in postnatal day 7 (P7 mice induces apoptotic neurodegeneration, transient activation of microglia resulting in phagocytosis of degenerating neurons, and a prolonged increase in glial fibrillary acidic protein-positive astrocytes. In our present study, systemic administration of a moderate dose of lipopolysaccharides, which causes glial activation, attenuates ethanol-induced neurodegeneration. These studies suggest that activation of microglia and astrocytes by acute ethanol in the neonatal brain may provide neuroprotection. However, repeated or chronic ethanol can induce significant proinflammatory glial reaction and neurotoxicity. Further studies are necessary to elucidate whether acute or sustained glial activation caused by ethanol exposure in the developing brain can affect long-lasting cellular and behavioral abnormalities observed in the adult brain.

  5. Isolated spinal cord contusion in rats induces chronic brain neuroinflammation, neurodegeneration, and cognitive impairment: Involvement of cell cycle activation

    OpenAIRE

    Wu, Junfang; Stoica, Bogdan A.; Luo, Tao; Sabirzhanov, Boris; Zhao, Zaorui; Guanciale, Kelsey; Nayar, Suresh K.; Foss, Catherine A.; Pomper, Martin G.; Faden, Alan I.

    2014-01-01

    Cognitive dysfunction has been reported in patients with spinal cord injury (SCI), but it has been questioned whether such changes may reflect concurrent head injury, and the issue has not been addressed mechanistically or in a well-controlled experimental model. Our recent rodent studies examining SCI-induced hyperesthesia revealed neuroinflammatory changes not only in supratentorial pain-regulatory sites, but also in other brain regions, suggesting that additional brain functions may be imp...

  6. Impaired Coenzyme A metabolism affects histone and tubulin acetylation in Drosophila and human cell models of pantothenate kinase associated neurodegeneration.

    Science.gov (United States)

    Siudeja, Katarzyna; Srinivasan, Balaji; Xu, Lanjun; Rana, Anil; de Jong, Jannie; Nollen, Ellen A A; Jackowski, Suzanne; Sanford, Lynn; Hayflick, Susan; Sibon, Ody C M

    2011-12-01

    Pantothenate kinase-associated neurodegeneration (PKAN is a neurodegenerative disease with unresolved pathophysiology. Previously, we observed reduced Coenzyme A levels in a Drosophila model for PKAN. Coenzyme A is required for acetyl-Coenzyme A synthesis and acyl groups from the latter are transferred to lysine residues of proteins, in a reaction regulated by acetyltransferases. The tight balance between acetyltransferases and their antagonistic counterparts histone deacetylases is a well-known determining factor for the acetylation status of proteins. However, the influence of Coenzyme A levels on protein acetylation is unknown. Here we investigate whether decreased levels of the central metabolite Coenzyme A induce alterations in protein acetylation and whether this correlates with specific phenotypes of PKAN models. We show that in various organisms proper Coenzyme A metabolism is required for maintenance of histone- and tubulin acetylation, and decreased acetylation of these proteins is associated with an impaired DNA damage response, decreased locomotor function and decreased survival. Decreased protein acetylation and the concurrent phenotypes are partly rescued by pantethine and HDAC inhibitors, suggesting possible directions for future PKAN therapy development. PMID:21998097

  7. Pantethine treatment is effective in recovering the disease phenotype induced by ketogenic diet in a pantothenate kinase-associated neurodegeneration mouse model

    OpenAIRE

    Brunetti, D.; Dusi, S.; C. Giordano; Lamperti, C; Morbin, M; Fugnanesi, V.; Marchet, S.; Fagiolari, G.; Sibon, O.; Moggio, M.; d'Amati, G.; TIRANTI, V.

    2013-01-01

    Pantothenate kinase-associated neurodegeneration, caused by mutations in the PANK2 gene, is an autosomal recessive disorder characterized by dystonia, dysarthria, rigidity, pigmentary retinal degeneration and brain iron accumulation. PANK2 encodes the mitochondrial enzyme pantothenate kinase type 2, responsible for the phosphorylation of pantothenate or vitamin B5 in the biosynthesis of co-enzyme A. A Pank2 knockout (Pank2−/− ) mouse model did not recapitulate the human disease but showed azo...

  8. NAD+ salvage pathway proteins suppress proteotoxicity in yeast models of neurodegeneration by promoting the clearance of misfolded/oligomerized proteins.

    Science.gov (United States)

    Ocampo, Alejandro; Liu, Jingjing; Barrientos, Antoni

    2013-05-01

    Increased levels of nicotinamide/nicotinic acid mononucleotide adenylyltransferase (NMNAT) act as a powerful suppressor of Wallerian degeneration and ataxin- and tau-induced neurodegeneration in flies and mice. However, the nature of the suppression mechanism/s remains controversial. Here, we show that in yeast models of proteinopathies, overexpression of the NMNAT yeast homologs, NMA1 and NMA2, suppresses polyglutamine (PolyQ) and α-synuclein-induced cytotoxicities. Unexpectedly, overexpression of other genes in the salvage pathway for NAD(+) biosynthesis, including QNS1, NPT1 and PNC1 also protected against proteotoxicity. Our data revealed that in all cases, this mechanism involves extensive clearance of the non-native protein. Importantly, we demonstrate that suppression by NMA1 does not require the presence of a functional salvage pathway for NAD(+) biosynthesis, SIR2 or an active mitochondrial oxidative phosphorylation (OXPHOS) system. Our results imply the existence of histone deacetylase- and OXPHOS-independent crosstalk between the proteins in the salvage pathway for NAD(+) biosynthesis and the proteasome that can be manipulated to achieve cellular protection against proteotoxic stress.

  9. Mitoapocynin Treatment Protects Against Neuroinflammation and Dopaminergic Neurodegeneration in a Preclinical Animal Model of Parkinson’s Disease

    Science.gov (United States)

    Ghosh, Anamitra; Langley, Monica R; Harischandra, Dilshan; Neal, Matthew L; Jin, Huajun; Anantharam, Vellareddy; Joseph, Joy; Brenza, Timothy; Narasimhan, Balaji; Kanthasamy, Arthi; Kalyanaraman, Balaraman; Kanthasamy, Anumantha G.

    2016-01-01

    Mitochondrial dysfunction, oxidative stress and neuroinflammation have been implicated as key mediators contributing to the progressive degeneration of dopaminergic neurons in Parkinson’s disease (PD). Currently, we lack a pharmacological agent that can intervene in all key pathological mechanisms, which would offer better neuroprotective efficacy than a compound that targets a single degenerative mechanism. Herein, we investigated whether mito-apocynin (Mito-Apo), a newly-synthesized and orally available derivative of apocynin that targets mitochondria, protects against oxidative damage, glial-mediated inflammation and nigrostriatal neurodegeneration in cellular and animal models of PD. Mito-Apo treatment in primary mesencephalic cultures significantly attenuated the 1-methyl-4-phenylpyridinium (MPP+)-induced loss of tyrosine hydroxylase (TH)-positive neuronal cells and neurites. Mito-Apo also diminished MPP+-induced increases in glial cell activation and inducible nitric oxide synthase (iNOS) expression. Additionally, Mito-Apo decreased nitrotyrosine (3-NT) and 4-hydroxynonenol (4-HNE) levels in primary mesencephalic cultures. Importantly, we assessed the neuroprotective property of Mito-Apo in the MPTP mouse model of PD, wherein it restored the behavioral performance of MPTP-treated mice. Immunohistological analysis of nigral dopaminergic neurons and monoamine measurement further confirmed the neuroprotective effect of Mito-Apo against MPTP-induced nigrostriatal dopaminergic neuronal loss. Mito-Apo showed excellent brain bioavailability and also markedly attenuated MPTP-induced oxidative markers in the substantia nigra (SN). Furthermore, oral administration of Mito-Apo significantly suppressed MPTP-induced glial cell activation, upregulation of proinflammatory cytokines, iNOS and gp91phox in IBA1-positive cells of SN. Collectively, these results demonstrate that the novel mitochondria-targeted compound Mito-Apo exhibits profound neuroprotective effects in

  10. Histone deacetylases suppress CGG repeat-induced neurodegeneration via transcriptional silencing in models of fragile X tremor ataxia syndrome.

    Directory of Open Access Journals (Sweden)

    Peter K Todd

    Full Text Available Fragile X Tremor Ataxia Syndrome (FXTAS is a common inherited neurodegenerative disorder caused by expansion of a CGG trinucleotide repeat in the 5'UTR of the fragile X syndrome (FXS gene, FMR1. The expanded CGG repeat is thought to induce toxicity as RNA, and in FXTAS patients mRNA levels for FMR1 are markedly increased. Despite the critical role of FMR1 mRNA in disease pathogenesis, the basis for the increase in FMR1 mRNA expression is unknown. Here we show that overexpressing any of three histone deacetylases (HDACs 3, 6, or 11 suppresses CGG repeat-induced neurodegeneration in a Drosophila model of FXTAS. This suppression results from selective transcriptional repression of the CGG repeat-containing transgene. These findings led us to evaluate the acetylation state of histones at the human FMR1 locus. In patient-derived lymphoblasts and fibroblasts, we determined by chromatin immunoprecipitation that there is increased acetylation of histones at the FMR1 locus in pre-mutation carriers compared to control or FXS derived cell lines. These epigenetic changes correlate with elevated FMR1 mRNA expression in pre-mutation cell lines. Consistent with this finding, histone acetyltransferase (HAT inhibitors repress FMR1 mRNA expression to control levels in pre-mutation carrier cell lines and extend lifespan in CGG repeat-expressing Drosophila. These findings support a disease model whereby the CGG repeat expansion in FXTAS promotes chromatin remodeling in cis, which in turn increases expression of the toxic FMR1 mRNA. Moreover, these results provide proof of principle that HAT inhibitors or HDAC activators might be used to selectively repress transcription at the FMR1 locus.

  11. Experimental models for the study of neurodegeneration in amyotrophic lateral sclerosis

    Directory of Open Access Journals (Sweden)

    Tapia Ricardo

    2009-07-01

    Full Text Available Abstract Amyotrophic lateral sclerosis (ALS is a fatal neurodegenerative disease of unknown cause, characterized by the selective and progressive death of both upper and lower motoneurons, leading to a progressive paralysis. Experimental animal models of the disease may provide knowledge of the pathophysiological mechanisms and allow the design and testing of therapeutic strategies, provided that they mimic as close as possible the symptoms and temporal progression of the human disease. The principal hypotheses proposed to explain the mechanisms of motoneuron degeneration have been studied mostly in models in vitro, such as primary cultures of fetal motoneurons, organotypic cultures of spinal cord sections from postnatal rodents and the motoneuron-like hybridoma cell line NSC-34. However, these models are flawed in the sense that they do not allow a direct correlation between motoneuron death and its physical consequences like paralysis. In vivo, the most widely used model is the transgenic mouse that bears a human mutant superoxide dismutase 1, the only known cause of ALS. The major disadvantage of this model is that it represents about 2%–3% of human ALS. In addition, there is a growing concern on the accuracy of these transgenic models and the extrapolations of the findings made in these animals to the clinics. Models of spontaneous motoneuron disease, like the wobbler and pmn mice, have been used aiming to understand the basic cellular mechanisms of motoneuron diseases, but these abnormalities are probably different from those occurring in ALS. Therefore, the design and testing of in vivo models of sporadic ALS, which accounts for >90% of the disease, is necessary. The main models of this type are based on the excitotoxic death of spinal motoneurons and might be useful even when there is no definitive demonstration that excitotoxicity is a cause of human ALS. Despite their difficulties, these models offer the best possibility to establish

  12. Neurodegeneration in an animal model of Parkinson's disease is exacerbated by a high-fat diet

    OpenAIRE

    Morris, Jill K.; Bomhoff, Gregory L.; Stanford, John A.; Geiger, Paige C.

    2010-01-01

    Despite numerous clinical studies supporting a link between type 2 diabetes (T2D) and Parkinson's disease (PD), the clinical literature remains equivocal. We, therefore, sought to address the relationship between insulin resistance and nigrostriatal dopamine (DA) in a preclinical animal model. High-fat feeding in rodents is an established model of insulin resistance, characterized by increased adiposity, systemic oxidative stress, and hyperglycemia. We subjected rats to a normal chow or high-...

  13. Connectivity mapping uncovers small molecules that modulate neurodegeneration in Huntington’s disease models

    OpenAIRE

    Joshua L Smalley; Breda, Carlo; Mason, Robert P.; Kooner, Gurdeep; Luthi-Carter, Ruth; Gant, Timothy W.; Giorgini, Flaviano

    2015-01-01

    Abstract Huntington’s disease (HD) is a genetic disease caused by a CAG trinucleotide repeat expansion encoding a polyglutamine tract in the huntingtin (HTT) protein, ultimately leading to neuronal loss and consequent cognitive decline and death. As no treatments for HD currently exist, several chemical screens have been performed using cell-based models of mutant HTT toxicity. These screens measured single disease-related endpoints, such as cell death, but had low ‘hit rates’ and limited dim...

  14. Neurodegeneration and Epilepsy in a Zebrafish Model of CLN3 Disease (Batten Disease).

    Science.gov (United States)

    Wager, Kim; Zdebik, Anselm A; Fu, Sonia; Cooper, Jonathan D; Harvey, Robert J; Russell, Claire

    2016-01-01

    The neuronal ceroid lipofuscinoses are a group of lysosomal storage disorders that comprise the most common, genetically heterogeneous, fatal neurodegenerative disorders of children. They are characterised by childhood onset, visual failure, epileptic seizures, psychomotor retardation and dementia. CLN3 disease, also known as Batten disease, is caused by autosomal recessive mutations in the CLN3 gene, 80-85% of which are a ~1 kb deletion. Currently no treatments exist, and after much suffering, the disease inevitably results in premature death. The aim of this study was to generate a zebrafish model of CLN3 disease using antisense morpholino injection, and characterise the pathological and functional consequences of Cln3 deficiency, thereby providing a tool for future drug discovery. The model was shown to faithfully recapitulate the pathological signs of CLN3 disease, including reduced survival, neuronal loss, retinopathy, axonopathy, loss of motor function, lysosomal storage of subunit c of mitochondrial ATP synthase, and epileptic seizures, albeit with an earlier onset and faster progression than the human disease. Our study provides proof of principle that the advantages of the zebrafish over other model systems can be utilised to further our understanding of the pathogenesis of CLN3 disease and accelerate drug discovery. PMID:27327661

  15. Towards a Pathway Inventory of the Human Brain for Modeling Disease Mechanisms Underlying Neurodegeneration.

    Science.gov (United States)

    Iyappan, Anandhi; Gündel, Michaela; Shahid, Mohammad; Wang, Jiali; Li, Hui; Mevissen, Heinz-Theodor; Müller, Bernd; Fluck, Juliane; Jirsa, Viktor; Domide, Lia; Younesi, Erfan; Hofmann-Apitius, Martin

    2016-04-12

    Molecular signaling pathways have been long used to demonstrate interactions among upstream causal molecules and downstream biological effects. They show the signal flow between cell compartments, the majority of which are represented as cartoons. These are often drawn manually by scanning through the literature, which is time-consuming, static, and non-interoperable. Moreover, these pathways are often devoid of context (condition and tissue) and biased toward certain disease conditions. Mining the scientific literature creates new possibilities to retrieve pathway information at higher contextual resolution and specificity. To address this challenge, we have created a pathway terminology system by combining signaling pathways and biological events to ensure a broad coverage of the entire pathway knowledge domain. This terminology was applied to mining biomedical papers and patents about neurodegenerative diseases with focus on Alzheimer's disease. We demonstrate the power of our approach by mapping literature-derived signaling pathways onto their corresponding anatomical regions in the human brain under healthy and Alzheimer's disease states. We demonstrate how this knowledge resource can be used to identify a putative mechanism explaining the mode-of-action of the approved drug Rasagiline, and show how this resource can be used for fingerprinting patents to support the discovery of pathway knowledge for Alzheimer's disease. Finally, we propose that based on next-generation cause-and-effect pathway models, a dedicated inventory of computer-processable pathway models specific to neurodegenerative diseases can be established, which hopefully accelerates context-specific enrichment analysis of experimental data with higher resolution and richer annotations. PMID:27079715

  16. Silencing mutant SOD1 using RNAi protects against neurodegeneration and extends survival in an ALS model.

    Science.gov (United States)

    Ralph, G Scott; Radcliffe, Pippa A; Day, Denise M; Carthy, Janine M; Leroux, Marie A; Lee, Debbie C P; Wong, Liang-Fong; Bilsland, Lynsey G; Greensmith, Linda; Kingsman, Susan M; Mitrophanous, Kyriacos A; Mazarakis, Nicholas D; Azzouz, Mimoun

    2005-04-01

    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease resulting in the selective death of motor neurons in the brain and spinal cord. Some familial cases of ALS are caused by dominant mutations in the gene encoding superoxide dismutase (SOD1). The emergence of interfering RNA (RNAi) for specific gene silencing could be therapeutically beneficial for the treatment of such dominantly inherited diseases. We generated a lentiviral vector to mediate expression of RNAi molecules specifically targeting the human SOD1 gene (SOD1). Injection of this vector into various muscle groups of mice engineered to overexpress a mutated form of human SOD1 (SOD1(G93A)) resulted in an efficient and specific reduction of SOD1 expression and improved survival of vulnerable motor neurons in the brainstem and spinal cord. Furthermore, SOD1 silencing mediated an improved motor performance in these animals, resulting in a considerable delay in the onset of ALS symptoms by more than 100% and an extension in survival by nearly 80% of their normal life span. These data are the first to show a substantial extension of survival in an animal model of a fatal, dominantly inherited neurodegenerative condition using RNAi and provide the highest therapeutic efficacy observed in this field to date. PMID:15768029

  17. Inflammatory Mechanisms of Neurodegeneration in Toxin-Based Models of Parkinson's Disease

    Directory of Open Access Journals (Sweden)

    Darcy Litteljohn

    2011-01-01

    Full Text Available Parkinson's disease (PD has been associated with exposure to a variety of environmental agents, including pesticides, heavy metals, and organic pollutants; and inflammatory processes appear to constitute a common mechanistic link among these insults. Indeed, toxin exposure has been repeatedly demonstrated to induce the release of oxidative and inflammatory factors from immunocompetent microglia, leading to damage and death of midbrain dopamine (DA neurons. In particular, proinflammatory cytokines such as tumor necrosis factor-α and interferon-γ, which are produced locally within the brain by microglia, have been implicated in the loss of DA neurons in toxin-based models of PD; and mounting evidence suggests a contributory role of the inflammatory enzyme, cyclooxygenase-2. Likewise, immune-activating bacterial and viral agents were reported to have neurodegenerative effects themselves and to augment the deleterious impact of chemical toxins upon DA neurons. The present paper will focus upon the evidence linking microglia and their inflammatory processes to the death of DA neurons following toxin exposure. Particular attention will be devoted to the possibility that environmental toxins can activate microglia, resulting in these cells adopting a “sensitized” state that favors the production of proinflammatory cytokines and damaging oxidative radicals.

  18. Induction of Neuron-Specific Degradation of Coenzyme A Models Pantothenate Kinase-Associated Neurodegeneration by Reducing Motor Coordination in Mice.

    Directory of Open Access Journals (Sweden)

    Stephanie A Shumar

    Full Text Available Pantothenate kinase-associated neurodegeneration, PKAN, is an inherited disorder characterized by progressive impairment in motor coordination and caused by mutations in PANK2, a human gene that encodes one of four pantothenate kinase (PanK isoforms. PanK initiates the synthesis of coenzyme A (CoA, an essential cofactor that plays a key role in energy metabolism and lipid synthesis. Most of the mutations in PANK2 reduce or abolish the activity of the enzyme. This evidence has led to the hypothesis that lower CoA might be the underlying cause of the neurodegeneration in PKAN patients; however, no mouse model of the disease is currently available to investigate the connection between neuronal CoA levels and neurodegeneration. Indeed, genetic and/or dietary manipulations aimed at reducing whole-body CoA synthesis have not produced a desirable PKAN model, and this has greatly hindered the discovery of a treatment for the disease.Cellular CoA levels are tightly regulated by a balance between synthesis and degradation. CoA degradation is catalyzed by two peroxisomal nudix hydrolases, Nudt7 and Nudt19. In this study we sought to reduce neuronal CoA in mice through the alternative approach of increasing Nudt7-mediated CoA degradation. This was achieved by combining the use of an adeno-associated virus-based expression system with the synapsin (Syn promoter. We show that mice with neuronal overexpression of a cytosolic version of Nudt7 (scAAV9-Syn-Nudt7cyt exhibit a significant decrease in brain CoA levels in conjunction with a reduction in motor coordination. These results strongly support the existence of a link between CoA levels and neuronal function and show that scAAV9-Syn-Nudt7cyt mice can be used to model PKAN.

  19. The mTOR Inhibitor Rapamycin Mitigates Perforant Pathway Neurodegeneration and Synapse Loss in a Mouse Model of Early-Stage Alzheimer-Type Tauopathy.

    Directory of Open Access Journals (Sweden)

    Robert Siman

    Full Text Available The perforant pathway projection from layer II of the entorhinal cortex to the hippocampal dentate gyrus is especially important for long-term memory formation, and is preferentially vulnerable to developing a degenerative tauopathy early in Alzheimer's disease (AD that may spread over time trans-synaptically. Despite the importance of the perforant pathway to the clinical onset and progression of AD, a therapeutic has not been identified yet that protects it from tau-mediated toxicity. Here, we used an adeno-associated viral vector-based mouse model of early-stage AD-type tauopathy to investigate effects of the mTOR inhibitor and autophagy stimulator rapamycin on the tau-driven loss of perforant pathway neurons and synapses. Focal expression of human tau carrying a P301L mutation but not eGFP as a control in layer II of the lateral entorhinal cortex triggered rapid degeneration of these neurons, loss of lateral perforant pathway synapses in the dentate gyrus outer molecular layer, and activation of neuroinflammatory microglia and astroglia in the two locations. Chronic systemic rapamycin treatment partially inhibited phosphorylation of a mechanistic target of rapamycin substrate in brain and stimulated LC3 cleavage, a marker of autophagic flux. Compared with vehicle-treated controls, rapamycin protected against the tau-induced neuronal loss, synaptotoxicity, reactive microgliosis and astrogliosis, and activation of innate neuroimmunity. It did not alter human tau mRNA or total protein levels. Finally, rapamycin inhibited trans-synaptic transfer of human tau expression to the dentate granule neuron targets for the perforant pathway, likely by preventing the synaptic spread of the AAV vector in response to pathway degeneration. These results identify systemic rapamycin as a treatment that protects the entorhinal cortex and perforant pathway projection from tau-mediated neurodegeneration, axonal and synapse loss, and neuroinflammatory reactive

  20. Genetic background modifies neurodegeneration and neuroinflammation driven by misfolded human tau protein in rat model of tauopathy: implication for immunomodulatory approach to Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Kovacech Branislav

    2010-10-01

    Full Text Available Abstract Background Numerous epidemiological studies demonstrate that genetic background modifies the onset and the progression of Alzheimer's disease and related neurodegenerative disorders. The efficacious influence of genetic background on the disease pathway of amyloid beta has been meticulously described in rodent models. Since the impact of genetic modifiers on the neurodegenerative and neuroinflammatory cascade induced by misfolded tau protein is yet to be elucidated, we have addressed the issue by using transgenic lines expressing the same human truncated tau protein in either spontaneously hypertensive rat (SHR or Wistar-Kyoto (WKY genetic background. Methods Brains of WKY and SHR transgenic rats in the terminal stage of phenotype and their age-matched non-transgenic littermates were examined by means of immunohistochemistry and unbiased stereology. Basic measures of tau-induced neurodegeneration (load of neurofibrillary tangles and neuroinflammation (number of Iba1-positive microglia, their activated morphology, and numbers of microglia immunoreactive for MHCII and astrocytes immunoreactive for GFAP were quantified with an optical fractionator in brain areas affected by neurofibrillary pathology (pons, medulla oblongata. The stereological data were evaluated using two-way ANOVA and Student's t-test. Results Tau neurodegeneration (neurofibrillary tangles (NFTs, axonopathy and neuroinflammation (microgliosis, astrocytosis appeared in both WKY and SHR transgenic rats. Although identical levels of transgene expression in both lines were present, terminally-staged WKY transgenic rats displayed significantly lower final NFT loads than their SHR transgenic counterparts. Interestingly, microglial responses showed a striking difference between transgenic lines. Only 1.6% of microglia in SHR transgenic rats expressed MHCII in spite of having a robust phagocytic phenotype, whereas in WKY transgenic rats, 23.2% of microglia expressed MHCII despite

  1. Repulsive Guidance Molecule-a Is Involved in Th17-Cell-Induced Neurodegeneration in Autoimmune Encephalomyelitis

    Directory of Open Access Journals (Sweden)

    Shogo Tanabe

    2014-11-01

    Full Text Available Multiple sclerosis (MS is a chronic autoimmune disease characterized by inflammation, demyelination, and neurodegeneration in the CNS. Although it is important to prevent neurodegeneration for alleviating neurological disability, the molecular mechanism of neurodegeneration remains largely unknown. Here, we report that repulsive guidance molecule-a (RGMa, known to regulate axonal growth, is associated with neurodegeneration in experimental autoimmune encephalomyelitis (EAE, a mouse model of MS. RGMa is highly expressed in interleukin-17-producing CD4+ T cells (Th17 cells. We induced EAE by adoptive transfer of myelin oligodendrocyte glycoprotein (MOG-specific Th17 cells and then inhibited RGMa with a neutralizing antibody. Inhibition of RGMa improves EAE scores and reduces neuronal degeneration without altering immune or glial responses. Th17 cells induce cultured cortical neuron death through RGMa-neogenin and Akt dephosphorylation. Our results demonstrate that RGMa is involved in Th17-cell-mediated neurodegeneration and that RGMa-specific antibody may have a therapeutic effect in MS.

  2. Piperine, the main alkaloid of Thai black pepper, protects against neurodegeneration and cognitive impairment in animal model of cognitive deficit like condition of Alzheimer's disease.

    Science.gov (United States)

    Chonpathompikunlert, Pennapa; Wattanathorn, Jintanaporn; Muchimapura, Supaporn

    2010-03-01

    Recently, numerous medicinal plants possessing profound central nervous system effects and antioxidant activity have received much attention as food supplement to improve cognitive function against cognitive deficit condition including in Alzheimer's disease condition. Based on this information, the effect of piperine, a main active alkaloid in fruit of Piper nigrum, on memory performance and neurodegeneration in animal model of Alzheimer's disease have been investigated. Adult male Wistar rats (180-220 g) were orally given piperine at various doses ranging from 5, 10 and 20mg/kg BW at a period of 2 weeks before and 1 week after the intracerebroventricular administration of ethylcholine aziridinium ion (AF64A) bilaterally. The results showed that piperine at all dosage range used in this study significantly improved memory impairment and neurodegeneration in hippocampus. The possible underlying mechanisms might be partly associated with the decrease lipid peroxidation and acetylcholinesterase enzyme. Moreover, piperine also demonstrated the neurotrophic effect in hippocampus. However, further researches about the precise underlying mechanism are still required.

  3. Oxidative Stress in Neurodegeneration

    Directory of Open Access Journals (Sweden)

    Varsha Shukla

    2011-01-01

    Full Text Available It has been demonstrated that oxidative stress has a ubiquitous role in neurodegenerative diseases. Major source of oxidative stress due to reactive oxygen species (ROS is related to mitochondria as an endogenous source. Although there is ample evidence from tissues of patients with neurodegenerative disorders of morphological, biochemical, and molecular abnormalities in mitochondria, it is still not very clear whether the oxidative stress itself contributes to the onset of neurodegeneration or it is part of the neurodegenerative process as secondary manifestation. This paper begins with an overview of how oxidative stress occurs, discussing various oxidants and antioxidants, and role of oxidative stress in diseases in general. It highlights the role of oxidative stress in neurodegenerative diseases like Alzheimer's, Parkinson's, and Huntington's diseases and amyotrophic lateral sclerosis. The last part of the paper describes the role of oxidative stress causing deregulation of cyclin-dependent kinase 5 (Cdk5 hyperactivity associated with neurodegeneration.

  4. LABORATORY MODEL OF CHRONIC STAPHYLOCOCCAL TONSILLITIS

    Directory of Open Access Journals (Sweden)

    Shkodovska NYu

    2013-03-01

    Full Text Available Investigation and development of new preparations for chronic tonsillitis (CT treatment and prevention requires application of appropriate laboratory model. For the development of CT laboratory model chronic pyoinflammatory process was reproduced in chinchilla rabbits using Staphylococcus aureus 209 Р (АТСС 6538-Р reference-strain. Preliminary sensitizing of animals with inactivated causative agent and repeated infection with the reference-strain made it possible to work out reproducible model of chronic tonsillitis. Adequacy of chronic tonsillitis development was confirmed by the results of microbiological and pathomorphological researchers. The proposed laboratory model can be used for solving of theoretical and practical medicine and pharmacology topical problems.

  5. Pantothenate kinase-associated neurodegeneration.

    Science.gov (United States)

    Hartig, Monika B; Prokisch, Holger; Meitinger, Thomas; Klopstock, Thomas

    2012-08-01

    Pantothenate kinase-associated neurodegeneration (PKAN) is a hereditary progressive disorder and the most frequent form of neurodegeneration with brain iron accumulation (NBIA). PKAN patients present with a progressive movement disorder, dysarthria, cognitive impairment and retinitis pigmentosa. In magnetic resonance imaging, PKAN patients exhibit the pathognonomic "eye of the tiger" sign in the globus pallidus which corresponds to iron accumulation and gliosis as shown in neuropathological examinations. The discovery of the disease causing mutations in PANK2 has linked the disorder to coenzyme A (CoA) metabolism. PANK2 is the only one out of four PANK genes encoding an isoform which localizes to mitochondria. At least two other NBIA genes (PLA2G6, C19orf12) encode proteins that share with PANK2 a mitochondrial localization and all are suggested to play a role in lipid homeostasis. With no causal therapy available for PKAN until now, only symptomatic treatment is possible. A multi-centre retrospective study with bilateral pallidal deep brain stimulation in patients with NBIA revealed a significant improvement of dystonia. Recently, studies in the PANK Drosophila model "fumble" revealed improvement by the compound pantethine which is hypothesized to feed an alternate CoA biosynthesis pathway. In addition, pilot studies with the iron chelator deferiprone that crosses the blood brain barrier showed a good safety profile and some indication of efficacy. An adequately powered randomized clinical trial will start in 2012. This review summarizes clinical presentation, neuropathology and pathogenesis of PKAN. PMID:22515741

  6. Diabetic retinopathy: recent advances towards understanding neurodegeneration and vision loss.

    Science.gov (United States)

    Barber, Alistair J

    2015-06-01

    Diabetic retinopathy (DR) is one of the most common retinal diseases world-wide. It has a complex pathology that involves the vasculature of the inner retina and breakdown of the blood-retinal barrier. Extensive research has determined that DR is not only a vascular disease but also has a neurodegenerative component and that essentially all types of cells in the retina are affected, leading to chronic loss of visual function. A great deal of work using animal models of DR has established the loss of neurons and pathology of other cell types, including supporting glial cells. There has also been an increased emphasis on measuring retinal function in the models, as well as further validation and extension of the animal studies by clinical and translational research. This article will attempt to summarize the more recent developments in research towards understanding the complexities of retinal neurodegeneration and functional vision loss in DR.

  7. Neurodegeneration med jernakkumulation i hjernen

    DEFF Research Database (Denmark)

    Bertelsen, Maria; Hansen, Lars Kjærsgaard

    2015-01-01

    Neurodegeneration with brain iron accumulation (NBIA) is a heterogeneous group of syndromes. Whereas NBIA1 (panto-thenate kinase-associated neurodegeneration) has been known since 1922, some of the other diseases in the NBIA group have just been known for a few years. We present the case of a 16...

  8. Mitochondrial dysfunction in the striatum of aged chronic mouse model of Parkinson's disease

    Directory of Open Access Journals (Sweden)

    Gaurav Patki

    2009-12-01

    Full Text Available Mitochondrial oxidative stress and dysfunction has been implicated as a possible mechanism for the onset and progression of Parkinson-like neurodegeneration. However, long-term mitochondrial defects in chronic animal neurodegenerative models have not been demonstrated. In this study, we investigated the function of striatal mitochondria 6 weeks after the induction of a chronic 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP mouse model of Parkinson’s disease (MPD. Although severe depression of mitochondrial respiration was observed immediately after acute administrations of MPTP, we failed to detect a significant mitochondrial inhibition in presence of striatal dopamine deficit 6 weeks after the chronic MPD induction in young adult mice. In contrast, when aged mice were chronically treated with MPTP and at 6 weeks post-treatment, these animals suffered an inhibition of the basal (state 4 and ADP-stimulated (state 3 respiration and a fall in ATP level in the striatal mitochondria. The aged chronic MPD also brought about a sustained diminution of striatal anti-oxidant enzyme levels including that of superoxide dismutases and cytochrome c. The mitochondrial deficits in the striatum of aged chronic MPD 6 weeks after treatment were further correlated with significant losses of striatal dopamine, tyrosine hydroxylase, dopamine uptake transporter, and with impaired movement when tested on a challenging beam. Our findings suggest that MPTP may trigger the neurodegenerative process by obstructing the mitochondrial function; however, striatal mitochondria in young animals may potentially rejuvenate, whereas mitochondrial dysfunction is sustained in the aged chronic MPD. Therefore, the aged chronic MPD may serve as a suitable investigative model for further elucidating the integral relationship between mitochondrial dysfunction and neurodegenerative disorder, and for assessing the therapeutic efficacy of mitochondrial protective agents as potential

  9. The Quest to Model Chronic Traumatic Encephalopathy: A Multiple Model & Injury Paradigm Experience

    Directory of Open Access Journals (Sweden)

    Ryan C. Turner

    2015-10-01

    Full Text Available Chronic neurodegeneration following a history of neurotrauma is frequently associated with neuropsychiatric and cognitive symptoms. In order to enhance understanding about the underlying pathophysiology linking neurotrauma to neurodegeneration, a multi-model pre-clinical approach must be established to account for the different injury paradigms and pathophysiologic mechanisms. We investigated the development of tau pathology and behavioral changes using a multi-model and multi-institutional approach, comparing the pre-clinical results to tauopathy patterns seen in post-mortem human samples from athletes diagnosed with chronic traumatic encephalopathy (CTE. We utilized a scaled and validated blast-induced traumatic brain injury model in rats and a modified pneumatic closed-head impact model in mice. Tau hyperphosphorylation was evaluated by western blot and immunohistochemistry. Elevated plus maze and Morris water maze were employed to measure impulsive-like behavior and cognitive deficits respectively. Animals exposed to single blast (~50 PSI reflected peak overpressure exhibited elevated AT8 immunoreactivity in the contralateral hippocampus at 1 month compared to controls (q = 3.96, p < 0.05. Animals exposed to repeat blast (6 blasts over 2 weeks had increased AT8 (q = 8.12, p < 0.001 and AT270 (q = 4.03, p < 0.05 in the contralateral hippocampus at 1 month post-injury compared to controls. In the modified controlled closed-head impact mouse model, no significant difference in AT8 was seen at 7 days, however a significant elevation was detected at 1 month following injury in the ipsilateral hippocampus compared to control (q = 4.34, p < 0.05. Elevated plus maze data revealed that rats exposed to single blast (q = 3.53, p < 0.05 and repeat blast (q = 4.21, p < 0.05 spent more time in seconds exploring the open arms compared to controls. Morris water maze testing revealed a significant difference between groups in acquisition times on days 22

  10. Metals and Neurodegeneration.

    Science.gov (United States)

    Chen, Pan; Miah, Mahfuzur Rahman; Aschner, Michael

    2016-01-01

    Metals play important roles in the human body, maintaining cell structure and regulating gene expression, neurotransmission, and antioxidant response, to name a few. However, excessive metal accumulation in the nervous system may be toxic, inducing oxidative stress, disrupting mitochondrial function, and impairing the activity of numerous enzymes. Damage caused by metal accumulation may result in permanent injuries, including severe neurological disorders. Epidemiological and clinical studies have shown a strong correlation between aberrant metal exposure and a number of neurological diseases, including Alzheimer's disease, amyotrophic lateral sclerosis, autism spectrum disorders, Guillain-Barré disease, Gulf War syndrome, Huntington's disease, multiple sclerosis, Parkinson's disease, and Wilson's disease. Here, we briefly survey the literature relating to the role of metals in neurodegeneration.

  11. Peroxiredoxins and Neurodegeneration

    Directory of Open Access Journals (Sweden)

    S.H. Lee

    2006-01-01

    Full Text Available Peroxiredoxins (Prxs are a family of novel antioxidant proteins that are found in a variety of species and participate in a number of vital biological processes such as proliferation, differentiation, response to oxidative stress and intracellular signaling. It has been proposed that they might participate in these cellular processes by playing a role in eliminating or regulating the intracellular concentration of peroxides produced during metabolism as well as in the signaling cascades of growth factors and cytokines. Mammalian cells express six isoforms of Prx (Prx I to VI, which are classified into three subgroups (typical 2-Cys, atypical 2-Cys and 1-Cys based on the number and position of cysteine (Cys residues that participate in catalysis and on amino acid sequences and the immunological reactivity. Members of the typical 2-Cys subgroup include Prx I through Prx IV and contain an additional conserved cysteine in the carboxyl-terminal region, whereas Prx V and Prx VI, members of the atypical 2-Cys and 1-Cys subgroups, respectively, do not contain this second conserved Cys. On the other hand, Prxs activity can be regulated by phosphorylation and proteolysis processes in addition to overoxidation. Taken together, this study suggest that the generation of the oxidative stress which caused neurodegeneration may couple with produced Prxs and the reverse is true. However, this argument is still unclear on account of the difficulties of the direct observation of the reactive oxygen species due to their biological lifetime is short. Thus, experiments will be required to solve these problems and to comprehend the actual role of Prxs in neurodegeneration.

  12. Pantethine treatment is effective in recovering the disease phenotype induced by ketogenic diet in a pantothenate kinase-associated neurodegeneration mouse model

    NARCIS (Netherlands)

    Brunetti, Dario; Dusi, Sabrina; Giordano, Carla; Lamperti, Costanza; Morbin, Michela; Fugnanesi, Valeria; Marchet, Silvia; Fagiolari, Gigliola; Sibon, Ody; Moggio, Maurizio; d'Amati, Giulia; Tiranti, Valeria

    2014-01-01

    Pantothenate kinase-associated neurodegeneration, caused by mutations in the PANK2 gene, is an autosomal recessive disorder characterized by dystonia, dysarthria, rigidity, pigmentary retinal degeneration and brain iron accumulation. PANK2 encodes the mitochondrial enzyme pantothenate kinase type 2,

  13. LABORATORY MODEL OF CHRONIC STAPHYLOCOCCAL TONSILLITIS

    OpenAIRE

    Shkodovska NYu; Zhdamarova LA; Mani Hans; Zhyravlev AS; Babych EM; Ryzhkova TA; Kalinichenko SV; Sklyar NI; Balak AK

    2013-01-01

    Investigation and development of new preparations for chronic tonsillitis (CT) treatment and prevention requires application of appropriate laboratory model. For the development of CT laboratory model chronic pyoinflammatory process was reproduced in chinchilla rabbits using Staphylococcus aureus 209 Р (АТСС 6538-Р) reference-strain. Preliminary sensitizing of animals with inactivated causative agent and repeated infection with the reference-strain made it possible to work out reproducible m...

  14. Progressive inflammation-mediated neurodegeneration after traumatic brain or spinal cord injury.

    Science.gov (United States)

    Faden, Alan I; Wu, Junfang; Stoica, Bogdan A; Loane, David J

    2016-02-01

    Traumatic brain injury (TBI) has been linked to dementia and chronic neurodegeneration. Described initially in boxers and currently recognized across high contact sports, the association between repeated concussion (mild TBI) and progressive neuropsychiatric abnormalities has recently received widespread attention, and has been termed chronic traumatic encephalopathy. Less well appreciated are cognitive changes associated with neurodegeneration in the brain after isolated spinal cord injury. Also under-recognized is the role of sustained neuroinflammation after brain or spinal cord trauma, even though this relationship has been known since the 1950s and is supported by more recent preclinical and clinical studies. These pathological mechanisms, manifested by extensive microglial and astroglial activation and appropriately termed chronic traumatic brain inflammation or chronic traumatic inflammatory encephalopathy, may be among the most important causes of post-traumatic neurodegeneration in terms of prevalence. Importantly, emerging experimental work demonstrates that persistent neuroinflammation can cause progressive neurodegeneration that may be treatable even weeks after traumatic injury.

  15. The role of Ser129 phosphorylation of α-synuclein in neurodegeneration of Parkinson's disease: a review of in vivo models.

    Science.gov (United States)

    Sato, Hiroyasu; Kato, Takeo; Arawaka, Shigeki

    2013-01-01

    Parkinson's disease is the most common neurodegenerative movement disorder. The motor impairments of Parkinson's disease are caused by the loss of dopaminergic neurons in the substantia nigra and associated with the appearance of fibrillar aggregates of α-synuclein (α-syn) called Lewy bodies. Approximately 90% of α-syn deposited in Lewy bodies is phosphorylated at serine 129 (Ser129). In contrast, only 4% or less of total α-syn is phosphorylated at this residue in the normal brain. This suggests that the accumulation of Ser129-phosphorylated α-syn leads to the formation of Lewy bodies and dopaminergic neurodegeneration in Parkinson's disease. Our laboratory and others have performed experiments using in vivo models of Parkinson's disease to elucidate the role of increased Ser129 phosphorylation in α-syn neurotoxicity. However, there has been a lack of consistency among these models. In this review, we summarize the main findings regarding the relationship between Ser129 phosphorylation and α-syn neurotoxicity, and examine the differences among models. We further discuss the role of Ser129 phosphorylation in α-syn aggregation and the future directions to test the potential of Ser129 phosphorylation as a therapeutic target for slowing the progression of Parkinson's disease.

  16. Trimethyltin-induced hippocampal neurodegeneration: A mechanism-based review.

    Science.gov (United States)

    Lee, Sueun; Yang, Miyoung; Kim, Jinwook; Kang, Sohi; Kim, Juhwan; Kim, Jong-Choon; Jung, Chaeyong; Shin, Taekyun; Kim, Sung-Ho; Moon, Changjong

    2016-07-01

    Trimethyltin (TMT), a toxic organotin compound, induces neurodegeneration selectively involving the limbic system and especially prominent in the hippocampus. Neurodegeneration-associated behavioral abnormalities, such as hyperactivity, aggression, cognitive deficits, and epileptic seizures, occur in both exposed humans and experimental animal models. Previously, TMT had been used generally in industry and agriculture, but the use of TMT has been limited because of its dangers to people. TMT has also been used to make a promising in vivo rodent model of neurodegeneration because of its region-specific characteristics. Several studies have demonstrated that TMT-treated animal models of epileptic seizures can be used as tools for researching hippocampus-specific neurotoxicity as well as the molecular mechanisms leading to hippocampal neurodegeneration. This review summarizes the in vivo and in vitro underlying mechanisms of TMT-induced hippocampal neurodegeneration (oxidative stress, inflammatory responses, and neuronal death/survival). Thus, the present review may be helpful to provide general insights into TMT-induced neurodegeneration and approaches to therapeutic interventions for neurodegenerative diseases, including temporal lobe epilepsy. PMID:27450702

  17. Pantothenate Kinase-Associated Neurodegeneration

    OpenAIRE

    Meitinger, Thomas; Prokisch, Holger; Hartig, Monika B.; Klopstock, Thomas

    2012-01-01

    Pantothenate kinase-associated neurodegeneration (PKAN) is a hereditary progressive disorder and the most frequent form of neurodegeneration with brain iron accumulation (NBIA). PKAN patients present with a progressive movement disorder, dysarthria, cognitive impairment and retinitis pigmentosa. In magnetic resonance imaging, PKAN patients exhibit the pathognonomic "eye of the tiger" sign in the globus pallidus which corresponds to iron accumulation and gliosis as shown in neuropathological e...

  18. Animal models for investigating chronic pancreatitis

    Directory of Open Access Journals (Sweden)

    Aghdassi Alexander A

    2011-12-01

    Full Text Available Abstract Chronic pancreatitis is defined as a continuous or recurrent inflammatory disease of the pancreas characterized by progressive and irreversible morphological changes. It typically causes pain and permanent impairment of pancreatic function. In chronic pancreatitis areas of focal necrosis are followed by perilobular and intralobular fibrosis of the parenchyma, by stone formation in the pancreatic duct, calcifications in the parenchyma as well as the formation of pseudocysts. Late in the course of the disease a progressive loss of endocrine and exocrine function occurs. Despite advances in understanding the pathogenesis no causal treatment for chronic pancreatitis is presently available. Thus, there is a need for well characterized animal models for further investigations that allow translation to the human situation. This review summarizes existing experimental models and distinguishes them according to the type of pathological stimulus used for induction of pancreatitis. There is a special focus on pancreatic duct ligation, repetitive overstimulation with caerulein and chronic alcohol feeding. Secondly, attention is drawn to genetic models that have recently been generated and which mimic features of chronic pancreatitis in man. Each technique will be supplemented with data on the pathophysiological background of the model and their limitations will be discussed.

  19. Animal models for investigating chronic pancreatitis.

    Science.gov (United States)

    Aghdassi, Alexander A; Mayerle, Julia; Christochowitz, Sandra; Weiss, Frank U; Sendler, Matthias; Lerch, Markus M

    2011-01-01

    Chronic pancreatitis is defined as a continuous or recurrent inflammatory disease of the pancreas characterized by progressive and irreversible morphological changes. It typically causes pain and permanent impairment of pancreatic function. In chronic pancreatitis areas of focal necrosis are followed by perilobular and intralobular fibrosis of the parenchyma, by stone formation in the pancreatic duct, calcifications in the parenchyma as well as the formation of pseudocysts. Late in the course of the disease a progressive loss of endocrine and exocrine function occurs. Despite advances in understanding the pathogenesis no causal treatment for chronic pancreatitis is presently available. Thus, there is a need for well characterized animal models for further investigations that allow translation to the human situation. This review summarizes existing experimental models and distinguishes them according to the type of pathological stimulus used for induction of pancreatitis. There is a special focus on pancreatic duct ligation, repetitive overstimulation with caerulein and chronic alcohol feeding. Secondly, attention is drawn to genetic models that have recently been generated and which mimic features of chronic pancreatitis in man. Each technique will be supplemented with data on the pathophysiological background of the model and their limitations will be discussed. PMID:22133269

  20. Neurodegeneration med jernakkumulation i hjernen

    DEFF Research Database (Denmark)

    Bertelsen, Maria; Hansen, Lars Kjærsgaard

    2015-01-01

    Neurodegeneration with brain iron accumulation (NBIA) is a heterogeneous group of syndromes. Whereas NBIA1 (panto-thenate kinase-associated neurodegeneration) has been known since 1922, some of the other diseases in the NBIA group have just been known for a few years. We present the case of a 16-......-year-old man who recently was diagnosed with NBIA4. He had had neurodegenerative symptoms since he was eight years old. The typical MRI findings in the basal ganglia were important in diagnosing NBIA. Furthermore gait analysis and specific genetic testing were performed....

  1. Acute and chronic metal exposure impairs locomotion activity in Drosophila melanogaster: a model to study Parkinsonism.

    Science.gov (United States)

    Bonilla-Ramirez, Leonardo; Jimenez-Del-Rio, Marlene; Velez-Pardo, Carlos

    2011-12-01

    The biometals iron (Fe), manganese (Mn) and copper (Cu) have been associated to Parkinson's disease (PD) and Parkinsonism. In this work, we report for the first time that acute (15 mM for up to 5 days) or chronic (0.5 mM for up to 15 days) Fe, Mn and Cu exposure significantly reduced life span and locomotor activity (i.e. climbing capabilities) in Drosophila melanogaster. It is shown that the concentration of those biometals dramatically increase in Drosophila's brain acutely or chronically fed with metal. We demonstrate that the metal accumulation in the fly's head is associated with the neurodegeneration of several dopaminergic neuronal clusters. Interestingly, it is found that the PPL2ab DAergic neuronal cluster was erode by the three metals in acute and chronic metal exposure and the PPL3 DAergic cluster was also erode by the three metals but in acute metal exposure only. Furthermore, we found that the chelator desferoxamine, ethylenediaminetetraacetic acid, and D: -penicillamine were able to protect but not rescue D. melanogaster against metal intoxication. Taken together these data suggest that iron, manganese and copper are capable to destroy DAergic neurons in the fly's brain, thereby impairing their movement capabilities. This work provides for the first time metal-induced Parkinson-like symptoms in D. melanogaster. Understanding therefore the effects of biometals in the Drosophila model may provide insights into the toxic effect of metal ions and more effective therapeutic approaches to Parkinsonism. PMID:21594680

  2. Neurotrophic effects of a cyanine dye via the PI3K-Akt pathway: attenuation of motor discoordination and neurodegeneration in an ataxic animal model.

    Directory of Open Access Journals (Sweden)

    Hitomi Ohta

    Full Text Available BACKGROUND: Neurotrophic factors may be future therapeutic agents for neurodegenerative disease. In the screening of biologically active molecules for neurotrophic potency, we found that a photosensitizing cyanine dye, NK-4, had remarkable neurotrophic activities and was a potent radical scavenger. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we evaluated the effect of NK-4 on the protection of neurons against oxidative damage and investigated the associated intracellular signaling pathways. Subsequently, we evaluated the effect of NK-4 in an animal model of neurodegeneration. In vitro, NK-4 showed dose-dependent protection of PC12 cells from toxicity induced by oxidative stress caused by hydrogen peroxide (H(2O(2 or 6-hydroxydopamine (6-OHDA. Comparison of extracellular signal-regulated kinase signaling pathways between treatment with NK-4 and nerve growth factor (NGF using K252a, an inhibitor of the NGF receptor TrkA, revealed that NK-4 activity occurs independently of NGF receptors. LY294002, a phosphatidylinositol 3-kinase (PI3K inhibitor, blocked the protective effect of NK-4, and NK-4 caused activation of Akt/protein kinase B, a downstream effector of PI3K. These results suggest that the neuroprotective effects of NK-4 are mediated by the PI3K-Akt signaling pathway. NK-4 treatment also attenuated stress-induced activation of SAPK/JNK, which suggests that NK-4 activates a survival signaling pathway and inhibits stress-activated apoptotic pathways independently of the TrkA receptor in neuronal cells. In vivo, administration of NK-4 improved motor coordination in genetic ataxic hamsters, as assessed by rota-rod testing. Histological analysis showed that cerebellar atrophy was significantly attenuated by NK-4 treatment. Notably, the Purkinje cell count in the treated group was threefold higher than that in the vehicle group. CONCLUSIONS/SIGNIFICANCE: These results suggest that NK-4 is a potential agent for therapy for neurodegenerative

  3. Glucocerebrosidase deficiency accelerates the accumulation of proteinase K-resistant α-synuclein and aggravates neurodegeneration in a Drosophila model of Parkinson's disease.

    Science.gov (United States)

    Suzuki, Mari; Fujikake, Nobuhiro; Takeuchi, Toshihide; Kohyama-Koganeya, Ayako; Nakajima, Kazuki; Hirabayashi, Yoshio; Wada, Keiji; Nagai, Yoshitaka

    2015-12-01

    Alpha-synuclein (αSyn) plays a central role in the pathogenesis of Parkinson's disease (PD) and dementia with Lewy bodies (DLB). Recent multicenter genetic studies have revealed that mutations in the glucocerebrosidase 1 (GBA1) gene, which are responsible for Gaucher's disease, are strong risk factors for PD and DLB. However, the mechanistic link between the functional loss of glucocerebrosidase (GCase) and the toxicity of αSyn in vivo is not fully understood. In this study, we employed Drosophila models to examine the effect of GCase deficiency on the neurotoxicity of αSyn and its molecular mechanism. Behavioral and histological analyses showed that knockdown of the Drosophila homolog of GBA1 (dGBA1) exacerbates the locomotor dysfunction, loss of dopaminergic neurons and retinal degeneration of αSyn-expressing flies. This phenotypic aggravation was associated with the accumulation of proteinase K (PK)-resistant αSyn, rather than with changes in the total amount of αSyn, raising the possibility that glucosylceramide (GlcCer), a substrate of GCase, accelerates the misfolding of αSyn. Indeed, in vitro experiments revealed that GlcCer directly promotes the conversion of recombinant αSyn into the PK-resistant form, representing a toxic conformational change. Similar to dGBA1 knockdown, knockdown of the Drosophila homolog of β-galactosidase (β-Gal) also aggravated locomotor dysfunction of the αSyn flies, and its substrate GM1 ganglioside accelerated the formation of PK-resistant αSyn. Our findings suggest that the functional loss of GCase or β-Gal promotes the toxic conversion of αSyn via aberrant interactions between αSyn and their substrate glycolipids, leading to the aggravation of αSyn-mediated neurodegeneration.

  4. Neurodegeneration in a Drosophila model of adrenoleukodystrophy: the roles of the Bubblegum and Double bubble acyl-CoA synthetases

    Directory of Open Access Journals (Sweden)

    Anna Sivachenko

    2016-04-01

    Full Text Available Debilitating neurodegenerative conditions with metabolic origins affect millions of individuals worldwide. Still, for most of these neurometabolic disorders there are neither cures nor disease-modifying therapies, and novel animal models are needed for elucidation of disease pathology and identification of potential therapeutic agents. To date, metabolic neurodegenerative disease has been modeled in animals with only limited success, in part because existing models constitute analyses of single mutants and have thus overlooked potential redundancy within metabolic gene pathways associated with disease. Here, we present the first analysis of a very-long-chain acyl-CoA synthetase (ACS double mutant. We show that the Drosophila bubblegum (bgm and double bubble (dbb genes have overlapping functions, and that the consequences of double knockout of both bubblegum and double bubble in the fly brain are profound, affecting behavior and brain morphology, and providing the best paradigm to date for an animal model of adrenoleukodystrophy (ALD, a fatal childhood neurodegenerative disease associated with the accumulation of very-long-chain fatty acids. Using this more fully penetrant model of disease to interrogate brain morphology at the level of electron microscopy, we show that dysregulation of fatty acid metabolism via disruption of ACS function in vivo is causal of neurodegenerative pathologies that are evident in both neuronal cells and their supporting cell populations, and leads ultimately to lytic cell death in affected areas of the brain. Finally, in an extension of our model system to the study of human disease, we describe our identification of an individual with leukodystrophy who harbors a rare mutation in SLC27a6 (encoding a very-long-chain ACS, a human homolog of bgm and dbb.

  5. Optimization of a 3D Dynamic Culturing System for In Vitro Modeling of Frontotemporal Neurodegeneration-Relevant Pathologic Features.

    Science.gov (United States)

    Tunesi, Marta; Fusco, Federica; Fiordaliso, Fabio; Corbelli, Alessandro; Biella, Gloria; Raimondi, Manuela T

    2016-01-01

    Frontotemporal lobar degeneration (FTLD) is a severe neurodegenerative disorder that is diagnosed with increasing frequency in clinical setting. Currently, no therapy is available and in addition the molecular basis of the disease are far from being elucidated. Consequently, it is of pivotal importance to develop reliable and cost-effective in vitro models for basic research purposes and drug screening. To this respect, recent results in the field of Alzheimer's disease have suggested that a tridimensional (3D) environment is an added value to better model key pathologic features of the disease. Here, we have tried to add complexity to the 3D cell culturing concept by using a microfluidic bioreactor, where cells are cultured under a continuous flow of medium, thus mimicking the interstitial fluid movement that actually perfuses the body tissues, including the brain. We have implemented this model using a neuronal-like cell line (SH-SY5Y), a widely exploited cell model for neurodegenerative disorders that shows some basic features relevant for FTLD modeling, such as the release of the FTLD-related protein progranulin (PRGN) in specific vesicles (exosomes). We have efficiently seeded the cells on 3D scaffolds, optimized a disease-relevant oxidative stress experiment (by targeting mitochondrial function that is one of the possible FTLD-involved pathological mechanisms) and evaluated cell metabolic activity in dynamic culture in comparison to static conditions, finding that SH-SY5Y cells cultured in 3D scaffold are susceptible to the oxidative damage triggered by a mitochondrial-targeting toxin (6-OHDA) and that the same cells cultured in dynamic conditions kept their basic capacity to secrete PRGN in exosomes once recovered from the bioreactor and plated in standard 2D conditions. We think that a further improvement of our microfluidic system may help in providing a full device where assessing basic FTLD-related features (including PRGN dynamic secretion) that may be

  6. Optimization of a 3D Dynamic Culturing System for In Vitro Modeling of Frontotemporal Neurodegeneration-Relevant Pathologic Features

    Science.gov (United States)

    Tunesi, Marta; Fusco, Federica; Fiordaliso, Fabio; Corbelli, Alessandro; Biella, Gloria; Raimondi, Manuela T.

    2016-01-01

    Frontotemporal lobar degeneration (FTLD) is a severe neurodegenerative disorder that is diagnosed with increasing frequency in clinical setting. Currently, no therapy is available and in addition the molecular basis of the disease are far from being elucidated. Consequently, it is of pivotal importance to develop reliable and cost-effective in vitro models for basic research purposes and drug screening. To this respect, recent results in the field of Alzheimer’s disease have suggested that a tridimensional (3D) environment is an added value to better model key pathologic features of the disease. Here, we have tried to add complexity to the 3D cell culturing concept by using a microfluidic bioreactor, where cells are cultured under a continuous flow of medium, thus mimicking the interstitial fluid movement that actually perfuses the body tissues, including the brain. We have implemented this model using a neuronal-like cell line (SH-SY5Y), a widely exploited cell model for neurodegenerative disorders that shows some basic features relevant for FTLD modeling, such as the release of the FTLD-related protein progranulin (PRGN) in specific vesicles (exosomes). We have efficiently seeded the cells on 3D scaffolds, optimized a disease-relevant oxidative stress experiment (by targeting mitochondrial function that is one of the possible FTLD-involved pathological mechanisms) and evaluated cell metabolic activity in dynamic culture in comparison to static conditions, finding that SH-SY5Y cells cultured in 3D scaffold are susceptible to the oxidative damage triggered by a mitochondrial-targeting toxin (6-OHDA) and that the same cells cultured in dynamic conditions kept their basic capacity to secrete PRGN in exosomes once recovered from the bioreactor and plated in standard 2D conditions. We think that a further improvement of our microfluidic system may help in providing a full device where assessing basic FTLD-related features (including PRGN dynamic secretion) that may

  7. Neurodegeneration in the diabetic eye

    DEFF Research Database (Denmark)

    Simó, Rafael; Hernández, Cristina; Bandello, F;

    2014-01-01

    Diabetic retinopathy (DR), one of the leading causes of preventable blindness, has been considered a microcirculatory disease of the retina. However, there is emerging evidence to suggest that retinal neurodegeneration is an early event in the pathogenesis of DR, which participates in the develop...

  8. Senescence-accelerated mouse (SAM) with special references to neurodegeneration models, SAMP8 and SAMP10 mice.

    Science.gov (United States)

    Takeda, Toshio

    2009-04-01

    The SAM strains, a group of related inbred strains consisting of senescence-prone inbred strains (SAMP) and senescence-resistant inbred strains (SAMR), have been successfully developed by selective inbreeding of the AKR/J strain of mice donated by the Jackson laboratory in 1968. The characteristic feature of aging common to the SAMP and SAMR is accelerated senescence and normal aging, respectively. Furthermore, SAMP and SAMR strains of mice manifest various pathobiological phenotypes spontaneously. Among SAMP strains, SAMP8 and SAMP10 mice show age-related behavioral deterioration such as deficits in learning and memory, emotional disorders (reduced anxiety-like behavior and depressive behavior) and altered circadian rhythm associated with certain pathological, biochemical and pharmacological changes. Here, the previous and recent literature on SAM mice are reviewed with an emphasis on SAMP8 and SAMP10 mice. A spontaneous model like SAM with distinct advantages over the gene-modified model is hoped by investigators to be used more widely as a biogerontological resource to explore the etiopathogenesis of accelerated senescence and neurodegenerative disorders. PMID:19199030

  9. Deleterious effects of lymphocytes at the early stage of neurodegeneration in an animal model of amyotrophic lateral sclerosis

    Directory of Open Access Journals (Sweden)

    Nakatsuji Yuji

    2011-02-01

    Full Text Available Abstract Background Non-neuronal cells, such as microglia and lymphocytes, are thought to be involved in the pathogenesis of amyotrophic lateral sclerosis (ALS. Previous studies have demonstrated neuroprotective effects of lymphocytes at the end stage of ALS, partly through induction of alternatively activated microglia (M2 microglia, which are neuroprotective. In this study, we investigated the role of lymphocytes in the early stage of the disease using an animal model of inherited ALS. Methods We established a transgenic mouse line overexpressing the familial ALS-associated G93A-SOD1 mutation (harboring a single amino acid substitution of glycine to alanine at codon 93 with depletion of the Rag2 gene (mSOD1/RAG2-/- mice, an animal model of inherited ALS lacking mature lymphocytes. Body weights, clinical scores and motor performance (hanging wire test of mSOD1/RAG2-/- mice were compared to those of mutant human SOD1 transgenic mice (mSOD1/RAG2+/+ mice. Activation of glial cells in the spinal cords of these mice was determined immunohistochemically, and the expression of mRNA for various inflammatory and anti-inflammatory molecules was evaluated. Results Clinical onset in mSOD1/RAG2-/- mice was significantly delayed, and the number of lectin-positive cells in spinal cord was increased at the early stage of disease when compared to mSOD1/RAG2+/+ mice. Quantitative RT-PCR confirmed that mRNA for Ym1, an M2 microglial-related molecule, was significantly increased in mSOD1/RAG2-/- mouse spinal cords at the early disease stage. Conclusions Compared with mSOD1/RAG2+/+ mice, mSOD1/RAG2-/- mice displayed delayed onset and increased M2 microglial activation at the early stage of disease. Thus, lymphocytes at the early pathological phase of ALS display a deleterious effect via inhibition of M2 microglial activation.

  10. Reducing C-terminal truncation mitigates synucleinopathy and neurodegeneration in a transgenic model of multiple system atrophy.

    Science.gov (United States)

    Bassil, Fares; Fernagut, Pierre-Olivier; Bezard, Erwan; Pruvost, Alain; Leste-Lasserre, Thierry; Hoang, Quyen Q; Ringe, Dagmar; Petsko, Gregory A; Meissner, Wassilios G

    2016-08-23

    Multiple system atrophy (MSA) is a sporadic orphan neurodegenerative disorder. No treatment is currently available to slow down the aggressive neurodegenerative process, and patients die within a few years after disease onset. The cytopathological hallmark of MSA is the accumulation of alpha-synuclein (α-syn) aggregates in affected oligodendrocytes. Several studies point to α-syn oligomerization and aggregation as a mediator of neurotoxicity in synucleinopathies including MSA. C-terminal truncation by the inflammatory protease caspase-1 has recently been implicated in the mechanisms that promote aggregation of α-syn in vitro and in neuronal cell models of α-syn toxicity. We present here an in vivo proof of concept of the ability of the caspase-1 inhibitor prodrug VX-765 to mitigate α-syn pathology and to mediate neuroprotection in proteolipid protein α-syn (PLP-SYN) mice, a transgenic mouse model of MSA. PLP-SYN and age-matched wild-type mice were treated for a period of 11 wk with VX-765 or placebo. VX-765 prevented motor deficits in PLP-SYN mice compared with placebo controls. More importantly, VX-765 was able to limit the progressive toxicity of α-syn aggregation by reducing its load in the striatum of PLP-SYN mice. Not only did VX-765 reduce truncated α-syn, but it also decreased its monomeric and oligomeric forms. Finally, VX-765 showed neuroprotective effects by preserving tyrosine hydroxylase-positive neurons in the substantia nigra of PLP-SYN mice. In conclusion, our results suggest that VX-765, a drug that was well tolerated in a 6 wk-long phase II trial in patients with epilepsy, is a promising candidate to achieve disease modification in synucleinopathies by limiting α-syn accumulation. PMID:27482103

  11. Reducing C-terminal-truncated alpha-synuclein by immunotherapy attenuates neurodegeneration and propagation in Parkinson's disease-like models.

    Science.gov (United States)

    Games, Dora; Valera, Elvira; Spencer, Brian; Rockenstein, Edward; Mante, Michael; Adame, Anthony; Patrick, Christina; Ubhi, Kiren; Nuber, Silke; Sacayon, Patricia; Zago, Wagner; Seubert, Peter; Barbour, Robin; Schenk, Dale; Masliah, Eliezer

    2014-07-01

    Parkinson's disease (PD) and dementia with Lewy bodies (DLB) are common neurodegenerative disorders of the aging population, characterized by progressive and abnormal accumulation of α-synuclein (α-syn). Recent studies have shown that C-terminus (CT) truncation and propagation of α-syn play a role in the pathogenesis of PD/DLB. Therefore, we explored the effect of passive immunization against the CT of α-syn in the mThy1-α-syn transgenic (tg) mouse model, which resembles the striato-nigral and motor deficits of PD. Mice were immunized with the new monoclonal antibodies 1H7, 5C1, or 5D12, all directed against the CT of α-syn. CT α-syn antibodies attenuated synaptic and axonal pathology, reduced the accumulation of CT-truncated α-syn (CT-α-syn) in axons, rescued the loss of tyrosine hydroxylase fibers in striatum, and improved motor and memory deficits. Among them, 1H7 and 5C1 were most effective at decreasing levels of CT-α-syn and higher-molecular-weight aggregates. Furthermore, in vitro studies showed that preincubation of recombinant α-syn with 1H7 and 5C1 prevented CT cleavage of α-syn. In a cell-based system, CT antibodies reduced cell-to-cell propagation of full-length α-syn, but not of the CT-α-syn that lacked the 118-126 aa recognition site needed for antibody binding. Furthermore, the results obtained after lentiviral expression of α-syn suggest that antibodies might be blocking the extracellular truncation of α-syn by calpain-1. Together, these results demonstrate that antibodies against the CT of α-syn reduce levels of CT-truncated fragments of the protein and its propagation, thus ameliorating PD-like pathology and improving behavioral and motor functions in a mouse model of this disease. PMID:25009275

  12. Effects of Copper and/or Cholesterol Overload on Mitochondrial Function in a Rat Model of Incipient Neurodegeneration

    Directory of Open Access Journals (Sweden)

    Nathalie Arnal

    2013-01-01

    Full Text Available Copper (Cu and cholesterol (Cho are both associated with neurodegenerative illnesses in humans and animals models. We studied the effect in Wistar rats of oral supplementation with trace amounts of Cu (3 ppm and/or Cho (2% in drinking water for 2 months. Increased amounts of nonceruloplasmin-bound Cu were observed in plasma and brain hippocampus together with a higher concentration of ceruloplasmin in plasma, cortex, and hippocampus. Cu, Cho, and the combined treatment Cu + Cho were able to induce a higher Cho/phospholipid ratio in mitochondrial membranes with a simultaneous decrease in glutathione content. The concentration of cardiolipin decreased and that of peroxidation products, conjugated dienes and lipoperoxides, increased. Treatments including Cho produced rigidization in both the outer and inner mitochondrial membranes with a simultaneous increase in permeability. No significant increase in Cyt C leakage to the cytosol was observed except in the case of cortex from rats treated with Cu and Cho nor were there any significant changes in caspase-3 activity and the Bax/Bcl2 ratio. However, the Aβ(1–42/(1–40 ratio was higher in cortex and hippocampus. These findings suggest an incipient neurodegenerative process induced by Cu or Cho that might be potentiated by the association of the two supplements.

  13. Neuroprotective and cognitive enhancing effects of a multi-targeted food intervention in an animal model of neurodegeneration and depression.

    Science.gov (United States)

    Borre, Yuliya E; Panagaki, Theodora; Koelink, Pim J; Morgan, Mary E; Hendriksen, Hendrikus; Garssen, Johan; Kraneveld, Aletta D; Olivier, Berend; Oosting, Ronald S

    2014-04-01

    Rising neurodegenerative and depressive disease prevalence combined with the lack of effective pharmaceutical treatments and dangerous side effects, has created an urgent need for the development of effective therapies. Considering that these disorders are multifactorial in origin, treatments designed to interfere at different mechanistic levels may be more effective than the traditional single-targeted pharmacological concepts. To that end, an experimental diet composed of zinc, melatonin, curcumin, piperine, eicosapentaenoic acid (EPA, 20:5, n-3), docosahexaenoic acid (DHA, 22:6, n-3), uridine, and choline was formulated. This diet was tested on the olfactory bulbectomized rat (OBX), an established animal model of depression and cognitive decline. The ingredients of the diet have been individually shown to attenuate glutamate excitoxicity, exert potent anti-oxidant/anti-inflammatory properties, and improve synaptogenesis; processes that all have been implicated in neurodegenerative diseases and in the cognitive deficits following OBX in rodents. Dietary treatment started 2 weeks before OBX surgery, continuing for 6 weeks in total. The diet attenuated OBX-induced cognitive and behavioral deficits, except long-term spatial memory. Ameliorating effects of the diet extended to the control animals. Furthermore, the experimental diet reduced hippocampal atrophy and decreased the peripheral immune activation in the OBX rats. The ameliorating effects of the diet on the OBX-induced changes were comparable to those of the NMDA receptor antagonist, memantine, a drug used for the management of Alzheimer's disease. This proof-of-concept study suggests that a diet, which simultaneously targets multiple disease etiologies, can prevent/impede the development of a neurodegenerative and depressive disorders and the concomitant cognitive deficits.

  14. Computational Biology: Modeling Chronic Renal Allograft Injury.

    Science.gov (United States)

    Stegall, Mark D; Borrows, Richard

    2015-01-01

    New approaches are needed to develop more effective interventions to prevent long-term rejection of organ allografts. Computational biology provides a powerful tool to assess the large amount of complex data that is generated in longitudinal studies in this area. This manuscript outlines how our two groups are using mathematical modeling to analyze predictors of graft loss using both clinical and experimental data and how we plan to expand this approach to investigate specific mechanisms of chronic renal allograft injury.

  15. Biopsychosocial model of chronic recurrent pain

    Directory of Open Access Journals (Sweden)

    Zlatka Rakovec-Felser

    2009-07-01

    Full Text Available Pain is not merely a symptom of disease but a complex independent phenomenon where psychological factors are always present (Sternberg, 1973. Especially by chronic, recurrent pain it's more constructive to think of chronic pain as a syndrome that evolves over time, involving a complex interaction of physiological/organic, psychological, and behavioural processes. Study of chronic recurrent functional pain covers tension form of headache. 50 suffering persons were accidentally chosen among those who had been seeking medical help over more than year ago. We tested their pain intensity and duration, extent of subjective experience of accommodation efforts, temperament characteristics, coping strategies, personal traits, the role of pain in intra- and interpersonal communication. At the end we compared this group with control group (without any manifest physical disorders and with analyse of variance (MANOVA. The typical person who suffers and expects medical help is mostly a woman, married, has elementary or secondary education, is about 40. Pain, seems to appear in the phase of stress-induced psychophysical fatigue, by persons with lower constitutional resistance to different influences, greater irritability and number of physiologic correlates of emotional tensions. Because of their ineffective style of coping, it seems they quickly exhausted their adaptation potential too. Through their higher level of social–field dependence, reactions of other persons (doctor, spouse could be important factors of reinforcement and social learning processes. In managing of chronic pain, especially such as tension headache is, it's very important to involve bio-psychosocial model of pain and integrative model of treatment. Intra- and inter-subjective psychological functions of pain must be recognised as soon as possible.

  16. Unconventional neurotransmitters, neurodegeneration and neuroprotection

    OpenAIRE

    M. Leonelli; A.S. Torrão; L.R.G. Britto

    2009-01-01

    Neurotransmitters are also involved in functions other than conventional signal transfer between nerve cells, such as development, plasticity, neurodegeneration, and neuroprotection. For example, there is a considerable amount of data indicating developmental roles for the glutamatergic, cholinergic, dopaminergic, GABA-ergic, and ATP/adenosine systems. In this review, we discuss the existing literature on these "new" functions of neurotransmitters in relation to some unconventional neurotrans...

