WorldWideScience

Sample records for chronic multi-electrode neural

  1. Chronic multi-electrode neural recording in free-roaming monkeys

    OpenAIRE

    Eliades, Steven J.; Wang, Xiaoqin

    2008-01-01

    Many behaviors of interest to neurophysiologists are difficult to study under laboratory conditions because such behaviors are often inhibited when an animal is restrained and socially isolated. Even under the best conditions, such behaviors may be sparse enough as to require long duration neural recordings or simultaneous recording of multiple neurons to gather a sufficient amount of data for analysis. We have developed a preparation for chronic, multi-electrode recordings in the auditory co...

  2. Braided Multi-Electrode Probes (BMEPs) for Neural Interfaces

    Science.gov (United States)

    Kim, Tae Gyo

    Although clinical use of invasive neural interfaces is very limited, due to safety and reliability concerns, the potential benefits of their use in brain machine interfaces (BMIs) seem promising and so they have been widely used in the research field. Microelectrodes as invasive neural interfaces are the core tool to record neural activities and their failure is a critical issue for BMI systems. Possible sources of this failure are neural tissue motions and their interactions with stiff electrode arrays or probes fixed to the skull. To overcome these tissue motion problems, we have developed novel braided multi-electrode probes (BMEPs). By interweaving ultra-fine wires into a tubular braid structure, we obtained a highly flexible multi-electrode probe. In this thesis we described BMEP designs and how to fabricate BMEPs, and explore experiments to show the advantages of BMEPs through a mechanical compliance comparison and a chronic immunohistological comparison with single 50microm nichrome wires used as a reference electrode type. Results from the mechanical compliance test showed that the bodies of BMEPs have 4 to 21 times higher compliance than the single 50microm wire and the tethers of BMEPs were 6 to 96 times higher compliance, depending on combinations of the wire size (9.6microm or 12.7microm), the wire numbers (12 or 24), and the length of tether (3, 5 or 10 mm). Results from the immunohistological comparison showed that both BMEPs and 50microm wires anchored to the skull caused stronger tissue reactions than unanchored BMEPs and 50microm wires, and 50microm wires caused stronger tissue reactions than BMEPs. In in-vivo tests with BMEPs, we succeeded in chronic recordings from the spinal cord of freely jumping frogs and in acute recordings from the spinal cord of decerebrate rats during air stepping which was evoked by mesencephalic locomotor region (MLR) stimulation. This technology may provide a stable and reliable neural interface to spinal cord

  3. Early interfaced neural activity from chronic amputated nerves

    Directory of Open Access Journals (Sweden)

    Kshitija Garde

    2009-05-01

    Full Text Available Direct interfacing of transected peripheral nerves with advanced robotic prosthetic devices has been proposed as a strategy for achieving natural motor control and sensory perception of such bionic substitutes, thus fully functionally replacing missing limbs in amputees. Multi-electrode arrays placed in the brain and peripheral nerves have been used successfully to convey neural control of prosthetic devices to the user. However, reactive gliosis, micro hemorrhages, axonopathy and excessive inflammation, currently limit their long-term use. Here we demonstrate that enticement of peripheral nerve regeneration through a non-obstructive multi-electrode array, after either acute or chronic nerve amputation, offers a viable alternative to obtain early neural recordings and to enhance long-term interfacing of nerve activity. Non restrictive electrode arrays placed in the path of regenerating nerve fibers allowed the recording of action potentials as early as 8 days post-implantation with high signal-to-noise ratio, as long as 3 months in some animals, and with minimal inflammation at the nerve tissue-metal electrode interface. Our findings suggest that regenerative on-dependent multi-electrode arrays of open design allow the early and stable interfacing of neural activity from amputated peripheral nerves and might contribute towards conveying full neural control and sensory feedback to users of robotic prosthetic devices. .

  4. A split microdrive for simultaneous multi-electrode recordings from two brain areas in awake small animals.

    NARCIS (Netherlands)

    C.S. Lansink; M. Bakker; W. Buster; J. Lankelma; R. van der Blom; R. Westdorp; R.N.J.M.A. Joosten; B.L. Mc.Naughton; C.M.A. Pennartz

    2007-01-01

    Complex cognitive operations such as memory formation and decision-making are thought to be mediated not by single, isolated brain structures but by multiple, connected brain areas. To facilitate studies on the neural communication between connected brain structures, we developed a multi-electrode m

  5. A multi-electrode biomimetic electrolocation sensor

    Science.gov (United States)

    Mayekar, K.; Damalla, D.; Gottwald, M.; Bousack, H.; von der Emde, G.

    2012-04-01

    We present the concept of an active multi-electrode catheter inspired by the electroreceptive system of the weakly electric fish, Gnathonemus petersii. The skin of this fish exhibits numerous electroreceptor organs which are capable of sensing a self induced electrical field. Our sensor is composed of a sending electrode and sixteen receiving electrodes. The electrical field produced by the sending electrode was measured by the receiving electrodes and objects were detected by the perturbation of the electrical field they induce. The intended application of such a sensor is in coronary diagnostics, in particular in distinguishing various types of plaques, which are major causes of heart attack. For calibration of the sensor system, finite element modeling (FEM) was performed. To validate the model, experimental measurements were carried out with two different systems. The physical system was glass tubing with metal and plastic wall insertions as targets. For the control of the experiment and for data acquisition, the software LabView designed for 17 electrodes was used. Different parameters of the electric images were analyzed for the prediction of the electrical properties and size of the inserted targets in the tube. Comparisons of the voltage modulations predicted from the FEM model and the experiments showed a good correspondence. It can be concluded that this novel biomimetic method can be further developed for detailed investigations of atherosclerotic lesions. Finally, we discuss various design strategies to optimize the output of the sensor using different simulated models to enhance target recognition.

  6. A Simple and Accurate Model to Predict Responses to Multi-electrode Stimulation in the Retina.

    Directory of Open Access Journals (Sweden)

    Matias I Maturana

    2016-04-01

    Full Text Available Implantable electrode arrays are widely used in therapeutic stimulation of the nervous system (e.g. cochlear, retinal, and cortical implants. Currently, most neural prostheses use serial stimulation (i.e. one electrode at a time despite this severely limiting the repertoire of stimuli that can be applied. Methods to reliably predict the outcome of multi-electrode stimulation have not been available. Here, we demonstrate that a linear-nonlinear model accurately predicts neural responses to arbitrary patterns of stimulation using in vitro recordings from single retinal ganglion cells (RGCs stimulated with a subretinal multi-electrode array. In the model, the stimulus is projected onto a low-dimensional subspace and then undergoes a nonlinear transformation to produce an estimate of spiking probability. The low-dimensional subspace is estimated using principal components analysis, which gives the neuron's electrical receptive field (ERF, i.e. the electrodes to which the neuron is most sensitive. Our model suggests that stimulation proportional to the ERF yields a higher efficacy given a fixed amount of power when compared to equal amplitude stimulation on up to three electrodes. We find that the model captures the responses of all the cells recorded in the study, suggesting that it will generalize to most cell types in the retina. The model is computationally efficient to evaluate and, therefore, appropriate for future real-time applications including stimulation strategies that make use of recorded neural activity to improve the stimulation strategy.

  7. A Simple and Accurate Model to Predict Responses to Multi-electrode Stimulation in the Retina.

    Science.gov (United States)

    Maturana, Matias I; Apollo, Nicholas V; Hadjinicolaou, Alex E; Garrett, David J; Cloherty, Shaun L; Kameneva, Tatiana; Grayden, David B; Ibbotson, Michael R; Meffin, Hamish

    2016-04-01

    Implantable electrode arrays are widely used in therapeutic stimulation of the nervous system (e.g. cochlear, retinal, and cortical implants). Currently, most neural prostheses use serial stimulation (i.e. one electrode at a time) despite this severely limiting the repertoire of stimuli that can be applied. Methods to reliably predict the outcome of multi-electrode stimulation have not been available. Here, we demonstrate that a linear-nonlinear model accurately predicts neural responses to arbitrary patterns of stimulation using in vitro recordings from single retinal ganglion cells (RGCs) stimulated with a subretinal multi-electrode array. In the model, the stimulus is projected onto a low-dimensional subspace and then undergoes a nonlinear transformation to produce an estimate of spiking probability. The low-dimensional subspace is estimated using principal components analysis, which gives the neuron's electrical receptive field (ERF), i.e. the electrodes to which the neuron is most sensitive. Our model suggests that stimulation proportional to the ERF yields a higher efficacy given a fixed amount of power when compared to equal amplitude stimulation on up to three electrodes. We find that the model captures the responses of all the cells recorded in the study, suggesting that it will generalize to most cell types in the retina. The model is computationally efficient to evaluate and, therefore, appropriate for future real-time applications including stimulation strategies that make use of recorded neural activity to improve the stimulation strategy. PMID:27035143

  8. Extraction of network topology from multi-electrode recordings: Is there a small-world effect?

    Directory of Open Access Journals (Sweden)

    Felipe eGerhard

    2011-02-01

    Full Text Available The simultaneous recording of the activity of many neurons poses challenges for multivariate data analysis. Here, we propose a general scheme of reconstruction of the functional network from spike train recordings. Effective, causal interactions are estimated by fitting Generalized Linear Models (GLMs on the neural responses, incorporating effects of the neurons' self-history, of input from other neurons in the recorded network and of modulation by an external stimulus. The coupling terms arising from synaptic input can be transformed by thresholding into a binary connectivity matrix which is directed. Each link between two neurons represents a causal influence from one neuron to the other, given the observation of all other neurons from the population. The resulting graph is analyzed with respect to small-world and scale-free properties using quantitative measures for directed networks. Such graph-theoretic analyses have been performed on many complex dynamic networks, including the connectivity structure between different brain areas. Only few studies have attempted to look at the structure of cortical neural networks on the level of individual neurons. Here, using multi-electrode recordings from the visual system of the awake monkey, we find that cortical networks lack scale-free behavior, but show a small, but significant small-world structure. Assuming a simple distance-dependent probabilistic wiring between neurons, we find that this connectivity structure can account for all of the networks' observed small-world-ness. Moreover, for multi-electrode recordings the sampling of neurons is not uniform across the population. We show that the small-world-ness obtained by such a localized sub-sampling overestimates the strength of the true small-world-structure of the network. This bias is likely to be present in all previous experiments based on multi-electrode recordings.

  9. Neural stimulation for chronic voiding dysfunctions.

    Science.gov (United States)

    Elabbady, A A; Hassouna, M M; Elhilali, M M

    1994-12-01

    Neural stimulation of the sacral nerve roots could become an acceptable and promising modality in controlling variable forms of difficult voiding dysfunctions. A total of 50 patients who presented with various forms of voiding dysfunction underwent initial screening by percutaneous nerve evaluation of the S3 nerve root guided by movements of the levator ani and toes. Only 17 patients demonstrated a satisfactory response to percutaneous nerve evaluation and subsequent subchronic wire testing for 4 to 5 days, and they were eligible to enter the study. The studied patients (13 women and 4 men) were classified into 2 groups according to presentation. Group 1 included 8 patients who presented mainly with nonobstructive chronic urinary retention. All 8 patients were on intermittent self-catheterization except 1 with a suprapubic tube. The 9 patients in group 2 mainly presented with other forms of voiding dysfunctions, including pain (suprapubic and perineal), frequency and/or urgency. All patients were neurologically free, and had failed pharmacological and surgical attempts to correct the problems. In both groups radiological and ultrasound evaluations of the urinary tract as well as cystourethroscopy were within normal limits. Urodynamic studies were performed preoperatively and postoperatively. Unilateral S3 foramen implantation was performed on the selected side in all patients. Followup ranged from 3 to 52 months. All patients were followed preoperatively and postoperatively by voiding and itemized symptom score diary as well as a quality of life questionnaire. Each symptom and question were given certain grades that reflect the severity or importance to the patient. The symptom scores and the quality of life questionnaires were analyzed preoperatively and postoperatively. In group 1 voided volume (expressed as a percentage of total bladder capacity) was significantly increased at 6 months (23 +/- 7.5% preoperatively versus 81.9 +/- 7.7% postoperatively, p compared

  10. Evaluation and use of regenerative multi electrode interfaces in peripheral nerves

    Science.gov (United States)

    Desai, Vidhi

    Peripheral nerves offer unique accessibility to the innate motor and sensory pathways that can be interfaced with high degree of selectivity for intuitive and bidirectional control of advanced upper extremity prosthetic limbs. Several peripheral nerve interfaces have been proposed and investigated over the last few decades with significant progress made in the area of sensory feedback. However, clinical translation still remains a formidable challenge due to the lack of long term recordings. Prominent causes include signal degradation, eventual interface failures, and lack of specificity in the low amplitude nerve signals. This dissertation evaluates the capabilities of the newly developed Regenerative Multi-electrode Interface (REMI) by the characterization of signal quality progression, the identification of interfaced axon types, and the demonstration of "functional linkage" between acquired signals and target organs. Chapter 2 details the chronic recording of high quality signals from REMI in sciatic nerve which remained stable over a 120 day implantation period indicative of minimal ongoing tissue response with no detrimental effects on the recording ability. The dominant cause of failures was attributable to abiotic factors pertaining to the connector/wire breakage, observed in 76% of REMI implants. Also, the REMI implants had 20% higher success rate and significantly larger Signal to Noise Ratio (SNR) in comparison to the Utah Slanted Electrode Array (USEA). Chapter 3 describes the successful feasibility of interfacing with motor and sensory axons by REMI implantation in the tibial and sural fascicles of the sciatic nerve. A characteristic sampling bias towards recording signals from medium-to-large diameter axons that are primarily involved in mechanoception and proprioception sensory functions was uncovered. Specific bursting units (Inter Spike Interval of 30-70ms) were observed most frequently from the tibial fascicle during bipedal locomotion. Chapter 4

  11. Minocycline increases quality and longevity of chronic neural recordings

    OpenAIRE

    Rennaker, R L; Miller, J.; Tang, H.; Wilson, D. A.

    2007-01-01

    Brain/machine interfaces could potentially be used in the treatment of a host of neurological disorders ranging from paralysis to sensory deficits. Insertion of chronic micro-electrode arrays into neural tissue initiates a host of immunological responses, which typically leads to the formation of a cellular sheath around the implant, resulting in the loss of useful signals. Minocycline has been shown to have neuroprotective and neurorestorative effects in certain neural injury and neurodegene...

  12. Digital mammography with multi-electrode ionization chamber

    CERN Document Server

    Groshev, V R; Nifontov, V I; Pishenuok, S M; Samsonov, A A; Shekhtman, L I; Telnov, V I

    2000-01-01

    For viewing micro-calcifications smaller than 100 mu m investigation of image formation in mammography shows that a significant dose to the patient is imperative. We propose a novel one-dimensional Multi- electrode Ionisation Chamber (MIC), with high spatial resolution, and lowered doses. In this work, first results from a prototype are presented. High spatial resolution is demonstrated working with Xe mixture at high pressure. An addition of a Gas Electron Multiplier (GEM) allowed an improvement in sensitivity up to almost single- photon level. (8 refs).

  13. COMMUNICATION: Minocycline increases quality and longevity of chronic neural recordings

    Science.gov (United States)

    Rennaker, R. L.; Miller, J.; Tang, H.; Wilson, D. A.

    2007-06-01

    Brain/machine interfaces could potentially be used in the treatment of a host of neurological disorders ranging from paralysis to sensory deficits. Insertion of chronic micro-electrode arrays into neural tissue initiates a host of immunological responses, which typically leads to the formation of a cellular sheath around the implant, resulting in the loss of useful signals. Minocycline has been shown to have neuroprotective and neurorestorative effects in certain neural injury and neurodegenerative disease models. This study examined the effects of minocycline administration on the quality and longevity of chronic multi-channel microwire neural implants 1 week and 1 month post-implantation in auditory cortex. The mean signal-to-noise ratio for the minocycline group stabilized at the end of week 1 and remained above 4.6 throughout the following 3 weeks. The control group signal-to-noise ratio dropped throughout the duration of the study and at the end of 4 weeks was 2.6. Furthermore, 68% of electrodes from the minocycline group showed significant stimulus-driven activity at week 4 compared to 12.5% of electrodes in the control group. There was a significant reduction in the number of activated astrocytes around the implant in minocycline subjects, as well as a reduction in total area occupied by activated astrocytes at 1 and 4 weeks.

  14. Chronic stress disrupts neural coherence between cortico-limbic structures

    Directory of Open Access Journals (Sweden)

    João Filipe Oliveira

    2013-02-01

    Full Text Available Chronic stress impairs cognitive function, namely on tasks that rely on the integrity of cortico-limbic networks. To unravel the functional impact of progressive stress in cortico-limbic networks we measured neural activity and spectral coherences between the ventral hippocampus (vHIP and the medial prefrontal cortex (mPFC in rats subjected to short term (STS and chronic unpredictable stress (CUS. CUS exposure consistently disrupted the spectral coherence between both areas for a wide range of frequencies, whereas STS exposure failed to trigger such effect. The chronic stress-induced coherence decrease correlated inversely with the vHIP power spectrum, but not with the mPFC power spectrum, which supports the view that hippocampal dysfunction is the primary event after stress exposure. Importantly, we additionally show that the variations in vHIP-to-mPFC coherence and power spectrum in the vHIP correlated with stress-induced behavioral deficits in a spatial reference memory task. Altogether, these findings result in an innovative readout to measure, and follow, the functional events that underlie the stress-induced reference memory impairments.

  15. Discrepancies between Multi-Electrode LFP and CSD Phase-Patterns: A Forward Modeling Study.

    Science.gov (United States)

    Hindriks, Rikkert; Arsiwalla, Xerxes D; Panagiotaropoulos, Theofanis; Besserve, Michel; Verschure, Paul F M J; Logothetis, Nikos K; Deco, Gustavo

    2016-01-01

    Multi-electrode recordings of local field potentials (LFPs) provide the opportunity to investigate the spatiotemporal organization of neural activity on the scale of several millimeters. In particular, the phases of oscillatory LFPs allow studying the coordination of neural oscillations in time and space and to tie it to cognitive processing. Given the computational roles of LFP phases, it is important to know how they relate to the phases of the underlying current source densities (CSDs) that generate them. Although CSDs and LFPs are distinct physical quantities, they are often (implicitly) identified when interpreting experimental observations. That this identification is problematic is clear from the fact that LFP phases change when switching to different electrode montages, while the underlying CSD phases remain unchanged. In this study we use a volume-conductor model to characterize discrepancies between LFP and CSD phase-patterns, to identify the contributing factors, and to assess the effect of different electrode montages. Although we focus on cortical LFPs recorded with two-dimensional (Utah) arrays, our findings are also relevant for other electrode configurations. We found that the main factors that determine the discrepancy between CSD and LFP phase-patterns are the frequency of the neural oscillations and the extent to which the laminar CSD profile is balanced. Furthermore, the presence of laminar phase-differences in cortical oscillations, as commonly observed in experiments, precludes identifying LFP phases with those of the CSD oscillations at a given cortical depth. This observation potentially complicates the interpretation of spike-LFP coherence and spike-triggered LFP averages. With respect to reference strategies, we found that the average-reference montage leads to larger discrepancies between LFP and CSD phases as compared with the referential montage, while the Laplacian montage reduces these discrepancies. We therefore advice to conduct

  16. A computer-controlled multi-electrode switch.

    Science.gov (United States)

    Santos, F J; Santos, M S

    1999-01-01

    A computer-actuated switch was built to control, simultaneously, two automatic titration assemblies each consisting of an electrode pair and a burette, and using only one measuring device. This switch is modular, simple and versatile allowing easy adaptation and expansion; apart from its application in multiple-titration systems, this device can also be used for standard addition analysis and multi-component analysis using ion-selective electrodes (ISE). The repeatability as well as the accuracy of the measurements made with this switch were ensured using high-quality relays, and very high electrical insulation, attained through the use of two separate printed circuit boards (pcb) of good quality and careful design of these pcbs. This low-cost multi-electrode switch is controlled through the parallel port of a PC that collects the data via an inexpensive 12-bit ADC board (8-bit ISA type), and is easily programmable in any high-level language. This type of device allows the collection of a large amount of data in relatively short periods, which can be analysed later allowing the choice of the best compromise of time versus accuracy for the study of any particular system. PMID:18924850

  17. Cell growth characterization using multi-electrode bioimpedance spectroscopy

    International Nuclear Information System (INIS)

    Cell growth characterization during culturing is an important issue in a variety of biomedical applications. In this study an electrical bioimpedance spectroscopy-based multi-electrode culture monitoring system was developed to characterize cell growth. A PC12 cell line was cultured for the cell growth study. The bioimpedance variations for PC12 cell growth within the initial 12 h were measured over a range between 1 kHz and 4 MHz at three different medium concentrations. Within this frequency range, the largest bioimpedance value was 1.9 times the smallest bioimpedance value. The phase angle decreased over the range from 1 to 10 kHz when cells were growing. Then, the phase angle approached a constant over the frequency range between 10 kHz and 2 MHz. Thereafter, the phase angle increased rapidly from 20 to 52 degrees during cell culturing between 8 and 12 h at 4 MHz. The maximum cell number after culturing for 12 h increased by 25.8% for the control sites with poly-D-lysine (PDL) pastes. For the normal growth factor, the cell number increased up to 4.78 times from 8 to 12 h, but only 0.96 and 1.60 times for the other two medium growth factors. The correlation coefficients between impedance and cell number were 0.868 (coating with PDL), and 0.836 (without PDL) for the normal concentration medium. Thus, impedance may be used as an index for cell growth characterization. (paper)

  18. Cell growth characterization using multi-electrode bioimpedance spectroscopy

    Science.gov (United States)

    Lu, Yi-Yu; Huang, Ji-Jer; Huang, Yu-Jie; Cheng, Kuo-Sheng

    2013-03-01

    Cell growth characterization during culturing is an important issue in a variety of biomedical applications. In this study an electrical bioimpedance spectroscopy-based multi-electrode culture monitoring system was developed to characterize cell growth. A PC12 cell line was cultured for the cell growth study. The bioimpedance variations for PC12 cell growth within the initial 12 h were measured over a range between 1 kHz and 4 MHz at three different medium concentrations. Within this frequency range, the largest bioimpedance value was 1.9 times the smallest bioimpedance value. The phase angle decreased over the range from 1 to 10 kHz when cells were growing. Then, the phase angle approached a constant over the frequency range between 10 kHz and 2 MHz. Thereafter, the phase angle increased rapidly from 20 to 52 degrees during cell culturing between 8 and 12 h at 4 MHz. The maximum cell number after culturing for 12 h increased by 25.8% for the control sites with poly-D-lysine (PDL) pastes. For the normal growth factor, the cell number increased up to 4.78 times from 8 to 12 h, but only 0.96 and 1.60 times for the other two medium growth factors. The correlation coefficients between impedance and cell number were 0.868 (coating with PDL), and 0.836 (without PDL) for the normal concentration medium. Thus, impedance may be used as an index for cell growth characterization.

  19. Fibre-selective recording from the peripheral nerves of frogs using a multi-electrode cuff

    Science.gov (United States)

    Schuettler, Martin; Donaldson, Nick; Seetohul, Vipin; Taylor, John

    2013-06-01

    Objective. We investigate the ability of the method of velocity selective recording (VSR) to determine the fibre types that contribute to a compound action potential (CAP) propagating along a peripheral nerve. Real-time identification of the active fibre types by determining the direction of action potential propagation (afferent or efferent) and velocity might allow future neural prostheses to make better use of biological sensor signals and provide a new and simple tool for use in fundamental neuroscience. Approach. Fibre activity was recorded from explanted Xenopus Laevis frog sciatic nerve using a single multi-electrode cuff that records whole nerve activity with 11 equidistant ring-shaped electrodes. The recorded signals were amplified, delayed against each other with variable delay times, added and band-pass filtered. Finally, the resulting amplitudes were measured. Main Result. Our experiments showed that electrically evoked frog CAP was dominated by two fibre populations, propagating at around 20 and 40 m/s, respectively. The velocity selectivity, i.e. the ability of the system to discriminate between individual populations was increased by applying band-pass filtering. The method extracted an entire velocity spectrum from a 10 ms CAP recording sample in real time. Significance. Unlike the techniques introduced in the 1970s and subsequently, VSR requires only a single nerve cuff and does not require averaging to provide velocity spectral information. This makes it potentially suitable for the generation of highly-selective real-time control-signals for future neural prostheses. In our study, electrically evoked CAPs were analysed and it remains to be proven whether the method can reliably classify physiological nerve traffic. The work presented here was carried out at the laboratories of the Implanted Devices Group, Department of Medical Physics and Bioengineering, University College London, UK.

  20. Behavioral and electrophysiological responses evoked by chronic infrared neural stimulation of the cochlea.

    Directory of Open Access Journals (Sweden)

    Agnella Izzo Matic

    Full Text Available Infrared neural stimulation (INS has been proposed as a novel method for neural stimulation. In order for INS to translate to clinical use, which would involve the use of implanted devices over years or decades, the efficacy and safety of chronic INS needs to be determined. We examined a population of cats that were chronically implanted with an optical fiber to stimulate the cochlea with infrared radiation, the first known chronic application of INS. Through behavioral responses, the cats demonstrate that stimulation occurs and a perceptual event results. Long-term stimulation did not result in a change in the electrophysiological responses, either optically-evoked or acoustically-evoked. Spiral ganglion neuron counts and post implantation tissue growth, which was localized at the optical fiber, were similar in chronically stimulated and sham implanted cochleae. Results from chronic INS experiments in the cat cochlea support future work toward INS-based neuroprostheses for humans.

  1. An Investigation of Groundwater Flow on a Coastal Barrier using Multi Electrode Profiling

    DEFF Research Database (Denmark)

    Poulsen, Søren Erbs; Christensen, Steen; Rasmussen, Keld Rømer;

    2008-01-01

    Preliminary geophysical and hydrogeological investigations indicate that multi-electrode profiling (MEP) can be used to monitor groundwater salinity on a coastal barrier where a shallow thin aquifer discharges to the North Sea. A monitoring system including five groups of piezometers and five MEP...