  17. Early limited nitrosamine exposures exacerbate high fat diet-mediated type 2 diabetes and neurodegeneration

    Directory of Open Access Journals (Sweden)

    Longato Lisa

    2010-03-01

    Full Text Available Abstract Background Type 2 diabetes mellitus (T2DM and several types of neurodegeneration, including Alzheimer's, are linked to insulin-resistance, and chronic high dietary fat intake causes T2DM with mild neurodegeneration. Intra-cerebral Streptozotocin, a nitrosamine-related compound, causes neurodegeneration, whereas peripheral treatment causes DM. Hypothesis Limited early exposures to nitrosamines that are widely present in the environment, enhance the deleterious effects of high fat intake in promoting T2DM and neurodegeneration. Methods Long Evans rat pups were treated with N-nitrosodiethylamine (NDEA by i.p. injection, and upon weaning, they were fed with high fat (60%; HFD or low fat (5%; LFD chow for 8 weeks. Cerebella were harvested to assess gene expression, and insulin and insulin-like growth factor (IGF deficiency and resistance in the context of neurodegeneration. Results HFD ± NDEA caused T2DM, neurodegeneration with impairments in brain insulin, insulin receptor, IGF-2 receptor, or insulin receptor substrate gene expression, and reduced expression of tau and choline acetyltransferase (ChAT, which are regulated by insulin and IGF-1. In addition, increased levels of 4-hydroxynonenal and nitrotyrosine were measured in cerebella of HFD ± NDEA treated rats, and overall, NDEA+HFD treatment reduced brain levels of Tau, phospho-GSK-3β (reflecting increased GSK-3β activity, glial fibrillary acidic protein, and ChAT to greater degrees than either treatment alone. Finally, pro-ceramide genes, examined because ceramides cause insulin resistance, oxidative stress, and neurodegeneration, were significantly up-regulated by HFD and/or NDEA exposure, but the highest levels were generally present in brains of HFD+NDEA treated rats. Conclusions Early limited exposure to nitrosamines exacerbates the adverse effects of later chronic high dietary fat intake in promoting T2DM and neurodegeneration. The mechanism involves increased generation of

  18. Caffeine prevents d-galactose-induced cognitive deficits, oxidative stress, neuroinflammation and neurodegeneration in the adult rat brain.

    Science.gov (United States)

    Ullah, Faheem; Ali, Tahir; Ullah, Najeeb; Kim, Myeong Ok

    2015-11-01

    d-galactose has been considered a senescent model for age-related neurodegenerative disease. It induces oxidative stress which triggers memory impairment, neuroinflammation and neurodegeneration. Caffeine act as anti-oxidant and has been used in various model of neurodegenerative disease. Nevertheless, the effect of caffeine against d-galactose aging murine model of age-related neurodegenerative disease elucidated. Here, we investigated the neuroprotective effect of caffeine against d-galactose. We observed that chronic treatment of caffeine (3 mg/kg/day intraperitoneally (i.p) for 60 days) improved memory impairment and synaptic markers (Synaptophysin and PSD95) in the d-galactose treated rats. Chronic caffeine treatment reduced the oxidative stress via the reduction of 8-oxoguanine through immunofluorescence in the d-galactose-treated rats. Consequently caffeine treatment suppressed stress kinases p-JNK. Additionally, caffeine treatment significantly reduced the d-galactose-induced neuroinflammation through alleviation of COX-2, NOS-2, TNFα and IL-1β. Furthermore we also analyzed that caffeine reduced cytochrome C, Bax/Bcl2 ratio, caspase-9, caspase-3 and PARP-1 level. Moreover by evaluating the immunohistochemical results of Nissl and Fluro-Jade B staining showed that caffeine prevented the neurodegeneration in the d-galactose-treated rats. Our results showed that caffeine prevents the d-galactose-induced oxidative stress and consequently alleviated neuroinflammation and neurodegeneration; and synaptic dysfunction and memory impairment. Therefore, we could suggest that caffeine might be a dietary anti-oxidant agent and a good candidate for the age-related neurodegenerative disorders.

  19. The Chemistry of Neurodegeneration: Kinetic Data and Their Implications.

    Science.gov (United States)

    Pavlin, Matic; Repič, Matej; Vianello, Robert; Mavri, Janez

    2016-07-01

    kinetic molecular model of neurodegeneration itself. PMID:26081152

  20. DNA repair deficiency in neurodegeneration

    DEFF Research Database (Denmark)

    Jeppesen, Dennis Kjølhede; Bohr, Vilhelm A; Stevnsner, Tinna V.

    2011-01-01

    Deficiency in repair of nuclear and mitochondrial DNA damage has been linked to several neurodegenerative disorders. Many recent experimental results indicate that the post-mitotic neurons are particularly prone to accumulation of unrepaired DNA lesions potentially leading to progressive...... neurodegeneration. Nucleotide excision repair is the cellular pathway responsible for removing helix-distorting DNA damage and deficiency in such repair is found in a number of diseases with neurodegenerative phenotypes, including Xeroderma Pigmentosum and Cockayne syndrome. The main pathway for repairing oxidative...... base lesions is base excision repair, and such repair is crucial for neurons given their high rates of oxygen metabolism. Mismatch repair corrects base mispairs generated during replication and evidence indicates that oxidative DNA damage can cause this pathway to expand trinucleotide repeats, thereby...

  1. MicroRNAs in neurodegeneration.

    Science.gov (United States)

    Bushati, Natascha; Cohen, Stephen M

    2008-06-01

    microRNAs (miRNAs) act as post-transcriptional regulators of gene expression in diverse cellular and developmental processes. Many miRNAs are expressed specifically in the central nervous system, where they have roles in differentiation, neuronal survival, and potentially also in plasticity and learning. The absence of miRNAs in a variety of specific postmitotic neurons can lead to progressive loss of these neurons and behavioral defects reminiscent of the phenotypes seen in the pathologies of neurodegenerative diseases. Here, we review recent studies which provide a link between miRNA function and neurodegeneration. We also discuss evidence which might suggest involvement of miRNAs in the emergence or progression of neurodegenerative diseases.

  2. Human Interleukin-10 Gene Transfer Is Protective in a Rat Model of Parkinson’s Disease

    OpenAIRE

    Johnston, Louisa C; Su, Xiaomin; Maguire-Zeiss, Kathleen; Horovitz, Karen; Ankoudinova, Irina; Guschin, Dmitry; Hadaczek, Piotr; Federoff, Howard J.; Bankiewicz, Krystof; Forsayeth, John

    2008-01-01

    In Parkinson’s disease (PD) chronic inflammation occurs in the substantia nigra (SNc) concurrently with dop-aminergic neurodegeneration. In models of PD, microglial activation precedes neurodegeneration in the SNc, suggesting that the underlying pathogenesis involves a complex response in the nigrostriatal pathway, and that the innate immune system plays a significant role. We have investigated the neuroprotective effect of an ade-no-associated viral type-2 (AAV2) vector containing the comple...

  3. Animal models for investigating chronic pancreatitis

    OpenAIRE

    Aghdassi Alexander A; Mayerle Julia; Christochowitz Sandra; Weiss Frank U; Sendler Matthias; Lerch Markus M

    2011-01-01

    Abstract Chronic pancreatitis is defined as a continuous or recurrent inflammatory disease of the pancreas characterized by progressive and irreversible morphological changes. It typically causes pain and permanent impairment of pancreatic function. In chronic pancreatitis areas of focal necrosis are followed by perilobular and intralobular fibrosis of the parenchyma, by stone formation in the pancreatic duct, calcifications in the parenchyma as well as the formation of pseudocysts. Late in t...

  4. Chronic pain: Model of psychosomatic disorder (review

    Directory of Open Access Journals (Sweden)

    Chernus N.P.

    2011-12-01

    Full Text Available The article presents a detailed review on epidemiology, pathogenesis and interrelation of serotonin neuromedia-tor metabolism in the central nervous system in state of chronic pain and depression. It has been demonstrated that neurophysiological conditions serve as psychological defense of an individual. That mechanism has been proved to «transform» serious emotions onto the inner level (body and it assists in the development of psychosomatic disorders — chronic pain syndrome

  5. Genetics and inflammation in nerve injury-induced neurodegeneration

    OpenAIRE

    Lidman, Olle

    2003-01-01

    Neurodegeneration and inflammation are characteristic of many diseases of the central nervous system (CNS) and understanding the molecular networks that regulate these processes is of central importance for the development of effective therapies. Although the CNS has traditionally been regarded as an immuno privileged organ, immune reactions, including components of both local innate and systemic immunity, do occur in this tissue. Animal models can provide powerful tools for...

  6. Toll-like receptors in neurodegeneration

    DEFF Research Database (Denmark)

    Owens, Trevor

    2009-01-01

    with neurodegeneration. Accompanying roles for infection and inflammation, involvement in clinical neurodegenerative disorders, and heterogeneity of glial response are discussed. A "strength of signal" hypothesis is advanced in an attempt to reconcile evolutionarily selected and therefore likely beneficial effects...

  7. Development and application of chronic disease risk prediction models.

    Science.gov (United States)

    Oh, Sun Min; Stefani, Katherine M; Kim, Hyeon Chang

    2014-07-01

    Currently, non-communicable chronic diseases are a major cause of morbidity and mortality worldwide, and a large proportion of chronic diseases are preventable through risk factor management. However, the prevention efficacy at the individual level is not yet satisfactory. Chronic disease prediction models have been developed to assist physicians and individuals in clinical decision-making. A chronic disease prediction model assesses multiple risk factors together and estimates an absolute disease risk for the individual. Accurate prediction of an individual's future risk for a certain disease enables the comparison of benefits and risks of treatment, the costs of alternative prevention strategies, and selection of the most efficient strategy for the individual. A large number of chronic disease prediction models, especially targeting cardiovascular diseases and cancers, have been suggested, and some of them have been adopted in the clinical practice guidelines and recommendations of many countries. Although few chronic disease prediction tools have been suggested in the Korean population, their clinical utility is not as high as expected. This article reviews methodologies that are commonly used for developing and evaluating a chronic disease prediction model and discusses the current status of chronic disease prediction in Korea.

  8. Neurodegeneration in Autoimmune Optic Neuritis Is Associated with Altered APP Cleavage in Neurons and Up-Regulation of p53.

    Directory of Open Access Journals (Sweden)

    Sabine Herold

    Full Text Available Multiple Sclerosis (MS is a chronic autoimmune inflammatory disease of the central nervous system (CNS. Histopathological and radiological analysis revealed that neurodegeneration occurs early in the disease course. However, the pathological mechanisms involved in neurodegeneration are poorly understood. Myelin oligodendrocyte glycoprotein (MOG-induced experimental autoimmune encephalomyelitis (EAE in Brown Norway rats (BN-rats is a well-established animal model, especially of the neurodegenerative aspects of MS. Previous studies in this animal model indicated that loss of retinal ganglion cells (RGCs, the neurons that form the axons of the optic nerve, occurs in the preclinical phase of the disease and is in part independent of overt histopathological changes of the optic nerve. Therefore, the aim of this study was to identify genes which are involved in neuronal cell loss at different disease stages of EAE. Furthermore, genes that are highly specific for autoimmune-driven neurodegeneration were compared to those regulated in RGCs after optic nerve axotomy at corresponding time points. Using laser capture micro dissection we isolated RNA from unfixed RGCs and performed global transcriptome analysis of retinal neurons. In total, we detected 582 genes sequentially expressed in the preclinical phase and 1150 genes in the clinical manifest EAE (P 1.5. Furthermore, using ingenuity pathway analysis (IPA, we identified amyloid precursor protein (APP as a potential upstream regulator of changes in gene expression in the preclinical EAE but neither in clinical EAE, nor at any time point after optic nerve transection. Therefore, the gene pathway analysis lead to the hypothesis that altered cleavage of APP in neurons in the preclinical phase of EAE leads to the enhanced production of APP intracellular domain (AICD, which in turn acts as a transcriptional regulator and thereby initiates an apoptotic signaling cascade via up-regulation of the target gene p

  9. The topograpy of demyelination and neurodegeneration in the multiple sclerosis brain.

    Science.gov (United States)

    Haider, Lukas; Zrzavy, Tobias; Hametner, Simon; Höftberger, Romana; Bagnato, Francesca; Grabner, Günther; Trattnig, Siegfried; Pfeifenbring, Sabine; Brück, Wolfgang; Lassmann, Hans

    2016-03-01

    Multiple sclerosis is a chronic inflammatory disease with primary demyelination and neurodegeneration in the central nervous system. In our study we analysed demyelination and neurodegeneration in a large series of multiple sclerosis brains and provide a map that displays the frequency of different brain areas to be affected by these processes. Demyelination in the cerebral cortex was related to inflammatory infiltrates in the meninges, which was pronounced in invaginations of the brain surface (sulci) and possibly promoted by low flow of the cerebrospinal fluid in these areas. Focal demyelinated lesions in the white matter occurred at sites with high venous density and additionally accumulated in watershed areas of low arterial blood supply. Two different patterns of neurodegeneration in the cortex were identified: oxidative injury of cortical neurons and retrograde neurodegeneration due to axonal injury in the white matter. While oxidative injury was related to the inflammatory process in the meninges and pronounced in actively demyelinating cortical lesions, retrograde degeneration was mainly related to demyelinated lesions and axonal loss in the white matter. Our data show that accumulation of lesions and neurodegeneration in the multiple sclerosis brain does not affect all brain regions equally and provides the pathological basis for the selection of brain areas for monitoring regional injury and atrophy development in future magnetic resonance imaging studies.

  10. A Customizable Model for Chronic Disease Coordination: Lessons Learned From the Coordinated Chronic Disease Program.

    Science.gov (United States)

    Voetsch, Karen; Sequeira, Sonia; Chavez, Amy Holmes

    2016-01-01

    In 2012, the Centers for Disease Control and Prevention provided funding and technical assistance to all states and territories to implement the Coordinated Chronic Disease Program, marking the first time that all state health departments had federal resources to coordinate chronic disease prevention and control programs. This article describes lessons learned from this initiative and identifies key elements of a coordinated approach. We analyzed 80 programmatic documents from 21 states and conducted semistructured interviews with 7 chronic disease directors. Six overarching themes emerged: 1) focused agenda, 2) identification of functions, 3) comprehensive planning, 4) collaborative leadership and expertise, 5) managed resources, and 6) relationship building. These elements supported 4 essential activities: 1) evidence-based interventions, 2) strategic use of staff, 3) consistent communication, and 4) strong program infrastructure. On the basis of these elements and activities, we propose a conceptual model that frames overarching concepts, skills, and strategies needed to coordinate state chronic disease prevention and control programs. PMID:27032986

  11. Nucleotide Salvage Deficiencies, DNA Damage and Neurodegeneration

    Directory of Open Access Journals (Sweden)

    Michael Fasullo

    2015-04-01

    Full Text Available Nucleotide balance is critically important not only in replicating cells but also in quiescent cells. This is especially true in the nervous system, where there is a high demand for adenosine triphosphate (ATP produced from mitochondria. Mitochondria are particularly prone to oxidative stress-associated DNA damage because nucleotide imbalance can lead to mitochondrial depletion due to low replication fidelity. Failure to maintain nucleotide balance due to genetic defects can result in infantile death; however there is great variability in clinical presentation for particular diseases. This review compares genetic diseases that result from defects in specific nucleotide salvage enzymes and a signaling kinase that activates nucleotide salvage after DNA damage exposure. These diseases include Lesch-Nyhan syndrome, mitochondrial depletion syndromes, and ataxia telangiectasia. Although treatment options are available to palliate symptoms of these diseases, there is no cure. The conclusions drawn from this review include the critical role of guanine nucleotides in preventing neurodegeneration, the limitations of animals as disease models, and the need to further understand nucleotide imbalances in treatment regimens. Such knowledge will hopefully guide future studies into clinical therapies for genetic diseases.

  12. Effects of hypothalamic neurodegeneration on energy balance.

    Directory of Open Access Journals (Sweden)

    Allison Wanting Xu

    2005-12-01

    Full Text Available Normal aging in humans and rodents is accompanied by a progressive increase in adiposity. To investigate the role of hypothalamic neuronal circuits in this process, we used a Cre-lox strategy to create mice with specific and progressive degeneration of hypothalamic neurons that express agouti-related protein (Agrp or proopiomelanocortin (Pomc, neuropeptides that promote positive or negative energy balance, respectively, through their opposing effects on melanocortin receptor signaling. In previous studies, Pomc mutant mice became obese, but Agrp mutant mice were surprisingly normal, suggesting potential compensation by neuronal circuits or genetic redundancy. Here we find that Pomc-ablation mice develop obesity similar to that described for Pomc knockout mice, but also exhibit defects in compensatory hyperphagia similar to what occurs during normal aging. Agrp-ablation female mice exhibit reduced adiposity with normal compensatory hyperphagia, while animals ablated for both Pomc and Agrp neurons exhibit an additive interaction phenotype. These findings provide new insight into the roles of hypothalamic neurons in energy balance regulation, and provide a model for understanding defects in human energy balance associated with neurodegeneration and aging.

  13. A chronic ulcerative colitis model in rats

    Institute of Scientific and Technical Information of China (English)

    Li Zheng; Zhen Qiang Gao; Shu Xian Wang

    2000-01-01

    @@ INTRODUCTION In recent years, there have been many reports about animal model to investigate drugs for inflammatory bowel diseases (IBD). The experimental animal model often used is acetic acid-induced damage of colonic muscosa. In the present study, this animal model was investigated by administering various concentrations of TNBS.

  14. Interprofessional Collaborative Practice Models in Chronic Disease Management.

    Science.gov (United States)

    Southerland, Janet H; Webster-Cyriaque, Jennifer; Bednarsh, Helene; Mouton, Charles P

    2016-10-01

    Interprofessional collaboration in health has become essential to providing high-quality care, decreased costs, and improved outcomes. Patient-centered care requires synthesis of all the components of primary and specialty medicine to address patient needs. For individuals living with chronic diseases, this model is even more critical to obtain better health outcomes. Studies have shown shown that oral health and systemic disease are correlated as it relates to disease development and progression. Thus, inclusion of oral health in many of the existing and new collaborative models could result in better management of chronic illnesses and improve overall health outcomes. PMID:27671954

  15. Epigenetic mechanisms governing the process of neurodegeneration.

    Science.gov (United States)

    Qureshi, Irfan A; Mehler, Mark F

    2013-01-01

    Studies elucidating how and why neurodegeneration unfolds suggest that a complex interplay between genetic and environmental factors is responsible for disease pathogenesis. Recent breakthroughs in the field of epigenetics promise to advance our understanding of these mechanisms and to promote the development of useful and effective pre-clinical risk stratification strategies, molecular diagnostic and prognostic methods, and disease-modifying treatments.

  16. Chronic subordinate colony housing (CSC as a model of chronic psychosocial stress in male rats.

    Directory of Open Access Journals (Sweden)

    Kewir D Nyuyki

    Full Text Available Chronic subordinate colony housing (CSC is an adequate and reliable mouse model of chronic psychosocial stress, resulting in reduced body weight gain, reduced thymus and increased adrenal weight, long-lasting anxiety-like behaviour, and spontaneous colitis. Furthermore, CSC mice show increased corticotrophin (ACTH responsiveness to acute heterotypic stressors, suggesting a general mechanism which allows a chronically-stressed organism to adequately respond to a novel threat. Therefore, the aim of the present study was to extend the CSC model to another rodent species, namely male Wistar rats, and to characterize relevant physiological, immunological, and behavioural consequences; placing particular emphasis on changes in hypothalamo-pituitary-adrenal (HPA axis responsiveness to an acute heterotypic stressor. In line with previous mouse data, exposure of Wistar rats to 19 days of CSC resulted in a decrease in body weight gain and absolute thymus mass, mild colonic barrier defects and intestinal immune activation. Moreover, no changes in stress-coping behaviour or social preference were seen; again in agreement with the mouse paradigm. Most importantly, CSC rats showed an increased plasma corticosterone response to an acute heterotypic stressor (open arm, 5 min despite displaying similar basal levels and similar basal and stressor-induced plasma ACTH levels. In contrast to CSC mice, anxiety-related behaviour and absolute, as well as relative adrenal weights remained unchanged in CSC rats. In summary, the CSC paradigm could be established as an adequate model of chronic psychosocial stress in male rats. Our data further support the initial hypothesis that adrenal hyper-responsiveness to ACTH during acute heterotypic stressors represents a general adaptation, which enables a chronically-stressed organism to adequately respond to novel challenges.

  17. Traumatic stress, oxidative stress and posttraumatic stress disorder: neurodegeneration and the accelerated-aging hypothesis

    OpenAIRE

    Miller, Mark W.; Sadeh, Naomi

    2014-01-01

    Posttraumatic stress disorder (PTSD) is associated with elevated risk for a variety of age-related diseases and neurodegeneration. In this paper, we review evidence relevant to the hypothesis that chronic PTSD constitutes a form of persistent life stress that potentiates oxidative stress (OXS) and accelerates cellular aging. We provide an overview of empirical studies that have examined the effects of psychological stress on OXS, discuss the stress-perpetuating characteristics of PTSD, and th...

  18. Predictive validity of behavioural animal models for chronic pain

    OpenAIRE

    Berge, Odd-Geir

    2011-01-01

    Rodent models of chronic pain may elucidate pathophysiological mechanisms and identify potential drug targets, but whether they predict clinical efficacy of novel compounds is controversial. Several potential analgesics have failed in clinical trials, in spite of strong animal modelling support for efficacy, but there are also examples of successful modelling. Significant differences in how methods are implemented and results are reported means that a literature-based comparison between precl...

  19. A ferret model of COPD-related chronic bronchitis

    Science.gov (United States)

    Raju, S. Vamsee; Kim, Hyunki; Byzek, Stephen A.; Tang, Li Ping; Trombley, John E.; Jackson, Patricia; Rasmussen, Lawrence; Wells, J. Michael; Libby, Emily Falk; Winter, Lindy; Samuel, Sharon L.; Zinn, Kurt R.; Blalock, J. Edwin; Schoeb, Trenton R.; Dransfield, Mark T.; Rowe, Steven M.

    2016-01-01

    Chronic obstructive pulmonary disease (COPD) is the third leading cause of death in the US. The majority of COPD patients have symptoms of chronic bronchitis, which lacks specific therapies. A major impediment to therapeutic development has been the absence of animal models that recapitulate key clinical and pathologic features of human disease. Ferrets are well suited for the investigation of the significance of respiratory diseases, given prior data indicating similarities to human airway physiology and submucosal gland distribution. Here, we exposed ferrets to chronic cigarette smoke and found them to approximate complex clinical features of human COPD. Unlike mice, which develop solely emphysema, smoke-exposed ferrets exhibited markedly higher numbers of early-morning spontaneous coughs and sporadic infectious exacerbations as well as a higher level of airway obstruction accompanied by goblet cell metaplasia/hyperplasia and increased mucus expression in small airways, indicative of chronic bronchitis and bronchiolitis. Overall, we demonstrate the first COPD animal model exhibiting clinical and pathologic features of chronic bronchitis to our knowledge, providing a key advance that will greatly facilitate the preclinical development of novel treatments for this disease. PMID:27699245

  20. Models for Reactive and Chronic Depression in Infancy.

    Science.gov (United States)

    Field, Tiffany

    1986-01-01

    Presents studies on primates and human infants suggesting that maternal depression may predispose the infant to chronic depression. Findings also suggest that the effect of early separations from the mother may provide a model for reactive depression in the infant. (Author/BB)

  1. Huntingtin interacting proteins are genetic modifiers of neurodegeneration.

    Directory of Open Access Journals (Sweden)

    Linda S Kaltenbach

    2007-05-01

    Full Text Available Huntington's disease (HD is a fatal neurodegenerative condition caused by expansion of the polyglutamine tract in the huntingtin (Htt protein. Neuronal toxicity in HD is thought to be, at least in part, a consequence of protein interactions involving mutant Htt. We therefore hypothesized that genetic modifiers of HD neurodegeneration should be enriched among Htt protein interactors. To test this idea, we identified a comprehensive set of Htt interactors using two complementary approaches: high-throughput yeast two-hybrid screening and affinity pull down followed by mass spectrometry. This effort led to the identification of 234 high-confidence Htt-associated proteins, 104 of which were found with the yeast method and 130 with the pull downs. We then tested an arbitrary set of 60 genes encoding interacting proteins for their ability to behave as genetic modifiers of neurodegeneration in a Drosophila model of HD. This high-content validation assay showed that 27 of 60 orthologs tested were high-confidence genetic modifiers, as modification was observed with more than one allele. The 45% hit rate for genetic modifiers seen among the interactors is an order of magnitude higher than the 1%-4% typically observed in unbiased genetic screens. Genetic modifiers were similarly represented among proteins discovered using yeast two-hybrid and pull-down/mass spectrometry methods, supporting the notion that these complementary technologies are equally useful in identifying biologically relevant proteins. Interacting proteins confirmed as modifiers of the neurodegeneration phenotype represent a diverse array of biological functions, including synaptic transmission, cytoskeletal organization, signal transduction, and transcription. Among the modifiers were 17 loss-of-function suppressors of neurodegeneration, which can be considered potential targets for therapeutic intervention. Finally, we show that seven interacting proteins from among 11 tested were able to

  2. Supramolecular Inhibition of Neurodegeneration by a Synthetic Receptor.

    Science.gov (United States)

    Li, Shengke; Chen, Huanxian; Yang, Xue; Bardelang, David; Wyman, Ian W; Wan, Jianbo; Lee, Simon M Y; Wang, Ruibing

    2015-12-10

    Cucurbit[7]uril (CB[7]) was found in vitro to sequester the neurotoxins MPTP (N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) and MPP(+) (N-methyl-4-phenylpyridine). The CB[7]/neurotoxin host-guest complexes were studied in detail with (1)H NMR, electrospray ionization mass spectrometry, UV-visible spectroscopic titration, and molecular modeling by density functional theory. The results supported the macrocyclic encapsulation of MPTP and MPP(+), respectively, by CB[7] in aqueous solutions with relatively strong affinities and 1:1 host-guest binding stoichiometries in both cases. More importantly, the progression of MPTP/MPP(+) induced neurodegeneration (often referred to as a Parkinson's disease model) was observed to be strongly inhibited in vivo by the synthetic CB[7] receptor, as shown in zebrafish models. These results show that a supramolecular approach could lead to a new preventive and/or therapeutic strategy for counteracting the deleterious effects of some neurotoxins leading to neurodegeneration. PMID:26713100

  3. Reelin Proteolysis Affects Signaling Related to Normal Synapse Function and Neurodegeneration.

    Science.gov (United States)

    Lussier, April L; Weeber, Edwin J; Rebeck, G William

    2016-01-01

    Reelin is a neurodevelopmental protein important in adult synaptic plasticity and learning and memory. Recent evidence points to the importance for Reelin proteolysis in normal signaling and in cognitive function. Support for the dysfunction of Reelin proteolysis in neurodegeneration and cognitive dysfunction comes from postmortem analysis of Alzheimer's diseases (AD) tissues including cerebral spinal fluid (CSF), showing that levels of Reelin fragments are altered in AD compared to control. Potential key proteases involved in Reelin proteolysis have recently been defined, identifying processes that could be altered in neurodegeneration. Introduction of full-length Reelin and its proteolytic fragments into several mouse models of neurodegeneration and neuropsychiatric disorders quickly promote learning and memory. These findings support a role for Reelin in learning and memory and suggest further understanding of these processes are important to harness the potential of this pathway in treating cognitive symptoms in neuropsychiatric and neurodegenerative diseases. PMID:27065802

  4. Reelin proteolysis affects signaling related to normal synapse function and neurodegeneration

    Directory of Open Access Journals (Sweden)

    April L Lussier

    2016-03-01

    Full Text Available Reelin is a neurodevelopmental protein important in adult synaptic plasticity and learning and memory. Recent evidence points to the importance for Reelin proteolysis in normal signaling and in cognitive function. Support for the dysfunction of Reelin proteolysis in neurodegeneration and cognitive dysfunction comes from postmortem analysis of Alzheimer’s diseases (AD tissues including cerebral spinal fluid (CSF, showing that levels of Reelin fragments are altered in AD compared to control. Potential key proteases involved in Reelin proteolysis have recently been defined, identifying processes that could be altered in neurodegeneration. Introduction of full-length Reelin and its proteolytic fragments into several mouse models of neurodegeneration and neuropsychiatric disorders quickly promote learning and memory. These findings support a role for Reelin in learning and memory and suggest further understanding of these processes are important to harness the potential of this pathway in treating cognitive symptoms in neuropsychiatric and neurodegenerative diseases.

  5. A Stochastic Model for the Progression of Chronic Kidney Disease

    Directory of Open Access Journals (Sweden)

    Noura Anwar

    2014-11-01

    Full Text Available Multistate Markov models are well-established methods for estimating rates of transition between stages of chronic diseases. The objective of this study is to propose a stochastic model that describes the progression process of chronic kidney disease; CKD, estimate the mean time spent in each stage of disease stages that precedes developing end-stage renal failure and to estimate the life expectancy of a CKD patient. Continuoustime Markov Chain is appropriate to model CKD. Explicit expressions of transition probability functions are derived by solving system of forward Kolmogorov differential equations. Besides, the mean sojourn time, the state probability distribution, life expectancy of a CKD patient and expected number of patients in each state of the system are presented in the study. A numerical example is provided. Finally, concluding remarks and discussion are presented.

  6. In Vitro Metabolomic Approach to Hippocampal Neurodegeneration Induced by Trimethyltin.

    Science.gov (United States)

    Gasparova, Zdenka; Pronayova, Nada; Stara, Veronika; Liptaj, Tibor

    2016-04-01

    Search for indicators of neurodegenerative disorders is a hot topic where much research remains to be done. Our aim was to determine proton nuclear magnetic resonance ((1)H-NMR) spectra of brain metabolites in the trimethyltin (TMT) model of neurodegeneration. Male Wistar rats were subjected to TMT or saline and were sacrificed on day 3 or 24 after administration. (1)H-NMR spectrum was measured on the 600 MHz Varian VNMRS spectrometer in nano-probe in the volume of 40 μl of hippocampal extracts. TMT administration resulted in reduction of the hippocampal weight on day 24. Of the sixteen identified metabolite spectra, decreased aspartate and increased glutamine contents were observed in the initial asymptomatic stage of neurodegeneration on day 3 in hippocampal extracts of TMT exposed rats compared to sham animals. Increased myo-inositol content was observed on day 24. The presented data provide further knowledge about this experimental model and putative indicators of neuronal damage. PMID:26482153

  7. Does a loss of TDP-43 function cause neurodegeneration?

    Directory of Open Access Journals (Sweden)

    Xu Zuo-Shang

    2012-06-01

    Full Text Available Abstract In 2006, TAR-DNA binding protein 43 kDa (TDP-43 was discovered to be in the intracellular aggregates in the degenerating cells in amyotrophic lateral sclerosis (ALS and frontotemporal lobar degeneration (FTLD, two fatal neurodegenerative diseases [1,2]. ALS causes motor neuron degeneration leading to paralysis [3,4]. FTLD causes neuronal degeneration in the frontal and temporal cortices leading to personality changes and a loss of executive function [5]. The discovery triggered a flurry of research activity that led to the discovery of TDP-43 mutations in ALS patients and the widespread presence of TDP-43 aggregates in numerous neurodegenerative diseases. A key question regarding the role of TDP-43 is whether it causes neurotoxicity by a gain of function or a loss of function. The gain-of-function hypothesis has received much attention primarily based on the striking neurodegenerative phenotypes in numerous TDP-43-overexpression models. In this review, I will draw attention to the loss-of-function hypothesis, which postulates that mutant TDP-43 causes neurodegeneration by a loss of function, and in addition, by exerting a dominant-negative effect on the wild-type TDP-43 allele. Furthermore, I will discuss how a loss of function can cause neurodegeneration in patients where TDP-43 is not mutated, review the literature in model systems to discuss how the current data support the loss-of-function mechanism and highlight some key questions for testing this hypothesis in the future.

  8. Biology and Genetics of Prions Causing Neurodegeneration

    OpenAIRE

    Prusiner, SB

    2013-01-01

    Prions are proteins that acquire alternative conformations that become self-propagating. Transformation of proteins into prions is generally accompanied by an increase in β-sheet structure and a propensity to aggregate into oligomers. Some prions are beneficial and perform cellular functions, whereas others cause neurodegeneration. In mammals, more than a dozen proteins that become prions have been identified, and a similar number has been found in fungi. In both mammals and fungi, variations...

  9. Alcohol-Related Neurodegeneration and Recovery

    OpenAIRE

    Crews, Fulton T.

    2008-01-01

    Human studies have found alcoholics to have a smaller brain size than moderate drinkers; however, these studies are complicated by many uncontrollable factors, including timing and amount of alcohol use. Animal experiments, which can control many factors, have established that alcohol can cause damage to brain cells (i.e., neurons), which results in their loss of structure or function (i.e., neurodegeneration) in multiple brain regions, similar to the damage found in human alcoholics. In addi...

  10. Deletion of caspase-8 in mouse myeloid cells blocks microglia pro-inflammatory activation and confers protection in MPTP neurodegeneration model.

    Science.gov (United States)

    Kavanagh, Edel; Burguillos, Miguel Angel; Carrillo-Jimenez, Alejandro; Oliva-Martin, María José; Santiago, Martiniano; Rodhe, Johanna; Joseph, Bertrand; Venero, Jose Luis

    2015-09-01

    Increasing evidence involves sustained pro-inflammatory microglia activation in the pathogenesis of different neurodegenerative diseases, particularly Parkinson's disease (PD). We recently uncovered a completely novel and unexpected role for caspase-8 and its downstream substrates caspase-3/7 in the control of microglia activation and associated neurotoxicity to dopaminergic cells. To demonstrate the genetic evidence, mice bearing a floxed allele ofCASP8 were crossed onto a transgenic line expressing Cre under the control of Lysozyme 2 gene. Analysis of caspase-8 gene deletion in brain microglia demonstrated a high efficiency in activated but not in resident microglia. Mice were challenged with lipopolysaccharide, a potent inducer of microglia activation, or with MPTP, which promotes specific dopaminergic cell damage and consequent reactive microgliosis. In neither of these models, CASP8 deletion appeared to affect the overall number of microglia expressing the pan specific microglia marker, Iba1. In contrast, CD16/CD32 expression, a microglial pro-inflammatory marker, was found to be negatively affected upon CASP8 deletion. Expression of additional proinflammatory markers were also found to be reduced in response to lipopolysaccharide. Of importance, reduced pro-inflammatory microglia activation was accompanied by a significant protection of the nigro-striatal dopaminergic system in the MPTP mouse model of PD.

  11. The oxidative response in the chronic constriction injury model of neuropathic pain.

    NARCIS (Netherlands)

    Tan, E.C.T.H.; Bahrami, S.; Kozlov, A.V.; Kurvers, H.A.J.M.; Laak, H.J. ter; Nohl, H.; Redl, H.; Goris, R.J.A.

    2009-01-01

    BACKGROUND: In the chronic constriction injury model of rat neuropathic pain, oxidative stress as well as antioxidants superoxide dismutase and reduced glutathione (GSH) are important determinants of neuropathological and behavioral consequences. Studies of the chronic constriction injury model obse

  12. Beyond pain: modeling decision-making deficits in chronic pain

    Directory of Open Access Journals (Sweden)

    Leonardo Emanuel Hess

    2014-08-01

    Full Text Available Risky decision-making seems to be markedly disrupted in patients with chronic pain, probably due to the high cost that impose pain and negative mood on executive control functions. Patients’ behavioral performance on decision-making tasks such as the Iowa Gambling Task (IGT is characterized by selecting cards more frequently from disadvantageous than from advantageous decks, and by switching often between competing responses in comparison with healthy controls. In the present study, we developed a simple heuristic model to simulate individuals’ choice behavior by varying the level of decision randomness and the importance given to gains and losses. The findings revealed that the model was able to differentiate the behavioral performance of patients with chronic pain and healthy controls at the group, as well as at the individual level. The best fit of the model in patients with chronic pain was yielded when decisions were not based on previous choices and when gains were considered more relevant than losses. By contrast, the best account of the available data in healthy controls was obtained when decisions were based on previous experiences and losses loomed larger than gains. In conclusion, our model seems to provide useful information to measure each individual participant extensively, and to deal with the data on a participant-by-participant basis.

  13. Chronic gastritis rat model and role of inducing factors

    Institute of Scientific and Technical Information of China (English)

    Zun Xiang; Jian-Min Si; Huai-De Huang

    2004-01-01

    AIM: To establish an experimental animal model of chronic gastritis in a short term and to investigate the effects of several potential inflammation-inducing factors on rat gastric mucosa.METHODS: Twenty-four healthy, male SD rats were treated with intragastric administration of 600 mL/L alcohol, 20mmol/L sodium deoxycholate and 0.5 g/L ammonia (factor A), forage containing low levels of vitamins (factor B), and/or indomethacin (factor C), according to an L8(27)orthogonal design. After 12 wk, gastric antral and body mucosae were pathologically examined.RESULTS: Chronic gastritis model was successfully induced in rats treated with factor A for 12 wk. After the treatment of animals, the gastric mucosal inflammation was significantly different from that in controls, and the number of pyloric glands at antrum and parietal cells at body were obviously reduced (P<0.01). Indomethacin induced gastritis but without atrophy, and short-term vitamin deficiency failed to induce chronic gastritis and gastric atrophy, In addition,indomethacin and vitamin deficiency had no synergistic effect in inducing gastritis with the factor A. No atypical hyperplasia and intestinal metaplasia in the gastric antrum and body were observed in all rats studied.CONCLUSION: Combined intragastric administration of 600 mL/L alcohol, 20 mmol/L sodium deoxycholate and 0.5 g/L ammonia induces chronic gastritis and gastric atrophy in rats. Indomethacin induces chronic gastritis only.The long-term roles of these factors in gastric inflammation and carcinogenesis need to be further elucidated.

  14. Systemic Central Nervous System (CNS)-targeted Delivery of Neuropeptide Y (NPY) Reduces Neurodegeneration and Increases Neural Precursor Cell Proliferation in a Mouse Model of Alzheimer Disease.

    Science.gov (United States)

    Spencer, Brian; Potkar, Rewati; Metcalf, Jeff; Thrin, Ivy; Adame, Anthony; Rockenstein, Edward; Masliah, Eliezer

    2016-01-22

    Neuropeptide Y (NPY) is one of the most abundant protein transmitters in the central nervous system with roles in a variety of biological functions including: food intake, cardiovascular regulation, cognition, seizure activity, circadian rhythms, and neurogenesis. Reduced NPY and NPY receptor expression is associated with numerous neurodegenerative disorders including Alzheimer disease (AD). To determine whether replacement of NPY could ameliorate some of the neurodegenerative and behavioral pathology associated with AD, we generated a lentiviral vector expressing NPY fused to a brain transport peptide (apoB) for widespread CNS delivery in an APP-transgenic (tg) mouse model of AD. The recombinant NPY-apoB effectively reversed neurodegenerative pathology and behavioral deficits although it had no effect on accumulation of Aβ. The subgranular zone of the hippocampus showed a significant increase in proliferation of neural precursor cells without further differentiation into neurons. The neuroprotective and neurogenic effects of NPY-apoB appeared to involve signaling via ERK and Akt through the NPY R1 and NPY R2 receptors. Thus, widespread CNS-targeted delivery of NPY appears to be effective at reversing the neuronal and glial pathology associated with Aβ accumulation while also increasing NPC proliferation. Overall, increased delivery of NPY to the CNS for AD might be an effective therapy especially if combined with an anti-Aβ therapeutic.

  15. Protection against cognitive deficits and markers of neurodegeneration by long-term oral administration of melatonin in a transgenic model of Alzheimer disease.

    Science.gov (United States)

    Olcese, James M; Cao, Chuanhai; Mori, Takashi; Mamcarz, Malgorzata B; Maxwell, Anne; Runfeldt, Melissa J; Wang, Li; Zhang, Chi; Lin, Xiaoyang; Zhang, Guixin; Arendash, Gary W

    2009-08-01

    The neurohormone melatonin has been reported to exert anti-beta-amyloid aggregation, antioxidant, and anti-inflammatory actions in various in vitro and animal models. To comprehensively determine the potential for long-term melatonin treatment to protect Alzheimer's transgenic mice against cognitive impairment and development of beta-amyloid (Abeta) neuropathology, we administered melatonin (100 mg/L drinking water) to APP + PS1 double transgenic (Tg) mice from 2-2.5 months of age to their killing at age 7.5 months. A comprehensive behavioral battery administered during the final 6 weeks of treatment revealed that Tg mice given melatonin were protected from cognitive impairment in a variety of tasks of working memory, spatial reference learning/memory, and basic mnemonic function; Tg control mice remained impaired in all of these cognitive tasks/domains. Immunoreactive Abeta deposition was significantly reduced in hippocampus (43%) and entorhinal cortex (37%) of melatonin-treated Tg mice. Although soluble and oligomeric forms of Abeta1-40 and 1-42 were unchanged in the hippocampus and cortex of the same melatonin-treated Tg mice, their plasma Abeta levels were elevated. These Abeta results, together with our concurrent demonstration that melatonin suppresses Abeta aggregation in brain homogenates, are consistent with a melatonin-facilitated removal of Abeta from the brain. Inflammatory cytokines such as tumor necrosis factor (TNF)-alpha were decreased in hippocampus (but not plasma) of Tg+ melatonin mice. Finally, the cortical mRNA expression of three antioxidant enzymes (SOD-1, glutathione peroxidase, and catalase) was significantly reduced to non-Tg levels by long-term melatonin treatment in Tg mice. Thus, melatonin's cognitive benefits could involve its anti-Abeta aggregation, anti-inflammatory, and/or antioxidant properties. Our findings provide support for long-term melatonin therapy as a primary or complementary strategy for abating the progression of

  16. Establishing a cat model of chronic optic nerve compression injury

    Institute of Scientific and Technical Information of China (English)

    Feng Yu; Shaoji Yuan; Rongwei Zhang; Yicheng Lu; Meiqing Lou

    2009-01-01

    BACKGROUND:An animal model of chronic optic nerve injury is necessary to further understand the pathological mechanisms involved.OBJECTIVE:To establish a stabilized,chronic,optic nerve crush model,which is similar to the clinical situation to explore histopathological and optic electrophysiological changes involved in this injury.DESIGN,TIME AND SETTING:A randomized and controlled animal trial was performed at Shanghai Institute of Neurosurgery from May to October 2004.MATERIALS:A BAL3XRAY undetachable balloon and Magic-BD catheter were provided by BLAT,France;JX-2000 biological signal processing system by Second Military Medical University of Chinese PLA,China;inverted phase contrast microscopy by Olympus,Japan.METHODS:A total of twenty normal adult cats were randomly assigned to control (n = 5) and model (n = 15) groups,according to different doses of contrast agent injected through balloons as follows:0.2 mL injection,0.25 mL injection,and 0.35 mL injection,with each group containing 5 animals.Imitating the clinical pterion approach,the optic nerves were exposed using micro-surgical methods.An engorged undetachable balloon was implanted beneath the nerve and connected to a catheter.Balloon size was controlled with a contrast agent injection (0.1 mL/10 min) to form an occupying lesion model similar to sellar tumors.MAIN OUTCOME MEASURES:The visually evoked potential examination was used to study optical electrophysiology changes in pre-post chronic optical nerve injury.Ultrastructural pathological changes to the optic nerve were analyzed by electron microscopy.RESULTS:During the early period (day 11 after modeling),visually evoked potential demonstrated no significant changes.In the late period (day 51 after modeling),recorded VEP demonstrated that P1 wave latency was prolonged and P1 wave amplitude was obviously reduced.Following injury,the endoneurium,myelin sheath,lamella,axolemma,and axon appeared disordered.CONCLUSION:Results demonstrated that the chronic

  17. Resveratrol Neuroprotection in a Chronic Mouse Model of Multiple Sclerosis

    OpenAIRE

    Zoe eFonseca-Kelly; Mayssa eNassrallah; Jorge eUribe; Khan, Reas S.; Kimberly eDine; Mahasweta eDutt; Shindler, Kenneth S.

    2012-01-01

    Resveratrol is a naturally-occurring polyphenol that activates SIRT1, an NAD-dependent deacetylase. SRT501, a pharmaceutical formulation of resveratrol with enhanced systemic absorption, prevents neuronal loss without suppressing inflammation in mice with relapsing experimental autoimmune encephalomyelitis (EAE), a model of multiple sclerosis. In contrast, resveratrol has been reported to suppress inflammation in chronic EAE, although neuroprotective effects were not evaluated. The current st...

  18. Traumatization and chronic pain: a further model of interaction

    Directory of Open Access Journals (Sweden)

    Egloff N

    2013-11-01

    Full Text Available Niklaus Egloff,1 Anna Hirschi,2 Roland von Känel1 1Department of General Internal Medicine, Division of Psychosomatic Medicine, Inselspital, University Hospital, Bern, Switzerland; 2Outpatient Clinic for Victims of Torture and War, Swiss Red Cross, Bern-Wabern, Switzerland Abstract: Up to 80% of patients with severe posttraumatic stress disorder are suffering from “unexplained” chronic pain. Theories about the links between traumatization and chronic pain have become the subject of increased interest over the last several years. We will give a short summary about the existing interaction models that emphasize particularly psychological and behavioral aspects of this interaction. After a synopsis of the most important psychoneurobiological mechanisms of pain in the context of traumatization, we introduce the hypermnesia–hyperarousal model, which focuses on two psychoneurobiological aspects of the physiology of learning. This hypothesis provides an answer to the hitherto open question about the origin of pain persistence and pain sensitization following a traumatic event and also provides a straightforward explanatory model for educational purposes. Keywords: posttraumatic stress disorder, chronic pain, hypermnesia, hypersensitivity, traumatization

  19. Attitudes of Doctors and Nurses toward the Chronic Care Model

    Directory of Open Access Journals (Sweden)

    Rolando Bonal Ruiz

    2015-06-01

    Full Text Available Background: the fact that chronic diseases replace traditional causes of morbidity and mortality in a country, or are on a par with major common health problems, demands the development of new strategies to address them. Objective: to explore attitudes of doctors and nurses from the Rolando López Peña Polyclinic toward the Chronic Care Model. Methods: a quantitative and qualitative cross-sectional study was conducted including the 22 family physicians and 26 nurses who provide care to patients with chronic diseases and were at the polyclinic at the time of the study. All were administered a 5 point Likert scale and a focus group interview, which was taped, transcribed and analyzed. Results: the attitudinal results correspond with the actions assessed in each component of the model, being the most common barriers: the lack of awareness and training on the new approaches to care of these patients, work overload created by other programs such as the maternal-child and vector control programs, uncertainties on the effectiveness of patient education and ignorance of the practice guidelines. Conclusions: favorable attitudes toward the introduction of the model to the practice of the family physician and nurse predominated as long as organizational changes are made and the suggestions of these service providers are put into practice with the support of the decision makers of the health sector.

  20. A novel model of chronic wounds: importance of redox imbalance and biofilm-forming bacteria for establishment of chronicity.

    Directory of Open Access Journals (Sweden)

    Sandeep Dhall

    Full Text Available Chronic wounds have a large impact on health, affecting ∼6.5 M people and costing ∼$25B/year in the US alone. We previously discovered that a genetically modified mouse model displays impaired healing similar to problematic wounds in humans and that sometimes the wounds become chronic. Here we show how and why these impaired wounds become chronic, describe a way whereby we can drive impaired wounds to chronicity at will and propose that the same processes are involved in chronic wound development in humans. We hypothesize that exacerbated levels of oxidative stress are critical for initiation of chronicity. We show that, very early after injury, wounds with impaired healing contain elevated levels of reactive oxygen and nitrogen species and, much like in humans, these levels increase with age. Moreover, the activity of anti-oxidant enzymes is not elevated, leading to buildup of oxidative stress in the wound environment. To induce chronicity, we exacerbated the redox imbalance by further inhibiting the antioxidant enzymes and by infecting the wounds with biofilm-forming bacteria isolated from the chronic wounds that developed naturally in these mice. These wounds do not re-epithelialize, the granulation tissue lacks vascularization and interstitial collagen fibers, they contain an antibiotic-resistant mixed bioflora with biofilm-forming capacity, and they stay open for several weeks. These findings are highly significant because they show for the first time that chronic wounds can be generated in an animal model effectively and consistently. The availability of such a model will significantly propel the field forward because it can be used to develop strategies to regain redox balance that may result in inhibition of biofilm formation and result in restoration of healthy wound tissue. Furthermore, the model can lead to the understanding of other fundamental mechanisms of chronic wound development that can potentially lead to novel therapies.

  1. Mortality model based on delays in progression of chronic diseases: alternative to cause elimination model.

    OpenAIRE

    Manton, K G; Patrick, C H; Stallard, E

    1980-01-01

    For the analysis of the impact of major chronic diseases on a population, a life table model is proposed in which the age at death due to specific cause (chronic disease) is postponed. Even though many of the major causes of death related to intrinsic aging processes are impossible to eliminate, these causes might be significantly delayed or retarded. To illustrate the use of this model, the effects of a delay of 5, 10, and 15 years in deaths due to three chronic degenerative diseases (cancer...

  2. Vascular Changes and Neurodegeneration in the Early Stages of Diabetic Retinopathy

    DEFF Research Database (Denmark)

    Jonsson, Karoline Boegeberg; Frydkjaer-Olsen, Ulrik; Grauslund, Jakob

    2016-01-01

    INTRODUCTION: Neurodegeneration is an early component of diabetic retinopathy (DR). It is unclear whether neurodegeneration is an independent factor or a consequence of damaged retinal vasculature. The aims of this study were to review the literature concerning neurodegeneration in diabetic...

  3. Early neurodegeneration progresses independently of microglial activation by heparan sulfate in the brain of mucopolysaccharidosis IIIB mice.

    Directory of Open Access Journals (Sweden)

    Jérôme Ausseil

    Full Text Available BACKGROUND: In mucopolysaccharidosis type IIIB, a lysosomal storage disease causing early onset mental retardation in children, the production of abnormal oligosaccharidic fragments of heparan sulfate is associated with severe neuropathology and chronic brain inflammation. We addressed causative links between the biochemical, pathological and inflammatory disorders in a mouse model of this disease. METHODOLOGY/PRINCIPAL FINDINGS: In cell culture, heparan sulfate oligosaccharides activated microglial cells by signaling through the Toll-like receptor 4 and the adaptor protein MyD88. CD11b positive microglial cells and three-fold increased expression of mRNAs coding for the chemokine MIP1alpha were observed at 10 days in the brain cortex of MPSIIIB mice, but not in MPSIIIB mice deleted for the expression of Toll-like receptor 4 or the adaptor protein MyD88, indicating early priming of microglial cells by heparan sulfate oligosaccharides in the MPSIIIB mouse brain. Whereas the onset of brain inflammation was delayed for several months in doubly mutant versus MPSIIIB mice, the onset of disease markers expression was unchanged, indicating similar progression of the neurodegenerative process in the absence of microglial cell priming by heparan sulfate oligosaccharides. In contrast to younger mice, inflammation in aged MPSIIIB mice was not affected by TLR4/MyD88 deficiency. CONCLUSIONS/SIGNIFICANCE: These results indicate priming of microglia by HS oligosaccharides through the TLR4/MyD88 pathway. Although intrinsic to the disease, this phenomenon is not a major determinant of the neurodegenerative process. Inflammation may still contribute to neurodegeneration in late stages of the disease, albeit independent of TLR4/MyD88. The results support the view that neurodegeneration is primarily cell autonomous in this pediatric disease.

  4. Bioimpedance modeling to monitor astrocytic response to chronically implanted electrodes

    Science.gov (United States)

    McConnell, G. C.; Butera, R. J.; Bellamkonda, R. V.

    2009-10-01

    The widespread adoption of neural prosthetic devices is currently hindered by our inability to reliably record neural signals from chronically implanted electrodes. The extent to which the local tissue response to implanted electrodes influences recording failure is not well understood. To investigate this phenomenon, impedance spectroscopy has shown promise for use as a non-invasive tool to estimate the local tissue response to microelectrodes. Here, we model impedance spectra from chronically implanted rats using the well-established Cole model, and perform a correlation analysis of modeled parameters with histological markers of astroglial scar, including glial fibrillary acid protein (GFAP) and 4',6-diamidino-2- phenylindole (DAPI). Correlations between modeled parameters and GFAP were significant for three parameters studied: Py value, Ro and |Z|1 kHz, and in all cases were confined to the first 100 µm from the interface. Py value was the only parameter also correlated with DAPI in the first 100 µm. Our experimental results, along with computer simulations, suggest that astrocytes are a predominant cellular player affecting electrical impedance spectra. The results also suggest that the largest contribution from reactive astrocytes on impedance spectra occurs in the first 100 µm from the interface, where electrodes are most likely to record electrical signals. These results form the basis for future approaches where impedance spectroscopy can be used to evaluate neural implants, evaluate strategies to minimize scar and potentially develop closed-loop prosthetic devices.

  5. Do telemonitoring projects of heart failure fit the Chronic Care Model?

    OpenAIRE

    Willemse, Evi; Adriaenssens, Jef; Dilles, Tinne; Remmen, Roy

    2014-01-01

    This study describes the characteristics of extramural and transmural telemonitoring projects on chronic heart failure in Belgium. It describes to what extent these telemonitoring projects coincide with the Chronic Care Model of Wagner.Background: The Chronic Care Model describes essential components for high-quality health care. Telemonitoring can be used to optimise home care for chronic heart failure. It provides a potential prospective to change the current care organisation.Methods: This...

  6. Activation of mTOR ameliorates fragile X premutation rCGG repeat-mediated neurodegeneration.

    Directory of Open Access Journals (Sweden)

    Yunting Lin

    Full Text Available Fragile X associated tremor/ataxia syndrome (FXTAS is a late onset neurodegenerative disorder caused by aberrant expansion of CGG repeats in 5' UTR of FMR1 gene. The elevated mRNA confers a toxic gain-of-function thought to be the critical event of pathogenesis. Expressing rCGG90 repeats of the human FMR1 5'UTR in Drosophila is sufficient to induce neurodegeneration. Rapamycin has been demonstrated to attenuate neurotoxicity by inducing autophagy in various animal models of neurodegenerative diseases. Surprisingly, we observed rapamycin exacerbated rCGG90-induced neurodegenerative phenotypes through an autophagy-independent mechanism. CGG90 expression levels of FXTAS flies exposed to rapamycin presented no significant differences. We further demonstrated that activation of the mammalian target of rapamycin (mTOR signaling could suppress neurodegeneration of FXTAS. These findings indicate that rapamycin will exacerbate neurodegeneration, and that enhancing autophagy is insufficient to alleviate neurotoxicity in FXTAS. Moreover, these results suggest mTOR and its downstream molecules as new therapeutic targets for FXTAS by showing significant protection against neurodegeneration.

  7. Role of Quercetin Benefits in Neurodegeneration.

    Science.gov (United States)

    Elumalai, Preetham; Lakshmi, Sreeja

    2016-01-01

    Neurodegenerative disorders are often life threatening and hired as an economic burden to the health-care system. Nutritional interventions principally involving polyphenols were practiced to arrest or reverse the age-related health disorders. Flavonoids, a class of dietary polyphenols, are rising to superstardom in preventing brain disorders with their potent antioxidant defense mechanism. Quercetin is a ubiquitous flavonoid reported to have all-natural myriad of health benefits. Citrus fruits, apple, onion, parsley, berries, green tea, and red wine comprise the major dietary supplements of quercetin apart from some herbal remedies like Ginkgo biloba. Appositeness of quercetin in reducing risks of neurodegenerative disorders, cancer, cardiovascular diseases, allergic disorders, thrombosis, atherosclerosis, hypertension, and arrhythmia, to name a few, is attributed to its highly pronounced antioxidant and anti-inflammatory properties. Neurodegeneration, characterized by progressive deterioration of the structure and function of neurons, is crucially accompanied by severe cognitive deficits. Aging is the major risk factor for neurodegenerative disorders in Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD) being coequal high hands. Oxidative stress and mitochondrial dysfunction are the key players in triggering neurodegeneration. The upsurge of neurodegenerative disorders is always appalling since there exists a paucity in effective treatment practices. Past few years' studies have underpinned the mechanisms through which quercetin boons the brain health in many aspects including betterment in cognitive output. Undoubtedly, quercetin will be escalating as an arable field, both in scientific research and in pharmacological and clinical applications. PMID:27651256

  8. B cells and antibodies in progressive multiple sclerosis: Contribution to neurodegeneration and progression.

    Science.gov (United States)

    Fraussen, Judith; de Bock, Laura; Somers, Veerle

    2016-09-01

    Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS) characterized by demyelination, axonal degeneration and gliosis. The progressive form of MS is an important research topic as not much is known about its underlying mechanisms and no therapy is available. Although progressive MS is traditionally considered to be driven by neurodegeneration, compartmentalized CNS inflammation is currently accepted as one of the driving processes behind neurodegeneration and progression. In this review, the involvement of B cells and antibodies in progressive MS is discussed. The identification of meningeal ectopic B cell follicles in secondary progressive MS (SPMS) patients and the successful use of B cell-depleting therapy in primary progressive MS (PPMS) patients have underlined the importance of B cells in progressive MS. Proof is also available for the role of antibodies in neurodegeneration and progression in MS. Here, oligoclonal immunoglobulin M (IgM) production and autoreactive antibodies are described, with a focus on antibodies directed against sperm-associated antigen 16 (SPAG16). Further research into the role of B cells and autoantibodies in MS progression can lead to novel prognostic and theranostic opportunities.

  9. Impact of exercise on mitochondrial transcription factor expression and damage in the striatum of a chronic mouse model of Parkinson’s disease

    OpenAIRE

    Patki, Gaurav; Lau, Yuen-Sum

    2011-01-01

    The etiology of neurodegenerative disorders like Parkinson’s disease remains unknown, although many genetic and environmental factors are suggested as likely causes. Neuronal oxidative stress and mitochondrial dysfunction have been implicated as possible triggers for the onset and progression of Parkinson’s neurodegeneration. We have recently shown that long-term treadmill exercise prevented neurological, mitochondrial and locomotor deficits in a chronic 1-methyl-4-phenyl-1,2,3,6-tetrahydropy...

  10. Protection of MPTP-induced neuroinflammation and neurodegeneration by Pycnogenol.

    Science.gov (United States)

    Khan, Mohammad Moshahid; Kempuraj, Duraisamy; Thangavel, Ramasamy; Zaheer, Asgar

    2013-03-01

    Oxidative stress and inflammation play a crucial role in Parkinson's disease (PD) pathogenesis and may represent a target for treatment. Current PD drugs provide only symptomatic relief and have limitations in terms of adverse effects and inability to prevent neurodegeneration. Flavonoids have been suggested to exert human health benefits by its anti-oxidant and anti-inflammatory properties. Therefore, in the present study, using 1-methyl-4-phenyl-1,2,3,6-tetrahydro pyridine (MPTP)-induced mouse model of Parkinsonism, we investigated the neuroprotective potential of bioflavonoid compound Pycnogenol® (PYC), an extract of Pinus maritime bark. MPTP injected mice developed significantly severe oxidative stress and impaired motor coordination at day 1 and day 7 postinjection. This was associated with significantly increased inflammatory responses of astrocyte and microglia as assessed by ionized calcium binding adaptor molecule 1 (Iba 1) and glial fibrillary acidic protein (GFAP) immunohistochemistry, and nuclear transcription factor-κB (NF-κB), inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression in the striata by Western blot. Additionally, there was significant upregulation of tumor necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1β) expression in the striata of MPTP injected mice compared to saline controls. The MPTP-induced neuroinflammation, neurodegeneration and behavioral impairments were markedly repudiated by treatment with PYC. These results suggest that PYC protects dopaminergic neurons from MPTP-induced toxicity in the mouse model of PD. Thus, the present finding of PYC-induced adaptation to oxidative stress and inflammation could suggest a novel avenue for clinical intervention in neurodegenerative diseases including PD. PMID:23391521

  11. Loss of tau rescues inflammation-mediated neurodegeneration

    Directory of Open Access Journals (Sweden)

    Nicole eMaphis

    2015-06-01

    Full Text Available Neuroinflammation is one of the neuropathological hallmarks of Alzheimer’s disease (AD and related tauopathies. Activated microglia spatially coexist with microtubule-associated protein tau (Mapt or tau-burdened neurons in the brains of human AD and non-AD tauopathies. Numerous studies have suggested that neuroinflammation precedes tau pathology and that induction or blockage of neuroinflammation via lipopolysaccharide (LPS or anti-inflammatory compounds (such as FK506 accelerate or block tau pathology, respectively in several animal models of tauopathy. We have previously demonstrated that microglia-mediated neuroinflammation via deficiency of the microglia-specific chemokine (fractalkine receptor, CX3CR1, promotes tau pathology and neurodegeneration in a mouse model of LPS-induced systemic inflammation. Here, we demonstrate that tau mediates the neurotoxic effects of LPS in Cx3cr1-/- mice. First, Mapt+/+ neurons displayed elevated levels of Annexin V (A5 and TUNEL (markers of neurodegeneration when co-cultured with LPS-treated Cx3cr1-/-microglia, which is rescued in Mapt-/- neurons. Second, a neuronal population positive for phospho-S199 (AT8 tau in the dentate gyrus is also positive for activated or cleaved caspase (CC3 in the LPS-treated Cx3cr1-/- mice. Third, genetic deficiency for tau in Cx3cr1-/- mice resulted in reduced microglial activation, altered expression of inflammatory genes and a significant reduction in the number of neurons positive for CC3 compared to Cx3cr1-/- mice. Finally, Cx3cr1-/- mice exposed to LPS displayed a lack of inhibition in an open field exploratory behavioral test, which is rescued by tau deficiency. Taken together, our results suggest that pathological alterations in tau mediate inflammation-induced neurotoxicity and that deficiency of Mapt is neuroprotective. Thus, therapeutic approaches towards either reducing tau levels or blocking neuroinflammatory pathways may serve as a potential strategy in treating

  12. Modeling a Mobile Health Management Business Model for Chronic Kidney Disease.

    Science.gov (United States)

    Lee, Ying-Li; Chang, Polun

    2016-01-01

    In these decades, chronic kidney disease (CKD) has become a global public health problem. Information technology (IT) tools have been used widely to empower the patients with chronic disease (e.g., diabetes and hypertension). It is also a potential application to advance the CKD care. In this project, we analyzed the requirements of a mobile health management system for healthcare workers, patients and their families to design a health management business model for CKD patients. PMID:27332476

  13. Emerging targets in neurodegeneration: new opportunities for Alzheimer's disease treatment?

    Science.gov (United States)

    Rampa, Angela; Gobbi, Silvia; Belluti, Federica; Bisi, Alessandra

    2013-01-01

    Alzheimer's disease (AD) is a progressive neurodegenerative disorder of the brain associated with memory impairment, progressive cognitive decline and changes in personality and behavior, with rising incidence among elderly people. Reflecting the world population ageing, the scenario is expected to worsen in the next decades if novel drugs or mechanisms that help to counteract neurodegeneration will not be identified. The complex neuropathology of AD is characterized by cholinergic loss, extracellular deposition of amyloid-β plaques, formation of intracellular neurofibrillary tangles, chronic brain inflammation and oxidative damage. To date, there are no effective treatments that can slow or halt the disease, and currently approved drugs only seem to act as palliative by temporary ameliorating cognitive impairment. On the other hand, the role played by other biological systems in the pathogenetic process is now clearly growing and, as knowledge on how AD develops and triggers brain damage proceeds, drug discovery attempts to identify new potential therapeutic targets. This review will focus on these emerging strategies, some of which could open new therapeutic perspectives in Alzheimer's disease, adding new elements for the medicinal chemist to handle and combine for the design of novel multi-target-directed ligands able to simultaneously modulate 'old classic' and newly identified targets. PMID:23931436

  14. S-nitrosation of proteins relevant to Alzheimer's disease during early stages of neurodegeneration.

    Science.gov (United States)

    Seneviratne, Uthpala; Nott, Alexi; Bhat, Vadiraja B; Ravindra, Kodihalli C; Wishnok, John S; Tsai, Li-Huei; Tannenbaum, Steven R

    2016-04-12

    Protein S-nitrosation (SNO-protein), the nitric oxide-mediated posttranslational modification of cysteine thiols, is an important regulatory mechanism of protein function in both physiological and pathological pathways. A key first step toward elucidating the mechanism by which S-nitrosation modulates a protein's function is identification of the targeted cysteine residues. Here, we present a strategy for the simultaneous identification of SNO-cysteine sites and their cognate proteins to profile the brain of the CK-p25-inducible mouse model of Alzheimer's disease-like neurodegeneration. The approach-SNOTRAP (SNO trapping by triaryl phosphine)-is a direct tagging strategy that uses phosphine-based chemical probes, allowing enrichment of SNO-peptides and their identification by liquid chromatography tandem mass spectrometry. SNOTRAP identified 313 endogenous SNO-sites in 251 proteins in the mouse brain, of which 135 SNO-proteins were detected only during neurodegeneration. S-nitrosation in the brain shows regional differences and becomes elevated during early stages of neurodegeneration in the CK-p25 mouse. The SNO-proteome during early neurodegeneration identified increased S-nitrosation of proteins important for synapse function, metabolism, and Alzheimer's disease pathology. In the latter case, proteins related to amyloid precursor protein processing and secretion are S-nitrosated, correlating with increased amyloid formation. Sequence analysis of SNO-cysteine sites identified potential linear motifs that are altered under pathological conditions. Collectively, SNOTRAP is a direct tagging tool for global elucidation of the SNO-proteome, providing functional insights of endogenous SNO proteins in the brain and its dysregulation during neurodegeneration.

  15. On the global dynamics of a chronic myelogenous leukemia model

    Science.gov (United States)

    Krishchenko, Alexander P.; Starkov, Konstantin E.

    2016-04-01

    In this paper we analyze some features of global dynamics of a three-dimensional chronic myelogenous leukemia (CML) model with the help of the stability analysis and the localization method of compact invariant sets. The behavior of CML model is defined by concentrations of three cellpopulations circulating in the blood: naive T cells, effector T cells specific to CML and CML cancer cells. We prove that the dynamics of the CML system around the tumor-free equilibrium point is unstable. Further, we compute ultimate upper bounds for all three cell populations and provide the existence conditions of the positively invariant polytope. One ultimate lower bound is obtained as well. Moreover, we describe the iterative localization procedure for refining localization bounds; this procedure is based on cyclic using of localizing functions. Applying this procedure we obtain conditions under which the internal tumor equilibrium point is globally asymptotically stable. Our theoretical analyses are supplied by results of the numerical simulation.

  16. Oxidative Stress Mechanisms Underlying Parkinson’s Disease-Associated Neurodegeneration in C. elegans

    OpenAIRE

    Sudipta Chakraborty; Julia Bornhorst; Nguyen, Thuy T; Michael Aschner

    2013-01-01

    Oxidative stress is thought to play a significant role in the development and progression of neurodegenerative diseases. Although it is currently considered a hallmark of such processes, the interweaving of a multitude of signaling cascades hinders complete understanding of the direct role of oxidative stress in neurodegeneration. In addition to its extensive use as an aging model, some researchers have turned to the invertebrate model Caenorhabditis elegans (C. elegans) in order to further i...

  17. Analysis of axonal transport and molecular chaperones during neurodegeneration in drosophila

    OpenAIRE

    Sinadinos, Christopher

    2010-01-01

    Neuronal dysfunction and cell death occurs during neurodegeneration. Animal models that express human disease genes and show neurodegenerative-like pathologies are widely used to study particular molecular systems in early neurodegenerative changes. Axonal transport (AT) is perturbed in several prevalent neurodegenerative diseases. The development of a Huntington’s Disease (HD) model in Drosophila melanogaster larvae is described, in which disease gene expression is directed to motor neurons ...

  18. Moderate exercise prevents neurodegeneration in D-galactose-induced aging mice

    OpenAIRE

    Li Li; Meng Xu; Bo Shen; Man Li; Qian Gao; Shou-gang Wei

    2016-01-01

    D-galactose has been widely used in aging research because of its efficacy in inducing senescence and accelerating aging in animal models. The present study investigated the benefits of exercise for preventing neurodegeneration, such as synaptic plasticity, spatial learning and memory abilities, in mouse models of aging. D-galactose-induced aging mice were administered daily subcutaneous injections of D-galactose at the base of the neck for 10 consecutive weeks. Then, the mice were subjected ...

  19. The relationship between hyperhomocysteinemia and neurodegeneration.

    Science.gov (United States)

    Bonetti, Francesco; Brombo, Gloria; Zuliani, Giovanni

    2016-04-01

    Homocysteine (Hcy) is a key junction in methionine metabolism. In inherited forms of hyperhomocysteinemia patients develop early vascular damage and cognitive decline. Hyperhomocysteinemia is a common consequence of dietary, behavioral and pathological conditions and is epidemiologically related to different diseases, among them neurodegenerative ones are receiving progressively more attention in the last years. Several detrimental mechanisms that see in Hcy a possible promoter seem to be implicated in neurodegeneration (protein structural and functional modifications, oxidative stress, cellular metabolic derangements, epigenetic modifications, pathological aggregates deposition, endothelial damage and atherothrombosis). Interventional studies exploring B group vitamins administration in terms of prevention of Hcy-related cognitive decline and cerebrovascular involvement have shown scant results. In this review, current and possible alternative/complementary approaches are discussed. PMID:27033101

  20. Interconnection between brain and retinal neurodegenerations.

    Science.gov (United States)

    Jindal, Vishal

    2015-01-01

    The eye is a special sensory organ, which is basically an extension of the brain. Both are derived from neural tube and consist of neurons. Therefore, diseases of both the brain and eye should have some similarity. Neurodegenerative disorders like Alzheimer's disease (AD) is the major cause of dementia in the world. Amyloid deposition in the cerebral cortex and hippocampal region is the basic pathology in AD. But along with it, there are various changes that take place in the eye, i.e., abnormal pupillary reaction, decreased vision, decreased contrast sensitivity, visual field changes, loss of retinal ganglionic cells and retinal fiber layer, peripapillary atrophy, increased cup-disk ratio, retinal thinning, tortuosity of blood vessels, and deposition of Aβ-like substance in the retina. And these changes are present in the early part of the disease when only mild cognitive impairment is there. As the brain is covered by a hard bony skull which makes it difficult to directly visualize the changes occurring in the brain at molecular levels, finer details of disease progression are not available with us. But the eye is the window of the brain; with advanced modern techniques, we can directly visualize the changes in the retina at a very fine level. Therefore, by depicting neurodegenerative changes in the eye, we can diagnose and manage AD at very early stages. Along with it, retinal neurodegenerations like glaucoma and age-related macular degeneration (ARMD) are the major cause of loss of vision, and still, there are no effective treatment modalities for these blinding conditions. So if we can understand its pathogenesis and progression by correlating with brain neurodegenerations, we can come up with a better therapy for glaucoma and ARMD.

  1. The healthy learner model for student chronic condition management--part I.

    Science.gov (United States)

    Erickson, Cecelia DuPlessis; Splett, Patricia L; Mullett, Sara Stoltzfus; Heiman, Mary Bielski

    2006-12-01

    A significant number of children have chronic health conditions that interfere with normal activities, including school attendance and active participation in the learning process. Management of students' chronic conditions is complex and requires an integrated system. Models to improve chronic disease management have been developed for the medical system and public health. Programs that address specific chronic disease management or coordinate school health services have been implemented in schools. Lacking is a comprehensive, integrated model that links schools, students, parents, health care, and other community providers. The Healthy Learner Model for chronic condition management identifies seven elements for creating, implementing, and sustaining an efficient and effective, comprehensive community-based system for improving the management of chronic conditions for school children. It has provided the framework for successful chronic condition management in an urban school district and is proposed for replication in other districts and communities.