  2. Commercialisation of CMOS Integrated Circuit Technology in Multi-Electrode Arrays for Neuroscience and Cell-Based Biosensors

    Directory of Open Access Journals (Sweden)

    Chris R. Bowen

    2011-05-01

    Full Text Available The adaptation of standard integrated circuit (IC technology as a transducer in cell-based biosensors in drug discovery pharmacology, neural interface systems and electrophysiology requires electrodes that are electrochemically stable, biocompatible and affordable. Unfortunately, the ubiquitous Complementary Metal Oxide Semiconductor (CMOS IC technology does not meet the first of these requirements. For devices intended only for research, modification of CMOS by post-processing using cleanroom facilities has been achieved. However, to enable adoption of CMOS as a basis for commercial biosensors, the economies of scale of CMOS fabrication must be maintained by using only low-cost post-processing techniques. This review highlights the methodologies employed in cell-based biosensor design where CMOS-based integrated circuits (ICs form an integral part of the transducer system. Particular emphasis will be placed on the application of multi-electrode arrays for in vitro neuroscience applications. Identifying suitable IC packaging methods presents further significant challenges when considering specific applications. The various challenges and difficulties are reviewed and some potential solutions are presented.

  3. Commercialisation of CMOS integrated circuit technology in multi-electrode arrays for neuroscience and cell-based biosensors.

    Science.gov (United States)

    Graham, Anthony H D; Robbins, Jon; Bowen, Chris R; Taylor, John

    2011-01-01

    The adaptation of standard integrated circuit (IC) technology as a transducer in cell-based biosensors in drug discovery pharmacology, neural interface systems and electrophysiology requires electrodes that are electrochemically stable, biocompatible and affordable. Unfortunately, the ubiquitous Complementary Metal Oxide Semiconductor (CMOS) IC technology does not meet the first of these requirements. For devices intended only for research, modification of CMOS by post-processing using cleanroom facilities has been achieved. However, to enable adoption of CMOS as a basis for commercial biosensors, the economies of scale of CMOS fabrication must be maintained by using only low-cost post-processing techniques. This review highlights the methodologies employed in cell-based biosensor design where CMOS-based integrated circuits (ICs) form an integral part of the transducer system. Particular emphasis will be placed on the application of multi-electrode arrays for in vitro neuroscience applications. Identifying suitable IC packaging methods presents further significant challenges when considering specific applications. The various challenges and difficulties are reviewed and some potential solutions are presented.

  4. Commercialisation of CMOS Integrated Circuit Technology in Multi-Electrode Arrays for Neuroscience and Cell-Based Biosensors

    Science.gov (United States)

    Graham, Anthony H. D.; Robbins, Jon; Bowen, Chris R.; Taylor, John

    2011-01-01

    The adaptation of standard integrated circuit (IC) technology as a transducer in cell-based biosensors in drug discovery pharmacology, neural interface systems and electrophysiology requires electrodes that are electrochemically stable, biocompatible and affordable. Unfortunately, the ubiquitous Complementary Metal Oxide Semiconductor (CMOS) IC technology does not meet the first of these requirements. For devices intended only for research, modification of CMOS by post-processing using cleanroom facilities has been achieved. However, to enable adoption of CMOS as a basis for commercial biosensors, the economies of scale of CMOS fabrication must be maintained by using only low-cost post-processing techniques. This review highlights the methodologies employed in cell-based biosensor design where CMOS-based integrated circuits (ICs) form an integral part of the transducer system. Particular emphasis will be placed on the application of multi-electrode arrays for in vitro neuroscience applications. Identifying suitable IC packaging methods presents further significant challenges when considering specific applications. The various challenges and difficulties are reviewed and some potential solutions are presented. PMID:22163884

  5. Numerical simulation research on multi-electrodes resistivity imaging survey array

    Institute of Scientific and Technical Information of China (English)

    Jianjun NIU; Xiaopei ZHANG; Lizhi DU

    2008-01-01

    Multi-electrodes Resistivity Imaging Survey (MRIS) is an array method of electrical survey. In practice how to choose a reasonable array is the key to get reliable survey results. Based on four methods of MRIS such as Wenner, Schlumberger, Pole-pole and Dipole-dipole the authors established the model, by studying the result of the forward numerical simulation modeling and inverse modeling, and analyzed the differences among the different forms of detection devices.

  6. Planar multi-electrode array sensor for localized electrochemical corrosion detection

    Science.gov (United States)

    Tormoen, Garth William; Brossia, Christopher Sean

    2014-01-07

    A planarized type of coupled multi-electrode corrosion sensing device. Electrode pads are fabricated on a thin backing, such as a thin film. Each pad has an associated electrical lead for connection to auxiliary electronic circuitry, which may include a resistor associated with each electrical pad. The design permits the device to be easily placed in small crevices or under coatings such as paint.

  7. Effect of synthetic cannabinoids on spontaneous neuronal activity: Evaluation using Ca(2+) spiking and multi-electrode arrays.

    Science.gov (United States)

    Tauskela, Joseph S; Comas, Tanya; Hewitt, Melissa; Aylsworth, Amy; Zhao, Xigeng; Martina, Marzia; Costain, Willard J

    2016-09-01

    Activation of cannabinoid receptor 1 (CB1) inhibits synaptic transmission in hippocampal neurons. The goal of this study was to evaluate the ability of benchmark and emerging synthetic cannabinoids to suppress neuronal activity in vitro using two complementary techniques, Ca(2+) spiking and multi-electrode arrays (MEAs). Neuron culture and fluorescence imaging conditions were extensively optimized to provide maximum sensitivity for detection of suppression of neural activity by cannabinoids. The neuronal Ca(2+) spiking frequency was significantly suppressed within 10min by the prototypic aminoalkylindole cannabinoid, WIN 55,212-2 (10µM). Suppression by WIN 55,212-2 was not improved by pharmacological intervention with signaling pathways known to interfere with CB1 signaling. The naphthoylindole CB1 agonist, JWH-018 suppressed Ca(2+) spiking at a lower concentration (2.5µM), and the CB1 antagonist rimonabant (5µM), reversed this suppression. In the MEA assay, the ability of synthetic CB1 agonists to suppress spontaneous electrical activity of hippocampal neurons was evaluated over 80min sessions. All benchmark (WIN 55,212-2, HU-210, CP 55,940 and JWH-018) and emerging synthetic cannabinoids (XLR-11, JWH-250, 5F-PB-22, AB-PINACA and MAM-2201) suppressed neural activity at a concentration of 10µM; furthermore, several of these compounds also significantly suppressed activity at 1µM concentrations. Rimonabant partially reversed spiking suppression of 5F-PB-22 and, to a lesser extent, of MAM-2201, supporting CB1-mediated involvement, although the inactive WIN 55,212-3 also partially suppressed activity. Taken together, synthetic cannabinoid CB1-mediated suppression of neuronal activity was detected using Ca(2+) spiking and MEAs. PMID:27262380

  8. Neural dysfunction following respiratory viral infection as a cause of chronic cough hypersensitivity

    Science.gov (United States)

    Zaccone, Eric

    2015-01-01

    Respiratory viral infections are a common cause of acute coughing, an irritating symptom for the patient and an important mechanism of transmission for the virus. Although poorly described, the inflammatory consequences of infection likely induce coughing by chemical (inflammatory mediator) or mechanical (mucous) activation of the cough-evoking sensory nerves that innervate the airway wall. For some individuals, acute cough can evolve into a chronic condition, in which cough and aberrant airway sensations long outlast the initial viral infection. This suggests that some viruses have the capacity to induce persistent plasticity in the neural pathways mediating cough. In this brief review we present the clinical evidence of acute and chronic neural dysfunction following viral respiratory tract infections and explore possible mechanisms by which the nervous system may undergo activation, sensitization and plasticity. PMID:26141017

  9. High-density percutaneous chronic connector for neural prosthetics

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Kedar G.; Bennett, William J.; Pannu, Satinderpall S.

    2015-09-22

    A high density percutaneous chronic connector, having first and second connector structures each having an array of magnets surrounding a mounting cavity. A first electrical feedthrough array is seated in the mounting cavity of the first connector structure and a second electrical feedthrough array is seated in the mounting cavity of the second connector structure, with a feedthrough interconnect matrix positioned between a top side of the first electrical feedthrough array and a bottom side of the second electrical feedthrough array to electrically connect the first electrical feedthrough array to the second electrical feedthrough array. The two arrays of magnets are arranged to attract in a first angular position which connects the first and second connector structures together and electrically connects the percutaneously connected device to the external electronics, and to repel in a second angular position to facilitate removal of the second connector structure from the first connector structure.

  10. Neural Stem Cell Grafting in an Animal Model of Chronic Temporal Lobe Epilepsy

    OpenAIRE

    Hattiangady, Bharathi; Shetty, Ashok K.

    2011-01-01

    Neural stem cell (NSC) transplantation into the hippocampus could offer an alternative therapy to hippocampal resection in patients with drug-resistant chronic epilepsy, which afflicts ~30% of mesial temporal lobe epilepsy (TLE) cases. Multipotent, self-renewing NSCs could be expanded from multiple regions of the developing and adult brain, human embryonic stem cells (hESCs), induced pluripotent stem cells (iPSCs). However, to provide a comprehensive methodology involved in testing the effica...

  11. Effects of Chronic Low-Dose Radiation on Human Neural Progenitor Cells

    Science.gov (United States)

    Katsura, Mari; Cyou-Nakamine, Hiromasa; Zen, Qin; Zen, Yang; Nansai, Hiroko; Amagasa, Shota; Kanki, Yasuharu; Inoue, Tsuyoshi; Kaneki, Kiyomi; Taguchi, Akashi; Kobayashi, Mika; Kaji, Toshiyuki; Kodama, Tatsuhiko; Miyagawa, Kiyoshi; Wada, Youichiro; Akimitsu, Nobuyoshi; Sone, Hideko

    2016-01-01

    The effects of chronic low-dose radiation on human health have not been well established. Recent studies have revealed that neural progenitor cells are present not only in the fetal brain but also in the adult brain. Since immature cells are generally more radiosensitive, here we investigated the effects of chronic low-dose radiation on cultured human neural progenitor cells (hNPCs) derived from embryonic stem cells. Radiation at low doses of 31, 124 and 496 mGy per 72 h was administered to hNPCs. The effects were estimated by gene expression profiling with microarray analysis as well as morphological analysis. Gene expression was dose-dependently changed by radiation. By thirty-one mGy of radiation, inflammatory pathways involving interferon signaling and cell junctions were altered. DNA repair and cell adhesion molecules were affected by 124 mGy of radiation while DNA synthesis, apoptosis, metabolism, and neural differentiation were all affected by 496 mGy of radiation. These in vitro results suggest that 496 mGy radiation affects the development of neuronal progenitor cells while altered gene expression was observed at a radiation dose lower than 100 mGy. This study would contribute to the elucidation of the clinical and subclinical phenotypes of impaired neuronal development induced by chronic low-dose radiation. PMID:26795421

  12. Effects of Chronic Low-Dose Radiation on Human Neural Progenitor Cells

    Science.gov (United States)

    Katsura, Mari; Cyou-Nakamine, Hiromasa; Zen, Qin; Zen, Yang; Nansai, Hiroko; Amagasa, Shota; Kanki, Yasuharu; Inoue, Tsuyoshi; Kaneki, Kiyomi; Taguchi, Akashi; Kobayashi, Mika; Kaji, Toshiyuki; Kodama, Tatsuhiko; Miyagawa, Kiyoshi; Wada, Youichiro; Akimitsu, Nobuyoshi; Sone, Hideko

    2016-01-01

    The effects of chronic low-dose radiation on human health have not been well established. Recent studies have revealed that neural progenitor cells are present not only in the fetal brain but also in the adult brain. Since immature cells are generally more radiosensitive, here we investigated the effects of chronic low-dose radiation on cultured human neural progenitor cells (hNPCs) derived from embryonic stem cells. Radiation at low doses of 31, 124 and 496 mGy per 72 h was administered to hNPCs. The effects were estimated by gene expression profiling with microarray analysis as well as morphological analysis. Gene expression was dose-dependently changed by radiation. By thirty-one mGy of radiation, inflammatory pathways involving interferon signaling and cell junctions were altered. DNA repair and cell adhesion molecules were affected by 124 mGy of radiation while DNA synthesis, apoptosis, metabolism, and neural differentiation were all affected by 496 mGy of radiation. These in vitro results suggest that 496 mGy radiation affects the development of neuronal progenitor cells while altered gene expression was observed at a radiation dose lower than 100 mGy. This study would contribute to the elucidation of the clinical and subclinical phenotypes of impaired neuronal development induced by chronic low-dose radiation.

  13. A possible neural mechanism for photosensitivity in chronic pain.

    Science.gov (United States)

    Martenson, Melissa E; Halawa, Omar I; Tonsfeldt, Karen J; Maxwell, Charlene A; Hammack, Nora; Mist, Scott D; Pennesi, Mark E; Bennett, Robert M; Mauer, Kim M; Jones, Kim D; Heinricher, Mary M

    2016-04-01

    Patients with functional pain disorders often complain of generalized sensory hypersensitivity, finding sounds, smells, or even everyday light aversive. The neural basis for this aversion is unknown, but it cannot be attributed to a general increase in cortical sensory processing. Here, we quantified the threshold for aversion to light in patients with fibromyalgia, a pain disorder thought to reflect dysregulation of pain-modulating systems in the brain. These individuals expressed discomfort at light levels substantially lower than that of healthy control subjects. Complementary studies in lightly anesthetized rat demonstrated that a subset of identified pain-modulating neurons in the rostral ventromedial medulla unexpectedly responds to light. Approximately half of the pain-facilitating "ON-cells" and pain-inhibiting "OFF-cells" sampled exhibited a change in firing with light exposure, shifting the system to a pronociceptive state with the activation of ON-cells and suppression of OFF-cell firing. The change in neuronal firing did not require a trigeminal or posterior thalamic relay, but it was blocked by the inactivation of the olivary pretectal nucleus. Light exposure also resulted in a measurable but modest decrease in the threshold for heat-evoked paw withdrawal, as would be expected with engagement of this pain-modulating circuitry. These data demonstrate integration of information about light intensity with somatic input at the level of single pain-modulating neurons in the brain stem of the rat under basal conditions. Taken together, our findings in rodents and humans provide a novel mechanism for abnormal photosensitivity and suggest that light has the potential to engage pain-modulating systems such that normally innocuous inputs are perceived as aversive or even painful. PMID:26785323

  14. Chronic pain resolution after a lucid dream: a case for neural plasticity?

    Science.gov (United States)

    Zappaterra, Mauro; Jim, Lysander; Pangarkar, Sanjog

    2014-03-01

    Chronic pain is often managed using a multidisciplinary, biopsychosocial approach. Interventions targeting the biological, psychological, and social aspects of both the patient and the pain have been demonstrated to provide objective and subjective improvement in chronic pain symptoms. The mechanism by which pain attenuation occurs after these interventions remains to be elucidated. While there is a relatively large body of empirical literature suggesting that functional and structural changes in the peripheral and central nervous systems are key in the development and maintenance of chronic pain states, less is known about changes that take place in the nervous system as a whole after biopsychosocial interventions. Using as a model the unique case of Mr. S, a patient suffering with chronic pain for 22 years who experienced a complete resolution of pain after a lucid dream following 2 years of biopsychosocial treatments, we postulate that central nervous system (CNS) reorganization (i.e., neural plasticity) serves as a possible mechanism for the therapeutic benefit of multidisciplinary treatments, and may set a neural framework for healing, in this case via a lucid dream.

  15. Chronic pain resolution after a lucid dream: a case for neural plasticity?

    Science.gov (United States)

    Zappaterra, Mauro; Jim, Lysander; Pangarkar, Sanjog

    2014-03-01

    Chronic pain is often managed using a multidisciplinary, biopsychosocial approach. Interventions targeting the biological, psychological, and social aspects of both the patient and the pain have been demonstrated to provide objective and subjective improvement in chronic pain symptoms. The mechanism by which pain attenuation occurs after these interventions remains to be elucidated. While there is a relatively large body of empirical literature suggesting that functional and structural changes in the peripheral and central nervous systems are key in the development and maintenance of chronic pain states, less is known about changes that take place in the nervous system as a whole after biopsychosocial interventions. Using as a model the unique case of Mr. S, a patient suffering with chronic pain for 22 years who experienced a complete resolution of pain after a lucid dream following 2 years of biopsychosocial treatments, we postulate that central nervous system (CNS) reorganization (i.e., neural plasticity) serves as a possible mechanism for the therapeutic benefit of multidisciplinary treatments, and may set a neural framework for healing, in this case via a lucid dream. PMID:24398162

  16. A modular robust control framework for control of movement elicited by multi-electrode intraspinal microstimulation

    Science.gov (United States)

    Roshani, Amir; Erfanian, Abbas

    2016-08-01

    Objective. An important issue in restoring motor function through intraspinal microstimulation (ISMS) is the motor control. To provide a physiologically plausible motor control using ISMS, it should be able to control the individual motor unit which is the lowest functional unit of motor control. By focal stimulation only a small group of motor neurons (MNs) within a motor pool can be activated. Different groups of MNs within a motor pool can potentially be activated without involving adjacent motor pools by local stimulation of different parts of a motor pool via microelectrode array implanted into a motor pool. However, since the system has multiple inputs with single output during multi-electrode ISMS, it poses a challenge to movement control. In this paper, we proposed a modular robust control strategy for movement control, whereas multi-electrode array is implanted into each motor activation pool of a muscle. Approach. The controller was based on the combination of proportional-integral-derivative and adaptive fuzzy sliding mode control. The global stability of the controller was guaranteed. Main results. The results of the experiments on rat models showed that the multi-electrode control can provide a more robust control and accurate tracking performance than a single-electrode control. The control output can be pulse amplitude (pulse amplitude modulation, PAM) or pulse width (pulse width modulation, PWM) of the stimulation signal. The results demonstrated that the controller with PAM provided faster convergence rate and better tracking performance than the controller with PWM. Significance. This work represents a promising control approach to the restoring motor functions using ISMS. The proposed controller requires no prior knowledge about the dynamics of the system to be controlled and no offline learning phase. The proposed control design is modular in the sense that each motor pool has an independent controller and each controller is able to control ISMS

  17. The Neural Correlates of Chronic Symptoms of Vertigo Proneness in Humans.

    Directory of Open Access Journals (Sweden)

    Ola Alsalman

    Full Text Available Vestibular signals are of significant importance for variable functions including gaze stabilization, spatial perception, navigation, cognition, and bodily self-consciousness. The vestibular network governs functions that might be impaired in patients affected with vestibular dysfunction. It is currently unclear how different brain regions/networks process vestibular information and integrate the information into a unified spatial percept related to somatosensory awareness and whether people with recurrent balance complaints have a neural signature as a trait affecting their development of chronic symptoms of vertigo. Pivotal evidence points to a vestibular-related brain network in humans that is widely distributed in nature. By using resting state source localized electroencephalography in non-vertiginous state, electrophysiological changes in activity and functional connectivity of 23 patients with balance complaints where chronic symptoms of vertigo and dizziness are among the most common reported complaints are analyzed and compared to healthy subjects. The analyses showed increased alpha2 activity within the posterior cingulate cortex and the precuneues/cuneus and reduced beta3 and gamma activity within the pregenual and subgenual anterior cingulate cortex for the subjects with balance complaints. These electrophysiological variations were correlated with reported chronic symptoms of vertigo intensity. A region of interest analysis found reduced functional connectivity for gamma activity within the vestibular cortex, precuneus, frontal eye field, intra-parietal sulcus, orbitofrontal cortex, and the dorsal anterior cingulate cortex. In addition, there was a positive correlation between chronic symptoms of vertigo intensity and increased alpha-gamma nesting in the left frontal eye field. When compared to healthy subjects, there is evidence of electrophysiological changes in the brain of patients with balance complaints even outside chronic

  18. The Neural Correlates of Chronic Symptoms of Vertigo Proneness in Humans.

    Science.gov (United States)

    Alsalman, Ola; Ost, Jan; Vanspauwen, Robby; Blaivie, Catherine; De Ridder, Dirk; Vanneste, Sven

    2016-01-01

    Vestibular signals are of significant importance for variable functions including gaze stabilization, spatial perception, navigation, cognition, and bodily self-consciousness. The vestibular network governs functions that might be impaired in patients affected with vestibular dysfunction. It is currently unclear how different brain regions/networks process vestibular information and integrate the information into a unified spatial percept related to somatosensory awareness and whether people with recurrent balance complaints have a neural signature as a trait affecting their development of chronic symptoms of vertigo. Pivotal evidence points to a vestibular-related brain network in humans that is widely distributed in nature. By using resting state source localized electroencephalography in non-vertiginous state, electrophysiological changes in activity and functional connectivity of 23 patients with balance complaints where chronic symptoms of vertigo and dizziness are among the most common reported complaints are analyzed and compared to healthy subjects. The analyses showed increased alpha2 activity within the posterior cingulate cortex and the precuneues/cuneus and reduced beta3 and gamma activity within the pregenual and subgenual anterior cingulate cortex for the subjects with balance complaints. These electrophysiological variations were correlated with reported chronic symptoms of vertigo intensity. A region of interest analysis found reduced functional connectivity for gamma activity within the vestibular cortex, precuneus, frontal eye field, intra-parietal sulcus, orbitofrontal cortex, and the dorsal anterior cingulate cortex. In addition, there was a positive correlation between chronic symptoms of vertigo intensity and increased alpha-gamma nesting in the left frontal eye field. When compared to healthy subjects, there is evidence of electrophysiological changes in the brain of patients with balance complaints even outside chronic symptoms of vertigo

  19. Long-Term Effects of Chronic Oral Ritalin Administration on Cognitive and Neural Development in Adolescent Wistar Kyoto Rats

    OpenAIRE

    Pardey, Margery C.; Kumar, Natasha N.; Goodchild, Ann K.; Clemens, Kelly J.; Homewood, Judi; Cornish, Jennifer L.

    2012-01-01

    The diagnosis of Attention Deficit Hyperactivity Disorder (ADHD) often results in chronic treatment with psychostimulants such as methylphenidate (MPH, Ritalin®). With increases in misdiagnosis of ADHD, children may be inappropriately exposed to chronic psychostimulant treatment during development. The aim of this study was to assess the effect of chronic Ritalin treatment on cognitive and neural development in misdiagnosed “normal” (Wistar Kyoto, WKY) rats and in Spontaneously Hypertensive R...

  20. Binaural release from masking with single- and multi-electrode stimulation in children with cochlear implants.

    Science.gov (United States)

    Todd, Ann E; Goupell, Matthew J; Litovsky, Ruth Y

    2016-07-01

    Cochlear implants (CIs) provide children with access to speech information from a young age. Despite bilateral cochlear implantation becoming common, use of spatial cues in free field is smaller than in normal-hearing children. Clinically fit CIs are not synchronized across the ears; thus binaural experiments must utilize research processors that can control binaural cues with precision. Research to date has used single pairs of electrodes, which is insufficient for representing speech. Little is known about how children with bilateral CIs process binaural information with multi-electrode stimulation. Toward the goal of improving binaural unmasking of speech, this study evaluated binaural unmasking with multi- and single-electrode stimulation. Results showed that performance with multi-electrode stimulation was similar to the best performance with single-electrode stimulation. This was similar to the pattern of performance shown by normal-hearing adults when presented an acoustic CI simulation. Diotic and dichotic signal detection thresholds of the children with CIs were similar to those of normal-hearing children listening to a CI simulation. The magnitude of binaural unmasking was not related to whether the children with CIs had good interaural time difference sensitivity. Results support the potential for benefits from binaural hearing and speech unmasking in children with bilateral CIs. PMID:27475132

  1. 阵列电极制作方法%Method of the Multi-electrode Array Fabricated

    Institute of Scientific and Technical Information of China (English)

    彭亚鸽; 田海龙; 马玉军

    2012-01-01

    阵列电极是组装阵列电化学生物传感器的基础电极,它的设计和制作是成功构建阵列电化学生物传感器的基础。文章重点介绍了四种制作阵列电极的方法,简单探讨了阵列电极发展存在的问题。%Multi-electrode array is a basis for design and fabrication of electrochemical biosensor array. Four methods of multi-electrode array fabricated arc reviewed extensively. The current problems of multi-electrode array are briefly discussed.

  2. Electrode impedance analysis of chronic tungsten microwire neural implants: understanding abiotic vs. biotic contributions

    Directory of Open Access Journals (Sweden)

    Viswanath eSankar

    2014-05-01

    Full Text Available Changes in biotic and abiotic factors can be reflected in the complex impedance spectrum of the microelectrodes chronically implanted into the neural tissue. The recording surface of the tungsten electrode in vivo undergoes abiotic changes due to recording site corrosion and insulation delamination as well as biotic changes due to tissue encapsulation as a result of the foreign body immune response. We reported earlier that large changes in electrode impedance measured at 1 kHz were correlated with poor electrode functional performance, quantified through electrophysiological recordings during the chronic lifetime of the electrode. There is a need to identity the factors that contribute to the chronic impedance variation. In this work, we use numerical simulation and regression to equivalent circuit models to evaluate both the abiotic and biotic contributions to the impedance response over chronic implant duration. COMSOL® simulation of abiotic electrode morphology changes provide a possible explanation for the decrease in the electrode impedance at long implant duration while biotic changes play an important role in the large increase in impedance observed initially.

  3. Forward Modeling of Different Types of Landslides with Multi-electrode Electric Method

    Institute of Scientific and Technical Information of China (English)

    GuoXiujun; HuangXiaoyu; JiaYonggang

    2005-01-01

    Multi-electrode Electric Method (MEM) is an effective tool in landslide survey. A suitable working scheme in-situ and the corresponding data interpretation approach are the fundamentals for obtaining believable results. Finite element 2D forward modeling was conducted on four types of standard electric models; respectively named the homogeneous soil landside, bedding landside, sliderock landside, and beveling landside; under the utilizations of four different types of electrode arrays;respectively namely the Wenner array, Schlumberger array, dipole-dipole array and pole-pole array.The capacities of different arrays and the resistivity responses of different types of sliding faces were determined based on the resultant standard electric profiles. An innovative data processing procedure called the ratio parameter method was proposed for locating sliding faces under complex geological conditions. A series of case histories for landside survey were given.