  2. Adapting chronic care models for diabetes care delivery inlow-and-middle-income countries: A review

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    A contextual review of models for chronic care was doneto develop a context-adapted chronic care model-basedservice delivery model for chronic conditions includingdiabetes. The Philippines was used as the setting ofa low-to-middle-income country. A context-basednarrative review of existing models for chronic carewas conducted. A situational analysis was done at thegrassroots level, involving the leaders and members ofthe community, the patients, the local health system andthe healthcare providers. A second analysis making useof certain organizational theories was done to explore onimproving feasibility and acceptability of organizing carefor chronic conditions. The analyses indicated that carefor chronic conditions may be introduced, consideringthe needs of people with diabetes in particular andthe community in general as recipients of care, andthe issues and factors that may affect the healthcareworkers and the health system as providers of thiscare. The context-adapted chronic care model-basedservice delivery model was constructed accordingly.Key features are incorporation of chronic care in thehealth system's services; assimilation of chronic caredelivery with the other responsibilities of the healthcareworkers but with redistribution of certain tasks; andensuring that the recipients of care experience thewhole spectrum of basic chronic care that includes educationand promotion in the general population, riskidentification, screening, counseling including self-caredevelopment, and clinical management of the chroniccondition and any co-morbidities, regardless of level ofcontrol of the condition. This way, low-to-middle incomecountries can introduce and improve care for chronicconditions without entailing much additional demand ontheir limited resources.

  3. Chronic GluN2B antagonism disrupts behavior in wild-type mice without protecting against synapse loss or memory impairment in Alzheimer's disease mouse models.

    Science.gov (United States)

    Hanson, Jesse E; Meilandt, William J; Gogineni, Alvin; Reynen, Paul; Herrington, James; Weimer, Robby M; Scearce-Levie, Kimberly; Zhou, Qiang

    2014-06-11

    Extensive evidence implicates GluN2B-containing NMDA receptors (GluN2B-NMDARs) in excitotoxic-insult-induced neurodegeneration and amyloid β (Aβ)-induced synaptic dysfunction. Therefore, inhibiting GluN2B-NMDARs would appear to be a potential therapeutic strategy to provide neuroprotection and improve cognitive function in Alzheimer's disease (AD). However, there are no reports of long-term in vivo treatment of AD mouse models with GluN2B antagonists. We used piperidine18 (Pip18), a potent and selective GluN2B-NMDAR antagonist with favorable pharmacokinetic properties, for long-term dosing in AD mouse models. Reduced freezing behavior in Tg2576 mice during fear conditioning was partially reversed after subchronic (17 d) Pip18 treatment. However, analysis of freezing behavior in different contexts indicated that this increased freezing likely involves elevated anxiety or excessive memory generalization in both nontransgenic (NTG) and Tg2576 mice. In PS2APP mice chronically fed with medicated food containing Pip18 for 4 months, spatial learning and memory deficits were not rescued, plaque-associated spine loss was not affected, and synaptic function was not altered. At the same time, altered open field activity consistent with increased anxiety and degraded performance in an active avoidance task were observed in NTG after chronic treatment. These results indicate that long-term treatment with a GluN2B-NMDAR antagonist does not provide a disease-modifying benefit and could cause cognitive liabilities rather than symptomatic benefit in AD mouse models. Therefore, these results challenge the expectation of the therapeutic potential for GluN2B-NMDAR antagonists in AD.

  4. Pharmacoeconomic modeling of target therapy of chronic myeloid leukemia in remission

    OpenAIRE

    V. A. Shuvaev; K. M. Abdulkadyrov; I. S. Martynkevich; M. S. Fominykh

    2015-01-01

    The article presents example of modeling for pharmacoeconomical-founded choice of chronic myelogenous leukemia treatment strategy related to therapeutic efficacy and economical rationality. The economic model of chronic myelogenous leukemia diagnosis and treatment with Markov chain approach was constructed, based on modern national and international clinical guidelines. Pharmacoeconomical comparison of chronic myelogenous leukemia target therapy using first and second-generation tyrosine kina...

  5. Inflammatory and Remodeling Events in Asthma with Chronic Exposure to House Dust Mites: A Murine Model

    OpenAIRE

    Ahn, Joong Hyun; Kim, Chi Hong; Kim, Yong Hyun; Kim, Seung Joon; Lee, Sook-Young; Kim, Young Kyoon; Kim, Kwan Hyoung; Moon, Hwa Sik; Song, Jeong Sup; Park, Sung Hak; Kwon, Soon Seog

    2007-01-01

    Although animal models with ovalbumin have been used to study chronic asthma, there are difficulties in inducing recurrence as well as in maintaining chronic inflammation in this system. Using a murine model of house dust mite (HDM)-induced bronchial asthma, we examined the airway remodeling process in response to the chronic exposure to HDM. During the seventh and twelfth weeks of study, HDM were inhaled through the nose for three consecutive days and airway responsiveness was measured. Twen...

  6. Managing painful chronic wounds: the Wound Pain Management Model

    DEFF Research Database (Denmark)

    Price, Patricia; Fogh, Karsten; Glynn, Chris;

    2007-01-01

    document persistent wound pain and not to develop a treatment and monitoring strategy to improve the lives of persons with chronic wounds. Unless wound pain is optimally managed, patient suffering and costs to health care systems will increase. Udgivelsesdato: 2007-Apr......Chronic wound pain is not well understood and the literature is limited. Six of 10 patients venous leg ulcer experience pain with their ulcer, and similar trends are observed for other chronic wounds. Chronic wound pain can lead to depression and the feeling of constant tiredness. Pain related...... to the wound should be handled as one of the main priorities in chronic wound management together with addressing the cause. Management of pain in chronic wounds depends on proper assessment, reporting and documenting patient experiences of pain. Assessment should be based on six critical dimensions...

  7. Automated EEG monitoring in defining a chronic epilepsy model.

    Science.gov (United States)

    Mascott, C R; Gotman, J; Beaudet, A

    1994-01-01

    There has been a recent surge of interest in chronic animal models of epilepsy. Proper assessment of these models requires documentation of spontaneous seizures by EEG, observation, or both in each individual animal to confirm the presumed epileptic condition. We used the same automatic seizure detection system as that currently used for patients in our institution and many others. Electrodes were implanted in 43 rats before intraamygdalar administration of kainic acid (KA). Animals were monitored intermittently for 3 months. Nine of the rats were protected by anticonvulsants [pentobarbital (PB) and diazepam (DZP)] at the time of KA injection. Between 1 and 3 months after KA injection, spontaneous seizures were detected in 20 of the 34 unprotected animals (59%). Surprisingly, spontaneous seizures were also detected during the same period in 2 of the 9 protected animals that were intended to serve as nonepileptic controls. Although the absence of confirmed spontaneous seizures in the remaining animals cannot exclude their occurrence, it indicates that, if present, they are at least rare. On the other hand, definitive proof of epilepsy is invaluable in the attempt to interpret pathologic data from experimental brains.

  8. Kainic Acid-Induced Excitotoxicity Experimental Model: Protective Merits of Natural Products and Plant Extracts

    Directory of Open Access Journals (Sweden)

    Nur Shafika Mohd Sairazi

    2015-01-01

    Full Text Available Excitotoxicity is well recognized as a major pathological process of neuronal death in neurodegenerative diseases involving the central nervous system (CNS. In the animal models of neurodegeneration, excitotoxicity is commonly induced experimentally by chemical convulsants, particularly kainic acid (KA. KA-induced excitotoxicity in rodent models has been shown to result in seizures, behavioral changes, oxidative stress, glial activation, inflammatory mediator production, endoplasmic reticulum stress, mitochondrial dysfunction, and selective neurodegeneration in the brain upon KA administration. Recently, there is an emerging trend to search for natural sources to combat against excitotoxicity-associated neurodegenerative diseases. Natural products and plant extracts had attracted a considerable amount of attention because of their reported beneficial effects on the CNS, particularly their neuroprotective effect against excitotoxicity. They provide significant reduction and/or protection against the development and progression of acute and chronic neurodegeneration. This indicates that natural products and plants extracts may be useful in protecting against excitotoxicity-associated neurodegeneration. Thus, targeting of multiple pathways simultaneously may be the strategy to maximize the neuroprotection effect. This review summarizes the mechanisms involved in KA-induced excitotoxicity and attempts to collate the various researches related to the protective effect of natural products and plant extracts in the KA model of neurodegeneration.

  9. Oxidative and nitrative stress in neurodegeneration.

    Science.gov (United States)

    Cobb, Catherine A; Cole, Marsha P

    2015-12-01

    Aerobes require oxygen for metabolism and normal free radical formation. As a result, maintaining the redox homeostasis is essential for brain cell survival due to their high metabolic energy requirement to sustain electrochemical gradients, neurotransmitter release, and membrane lipid stability. Further, brain antioxidant levels are limited compared to other organs and less able to compensate for reactive oxygen and nitrogen species (ROS/RNS) generation which contribute oxidative/nitrative stress (OS/NS). Antioxidant treatments such as vitamin E, minocycline, and resveratrol mediate neuroprotection by prolonging the incidence of or reversing OS and NS conditions. Redox imbalance occurs when the antioxidant capacity is overwhelmed, consequently leading to activation of alternate pathways that remain quiescent under normal conditions. If OS/NS fails to lead to adaptation, tissue damage and injury ensue, resulting in cell death and/or disease. The progression of OS/NS-mediated neurodegeneration along with contributions from microglial activation, dopamine metabolism, and diabetes comprise a detailed interconnected pathway. This review proposes a significant role for OS/NS and more specifically, lipid peroxidation (LPO) and other lipid modifications, by triggering microglial activation to elicit a neuroinflammatory state potentiated by diabetes or abnormal dopamine metabolism. Subsequently, sustained stress in the neuroinflammatory state overwhelms cellular defenses and prompts neurotoxicity resulting in the onset or amplification of brain damage. PMID:26024962

  10. Oligodendroglia and neurotrophic factors in neurodegeneration

    Institute of Scientific and Technical Information of China (English)

    Andrew N.Bankston; Mariana D.Mandler; Yue Feng

    2013-01-01

    Myelination by oligodendroglial cells (OLs) enables the propagation of action potentials along neuronal axons,which is essential for rapid information flow in the central nervous system.Besides saltatory conduction,the myelin sheath also protects axons against inflammatory and oxidative insults.Loss of myelin results in axonal damage and ultimately neuronal loss in demyelinating disorders.However,accumulating evidence indicates that OLs also provide support to neurons via mechanisms beyond the insulating function of myelin.More importantly,an increasing volume of reports indicates defects of OLs in numerous neurodegenerative diseases,sometimes even preceding neuronal loss in pre-symptomatic episodes,suggesting that OL pathology may be an important mechanism contributing to the initiation and/or progression of neurodegeneration.This review focuses on the emerging picture of neuronal support by OLs in the pathogenesis of neurodegenerative disorders through diverse molecular and cellular mechanisms,including direct neuron-myelin interaction,metabolic support by OLs,and neurotrophic factors produced by and/or acting on OLs.

  11. Chronic Myeloid Leukemia (CML) Mouse Model in Translational Research.

    Science.gov (United States)

    Peng, Cong; Li, Shaoguang

    2016-01-01

    Chronic myeloid leukemia (CML) is a myeloproliferative disorder characterized by increased proliferation of granulocytic cells without the loss of their capability to differentiate. CML is a clonal disease, originated at the level of Hematopoietic Stem Cells with the Philadelphia chromosome resulting from a reciprocal translocation between the chromosomes 9 and 22t(9;22)-(q34;q11). This translocation produces a fusion gene known as BCR-ABL which acquires uncontrolled tyrosine kinase activity, constantly turning on its downstream signaling molecules/pathways, and promoting proliferation of leukemia cell through anti-apoptosis and acquisition of additional mutations. To evaluate the role of each critical downstream signaling molecule of BCR-ABL and test therapeutic drugs in vivo, it is important to use physiological mouse disease models. Here, we describe a mouse model of CML induced by BCR-ABL retrovirus (MSCV-BCR-ABL-GFP; MIG-BCR-ABL) and how to use this model in translational research.Moreover, to expand the application of this retrovirus induced CML model in a lot of conditional knockout mouse strain, we modified this vector to a triple gene coexpression vector in which we can co-express BCR-ABL, GFP, and a third gene which will be tested in different systems. To apply this triple gene system in conditional gene knockout strains, we can validate the CML development in the knockout mice and trace the leukemia cell following the GFP marker. In this protocol, we also describe how we utilize this triple gene system to prove the function of Pten as a tumor suppressor in leukemogenesis. Overall, this triple gene system expands our research spectrum in current conditional gene knockout strains and benefits our CML translational research. PMID:27150093

  12. Interactions between Calcium and Alpha-Synuclein in Neurodegeneration

    Directory of Open Access Journals (Sweden)

    Alex Rcom-H'cheo-Gauthier

    2014-08-01

    Full Text Available In Parkinson’s disease and some atypical Parkinson’s syndromes, aggregation of the α-synuclein protein (α-syn has been linked to neurodegeneration. Many triggers for pathological α-syn aggregation have been identified, including port-translational modifications, oxidative stress and raised metal ions, such as Ca2+. Recently, it has been found using cell culture models that transient increases of intracellular Ca2+ induce cytoplasmic α-syn aggregates. Ca2+-dependent α-syn aggregation could be blocked by the Ca2+ buffering agent, BAPTA-AM, or by the Ca2+ channel blocker, Trimethadione. Furthermore, a greater proportion of cells positive for aggregates occurred when both raised Ca2+ and oxidative stress were combined, indicating that Ca2+ and oxidative stress cooperatively promote α-syn aggregation. Current on-going work using a unilateral mouse lesion model of Parkinson’s disease shows a greater proportion of calbindin-positive neurons survive the lesion, with intracellular α-syn aggregates almost exclusively occurring in calbindin-negative neurons. These and other recent findings are reviewed in the context of neurodegenerative pathologies and suggest an association between raised Ca2+, α-syn aggregation and neurotoxicity.

  13. Long non-coding RNA MALAT1 regulates retinal neurodegeneration through CREB signaling.

    Science.gov (United States)

    Yao, Jin; Wang, Xiao-Qun; Li, Yu-Jie; Shan, Kun; Yang, Hong; Wang, Yang-Ning-Zhi; Yao, Mu-Di; Liu, Chang; Li, Xiu-Miao; Shen, Yi; Liu, Jing-Yu; Cheng, Hong; Yuan, Jun; Zhang, Yang-Yang; Jiang, Qin; Yan, Biao

    2016-01-01

    The nervous and vascular systems, although functionally different, share many common regulators of function maintenance. Long non-coding RNAs (lncRNAs) are important players in many biological processes and human disorders. We previously identified a role of MALAT1 in microvascular dysfunction. However, its role in neurodegeneration is still unknown. Here, we used the eye as the model to investigate the role of MALAT1 in retinal neurodegeneration. We show that MALAT1 expression is significantly up-regulated in the retinas, Müller cells, and primary retinal ganglion cells (RGCs) upon stress. MALAT1 knockdown reduces reactive gliosis, Müller cell activation, and RGC survival in vivo and in vitro MALAT1-CREB binding maintains CREB phosphorylation by inhibiting PP2A-mediated dephosphorylation, which leads to continuous CREB signaling activation. Clinical and animal experimentation suggests that MALAT1 dysfunction is implicated in neurodegenerative processes and several human disorders. Collectively, this study reveals that MALAT1 might regulate the development of retinal neurodegeneration through CREB signaling. PMID:26964565

  14. Metal and Microelement Biomarkers of Neurodegeneration in Early Life Permethrin-Treated Rats

    Directory of Open Access Journals (Sweden)

    Cinzia Nasuti

    2016-01-01

    Full Text Available Hair is a non-invasive biological material useful in the biomonitoring of trace elements because it is a vehicle for substance excretion from the body, and it permits evaluating long-term metal exposure. Here, hair from an animal model of neurodegeneration, induced by early life permethrin treatment from the sixth to 21th day of life, has been analyzed with the aim to assess if metal and microelement content could be used as biomarkers. A hair trace element assay was performed by the ICP-MS technique in six- and 12-month-old rats. A significant increase of As, Mg, S and Zn was measured in the permethrin-treated group at 12 months compared to six months, while Si and Cu/Zn were decreased. K, Cu/Zn and S were increased in the treated group compared to age-matched controls at six and 12 months, respectively. Cr significantly decreased in the treated group at 12 months. PCA analysis showed both a best difference between treated and age-matched control groups at six months. The present findings support the evidence that the Cu/Zn ratio and K, measured at six months, are the best biomarkers for neurodegeneration. This study supports the use of hair analysis to identify biomarkers of neurodegeneration induced by early life permethrin pesticide exposure.

  15. Using protein misfolding cyclic amplification generates a highly neurotoxic PrP dimer causing neurodegeneration.

    Science.gov (United States)

    Yang, XiuJin; Yang, LiFeng; Zhou, XiangMei; Khan, Sher Hayat; Wang, HuiNuan; Yin, XiaoMin; Yuan, Zhen; Song, ZhiQi; Wu, WenYu; Zhao, DeMing

    2013-11-01

    Under the "protein-only" hypothesis, prion-based diseases are proposed to result from an infectious agent that is an abnormal isoform of the prion protein in the scrapie form, PrP(Sc). However, since PrP(Sc) is highly insoluble and easily aggregates in vivo, this view appears to be overly simplistic, implying that the presence of PrP(Sc) may indirectly cause neurodegeneration through its intermediate soluble form. We generated a neurotoxic PrP dimer with partial pathogenic characteristics of PrP(Sc) by protein misfolding cyclic amplification in the presence of 1-palmitoyl-2-oleoylphosphatidylglycerol consisting of recombinant hamster PrP (23-231). After intracerebral injection of the PrP dimer, wild-type hamsters developed signs of neurodegeneration. Clinical symptoms, necropsy findings, and histopathological changes were very similar to those of transmissible spongiform encephalopathies. Additional investigation showed that the toxicity is primarily related to cellular apoptosis. All results suggested that we generated a new neurotoxic form of PrP, PrP dimer, which can cause neurodegeneration. Thus, our study introduces a useful model for investigating PrP-linked neurodegenerative mechanisms.

  16. Molecular pathways underpinning ethanol-induced neurodegeneration

    Directory of Open Access Journals (Sweden)

    Dan eGoldowitz*

    2014-07-01

    -induced neurodegeneration.

  17. Pediatric Fear-Avoidance Model of Chronic Pain: Foundation, Application and Future Directions

    Directory of Open Access Journals (Sweden)

    Gordon JG Asmundson

    2012-01-01

    Full Text Available The fear-avoidance model of chronic musculoskeletal pain has become an increasingly popular conceptualization of the processes and mechanisms through which acute pain can become chronic. Despite rapidly growing interest and research regarding the influence of fear-avoidance constructs on pain-related disability in children and adolescents, there have been no amendments to the model to account for unique aspects of pediatric chronic pain. A comprehensive understanding of the role of fear-avoidance in pediatric chronic pain necessitates understanding of both child/adolescent and parent factors implicated in its development and maintenance. The primary purpose of the present article is to propose an empirically-based pediatric fear-avoidance model of chronic pain that accounts for both child/adolescent and parent factors as well as their potential interactive effects. To accomplish this goal, the present article will define important fear-avoidance constructs, provide a summary of the general fear-avoidance model and review the growing empirical literature regarding the role of fear-avoidance constructs in pediatric chronic pain. Assessment and treatment options for children with chronic pain will also be described in the context of the proposed pediatric fear-avoidance model of chronic pain. Finally, avenues for future investigation will be proposed.

  18. Cystathionine γ-lyase deficiency mediates neurodegeneration in Huntington's disease.

    Science.gov (United States)

    Paul, Bindu D; Sbodio, Juan I; Xu, Risheng; Vandiver, M Scott; Cha, Jiyoung Y; Snowman, Adele M; Snyder, Solomon H

    2014-05-01

    Huntington's disease is an autosomal dominant disease associated with a mutation in the gene encoding huntingtin (Htt) leading to expanded polyglutamine repeats of mutant Htt (mHtt) that elicit oxidative stress, neurotoxicity, and motor and behavioural changes. Huntington's disease is characterized by highly selective and profound damage to the corpus striatum, which regulates motor function. Striatal selectivity of Huntington's disease may reflect the striatally selective small G protein Rhes binding to mHtt and enhancing its neurotoxicity. Specific molecular mechanisms by which mHtt elicits neurodegeneration have been hard to determine. Here we show a major depletion of cystathionine γ-lyase (CSE), the biosynthetic enzyme for cysteine, in Huntington's disease tissues, which may mediate Huntington's disease pathophysiology. The defect occurs at the transcriptional level and seems to reflect influences of mHtt on specificity protein 1, a transcriptional activator for CSE. Consistent with the notion of loss of CSE as a pathogenic mechanism, supplementation with cysteine reverses abnormalities in cultures of Huntington's disease tissues and in intact mouse models of Huntington's disease, suggesting therapeutic potential.

  19. Neurodegeneration in ataxia-telangiectasia is caused by horror autotoxicus.

    Science.gov (United States)

    Kuljis, R O; Aguila, M C

    1999-05-01

    Ataxia-telangiectasia (A-T) is a pleiotropic, multi-system disorder with manifestations that include immune deficiency, sensitivity to ionizing radiation and neoplasms. Many of these manifestations are understood in principle since the identification in A-T patients of mutations in a gene encoding a protein kinase that plays a key role in signaling and repair of DNA damage. However, the cause of the neurodegeneration that afflicts patients with A-T for at least a decade before they succumb to overwhelming infections or malignancy remains mysterious. Based on our work in a mouse model of A-T and previous evidence of extra-neural autoimmune disorders in A-T, we postulate that the neurodegenerative process in A-T is not due to a function for A-T mutated (ATM) essential for the postnatal brain, but to an autoimmune process (hence 'horror autotoxicus', Paul Ehrlich's term for autoimmune disorder). This hypothetical mechanism may be analogous to that in the so-called 'paraneoplastic' neurodegenerative syndromes in patients with various malignancies. Thus, alterations in the balance between cellular and humoral immunity in A-T probably result in autoantibodies to cerebral epitopes shared with cells of the immune system. This hypothesis has important implications for the understanding and development of effective palliative and even preventative strategies for A-T, and probably for other so far relentlessly progressive neurodegenerative disorders.

  20. Challenges of Change: A Qualitative Study of Chronic Care Model Implementation

    OpenAIRE

    Hroscikoski, Mary C.; Solberg, Leif I.; Sperl-Hillen, JoAnn M.; Harper, Peter G.; McGrail, Michael P.; Crabtree, Benjamin F.

    2006-01-01

    PURPOSE The Chronic Care Model (CCM) provides a conceptual framework for transforming health care for patients with chronic conditions; however, little is known about how to best design and implement its specifics. One large health care organization that tried to implement the CCM in primary care provided an opportunity to study these issues.

  1. The relation between inflammation and neurodegeneration in multiple sclerosis brains

    DEFF Research Database (Denmark)

    Frischer, J.M.; Bramow, S.; Dal-Bianco, A.;

    2009-01-01

    to lesional activity and clinical course, with a particular focus on progressive multiple sclerosis. The study is based on detailed quantification of different inflammatory cells in relation to axonal injury in 67 multiple sclerosis autopsies from different disease stages and 28 controls without neurological......Some recent studies suggest that in progressive multiple sclerosis, neurodegeneration may occur independently from inflammation. The aim of our study was to analyse the interdependence of inflammation, neurodegeneration and disease progression in various multiple sclerosis stages in relation...... and the extent of axonal injury, too, was comparable with that in age-matched controls. Ongoing neurodegeneration in these patients, which exceeded the extent found in normal controls, could be attributed to confounding pathologies such as Alzheimer's or vascular disease. Our study suggests a close association...

  2. The role of exercise-induced myokines in muscle homeostasis and the defense against chronic diseases

    DEFF Research Database (Denmark)

    Brandt, Claus; Pedersen, Bente K

    2010-01-01

    Chronic inflammation is involved in the pathogenesis of insulin resistance, atherosclerosis, neurodegeneration, and tumour growth. Regular exercise offers protection against type 2 diabetes, cardiovascular diseases, colon cancer, breast cancer, and dementia. Evidence suggests that the protective ...

  3. Utility of the chronic unpredictable mild stress model in research on new antidepressants

    Directory of Open Access Journals (Sweden)

    Pekala Karolina

    2014-06-01

    Full Text Available Unpredictable chronic mild stress model was developed as an animal model of depression more than 20 years ago. Essential for this model is that after prolonged exposure of tested animals to a series of unpredictable mild stressors, a condition similar to anhedonia develops, which is observed in the majority of depressive disorders. Unpredictable chronic mild stress model is used nowadays in numerous studies related to the neurobiological and biochemical changes associated with depressive illness. Their results confirm that chronic unpredictable mild stress induces in tested animals a number of changes, which reflect those seen in depressive disorders. Because the effects of unpredictable chronic mild stress can be used in a more accurate diagnosis of the pathophysiology of depressive illness and expand knowledge of its pharmacotherapy, therefore research in this area has been continued all the time.

  4. Chronic Low Back Pain: Toward an Integrated Psychosocial Assessment Model.

    Science.gov (United States)

    Strong, Jenny; And Others

    1994-01-01

    Integrated six dimensions of chronic low back pain (pain intensity, functional disability, attitudes toward pain, pain coping strategies, depression, illness behavior) to provide multidimensional patient profile. Data from 100 patients revealed presence of three distinct patient groups: patients who were in control, patients who were depressed and…

  5. Do telemonitoring projects of heart failure fit the Chronic Care Model?

    Directory of Open Access Journals (Sweden)

    Evi Willemse

    2014-07-01

    Full Text Available This study describes the characteristics of extramural and transmural telemonitoring projects on chronic heart failure in Belgium. It describes to what extent these telemonitoring projects coincide with the Chronic Care Model of Wagner.Background: The Chronic Care Model describes essential components for high-quality health care. Telemonitoring can be used to optimise home care for chronic heart failure. It provides a potential prospective to change the current care organisation.Methods: This qualitative study describes seven non-invasive home-care telemonitoring projects in patients with heart failure in Belgium. A qualitative design, including interviews and literature review, was used to describe the correspondence of these home-care telemonitoring projects with the dimensions of the Chronic Care Model.Results: The projects were situated in primary and secondary health care. Their primary goal was to reduce the number of readmissions for chronic heart failure. None of these projects succeeded in a final implementation of telemonitoring in home care after the pilot phase. Not all the projects were initiated to accomplish all of the dimensions of the Chronic Care Model. A central role for the patient was sparse.Conclusion: Limited financial resources hampered continuation after the pilot phase. Cooperation and coordination in telemonitoring appears to be major barriers but are, within primary care as well as between the lines of care, important links in follow-up. This discrepancy can be prohibitive for deployment of good chronic care. Chronic Care Model is recommended as basis for future.

  6. Do telemonitoring projects of heart failure fit the Chronic Care Model?

    Directory of Open Access Journals (Sweden)

    Evi Willemse

    2014-07-01

    Full Text Available This study describes the characteristics of extramural and transmural telemonitoring projects on chronic heart failure in Belgium. It describes to what extent these telemonitoring projects coincide with the Chronic Care Model of Wagner. Background: The Chronic Care Model describes essential components for high-quality health care. Telemonitoring can be used to optimise home care for chronic heart failure. It provides a potential prospective to change the current care organisation. Methods: This qualitative study describes seven non-invasive home-care telemonitoring projects in patients with heart failure in Belgium. A qualitative design, including interviews and literature review, was used to describe the correspondence of these home-care telemonitoring projects with the dimensions of the Chronic Care Model. Results: The projects were situated in primary and secondary health care. Their primary goal was to reduce the number of readmissions for chronic heart failure. None of these projects succeeded in a final implementation of telemonitoring in home care after the pilot phase. Not all the projects were initiated to accomplish all of the dimensions of the Chronic Care Model. A central role for the patient was sparse. Conclusion: Limited financial resources hampered continuation after the pilot phase. Cooperation and coordination in telemonitoring appears to be major barriers but are, within primary care as well as between the lines of care, important links in follow-up. This discrepancy can be prohibitive for deployment of good chronic care. Chronic Care Model is recommended as basis for future.

  7. STUDY ON INFLAMMATORY CELLS IN BALF OF SMOKE-INDUCED CHRONIC BRONCHITIS RAT MODEL

    Institute of Scientific and Technical Information of China (English)

    李庆云; 黄绍光; 吴华成; 程齐俭; 项轶; 万欢英

    2004-01-01

    Objective To establish a smoke-induced chronic bronchitis rat model and evaluate the pathological change semi-quantitatively, and study the characteristics of the inflammatory cells in the bronchoalveolar lavage fluid (BALF) in various stages. Methods Chronic bronchitis sequential rat model was established by passively inhaling smoke mixture. Experiments were performed in 30 young male Sprague-Dawley rats, which comprised 5 groups in random, i.e.,4 chronic bronchitis model groups and I control group. After stained with hematoxylin and eosin, the specimens were studied by semi-quantitative method to evaluate the morphologic changes in various stages. Meanwhile, the inflammatory cells of the BALF and the activity of myeloperoxidase ( MPO ) of lung tissue were analysed. Results During the process of the chronic bronchitis, the pathologic score was increasing as time went on, and the typical morphologic changes of chronic bronchitis emerged in the group 7 weeks. The total number of inflammatory cells in BALF was increasing as time went on, correlated with the pathologic scores ( P < 0. 01 ).And the percentage of lymphocyte increased as well as positively correlated with pathologic scores ( P < 0. 05 ),whereas that of macrophage decreased and negatively correlated with pathologic scores (P <0. 05). The MPO lever of lung tissue was correlated with the pathologic scores ( P < 0. 01 ). But the percentage of the neutrophil in the BALF was just in a high level during the first week, then it maintained relatively lower. Conclusion Smoke-induced chronic bronchitis is a slowly progressive inflammation process. The model we established is convenient and simple for the longitudinal study on the inflammatory process of chronic bronchitis and the therapy in the early stage. The semi-quantitative evaluation for the pathological change is with much more value. During the inflammatory sequential process of early stage of chronic bronchitis, the cellular characteristics are

  8. MicroRNAs and deregulated gene expression networks in neurodegeneration.

    Science.gov (United States)

    Sonntag, Kai-Christian

    2010-06-18

    Neurodegeneration is characterized by the progressive loss of neuronal cell types in the nervous system. Although the main cause of cell dysfunction and death in many neurodegenerative diseases is not known, there is increasing evidence that their demise is a result of a combination of genetic and environmental factors which affect key signaling pathways in cell function. This view is supported by recent observations that disease-compromised cells in late-stage neurodegeneration exhibit profound dysregulation of gene expression. MicroRNAs (miRNAs) introduce a novel concept of regulatory control over gene expression and there is increasing evidence that they play a profound role in neuronal cell identity as well as multiple aspects of disease pathogenesis. Here, we review the molecular properties of brain cells derived from patients with neurodegenerative diseases, and discuss how deregulated miRNA/mRNA expression networks could be a mechanism in neurodegeneration. In addition, we emphasize that the dysfunction of these regulatory networks might overlap between different cell systems and suggest that miRNA functions might be common between neurodegeneration and other disease entities.

  9. Clinical challenges of chronic wounds: searching for an optimal animal model to recapitulate their complexity

    Directory of Open Access Journals (Sweden)

    Robert Nunan

    2014-11-01

    Full Text Available The efficient healing of a skin wound is something that most of us take for granted but is essential for surviving day-to-day knocks and cuts, and is absolutely relied on clinically whenever a patient receives surgical intervention. However, the management of a chronic wound – defined as a barrier defect that has not healed in 3 months – has become a major therapeutic challenge throughout the Western world, and it is a problem that will only escalate with the increasing incidence of conditions that impede wound healing, such as diabetes, obesity and vascular disorders. Despite being clinically and molecularly heterogeneous, all chronic wounds are generally assigned to one of three major clinical categories: leg ulcers, diabetic foot ulcers or pressure ulcers. Although we have gleaned much knowledge about the fundamental cellular and molecular mechanisms that underpin healthy, acute wound healing from various animal models, we have learned much less about chronic wound repair pathology from these models. This might largely be because the animal models being used in this field of research have failed to recapitulate the clinical features of chronic wounds. In this Clinical Puzzle article, we discuss the clinical complexity of chronic wounds and describe the best currently available models for investigating chronic wound pathology. We also assess how such models could be optimised to become more useful tools for uncovering pathological mechanisms and potential therapeutic treatments.

  10. Holistic interaction model for peoble living with a chronic disease

    OpenAIRE

    Villalba Mora, Elena

    2008-01-01

    Ambient Intelligence (AmI) allows the intelligent and natural interaction between the context and individuals. This paradigm will facilitate user support through novel medical protocol design for chronic disease treatment, based on the healthy lifestyle promotion. Cardiovascular Diseases (CVD) account for 45% of all deaths in the western world according to the 2004 World Health Organization statistic report. Heart Failure (HF), CVD’s primary paradigm, mainly affects people older than 65. The ...

  11. Le «Chronic care model» en médecine de famille en Suisse

    OpenAIRE

    Steurer-Stey, C.; Frei, A; Rosemann, T

    2010-01-01

    The Chronic care model in Swiss primary care The care of patients with chronic disease is one of the most urgent medical challenges of actual society. The chronic care model (CCM) is an organizational, proactive approach for chronic disease in primary care. The system creates practical, supportive, evidence-based interactions between an informed, activated patient and a proactive practice team. CCM identifies six essential elements of high-quality health care : community ; heal...

  12. Electron Transport Disturbances and Neurodegeneration: From Albert Szent-Györgyi's Concept (Szeged) till Novel Approaches to Boost Mitochondrial Bioenergetics

    OpenAIRE

    Levente Szalárdy; Dénes Zádori; Péter Klivényi; József Toldi; László Vécsei

    2015-01-01

    Impaired function of certain mitochondrial respiratory complexes has long been linked to the pathogenesis of chronic neurodegenerative disorders such as Parkinson’s and Huntington’s diseases. Furthermore, genetic alterations of mitochondrial genome or nuclear genes encoding proteins playing essential roles in maintaining proper mitochondrial function can lead to the development of severe systemic diseases associated with neurodegeneration and vacuolar myelinopathy. At present, all of these di...

  13. Novel mouse model of chronic Pseudomonas aeruginosa lung infection mimicking cystic fibrosis

    DEFF Research Database (Denmark)

    Hoffmann, Nadine; Rasmussen, Thomas Bovbjerg; Jensen, Peter Østrup;

    2005-01-01

    Pseudomonas aeruginosa causes a chronic infection in the lungs of cystic fibrosis (CF) patients by establishing an alginate-containing biofilm. The infection has been studied in several animal models; however, most of the models required artificial embedding of the bacteria. We present here a new...... pulmonary mouse model without artificial embedding. The model is based on a stable mucoid CF sputum isolate (NH57388A) with hyperproduction of alginate due to a deletion in mucA and functional N-acylhomoserine lactone (AHL)-based quorum-sensing systems. Chronic lung infection could be established in both CF...

  14. L-tyrosine improves neuroendocrine function in a mouse model of chronic stress

    Institute of Scientific and Technical Information of China (English)

    Zhihua Wang; Jinghua Li; Zhiming Wang; Lingyan Xue; Yi Zhang; Yingjie Chen; Jun Su; Zhongming Li

    2012-01-01

    Adult BALB/c mice, individually housed, were stimulated with nine different stressors, arranged randomly, for 4 continuous weeks to generate an animal model of chronic stress. In chronically stressed mice, spontaneous locomotor activity was significantly decreased, escape latency in the Morris water maze test was prolonged, serum levels of total thyrotropin and total triiodothyronine were significantly decreased, and dopamine and norepinephrine content in the pallium, hippocampus and hypothalamus were significantly reduced. All of these changes were suppressed, to varying degrees, by L-tyrosine supplementation. These findings indicate that the neuroendocrine network plays an important role in chronic stress, and that L-tyrosine supplementation has therapeutic effects.

  15. Endovascular middle cerebral arterial occlusion in a nonhuman primate model of chronic stroke

    Institute of Scientific and Technical Information of China (English)

    Qiang Wang; Tong Zhang; Chunyu Zhao; Bin Du; Feng Gao; Mei Wen; Weijian Jiang

    2011-01-01

    No study has reported the safety, effectiveness, and consistency of endovascular middle cerebral artery occlusion in a chronic cerebral ischemia model. Nor have studies verified the safest and most effective segment, or branch, in the embolic middle cerebral artery. In this experiment, cerebral infarction models were established at M1, and on the upper and lower trunks on the contralateral side of the handedness of rhesus monkeys by using endovascular intervention. The results confirmed a high animal survival rate in stroke models of middle cerebral artery upper trunk occlusion. There was pronounced paralysis at the acute phase, long-term upper extremity dysfunction at the chronic phase, and the models showed good repeatability and consistency. Thus, this study describes a safe and effective model of chronic stroke.

  16. Dimethyl fumarate attenuates intracerebroventricular streptozotocin-induced spatial memory impairment and hippocampal neurodegeneration in rats.

    Science.gov (United States)

    Majkutewicz, Irena; Kurowska, Ewelina; Podlacha, Magdalena; Myślińska, Dorota; Grembecka, Beata; Ruciński, Jan; Plucińska, Karolina; Jerzemowska, Grażyna; Wrona, Danuta

    2016-07-15

    Intracerebroventricular (ICV) injection of streptozotocin (STZ) is a widely-accepted animal model of sporadic Alzheimer's disease (sAD). The present study evaluated the ability of dimethyl fumarate (DMF), an agent with antioxidant and anti-inflammatory properties, to prevent spatial memory impairments and hippocampal neurodegeneration mediated by ICV injection of STZ in 4-month-old rats. Rodent chow containing DMF (0.4%) or standard rodent chow was made available on day 0. Rat body weight and food intake were measured daily for whole the experiment (21days). STZ or vehicle (SHAM) ICV injections were performed on days 2 and 4. Spatial reference and working memory were evaluated using the Morris water maze on days 14-21. Cells containing Fluoro-Jade B (neurodegeneration marker), IL-6, IL-10 were quantified in the hippocampus and choline acetyltransferase (ChAT) in the basal forebrain. The disruption of spatial memory and a high density of hippocampal CA1-3 cells labeled with Fluoro-Jade B or containing IL-6 or IL-10 were observed in the STZ group but not in the STZ+DMF group, as compared to the SHAM or SHAM+DMF groups. STZ vs. STZ+DMF differences were found: worse reference memory acquisition, fewer ChAT-positive neurons in the medial septum (Ch1), more Fluoro-Jade-positive CA1 hippocampal cells in STZ rats. DMF therapy in a rodent model of sAD prevented the disruption of spatial reference and working memory, loss of Ch1 cholinergic cells and hippocampal neurodegeneration as well as the induction of IL-6 and IL-10 in CA1. These beneficial cognitive and molecular effects validate the anti-inflammatory and neuroprotective properties of DMF in the hippocampus. PMID:27083302

  17. Facilitators and barriers of implementing the chronic care model in primary care: a systematic review

    OpenAIRE

    Kadu, Mudathira K; Stolee, Paul

    2015-01-01

    Background The Chronic Care Model (CCM) is a framework developed to redesign care delivery for individuals living with chronic diseases in primary care. The CCM and its various components have been widely adopted and evaluated, however, little is known about different primary care experiences with its implementation, and the factors that influence its successful uptake. The purpose of this review is to synthesize findings of studies that implemented the CCM in primary care, in order to identi...

  18. Using Mobile Health to Support the Chronic Care Model: Developing an Institutional Initiative

    OpenAIRE

    Shantanu Nundy; Jonathan J. Dick; Goddu, Anna P.; Patrick Hogan; Lu, Chen-Yuan E.; Solomon, Marla C; Arnell Bussie; Chin, Marshall H; Peek, Monica E.

    2012-01-01

    Background. Self-management support and team-based care are essential elements of the Chronic Care Model but are often limited by staff availability and reimbursement. Mobile phones are a promising platform for improving chronic care but there are few examples of successful health system implementation. Program Development. An iterative process of program design was built upon a pilot study and engaged multiple institutional stakeholders. Patients identified having a “human face” to the pilot...

  19. Effects of chronic administration of drugs of abuse on impulsive choice (delay discounting) in animal models

    OpenAIRE

    Setlow, Barry; Mendez, Ian A.; Mitchell, Marci R; Simon, Nicholas W.

    2009-01-01

    Drug addicted individuals demonstrate high levels of impulsive choice, characterized by preference for small immediate over larger but delayed rewards. Although the causal relationship between chronic drug use and elevated impulsive choice in humans has been unclear, a small but growing body of literature over the past decade has shown that chronic drug administration in animal models can cause increases in impulsive choice, suggesting that a similar causal relationship may exist in human dru...

  20. Association between endothelial dysfunction and depression-like symptoms in chronic mild stress model of depression

    DEFF Research Database (Denmark)

    Bouzinova, Elena; Bødtkjer, Donna Marie Briggs; Kudryavtseva, Olga;

    2014-01-01

    OBJECTIVE: Cardiovascular diseases have high comorbidity with major depression. Endothelial dysfunction may explain the adverse cardiovascular outcome in depression; therefore, we analyzed it in vitro. In the chronic mild stress model, some rats develop depression-like symptoms (including...... "anhedonia"), whereas others are stress resilient. METHODS: After 8 weeks of chronic mild stress, anhedonic rats reduced their sucrose intake by 55% (7%), whereas resilient rats did not. Acetylcholine-induced endothelium-dependent relaxation of norepinephrine-preconstricted mesenteric arteries was analyzed...

  1. L-tyrosine improves neuroendocrine function in a mouse model of chronic stress

    OpenAIRE

    Wang, Zhihua; Li, Jinghua; Wang, Zhiming; Xue, Lingyan; Zhang, Yi; Chen, Yingjie; Su, Jun; Li, Zhongming

    2012-01-01

    Adult BALB/c mice, individually housed, were stimulated with nine different stressors, arranged randomly, for 4 continuous weeks to generate an animal model of chronic stress. In chronically stressed mice, spontaneous locomotor activity was significantly decreased, escape latency in the Morris water maze test was prolonged, serum levels of total thyrotropin and total triiodothyronine were significantly decreased, and dopamine and norepinephrine content in the pallium, hippocampus and hypothal...

  2. Biological Analysis of Human CML Stem Cells; Xenograft Model of Chronic Phase Human Chronic Myeloid Leukemia.

    Science.gov (United States)

    Abraham, Sheela A

    2016-01-01

    Xenograft mouse models have been instrumental in expanding our knowledge of hematopoiesis and can provide a functional description of stem cells that possess engrafting potential. Here we describe methodology outlining one way of analyzing human malignant cells that are able to engraft immune compromised mice. Using models such as these will allow researchers to gain valuable insight into the primitive leukemic subtypes that evade current therapy regimes and are critical to understand, in order to eradicate malignancy. PMID:27581148

  3. Murine Model Imitating Chronic Wound Infections for Evaluation of Antimicrobial Photodynamic Therapy Efficacy

    Science.gov (United States)

    Fila, Grzegorz; Kasimova, Kamola; Arenas, Yaxal; Nakonieczna, Joanna; Grinholc, Mariusz; Bielawski, Krzysztof P.; Lilge, Lothar

    2016-01-01

    It is generally acknowledged that the age of antibiotics could come to an end, due to their widespread, and inappropriate use. Particularly for chronic wounds alternatives are being thought. Antimicrobial Photodynamic Therapy (APDT) is a potential candidate, and while approved for some indications, such as periodontitis, chronic sinusitis and other niche indications, its use in chronic wounds is not established. To further facilitate the development of APDT in chronic wounds we present an easy to use animal model exhibiting the key hallmarks of chronic wounds, based on full-thickness skin wounds paired with an optically transparent cover. The moisture-retaining wound exhibited rapid expansion of pathogen colonies up to 8 days while not jeopardizing the host survival. Use of two bioluminescent pathogens; methicillin resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa permits real time monitoring of the pathogens. The murine model was employed to evaluate the performance of four different photosensitizers as mediators in Photodynamic Therapy. While all four photosensitizers, Rose Bengal, porphyrin TMPyP, New Methylene Blue, and TLD1411 demonstrated good to excellent antimicrobial efficacy in planktonic solutions at 1 to 50 μM concentrations, whereas in in vivo the growth delay was limited with 24–48 h delay in pathogen expansion for MRSA, and we noticed longer growth suppression of P. aeruginosa with TLD1411 mediated Photodynamic Therapy. The murine model will enable developing new strategies for enhancement of APDT for chronic wound infections. PMID:27555843

  4. Murine Model Imitating Chronic Wound Infections for Evaluation of Antimicrobial Photodynamic Therapy Efficacy.

    Science.gov (United States)

    Fila, Grzegorz; Kasimova, Kamola; Arenas, Yaxal; Nakonieczna, Joanna; Grinholc, Mariusz; Bielawski, Krzysztof P; Lilge, Lothar

    2016-01-01

    It is generally acknowledged that the age of antibiotics could come to an end, due to their widespread, and inappropriate use. Particularly for chronic wounds alternatives are being thought. Antimicrobial Photodynamic Therapy (APDT) is a potential candidate, and while approved for some indications, such as periodontitis, chronic sinusitis and other niche indications, its use in chronic wounds is not established. To further facilitate the development of APDT in chronic wounds we present an easy to use animal model exhibiting the key hallmarks of chronic wounds, based on full-thickness skin wounds paired with an optically transparent cover. The moisture-retaining wound exhibited rapid expansion of pathogen colonies up to 8 days while not jeopardizing the host survival. Use of two bioluminescent pathogens; methicillin resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa permits real time monitoring of the pathogens. The murine model was employed to evaluate the performance of four different photosensitizers as mediators in Photodynamic Therapy. While all four photosensitizers, Rose Bengal, porphyrin TMPyP, New Methylene Blue, and TLD1411 demonstrated good to excellent antimicrobial efficacy in planktonic solutions at 1 to 50 μM concentrations, whereas in in vivo the growth delay was limited with 24-48 h delay in pathogen expansion for MRSA, and we noticed longer growth suppression of P. aeruginosa with TLD1411 mediated Photodynamic Therapy. The murine model will enable developing new strategies for enhancement of APDT for chronic wound infections. PMID:27555843

  5. Cost-effectiveness models for chronic obstructive pulmonary disease : cross-model comparison of hypothetical treatment scenarios

    NARCIS (Netherlands)

    Hoogendoorn, Martine; Feenstra, Talitha L; Asukai, Yumi; Borg, Sixten; Hansen, Ryan N; Jansson, Sven-Arne; Samyshkin, Yevgeniy; Wacker, Margarethe; Briggs, Andrew H; Lloyd, Adam; Sullivan, Sean D; Rutten-van Mölken, Maureen P M H

    2014-01-01

    OBJECTIVES: To compare different chronic obstructive pulmonary disease (COPD) cost-effectiveness models with respect to structure and input parameters and to cross-validate the models by running the same hypothetical treatment scenarios. METHODS: COPD modeling groups simulated four hypothetical inte

  6. The woodchuck as an animal model for pathogenesis and therapy of chronic hepatitis B virus infection

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    This review describes the woodchuck and the woodchuck hepatitis virus (WHV) as an animal model for pathogenesis and therapy of chronic hepatitis B virus (HBV) infection and disease in humans. The establishment of woodchuck breeding colonies, and use of laboratory-reared woodchucks infected with defined WHV inocula, have enhanced our understanding of the virology and immunology of HBV infection and disease pathogenesis, including major sequelae like chronic hepatitis and hepatocellular carcinoma. The role of persistent WHV infection and of viral load on the natural history of infection and disease progression has been firmly established along the way. More recently, the model has shed new light on the role of host immune responses in these natural processes,and on how the immune system of the chronic carrier can be manipulated therapeutically to reduce or delay serious disease sequelae through induction of the recovery phenotype. The woodchuck is an outbred species and is not well defined immunologically due to a limitation of available host markers. However, the recent development of several key host response assays for woodchucks provides experimental opportunities for further mechanistic studies of outcome predictors in neonatal- and adult-acquired infections. Understanding the virological and immunological mechanisms responsible for resolution of self-limited infection, and for the onset and maintenance of chronic infection, will greatly facilitate the development of successful strategies for the therapeutic eradication of established chronic HBV infection. Likewise, the results of drug efficacy and toxicity studies in the chronic carrier woodchucks are predictive for responses of patients chronically infected with HBV. Therefore, chronic WHV carrier woodchucks provide a well-characterized mammalian model for preclinical evaluation of the safety and efficacy of drug candidates, experimental therapeutic vaccines, and immunomodulators for the treatment and

  7. A Logic Model for the Integration of Mental Health Into Chronic Disease Prevention and Health Promotion

    Directory of Open Access Journals (Sweden)

    James Lando, MD, MPH

    2006-03-01

    Full Text Available Mental illnesses such as depression or anxiety affect an individual’s ability to undertake health-promoting behaviors. Chronic diseases can have a profound impact on an individual’s mental health; in turn, mental health status affects an individual’s ability to participate in treatment and recovery. A group of mental health and public health professionals convened to develop a logic model for addressing mental health as it relates to chronic disease prevention and health promotion. The model provides details on inputs, activities, and desired outcomes, and the designers of the model welcome input from other mental health and public health practitioners.

  8. Model Construction for the Intention to Use Telecare in Patients with Chronic Diseases

    Directory of Open Access Journals (Sweden)

    Jui-Chen Huang

    2013-01-01

    Full Text Available Objective. This study chose patients with chronic diseases as study subjects to investigate their intention to use telecare. Methods. A large medical institute in Taiwan was used as the sample unit. Patients older than 20 years, who had chronic diseases, were sampled by convenience sampling and surveyed with a structural questionnaire, and a total of 500 valid questionnaires were collected. Model construction was based on the Health Belief Model. The reliability and validity of the measurement model were tested using confirmatory factor analysis (CFA, and the causal model was explained by structural equation modeling (SEM. Results. The priority should be on promoting the perceived benefits of telecare, with a secondary focus on the external cues to action, such as promoting the influences of important people on the patients. Conclusion. The findings demonstrated that patients with chronic diseases use telecare differently from the general public. To promote the use and acceptance of telecare in patients with chronic diseases, technology developers should prioritize the promotion of the usefulness of telecare. In addition, policy makers can strengthen the marketing from media and medical personnel, in order to increase the acceptance of telecare by patients with chronic diseases.

  9. Model construction for the intention to use telecare in patients with chronic diseases.

    Science.gov (United States)

    Huang, Jui-Chen; Lee, Yii-Ching

    2013-01-01

    Objective. This study chose patients with chronic diseases as study subjects to investigate their intention to use telecare. Methods. A large medical institute in Taiwan was used as the sample unit. Patients older than 20 years, who had chronic diseases, were sampled by convenience sampling and surveyed with a structural questionnaire, and a total of 500 valid questionnaires were collected. Model construction was based on the Health Belief Model. The reliability and validity of the measurement model were tested using confirmatory factor analysis (CFA), and the causal model was explained by structural equation modeling (SEM). Results. The priority should be on promoting the perceived benefits of telecare, with a secondary focus on the external cues to action, such as promoting the influences of important people on the patients. Conclusion. The findings demonstrated that patients with chronic diseases use telecare differently from the general public. To promote the use and acceptance of telecare in patients with chronic diseases, technology developers should prioritize the promotion of the usefulness of telecare. In addition, policy makers can strengthen the marketing from media and medical personnel, in order to increase the acceptance of telecare by patients with chronic diseases. PMID:23533392

  10. Eugenia jambolana Lam. Increases lifespan and ameliorates experimentally induced neurodegeneration in C. elegans

    Directory of Open Access Journals (Sweden)

    Maria de Fátima Bezerra

    2014-09-01

    Full Text Available Summary. Type-2 diabetes mellitus (T2DM, dyslipidemia (DL and inflammation (IF are associated with reduced lifespan (LS and increased risk of neurodegenerative diseases (NDG. Dysregulation in insulin/insulin-like growth factor-1 (IGF-1 (IIS signaling, forkhead box O transcription factor (FOXO and Silent Information Regulators or Sirtuins (SIRT may be responsible. We investigated the effect of spray dried Jambolan (Eugenia jambolana Lam. fruit in Caenorhabditis elegans model for lifespan, amyloid b1-42 (Ab1-42 aggregation induced paralysis and MPP+ (1-methyl-4-phenylpyridinium induced neurodegeneration. Effect on modulating critical genes involved signaling pathways important in IIS, LS and NDG were also studied in C. elegans. Results show suggest statistically significant increase in lifespan (9-22.7% coupled with a delay in Ab1-42 induced paralysis (11.5% and MPP+ induced paralysis (38-43%. Gene expression studies indicated a significant upregulation in expression of  C. elegans homologs of foxo, sirt1, dopamine D1 receptor and suggested a non-FOXO mediated mechanism of action.Industrial relevance. Jambolan is a bioactive-rich tropical fruit with high colorant potential. Despite this fact, its perishability has hampered its market and industrial use beyond the countries where it is cultivated. Considering that drying is a popular technique able to extend fruits shelf life and concentrate their natural bioactive compounds, this research investigates the health relevance of spray dried jambolan. Here we addressed the potential of dried Jambolan fruit to extend lifespan and inhibit the progression of experimentally induced neurodegeneration using the C. elegans model. We demonstrated that this convenient fruit product was able to increase the lifespan of C. elegans. The jambolan extracts also influenced some critical genes of signaling pathways relevant to metabolic diseases, aging and neurodegeneration. Based on our results, some insight about

  11. Exacerbation of CNS inflammation and neurodegeneration by systemic LPS treatment is independent of circulating IL-1 beta and IL-6

    LENUS (Irish Health Repository)

    Murray, Carol L

    2011-05-17

    Abstract Background Chronic neurodegeneration comprises an inflammatory response but its contribution to the progression of disease remains unclear. We have previously shown that microglial cells are primed by chronic neurodegeneration, induced by the ME7 strain of prion disease, to synthesize limited pro-inflammatory cytokines but to produce exaggerated responses to subsequent systemic inflammatory insults. The consequences of this primed response include exaggerated hypothermic and sickness behavioural responses, acute neuronal death and accelerated progression of disease. Here we investigated whether inhibition of systemic cytokine synthesis using the anti-inflammatory steroid dexamethasone-21-phosphate was sufficient to block any or all of these responses. Methods ME7 animals, at 18-19 weeks post-inoculation, were challenged with LPS (500 μg\\/kg) in the presence or absence of dexamethasone-21-phosphate (2 mg\\/kg) and effects on core-body temperature and systemic and CNS cytokine production and apoptosis were examined. Results LPS induced hypothermia and decreased exploratory activity. Dexamethasone-21-phosphate prevented this hypothermia, markedly suppressed systemic IL-1β and IL-6 secretion but did not prevent decreased exploration. Furthermore, robust transcription of cytokine mRNA occurred in the hippocampus of both ME7 and NBH (normal brain homogenate) control animals despite the effective blocking of systemic cytokine synthesis. Microglia primed by neurodegeneration were not blocked from the robust synthesis of IL-1β protein and endothelial COX-2 was also robustly synthesized. We injected biotinylated LPS at 100 μg\\/kg and even at this lower dose this could be detected in blood plasma. Apoptosis was acutely induced by LPS, despite the inhibition of the systemic cytokine response. Conclusions These data suggest that LPS can directly activate the brain endothelium even at relatively low doses, obviating the need for systemic cytokine stimulation to

  12. Complement is dispensable for neurodegeneration in Niemann-Pick disease type C

    Directory of Open Access Journals (Sweden)

    Lopez Manuel E

    2012-09-01

    Full Text Available Abstract Background The immune system has been implicated in neurodegeneration during development and disease. In various studies, the absence of complement (that is, C1q deficiency impeded the elimination of apoptotic neurons, allowing survival. In the genetic lysosomal storage disease Niemann-Pick C (NPC, caused by loss of NPC1 function, the expression of complement system components, C1q especially, is elevated in degenerating brain regions of Npc1-/- mice. Here we test whether complement is mediating neurodegeneration in NPC disease. Findings In normal mature mice, C1q mRNA was found in neurons, particularly cerebellar Purkinje neurons (PNs. In Npc1-/- mice, C1q mRNA was additionally found in activated microglia, which accumulate during disease progression and PN loss. Interestingly, C1q was not enriched on or near degenerating neurons. Instead, C1q was concentrated in other brain regions, where it partially co-localized with a potential C1q inhibitor, chondroitin sulfate proteoglycan (CSPG. Genetic deletion of C1q, or of the downstream complement pathway component C3, did not significantly alter patterned neuron loss or disease progression. Deletion of other immune response factors, a Toll-like receptor, a matrix metalloprotease, or the apoptosis facilitator BIM, also failed to alter neuron loss. Conclusion We conclude that complement is not involved in the death and clearance of neurons in NPC disease. This study supports a view of neuroinflammation as a secondary response with non-causal relationship to neuron injury in the disease. This disease model may prove useful for understanding the conditions in which complement and immunity do contribute to neurodegeneration in other disorders.

  13. Prepubertal chronic stress and ketamine administration to rats as a neurodevelopmental model of schizophrenia symptomatology.

    Science.gov (United States)

    Ram, Edward; Raphaeli, Shani; Avital, Avi

    2013-11-01

    Increased vulnerability to psychiatric disorders, such as schizophrenia, has been associated with higher levels of stress. In the early development of the central nervous system, changes in function of glutamatergic N-Methyl-D-aspartate (NMDA) receptors can possibly result in the development of psychosis, cognitive impairment and emotional dysfunction in adulthood. Thus, in this study we examined the behavioural consequences of the exposure of male rats to chronic stress (postnatal days 30-60) and ketamine administration (postnatal days 41-45); both during a sensitive developmental time window. We found that the locomotor activity of both ketamine and ketamine+chronic stress groups was significantly higher compared with that of the control rats. In contrast, the locomotor activity of the chronic stress group was significantly lower compared with all other groups. Examining anhedonia in the sucrose preference test we found a significantly decreased sucrose intake in both ketamine+chronic stress and the chronic stress groups compared with the control rats. No significant differences were observed in sucrose intake between the control and the ketamine group. The object recognition test revealed that the attention to the novel object was significantly impaired in the ketamine+chronic stress group. Similarly, the ketamine+chronic stress group showed the poorest learning ability in the eight-arm radial maze, starting on the 8th day. Finally, throughout the different pre-pulse intensities, the ketamine+chronic stress group showed impaired PPI compared with all other groups. The results indicate that the combination of prepubertal onset of chronic stress and ketamine may serve as a valid novel animal model for schizophrenia-like symptoms.

  14. Modelling Estimates of Norovirus Disease in Patients with Chronic Medical Conditions.

    Directory of Open Access Journals (Sweden)

    Thomas Verstraeten

    Full Text Available The burden of disease due to norovirus infection has been well described in the general United States population, but studies of norovirus occurrence among persons with chronic medical conditions have been limited mostly to the immunocompromised. We assessed the impact of norovirus gastroenteritis on health care utilization in US subjects with a range of chronic medical conditions.We performed a retrospective cohort study using MarketScan data from July 2002 to December 2013, comparing the rates of emergency department visits, outpatient visits and hospitalizations among patients with chronic conditions (renal, cardiovascular, respiratory, immunocompromising, gastrointestinal, hepatic/pancreatic and neurological conditions and diabetes with those in a healthy population. We estimated the rates of these outcomes due to norovirus gastroenteritis using an indirect modelling approach whereby cases of gastroenteritis of unknown cause and not attributed to a range of other causes were assumed to be due to norovirus.Hospitalization rates for norovirus gastroenteritis were higher in all of the risk groups analyzed compared with data in otherwise healthy subjects, ranging from 3.2 per 10,000 person-years in persons with chronic respiratory conditions, to 23.1 per 10,000 person-years in persons with chronic renal conditions, compared to 2.1 per 10,000 among persons without chronic conditions. Over 51% of all norovirus hospitalizations occurred in the 37% of the population with some form of chronic medical condition. Outpatient visits for norovirus gastroenteritis were also increased in persons with chronic gastrointestinal or immunocompromising conditions.Norovirus gastroenteritis leads to significantly higher rates of healthcare utilization in patients with a chronic medical condition compared to patients without any such condition.

  15. An integrated chronic disease management model: a diagonal approach to health system strengthening in South Africa.

    Science.gov (United States)

    Mahomed, Ozayr Haroon; Asmall, Shaidah; Freeman, Melvyn

    2014-11-01

    The integrated chronic disease management model provides a systematic framework for creating a fundamental change in the orientation of the health system. This model adopts a diagonal approach to health system strengthening by establishing a service-linked base to training, supervision, and the opportunity to try out, assess, and implement integrated interventions.

  16. The Relevance of Value Net Integrator and Shared Infrastructure Business Models in Managing Chronic Conditions

    Directory of Open Access Journals (Sweden)

    Susan Lambert

    2005-11-01

    Full Text Available There is widespread support for chronic condition management (CCM programs that require a multi-disciplinary, care-team approach. Implementation of such programs represents a paradigm shift in primary care service delivery and has significant resource implications for the general practice. Integral to the widespread uptake of care-team based CCM is information collection, storage and dissemination amongst the care-team members. This paper looks to ebusiness models for assistance in understanding the requirements of general practitioners (GPs in providing multi-disciplinary team care to patients with chronic conditions. The role required of GPs in chronic condition management is compared to that of a value net integrator. The essential characteristics of value net integrators are identified and compared to those of GPs providing multi-disciplinary team care to patients with chronic conditions. It is further suggested that a shared infrastructure is required.

  17. Effect of Chronic Administration of Melatonin on Ethanol Drinking in Rat Models of Chronic Voluntary Ethanol Consumption

    Directory of Open Access Journals (Sweden)

    Zahoor Ahmad Rather

    2016-06-01

    Full Text Available Objective: This study is planned to examine the possible beneficial effect of chronic administration of melatonin on ethanol drinking in rat models chronic voluntary ethanol consumption. Methods: Intermittent access 10% ethanol two-bottle-choice drinking paradigm was employed in 4 groups of rats where the rats had access to ethanol on alternate days in a week and a free access to water on all day. The ethanol and water intake was recorded on each ethanol day. All rats received drug treatment (Distilled water, naltrexone, melatonin 50 mg/kg and melatonin 100 mg/kg for 6 days continuously once they attain stable ethanol drinking pattern. The ethanol consumption on the last drinking session before the drug administration was noted as pretreatment baseline ethanol drinking value. The ethanol consumption on the first drinking session after the last dose of drug administration was noted as the post treatment value. Results: There was no change in the amount of ethanol consumption by rats in groups receiving distilled water and melatonin 50 mg/kg body weight. There was significant reduction in the ethanol consumption in rats receiving melatonin 100 mg/kg body weight and naltrexone. Comparison among different groups showed statistically significant difference between melatonin 100 mg/kg and distilled water as well as between naltrexone and distilled water.

  18. Gene expression patterns in the hippocampus and amygdala of endogenous depression and chronic stress models.

    Science.gov (United States)

    Andrus, B M; Blizinsky, K; Vedell, P T; Dennis, K; Shukla, P K; Schaffer, D J; Radulovic, J; Churchill, G A; Redei, E E

    2012-01-01

    The etiology of depression is still poorly understood, but two major causative hypotheses have been put forth: the monoamine deficiency and the stress hypotheses of depression. We evaluate these hypotheses using animal models of endogenous depression and chronic stress. The endogenously depressed rat and its control strain were developed by bidirectional selective breeding from the Wistar-Kyoto (WKY) rat, an accepted model of major depressive disorder (MDD). The WKY More Immobile (WMI) substrain shows high immobility/despair-like behavior in the forced swim test (FST), while the control substrain, WKY Less Immobile (WLI), shows no depressive behavior in the FST. Chronic stress responses were investigated by using Brown Norway, Fischer 344, Lewis and WKY, genetically and behaviorally distinct strains of rats. Animals were either not stressed (NS) or exposed to chronic restraint stress (CRS). Genome-wide microarray analyses identified differentially expressed genes in hippocampi and amygdalae of the endogenous depression and the chronic stress models. No significant difference was observed in the expression of monoaminergic transmission-related genes in either model. Furthermore, very few genes showed overlapping changes in the WMI vs WLI and CRS vs NS comparisons, strongly suggesting divergence between endogenous depressive behavior- and chronic stress-related molecular mechanisms. Taken together, these results posit that although chronic stress may induce depressive behavior, its molecular underpinnings differ from those of endogenous depression in animals and possibly in humans, suggesting the need for different treatments. The identification of novel endogenous depression-related and chronic stress response genes suggests that unexplored molecular mechanisms could be targeted for the development of novel therapeutic agents.

  19. Traumatic brain injury, neuroimaging, and neurodegeneration.

    Science.gov (United States)

    Bigler, Erin D

    2013-01-01

    Depending on severity, traumatic brain injury (TBI) induces immediate neuropathological effects that in the mildest form may be transient but as severity increases results in neural damage and degeneration. The first phase of neural degeneration is explainable by the primary acute and secondary neuropathological effects initiated by the injury; however, neuroimaging studies demonstrate a prolonged period of pathological changes that progressively occur even during the chronic phase. This review examines how neuroimaging may be used in TBI to understand (1) the dynamic changes that occur in brain development relevant to understanding the effects of TBI and how these relate to developmental stage when the brain is injured, (2) how TBI interferes with age-typical brain development and the effects of aging thereafter, and (3) how TBI results in greater frontotemporolimbic damage, results in cerebral atrophy, and is more disruptive to white matter neural connectivity. Neuroimaging quantification in TBI demonstrates degenerative effects from brain injury over time. An adverse synergistic influence of TBI with aging may predispose the brain injured individual for the development of neuropsychiatric and neurodegenerative disorders long after surviving the brain injury.

  20. Traumatic brain injury, neuroimaging, and neurodegeneration

    Directory of Open Access Journals (Sweden)

    Erin D. Bigler

    2013-08-01

    Full Text Available Depending on severity, traumatic brain injury (TBI induces immediate neuropathological effects that in the mildest form may be transient but as severity increases results in neural damage and degeneration. The first phase of neural degeneration is explainable by the primary acute and secondary neuropathological effects initiated by the injury; however, neuroimaging studies demonstrate a prolonged period of pathological changes that progressively occur even during the chronic phase. This review examines how neuroimaging may be used in TBI to understand (1 the dynamic changes that occur in brain development relevant to understanding the effects of TBI and how these relate to developmental stage when the brain is injured, (2 how TBI interferes with age-typical brain development and the effects of aging thereafter, and (3 how TBI results in greater frontotemporolimbic damage, results in cerebral atrophy, and is more disruptive to white matter neural connectivity. Neuroimaging quantification in TBI demonstrates degenerative effects from brain injury over time. An adverse synergistic influence of TBI with aging may predispose the brain injured individual for the development of neuropsychiatric and neurodegenerative disorders long after surviving the brain injury.

  1. Effects of Modeling and Reinforcement on Adult Chronic Schizophrenics

    Science.gov (United States)

    Olson, R. Paul

    1971-01-01

    This study confirmed two general predictions: (1) the model contributes to new learning; and (2) neither the model nor reinforcement of the model adds significantly to motivation, beyond the effect that can be attributed to reinforcement of the subject himself. (Author/CG)

  2. Moderate exercise prevents neurodegeneration in D-galactose-induced aging mice.

    Science.gov (United States)

    Li, Li; Xu, Meng; Shen, Bo; Li, Man; Gao, Qian; Wei, Shou-Gang

    2016-05-01

    D-galactose has been widely used in aging research because of its efficacy in inducing senescence and accelerating aging in animal models. The present study investigated the benefits of exercise for preventing neurodegeneration, such as synaptic plasticity, spatial learning and memory abilities, in mouse models of aging. D-galactose-induced aging mice were administered daily subcutaneous injections of D-galactose at the base of the neck for 10 consecutive weeks. Then, the mice were subjected to exercise training by running on a treadmill for 6 days a week. Shortened escape latency in a Morris water maze test indicated that exercise improved learning and memory in aging mice. The ameliorative changes were likely induced by an upregulation of Bcl-2 and brain-derived neurotrophic factor, the repression of apoptosis factors such as Fas and Bax, and an increase in the activity of glucose transporters-1 and 4. The data suggest moderate exercise may retard or inhibit neurodegeneration in D-galactose-induced aging mice. PMID:27335566

  3. Moderate exercise prevents neurodegeneration in D-galactose-induced aging mice

    Institute of Scientific and Technical Information of China (English)

    Li Li; Meng Xu; Bo Shen; Man Li; Qian Gao; Shou-gang Wei

    2016-01-01

    D-galactose has been widely used in aging research because of its efifcacy in inducing senescence and accelerating aging in animal models. The present study investigated the beneifts of exercise for preventing neurodegeneration, such as synaptic plasticity, spatial learning and memory abilities, in mouse models of aging. D-galactose-induced aging mice were administered daily subcutaneous injections of D-ga-lactose at the base of the neck for 10 consecutive weeks. Then, the mice were subjected to exercise training by running on a treadmill for 6 days a week. Shortened escape latency in a Morris water maze test indicated that exercise improved learning and memory in aging mice. The ameliorative changes were likely induced by an upregulation of Bcl-2 and brain-derived neurotrophic factor, the repression of apop-tosis factors such as Fas and Bax, and an increase in the activity of glucose transporters-1 and 4. The data suggest moderate exercise may retard or inhibit neurodegeneration in D-galactose-induced aging mice.

  4. Microglial cell dysregulation in brain aging and neurodegeneration

    OpenAIRE

    von Bernhardi, Rommy; Eugenín-von Bernhardi, Laura; Eugenín, Jaime

    2015-01-01

    Aging is the main risk factor for neurodegenerative diseases. In aging, microglia undergoes phenotypic changes compatible with their activation. Glial activation can lead to neuroinflammation, which is increasingly accepted as part of the pathogenesis of neurodegenerative diseases, including Alzheimer’s disease (AD). We hypothesize that in aging, aberrant microglia activation leads to a deleterious environment and neurodegeneration. In aged mice, microglia exhibit an increased expression of c...

  5. Neurodegeneration in Schizophrenia: Evidence from In Vivo Neuroimaging Studies

    OpenAIRE

    Csernansky, John G.

    2007-01-01

    Although schizophrenia is primarily considered to be a neurodevelopmental disorder, there is a growing consensus that the disorder may also involve neurodegeneration. Recent research using non-invasive neuroimaging techniques, such as magnetic resonance imaging, suggests that some patients with schizophrenia show progressive losses of gray matter in the frontal and temporal lobes of the brain. The cellular mechanisms responsible for such gray matter losses are unknown, but have been hypothesi...

  6. Emerging nexus between RAB GTPases, autophagy and neurodegeneration.

    Science.gov (United States)

    Jain, Navodita; Ganesh, Subramaniam

    2016-05-01

    The RAB class of small GTPases includes the major regulators of intracellular communication, which are involved in vesicle generation through fusion and fission, and vesicular trafficking. RAB proteins also play an imperative role in neuronal maintenance and survival. Recent studies in the field of neurodegeneration have also highlighted the process of autophagy as being essential for neuronal maintenance. Here we review the emerging roles of RAB proteins in regulating macroautophagy and its impact in the context of neurodegenerative diseases. PMID:26985808

  7. Protection of MPTP-induced neuroinflammation and neurodegeneration by Pycnogenol

    OpenAIRE

    Khan, Mohammad Moshahid; Kempuraj, Duraisamy; Thangavel, Ramasamy; Zaheer, Asgar

    2013-01-01

    Oxidative stress and inflammation play a crucial role in Parkinson’s disease (PD) pathogenesis and may represent a target for treatment. Current PD drugs provide only symptomatic relief and have limitations in terms of adverse effects and inability to prevent neurodegeneration. Flavonoids have been suggested to exert human health benefits by its anti-oxidant and anti-inflammatory properties. Therefore, in the present study, using 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydro pyridine (MPTP)-induced...

  8. Maintaining the Brain: Insight into Human Neurodegeneration From Drosophila Mutants

    OpenAIRE

    Lessing, Derek; Bonini, Nancy M.

    2009-01-01

    The fruit fly Drosophila melanogaster has brought significant advances to research in neurodegenerative disease, notably in the identification of genes that are required to maintain the structural integrity of the brain, defined by recessive mutations that cause adult-onset neurodegeneration. Here, we survey these genes in the fly and classify them according to five key cell biological processes. Over half of these genes have counterparts in mouse or human that are also associated with neurod...

  9. Neurodegeneration in Schizophrenia: Evidence from In Vivo Neuroimaging Studies

    Directory of Open Access Journals (Sweden)

    John G. Csernansky

    2007-01-01

    Full Text Available Although schizophrenia is primarily considered to be a neurodevelopmental disorder, there is a growing consensus that the disorder may also involve neurodegeneration. Recent research using non-invasive neuroimaging techniques, such as magnetic resonance imaging, suggests that some patients with schizophrenia show progressive losses of gray matter in the frontal and temporal lobes of the brain. The cellular mechanisms responsible for such gray matter losses are unknown, but have been hypothesized to involve abnormal increases in apoptosis.

  10. TDP-43 Aggregation In Neurodegeneration: Are Stress Granules The Key?

    OpenAIRE

    Dewey, Colleen M.; Cenik, Basar; Sephton, Chantelle F.; Johnson, Brett A.; Herz, Joachim; Yu, Gang

    2012-01-01

    The RNA-binding protein TDP-43 is strongly linked to neurodegeneration. Not only are mutations in the gene encoding TDP-43 associated with ALS and FTLD, but this protein is also a major constituent of pathological intracellular inclusions in these diseases. Recent studies have significantly expanded our understanding of TDP-43 physiology. TDP-43 is now known to play important roles in neuronal RNA metabolism. It binds to and regulates the splicing and stability of numerous RNAs encoding prote...

  11. The multiple sclerosis visual pathway cohort: understanding neurodegeneration in MS

    OpenAIRE

    Martínez-Lapiscina, Elena H; Fraga-Pumar, Elena; Gabilondo, Iñigo; Martínez-Heras, Eloy; Torres-Torres, Ruben; Ortiz-Pérez, Santiago; Llufriu, Sara; Tercero, Ana; Andorra, Magi; Roca, Marc Figueras; Lampert, Erika; Zubizarreta, Irati; Saiz, Albert; Sanchez-Dalmau, Bernardo; Villoslada, Pablo

    2014-01-01

    Background Multiple Sclerosis (MS) is an immune-mediated disease of the Central Nervous System with two major underlying etiopathogenic processes: inflammation and neurodegeneration. The latter determines the prognosis of this disease. MS is the main cause of non-traumatic disability in middle-aged populations. Findings The MS-VisualPath Cohort was set up to study the neurodegenerative component of MS using advanced imaging techniques by focusing on analysis of the visual pathway in a middle-...

  12. Nitrosamine exposure exacerbates high fat diet-mediated type 2 diabetes mellitus, non-alcoholic steatohepatitis, and neurodegeneration with cognitive impairment

    Directory of Open Access Journals (Sweden)

    de la Monte Suzanne M

    2009-12-01

    Full Text Available Abstract Background The current epidemics of type 2 diabetes mellitus (T2DM, non-alcoholic steatohepatitis (NASH, and Alzheimer's disease (AD all represent insulin-resistance diseases. Previous studies linked insulin resistance diseases to high fat diets or exposure to streptozotocin, a nitrosamine-related compound that causes T2DM, NASH, and AD-type neurodegeneration. We hypothesize that low-level exposure to nitrosamines that are widely present in processed foods, amplifies the deleterious effects of high fat intake in promoting T2DM, NASH, and neurodegeneration. Methods Long Evans rat pups were treated with N-nitrosodiethylamine (NDEA by i.p. Injection, and upon weaning, they were fed with high fat (60%; HFD or low fat (5%; LFD chow for 6 weeks. Rats were evaluated for cognitive impairment, insulin resistance, and neurodegeneration using behavioral, biochemical, molecular, and histological methods. Results NDEA and HFD ± NDEA caused T2DM, NASH, deficits in spatial learning, and neurodegeneration with hepatic and brain insulin and/or IGF resistance, and reductions in tau and choline acetyltransferase levels in the temporal lobe. In addition, pro-ceramide genes, which promote insulin resistance, were increased in livers and brains of rats exposed to NDEA, HFD, or both. In nearly all assays, the adverse effects of HFD+NDEA were worse than either treatment alone. Conclusions Environmental and food contaminant exposures to low, sub-mutagenic levels of nitrosamines, together with chronic HFD feeding, function synergistically to promote major insulin resistance diseases including T2DM, NASH, and AD-type neurodegeneration. Steps to minimize human exposure to nitrosamines and consumption of high-fat content foods are needed to quell these costly and devastating epidemics.

  13. Unique Hippocampal Changes and Allodynia in a Model of Chronic Stress

    OpenAIRE

    Kim, Seong-Ho; Moon, Il Soo; Park, In-Sick

    2013-01-01

    Sustained stress can have numerous pathologic effects. There have been several animal models for chronic stress. We tried to identify the changes of pain threshold and hippocampus in a model of chronic stress. Male Sprague-Dawley rats were kept in a cage filled with 23℃ water to a height of 2.2 cm for 7 days. Nociceptive thresholds, expressed in grams, were measured with a Dynamic Plantar Aesthesiometer. Golgi staining was used to identify hippocampal changes. To demonstrate how long allodyni...

  14. Gender differences in a Drosophila transcriptomic model of chronic pentylenetetrazole induced behavioral deficit.

    Directory of Open Access Journals (Sweden)

    Abhay Sharma

    Full Text Available A male Drosophila model of locomotor deficit induced by chronic pentylenetetrazole (PTZ, a proconvulsant used to model epileptogenesis in rodents, has recently been described. Antiepileptic drugs (AEDs ameliorate development of this behavioral abnormality. Time-series of microarray profiling of heads of male flies treated with PTZ has shown epileptogenesis-like transcriptomic perturbation in the fly model. Gender differences are known to exist in neurological and psychiatric conditions including epileptogenesis. We describe here the effects of chronic PTZ in Drosophila females, and compare the results with the male model. As in males, chronic PTZ was found to cause a decreased climbing speed in females. In males, overrepresentation of Wnt, MAPK, TGF-beta, JAK-STAT, Cell communication, and Dorso-Ventral axis formation pathways in downregulated genes was previously described. Of these, female genes showed enrichment only for Dorso-Ventral axis formation. Surprisingly, the ribosomal pathway was uniquely overrepresented in genes downregulated in females. Gender differences thus exist in the Drosophila model. Gender neutral, the developmental pathway Dorso-Ventral axis formation may be considered as the candidate causal pathway in chronic pentylenetetrazole induced behavioral deficit. Prior evidence of developmental mechanisms in epileptogenesis may support potential usefulness of the fly model. Given this, gender specific pathways identified here may provide a lead for further understanding brain dimorphism in neuropsychiatric disorders.

  15. The microRNA miR-34 modulates ageing and neurodegeneration in Drosophila.

    Science.gov (United States)

    Liu, Nan; Landreh, Michael; Cao, Kajia; Abe, Masashi; Hendriks, Gert-Jan; Kennerdell, Jason R; Zhu, Yongqing; Wang, Li-San; Bonini, Nancy M

    2012-02-15

    Human neurodegenerative diseases have the temporal hallmark of afflicting the elderly population. Ageing is one of the most prominent factors to influence disease onset and progression, yet little is known about the molecular pathways that connect these processes. To understand this connection it is necessary to identify the pathways that functionally integrate ageing, chronic maintenance of the brain and modulation of neurodegenerative disease. MicroRNAs (miRNA) are emerging as critical factors in gene regulation during development; however, their role in adult-onset, age-associated processes is only beginning to be revealed. Here we report that the conserved miRNA miR-34 regulates age-associated events and long-term brain integrity in Drosophila, providing a molecular link between ageing and neurodegeneration. Fly mir-34 expression exhibits adult-onset, brain-enriched and age-modulated characteristics. Whereas mir-34 loss triggers a gene profile of accelerated brain ageing, late-onset brain degeneration and a catastrophic decline in survival, mir-34 upregulation extends median lifespan and mitigates neurodegeneration induced by human pathogenic polyglutamine disease protein. Some of the age-associated effects of miR-34 require adult-onset translational repression of Eip74EF, an essential ETS domain transcription factor involved in steroid hormone pathways. Our studies indicate that miRNA-dependent pathways may have an impact on adult-onset, age-associated events by silencing developmental genes that later have a deleterious influence on adult life cycle and disease, and highlight fly miR-34 as a key miRNA with a role in this process.

  16. 慢性咽炎模型探讨%To explore the model of chronic pharyngitis

    Institute of Scientific and Technical Information of China (English)

    涂小红; 黄玉婷; 蔡粤川; 何跃; 彭顺林

    2013-01-01

    慢性咽炎是耳鼻喉科的一种常见病,多发病,对于慢性咽炎的发病机理、临床症状及治疗等研究较多,但实验动物的选择及造模方法却很少,导师彭顺林教授所创彭氏造模法成为慢性咽炎的经典造模方法,其后的研究者们大多沿用此法。%Chronic pharyngitis is a common disease ,frequently occurring in the Department of ENT , research the pathogenesis ,clinical symptoms and treatment of chronic pharyngitis ,but few and modeling methods of the choice of the experimental animal ,Professor Peng Shunlin created the Peng's molding become chronic pharyngitis of the classical modeling methods ,the most researchers use this method .

  17. Establishment of a chronic left ventricular aneurysm model in rabbit

    Institute of Scientific and Technical Information of China (English)

    Cang-Song XIAO; Chang-Qing GAO; Li-Bing LI; Yao WANG; Tao ZHAO; Wei-Hua YE; Chong-Lei REN; Zhi-Yong LIU; Yang WU

    2014-01-01

    Objectives To establish a cost-effective and reproducible procedure for induction of chronic left ventricular aneurysm (LVA) in rabbits. Methods Acute myocardial infarction (AMI) was induced in 35 rabbits via concomitant ligation of the left anterior descending (LAD) coronary artery and the circumflex (Cx) branch at the middle portion. Development of AMI was co n-firmed by ST segment elevation and akinesis of the occluded area. Echocardiography, pathological evaluation, and agar i n-tra-chamber casting were utilized to validate the formation of LVA four weeks after the surgery. Left ventricular end systolic pressure (LVESP) and diastolic pressure (LVEDP) were measured before, immediately after and four weeks after ligation. D i-mensions of the ventricular chamber, thickness of the interventricular septum (IVS) and the left ventricular posterior wall (LVPW) left ventricular end diastolic volume (LVEDV) and systolic volume (LVESV), and ejection fraction (EF) were recorded by echo-cardiography. Results Thirty one (88.6%) rabbits survived myocardial infarction and 26 of them developed aneurysm (83.9%). The mean area of aneurysm was 33.4% ± 2.4% of the left ventricle. LVEF markedly decreased after LVA formation, whereas LVEDV, LVESV and the thickness of IVS as well as the dimension of ventricular chamber from apex to mitral valve annulus significantly increased. LVESP immediately dropped after ligation and recovered to a small extent after LVA formation. LVEDP progressively increased after ligation till LVA formation. Areas in the left ventricle (LV) that underwent fibrosis included the apex, anterior wall and lateral wall but not IVS. Agar intra-chamber cast showed that the bulging of LV wall was prominent in the area of aneurysm. Conclusions Ligation of LAD and Cx at the middle portion could induce develo pment of LVA at a mean area ratio of 33.4%±2.4%which involves the apex, anterior wall and lateral wall of the LV.

  18. The P66Shc/Mitochondrial Permeability Transition Pore Pathway Determines Neurodegeneration

    Directory of Open Access Journals (Sweden)

    Costanza Savino

    2013-01-01

    Full Text Available Mitochondrial-mediated oxidative stress and apoptosis play a crucial role in neurodegenerative disease and aging. Both mitochondrial permeability transition (PT and swelling of mitochondria have been involved in neurodegeneration. Indeed, knockout mice for cyclophilin-D (Cyc-D, a key regulatory component of the PT pore (PTP that triggers mitochondrial swelling, resulted to be protected in preclinical models of multiple sclerosis (MS, Parkinson’s disease (PD, and amyotrophic lateral sclerosis (ALS. However, how neuronal stress is transduced into mitochondrial oxidative stress and swelling is unclear. Recently, the aging determinant p66Shc that generates H2O2 reacting with cytochrome c and induces oxidation of PTP and mitochondrial swelling was found to be involved in MS and ALS. To investigate the role of p66Shc/PTP pathway in neurodegeneration, we performed experimental autoimmune encephalomyelitis (EAE experiments in p66Shc knockout mice (p66Shc−/−, knock out mice for cyclophilin-D (Cyc-D−/−, and p66Shc Cyc-D double knock out (p66Shc/Cyc-D−/− mice. Results confirm that deletion of p66Shc protects from EAE without affecting immune response, whereas it is not epistatic to the Cyc-D mutation. These findings demonstrate that p66Shc contributes to EAE induced neuronal damage most likely through the opening of PTP suggesting that p66Shc/PTP pathway transduces neurodegenerative stresses.

  19. CGG repeat-associated translation mediates neurodegeneration in fragile X tremor ataxia syndrome.

    Science.gov (United States)

    Todd, Peter K; Oh, Seok Yoon; Krans, Amy; He, Fang; Sellier, Chantal; Frazer, Michelle; Renoux, Abigail J; Chen, Kai-chun; Scaglione, K Matthew; Basrur, Venkatesha; Elenitoba-Johnson, Kojo; Vonsattel, Jean P; Louis, Elan D; Sutton, Michael A; Taylor, J Paul; Mills, Ryan E; Charlet-Berguerand, Nicholas; Paulson, Henry L

    2013-05-01

    Fragile X-associated tremor ataxia syndrome (FXTAS) results from a CGG repeat expansion in the 5' UTR of FMR1. This repeat is thought to elicit toxicity as RNA, yet disease brains contain ubiquitin-positive neuronal inclusions, a pathologic hallmark of protein-mediated neurodegeneration. We explain this paradox by demonstrating that CGG repeats trigger repeat-associated non-AUG-initiated (RAN) translation of a cryptic polyglycine-containing protein, FMRpolyG. FMRpolyG accumulates in ubiquitin-positive inclusions in Drosophila, cell culture, mouse disease models, and FXTAS patient brains. CGG RAN translation occurs in at least two of three possible reading frames at repeat sizes ranging from normal (25) to pathogenic (90), but inclusion formation only occurs with expanded repeats. In Drosophila, CGG repeat toxicity is suppressed by eliminating RAN translation and enhanced by increased polyglycine protein production. These studies expand the growing list of nucleotide repeat disorders in which RAN translation occurs and provide evidence that RAN translation contributes to neurodegeneration. PMID:23602499

  20. [Pentylenetetrazole kindling in rats: whether neurodegeneration is associated with manifestations of seizure activity?].

    Science.gov (United States)

    Pavlova, T V; Iakovleva, A A; Stepanichev, M Iu; Guliaeva, N V

    2005-07-01

    Structural changes in neurons and oxidative stress in hippocampus were studied in rats "tolerant" (TR) and susceptible (SR) to tonic and clonic seizures in pentylenetetrazole (PTZ) kindling. The number of normal neurons was significantly decreased in CA1 subfield of TR hippocampus after 11 injections of PTZ, while in SR neuronal cell loss was evident in CA1 and fascia dentata. In both groups, neuronal cell loss was accompanied by increase in damaged neuron number in CA4 subfield. After 21 injections of PTZ, the decrease in normal neuron number was revealed in CA1 subfield of both TR and SR, while the number of damaged neurons was above the control level in hippocampal subfields CA1 and CA4 in TR only. Glutathione level was decreased in hippocampus of both TR and SR as compared with control rats. Thus, rats tolerant to PTZ-induced convulsions demonstrated oxidative stress and neurodegeneration in hippocampus. The results suggest that, in PTZ kindling model, oxidative damage of neurons resulting in neurodegeneration in hippocampus is not directly related to the convulsive activity.

  1. A neural model for chronic pain and pain relief by extracorporeal shock wave treatment.

    Science.gov (United States)

    Wess, Othmar J

    2008-12-01

    The paper develops a new theory of chronic pain and pain relief by extracorporeal shock wave treatment. Chronic pain without underlying anatomical disorder is looked at as a pathological control function of memory. Conditioned reflexes are considered to be engraved memory traces linking sensory input of afferent signals with motor response of efferent signals. This feature can be described by associative memory functions of the nervous system. Some conditioned reflexes may cause inappropriate or pathological reactions. Consequently, a circulus vitiosus of pain sensation and muscle and/or vessel contraction is generated when pain becomes chronic (pain spiral). The key feature is a dedicated engram responsible for a pathological (painful) reaction. The pain memory may be explained by the concept of a holographic memory model published by several authors. According to this model it is shown how nervous systems may generate and recall memory contents. The paper shows how extracorporeal shock wave treatment may reorganize pathologic memory traces, thus giving cause to real and permanent pain relief. In a generalized manner, the idea of associative memory functions may help in the understanding of conditioning as a learning process and explain extracorporeal shock wave application as an efficient treatment concept for chronic pain. This concept may open the door for new treatment approaches to chronic pain and several other disorders of the nervous system.

  2. Cardiometabolic Effects of Chronic Hyperandrogenemia in a New Model of Postmenopausal Polycystic Ovary Syndrome.

    Science.gov (United States)

    Dalmasso, Carolina; Maranon, Rodrigo; Patil, Chetan; Bui, Elizabeth; Moulana, Mohadetheh; Zhang, Howei; Smith, Andrew; Yanes Cardozo, Licy L; Reckelhoff, Jane F

    2016-07-01

    Postmenopausal women who have had polycystic ovary syndrome (PCOS) and chronic hyperandrogenemia may be at a greater risk for cardiovascular disease than normoandrogenemic postmenopausal women. The cardiometabolic effect of chronic hyperandrogenemia in women with PCOS after menopause is unclear. The present study was performed to test the hypothesis that chronic hyperandrogenemia in aging female rats would have more deleterious effects on metabolic function, blood pressure, and renal function than in normoandrogenemic age-matched females. Female Sprague Dawley were implanted continuously, beginning at 4-5 weeks, with dihydrotestosterone (postmenopausal hyperandrogenemic female [PMHAF]) or placebo pellets (controls), and were studied at 13 months of age. Plasma DHT was 3-fold higher, and estradiol was 90% lower in PMHAF than controls. Body weights were higher; EchoMRI showed greater fat and lean mass; and computed tomography showed more sc and visceral adiposity in PMHAF, but with similar femur length compared with controls. Insulin resistance was present in PMHAF with higher plasma insulin, normal fasting blood glucose, abnormal oral glucose tolerance test, and higher nonfasting blood glucose. Blood pressure (radiotelemetry) was significantly higher and heart rate was lower, and renal function (glomerular filtration rate) was reduced by 40% in PMHAF. Thus the aging chronically hyperandrogenemic female rat is a new model of postmenopausal PCOS, which exhibits insulin resistance and visceral obesity, hypertension, and impairment in renal function. This new model provides a unique tool to study the deleterious effects of chronic androgen excess in postmenopausal females rats. PMID:27145003

  3. Antibody against early driver of neurodegeneration cis P-tau blocks brain injury and tauopathy.

    Science.gov (United States)

    Kondo, Asami; Shahpasand, Koorosh; Mannix, Rebekah; Qiu, Jianhua; Moncaster, Juliet; Chen, Chun-Hau; Yao, Yandan; Lin, Yu-Min; Driver, Jane A; Sun, Yan; Wei, Shuo; Luo, Man-Li; Albayram, Onder; Huang, Pengyu; Rotenberg, Alexander; Ryo, Akihide; Goldstein, Lee E; Pascual-Leone, Alvaro; McKee, Ann C; Meehan, William; Zhou, Xiao Zhen; Lu, Kun Ping

    2015-07-23

    Traumatic brain injury (TBI), characterized by acute neurological dysfunction, is one of the best known environmental risk factors for chronic traumatic encephalopathy and Alzheimer's disease, the defining pathologic features of which include tauopathy made of phosphorylated tau protein (P-tau). However, tauopathy has not been detected in the early stages after TBI, and how TBI leads to tauopathy is unknown. Here we find robust cis P-tau pathology after TBI in humans and mice. After TBI in mice and stress in vitro, neurons acutely produce cis P-tau, which disrupts axonal microtubule networks and mitochondrial transport, spreads to other neurons, and leads to apoptosis. This process, which we term 'cistauosis', appears long before other tauopathy. Treating TBI mice with cis antibody blocks cistauosis, prevents tauopathy development and spread, and restores many TBI-related structural and functional sequelae. Thus, cis P-tau is a major early driver of disease after TBI and leads to tauopathy in chronic traumatic encephalopathy and Alzheimer's disease. The cis antibody may be further developed to detect and treat TBI, and prevent progressive neurodegeneration after injury. PMID:26176913

  4. Meeting report: 2009 international conference on molecular neurodegeneration May 18-20, 2009, Xiamen, China

    OpenAIRE

    Owens Lisa; Zhang Yunwu; Bu Guojun

    2009-01-01

    Abstract Age-related neurodegenerative diseases are great challenges as the aging population grows. To promote neurodegeneration research and to share recent progress in understanding molecular mechanisms underlying these devastating diseases, the journal Molecular Neurodegeneration and Institute for Biomedical Research, Xiamen University co-organized the 2009 International Conference on Molecular Neurodegeneration in Xiamen, China on May 18-20, 2009. The objectives of this meeting were to (1...

  5. Developing and applying a stochastic dynamic population model for chronic obstructive pulmonary disease

    NARCIS (Netherlands)

    Hoogendoorn, M.; Rutten-van Molken, M.P.M.H.; Hoogenveen, R.T.; Al, M.J.; Feenstra, T.L.

    2011-01-01

    Objectives: To develop a stochastic population model of disease progression in chronic obstructive pulmonary disease (COPD) that includes the effects of COPD exacerbations on health-related quality of life, costs, disease progression, and mortality and can be used to assess the effects of a wide ran

  6. Stress in adolescents with a chronically ill parent: inspiration from Rolland's Family Systems-Illness model

    NARCIS (Netherlands)

    D.S. Sieh; A.L.C. Dikkers; J.M.A. Visser-Meily; A.M. Meijer

    2012-01-01

    This article was inspired by Rolland’s Family Systems-Illness (FSI) model, aiming to predict adolescent stress as a function of parental illness type. Ninety-nine parents with a chronic medical condition, 82 partners, and 158 adolescent children (51 % girls; mean age = 15.1 years) participated in th

  7. Skeletal growth and long-term bone turnover after enterocystoplasty in a chronic rat model

    DEFF Research Database (Denmark)

    Gerharz, E.W.; Gasser, J.A.; Mosekilde, Li.;

    2003-01-01

    OBJECTIVE: To investigate skeletal growth and bone metabolism in a chronic animal model of urinary diversion.MATERIALS AND METHODS: Young male Wistar rats (120) were allocated randomly to four groups undergoing: ileocystoplasty, ileocystoplasty and resection of the ileocaecal segment, colocystopl...

  8. Disease management projects and the Chronic CareModel in action: Baseline qualitative research

    NARCIS (Netherlands)

    B. Hipple-Walters (Bethany); S.A. Adams (Samantha); A.P. Nieboer (Anna); R.A. Bal (Roland)

    2012-01-01

    textabstractBackground: Disease management programs, especially those based on the Chronic Care Model (CCM),are increasingly common in the Netherlands. While disease management programs have beenwell-researched quantitatively and economically, less qualitative research has been done. Theoverall aim

  9. Can the common-sense model predict adherence in chronically ill patients? A meta-analysis

    NARCIS (Netherlands)

    K. Brandes; B. Mullan

    2013-01-01

    The aim of this meta-analysis was to explore whether mental representations, derived from the common-sense model of illness representations (CSM), were able to predict adherence in chronically ill patients. Electronic databases were searched for studies that used the CSM and measured adherence behav

  10. A comprehensive examination of the model underlying acceptance and commitment therapy for chronic pain.

    Science.gov (United States)

    Vowles, Kevin E; Sowden, Gail; Ashworth, Julie

    2014-05-01

    The therapeutic model underlying Acceptance and Commitment Therapy (ACT) is reasonably well-established as it applies to chronic pain. Several studies have examined measures of single ACT processes, or subsets of processes, and have almost uniformly indicated reliable relations with patient functioning. To date, however, no study has performed a comprehensive examination of the entire ACT model, including all of its component processes, as it relates to functioning. The present study performed this examination in 274 individuals with chronic pain presenting for an assessment appointment. Participants completed a battery of self-report questionnaires, assessing multiple aspects of the ACT model, as well as pain intensity, disability, and emotional distress. Initial exploratory factor analyses examined measures of the ACT model and measures of patient functioning separately with each analysis identifying three factors. Next, the fit of a model including ACT processes on the one hand and patient functioning on the other was examined using Structural Equation Modeling. Overall model fit was acceptable and indicated moderate correlations among the ACT processes themselves, as well as significant relations with pain intensity, emotional distress, and disability. These analyses build on the existing literature by providing, to our knowledge, the most comprehensive evaluation of the ACT theoretical model in chronic pain to date.

  11. Developing an active implementation model for a chronic disease management program

    Directory of Open Access Journals (Sweden)

    Margrethe Smidth

    2013-06-01

    Full Text Available Background: Introduction and diffusion of new disease management programs in healthcare is usually slow, but active theory-driven implementation seems to outperform other implementation strategies. However, we have only scarce evidence on the feasibility and real effect of such strategies in complex primary care settings where municipalities, general practitioners and hospitals should work together. The Central Denmark Region recently implemented a disease management program for chronic obstructive pulmonary disease (COPD which presented an opportunity to test an active implementation model against the usual implementation model. The aim of the present paper is to describe the development of an active implementation model using the Medical Research Council’s model for complex interventions and the Chronic Care Model.Methods: We used the Medical Research Council’s five-stage model for developing complex interventions to design an implementation model for a disease management program for COPD. First, literature on implementing change in general practice was scrutinised and empirical knowledge was assessed for suitability. In phase I, the intervention was developed; and in phases II and III, it was tested in a block- and cluster-randomised study. In phase IV, we evaluated the feasibility for others to use our active implementation model.Results: The Chronic Care Model was identified as a model for designing efficient implementation elements. These elements were combined into a multifaceted intervention, and a timeline for the trial in a randomised study was decided upon in accordance with the five stages in the Medical Research Council’s model; this was captured in a PaTPlot, which allowed us to focus on the structure and the timing of the intervention. The implementation strategies identified as efficient were use of the Breakthrough Series, academic detailing, provision of patient material and meetings between providers. The active

  12. Developing an active implementation model for a chronic disease management program

    Directory of Open Access Journals (Sweden)

    Margrethe Smidth

    2013-06-01

    Full Text Available Background: Introduction and diffusion of new disease management programs in healthcare is usually slow, but active theory-driven implementation seems to outperform other implementation strategies. However, we have only scarce evidence on the feasibility and real effect of such strategies in complex primary care settings where municipalities, general practitioners and hospitals should work together. The Central Denmark Region recently implemented a disease management program for chronic obstructive pulmonary disease (COPD which presented an opportunity to test an active implementation model against the usual implementation model. The aim of the present paper is to describe the development of an active implementation model using the Medical Research Council’s model for complex interventions and the Chronic Care Model.Methods: We used the Medical Research Council’s five-stage model for developing complex interventions to design an implementation model for a disease management program for COPD. First, literature on implementing change in general practice was scrutinised and empirical knowledge was assessed for suitability. In phase I, the intervention was developed; and in phases II and III, it was tested in a block- and cluster-randomised study. In phase IV, we evaluated the feasibility for others to use our active implementation model. Results: The Chronic Care Model was identified as a model for designing efficient implementation elements. These elements were combined into a multifaceted intervention, and a timeline for the trial in a randomised study was decided upon in accordance with the five stages in the Medical Research Council’s model; this was captured in a PaTPlot, which allowed us to focus on the structure and the timing of the intervention. The implementation strategies identified as efficient were use of the Breakthrough Series, academic detailing, provision of patient material and meetings between providers. The active

  13. Protective Action of Acupuncture and Moxibustion on Gastric Mucosa in Model Rats with Chronic Atrophic Gastritis

    Institute of Scientific and Technical Information of China (English)

    高希言; 饶红; 王燕; 孟丹; 魏玉龙

    2005-01-01

    Objective: To probe the mechanism of acupuncture and moxibustion in atrophic gastritis so as to provide a basis for clinical treatment. Method: Observe the effects of acupuncture and moxibustion at the points of Zusanli, Zhongwan and Tianshu on gastric mucosa in model rats with chronic atrophic gastritis. Results:Acupuncture and moxibustion can increase the contents of PGE2α, PGF2α and cAMP, and decrease the content of cGMP in the tissue of gastric mucosa. Conclusion: Acupuncture and moxibustion shows cytoprotection on gastric mucosa, so it is an effective method for treating chronic atrophic gastritis.

  14. Strain Differences in the Chronic Mild Stress Animal Model of Depression and Anxiety in Mice

    OpenAIRE

    Jung, Yang-Hee; Hong, Sa-Ik; Ma, Shi-Xun; Hwang, Ji-Young; Kim, Jun-Sup; lee, Ju-hyun; Seo, Jee-Yeon; Lee, Seok-Yong; Jang, Choon-Gon

    2014-01-01

    Chronic mild stress (CMS) has been reported to induce an anhedonic-like state in mice that resembles some of the symptoms of human depression. In the present study, we used a chronic mild stress animal model of depression and anxiety to examine the responses of two strains of mice that have different behavioral responsiveness. An outbred ICR and an inbred C57BL/6 strain of mice were selected because they are widely used strains in behavioral tests. The results showed that the inbred C57BL/6 a...

  15. Salt-induced changes in cardiac phosphoproteome in a rat model of chronic renal failure.

    Directory of Open Access Journals (Sweden)

    Zhengxiu Su

    Full Text Available Heart damage is widely present in patients with chronic kidney disease. Salt diet is the most important environmental factor affecting development of chronic renal failure and cardiovascular diseases. The proteins involved in chronic kidney disease -induced heart damage, especially their posttranslational modifications, remain largely unknown to date. Sprague-Dawley rats underwent 5/6 nephrectomy (chronic renal failure model or sham operation were treated for 2 weeks with a normal-(0.4% NaCl, or high-salt (4% NaCl diet. We employed TiO2 enrichment, iTRAQ labeling and liquid-chromatography tandem mass spectrometry strategy for phosphoproteomic profiling of left ventricular free walls in these animals. A total of 1724 unique phosphopeptides representing 2551 non-redundant phosphorylation sites corresponding to 763 phosphoproteins were identified. During normal salt feeding, 89 (54% phosphopeptides upregulated and 76 (46% phosphopeptides downregulated in chronic renal failure rats relative to sham rats. In chronic renal failure rats, high salt intake induced upregulation of 84 (49% phosphopeptides and downregulation of 88 (51% phosphopeptides. Database searches revealed that most of the identified phospholproteins were important signaling molecules such as protein kinases, receptors and phosphatases. These phospholproteins were involved in energy metabolism, cell communication, cell differentiation, cell death and other biological processes. The Search Tool for the Retrieval of Interacting Genes analysis revealed functional links among 15 significantly regulated phosphoproteins in chronic renal failure rats compared to sham group, and 23 altered phosphoproteins induced by high salt intake. The altered phosphorylation levels of two proteins involved in heart damage, lamin A and phospholamban were validated. Expression of the downstream genes of these two proteins, desmin and SERCA2a, were also analyzed.

  16. Effect of Electro—acupuncture on Rat Joint Pathomorphology of Chronic Adjuvant Arthritis Model

    Institute of Scientific and Technical Information of China (English)

    ZHANGYou-mei; HULing; 等

    2003-01-01

    Objective:To study the effect of electro-acupuncture(EA) on pathomorphological changes of joints in rat model of chronic adjuvant arthritis.Methods:The rat chronic adjuvant arthritis model was established by subcutaneous injection of 0.1 ml of complete Freunds adjuvant to the left hind sole.Forty Wistar rats were randomly divided into the model group,the low frequency(2Hz) EA group,the high frequency EA(100Hz)group and the body acupuncture group.After being modeled except the model group,the other three groups were treated with EA or body acupuncture in Yanglingquan points(bilater-al)for 3weeks,the left ankle joints and metatarsal joints of rats were taken for pathological examination by fixing with 10% formalin and embedding in paraffin,sectioning and staining with HE.Results:Obvious inflammatory cell infiltration,loosened synovial tissue,damage of articular cartilage and proliferation of synovial cells and granulation tissue were observed in the sections of joints in model rats.These pathologi-cal changes were significantly improved after treatment,and the effect in the high frequency EA group were significantly superior to that in the low frequency EA and body acupuncture group.Conclusion:High frequency EA could significantly improve the pathomorphological changes of joints in chronic adjuvant ar-thritis rat models.

  17. Effect of Electro-acupuncture on Rat Joint Patho-morphology of Chronic Adjuvant Arthritis Model

    Institute of Scientific and Technical Information of China (English)

    张幼美; 胡玲; 唐纯志; 曹伟

    2003-01-01

    Objective:To study the effect of electro-acupuncture (EA) on pathomorphological changes of joints in rat model of chronic adjuvant arthritis. Methods: The rat chronic adjuvant arthritis model was established by subcutaneous injection of 0.1 ml of complete Freund's adjuvant to the left hind sole. Forty Wistar rats were randomly divided into the model group, the low frequency (2 Hz) EA group, the high frequency EA (100 Hz) group and the body acupuncture group. After being modeled except the model group, the other three groups were treated with EA or body acupuncture in Yanglingquan points (bilateral) for 3 weeks, the left ankle joints and metatarsal joints of rats were taken for pathological examination by fixing with 10% formalin and embedding in paraffin, sectioning and staining with HE. Results: Obvious inflammatory cell infiltration, loosened synovial tissue, damage of articular cartilage and proliferation of synovial cells and granulation tissue were observed in the sections of joints in model rats. These pathological changes were significantly improved after treatment, and the effect in the high frequency EA group were significantly superior to that in the low frequency EA and body acupuncture group. Conclusion: High frequency EA could significantly improve the pathomorphological changes of joints in chronic adjuvant arthritis rat models.

  18. Accuracy of a predictive model for severe hepatic fibrosis or cirrhosis in chronic hepatitis C

    Institute of Scientific and Technical Information of China (English)

    Agostino Colli; Alice Colucci; Silvia Paggi; Mirella Fraquelli; Sara Massironi; Marco Andreoletti; Vittorio Michela; Dario Conte

    2005-01-01

    AIM: To assess the accuracy of a model in diagnosing severe fibrosis/cirrhosis in chronic hepatitis C virus (HCV)infection.METHODS: The model, based on the sequential combination of the Bonacini score (BS: ALT/AST ratio,platelet count and INR) and ultrasonography liver surface characteristics, was applied to 176 patients with chronic HCV infection. Assuming a pre-test probability of 35%,the model defined four levels of post-test probability of severe fibrosis/cirrhosis: 90% (almost absolute).The predicted probabilities were compared with the observed patients' distribution according to the histology (METAVIR).RESULTS: Severe fibrosis/cirrhosis was found in 67 patients (38%). The model discriminated patients in three comparable groups: 34% with a very high (>90%)or low (75%) or low (<10%) probability of cirrhosis, leaving only 33% of the patients still requiring liver biopsy.

  19. One in vitro model for visceral adipose-derived fibroblasts in chronic inflammation

    International Nuclear Information System (INIS)

    One pathogenesis of the obesity-associated complications is that consistent with increased body fat mass, the elevation of adipose tissue-derived cytokines inflicts a low-grade chronic inflammation, which ultimately leads to metabolic disorders. Adipocytes and macrophages in visceral adipose (VA) have been confirmed to contribute to the chronic inflammation; however, the role of the resident fibroblasts is still unknown. We established one VA fibroblast cell line, termed VAFC. Morphological analysis indicated that there were large numbers of pits at the cell plasma membrane. In vitro VAFC cells promoted bone marrow cells to differentiate into macrophages and protected them from apoptosis in the serum-free conditions. Additionally, they also interfered in lymphocytes proliferation. On the basis of these results, this cell line might be an in vitro model for understanding the role of adipose-derived fibroblasts in obesity-associated chronic inflammation

  20. Diffusion-weighted MRI and quantitative biophysical modeling of hippocampal neurite loss in chronic stress.

    Directory of Open Access Journals (Sweden)

    Peter Vestergaard-Poulsen

    Full Text Available Chronic stress has detrimental effects on physiology, learning and memory and is involved in the development of anxiety and depressive disorders. Besides changes in synaptic formation and neurogenesis, chronic stress also induces dendritic remodeling in the hippocampus, amygdala and the prefrontal cortex. Investigations of dendritic remodeling during development and treatment of stress are currently limited by the invasive nature of histological and stereological methods. Here we show that high field diffusion-weighted MRI combined with quantitative biophysical modeling of the hippocampal dendritic loss in 21 day restraint stressed rats highly correlates with former histological findings. Our study strongly indicates that diffusion-weighted MRI is sensitive to regional dendritic loss and thus a promising candidate for non-invasive studies of dendritic plasticity in chronic stress and stress-related disorders.

  1. Program Implementation in the Prison System: An Organizational Study of the Chronic Care Model Program

    OpenAIRE

    Robinson, Greg

    2013-01-01

    This study provides evidence of a successful implementation of a not-for-profit operational model within a public setting. The federal government placed a receiver in charge of improving health care within the California Department of Corrections and Rehabilitation. To achieve the receivership's goals, a chronic care model from the not-for-profit sector was selected and implemented to improve the delivery of health care to inmates. The data suggest that operational programs developed outsi...

  2. Validation of two prediction models of undiagnosed chronic kidney disease in mixed-ancestry South Africans

    OpenAIRE

    Mogueo, Amelie; Echouffo-Tcheugui, Justin B; Matsha, Tandi E.; Erasmus, Rajiv T; Kengne, Andre P.

    2015-01-01

    Background Chronic kidney disease (CKD) is a global challenge. Risk models to predict prevalent undiagnosed CKD have been published. However, none was developed or validated in an African population. We validated the Korean and Thai CKD prediction model in mixed-ancestry South Africans. Methods Discrimination and calibration were assessed overall and by major subgroups. CKD was defined as ‘estimated glomerular filtration rate (eGFR)

  3. Biomarkers of Disease and Treatment in Murine and Cynomolgus Models of Chronic Asthma

    OpenAIRE

    Jennifer Louten,; Mattson, Jeanine D.; Maria-Christina Malinao; Ying Li; Claire Emson; Felix Vega; Robert L. Wardle; Scott, Michael R.; Fick, Robert B.; McClanahan, Terrill K.; Rene de Waal Malefyt; Maribel Beaumont

    2012-01-01

    Background Biomarkers facilitate early detection of disease and measurement of therapeutic efficacy, both at clinical and experimental levels. Recent advances in analytics and disease models allow comprehensive screening for biomarkers in complex diseases, such as asthma, that was previously not feasible. Objective Using murine and nonhuman primate (NHP) models of asthma, identify biomarkers associated with early and chronic stages of asthma and responses to steroid treatment. Methods The tot...

  4. Stochastic modelling to evaluate the economic efficiency of treatment of chronic subclinical mastitis

    OpenAIRE

    Steeneveld, W.; Hogeveen, H; Borne, van den, D Dirk; Swinkels, J.M.

    2006-01-01

    Treatment of subclinical mastitis is traditionally no common practice. However, some veterinarians regard treatment of some types of subclinical mastitis to be effective. The goal of this research was to develop a stochastic Monte Carlo simulation model to support decisions around treatment of chronic subclinical mastitis caused by Streptococcus uberis. Factors in the model include, amongst others, the probability of spontaneous cure, probability of the cow becoming clinically diseased, trans...

  5. Enzymology of Pyrimidine Metabolism and Neurodegeneration.

    Science.gov (United States)

    Vincenzetti, Silvia; Polzonetti, Valeria; Micozzi, Daniela; Pucciarelli, Stefania

    2016-01-01

    It is well known that disorders of pyrimidine pathways may lead to neurological, hematological, immunological diseases, renal impairments, and association with malignancies. Nucleotide homeostasis depends on the three stages of pyrimidine metabolism: de novo synthesis, catabolism and recycling of these metabolites. Cytidine and uridine, in addition to be used as substrates for pyrimidine nucleotide salvaging, also act as the precursors of cytidine triphosphate used in the biosynthetic pathway of both brain's phosphatidylcholine and phosphatidylethanolamine via the Kennedy cycle. The synthesis in the brain of phosphatidylcholine and other membrane phosphatides can utilize, in addition to glucose, three compounds present in the blood stream: choline, uridine, and a polyunsaturated fatty acids like docosahexaenoic acid. Some authors, using rat models, found that oral administration of two phospholipid precursors such as uridine and omega-3 fatty acids, along with choline from the diet, can increase the amount of synaptic membrane generated by surviving striatal neurons in rats with induced Parkinson's disease. Other authors found that in hypertensive rat fed with uridine and choline, cognitive deficit resulted improved. Uridine has also been recently considered as a neuroactive molecule, because of its involvement in important neurological functions by improving memory, sleep disorders, anti-epileptic effects, as well as neuronal plasticity. Cytidine and uridine are uptaken by the brain via specific receptors and successively salvaged to the corresponding nucleotides. The present review is devoted to the enzymology of pyrimidine pathways whose importance has attracted the attention of several researchers investigating on the mechanisms underlying the physiopathology of brain. PMID:27063261

  6. Prognostic factors for chronic severe hepatitis and construction of a prognostic model

    Institute of Scientific and Technical Information of China (English)

    Qian Li; Gui-Yu Yuan; Ke-Cheng Tang; Guo-Wang Liu; Rui Wang; Wu-Kui Cao

    2008-01-01

    BACKGROUND:Chronic severe hepatitis is a serious illness with a high mortality rate. Discussion of prognostic judgment criteria for chronic severe hepatitis is of great value in clinical guidance. This study was designed to investigate the clinical and laboratory indices affecting the prognosis of chronic severe hepatitis and construct a prognostic model. METHODS: The clinical and laboratory indices of 213 patients with chronic severe hepatitis within 24 hours after diagnosis were analyzed retrospectively. Death or survival was limited to within 3 months after diagnosis. RESULTS: The mortality of all patients was 47.42%. Compared with the survival group, the age, basis of hepatocirrhosis, infection, degree of hepatic encephalopathy (HE) and the levels of total bilirubin (TBil), total cholesterol (CHO), cholinesterase (CHE), blood urea nitrogen (BUN), blood creatinine (Cr), blood sodium ion (Na), peripheral blood leukocytes (WBC), alpha-fetoprotein (AFP), international normalized ratio (INR) of blood coagulation and prothrombin time (PT) were signiifcantly different in the group who died, but the levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), albumin (ALB) and hemoglobin (HGB) were not different between the two groups. At the same time, a regression model, Logit (P)=1.573×Age+1.338× HE-1.608×CHO+0.011×Cr-0.109×Na+1.298×INR+11.057, was constructed by logistic regression analysis and the prognostic value of the model was higher than that of the MELD score. CONCLUSIONS:Multivariate analysis excels univariate anlysis in the prognosis of chronic severe hepatitis, and the regression model is of signiifcant value in the prognosis of this disease.

  7. Modelling the effects of ionizing radiation on survival of animal population: acute versus chronic exposure.

    Science.gov (United States)

    Kryshev, A I; Sazykina, T G

    2015-03-01

    The objective of the present paper was application of a model, which was originally developed to simulate chronic ionizing radiation effects in a generic isolated population, to the case of acute exposure, and comparison of the dynamic features of radiation effects on the population survival in cases of acute and chronic exposure. Two modes of exposure were considered: acute exposure (2-35 Gy) and chronic lifetime exposure with the same integrated dose. Calculations were made for a generic mice population; however, the model can be applied for other animals with proper selection of parameter values. In case of acute exposure, in the range 2-11 Gy, the population response was in two phases. During a first phase, there was a depletion in population survival; the second phase was a recovery period due to reparation of damage and biosynthesis of new biomass. Model predictions indicate that a generic mice population, living in ideal conditions, has the potential for recovery (within a mouse lifetime period) from acute exposure with dose up to 10-11 Gy, i.e., the population may recover from doses above an LD50 (6.2 Gy). Following acute doses above 14 Gy, however, the mice population went to extinction without recovery. In contrast, under chronic lifetime exposures (500 days), radiation had little effect on population survival up to integrated doses of 14-15 Gy, so the survival of a population subjected to chronic exposure was much better compared with that after an acute exposure with the same dose. Due to the effect of "wasted radiation", the integrated dose of chronic exposure could be about two times higher than acute dose, producing the same effect on survival. It is concluded that the developed generic population model including the repair of radiation damage can be applied both to acute and chronic modes of exposure; results of calculations for generic mice population are in qualitative agreement with published data on radiation effects in mice. PMID

  8. Combined Population Dynamics and Entropy Modelling Supports Patient Stratification in Chronic Myeloid Leukemia

    Science.gov (United States)

    Brehme, Marc; Koschmieder, Steffen; Montazeri, Maryam; Copland, Mhairi; Oehler, Vivian G.; Radich, Jerald P.; Brümmendorf, Tim H.; Schuppert, Andreas

    2016-04-01

    Modelling the parameters of multistep carcinogenesis is key for a better understanding of cancer progression, biomarker identification and the design of individualized therapies. Using chronic myeloid leukemia (CML) as a paradigm for hierarchical disease evolution we show that combined population dynamic modelling and CML patient biopsy genomic analysis enables patient stratification at unprecedented resolution. Linking CD34+ similarity as a disease progression marker to patient-derived gene expression entropy separated established CML progression stages and uncovered additional heterogeneity within disease stages. Importantly, our patient data informed model enables quantitative approximation of individual patients’ disease history within chronic phase (CP) and significantly separates “early” from “late” CP. Our findings provide a novel rationale for personalized and genome-informed disease progression risk assessment that is independent and complementary to conventional measures of CML disease burden and prognosis.

  9. Adjustment and Characterization of an Original Model of Chronic Ischemic Heart Failure in Pig

    Directory of Open Access Journals (Sweden)

    Laurent Barandon

    2010-01-01

    Full Text Available We present and characterize an original experimental model to create a chronic ischemic heart failure in pig. Two ameroid constrictors were placed around the LAD and the circumflex artery. Two months after surgery, pigs presented a poor LV function associated with a severe mitral valve insufficiency. Echocardiography analysis showed substantial anomalies in radial and circumferential deformations, both on the anterior and lateral surface of the heart. These anomalies in function were coupled with anomalies of perfusion observed in echocardiography after injection of contrast medium. No demonstration of myocardial infarction was observed with histological analysis. Our findings suggest that we were able to create and to stabilize a chronic ischemic heart failure model in the pig. This model represents a useful tool for the development of new medical or surgical treatment in this field.

  10. Can the common-sense model predict adherence in chronically ill patients? A meta-analysis.

    Science.gov (United States)

    Brandes, Kim; Mullan, Barbara

    2014-01-01

    The aim of this meta-analysis was to explore whether mental representations, derived from the common-sense model of illness representations (CSM), were able to predict adherence in chronically ill patients. Electronic databases were searched for studies that used the CSM and measured adherence behaviour in chronically ill patients. Correlations from the included articles were meta-analysed using a random-size effect model. A moderation analysis was conducted for the type of adherence behaviour. The effect sizes for the different mental representations and adherence constructs ranged from -0.02 to 0.12. Further analyses showed that the relationship between the mental representations and adherence did not differ by the type of adherence behaviour. The low-effect sizes indicate that the relationships between the different mental representations of the CSM and adherence are very weak. Therefore, the CSM may not be the most appropriate model to use in predictive studies of adherence.

  11. Rumination as a Mediator of Chronic Stress Effects on Hypertension: A Causal Model

    Directory of Open Access Journals (Sweden)

    William Gerin

    2012-01-01

    Full Text Available Chronic stress has been linked to hypertension, but the underlying mechanisms remain poorly specified. We suggest that chronic stress poses a risk for hypertension through repeated occurrence of acute stressors (often stemming from the chronic stress context that cause activation of stress-mediating physiological systems. Previous models have often focused on the magnitude of the acute physiological response as a risk factor; we attempt to extend this to address the issue of duration of exposure. Key to our model is the notion that these acute stressors can emerge not only in response to stressors present in the environment, but also to mental representations of those (or other stressors. Consequently, although the experience of any given stressor may be brief, a stressor often results in a constellation of negative cognitions and emotions that form a mental representation of the stressor. Ruminating about this mental representation of the stressful event can cause autonomic activation similar to that observed in response to the original incident, and may occur and persist long after the event itself has ended. Thus, rumination helps explain how chronic stress causes repeated (acute activation of one’s stress-mediating physiological systems, the effects of which accumulate over time, resulting in hypertension risk.

  12. Individualizing Opioid Use Disorder (OUD Treatment: Time to Fully Embrace a Chronic Disease Model

    Directory of Open Access Journals (Sweden)

    Richard Gustin

    2015-02-01

    Full Text Available The current opioid epidemic in the United States is changing our perceptions of the face of addiction. Opioid Use Disorder (OUD has become pervasive and is affecting all ethnicities, races, socioeconomic classes, the young and the old. In 2015, 46 people will lose their life each day to a chronic brain disease that is going unnoticed and undertreated. Over the last five decades, numerous scientific and clinical breakthroughs have allowed for a better understanding of the mechanisms underlying addiction, and the development of medications that can help support a patient’s long-term recovery. All of those that have contributed to these advancements have aided in redefining addiction as a primary, chronic disease of the brain reward, motivation, memory and related circuitry; however, our treatment strategies have not necessarily advanced to the same extent as our current understanding of the disease. This commentary will explore how personal philosophies can bias treatments strategies and definitions of treatment success, and prevent adoption of chronic disease treatment models that would significantly improve the quality of life of those suffering with OUD. This is a challenge to consider how our views and stigma can impact a patient’s recovery. We are currently losing a battle with a disease that is taking the lives of 46 individuals daily; it is time to fully embrace a chronic disease model which comprises an integrated pharmacopsychosocial approach for treating the biopsychosocial disorder that is addiction to reverse these trends.

  13. Treatment of severe chronic hypotonic hyponatremia: a new treatment model

    Directory of Open Access Journals (Sweden)

    Antonio Burgio

    2013-03-01

    Full Text Available Recommended treatment of severe hypotonic hyponatremia is based on the infusion of 3% sodium chloride solution, with a daily correction rate below 10 mEq/L of sodium concentration, according to the Adrogué and Madias formula that includes the current desired change in sodium concentrations. However, such treatment needs close monitoring of the rate of infusion and does not take into account the body weight or age of the patient. This may result in hypercorrection and neurological damage. We made an inverse calculation using the same algorithms of the Adrogué and Madias formula to estimate the number of vials of sodium chloride needed to reach a correction rate of the serum sodium concentration below 0.4 mEq/h, taking into account the body weight and age of the patient. Three tables have been produced, each containing the number of vials to be infused, according to the patient’s age and body weight, the serum sodium concentration, and the rate of correction over 24 h to avoid the risk of brain damage. We propose a new practical model to calculate the need of sodium chloride infusate to safely correct the hyponatremia. The tables make treatment easier to manage in daily clinical practice in a wide range of patient ages and body weights.

  14. Phage therapy of staphylococcal chronic osteomyelitis in experimental animal model

    Directory of Open Access Journals (Sweden)

    Chandan Kishor

    2016-01-01

    Full Text Available Background & objectives: Methicillin resistant Staphylococcus aureus (MRSA are the commonest cause of osteomyelitis. The aim of this study was to evaluate the role of an alternative therapy i.e. application of S. aureus specific bacteriophages in cases of osteomyelitis caused by MRSA in animal model. Methods: Twenty two rabbits were included in this study. The first two rabbits were used to test the safety of phage cocktail while the remaining 20 rabbits were divided into three groups; group A (n=4 to assess the establishment of osteomyelitis; group B (n=4 osteomyelitis developed but therapy started only after six weeks; and group C (n=12 osteomyelitis developed and therapy started after three weeks. Groups B and C rabbits were treated with four doses of cocktail of seven virulent bacteriophages at the interval of 48 h. Comparison between three groups was made on the basis of observation of clinical, radiological, microbiological, and histopathological examinations. Results: Experimental group rabbits recovered from the illness in the subsequent two weeks of the therapy. Appetite and activity of the rabbits improved, local oedema, erythema and induration subsided. There were minimal changes associated with osteomyelitis in X-ray and histopathology also showed no signs of infection with new bone formation. Control B group rabbits also recovered well from the infection. Interpretation & conclusions: The present study shows a potential of phage therapy to treat difficult infections caused by multidrug resistant bacteria.

  15. Resveratrol Treatment after Status Epilepticus Restrains Neurodegeneration and Abnormal Neurogenesis with Suppression of Oxidative Stress and Inflammation.

    Science.gov (United States)

    Mishra, Vikas; Shuai, Bing; Kodali, Maheedhar; Shetty, Geetha A; Hattiangady, Bharathi; Rao, Xiaolan; Shetty, Ashok K

    2015-12-07

    Antiepileptic drug therapy, though beneficial for restraining seizures, cannot thwart status epilepticus (SE) induced neurodegeneration or down-stream detrimental changes. We investigated the efficacy of resveratrol (RESV) for preventing SE-induced neurodegeneration, abnormal neurogenesis, oxidative stress and inflammation in the hippocampus. We induced SE in young rats and treated with either vehicle or RESV, commencing an hour after SE induction and continuing every hour for three-hours on SE day and twice daily thereafter for 3 days. Seizures were terminated in both groups two-hours after SE with a diazepam injection. In contrast to the vehicle-treated group, the hippocampus of animals receiving RESV during and after SE presented no loss of glutamatergic neurons in hippocampal cell layers, diminished loss of inhibitory interneurons expressing parvalbumin, somatostatin and neuropeptide Y in the dentate gyrus, reduced aberrant neurogenesis with preservation of reelin + interneurons, lowered concentration of oxidative stress byproduct malondialdehyde and pro-inflammatory cytokine tumor necrosis factor-alpha, normalized expression of oxidative stress responsive genes and diminished numbers of activated microglia. Thus, 4 days of RESV treatment after SE is efficacious for thwarting glutamatergic neuron degeneration, alleviating interneuron loss and abnormal neurogenesis, and suppressing oxidative stress and inflammation. These results have implications for restraining SE-induced chronic temporal lobe epilepsy.

  16. Describing and analysing primary health care system support for chronic illness care in Indigenous communities in Australia's Northern Territory – use of the Chronic Care Model

    Directory of Open Access Journals (Sweden)

    Stewart Allison

    2008-05-01

    Full Text Available Abstract Background Indigenous Australians experience disproportionately high prevalence of, and morbidity and mortality from chronic illness such as diabetes, renal disease and cardiovascular disease. Improving the understanding of how Indigenous primary care systems are organised to deliver chronic illness care will inform efforts to improve the quality of care for Indigenous people. Methods This cross-sectional study was conducted in 12 Indigenous communities in Australia's Northern Territory. Using the Chronic Care Model as a framework, we carried out a mail-out survey to collect information on material, financial and human resources relating to chronic illness care in participating health centres. Follow up face-to-face interviews with health centre staff were conducted to identify successes and difficulties in the systems in relation to providing chronic illness care to community members. Results Participating health centres had distinct areas of strength and weakness in each component of systems: 1 organisational influence – strengthened by inclusion of chronic illness goals in business plans, appointment of designated chronic disease coordinators and introduction of external clinical audits, but weakened by lack of training in disease prevention and health promotion and limited access to Medicare funding; 2 community linkages – facilitated by working together with community organisations (e.g. local stores and running community-based programs (e.g. "health week", but detracted by a shortage of staff especially of Aboriginal health workers working in the community; 3 self management – promoted through patient education and goal setting with clients, but impeded by limited focus on family and community-based activities due to understaffing; 4 decision support – facilitated by distribution of clinical guidelines and their integration with daily care, but limited by inadequate access to and support from specialists; 5 delivery system

  17. Stability Analysis of a Simplified Yet Complete Model for Chronic Myelegenous Leukemia

    CERN Document Server

    Jauffret, Marie Doumic; Perthame, Benoît

    2009-01-01

    We analyze the asymptotic behavior of a partial differential equation (PDE) model for hematopoiesis. This PDE model is derived from the original agent-based model formulated by (Roeder et al., Nat. Med., 2006), and it describes the progression of blood cell development from the stem cell to the terminally differentiated state. To conduct our analysis, we start with the PDE model of (Kim et al, JTB, 2007), which coincides very well with the simulation results obtained by Roeder et al. We simplify the PDE model to make it amenable to analysis and justify our approximations using numerical simulations. An analysis of the simplified PDE model proves to exhibit very similar properties to those of the original agent-based model, even if for slightly different parameters. Hence, the simplified model is of value in understanding the dynamics of hematopoiesis and of chronic myelogenous leukemia, and it presents the advantage of having fewer parameters, which makes comparison with both experimental data and alternative...

  18. Pharmacoeconomic modeling of target therapy of chronic myeloid leukemia in remission

    Directory of Open Access Journals (Sweden)

    V. A. Shuvaev

    2015-01-01

    Full Text Available The article presents example of modeling for pharmacoeconomical-founded choice of chronic myelogenous leukemia treatment strategy related to therapeutic efficacy and economical rationality. The economic model of chronic myelogenous leukemia diagnosis and treatment with Markov chain approach was constructed, based on modern national and international clinical guidelines. Pharmacoeconomical comparison of chronic myelogenous leukemia target therapy using first and second-generation tyrosine kinase inhibitors was performed. The average direct cost for one patient and total budget impact in twenty years were calculated. Analysis was made based on costs of original imatinib and generics. We used the imatinib generics’ substitution experience as a scenario for the second generation TKIs. Under these conditions, more frequent therapy cessation with second generation TKIs resulted in nilotinib first line is cost saving over imatinib. We should note that theresults of our analysis were strongly dependent on the input parameters values. The Pharmacoeconomic modelling can forecast the budget burden and its future dynamics on the individual and national level. The results of such modelling could be of value in decision-making in national guidelines development and discussion with healthcare authorities.

  19. Pharmacoeconomic modeling of target therapy of chronic myeloid leukemia in remission

    Directory of Open Access Journals (Sweden)

    V. A. Shuvaev

    2014-01-01

    Full Text Available The article presents example of modeling for pharmacoeconomical-founded choice of chronic myelogenous leukemia treatment strategy related to therapeutic efficacy and economical rationality. The economic model of chronic myelogenous leukemia diagnosis and treatment with Markov chain approach was constructed, based on modern national and international clinical guidelines. Pharmacoeconomical comparison of chronic myelogenous leukemia target therapy using first and second-generation tyrosine kinase inhibitors was performed. The average direct cost for one patient and total budget impact in twenty years were calculated. Analysis was made based on costs of original imatinib and generics. We used the imatinib generics’ substitution experience as a scenario for the second generation TKIs. Under these conditions, more frequent therapy cessation with second generation TKIs resulted in nilotinib first line is cost saving over imatinib. We should note that theresults of our analysis were strongly dependent on the input parameters values. The Pharmacoeconomic modelling can forecast the budget burden and its future dynamics on the individual and national level. The results of such modelling could be of value in decision-making in national guidelines development and discussion with healthcare authorities.

  20. A New Mouse Model That Spontaneously Develops Chronic Liver Inflammation and Fibrosis

    Science.gov (United States)

    Fransén-Pettersson, Nina; Duarte, Nadia; Nilsson, Julia; Lundholm, Marie; Mayans, Sofia; Larefalk, Åsa; Hannibal, Tine D.; Hansen, Lisbeth; Schmidt-Christensen, Anja; Ivars, Fredrik; Cardell, Susanna; Palmqvist, Richard; Rozell, Björn

    2016-01-01

    Here we characterize a new animal model that spontaneously develops chronic inflammation and fibrosis in multiple organs, the non-obese diabetic inflammation and fibrosis (N-IF) mouse. In the liver, the N-IF mouse displays inflammation and fibrosis particularly evident around portal tracts and central veins and accompanied with evidence of abnormal intrahepatic bile ducts. The extensive cellular infiltration consists mainly of macrophages, granulocytes, particularly eosinophils, and mast cells. This inflammatory syndrome is mediated by a transgenic population of natural killer T cells (NKT) induced in an immunodeficient NOD genetic background. The disease is transferrable to immunodeficient recipients, while polyclonal T cells from unaffected syngeneic donors can inhibit the disease phenotype. Because of the fibrotic component, early on-set, spontaneous nature and reproducibility, this novel mouse model provides a unique tool to gain further insight into the underlying mechanisms mediating transformation of chronic inflammation into fibrosis and to evaluate intervention protocols for treating conditions of fibrotic disorders. PMID:27441847

  1. The Model of Quality of Life Improvement for Chronic Patients in Community by Using Social Support

    Directory of Open Access Journals (Sweden)

    Amorn Suwannimitr

    2010-01-01

    Full Text Available Problem statement: Caring for a chronically ill-patients is a complex process which require the cooperation and social support to manage a chronic disease. It need an interaction of a large number of actors or collaborations from health care personnel of different organizations. Questions were raised to develop an appropriate intervention and the model of QOL improvement for chronic-patients in the community. Approach: To (1 develop the Quality Of Life (QOL improvement for chronic illness patients in community by using social support program (2 evaluate the effects of the program on perception of illness, severity of illness, benefits and barriers of health promotion, health behaviors, Quality Of Life (QOL and stress level. Participatory Action Research (PAR was used. It was consisted of two phrases. The participants in first phase including with nurses, nutritionist, patients, caregivers, Village Health Volunteers (VHVs and research team. The second phrase was to implement the interventions and evaluation. A total of 10 VHVs and 50 participants who met the inclusion criteria. The intervention composed of 2 main programs; (1The VHVs were trained for 1 month as a comprehensive program to be a healthcare team collaboration. (2The chronically ill-patients received main interventions including self-care education, apply Thai traditional medicine and home visits. Descriptive statistics and t-test were use to evaluate the pre-post intervention. Results: The majority of the participants were female (n = 38,76%, with the mean age of 66.68 years (SD = 17.20, 85% caring by their children and 42.5% by their relatives. Most participants came from low income family (40%. The post test score on each item showed that after intervention, changed scores on all five items (before-after, how ever the changes were statistically significantly (0.05. Conclusion: The findings suggested the set of interventions were effective to improve QOL of chronic patients and it

  2. The Chronic Care Model and Diabetes Management in US Primary Care Settings: A Systematic Review

    OpenAIRE

    Stellefson, Michael; Dipnarine, Krishna; Stopka, Christine

    2013-01-01

    Introduction The Chronic Care Model (CCM) uses a systematic approach to restructuring medical care to create partnerships between health systems and communities. The objective of this study was to describe how researchers have applied CCM in US primary care settings to provide care for people who have diabetes and to describe outcomes of CCM implementation. Methods We conducted a literature review by using the Cochrane database of systematic reviews, CINAHL, and Health Source: Nursing/Academi...

  3. Degeneration in Arousal Neurons in Chronic Sleep Disruption Modeling Sleep Apnea

    OpenAIRE

    Zhu, Yan; Fenik, Polina; Zhan, Guanxia; Xin, Ryan; Veasey, Sigrid C.

    2015-01-01

    Chronic sleep disruption (CSD) is a cardinal feature of sleep apnea that predicts impaired wakefulness. Despite effective treatment of apneas and sleep disruption, patients with sleep apnea may have persistent somnolence. Lasting wake disturbances in treated sleep apnea raise the possibility that CSD may induce sufficient degeneration in wake-activated neurons (WAN) to cause irreversible wake impairments. Implementing a stereological approach in a murine model of CSD, we found reduced neurona...

  4. Disease management projects and the Chronic CareModel in action: Baseline qualitative research

    OpenAIRE

    Hipple-Walters, Bethany; Adams, Samantha; Nieboer, Anna; Bal, Roland

    2012-01-01

    textabstractBackground: Disease management programs, especially those based on the Chronic Care Model (CCM),are increasingly common in the Netherlands. While disease management programs have beenwell-researched quantitatively and economically, less qualitative research has been done. Theoverall aim of the study is to explore how disease management programs are implementedwithin primary care settings in the Netherlands; this paper focuses on the early developmentand implementation stages of fi...

  5. Disease management projects and the Chronic Care Model in action: baseline qualitative research

    OpenAIRE

    Walters Bethany; Adams Samantha A; Nieboer Anna P; Bal Roland

    2012-01-01

    Abstract Background Disease management programs, especially those based on the Chronic Care Model (CCM), are increasingly common in the Netherlands. While disease management programs have been well-researched quantitatively and economically, less qualitative research has been done. The overall aim of the study is to explore how disease management programs are implemented within primary care settings in the Netherlands; this paper focuses on the early development and implementation stages of f...

  6. An optimised mouse model of chronic pancreatitis with a combination of ethanol and cerulein

    Science.gov (United States)

    Ahmadi, Abbas; Nikkhoo, Bahram; Mokarizadeh, Aram; Rahmani, Mohammad-Reza; Fakhari, Shohreh; Mohammadi, Mehdi

    2016-01-01

    Introduction Chronic pancreatitis (CP) is an intractable and multi-factorial disorder. Developing appropriate animal models is an essential step in pancreatitis research, and the best ones are those which mimic the human disorder both aetiologically and pathophysiologically. The current study presents an optimised protocol for creating a murine model of CP, which mimics the initial steps of chronic pancreatitis in alcohol chronic pancreatitis and compares it with two other mouse models treated with cerulein or ethanol alone. Material and methods Thirty-two male C57BL/6 mice were randomly selected, divided into four groups, and treated intraperitoneally with saline (10 ml/kg, control group), ethanol (3 g/kg; 30% v/v), cerulein (50 µg/kg), or ethanol + cerulein, for six weeks. Histopathological and immunohistochemical assays for chronic pancreatitis index along with real-time PCR assessments for mRNA levels of inflammatory cytokines and fibrogenic markers were conducted to verify the CP induction. Results The results indicated that CP index (CPI) was significantly increased in ethanol-cerulein mice compared to the saline, ethanol, and cerulein groups (p < 0.001). Interleukin 1β (IL-1β), tumor necrosis factor α (TNF-α), transforming growth factor β (TGF-β), α-smooth muscle actin (α-SMA), and myeloperoxidase activity were also significantly greater in both cerulein and ethanol-cerulein groups than in the saline treated animals (p < 0.001). Immunohistochemical analysis revealed enhanced expression of TGF-β and α-SMA in ethanol-cerulein mice compared to the saline group. Conclusions Intraperitoneal (IP) injections of ethanol and cerulein could successfully induce CP in mice. IP injections of ethanol provide higher reproducibility compared to ethanol feeding. The model is simple, non-invasive, reproducible, and time-saving. Since the protocol mimics the initial phases of CP development in alcoholics, it can be used for investigating basic mechanisms and testing

  7. Quantitative Modeling of Microbial Population Responses to Chronic Irradiation Combined with Other Stressors

    OpenAIRE

    Shuryak, Igor; Dadachova, Ekaterina

    2016-01-01

    Microbial population responses to combined effects of chronic irradiation and other stressors (chemical contaminants, other sub-optimal conditions) are important for ecosystem functioning and bioremediation in radionuclide-contaminated areas. Quantitative mathematical modeling can improve our understanding of these phenomena. To identify general patterns of microbial responses to multiple stressors in radioactive environments, we analyzed three data sets on: (1) bacteria isolated from soil co...

  8. Modeling PD pathogenesis in mice: advantages of a chronic MPTP protocol

    OpenAIRE

    Meredith, Gloria E.; Totterdell, Susan; Potashkin, Judith A.; Surmeier, D. James

    2008-01-01

    Formidable challenges for Parkinson's disease (PD) research are to understand the processes underlying nigrostriatal degeneration and how to protect the dopamine neurons. Fundamental research relies on good animal models that demonstrate the pathological hallmarks and motor deficits of PD. Using a chronic regimen of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and probenecid (MPTP/p) in mice, dopamine cell loss exceeds 60%, extracellular glutamate is elevated, cytoplasmic inclusions are forme...

  9. Care production for tuberculosis cases:analysis according to the elements of the Chronic Care Model

    OpenAIRE

    Daiane Medeiros da Silva; Hérika Brito Gomes de Farias; Tereza Cristina Scatena Villa; Lenilde Duarte de Sá; Maria Eugênia Firmino Brunello; Jordana Almeida Nogueira

    2016-01-01

    Abstract OBJECTIVE: To analyze the care provided to tuberculosis cases in primary health care services according to the elements of the Chronic Care Model. METHOD: Cross-sectional study conducted in a capital city of the northeastern region of Brazil involving 83 Family Health Strategy professionals.A structured tool adapted to tuberculosis-related care in Brazil was applied.Analysis was based on the development of indicators with capacity to produce care varying between limited and optimum...

  10. Hemodynamic and Histologic Characterization of a Swine (Sus scrofa domestica) Model of Chronic Pulmonary Arterial Hypertension

    OpenAIRE

    Rothman, Abraham; Wiencek, Robert G; Davidson, Stephanie; William N. Evans; Restrepo, Humberto; Sarukhanov, Valeri; Rivera-Begeman, Amanda; Mann, David

    2011-01-01

    The purpose of this work was to develop and characterize an aortopulmonary shunt model of chronic pulmonary hypertension in swine and provide sequential hemodynamic, angiographic, and histologic data by using an experimental endoarterial biopsy catheter. Nine Yucatan female microswine (Sus scrofa domestica) underwent surgical anastomosis of the left pulmonary artery to the descending aorta. Sequential hemodynamic, angiographic, and pulmonary vascular samples were obtained. Six pigs (mean weig...

  11. Prediction models of hepatocellular carcinoma development in chronic hepatitis B patients

    Science.gov (United States)

    Lee, Hye Won; Ahn, Sang Hoon

    2016-01-01

    Chronic hepatitis B virus (HBV) infection is a major cause of cirrhosis and hepatocellular carcinoma (HCC). Applying the same strategies for antiviral therapy and HCC surveillance to all chronic hepatitis B (CHB) patients would be a burden worldwide. To properly manage CHB patients, it is necessary to identify and classify the risk for HCC development in such patients. Several HCC risk scores based on risk factors such as cirrhosis, age, male gender, and high viral load have been used, and have negative predictive values of ≥ 95%. Most of these have been derived from, and internally validated in, treatment-naïve Asian CHB patients. Herein, we summarized various HCC prediction models, including IPM (Individual Prediction Model), CU-HCC (Chinese University-HCC), GAG-HCC (Guide with Age, Gender, HBV DNA, Core Promoter Mutations and Cirrhosis-HCC), NGM-HCC (Nomogram-HCC), REACH-B (Risk Estimation for Hepatocellular Carcinoma in Chronic Hepatitis B), and Page-B score. To develop a noninvasive test of liver fibrosis, we also introduced a new scoring system that uses liver stiffness values from transient elastography, including an LSM (Liver Stiffness Measurement)-based model, LSM-HCC, and mREACH-B (modified REACH-B). PMID:27729738

  12. Hypericum perforatum treatment: effect on behaviour and neurogenesis in a chronic stress model in mice

    Directory of Open Access Journals (Sweden)

    Cuzzocrea Salvatore

    2011-01-01

    Full Text Available Abstract Background Extracts of Hypericum perforatum (St. John's wort have been traditionally recommended for a wide range of medical conditions, in particular mild-to-moderate depression. The present study was designed to investigate the effect of Hypericum perforatum treatment in a mouse model of anxiety/depressive-like behavior, induced by chronic corticosterone administration. Methods CD1 mice were submitted to 7 weeks corticosterone administration and then behavioral tests as Open Field (OF, Novelty-Suppressed Feeding (NSF, Forced Swim Test (FST were performed. Cell proliferation in hippocampal dentate gyrus (DG was investigated by both 5-bromo-2'-deoxyuridine (BrdU and doublecortin (DCX immunohistochemistry techniques and stereological procedure was used to quantify labeled cells. Golgi-impregnation method was used to evaluate changes in dendritic spines in DG. Hypericum perforatum (30 mg/Kg has been administered for 3 weeks and then neural development in the adult hippocampus and behavioral changes have been examined. Results The anxiety/depressive-like state due to chronic corticosterone treatment was reversed by exogenous administration of Hypericum perforatum; the proliferation of progenitor cells in mice hippocampus was significantly reduced under chronic corticosterone treatment, whereas a long term treatment with Hypericum perforatum prevented the corticosterone-induced decrease in hippocampal cell proliferation. Corticosterone-treated mice exhibited a reduced spine density that was ameliorated by Hypericum perforatum administration. Conclusion These results provide evidence of morphological adaptations occurring in mature hippocampal neurons that might underlie resilient responses to chronic stress and contribute to the therapeutic effects of chronic Hypericum perforatum treatment.