  4. Tracking Single Units in Chronic, Large Scale, Neural Recordings for Brain Machine Interface Applications

    Directory of Open Access Journals (Sweden)

    Ahmed eEleryan

    2014-07-01

    Full Text Available In the study of population coding in neurobiological systems, tracking unit identity may be critical to assess possible changes in the coding properties of neuronal constituents over prolonged periods of time. Ensuring unit stability is even more critical for reliable neural decoding of motor variables in intra-cortically controlled brain-machine interfaces (BMIs. Variability in intrinsic spike patterns, tuning characteristics, and single-unit identity over chronic use is a major challenge to maintaining this stability, requiring frequent daily calibration of neural decoders in BMI sessions by an experienced human operator. Here, we report on a unit-stability tracking algorithm that efficiently and autonomously identifies putative single-units that are stable across many sessions using a relatively short duration recording interval at the start of each session. The algorithm first builds a database of features extracted from units' average spike waveforms and firing patterns across many days of recording. It then uses these features to decide whether spike occurrences on the same channel on one day belong to the same unit recorded on another day or not. We assessed the overall performance of the algorithm for different choices of features and classifiers trained using human expert judgment, and quantified it as a function of accuracy and execution time. Overall, we found a trade-off between accuracy and execution time with increasing data volumes from chronically implanted rhesus macaques, with an average of 12 seconds processing time per channel at ~90% classification accuracy. Furthermore, 77% of the resulting putative single-units matched those tracked by human experts. These results demonstrate that over the span of a few months of recordings, automated unit tracking can be performed with high accuracy and used to streamline the calibration phase during BMI sessions.

  5. Neural interface of mirror therapy in chronic stroke patients: A functional magnetic resonance imaging study

    Directory of Open Access Journals (Sweden)

    Ashu Bhasin

    2012-01-01

    Full Text Available Background: Recovery in stroke is mediated by neural plasticity. Neuro-restorative therapies improve recovery after stroke by promoting repair and function. Mirror neuron system (MNS has been studied widely in humans in stroke and phantom sensations. Materials and Methods: Study subjects included 20 patients with chronic stroke and 10 healthy controls. Patients had clinical disease-severity scores, functional magnetic resonance imaging (fMRI and diffuse tensor imaging (DTI at baseline, 8 and at 24 weeks. Block design with alternate baseline and activation cycles was used with a total of 90 whole brain echo planar imaging (EPI measurements (timed repetition (TR = 4520 ms, timed echo (TE = 44 ms, slices = 31, slice thickness = 4 mm, EPI factor 127, matrix = 128 × 128, FOV = 230 mm. Whole brain T1-weighted images were acquired using 3D sequence (MPRage with 120 contiguous slices of 1.0 mm thickness. The mirror therapy was aimed via laptop system integrated with web camera, mirroring the movement of the unaffected hand. This therapy was administered for 5 days in a week for 60-90 min for 8 weeks. Results: All the patients showed statistical significant improvement in Fugl Meyer and modified Barthel Index (P < 0.05 whereas the change in Medical Research Council (MRC power grade was not significant post-therapy (8 weeks. There was an increase in the laterality index (LI of ipsilesional BA 4 and BA 6 at 8 weeks exhibiting recruitment and focusing principles of neural plasticity. Conclusions: Mirror therapy simulated the "action-observation" hypothesis exhibiting recovery in patients with chronic stroke. Therapy induced cortical reorganization was also observed from our study.

  6. Effectiveness of Slump Neural Mobilization Technique for the management of chronic radicular low back pain

    International Nuclear Information System (INIS)

    Objective: To determine the effectiveness of slump neural mobilization technique compared with lumber stabilization exercise (LSE) and shortwave diathermy (SWD) in the physical therapy management of chronic radicular low back pain (CRLBP). Methodology: A sample of 40 patients with CRLBP was selected and randomly placed into two groups A and B. 22 patients were treated with slump neural mobilization technique (SNMT), lumbar stabilization exercise (LSE) and Short wave diathermy (SWD), while 18 patient of group B were treated with LSE and SWD. All the patients were assessed by four point pain scale and Oswestry disability index (ODI) at the baseline and at the completion of three weeks at 5 days per week and 30 minutes single session per day. The data was collected on specially designed Performa and was analyzed by SPSS and paired t test was applied to determine the probability value at 95 % level of significance. Results: Both groups demonstrated significant improvement in pain score and ODI score, although improvement was more significant in group A (p<0.001 for both pain and ODI score) as compared to group B (p=0.003 for pain score and 0.163 for ODI score).table-I-III) Conclusion: It is concluded that SNMTalong LSE and SWD improves pain and function more as compared with LSE and SWD alone during the physical therapy management of CRLBP. (author)

  7. Shared neural basis of social and non-social reward deficits in chronic cocaine users.

    Science.gov (United States)

    Tobler, Philippe N; Preller, Katrin H; Campbell-Meiklejohn, Daniel K; Kirschner, Matthias; Kraehenmann, Rainer; Stämpfli, Philipp; Herdener, Marcus; Seifritz, Erich; Quednow, Boris B

    2016-06-01

    Changed reward functions have been proposed as a core feature of stimulant addiction, typically observed as reduced neural responses to non-drug-related rewards. However, it was unclear yet how specific this deficit is for different types of non-drug rewards arising from social and non-social reinforcements. We used functional neuroimaging in cocaine users to investigate explicit social reward as modeled by agreement of music preferences with music experts. In addition, we investigated non-social reward as modeled by winning desired music pieces. The study included 17 chronic cocaine users and 17 matched stimulant-naive healthy controls. Cocaine users, compared with controls, showed blunted neural responses to both social and non-social reward. Activation differences were located in the ventromedial prefrontal cortex overlapping for both reward types and, thus, suggesting a non-specific deficit in the processing of non-drug rewards. Interestingly, in the posterior lateral orbitofrontal cortex, social reward responses of cocaine users decreased with the degree to which they were influenced by social feedback from the experts, a response pattern that was opposite to that observed in healthy controls. The present results suggest that cocaine users likely suffer from a generalized impairment in value representation as well as from an aberrant processing of social feedback. PMID:26969866

  8. Therapeutic activities of engrafted neural stem/precursor cells are not dormant in the chronically injured spinal cord.

    Science.gov (United States)

    Kumamaru, Hiromi; Saiwai, Hirokazu; Kubota, Kensuke; Kobayakawa, Kazu; Yokota, Kazuya; Ohkawa, Yasuyuki; Shiba, Keiichiro; Iwamoto, Yukihide; Okada, Seiji

    2013-08-01

    The transplantation of neural stem/precursor cells (NSPCs) is a promising therapeutic strategy for many neurodegenerative disorders including spinal cord injury (SCI) because it provides for neural replacement or trophic support. This strategy is now being extended to the treatment of chronic SCI patients. However, understanding of biological properties of chronically transplanted NSPCs and their surrounding environments is limited. Here, we performed temporal analysis of injured spinal cords and demonstrated their multiphasic cellular and molecular responses. In particular, chronically injured spinal cords were growth factor-enriched environments, whereas acutely injured spinal cords were enriched by neurotrophic and inflammatory factors. To determine how these environmental differences affect engrafted cells, NSPCs transplanted into acutely, subacutely, and chronically injured spinal cords were selectively isolated by flow cytometry, and their whole transcriptomes were compared by RNA sequencing. This analysis revealed that NSPCs produced many regenerative/neurotrophic molecules irrespective of transplantation timing, and these activities were prominent in chronically transplanted NSPCs. Furthermore, chronically injured spinal cords permitted engrafted NSPCs to differentiate into neurons/oligodendrocytes and provided more neurogenic environment for NSPCs than other environments. Despite these results demonstrate that transplanted NSPCs have adequate capacity in generating neurons/oligodendrocytes and producing therapeutic molecules in chronic SCI microenvironments, they did not improve locomotor function. Our results indicate that failure in chronic transplantation is not due to the lack of therapeutic activities of engrafted NSPCs but the refractory state of chronically injured spinal cords. Environmental modulation, rather modification of transplanting cells, will be significant for successful translation of stem cell-based therapies into chronic SCI patients.

  9. Unified selective sorting approach to analyse multi-electrode extracellular data

    Science.gov (United States)

    Veerabhadrappa, R.; Lim, C. P.; Nguyen, T. T.; Berk, M.; Tye, S. J.; Monaghan, P.; Nahavandi, S.; Bhatti, A.

    2016-06-01

    Extracellular data analysis has become a quintessential method for understanding the neurophysiological responses to stimuli. This demands stringent techniques owing to the complicated nature of the recording environment. In this paper, we highlight the challenges in extracellular multi-electrode recording and data analysis as well as the limitations pertaining to some of the currently employed methodologies. To address some of the challenges, we present a unified algorithm in the form of selective sorting. Selective sorting is modelled around hypothesized generative model, which addresses the natural phenomena of spikes triggered by an intricate neuronal population. The algorithm incorporates Cepstrum of Bispectrum, ad hoc clustering algorithms, wavelet transforms, least square and correlation concepts which strategically tailors a sequence to characterize and form distinctive clusters. Additionally, we demonstrate the influence of noise modelled wavelets to sort overlapping spikes. The algorithm is evaluated using both raw and synthesized data sets with different levels of complexity and the performances are tabulated for comparison using widely accepted qualitative and quantitative indicators.

  10. Control of Dynamic Limb Motion Using Fatigue-Resistant Asynchronous Intrafascicular Multi-Electrode Stimulation.

    Science.gov (United States)

    Frankel, Mitchell A; Mathews, V John; Clark, Gregory A; Normann, Richard A; Meek, Sanford G

    2016-01-01

    Asynchronous intrafascicular multi-electrode stimulation (aIFMS) of small independent populations of peripheral nerve motor axons can evoke selective, fatigue-resistant muscle forces. We previously developed a real-time proportional closed-loop control method for aIFMS generation of isometric muscle force and the present work extends and adapts this closed-loop controller to the more demanding task of dynamically controlling joint position in the presence of opposing joint torque. A proportional-integral-velocity controller, with integrator anti-windup strategies, was experimentally validated as a means to evoke motion about the hind-limb ankle joint of an anesthetized feline via aIFMS stimulation of fast-twitch plantar-flexor muscles. The controller was successful in evoking steps in joint position with 2.4% overshoot, 2.3-s rise time, 4.5-s settling time, and near-zero steady-state error. Controlled step responses were consistent across changes in step size, stable against external disturbances, and reliable over time. The controller was able to evoke smooth eccentric motion at joint velocities up to 8 deg./s, as well as sinusoidal trajectories with frequencies up to 0.1 Hz, with time delays less than 1.5 s. These experiments provide important insights toward creating a robust closed-loop aIFMS controller that can evoke precise fatigue-resistant motion in paralyzed individuals, despite the complexities introduced by aIFMS. PMID:27679557

  11. Visualizing transplanted muscle flaps using minimally invasive multi-electrode bioimpedance spectroscopy

    Science.gov (United States)

    Gordon, R.; Zorkova, V.; Min, M.; Rätsep, I.

    2010-04-01

    We describe here an imaging system that uses bioimpedance spectroscopy with multi-electrode array to indicate the state of muscle flap regions under the array. The system is able to differentiate between different health states in the tissue and give early information about the location and size of ischemic sub-regions. The array will be 4*8 electrodes with the spacing of 5mm between the electrodes (the number of electrodes and the spacing may vary). The electrodes are minimally invasive short stainless steel needles, that penetrate 0.3 mm into the tissue with the goal of achieving a wet electric contact. We combine 32 configurations of 4-electrode multi-frequency impedance measurements to derive a health-state map for the transplanted flap. The imaging method is tested on a model consisting of 2 tissues and FEM software (Finite Element Method -COMSOL Multiphysics based) is used to conduct the measurements virtually. Dedicated multichannel bioimpedance measurement equipment has already been developed and tested, that cover the frequency range from 100 Hz to 1 MHz.

  12. An approach to the diagnosis of metabolic syndrome by the multi-electrode impedance method

    Science.gov (United States)

    Furuya, N.; Sakamoto, K.; Kanai, H.

    2010-04-01

    It is well known that metabolic syndrome can induce myocardial infarction and cerebral infarction. So, it is very important to measure the visceral fat volume. In the electric impedance method, information in the vicinity of the electrodes is strongly reflected. Therefore, we propose a new multi-electrode arrangement method based on the impedance sensitivity theorem to measure the visceral fat volume. This electrode arrangement is designed to enable high impedance sensitivity in the visceral and subcutaneous fat regions. Currents are simultaneously applied to several current electrodes on the body surface, and one voltage electrode pair is arranged on the body surface near the organ of interest to obtain the visceral fat information and another voltage electrode pair is arranged on the body surface near the current electrodes to obtain the subcutaneous fat information. A simulation study indicates that by weighting the impedance sensitivity distribution, as in our method, a high-sensitivity region in the visceral and the subcutaneous fat regions can be formed. In addition, it was confirmed that the visceral fat volume can be estimated by the measured impedance data.

  13. Unified selective sorting approach to analyse multi-electrode extracellular data.

    Science.gov (United States)

    Veerabhadrappa, R; Lim, C P; Nguyen, T T; Berk, M; Tye, S J; Monaghan, P; Nahavandi, S; Bhatti, A

    2016-01-01

    Extracellular data analysis has become a quintessential method for understanding the neurophysiological responses to stimuli. This demands stringent techniques owing to the complicated nature of the recording environment. In this paper, we highlight the challenges in extracellular multi-electrode recording and data analysis as well as the limitations pertaining to some of the currently employed methodologies. To address some of the challenges, we present a unified algorithm in the form of selective sorting. Selective sorting is modelled around hypothesized generative model, which addresses the natural phenomena of spikes triggered by an intricate neuronal population. The algorithm incorporates Cepstrum of Bispectrum, ad hoc clustering algorithms, wavelet transforms, least square and correlation concepts which strategically tailors a sequence to characterize and form distinctive clusters. Additionally, we demonstrate the influence of noise modelled wavelets to sort overlapping spikes. The algorithm is evaluated using both raw and synthesized data sets with different levels of complexity and the performances are tabulated for comparison using widely accepted qualitative and quantitative indicators. PMID:27339770

  14. All-carbon multi-electrode array for real-time in vitro measurements of oxidizable neurotransmitters

    Science.gov (United States)

    Picollo, Federico; Battiato, Alfio; Bernardi, Ettore; Plaitano, Marilena; Franchino, Claudio; Gosso, Sara; Pasquarelli, Alberto; Carbone, Emilio; Olivero, Paolo; Carabelli, Valentina

    2016-02-01

    We report on the ion beam fabrication of all-carbon multi electrode arrays (MEAs) based on 16 graphitic micro-channels embedded in single-crystal diamond (SCD) substrates. The fabricated SCD-MEAs are systematically employed for the in vitro simultaneous amperometric detection of the secretory activity from populations of chromaffin cells, demonstrating a new sensing approach with respect to standard techniques. The biochemical stability and biocompatibility of the SCD-based device combined with the parallel recording of multi-electrodes array allow: i) a significant time saving in data collection during drug screening and/or pharmacological tests over a large number of cells, ii) the possibility of comparing altered cell functionality among cell populations, and iii) the repeatition of acquisition runs over many cycles with a fully non-toxic and chemically robust bio-sensitive substrate.

  15. All-carbon multi-electrode array for real-time in vitro measurements of oxidizable neurotransmitters

    CERN Document Server

    Picollo, F; Bernardi, E; Plaitano, M; Franchino, C; Gosso, S; Pasquarelli, A; Carbone, E; Olivero, P; Carabelli, V

    2016-01-01

    We report on the ion beam fabrication of all-carbon multi electrode arrays (MEAs) based on 16 graphitic micro-channels embedded in single-crystal diamond (SCD) substrates. The fabricated SCD-MEAs are systematically employed for the in vitro simultaneous amperometric detection of the secretory activity from populations of chromaffin cells, demonstrating a new sensing approach with respect to standard techniques. The biochemical stability and biocompatibility of the SCD-based device combined with the parallel recording of multi-electrodes array allow: i) a significant time saving in data collection during drug screening and/or pharmacological tests over a large number of cells, ii) the possibility of comparing altered cell functionality among cell populations, and iii) the repeatition of acquisition runs over many cycles with a fully non-toxic and chemically robust bio-sensitive substrate.

  16. Silicon/SU8 multi-electrode micro-needle for in vivo neurochemical monitoring.

    Science.gov (United States)

    Vasylieva, Natalia; Marinesco, Stéphane; Barbier, Daniel; Sabac, Andrei

    2015-10-15

    Simultaneous monitoring of glucose and lactate is an important challenge for understanding brain energetics in physiological or pathological states. We demonstrate here a versatile method based on a minimally invasive single implantation in the rat brain. A silicon/SU8-polymer multi-sensing needle-shaped biosensor, was fabricated and tested. The multi-electrode array design comprises three platinum planar microelectrodes with a surface area of 40 × 200 µm(2) and a spacing of 200 µm, which were micromachined on a single 3mm long micro-needle having a 100 × 50 µm(2) cross-section for reduced tissue damage during implantation. Platinum micro-electrodes were aligned at the bottom of micro-wells obtained by photolithography on a SU8 photoresist layer. After clean room processing, each micro-electrode was functionalized inside the micro-wells by means of a micro-dispensing device, either with glucose oxidase or with lactate oxidase, which were cross-linked on the platinum electrodes. The third electrode covered with Bovine Serum Albumin (BSA) was used for the control of non-specific currents. The thick SU8 photoresist layer has revealed excellent electrical insulation of the micro-electrodes and between interconnection lines, and ensured a precise localization and packaging of the sensing enzymes on platinum micro-electrodes. During in vitro calibration with concentrations of analytes in the mM range, the micro-wells patterned in the SU8 photoresist proved to be highly effective in eliminating cross-talk signals, caused by H2O2 diffusion from closely spaced micro-electrodes. Moreover, our biosensor was successfully assayed in the rat cortex for simultaneous monitoring of both glucose and lactate during insulin and glucose administration. PMID:25978443

  17. Carrier-interleaved orthogonal multi-electrode multi-carrier resistivity-measurement tool

    Science.gov (United States)

    Cai, Yu; Sha, Shuang

    2016-09-01

    This paper proposes a new carrier-interleaved orthogonal multi-electrode multi-carrier resistivity-measurement tool used in a cylindrical borehole environment during oil-based mud drilling processes. The new tool is an orthogonal frequency division multiplexing access-based contactless multi-measurand detection tool. The tool can measure formation resistivity in different azimuthal angles and elevational depths. It can measure many more measurands simultaneously in a specified bandwidth than the legacy frequency division multiplexing multi-measurand tool without a channel-select filter while avoiding inter-carrier interference. The paper also shows that formation resistivity is not sensitive to frequency in certain frequency bands. The average resistivity collected from N subcarriers can increase the measurement of the signal-to-noise ratio (SNR) by N times given no amplitude clipping in the current-injection electrode. If the clipping limit is taken into account, with the phase rotation of each single carrier, the amplitude peak-to-average ratio can be reduced by 3 times, and the SNR can achieve a 9/N times gain over the single-carrier system. The carrier-interleaving technique is also introduced to counter the carrier frequency offset (CFO) effect, where the CFO will cause inter-pad interference. A qualitative analysis and simulations demonstrate that block-interleaving performs better than tone-interleaving when coping with a large CFO. The theoretical analysis also suggests that increasing the subcarrier number can increase the measurement speed or enhance elevational resolution without sacrificing receiver performance. The complex orthogonal multi-pad multi-carrier resistivity logging tool, in which all subcarriers are complex signals, can provide a larger available subcarrier pool than other types of transceivers.

  18. Response profiles of murine spiral ganglion neurons on multi-electrode arrays

    Science.gov (United States)

    Hahnewald, Stefan; Tscherter, Anne; Marconi, Emanuele; Streit, Jürg; Widmer, Hans Rudolf; Garnham, Carolyn; Benav, Heval; Mueller, Marcus; Löwenheim, Hubert; Roccio, Marta; Senn, Pascal

    2016-02-01

    Objective. Cochlear implants (CIs) have become the gold standard treatment for deafness. These neuroprosthetic devices feature a linear electrode array, surgically inserted into the cochlea, and function by directly stimulating the auditory neurons located within the spiral ganglion, bypassing lost or not-functioning hair cells. Despite their success, some limitations still remain, including poor frequency resolution and high-energy consumption. In both cases, the anatomical gap between the electrode array and the spiral ganglion neurons (SGNs) is believed to be an important limiting factor. The final goal of the study is to characterize response profiles of SGNs growing in intimate contact with an electrode array, in view of designing novel CI devices and stimulation protocols, featuring a gapless interface with auditory neurons. Approach. We have characterized SGN responses to extracellular stimulation using multi-electrode arrays (MEAs). This setup allows, in our view, to optimize in vitro many of the limiting interface aspects between CIs and SGNs. Main results. Early postnatal mouse SGN explants were analyzed after 6-18 days in culture. Different stimulation protocols were compared with the aim to lower the stimulation threshold and the energy needed to elicit a response. In the best case, a four-fold reduction of the energy was obtained by lengthening the biphasic stimulus from 40 μs to 160 μs. Similarly, quasi monophasic pulses were more effective than biphasic pulses and the insertion of an interphase gap moderately improved efficiency. Finally, the stimulation with an external electrode mounted on a micromanipulator showed that the energy needed to elicit a response could be reduced by a factor of five with decreasing its distance from 40 μm to 0 μm from the auditory neurons. Significance. This study is the first to show electrical activity of SGNs on MEAs. Our findings may help to improve stimulation by and to reduce energy consumption of CIs and

  19. Assessment of groundwater salinity in Nellore district using multi-electrode resistivity imaging technique

    Indian Academy of Sciences (India)

    E Chandrasekhar; Deshmukh Ramesh; Trupti Gurav; T K Biswal

    2014-12-01

    Multi-electrode resistivity imaging survey with 48 electrodes was carried out to assess the extent of salinity inland, in the shallow subsurface in Nellore district, Andhra Pradesh, in the Eastern Ghats Mobile Belt (EGMB) region. Resistivity data were recorded using Wenner–Schlumberger configuration at nine sites along a profile of about 55 km in length, laid perpendicular to the coast. An average spacing of 6 km is maintained between each site. Assessment of groundwater salinity in the study area was made by joint interpretation of the two-dimensional (2D) geoelectrical models of all the sites together with the geochemical analysis results of water samples and geology. At sites closer to the coast, 2D geoelectrical models of the subsurface indicate low resistivities (2–50 m) in the depth range from surface up to 15 m. Such low resistivities are due to the high salinity of the groundwater. Geochemical analysis results of water samples at six locations close to the electrical resistivity survey sites also suggest high salinity and high concentrations of total dissolved solids and other chemicals at sites closer to the coast. Away from the coast, the resistivities in the depth range from surface up to 15 m vary in the range of 50–150 m. Accordingly, the chemical analysis of water samples collected at these sites also showed relatively low levels of salinity and salt concentrations in them. However, away from the coast, the resistivities vary in the range of 150–1500 m in the depth range from 20–40 m. While the aquaculture and agriculture activities may contribute to high salinity at the sites closer to the coast, the presence of deep-seated paleochannels aiding in transporting seawater inland, and water–rock interactions are suspected to be the chief causes for notable salinity at places away from the coast at shallow depths. We opine that the high salinity at shallow depths, coupled with the deep-seated paleochannels transporting seawater, could pose

  20. Long-Term Effects of Chronic Oral Ritalin Administration on Cognitive and Neural Development in Adolescent Wistar Kyoto Rats

    Directory of Open Access Journals (Sweden)

    Jennifer L. Cornish

    2012-09-01

    Full Text Available The diagnosis of Attention Deficit Hyperactivity Disorder (ADHD often results in chronic treatment with psychostimulants such as methylphenidate (MPH, Ritalin®. With increases in misdiagnosis of ADHD, children may be inappropriately exposed to chronic psychostimulant treatment during development. The aim of this study was to assess the effect of chronic Ritalin treatment on cognitive and neural development in misdiagnosed “normal” (Wistar Kyoto, WKY rats and in Spontaneously Hypertensive Rats (SHR, a model of ADHD. Adolescent male animals were treated for four weeks with oral Ritalin® (2 × 2 mg/kg/day or distilled water (dH2O. The effect of chronic treatment on delayed reinforcement tasks (DRT and tyrosine hydroxylase immunoreactivity (TH-ir in the prefrontal cortex was assessed. Two weeks following chronic treatment, WKY rats previously exposed to MPH chose the delayed reinforcer significantly less than the dH2O treated controls in both the DRT and extinction task. MPH treatment did not significantly alter cognitive performance in the SHR. TH-ir in the infralimbic cortex was significantly altered by age and behavioural experience in WKY and SHR, however this effect was not evident in WKY rats treated with MPH. These results suggest that chronic treatment with MPH throughout adolescence in “normal” WKY rats increased impulsive choice and altered catecholamine development when compared to vehicle controls.

  1. Functional connectivity and information flow of the respiratory neural network in chronic obstructive pulmonary disease.

    Science.gov (United States)

    Yu, Lianchun; De Mazancourt, Marine; Hess, Agathe; Ashadi, Fakhrul R; Klein, Isabelle; Mal, Hervé; Courbage, Maurice; Mangin, Laurence

    2016-08-01

    Breathing involves a complex interplay between the brainstem automatic network and cortical voluntary command. How these brain regions communicate at rest or during inspiratory loading is unknown. This issue is crucial for several reasons: (i) increased respiratory loading is a major feature of several respiratory diseases, (ii) failure of the voluntary motor and cortical sensory processing drives is among the mechanisms that precede acute respiratory failure, (iii) several cerebral structures involved in responding to inspiratory loading participate in the perception of dyspnea, a distressing symptom in many disease. We studied functional connectivity and Granger causality of the respiratory network in controls and patients with chronic obstructive pulmonary disease (COPD), at rest and during inspiratory loading. Compared with those of controls, the motor cortex area of patients exhibited decreased connectivity with their contralateral counterparts and no connectivity with the brainstem. In the patients, the information flow was reversed at rest with the source of the network shifted from the medulla towards the motor cortex. During inspiratory loading, the system was overwhelmed and the motor cortex became the sink of the network. This major finding may help to understand why some patients with COPD are prone to acute respiratory failure. Network connectivity and causality were related to lung function and illness severity. We validated our connectivity and causality results with a mathematical model of neural network. Our findings suggest a new therapeutic strategy involving the modulation of brain activity to increase motor cortex functional connectivity and improve respiratory muscles performance in patients. Hum Brain Mapp 37:2736-2754, 2016. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.

  2. Improved Neural Processing Efficiency in a Chronic Aphasia Patient Following Melodic Intonation Therapy: A Neuropsychological and Functional MRI Study

    Science.gov (United States)

    Tabei, Ken-ichi; Satoh, Masayuki; Nakano, Chizuru; Ito, Ai; Shimoji, Yasuo; Kida, Hirotaka; Sakuma, Hajime; Tomimoto, Hidekazu

    2016-01-01

    Melodic intonation therapy (MIT) is a treatment program for the rehabilitation of aphasic patients with speech production disorders. We report a case of severe chronic non-fluent aphasia unresponsive to several years of conventional therapy that showed a marked improvement following intensive 9-day training on the Japanese version of MIT (MIT-J). The purpose of this study was to verify the efficacy of MIT-J by functional assessment and examine associated changes in neural processing by functional magnetic resonance imaging. MIT improved language output and auditory comprehension, and decreased the response time for picture naming. Following MIT-J, an area of the right hemisphere was less activated on correct naming trials than compared with before training but similarly activated on incorrect trials. These results suggest that the aphasic symptoms of our patient were improved by increased neural processing efficiency and a concomitant decrease in cognitive load.

  3. Safety of pulmonary vein isolation and left atrial complex fractionated atrial electrograms ablation for atrial fibrillation with phased radiofrequency energy and multi-electrode catheters

    NARCIS (Netherlands)

    Mulder, A.A.W.; Balt, J.C.; Wijffels, M.C.; Wever, E.F.; Boersma, L.V.

    2012-01-01

    AIMS: Recently, a multi-electrode catheter system using phased radiofrequency (RF) energy was developed specifically for atrial fibrillation (AF) ablation: the pulmonary vein ablation catheter (PVAC), the multi-array septal catheter (MASC), and the multi-array ablation catheter (MAAC). Initial resul

  4. A neural model for chronic pain and pain relief by extracorporeal shock wave treatment.

    Science.gov (United States)

    Wess, Othmar J

    2008-12-01

    The paper develops a new theory of chronic pain and pain relief by extracorporeal shock wave treatment. Chronic pain without underlying anatomical disorder is looked at as a pathological control function of memory. Conditioned reflexes are considered to be engraved memory traces linking sensory input of afferent signals with motor response of efferent signals. This feature can be described by associative memory functions of the nervous system. Some conditioned reflexes may cause inappropriate or pathological reactions. Consequently, a circulus vitiosus of pain sensation and muscle and/or vessel contraction is generated when pain becomes chronic (pain spiral). The key feature is a dedicated engram responsible for a pathological (painful) reaction. The pain memory may be explained by the concept of a holographic memory model published by several authors. According to this model it is shown how nervous systems may generate and recall memory contents. The paper shows how extracorporeal shock wave treatment may reorganize pathologic memory traces, thus giving cause to real and permanent pain relief. In a generalized manner, the idea of associative memory functions may help in the understanding of conditioning as a learning process and explain extracorporeal shock wave application as an efficient treatment concept for chronic pain. This concept may open the door for new treatment approaches to chronic pain and several other disorders of the nervous system.

  5. Implanted neural electrodes cause chronic, local inflammation that is correlated with local neurodegeneration

    Science.gov (United States)

    McConnell, George C.; Rees, Howard D.; Levey, Allan I.; Gutekunst, Claire-Anne; Gross, Robert E.; Bellamkonda, Ravi V.

    2009-10-01

    Prosthetic devices that are controlled by intracortical electrodes recording one's 'thoughts' are a reality today, and no longer merely in the realm of science fiction. However, widespread clinical use of implanted electrodes is hampered by a lack of reliability in chronic recordings, independent of the type of electrodes used. One major hypothesis has been that astroglial scar electrically impedes the electrodes. However, there is a temporal discrepancy between stabilization of scar's electrical properties and recording failure with recording failure lagging by 1 month. In this study, we test a possible explanation for this discrepancy: the hypothesis that chronic inflammation, due to the persistent presence of the electrode, causes a local neurodegenerative state in the immediate vicinity of the electrode. Through modulation of chronic inflammation via stab wound, electrode geometry and age-matched control, we found that after 16 weeks, animals with an increased level of chronic inflammation were associated with increased neuronal and dendritic, but not axonal, loss. We observed increased neuronal and dendritic loss 16 weeks after implantation compared to 8 weeks after implantation, suggesting that the local neurodegenerative state is progressive. After 16 weeks, we observed axonal pathology in the form of hyperphosphorylation of the protein tau in the immediate vicinity of the microelectrodes (as observed in Alzheimer's disease and other tauopathies). The results of this study suggest that a local, late onset neurodegenerative disease-like state surrounds the chronic electrodes and is a potential cause for chronic recording failure. These results also inform strategies to enhance our capability to attain reliable long-term recordings from implantable electrodes in the CNS.

  6. Aquifer and Vadose Zone Pollution Determined From Geoelectrical Measurements With Multi- Electrode Wells and Surface Multi-Profiling

    Science.gov (United States)

    de Lima, O. A.; Pereira, P. D.

    2007-05-01

    During the last three years we are developing hydrobiogeological researches to quantitatively describe the underground contamination of a 4.0 km2 area, including two landfill deposits and a tannery industry of Alagoinhas city, Bahia state, Brazil. We used electrical geophysics, geological, geochemical and biological analysis to gain a general understanding of the complex interactions between organic and inorganic pollutants and their environmental impacts. A geological reconnaissance work and a geoelectrical survey using vertical electrical soundings were made around the area to detect and to delineate the extent of the underground contamination plume. The results pointed out the presence of a strong conductive anomaly within the aquifer resulting from invasive fluids both from the landfills and from the surface disposal lagoons from the tannery. Water samples collected at available wells and along the Sauipe river, have shown drastic changes in the total dissolved solids, total chromium, inorganic macro-components, biochemical oxygen demand, chemical oxygen demand, nutrients and bacterial content. As a complimentary work, apparent resistivity and chargeability data were measured as a function of depth along three new multi-electrode wells, and as a function of electrode spacing along five double semi-Schlumberger subsurface profiles. A multi-electrode well is a special monitoring well where we externally install copper electrodes as thin metallic rings spaced by 0.50 m, along its entire filter and casing length. Such electrodes are connected through insulated cables to the ground surface and may be combined into different arrays. Two-side semi-Schlumberger soundings expanded up to 200 m AB/2 spacing and with centers spaced by 50 m along special transverse centered at the plume were inverted using 1D and 2D models. Both techniques were used to detail the groundwater contamination around the Alagoinhas landfills. The electrical measurements performed at the earth

  7. Shared neural basis of social and non-social reward deficits in chronic cocaine users

    DEFF Research Database (Denmark)

    Tobler, Philippe N; Preller, Katrin H; Campbell-Meiklejohn, Daniel K;

    2016-01-01

    -social reinforcements. We used functional neuroimaging in cocaine users to investigate explicit social reward as modeled by agreement of music preferences with music experts. In addition, we investigated non-social reward as modeled by winning desired music pieces. The study included 17 chronic cocaine users and 17...

  8. The effects of chronic intracortical microstimulation on neural tissue and fine motor behavior

    Science.gov (United States)

    Rajan, Alexander T.; Boback, Jessica L.; Dammann, John F.; Tenore, Francesco V.; Wester, Brock A.; Otto, Kevin J.; Gaunt, Robert A.; Bensmaia, Sliman J.

    2015-12-01

    Objective. One approach to conveying sensory feedback in neuroprostheses is to electrically stimulate sensory neurons in the cortex. For this approach to be viable, it is critical that intracortical microstimulation (ICMS) causes minimal damage to the brain. Here, we investigate the effects of chronic ICMS on the neuronal tissue across a variety of stimulation regimes in non-human primates. We also examine each animal’s ability to use their hand—the cortical representation of which is targeted by the ICMS—as a further assay of possible neuronal damage. Approach. We implanted electrode arrays in the primary somatosensory cortex of three Rhesus macaques and delivered ICMS four hours per day, five days per week, for six months. Multiple regimes of ICMS were delivered to investigate the effects of stimulation parameters on the tissue and behavior. Parameters included current amplitude (10-100 μA), pulse train duration (1, 5 s), and duty cycle (1/1, 1/3). We then performed a range of histopathological assays on tissue near the tips of both stimulated and unstimulated electrodes to assess the effects of chronic ICMS on the tissue and their dependence on stimulation parameters. Main results. While the implantation and residence of the arrays in the cortical tissue did cause significant damage, chronic ICMS had no detectable additional effect; furthermore, the animals exhibited no impairments in fine motor control. Significance. Chronic ICMS may be a viable means to convey sensory feedback in neuroprostheses as it does not cause significant damage to the stimulated tissue.

  9. Development and Characterization of a Diamond-Insulated Graphitic Multi Electrode Array Realized with Ion Beam Lithography

    Directory of Open Access Journals (Sweden)

    Federico Picollo

    2014-12-01

    Full Text Available The detection of quantal exocytic events from neurons and neuroendocrine cells is a challenging task in neuroscience. One of the most promising platforms for the development of a new generation of biosensors is diamond, due to its biocompatibility, transparency and chemical inertness. Moreover, the electrical properties of diamond can be turned from a perfect insulator into a conductive material (resistivity ~mΩ·cm by exploiting the metastable nature of this allotropic form of carbon. A 16‑channels MEA (Multi Electrode Array suitable for cell culture growing has been fabricated by means of ion implantation. A focused 1.2 MeV He+ beam was scanned on a IIa single-crystal diamond sample (4.5 × 4.5 × 0.5 mm3 to cause highly damaged sub-superficial structures that were defined with micrometric spatial resolution. After implantation, the sample was annealed. This process provides the conversion of the sub-superficial highly damaged regions to a graphitic phase embedded in a highly insulating diamond matrix. Thanks to a three-dimensional masking technique, the endpoints of the sub-superficial channels emerge in contact with the sample surface, therefore being available as sensing electrodes. Cyclic voltammetry and amperometry measurements of solutions with increasing concentrations of adrenaline were performed to characterize the biosensor sensitivity. The reported results demonstrate that this new type of biosensor is suitable for in vitro detection of catecholamine release.

  10. Design and validation of a multi-electrode bioimpedance system for enhancing spatial resolution of cellular impedance studies.

    Science.gov (United States)

    Alexander, Frank A; Celestin, Michael; Price, Dorielle T; Nanjundan, Meera; Bhansali, Shekhar

    2013-07-01

    This paper reports the design and evaluation of a multi-electrode design that improves upon the statistical significance and spatial resolution of cellular impedance data measured using commercial electric cell-substrate impedance sensing (ECIS) systems. By evaluating cellular impedance using eight independent sensing electrodes, position-dependent impedance measurements can be recorded across the device and compare commonly used equivalent circuit and mathematical models for extraction of cell parameters. Data from the 8-electrode device was compared to data taken from commercial electric cell-substrate impedance sensing (ECIS) system by deriving a relationship between equivalent circuit and mathematically modelled parameters. The impedance systems were evaluated and compared by investigating the effects of arsenic trioxide (As2O3), a well-established chemotherapeutic agent, on ovarian cancer cells. Impedance spectroscopy, a non-destructive, label-free technique, was used to continuously measure the frequency-dependent cellular properties, without adversely affecting the cells. The importance of multiple measurements within a cell culture was demonstrated; and the data illustrated that the non-uniform response of cells within a culture required redundant measurements in order to obtain statistically significant data, especially for drug discovery applications. Also, a correlation between equivalent circuit modelling and mathematically modelled parameters was derived, allowing data to be compared across different modelling techniques.

  11. Fabrication of multi-electrode array platforms for neuronal interfacing with bi-layer lift-off resist sputter deposition

    International Nuclear Information System (INIS)

    We report a bi-layer lift-off resist (LOR) technique in combination with sputter deposition of silicon dioxide (SiO2) as a new passivation method in the fabrication of a multi-electrode array (MEA). Using the photo-insensitive LOR as a sacrificial bottom layer and the negative photoresist as a patterning top layer, and performing low-temperature sputter deposition of SiO2 followed by lift-off, we could successfully fabricate damage-free indium-tin oxide (ITO) and Au MEA. The bi-layer LOR sputter deposition processed Au MEA showed an impedance value of 6 × 105 Ω (at 1 kHz), with good consistency over 60 electrodes. The passivation performance of the bi-layer LOR sputter-deposited SiO2 was tested by electrodepositing Au nanoparticles (NPs) on the Au electrode, resulting in the well-confined and uniformly coated Au NPs. The bi-layer LOR sputter deposition processed ITO, Au, and Au NP-modified MEAs were evaluated and found to have a neuronal spike recording capability at a single unit level, confirming the validity of the bi-layer LOR sputter deposition as an effective passivation technique in fabrication of a MEA. These results suggest that the damage-free Au MEA fabricated with bi-layer LOR sputter deposition would be a viable platform for screening surface modification techniques that are available in neuronal interfacing. (technical note)

  12. Development and characterization of a diamond-insulated graphitic multi electrode array realized with ion beam lithography

    CERN Document Server

    Picollo, F; Carbone, E; Croin, L; Enrico, E; Forneris, J; Gosso, S; Olivero, P; Pasquarelli, A; Carabelli, V

    2016-01-01

    The detection of quantal exocytic events from neurons and neuroendocrine cells is a challenging task in neuroscience. One of the most promising platforms for the development of a new generation of biosensors is diamond, due to its biocompatibility, transparency and chemical inertness. Moreover, the electrical properties of diamond can be turned from a perfect insulator into a conductive material (resistivity Ohm cm) by exploiting the metastable nature of this allotropic form of carbon. A 16 channels MEA (Multi Electrode Array) suitable for cell culture growing has been fabricated by means of ion implantation. A focused 1.2 MeV He+ beam was scanned on a IIa single-crystal diamond sample (4.5x4.5x0.5 mm3) to cause highly damaged sub-superficial structures that were defined with micrometric spatial resolution. After implantation, the sample was annealed. This process provides the conversion of the sub-superficial highly damaged regions to a graphitic phase embedded in a highly insulating diamond matrix. Thanks t...

  13. Use of multi-electrode array recordings in studies of network synaptic plasticity in both time and space

    Institute of Scientific and Technical Information of China (English)

    Ming-Gang Liu; Xue-Feng Chen; Ting He; Zhen Li; Jun Chen

    2012-01-01

    Simultaneous multisite recording using multi-electrode arrays (MEAs) in cultured and acutely-dissociated brain slices and other tissues is an emerging technique in the field of network electrophysiology.Over the past 40 years,great efforts have been made by both scientists and commercial concerns,to advance this technique.The MEA technique has been widely applied to many regions of the brain,retina,heart and smooth muscle in various studies at the network level.The present review starts from the development of MEA techniques and their uses in brain preparations,and then specifically concentrates on the use of MEA recordings in studies of synaptic plasticity at the network level in both the temporal and spatial domains.Because the MEA technique helps bridge the gap between single-cell recordings and behavioral assays,its wide application will undoubtedly shed light on the mechanisms underlying brain functions and dysfunctions at the network level that remained largely unknown due to the technical difficulties before it matured.

  14. Spatio-temporal mapping of variation potentials in leaves of Helianthus annuus L. seedlings in situ using multi-electrode array

    OpenAIRE

    Dong-Jie Zhao; Zhong-Yi Wang; Lan Huang; Yong-Peng Jia; Leng, John Q.

    2014-01-01

    Damaging thermal stimuli trigger long-lasting variation potentials (VPs) in higher plants. Owing to limitations in conventional plant electrophysiological recording techniques, recorded signals are composed of signals originating from all of the cells that are connected to an electrode. This limitation does not enable detailed spatio-temporal distributions of transmission and electrical activities in plants to be visualised. Multi-electrode array (MEA) enables the recording and imaging of dyn...

  15. Safety of atrial fibrillation ablation with novel multi-electrode array catheters on uninterrupted anticoagulation-a single-center experience.

    LENUS (Irish Health Repository)

    Hayes, Christopher Ruslan

    2012-02-01

    INTRODUCTION: A recent single-center report indicated that the performance of atrial fibrillation ablation in patients on uninterrupted warfarin using a conventional deflectable tip electrode ablation catheter may be as safe as periprocedural discontinuation of warfarin and bridging with heparin. Novel multi-electrode array catheters for atrial fibrillation ablation are currently undergoing clinical evaluation. While offering the possibility of more rapid atrial fibrillation ablation, they are stiffer and necessitate the deployment of larger deflectable transseptal sheaths, and it remains to be determined if they increase the risk of cardiac perforation and vascular injury. Such potential risks would have implications for a strategy of uninterrupted periprocedural anticoagulation. METHOD AND RESULTS: We audited the safety outcomes of our atrial fibrillation ablation procedures using multi-electrode array ablation catheters in patients on uninterrupted warfarin (CHADS2 score>or=2) and in patients not on warfarin (uninterrupted aspirin). Two bleeding complications occurred in 49 patients on uninterrupted warfarin, both of which were managed successfully without longterm sequelae, and no bleeding complication occurred in 32 patients not on warfarin (uninterrupted aspirin). There were no thromboembolic events or other complication with either anticoagulant regimen. CONCLUSION: Despite the larger diameter and increased stiffness of multi-electrode array catheters and their deflectable transseptal sheaths, their use for catheter ablation in patients with atrial fibrillation on uninterrupted warfarin in this single-center experience does not appear to be unsafe, and thus, an adequately powered multicenter prospective randomized controlled trial should be considered.

  16. Neural Correlates of Fear of Movement in Patients with Chronic Low Back Pain vs. Pain-Free Individuals.

    Science.gov (United States)

    Meier, Michael L; Stämpfli, Philipp; Vrana, Andrea; Humphreys, Barry K; Seifritz, Erich; Hotz-Boendermaker, Sabina

    2016-01-01

    Fear of movement (FOM) can be acquired by a direct aversive experience such as pain or by social learning through observation and instruction. Excessive FOM results in heightened disability and is an obstacle for recovery from acute, subacute, and chronic low back pain (cLBP). FOM has further been identified as a significant explanatory factor in the Fear Avoidance (FA) model of cLBP that describes how individuals experiencing acute back pain may become trapped into a vicious circle of chronic disability and suffering. Despite a wealth of evidence emphasizing the importance of FOM in cLBP, to date, no related neural correlates in patients were found and this therefore has initiated a debate about the precise contribution of fear in the FA model. In the current fMRI study, we applied a novel approach encompassing: (1) video clips of potentially harmful activities for the back as FOM inducing stimuli; and (2) the assessment of FOM in both, cLBP patients (N = 20) and age- and gender-matched pain-free subjects (N = 20). Derived from the FA model, we hypothesized that FOM differentially affects brain regions involved in fear processing in patients with cLBP compared to pain-free individuals due to the recurrent pain and subsequent avoidance behavior. The results of the whole brain voxel-wise regression analysis revealed that: (1) FOM positively correlated with brain activity in fear-related brain regions such as the amygdala and the insula; and (2) differential effects of FOM between patients with cLBP and pain-free subjects were found in the extended amygdala and in its connectivity to the anterior insula. Current findings support the FOM component of the FA model in cLBP. PMID:27507941

  17. Chronic multichannel neural recordings from soft regenerative microchannel electrodes during gait

    Science.gov (United States)

    Musick, Katherine M.; Rigosa, Jacopo; Narasimhan, Shreya; Wurth, Sophie; Capogrosso, Marco; Chew, Daniel J.; Fawcett, James W.; Micera, Silvestro; Lacour, Stéphanie P.

    2015-09-01

    Reliably interfacing a nerve with an electrode array is one of the approaches to restore motor and sensory functions after an injury to the peripheral nerve. Accomplishing this with current technologies is challenging as the electrode-neuron interface often degrades over time, and surrounding myoelectric signals contaminate the neuro-signals in awake, moving animals. The purpose of this study was to evaluate the potential of microchannel electrode implants to monitor over time and in freely moving animals, neural activity from regenerating nerves. We designed and fabricated implants with silicone rubber and elastic thin-film metallization. Each implant carries an eight-by-twelve matrix of parallel microchannels (of 120 × 110 μm2 cross-section and 4 mm length) and gold thin-film electrodes embedded in the floor of ten of the microchannels. After sterilization, the soft, multi-lumen electrode implant is sutured between the stumps of the sciatic nerve. Over a period of three months and in four rats, the microchannel electrodes recorded spike activity from the regenerating sciatic nerve. Histology indicates mini-nerves formed of axons and supporting cells regenerate robustly in the implants. Analysis of the recorded spikes and gait kinematics over the ten-week period suggests firing patterns collected with the microchannel electrode implant can be associated with different phases of gait.

  18. Using a sensitivity study to facilitate the design of a multi-electrode array to measure six cardiac conductivity values.

    Science.gov (United States)

    Johnston, Barbara M

    2013-07-01

    When using the bidomain model to model the electrical activity of the heart, there are potentially six cardiac conductivity values involved: conductivity values in directions along and normal to the cardiac fibres with a sheet, as well as a conductivity value in the normal direction between the sheets, and these occur for both the extracellular and intracellular domains in the model. To date it has been common to assume that the two normal direction conductivity values are the same. However, recent work has demonstrated that six cardiac conductivity values, rather than four, are necessary for accurate modelling, which can then facilitate understanding of cardiovascular disease. To design a method to determine these conductivities, it is also necessary to design a suitable multi-electrode array, which can be used, in conjunction with an inversion technique, to retrieve conductivity values from measurements of potential made on the array. This work uses the results of a study, into the sensitivity of the measuring potentials to variability in the input conductivities, to facilitate the design of an array that could be used to retrieve six cardiac conductivity values, as well as fibre rotation angle. It is found that if an electrode in the array has a much lower value of potential than the other electrodes, then it tends to be much more sensitive to the input conductivities than the other electrodes. It also appears that inclusion of this type of electrode in the set of measuring electrodes is essential for accurately retrieving conductivity values. This technique is used to identify electrodes to be included in the array and using the final design it is demonstrated, using synthetic values of potential, that the six cardiac conductivity values, and the fibre rotation angle, can be retrieved very accurately.

  19. The neural mechanisms underlying the acute effect of cigarette smoking on chronic smokers.

    Directory of Open Access Journals (Sweden)

    Kangcheng Wang

    Full Text Available Although previous research had related structural changes and impaired cognition to chronic cigarette smoking, recent neuroimaging studies have associated nicotine, which is a main chemical substance in cigarettes, with improvements in cognitive functions (e.g. improved attention performance. However, information about the alterations of whole-brain functional connectivity after acute cigarette smoking is limited. In this study, 22 smokers underwent resting-state functional magnetic resonance imaging (rs-fMRI after abstaining from smoking for 12 hours (state of abstinence, SOA. Subsequently, the smokers were allowed to smoke two cigarettes (state of satisfaction, SOS before they underwent a second rs-fMRI. Twenty non-smokers were also recruited to undergo rs-fMRI. In addition, high-resolution 3D T1-weighted images were acquired using the same magnetic resonance imaging(fMRIscanner for all participants. The results showed that smokers had structural changes in insula, thalamus, medial frontal cortex and several regions of the default mode network (DMN compared with non-smokers. Voxel-wise group comparisons of newly developed global brain connectivity (GBC showed that smokers in the SOA condition had higher GBC in the insula and superior frontal gyrus compared with non-smokers. However, smokers in the SOS condition demonstrated significantly lower GBC in several regions of the DMN, as compared with smokers in the SOA condition. These results suggest that structural integrity combined with dysfunction of the DMN might be involved in relapses after a short period of time among smokers.

  20. Bumetanide promotes neural precursor cell regeneration and dendritic development in the hippocampal dentate gyrus in the chronic stage of cerebral ischemia

    Directory of Open Access Journals (Sweden)

    Wang-shu Xu

    2016-01-01

    Full Text Available Bumetanide has been shown to lessen cerebral edema and reduce the infarct area in the acute stage of cerebral ischemia. Few studies focus on the effects of bumetanide on neuroprotection and neurogenesis in the chronic stage of cerebral ischemia. We established a rat model of cerebral ischemia by injecting endothelin-1 in the left cortical motor area and left corpus striatum. Seven days later, bumetanide 200 µg/kg/day was injected into the lateral ventricle for 21 consecutive days with a mini-osmotic pump. Results demonstrated that the number of neuroblasts cells and the total length of dendrites increased, escape latency reduced, and the number of platform crossings increased in the rat hippocampal dentate gyrus in the chronic stage of cerebral ischemia. These findings suggest that bumetanide promoted neural precursor cell regeneration, dendritic development and the recovery of cognitive function, and protected brain tissue in the chronic stage of ischemia.

  1. Bumetanide promotes neural precursor cell regeneration and dendritic development in the hippocampal dentate gyrus in the chronic stage of cerebral ischemia

    Institute of Scientific and Technical Information of China (English)

    Wang-shu Xu; Xuan Sun; Cheng-guang Song; Xiao-peng Mu; Wen-ping Ma; Xing-hu Zhang; Chuan-sheng Zhao

    2016-01-01

    Bumetanide has been shown to lessen cerebral edema and reduce the infarct area in the acute stage of cerebral ischemia. Few studies focus on the effects of bumetanide on neuroprotection and neurogenesis in the chronic stage of cerebral ischemia. We established a rat model of cerebral ischemia by injecting endothelin-1 in the left cortical motor area and left corpus striatum. Seven days later, bumeta-nide 200 µg/kg/day was injected into the lateral ventricle for 21 consecutive days with a mini-osmotic pump. Results demonstrated that the number of neuroblasts cells and the total length of dendrites increased, escape latency reduced, and the number of platform crossings increased in the rat hippocampal dentate gyrus in the chronic stage of cerebral ischemia. These ifndings suggest that bumetanide promoted neural precursor cell regeneration, dendritic development and the recovery of cognitive function, and protected brain tissue in the chronic stage of ischemia.