  13. An animal model of schizophrenia based on chronic LSD administration: old idea, new results.

    Science.gov (United States)

    Marona-Lewicka, Danuta; Nichols, Charles D; Nichols, David E

    2011-09-01

    Many people who take LSD experience a second temporal phase of LSD intoxication that is qualitatively different, and was described by Daniel Freedman as "clearly a paranoid state." We have previously shown that the discriminative stimulus effects of LSD in rats also occur in two temporal phases, with initial effects mediated by activation of 5-HT(2A) receptors (LSD30), and the later temporal phase mediated by dopamine D2-like receptors (LSD90). Surprisingly, we have now found that non-competitive NMDA antagonists produced full substitution in LSD90 rats, but only in older animals, whereas in LSD30, or in younger animals, these drugs did not mimic LSD. Chronic administration of low doses of LSD (>3 months, 0.16 mg/kg every other day) induces a behavioral state characterized by hyperactivity and hyperirritability, increased locomotor activity, anhedonia, and impairment in social interaction that persists at the same magnitude for at least three months after cessation of LSD treatment. These behaviors, which closely resemble those associated with psychosis in humans, are not induced by withdrawal from LSD; rather, they are the result of neuroadaptive changes occurring in the brain during the chronic administration of LSD. These persistent behaviors are transiently reversed by haloperidol and olanzapine, but are insensitive to MDL-100907. Gene expression analysis data show that chronic LSD treatment produced significant changes in multiple neurotransmitter system-related genes, including those for serotonin and dopamine. Thus, we propose that chronic treatment of rats with low doses of LSD can serve as a new animal model of psychosis that may mimic the development and progression of schizophrenia, as well as model the established disease better than current acute drug administration models utilizing amphetamine or NMDA antagonists such as PCP.

  14. Application of transtheoretical model to assess the compliance of chronic periodontitis patients to periodontal therapy

    Directory of Open Access Journals (Sweden)

    Shilpa Emani

    2016-01-01

    Full Text Available Background: The present cross-sectional survey study was conducted to assess whether the transtheoretical model for oral hygiene behavior was interrelated in theoretically consistent directions in chronic periodontitis patients and its applicability to assess the compliance of the chronic periodontitis patients to the treatment suggested. Materials and Methods: A total of 150 chronic periodontitis patients were selected for the proposed study. The selected patients were given four questionnaires that were constructed based on transtheoretical model (TTM, and the patients were divided subsequently into five different groups (precontemplation, contemplation, preparation, action, and maintenance groups based on their answers to the questionnaires. Then, each patient was given four appointments for their periodontal treatment spaced with a time gap of 10 days. The patients visit for each appointments scheduled to them was documented. The results obtained were assessed using TTM. Results: Higher mean pro scores of decisional balance, self-efficacy, and process of change scores was recorded in maintenance group followed by action group, preparation group, contemplation group, and precontemplation group, respectively, whereas higher mean cons score was recorded in precontemplation group followed by contemplation group, preparation group, action group, and maintenance group, respectively. The difference scores of TTM constructs were statistically highly significant between all the five groups. Furthermore, the number of appointment attended in were significantly more than maintenance group followed by action group, preparation group, contemplation group, and precontemplation group. Conclusion: Within the limitations of this study, it can be concluded that transtheoretical model can be successfully applied to chronic periodontitis patients to assess their compliance to the suggested periodontal treatment.

  15. Therapeutic strategies in an animal model of neurodegeneration

    NARCIS (Netherlands)

    Borre, Y.E.

    2013-01-01

    Neurodegenerative diseases have complex and multifactorial etiologies, creating an enormous burden on society without an effective treatment. This thesis utilized olfactory bulbectomized rats to investigate therapeutic approaches to neurodegenerative disorders. Removal of the olfactory bulbs, leads

  16. Red Light Treatment in an Axotomy Model of Neurodegeneration.

    Science.gov (United States)

    Beirne, Kathy; Rozanowska, Malgorzata; Votruba, Marcela

    2016-07-01

    Red light has been shown to provide neuroprotective effects. Axotomizing the optic nerve initiates retinal ganglion cell (RGC) degeneration, and an early marker of this is dendritic pruning. We hypothesized that 670 nm light can delay axotomy-induced dendritic pruning in the retinal explant. To test this hypothesis, we monitored the effects of 670 nm light (radiant exposure of 31.7 J cm(-2) ), on RGC dendritic pruning in retinal explants from C57BL/6J mice, at 40 min, 8 h and 16 h post axotomy. For sham-treated retinae, area under the Sholl curve, peak of the Sholl curve and dendritic length at 8 h post axotomy showed statistically significant reductions by 42.3% (P = 0.008), 29.8% (P = 0.007) and 38.4% (P = 0.038), respectively, which were further reduced after 16 h by 40.56% (P < 0.008), 33.9% (P < 0.007), 45.43% (P < 0.006), respectively. Dendritic field area was also significantly reduced after 16 h, by 44.23% (P < 0.019). Such statistically significant reductions were not seen in light-treated RGCs at 8 or 16 h post axotomy. The results demonstrate the ability of 670 nm light to partially prevent ex vivo dendropathy in the mouse retina, suggesting that it is worth exploring as a treatment option for dendropathy-associated neurodegenerative diseases, including glaucoma and Alzheimer's disease. PMID:27276065

  17. Development of Toxicological Risk Assessment Models for Acute and Chronic Exposure to Pollutants

    Science.gov (United States)

    Reichwaldt, Elke S.; Stone, Daniel; Barrington, Dani J.; Sinang, Som C.; Ghadouani, Anas

    2016-01-01

    Alert level frameworks advise agencies on a sequence of monitoring and management actions, and are implemented so as to reduce the risk of the public coming into contact with hazardous substances. Their effectiveness relies on the detection of the hazard, but with many systems not receiving any regular monitoring, pollution events often go undetected. We developed toxicological risk assessment models for acute and chronic exposure to pollutants that incorporate the probabilities that the public will come into contact with undetected pollution events, to identify the level of risk a system poses in regards to the pollutant. As a proof of concept, we successfully demonstrated that the models could be applied to determine probabilities of acute and chronic illness types related to recreational activities in waterbodies containing cyanotoxins. Using the acute model, we identified lakes that present a ‘high’ risk to develop Day Away From Work illness, and lakes that present a ‘low’ or ‘medium’ risk to develop First Aid Cases when used for swimming. The developed risk models succeeded in categorising lakes according to their risk level to the public in an objective way. Modelling by how much the probability of public exposure has to decrease to lower the risks to acceptable levels will enable authorities to identify suitable control measures and monitoring strategies. We suggest broadening the application of these models to other contaminants. PMID:27589798

  18. Development of Toxicological Risk Assessment Models for Acute and Chronic Exposure to Pollutants.

    Science.gov (United States)

    Reichwaldt, Elke S; Stone, Daniel; Barrington, Dani J; Sinang, Som C; Ghadouani, Anas

    2016-01-01

    Alert level frameworks advise agencies on a sequence of monitoring and management actions, and are implemented so as to reduce the risk of the public coming into contact with hazardous substances. Their effectiveness relies on the detection of the hazard, but with many systems not receiving any regular monitoring, pollution events often go undetected. We developed toxicological risk assessment models for acute and chronic exposure to pollutants that incorporate the probabilities that the public will come into contact with undetected pollution events, to identify the level of risk a system poses in regards to the pollutant. As a proof of concept, we successfully demonstrated that the models could be applied to determine probabilities of acute and chronic illness types related to recreational activities in waterbodies containing cyanotoxins. Using the acute model, we identified lakes that present a 'high' risk to develop Day Away From Work illness, and lakes that present a 'low' or 'medium' risk to develop First Aid Cases when used for swimming. The developed risk models succeeded in categorising lakes according to their risk level to the public in an objective way. Modelling by how much the probability of public exposure has to decrease to lower the risks to acceptable levels will enable authorities to identify suitable control measures and monitoring strategies. We suggest broadening the application of these models to other contaminants. PMID:27589798

  19. Development of Toxicological Risk Assessment Models for Acute and Chronic Exposure to Pollutants

    Directory of Open Access Journals (Sweden)

    Elke S. Reichwaldt

    2016-08-01

    Full Text Available Alert level frameworks advise agencies on a sequence of monitoring and management actions, and are implemented so as to reduce the risk of the public coming into contact with hazardous substances. Their effectiveness relies on the detection of the hazard, but with many systems not receiving any regular monitoring, pollution events often go undetected. We developed toxicological risk assessment models for acute and chronic exposure to pollutants that incorporate the probabilities that the public will come into contact with undetected pollution events, to identify the level of risk a system poses in regards to the pollutant. As a proof of concept, we successfully demonstrated that the models could be applied to determine probabilities of acute and chronic illness types related to recreational activities in waterbodies containing cyanotoxins. Using the acute model, we identified lakes that present a ‘high’ risk to develop Day Away From Work illness, and lakes that present a ‘low’ or ‘medium’ risk to develop First Aid Cases when used for swimming. The developed risk models succeeded in categorising lakes according to their risk level to the public in an objective way. Modelling by how much the probability of public exposure has to decrease to lower the risks to acceptable levels will enable authorities to identify suitable control measures and monitoring strategies. We suggest broadening the application of these models to other contaminants.

  20. Review of the chronic exposure pathways models in MACCS [MELCOR Accident Consequence Code System] and several other well-known probabilistic risk assessment models

    International Nuclear Information System (INIS)

    The purpose of this report is to document the results of the work performed by the author in connection with the following task, performed for US Nuclear Regulatory Commission, (USNRC) Office of Nuclear Regulatory Research, Division of Systems Research: MACCS Chronic Exposure Pathway Models: Review the chronic exposure pathway models implemented in the MELCOR Accident Consequence Code System (MACCS) and compare those models to the chronic exposure pathway models implemented in similar codes developed in countries that are members of the OECD. The chronic exposures concerned are via: the terrestrial food pathways, the water pathways, the long-term groundshine pathway, and the inhalation of resuspended radionuclides pathway. The USNRC has indicated during discussions of the task that the major effort should be spent on the terrestrial food pathways. There is one chapter for each of the categories of chronic exposure pathways listed above

  1. Mesenchymal stem cells ameliorate the histopathological changes in a murine model of chronic asthma.

    Science.gov (United States)

    Firinci, Fatih; Karaman, Meral; Baran, Yusuf; Bagriyanik, Alper; Ayyildiz, Zeynep Arikan; Kiray, Muge; Kozanoglu, Ilknur; Yilmaz, Osman; Uzuner, Nevin; Karaman, Ozkan

    2011-08-01

    Asthma therapies are effective in reducing inflammation but airway remodeling is poorly responsive to these agents. New therapeutic options that have fewer side effects and reverse chronic changes in the lungs are essential. Mesenchymal stem cells (MSCs) are promising for the development of novel therapies in regenerative medicine. This study aimed to examine the efficacy of MSCs on lung histopathology in a murine model of chronic asthma. BALB/c mice were divided into four groups: Group 1 (control group, n=6), Group 2 (ovalbumin induced asthma only, n=10), Group 3 (ovalbumin induced asthma + MSCs, n=10), and Group 4 (MSCs only, n=10). Histological findings (basement membrane, epithelium, subepithelial smooth muscle thickness, numbers of goblet and mast cells) of the airways and MSC migration were evaluated by light, electron, and confocal microscopes. In Group 3, all early histopathological changes except epithelial thickness and all of the chronic changes were significantly ameliorated when compared with Group 2. Evaluation with confocal microscopy showed that no noteworthy amount of MSCs were present in the lung tissues of Group 4 while significant amount of MSCs was detected in Group 3. Serum NO levels in Group 3, were significantly lower than Group 2. The results of this study revealed that MSCs migrated to lung tissue and ameliorated bronchial asthma in murine model. Further studies are needed to evaluate the efficacy of MSCs for the treatment of asthma. PMID:21439399

  2. Aligning health information technologies with effective service delivery models to improve chronic disease care

    Science.gov (United States)

    Bauer, Amy M.; Thielke, Stephen M.; Katon, Wayne; Unützer, Jürgen; Areán, Patricia

    2014-01-01

    Objective Healthcare reforms in the United States, including the Affordable Care and HITECH Acts, and the NCQA criteria for the Patient Centered Medical Home have promoted health information technology (HIT) and the integration of general medical and mental health services. These developments, which aim to improve chronic disease care have largely occurred in parallel, with little attention to the need for coordination. In this article, the fundamental connections between HIT and improvements in chronic disease management are explored. We use the evidence-based collaborative care model as an example, with attention to health literacy improvement for supporting patient engagement in care. Method A review of the literature was conducted to identify how HIT and collaborative care, an evidence-based model of chronic disease care, support each other. Results Five key principles of effective collaborative care are outlined: care is patient-centered, evidence-based, measurement-based, population-based, and accountable. The potential role of HIT in implementing each principle is discussed. Key features of the mobile health paradigm are described, including how they can extend evidence-based treatment beyond traditional clinical settings. Conclusion HIT, and particularly mobile health, can enhance collaborative care interventions, and thus improve the health of individuals and populations when deployed in integrated delivery systems. PMID:24963895

  3. Mild systemic thermal therapy ameliorates renal dysfunction in a rodent model of chronic kidney disease.

    Science.gov (United States)

    Iwashita, Yoshihiro; Kuwabara, Takashige; Hayata, Manabu; Kakizoe, Yutaka; Izumi, Yuichiro; Iiyama, Junichi; Kitamura, Kenichiro; Mukoyama, Masashi

    2016-06-01

    Thermal therapy has become a nonpharmacological therapy in clinical settings, especially for cardiovascular diseases. However, the practical role of thermal therapy on chronic kidney disease remains elusive. We performed the present study to investigate whether a modified thermal protocol, repeated mild thermal stimulation (MTS), could affect renal damages in chronic kidney disease using a mouse renal ablation model. Mice were subjected to MTS or room temperature (RT) treatment once daily for 4 wk after subtotal nephrectomy (Nx) or sham operation (Sh). We revealed that MTS alleviated renal impairment as indicated by serum creatinine and albuminuria in Nx groups. In addition, the Nx + MTS group showed attenuated tubular histological changes and reduced urinary neutrophil gelatinase-associated lipocalin excretion approximately by half compared with the Nx + RT group. Increased apoptotic signaling, such as TUNEL-positive cell count and cleavage of caspase 3, as well as enhanced oxidative stress were significantly reduced in the Nx + MTS group compared with the Nx + RT group. These changes were accompanied with the restoration of kidney Mn-SOD levels by MTS. Heat shock protein 27, a key molecular chaperone, was phosphorylated by MTS only in Nx kidneys rather than in Sh kidneys. MTS also tended to increase the phosphorylation of p38 MAPK and Akt in Nx kidneys, possibly associated with the activation of heat shock protein 27. Taken together, these results suggest that modified MTS can protect against renal injury in a rodent model of chronic kidney disease.

  4. Resistance to Recombinant Human Erythropoietin Therapy in a Rat Model of Chronic Kidney Disease Associated Anemia

    OpenAIRE

    Patrícia Garrido; Sandra Ribeiro; João Fernandes; Helena Vala; Petronila Rocha-Pereira; Elsa Bronze-da-Rocha; Luís Belo; Elísio Costa; Alice Santos-Silva; Flávio Reis

    2016-01-01

    This study aimed to elucidate the mechanisms explaining the persistence of anemia and resistance to recombinant human erythropoietin (rHuEPO) therapy in a rat model of chronic kidney disease (CKD)-associated anemia with formation of anti-rHuEPO antibodies. The remnant kidney rat model of CKD induced by 5/6 nephrectomy was used to test a long-term (nine weeks) high dose of rHuEPO (200 UI/kg bw/week) treatment. Hematological and biochemical parameters were evaluated as well as serum and tissue ...

  5. C. elegans and mutants with chronic nicotine exposure as a novel model of cancer phenotype.

    Science.gov (United States)

    Kanteti, Rajani; Dhanasingh, Immanuel; El-Hashani, Essam; Riehm, Jacob J; Stricker, Thomas; Nagy, Stanislav; Zaborin, Alexander; Zaborina, Olga; Biron, David; Alverdy, John C; Im, Hae Kyung; Siddiqui, Shahid; Padilla, Pamela A; Salgia, Ravi

    2016-01-01

    We previously investigated MET and its oncogenic mutants relevant to lung cancer in C. elegans. The inactive orthlogues of the receptor tyrosine kinase Eph and MET, namely vab-1 and RB2088 respectively, the temperature sensitive constitutively active form of KRAS, SD551 (let-60; GA89) and the inactive c-CBL equivalent mutants in sli-1 (PS2728, PS1258, and MT13032) when subjected to chronic exposure of nicotine resulted in a significant loss in egg-laying capacity and fertility. While the vab-1 mutant revealed increased circular motion in response to nicotine, the other mutant strains failed to show any effect. Overall locomotion speed increased with increasing nicotine concentration in all tested mutant strains except in the vab-1 mutants. Moreover, chronic nicotine exposure, in general, upregulated kinases and phosphatases. Taken together, these studies provide evidence in support of C. elegans as initial in vivo model to study nicotine and its effects on oncogenic mutations identified in humans.

  6. Therapeutic activity of two xanthones in a xenograft murine model of human chronic lymphocytic leukemia

    Directory of Open Access Journals (Sweden)

    Berthou Christian

    2010-12-01

    Full Text Available Abstract Background We previously reported that allanxanthone C and macluraxanthone, two xanthones purified from Guttiferae trees, display in vitro antiproliferative and proapoptotic activities in leukemic cells from chronic lymphocytic leukemia (CLL and leukemia B cell lines. Results Here, we investigated the in vivo therapeutic effects of the two xanthones in a xenograft murine model of human CLL, developed by engrafting CD5-transfected chronic leukemia B cells into SCID mice. Treatment of the animals with five daily injections of either allanxanthone C or macluraxanthone resulted in a significant prolongation of their survival as compared to control animals injected with the solvent alone (p = 0.0006 and p = 0.0141, respectively. The same treatment of mice which were not xenografted induced no mortality. Conclusion These data show for the first time the in vivo antileukemic activities of two plant-derived xanthones, and confirm their potential interest for CLL therapy.

  7. Conditional Expression of Parkinson's Disease-Related R1441C LRRK2 in Midbrain Dopaminergic Neurons of Mice Causes Nuclear Abnormalities without Neurodegeneration

    OpenAIRE

    Tsika, Elpida; Kannan, Meghna; Foo, Caroline Shi-Yan; Dikeman, Dustin; Glauser, Liliane; Gellhaar, Sandra; Galter, Dagmar; Knott, Graham W.; Ted M Dawson; Dawson, Valina L.; Moore, Darren J.

    2014-01-01

    Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene cause late-onset, autosomal dominant Parkinson's disease (PD). The clinical and neurochemical features of LRRK2-linked PD are similar to idiopathic disease although neuropathology is somewhat heterogeneous. Dominant mutations in LRRK2 precipitate neurodegeneration through a toxic gain-of-function mechanism which can be modeled in transgenic mice overexpressing human LRRK2 variants. A number of LRRK2 transgenic mouse models have been d...

  8. Metals and Neurodegeneration [version 1; referees: 3 approved

    Directory of Open Access Journals (Sweden)

    Pan Chen

    2016-03-01

    Full Text Available Metals play important roles in the human body, maintaining cell structure and regulating gene expression, neurotransmission, and antioxidant response, to name a few. However, excessive metal accumulation in the nervous system may be toxic, inducing oxidative stress, disrupting mitochondrial function, and impairing the activity of numerous enzymes. Damage caused by metal accumulation may result in permanent injuries, including severe neurological disorders. Epidemiological and clinical studies have shown a strong correlation between aberrant metal exposure and a number of neurological diseases, including Alzheimer’s disease, amyotrophic lateral sclerosis, autism spectrum disorders, Guillain–Barré disease, Gulf War syndrome, Huntington’s disease, multiple sclerosis, Parkinson’s disease, and Wilson’s disease. Here, we briefly survey the literature relating to the role of metals in neurodegeneration.

  9. Strategies for clinical approach to neurodegeneration in Amyotrophic lateral sclerosis.

    Science.gov (United States)

    Carlesi, Cecilia; Pasquali, Livia; Piazza, Selina; Lo Gerfo, Annalisa; Caldarazzo Ienco, Elena; Alessi, Rosaria; Fornai, Francesco; Siciliano, Gabriele

    2011-03-01

    Amyotrophic lateral sclerosis (ALS) is a rapidly progressive and ultimately fatal neurodegenerative disorder of unknown aetiology that involves the loss of upper and lower motor neurons in the cerebral cortex, brainstem and spinal cord. Significant progress in understanding the cellular mechanisms of motor neuron degeneration in ALS has not been matched with the development of therapeutic strategies to prevent disease progression, and riluzole remains the only available therapy, with only marginal effects on disease survival. More recently alterations of mRNA processing in genetically defined forms of ALS, as those related to TDP-43 and FUS-TLS gene mutations have provided important insights into the molecular networks implicated in the disease pathogenesis. Here we review some of the recent progress in promoting therapeutic strategies for neurodegeneration. PMID:21412722

  10. Implications of mitochondrial dynamics on neurodegeneration and on hypothalamic dysfunction

    Directory of Open Access Journals (Sweden)

    Antonio eZorzano

    2015-06-01

    Full Text Available Mitochondrial dynamics is a term that encompasses the movement of mitochondria along the cytoskeleton, regulation of their architecture, and connectivity mediated by tethering and fusion/fission. The importance of these events in cell physiology and pathology has been partially unraveled with the identification of the genes responsible for the catalysis of mitochondrial fusion and fission. Mutations in two mitochondrial fusion genes (MFN2 and OPA1 cause neurodegenerative diseases, namely Charcot-Marie Tooth type 2A and autosomal dominant optic atrophy. Alterations in mitochondrial dynamics may be involved in the pathophysiology of prevalent neurodegenerative conditions. Moreover, impairment of the activity of mitochondrial fusion proteins dysregulates the function of hypothalamic neurons, leading to alterations in food intake and in energy homeostasis. Here we review selected findings in the field of mitochondrial dynamics and their relevance for neurodegeneration and hypothalamic dysfunction.

  11. Self-mutilation in neurodegeneration with brain iron accumulation

    Directory of Open Access Journals (Sweden)

    Sadanandavalli Retnaswami Chandra

    2015-01-01

    Full Text Available Neurodegeneration with brain iron accumulation (NBIA is the term applied to a heterogeneous group of disorders resulting in iron deposition in the basal ganglia. Well-known phenotypic features are progressive regression with extra pyramidal involvement and a variable course. A 10-year-old child born to consanguineous parents presented with progressive generalized opisthotonic dystonia, retrocollis, oromandibular dyskinesias, apraxia for swallowing, optic atrophy and severe self-mutilation of lips. MR imaging showed brain iron accumulation. Other causes of self-mutilation were excluded. Early infantile onset, ophisthotonic dystonia with oromandibular dyskinesias and characteristic MR images are suggestive of NBIA. There is only one case reported in the literature of self-mutilation in this condition.

  12. Experimental chronic hepatitis B infection of neonatal tree shrews (Tupaia belangeri chinensis: A model to study molecular causes for susceptibility and disease progression to chronic hepatitis in humans

    Directory of Open Access Journals (Sweden)

    Wang Qi

    2012-08-01

    Full Text Available Abstract Background Hepatitis B virus (HBV infection continues to be an escalating global health problem. Feasible and effective animal models for HBV infection are the prerequisite for developing novel therapies for this disease. The tree shrew (Tupaia is a small animal species evolutionary closely related to humans, and thus is permissive to certain human viral pathogens. Whether tree shrews could be chronically infected with HBV in vivo has been controversial for decades. Most published research has been reported on adult tree shrews, and only small numbers of HBV infected newborn tree shrews had been observed over short time periods. We investigated susceptibility of newborn tree shrews to experimental HBV infection as well as viral clearance over a protracted time period. Results Forty-six newborn tree shrews were inoculated with the sera from HBV-infected patients or tree shrews. Serum and liver samples of the inoculated animals were periodically collected and analyzed using fluorescence quantitative polymerase chain reaction, enzyme-linked immunosorbent assay, Southern blot, and immunohistochemistry. Six tree shrews were confirmed and four were suspected as chronically HBV-infected for more than 48 (up to 228 weeks after inoculation, including three that had been inoculated with serum from a confirmed HBV-infected tree shrew. Conclusions Outbred neonatal tree shrews can be long-term chronically infected with HBV at a frequency comparable to humans. The model resembles human disease where also a smaller proportion of infected individuals develop chronic HBV related disease. This model might enable genetic and immunologic investigations which would allow determination of underlying molecular causes favoring susceptibility for chronic HBV infection and disease establishment vs. viral clearance.

  13. Disease management projects and the Chronic Care Model in action: baseline qualitative research

    Directory of Open Access Journals (Sweden)

    Walters Bethany

    2012-05-01

    Full Text Available Abstract Background Disease management programs, especially those based on the Chronic Care Model (CCM, are increasingly common in the Netherlands. While disease management programs have been well-researched quantitatively and economically, less qualitative research has been done. The overall aim of the study is to explore how disease management programs are implemented within primary care settings in the Netherlands; this paper focuses on the early development and implementation stages of five disease management programs in the primary care setting, based on interviews with project leadership teams. Methods Eleven semi-structured interviews were conducted at the five selected sites with sixteen professionals interviewed; all project directors and managers were interviewed. The interviews focused on each project’s chosen chronic illness (diabetes, eating disorders, COPD, multi-morbidity, CVRM and project plan, barriers to development and implementation, the project leaders’ action and reactions, as well as their roles and responsibilities, and disease management strategies. Analysis was inductive and interpretive, based on the content of the interviews. After analysis, the results of this research on disease management programs and the Chronic Care Model are viewed from a traveling technology framework. Results This analysis uncovered four themes that can be mapped to disease management and the Chronic Care Model: (1 changing the health care system, (2 patient-centered care, (3 technological systems and barriers, and (4 integrating projects into the larger system. Project leaders discussed the paths, both direct and indirect, for transforming the health care system to one that addresses chronic illness. Patient-centered care was highlighted as needed and a paradigm shift for many. Challenges with technological systems were pervasive. Project leaders managed the expenses of a traveling technology, including the social, financial, and

  14. Bio-mathematical models of viral dynamics to tailor antiviral therapy in chronic viral hepatitis

    Institute of Scientific and Technical Information of China (English)

    Maurizia Rossana Brunetto; Piero Colombatto; Ferruccio Bonino

    2009-01-01

    The simulation of the dynamics of viral infections by mathematical equations has been applied successfully to the study of viral infections during antiviral therapy. Standard models applied to viral hepatitis describe the viral load decline in the first 2-4 wk of antiviral therapy, but do not adequately simulate the dynamics of viral infection for the following period. The hypothesis of a constant clearance rate of the infected cells provides an unrealistic estimation of the time necessary to reach the control or the clearance of hepatitis B virus (HBV)/ hepatitis C virus (HCV) infection. To overcome the problem, we have developed a new multiphasic model in which the immune system activity is modulated by a negative feedback caused by the infected cells reduction, and alanine aminotransferase kinetics serve as a surrogate marker of infected-cell clearance. By this approach, we can compute the dynamics of infected cells during the whole treatment course, and find a good correlation between the number of infected cells at the end of therapy and the long-term virological response in patients with chronic hepatitis C. The new model successfully describes the HBV infection dynamics far beyond the third month of antiviral therapy under the assumption that the sum of infected and non-infected cells remains roughly constant during therapy, and both target and infected cells concur in the hepatocyte turnover. In clinical practice, these new models will allow the development of simulators of treatment response that will be used as an "automatic pilot" for tailoring antiviral therapy in chronic hepatitis B as well as chronic hepatitis C patients.

  15. Bio-mathematical models of viral dynamics to tailor antiviral therapy in chronic viral hepatitis

    Science.gov (United States)

    Brunetto, Maurizia Rossana; Colombatto, Piero; Bonino, Ferruccio

    2009-01-01

    The simulation of the dynamics of viral infections by mathematical equations has been applied successfully to the study of viral infections during antiviral therapy. Standard models applied to viral hepatitis describe the viral load decline in the first 2-4 wk of antiviral therapy, but do not adequately simulate the dynamics of viral infection for the following period. The hypothesis of a constant clearance rate of the infected cells provides an unrealistic estimation of the time necessary to reach the control or the clearance of hepatitis B virus (HBV)/hepatitis C virus (HCV) infection. To overcome the problem, we have developed a new multiphasic model in which the immune system activity is modulated by a negative feedback caused by the infected cells reduction, and alanine aminotransferase kinetics serve as a surrogate marker of infected-cell clearance. By this approach, we can compute the dynamics of infected cells during the whole treatment course, and find a good correlation between the number of infected cells at the end of therapy and the long-term virological response in patients with chronic hepatitis C. The new model successfully describes the HBV infection dynamics far beyond the third month of antiviral therapy under the assumption that the sum of infected and non-infected cells remains roughly constant during therapy, and both target and infected cells concur in the hepatocyte turnover. In clinical practice, these new models will allow the development of simulators of treatment response that will be used as an “automatic pilot” for tailoring antiviral therapy in chronic hepatitis B as well as chronic hepatitis C patients. PMID:19195054

  16. Renal Impairment with Sublethal Tubular Cell Injury in a Chronic Liver Disease Mouse Model.

    Directory of Open Access Journals (Sweden)

    Tokiko Ishida

    Full Text Available The pathogenesis of renal impairment in chronic liver diseases (CLDs has been primarily studied in the advanced stages of hepatic injury. Meanwhile, the pathology of renal impairment in the early phase of CLDs is poorly understood, and animal models to elucidate its mechanisms are needed. Thus, we investigated whether an existing mouse model of CLD induced by 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC shows renal impairment in the early phase. Renal injury markers, renal histology (including immunohistochemistry for tubular injury markers and transmission electron microscopy, autophagy, and oxidative stress were studied longitudinally in DDC- and standard diet-fed BALB/c mice. Slight but significant renal dysfunction was evident in DDC-fed mice from the early phase. Meanwhile, histological examinations of the kidneys with routine light microscopy did not show definitive morphological findings, and electron microscopic analyses were required to detect limited injuries such as loss of brush border microvilli and mitochondrial deformities. Limited injuries have been recently designated as sublethal tubular cell injury. As humans with renal impairment, either with or without CLD, often show almost normal tubules, sublethal injury has been of particular interest. In this study, the injuries were associated with mitochondrial aberrations and oxidative stress, a possible mechanism for sublethal injury. Intriguingly, two defense mechanisms were associated with this injury that prevent it from progressing to apparent cell death: autophagy and single-cell extrusion with regeneration. Furthermore, the renal impairment of this model progressed to chronic kidney disease with interstitial fibrosis after long-term DDC feeding. These findings indicated that DDC induces renal impairment with sublethal tubular cell injury from the early phase, leading to chronic kidney disease. Importantly, this CLD mouse model could be useful for studying the

  17. Modeling methodology for the accurate and prompt prediction of symptomatic events in chronic diseases.

    Science.gov (United States)

    Pagán, Josué; Risco-Martín, José L; Moya, José M; Ayala, José L

    2016-08-01

    Prediction of symptomatic crises in chronic diseases allows to take decisions before the symptoms occur, such as the intake of drugs to avoid the symptoms or the activation of medical alarms. The prediction horizon is in this case an important parameter in order to fulfill the pharmacokinetics of medications, or the time response of medical services. This paper presents a study about the prediction limits of a chronic disease with symptomatic crises: the migraine. For that purpose, this work develops a methodology to build predictive migraine models and to improve these predictions beyond the limits of the initial models. The maximum prediction horizon is analyzed, and its dependency on the selected features is studied. A strategy for model selection is proposed to tackle the trade off between conservative but robust predictive models, with respect to less accurate predictions with higher horizons. The obtained results show a prediction horizon close to 40min, which is in the time range of the drug pharmacokinetics. Experiments have been performed in a realistic scenario where input data have been acquired in an ambulatory clinical study by the deployment of a non-intrusive Wireless Body Sensor Network. Our results provide an effective methodology for the selection of the future horizon in the development of prediction algorithms for diseases experiencing symptomatic crises. PMID:27260782

  18. Utility of Modeling End-Stage Liver Disease in Children with Chronic Liver Disease

    Directory of Open Access Journals (Sweden)

    Hamid Reza Kianifar

    2014-01-01

    Full Text Available Introduction: Chronic liver diseases consist of wide spectrum disorders that may be complicated by cirrhosis and therefore need to transplantation. The pediatric end-stage liver disease (PELD score and model of end-stage liver disease (MELD score has been used as predictors of mortality chronic liver diseases listed for liver transplantation. The aim of this study is evaluation of relation between PELDMELD score and evidence of cirrhosis in children with choronic liver disease.   Materials and Method: This cross-sectional study conducted on 106 patients of chronic liver disease referred to Ghaem Haspital, Mashhad University of Medical Science, Iran during 24 months period (2010-2013. PELD and MELD score were calculated for all patients. Clincal and patholoogical findings of cirrhosis were recorded.   Results: Mean age of patients was 68/3 ± 41.8 months. Mean PELDMELD score was -1/59± 9/64. There was significant correlation between PELDMELD score and clinical icter, spelenomegaly, evidence of hepatopulminary syndrome, esophageal varices, evidence of cirrhosis in tissue specimences.   Conclusion: PELDMELD score appear to be benefit for detection of cirrhotic children among paients with choronic liver disease.

  19. Methamphetamine mediates immune dysregulation in a murine model of chronic viral infection.

    Directory of Open Access Journals (Sweden)

    Uma eSriram

    2015-08-01

    Full Text Available Methamphetamine (METH is a highly addictive psychostimulant that not only affects the brain and cognitive functions but also greatly impacts the host immune system, rendering the body susceptible to infections and exacerbating the severity of disease. Although there is gathering evidence about METH abuse and increased incidence of HIV and other viral infections, not much is known about the effects on the immune system in a chronic viral infection setting. We have used the lymphocytic choriomeningitis virus (LCMV chronic mouse model of viral infection in a chronic METH environment and demonstrate that METH significantly increases CD3 marker on splenocytes and programmed death -1 (PD-1 expression on T cells, a cell surface signaling molecule known to inhibit T cell function and cause exhaustion in a lymphoid organ. Many of these METH effects were more pronounced during early stage of infection, which are gradually attenuated during later stages of infection. An essential cytokine for T-lymphocyte homeostasis, Interleukin-2 (IL-2 in serum was prominently reduced in METH-exposed infected mice. In addition, the serum pro-inflammatory (TNF, IL12 p70, IL1β, IL-6 and KC-GRO and Th2 (IL-2, IL-10 and IL-4 cytokine profiles were also altered in the presence of METH. Interestingly CXCR3, an inflammatory chemokine receptor, showed significant increase in the METH treated LCMV infected mice. Similarly, compared to only infected mice, epidermal growth factor receptor (EGFR in METH exposed LCMV infected mice were up regulated. Collectively, our data suggest that METH alters systemic, peripheral immune responses and modulates key markers on T cells involved in pathogenesis of chronic viral infection.

  20. Characterization of the innate immune response to chronic aspiration in a novel rodent model

    Directory of Open Access Journals (Sweden)

    Lin Shu S

    2007-11-01

    Full Text Available Abstract Background Although chronic aspiration has been associated with several pulmonary diseases, the inflammatory response has not been characterized. A novel rodent model of chronic aspiration was therefore developed in order to investigate the resulting innate immune response in the lung. Methods Gastric fluid or normal saline was instilled into the left lung of rats (n = 48 weekly for 4, 8, 12, or 16 weeks (n = 6 each group. Thereafter, bronchoalveolar lavage specimens were collected and cellular phenotypes and cytokine concentrations of IL-1alpha, IL-1beta, IL-2, IL-4, IL-6, IL-10, GM-CSF, IFN-gamma, TNF-alpha, and TGF-beta were determined. Results Following the administration of gastric fluid but not normal saline, histologic specimens exhibited prominent evidence of giant cells, fibrosis, lymphocytic bronchiolitis, and obliterative bronchiolitis. Bronchoalveolar lavage specimens from the left (treated lungs exhibited consistently higher macrophages and T cells with an increased CD4:CD8 T cell ratio after treatment with gastric fluid compared to normal saline. The concentrations of IL-1alpha, IL-1beta, IL-2, TNF-alpha and TGF-beta were increased in bronchoalveolar lavage specimens following gastric fluid aspiration compared to normal saline. Conclusion This represents the first description of the pulmonary inflammatory response that results from chronic aspiration. Repetitive aspiration events can initiate an inflammatory response consisting of macrophages and T cells that is associated with increased TGF-beta, TNF-alpha, IL-1alpha, IL-1beta, IL-2 and fibrosis in the lung. Combined with the observation of gastric fluid-induced lymphocyitic bronchiolitis and obliterative bronchiolitis, these findings further support an association between chronic aspiration and pulmonary diseases, such as obliterative bronchiolitis, pulmonary fibrosis, and asthma.

  1. Caring, chronicity and community: an emergent model of community health services provision for people living with chronic illness

    OpenAIRE

    Ryan, Denis

    2008-01-01

    Purpose An evaluation of an Integrated Care approach with the aim of exploring the components of the service which contributed to its functioning. Theory There is growing recognition internationally that conventional approaches to the management of chronic illness are not adequately meeting the needs of people with such conditions. This concern is also shared in Ireland and a pilot programme to provide an alternative community based approach was established in Callan, Co. Kilkennny, Ireland f...

  2. Antidepressant-like effects of BCEF0083 in the chronic unpredictable stress models in mice

    Institute of Scientific and Technical Information of China (English)

    ZHOU Lan-lan; MING Liang; MA Chuan-geng; CHENG Yan; JIANG Qin

    2005-01-01

    Background Up to now there have been no satisfactory drugs to treat psychiatric disorders, and now bioactive compound from entomagenous fungi (BCEF0083) is a new type of bioactive compound from entomopathogenic fungi. Our previous investigations have shown that BCEF has an inhibition effect on monoamine oxidase. So, BCEF may be a latent antidepressant. This study aimed at observing the antidepressant effects and its mechanism of BCEF in the chronic unpredictable stress models in mice. Methods The antidepressant effects of BCEF were examined on the chronic unpredictable stress models in mice. Sixty mice were randomly divided to six groups. Animals were housed and isolated except saline group. Mice were exposed to different stressors per day randomly from day 1 to day 21. Body weight were weighed on day 1,day 10 and on day 21 during the 21-day stress procedure. Awarding response was detected by using method of calculating the 24-hour consumption of saccharum water. Step through test was used to evaluate the behavioral response. AVP contents in plasma were also detected by using radioimmunoassays. Results Chronic unpredictable stress resulted in a significant decrease of the body weight and could apparently cause escape behavior disturbance and gradual reduction of sensitivity to reward in animal models. Drug treatment (BCEF 25, 50, 100 mg/kg) could significantly ameliorate the decreased body weight and effectively reverse the escape behavior disturbance. The gradual reduction of sensitivity to reward, the anhedonic state, was also effectively reversed by BCEF. BCEF (50, 100 mg/kg) could also effectively restore the AVP content in the plasma.Conclusions This evidence suggests that BCEF can effectively inhibit the depression behavior and show strong antidepressant effect. BCEF can effectively restore the plasma AVP release and this may be an important mechanism of its antidepressant effect.

  3. Interleukins in chronic liver disease: lessons learned from experimental mouse models

    Directory of Open Access Journals (Sweden)

    Hammerich L

    2014-09-01

    Full Text Available Linda Hammerich, Frank Tacke Department of Medicine III, University Hospital Aachen, Aachen, Germany Abstract: Interleukins represent a class of immunomodulatory cytokines, small intercellular signaling proteins, that are critically involved in the regulation of immune responses. They are produced in large amounts by various cell types during inflammatory reactions, and the balance of cytokines determines the outcome of an immune response. Therefore, cytokines are regarded as interesting therapeutic targets for the treatment of patients with liver diseases. Mouse models provide a good tool for in vivo studies on cytokine function, as human and mouse cytokines share many homologies. Sophisticated mouse models either mimicking distinct pathological conditions or targeting cytokines and cytokine-signaling pathways in the liver or even in distinct cellular compartments have provided enormous insight into the different functions of interleukins during hepatic inflammation. Interleukins may have pro- as well as anti-inflammatory functions in chronic liver diseases, some interleukins even both, dependent on the inflammatory stimulus, the producing and the responding cell type. IL-17, for example, promotes hepatic fibrogenesis through activation of hepatic stellate cells and facilitates development of liver cancer through recruitment of myeloid-derived suppressor cells. IL-22, on the other hand, protects from development of fibrosis or steatohepatitis. IL-12 balances T-helper (Th-1 and Th2 cell responses in infectious disease models. IL-13 and IL-33, two cytokines related to Th2 cells and innate lymphoid cells, promote fibrotic responses in the liver. IL-10 is the prototypic anti-inflammatory interleukin with tissue-protective functions during chronic liver injury and fibrogenesis. Despite its critical role for inducing the acute-phase response in the liver, IL-6 signaling is protective during fibrosis progression, but promotes hepatocellular carcinoma

  4. Diabetes and overexpression of proNGF cause retinal neurodegeneration via activation of RhoA pathway.

    Directory of Open Access Journals (Sweden)

    Mohammed M H Al-Gayyar

    Full Text Available Our previous studies showed positive correlation between accumulation of proNGF, activation of RhoA and neuronal death in diabetic models. Here, we examined the neuroprotective effects of selective inhibition of RhoA kinase in the diabetic rat retina and in a model that stably overexpressed the cleavage-resistance proNGF plasmid in the retina. Male Sprague-Dawley rats were rendered diabetic using streptozotocin or stably express cleavage-resistant proNGF plasmid. The neuroprotective effects of the intravitreal injection of RhoA kinase inhibitor Y27632 were examined in vivo. Effects of proNGF were examined in freshly isolated primary retinal ganglion cell (RGC cultures and RGC-5 cell line. Retinal neurodegeneration was assessed by counting TUNEL-positive and Brn-3a positive retinal ganglion cells. Expression of proNGF, p75(NTR, cleaved-PARP, caspase-3 and p38MAPK/JNK were examined by Western-blot. Activation of RhoA was assessed by pull-down assay and G-LISA. Diabetes and overexpression of proNGF resulted in retinal neurodegeneration as indicated by 9- and 6-fold increase in TUNEL-positive cells, respectively. In vitro, proNGF induced 5-fold cell death in RGC-5 cell line, and it induced >10-fold cell death in primary RGC cultures. These effects were associated with significant upregulation of p75(NTR and activation of RhoA. While proNGF induced TNF-α expression in vivo, it selectively activated RhoA in primary RGC cultures and RGC-5 cell line. Inhibiting RhoA kinase with Y27632 significantly reduced diabetes- and proNGF-induced activation of proapoptotic p38MAPK/JNK, expression of cleaved-PARP and caspase-3 and prevented retinal neurodegeneration in vivo and in vitro. Taken together, these results provide compelling evidence for a causal role of proNGF in diabetes-induced retinal neurodegeneration through enhancing p75(NTR expression and direct activation of RhoA and p38MAPK/JNK apoptotic pathways.

  5. Differential effects of Smad3 targeting in a murine model of chronic kidney disease

    DEFF Research Database (Denmark)

    Kellenberger, Terese; Krag, Søren; Danielsen, Carl Christian;

    2013-01-01

    genes involved in extracellular matrix (ECM) metabolism. This study analyzes the hypothesis that blockade of Smad3 attenuates the development of TGF-β1-driven renal fibrosis. This was examined in vivo in a transgenic model of TGF-β1-induced chronic kidney disease with Smad3 or without Smad3 expression......Transforming growth factor (TGF)-β1 has a pivotal role in the pathogenesis of progressive kidney diseases that are characterized by fibrosis. The main intracellular signaling pathway of TGF-β1 is the Smad system, where Smad2 and Smad3 play a central role in transcriptional regulation of target...... in the kidney....

  6. The model of rat lipid metabolism disorder induced by chronic stress accompanying high-fat-diet

    OpenAIRE

    Shaodong Chen; Jing Li; Haihong Zhou; Manting Lin; Yihua Liu

    2011-01-01

    Abstract Objective To develop an animal model of Lipid Metabolism Disorder, which conforms to human clinical characteristic. Methods: There were 24 male Wistar rats that were randomly divided into 3 groups with 8 rats in each. They were group A (normal diet), group B (high-fat-diet), group C (chronic stress+ high-fat-diet). Group A was fed with normal diet, while group B and C were fed with high-fat-diet, going on for 55 days. From the 35th day, group B and C received one time of daily chroni...

  7. Hormetic Effect of Chronic Hypergravity in a Mouse Model of Allergic Asthma and Rhinitis

    OpenAIRE

    Tae Young Jang; Ah-Yeoun Jung; Young Hyo Kim

    2016-01-01

    We aimed to evaluate the effect of chronic hypergravity in a mouse model of allergic asthma and rhinitis. Forty BALB/c mice were divided as: group A (n = 10, control) sensitized and challenged with saline, group B (n = 10, asthma) challenged by intraperitoneal and intranasal ovalbumin (OVA) to induce allergic asthma and rhinitis, and groups C (n = 10, asthma/rotatory control) and D (n = 10, asthma/hypergravity) exposed to 4 weeks of rotation with normogravity (1G) or hypergravity (5G) during ...

  8. Mitochondrial defects and neurodegeneration in mice overexpressing wild-type or G399S mutant HtrA2.

    Science.gov (United States)

    Casadei, Nicolas; Sood, Poonam; Ulrich, Thomas; Fallier-Becker, Petra; Kieper, Nicole; Helling, Stefan; May, Caroline; Glaab, Enrico; Chen, Jing; Nuber, Silke; Marcus, Katrin; Rapaport, Doron; Ott, Thomas; Riess, Olaf; Krüger, Rejko; Fitzgerald, Julia C

    2016-02-01

    The protease HtrA2 has a protective role inside mitochondria, but promotes apoptosis under stress. We previously identified the G399S HtrA2 mutation in Parkinson's disease (PD) patients and reported mitochondrial dysfunction in vitro. Mitochondrial dysfunction is a common feature of PD and related to neurodegeneration. Complete loss of HtrA2 has been shown to cause neurodegeneration in mice. However, the full impact of HtrA2 overexpression or the G399S mutation is still to be determined in vivo. Here, we report the first HtrA2 G399S transgenic mouse model. Our data suggest that the mutation has a dominant-negative effect. We also describe a toxic effect of wild-type (WT) HtrA2 overexpression. Only low overexpression of the G399S mutation allowed viable animals and we suggest that the mutant protein is likely unstable. This is accompanied by reduced mitochondrial respiratory capacity and sensitivity to apoptotic cell death. Mice overexpressing WT HtrA2 were viable, yet these animals have inhibited mitochondrial respiration and significant induction of apoptosis in the brain leading to motor dysfunction, highlighting the opposing roles of HtrA2. Our data further underscore the importance of HtrA2 as a key mediator of mitochondrial function and its fine regulatory role in cell fate. The location and abundance of HtrA2 is tightly controlled and, therefore, human mutations leading to gain- or loss of function could provide significant risk for PD-related neurodegeneration. PMID:26604148

  9. Challenge models to assess new therapies in chronic obstructive pulmonary disease

    Directory of Open Access Journals (Sweden)

    van der Merwe R

    2012-09-01

    Full Text Available René van der Merwe,1 Nestor A Molfino2,31Respiratory Clinical Development, MedImmune Ltd, Cambridge, UK; 2Respiratory Clinical Development, MedImmune, LLC, Gaithersburg, MD, USA, 3KaloBios Pharmaceuticals, South San Francisco, CA, USAAbstract: Chronic obstructive pulmonary disease (COPD is a major cause of morbidity and mortality. Current therapies confer partial benefits either by incompletely improving airflow limitation or by reducing acute exacerbations, hence new therapies are desirable. In the absence of robust early predictors of clinical efficacy, the potential success of novel therapeutic agents in COPD will not entirely be known until the drugs enter relatively large and costly clinical trials. New predictive models in humans, and new study designs are being sought to allow for confirmation of pharmacodynamic and potentially clinically meaningful effects in early development. This review focuses on human challenge models with lipopolysaccharide endotoxin, ozone, and rhinovirus, in the early clinical development phases of novel therapeutic agents for the treatment and reduction of exacerbations in COPD.Keywords: chronic obstructive pulmonary disease, challenge models, therapy assessment

  10. Autophagy in retinal ganglion cells in a rhesus monkey chronic hypertensive glaucoma model.

    Directory of Open Access Journals (Sweden)

    Shuifeng Deng

    Full Text Available Primary open angle glaucoma (POAG is a neurodegenerative disease characterized by physiological intraocular hypertension that causes damage to the retinal ganglion cells (RGCs. In the past, RGC damage in POAG was suggested to have been attributed to RGC apoptosis. However, in the present study, we applied a model closer to human POAG through the use of a chronic hypertensive glaucoma model in rhesus monkeys to investigate whether another mode of progressive cell death, autophagy, was activated in the glaucomatous retinas. First, in the glaucomatous retinas, the levels of LC3B-II, LC3B-II/LC3B-I and Beclin 1 increased as demonstrated by Western blot analyses, whereas early or initial autophagic vacuoles (AVi and late or degraded autophagic vacuoles (AVd accumulated in the ganglion cell layer (GCL and in the inner plexiform layer (IPL as determined by transmission electron microscopy (TEM analysis. Second, lysosome activity and autophagosome-lysosomal fusion increased in the RGCs of the glaucomatous retinas, as demonstrated by Western blotting against lysosome associated membrane protein-1 (LAMP1 and double labeling against LC3B and LAMP1. Third, apoptosis was activated in the glaucomatous eyes with increased levels of caspase-3 and cleaved caspase-3 and an increased number of TUNEL-positive RGCs. Our results suggested that autophagy was activated in RGCs in the chronic hypertensive glaucoma model of rhesus monkeys and that autophagy may have potential as a new target for intervention in glaucoma treatment.

  11. Robust and enduring atorvastatin-mediated memory recovery following the 4-vessel occlusion/internal carotid artery model of chronic cerebral hypoperfusion in middle-aged rats.

    Science.gov (United States)

    Zaghi, Gislene Gonçalves Dias; Godinho, Jacqueline; Ferreira, Emilene Dias Fiuza; Ribeiro, Matheus Henrique Dal Molin; Previdelli, Isolde Santos; de Oliveira, Rúbia Maria Weffort; Milani, Humberto

    2016-02-01

    Chronic cerebral hypoperfusion (CCH) is a common condition associated with the development and/or worsening of age-related dementia.We previously reported persistent memory loss and neurodegeneration after CCH in middle-aged rats. Statin-mediated neuroprotection has been reported after acute cerebral ischemia. Unknown, however, is whether statins can alleviate the outcome of CCH. The present study investigated whether atorvastatin attenuates the cognitive and neurohistological outcome of CCH. Rats (12–15 months old) were trained in a non-food-rewarded radial maze, and then subjected to CCH. Atorvastatin (10 mg/kg, p.o.) was administered for 42 days or 15 days, beginning 5 h after the first occlusion stage. Retrograde memory performance was assessed at 7, 14, 21, 28, and 35 days of CCH, and expressed by “latency,” “number of reference memory errors” and “number of working memory errors.” Neurodegeneration was then examined at the hippocampus and cerebral cortex. Compared to sham, CCH caused profound and persistent memory loss in the vehicle-treated groups, as indicated by increased latency (91.2% to 107.3%) and number of errors (123.5% to 2508.2%), effects from which the animals did not spontaneously recover across time. This CCH-induced retrograde amnesia was completely prevented by atorvastatin (latency: −4.3% to 3.3%; reference/working errors: −2.5% to 45.7%), regardless of the treatment duration. This effect was sustained during the entire behavioral testing period (5 weeks), even after discontinuing treatment. This robust and sustained memory-protective effect of atorvastatin occurred in the absence of neuronal rescue (39.58% to 56.45% cell loss). We suggest that atorvastatin may be promising for the treatment of cognitive sequelae associated with CCH.

  12. The effect of pH on chronic aquatic nickel toxicity is dependent on the pH itself: Extending the chronic nickel bioavailability models.

    Science.gov (United States)

    Nys, Charlotte; Janssen, Colin R; Van Sprang, Patrick; De Schamphelaere, Karel A C

    2016-05-01

    The environmental quality standard for Ni in the European Commission's Water Framework Directive is bioavailability based. Although some of the available chronic Ni bioavailability models are validated only for pH ≤ 8.2, a considerable fraction of European surface waters has a pH > 8.2. Therefore, the authors investigated the effect of a change in pH from 8.2 to 8.7 on chronic Ni toxicity in 3 invertebrate (Daphnia magna, Lymnaea stagnalis, and Brachionus calyciflorus) and 2 plant species (Pseudokirchneriella subcapitata and Lemna minor). Nickel toxicity was almost always significantly higher at pH 8.7 than at pH 8.2. To test whether the existing chronic Ni bioavailability models developed for pH ≤ 8.2 can be used at higher pH levels, Ni toxicity at pH 8.7 was predicted based on Ni toxicity observed at pH 8.2. This resulted in a consistent underestimation of toxicity. The results suggest that the effect of pH on Ni(2+) toxicity is dependent on the pH itself: the slope of the pH effect is steeper above than below pH 8.2 for species for which a species-specific bioavailability model exists. Therefore, the existing chronic Ni bioavailability models were modified to allow predictions of chronic Ni toxicity to invertebrates and plants in the pH range of 8.2 to 8.7 by applying a pH slope (SpH ) dependent on the pH of the target water. These modified Ni bioavailability models resulted in more accurate predictions of Ni toxicity to all 5 species (within 2-fold error), without the bias observed using the bioavailability models developed for pH ≤ 8.2. The results of the present study can decrease the uncertainty in implementing the bioavailability-based environmental quality standard under the Water Framework Directive for high-pH regions in Europe. PMID:26335781

  13. Space-time Bayesian survival modeling of chronic wasting disease in deer.

    Science.gov (United States)

    Song, Hae-Ryoung; Lawson, Andrew

    2009-09-01

    The primary objectives of this study are to describe the spatial and temporal variation in disease prevalence of chronic wasting disease (CWD), to assess the effect of demographic factors such as age and sex on disease prevalence and to model the disease clustering effects over space and time. We propose a Bayesian hierarchical survival model where latent parameters capture temporal and spatial trends in disease incidence, incorporating several individual covariates and random effects. The model is applied to a data set which consists of 65085 harvested deer in Wisconsin from 2002 to 2006. We found significant sex effects, spatial effects, temporal effects and spatio-temporal interacted effects in CWD infection in deer in Wisconsin. The risk of infection for male deer was significantly higher than that of female deer, and CWD has been significantly different over space, time, and space and time based on the harvest samples.

  14. International care models for chronic kidney disease: methods and economics--United States.

    Science.gov (United States)

    Crooks, Peter

    2004-01-01

    In the United States, there is a major chronic kidney disease (CKD) problem with over 8 million adults having stage 3 or 4 CKD. There is good medical evidence that many of these patients can benefit from focused interventions. And while there are strong theoretical reasons to believe these interventions are cost-effective, there are little published data to back up this assertion. However, despite the lack of financial data proving cost-effectiveness and against the background of a disorganized health care system in the US, some models of CKD care are being employed. At the present time, the most comprehensive models of care in the US are emerging in vertically integrated health care programs. Other models of care are developing in the setting of managed care health plans that employ CKD disease management programs, either developed internally or in partnership with renal disease management companies.

  15. Effects of Exercise on Behavior and Peripheral Blood Lymphocyte Apoptosis in a Rat Model of Chronic Fatigue Syndrome

    Institute of Scientific and Technical Information of China (English)

    邹军; 苑建齐; 吕爽; 屠嘉衡

    2010-01-01

    This study examined the effects of exercise on behavior and peripheral blood leukocyte apoptosis in a rat model of chronic fatigue syndrome(CFS).Thirty-six healthy male Sprague-Dawley rats were equally randomized into 3 groups:the control group,CFS model group and the exercise group in terms of body weight.A total of 25 rats entered the final statistical analysis due to 11 deaths during the study.CFS model was established by subjecting the rats in CFS model group and exercise group to electric shock,chronic...

  16. Brain, blood, and iron : Perspectives on the roles of erythrocytes and iron in neurodegeneration

    NARCIS (Netherlands)

    Prohaska, Rainer; Sibon, Ody C. M.; Rudnicki, Dobrila D.; Danek, Adrian; Hayflick, Susan J.; Verhaag, Esther M.; Vonk, Jan J.; Margolis, Russell L.; Walker, Ruth H.

    2012-01-01

    The terms "neuroacanthocytosis" (NA) and "neurodegeneration with brain iron accumulation" (NBIA) both refer to groups of genetically heterogeneous disorders, classified together due to similarities of their phenotypic or pathological findings. Even collectively, the disorders that comprise these set

  17. Path analysis of the chronicity of depression using the comprehensive developmental model framework.

    Science.gov (United States)

    Fandiño-Losada, Andrés; Bangdiwala, Shrikant I; Lavebratt, Catharina; Forsell, Yvonne

    2016-07-01

    Background Depressive disorder is recognized as recurrent or chronic in the majority of affected individuals; but literature is not consistent about determinants of the disorder course. Aims To analyse the relationships between familial, personal and environmental characteristics in different life phases and their effects on the chronicity of depression in a population-based sample. Methods It was a longitudinal panel study with three waves (W1-W3) for 651 adult men and women with diagnosis of minor/major depression or dysthymia at W1 of the Swedish PART (mental health, work and relations) study. Risk factors and co-morbidities were assessed with questionnaires. The main outcome was an episode of minor/major depression or dysthymia at 10-12 years of follow-up (W3). Liability for depressive episodes was determined using exploratory structural equation modelling (SEM), following a path approach with step-wise specification searches. Results Most of the risk factors determined, directly or indirectly, depression severity at W3. Somatic trait anxiety, partner loss and other negative life events at W1, depressive symptoms at W2, and life difficulties and other dependent life events at W3 had direct effects on the outcome. Conclusions SEM model revealed complex and intertwined psychopathological pathways leading to chronicity of depression, given previous episodes, which could be assembled in two main mechanisms: a depressive-internalizing path and an adversity path comprised of life events. Pathways are simpler than those of depression occurrence, emphasizing the relevance of personality factors as depression determinants, and excluding disability levels, co-morbidities and social support. These novel findings need to be replicated in future studies. PMID:26925597

  18. Path analysis of the chronicity of depression using the comprehensive developmental model framework.

    Science.gov (United States)

    Fandiño-Losada, Andrés; Bangdiwala, Shrikant I; Lavebratt, Catharina; Forsell, Yvonne

    2016-07-01

    Background Depressive disorder is recognized as recurrent or chronic in the majority of affected individuals; but literature is not consistent about determinants of the disorder course. Aims To analyse the relationships between familial, personal and environmental characteristics in different life phases and their effects on the chronicity of depression in a population-based sample. Methods It was a longitudinal panel study with three waves (W1-W3) for 651 adult men and women with diagnosis of minor/major depression or dysthymia at W1 of the Swedish PART (mental health, work and relations) study. Risk factors and co-morbidities were assessed with questionnaires. The main outcome was an episode of minor/major depression or dysthymia at 10-12 years of follow-up (W3). Liability for depressive episodes was determined using exploratory structural equation modelling (SEM), following a path approach with step-wise specification searches. Results Most of the risk factors determined, directly or indirectly, depression severity at W3. Somatic trait anxiety, partner loss and other negative life events at W1, depressive symptoms at W2, and life difficulties and other dependent life events at W3 had direct effects on the outcome. Conclusions SEM model revealed complex and intertwined psychopathological pathways leading to chronicity of depression, given previous episodes, which could be assembled in two main mechanisms: a depressive-internalizing path and an adversity path comprised of life events. Pathways are simpler than those of depression occurrence, emphasizing the relevance of personality factors as depression determinants, and excluding disability levels, co-morbidities and social support. These novel findings need to be replicated in future studies.

  19. Structural Equation Modeling Highlights the Potential of Kim-1 as a Biomarker for Chronic Kidney Disease

    Science.gov (United States)

    Gardiner, Lesley; Akintola, Adebayo; Chen, Gang; Catania, Jeffrey M.; Vaidya, Vishal; Burghardt, Robert C.; Bonventre, Joseph V.; Trzeciakowski, Jerome; Parrish, Alan R.

    2012-01-01

    Background Chronic kidney disease (CKD) is a major public health problem, and despite continued research in the field, there is still a need to identify both biomarkers of risk and progression, as well as potential therapeutic targets. Structural equation modeling (SEM) is a family of statistical techniques that has been utilized in the fields of sociology and psychology for many years; however, its utilization in the biological sciences is relatively novel. SEM's ability to investigate complex relationships in an efficient, single model could be utilized to understand the progression of CKD, as well as to develop a predictive model to assess kidney status in the patient. Methods Fischer 344 rats were fed either an ad libitum diet or a calorically restricted diet, and a time-course study of kidney structure and function was performed. EQS, a SEM software package, was utilized to generate five CKD models of the Fisher 344 rat and identify relationships between measured variables and estimates of kidney damage and kidney function. Results All models identified strong relationships between a biomarker for CKD, kidney injury molecule-1 (Kim-1) and kidney damage, in the Fischer 344 rat CKD model. Models also indicate a strong relationship between age and renal damage and dysfunction. Conclusion SEM can be used to model CKD and could be useful to examine biomarkers in CKD patients. PMID:22269876

  20. Noninvasive models for assessment of liver fibrosis in patients with chronic hepatitis B virus infection.

    Science.gov (United States)

    Zeng, Da-Wu; Dong, Jing; Liu, Yu-Rui; Jiang, Jia-Ji; Zhu, Yue-Yong

    2016-08-01

    There are approximately 240 million patients with chronic hepatitis B virus (HBV) infection worldwide. Up to 40% of HBV-infected patients can progress to liver cirrhosis, hepatocellular carcinoma or chronic end-stage liver disease during their lifetime. This, in turn, is responsible for around 650000 deaths annually worldwide. Repeated hepatitis flares may increase the progression of liver fibrosis, making the accurate diagnosis of the stage of liver fibrosis critical in order to make antiviral therapeutic decisions for HBV-infected patients. Liver biopsy remains the "gold standard" for diagnosing liver fibrosis. However, this technique has recently been challenged by the development of several novel noninvasive tests to evaluate liver fibrosis, including serum markers, combined models and imaging techniques. In addition, the cost and accessibility of imaging techniques have been suggested as additional limitations for invasive assessment of liver fibrosis in developing countries. Therefore, a noninvasive assessment model has been suggested to evaluate liver fibrosis, specifically in HBV-infected patients, owing to its high applicability, inter-laboratory reproducibility, wide availability for repeated assays and reasonable cost. The current review aims to present the status of knowledge in this new and exciting field, and to highlight the key points in HBV-infected patients for clinicians. PMID:27547009

  1. A New Mouse Model That Spontaneously Develops Chronic Liver Inflammation and Fibrosis.

    Directory of Open Access Journals (Sweden)

    Nina Fransén-Pettersson

    Full Text Available Here we characterize a new animal model that spontaneously develops chronic inflammation and fibrosis in multiple organs, the non-obese diabetic inflammation and fibrosis (N-IF mouse. In the liver, the N-IF mouse displays inflammation and fibrosis particularly evident around portal tracts and central veins and accompanied with evidence of abnormal intrahepatic bile ducts. The extensive cellular infiltration consists mainly of macrophages, granulocytes, particularly eosinophils, and mast cells. This inflammatory syndrome is mediated by a transgenic population of natural killer T cells (NKT induced in an immunodeficient NOD genetic background. The disease is transferrable to immunodeficient recipients, while polyclonal T cells from unaffected syngeneic donors can inhibit the disease phenotype. Because of the fibrotic component, early on-set, spontaneous nature and reproducibility, this novel mouse model provides a unique tool to gain further insight into the underlying mechanisms mediating transformation of chronic inflammation into fibrosis and to evaluate intervention protocols for treating conditions of fibrotic disorders.

  2. Predicting the Response to Intravenous Immunoglobulins in an Animal Model of Chronic Neuritis

    Science.gov (United States)

    Pfaff, Johannes; Mathys, Christian; Mausberg, Anne K.; Bendszus, Martin; Pham, Mirko; Hartung, Hans-Peter; Kieseier, Bernd C.

    2016-01-01

    Chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) is a disabling autoimmune disorder of the peripheral nervous system (PNS). Intravenous immunoglobulins (IVIg) are effective in CIDP, but the treatment response varies greatly between individual patients. Understanding this interindividual variability and predicting the response to IVIg constitute major clinical challenges in CIDP. We previously established intercellular adhesion molecule (ICAM)-1 deficient non-obese diabetic (NOD) mice as a novel animal model of CIDP. Here, we demonstrate that similar to human CIDP patients, ICAM-1 deficient NOD mice respond to IVIg treatment by clinical and histological measures. Nerve magnetic resonance imaging and histology demonstrated that IVIg ameliorates abnormalities preferentially in distal parts of the sciatic nerve branches. The IVIg treatment response also featured great heterogeneity allowing us to identify IVIg responders and non-responders. An increased production of interleukin (IL)-17 positively predicted IVIg treatment responses. In human sural nerve biopsy sections, high numbers of IL-17 producing cells were associated with younger age and shorter disease duration. Thus, our novel animal model can be utilized to identify prognostic markers of treatment responses in chronic inflammatory neuropathies and we identify IL-17 production as one potential such prognostic marker. PMID:27711247

  3. Globulin-platelet model predicts minimal fibrosis and cirrhosis in chronic hepatitis B virus infected patients

    Institute of Scientific and Technical Information of China (English)

    Xu-Dong Liu; Jian-Lin Wu; Jian Liang; Tao Zhang,; Qing-Shou Sheng

    2012-01-01

    AIM:To establish a simple model consisting of the routine laboratory variables to predict both minimal fibrosis and cirrhosis in chronic hepatitis B virus (HBV)-infected patients.METHODS:We retrospectively investigated 114 chronic HBV-infected patients who underwent liver biopsy in two different hospitals.Thirteen parameters were analyzed by step-wise regression analysis and correlation analysis.A new fibrosis index [globulin/platelet (GP) model] was developed,including globulin (GLOB) and platelet count (PLT).GP model =GLOB (g/mL) x 100/PLT (x 109/L).We evaluated the receiver operating characteristics analysis used to predict minimal fibrosis and compared six other available models.RESULTS:Thirteen clinical biochemical and hematological variables [sex,age,PLT,alanine aminotransferase,aspartate aminotransferase (AST),albumin,GLOB,total bilirubin (T.bil),direct bilirubin (D.bil),glutamyl transferase,alkaline phosphatase,HBV DNA and prothrombin time (PT)] were analyzed according to three stages of liver fibrosis (F0-F1,F2-F3 and F4).Bivariate Spearman's rank correlation analysis showed that six variables,including age,PLT,T.bil,D.bil,GLOB and PT,were correlated with the three fibrosis stages (FS).Correlation coefficients were 0.23,-0.412,0.208,0.220,0.314 and 0.212; and P value was 0.014,< 0.001,0.026,0.018,0.001 and 0.024,respectively.Univariate analysis revealed that only PLT and GLOB were significantly different in the three FS (PLT:F =11.772,P <0.001; GLOB:F =6.612,P =0.002).Step-wise multiple regression analysis showed that PLT and GLOB were also independently correlated with FS (R2 =0.237).By Spearman's rank correlation analysis,GP model was significantly correlated with the three FS (r =0.466,P < 0.001).The median values in F0-F1,F2-F3 and F4 were 1.461,1.720 and 2.634.Compared with the six available models (fibrosis index,AST-platelet ratio,FIB-4,fibrosis-cirrhosis index and age-AST model and age-PLT ratio),GP model showed a highest correlation

  4. Chronic pancreatitis

    Science.gov (United States)

    Chronic pancreatitis - chronic; Pancreatitis - chronic - discharge; Pancreatic insufficiency - chronic; Acute pancreatitis - chronic ... abuse over many years. Repeated episodes of acute pancreatitis can lead to chronic pancreatitis. Genetics may be ...

  5. A STUDY OF ANTI - INFLAMMATORY ACTIVITY OF PLANT “TRIANTHEMA PORTULACASTRUM” IN CHRONIC MODELS OF INFLAMMATION

    Directory of Open Access Journals (Sweden)

    Suresh. S

    2015-06-01

    Full Text Available BACKGROUND: Trianthema portulacastrum is being used in Ayurveda since centuries for its medicinal values , hence this study was done to know if it has got anti - inflammatory activity in chronic models of inflammation, MATERIALS AND METHODS: Wistar albino rats were treated with whole plant ethanolic extract of trianthema portulacastrum 100mg \\ kg orally with 2% gum acacia , as suspending agent and indomethacin 20mg \\ kg as standard. And the effects were observed in chronic model of inflammation namely, rexin pellet induced granuloma model, RESULT: This study demon - strated that trianthema portulacastrum reduced significantly the dry weight of granuloma that was formed after rexin pellet implantation, CONCLUSION: Trianthema po rtulacastrum has got significant anti - inflammatory activity in chronic models of inflammation.

  6. Drosophila as a model for intestinal dysbiosis and chronic inflammatory diseases.

    Science.gov (United States)

    Lee, Kyung-Ah; Lee, Won-Jae

    2014-01-01

    The association between deregulated intestinal microbial consortia and host diseases has been recognized since the birth of microbiology over a century ago. Intestinal dysbiosis refers to a state where living metazoans harbor harmful intestinal microflora. However, there is still an issue of whether causality arises from the host or the microbe because it is unclear whether deregulation of the gut microbiota community is the consequence or cause of the host disease. Recent studies using Drosophila and its simple microbiota have provided a valuable model system for dissecting the molecular mechanisms of intestinal dysbiosis. In this review, we examine recent exciting observations in Drosophila gut-microbiota interactions, particularly the links among the host immune genotype, the microbial community structure, and the host inflammatory phenotype. Future genetic analyses using Drosophila model system will provide a valuable outcome for understanding the evolutionarily conserved mechanisms that underlie intestinal dysbiosis and chronic inflammatory diseases.

  7. Modelling management of chronic illness in everyday life: A common-sense approach

    Directory of Open Access Journals (Sweden)

    Howard Leventhal

    2016-04-01

    Full Text Available The Commonsense Model of Self-Regulation (CSM has a history of over 50 years as a theoretical framework that explicates the processes by which individuals form cognitive, affective, and behavioral representations of health threats. This article summarizes the major components of individuals' "commonsense models", the underlying assumptions of the CSM as a theory of dynamic behavior change, and the major empirical evidence that have developed these aspects of the CSM since its inception. We also discuss ongoing changes to the theory itself as well as its use in medical practice for optimizing patients' self-management of chronic health threats. The final section focuses on future directions for the theory and its application.

  8. Application of medical cannabis in patients with the neurodegeneration disorders

    Directory of Open Access Journals (Sweden)

    Lidia Kotuła

    2014-04-01

    Full Text Available Medical cannabis is the dried flowers of the female Cannabis sativa L. plant. Cannabis contains a number of active elements, including dronabinol (THC and cannabidiol (CBD. Dronabinol is usually the main ingredient. The body’s own cannabinoid system has been identified. The discovery of this system, which comprises endocannabinoids and receptors, confirmed that cannabis has a positive effect on certain illnesses and conditions. Two types of cannabinoid receptors have been identified: CB1 and CB2 receptors. The first type CB1 is mostly found in the central nervous system, modulate pain. It also has an anti-emetic effect, and has influence on the memory and the motor system. The second type of receptors CB2 is peripheral, and it is primarily found in immune system cells and it is responsible for the immunomodulatory effects of cannabinoids. Medical cannabis can help in cases of the neurodegeneration disorders, for example Parkinson’s disease, Huntington’s Disease, Amyotrophic Lateral Sclerosis. Patients generally tolerate medical cannabis well.

  9. Oxidative damage and neurodegeneration in manganese-induced neurotoxicity

    International Nuclear Information System (INIS)

    Exposure to excessive manganese (Mn) levels results in neurotoxicity to the extrapyramidal system and the development of Parkinson's disease (PD)-like movement disorder, referred to as manganism. Although the mechanisms by which Mn induces neuronal damage are not well defined, its neurotoxicity appears to be regulated by a number of factors, including oxidative injury, mitochondrial dysfunction and neuroinflammation. To investigate the mechanisms underlying Mn neurotoxicity, we studied the effects of Mn on reactive oxygen species (ROS) formation, changes in high-energy phosphates (HEP), neuroinflammation mediators and associated neuronal dysfunctions both in vitro and in vivo. Primary cortical neuronal cultures showed concentration-dependent alterations in biomarkers of oxidative damage, F2-isoprostanes (F2-IsoPs) and mitochondrial dysfunction (ATP), as early as 2 h following Mn exposure. Treatment of neurons with 500 μM Mn also resulted in time-dependent increases in the levels of the inflammatory biomarker, prostaglandin E2 (PGE2). In vivo analyses corroborated these findings, establishing that either a single or three (100 mg/kg, s.c.) Mn injections (days 1, 4 and 7) induced significant increases in F2-IsoPs and PGE2 in adult mouse brain 24 h following the last injection. Quantitative morphometric analyses of Golgi-impregnated striatal sections from mice exposed to single or three Mn injections revealed progressive spine degeneration and dendritic damage of medium spiny neurons (MSNs). These findings suggest that oxidative stress, mitochondrial dysfunction and neuroinflammation are underlying mechanisms in Mn-induced neurodegeneration.