  2. The measurement of gas–liquid two-phase flows in a small diameter pipe using a dual-sensor multi-electrode conductance probe

    International Nuclear Information System (INIS)

    We design a dual-sensor multi-electrode conductance probe to measure the flow parameters of gas–liquid two-phase flows in a vertical pipe with an inner diameter of 20 mm. The designed conductance probe consists of a phase volume fraction sensor (PVFS) and a cross-correlation velocity sensor (CCVS). Through inserting an insulated flow deflector in the central part of the pipe, the gas–liquid two-phase flows are forced to pass through an annual space. The multiple electrodes of the PVFS and the CCVS are flush-mounted on the inside of the pipe wall and the outside of the flow deflector, respectively. The geometry dimension of the PVFS is optimized based on the distribution characteristics of the sensor sensitivity field. In the flow loop test of vertical upward gas–liquid two-phase flows, the output signals from the dual-sensor multi-electrode conductance probe are collected by a data acquisition device from the National Instruments (NI) Corporation. The information transferring characteristics of local flow structures in the annular space are investigated using the transfer entropy theory. Additionally, the kinematic wave velocity is measured based on the drift velocity model to investigate the propagation behavior of the stable kinematic wave in the annular space. Finally, according to the motion characteristics of the gas–liquid two-phase flows, the drift velocity model based on the flow patterns is constructed to measure the individual phase flow rate with higher accuracy. (paper)

  3. The measurement of gas-liquid two-phase flows in a small diameter pipe using a dual-sensor multi-electrode conductance probe

    Science.gov (United States)

    Zhai, Lu-Sheng; Bian, Peng; Han, Yun-Feng; Gao, Zhong-Ke; Jin, Ning-De

    2016-04-01

    We design a dual-sensor multi-electrode conductance probe to measure the flow parameters of gas-liquid two-phase flows in a vertical pipe with an inner diameter of 20 mm. The designed conductance probe consists of a phase volume fraction sensor (PVFS) and a cross-correlation velocity sensor (CCVS). Through inserting an insulated flow deflector in the central part of the pipe, the gas-liquid two-phase flows are forced to pass through an annual space. The multiple electrodes of the PVFS and the CCVS are flush-mounted on the inside of the pipe wall and the outside of the flow deflector, respectively. The geometry dimension of the PVFS is optimized based on the distribution characteristics of the sensor sensitivity field. In the flow loop test of vertical upward gas-liquid two-phase flows, the output signals from the dual-sensor multi-electrode conductance probe are collected by a data acquisition device from the National Instruments (NI) Corporation. The information transferring characteristics of local flow structures in the annular space are investigated using the transfer entropy theory. Additionally, the kinematic wave velocity is measured based on the drift velocity model to investigate the propagation behavior of the stable kinematic wave in the annular space. Finally, according to the motion characteristics of the gas-liquid two-phase flows, the drift velocity model based on the flow patterns is constructed to measure the individual phase flow rate with higher accuracy.

  4. Multi-electrode array study of neuronal cultures expressing nicotinic β2-V287L subunits, linked to autosomal dominant nocturnal frontal lobe epilepsy. An in vitro model of spontaneous epilepsy.

    Directory of Open Access Journals (Sweden)

    Francesca eGullo

    2014-07-01

    Full Text Available Autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE is a partial sleep-related epilepsy which can be caused by mutant neuronal nicotinic acetylcholine receptors (nAChR. We applied multi-electrode array (MEA recording methods to study the spontaneous firing activity of neocortical cultures obtained from mice expressing or not (WT an ADNFLE-linked nAChR subunit (β2-V287L.More than 100,000 up-states were recorded during experiments sampling from several thousand neurons. Data were analyzed by using a fast sliding-window procedure which computes histograms of the up-state durations. Differently from the WT, cultures expressing β2-V287L displayed long (10-32 s synaptic-induced up-state firing events. The occurrence of such long up-states was prevented by both negative (gabazine, penicillin G and positive (benzodiazepines modulators of GABAA receptors. Carbamazepine (CBZ, a drug of choice in ADNFLE patients, also inhibited the long up-states at micromolar concentrations. In cultures expressing β2-V287L, no significant effect was observed on the action potential waveform either in the absence or in the presence of pharmacological treatment.Our results show that some aspects of the spontaneous hyperexcitability displayed by a murine model of a human channelopathy can be reproduced in neuronal cultures. In particular, our cultures represent an in vitro chronic model of spontaneous epileptiform activity, i.e. not requiring pre-treatment with convulsants. This opens the way to the study in vitro of the role of β2-V287L on synaptic formation. Moreover, our neocortical cultures on MEA platforms allow to determine the effects of prolonged pharmacological treatment on spontaneous network hyperexcitability (which is impossible in the short-living brain slices. Methods such as the one we illustrate in the present paper should also considerably facilitate the preliminary screening of antiepileptic drugs, thereby reducing the number of in vivo

  5. Heterogeneous neural coding of corrective movements in motor cortex

    Directory of Open Access Journals (Sweden)

    Adam S Dickey

    2013-04-01

    Full Text Available During a reach, neural activity recorded from motor cortex is typically thought to linearly encode the observed movement. However, it has also been reported that during a double-step reaching paradigm, neural coding of the original movement is replaced by that of the corrective movement. Here, we use neural data recorded from multi-electrode arrays implanted in the motor and premotor cortices of rhesus macaques to directly compare these two hypotheses. We show that while a majority of neurons display linear encoding of movement during a double-step, a minority display a dramatic drop in firing rate that is predicted by the replacement hypothesis. Neural activity in the subpopulation showing replacement is more likely to lag the observed movement, and may therefore be involved in the monitoring of the sensory consequences of a motor command.

  6. Use of 2D Multi Electrodes Resistivity Imagining for Sinkholes Hazard Assessment along the Eastern Part of the Dead Sea, Jordan

    Directory of Open Access Journals (Sweden)

    Abdallah S.   Al-Zoubi

    2007-01-01

    Full Text Available Sinkholes and subsidence are natural phenomena can be occurred in shallow geology sediments at different regions in the world. Sinkholes assessment is one of the most difficult near subsurface investigations. Geophysical prospecting is appropriate method to determine environmental and geotechnical problems. 2D multi electrodes resistivity imagining with Wenner-Schulmberge array was conducted within active sinkholes area. The objective of the survey is to detect features combined with sinkhole formation like zone of weakness, cavities and fractures. Soil in the study area contains alluvial, conglomerate and silty clay which represent good target for resistivity survey. The interpretation of resistivity data along the profiles show different model of the resistivity variation in active sinkhole zones compared with inactive zones in the study area. The deformation in the layer continuity and the direct contact between high resistive and low resistive layers can appear only in the subsidence area or active sinkhole zones.

  7. The Effect of a Short-term Glucose Deprivation on Neuron Net Functioning of Hippocampus Primary Culture on a Multi-electrode Matrix

    Directory of Open Access Journals (Sweden)

    Vedunova M.V.

    2011-03-01

    Full Text Available There has been studied the effect of a short-term glucose deprivation on neuron net functioning of hippocampus primary culture developing within 32 days on a multi-electrode matrix MED64 (Alpha MED Sciences Company, Japan in an early and remote periods after deprivation. A short-term glucose deprivation (20 min has been shown to result in the increase of electrobiological activity of neuron net of hippocampus primary culture, with the cascade of metabolic reactions being activated leading to the death of functional neuron thereafter. In a remote period the simplification of a functional structure of neuron net occurs, with node control units being preserved. A short-term glucose deprivation creates an effect of metabolic preconditioning that in a remote period prevents a neuron net from permanent morphofunctional damages during the longer glucose deprivation.

  8. Quantifying network properties in multi-electrode recordings: Spatiotemporal characterization and inter-trial variation of evoked gamma oscillations in mouse somatosensory cortex in vitro

    Directory of Open Access Journals (Sweden)

    Cristian eCarmeli

    2013-10-01

    Full Text Available Linking the structural connectivity of brain circuits to their cooperative dynamics and emergent functions is a central aim of neuroscience research. Graph theory has recently been applied to study the structure-function relationship of networks, where dynamical similarity of different nodes has been turned into a static functional connection. However, the capability of the brain to adapt, learn and process external stimuli requires a constant dynamical functional rewiring between circuitries and cell assemblies. Hence, we must capture the changes of network functional connectivity over time. Multi-electrode array data present a unique challenge within this framework. We study the dynamics of gamma oscillations in acute slices of the somatosensory cortex from juvenile mice recorded by planar multi-electrode arrays. Bursts of gamma oscillatory activity lasting a few hundred milliseconds could be initiated only by brief trains of electrical stimulations applied at the deepest cortical layers and simultaneously delivered at multiple locations. Local field potentials were used to study the spatio-temporal properties and the instantaneous synchronization profile of the gamma oscillatory activity, combined with current source density analysis. Pair-wise differences in the oscillation phase were used to determine the presence of instantaneous synchronization between the different sites of the circuitry during the oscillatory period. Despite variation in the duration of the oscillatory response over successive trials, they showed a constant average power, suggesting that the rate of expenditure of energy during the oscillation represents an invariant of gamma bursts. Within each gamma burst, the functional connectivity map reflected the columnar organization of the neocortex. Over successive trials, an apparently random rearrangement of the functional connectivity was observed, with a more stable columnar than horizontal organization.

  9. Neural Stem Cell or Human Induced Pluripotent Stem Cell-Derived GABA-ergic Progenitor Cell Grafting in an Animal Model of Chronic Temporal Lobe Epilepsy.

    Science.gov (United States)

    Upadhya, Dinesh; Hattiangady, Bharathi; Shetty, Geetha A; Zanirati, Gabriele; Kodali, Maheedhar; Shetty, Ashok K

    2016-01-01

    Grafting of neural stem cells (NSCs) or GABA-ergic progenitor cells (GPCs) into the hippocampus could offer an alternative therapy to hippocampal resection in patients with drug-resistant chronic epilepsy, which afflicts >30% of temporal lobe epilepsy (TLE) cases. Multipotent, self-renewing NSCs could be expanded from multiple regions of the developing and adult brain, human embryonic stem cells (hESCs), and human induced pluripotent stem cells (hiPSCs). On the other hand, GPCs could be generated from the medial and lateral ganglionic eminences of the embryonic brain and from hESCs and hiPSCs. To provide comprehensive methodologies involved in testing the efficacy of transplantation of NSCs and GPCs in a rat model of chronic TLE, NSCs derived from the rat medial ganglionic eminence (MGE) and MGE-like GPCs derived from hiPSCs are taken as examples in this unit. The topics comprise description of the required materials, reagents and equipment, methods for obtaining rat MGE-NSCs and hiPSC-derived MGE-like GPCs in culture, generation of chronically epileptic rats, intrahippocampal grafting procedure, post-grafting evaluation of the effects of grafts on spontaneous recurrent seizures and cognitive and mood impairments, analyses of the yield and the fate of graft-derived cells, and the effects of grafts on the host hippocampus. © 2016 by John Wiley & Sons, Inc. PMID:27532817

  10. Exact distinction of excitatory and inhibitory neurons in neural networks: a study with GAD67-GFP neurons optically and electrophysiologically recognized on multi-electrode arrays

    Directory of Open Access Journals (Sweden)

    Andrea eBecchetti

    2012-09-01

    Full Text Available Distinguishing excitatory from inhibitory neurons with multielectrode array (MEA recordings is a serious experimental challenge. The current methods, developed in vitro, mostly rely on spike waveform analysis. These however often display poor resolution and may produce errors caused by the variability of spike amplitudes and neuron shapes. Recent recordings in human brain suggest that the spike waveform features correlate with time-domain statistics such as spiking rate, autocorrelation and coefficient of variation. However, no precise criteria are available to exactly assign identified units to specific neuronal types, either in vivo or in vitro. To solve this problem, we combined MEA recording with fluorescence imaging of neocortical cultures from mice expressing green fluorescent protein (GFP in GABAergic cells. In this way, we could sort out ‘authentic excitatory neurons’ (AENs and ‘authentic inhibitory neurons’ (AINs. We thus characterized 1275 units (from 405 electrodes, n=10 experiments, based on autocorrelation, burst length, spike number, spiking rate, squared coefficient of variation and Fano factor (the ratio between spike-count variance and mean. These metrics differed by about one order of magnitude between AINs and AENs. In particular, the Fano factor turned out to provide a firing code which exactly (no overlap recognizes excitatory and inhibitory units. The difference in Fano factor between all of the identified AEN and AIN groups was highly significant (p < 10-8, ANOVA post-hoc Tukey test. Our results indicate a statistical metric-based approach to distinguish excitatory from inhibitory neurons independently from the spike width.

  11. Exact distinction of excitatory and inhibitory neurons in neural networks: a study with GAD67-GFP neurons optically and electrophysiologically recognized on multi-electrode arrays

    OpenAIRE

    Andrea Becchetti

    2012-01-01

    Distinguishing excitatory from inhibitory neurons with multielectrode array (MEA) recordings is a serious experimental challenge. The current methods, developed in vitro, mostly rely on spike waveform analysis. These however often display poor resolution and may produce errors caused by the variability of spike amplitudes and neuron shapes. Recent recordings in human brain suggest that the spike waveform features correlate with time-domain statistics such as spiking rate, autocorrelation and ...

  12. Human neural stem cells differentiate and promote locomotor recovery in an early chronic spinal cord injury NOD-scid mouse model.

    Directory of Open Access Journals (Sweden)

    Desirée L Salazar

    Full Text Available BACKGROUND: Traumatic spinal cord injury (SCI results in partial or complete paralysis and is characterized by a loss of neurons and oligodendrocytes, axonal injury, and demyelination/dysmyelination of spared axons. Approximately 1,250,000 individuals have chronic SCI in the U.S.; therefore treatment in the chronic stages is highly clinically relevant. Human neural stem cells (hCNS-SCns were prospectively isolated based on fluorescence-activated cell sorting for a CD133(+ and CD24(-/lo population from fetal brain, grown as neurospheres, and lineage restricted to generate neurons, oligodendrocytes and astrocytes. hCNS-SCns have recently been transplanted sub-acutely following spinal cord injury and found to promote improved locomotor recovery. We tested the ability of hCNS-SCns transplanted 30 days post SCI to survive, differentiate, migrate, and promote improved locomotor recovery. METHODS AND FINDINGS: hCNS-SCns were transplanted into immunodeficient NOD-scid mice 30 days post spinal cord contusion injury. hCNS-SCns transplanted mice demonstrated significantly improved locomotor recovery compared to vehicle controls using open field locomotor testing and CatWalk gait analysis. Transplanted hCNS-SCns exhibited long-term engraftment, migration, limited proliferation, and differentiation predominantly to oligodendrocytes and neurons. Astrocytic differentiation was rare and mice did not exhibit mechanical allodynia. Furthermore, differentiated hCNS-SCns integrated with the host as demonstrated by co-localization of human cytoplasm with discrete staining for the paranodal marker contactin-associated protein. CONCLUSIONS: The results suggest that hCNS-SCns are capable of surviving, differentiating, and promoting improved locomotor recovery when transplanted into an early chronic injury microenvironment. These data suggest that hCNS-SCns transplantation has efficacy in an early chronic SCI setting and thus expands the "window of opportunity" for

  13. Data-driven model comparing the effects of glial scarring and interface interactions on chronic neural recordings in non-human primates

    Science.gov (United States)

    Malaga, Karlo A.; Schroeder, Karen E.; Patel, Paras R.; Irwin, Zachary T.; Thompson, David E.; Bentley, J. Nicole; Lempka, Scott F.; Chestek, Cynthia A.; Patil, Parag G.

    2016-02-01

    Objective. We characterized electrode stability over twelve weeks of impedance and neural recording data from four chronically-implanted Utah arrays in two rhesus macaques, and investigated the effects of glial scarring and interface interactions at the electrode recording site on signal quality using a computational model. Approach. A finite-element model of a Utah array microelectrode in neural tissue was coupled with a multi-compartmental model of a neuron to quantify the effects of encapsulation thickness, encapsulation resistivity, and interface resistivity on electrode impedance and waveform amplitude. The coupled model was then reconciled with the in vivo data. Histology was obtained seventeen weeks post-implantation to measure gliosis. Main results. From week 1-3, mean impedance and amplitude increased at rates of 115.8 kΩ/week and 23.1 μV/week, respectively. This initial ramp up in impedance and amplitude was observed across all arrays, and is consistent with biofouling (increasing interface resistivity) and edema clearing (increasing tissue resistivity), respectively, in the model. Beyond week 3, the trends leveled out. Histology showed that thin scars formed around the electrodes. In the model, scarring could not match the in vivo data. However, a thin interface layer at the electrode tip could. Despite having a large effect on impedance, interface resistivity did not have a noticeable effect on amplitude. Significance. This study suggests that scarring does not cause an electrical problem with regard to signal quality since it does not appear to be the main contributor to increasing impedance or significantly affect amplitude unless it displaces neurons. This, in turn, suggests that neural signals can be obtained reliably despite scarring as long as the recording site has sufficiently low impedance after accumulating a thin layer of biofouling. Therefore, advancements in microelectrode technology may be expedited by focusing on improvements to the

  14. Avalanche analysis from multi-electrode ensemble recordings in cat, monkey and human cerebral cortex during wakefulness and sleep.

    Directory of Open Access Journals (Sweden)

    Nima eDehghani

    2012-08-01

    Full Text Available Self-organized critical states are found in many natural systems, from earthquakes to forest fires, they have also been observed in neural systems, particularly, in neuronal cultures. However, the presence of critical states in the awake brain remains controversial. Here, we compared avalanche analyses performed on different in vivo preparations during wakefulness, slow-wave sleep and REM sleep, using high-density electrode arrays in cat motor cortex (96 electrodes, monkey motor cortex and premotor cortex and human temporal cortex (96 electrodes in epileptic patients. In neuronal avalanches defined from units (up to 160 single units, the size of avalanches never clearly scaled as power-law, but rather scaled exponentially or displayed intermediate scaling. We also analyzed the dynamics of local field potentials (LFPs and in particular LFP negative peaks (nLFPs among the different electrodes (up to 96 sites in temporal cortex or up to 128 sites in adjacent motor and pre-motor cortices. In this case, the avalanches defined from nLFPs displayed power-law scaling in double logarithmic representations, as reported previously in monkey. However, avalanche defined as positive LFP (pLFP peaks, which are less directly related to neuronal firing, also displayed apparent power-law scaling. Closer examination of this scaling using the more reliable cumulative distribution function (CDF and other rigorous statistical measures, did not confirm power-law scaling. The same pattern was seen for cats, monkey and human, as well as for different brain states of wakefulness and sleep. We also tested other alternative distributions. Multiple exponential fitting yielded optimal fits of the avalanche dynamics with bi-exponential distributions. Collectively, these results show no clear evidence for power-law scaling or self-organized critical states in the awake and sleeping brain of mammals, from cat to man.

  15. A highly compliant serpentine shaped polyimide interconnect for front-end strain relief in chronic neural implants.

    Science.gov (United States)

    Sankar, Viswanath; Sanchez, Justin C; McCumiskey, Edward; Brown, Nagid; Taylor, Curtis R; Ehlert, Gregory J; Sodano, Henry A; Nishida, Toshikazu

    2013-01-01

    While the signal quality of recording neural electrodes is observed to degrade over time, the degradation mechanisms are complex and less easily observable. Recording microelectrodes failures are attributed to different biological factors such as tissue encapsulation, immune response, and disruption of blood-brain barrier (BBB) and non-biological factors such as strain due to micromotion, insulation delamination, corrosion, and surface roughness on the recording site (1-4). Strain due to brain micromotion is considered to be one of the important abiotic factors contributing to the failure of the neural implants. To reduce the forces exerted by the electrode on the brain, a high compliance 2D serpentine shaped electrode cable was designed, simulated, and measured using polyimide as the substrate material. Serpentine electrode cables were fabricated using MEMS microfabrication techniques, and the prototypes were subjected to load tests to experimentally measure the compliance. The compliance of the serpentine cable was numerically modeled and quantitatively measured to be up to 10 times higher than the compliance of a straight cable of same dimensions and material.

  16. A highly compliant serpentine shaped polyimide interconnect for front-end strain relief in chronic neural implants

    Directory of Open Access Journals (Sweden)

    Viswanath eSankar

    2013-09-01

    Full Text Available While the signal quality of recording neural electrodes is observed to degrade over time, the degradation mechanisms are complex and less easily observable. Recording microelectrodes failures are attributed to different biological factors such as tissue encapsulation, immune response, and disruption of blood-brain barrier (BBB and non-biological factors such as strain due to micromotion, insulation delamination, corrosion, and surface roughness on the recording site (Polikov et. al., 2005; Prasad et. al., 2011; Streit et. al., 2012; Prasad et. al., 2012. Strain due to brain micromotion is considered to be one of the important abiotic factors contributing to the failure of the neural implants. To reduce the forces exerted by the electrode on the brain, a high compliance 2D serpentine shaped electrode cable was designed, simulated, and measured using polyimide as the substrate material. Serpentine electrode cables were fabricated using MEMS microfabrication techniques, and the prototypes were subjected to load tests to experimentally measure the compliance. The compliance of the serpentine cable was numerically modeled and quantitatively measured to be up to 10 times higher than the compliance of a straight cable of same dimensions and material.

  17. Multi-Electrode Resistivity Probe for Investigation of Local Temperature Inside Metal Shell Battery Cells via Resistivity: Experiments and Evaluation of Electrical Resistance Tomography

    Directory of Open Access Journals (Sweden)

    Xiaobin Hong

    2015-01-01

    Full Text Available Direct Current (DC electrical resistivity is a material property that is sensitive to temperature changes. In this paper, the relationship between resistivity and local temperature inside steel shell battery cells (two commercial 10 Ah and 4.5 Ah lithium-ion cells is innovatively studied by Electrical Resistance Tomography (ERT. The Schlumberger configuration in ERT is applied to divide the cell body into several blocks distributed in different levels, where the apparent resistivities are measured by multi-electrode surface probes. The investigated temperature ranges from −20 to 80 °C. Experimental results have shown that the resistivities mainly depend on temperature changes in each block of the two cells used and the function of the resistivity and temperature can be fitted to the ERT-measurement results in the logistical-plot. Subsequently, the dependence of resistivity on the state of charge (SOC is investigated, and the SOC range of 70%–100% has a remarkable impact on the resistivity at low temperatures. The proposed approach under a thermal cool down regime is demonstrated to monitor the local transient temperature.

  18. 集成化金膜阵列电极的制作研究%Fabrication of the Integrated Gold Film Multi-electrode Array

    Institute of Scientific and Technical Information of China (English)

    彭亚鸽

    2013-01-01

    以聚乙烯不干胶掩膜版法结合金属溅射沉积技术在FR-4玻璃纤维版上制作了由6个金膜工作电极(1 mm×2 mm)、1个大面积金膜对电极(2mm× 13 mm)和1个厚膜Ag/AgCl参比电极构成的集成化金膜阵列电极系统,并利用电化学手段对阵列电极系统进行了考察.研究结果表明,K3Fe(CN)6在厚膜Ag/AgCl/1.0 mol/L NaCl参比电极上的式电位与商业Ag/AgCl/3.0 mol/L NaCl参比电极相差0.067 V;参比电极放置1个月后,测量电位未发生明显变化.利用扫描电化学显微镜对工作电极表面平整度进行考察,结果表明工作电极表面具有较好的平整度.通过测量H2SO4还原峰面积评价了工作电极电化学面积的批内、批间一致性;通过K3Fe(CN)6在电极上的Ipa/Ipc比值评价了工作电极电化学特性的批内、批间一致性.结果表明,阵列电极面积和电化学特性具有良好的批内和批间一致性.对集成化金膜阵列电极系统的研究结果表明,聚乙烯不干胶掩膜版法结合金属溅射沉积技术制作的阵列电极能够满足电化学电极的要求,可作为电化学生物传感器的基础电极.%A stable integrated gold film multi-electrode array, including six gold working electrodes (1 mm ×2 mm), a gold counter electrode (2 mm x 13 mm) and a thick-film Ag/AgCl reference e-lectrode, was fabricated by mask technique of polyethylene sticky film and the gold sputtering tech nique on FR -4 glass fiber substrate. The electrochemical characteristics of the multi-electrode array fabricated were investigated using electrochemical methods. There was a negative shift of 0. 067 V obtained on the thick - film Ag/AgCl reference electrode fabricated compared with a commercial Ag/ AgCl/3. 0 mol/L NaCl reference electrode. After one month, the potential of reference electrode did not change obviously. The surface roughness of the working electrodes was studied by scanning electrochemical microscope (SECM). The satisfied

  19. Points to consider for a validation study of iPS cell-derived cardiomyocytes using a multi-electrode array system.

    Science.gov (United States)

    Kanda, Yasunari; Yamazaki, Daiju; Kurokawa, Junko; Inutsuka, Takashi; Sekino, Yuko

    2016-01-01

    Human induced pluripotent stem cell-derived cardiomyocytes (iPS-CMs) provide a novel assay system to assess cardiac safety in drug development to overcome a problem of species difference in non-clinical testing during drug development. Using the multi-electrode array (MEA) platform, electrophysiological activities of iPS-CMs can be recorded easily to assess QT prolongation and proarrhythmic potential of drug candidates. Here we have established a standardized protocol to evaluate the possibility of iPS-CMs, and shared the protocol with an international consortium. To obtain reproducible and reliable experimental data from these cells, we determined the optimal experimental conditions, such as cell density, MEA coating, culture conditions, high-pass filter frequency, definition of early afterdepolarization or triggered activity, and calibration compounds. Based on the protocol, our validation study using 60 compounds is in progress. Thus, MEA-based experiments using iPS-CMs would be a standard testing method to evaluate QT prolongation and proarrhythmic potentials. PMID:27369811

  20. Chronic stress in adulthood followed by intermittent stress impairs spatial memory and the survival of newborn hippocampal cells in aging animals: prevention by FGL, a peptide mimetic of neural cell adhesion molecule

    DEFF Research Database (Denmark)

    Borcel, Erika; Pérez-Alvarez, Laura; Herrero, Ana Isabel;

    2008-01-01

    In this study, we examined whether chronic stress in adulthood can exert long-term effects on spatial-cognitive abilities and on the survival of newborn hippocampal cells in aging animals. Male Wistar rats were subjected to chronic unpredictable stress at midlife (12 months old) and then reexposed...... each week to a stress stimulus. When evaluated in the water maze at the early stages of aging (18 months old), chronic unpredictable stress accelerated spatial-cognitive decline, an effect that was accompanied by a reduction in the survival of newborn cells and in the number of adult granular cells......, a peptide mimetic of neural cell adhesion molecule, during the 4 weeks of continuous stress not only prevented the deleterious effects of chronic stress on spatial memory, but also reduced the survival of the newly generated hippocampal cells in aging animals. FGL treatment did not, however, prevent...