  10. REM sleep behavior disorder: from dreams to neurodegeneration.

    Science.gov (United States)

    Postuma, Ronald B; Gagnon, Jean-Francois; Montplaisir, Jacques Y

    2012-06-01

    REM sleep behavior disorder is a unique parasomnia characterized by dream enactment behavior during REM sleep. Unless triggered by pharmacologic agents such as antidepressants, it is generally related to damage of pontomedullary brainstem structures. Idiopathic REM sleep behavior disorder (RBD) is a well-established risk factor for neurodegenerative disease. Prospective studies have estimated that at least 40-65% of patients with idiopathic RBD will eventually develop a defined neurodegenerative phenotype, almost always a 'synucleinopathy' (Parkinson's disease, Lewy Body dementia or multiple system atrophy). In most cases, patients appear to develop a syndrome with overlapping features of both Parkinson's disease and Lewy body dementia. The interval between RBD onset and disease onset averages 10-15 years, suggesting a promisingly large window for intervention into preclinical disease stages. The ability of RBD to predict disease has major implications for design and development of neuroprotective therapy, and testing of other predictive markers of synuclein-mediated neurodegeneration. Recent studies in idiopathic RBD patients have demonstrated that olfaction, color vision, severity of REM atonia loss, transcranial ultrasound of the substantia nigra, and dopaminergic neuroimaging can predict development of neurodegenerative disease.

  11. A partial hearing animal model for chronic electro-acoustic stimulation

    Science.gov (United States)

    Irving, S.; Wise, A. K.; Millard, R. E.; Shepherd, R. K.; Fallon, J. B.

    2014-08-01

    Objective. Cochlear implants (CIs) have provided some auditory function to hundreds of thousands of people around the world. Although traditionally carried out only in profoundly deaf patients, the eligibility criteria for implantation have recently been relaxed to include many partially-deaf patients with useful levels of hearing. These patients receive both electrical stimulation from their implant and acoustic stimulation via their residual hearing (electro-acoustic stimulation; EAS) and perform very well. It is unclear how EAS improves speech perception over electrical stimulation alone, and little evidence exists about the nature of the interactions between electric and acoustic stimuli. Furthermore, clinical results suggest that some patients that undergo cochlear implantation lose some, if not all, of their residual hearing, reducing the advantages of EAS over electrical stimulation alone. A reliable animal model with clinically-relevant partial deafness combined with clinical CIs is important to enable these issues to be studied. This paper outlines such a model that has been successfully used in our laboratory. Approach. This paper outlines a battery of techniques used in our laboratory to generate, validate and examine an animal model of partial deafness and chronic CI use. Main results. Ototoxic deafening produced bilaterally symmetrical hearing thresholds in neonatal and adult animals. Electrical activation of the auditory system was confirmed, and all animals were chronically stimulated via adapted clinical CIs. Acoustic compound action potentials (CAPs) were obtained from partially-hearing cochleae, using the CI amplifier. Immunohistochemical analysis allows the effects of deafness and electrical stimulation on cell survival to be studied. Significance. This animal model has applications in EAS research, including investigating the functional interactions between electric and acoustic stimulation, and the development of techniques to maintain residual

  12. Cytokine and Chemokine Expression in Kidneys during Chronic Leptospirosis in Reservoir and Susceptible Animal Models.

    Science.gov (United States)

    Matsui, Mariko; Roche, Louise; Geroult, Sophie; Soupé-Gilbert, Marie-Estelle; Monchy, Didier; Huerre, Michel; Goarant, Cyrille

    2016-01-01

    Leptospirosis is caused by pathogenic spirochetes of the genus Leptospira. Humans can be infected after exposure to contaminated urine of reservoir animals, usually rodents, regarded as typical asymptomatic carriers of leptospires. In contrast, accidental hosts may present an acute form of leptospirosis with a range of clinical symptoms including the development of Acute Kidney Injury (AKI). Chronic Kidney Disease (CKD) is considered as a possible AKI-residual sequela but little is known about the renal pathophysiology consequent to leptospirosis infection. Herein, we studied the renal morphological alterations in relation with the regulation of inflammatory cytokines and chemokines, comparing two experimental models of chronic leptospirosis, the golden Syrian hamster that survived the infection, becoming carrier of virulent leptospires, and the OF1 mouse, a usual reservoir of the bacteria. Animals were monitored until 28 days after injection with a virulent L. borgpetersenii serogroup Ballum to assess chronic infection. Hamsters developed morphological alterations in the kidneys with tubulointerstitial nephritis and fibrosis. Grading of lesions revealed higher scores in hamsters compared to the slight alterations observed in the mouse kidneys, irrespective of the bacterial load. Interestingly, pro-fibrotic TGF-β was downregulated in mouse kidneys. Moreover, cytokines IL-1β and IL-10, and chemokines MIP-1α/CCL3 and IP-10/CXCL-10 were significantly upregulated in hamster kidneys compared to mice. These results suggest a possible maintenance of inflammatory processes in the hamster kidneys with the infiltration of inflammatory cells in response to bacterial carriage, resulting in alterations of renal tissues. In contrast, lower expression levels in mouse kidneys indicated a better regulation of the inflammatory response and possible resolution processes likely related to resistance mechanisms. PMID:27219334

  13. Cytokine and Chemokine Expression in Kidneys during Chronic Leptospirosis in Reservoir and Susceptible Animal Models.

    Directory of Open Access Journals (Sweden)

    Mariko Matsui

    Full Text Available Leptospirosis is caused by pathogenic spirochetes of the genus Leptospira. Humans can be infected after exposure to contaminated urine of reservoir animals, usually rodents, regarded as typical asymptomatic carriers of leptospires. In contrast, accidental hosts may present an acute form of leptospirosis with a range of clinical symptoms including the development of Acute Kidney Injury (AKI. Chronic Kidney Disease (CKD is considered as a possible AKI-residual sequela but little is known about the renal pathophysiology consequent to leptospirosis infection. Herein, we studied the renal morphological alterations in relation with the regulation of inflammatory cytokines and chemokines, comparing two experimental models of chronic leptospirosis, the golden Syrian hamster that survived the infection, becoming carrier of virulent leptospires, and the OF1 mouse, a usual reservoir of the bacteria. Animals were monitored until 28 days after injection with a virulent L. borgpetersenii serogroup Ballum to assess chronic infection. Hamsters developed morphological alterations in the kidneys with tubulointerstitial nephritis and fibrosis. Grading of lesions revealed higher scores in hamsters compared to the slight alterations observed in the mouse kidneys, irrespective of the bacterial load. Interestingly, pro-fibrotic TGF-β was downregulated in mouse kidneys. Moreover, cytokines IL-1β and IL-10, and chemokines MIP-1α/CCL3 and IP-10/CXCL-10 were significantly upregulated in hamster kidneys compared to mice. These results suggest a possible maintenance of inflammatory processes in the hamster kidneys with the infiltration of inflammatory cells in response to bacterial carriage, resulting in alterations of renal tissues. In contrast, lower expression levels in mouse kidneys indicated a better regulation of the inflammatory response and possible resolution processes likely related to resistance mechanisms.

  14. Copper balance and ceruloplasmin in chronic hepatitis in a Wilson disease animal model, LEC rats

    Energy Technology Data Exchange (ETDEWEB)

    Komatsu, Yutaka; Ogra, Yasumitsu; Suzuki, Kazuo T. [Graduate School of Pharmaceutical Sciences, Chiba University, Inage, Chiba 263-8522 (Japan)

    2002-09-01

    In an animal model of Wilson disease, Long-Evans rats with cinnamon-colored coat (LEC rats), copper (Cu) accumulates in the liver with age up to the onset of acute hepatitis owing to a hereditary defective transporter for the efflux of Cu, ATP7B. The plasma Cu concentration is low in LEC rats because of the excretion of apo-ceruloplasmin (apo-Cp). However, toward and after the onset of chronic hepatitis, plasma Cu concentration increases in the form of holo-Cp, while the liver Cu concentration is maintained at a constant level without the occurrence of fulminant hepatitis. In the present study, the material balance of Cu was studied in LEC rats with chronic hepatitis in order to elucidate the mechanisms underlying the increase of holo-Cp in plasma and the maintenance of Cu at a constant level in the liver. The relationship between the Cu concentration and ferroxidase activity of Cp was analyzed in the plasma of LEC rats of different ages and of Wistar rats fed a Cu-deficient diet for different durations. Cu was suggested to be delivered to Cp in an all-or-nothing manner, resulting in the excretion of fully Cu-occupied holo-Cp (Cu{sub 6}-Cp) or totally Cu-unoccupied Cu{sub 0}-Cp (apo-Cp), but not partially Cu-occupied Cu{sub n}-Cp (where n=1-5). The increase of holo-Cp in acute and chronic hepatitis in LEC rats was explained by the delivery of Cu, accumulating in the non-metallothionein-bound form, to Cp outside the Golgi apparatus of the liver. The plasma Cu concentration and ferroxidase activity were proposed to be specific indicators of the appearance of non-metallothionein-bound Cu in the liver of LEC rats. (orig.)

  15. Micturition in rats: a chronic model for study of bladder function and effect of anesthetics.

    Science.gov (United States)

    Yaksh, T L; Durant, P A; Brent, C R

    1986-12-01

    The volume-evoked micturition reflex (VEMR) and the effects of anesthetics on the VEMR were studied in a chronic unanesthetized rat model. The bladder catheter was implanted chronically through a laparotomy and externalized percutaneously. An intrathecal (IT) catheter was implanted chronically in animals scheduled for an IT injection. By 2 days after implantation, infusion of saline (200 microliter/min) in the bladder reliably resulted in a low base-line pressure (BP) followed by a transient increase in bladder pressure, an opening of the sphincter (bladder opening pressure, BOP) corresponding to expression of urine (volume of urination, V), then a further rise in pressure (peak pressure, PP) and a subsequent return to base line. Seven days after implantation, values (means +/- SE) for BP, BOP, PP, and V were 10 +/- 0.3, 30 +/- 2, 67 +/- 6 cmH2O, and 1.0 +/- 0.1 ml, respectively. Residual volumes were reliably less than 2-4% of the expressed volume. The VEMR was reliably evoked up to 28 days after implantation. V values in unimplanted and implanted animals were not different. In implanted animals, VEMR parameters were not different during infusion or during spontaneous urination after oral fluid load. Administration of pentobarbital sodium (50 mg/kg ip), alpha-chloralose (130 mg/kg ip), ketamine (100 mg/kg im), halothane (in air 2%), and local anesthetics (2-chloroprocaine 3% or bupivacaine 0.75%, 10 microliter IT) produced a complete blockade of the VEMR and overflow incontinence at pressures significantly higher than BOP values. To compare overflow pressures and passive compliance of the bladder, unanesthetized animals were decapitated.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3789199

  16. Montelukast versus Dexamethasone Treatment in a Guinea Pig Model of Chronic Pulmonary Neutrophilic Inflammation.

    Science.gov (United States)

    Abdel Kawy, Hala S

    2016-08-01

    Airway inflammation in chronic obstructive pulmonary disease (COPD) is refractory to corticosteroids and hence COPD treatment is hindered and insufficient. This study assessed the effects of oral treatment with Montelukast (10 and 30 mg/kg) or dexamethasone (20 mg/kg) for 20 days on COPD model induced by chronic exposure to lipopolysaccharide (LPS). Six groups of male guinea pigs were studied. Group 1: naïve group, group 2: exposed to saline nebulization. Groups 3, 4, 5, and 6: exposed to 9 nebulizations of LPS (30 μg/ml) for 1 hour, 48 hours apart with or without treatment with Montelukast or dexamethasone. Airway hyperreactivity (AHR) to methacholine (MCh), histopathological study and bronchoalveolar lavage fluid (BALF) as well as lung tissue analyses were performed 48 hours after the final exposure to LPS (day 20). LPS-induced pulmonary dysfunction was associated with increased neutrophil count, leukotriene (LT) B4, and tumor necrosis factor (TNF)-α in BALF. Moreover, there was an increase in malondialdehyde (MDA) level and a decrease in histone deacetylases(HDAC) activity in the lung tissue. Both Montelukast (10 or 30 mg /kg) and dexamethasone significantly reduced neutrophil count in BALF and inflammatory cells in lung parenchyma as well as TNF-α, and MDA levels. However, dexamethasone was more effective (p Montelukast, at a dose of 30 mg /kg, significantly reduced specific airway resistance after the 9th LPS exposure, attenuated AHR to MCh, decreased LTB4 and increased HDAC activity in comparison to dexamethasone. These results suggest that treatment with Montelukast can be useful in chronic airway inflammatory diseases including COPD poorly responsive to glucocorticoids. PMID:26751767

  17. Cytokine and Chemokine Expression in Kidneys during Chronic Leptospirosis in Reservoir and Susceptible Animal Models

    Science.gov (United States)

    Matsui, Mariko; Roche, Louise; Geroult, Sophie; Soupé-Gilbert, Marie-Estelle; Monchy, Didier; Huerre, Michel; Goarant, Cyrille

    2016-01-01

    Leptospirosis is caused by pathogenic spirochetes of the genus Leptospira. Humans can be infected after exposure to contaminated urine of reservoir animals, usually rodents, regarded as typical asymptomatic carriers of leptospires. In contrast, accidental hosts may present an acute form of leptospirosis with a range of clinical symptoms including the development of Acute Kidney Injury (AKI). Chronic Kidney Disease (CKD) is considered as a possible AKI-residual sequela but little is known about the renal pathophysiology consequent to leptospirosis infection. Herein, we studied the renal morphological alterations in relation with the regulation of inflammatory cytokines and chemokines, comparing two experimental models of chronic leptospirosis, the golden Syrian hamster that survived the infection, becoming carrier of virulent leptospires, and the OF1 mouse, a usual reservoir of the bacteria. Animals were monitored until 28 days after injection with a virulent L. borgpetersenii serogroup Ballum to assess chronic infection. Hamsters developed morphological alterations in the kidneys with tubulointerstitial nephritis and fibrosis. Grading of lesions revealed higher scores in hamsters compared to the slight alterations observed in the mouse kidneys, irrespective of the bacterial load. Interestingly, pro-fibrotic TGF-β was downregulated in mouse kidneys. Moreover, cytokines IL-1β and IL-10, and chemokines MIP-1α/CCL3 and IP-10/CXCL-10 were significantly upregulated in hamster kidneys compared to mice. These results suggest a possible maintenance of inflammatory processes in the hamster kidneys with the infiltration of inflammatory cells in response to bacterial carriage, resulting in alterations of renal tissues. In contrast, lower expression levels in mouse kidneys indicated a better regulation of the inflammatory response and possible resolution processes likely related to resistance mechanisms. PMID:27219334

  18. Brain viral burden, neuroinflammation and neurodegeneration in HAART-treated HIV positive injecting drug users.

    Science.gov (United States)

    Smith, Donald B; Simmonds, Peter; Bell, Jeanne E

    2014-02-01

    The long-term impact of chronic human immunodeficiency virus (HIV) infection on brain status in injecting drug users (IDU) treated with highly active antiretroviral therapy (HAART) is unknown. Viral persistence in the brain with ongoing neuroinflammation may predispose to Alzheimer-like neurodegeneration. In this study, we investigated the brains of ten HAART-treated individuals (six IDU and four non-DU), compared with ten HIV negative controls (six IDU and four non-DU). HIV DNA levels in brain tissue were correlated with plasma and lymphoid tissue viral loads, cognitive status, microglial activation and Tau protein and amyloid deposition. Brain HIV proviral DNA levels were low in most cases but higher in HIV encephalitis (n = 2) and correlated significantly with levels in lymphoid tissue (p = 0.0075), but not with those in plasma. HIV positive subjects expressed more Tau protein and amyloid than HIV negative controls (highest in a 58 year old), as did IDU, but brain viral loads showed no relation to Tau and amyloid. Microglial activation linked significantly to HIV positivity (p = 0.001) and opiate abuse accentuated these microglial changes (p = 0.05). This study confirms that HIV DNA persists in brains despite HAART and that opiate abuse adds to the risk of brain damage in HIV positive subjects. Novel findings in this study show that (1) plasma levels are not a good surrogate indicator of brain status, (2) viral burden in brain and lymphoid tissues is related, and (3) while Tau and amyloid deposition is increased in HIV positive IDU, this is not specifically related to increased HIV burden within the brain.

  19. Microglia and regulation of inflammation-mediated neurodegeneration: Prevention and treatment by phytochemicals and metabolic nutrients

    Directory of Open Access Journals (Sweden)

    Rajagopal Shanmuga Sundaram

    2012-01-01

    Full Text Available Inflammation, a common denominator among the diverse list of neurodegenerative diseases, has recently been implicated as a critical mechanism responsible for the progressive nature of neurodegeneration. Microglias are the resident innate immune cells in the central nervous system and produce a barrage of factors (ILs, TNF α, NO, PGs, SOD that are toxic to neurons. Evidence supports that the unregulated activation of microglia, in response to environmental toxins, endogenous proteins and neuronal death, results in the production of toxic factors that propagate neuronal injury. Herbal medicine has long been used to treat neural symptoms. Although the precise mechanisms of action of herbal drugs have yet to be determined, some of them have been shown to exert anti-inflammatory and / or antioxidant effects in a variety of peripheral systems. Now, as increasing evidence indicates that neuroglia-derived chronic inflammatory responses play a pathological role in the central nervous system, anti-inflammatory herbal medicine and its constituents are being proved to be potent neuroprotectors against various brain pathologies. Structural diversity of medicinal herbs makes them a valuable source of novel lead compounds against therapeutic targets that are newly discovered by genomics, proteomics and high-throughput screening. In the following review, we discuss the common thread of microglial activation across numerous neurodegenerative diseases, define current perceptions of how microglia are damaging neurons and explain how the microglial response to neuronal damage results in a self-propelling cycle of neuron death. This article synthesizes what we know about these destructive processes, while offering an insight into a new avenue of treatment involving phytochemicals and other nutrients.

  20. Intranasal "painless" human Nerve Growth Factor [corrected] slows amyloid neurodegeneration and prevents memory deficits in App X PS1 mice.

    Directory of Open Access Journals (Sweden)

    Simona Capsoni

    Full Text Available Nerve Growth Factor (NGF is being considered as a therapeutic candidate for Alzheimer's disease (AD treatment but the clinical application is hindered by its potent pro-nociceptive activity. Thus, to reduce systemic exposure that would induce pain, in recent clinical studies NGF was administered through an invasive intracerebral gene-therapy approach. Our group demonstrated the feasibility of a non-invasive intranasal delivery of NGF in a mouse model of neurodegeneration. NGF therapeutic window could be further increased if its nociceptive effects could be avoided altogether. In this study we exploit forms of NGF, mutated at residue R100, inspired by the human genetic disease HSAN V (Hereditary Sensory Autonomic Neuropathy Type V, which would allow increasing the dose of NGF without triggering pain. We show that "painless" hNGF displays full neurotrophic and anti-amyloidogenic activities in neuronal cultures, and a reduced nociceptive activity in vivo. When administered intranasally to APPxPS1 mice ( n = 8, hNGFP61S/R100E prevents the progress of neurodegeneration and of behavioral deficits. These results demonstrate the in vivo neuroprotective and anti-amyloidogenic properties of hNGFR100 mutants and provide a rational basis for the development of "painless" hNGF variants as a new generation of therapeutics for neurodegenerative diseases.

  1. Prophylactic Chronic Zinc Administration Increases Neuroinflammation in a Hypoxia-Ischemia Model

    Science.gov (United States)

    Tomas-Sanchez, Constantino; Blanco-Alvarez, Victor Manuel; Gonzalez-Barrios, Juan Antonio; Martinez-Fong, Daniel; Garcia-Robles, Guadalupe; Soto-Rodriguez, Guadalupe; Torres-Soto, Maricela; Gonzalez-Vazquez, Alejandro; Aguilar-Peralta, Ana Karina; Garate-Morales, José-Luis; Aguilar-Carrasco, Luis-Angel; Limón, Daniel I.; Cebada, Jorge

    2016-01-01

    Acute and subacute administration of zinc exert neuroprotective effects in hypoxia-ischemia animal models; yet the effect of chronic administration of zinc still remains unknown. We addressed this issue by injecting zinc at a tolerable dose (0.5 mg/kg weight, i.p.) for 14 days before common carotid artery occlusion (CCAO) in a rat. After CCAO, the level of zinc was measured by atomic absorption spectrophotometry, nitrites were determined by Griess method, lipoperoxidation was measured by Gerard-Monnier assay, and mRNA expression of 84 genes coding for cytokines, chemokines, and their receptors was measured by qRT-PCR, whereas nitrotyrosine, chemokines, and their receptors were assessed by ELISA and histopathological changes in the temporoparietal cortex-hippocampus at different time points. Long-term memory was evaluated using Morris water maze. Following CCAO, a significant increase in nitrosative stress, inflammatory chemokines/receptors, and cell death was observed after 8 h, and a 2.5-fold increase in zinc levels was detected after 7 days. Although CXCL12 and FGF2 protein levels were significantly increased, the long-term memory was impaired 12 days after reperfusion in the Zn+CCAO group. Our data suggest that the chronic administration of zinc at tolerable doses causes nitrosative stress, toxic zinc accumulation, and neuroinflammation, which might account for the neuronal death and cerebral dysfunction after CCAO. PMID:27635404

  2. Social and economic determinants of pediatric health inequalities: the model of chronic kidney disease.

    Science.gov (United States)

    Sereni, Fabio; Edefonti, Alberto; Lepore, Marta; Agostoni, Carlo; Sandoval Diaz, Mabel; Silva Galan, Yajaira; Montini, Giovanni; Tognoni, Gianni

    2016-01-01

    Purpose of this review is to deal with priorities and strategies to significantly tackle inequalities in the management of pediatric diseases in low-middle-income countries. This issue has become a focal point of epidemiological and public health, with special reference to chronic nontransmissible diseases. We will provide our readership with an essential overview of the cultural, institutional, and political events, which have occurred over the last 20 y and which have produced the current general framework for epidemiology and public health. Then the most recent epidemiological data will be evaluated, in order to quantify the interaction between the medical components of the disease profiles and their socioeconomic determinants. Finally, a focus will be added on models of pediatric chronic kidney diseases, which are in our opinion amongst the most sensitive markers of the interplay between health and society. Collaborative, pediatrician-initiated, multicentre projects in these fields should be given priority in calls for grants supported by public agencies. The involvement of a critical mass of those working in the "fringes" of pediatric care is a final, essential mean by which significant results can be produced under the sole responsibility and research interest of centers of excellence. PMID:26466076

  3. Evaluation of protective effect of Aegle marmelos Corr. in an animal model of chronic fatigue syndrome

    Directory of Open Access Journals (Sweden)

    Vanphawng Lalremruta

    2012-01-01

    Full Text Available Objective: To evaluate ethanolic extract of leaves of Aegle marmelos in an experimental animal model of chronic fatigue syndrome for potential therapeutic benefit. Materials and Methods: Age/weight-matched female Wistar albino rats were grouped into five groups. (Group I- V (n = 8. Group I served as naïve control and II served as stress control. Except for group I animals, other group animals were subjected to forced swimming every day for 15 minutes to induce a state of chronic fatigue and simultaneously treated with ethanolic extract of Aegle marmelos (EEAM 150 and 250 mg/kg b.w. and Imipramine (20 mg.kg b.w., respectively. Duration of immobility, anxiety level and locomotor activity were assessed on day 1, 7, 14 and 21 followed by biochemical estimation of oxidative biomarkers at the end of the study. Results: Treatment with EEAM (150 and 250 mg/kg b.w. resulted in a statistically significant and dose dependent reduction (P <0.001 in the duration of immobility, reduction in anxiety and increase in locomotor activity. Dose dependent and significant reduction in LPO level and increase in CAT and SOD was observed in extract treated animals. Conclusion: The results are suggestive of potential protective effect of A. marmelos against experimentally induced CFS.

  4. Seizure entrainment with polarizing low-frequency electric fields in a chronic animal epilepsy model

    Science.gov (United States)

    Sunderam, Sridhar; Chernyy, Nick; Peixoto, Nathalia; Mason, Jonathan P.; Weinstein, Steven L.; Schiff, Steven J.; Gluckman, Bruce J.

    2009-08-01

    Neural activity can be modulated by applying a polarizing low-frequency (Lt100 Hz) electric field (PLEF). Unlike conventional pulsed stimulation, PLEF stimulation has a graded, modulatory effect on neuronal excitability, and permits the simultaneous recording of neuronal activity during stimulation suitable for continuous feedback control. We tested a prototype system that allows for simultaneous PLEF stimulation with minimal recording artifact in a chronic tetanus toxin animal model (rat) of hippocampal epilepsy with spontaneous seizures. Depth electrode local field potentials recorded during seizures revealed a characteristic pattern of field postsynaptic potentials (fPSPs). Sinusoidal voltage-controlled PLEF stimulation (0.5-25 Hz) was applied in open-loop cycles radially across the CA3 of ventral hippocampus. For stimulated seizures, fPSPs were transiently entrained with the PLEF waveform. Statistical significance of entrainment was assessed with Thomson's harmonic F-test, with 45/132 stimulated seizures in four animals individually demonstrating significant entrainment (p < 0.04). Significant entrainment for multiple presentations at the same frequency (p < 0.01) was observed in three of four animals in 42/64 stimulated seizures. This is the first demonstration in chronically implanted freely behaving animals of PLEF modulation of neural activity with simultaneous recording.

  5. Seizure entrainment with polarizing low frequency electric fields in a chronic animal epilepsy model

    Science.gov (United States)

    Sunderam, Sridhar; Chernyy, Nick; Peixoto, Nathalia; Mason, Jonathan P.; Weinstein, Steven L.; Schiff, Steven J.; Gluckman, Bruce J.

    2009-01-01

    Neural activity can be modulated by applying a polarizing low frequency (≪ 100 Hz) electric field (PLEF). Unlike conventional pulsed stimulation, PLEF stimulation has a graded, modulatory effect on neuronal excitability, and permits the simultaneous recording of neuronal activity during stimulation suitable for continuous feedback control. We tested a prototype system that allows for simultaneous PLEF stimulation with minimal recording artifact in a chronic tetanus toxin animal model (rat) of hippocampal epilepsy with spontaneous seizures. Depth electrode local field potentials recorded during seizures revealed a characteristic pattern of field postsynaptic potentials (fPSPs). Sinusoidal voltage-controlled PLEF stimulation (0.5–25 Hz) was applied in open-loop cycles radially across the CA3 of ventral hippocampus. For stimulated seizures, fPSPs were transiently entrained with the PLEF waveform. Statistical significance of entrainment was assessed with Thomson’s harmonic F-test, with 45/132 stimulated seizures in 4 animals individually demonstrating significant entrainment (p < 0.04). Significant entrainment for multiple presentations at the same frequency (p < 0.01) was observed in 3 of 4 animals in 42/64 stimulated seizures. This is the first demonstration in chronically implanted freely behaving animals of PLEF modulation of neural activity with simultaneous recording. PMID:19602730

  6. Downregulated GABA and BDNF-TrkB Pathway in Chronic Cyclothiazide Seizure Model

    Directory of Open Access Journals (Sweden)

    Shuzhen Kong

    2014-01-01

    Full Text Available Cyclothiazide (CTZ has been reported to simultaneously enhance glutamate receptor excitation and inhibit GABAA receptor inhibition, and in turn it evokes epileptiform activities in hippocampal neurons. It has also been shown to acutely induce epileptic seizure behavior in freely moving rats. However, whether CTZ induced seizure rats could develop to have recurrent seizure still remains unknown. In the current study, we demonstrated that 46% of the CTZ induced seizure rats developed to have recurrent seizure behavior as well as epileptic EEG with a starting latency between 2 weeks and several months. In those chronic seizure rats 6 months after the seizure induction by the CTZ, our immunohistochemistry results showed that both GAD and GAT-1 were significantly decreased across CA1, CA3, and dentate gyrus area of the hippocampus studied. In addition, both BDNF and its receptor TrkB were also decreased in hippocampus of the chronic CTZ seizure rats. Our results indicate that CTZ induced seizure is capable of developing to have recurrent seizure, and the decreased GABA synthesis and transport as well as the impaired BDNF-TrkB signaling pathway may contribute to the development of the recurrent seizure. Thus, CTZ seizure rats may provide a novel animal model for epilepsy study and anticonvulsant drug testing in the future.

  7. Using Mobile Health to Support the Chronic Care Model: Developing an Institutional Initiative

    Directory of Open Access Journals (Sweden)

    Shantanu Nundy

    2012-01-01

    Full Text Available Background. Self-management support and team-based care are essential elements of the Chronic Care Model but are often limited by staff availability and reimbursement. Mobile phones are a promising platform for improving chronic care but there are few examples of successful health system implementation. Program Development. An iterative process of program design was built upon a pilot study and engaged multiple institutional stakeholders. Patients identified having a “human face” to the pilot program as essential. Stakeholders recognized the need to integrate the program with primary and specialty care but voiced concerns about competing demands on clinician time. Program Description. Nurse administrators at a university-affiliated health plan use automated text messaging to provide personalized self-management support for member patients with diabetes and facilitate care coordination with the primary care team. For example, when a patient texts a request to meet with a dietitian, a nurse-administrator coordinates with the primary care team to provide a referral. Conclusion. Our innovative program enables the existing health system to support a de novo care management program by leveraging mobile technology. The program supports self-management and team-based care in a way that we believe engages patients yet meets the limited availability of providers and needs of health plan administrators.

  8. Hormetic Effect of Chronic Hypergravity in a Mouse Model of Allergic Asthma and Rhinitis

    Science.gov (United States)

    Jang, Tae Young; Jung, Ah-Yeoun; Kim, Young Hyo

    2016-06-01

    We aimed to evaluate the effect of chronic hypergravity in a mouse model of allergic asthma and rhinitis. Forty BALB/c mice were divided as: group A (n = 10, control) sensitized and challenged with saline, group B (n = 10, asthma) challenged by intraperitoneal and intranasal ovalbumin (OVA) to induce allergic asthma and rhinitis, and groups C (n = 10, asthma/rotatory control) and D (n = 10, asthma/hypergravity) exposed to 4 weeks of rotation with normogravity (1G) or hypergravity (5G) during induction of asthma/rhinitis. Group D showed significantly decreased eosinophils, neutrophils, and lymphocytes in their BAL fluid compared with groups B and C (p polymerase chain reaction using lung homogenate, the expression of IL-1β was significantly upregulated (p < 0.001) and IL-4 and IL-10 significantly downregulated (p < 0.05) in group D. Infiltration of inflammatory cells into lung parenchyma and turbinate, and the thickness of respiratory epithelium was significantly reduced in group D (p < 0.05). The expression of Bcl-2 and heme oxygenase-1 were significantly downregulated, Bax and extracellular dismutase significantly upregulated in Group D. Therefore, chronic hypergravity could have a hormetic effect for allergic asthma and rhinitis via regulation of genes involved in antioxidative and proapoptotic pathways. It is possible that we could use hypergravity machinery for treating allergic respiratory disorders.

  9. Selenoether oxytocin analogues have analgesic properties in a mouse model of chronic abdominal pain.

    Science.gov (United States)

    de Araujo, Aline Dantas; Mobli, Mehdi; Castro, Joel; Harrington, Andrea M; Vetter, Irina; Dekan, Zoltan; Muttenthaler, Markus; Wan, JingJing; Lewis, Richard J; King, Glenn F; Brierley, Stuart M; Alewood, Paul F

    2014-01-01

    Poor oral availability and susceptibility to reduction and protease degradation is a major hurdle in peptide drug development. However, drugable receptors in the gut present an attractive niche for peptide therapeutics. Here we demonstrate, in a mouse model of chronic abdominal pain, that oxytocin receptors are significantly upregulated in nociceptors innervating the colon. Correspondingly, we develop chemical strategies to engineer non-reducible and therefore more stable oxytocin analogues. Chemoselective selenide macrocyclization yields stabilized analogues equipotent to native oxytocin. Ultra-high-field nuclear magnetic resonance structural analysis of native oxytocin and the seleno-oxytocin derivatives reveals that oxytocin has a pre-organized structure in solution, in marked contrast to earlier X-ray crystallography studies. Finally, we show that these seleno-oxytocin analogues potently inhibit colonic nociceptors both in vitro and in vivo in mice with chronic visceral hypersensitivity. Our findings have potentially important implications for clinical use of oxytocin analogues and disulphide-rich peptides in general. PMID:24476666

  10. Prophylactic Chronic Zinc Administration Increases Neuroinflammation in a Hypoxia-Ischemia Model

    Directory of Open Access Journals (Sweden)

    Constantino Tomas-Sanchez

    2016-01-01

    Full Text Available Acute and subacute administration of zinc exert neuroprotective effects in hypoxia-ischemia animal models; yet the effect of chronic administration of zinc still remains unknown. We addressed this issue by injecting zinc at a tolerable dose (0.5 mg/kg weight, i.p. for 14 days before common carotid artery occlusion (CCAO in a rat. After CCAO, the level of zinc was measured by atomic absorption spectrophotometry, nitrites were determined by Griess method, lipoperoxidation was measured by Gerard-Monnier assay, and mRNA expression of 84 genes coding for cytokines, chemokines, and their receptors was measured by qRT-PCR, whereas nitrotyrosine, chemokines, and their receptors were assessed by ELISA and histopathological changes in the temporoparietal cortex-hippocampus at different time points. Long-term memory was evaluated using Morris water maze. Following CCAO, a significant increase in nitrosative stress, inflammatory chemokines/receptors, and cell death was observed after 8 h, and a 2.5-fold increase in zinc levels was detected after 7 days. Although CXCL12 and FGF2 protein levels were significantly increased, the long-term memory was impaired 12 days after reperfusion in the Zn+CCAO group. Our data suggest that the chronic administration of zinc at tolerable doses causes nitrosative stress, toxic zinc accumulation, and neuroinflammation, which might account for the neuronal death and cerebral dysfunction after CCAO.

  11. Support vector machines for seizure detection in an animal model of chronic epilepsy

    Science.gov (United States)

    Nandan, Manu; Talathi, Sachin S.; Myers, Stephen; Ditto, William L.; Khargonekar, Pramod P.; Carney, Paul R.

    2010-06-01

    We compare the performance of three support vector machine (SVM) types: weighted SVM, one-class SVM and support vector data description (SVDD) for the application of seizure detection in an animal model of chronic epilepsy. Large EEG datasets (273 h and 91 h respectively, with a sampling rate of 1 kHz) from two groups of rats with chronic epilepsy were used in this study. For each of these EEG datasets, we extracted three energy-based seizure detection features: mean energy, mean curve length and wavelet energy. Using these features we performed twofold cross-validation to obtain the performance statistics: sensitivity (S), specificity (K) and detection latency (τ) as a function of control parameters for the given SVM. Optimal control parameters for each SVM type that produced the best seizure detection statistics were then identified using two independent strategies. Performance of each SVM type is ranked based on the overall seizure detection performance through an optimality index metric (O). We found that SVDD not only performed better than the other SVM types in terms of highest value of the mean optimality index metric (\\skew3\\bar{O} ) but also gave a more reliable performance across the two EEG datasets.

  12. Cartilage contact pressure elevations in dysplastic hips: a chronic overload model

    Directory of Open Access Journals (Sweden)

    Grosland Nicole M

    2006-10-01

    Full Text Available Abstract Background Developmental dysplasia of the hip (DDH is a condition in which bone growth irregularities subject articular cartilage to higher mechanical stresses, increase susceptibility to subluxation, and elevate the risk of early osteoarthritis. Study objectives were to calculate three-dimensional cartilage contact stresses and to examine increases of accumulated pressure exposure over a gait cycle that may initiate the osteoarthritic process in the human hip, in the absence of trauma or surgical intervention. Methods Patient-specific, non-linear, contact finite element models, constructed from computed tomography arthrograms using a custom-built meshing program, were subjected to normal gait cycle loads. Results Peak contact pressures for dysplastic and asymptomatic hips ranged from 3.56 – 9.88 MPa. Spatially discriminatory cumulative contact pressures ranged from 2.45 – 6.62 MPa per gait cycle. Chronic over-pressure doses, for 2 million cycles per year over 20 years, ranged from 0.463 – 5.85 MPa-years using a 2-MPa damage threshold. Conclusion There were significant differences between the normal control and the asymptomatic hips, and a trend towards significance between the asymptomatic and symptomatic hips of patients afflicted with developmental dysplasia of the hip. The magnitudes of peak cumulative contact pressure differed between apposed articular surfaces. Bone irregularities caused localized pressure elevations and an upward trend between chronic over-pressure exposure and increasing Severin classification.

  13. Transient and persistent metabolomic changes in plasma following chronic cigarette smoke exposure in a mouse model.

    Directory of Open Access Journals (Sweden)

    Charmion I Cruickshank-Quinn

    Full Text Available Cigarette smoke exposure is linked to the development of a variety of chronic lung and systemic diseases in susceptible individuals. Metabolomics approaches may aid in defining disease phenotypes, may help predict responses to treatment, and could identify biomarkers of risk for developing disease. Using a mouse model of chronic cigarette smoke exposure sufficient to cause mild emphysema, we investigated whether cigarette smoke induces distinct metabolic profiles and determined their persistence following smoking cessation. Metabolites were extracted from plasma and fractionated based on chemical class using liquid-liquid and solid-phase extraction prior to performing liquid chromatography mass spectrometry-based metabolomics. Metabolites were evaluated for statistically significant differences among group means (p-value≤0.05 and fold change ≥1.5. Cigarette smoke exposure was associated with significant differences in amino acid, purine, lipid, fatty acid, and steroid metabolite levels compared to air exposed animals. Whereas 60% of the metabolite changes were reversible, 40% of metabolites remained persistently altered even following 2 months of smoking cessation, including nicotine metabolites. Validation of metabolite species and translation of these findings to human plasma metabolite signatures induced by cigarette smoking may lead to the discovery of biomarkers or pathogenic pathways of smoking-induced disease.

  14. Prostatic inflammation induces fibrosis in a mouse model of chronic bacterial infection.

    Directory of Open Access Journals (Sweden)

    Letitia Wong

    Full Text Available Inflammation of the prostate is strongly correlated with development of lower urinary tract symptoms and several studies have implicated prostatic fibrosis in the pathogenesis of bladder outlet obstruction. It has been postulated that inflammation induces prostatic fibrosis but this relationship has never been tested. Here, we characterized the fibrotic response to inflammation in a mouse model of chronic bacterial-induced prostatic inflammation. Transurethral instillation of the uropathogenic E. coli into C3H/HeOuJ male mice induced persistent prostatic inflammation followed by a significant increase in collagen deposition and hydroxyproline content. This fibrotic response to inflammation was accompanied with an increase in collagen synthesis determined by the incorporation of 3H-hydroxyproline and mRNA expression of several collagen remodeling-associated genes, including Col1a1, Col1a2, Col3a1, Mmp2, Mmp9, and Lox. Correlation analysis revealed a positive correlation of inflammation severity with collagen deposition and immunohistochemical staining revealed that CD45+VIM+ fibrocytes were abundant in inflamed prostates at the time point coinciding with increased collagen synthesis. Furthermore, flow cytometric analysis demonstrated an increased percentage of these CD45+VIM+ fibrocytes among collagen type I expressing cells. These data show-for the first time-that chronic prostatic inflammation induces collagen deposition and implicates fibrocytes in the fibrotic process.

  15. The role of Chinese herbal medicines in a rat model of chronic colitis

    Institute of Scientific and Technical Information of China (English)

    Xiao Lan Tian; Marisabel Mourelle; Yu Ling Li; Francisco Guarner; Juan-R Malagelada

    2000-01-01

    AIM To investigate a mixture of traditional Chinese medicine (TCM) in the prevention of chronic colitis inrats.METHODS Sixty rats were divided into 3 groups. Colitis was induced by trinitrobenzene-sulfonic acid(TNB). On day 10, all the survived rats were killed, the mortality and intestinal obstruction rate werecalculated, the colonic lesion score was assessed and collagenase activity and collagen concentration weremeasured.RESULTS The survival rate was much lower and intestinal obstruction rate much higher in TNB than thosein TCM, they were 53% and 81% vs. 80% and 24% (P<0.05 and P<0.01, respectively). There were alsosignificant differences in colonic stricture score and colonic weight between TNB and TCM groups (1.75±1.2 vs 0.22±0.67 and 0.57±0.36 vs 0.31±0.10, P<0.01 and P<0.05, respectively). No hydroxyprolineand collagenase activity differences were found between the two groups.CONCLUSION This mixture of TCM prevents the formation of intestinal stricture, increases the survivalrate and decreases intestinal obstruction rate in a rat model of chronic colitis.

  16. Prophylactic Chronic Zinc Administration Increases Neuroinflammation in a Hypoxia-Ischemia Model.

    Science.gov (United States)

    Tomas-Sanchez, Constantino; Blanco-Alvarez, Victor Manuel; Gonzalez-Barrios, Juan Antonio; Martinez-Fong, Daniel; Garcia-Robles, Guadalupe; Soto-Rodriguez, Guadalupe; Brambila, Eduardo; Torres-Soto, Maricela; Gonzalez-Vazquez, Alejandro; Aguilar-Peralta, Ana Karina; Garate-Morales, José-Luis; Aguilar-Carrasco, Luis-Angel; Limón, Daniel I; Cebada, Jorge; Leon-Chavez, Bertha Alicia

    2016-01-01

    Acute and subacute administration of zinc exert neuroprotective effects in hypoxia-ischemia animal models; yet the effect of chronic administration of zinc still remains unknown. We addressed this issue by injecting zinc at a tolerable dose (0.5 mg/kg weight, i.p.) for 14 days before common carotid artery occlusion (CCAO) in a rat. After CCAO, the level of zinc was measured by atomic absorption spectrophotometry, nitrites were determined by Griess method, lipoperoxidation was measured by Gerard-Monnier assay, and mRNA expression of 84 genes coding for cytokines, chemokines, and their receptors was measured by qRT-PCR, whereas nitrotyrosine, chemokines, and their receptors were assessed by ELISA and histopathological changes in the temporoparietal cortex-hippocampus at different time points. Long-term memory was evaluated using Morris water maze. Following CCAO, a significant increase in nitrosative stress, inflammatory chemokines/receptors, and cell death was observed after 8 h, and a 2.5-fold increase in zinc levels was detected after 7 days. Although CXCL12 and FGF2 protein levels were significantly increased, the long-term memory was impaired 12 days after reperfusion in the Zn+CCAO group. Our data suggest that the chronic administration of zinc at tolerable doses causes nitrosative stress, toxic zinc accumulation, and neuroinflammation, which might account for the neuronal death and cerebral dysfunction after CCAO. PMID:27635404

  17. The Sensitization Model to Explain How Chronic Pain Exists Without Tissue Damage

    NARCIS (Netherlands)

    van Wilgen, C. Paul; Keizer, Doeke

    2012-01-01

    The interaction of nurses with chronic pain patients is often difficult. One of the reasons is that chronic pain is difficult to explain, because no obvious anatomic defect or tissue damage is present. There is now enough evidence available indicating that chronic pain syndromes such as low back pai

  18. Human mesenchymal stem cells suppress chronic airway inflammation in the murine ovalbumin asthma model.

    Science.gov (United States)

    Bonfield, Tracey L; Koloze, Mary; Lennon, Donald P; Zuchowski, Brandon; Yang, Sung Eun; Caplan, Arnold I

    2010-12-01

    Allogeneic human mesenchymal stem cells (hMSCs) introduced intravenously can have profound anti-inflammatory activity resulting in suppression of graft vs. host disease as well as regenerative events in the case of stroke, infarct, spinal cord injury, meniscus regeneration, tendinitis, acute renal failure, and heart disease in human and animal models of these diseases. hMSCs produce bioactive factors that provide molecular cuing for: 1) immunosuppression of T cells; 2) antiscarring; 3) angiogenesis; 4) antiapoptosis; and 5) regeneration (i.e., mitotic for host-derived progenitor cells). Studies have shown that hMSCs have profound effects on the immune system and are well-tolerated and therapeutically active in immunocompetent rodent models of multiple sclerosis and stroke. Furthermore, intravenous administration of MSCs results in pulmonary localization. Asthma is a major debilitating pulmonary disease that impacts in excess of 150 million people in the world with uncontrolled asthma potentially leading to death. In addition, the socioeconomic impact of asthma-associated illnesses at the pediatric and adult level are in the millions of dollars in healthcare costs and lost days of work. hMSCs may provide a viable multiaction therapeutic for this inflammatory lung disease by secreting bioactive factors or directing cellular activity. Our studies show the effectiveness and specificity of the hMSCs on decreasing chronic airway inflammation associated with the murine ovalbumin model of asthma. In addition, the results from these studies verify the in vivo immunoeffectiveness of hMSCs in rodents and support the potential therapeutic use of hMSCs for the treatment of airway inflammation associated with chronic asthma. PMID:20817776

  19. New Mouse Models to Investigate the Efficacy of Drug Combinations in Human Chronic Myeloid Leukemia.

    Science.gov (United States)

    Lin, Hanyang; Woolfson, Adrian; Jiang, Xiaoyan

    2016-01-01

    Chronic myeloid leukemia (CML) comprises a simple and effective paradigm for generating new insights into the cellular origin, pathogenesis, and treatment of many types of human cancer. In particular, mouse models of CML have greatly facilitated the understanding of the underlying molecular mechanisms and pathogenesis of this disease and have led to the identification of new drug targets that in some cases offer the possibility of functional cure. There are currently three established CML mouse models: the BCR-ABL transgenic model, the BCR-ABL retroviral transduction/transplantation model, and the xenotransplant immunodeficient model. Each has its own unique advantages and disadvantages. Depending on the question of interest, some models may be more appropriate than others. In this chapter, we describe a newly developed xenotransplant mouse model to determine the efficacy of novel therapeutic agents, either alone or in combination. The model facilitates the evaluation of the frequency of leukemic stem cells with long-term leukemia-initiating activity, a critical subcellular population that causes disease relapse and progression, through the utilization of primary CD34(+) CML stem/progenitor cells obtained from CML patients at diagnosis and prior to drug treatment. We have also investigated the effectiveness of new combination treatment strategies designed to prevent the development of leukemia in vivo using BCR-ABL (+) blast crisis cells as a model system. These types of in vivo studies are important for the prediction of individual patient responses to drug therapy, and have the potential to facilitate the design of personalized combination therapy strategies. PMID:27581149

  20. Selective Inhibition of the Mitochondrial Permeability Transition Pore Protects against Neurodegeneration in Experimental Multiple Sclerosis.

    Science.gov (United States)

    Warne, Justin; Pryce, Gareth; Hill, Julia M; Shi, Xiao; Lennerås, Felicia; Puentes, Fabiola; Kip, Maarten; Hilditch, Laura; Walker, Paul; Simone, Michela I; Chan, A W Edith; Towers, Greg J; Coker, Alun R; Duchen, Michael R; Szabadkai, Gyorgy; Baker, David; Selwood, David L

    2016-02-26

    The mitochondrial permeability transition pore is a recognized drug target for neurodegenerative conditions such as multiple sclerosis and for ischemia-reperfusion injury in the brain and heart. The peptidylprolyl isomerase, cyclophilin D (CypD, PPIF), is a positive regulator of the pore, and genetic down-regulation or knock-out improves outcomes in disease models. Current inhibitors of peptidylprolyl isomerases show no selectivity between the tightly conserved cyclophilin paralogs and exhibit significant off-target effects, immunosuppression, and toxicity. We therefore designed and synthesized a new mitochondrially targeted CypD inhibitor, JW47, using a quinolinium cation tethered to cyclosporine. X-ray analysis was used to validate the design concept, and biological evaluation revealed selective cellular inhibition of CypD and the permeability transition pore with reduced cellular toxicity compared with cyclosporine. In an experimental autoimmune encephalomyelitis disease model of neurodegeneration in multiple sclerosis, JW47 demonstrated significant protection of axons and improved motor assessments with minimal immunosuppression. These findings suggest that selective CypD inhibition may represent a viable therapeutic strategy for MS and identify quinolinium as a mitochondrial targeting group for in vivo use.

  1. Selective Inhibition of the Mitochondrial Permeability Transition Pore Protects against Neurodegeneration in Experimental Multiple Sclerosis*

    Science.gov (United States)

    Warne, Justin; Pryce, Gareth; Hill, Julia M.; Shi, Xiao; Lennerås, Felicia; Puentes, Fabiola; Kip, Maarten; Hilditch, Laura; Walker, Paul; Simone, Michela I.; Chan, A. W. Edith; Towers, Greg J.; Coker, Alun R.; Duchen, Michael R.; Szabadkai, Gyorgy; Baker, David; Selwood, David L.

    2016-01-01

    The mitochondrial permeability transition pore is a recognized drug target for neurodegenerative conditions such as multiple sclerosis and for ischemia-reperfusion injury in the brain and heart. The peptidylprolyl isomerase, cyclophilin D (CypD, PPIF), is a positive regulator of the pore, and genetic down-regulation or knock-out improves outcomes in disease models. Current inhibitors of peptidylprolyl isomerases show no selectivity between the tightly conserved cyclophilin paralogs and exhibit significant off-target effects, immunosuppression, and toxicity. We therefore designed and synthesized a new mitochondrially targeted CypD inhibitor, JW47, using a quinolinium cation tethered to cyclosporine. X-ray analysis was used to validate the design concept, and biological evaluation revealed selective cellular inhibition of CypD and the permeability transition pore with reduced cellular toxicity compared with cyclosporine. In an experimental autoimmune encephalomyelitis disease model of neurodegeneration in multiple sclerosis, JW47 demonstrated significant protection of axons and improved motor assessments with minimal immunosuppression. These findings suggest that selective CypD inhibition may represent a viable therapeutic strategy for MS and identify quinolinium as a mitochondrial targeting group for in vivo use. PMID:26679998

  2. Selective Inhibition of the Mitochondrial Permeability Transition Pore Protects against Neurodegeneration in Experimental Multiple Sclerosis.

    Science.gov (United States)

    Warne, Justin; Pryce, Gareth; Hill, Julia M; Shi, Xiao; Lennerås, Felicia; Puentes, Fabiola; Kip, Maarten; Hilditch, Laura; Walker, Paul; Simone, Michela I; Chan, A W Edith; Towers, Greg J; Coker, Alun R; Duchen, Michael R; Szabadkai, Gyorgy; Baker, David; Selwood, David L

    2016-02-26

    The mitochondrial permeability transition pore is a recognized drug target for neurodegenerative conditions such as multiple sclerosis and for ischemia-reperfusion injury in the brain and heart. The peptidylprolyl isomerase, cyclophilin D (CypD, PPIF), is a positive regulator of the pore, and genetic down-regulation or knock-out improves outcomes in disease models. Current inhibitors of peptidylprolyl isomerases show no selectivity between the tightly conserved cyclophilin paralogs and exhibit significant off-target effects, immunosuppression, and toxicity. We therefore designed and synthesized a new mitochondrially targeted CypD inhibitor, JW47, using a quinolinium cation tethered to cyclosporine. X-ray analysis was used to validate the design concept, and biological evaluation revealed selective cellular inhibition of CypD and the permeability transition pore with reduced cellular toxicity compared with cyclosporine. In an experimental autoimmune encephalomyelitis disease model of neurodegeneration in multiple sclerosis, JW47 demonstrated significant protection of axons and improved motor assessments with minimal immunosuppression. These findings suggest that selective CypD inhibition may represent a viable therapeutic strategy for MS and identify quinolinium as a mitochondrial targeting group for in vivo use. PMID:26679998

  3. Calcium dysregulation contributes to neurodegeneration in FTLD patient iPSC-derived neurons

    Science.gov (United States)

    Imamura, Keiko; Sahara, Naruhiko; Kanaan, Nicholas M.; Tsukita, Kayoko; Kondo, Takayuki; Kutoku, Yumiko; Ohsawa, Yutaka; Sunada, Yoshihide; Kawakami, Koichi; Hotta, Akitsu; Yawata, Satoshi; Watanabe, Dai; Hasegawa, Masato; Trojanowski, John Q.; Lee, Virginia M.-Y.; Suhara, Tetsuya; Higuchi, Makoto; Inoue, Haruhisa

    2016-01-01

    Mutations in the gene MAPT encoding tau, a microtubules-associated protein, cause a subtype of familial neurodegenerative disorder, known as frontotemporal lobar degeneration tauopathy (FTLD-Tau), which presents with dementia and is characterized by atrophy in the frontal and temporal lobes of the brain. Although induced pluripotent stem cell (iPSC) technology has facilitated the investigation of phenotypes of FTLD-Tau patient neuronal cells in vitro, it remains unclear how FTLD-Tau patient neurons degenerate. Here, we established neuronal models of FTLD-Tau by Neurogenin2-induced direct neuronal differentiation from FTLD-Tau patient iPSCs. We found that FTLD-Tau neurons, either with an intronic MAPT mutation or with an exonic mutation, developed accumulation and extracellular release of misfolded tau followed by neuronal death, which we confirmed by correction of the intronic mutation with CRISPR/Cas9. FTLD-Tau neurons showed dysregulation of the augmentation of Ca2+ transients evoked by electrical stimulation. Chemogenetic or pharmacological control of neuronal activity-relevant Ca2+ influx by the introduction of designer receptors exclusively activated by designer drugs (DREADDs) or by the treatment with glutamate receptor blockers attenuated misfolded tau accumulation and neuronal death. These data suggest that neuronal activity may regulate neurodegeneration in tauopathy. This FTLD-Tau model provides mechanistic insights into tauopathy pathogenesis and potential avenues for treatments. PMID:27721502

  4. Long term treatment with gabapentin in an animal model of chronic neuropathic pain

    DEFF Research Database (Denmark)

    Baastrup, C. S.; Andrews, N.; Wegener, Gregers;

    2013-01-01

    In preclinical animal pain research potential efficacy of a drug is often evaluate after a single exposure, which is in contrast to the long lasting treatment needed in chronic neuropathic pain (CNP) patients. Gabapentin remains one of the most efficacious drugs in the treatment of CNP. The aims...... of the study were to evaluate the spinal cord contusion (SCC) model and 2 different measures of painlike behaviour using a long term treatment schedule with gabapentin. Furthermore the effect on mobility and on anxiety, a pain-related behaviour, was included. 40 Female SD rats with a T13 SCC and sham animals....... Daily treatment with gabapentin 30 mg/kg sc. or saline for 6 consecutive weeks. Mechanical sensitivity thresholds (MST) to von Frey stimulation of hindpaws and thorax measured by both reflex withdrawal and supra-spinal responses. Anxiety-like behaviour using the openfield paradigm. Drug effect...

  5. Protective effect of naringin on 3-nitropropionic acid-induced neurodegeneration through the modulation of matrix metalloproteinases and glial fibrillary acidic protein.

    Science.gov (United States)

    Gopinath, Kulasekaran; Sudhandiran, Ganapasam

    2016-01-01

    Naringin (4',5,7-trihydroxy-flavonone-7-rhamnoglucoside), a flavonone present in grapefruit, has recently been reported to protect against neurodegeration, induced with 3-nitropropionic acid (3-NP), through its antioxidant, anti-inflammatory, and antiapoptotic properties. This study used a rat model of 3-NP-induced neurodegeneration to investigate the neuroprotective effects of naringin exerted by modulating the expression of matrix metalloproteinases and glial fibrillary acidic protein. Neurodegeneration was induced with 3-NP (10 mg/kg body mass, by intraperitoneal injection) once a day for 2 weeks, and induced rats were treated with naringin (80 mg/kg body mass, by oral gavage, once a day for 2 weeks). Naringin ameliorated the motor abnormalities caused by 3-NP, and reduced blood-brain barrier dysfunction by decreasing the expression of matrix metalloproteinases 2 and 9, along with increasing the expression of the tissue inhibitors of metalloproteinases 1 and 2 in 3-NP-induced rats. Further, naringin reduced 3-NP-induced neuroinflammation by decreasing the expression of nuclear factor-kappa B and glial fibrillary acidic protein. Thus, naringin exerts protective effects against 3-NP-induced neurodegeneration by ameliorating the expressions of matrix metalloproteinases and glial fibrillary acidic protein. PMID:26544788

  6. Model and Processes of Acceptance and Commitment Therapy (ACT) for Chronic Pain Including a Closer Look at the Self.

    Science.gov (United States)

    Yu, Lin; McCracken, Lance M

    2016-02-01

    Acceptance and commitment therapy (ACT) is one of the so called "third-wave" cognitive behavioral therapies. It has been increasingly applied to chronic pain, and there is accumulating evidence to support its effectiveness. ACT is based on a model of general human functioning called the psychological flexibility (PF) model. Most facets of the PF model have been examined in chronic pain. However, a potential key facet related to "self" appears underappreciated. Indeed, a positive or healthy sense of self seems essential to our well-being, and there have been numerous studies of the self in chronic pain. At the same time, these studies are not currently well organized or easy to summarize. This lack of clarity and integration creates barriers to progress in this area of research. PF with its explicit inclusion of self-related therapeutic processes within a broad, integrative, theoretical model may help. The current review summarizes the PF model in the context of chronic pain with a specific emphasis on the parts of the model that address self-related processes. PMID:26803836

  7. Model and Processes of Acceptance and Commitment Therapy (ACT) for Chronic Pain Including a Closer Look at the Self.

    Science.gov (United States)

    Yu, Lin; McCracken, Lance M

    2016-02-01

    Acceptance and commitment therapy (ACT) is one of the so called "third-wave" cognitive behavioral therapies. It has been increasingly applied to chronic pain, and there is accumulating evidence to support its effectiveness. ACT is based on a model of general human functioning called the psychological flexibility (PF) model. Most facets of the PF model have been examined in chronic pain. However, a potential key facet related to "self" appears underappreciated. Indeed, a positive or healthy sense of self seems essential to our well-being, and there have been numerous studies of the self in chronic pain. At the same time, these studies are not currently well organized or easy to summarize. This lack of clarity and integration creates barriers to progress in this area of research. PF with its explicit inclusion of self-related therapeutic processes within a broad, integrative, theoretical model may help. The current review summarizes the PF model in the context of chronic pain with a specific emphasis on the parts of the model that address self-related processes.

  8. Modeled concentrations in rice and ingestion doses from chronic atmospheric releases of tritium

    International Nuclear Information System (INIS)

    The expansion of nuclear power programs in Asia has stimulated interest in the improved modeling of concentrations of tritium in rice, a staple crop grown throughout the far east. Normally, the specific activity model is used to calculate concentrations of tritium in the tissue water of edible plants to assess ingestion dose from chronic releases. However, because rice, like other grains, has much lower water content than most crops, the calculation must also account for organically bound tritium. This paper reviews ways to calculate steady-state concentrations of tritium in rice, including the methods of Canadian and US regulatory models, and the assumptions behind them. Concentrations in rice and resulting ingestion doses are compared for the various methods, and equations for calculating concentrations are recommended. The regulatory models underestimate doses received from ingestion of rice contaminated with tritium since they do not account explicitly for organically bound tritium. The importance of including organically bound tritium is illustrated in a comparison of doses from rice, leafy vegetables and milk for an Asian diet. Dose factors from tritium for these foods are estimated to be 135, 47, and 20 nSv y-1/(Bq m-3), respectively. Assuming known air concentrations, tritium concentrations in rice, calculated with the recommended equations, are uncertain by less than a factor 2 when tritium concentrations in the rice paddy water are known, and by less than a factor of 2.3 when concentrations in paddy water are unknown

  9. Modelling the propagation of effects of chronic exposure to ionising radiation from individuals to populations

    Energy Technology Data Exchange (ETDEWEB)

    Alonzo, F. [Laboratory of Environmental Modelling, DEI/SECRE/LME, Institute of Radioprotection and Nuclear Safety (IRSN), Cadarache, Building 159, BP3, 13115 St-Paul-lez-Durance Cedex (France); Laboratory of Radioecology and Ecotoxicology, DEI/SECRE/LRE, Institute of Radioprotection and Nuclear Safety (IRSN), Cadarache Building 186, BP3, 13115 St-Paul-lez-Durance Cedex (France)], E-mail: frederic.alonzo@irsn.fr; Hertel-Aas, T. [Department of Plant and Environmental Sciences, P.O. Box 5003, Norwegian University of Life Sciences, 1432 Aas (Norway); Gilek, M. [School of Life Sciences, Soedertoern University College, 14189 Huddinge (Sweden); Gilbin, R. [Laboratory of Radioecology and Ecotoxicology, DEI/SECRE/LRE, Institute of Radioprotection and Nuclear Safety (IRSN), Cadarache Building 186, BP3, 13115 St-Paul-lez-Durance Cedex (France); Oughton, D.H. [Department of Plant and Environmental Sciences, P.O. Box 5003, Norwegian University of Life Sciences, 1432 Aas (Norway); Garnier-Laplace, J. [Laboratory of Radioecology and Ecotoxicology, DEI/SECRE/LRE, Institute of Radioprotection and Nuclear Safety (IRSN), Cadarache Building 186, BP3, 13115 St-Paul-lez-Durance Cedex (France)

    2008-09-15

    This study evaluated the potential effect of ionising radiation on population growth using simple population models and parameter values derived from chronic exposure experiments in two invertebrate species with contrasting life-history strategies. In the earthworm Eisenia fetida, models predicted increasing delay in population growth with increasing gamma dose rate (up to 0.6 generation times at 11 mGy h{sup -1}). Population extinction was predicted at 43 mGy h{sup -1}. In the microcrustacean Daphnia magna, models predicted increasing delay in population growth with increasing alpha dose rate (up to 0.8 generation times at 15.0 mGy h{sup -1}), only after two successive generations were exposed. The study examined population effects of changes in different individual endpoints (including survival, number of offspring produced and time to first reproduction). Models showed that the two species did not respond equally to equivalent levels of change, the fast growing daphnids being more susceptible to reduction in fecundity or delay in reproduction than the slow growing earthworms. This suggested that susceptibility of a population to ionising radiation cannot be considered independent of the species' life history.

  10. Intravesical Dimethyl Sulfoxide Inhibits Acute and Chronic Bladder Inflammation in Transgenic Experimental Autoimmune Cystitis Models

    Directory of Open Access Journals (Sweden)

    Ronald Kim

    2011-01-01

    Full Text Available New animal models are greatly needed in interstitial cystitis/painful bladder syndrome (IC/PBS research. We recently developed a novel transgenic cystitis model (URO-OVA mice that mimics certain key aspects of IC/PBS pathophysiology. This paper aimed to determine whether URO-OVA cystitis model was responsive to intravesical dimethyl sulfoxide (DMSO and if so identify the mechanisms of DMSO action. URO-OVA mice developed acute cystitis upon adoptive transfer of OVA-specific OT-I splenocytes. Compared to PBS-treated bladders, the bladders treated with 50% DMSO exhibited markedly reduced bladder histopathology and expression of various inflammatory factor mRNAs. Intravesical DMSO treatment also effectively inhibited bladder inflammation in a spontaneous chronic cystitis model (URO-OVA/OT-I mice. Studies further revealed that DMSO could impair effector T cells in a dose-dependent manner in vitro. Taken together, our results suggest that intravesical DMSO improves the bladder histopathology of IC/PBS patients because of its ability to interfere with multiple inflammatory and bladder cell types.

  11. Model-Based Analysis of FGF23 Regulation in Chronic Kidney Disease

    Directory of Open Access Journals (Sweden)

    Hiroki Yokota

    2010-06-01

    Full Text Available The mechanism of FGF23 action in calcium/phosphorus metabolism of patients with chronic kidney disease (CKD was studied using a mathematical model and clinical data in a public domain. We have previously built a physiological model that describes interactions of PTH, calcitriol, and FGF23 in mineral metabolism encompassing organs such as bone, intestine, kidney, and parathyroid glands. Since an elevated FGF23 level in serum is a characteristic symptom of CKD patients, we evaluate herein potential metabolic alterations in response to administration of a neutralizing antibody against FGF23. Using the parameters identified from available clinical data, we observed that a transient decrease in the FGF23 level elevated the serum concentrations of PTH, calcitriol, and phosphorus. The model also predicted that the administration reduced a urinary output of phosphorous. This model-based prediction indicated that the therapeutic reduction of FGF23 by the neutralizing antibody did not reduce phosphorus burden of CKD patients and decreased the urinary phosphorous excretion. Thus, the high FGF23 level in CKD patients was predicted to be a failure of FGF23-mediated phosphorous excretion. The results herein indicate that it is necessary to understand the mechanism in CKD in which the level of FGF23 is elevated without effectively regulating phosphorus.

  12. Brain mitochondrial dysfunction in aging, neurodegeneration and Parkinson's disease

    Directory of Open Access Journals (Sweden)

    Ana Navarro

    2010-09-01

    Full Text Available Brain senescence and neurodegeneration occur with a mitochondrial dysfunction characterized by impaired electron transfer and by oxidative damage. Brain mitochondria of old animals show decreased rates of electron transfer in complexes I and IV, decreased membrane potential, increased content of the oxidation products of phospholipids and proteins and increased size and fragility. This impairment, with complex I inactivation and oxidative damage, is named “complex I syndrome” and is recognized as characteristic of mammalian brain aging and of neurodegenerative diseases. Mitochondrial dysfunction is more marked in brain areas as rat hippocampus and frontal cortex, in human cortex in Parkinson’s disease and dementia with Lewy bodies, and in substantia nigra in Parkinson’s disease. The molecular mechanisms involved in complex I inactivation include the synergistic inactivations produced by ONOO- mediated reactions, by reactions with free radical intermediates of lipid peroxidation and by amine-aldehyde adduction reactions. The accumulation of oxidation products prompts the idea of antioxidant therapies. High doses of vitamin E produce a significant protection of complex I activity and mitochondrial function in rats and mice, and with improvement of neurological functions and increased median life span in mice. Mitochondria-targeted antioxidants, as the Skulachev cations covalently attached to vitamin E, ubiquinone and PBN and the SS tetrapeptides, are negatively charged and accumulate in mitochondria where they exert their antioxidant effects. Activation of the cellular mechanisms that regulate mitochondrial biogenesis is another potential therapeutic strategy, since the process generates organelles devoid of oxidation products and with full enzymatic activity and capacity for ATP production.

  13. Neurodegeneration with brain iron accumulation: update on pathogenic mechanisms.

    Directory of Open Access Journals (Sweden)

    Sonia eLevi

    2014-05-01

    Full Text Available Perturbation of iron distribution is observed in many neurodegenerative disorders, including Alzheimer’s and Parkinson’s disease, but the comprehension of the metal role in the development and progression of such disorders is still very limited. The combination of more powerful brain imaging techniques and faster genomic DNA sequencing procedures has allowed the description of a set of genetic disorders characterized by a constant and often early accumulation of iron in specific brain regions and the identification of the associated genes; these disorders are now collectively included in the category of Neurodegeneration with Brain Iron Accumulation (NBIA. So far 10 different genetic forms have been described but this number is likely to increase in short time. Two forms are linked to mutations in genes directly involved in iron metabolism: Neuroferritinopathy, associated to mutations in the FTL gene and Aceruloplasminaemia, where the ceruloplasmin gene product is defective. In the other forms the connection with iron metabolism is not evident at all and the genetic data let infer the involvement of other pathways: Pank2, COASY,Pla2G6, C19orf12, and FA2H genes seem to be related to lipid metabolism and to mitochondria functioning, WDR45 and ATP13A2 genes are implicated in lysosomal and autophagosome activity, while the C2orf37 gene encodes a nucleolar protein of unknown function. There is much hope in the scientific community that the study of the NBIA forms may provide important insight as to the link between brain iron metabolism and neurodegenerative mechanisms and eventually pave the way for new therapeutic avenues also for the more common neurodegenerative disorders. In this work we will review the most recent findings in the molecular mechanisms underlining the most common forms of NBIA and analyze their possible link with brain iron metabolism.

  14. Risk-adjusted capitation funding models for chronic disease in Australia: alternatives to casemix funding.

    Science.gov (United States)

    Antioch, K M; Walsh, M K

    2002-01-01

    Under Australian casemix funding arrangements that use Diagnosis-Related Groups (DRGs) the average price is policy based, not benchmarked. Cost weights are too low for State-wide chronic disease services. Risk-adjusted Capitation Funding Models (RACFM) are feasible alternatives. A RACFM was developed for public patients with cystic fibrosis treated by an Australian Health Maintenance Organization (AHMO). Adverse selection is of limited concern since patients pay solidarity contributions via Medicare levy with no premium contributions to the AHMO. Sponsors paying premium subsidies are the State of Victoria and the Federal Government. Cost per patient is the dependent variable in the multiple regression. Data on DRG 173 (cystic fibrosis) patients were assessed for heteroskedasticity, multicollinearity, structural stability and functional form. Stepwise linear regression excluded non-significant variables. Significant variables were 'emergency' (1276.9), 'outlier' (6377.1), 'complexity' (3043.5), 'procedures' (317.4) and the constant (4492.7) (R(2)=0.21, SE=3598.3, F=14.39, ProbService Federal payments for drugs and medical services; lump sum lung transplant payments and risk sharing through cost (loss) outlier payments. State and Federally funded home and palliative services are 'carved out'. The model, which has national application via Coordinated Care Trials and by Australian States for RACFMs may be instructive for Germany, which plans to use Australian DRGs for casemix funding. The capitation alternative for chronic disease can improve equity, allocative efficiency and distributional justice. The use of Diagnostic Cost Groups (DCGs) is a promising alternative classification system for capitation arrangements. PMID:15609134

  15. Hypertension exacerbates predisposition to neurodegeneration and memory impairment in the presence of a neuroinflammatory stimulus: Protection by angiotensin converting enzyme inhibition.

    Science.gov (United States)

    Goel, Ruby; Bhat, Shahnawaz Ali; Rajasekar, N; Hanif, Kashif; Nath, Chandishwar; Shukla, Rakesh

    2015-06-01

    Hypertension is a risk factor for cognitive impairment. Furthermore, neuroinflammation and neurodegeneration are intricately associated with memory impairment. Therefore, the present study aimed to explore the involvement of hypertension and angiotensin system in neurodegeneration and memory dysfunction in the presence of neuroinflammatory stimulus. Memory impairment was induced by chronic neuroinflammation that was developed by repeated intracerebroventricular (ICV) injections of lipopolysaccharide (LPS) on the 1st, 4th, 7th, and 10th day. Memory functions were evaluated by the Morris water maze (MWM) test on days 13-15, followed by biochemical and molecular studies in the cortex and hippocampus regions of rat brain. LPS at the dose of 25μg ICV caused memory impairment in spontaneously hypertensive rats (SHRs) but not in normotensive Wistar rats (NWRs). Memory deficit was obtained with 50μg of LPS (ICV) in NWRs. Control SHRs already exhibited increased angiotensin converting enzyme (ACE) activity and expression, neuroinflammation (increased TNF-α, GFAP, COX-2 and NF-kB), oxidative stress (increased iNOS, ROS and nitrite levels), TLR-4 expression and TUNEL positive cells as compared to control NWRs. Further, LPS (25μg ICV) exaggerated inflammatory response, oxidative stress and apoptosis in SHRs but similar effects were witnessed at 50μg of LPS (ICV) in NWRs. Oral administration of perindopril (ACE inhibitor), at non-antihypertensive dose (0.1mg/kg), for 15days attenuated LPS induced deleterious changes in both NWRs and SHRs. Our data suggest that susceptibility of the brain for neurodegeneration and memory impairment induced by neuroinflammation is enhanced in hypertension, and that can be protected by ACE inhibition. PMID:25869103

  16. Phosphatidylinositol-glycan-phospholipase D is involved in neurodegeneration in prion disease.

    Directory of Open Access Journals (Sweden)

    Jae-Kwang Jin

    Full Text Available PrPSc is formed from a normal glycosylphosphatidylinositol (GPI-anchored prion protein (PrPC by a posttranslational modification. Most GPI-anchored proteins have been shown to be cleaved by GPI phospholipases. Recently, GPI-phospholipase D (GPI-PLD was shown to be a strictly specific enzyme for GPI anchors. To investigate the involvement of GPI-PLD in the processes of neurodegeneration in prion diseases, we examined the mRNA and protein expression levels of GPI-PLD in the brains of a prion animal model (scrapie, and in both the brains and cerebrospinal fluids (CSF of sporadic and familial Creutzfeldt-Jakob disease (CJD patients. We found that compared with controls, the expression of GPI-PLD was dramatically down-regulated in the brains of scrapie-infected mice, especially in the caveolin-enriched membrane fractions. Interestingly, the observed decrease in GPI-PLD expression levels began at the same time that PrPSc began to accumulate in the infected brains and this decrease was also observed in both the brain and CSF of CJD patients; however, no differences in expression were observed in either the brains or CSF specimens from Alzheimer's disease patients. Taken together, these results suggest that the down-regulation of GPI-PLD protein may be involved in prion propagation in the brains of prion diseases.

  17. Intrathecal morphine therapy in the management of status dystonicus in neurodegeneration brain iron accumulation type 1.

    Science.gov (United States)

    Lopez, William Omar Contreras; Kluge Schroeder, Humberto; Santana Neville, Iuri; Jacobsen Teixeira, Manoel; Costa Barbosa, Danilo; Assumpçao de Mônaco, Bernardo; Talamoni Fonoff, Erich

    2015-01-01

    Neurodegeneration with brain iron accumulation type 1 (NBIA-1) is a rare disorder characterized by progressive extrapyramidal dysfunction and dementia. NBIA-1 encompasses typical iron brain accumulation, mostly in the globus pallidus with secondary dementia, spasticity, rigidity, dystonia, and choreoathetosis. Treatment remains mostly symptomatic and is challenging. We present the case of a 14-year-old boy diagnosed with NBIA-1, presenting intractable progressive generalized dystonia leading to unresponsive status dystonicus (SD). The patient received a SynchroMed II (model 8637) programmable system pump (Medtronic®, Inc.) implant with an Ascenda intrathecal catheter for intrathecal morphine therapy (IMT). The initial dose of morphine was 1.0 mg/day. Overall, we observed no complications with IMT treatment and important improvement of the patient's motor function with stabilization of his incapacitating dystonia and his quality of life. On the Global Dystonia Severity Rating Scale, he presented 52% improvement, 30% improvement on the Unified Dystonia Rating Scale, and 38% improvement on the Fahn-Marsden Rating Scale after 10 months, when the dose was 1.7 mg/day. IMT should be considered as a potential palliative treatment in the management of intractable dystonia and SD secondary to NBIA-1. PMID:25896138

  18. ROS effects on neurodegeneration in Alzheimer's disease and related disorders: on environmental stresses of ionizing radiation.

    Science.gov (United States)

    Manton, Kenneth G; Volovik, Serge; Kulminski, Alexander

    2004-11-01

    Neurodegenerative processes associated with Alzheimer's disease are complex and involve many CNS tissue types, structures and biochemical processes. Factors believed involved in these processes are generation of Reactive Oxygen Species (ROS), associated inflammatory responses, and the bio-molecular and genetic damage they produce. Since oxidative processes are essential to energy production, and to other biological functions, such as cell signaling, the process is not one of risk exposure, as for cigarettes and cancer, but one where normal physiological processes operate out of normal ranges and without adequate control. Thus, it is necessary to study the ambiphilicity that allows the same molecule (e.g., beta amyloid) to behave in contradictory ways depending upon the physiological microenvironment. To determine ways to study this in human populations we review evidence on the effects of an exogenous generator of ROS, ionizing radiation, in major population events with radionuclides (e.g., Hiroshima and Nagasaki; Chernobyl Reactor accident; environmental contamination in Chelyabinsk (South Urals) where plutonium was produced, and in the nuclear weapons test area in Semipalatinsk, Kazakhstan). The age evolution, and traits, of neurodegenerative processes in human populations in these areas, may help us understand how IR affects the CNS. After reviewing human population evidence, we propose a model of neurodegeneration based upon the complexity of CNS functions. PMID:15975057

  19. Functional modulation of G-protein coupled receptors during Parkinson disease-like neurodegeneration.

    Science.gov (United States)

    Jenkins, Bruce G; Zhu, Aijun; Poutiainen, Pekka; Choi, Ji-Kyung; Kil, Kun-Eek; Zhang, Zhaoda; Kuruppu, Darshini; Aytan, Nurgul; Dedeoglu, Alpaslan; Brownell, Anna-Liisa

    2016-09-01

    G-protein coupled dopamine and metabotropic glutamate receptors (mGlu) can modulate neurotransmission during Parkinson's disease (PD)-like neurodegeneration. PET imaging studies in a unilateral dopamine denervation model (6-OHDA) showed a significant inverse correlation of presynaptic mGlu4 and postsynaptic mGlu5 expression in the striatum and rapidly declining mGlu4 and enhanced mGlu5 expression in the hippocampus during progressive degeneration over time. Immunohistochemical studies verified the decreased mGlu4 expression in the hippocampus on the lesion side but did not show difference in mGlu5 expression between lesion and control side. Pharmacological MRI studies showed enhanced hemodynamic response in several brain areas on the lesion side compared to the control side after challenge with mGlu4 positive allosteric modulator or mGlu5 negative allosteric modulator. However, mGlu4 response was biphasic having short enhancement followed by negative response on both sides of brain. Studies in mGlu4 expressing cells demonstrated that glutamate induces cooperative increase in binding of mGlu4 ligands - especially at high glutamate levels consistent with in vivo concentration. This suggests that mGlu allosteric modulators as drug candidates will be highly sensitive to changes in glutamate concentration and hence metabolic state. These experiments demonstrate the importance of the longitudinal imaging studies to investigate temporal changes in receptor functions to obtain individual response for experimental drugs. PMID:26581500

  20. Chronic Diarrhea

    Science.gov (United States)

    ... infections that cause chronic diarrhea be prevented? Chronic Diarrhea What is chronic diarrhea? Diarrhea that lasts for more than 2-4 ... represent a life-threatening illness. What causes chronic diarrhea? Chronic diarrhea has many different causes; these causes ...

  1. Probability Prediction in Multistate Survival Models for Patients with Chronic Myeloid Leukaemia

    Institute of Scientific and Technical Information of China (English)

    FANG Ya; Hein Putter

    2005-01-01

    In order to find an appropriate model suitable for a multistate survival experiment, 634 patients with chronic myeloid leukaemia (CML) were selected to illustrate the method of analysis.After transplantation, there were 4 possible situations for a patient: disease free, relapse but still alive, death before relapse, and death after relapse. The last 3 events were considered as treatment failure. The results showed that the risk of death before relapse was higher than that of the relapse,especially in the first year after transplantation with competing-risk method. The result of patients with relapse time less than 12 months was much poor by the Kaplan-Meier method. And the multistate survival models were developed, which were detailed and informative based on the analysis of competing risks and Kaplan-Meier analysis. With the multistate survival models, a further analysis on conditional probability was made for patients who were disease free and still alive at month 12 after transplantation. It was concluded that it was possible for an individual patient to predict the 4 possible probabilities at any time. Also the prognoses for relapse either death or not and death either before or afterrelapse may be given. Furthermore, the conditional probabilities for patients who were disease free and still alive in a given time after transplantation can be predicted.

  2. l-Carnitine improves cognitive and renal functions in a rat model of chronic kidney disease.

    Science.gov (United States)

    Abu Ahmad, Nur; Armaly, Zaher; Berman, Sylvia; Jabour, Adel; Aga-Mizrachi, Shlomit; Mosenego-Ornan, Efrat; Avital, Avi

    2016-10-01

    Over the past decade, the prevalence of chronic kidney disease (CKD) has reached epidemic proportions. The search for novel pharmacological treatment for CKD has become an area of intensive clinical research. l-Carnitine, considered as the "gatekeeper" responsible for admitting long chain fatty acids into cell mitochondria. l-Carnitine synthesis and turnover are regulated mainly by the kidney and its levels inversely correlate with serum creatinine of normal subjects and CKD patients. Previous studies showed that l-carnitine administration to elderly people is improving and preserving cognitive function. As yet, there are no clinical intervention studies that investigated the effect of l-carnitine administration on cognitive impairment evidenced in CKD patients. Thus, we aimed to investigate the effects of l-carnitine treatment on renal function and on the cognitive performance in a rat model of progressive CKD. To assess the role of l-carnitine on CKD condition, we estimated the renal function and cognitive abilities in a CKD rat model. We found that all CKD animals exhibited renal function deterioration, as indicated by elevated serum creatinine, BUN, and ample histopathological abnormalities. l-Carnitine treatment of CKD rats significantly reduced serum creatinine and BUN, attenuated renal hypertrophy and decreased renal tissue damage. In addition, in the two way shuttle avoidance learning, CKD animals showed cognitive impairment which recovered by the administration of l-carnitine. We conclude that in a rat model of CKD, l-carnitine administration significantly improved cognitive and renal functions.

  3. Excisional wound healing is delayed in a murine model of chronic kidney disease.

    Directory of Open Access Journals (Sweden)

    Akhil K Seth

    Full Text Available BACKGROUND: Approximately 15% of the United States population suffers from chronic kidney disease (CKD, often demonstrating an associated impairment in wound healing. This study outlines the development of a surgical murine model of CKD in order to investigate the mechanisms underlying this impairment. METHODS: CKD was induced in mice by partial cauterization of one kidney cortex and contralateral nephrectomy, modifying a previously published technique. After a minimum of 6-weeks, splinted, dorsal excisional wounds were created to permit assessment of wound healing parameters. Wounds were harvested on postoperative days (POD 0, 3, 7, and 14 for histological, immunofluorescent, and quantitative PCR (qPCR. RESULTS: CKD mice exhibited deranged blood chemistry and hematology profiles, including profound uremia and anemia. Significant decreases in re-epithelialization and granulation tissue deposition rates were found in uremic mice wounds relative to controls. On immunofluorescent analysis, uremic mice demonstrated significant reductions in cellular proliferation (BrdU and angiogenesis (CD31, with a concurrent increase in inflammation (CD45 as compared to controls. CKD mice also displayed differential expression of wound healing-related genes (VEGF, IL-1β, eNOS, iNOS on qPCR. CONCLUSIONS: These findings represent the first reported investigation of cutaneous healing in a CKD animal model. Ongoing studies of this significantly delayed wound healing phenotype include the establishment of renal failure model in diabetic strains to study the combined effects of CKD and diabetes.

  4. Hydrolysis-dependent absorption of disaccharides in the rat small intestine (chronic experiments and mathematical modeling).

    Science.gov (United States)

    Gromova, L V; Gruzdkov, A A

    1999-06-01

    In order to throw light on the mechanisms responsible for the enzyme-dependent absorption of disaccharides membrane hydrolysis of maltose and trehalose and the absorption of glucose (free and that derived from disaccharides) were studied in isolated loops (20 cm) of the rat small intestine in chronic experiments. The rates of glucose absorption were 0.26-0.81 micromol x min(-1) x cm(-1) when the loop was perfused with a 12.5 to 75.0 mmol/l free glucose solution, which is only insignificantly higher than the rates observed during perfusion with equivalent maltose solutions. The coupling coefficient (the ratio of glucose absorption rate to the rate of disaccharide hydrolysis) decreased from 0.90 to 0.60 with the increasing maltose concentrations in the infusate from 6.25 to 37.5 mmol/l, but remained unchanged (approximately 0.95) within the same range of trehalose concentrations. The permeability of the pre-epithelial barrier was equivalent to that of unstirred water layer of less than 40 microm thickness. Fluid absorption was within the range of 0.73-2.55 microl x min(-1) x cm(-1), and it showed a correlation with the rates of glucose absorption. The results agree with a model developed on the assumption that free glucose and that released from disaccharides share the same membrane transporters. It could be concluded that a close coupling of disaccharide hydrolysis with derived glucose absorption in chronic experiments is achieved mainly due to a high activity of glucose transporters, which are presumably not associated with membrane disaccharidases. The transcellular active transport is a predominant mechanism of disaccharide-derived glucose absorption under conditions close to physiological.

  5. EFFECTS OF RADIX ANGELICAE SINENSIS AND SHUANGHUANGLIAN ON A RAT MODEL OF CHRONIC PSEUDOMONAS AERUGINOSA PNEUMONIA

    Institute of Scientific and Technical Information of China (English)

    H.K.Johansen; C.Moser; V.Faber; A.Khamzmi; J.Rygaard; N.Hφiby; Z.J.Song

    2000-01-01

    Objective. To study the effects of two kinds of Chinese herbal medicine, Radix angelicae sinensis(RAS) (当归)and Shuanghuanglian(SHL)(双黄连) on chronic Pseudomortas aerug/nosa(PA)lung infection in a rat model mimicking cystic fibrosis(CF).Methods. Rats were divided into RAS, SIlL and control groups. All rats were challenged intratracheally with alginate embedded PA and the trealments with herbal medicine started on the same day of challenge. The drugs were administered subcutaneously once a day for ten days and the control group was treated with sterile saline. The rats were sacrificed two weeks after challenge. Results. Significantly improved lung bacterial clearance(P <0.05, P < 0.01) and milder macroecopic lung pathology (P<0.005) were found in the two treated groups compared to the control group. In tbe SHL treated group, the neutrophil percent in the peripheral blood leukocytes(P < 0.05), the anti-PA IgG level in serum (P < 0.05), the incidence of lung abscesses(P < 0.005) and the incidence of acnte lung inflammafion(P < 0.05) were signitlcanfly lower than in the control group. The RAS treatment reduced fever(P < 0.05), decreased the incidence of lung abscesses(P <0.005) and lung mast cell number (P< 0.05), and lowered anti-PA IgG1 level in serum(P< 0.05) when compared to the control group. The anti-PA bacterial activity test in SHL was weakly positive whereas in RAS it was negative. Conclusion. The treatment with both herbal medicines could increase the resistance of the rats against PA lung infection and they therefore might be potential premising drugs for stimulation of the immtme system in CF patients with chronic PA lung infection.

  6. Centering as a model for group visits among women with chronic pelvic pain.

    Science.gov (United States)

    Chao, Maria T; Abercrombie, Priscilla D; Duncan, Larissa G

    2012-01-01

    Providing comprehensive care for chronic pelvic pain is impeded by time and resource constraints of the standard health care visit. To provide patient education, psychosocial support, and health care assessment, we developed group visits for women with chronic pelvic pain using an evidence-based, holistic nursing approach. In this article, we describe the structure of group visits, the process of conducting Centering group visits focused on empowerment, and the content of a holistic curriculum for women with chronic pelvic pain.

  7. Implementation of an active aging model in Mexico for prevention and control of chronic diseases in the elderly

    Directory of Open Access Journals (Sweden)

    Correa-Muñoz Elsa

    2009-08-01

    Full Text Available Abstract Background World Health Organization cites among the main challenges of populational aging the dual disease burden: the greater risk of disability, and the need for care. In this sense, the most frequent chronic diseases during old age worldwide are high blood pressure, type 2 diabetes mellitus, cancer, arthritis, osteoporosis, depression, and dementia. Chronic disease-associated dependency represents an onerous sanitary and financial burden for the older adult, the family, and the health care system. Thus, it is necessary to propose community-level models for chronic disease prevention and control in old age. The aim of the present work is to show our experience in the development and implementation of a model for chronic disease prevention and control in old age at the community level under the active aging paradigm. Methods/Design A longitudinal study will be carried out in a sample of 400 elderly urban and rural-dwelling individuals residing in Hidalgo State, Mexico during five years. All participants will be enrolled in the model active aging. This establishes the formation of 40 gerontological promoters (GPs from among the older adults themselves. The GPs function as mutual-help group coordinators (gerontological nuclei and establish self-care and self-promotion actions for elderly well-being and social development. It will be conformed a big-net of social network of 40 mutual-help groups of ten elderly adults each one, in which self-care is a daily practice for chronic disease prevention and control, as well as for achieving maximal well-being and life quality in old age. Indicators of the model's impact will be (i therapeutic adherence; (ii the incidence of the main chronic diseases in old age; (iii life expectancy without chronic diseases at 60 years of age; (iv disability adjusted life years lost; (v years of life lost due to premature mortality, and (vi years lived with disability. Discussion We propose that the

  8. Bone Marrow Stromal Cells Attenuate Lung Injury in a Murine Model of Neonatal Chronic Lung Disease

    OpenAIRE

    Aslam, Muhammad; Baveja, Rajiv; Liang, Olin D.; Fernandez-Gonzalez, Angeles; Lee, Changjin; Mitsialis, S. Alex; Kourembanas, Stella

    2009-01-01

    Rationale: Neonatal chronic lung disease, known as bronchopulmonary dysplasia (BPD), remains a serious complication of prematurity despite advances in the treatment of extremely low birth weight infants.

  9. Assessment of a primary and tertiary care integrated management model for chronic obstructive pulmonary disease

    Directory of Open Access Journals (Sweden)

    Peiro Meritxell

    2009-02-01

    Full Text Available Abstract Background The diagnosis and treatment of patients with chronic obstructive pulmonary disease (COPD in Spain continues to present challenges, and problems are exacerbated when there is a lack of coordinated follow-up between levels of care. This paper sets out the protocol for assessing the impact of an integrated management model for the care of patients with COPD. The new model will be evaluated in terms of 1 improvement in the rational utilization of health-care services and 2 benefits reflected in improved health status and quality of life for patients. Methods/Design A quasi-experimental study of the effectiveness of a COPD management model called COPD PROCESS. The patients in the study cohorts will be residents of neighborhoods served by two referral hospitals in Barcelona, Spain. One area comprises the intervention group (n = 32,248 patients and the other the control group (n = 32,114 patients. The study will include pre- and post-intervention assessment 18 months after the program goes into effect. Analyses will be on two datasets: clinical and administrative data available for all patients, and clinical assessment information for a cohort of 440 patients sampled randomly from the intervention and control areas. The main endpoints will be the hospitalization rates in the two health-care areas and quality-of-life measures in the two cohorts. Discussion The COPD PROCESS model foresees the integrated multidisciplinary management of interventions at different levels of the health-care system through coordinated routine clinical practice. It will put into practice diagnostic and treatment procedures that are based on current evidence, multidisciplinary consensus, and efficient use of available resources. Care pathways in this model are defined in terms of patient characteristics, level of disease severity and the presence or absence of exacerbation. The protocol covers the full range of care from primary prevention to treatment of

  10. Hepatitis E virus genotype three infection of human liver chimeric mice as a model for chronic HEV infection

    NARCIS (Netherlands)

    M.D.B. van de Garde (Martijn); S.D. Pas (Suzan); G. van der Net (Guido); R.A. de Man (Robert); A.D.M.E. Osterhaus (Albert); B.L. Haagmans (Bart); A. Boonstra (Andre); T. Vanwolleghem (Thomas)

    2016-01-01

    textabstractGenotype (gt) 3 hepatitis E virus (HEV) infections are emerging in Western countries. Immunosuppressed patients are at risk of chronic HEV infection and progressive liver damage, but no adequate model system currently mimics this disease course. Here we explore the possibilities of in vi

  11. The Chronic Care Model: A Collaborative Approach to Preventing and Treating Asthma in Infants and Young Children

    Science.gov (United States)

    Wessel, Lois; Spain, Jacqueline

    2005-01-01

    The authors that a collaborative approach between parents and professionals is the best way to care for a young child with asthma. They use Ed Wagner's transdisciplinary 1998 Chronic Care Model as their preferred method for collaboration. More than 5 million children in the U.S. are currently affected by asthma, and a growing body of evidence…

  12. Effects of quorum-sensing on immunoglobulin G responses in a rat model of chronic lung infection with Pseudomonas aeruginosa

    DEFF Research Database (Denmark)

    WU, H.; Song, Z.J.; Givskov, Michael Christian;

    2004-01-01

    Levels of serum antibodies against Pseudomonas aeruginosa were observed for 106 days in a rat model of chronic lung infection. Significantly weaker responses of serum IgG and IgG1 and a lower ratio of IgGI/IgG2a were found in the rats infected with the quorum-signal-deficient mutant, PAO1 (rhl...

  13. Protective effects of triptolide on retinal ganglion cells in a rat model of chronic glaucoma

    Directory of Open Access Journals (Sweden)

    Yang F

    2015-11-01

    Full Text Available Fan Yang, Dongmei Wang, Lingling Wu, Ying Li Ophthalmology Department, Peking University Third Hospital, Beijing, People’s Republic of China Purpose: To study the effects of triptolide, a Chinese herb extract, on retinal ganglion cells (RGCs in a rat model of chronic glaucoma.Methods: Eighty Wistar rats were randomly divided into triptolide group (n=40 and normal saline (NS group (n=40. Angle photocoagulation was used to establish the model of glaucoma, with right eye as laser treated eye and left eye as control eye. Triptolide group received triptolide intraperitoneally daily, while NS group received NS. Intraocular pressure (IOP, anti-CD11b immunofluorescent stain in retina and optic nerve, RGCs count with Nissel stain and microglia count with anti-CD11b immunofluorescence stain in retina flat mounts, retinal tumor necrosis factor (TNF-α mRNA detection by reverse transcription–polymerase chain reaction, and double immunofluorescent labeling with anti-TNF-α and anti-CD11b in retinal frozen section were performed.Results: Mean IOP of the laser treated eyes significantly increased 3 weeks after photocoagulation (P<0.05, with no statistical difference between the two groups (P>0.05. RGCs survival in the laser treated eyes was significantly improved in the triptolide group than the NS group (P<0.05. Microglia count in superficial retina of the laser treated eyes was significantly less in the triptolide group (30.40±4.90 than the NS group (35.06±7.59 (P<0.05. TNF-α mRNA expression in the retina of the laser treated eyes in the triptolide group decreased by 60% compared with that in the NS group (P<0.01. The double immunofluorescent labeling showed that TNF-α was mainly distributed around the microglia.Conclusion: Triptolide improved RGCs survival in this rat model of chronic glaucoma, which did not depend on IOP decrease but might be exerted by inhibiting microglia activities and reducing TNF-α secretion. Keywords: glaucoma, triptolide

  14. Drug discovery from Chinese medicine against neurodegeneration in Alzheimer's and vascular dementia

    Directory of Open Access Journals (Sweden)

    So Kwok-Fai

    2011-04-01

    Full Text Available Abstract Alzheimer's disease and vascular dementia are two major diseases associated with dementia, which is common among the elderly. While the etiology of dementia is multi-factorial and complex, neurodegeneration may be the major cause of these two diseases. Effective drugs for treating dementia are still to be discovered. Current western pharmacological approaches against neurodegeneration in dementia develop symptom-relieving and disease-modifying drugs. Current integrative and holistic approaches of Chinese medicine to discovering drugs for neurodegeneration in dementia include (1 single molecules from the herbs, (2 standardized extracts from a single herb, and (3 herbal formula with definite composition. This article not only reviews the concept of dementia in western medicine and Chinese medicine but also evaluates the advantages and disadvantages of these approaches.

  15. Neuroinflammation and J2 prostaglandins: linking impairment of the ubiquitin-proteasome pathway and mitochondria to neurodegeneration.

    Science.gov (United States)

    Figueiredo-Pereira, Maria E; Rockwell, Patricia; Schmidt-Glenewinkel, Thomas; Serrano, Peter

    2014-01-01

    The immune response of the CNS is a defense mechanism activated upon injury to initiate repair mechanisms while chronic over-activation of the CNS immune system (termed neuroinflammation) may exacerbate injury. The latter is implicated in a variety of neurological and neurodegenerative disorders such as Alzheimer and Parkinson diseases, amyotrophic lateral sclerosis, multiple sclerosis, traumatic brain injury, HIV dementia, and prion diseases. Cyclooxygenases (COX-1 and COX-2), which are key enzymes in the conversion of arachidonic acid into bioactive prostanoids, play a central role in the inflammatory cascade. J2 prostaglandins are endogenous toxic products of cyclooxygenases, and because their levels are significantly increased upon brain injury, they are actively involved in neuronal dysfunction induced by pro-inflammatory stimuli. In this review, we highlight the mechanisms by which J2 prostaglandins (1) exert their actions, (2) potentially contribute to the transition from acute to chronic inflammation and to the spreading of neuropathology, (3) disturb the ubiquitin-proteasome pathway and mitochondrial function, and (4) contribute to neurodegenerative disorders such as Alzheimer and Parkinson diseases, and amyotrophic lateral sclerosis, as well as stroke, traumatic brain injury (TBI), and demyelination in Krabbe disease. We conclude by discussing the therapeutic potential of targeting the J2 prostaglandin pathway to prevent/delay neurodegeneration associated with neuroinflammation. In this context, we suggest a shift from the traditional view that cyclooxygenases are the most appropriate targets to treat neuroinflammation, to the notion that J2 prostaglandin pathways and other neurotoxic prostaglandins downstream from cyclooxygenases, would offer significant benefits as more effective therapeutic targets to treat chronic neurodegenerative diseases, while minimizing adverse side effects. PMID:25628533

  16. Neuroinflammation and J2 prostaglandins: linking impairment of the ubiquitin-proteasome pathway and mitochondria to neurodegeneration

    Directory of Open Access Journals (Sweden)

    Maria Emilia Figueiredo-Pereira

    2015-01-01

    Full Text Available The immune response of the CNS is a defense mechanism activated upon injury to initiate repair mechanisms while chronic over-activation of the CNS immune system (termed neuroinflammation may exacerbate injury. The latter is implicated in a variety of neurological and neurodegenerative disorders such as Alzheimer and Parkinson diseases, amyotrophic lateral sclerosis, multiple sclerosis, traumatic brain injury, HIV dementia and prion diseases. Cyclooxygenases (COX -1 and COX-2, which are key enzymes in the conversion of arachidonic acid into bioactive prostanoids, play a central role in the inflammatory cascade. J2 prostaglandins are endogenous toxic products of cyclooxygenases, and because their levels are significantly increased upon brain injury, they are actively involved in neuronal dysfunction induced by pro-inflammatory stimuli. In this review, we highlight the mechanisms by which J2 prostaglandins (1 exert their actions, (2 potentially contribute to the transition from acute to chronic inflammation and to the spreading of neuropathology, (3 disturb the ubiquitin-proteasome pathway and mitochondrial function, and (4 contribute to neurodegenerative disorders such as Alzheimer and Parkinson diseases, and amyotrophic lateral sclerosis, as well as stroke, traumatic brain injury, and demyelination in Krabbe disease. We conclude by discussing the therapeutic potential of targeting the J2 prostaglandin pathway to prevent/delay neurodegeneration associated with neuroinflammation. In this context, we suggest a shift from the traditional view that cyclooxygenases are the most appropriate targets to treat neuroinflammation, to the notion that J2 prostaglandin pathways and other neurotoxic prostaglandins downstream from cyclooxygenases, would offer significant benefits as more effective therapeutic targets to treat chronic neurodegenerative diseases, while minimizing adverse side effects.

  17. Resistance to Recombinant Human Erythropoietin Therapy in a Rat Model of Chronic Kidney Disease Associated Anemia

    Directory of Open Access Journals (Sweden)

    Patrícia Garrido

    2015-12-01

    Full Text Available This study aimed to elucidate the mechanisms explaining the persistence of anemia and resistance to recombinant human erythropoietin (rHuEPO therapy in a rat model of chronic kidney disease (CKD-associated anemia with formation of anti-rHuEPO antibodies. The remnant kidney rat model of CKD induced by 5/6 nephrectomy was used to test a long-term (nine weeks high dose of rHuEPO (200 UI/kg bw/week treatment. Hematological and biochemical parameters were evaluated as well as serum and tissue (kidney, liver and/or duodenum protein and/or gene expression of mediators of erythropoiesis, iron metabolism and tissue hypoxia, inflammation, and fibrosis. Long-term treatment with a high rHuEPO dose is associated with development of resistance to therapy as a result of antibodies formation. In this condition, serum EPO levels are not deficient and iron availability is recovered by increased duodenal absorption. However, erythropoiesis is not stimulated, and the resistance to endogenous EPO effect and to rHuEPO therapy results from the development of a hypoxic, inflammatory and fibrotic milieu in the kidney tissue. This study provides new insights that could be important to ameliorate the current therapeutic strategies used to treat patients with CKD-associated anemia, in particular those that become resistant to rHuEPO therapy.

  18. Erythropoietin-mediated neuroprotection in a pediatric mouse model of chronic hypoxia.

    Science.gov (United States)

    Chung, Eugene; Kong, Xiangmei; Goldberg, Mark P; Stowe, Ann M; Raman, Lakshmi

    2015-06-15

    Chronic hypoxia (CH), a disease state that accounts for significant morbidity and mortality in pediatrics, occurs in many children during critical periods of hippocampal development and cortical myelination. Hippocampal neurogenesis occurs throughout postnatal life and is important for normal development, thus impairment results in long-term cognitive deficits. Erythropoietin (EPO), a drug commonly known for its role in erythrogenesis, has recently been evaluated in neuroprotection in neonatal injury models and preterm brain injury. However, the effects of EPO therapy on hippocampal neurogenesis and myelination in pediatric CH are unknown. We show that CH decreases hippocampal neurogenesis in a pediatric mouse model. This decrease in early and late progenitors, and actively dividing cells is rescued with EPO treatment. Furthermore, we show that CH during this critical time decreases oligodendrocyte progenitor (OPC) populations in the cortex, leading to defective myelination. However, EPO therapy is only able to rescue the OPC but not the loss of mature myelin. Overall, our findings demonstrate that CH in developing mice has significant effects on hippocampal neurogenesis and OPCs, which can be rescued with EPO treatment. Future studies should confirm the role of this FDA-approved therapy in neuroprotection in at-risk pediatric populations. PMID:25899777

  19. Resistance to Recombinant Human Erythropoietin Therapy in a Rat Model of Chronic Kidney Disease Associated Anemia.

    Science.gov (United States)

    Garrido, Patrícia; Ribeiro, Sandra; Fernandes, João; Vala, Helena; Rocha-Pereira, Petronila; Bronze-da-Rocha, Elsa; Belo, Luís; Costa, Elísio; Santos-Silva, Alice; Reis, Flávio

    2015-12-25

    This study aimed to elucidate the mechanisms explaining the persistence of anemia and resistance to recombinant human erythropoietin (rHuEPO) therapy in a rat model of chronic kidney disease (CKD)-associated anemia with formation of anti-rHuEPO antibodies. The remnant kidney rat model of CKD induced by 5/6 nephrectomy was used to test a long-term (nine weeks) high dose of rHuEPO (200 UI/kg bw/week) treatment. Hematological and biochemical parameters were evaluated as well as serum and tissue (kidney, liver and/or duodenum) protein and/or gene expression of mediators of erythropoiesis, iron metabolism and tissue hypoxia, inflammation, and fibrosis. Long-term treatment with a high rHuEPO dose is associated with development of resistance to therapy as a result of antibodies formation. In this condition, serum EPO levels are not deficient and iron availability is recovered by increased duodenal absorption. However, erythropoiesis is not stimulated, and the resistance to endogenous EPO effect and to rHuEPO therapy results from the development of a hypoxic, inflammatory and fibrotic milieu in the kidney tissue. This study provides new insights that could be important to ameliorate the current therapeutic strategies used to treat patients with CKD-associated anemia, in particular those that become resistant to rHuEPO therapy.

  20. Analgesic effect of gabapentin in a rat model for chronic constrictive injury

    Institute of Scientific and Technical Information of China (English)

    MA Lu-lu; LIU Wei; HUANG Yu-guang; YANG Nan; ZUO Ping-ping

    2011-01-01

    Background Gabapentin has been widely and successfully used in the clinic for many neuropathic pain syndromes since last decade,however its analgesic mechanisms are still elusive.Our study was to investigate whether Ca2+/calmodulin-dependent protein kinase II (CaMKII) contributes to the analgesic effect of gabapentin on a chronic constriction injury (CCI) model.Methods Gabapentin (2%,100 mg/kg) or saline (0.5 mil100 g) was injected intraperitoneally 15 minutes prior to surgery and then every 12 hours from postoperative day 0-4 to all rats in control,sham and CCI groups.The analgesic effect of gabapentin was assessed by measuring mechanical allodynia and thermal hyperalgesia of rats.Expression and activation of CaMKII were quantified by reverse-transcriptional polymerase chain reaction and Western blotting.Results The analgesic effect of gabapentin on mechanical allodynia and thermal hyperalgesia was significant in the CCI model,with maximal reduction reached on postoperative day 8.Gabapentin decreased the expression of the total CaMKII and phosphorylated CaMKII in CCI rats.Conclusion The analgesic effect of gabapentin on CCI rats may be related to the decreased expression and phosphorylation of CaMKII in the spinal cord.

  1. Establishing a predictive model for aspirin resistance in elderly Chinese patients with chronic cardiovascular disease

    Science.gov (United States)

    Cao, Jian; Hao, Wei-Jun; Gao, Ling-Gen; Chen, Tian-Meng; Liu, Lin; Sun, Yu-Fa; Hu, Guo-Liang; Hu, Yi-Xin; Fan, Li

    2016-01-01

    Background Resistance to anti-platelet therapy is detrimental to patients. Our aim was to establish a predictive model for aspirin resistance to identify high-risk patients and to propose appropriate intervention. Methods Elderly patients (n = 1130) with stable chronic coronary heart disease who were taking aspirin (75 mg) for > 2 months were included. Details of their basic characteristics, laboratory test results, and medications were collected. Logistic regression analysis was performed to establish a predictive model for aspirin resistance. Risk score was finally established according to coefficient B and type of variables in logistic regression. The Hosmer–Lemeshow (HL) test and receiver operating characteristic curves were performed to respectively test the calibration and discrimination of the model. Results Seven risk factors were included in our risk score. They were serum creatinine (> 110 μmol/L, score of 1); fasting blood glucose (> 7.0 mmol/L, score of 1); hyperlipidemia (score of 1); number of coronary arteries (2 branches, score of 2; ≥ 3 branches, score of 4); body mass index (20–25 kg/m2, score of 2; > 25 kg/m2, score of 4); percutaneous coronary intervention (score of 2); and smoking (score of 3). The HL test showed P ≥ 0.05 and area under the receiver operating characteristic curve ≥ 0.70. Conclusions We explored and quantified the risk factors for aspirin resistance. Our predictive model showed good calibration and discriminative power and therefore a good foundation for the further study of patients undergoing anti-platelet therapy. PMID:27594876

  2. PROVANN: Model System for Chronic Exposure of Larval and Adult Fish to Releases from Offshore Petroleum Platforms

    Energy Technology Data Exchange (ETDEWEB)

    Reed, M.; Rye, H. [IKU Petroleumsforskning A/S, Trondheim (Norway); Melbye, A.; Johnsen, S.

    1996-12-31

    Produced water from offshore oil and gas production platforms contains a variety of hydrocarbons, heavy metals, and production chemicals. Vertical and horizontal mixing generally brings concentrations in discharge plumes below level associated with acute effects within 500 or 1000 m of the source. Chronic effects outside this region remain a potential problem. The purpose of PROVANN, the system of models described in this paper, is to assess the potential for chronic effects from produced water. The preliminary focus is on potential bioaccumulation and boimagnification of produced water constituents in the marine food web. Other possible types of chronic effects, such as reduced fecundity, or pheromone response interference, can also be assessed to the extent that such effects may be correlated with exposure. PROVANN simulates 3-dimensional transport, dilution, and degradation of chemicals released into the water, from one or more simultaneous sources. 8 refs., 10 figs., 3 tabs.

  3. Chronic graft-versus-host disease in the rat radiation chimera. III. Immunology and immunopathology in rapidly induced models

    International Nuclear Information System (INIS)

    Although chronic graft-versus-host disease (GVHD) frequently develops in the long-term rat radiation chimera, we present three additional models in which a histologically similar disease is rapidly induced. These include adoptive transfer of spleen and bone marrow from rats with spontaneous chronic GVHD into lethally irradiated rats of the primary host strain; sublethal irradiation of stable chimeras followed by a booster transplant; and transfer of spleen cells of chimeras recovering from acute GVHD into second-party (primary recipient strain) or third-party hosts. Some immunopathologic and immune abnormalities associated with spontaneous chronic GVHD were not observed in one or more of the induced models. Thus, IgM deposition in the skin, antinuclear antibodies, and vasculitis appear to be paraphenomena. On the other hand, lymphoid hypocellularity of the thymic medulla, immaturity of splenic follicles, and nonspecific suppressor cells were consistently present in the long term chimeras, and in all models. These abnormalities therefore may be pathogenetically important, or closely related to the development of chronic GVHD

  4. Neuroprotective Effect of Compound Anisodine in a Mouse Model with Chronic Ocular Hypertension

    Institute of Scientific and Technical Information of China (English)

    Wen-Dong Liu; Lan-Lan Chen; Ce-Ying Shen; Li-Bin Jiang

    2015-01-01

    Background:Compound anisodine (CA) is a compound preparation made from hydrobromide anisodine and procaine hydrochloride.The former is an M-choline receptor blocker with the function of regulating the vegetative nervous system,improving microcirculation,and so on.The latter is an antioxidant with the activities ofneuroprotection.This study aimed to investigate the potential neuroprotection of CA,which affects the degeneration of the retinal ganglion cells (RGCs) in an animal model with chronic ocular hypertension.Methods:Female C57BL/6J mice (n =24) were divided randomly into four groups:Normal control group without any treatment (Group A,n =6);CA control group with feeding the CA solution (Group B,n =6);microbeads (MBs) control group with injecting MB into the anterior chamber (Group C,n =6);CA study group with MB injection and with feeding the CA solution (Group D,n =6).Intraocular pressure (IOP) was measured every 3 days after MB injection.At the 21st day,neurons were retrograde-labeled by Fluoro-Gold (FG).Animals were sacrificed on the 27th day.Retinal flat mounts were stained immunohistologically by β-Ⅲ-tubulin.FG-retrograde-labeled RGCs,β-Ⅲ-tubulin-positive RGCs,and β-Ⅲ-tubulin-positive nerve fibers were quantified.Results:Mice of Groups C and D expressed the incidence of consistent IOP elevation,which is above the IOP level of Group A with the normal one.There is no significant difference in IOP between Groups A and B (P > 0.05).On the 27th day,there were distinct loss in stained RGCs and nerve fibers from Groups C and D compared with Group A (all P < 0.00l).The quantity was significantly higher in Group D as compared to Group C (all P < 0.00l) but lower than Group A (all P < 0.001).There was no significant difference in the quantity of RGCs and nerve fibers between Groups A and B (all P > 0.05).Conclusions:These findings suggest that CA plays an importantly neuroprotective role on RGCs in a mouse model with chronic ocular hypertension.

  5. Modelling population-level consequences of chronic external gamma irradiation in aquatic invertebrates under laboratory conditions

    Energy Technology Data Exchange (ETDEWEB)

    Lance, Emilie [Laboratoire de modelisation pour l' expertise environnementale (LM2E) Institut de Radioprotection et de Surete Nucleaire (IRSN), PRP-ENV, SERIS, Cadarache (France); Alonzo, Frederic, E-mail: frederic.alonzo@irsn.fr [Laboratoire d' ecotoxicologie des radionucleides (LECO) Institut de Radioprotection et de Surete Nucleaire (IRSN), PRP-ENV, SERIS, Cadarache (France); Garcia-Sanchez, Laurent [Laboratoire de biogeochimie, biodisponibilite et transferts des radionucleides (L2BT) Institut de Radioprotection et de Surete Nucleaire (IRSN), PRP-ENV, SERIS, Cadarache (France); Beaugelin-Seiller, Karine; Garnier-Laplace, Jacqueline [Laboratoire de modelisation pour l' expertise environnementale (LM2E) Institut de Radioprotection et de Surete Nucleaire (IRSN), PRP-ENV, SERIS, Cadarache (France)

    2012-07-01

    We modelled population-level consequences of chronic external gamma irradiation in aquatic invertebrates under laboratory conditions. We used Leslie matrices to combine life-history characteristics (duration of life stages, survival and fecundity rates) and dose rate-response curves for hatching, survival and reproduction fitted on effect data from the FREDERICA database. Changes in net reproductive rate R{sub 0} (offspring per individual) and asymptotic population growth rate {lambda} (dimensionless) were calculated over a range of dose rates in two marine polychaetes (Neanthes arenaceodentata and Ophryotrocha diadema) and a freshwater gastropod (Physa heterostropha). Sensitivities in R{sub 0} and {lambda} to changes in life-history traits were analysed in each species. Results showed that fecundity has the strongest influence on R{sub 0}. A delay in age at first reproduction is most critical for {lambda} independent of the species. Fast growing species were proportionally more sensitive to changes in individual endpoints than slow growing species. Reduction of 10% in population {lambda} were predicted at dose rates of 6918, 5012 and 74,131 {mu}Gy{center_dot}h{sup -1} in N. arenaceodentata, O. diadema and P. heterostropha respectively, resulting from a combination of strong effects on several individual endpoints in each species. These observations made 10%-reduction in {lambda} a poor criterion for population protection. The lowest significant changes in R{sub 0} and {lambda} were respectively predicted at a same dose rate of 1412 {mu}Gy h{sup -1} in N. arenaceodentata, at 760 and 716 {mu}Gy h{sup -1} in O. diadema and at 12,767 and 13,759 {mu}Gy h{sup -1} in P. heterostropha. These values resulted from a combination of slight but significant changes in several measured endpoints and were lower than effective dose rates calculated for the individual level in O. diadema and P. heterostropha. The relevance of the experimental dataset (external irradiation rather

  6. Integrated palliative care in Europe: a qualitative systematic literature review of empirically-tested models in cancer and chronic disease

    OpenAIRE

    Siouta, Naouma; Beek, K.; van der Eerden, M. E.; Preston, N.; Hasselaar, J.G.; Hughes, S; GARRALDA, E.; Centeno, C. (Carlos); Csikos, A.; Groot, M. de; Radbruch, L.; Payne, S; Menten, J.

    2016-01-01

    Background Integrated Palliative Care (PC) strategies are often implemented following models, namely standardized designs that provide frameworks for the organization of care for people with a progressive life-threatening illness and/or for their (in)formal caregivers. The aim of this qualitative systematic review is to identify empirically-evaluated models of PC in cancer and chronic disease in Europe. Further, develop a generic framework that will consist of the basis for the design of futu...

  7. The Use of Amnion-Derived Cellular Cytokine Solution to Improve Healing in Acute and Chronic Wound Models

    OpenAIRE

    Franz, Michael G.; Payne, Wyatt G.; Xing, Liyu; Naidu, D. K; Salas, R. E; Marshall, Vivienne S.; Trumpower, C. J; Smith, Charlotte A; Steed, David L.; Robson, M. C.

    2008-01-01

    Objective: Growth factors demonstrate mixed results improving wound healing. Amnion-derived multipotent cells release physiologic levels of growth factors and tissue inhibitors of metalloproteinases. This solution was tested in models of acute and chronic wound healing. Methods: Acute model: Sprague-Dawley rats underwent laparotomy incisions. The midline fascia was primed with phosphate-buffered saline, unconditioned media, or amnion-derived cellular cytokine suspension prior to incision. Bre...

  8. Acute and chronic nociceptive phases observed in a rat hind paw ischemia/reperfusion model depend on different mechanisms.

    Science.gov (United States)

    Klafke, J Z; da Silva, M A; Rossato, M F; de Prá, S Dal Toé; Rigo, F K; Walker, C I B; Bochi, G V; Moresco, R N; Ferreira, J; Trevisan, G

    2016-02-01

    Complex regional pain syndrome type 1 (CRPS1) may be evoked by ischemia/reperfusion, eliciting acute and chronic pain that is difficult to treat. Despite this, the underlying mechanism of CRPS1 has not been fully elucidated. Therefore, the goal of this study is to evaluate the involvement of inflammation, oxidative stress, and the transient receptor potential ankyrin 1 (TRPA1) channel, a chemosensor of inflammation and oxidative substances, in an animal model of chronic post-ischemia pain (CPIP). Male Wistar rats were subjected to 3 h hind paw ischemia/reperfusion (CPIP model). Different parameters of nociception, inflammation, ischemia, and oxidative stress were evaluated at 1 (acute) and 14 (chronic) days after CPIP. The effect of a TRPA1 antagonist and the TRPA1 immunoreactivity were also observed after CPIP. In the CPIP acute phase, we observed mechanical and cold allodynia; increased levels of tumor necrosis factor-α (hind paw), ischemia-modified albumin (IMA) (serum), protein carbonyl (hind paw and spinal cord), lactate (serum), and 4-hydroxy-2-nonenal (4-HNE, hind paw and spinal cord); and higher myeloperoxidase (MPO) and N-acetyl-β-D-glucosaminidase (NAGase) activities (hind paw). In the CPIP chronic phase, we detected mechanical and cold allodynia and increased levels of IMA (serum), protein carbonyl (hind paw and spinal cord), and 4-HNE (hind paw and spinal cord). TRPA1 antagonism reduced mechanical and cold allodynia 1 and 14 days after CPIP, but no change in TRPA1 immunoreactivity was observed. Different mechanisms underlie acute (inflammation and oxidative stress) and chronic (oxidative stress) phases of CPIP. TRPA1 activation may be relevant for CRPS1/CPIP-induced acute and chronic pain. PMID:26490459

  9. Synergistic stress exacerbation in hippocampal neurons: Evidence favoring the dual-hit hypothesis of neurodegeneration.

    Science.gov (United States)

    Heinemann, Scott D; Posimo, Jessica M; Mason, Daniel M; Hutchison, Daniel F; Leak, Rehana K

    2016-08-01

    The dual-hit hypothesis of neurodegeneration states that severe stress sensitizes vulnerable cells to subsequent challenges so that the two hits are synergistic in their toxic effects. Although the hippocampus is vulnerable to a number of neurodegenerative disorders, there are no models of synergistic cell death in hippocampal neurons in response to combined proteotoxic and oxidative stressors, the two major characteristics of these diseases. Therefore, a relatively high-throughput dual-hit model of stress synergy was developed in primary hippocampal neurons. In order to increase the rigor of the study and strengthen the interpretations, three independent, unbiased viability assays were employed at multiple timepoints. Stress synergy was elicited when hippocampal neurons were treated with the proteasome inhibitor MG132 followed by exposure to the oxidative toxicant paraquat, but only after 48 h. MG132 and paraquat only elicited additive effects 24 h after the final hit and even loss of heat shock protein 70 activity and glutathione did not promote stress synergy at this early timepoint. Dual hits of MG132 elicited modest glutathione loss and slightly synergistic toxic effects 48 h after the second hit, but only at some concentrations and only according to two viability assays (metabolic fitness and cytoskeletal integrity). The thiol N-acetyl cysteine protected hippocampal neurons against dual MG132/MG132 hits but not dual MG132/paraquat hits. These findings support the view that proteotoxic and oxidative stress propel and propagate each other in hippocampal neurons, leading to synergistically toxic effects, but not as the default response and only after a delay. The neuronal stress synergy observed here lies in contrast to astrocytic responses to dual hits, because astrocytes that survive severe proteotoxic stress resist additional cell loss following second hits. In conclusion, a new model of hippocampal vulnerability was developed for the testing of therapies

  10. Repeated mild traumatic brain injury causes chronic neuroinflammation, changes in hippocampal synaptic plasticity, and associated cognitive deficits

    Science.gov (United States)

    Aungst, Stephanie L; Kabadi, Shruti V; Thompson, Scott M; Stoica, Bogdan A; Faden, Alan I

    2014-01-01

    Repeated mild traumatic brain injury (mTBI) can cause sustained cognitive and psychiatric changes, as well as neurodegeneration, but the underlying mechanisms remain unclear. We examined histologic, neurophysiological, and cognitive changes after single or repeated (three injuries) mTBI using the rat lateral fluid percussion (LFP) model. Repeated mTBI caused substantial neuronal cell loss and significantly increased numbers of activated microglia in both ipsilateral and contralateral hippocampus on post-injury day (PID) 28. Long-term potentiation (LTP) could not be induced on PID 28 after repeated mTBI in ex vivo hippocampal slices from either hemisphere. N-Methyl-D-aspartate (NMDA) receptor-mediated responses were significantly attenuated after repeated mTBI, with no significant changes in α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor-mediated responses. Long-term potentiation was elicited in slices after single mTBI, with potentiation significantly increased in ipsilateral versus contralateral hippocampus. After repeated mTBI, rats displayed cognitive impairments in the Morris water maze (MWM) and novel object recognition (NOR) tests. Thus, repeated mTBI causes deficits in the hippocampal function and changes in excitatory synaptic neurotransmission, which are associated with chronic neuroinflammation and neurodegeneration. PMID:24756076

  11. Elevation of neuron specific enolase and brain iron deposition on susceptibility-weighted imaging as diagnostic clues for beta-propeller protein-associated neurodegeneration in early childhood: Additional case report and review of the literature.

    Science.gov (United States)

    Takano, Kyoko; Shiba, Naoko; Wakui, Keiko; Yamaguchi, Tomomi; Aida, Noriko; Inaba, Yuji; Fukushima, Yoshimitsu; Kosho, Tomoki

    2016-02-01

    Beta-propeller protein-associated neurodegeneration (BPAN), also known as static encephalopathy of childhood with neurodegeneration in adulthood (SENDA), is a subtype of neurodegeneration with brain iron accumulation (NBIA). BPAN is caused by mutations in an X-linked gene WDR45 that is involved in autophagy. BPAN is characterized by developmental delay or intellectual disability until adolescence or early adulthood, followed by severe dystonia, parkinsonism, and progressive dementia. Brain magnetic resonance imaging (MRI) shows iron deposition in the bilateral globus pallidus (GP) and substantia nigra (SN). Clinical manifestations and laboratory findings in early childhood are limited. We report a 3-year-old girl with BPAN who presented with severe developmental delay and characteristic facial features. In addition to chronic elevation of serum aspartate transaminase, lactate dehydrogenase, creatine kinase, and soluble interleukin-2 receptor, she had persistent elevation of neuron specific enolase (NSE) in serum and cerebrospinal fluid. MRI using susceptibility-weighted imaging (SWI) demonstrated iron accumulation in the GP and SN bilaterally. Targeted next-generation sequencing identified a de novo splice-site mutation, c.831-1G>C in WDR45, which resulted in aberrant splicing evidenced by reverse transcriptase-PCR. Persistent elevation of NSE and iron deposition on SWI may provide clues for diagnosis of BPAN in early childhood. PMID:26481852

  12. Role of bile acids, prostaglandins and COX inhibitors in chronic esophagitis in a mouse model

    Institute of Scientific and Technical Information of China (English)

    C Poplawski; D Sosnowski; A Szaflarska-Poplawska; J Sarosiek; R McCallum; Z Bartuzi

    2006-01-01

    33 %). In HCl/P/BA/INDO group the esophagitis surface was larger than that in not treated group (33%). In HCL/P group the surface of esophagus with ulceration was significantly larger (10-fold) than that in HCl/P/BA group. The PGE2 concentration was significantly higher in HCl/P group than in HCl/P/BA group.The PGE2 concentration in lower part of esophagus was also significantly higher in middle than those in HCl and HCl/P/BA groups. In upper part of esophagus the PGE2 concentration was significantly higher in HCl/P/BA group than that in group treated with indometacine (46%). We also observed higher PGE2 concentration in middle part of esophagus in HCl/P/BA group than those in group treated with indometacine and in group treated with indometacin and NS-398 (by 52% and 43% respectively).CONCLUSION: Pepsin is the pivotal factor in the development of chronic esophageal injury. Bile acids diminish chronic esophageal injury induced by HCl/P, indicating its potential negative impact on pepsin proteolytic potential,pivotal for mucosal injury in low pH. The role of selective COX inhibitors is still unclear, and needs more investigations. This novel chronic experimental esophagitis is an excellent model for further study on the role of cytokines in genetically modified animals.

  13. Is unpredictable chronic mild stress (UCMS) a reliable model to study depression-induced neuroinflammation?

    Science.gov (United States)

    Farooq, Rai Khalid; Isingrini, Elsa; Tanti, Arnaud; Le Guisquet, Anne-Marie; Arlicot, Nicolas; Minier, Frederic; Leman, Samuel; Chalon, Sylvie; Belzung, Catherine; Camus, Vincent

    2012-05-16

    Unipolar depression is one of the leading causes of disability. The pathophysiology of depression is poorly understood. Evidence suggests that inflammation is associated with depression. For instance, pro-inflammatory cytokines are found to be elevated in the peripheral blood of depressed subjects. Cytokine immunotherapy itself is known to induce depressive symptoms. While the epidemiological and biochemical relationship between inflammation and depression is strong, little is known about the possible existence of neuroinflammation in depression. The use of animal models of depression such as the Unpredictable Chronic Mild Stress (UCMS) has already contributed to the elucidation of the pathophysiological mechanisms of depression such as decreased neurogenesis and HPA axis alterations. We used this model to explore the association of depressive-like behavior in mice with changes in peripheral pro-inflammatory cytokines IL-1β, TNFα and IL-6 level as well as the neuroinflammation by quantifying CD11b expression in brain areas known to be involved in the pathophysiology of depression. These areas include the cerebral cortex, the nucleus accumbens, the bed nucleus of the stria terminalis, the caudate putamen, the amygdala and the hippocampus. The results indicate that microglial activation is significantly increased in the infralimbic, cingulate and medial orbital cortices, nucleus accumbens, caudate putamen, amygdala and hippocampus of the mouse brain as a function of UCMS, while levels of pro-inflammatory cytokines did not differ among the groups. This finding suggests that neuroinflammation occurs in depression and may be implicated in the subject's behavioral response. They also suggest that UCMS could be a potentially reliable model to study depression-induced neuroinflammation. PMID:22465167

  14. Modeling routes of chronic wasting disease transmission: Environmental prion persistence promotes deer population decline and extinction

    Science.gov (United States)

    Almberg, Emily S.; Cross, Paul C.; Johnson, Christopher J.; Heisey, Dennis M.; Richards, Bryan J.

    2011-01-01

    Chronic wasting disease (CWD) is a fatal disease of deer, elk, and moose transmitted through direct, animal-to-animal contact, and indirectly, via environmental contamination. Considerable attention has been paid to modeling direct transmission, but despite the fact that CWD prions can remain infectious in the environment for years, relatively little information exists about the potential effects of indirect transmission on CWD dynamics. In the present study, we use simulation models to demonstrate how indirect transmission and the duration of environmental prion persistence may affect epidemics of CWD and populations of North American deer. Existing data from Colorado, Wyoming, and Wisconsin's CWD epidemics were used to define plausible short-term outcomes and associated parameter spaces. Resulting long-term outcomes range from relatively low disease prevalence and limited host-population decline to host-population collapse and extinction. Our models suggest that disease prevalence and the severity of population decline is driven by the duration that prions remain infectious in the environment. Despite relatively low epidemic growth rates, the basic reproductive number, R0, may be much larger than expected under the direct-transmission paradigm because the infectious period can vastly exceed the host's life span. High prion persistence is expected to lead to an increasing environmental pool of prions during the early phases (i.e. approximately during the first 50 years) of the epidemic. As a consequence, over this period of time, disease dynamics will become more heavily influenced by indirect transmission, which may explain some of the observed regional differences in age and sex-specific disease patterns. This suggests management interventions, such as culling or vaccination, will become increasingly less effective as CWD epidemics progress.

  15. COMMD1-deficient dogs accumulate copper in hepatocytes and provide a good model for chronic hepatitis and fibrosis.

    Directory of Open Access Journals (Sweden)

    Robert P Favier

    Full Text Available New therapeutic concepts developed in rodent models should ideally be evaluated in large animal models prior to human clinical application. COMMD1-deficiency in dogs leads to hepatic copper accumulation and chronic hepatitis representing a Wilson's disease like phenotype. Detailed understanding of the pathogenesis and time course of this animal model is required to test its feasibility as a large animal model for chronic hepatitis. In addition to mouse models, true longitudinal studies are possible due to the size of these dogs permitting detailed analysis of the sequence of events from initial insult to final cirrhosis. Therefore, liver biopsies were taken each half year from five new born COMMD1-deficient dogs over a period of 42 months. Biopsies were used for H&E, reticulin, and rubeanic acid (copper staining. Immunohistochemistry was performed on hepatic stellate cell (HSC activation marker (alpha-smooth muscle actin, α-SMA, proliferation (Ki67, apoptosis (caspase-3, and bile duct and liver progenitor cell (LPC markers keratin (K 19 and 7. Quantitative RT-PCR and Western Blots were performed on gene products involved in the regenerative and fibrotic pathways. Maximum copper accumulation was reached at 12 months of age, which coincided with the first signs of hepatitis. HSCs were activated (α-SMA from 18 months onwards, with increasing reticulin deposition and hepatocytic proliferation in later stages. Hepatitis and caspase-3 activity (first noticed at 18 months increased over time. Both HGF and TGF-β1 gene expression peaked at 24 months, and thereafter decreased gradually. Both STAT3 and c-MET showed an increased time-dependent activation. Smad2/3 phosphorylation, indicative for fibrogenesis, was present at all time-points. COMMD1-deficient dogs develop chronic liver disease and cirrhosis comparable to human chronic hepatitis, although at much higher pace. Therefore they represent a genetically-defined large animal model to test clinical

  16. Different susceptibility to neurodegeneration of dorsal and ventral hippocampal dentate gyrus: a study with transgenic mice overexpressing GSK3β.

    Directory of Open Access Journals (Sweden)

    Almudena Fuster-Matanzo

    Full Text Available Dorsal hippocampal regions are involved in memory and learning processes, while ventral areas are related to emotional and anxiety processes. Hippocampal dependent memory and behaviour alterations do not always come out in neurodegenerative diseases at the same time. In this study we have tested the hypothesis that dorsal and ventral dentate gyrus (DG regions respond in a different manner to increased glycogen synthase kinase-3β (GSK3β levels in GSK3β transgenic mice, a genetic model of neurodegeneration. Reactive astrocytosis indicate tissue stress in dorsal DG, while ventral area does not show that marker. These changes occurred with a significant reduction of total cell number and with a significantly higher level of cell death in dorsal area than in ventral one as measured by fractin-positive cells. Biochemistry analysis showed higher levels of phosphorylated GSK3β in those residues that inactivate the enzyme in hippocampal ventral areas compared with dorsal area suggesting that the observed susceptibility is in part due to different GSK3 regulation. Previous studies carried out with this animal model had demonstrated impairment in Morris Water Maze and Object recognition tests point out to dorsal hippocampal atrophy. Here, we show that two tests used to evaluate emotional status, the light-dark box and the novelty suppressed feeding test, suggest that GSK3β mice do not show any anxiety-related disorder. Thus, our results demonstrate that in vivo overexpression of GSK3β results in dorsal but not ventral hippocampal DG neurodegeneration and suggest that both areas do not behave in a similar manner in neurodegenerative processes.

  17. Alterations of taurine in the brain of chronic kainic acid epilepsy model.

    Science.gov (United States)

    Baran, H

    2006-10-01

    The aim of the study was to investigate the changes of taurine in the kainic acid (KA, 10 mg/kg, s.c.) chronic model of epilepsy, six months after KA application. The KA-rats used were divided into a group of animals showing weak behavioural response to KA (WDS, rare focal convulsion; rating scale 3 up to 3 h after KA injection). The brain regions investigated were caudate nucleus, substantia nigra, septum, hippocampus, amygdala/piriform cortex, and frontal, parietal, temporal and occipital cortices. KA-rats with rating rats with rating >3 developed spontaneous recurrent seizures and six months after injection increased taurine levels were found in the caudate nucleus (162.5% of control) and hippocampus (126.6% of control), while reduced taurine levels were seen in the septum (78.2% of control). In summary, increased taurine levels in the hippocampus may involve processes for membrane stabilisation, thus favouring recovery after neuronal hyperactivity. The increased taurine levels in the caudate nucleus could be involved in the modulation of spontaneous recurrent seizure activity.

  18. Thiazolidinedione treatment inhibits bile duct proliferation and fibrosis in a rat model of chronic cholestasis

    Institute of Scientific and Technical Information of China (English)

    Fabio Marra; Carlo Spirli; Mario Strazzabosco; Massimo Pinzani; Maurizio Parola; Raffaella DeFranco; Gaia Robino; Erica Novo; Eva Efsen; Sabrina Pastacaldi; Elena Zamara; Alessandro Vercelli; Benedetta Lottini

    2005-01-01

    AIM: To investigate the effects of troglitazone (TGZ), an anti-diabetic drug which activates peroxisome proliferatoractivated receptor-γ (PPAR-γ), for liver tissue repair, and the development of ductular reaction, following common bile duct ligation (BDL) in rats.METHODS: Rats were supplemented with TGZ (0.2% w/w in the pelleted food) for 1 wk before BDL or sham operation.Animals were killed at 1, 2, or 4 wk after surgery.RESULTS: The development of liver fibrosis was reduced in rats receiving TGZ, as indicated by significant decreases of procollagen type Ⅰ gene expression and liver hydroxyproline levels. Accumulation of α-smooth-muscle actin (SMA)-expressing cells surrounding newly formed bile ducts following BDL, as well as total hepatic levels of SMA were partially inhibited by TGZ treatment, indicating the presence of a reduced number and/or activation of hepatic stellate cells (HSC) and myofibroblasts. Development of the ductular reaction was inhibited by TGZ, as indicated by histochemical evaluation and hepatic activity of γ-glutamyltransferase (GGT).CONCLUSION: Treatment with thiazolidinedione reduces ductular proliferation and fibrosis in a model of chronic cholestasis, and suggests that limiting cholangiocyte proliferation may contribute to the lower development of scarring in this system.

  19. Optical coherence tomography (OCT) of a murine model of chronic kidney disease

    Science.gov (United States)

    Wang, Hsing-Wen; Guo, Hengchang; Andrews, Peter M.; Anderson, Erik; Chen, Y.

    2015-03-01

    Chronic Kidney Disease (CKD) is characterized by a progressive loss in renal function over time. Pathology can provide valuable insights into the progression of CKD by analyzing the status of glomeruli and the uriniferous tubules over time. Optical coherence tomography (OCT) is a new procedure that can analyze the microscopic structure of the kidney in a non-invasive manner. This is especially important because there are significant artifacts associated with excision biopsies and immersion fixation procedures. Recently, we have shown that OCT can provide real time images of kidney microstructure and Doppler OCT (DOCT) can image glomerular renal blood flow in vivo without administrating exogenous contrast agents. In this study, we used OCT to evaluate CKD in a model induced by intravenous Adriamycin injection into Munich-Wistar rats. We evaluated tubular density and tubular diameter from OCT images at several post- Adriamycin induction time points and compared them with conventional light microscopic histological imaging. Proteinurea and serum creatinine were used as physiological markers of the extent of CKD. Preliminary OCT results revealed changes in tubular density due to tubular necrosis and interstitial fibrosis within the first 4 weeks following Adriamycin injection. From week 4 to 8 after Adriamycin induction, changes in tubular density and diameter occurred due to both tubular loss and tubular dilation. The results suggest OCT can provide additional information about kidney histopathology in CKD. DOCT revealed reduced blood flow in some glomeruli probably as a consequence of focal glomerularsclerosis.

  20. Protective role of hydrogen sulfide against noise-induced cochlear damage: a chronic intracochlear infusion model.

    Directory of Open Access Journals (Sweden)

    Xu Li

    Full Text Available BACKGROUND: A reduction in cochlear blood flow plays an essential role in noise-induced hearing loss (NIHL. The timely regulation of cochlear perfusion determines the progression and prognosis of NIHL. Hydrogen sulfide (H(2S has attracted increasing interest as a vasodilator in cardiovascular systems. This study identified the role of H(2S in cochlear blood flow regulation and noise protection. METHODOLOGY/PRINCIPAL FINDINGS: The gene and protein expression of the H(2S synthetase cystathionine-γ-lyase (CSE in the rat cochlea was examined using immunofluorescence and real-time PCR. Cochlear CSE mRNA levels varied according to the duration of noise exposure. A chronic intracochlear infusion model was built and artificial perilymph (AP, NaHS or DL-propargylglycine (PPG were locally administered. Local sodium hydrosulfide (NaHS significantly increased cochlear perfusion post-noise exposure. Cochlear morphological damage and hearing loss were alleviated in the NaHS group as measured by conventional auditory brainstem response (ABR, cochlear scanning electron microscope (SEM and outer hair cell (OHC count. The highest percentage of OHC loss occurred in the PPG group. CONCLUSIONS/SIGNIFICANCE: Our results suggest that H(2S plays an important role in the regulation of cochlear blood flow and the protection against noise. Further studies may identify a new preventive and therapeutic perspective on NIHL and other blood supply-related inner ear diseases.

  1. Complement protein C3 exacerbates prion disease in a mouse model of chronic wasting disease.

    Science.gov (United States)

    Michel, Brady; Ferguson, Adam; Johnson, Theodore; Bender, Heather; Meyerett-Reid, Crystal; Wyckoff, A Christy; Pulford, Bruce; Telling, Glenn C; Zabel, Mark D

    2013-12-01

    Accumulating evidence shows a critical role of the complement system in facilitating attachment of prions to both B cells and follicular dendritic cells and assisting in prion replication. Complement activation intensifies disease in prion-infected animals, and elimination of complement components inhibits prion accumulation, replication and pathogenesis. Chronic wasting disease (CWD) is a highly infectious prion disease of captive and free-ranging cervid populations that utilizes the complement system for efficient peripheral prion replication and most likely efficient horizontal transmission. Here we show that complete genetic or transient pharmacological depletion of C3 prolongs incubation times and significantly delays splenic accumulation in a CWD transgenic mouse model. Using a semi-quantitative prion amplification scoring system we show that C3 impacts disease progression in the early stages of disease by slowing the rate of prion accumulation and/or replication. The delayed kinetics in prion replication correlate with delayed disease kinetics in mice deficient in C3. Taken together, these data support a critical role of C3 in peripheral CWD prion pathogenesis. PMID:24038599

  2. Cannabinoid CB2 receptor-mediated anti-nociception in models of acute and chronic pain.

    Science.gov (United States)

    Jhaveri, Maulik D; Sagar, Devi R; Elmes, Steven J R; Kendall, David A; Chapman, Victoria

    2007-08-01

    The endocannabinoid system consists of cannabinoid CB(1) and CB(2) receptors, endogenous ligands and their synthesising/metabolising enzymes. Cannabinoid receptors are present at key sites involved in the relay and modulation of nociceptive information. The analgesic effects of cannabinoids have been well documented. The usefulness of nonselective cannabinoid agonists can, however, be limited by psychoactive side effects associated with activation of CB(1) receptors. Following the recent evidence for CB(2) receptors existing in the nervous system and reports of their up-regulation in chronic pain states and neurodegenerative diseases, much research is now aimed at shedding light on the role of the CB(2) receptor in human disease. Recent studies have demonstrated anti-nociceptive effects of selective CB(2) receptor agonists in animal models of pain in the absence of CNS side effects. This review focuses on the analgesic potential of CB(2) receptor agonists for inflammatory, post-operative and neuropathic pain states and discusses their possible sites and mechanisms of action.

  3. Effects of melatonin in experimental stroke models in acute, sub-acute, and chronic stages

    Directory of Open Access Journals (Sweden)

    Hsiao-Wen Lin

    2009-03-01

    Full Text Available Hsiao-Wen Lin, E-Jian LeeNeurophysiology Laboratory, Neurosurgical Service, Department of Surgery, National Cheng Kung University Medical Center and Medical School, Tainan, TaiwanAbstract: Melatonin (N-acetyl-5-methoxy-tryptamine, a naturally occurring indole produced mainly by the pineal gland, is a well known antioxidant. Stroke (cerebral ischemia is the second leading cause of death worldwide. To date, however, effective and safe treatment for stroke remains unavailable. Melatonin is both lipid- and water-soluble and readily crosses the blood–brain barrier (BBB. Increasing evidence has shown that, in animal stroke models, administering melatonin significantly reduces infarct volume, edema, and oxidative damage and improves electrophysiological and behavioral performance. Here, we reviewed studies that assess effects of melatonin on cerebral ischemia in acute, sub-acute, and chronic stages. In addition to its potent antioxidant properties, melatonin exerts antiapoptotic, antiexcitotoxic, anti-inflammatory effects and promotes mitochondrial functions in animals with cerebral ischemia. Given that melatonin shows almost no toxicity to humans and possesses multifaceted protective capacity against cerebral ischemia, it is valuable to consider using melatonin in clinical trials on patients suffering from stroke.Keywords: cerebral ischemia, melatonin, stroke, neuroprotection

  4. Strain differences in the chronic mild stress animal model of depression.

    Science.gov (United States)

    Wu, Hsiao Hua; Wang, Sabrina

    2010-11-12

    Hypothalamic-pituitary-adrenal (HPA) axis dysfunction has been implicated in depression pathology. In the present study, we used a chronic mild stress (CMS) animal model of depression to examine the responses of three strains of rats that have different HPA axis responsiveness; and whether the behavioral changes observed are correlated with changes in hippocampal cell proliferation and survival. In addition, in most of the CMS experiments the rats are kept in singly housed condition. Since rats are social animals we also examined whether prolonged single housing condition affects the behavior of the rats. The results showed that rats with a hyperactive HPA axis, the inbred Fischer (F344) rat, were the most responsive to CMS. The inbred Lewis (LEW) rat, which has a hypoactive HPA axis, did not show anhedonia after CMS treatment but showed other signs of distress. The responses of the outbred Sprague-Dawley (SD) rats were variable; this strain was very sensitive to the single housing condition. Prolonged single housing condition itself could induce helplessness behavior in the rats. The results from hippocampal cell proliferation of the three strains indicated that cell proliferation was not related to anhedonia induced by CMS. We conclude that F344 rat is the strain most sensitive to CMS treatment and is probably the stain of choice for CMS experiments. PMID:20438768

  5. Effects of Shuyusan on monoamine neurotransmitters expression in a rat model of chronic stress-induced depression

    Institute of Scientific and Technical Information of China (English)

    Yuanyuan Zhang; Jianjun Jia; Liping Chen; Zhitao Han; Yulan Zhao; Honghong Zhang; Yazhuo Hu

    2011-01-01

    Shuyusan, a traditional Chinese medicine, was shown to improve depression symptoms and behavioral scores, as well as increase 5-hydroxytryptamine (5-HT), 5-hydroxyindoleacetic acid, and 5-hydroxytryptophan levels, in a rat model of chronic stress-induced depression. However, dopamine, noradrenalin, and 3-methoxy-4-hydroxyphenylglycol expressions remained unchanged following Shuyusan treatment. Compared with the model group, the number of 5-HT-positive neurons in layers 4-5 of the frontal cortex, as well as hippocampal CA1 and CA3 regions, significantly increased following Shuyusan treatment. These results suggested that Shuyusan improved symptoms in a rat model of chronic stress-induced depression with mechanisms that involved 5-HT, 5-HT metabolite, 5-HT precursor expressions.

  6. Interleukin-33 Drives Activation of Alveolar Macrophages and Airway Inflammation in a Mouse Model of Acute Exacerbation of Chronic Asthma

    Directory of Open Access Journals (Sweden)

    Melissa M. Bunting

    2013-01-01

    Full Text Available We investigated the role of interleukin-33 (IL-33 in airway inflammation in an experimental model of an acute exacerbation of chronic asthma, which reproduces many of the features of the human disease. Systemically sensitized female BALB/c mice were challenged with a low mass concentration of aerosolized ovalbumin for 4 weeks to induce chronic asthmatic inflammation and then received a single moderate-level challenge to trigger acute airway inflammation simulating an asthmatic exacerbation. The inflammatory response and expression of cytokines and activation markers by alveolar macrophages (AM were assessed, as was the effect of pretreatment with a neutralizing antibody to IL-33. Compared to chronically challenged mice, AM from an acute exacerbation exhibited significantly enhanced expression of markers of alternative activation, together with enhanced expression of proinflammatory cytokines and of cell surface proteins associated with antigen presentation. In parallel, there was markedly increased expression of both mRNA and immunoreactivity for IL-33 in the airways. Neutralization of IL-33 significantly decreased both airway inflammation and the expression of proinflammatory cytokines by AM. Collectively, these data indicate that in this model of an acute exacerbation of chronic asthma, IL-33 drives activation of AM and has an important role in the pathogenesis of airway inflammation.