  1. Novel modulatory effects of neurosteroids and benzodiazepines on excitatory and inhibitory neurons excitability: a multi-electrode array (MEA recording study"

    Directory of Open Access Journals (Sweden)

    Giulia ePuia

    2012-11-01

    Full Text Available The balance between glutamate- and GABA-mediated neurotransmission in the brain is fundamental in the nervous system, but it is regulated by the ‘tonic’ release of a variety of endogenous factors. One such important group of molecules are the neurosteroids (NSs which, similarly to benzodiazepines (BDZs, enhance GABAergic neurotransmission. The purpose of our work was to investigate, at in-vivo physiologically relevant concentrations, the effects of NSs and BDZs as GABA modulators on dissociated neocortical neuron networks grown in long-term culture. We used a multi-electrode array (MEA recording technique and a novel analysis that was able to both identify the action potentials of engaged excitatory and inhibitory neurons and to detect drug-induced network up-states (burst. We found that the NSs tetrahydrodeoxycorticosterone (THDOC and allopregnanolone (ALLO applied at low nM concentrations, produced different modulatory effects on the two neuronal clusters. Conversely, at high concentrations (1 µM, both NSs, decreased excitatory and inhibitory neuron cluster excitability; however, even several hours after washout, the excitability of inhibitory neurons continued to be depressed, leading to a network long term depression (LTD. The BDZs clonazepam (CLZ and midazolam (MDZ also decreased the network excitability, but only MDZ caused LTD of inhibitory neuron cluster. To investigate the origin of the LTD after MDZ application, we tested finasteride (FIN, an inhibitor of endogenous NSs synthesis. FIN did not prevent the LTD induced by MDZ, but surprisingly induced it after application of CLZ. The significance and possible mechanisms underlying these LTD effects of NSs and BDZs are discussed. Taken together, our results not only demonstrate that ex-vivo networks show a sensitivity to NSs and BDZs comparable to that expressed in vivo, but also provide a new global in-vitro description that can help in understanding their activity in more complex

  2. Effects of chronic furosemide on central neural hyperactivity and cochlear thresholds after cochlear trauma in guinea pig

    Directory of Open Access Journals (Sweden)

    Wilhelmina eMulders

    2014-08-01

    Full Text Available Increased neuronal spontaneous firing rates have been observed throughout the central auditory system after trauma to the cochlea and this hyperactivity is believed to be associated with the phantom perception of tinnitus. Previously we have shown in an animal model of hearing loss, that an acute injection with furosemide can significantly decrease hyperactivity after cochlear trauma and eliminate behavioural evidence of tinnitus of early onset. However, furosemide also has the potential to affect cochlear thresholds. In this paper we measured the effects of a chronic (daily injections for 7 days furosemide treatment on the spontaneous firing rate of inferior colliculus neurons and on cochlear thresholds in order to establish whether a beneficial effect on hyperactivity can be obtained without causing additional hearing loss. Guinea pigs were exposed to a 10 kHz, 124dB, 2 hour acoustic trauma, and after 5 days of recovery, were given daily i.p. injections of 80mg/kg furosemide or an equivalent amount of saline. The activity of single IC neurons was recorded 24 hours following the last injection. The furosemide treatment had no effect on cochlear thresholds compared to saline injections but did result in significant reductions in spontaneous firing rates recorded in inferior colliculus. These results that suggest a long term beneficial effect of furosemide on hyperactivity after cochlear trauma may be achievable without detrimental effects on hearing, which is important when considering therapeutic potential.

  3. A model to predict 3-month mortality risk of acute-on-chronic hepatitis B liver failure using artificial neural network.

    Science.gov (United States)

    Zheng, M-H; Shi, K-Q; Lin, X-F; Xiao, D-D; Chen, L-L; Liu, W-Y; Fan, Y-C; Chen, Y-P

    2013-04-01

    Model for end-stage liver disease (MELD) scoring was initiated using traditional statistical technique by assuming a linear relationship between clinical features, but most phenomena in a clinical situation are not linearly related. The aim of this study was to predict 3-month mortality risk of acute-on-chronic hepatitis B liver failure (ACHBLF) on an individual patient level using an artificial neural network (ANN) system. The ANN model was built using data from 402 consecutive patients with ACHBLF. It was trained to predict 3-month mortality by the data of 280 patients and validated by the remaining 122 patients. The area under the curve of receiver operating characteristic (AUROC) was calculated for ANN and MELD-based scoring systems. The following variables age (P < 0.001), prothrombin activity (P < 0.001), serum sodium (P < 0.001), total bilirubin (P = 0.015), hepatitis B e antigen positivity rate (P < 0.001) and haemoglobin (P < 0.001) were significantly related to the prognosis of ACHBLF and were selected to build the ANN. The ANN performed significantly better than MELD-based scoring systems both in the training cohort (AUROC = 0.869 vs 0.667, 0.591, 0.643, 0.571 and 0.577; P < 0.001, respectively) and in the validation cohort (AUROC = 0.765 vs 0.599, 0.563, 0.601, 0.521 and 0.540; P ≤ 0.006, respectively). Thus, the ANN model was shown to be more accurate in predicting 3-month mortality of ACHBLF than MELD-based scoring systems. PMID:23490369

  4. Safety and Feasibility of Contrast Injection During Pulmonary Vein Isolation with the nMARQâ„¢ Multi-Electrode Catheter

    Directory of Open Access Journals (Sweden)

    Avishag Laish-Farkash;Amos Katz;Ornit Cohen; Evgeny Fishman;Chaim Yosefy;Vladimir Khalameizer

    2015-12-01

    Full Text Available Pulmonary vein isolation (PVI using the irrigated multi-electrode ablation system (nMARQ™ remains challenging in complex atrial anatomy cases and when CARTOMERGE™ technology is not available, due to absence of a leading guide-wire. Our objective was to assess feasibility and safety of PVI using nMARQ™ catheter with intra-procedural contrast injections through the deflectable sheath compared to nMARQ™ alone. This is a prospective non-randomized observational study of 78 consecutive patients who underwent PVI only with nMARQ™. The first group (n=37, 64±10.5 years, 62% male, 13.5% persistent AF underwent the procedure with the guidance of signal mapping, fluoroscopy, and electro-anatomical mapping (EAM alone. Since 12/2013 an automatic closed-loop contrast media injector was added to improve catheter location (n=41, 62.5±11 years, 71% male, 34% persistent AF. Total procedure time was 78±19 and 85.5±18.5 minutes, and mean fluoroscopy time was 30±9 and 29.5±8.7 minutes for the first and second groups, respectively (NS; acute success rate was 97% and 97.5%, with a mean of 14.7±5 and 17.6±5.4 RF applications, respectively (p=0.02; and mean total burning time of 10.3±3.6 and 12±4 minutes, respectively (p=0.08. Mean contrast used was 60±18 mL versus 203±65 mL, with no effect on renal function or major complications. One year freedom from AF was 77% and 83%, respectively (p=0.5. Addition of contrast injections to standard nMARQ™ procedure is feasible and safe. This tool may have an added value to EAM in catheter localization by newly trained operators and in selective cases of large/common PV anatomy.

  5. Chronic stimulation of cultured neuronal networks boosts low frequency oscillatory activity at theta and gamma with spikes phase-locked to gamma frequencies

    OpenAIRE

    Leondopulos, Stathis S.; Boehler, Michael D.; Wheeler, Bruce C.; Brewer, Gregory J.

    2012-01-01

    Slow wave oscillations in the brain are essential for coordinated network activity but have not been shown to self-organize in vitro. Here, the development of dissociated hippocampal neurons into an active network with oscillations on multi-electrode arrays was evaluated in the absence and presence of chronic external stimulation. Significant changes in signal power were observed in the range of 1-400 Hz with an increase in amplitude during bursts. Stimulation increased oscillatory activity p...

  6. A wireless transmission neural interface system for unconstrained non-human primates

    Science.gov (United States)

    Fernandez-Leon, Jose A.; Parajuli, Arun; Franklin, Robert; Sorenson, Michael; Felleman, Daniel J.; Hansen, Bryan J.; Hu, Ming; Dragoi, Valentin

    2015-10-01

    Objective. Studying the brain in large animal models in a restrained laboratory rig severely limits our capacity to examine brain circuits in experimental and clinical applications. Approach. To overcome these limitations, we developed a high-fidelity 96-channel wireless system to record extracellular spikes and local field potentials from the neocortex. A removable, external case of the wireless device is attached to a titanium pedestal placed in the animal skull. Broadband neural signals are amplified, multiplexed, and continuously transmitted as TCP/IP data at a sustained rate of 24 Mbps. A Xilinx Spartan 6 FPGA assembles the digital signals into serial data frames for transmission at 20 kHz though an 802.11n wireless data link on a frequency-shift key-modulated signal at 5.7-5.8 GHz to a receiver up to 10 m away. The system is powered by two CR123A, 3 V batteries for 2 h of operation. Main results. We implanted a multi-electrode array in visual area V4 of one anesthetized monkey (Macaca fascicularis) and in the dorsolateral prefrontal cortex (dlPFC) of a freely moving monkey (Macaca mulatta). The implanted recording arrays were electrically stable and delivered broadband neural data over a year of testing. For the first time, we compared dlPFC neuronal responses to the same set of stimuli (food reward) in restrained and freely moving conditions. Although we did not find differences in neuronal responses as a function of reward type in the restrained and unrestrained conditions, there were significant differences in correlated activity. This demonstrates that measuring neural responses in freely moving animals can capture phenomena that are absent in the traditional head-fixed paradigm. Significance. We implemented a wireless neural interface for multi-electrode recordings in freely moving non-human primates, which can potentially move systems neuroscience to a new direction by allowing one to record neural signals while animals interact with their environment.

  7. Neural mechanisms of pain and alcohol dependence☆

    OpenAIRE

    Apkarian, A. Vania; Neugebauer, Volker; Koob, George; Edwards, Scott; Levine, Jon D.; Ferrari, Luiz; Egli, Mark; Regunathan, Soundar

    2013-01-01

    An association between chronic pain conditions and alcohol dependence has been revealed in numerous studies with episodes of alcohol abuse antedating chronic pain in some people and alcohol dependence emerging after the onset of chronic pain in others. Alcohol dependence and chronic pain share common neural circuits giving rise to the possibility that chronic pain states could significantly affect alcohol use patterns and that alcohol dependence could influence pain sensitivity. The reward an...

  8. Development of a multi-electrode extrapolation chamber as a prototype of a primary standard for the realization of the unit of the absorbed dose to water for beta brachytherapy sources

    CERN Document Server

    Bambynek, M

    2002-01-01

    The prototype of a primary standard has been developed, built and tested, which enables the realization of the unit of the absorbed dose to water for beta brachytherapy sources. In the course of the development of the prototype, the recommendations of the American Association of Physicists in Medicine (AAPM) Task Group 60 (TG60) and the Deutsche Gesellschaft fuer Medizinische Physik (DGMP) Arbeitskreis 18 (AK18) were taken into account. The prototype is based on a new multi-electrode extrapolation chamber (MEC) which meets, in particular, the requirements on high spatial resolution and small uncertainty. The central part of the MEC is a segmented collecting electrode which was manufactured in the clean room center of PTB by means of electron beam lithography on a wafer. A precise displacement device consisting of three piezoelectric macrotranslators has been incorporated to move the wafer collecting electrode against the entrance window. For adjustment of the wafer collecting electrode parallel to the entranc...

  9. Neural substrate expansion for the restoration of brain function

    Directory of Open Access Journals (Sweden)

    Han-Chiao Isaac Chen

    2016-01-01

    Full Text Available Restoring neurological and cognitive function in individuals who have suffered brain damage is one of the principal objectives of modern translational neuroscience. Electrical stimulation approaches, such as deep-brain stimulation, have achieved the most clinical success, but they ultimately may be limited by the computational capacity of the residual cerebral circuitry. An alternative strategy is brain substrate expansion, in which the computational capacity of the brain is augmented through the addition of new processing units and the reconstitution of network connectivity. This latter approach has been explored to some degree using both biological and electronic means but thus far has not demonstrated the ability to reestablish the function of large-scale neuronal networks. In this review, we contend that fulfilling the potential of brain substrate expansion will require a significant shift from current methods that emphasize direct manipulations of the brain (e.g., injections of cellular suspensions and the implantation of multi-electrode arrays to the generation of more sophisticated neural tissues and neural-electric hybrids in vitro that are subsequently transplanted into the brain. Drawing from neural tissue engineering, stem cell biology, and neural interface technologies, this strategy makes greater use of the manifold techniques available in the laboratory to create biocompatible constructs that recapitulate brain architecture and thus are more easily recognized and utilized by brain networks.

  10. Neural Substrate Expansion for the Restoration of Brain Function.

    Science.gov (United States)

    Chen, H Isaac; Jgamadze, Dennis; Serruya, Mijail D; Cullen, D Kacy; Wolf, John A; Smith, Douglas H

    2016-01-01

    Restoring neurological and cognitive function in individuals who have suffered brain damage is one of the principal objectives of modern translational neuroscience. Electrical stimulation approaches, such as deep-brain stimulation, have achieved the most clinical success, but they ultimately may be limited by the computational capacity of the residual cerebral circuitry. An alternative strategy is brain substrate expansion, in which the computational capacity of the brain is augmented through the addition of new processing units and the reconstitution of network connectivity. This latter approach has been explored to some degree using both biological and electronic means but thus far has not demonstrated the ability to reestablish the function of large-scale neuronal networks. In this review, we contend that fulfilling the potential of brain substrate expansion will require a significant shift from current methods that emphasize direct manipulations of the brain (e.g., injections of cellular suspensions and the implantation of multi-electrode arrays) to the generation of more sophisticated neural tissues and neural-electric hybrids in vitro that are subsequently transplanted into the brain. Drawing from neural tissue engineering, stem cell biology, and neural interface technologies, this strategy makes greater use of the manifold techniques available in the laboratory to create biocompatible constructs that recapitulate brain architecture and thus are more easily recognized and utilized by brain networks. PMID:26834579

  11. 同面多极电容感应式冰层厚度传感器的设计及应用%Design and Application of a Coplanar Multi-Electrode Capacitance Sensing Type Sensor for Ice Thickness Detection

    Institute of Scientific and Technical Information of China (English)

    樊晋华; 窦银科; 秦建敏; 张瑞峰

    2013-01-01

    A coplanar multi-electrode capacitance sensing type ice thickness sensor is a new kind of ice situation detection sensor Which is based on different capacitance characteristic between air,ice and water.It can realize detecting ice thickness and water level under ice automatically through measuring the capacitance of different layers of air,ice and water under ice.It is mainly combined with single chip microprocessor and electronic information collection,processing and transformation technology.In this paper mechanism of sensor has been simulated with the Maxwell software and experiment data are also analyzed,the measurement principal of coplanar multi-electrode capacitance sensing type ice thickness sensor is demonstrated; Through analysis of the scene experiment data gotten in the Yellow River in the Inner Mongolia,that proved the sensor has pin-point accuracy、close tolerance and high reliability and so on advantages,and can be used in the low temperature、radiation and strongly vibration etc such bad environment,also be good for the field environment.%同面多极电容感应式冰层厚度传感器是基于空气、冰与水不同的介电特性,通过对空气层、冰层和冰下水层电容值进行分层测量,从而实现对冰层厚度与水位高度自动检测的一种新型冰情检测传感器.主要融合了单片机技术和电子信息采集,处理,转换技术.利用Maxwell软件对其机理进行仿真,对实验数据进行分析,论证了同面多电极电容感应式冰厚传感器的测量原理;通过分析该传感器在黄河内蒙段的现场检测数据,证明该传感器具有准确度高、误差小、稳定等优点,并能在低温、辐射和强烈振动等恶劣环境下工作,非常适合野外环境中使用.

  12. Bumetanide promotes neural precursor cell regeneration and dendritic development in the hippocampal dentate gyrus in the chronic stage of cerebral ischemia

    OpenAIRE

    Wang-shu Xu; Xuan Sun; Cheng-guang Song; Xiao-peng Mu; Wen-ping Ma; Xing-hu Zhang; Chuan-sheng Zhao

    2016-01-01

    Bumetanide has been shown to lessen cerebral edema and reduce the infarct area in the acute stage of cerebral ischemia. Few studies focus on the effects of bumetanide on neuroprotection and neurogenesis in the chronic stage of cerebral ischemia. We established a rat model of cerebral ischemia by injecting endothelin-1 in the left cortical motor area and left corpus striatum. Seven days later, bumetanide 200 µg/kg/day was injected into the lateral ventricle for 21 consecutive days with a mini-...

  13. Chronic pancreatitis

    Science.gov (United States)

    Chronic pancreatitis - chronic; Pancreatitis - chronic - discharge; Pancreatic insufficiency - chronic; Acute pancreatitis - chronic ... abuse over many years. Repeated episodes of acute pancreatitis can lead to chronic pancreatitis. Genetics may be ...

  14. Integration of silicon-based neural probes and micro-drive arrays for chronic recording of large populations of neurons in behaving animals

    Science.gov (United States)

    Michon, Frédéric; Aarts, Arno; Holzhammer, Tobias; Ruther, Patrick; Borghs, Gustaaf; McNaughton, Bruce; Kloosterman, Fabian

    2016-08-01

    Objective. Understanding how neuronal assemblies underlie cognitive function is a fundamental question in system neuroscience. It poses the technical challenge to monitor the activity of populations of neurons, potentially widely separated, in relation to behaviour. In this paper, we present a new system which aims at simultaneously recording from a large population of neurons from multiple separated brain regions in freely behaving animals. Approach. The concept of the new device is to combine the benefits of two existing electrophysiological techniques, i.e. the flexibility and modularity of micro-drive arrays and the high sampling ability of electrode-dense silicon probes. Main results. Newly engineered long bendable silicon probes were integrated into a micro-drive array. The resulting device can carry up to 16 independently movable silicon probes, each carrying 16 recording sites. Populations of neurons were recorded simultaneously in multiple cortical and/or hippocampal sites in two freely behaving implanted rats. Significance. Current approaches to monitor neuronal activity either allow to flexibly record from multiple widely separated brain regions (micro-drive arrays) but with a limited sampling density or to provide denser sampling at the expense of a flexible placement in multiple brain regions (neural probes). By combining these two approaches and their benefits, we present an alternative solution for flexible and simultaneous recordings from widely distributed populations of neurons in freely behaving rats.

  15. Disturbed neural circuits in a subtype of chronic catatonic schizophrenia demonstrated by F-18-FDG-PET and F-18-DOPA-PET

    International Nuclear Information System (INIS)

    Permanent verbal, visual scenic and coenaestetic hallucinations are the most prominent psychopathological symptoms aside from psychomotor disorders in speech-sluggish catatonia, a subtype of chronic catatonic schizophrenia according to Karl Leonhard. These continuous hallucinations serve as an excellent paradigm for the investigation of the assumed functional disturbances of cortical circuits in schizophrenia. Data from positron emission tomography (F-18-FDG-PET and F-18-DOPA-PET) from three patients with this rare phenotype were available (two cases of simple speech-sluggish catatonia, one case of a combined speech-prompt/speech-sluggish subtype) and were compared with a control collective. During their permanent hallucinations, all catatonic patients showed a clear bitemporal hypometabolism in the F-18-FDG-PET. Both patients with the simple speech-sluggish catatonia showed an additional bilateral thalamic hypermetabolism and an additional bilateral hypometabolism of the frontal cortex, especially on the left side. In contrast, the patient with the combined speech-prompt/speech-sluggish catatonia showed a bilateral thalamic hypo-metabolism combined with a bifrontal cortical hypermetabolism. However, the left/right ratio of the frontal cortex also showed a lateralization effect with a clear relative hypometabolism of the left frontal cortex. The F-18-DOPA-PET of both schizophrenic patients with simple speech-sluggish catatonia showed a normal F-18-DOPA storage in the striatum, whereas in the right putamen of the patient with the combined form a higher right/left ratio in F-DOPA storage was discernible, indicating an additional lateralized influence of the dopaminergic system in this subtype of chronic catatonic schizophrenia. (author)

  16. Chronic Diarrhea

    Science.gov (United States)

    ... infections that cause chronic diarrhea be prevented? Chronic Diarrhea What is chronic diarrhea? Diarrhea that lasts for more than 2-4 ... represent a life-threatening illness. What causes chronic diarrhea? Chronic diarrhea has many different causes; these causes ...

  17. Transplantation of Neural Stem Cells Cotreated with Thyroid Hormone and GDNF Gene Induces Neuroprotection in Rats of Chronic Experimental Allergic Encephalomyelitis

    Directory of Open Access Journals (Sweden)

    Xiaoqing Gao

    2016-01-01

    Full Text Available The present study investigates whether transplantation of NSCs treated with T3 alone (T3/NSCs, or in conjunction with GDNF gene (GDNF-T3/NSCs, provides a better therapeutic effect than NSCs for chronic EAE. EAE rats were, respectively, injected with NSCs, T3/NSCs, GDNF-T3/NSCs, and saline at 10 days and sacrificed at 60 days after EAE immunization. The three cell grafted groups showed a significant reduction in clinical scores, inflammatory infiltration, and demyelination compared with the saline-injected group, and among the cell grafted groups, the reduction in GDNF-T3/NSCs group was the most notable, followed by T3/NSCs group. Grafted T3/NSCs and GDNF-T3/NSCs acquired more MAP2, GalC, and less GFAP in brain compared with grafted NSCs, and grafted GDNF-T3/NSCs acquired most MAP2 and least GalC among the cell grafted groups. Furthermore, T3/NSCs and GDNF-T3/NSCs grafting increased the expression of mRNA for PDGFαR, GalC, and MBP in lesion areas of brain compared with NSCs grafting, and the expression of mRNA for GalC and MBP in GDNF-T3/NSCs group was higher than that in T3/NSCs group. In conclusion, T3/NSCs grafting, especially GDNF-T3/NSCs grafting, provides a better neuroprotective effect for EAE than NSCs transplantation.

  18. The effect of chronic antipsychotic drug on hypothalamic expression of neural nitric oxide synthase and dopamine D2 receptor in the male rat.

    Directory of Open Access Journals (Sweden)

    Xiang Rong Zhang

    Full Text Available Antipsychotic-induced sexual dysfunction is a common and serious clinical side effect. It has been demonstrated that both neuronal nitric oxide (nNOS and dopamine D2 receptor (DRD2 in the medial preoptic area (MPOA and the paraventricular nucleus (PVN of the hypothalamus have important roles in the regulation of sexual behaviour. We investigated the influences of 21 days' antipsychotic drug administration on expression of nNOS and DRD2 in the rat hypothalamus. Haloperidol (0.5 mg/kg/day i.p. significantly decreased nNOS integrated optical density in a sub-nucleus of the MPOA, medial preoptic nucleus (MPN, and decreased the nNOS integrated optical density and cell density in another sub-nucleus of the MPOA, anterodorsal preoptic nucleus (ADP. Risperidone (0.25 mg/kg inhibited the nNOS integrated optical density in the ADP. nNOS mRNA and protein in the MPOA but not the PVN was also significantly decreased by haloperidol. Haloperidol and risperidone increased DRD2 mRNA and protein expression in both the MPOA and the PVN. Quetiapine (20 mg/kg/day i.p. did not influence the expression of nNOS and DRD2 in either the MPOA or the PVN. These findings indicate that hypothalamic nNOS and DRD2 are affected to different extents by chronic administration of risperidone and haloperidol, but are unaffected by quetiapine. These central effects might play a role in sexual dysfunction induced by certain antipsychotic drugs.

  19. Chronic neural probe for simultaneous recording of single-unit, multi-unit, and local field potential activity from multiple brain sites

    Science.gov (United States)

    Pothof, F.; Bonini, L.; Lanzilotto, M.; Livi, A.; Fogassi, L.; Orban, G. A.; Paul, O.; Ruther, P.

    2016-08-01

    Objective. Drug resistant focal epilepsy can be treated by resecting the epileptic focus requiring a precise focus localisation using stereoelectroencephalography (SEEG) probes. As commercial SEEG probes offer only a limited spatial resolution, probes of higher channel count and design freedom enabling the incorporation of macro and microelectrodes would help increasing spatial resolution and thus open new perspectives for investigating mechanisms underlying focal epilepsy and its treatment. This work describes a new fabrication process for SEEG probes with materials and dimensions similar to clinical probes enabling recording single neuron activity at high spatial resolution. Approach. Polyimide is used as a biocompatible flexible substrate into which platinum electrodes and leads are integrated with a minimal feature size of 5 μm. The polyimide foils are rolled into the cylindrical probe shape at a diameter of 0.8 mm. The resulting probe features match those of clinically approved devices. Tests in saline solution confirmed the probe stability and functionality. Probes were implanted into the brain of one monkey (Macaca mulatta), trained to perform different motor tasks. Suitable configurations including up to 128 electrode sites allow the recording of task-related neuronal signals. Main results. Probes with 32 and 64 electrode sites were implanted in the posterior parietal cortex. Local field potentials and multi-unit activity were recorded as early as one hour after implantation. Stable single-unit activity was achieved for up to 26 days after implantation of a 64-channel probe. All recorded signals showed modulation during task execution. Significance. With the novel probes it is possible to record stable biologically relevant data over a time span exceeding the usual time needed for epileptic focus localisation in human patients. This is the first time that single units are recorded along cylindrical polyimide probes chronically implanted 22 mm deep into the

  20. Evolvable synthetic neural system

    Science.gov (United States)

    Curtis, Steven A. (Inventor)

    2009-01-01

    An evolvable synthetic neural system includes an evolvable neural interface operably coupled to at least one neural basis function. Each neural basis function includes an evolvable neural interface operably coupled to a heuristic neural system to perform high-level functions and an autonomic neural system to perform low-level functions. In some embodiments, the evolvable synthetic neural system is operably coupled to one or more evolvable synthetic neural systems in a hierarchy.