  7. The experimental study of 32P-colloid perfusion therapy in the animal-models of chronic maxillary sinusitis

    International Nuclear Information System (INIS)

    Objective: To search for the mechanism of 32P-colloid perfusion therapy in the animal models of chronic maxillary sinusitis. Methods: 32P-colloid were injected into the male sheep maxillary sinuses of the animal-models of chronic maxillary sinusitis in different dosage group. The changes of bacteria and mucosael pathomorphology were observed by periodic germiculture and pathology in 1,3,6 months after injection. Results: After 32P-colloid perfusion therapy, the amounts of bacterial species and chronic phlogistic cells were remarkable reduced, and the structure of cilia cells did not change. The curable rate was 83.3% in 6 months. There were remarkable difference in groups. Conclusions: 32P-colloid was provided with antibiosis and reducing chronic phlogistic responses. The authors had found the optimal dose of 32P-colloid perfusion in the maxillary sinuses through the study. The curable rate of single dose of 32P-colloid perfusion in the maxillary sinuses was higher than other therapy, 32P-colloid perfusion was simple and convenient. There was high selectivity of 32P in the target organ, when there was no effect on other important organs through radiobiological measurement. (authors)

  8. Multivariate profiling of neurodegeneration-associated changes in a subcellular compartment of neurons via image processing

    Directory of Open Access Journals (Sweden)

    Kumarasamy Saravana K

    2008-11-01

    differentiates all three bchs phenotypes (loss of function as well as overexpression from the wild type. Conclusion Our model demonstrates that neurodegeneration-associated endolysosomal defects can be detected, analyzed, and classified rapidly and accurately as a diagnostic imaging-based screening tool.

  9. The minipig as a new model for the evaluation of doxorubicin-induced chronic toxicity.

    Science.gov (United States)

    Manno, Rosa Anna; Grassetti, Andrea; Oberto, Germano; Nyska, Abraham; Ramot, Yuval

    2016-08-01

    Doxorubicin can cause life-threatening toxic effects in several organs, with cardiotoxicity being the major concern. Although a large number of animal models have been utilized to study doxorubicin toxicity, several restrictions limit their use. Since the Göttingen minipig is an accepted species for non-clinical safety assessment and translation to man, we aimed at exploring its use as a non-rodent animal model for safety assessment and regulatory toxicity studies using doxorubicin. Three groups of three males and three females adult Göttingen minipigs received 1.5 mg kg(-1) , 3/2.3 mg kg(-1) or vehicle at intervals of 3 weeks for 7 cycles. Doxorubicin treatment resulted in a dose-related decrease in the erythrocytes, hemoglobin and hematocrit count, accompanied by leukopenia and thrombocytopenia. Bone marrow smears revealed dose-related hypocellularity. Urea and creatinine levels were elevated in treated animals, associated with proteinuria and hematuria. Histopathological evaluation detected nephropathy and atrophy of hematopoietic tissues/organs, mucosa of the intestinal tract and male genital tract. Cardiac lesions including chronic inflammation, endocardial hyperplasia, hemorrhage and myxomatous changes were evident in hematoxylin and eosin stains, and evaluation of semi-thin sections showed the presence of dose-related vacuolation in the atrial and ventricular cardiomyocytes. Cardiac troponin levels were increased in the high-dose group, but there was no direct correlation to the severity of the histopathological lesions. This study confirms that the Göttingen minipig has a comparable toxicity profile to humans and considering its anatomical, physiological, genetic and biochemical resemblance to humans, it should be considered as the non-rodent species of choice for studies on doxorubicin toxicity. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26614124

  10. The treatment of Uygur medicine Dracocephalum moldavica L on chronic mountain sickness rat model

    Directory of Open Access Journals (Sweden)

    Dilinuer Maimaitiyiming

    2014-01-01

    Full Text Available Aim: Dracocephalum moldavica L, a traditional Uygur medicine, possesses some key cardiac activities. However, till date, no reports are available on the use of D. moldavica against chronic mountain sickness (CMS, which is a medical condition that affects the residents of high altitude. The present study was designed to explore the treatment efficacy of D. moldavica on CMS. Materials and Methods: 80 of the 100 Sprague Dawley rats enrolled were bred in simulated high altitude environment and the remaining 20 rats were kept in the plains. Water and alcohol extracts of D. moldavica were prepared. CMS rat model was prepared, and the rat hearts were removed for histopathological analysis. Blood samples were taken for hematological and biochemical analyses. Rat pulmonary artery pressure was determined to study the treatment efficacy. Results: In the CMS model group, the levels of interleukin-6 (IL-6, C-reactive protein (CRP, and malondialdehyde (MDA were found to be significantly higher than the control group; while the concentrations of SOD and GSH-Px decreased. D. moldavica could improve these levels, decrease pulmonary artery pressure, and improve the cardiac pathological state. Conclusions: The study results show that IL-6, CRP, MDA, SOD and GSH-Px participate and mediate the formation of CMS and D. moldavica is found to possess noticeable effects on CMS. The present study explored the basics of high altitude sickness and laid the foundation for further progress of Uygur medicines on the treatment of altitude sickness. Further preclinical and clinical studies with more sample size are recommended.

  11. Developmental toxicity of toluene in male rats: effects on semen quality, testis morphology, and apoptotic neurodegeneration

    DEFF Research Database (Denmark)

    Dalgaard, M.; Hossaini, A.; Hougaard, K.S.;

    2001-01-01

    differences between toluene-exposed animals and control animals. In the hippocampus! almost no apoptosis was observed in any age group, and there were no differences in apoptotic neurodegeneration between male rats exposed to 1800 ppm and control animals at PND 11, 21 or 90. Generally. a marked increase...

  12. Metallothionein prevents neurodegeneration and central nervous system cell death after treatment with gliotoxin 6-aminonicotinamide

    DEFF Research Database (Denmark)

    Penkowa, Milena; Quintana, Albert; Carrasco, Javier;

    2004-01-01

    Transgenic expression of interleukin-6 (IL-6) in the CNS under the control of the glial fibrillary acidic protein (GFAP) gene promoter (GFAP-IL6 mice) induces significant inflammation and neurodegeneration but also affords neuroprotection against acute traumatic brain injury. This neuroprotection...

  13. Chronic Exposure to Beta-Blockers Attenuates Inflammation and Mucin Content in a Murine Asthma Model

    OpenAIRE

    Nguyen, Long P.; Omoluabi, Ozozoma; Parra, Sergio; Frieske, Joanna M.; Clement, Cecilia; Ammar-Aouchiche, Zoulikha; Ho, Samuel B.; Ehre, Camille; Kesimer, Mehmet; Knoll, Brian J.; Tuvim, Michael J; Dickey, Burton F.; Bond, Richard A.

    2007-01-01

    Single-dose administration of beta-adrenoceptor agonists produces bronchodilation and inhibits airway hyperresponsiveness (AHR), and is the standard treatment for the acute relief of asthma. However, chronic repetitive administration of beta-adrenoceptor agonists may increase AHR, airway inflammation, and risk of death. Based upon the paradigm shift that occurred with the use of beta-blockers in congestive heart failure, we previously determined that chronic administration of beta-blockers de...

  14. Protective mechanisms of garlic and wolfberry derivatives on acute and chronic liver injury animal models

    OpenAIRE

    Xiao, Jia; 肖佳

    2012-01-01

    Liver is one of the most important organs in the body that maintains the homeostasis of metabolism, immunity, detoxification and hematopoiesis. A large number of acute and chronic intoxications and diseases can influence the normal functions of the liver, leading to irreversible liver damage and even cancer. Currently, applying herbs or herbal derivatives in the prevention and therapy of acute and chronic liver injury receive numerous attentions since they hold great potentials as food supple...

  15. Performances of models for predicting mercury concentrations in fresh-water fish after chronic releases into rivers

    International Nuclear Information System (INIS)

    The performances of assessment models for estimating the transfer and bioaccumulation of mercury in fresh-water ecosystems were tested by being applied to a test scenario proposed in an international cooperative study BIOMOVS. Two kinds of models have been developed to estimate mercury concentrations in fish after chronic releases into rivers. One uses a bioaccumulation factor approach which is applied to ecosystems in equilibrium, whereas the other is a dynamic model which considers the change of the concentrations in water and the metabolism in fish. The success of the models tested by three different scenarios depended upon whether mercury was in equilibrium in the environment. For the scenario where mercury concentrations reached equilibrium, the first model performed satisfactorily. For the scenario where equilibrium was not attained, the first model was not adequate but the second model could predict more accurately. The limitations of applications were suggested for the two models employed here. (author)

  16. A comparative study of matrix remodeling in chronic models for COPD; mechanistic insights into the role of TNF-α.

    Science.gov (United States)

    Eurlings, Irene M J; Dentener, Mieke A; Mercken, Evi M; de Cabo, Rafael; Bracke, Ken R; Vernooy, Juanita H J; Wouters, Emiel F M; Reynaert, Niki L

    2014-10-01

    Remodeling in chronic obstructive pulmonary disease (COPD) has at least two dimensions: small airway wall thickening and destruction of alveolar walls. Recently we showed comparable alterations of the extracellular matrix (ECM) compounds collagen, hyaluoran, and elastin in alveolar and small airway walls of COPD patients. The aim of this study was to characterize and assess similarities in alveolar and small airway wall matrix remodeling in chronic COPD models. From this comparative characterization of matrix remodeling we derived and elaborated underlying mechanisms to the matrix changes reported in COPD. Lung tissue sections of chronic models for COPD, either induced by exposure to cigarette smoke, chronic intratracheal lipopolysaccharide instillation, or local tumor necrosis factor (TNF) expression [surfactant protein C (SPC)-TNFα mice], were stained for elastin, collagen, and hyaluronan. Furthermore TNF-α matrix metalloproteinase (MMP)-2, -9, and -12 mRNA expression was analyzed using qPCR and localized using immunohistochemistry. Both collagen and hyaluronan were increased in alveolar and small airway walls of all three models. Interestingly, elastin contents were differentially affected, with a decrease in both alveolar and airway walls in SPC-TNFα mice. Furthermore TNF-α and MMP-2 and -9 mRNA and protein levels were found to be increased in alveolar walls and around airway walls only in SPC-TNFα mice. We show that only SPC-TNFα mice show changes in elastin remodeling that are comparable to what has been observed in COPD patients. This reveals that the SPC-TNFα model is a suitable model to study processes underlying matrix remodeling and in particular elastin breakdown as seen in COPD. Furthermore we indicate a possible role for MMP-2 and MMP-9 in the breakdown of elastin in airways and alveoli of SPC-TNFα mice. PMID:25106431

  17. Protective effects of isolated polyphenolic and alkaloid fractions of Ruta graveolens L. on acute and chronic models of inflammation.

    Science.gov (United States)

    Ratheesh, M; Shyni, G L; Sindhu, G; Helen, A

    2010-02-01

    Ruta graveolens L. (Rutaceae) are traditionally used for the treatment of rheumatism, arthritis and other inflammatory conditions in the traditional medicine of India, were evaluated for their protective effect in acute and chronic models of inflammation. Carrageenan induced rat paw edema and adjuvant induced arthritis were employed as the experimental models of acute and chronic inflammation respectively. Isolated polyphenolic and alkaloid fraction (AFR) from Ruta graveolens and evaluated its anti inflammatory activity in carrageenan induced acute model. AFR with a dose 10 mg/kg showed higher anti inflammatory effect than polyphenols and standard drug diclofenec. AFR significantly decreased the paw edema in arthritic rats. TBARS, COX-2, 5-LOX and MPO level were decreased and the levels of antioxidant enzymes and GSH level were increased on treatment with AFR. The increment in CRP level and ceruloplasmin level observed in arthritic animals were also found to be significantly restored in AFR treated rats. The results demonstrated the potential beneficiary effect of isolated polyphenolic and alkaloid fraction of Ruta graveolens L. on acute and chronic models of inflammation in rats.

  18. Quantitative Modeling of Microbial Population Responses to Chronic Irradiation Combined with Other Stressors.

    Directory of Open Access Journals (Sweden)

    Igor Shuryak

    Full Text Available Microbial population responses to combined effects of chronic irradiation and other stressors (chemical contaminants, other sub-optimal conditions are important for ecosystem functioning and bioremediation in radionuclide-contaminated areas. Quantitative mathematical modeling can improve our understanding of these phenomena. To identify general patterns of microbial responses to multiple stressors in radioactive environments, we analyzed three data sets on: (1 bacteria isolated from soil contaminated by nuclear waste at the Hanford site (USA; (2 fungi isolated from the Chernobyl nuclear-power plant (Ukraine buildings after the accident; (3 yeast subjected to continuous γ-irradiation in the laboratory, where radiation dose rate and cell removal rate were independently varied. We applied generalized linear mixed-effects models to describe the first two data sets, whereas the third data set was amenable to mechanistic modeling using differential equations. Machine learning and information-theoretic approaches were used to select the best-supported formalism(s among biologically-plausible alternatives. Our analysis suggests the following: (1 Both radionuclides and co-occurring chemical contaminants (e.g. NO2 are important for explaining microbial responses to radioactive contamination. (2 Radionuclides may produce non-monotonic dose responses: stimulation of microbial growth at low concentrations vs. inhibition at higher ones. (3 The extinction-defining critical radiation dose rate is dramatically lowered by additional stressors. (4 Reproduction suppression by radiation can be more important for determining the critical dose rate, than radiation-induced cell mortality. In conclusion, the modeling approaches used here on three diverse data sets provide insight into explaining and predicting multi-stressor effects on microbial communities: (1 the most severe effects (e.g. extinction on microbial populations may occur when unfavorable environmental

  19. Quantitative Modeling of Microbial Population Responses to Chronic Irradiation Combined with Other Stressors.

    Science.gov (United States)

    Shuryak, Igor; Dadachova, Ekaterina

    2016-01-01

    Microbial population responses to combined effects of chronic irradiation and other stressors (chemical contaminants, other sub-optimal conditions) are important for ecosystem functioning and bioremediation in radionuclide-contaminated areas. Quantitative mathematical modeling can improve our understanding of these phenomena. To identify general patterns of microbial responses to multiple stressors in radioactive environments, we analyzed three data sets on: (1) bacteria isolated from soil contaminated by nuclear waste at the Hanford site (USA); (2) fungi isolated from the Chernobyl nuclear-power plant (Ukraine) buildings after the accident; (3) yeast subjected to continuous γ-irradiation in the laboratory, where radiation dose rate and cell removal rate were independently varied. We applied generalized linear mixed-effects models to describe the first two data sets, whereas the third data set was amenable to mechanistic modeling using differential equations. Machine learning and information-theoretic approaches were used to select the best-supported formalism(s) among biologically-plausible alternatives. Our analysis suggests the following: (1) Both radionuclides and co-occurring chemical contaminants (e.g. NO2) are important for explaining microbial responses to radioactive contamination. (2) Radionuclides may produce non-monotonic dose responses: stimulation of microbial growth at low concentrations vs. inhibition at higher ones. (3) The extinction-defining critical radiation dose rate is dramatically lowered by additional stressors. (4) Reproduction suppression by radiation can be more important for determining the critical dose rate, than radiation-induced cell mortality. In conclusion, the modeling approaches used here on three diverse data sets provide insight into explaining and predicting multi-stressor effects on microbial communities: (1) the most severe effects (e.g. extinction) on microbial populations may occur when unfavorable environmental

  20. Influence of Acupuncture on HPA Axis in a Rat Model of Chronic Stress-induced Depression

    Institute of Scientific and Technical Information of China (English)

    孙冬玮; 王珑; 孙忠人

    2007-01-01

    目的:讨抑郁症的神经生物学发病机制,揭示针刺治疗抑郁症的机理.方法:以Wistar大鼠为受试对象,采用给予孤养大鼠以长期不可预见的中等强度刺激的方法建立抑郁大鼠模型,检测应激后造成的抑郁模型大鼠行为学改变、下丘脑垂体肾上腺皮质轴(HPA)的变化,同时观察针刺干预效应及不同针法的疗效比较.结果:型组、生理盐水组血清CORT和ACTH含量明显高于正常对照组(P<0.05);手针治疗组、电针治疗组血清CORT和ACTH含量明显低于模型组(P<0.05);药物组血清CORT和ACTH含量明显低于生理盐水组(P<0.05);手针治疗组、电针治疗组、药物组比较差别无统计学意义.结论:刺百会、太冲具有较明显的抗抑郁效应,其机制可能与针刺对HPA轴的调整有关.%To investigate the neurobiological mechanism of depression pathogenesis and reveal the mechanism of acupuncture treatment of depression. Methods: Wistar rats were selected for subjects. A rat model of depression was made by individually housing with unpredicted chronic moderate stimuli. Changes in behavior and hypothalamus-pituitary-adrenocortical axis were examined in rat models of stress-induced depression. Meanwhile, the intervening effect of acupuncture was evaluated and the curative effects of different acupuncture methods compared. Results: CORT and ACTH contents of serum were significantly higher in the model and normal saline groups than in the control group (P<0.05), significantly lower in the hand acupuncture and electroacupuncture groups than in the model group (P<0.05) and significantly lower in the medication group than in the normal saline group (P<0.05). There were no significant differences between the hand acupuncture, electroacupuncture and medication groups. Conclusion: Acupuncture of Baihui(GV 20) and Taichong (LR 3) has a marked antidepressant effect. Its mechanism may be related to the regulation of HPA axis by acupuncture.

  1. Maternal epileptic seizure induced by Pentylenetetrazol: Apoptotic neurodegeneration and decreased GABAB1 receptor expression in prenatal rat brain

    Directory of Open Access Journals (Sweden)

    Naseer Muhammad

    2009-06-01

    Full Text Available Abstract Epilepsy is a prominent sign of neurological dysfunction in children with various fetal and maternal deficiencies. However, the detailed mechanism and influences underlying epileptic disorders are still unrevealed. The hippocampal neurons are vulnerable to epilepsy-induced pathologic changes and often manifests as neuronal death. The present study was designed to investigate the effect of maternal epileptic seizure on apoptotic neuronal death, modulation of GABAB1 receptor (R, and protein kinase A-α (PKA in prenatal rat hippocampal neurons at gestational days (GD 17.5. Seizure was induced in pregnant rat using intraperitoneal injection of pentylenetetrazol (PTZ (40 mg/kg for 15 days. To confirm the seizure electroencephalography (EEG data was obtained by the Laxtha EEG-monitoring device in the EEG recording room and EEG were monitored 5 min and 15 min after PTZ injection. The RT-PCR and Western blot results showed significant increased expression of cytochrome-c and caspases-3, while decreased levels of GABAB1R, and PKA protein expression upon ethanol, PTZ and ethanol plus PTZ exposure in primary neuronal cells cultured from PTZ-induced seizure model as compare to non-PTZ treated maternal group. Apoptotic neurodegeneration was further confirmed with Fluoro-Jade B and propidium iodide staining, where neurons were scattered and shrunken, with markedly condensed nuclei in PTZ treated group compared with control. This study for the first time indicate that PTZ-induced seizures triggered activation of caspases-3 to induce widespread apoptotic neuronal death and decreased GABAB1R expression in hippocampal neurons, providing a possible mechanistic link between maternal epilepsy induced neurodegeneration alteration of GABAB1R and PKA expression level during prenatal brain development. This revealed new aspects of PTZ and ethanol's modulation on GABAB1R, learning and memory. Further, explain the possibility that children delivered by epileptic

  2. Chronic Cerebral Hypoperfusion Causes Decrease of O-GlcNAcylation, Hyperphosphorylation of Tau and Behavioral Deficits in Mice

    Directory of Open Access Journals (Sweden)

    Yang eZhao

    2014-02-01

    Full Text Available Chronic cerebral hypoperfusion (CCH is one of the causes of vascular dementia (VaD and is also an etiological factor for Alzheimer's disease (AD. However, how CCH causes cognitive impairment and contributes to Alzheimer’s pathology is poorly understood. Here we produced a mouse model of CCH by unilateral common carotid artery occlusion (UCCAO and studied the behavioral changes and brain abnormalities in mice 2.5 months after UCCAO. We found that CCH caused significant short-term memory deficits and mild long-term spatial memory impairment, as well as decreased level of protein O-GlcNAcylation, increased level of tau phosphorylation, dysregulated synaptic proteins and insulin signaling, and selective neurodegeneration in the brain. These findings provide mechanistic insight into the effects of CCH on memory and cognition and the likely link between AD and VaD.

  3. Chronic noncommunicable cardiovascular and pulmonary disease in sub-Saharan Africa: an academic model for countering the epidemic.

    Science.gov (United States)

    Bloomfield, Gerald S; Kimaiyo, Sylvester; Carter, E Jane; Binanay, Cynthia; Corey, G Ralph; Einterz, Robert M; Tierney, William M; Velazquez, Eric J

    2011-05-01

    Noncommunicable diseases are rapidly overtaking infectious, perinatal, nutritional, and maternal diseases as the major causes of worldwide death and disability. It is estimated that, within the next 10 to 15 years, the increasing burden of chronic diseases and the aging of the population will expose the world to an unprecedented burden of chronic diseases. Preventing the potential ramifications of a worldwide epidemic of chronic noncommunicable diseases in a sustainable manner requires coordinated, collaborative efforts. Herein, we present our collaboration's strategic plan to understand, treat, and prevent chronic cardiovascular and pulmonary disease (CVPD) in western Kenya, which builds on a 2-decade partnership between academic universities in North America and Kenya, the Academic Model Providing Access to Healthcare. We emphasize the importance of training Kenyan clinician-investigators who will ultimately lead efforts in CVPD care, education, and research. This penultimate aim will be achieved by our 5 main goals. Our goals include creating an administrative core capable of managing operations, develop clinical and clinical research training curricula, enhancing existing technology infrastructure, and implementing relevant research programs. Leveraging a strong international academic partnership with respective expertise in cardiovascular medicine, pulmonary medicine, and medical informatics, we have undertaken to understand and counter CVPD in Kenya by addressing patient care, teaching, and clinical research. PMID:21570512

  4. Outcome of Prolonged Ventricular Fibrillation and CPR in a Rat Model of Chronic Ischemic Left Ventricular Dysfunction

    Directory of Open Access Journals (Sweden)

    Xiangshao Fang

    2013-01-01

    Full Text Available Patients with chronic left ventricular (LV dysfunction are assumed to have a lower chance of successful CPR and lower likelihood of ultimate survival. However, these assumptions have rarely been documented. Therefore, we investigated the outcome of prolonged ventricular fibrillation (VF and CPR in a rat model of chronic LV dysfunction. Sprague-Dawley rats were randomized to (1 chronic LV dysfunction: animals underwent left coronary artery ligation; and (2 sham control. Echocardiography was used to measure cardiac performance before surgery and 4 weeks after surgery. Four weeks after surgical intervention, 8 min of VF was induced and defibrillation was delivered after 8 min of CPR. LV dilation and low ejection fraction were observed 4 weeks after coronary ligation. With optimal chest compressions, coronary perfusion pressure values during CPR were well maintained and indistinguishable between groups. There were no differences in resuscitability and numbers of shock required for successful resuscitation between groups. Despite the significantly decreased cardiac index in LV dysfunction animals before induction of VF, no differences in cardiac index were observed between groups following resuscitation, which was associated with the insignificant difference in postresuscitation survival. In conclusion, the outcomes of CPR were not compromised by the preexisting chronic LV dysfunction.

  5. Suppressive effect of compact bone-derived mesenchymal stem cells on chronic airway remodeling in murine model of asthma.

    Science.gov (United States)

    Ogulur, Ismail; Gurhan, Gulben; Aksoy, Ayca; Duruksu, Gokhan; Inci, Cigdem; Filinte, Deniz; Kombak, Faruk Erdem; Karaoz, Erdal; Akkoc, Tunc

    2014-05-01

    New therapeutic strategies are needed in the treatment of asthma besides vaccines and pharmacotherapies. For the development of novel therapies, the use of mesenchymal stem cells (MSCs) is a promising approach in regenerative medicine. Delivery of compact bone (CB) derived MSCs to the injured lungs is an alternative treatment strategy for chronic asthma. In this study, we aimed to isolate highly enriched population of MSCs from mouse CB with regenerative capacity, and to investigate the impact of these cells in airway remodeling and inflammation in experimental ovalbumin-induced mouse model of chronic asthma. mCB-MSCs were isolated, characterized, labeled with GFP and then transferred into mice with chronic asthma developed by ovalbumin (OVA) provocation. Histopathological changes including basement membrane, epithelium, subepithelial smooth thickness and goblet cell hyperplasia, and MSCs migration to lung tissues were evaluated. These histopathological alterations were increased in ovalbumin-treated mice compared to PBS group (Pasthma. The results reported here provided evidence that mCB-MSCs may be an alternative strategy for the treatment of remodeling and inflammation associated with chronic asthma. PMID:24613203

  6. Chronic renoprotective effect of pulsatile perfusion machine RM3 and IGL-1 solution in a preclinical kidney transplantation model

    Directory of Open Access Journals (Sweden)

    Thuillier Raphael

    2012-11-01

    Full Text Available Abstract Background Machine perfusion (MP of kidney graft provides benefits against preservation injury, however decreased graft quality requires optimization of the method. We examined the chronic benefits of MP on kidney grafts and the potential improvements provided by IGL-1 solution. Method We used an established autotransplantation pig kidney model to study the effects of MP against the deleterious effects of warm ischemia (WI: 60 minutes followed by 22 hours of cold ischemia in MP or static cold storage (CS followed by autotransplantation. MPS and IGL-1 solutions were compared. Results Animal survival was higher in MPS-MP and both IGL groups. Creatinine measurement did not discriminate between the groups, however MPS-MP and both IGL groups showed decreased proteinuria. Chronic fibrosis level was equivalent between the groups. RTqPCR and immunohistofluorescent evaluation showed that MP and IGL-1 provided some protection against epithelial to mesenchymal transition and chronic lesions. IGL-1 was protective with both MP and CS, particularly against chronic inflammation, with only small differences between the groups. Conclusion IGL-1 used in either machine or static preservation offers similar levels of protection than standard MP. The compatibility of IGL-1 with both machine perfusion and static storage could represent an advantage for clinical teams when choosing the correct solution to use for multi-organ collection. The path towards improving machine perfusion, and organ quality, may involve the optimization of the solution and the correct use of colloids.

  7. Effects of Electroacupuncture at Auricular Concha Region on the Depressive Status of Unpredictable Chronic Mild Stress Rat Models

    OpenAIRE

    Ru-Peng Liu; Ji-Liang Fang; Pei-Jing Rong; Yufeng Zhao; Hong Meng; Hui Ben; Liang Li; Zhan-Xia Huang; Xia Li; Ying-Ge Ma; Bing Zhu

    2013-01-01

    To explore new noninvasive treatment options for depression, this study investigated the effects of electroacupuncture (EA) at the auricular concha region (ACR) of depression rat models. Depression in rats was induced by unpredictable chronic mild stress (UCMS) combined with isolation for 21 days. Eighty male Wistar rats were randomly assigned into four groups: normal, UCMS alone, UCMS with EA-ACR treatment, and UCMS with EA-ear-tip treatment. Rats under inhaled anesthesia were treated once d...

  8. The neuregulin, glial growth factor 2, diminishes autoimmune demyelination and enhances remyelination in a chronic relapsing model for multiple sclerosis

    OpenAIRE

    Cannella, Barbara; Hoban, Carolyn J; Gao, Yan-Ling; Garcia-Arenas, Renee; Lawson, Deborah; Marchionni, Mark; Gwynne, David; Raine, Cedric S.

    1998-01-01

    Glial growth factor 2 (GGF2) is a neuronal signal that promotes the proliferation and survival of the oligodendrocyte, the myelinating cell of the central nervous system (CNS). The present study examined whether recombinant human GGF2 (rhGGF2) could effect clinical recovery and repair to damaged myelin in chronic relapsing experimental autoimmune encephalomyelitis (EAE) in the mouse, a major animal model for the human demyelinating disease, multiple sclerosis. Mice with EAE were treated with ...

  9. YAP is up-regulated in the bronchial airway smooth muscle of the chronic asthma mouse model

    OpenAIRE

    Zhou, Jing; Xu, Fei; Yu, Jing Jing; Zhang, Wei

    2015-01-01

    Asthma is characterized by leukocytic infiltration and tissue remodeling with structural changes including subepithelial fibrosis and ASM cells proliferation. The Hippo pathway is a key regulatory point involved in cell proliferation, fibroblasts, and smooth muscle cell differentiation. In order to disclose the relation between asthma and the Hippo pathway, expression of the Yes-associated protein (YAP), a key gene in the Hippo pathway, in the bronchial smooth muscle of chronic asthma model (...

  10. METABOLIC INFLEXIBILITY AND PROTEIN LYSINE ACETYLATION IN HEART MITOCHONDRIA OF A CHRONIC MODEL OF TYPE 1 DIABETES*

    OpenAIRE

    Vadvalkar, Shraddha S.; Baily, C. Nathan; Matsuzaki, Satoshi; West, Melinda; Tesiram, Yasvir A.; Humphries, Kenneth M.

    2013-01-01

    Diabetic cardiomyopathy refers to the changes in contractility that occur to the diabetic heart that can arise in the absence of vascular disease. Mitochondrial bioenergetic deficits and increased free radical production are pathological hallmarks of diabetic cardiomyopathy but the mechanisms and causal relationships between mitochondrial deficits and the progression of disease are not understood. We evaluated cardiac mitochondrial function in a rodent model of chronic type 1 diabetes (OVE26 ...

  11. Intranasal delivery of plasma and platelet growth factors using PRGF-Endoret system enhances neurogenesis in a mouse model of Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Eduardo Anitua

    Full Text Available Neurodegeneration together with a reduction in neurogenesis are cardinal features of Alzheimer's disease (AD induced by a combination of toxic amyloid-β peptide (Aβ and a loss of trophic factor support. Amelioration of these was assessed with diverse neurotrophins in experimental therapeutic approaches. The aim of this study was to investigate whether intranasal delivery of plasma rich in growth factors (PRGF-Endoret, an autologous pool of morphogens and proteins, could enhance hippocampal neurogenesis and reduce neurodegeneration in an amyloid precursor protein/presenilin-1 (APP/PS1 mouse model. Neurotrophic and neuroprotective actions were firstly evident in primary neuronal cultures, where cell proliferation and survival were augmented by Endoret treatment. Translation of these effects in vivo was assessed in wild type and APP/PS1 mice, where neurogenesis was evaluated using 5-bromodeoxyuridine (BdrU, doublecortin (DCX, and NeuN immunostaining 5 weeks after Endoret administration. The number of BrdU, DCX, and NeuN positive cell was increased after chronic treatment. The number of degenerating neurons, detected with fluoro Jade-B staining was reduced in Endoret-treated APP/PS1 mice at 5 week after intranasal administration. In conclusion, Endoret was able to activate neuronal progenitor cells, enhancing hippocampal neurogenesis, and to reduce Aβ-induced neurodegeneration in a mouse model of AD.

  12. Adaptation to Colombia and Venezuela of the economic model Dasatinib first-line treatment of chronic myeloid leukemia, developed by the York Health Economics Consortium

    OpenAIRE

    Juan E. Valencia; Orozco, John J

    2012-01-01

    Objective: To adapt an economic model of frontline dasatinib treatment for chronic myeloid leukemia developed by the York Consortium to the health care settings in Colombia and Venezuela. Methods: The original model considered treatment of naïve patients with CML and a Markov's model with probabilities of change between chronic, accelerated phases and death, over a patient’s lifetime. The applied discount rate is 3.5% for both costs and benefits. Direct medical and treatment costs, and mortal...

  13. Uncertainty and sensitivity analysis of chronic exposure results with the MACCS reactor accident consequence model

    International Nuclear Information System (INIS)

    Uncertainty and sensitivity analysis techniques based on Latin hypercube sampling, partial correlation analysis and stepwise regression analysis are used in an investigation with the MACCS model of the chronic exposure pathways associated with a severe accident at a nuclear power station. The primary purpose of this study is to provide guidance on the variables to be considered in future review work to reduce the uncertainty in the important variables used in the calculation of reactor accident consequences. The effects of 75 imprecisely known input variables on the following reactor accident consequences are studied: crop growing season dose, crop long-term dose, water ingestion dose, milk growing season dose, long-term groundshine dose, long-term inhalation dose, total food pathways dose, total ingestion pathways dose, total long-term pathways dose, total latent cancer fatalities, area-dependent cost, crop disposal cost, milk disposal cost, population-dependent cost, total economic cost, condemnation area, condemnation population, crop disposal area and milk disposal area. When the predicted variables are considered collectively, the following input variables were found to be the dominant contributors to uncertainty: dry deposition velocity, transfer of cesium from animal feed to milk, transfer of cesium from animal feed to meat, ground concentration of Cs-134 at which the disposal of milk products will be initiated, transfer of Sr-90 from soil to legumes, maximum allowable ground concentration of Sr-90 for production of crops, fraction of cesium entering surface water that is consumed in drinking water, groundshine shielding factor, scale factor defining resuspension, dose reduction associated with decontamination, and ground concentration of 1-131 at which disposal of crops will be initiated due to accidents that occur during the growing season

  14. Uncertainty and sensitivity analysis of chronic exposure results with the MACCS reactor accident consequence model

    Energy Technology Data Exchange (ETDEWEB)

    Helton, J.C. [Arizona State Univ., Tempe, AZ (United States); Johnson, J.D.; Rollstin, J.A. [Gram, Inc., Albuquerque, NM (United States); Shiver, A.W.; Sprung, J.L. [Sandia National Labs., Albuquerque, NM (United States)

    1995-01-01

    Uncertainty and sensitivity analysis techniques based on Latin hypercube sampling, partial correlation analysis and stepwise regression analysis are used in an investigation with the MACCS model of the chronic exposure pathways associated with a severe accident at a nuclear power station. The primary purpose of this study is to provide guidance on the variables to be considered in future review work to reduce the uncertainty in the important variables used in the calculation of reactor accident consequences. The effects of 75 imprecisely known input variables on the following reactor accident consequences are studied: crop growing season dose, crop long-term dose, water ingestion dose, milk growing season dose, long-term groundshine dose, long-term inhalation dose, total food pathways dose, total ingestion pathways dose, total long-term pathways dose, total latent cancer fatalities, area-dependent cost, crop disposal cost, milk disposal cost, population-dependent cost, total economic cost, condemnation area, condemnation population, crop disposal area and milk disposal area. When the predicted variables are considered collectively, the following input variables were found to be the dominant contributors to uncertainty: dry deposition velocity, transfer of cesium from animal feed to milk, transfer of cesium from animal feed to meat, ground concentration of Cs-134 at which the disposal of milk products will be initiated, transfer of Sr-90 from soil to legumes, maximum allowable ground concentration of Sr-90 for production of crops, fraction of cesium entering surface water that is consumed in drinking water, groundshine shielding factor, scale factor defining resuspension, dose reduction associated with decontamination, and ground concentration of 1-131 at which disposal of crops will be initiated due to accidents that occur during the growing season.

  15. A plasminogen activator inhibitor-1 inhibitor reduces airway remodeling in a murine model of chronic asthma.

    Science.gov (United States)

    Lee, Sun H; Eren, Mesut; Vaughan, Douglas E; Schleimer, Robert P; Cho, Seong H

    2012-06-01

    We previously reported that plasminogen activator inhibitor (PAI)-1 deficiency prevents collagen deposition in the airways of ovalbumin (OVA)-challenged mice. In this study, we explored the therapeutic utility of blocking PAI-1 in preventing airway remodeling, using a specific PAI-1 inhibitor, tiplaxtinin. C57BL/6J mice were immunized with intraperitoneal injections of OVA on Days 0, 3, and 6. Starting on Day 11, mice were challenged with phosphate-buffered saline or OVA by nebulization three times per week for 4 weeks. Tiplaxtinin was mixed with chow and administered orally from 1 day before the phosphate-buffered saline or OVA challenge. Lung tissues were harvested after challenge and characterized histologically for infiltrating inflammatory cells, mucus-secreting goblet cells, and collagen deposition. Airway hyperresponsiveness was measured using whole-body plethysmography. Tiplaxtinin treatment significantly decreased levels of PAI-1 activity in bronchoalveolar lavage fluids, which indicates successful blockage of PAI-1 activity in the airways. The number of infiltrated inflammatory cells was reduced by tiplaxtinin treatment in the lungs of the OVA-challenged mice. Furthermore, oral administration of tiplaxtinin significantly attenuated the degree of goblet cell hyperplasia and collagen deposition in the airways of the OVA-challenged mice, and methacholine-induced airway hyperresponsiveness was effectively reduced by tiplaxtinin in these animals. This study supports our previous findings that PAI-1 promotes airway remodeling in a murine model of chronic asthma, and suggests that PAI-1 may be a novel target of treatment of airway remodeling in asthma. PMID:22323366

  16. Profiling of differentially expressed genes using suppression subtractive hybridization in an equine model of chronic asthma.

    Directory of Open Access Journals (Sweden)

    Jean-Pierre Lavoie

    Full Text Available BACKGROUND: Gene expression analyses are used to investigate signaling pathways involved in diseases. In asthma, they have been primarily derived from the analysis of bronchial biopsies harvested from mild to moderate asthmatic subjects and controls. Due to ethical considerations, there is currently limited information on the transcriptome profile of the peripheral lung tissues in asthma. OBJECTIVE: To identify genes contributing to chronic inflammation and remodeling in the peripheral lung tissue of horses with heaves, a naturally occurring asthma-like condition. METHODS: Eleven adult horses (6 heaves-affected and 5 controls were studied while horses with heaves were in clinical remission (Pasture, and during disease exacerbation induced by a 30-day natural antigen challenge during stabling (Challenge. Large peripheral lung biopsies were obtained by thoracoscopy at both time points. Using suppression subtractive hybridization (SSH, lung cDNAs of controls (Pasture and Challenge and asymptomatic heaves-affected horses (Pasture were subtracted from cDNAs of horses with heaves in clinical exacerbation (Challenge. The differential expression of selected genes of interest was confirmed using quantitative PCR assay. RESULTS: Horses with heaves, but not controls, developed airway obstruction when challenged. Nine hundred and fifty cDNA clones isolated from the subtracted library were screened by dot blot array and 224 of those showing the most marked expression differences were sequenced. The gene expression pattern was confirmed by quantitative PCR in 15 of 22 selected genes. Novel genes and genes with an already defined function in asthma were identified in the subtracted cDNA library. Genes of particular interest associated with asthmatic airway inflammation and remodeling included those related to PPP3CB/NFAT, RhoA, and LTB4/GPR44 signaling pathways. CONCLUSIONS: Pathways representing new possible targets for anti-inflammatory and anti

  17. Prolactin and its receptors in the chronic mild stress rat model of depression.

    Science.gov (United States)

    Faron-Górecka, A; Kuśmider, M; Kolasa, M; Zurawek, D; Gruca, P; Papp, M; Szafran, K; Solich, J; Pabian, P; Romańska, I; Antkiewicz-Michaluk, L; Dziedzicka-Wasylewska, M

    2014-03-25

    Prolactin (PRL) exhibits many physiological functions with wide effects on the central nervous system including stress responses. Our study aimed to investigate the effect of chronic unpredictable mild stress (CMS) - which is a good animal model of depression - on PRL receptor (PRLR) expression in the rat brain. Rats were exposed to CMS for two weeks and subsequently to CMS in combination with imipramine (IMI) treatment for five consecutive weeks. Behavioral deficit measured in anhedonic animals is a reduced intake of sucrose solution. Two weeks of CMS procedure allowed the selection of animals reactive to stress and displaying anhedonia, and the group which is considered as stress-non-reactive as far as behavioral measures are concerned. In this group the elevated level of PRL in plasma was observed, decrease in dopamine release in the hypothalamus, increase in [(125)I]PRL binding to PRLR in the choroid plexus, increase of mRNA encoding the long form of PRLR in the arcuate nucleus and the decrease of mRNA encoding its short form, and decrease in the mRNA encoding dopamine D2 receptor. All these alterations indicate these parameters as involved in the phenomenon of stress-resilience. The prolongation of the CMS procedure for additional five weeks shows the form of habituation to the stressful conditions. The most interesting result, however, was the up-regulation of PRLR in the choroid plexus of rats subjected to full CMS procedure combined with treatment with IMI, which may speak in favor of the role of this receptor in the mechanisms of antidepressant action.

  18. Longitudinal study of a mouse model of chronic pulmonary inflammation using breath hold gated micro-CT

    International Nuclear Information System (INIS)

    To evaluate the feasibility of using automatic quantitative analysis of breath hold gated micro-CT images to detect and monitor disease in a mouse model of chronic pulmonary inflammation, and to compare image-based measurements with pulmonary function tests and histomorphometry. Forty-nine A/J mice were used, divided into control and inflammation groups. Chronic inflammation was induced by silica aspiration. Fourteen animals were imaged at baseline, and 4, 14, and 34 weeks after silica aspiration, using micro-CT synchronized with ventilator-induced breath holds. Lung input impedance was measured as well using forced oscillation techniques. Five additional animals from each group were killed after micro-CT for comparison with histomorphometry. At all time points, micro-CT measurements show statistically significant differences between the two groups, while first differences in functional test parameters appear at 14 weeks. Micro-CT measurements correlate well with histomorphometry and discriminate diseased and healthy groups better than functional tests. Longitudinal studies using breath hold gated micro-CT are feasible on the silica-induced model of chronic pulmonary inflammation, and automatic measurements from micro-CT images correlate well with histomorphometry, being more sensitive than functional tests to detect lung damage in this model. (orig.)

  19. Longitudinal study of a mouse model of chronic pulmonary inflammation using breath hold gated micro-CT

    Energy Technology Data Exchange (ETDEWEB)

    Artaechevarria, Xabier; Perez-Martin, Daniel; Munoz-Barrutia, Arrate; Ortiz-de-Solorzano, Carlos [Center for Applied Medical Research, University of Navarra, Cancer Imaging Laboratory, Oncology Division, Pamplona (Spain); Blanco, David; Biurrun, Gabriel de; Montuenga, Luis M. [Center for Applied Medical Research, University of Navarra, Biomarkers Laboratory, Pamplona (Spain); Torres, Juan P. de; Zulueta, Javier J. [Clinica Universidad de Navarra, Pneumology Department, Pamplona (Spain); Bastarrika, Gorka [Clinica Universidad de Navarra, Radiology Department, Pamplona (Spain)

    2010-11-15

    To evaluate the feasibility of using automatic quantitative analysis of breath hold gated micro-CT images to detect and monitor disease in a mouse model of chronic pulmonary inflammation, and to compare image-based measurements with pulmonary function tests and histomorphometry. Forty-nine A/J mice were used, divided into control and inflammation groups. Chronic inflammation was induced by silica aspiration. Fourteen animals were imaged at baseline, and 4, 14, and 34 weeks after silica aspiration, using micro-CT synchronized with ventilator-induced breath holds. Lung input impedance was measured as well using forced oscillation techniques. Five additional animals from each group were killed after micro-CT for comparison with histomorphometry. At all time points, micro-CT measurements show statistically significant differences between the two groups, while first differences in functional test parameters appear at 14 weeks. Micro-CT measurements correlate well with histomorphometry and discriminate diseased and healthy groups better than functional tests. Longitudinal studies using breath hold gated micro-CT are feasible on the silica-induced model of chronic pulmonary inflammation, and automatic measurements from micro-CT images correlate well with histomorphometry, being more sensitive than functional tests to detect lung damage in this model. (orig.)

  20. Model for end-stage liver disease-sodium predicts prognosis in patients with chronic severe hepatitis B

    Institute of Scientific and Technical Information of China (English)

    CAI Chang-jie; CHEN Huan; LU Min-qiang; CHEN Gui-hua

    2008-01-01

    Background Serum sodium predicts prognosis in chronic severe hepatitis B and may improve the prognostic accuracy of the model for end-stage liver disease (MELD) score, but the available information is limited. The present study was undertaken to study the clinical use of the serum sodium incorporated MELD (MELD-Na) and assess its validity by the concordance (c)-statistics in predicting the prognosis of the patient with chronic severe hepatitis B. Methods A total of 426 adult patients with a diagnosis of chronic severe hepatitis B between January 1, 2007, and December 31, 2007 at a single center were studied. The scores of serum sodium, MELD, MELD-Na, and △MELD-Na (△MELD-Na=MELD-Na at 14 days after medical treatment -MELD-Na score on admission) of the patients with chronic severe hepatitis B were calculated. The 3-month mortality in the patients was measured, and the validity of the models was determined by means of the concordance (c) statistics.Results The average MELD, MELD-Na scores of survival group were 25.70±5.08 and 26.60±6.90.and those of dead group were 35.60±6.78 and 42.80±9.57 on admission.There was a significant difference in MELD and MELD-Na between the survivaI and dead groups(P40 were 2.O%,5.4%,35.4%,53.8%and 86.9%,respectively.There was a significant difference in the 3-ionth mortality between the five groups(P0 group Was 65.9%.and that of the △MELD-Na≤0 group Was 15.8%;there Was a significant difference in the 3-month mortality between the twogroups(P<0.05).Conclusions MELD-Na score is a valid model to predict the 3-month mortality in paUents with chronic severe hepatitis B.△MELD-Na is a clinically useful parameter for predicting the therapeutic effect of chronic severe hepatitisB.

  1. Chronic treatment with the GLP1 analogue liraglutide increases cell proliferation and differentiation into neurons in an AD mouse model.

    Directory of Open Access Journals (Sweden)

    Vadivel Parthsarathy

    Full Text Available Neurogenesis is a life long process, but the rate of cell proliferation and differentiation decreases with age. In Alzheimer's patients, along with age, the presence of Aβ in the brain inhibits this process by reducing stem cell proliferation and cell differentiation. GLP-1 is a growth factor that has neuroprotective properties. GLP1 receptors are present on neuronal progenitor cells, and the GLP-1 analogue liraglutide has been shown to increase cell proliferation in an Alzheimer's disease (AD mouse model. Here we investigated acute and chronic effects of liraglutide on progenitor cell proliferation, neuroblast differentiation and their subsequent differentiation into neurons in wild type and APP/PS-1 mice at different ages. APP/PS1 and their littermate controls, aged 3, 6, 12, 15 months were injected acutely or chronically with 25 nmol/kg liraglutide. Acute treatment with liraglutide showed an increase in cell proliferation in APP/PS1 mice, but not in controls whereas chronic treatment increased cell proliferation at all ages (BrdU and Ki67 markers. Moreover, numbers of immature neurons (DCX were increased in both acute and chronic treated animals at all ages. Most newly generated cells differentiated into mature neurons (NeuN marker. A significant increase was observed with chronically treated 6, 12, 15 month APP/PS1 and WT groups. These results demonstrate that liraglutide, which is currently on the market as a treatment for type 2 diabetes (Victoza(TM, increases neurogenesis, which may have beneficial effects in neurodegenerative disorders like AD.

  2. Identification of discrete sites of action of chronic treatment with desipramine in a model of neuropathic pain.

    Science.gov (United States)

    Jones, K L; Finn, D P; Governo, R J M; Prior, M J; Morris, P G; Kendall, D A; Marsden, C A; Chapman, V

    2009-02-01

    Tricyclic antidepressants (TCAs) are an important analgesic treatment for neuropathic pain, though the neural substrates mediating these effects are poorly understood. We have used an integrative approach combining behavioural pharmacology with functional magnetic resonance imaging (fMRI) to investigate the effects of chronic treatment with the TCA desipramine, on touch-evoked pain (mechanical allodynia) and brain regional activity in the selective spinal nerve ligation (SNL) model of neuropathic pain. SNL and sham-operated rats received once daily i.p. administration of 10 mg/kg DMI, or saline, for 14 days. Withdrawal responses to the application of a normally non-noxious (10 g) stimulus were recorded in SNL and sham-operated rats over this period. On the final day of the study, SNL and sham-operated rats received a final challenge dose of DMI (10 mg/kg i.p.) during fMRI scanning. Chronic administration of desipramine (DMI) significantly attenuated mechancial allodynia in SNL rats. DMI challenge in chronic DMI-treated neuropathic rats produced significantly greater activation of the deep mesencephalic nucleus, primary somatosensory cortex, insular cortex, medial globus pallidus, inferior colliculus, perirhinal cortex and cerebellum compared to sham-operated rats and saline controls. By contrast, the spatial pattern of brain regional activation by chronic DMI treatment in sham controls encompassed a number of other areas including those associated with learning and memory processes. These novel findings identify key brain regions implicated in the analgesic and mood altering effects associated with chronic treatment with DMI.

  3. Memory and brain-derived neurotrophic factor after subchronic or chronic amphetamine treatment in an animal model of mania.

    Science.gov (United States)

    Fries, Gabriel R; Valvassori, Samira S; Bock, Hugo; Stertz, Laura; Magalhães, Pedro Vieira da Silva; Mariot, Edimilson; Varela, Roger B; Kauer-Sant'Anna, Marcia; Quevedo, João; Kapczinski, Flávio; Saraiva-Pereira, Maria Luiza

    2015-09-01

    Progression of bipolar disorder (BD) has been associated with cognitive impairment and changes in neuroplasticity, including a decrease in serum brain-derived neurotrophic factor (BDNF). However, no study could examine BDNF levels directly in different brain regions after repeated mood episodes to date. The proposed animal model was designed to mimic several manic episodes and evaluate whether the performance in memory tasks and BDNF levels in hippocampus, prefrontal cortex, and amygdala would change after repeated amphetamine (AMPH) exposure. Adult male Wistar rats were divided into subchronic (AMPH for 7 days) and chronic groups (35 days), mimicking manic episodes at early and late stages of BD, respectively. After open field habituation or inhibitory avoidance test, rats were killed, brain regions were isolated, and BDNF mRNA and protein levels were measured by quantitative real-time PCR and ELISA, respectively. AMPH impaired habituation memory in both subchronic and chronic groups, and the impairment was worse in the chronic group. This was accompanied by increased Bdnf mRNA levels in the prefrontal cortex and amygdala region, as well as reduced BDNF protein in the hippocampus. In the inhibitory avoidance, AMPH significantly decreased the change from training to test when compared to saline. No difference was observed between subchronic and chronic groups, although chronically AMPH-treated rats presented increased Bdnf mRNA levels and decreased protein levels in hippocampus when compared to the subchronic group. Our results suggest that the cognitive impairment related to BD neuroprogression may be associated with BDNF alterations in hippocampus, prefrontal cortex, and amygdala. PMID:26026487

  4. A proposed predictive model for advanced fibrosis in patients with chronic hepatitis B and its validation

    Science.gov (United States)

    Nishikawa, Hiroki; Hasegawa, Kunihiro; Ishii, Akio; Takata, Ryo; Enomoto, Hirayuki; Yoh, Kazunori; Kishino, Kyohei; Shimono, Yoshihiro; Iwata, Yoshinori; Nakano, Chikage; Nishimura, Takashi; Aizawa, Nobuhiro; Sakai, Yoshiyuki; Ikeda, Naoto; Takashima, Tomoyuki; Iijima, Hiroko; Nishiguchi, Shuhei

    2016-01-01

    Abstract We created a predictive model using serum-based biomarkers for advanced fibrosis (F3 or more) in patients with chronic hepatitis B (CHB) and to confirm the accuracy in an independent cohort. A total of 249 CHB patients were analyzed. To achieve our study aim, a training group (n = 125) and a validation group (n = 124) were formed. In the training group, parameters related to the presence of advanced fibrosis in univariate and multivariate analyses were examined, and a formula for advanced fibrosis was created. Next, we verified the applicability of the predictive model in the validation group. Multivariate analysis identified that gamma-glutamyl transpeptidase (GGT, P = 0.0343) and platelet count (P = 0.0034) were significant predictors of the presence of advanced fibrosis, while Wisteria floribunda agglutinin-positive Mac-2-binding protein (WFA+-M2BP, P = 0.0741) and hyaluronic acid (P = 0.0916) tended to be significant factors. Using these 4 parameters, we created the following formula: GMPH score = −0.755 − (0.015 × GGT) − (0.268 × WFA+-M2BP) + (0.167 × platelet count) + (0.003 × hyaluronic acid). In 8 analyzed variables (WFA+-M2BP, aspartate aminotransferase-to-platelet ratio index, FIB-4 index, prothrombin time, platelet count, hyaluronic acid, Forns index, and GMPH score), GMPH score had the highest area under the receiver operating characteristic (AUROC) curve for advanced fibrosis with a value of 0.8064 in the training group and in the validation group, GMPH score also had the highest AUROC (0.7782). In all subgroup analyses of the hepatitis B virus (HBV) status (HB surface antigen quantification, HBV-DNA quantification, and HBe antigen seropositivity), GMPH score in F3 or F4 was significantly lower than that in F0 to F2. In the above mentioned 8 variables, differences between the liver fibrosis stages (F0 to F1 vs F2, F2 vs F3, F3 vs F4, F0 to F1 vs F3, F0 to F1 vs F4, and F2 vs

  5. Further development of a model of chronic bone marrow aplasia in the busulphan-treated mouse.

    Science.gov (United States)

    Turton, John A; Sones, William R; Andrews, Charles M; Pilling, Andrew M; Williams, Thomas C; Molyneux, Gemma; Rizzo, Sian; Gordon-Smith, Edward C; Gibson, Frances M

    2006-02-01

    Aplastic anaemia (AA) in man is an often fatal disease characterized by pancytopenia of the peripheral blood and aplasia of the bone marrow. AA is a toxic effect of many drugs and chemicals (e.g. chloramphenicol, azathioprine, phenylbutazone, gold salts, penicillamine and benzene). However, there are no widely used or convenient animal models of drug-induced AA. Recently, we reported a new model of chronic bone marrow aplasia (CBMA = AA) in the busulphan (BU)-treated mouse: eight doses of BU (10.50 mg/kg) were administered to female BALB/c mice over a period of 23 days; CBMA was evident at day 91/112 post-dosing with significantly reduced erythrocytes, platelets, leucocytes and nucleated bone marrow cell counts. However, mortality was high (49.3%). We have now carried out a study to modify the BU-dosing regime to induce CBMA without high mortality, and investigated the patterns of cellular responses in the blood and marrow in the post-dosing period. Mice (n = 64/65) were dosed 10 times with BU at 0 (vehicle control), 8.25, 9.0 and 9.75 mg/kg over 21 days and autopsied at day 1, 23, 42, 71, 84, 106 and 127 post-dosing (n = 7-15); blood and marrow samples were examined. BU induced a predictable bone marrow depression at day 1 post-dosing; at day 23/42 post-dosing, parameters were returning towards normal during a period of recovery. At day 71, 84, 106 and 127 post-dosing, a stabilized, late-stage, nondose-related CBMA was evident in BU-treated mice, with decreased erythrocytes, platelets and marrow cell counts, and increased MCV. At day 127 post-dosing, five BU-treated mice showed evidence of lymphoma. In this study, mortality was low, ranging from 3.1% (8.25 mg/kg BU) to 12.3% (9.75 mg/kg BU). It is concluded that BU at 9.0 mg/kg (or 9.25 mg/kg) is an appropriate dose level to administer (10 times over 21 days) to induce CBMA at approximately day 50-120 post-dosing.

  6. Chronic kidney disease induced by adenine: a suitable model of growth retardation in uremia.

    Science.gov (United States)

    Claramunt, Débora; Gil-Peña, Helena; Fuente, Rocío; García-López, Enrique; Loredo, Vanessa; Hernández-Frías, Olaya; Ordoñez, Flor A; Rodríguez-Suárez, Julián; Santos, Fernando

    2015-07-01

    Growth retardation is a major manifestation of chronic kidney disease (CKD) in pediatric patients. The involvement of the various pathogenic factors is difficult to evaluate in clinical studies. Here, we present an experimental model of adenine-induced CKD for the study of growth failure. Three groups (n = 10) of weaning female rats were studied: normal diet (control), 0.5% adenine diet (AD), and normal diet pair fed with AD (PF). After 21 days, serum urea nitrogen, creatinine, parathyroid hormone (PTH), weight and length gains, femur osseous front advance as an index of longitudinal growth rate, growth plate histomorphometry, chondrocyte proliferative activity, bone structure, aorta calcifications, and kidney histology were analyzed. Results are means ± SE. AD rats developed renal failure (serum urea nitrogen: 70 ± 6 mg/dl and creatinine: 0.6 ± 0.1 mg/dl) and secondary hyperparathyroidism (PTH: 480 ± 31 pg/ml). Growth retardation of AD rats was demonstrated by lower weight (AD rats: 63.3 ± 4.8 g, control rats: 112.6 ± 4.7 g, and PF rats: 60.0 ± 3.8 g) and length (AD rats: 7.2 ± 0.2 cm, control rats: 11.1 ± 0.3 cm, and PF rats: 8.1 ± 0.3 cm) gains as well as lower osseous front advances (AD rats: 141 ± 13 μm/day, control rats: 293 ± 16 μm/day, and PF rats: 251 ± 10 μm/day). The processes of chondrocyte maturation and proliferation were impaired in AD rats, as shown by lower growth plate terminal chondrocyte height (21.7 ± 2.3 vs. 26.2 ± 1.9 and 23.9 ± 1.3 μm in control and PF rats) and proliferative activity index (AD rats: 30 ± 2%, control rats: 38 ± 2%, and PF rats: 42 ± 3%). The bone primary spongiosa structure of AD rats was markedly disorganized. In conclusion, adenine-induced CKD in young rats is associated with growth retardation and disturbed endochondral ossification. This animal protocol may be a useful new experimental model to study growth in CKD.

  7. Total Flavone of Hawthorn Leaf inhibits neuronal apoptosis in brain tissue of rat models of chronic cerebral ischemia

    Institute of Scientific and Technical Information of China (English)

    Tan Rong-fang; Xia Ai-hua; Wu Xiao-guang; Cao Na-na; Li Meng-meng; Zhang Tian-ge; Wang Yi-ru; Yue Zhi-ling

    2014-01-01

    BACKGROUND: Cerebrovascular disease often causes dysfunction of the brain nerve, and nerve cel apoptosis is the important factor of cerebral nerve dysfunction. The excessive expression of c-fos can block the transduction of intracelular signal so that producing some apoptosis-promoting factors, which involve in nerve cel apoptosis process after ischemia injury of brain. Bcl-2 is an inhibited factor. It might to be the key to treat ischemic cerebrovascular disease by inhibiting or reducing the apoptosis of nerve cels after ischemia injury. OBJECTIVE: To investigate the therapeutic effect and mechanism of the Total Flavone of Hawthorn Leaf on chronic cerebral ischemia rats. METHODS: A total of 72 healthy male Sprague-Dawley rats were randomly divided into sham surgery group, model group, Total Flavone of Hawthorn Leaf group and ginkgo leaf group. Permanent bilateral carotid artery ligation was used to prepare chronic cerebral ischemia model in the model group, Total Flavone of Hawthorn Leaf group and ginkgo leaf group. Total Flavone of Hawthorn Leaf group and ginkgo leaf group respectively received 140 mg/kg Total Flavone of Hawthorn Leaf and 12.3 mg/kg ginkgo leaf intragastricaly for 36 days from 36 days after model induction. Model group and sham surgery group received 3.5 mL/kg physiological saline intragastricaly. RESULTS AND CONCLUSION: Compared with the model group, the expression of c-fos protein significantly deceased in the Total Flavone of Hawthorn Leaf group (P 0.05). These data indicated that the protective effect of Total Flavone of Hawthorn Leaf on chronic cerebral ischemia was associated with its inhibition of neuronal apoptosis. Its mechanism of anti-apoptosis might be associated with up-regulating expression of Bcl-2, down-regulating expression of c-fos and decreasing Ca2+ content in brain.

  8. Allogeneic amniotic membrane-derived mesenchymal stromal cell transplantation in a porcine model of chronic myocardial ischemia

    Directory of Open Access Journals (Sweden)

    Kimura M

    2012-01-01

    Full Text Available Introduction. Amniotic membrane contains a multipotential stem cell population and is expected to possess the machinery to regulate immunological reactions. We investigated the safety and efficacy of allogeneic amniotic membrane-derived mesenchymal stromal cell (AMSC transplantation in a porcine model of chronic myocardial ischemia as a preclinical trial. Methods. Porcine AMSCs were isolated from amniotic membranes obtained by cesarean section just before delivery and were cultured to increase their numbers before transplantation. Chronic myocardial ischemia was induced by implantation of an ameroid constrictor around the left circumflex coronary artery. Four weeks after ischemia induction, nine swine were assigned to undergo either allogeneic AMSC transplantation or normal saline injection. Functional analysis was performed by echocardiography, and histological examinations were carried out by immunohistochemistry 4 weeks after AMSC transplantation. Results. Echocardiography demonstrated that left ventricular ejection fraction was significantly improved and left ventricular dilatation was well attenuated 4 weeks after AMSC transplantation. Histological assessment showed a significant reduction in percentage of fibrosis in the AMSC transplantation group. Injected allogeneic green fluorescent protein (GFP-expressing AMSCs were identified in the immunocompetent host heart without the use of any immunosuppressants 4 weeks after transplantation. Immunohistochemistry revealed that GFP colocalized with cardiac troponin T and cardiac troponin I. Conclusions. We have demonstrated that allogeneic AMSC transplantation produced histological and functional improvement in the impaired myocardium in a porcine model of chronic myocardial ischemia. The transplanted allogeneic AMSCs survived without the use of any immunosuppressants and gained cardiac phenotype through either their transdifferentiation or cell fusion.

  9. Histological and In Vivo Microscopic Analysis of the Bone Marrow Microenvironment in a Murine Model of Chronic Myelogenous Leukemia.

    Science.gov (United States)

    Weissenberger, Eva S; Krause, Daniela S

    2016-01-01

    Imaging of the leukemic bone marrow microenvironment, also called the leukemic bone marrow niche, is an essential method to determine and to evaluate the progression of chronic myelogenous leukemia (CML) and other leukemias in murine models. In this chapter we introduce the murine model of CML primarily used in our laboratory by describing blood and bone marrow analysis as well as the method of histological sectioning and immunohistochemistry in combination with various stainings that can help to understand the complex interaction between leukemic cells, their normal hematopoietic counterparts, and the bone marrow microenvironment. We conclude with describing how to image the bone marrow niche using in vivo microscopy. PMID:27581139

  10. Staging of liver fibrosis in chronic hepatitis B patients with a composite predictive model:A comparative study

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    AIM:To evaluate the efficacy of 6 noninvasive liver fibrosis models and to identify the most valuable model for the prediction of liver fibrosis stage in chronic hepatitis B(CHB) patients.METHODS:Seventy-eight CHB patients were consecutively enrolled in this study.Liver biopsy was performed and blood serum was obtained at admission.Histological diagnosis was made according to the METAVIR system.Significant fibrosis was defined as stage score ≥ 2,severe fibrosis as stage score ≥ 3.The diagnostic accuracy of ...

  11. A novel community-based model to enhance health promotion, risk factor management and chronic disease prevention.

    Science.gov (United States)

    Carson, Shannon Ryan; Carr, Caroline; Kohler, Graeme; Edwards, Lynn; Gibson, Rick; Sampalli, Tara

    2014-01-01

    Chronic disease is a highly expensive but preventable problem to the healthcare system. Evidence suggests that impacting modifiable behaviours and risk management factors in the areas of physical inactivity, unhealthy diet, stress and obesity can alleviate the burden of chronic disease problem to a large extent. Despite this recognition, the challenge is embedding these recognized priorities into the community and in primary care in a sustainable and meaningful manner. Primary Health Care in Capital Health responded to this challenge by developing and implementing a free, interprofessional and community-based service, namely, the Community Health Teams (CHTs), that offers health and wellness, risk factor management, wellness navigation and behaviour-based programming. In this paper, the development and implementation of the CHTs are discussed. Preliminary outcomes for the model are significant and promising. Formal and large-scale studies are planned to validate these outcomes with additional research rigour.

  12. Total Lignans of Schisandra chinensis Ameliorates Aβ1-42-Induced Neurodegeneration with Cognitive Impairment in Mice and Primary Mouse Neuronal Cells.

    Science.gov (United States)

    Zhao, Xu; Liu, Chunmei; Xu, Mengjie; Li, Xiaolong; Bi, Kaishun; Jia, Ying

    2016-01-01

    Lignan compounds extracted from Schisandra chinensis (Turcz.) Baill. have been reported to possess various biological activities, and have potential in the treatment of Alzheimer's disease. This study was designed to investigate the effects of total lignans of Schisandra chinensis (TLS) on cognitive function and neurodegeneration in the model of AD induced by Aβ1-42 in vivo and in vitro. It was found that intragastric infusion with TLS (50 and 200 mg/kg) to Aβ1-42-induced mice significantly increased the number of avoidances in the shuttle-box test and swimming time in the target quadrant in the Morris water maze test. TLS at dose of 200 mg/kg significantly restored the activities of total antioxidant capacity (T-AOC), as well as the level of malondialdehyde (MDA) both in the hippocampus and cerebral cortex in mice. Results of histopathological examination indicated that TLS noticeably ameliorated the neurodegeneration in the hippocampus in mice. On the other hand, TLS (100 μM) could protect the Aβ1-42-induced primary mouse neuronal cells by blocking the decrease of mitochondrial membrane potential (MMP), change the expressions of Bcl-2 (important regulator in the mitochondria apoptosis pathway). Moreover, TLS also decreased the activity of β-secretase 1 (BACE1), crucial protease contributes to the hydrolysis of amyloid precursor protein (APP), and inhibited the expression of JKN/p38, which involved in the MAPKs signaling pathways in both mice and primary mouse neuronal cells. In summary, TLS might protect against cognitive deficits and neurodegeneration by releasing the damage of oxidative stress, inhibiting the expression of BACE1 and the MAPKs inflammatory signaling pathways. PMID:27035824

  13. Total Lignans of Schisandra chinensis Ameliorates Aβ1-42-Induced Neurodegeneration with Cognitive Impairment in Mice and Primary Mouse Neuronal Cells.

    Science.gov (United States)

    Zhao, Xu; Liu, Chunmei; Xu, Mengjie; Li, Xiaolong; Bi, Kaishun; Jia, Ying

    2016-01-01

    Lignan compounds extracted from Schisandra chinensis (Turcz.) Baill. have been reported to possess various biological activities, and have potential in the treatment of Alzheimer's disease. This study was designed to investigate the effects of total lignans of Schisandra chinensis (TLS) on cognitive function and neurodegeneration in the model of AD induced by Aβ1-42 in vivo and in vitro. It was found that intragastric infusion with TLS (50 and 200 mg/kg) to Aβ1-42-induced mice significantly increased the number of avoidances in the shuttle-box test and swimming time in the target quadrant in the Morris water maze test. TLS at dose of 200 mg/kg significantly restored the activities of total antioxidant capacity (T-AOC), as well as the level of malondialdehyde (MDA) both in the hippocampus and cerebral cortex in mice. Results of histopathological examination indicated that TLS noticeably ameliorated the neurodegeneration in the hippocampus in mice. On the other hand, TLS (100 μM) could protect the Aβ1-42-induced primary mouse neuronal cells by blocking the decrease of mitochondrial membrane potential (MMP), change the expressions of Bcl-2 (important regulator in the mitochondria apoptosis pathway). Moreover, TLS also decreased the activity of β-secretase 1 (BACE1), crucial protease contributes to the hydrolysis of amyloid precursor protein (APP), and inhibited the expression of JKN/p38, which involved in the MAPKs signaling pathways in both mice and primary mouse neuronal cells. In summary, TLS might protect against cognitive deficits and neurodegeneration by releasing the damage of oxidative stress, inhibiting the expression of BACE1 and the MAPKs inflammatory signaling pathways.

  14. Total Lignans of Schisandra chinensis Ameliorates Aβ1-42-Induced Neurodegeneration with Cognitive Impairment in Mice and Primary Mouse Neuronal Cells.

    Directory of Open Access Journals (Sweden)

    Xu Zhao

    Full Text Available Lignan compounds extracted from Schisandra chinensis (Turcz. Baill. have been reported to possess various biological activities, and have potential in the treatment of Alzheimer's disease. This study was designed to investigate the effects of total lignans of Schisandra chinensis (TLS on cognitive function and neurodegeneration in the model of AD induced by Aβ1-42 in vivo and in vitro. It was found that intragastric infusion with TLS (50 and 200 mg/kg to Aβ1-42-induced mice significantly increased the number of avoidances in the shuttle-box test and swimming time in the target quadrant in the Morris water maze test. TLS at dose of 200 mg/kg significantly restored the activities of total antioxidant capacity (T-AOC, as well as the level of malondialdehyde (MDA both in the hippocampus and cerebral cortex in mice. Results of histopathological examination indicated that TLS noticeably ameliorated the neurodegeneration in the hippocampus in mice. On the other hand, TLS (100 μM could protect the Aβ1-42-induced primary mouse neuronal cells by blocking the decrease of mitochondrial membrane potential (MMP, change the expressions of Bcl-2 (important regulator in the mitochondria apoptosis pathway. Moreover, TLS also decreased the activity of β-secretase 1 (BACE1, crucial protease contributes to the hydrolysis of amyloid precursor protein (APP, and inhibited the expression of JKN/p38, which involved in the MAPKs signaling pathways in both mice and primary mouse neuronal cells. In summary, TLS might protect against cognitive deficits and neurodegeneration by releasing the damage of oxidative stress, inhibiting the expression of BACE1 and the MAPKs inflammatory signaling pathways.

  15. Fasting reduces liver fibrosis in a mouse model for chronic cholangiopathies

    NARCIS (Netherlands)

    Sokolovic, Aleksandar; van Roomen, Cindy P. A. A.; Ottenhoff, Roelof; Scheij, Saskia; Hiralall, Johan K.; Claessen, Nike; Aten, Jan; Elferink, Ronald P. J. Oude; Groen, Albert K.; Sokolovic, Milka

    2013-01-01

    Chronic cholangiopathies often lead to fibrosis, as a result of a perpetuated wound healing response, characterized by increased inflammation and excessive deposition of proteins of the extracellular matrix. Our previous studies have shown that food deprivation suppresses the immune response, which

  16. Improving Population Health by Incorporating Chronic Disease and Injury Prevention Into Value-Based Care Models.

    Science.gov (United States)

    Petersen, Ruth; Rushing, Jill; Nelson, Sharon; Rhyne, Sharon

    2016-01-01

    Today's health system transformation provides a prime opportunity to leverage the capacity of public health to reduce the burden of chronic disease and injury, improve population health, and contain health care costs. Health care settings and organizations should support public health capacity as a key investment in population health. PMID:27422946

  17. Human intestinal flora and the induction of chronic arthritis : studies in an animal model.

    NARCIS (Netherlands)

    A.J. Severijnen

    1990-01-01

    textabstractThe etiology of rheumatoid arthritis (RA), a chronic joint inflammation, is unknown. A microbial involvement is suspected, but no particular microorganism has been incriminated. The human intestinal microflora is an abundant and continuous source of bacterial antigens and may be involved

  18. Chronic ethanol exposure inhibits distraction osteogenesis in a mouse model: role of the TNF signaling axis

    Science.gov (United States)

    Tumor necrosis factor-alpha (TNF-alpha) is an inflammatory cytokine that modulates osteoblastogenesis. In addition, the demonstrated inhibitory effects of chronic ethanol exposure on direct bone formation in rats are hypothetically mediated by TNF-alpha signaling. The effects in mice are unreported....

  19. Chronic Wasting Disease in Bank Voles: Characterisation of the Shortest Incubation Time Model for Prion Diseases

    NARCIS (Netherlands)

    Bari, Di M.A.; Nonno, R.; Castilla, J.; Augostino, D' C.; Pirisinu, L.; Riccardi, G.; Conte, M.; Richt, J.A.; Kunkle, R.; Langeveld, J.P.M.; Vaccari, G.; Agrimi, U.

    2013-01-01

    In order to assess the susceptibility of bank voles to chronic wasting disease (CWD), we inoculated voles carrying isoleucine or methionine at codon 109 (Bv109I and Bv109M, respectively) with CWD isolates from elk, mule deer and white-tailed deer. Efficient transmission rate (100%) was observed with

  20. [The family and community nurse: Health agent and model for the chronic patient within the community].

    Science.gov (United States)

    Miguélez-Chamorro, Angélica; Ferrer-Arnedo, Carmen

    2014-01-01

    It is estimated that the chronic, fragile and complex patient represents 5% of the general population, but uses up to 65% of the total amount of health care resources. Older people who are dependent, with chronic illnesses and comorbidities need professional care that promotes self-care and self-management of their illnesses. Thus, new strategies need to be considered to channel those professional care services to focus on this group. Nurse practicioners are professionals who could lead this change to improve the sustainability of the health care system, since they are in a position to respond in an effective way to the demands of patients with chronic illnesses, dependency or fragility. For the nurse working force to provide an efficient and cost-effective response to the health needs of chronically ill and disabled persons, an analysis needs to be made of the factors that restrict professional growth, as well as those nursing services where nurses do not take part in the decision making, as well as how to correct them. The lack of goals or quality care indicators, the measurement of the problem, the lack of patients assigned to a nurse practicioners, lack of training, the disparity of the profession in Spain, and the inability of the system to lead a self-sufficient care system project, should also be taken into consideration.