  1. Neural control of chronic stress adaptation

    OpenAIRE

    James eHerman

    2013-01-01

    Stress initiates adaptive processes that allow the organism to physiologically cope with prolonged or intermittent exposure to real or perceived threats. A major component of this response is repeated activation of glucocorticoid secretion by the hypothalamo-pituitary-adrenocortical (HPA) axis, which promotes redistribution of energy in a wide range of organ systems, including the brain. Prolonged or cumulative increases in glucocorticoid secretion can reduce benefits afforded by enhanced s...

  2. Neural Networks

    Directory of Open Access Journals (Sweden)

    Schwindling Jerome

    2010-04-01

    Full Text Available This course presents an overview of the concepts of the neural networks and their aplication in the framework of High energy physics analyses. After a brief introduction on the concept of neural networks, the concept is explained in the frame of neuro-biology, introducing the concept of multi-layer perceptron, learning and their use as data classifer. The concept is then presented in a second part using in more details the mathematical approach focussing on typical use cases faced in particle physics. Finally, the last part presents the best way to use such statistical tools in view of event classifers, putting the emphasis on the setup of the multi-layer perceptron. The full article (15 p. corresponding to this lecture is written in french and is provided in the proceedings of the book SOS 2008.

  3. Neural Engineering

    Science.gov (United States)

    He, Bin

    About the Series: Bioelectric Engineering presents state-of-the-art discussions on modern biomedical engineering with respect to applications of electrical engineering and information technology in biomedicine. This focus affirms Springer's commitment to publishing important reviews of the broadest interest to biomedical engineers, bioengineers, and their colleagues in affiliated disciplines. Recent volumes have covered modeling and imaging of bioelectric activity, neural engineering, biosignal processing, bionanotechnology, among other topics.

  4. 慢性压迫性脊髓损伤后神经前体细胞的增殖%Proliferation of neural progenitor cell after chronic compressive injury of spinal cord

    Institute of Scientific and Technical Information of China (English)

    张绍文; 王栓科; 王翠芳; 夏亚一; 张海鸿; 汪玉良; 孙正义

    2006-01-01

    背景:关于成年哺乳类动物脊髓损伤后神经前体细胞的增殖特征和来源以及星形胶质细胞在其中的作用尚无肯定性结论.目的:通过分析成年大鼠慢性压迫性脊髓损伤及减压后巢蛋白和胶质纤维酸性蛋白表达的变化,探讨神经前体细胞的增殖特征和来源以及星形胶质细胞在其中的作用.设计:完全随机对照实验.单位:兰州大学第二医院骨科研究所.材料:实验于2003-03/10在兰州大学第二医院骨科研究所完成,选择成年健康Wistar大鼠50只.随机分为正常对照组、慢性压迫性脊髓损伤中度组(压迫物占椎管矢状径的40%)、重度组(压迫物占椎管矢状径的60%)及重度压迫损伤24 h后减压3 d、10 d组,每组10只.主要观察指标:①各组大鼠压迫临近段(距压迫边缘至5 mm)脊髓灰质和白质内nestin的阳性表达并测量其灰度值.②各组大鼠脊髓内胶质纤维酸性蛋白的表达.结果:50只大鼠均进入实验分析.①中度压迫组(白质235.33±6.48,灰质196.28±6.55)、重度压迫组(白质190.45±4.91,灰质173.15±5.98)及重度压迫损伤减压后3 d组(白质198.39±3.24,灰质180.38±4.51)和减压后10 d组白质(202.55±3.54)中巢蛋白均有明显表达(P<0.05),以重度压迫组最为显著(P<0.01).减压10 d组的灰质和脊髓中央管室管膜细胞的巢蛋白表达与正常对照组相比,差异无显著性意义(P>0.05).②与正常对照组相比,各损伤组脊髓内胶质纤维酸性蛋白表达增强,胶质纤维酸性蛋白阳性细胞数目增多、胞体肥大,突起增粗、增长.结论:成年大鼠慢性压迫性脊髓损伤及减压后早期存在神经前体细胞的增殖.星形胶质细胞参与神经前体细胞的增殖与迁移,对脊髓具有重要的营养修复作用.%BACKGROUND: There is still no affirmative conclusion on the proliferative characteristics and the sources of neural progenitor cells after chronic compressive injury of spinal

  5. Neural Network Applications

    NARCIS (Netherlands)

    Vonk, E.; Jain, L.C.; Veelenturf, L.P.J.

    1995-01-01

    Artificial neural networks, also called neural networks, have been used successfully in many fields including engineering, science and business. This paper presents the implementation of several neural network simulators and their applications in character recognition and other engineering areas

  6. Pharmacogenetics of neural injury recovery.

    Science.gov (United States)

    Pearson-Fuhrhop, Kristin M; Cramer, Steven C

    2013-10-01

    Relatively few pharmacological agents are part of routine care for neural injury, although several are used or under consideration in acute stroke, chronic stroke, traumatic brain injury and secondary stroke prevention. Tissue plasminogen activator is approved for the treatment of acute ischemic stroke, and genetic variants may impact the efficacy and safety of this drug. In the chronic phase of stroke, several drugs such as L-dopa, fluoxetine and donepezil are under investigation for enhancing rehabilitation therapy, with varying levels of evidence. One potential reason for the mixed efficacy displayed by these drugs may be the influence of genetic factors that were not considered in prior studies. An understanding of the genetics impacting the efficacy of dopaminergic, serotonergic and cholinergic drugs may allow clinicians to target these potential therapies to those patients most likely to benefit. In the setting of stroke prevention, which is directly linked to neural injury recovery, the most highly studied pharmacogenomic interactions pertain to clopidogrel and warfarin. Incorporating pharmacogenomics into neural injury recovery has the potential to maximize the benefit of several current and potential pharmacological therapies and to refine the choice of pharmacological agent that may be used to enhance benefits from rehabilitation therapy.

  7. A device to facilitate preparation of high-density neural cell cultures in MEAs.

    Science.gov (United States)

    Mok, S Y; Lim, Y M; Goh, S Y

    2009-05-15

    A device to facilitate high-density seeding of dissociated neural cells on planar multi-electrode arrays (MEAs) is presented in this paper. The device comprises a metal cover with two concentric cylinders-the outer cylinder fits tightly on to the external diameter of a MEA to hold it in place and an inner cylinder holds a central glass tube for introducing a cell suspension over the electrode area of the MEA. An O-ring is placed at the bottom of the inner cylinder and the glass tube to provide a fluid-tight seal between the glass tube and the MEA electrode surface. The volume of cell suspension in the glass tube is varied according to the desired plating density. After plating, the device can be lifted from the MEA without leaving any residue on the contact surface. The device has enabled us to increase and control the plating density of neural cell suspension with low viability, and to prepare successful primary cultures from cryopreserved neurons and glia. The cultures of cryopreserved dissociated cortical neurons that we have grown in this manner remained spontaneously active over months, exhibited stable development and similar network characteristics as reported by other researchers. PMID:19428539

  8. Chronic vagal stimulation for the treatment of low ejection fraction heart failure : results of the NEural Cardiac TherApy foR Heart Failure (NECTAR-HF) randomized controlled trial

    NARCIS (Netherlands)

    Zannad, Faiez; De Ferrari, Gaetano M; Tuinenburg, Anton E; Wright, David; Brugada, Josep; Butter, Christian; Klein, Helmut; Stolen, Craig; Meyer, Scott; Stein, Kenneth M; Ramuzat, Agnes; Schubert, Bernd; Daum, Doug; Neuzil, Petr; Botman, Cornelis; Castel, Maria Angeles; D'Onofrio, Antonio; Solomon, Scott D; Wold, Nicholas; Ruble, Stephen B

    2015-01-01

    AIM: The neural cardiac therapy for heart failure (NECTAR-HF) was a randomized sham-controlled trial designed to evaluate whether a single dose of vagal nerve stimulation (VNS) would attenuate cardiac remodelling, improve cardiac function and increase exercise capacity in symptomatic heart failure p

  9. Neural Induction, Neural Fate Stabilization, and Neural Stem Cells

    Directory of Open Access Journals (Sweden)

    Sally A. Moody

    2002-01-01

    Full Text Available The promise of stem cell therapy is expected to greatly benefit the treatment of neurodegenerative diseases. An underlying biological reason for the progressive functional losses associated with these diseases is the extremely low natural rate of self-repair in the nervous system. Although the mature CNS harbors a limited number of self-renewing stem cells, these make a significant contribution to only a few areas of brain. Therefore, it is particularly important to understand how to manipulate embryonic stem cells and adult neural stem cells so their descendants can repopulate and functionally repair damaged brain regions. A large knowledge base has been gathered about the normal processes of neural development. The time has come for this information to be applied to the problems of obtaining sufficient, neurally committed stem cells for clinical use. In this article we review the process of neural induction, by which the embryonic ectodermal cells are directed to form the neural plate, and the process of neural�fate stabilization, by which neural plate cells expand in number and consolidate their neural fate. We will present the current knowledge of the transcription factors and signaling molecules that are known to be involved in these processes. We will discuss how these factors may be relevant to manipulating embryonic stem cells to express a neural fate and to produce large numbers of neurally committed, yet undifferentiated, stem cells for transplantation therapies.

  10. Chronic vagal stimulation for the treatment of low ejection fraction heart failure: results of the NEural Cardiac TherApy foR Heart Failure (NECTAR-HF) randomized controlled trial

    OpenAIRE

    Zannad, Faiez; De Ferrari, Gaetano M.; Tuinenburg, Anton E.; Wright, David; Brugada, Josep; Butter, Christian; Klein, Helmut; Stolen, Craig; Meyer, Scott; Stein, Kenneth M.; Ramuzat, Agnes; Schubert, Bernd; Daum, Doug; Neuzil, Petr; Botman, Cornelis

    2014-01-01

    Aim The neural cardiac therapy for heart failure (NECTAR-HF) was a randomized sham-controlled trial designed to evaluate whether a single dose of vagal nerve stimulation (VNS) would attenuate cardiac remodelling, improve cardiac function and increase exercise capacity in symptomatic heart failure patients with severe left ventricular (LV) systolic dysfunction despite guideline recommended medical therapy. Methods: Patients were randomized in a 2 : 1 ratio to receive therapy (VNS ON) or contro...

  11. 补肺健脾方对慢性阻塞性肺疾病大鼠膈神经放电和膈肌功能的影响%Effects of Bufei Jianpi Recipe on the Diaphragrnatic Neural Discharge and the Dlaphragrnatic Muscle Function In Rats With Chronic Obstructive Pulmonery Disease

    Institute of Scientific and Technical Information of China (English)

    李素云; 李亚; 李建生; 邓丽; 田燕歌; 姜素丽; 王英

    2012-01-01

    Objective To observe the effects of Bufei Jianpi Recipe (BJR) on the diaphragmatic neural discharge and the diaphragmatic muscle function in rats with chronic obstructive pulmonary disease (COPD). Methods Rats were randomly divided into the normal control group, the model group, the high dose BJR group (9.68 g/kg · d-1), the medium dose BJR group (4. 84 g/kg · d-1), the low dose BJR group (2.42 g/kg · d-1), and the aminophyline group (2.3 mg/kg · d-1). The stable phase COPD rat model was prepared using repeated smoke inhalations and bacterial infections. The high, medium, and low dose BJR and aminophyline was respectively administered to rats from the ninth week to the twentieth week. The sampling was taken. The lung function, diaphragmatic neural discharge time (Td), and diaphragmatic neural discharge interval (Tdi), diaphragmatic neural discharge range (Rd), diaphragmatic neural discharge area (Ad), expiratory time (Tex), inspiratory time (Tin), respiratory rate (RR), respiratory excursion (RE), respiratory area (RA), and diaphragmatic muscular tension and endurance were detected. Results Compared with the normal control group, the tidal volume (TV), peak expiratory flow (PEF), and 50% tidal volume expiratory flow (EF50) significantly decreased in the model group (P < 0.01). Td, Tdi, Tex, and Tin were significantly prolonged (P < 0.05, P < 0.01). Ad, Rd, RR, RE, RA, diaphragmatic muscular tension and endurance significantly decreased (P< 0.05, P<0.01). The ratio of type Ⅰ and Ⅱ A diaphragmatic fibers significantly increased and type D B significantly decreased (P<0.01). The activity of ATP decreased and the activity of SDH increased (P<0.01). The aforesaid indices were improved to different degrees in BJR groups, especially in the high dose BJR group and the medium dose BJR group (P<0.05, P<0.01). Conclusions BJR could significantly improve the diaphragmatic neural discharge and the diaphragmatic muscle function. Its efficacy was better than that of

  12. FGF signaling transforms non-neural ectoderm into neural crest.

    Science.gov (United States)

    Yardley, Nathan; García-Castro, Martín I

    2012-12-15

    The neural crest arises at the border between the neural plate and the adjacent non-neural ectoderm. It has been suggested that both neural and non-neural ectoderm can contribute to the neural crest. Several studies have examined the molecular mechanisms that regulate neural crest induction in neuralized tissues or the neural plate border. Here, using the chick as a model system, we address the molecular mechanisms by which non-neural ectoderm generates neural crest. We report that in response to FGF the non-neural ectoderm can ectopically express several early neural crest markers (Pax7, Msx1, Dlx5, Sox9, FoxD3, Snail2, and Sox10). Importantly this response to FGF signaling can occur without inducing ectopic mesodermal tissues. Furthermore, the non-neural ectoderm responds to FGF by expressing the prospective neural marker Sox3, but it does not express definitive markers of neural or anterior neural (Sox2 and Otx2) tissues. These results suggest that the non-neural ectoderm can launch the neural crest program in the absence of mesoderm, without acquiring definitive neural character. Finally, we report that prior to the upregulation of these neural crest markers, the non-neural ectoderm upregulates both BMP and Wnt molecules in response to FGF. Our results provide the first effort to understand the molecular events leading to neural crest development via the non-neural ectoderm in amniotes and present a distinct response to FGF signaling. PMID:23000357

  13. Neural mechanisms underlying breathing complexity.

    Directory of Open Access Journals (Sweden)

    Agathe Hess

    Full Text Available Breathing is maintained and controlled by a network of automatic neurons in the brainstem that generate respiratory rhythm and receive regulatory inputs. Breathing complexity therefore arises from respiratory central pattern generators modulated by peripheral and supra-spinal inputs. Very little is known on the brainstem neural substrates underlying breathing complexity in humans. We used both experimental and theoretical approaches to decipher these mechanisms in healthy humans and patients with chronic obstructive pulmonary disease (COPD. COPD is the most frequent chronic lung disease in the general population mainly due to tobacco smoke. In patients, airflow obstruction associated with hyperinflation and respiratory muscles weakness are key factors contributing to load-capacity imbalance and hence increased respiratory drive. Unexpectedly, we found that the patients breathed with a higher level of complexity during inspiration and expiration than controls. Using functional magnetic resonance imaging (fMRI, we scanned the brain of the participants to analyze the activity of two small regions involved in respiratory rhythmogenesis, the rostral ventro-lateral (VL medulla (pre-Bötzinger complex and the caudal VL pons (parafacial group. fMRI revealed in controls higher activity of the VL medulla suggesting active inspiration, while in patients higher activity of the VL pons suggesting active expiration. COPD patients reactivate the parafacial to sustain ventilation. These findings may be involved in the onset of respiratory failure when the neural network becomes overwhelmed by respiratory overload We show that central neural activity correlates with airflow complexity in healthy subjects and COPD patients, at rest and during inspiratory loading. We finally used a theoretical approach of respiratory rhythmogenesis that reproduces the kernel activity of neurons involved in the automatic breathing. The model reveals how a chaotic activity in

  14. Gabapentin for Chronic Refractory Cancer Cough.

    Science.gov (United States)

    Atreya, Shrikant; Kumar, Gaurav; Datta, Soumitra Shankar

    2016-01-01

    Vagal sensory neuropathy or vagal hypersensitivity has been implicated in the pathophysiology of chronic cough. Earlier reports have shown gabapentin to be effective in sensory laryngeal neuropathy and symptom conditions that have a proven neural origin. We present a case report of a patient with chronic refractory cough due to a soft tissue mass in the lung that caused compression of the mediastinal structures. The patient was successfully treated with gabapentin with reduction in the cough intensity, duration, and frequency. PMID:26962287

  15. Gabapentin for Chronic Refractory Cancer Cough

    OpenAIRE

    Shrikant Atreya; Gaurav Kumar; Soumitra Shankar Datta

    2016-01-01

    Vagal sensory neuropathy or vagal hypersensitivity has been implicated in the pathophysiology of chronic cough. Earlier reports have shown gabapentin to be effective in sensory laryngeal neuropathy and symptom conditions that have a proven neural origin. We present a case report of a patient with chronic refractory cough due to a soft tissue mass in the lung that caused compression of the mediastinal structures. The patient was successfully treated with gabapentin with reduction in the cough ...

  16. Gabapentin for chronic refractory cancer cough

    Directory of Open Access Journals (Sweden)

    Shrikant Atreya

    2016-01-01

    Full Text Available Vagal sensory neuropathy or vagal hypersensitivity has been implicated in the pathophysiology of chronic cough. Earlier reports have shown gabapentin to be effective in sensory laryngeal neuropathy and symptom conditions that have a proven neural origin. We present a case report of a patient with chronic refractory cough due to a soft tissue mass in the lung that caused compression of the mediastinal structures. The patient was successfully treated with gabapentin with reduction in the cough intensity, duration, and frequency.

  17. Gabapentin for Chronic Refractory Cancer Cough

    Science.gov (United States)

    Atreya, Shrikant; Kumar, Gaurav; Datta, Soumitra Shankar

    2016-01-01

    Vagal sensory neuropathy or vagal hypersensitivity has been implicated in the pathophysiology of chronic cough. Earlier reports have shown gabapentin to be effective in sensory laryngeal neuropathy and symptom conditions that have a proven neural origin. We present a case report of a patient with chronic refractory cough due to a soft tissue mass in the lung that caused compression of the mediastinal structures. The patient was successfully treated with gabapentin with reduction in the cough intensity, duration, and frequency. PMID:26962287

  18. Consciousness and neural plasticity

    DEFF Research Database (Denmark)

    changes or to abandon the strong identity thesis altogether. Were one to pursue a theory according to which consciousness is not an epiphenomenon to brain processes, consciousness may in fact affect its own neural basis. The neural correlate of consciousness is often seen as a stable structure, that is......In contemporary consciousness studies the phenomenon of neural plasticity has received little attention despite the fact that neural plasticity is of still increased interest in neuroscience. We will, however, argue that neural plasticity could be of great importance to consciousness studies....... If consciousness is related to neural processes it seems, at least prima facie, that the ability of the neural structures to change should be reflected in a theory of this relationship "Neural plasticity" refers to the fact that the brain can change due to its own activity. The brain is not static but rather...

  19. Neural Tube Defects

    Science.gov (United States)

    Neural tube defects are birth defects of the brain, spine, or spinal cord. They happen in the ... that she is pregnant. The two most common neural tube defects are spina bifida and anencephaly. In ...

  20. Morphological neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Ritter, G.X.; Sussner, P. [Univ. of Florida, Gainesville, FL (United States)

    1996-12-31

    The theory of artificial neural networks has been successfully applied to a wide variety of pattern recognition problems. In this theory, the first step in computing the next state of a neuron or in performing the next layer neural network computation involves the linear operation of multiplying neural values by their synaptic strengths and adding the results. Thresholding usually follows the linear operation in order to provide for nonlinearity of the network. In this paper we introduce a novel class of neural networks, called morphological neural networks, in which the operations of multiplication and addition are replaced by addition and maximum (or minimum), respectively. By taking the maximum (or minimum) of sums instead of the sum of products, morphological network computation is nonlinear before thresholding. As a consequence, the properties of morphological neural networks are drastically different than those of traditional neural network models. In this paper we consider some of these differences and provide some particular examples of morphological neural network.

  1. Holographic neural networks

    OpenAIRE

    Manger, R

    1998-01-01

    Holographic neural networks are a new and promising type of artificial neural networks. This article gives an overview of the holographic neural technology and its possibilities. The theoretical principles of holographic networks are first reviewed. Then, some other papers are presented, where holographic networks have been applied or experimentally evaluated. A case study dealing with currency exchange rate prediction is described in more detail.

  2. Neural tissue-spheres

    DEFF Research Database (Denmark)

    Andersen, Rikke K; Johansen, Mathias; Blaabjerg, Morten;

    2007-01-01

    By combining new and established protocols we have developed a procedure for isolation and propagation of neural precursor cells from the forebrain subventricular zone (SVZ) of newborn rats. Small tissue blocks of the SVZ were dissected and propagated en bloc as free-floating neural tissue...... content, thus allowing experimental studies of neural precursor cells and their niche...

  3. READING A NEURAL CODE

    NARCIS (Netherlands)

    BIALEK, W; RIEKE, F; VANSTEVENINCK, RRD; WARLAND, D

    1991-01-01

    Traditional approaches to neural coding characterize the encoding of known stimuli in average neural responses. Organisms face nearly the opposite task - extracting information about an unknown time-dependent stimulus from short segments of a spike train. Here the neural code was characterized from

  4. Spatially pooled contrast responses predict neural and perceptual similarity of naturalistic image categories.

    Directory of Open Access Journals (Sweden)

    Iris I A Groen

    Full Text Available The visual world is complex and continuously changing. Yet, our brain transforms patterns of light falling on our retina into a coherent percept within a few hundred milliseconds. Possibly, low-level neural responses already carry substantial information to facilitate rapid characterization of the visual input. Here, we computationally estimated low-level contrast responses to computer-generated naturalistic images, and tested whether spatial pooling of these responses could predict image similarity at the neural and behavioral level. Using EEG, we show that statistics derived from pooled responses explain a large amount of variance between single-image evoked potentials (ERPs in individual subjects. Dissimilarity analysis on multi-electrode ERPs demonstrated that large differences between images in pooled response statistics are predictive of more dissimilar patterns of evoked activity, whereas images with little difference in statistics give rise to highly similar evoked activity patterns. In a separate behavioral experiment, images with large differences in statistics were judged as different categories, whereas images with little differences were confused. These findings suggest that statistics derived from low-level contrast responses can be extracted in early visual processing and can be relevant for rapid judgment of visual similarity. We compared our results with two other, well- known contrast statistics: Fourier power spectra and higher-order properties of contrast distributions (skewness and kurtosis. Interestingly, whereas these statistics allow for accurate image categorization, they do not predict ERP response patterns or behavioral categorization confusions. These converging computational, neural and behavioral results suggest that statistics of pooled contrast responses contain information that corresponds with perceived visual similarity in a rapid, low-level categorization task.

  5. Artificial neural interfaces for bionic cardiovascular treatments.

    Science.gov (United States)

    Kawada, Toru; Sugimachi, Masaru

    2009-01-01

    An artificial nerve, in the broad sense, may be conceptualized as a physical and logical interface system that reestablishes the information traffic between the central nervous system and peripheral organs. Studies on artificial nerves targeting the autonomic nervous system are in progress to explore new treatment strategies for several cardiovascular diseases. In this article, we will review our research targeting the autonomic nervous system to treat cardiovascular diseases. First, we identified the rule for decoding native sympathetic nerve activity into a heart rate using transfer function analysis, and established a framework for a neurally regulated cardiac pacemaker. Second, we designed a bionic baroreflex system to restore the baroreflex buffering function using electrical stimulation of the celiac ganglion in a rat model of orthostatic hypotension. Third, based on the hypothesis that autonomic imbalance aggravates chronic heart failure, we implanted a neural interface into the right vagal nerve and demonstrated that intermittent vagal stimulation significantly improved the survival rate in rats with chronic heart failure following myocardial infarction. Although several practical problems need to be resolved, such as those relating to the development of electrodes feasible for long-term nerve activity recording, studies of artificial neural interfaces with the autonomic nervous system have great possibilities in the field of cardiovascular treatment. We expect further development of artificial neural interfaces as novel strategies to cope with cardiovascular diseases resistant to conventional therapeutics.

  6. [Chronicity, chronicization, systematization of delusions].

    Science.gov (United States)

    Trapet, P; Fernandez, C; Galtier, M C; Gisselmann, A

    1984-05-01

    Chronicity in psychopathology is indicative of a term, a decay. Chronicization only leads the way to this term. Here, chronicization is taken literally as an inscription in the time course of delusions. The mechanism of systematization seems to be a central mark in the approach to chronic delusions. It is not an alienation or an irreversible closing but an attempted accommodation with reality in the life of psychotic subjects, irrespective of the delusional structure. The role of therapy and drug treatment as a follow-up may in that case assume another meaning.

  7. [Neurosurgical treatment of chronic pain].

    Science.gov (United States)

    Fontaine, D; Blond, S; Mertens, P; Lanteri-Minet, M

    2015-02-01

    Neurosurgical treatment of pain used two kind of techniques: 1) Lesional techniques interrupt the transmission of nociceptive neural input by lesionning the nociceptive pathways (drezotomy, cordotomy, tractotomy…). They are indicated to treat morphine-resistant cancer pain and few cases of selected neuropathic pain. 2) Neuromodulation techniques try to decrease pain by reinforcing inhibitory and/or to limit activatory mechanisms. Chronic electrical stimulation of the nervous system (peripheral nerve stimulation, spinal cord stimulation, motor cortex stimulation…) is used to treat chronic neuropathic pain. Intrathecal infusion of analgesics (morphine, ziconotide…), using implantable pumps, allows to increase their efficacy and to reduce their side effects. These techniques can improve, sometimes dramatically, selected patients with severe and chronic pain, refractory to all other treatments. The quality of the analgesic outcome depends on the relevance of the indications. PMID:25681114

  8. Chaotic diagonal recurrent neural network

    Institute of Scientific and Technical Information of China (English)

    Wang Xing-Yuan; Zhang Yi

    2012-01-01

    We propose a novel neural network based on a diagonal recurrent neural network and chaos,and its structure andlearning algorithm are designed.The multilayer feedforward neural network,diagonal recurrent neural network,and chaotic diagonal recurrent neural network are used to approach the cubic symmetry map.The simulation results show that the approximation capability of the chaotic diagonal recurrent neural network is better than the other two neural networks.

  9. Parasympathetic neural activity accounts for the lowering of exercise heart rate at high altitude

    DEFF Research Database (Denmark)

    Boushel, Robert Christopher; Calbet, J A; Rådegran, G;

    2001-01-01

    In chronic hypoxia, both heart rate (HR) and cardiac output (Q) are reduced during exercise. The role of parasympathetic neural activity in lowering HR is unresolved, and its influence on Q and oxygen transport at high altitude has never been studied.......In chronic hypoxia, both heart rate (HR) and cardiac output (Q) are reduced during exercise. The role of parasympathetic neural activity in lowering HR is unresolved, and its influence on Q and oxygen transport at high altitude has never been studied....

  10. Evolvable Neural Software System

    Science.gov (United States)

    Curtis, Steven A.

    2009-01-01

    The Evolvable Neural Software System (ENSS) is composed of sets of Neural Basis Functions (NBFs), which can be totally autonomously created and removed according to the changing needs and requirements of the software system. The resulting structure is both hierarchical and self-similar in that a given set of NBFs may have a ruler NBF, which in turn communicates with other sets of NBFs. These sets of NBFs may function as nodes to a ruler node, which are also NBF constructs. In this manner, the synthetic neural system can exhibit the complexity, three-dimensional connectivity, and adaptability of biological neural systems. An added advantage of ENSS over a natural neural system is its ability to modify its core genetic code in response to environmental changes as reflected in needs and requirements. The neural system is fully adaptive and evolvable and is trainable before release. It continues to rewire itself while on the job. The NBF is a unique, bilevel intelligence neural system composed of a higher-level heuristic neural system (HNS) and a lower-level, autonomic neural system (ANS). Taken together, the HNS and the ANS give each NBF the complete capabilities of a biological neural system to match sensory inputs to actions. Another feature of the NBF is the Evolvable Neural Interface (ENI), which links the HNS and ANS. The ENI solves the interface problem between these two systems by actively adapting and evolving from a primitive initial state (a Neural Thread) to a complicated, operational ENI and successfully adapting to a training sequence of sensory input. This simulates the adaptation of a biological neural system in a developmental phase. Within the greater multi-NBF and multi-node ENSS, self-similar ENI s provide the basis for inter-NBF and inter-node connectivity.

  11. Chronic cholecystitis

    Science.gov (United States)

    ... foods may relieve symptoms in people. However, the benefit of a low-fat diet has not been proven. Alternative Names Cholecystitis - chronic Images Cholecystitis, CT scan Cholecystitis, cholangiogram Cholecystolithiasis Gallstones, cholangiogram Cholecystogram References Wang ...

  12. Chronic Meningitis

    Science.gov (United States)

    ... School Lunch Lines FDA Cracks Down on Antibacterial Soaps Health Tip: Schedule a Back-to-School Dental ... the Professional Version Meningitis Introduction to Meningitis Acute Bacterial Meningitis Viral Meningitis Noninfectious Meningitis Recurrent Meningitis Chronic ...

  13. Chronic, low-dose rotenone reproduces Lewy neurites found in early stages of Parkinson's disease, reduces mitochondrial movement and slowly kills differentiated SH-SY5Y neural cells

    Directory of Open Access Journals (Sweden)

    Liu Lei

    2008-12-01

    Full Text Available Abstract Background Parkinson's disease, the most common adult neurodegenerative movement disorder, demonstrates a brain-wide pathology that begins pre-clinically with alpha-synuclein aggregates ("Lewy neurites" in processes of gut enteric and vagal motor neurons. Rostral progression into substantia nigra with death of dopamine neurons produces the motor impairment phenotype that yields a clinical diagnosis. The vast majority of Parkinson's disease occurs sporadically, and current models of sporadic Parkinson's disease (sPD can utilize directly infused or systemic neurotoxins. Results We developed a differentiation protocol for human SH-SY5Y neuroblastoma that yielded non-dividing dopaminergic neural cells with long processes that we then exposed to 50 nM rotenone, a complex I inhibitor used in Parkinson's disease models. After 21 days of rotenone, ~60% of cells died. Their processes retracted and accumulated ASYN-(+ and UB-(+ aggregates that blocked organelle transport. Mitochondrial movement velocities were reduced by 8 days of rotenone and continued to decline over time. No cytoplasmic inclusions resembling Lewy bodies were observed. Gene microarray analyses showed that the majority of genes were under-expressed. qPCR analyses of 11 mtDNA-encoded and 10 nDNA-encoded mitochondrial electron transport chain RNAs' relative expressions revealed small increases in mtDNA-encoded genes and lesser regulation of nDNA-encoded ETC genes. Conclusion Subacute rotenone treatment of differentiated SH-SY5Y neuroblastoma cells causes process retraction and partial death over several weeks, slowed mitochondrial movement in processes and appears to reproduce the Lewy neuritic changes of early Parkinson's disease pathology but does not cause Lewy body inclusions. The overall pattern of transcriptional regulation is gene under-expression with minimal regulation of ETC genes in spite of rotenone's being a complex I toxin. This rotenone-SH-SY5Y model in a

  14. Neural Systems Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — As part of the Electrical and Computer Engineering Department and The Institute for System Research, the Neural Systems Laboratory studies the functionality of the...

  15. A neural flow estimator

    DEFF Research Database (Denmark)

    Jørgensen, Ivan Harald Holger; Bogason, Gudmundur; Bruun, Erik

    1995-01-01

    This paper proposes a new way to estimate the flow in a micromechanical flow channel. A neural network is used to estimate the delay of random temperature fluctuations induced in a fluid. The design and implementation of a hardware efficient neural flow estimator is described. The system...... is implemented using switched-current technique and is capable of estimating flow in the μl/s range. The neural estimator is built around a multiplierless neural network, containing 96 synaptic weights which are updated using the LMS1-algorithm. An experimental chip has been designed that operates at 5 V...

  16. Miniaturized neural interfaces and implants

    Science.gov (United States)

    Stieglitz, Thomas; Boretius, Tim; Ordonez, Juan; Hassler, Christina; Henle, Christian; Meier, Wolfgang; Plachta, Dennis T. T.; Schuettler, Martin

    2012-03-01

    Neural prostheses are technical systems that interface nerves to treat the symptoms of neurological diseases and to restore sensory of motor functions of the body. Success stories have been written with the cochlear implant to restore hearing, with spinal cord stimulators to treat chronic pain as well as urge incontinence, and with deep brain stimulators in patients suffering from Parkinson's disease. Highly complex neural implants for novel medical applications can be miniaturized either by means of precision mechanics technologies using known and established materials for electrodes, cables, and hermetic packages or by applying microsystems technologies. Examples for both approaches will be introduced and discussed. Electrode arrays for recording of electrocorticograms during presurgical epilepsy diagnosis have been manufactured using approved materials and a marking laser to achieve an integration density that is adequate in the context of brain machine interfaces, e.g. on the motor cortex. Microtechnologies have to be used for further miniaturization to develop polymer-based flexible and light weighted electrode arrays to interface the peripheral and central nervous system. Polyimide as substrate and insulation material will be discussed as well as several application examples for nerve interfaces like cuffs, filament like electrodes and large arrays for subdural implantation.

  17. The neuro-glial properties of adipose-derived adult stromal (ADAS cells are not regulated by Notch 1 and are not derived from neural crest lineage.

    Directory of Open Access Journals (Sweden)

    Philip C Wrage

    Full Text Available We investigated whether adipose-derived adult stromal (ADAS are of neural crest origin and the extent to which Notch 1 regulates their growth and differentiation. Mouse ADAS cells cultured in media formulated for neural stem cells (NSC displayed limited capacity for self-renewal, clonogenicity, and neurosphere formation compared to NSC from the subventricular zone in the hippocampus. Although ADAS cells expressed Nestin, GFAP, NSE and Tuj1 in vitro, exposure to NSC differentiation supplements did not induce mature neuronal marker expression. In contrast, in mesenchymal stem cell (MSC media, ADAS cells retained their ability to proliferate and differentiate beyond 20 passages and expressed high levels of Nestin. In neuritizing cocktails, ADAS cells extended processes, downregulated Nestin expression, and displayed depolarization-induced Ca(2+ transients but no spontaneous or evoked neural network activity on Multi-Electrode Arrays. Deletion of Notch 1 in ADAS cell cultures grown in NSC proliferation medium did not significantly alter their proliferative potential in vitro or the differentiation-induced downregulation of Nestin. Co-culture of ADAS cells with fibroblasts that stably expressed the Notch ligand Jagged 1 or overexpression of the Notch intracellular domain (NICD did not alter ADAS cell growth, morphology, or cellular marker expression. ADAS cells did not display robust expression of neural crest transcription factors or genes (Sox, CRABP2, and TH; and lineage tracing analyses using Wnt1-Cre;Rosa26R-lacZ or -EYFP reporter mice confirmed that fewer than 2% of the ADAS cell population derived from a Wnt1-positive population during development. In summary, although media formulations optimized for MSCs or NSCs enable expansion of mouse ADAS cells in vitro, we find no evidence that these cells are of neural crest origin, that they can undergo robust terminal differentiation into functionally mature neurons, and that Notch 1 is likely to be

  18. Neural Networks: Implementations and Applications

    OpenAIRE

    Vonk, E.; Veelenturf, L.P.J.; Jain, L.C.

    1996-01-01

    Artificial neural networks, also called neural networks, have been used successfully in many fields including engineering, science and business. This paper presents the implementation of several neural network simulators and their applications in character recognition and other engineering areas

  19. Kunstige neurale net

    DEFF Research Database (Denmark)

    Hørning, Annette

    1994-01-01

    Artiklen beskæftiger sig med muligheden for at anvende kunstige neurale net i forbindelse med datamatisk procession af naturligt sprog, specielt automatisk talegenkendelse.......Artiklen beskæftiger sig med muligheden for at anvende kunstige neurale net i forbindelse med datamatisk procession af naturligt sprog, specielt automatisk talegenkendelse....

  20. Critical Branching Neural Networks

    Science.gov (United States)

    Kello, Christopher T.

    2013-01-01

    It is now well-established that intrinsic variations in human neural and behavioral activity tend to exhibit scaling laws in their fluctuations and distributions. The meaning of these scaling laws is an ongoing matter of debate between isolable causes versus pervasive causes. A spiking neural network model is presented that self-tunes to critical…

  1. Is neural Darwinism Darwinism?

    Science.gov (United States)

    van Belle, T

    1997-01-01

    Neural Darwinism is a theory of cognition developed by Gerald Edelman along with George Reeke and Olaf Sporns at Rockefeller University. As its name suggests, neural Darwinism is modeled after biological Darwinism, and its authors assert that the two processes are strongly analogous. both operate on variation in a population, amplifying the more adaptive individuals. However, from a computational perspective, neural Darwinism is quite different from other models of natural selection, such as genetic algorithms. The individuals of neural Darwinism do not replicate, thus robbing the process of the capacity to explore new solutions over time and ultimately reducing it to a random search. Because neural Darwinism does not have the computational power of a truly Darwinian process, it is misleading to label it as such. to illustrate this disparity in adaptive power, one of Edelman's early computer experiments, Darwin I, is revisited, and it is shown that adding replication greatly improves the adaptive power of the system.

  2. A fully implantable rodent neural stimulator

    Science.gov (United States)

    Perry, D. W. J.; Grayden, D. B.; Shepherd, R. K.; Fallon, J. B.

    2012-02-01

    The ability to electrically stimulate neural and other excitable tissues in behaving experimental animals is invaluable for both the development of neural prostheses and basic neurological research. We developed a fully implantable neural stimulator that is able to deliver two channels of intra-cochlear electrical stimulation in the rat. It is powered via a novel omni-directional inductive link and includes an on-board microcontroller with integrated radio link, programmable current sources and switching circuitry to generate charge-balanced biphasic stimulation. We tested the implant in vivo and were able to elicit both neural and behavioural responses. The implants continued to function for up to five months in vivo. While targeted to cochlear stimulation, with appropriate electrode arrays the stimulator is well suited to stimulating other neurons within the peripheral or central nervous systems. Moreover, it includes significant on-board data acquisition and processing capabilities, which could potentially make it a useful platform for telemetry applications, where there is a need to chronically monitor physiological variables in unrestrained animals.

  3. Chronic myelogenous leukemia (CML)

    Science.gov (United States)

    CML; Chronic myeloid leukemia; Chronic granulocytic leukemia; Leukemia - chronic granulocytic ... nuclear disaster. It takes many years to develop leukemia from radiation exposure. Most people treated for cancer ...

  4. Chronic obstructive pulmonary disease

    Science.gov (United States)

    ... airways disease; Chronic obstructive lung disease; Chronic bronchitis; Emphysema; Bronchitis - chronic ... a protein called alpha-1 antitrypsin can develop emphysema. Other risk factors for COPD are: Exposure to ...

  5. Dynamics of neural cryptography.

    Science.gov (United States)

    Ruttor, Andreas; Kinzel, Wolfgang; Kanter, Ido

    2007-05-01

    Synchronization of neural networks has been used for public channel protocols in cryptography. In the case of tree parity machines the dynamics of both bidirectional synchronization and unidirectional learning is driven by attractive and repulsive stochastic forces. Thus it can be described well by a random walk model for the overlap between participating neural networks. For that purpose transition probabilities and scaling laws for the step sizes are derived analytically. Both these calculations as well as numerical simulations show that bidirectional interaction leads to full synchronization on average. In contrast, successful learning is only possible by means of fluctuations. Consequently, synchronization is much faster than learning, which is essential for the security of the neural key-exchange protocol. However, this qualitative difference between bidirectional and unidirectional interaction vanishes if tree parity machines with more than three hidden units are used, so that those neural networks are not suitable for neural cryptography. In addition, the effective number of keys which can be generated by the neural key-exchange protocol is calculated using the entropy of the weight distribution. As this quantity increases exponentially with the system size, brute-force attacks on neural cryptography can easily be made unfeasible.

  6. ANT Advanced Neural Tool

    Energy Technology Data Exchange (ETDEWEB)

    Labrador, I.; Carrasco, R.; Martinez, L.

    1996-07-01

    This paper describes a practical introduction to the use of Artificial Neural Networks. Artificial Neural Nets are often used as an alternative to the traditional symbolic manipulation and first order logic used in Artificial Intelligence, due the high degree of difficulty to solve problems that can not be handled by programmers using algorithmic strategies. As a particular case of Neural Net a Multilayer Perception developed by programming in C language on OS9 real time operating system is presented. A detailed description about the program structure and practical use are included. Finally, several application examples that have been treated with the tool are presented, and some suggestions about hardware implementations. (Author) 15 refs.

  7. AUV fuzzy neural BDI

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The typical BDI (belief desire intention) model of agent is not efficiently computable and the strict logic expression is not easily applicable to the AUV (autonomous underwater vehicle) domain with uncertainties. In this paper, an AUV fuzzy neural BDI model is proposed. The model is a fuzzy neural network composed of five layers: input ( beliefs and desires) , fuzzification, commitment, fuzzy intention, and defuzzification layer. In the model, the fuzzy commitment rules and neural network are combined to form intentions from beliefs and desires. The model is demonstrated by solving PEG (pursuit-evasion game), and the simulation result is satisfactory.

  8. ANT Advanced Neural Tool

    International Nuclear Information System (INIS)

    This paper describes a practical introduction to the use of Artificial Neural Networks. Artificial Neural Nets are often used as an alternative to the traditional symbolic manipulation and first order logic used in Artificial Intelligence, due the high degree of difficulty to solve problems that can not be handled by programmers using algorithmic strategies. As a particular case of Neural Net a Multilayer Perception developed by programming in C language on OS9 real time operating system is presented. A detailed description about the program structure and practical use are included. Finally, several application examples that have been treated with the tool are presented, and some suggestions about hardware implementations. (Author) 15 refs

  9. Chronic pain - resources

    Science.gov (United States)

    Pain - resources; Resources - chronic pain ... The following organizations are good resources for information on chronic pain: American Chronic Pain Association -- www.theacpa.org National Fibromyalgia and Chronic Pain Association -- www.fmcpaware.org ...

  10. Low back pain - chronic

    Science.gov (United States)

    Nonspecific back pain; Backache - chronic; Lumbar pain - chronic; Pain - back - chronic; Chronic back pain - low ... Low back pain is common. Almost everyone has back pain at some time in their life. Often, the exact cause ...

  11. Chronic motor tic disorder

    Science.gov (United States)

    Chronic vocal tic disorder; Tic - chronic motor tic disorder ... Chronic motor tic disorder is more common than Tourette syndrome . Chronic tics may be forms of Tourette syndrome. Tics usually start ...

  12. Chronic Pelvic Pain

    Science.gov (United States)

    ... Events Advocacy For Patients About ACOG Chronic Pelvic Pain Home For Patients Search FAQs Chronic Pelvic Pain ... Pain FAQ099, August 2011 PDF Format Chronic Pelvic Pain Gynecologic Problems What is chronic pelvic pain? What ...

  13. Employees with Chronic Pain

    Science.gov (United States)

    ... Home | Accommodation and Compliance Series: Employees with Chronic Pain By Beth Loy, Ph.D. Preface Introduction Information ... at http://AskJAN.org/soar. Information about Chronic Pain How prevalent is chronic pain? Chronic pain has ...

  14. The Future of Neural Networks

    OpenAIRE

    Lakra, Sachin; T. V. Prasad; G. Ramakrishna

    2012-01-01

    The paper describes some recent developments in neural networks and discusses the applicability of neural networks in the development of a machine that mimics the human brain. The paper mentions a new architecture, the pulsed neural network that is being considered as the next generation of neural networks. The paper also explores the use of memristors in the development of a brain-like computer called the MoNETA. A new model, multi/infinite dimensional neural networks, are a recent developme...

  15. Neural networks for aircraft control

    Science.gov (United States)

    Linse, Dennis

    1990-01-01

    Current research in Artificial Neural Networks indicates that networks offer some potential advantages in adaptation and fault tolerance. This research is directed at determining the possible applicability of neural networks to aircraft control. The first application will be to aircraft trim. Neural network node characteristics, network topology and operation, neural network learning and example histories using neighboring optimal control with a neural net are discussed.

  16. Neural Networks in Data Mining

    OpenAIRE

    Priyanka Gaur

    2012-01-01

    The application of neural networks in the data mining is very wide. Although neural networks may have complex structure, long training time, and uneasily understandable representation of results, neural networks have high acceptance ability for noisy data and high accuracy and are preferable in data mining. In this paper the data mining based on neural networks is researched in detail, and the key technology and ways to achieve the data mining based on neural networks are also researched.

  17. Neural networks and graph theory

    Institute of Scientific and Technical Information of China (English)

    许进; 保铮

    2002-01-01

    The relationships between artificial neural networks and graph theory are considered in detail. The applications of artificial neural networks to many difficult problems of graph theory, especially NP-complete problems, and the applications of graph theory to artificial neural networks are discussed. For example graph theory is used to study the pattern classification problem on the discrete type feedforward neural networks, and the stability analysis of feedback artificial neural networks etc.

  18. Neural Oscillators Programming Simplified

    Directory of Open Access Journals (Sweden)

    Patrick McDowell

    2012-01-01

    Full Text Available The neurological mechanism used for generating rhythmic patterns for functions such as swallowing, walking, and chewing has been modeled computationally by the neural oscillator. It has been widely studied by biologists to model various aspects of organisms and by computer scientists and robotics engineers as a method for controlling and coordinating the gaits of walking robots. Although there has been significant study in this area, it is difficult to find basic guidelines for programming neural oscillators. In this paper, the authors approach neural oscillators from a programmer’s point of view, providing background and examples for developing neural oscillators to generate rhythmic patterns that can be used in biological modeling and robotics applications.

  19. Hidden neural networks

    DEFF Research Database (Denmark)

    Krogh, Anders Stærmose; Riis, Søren Kamaric

    1999-01-01

    A general framework for hybrids of hidden Markov models (HMMs) and neural networks (NNs) called hidden neural networks (HNNs) is described. The article begins by reviewing standard HMMs and estimation by conditional maximum likelihood, which is used by the HNN. In the HNN, the usual HMM probability...... parameters are replaced by the outputs of state-specific neural networks. As opposed to many other hybrids, the HNN is normalized globally and therefore has a valid probabilistic interpretation. All parameters in the HNN are estimated simultaneously according to the discriminative conditional maximum...... likelihood criterion. The HNN can be viewed as an undirected probabilistic independence network (a graphical model), where the neural networks provide a compact representation of the clique functions. An evaluation of the HNN on the task of recognizing broad phoneme classes in the TIMIT database shows clear...

  20. Chronic coughing

    International Nuclear Information System (INIS)

    Chronic coughing was acknowledged to result from pathological state of the respiratory organs. Cardiac diseases could be accompanied by coughing as well. It was recommended to perform x-ray examinations, including biomedical radiography of the chest, computerized tomography, scintiscanning with 67Ga-citrate, bronchi examination in order to exclude heart disease. The complex examination permitted to detect localization and type of the changes in the lungs and mediastinum, to distinguish benign tumor from malignant one

  1. Neural Turing Machines

    OpenAIRE

    Graves, Alex; Wayne, Greg; Danihelka, Ivo

    2014-01-01

    We extend the capabilities of neural networks by coupling them to external memory resources, which they can interact with by attentional processes. The combined system is analogous to a Turing Machine or Von Neumann architecture but is differentiable end-to-end, allowing it to be efficiently trained with gradient descent. Preliminary results demonstrate that Neural Turing Machines can infer simple algorithms such as copying, sorting, and associative recall from input and output examples.

  2. Imaging the Neural Symphony.

    Science.gov (United States)

    Svoboda, Karel

    2016-01-01

    Since the start of the new millennium, a method called two-photon microscopy has allowed scientists to peer farther into the brain than ever before. Our author, one of the pioneers in the development of this new technology, writes that "directly observing the dynamics of neural networks in an intact brain has become one of the holy grails of brain research." His article describes the advances that led to this remarkable breakthrough-one that is helping neuroscientists better understand neural networks.

  3. Neural cryptography with feedback

    Science.gov (United States)

    Ruttor, Andreas; Kinzel, Wolfgang; Shacham, Lanir; Kanter, Ido

    2004-04-01

    Neural cryptography is based on a competition between attractive and repulsive stochastic forces. A feedback mechanism is added to neural cryptography which increases the repulsive forces. Using numerical simulations and an analytic approach, the probability of a successful attack is calculated for different model parameters. Scaling laws are derived which show that feedback improves the security of the system. In addition, a network with feedback generates a pseudorandom bit sequence which can be used to encrypt and decrypt a secret message.

  4. Neural cryptography with feedback.

    Science.gov (United States)

    Ruttor, Andreas; Kinzel, Wolfgang; Shacham, Lanir; Kanter, Ido

    2004-04-01

    Neural cryptography is based on a competition between attractive and repulsive stochastic forces. A feedback mechanism is added to neural cryptography which increases the repulsive forces. Using numerical simulations and an analytic approach, the probability of a successful attack is calculated for different model parameters. Scaling laws are derived which show that feedback improves the security of the system. In addition, a network with feedback generates a pseudorandom bit sequence which can be used to encrypt and decrypt a secret message.

  5. Multi-electrode array technologies for neuroscience and cardiology

    Science.gov (United States)

    Spira, Micha E.; Hai, Aviad

    2013-02-01

    At present, the prime methodology for studying neuronal circuit-connectivity, physiology and pathology under in vitro or in vivo conditions is by using substrate-integrated microelectrode arrays. Although this methodology permits simultaneous, cell-non-invasive, long-term recordings of extracellular field potentials generated by action potentials, it is 'blind' to subthreshold synaptic potentials generated by single cells. On the other hand, intracellular recordings of the full electrophysiological repertoire (subthreshold synaptic potentials, membrane oscillations and action potentials) are, at present, obtained only by sharp or patch microelectrodes. These, however, are limited to single cells at a time and for short durations. Recently a number of laboratories began to merge the advantages of extracellular microelectrode arrays and intracellular microelectrodes. This Review describes the novel approaches, identifying their strengths and limitations from the point of view of the end users -- with the intention to help steer the bioengineering efforts towards the needs of brain-circuit research.

  6. RF capacitively coupled plasma with multi-hole multi electrode

    Science.gov (United States)

    Lee, Hun Su; Lee, Yun Seong; Seo, Sang Hun; Chang, Hong Young

    2011-10-01

    In the photovoltaic industry, it is desired to make plasma discharge of high electron density for the deposition of microcrystalline silicon layer, which is a bottle-neck process in the fabrication of thin film solar cell. So multi-hole electrode instead of plane electrode is used to make capacitively coupled discharge and the deposition rate could be increased because of the plasma density increases by the increased ionization by the energetic secondary electron surrounded by sheath region. To further increase the productivity of the process, high frequency and large electrode area is demanded, however the uniformity of the process is degraded by the change. To solve the matter, the concept of dividing a multi-hole electrode into multiple multi-hole electrode is introduced in the presentation. By dividing electrode into several region and differentiating the hole configuration of each region, local hollow cathode effect can be controlled to make more uniform discharge. To verify the feasibility of the concept, an electrode of RF capacitively coupled plasma is divided and the hole configuration of each electrode. And with 13.56MHz power applied to the electrode, the spatial plasma distribution of the discharge is measured.

  7. Neural crack identification

    International Nuclear Information System (INIS)

    The inverse, crack identification problem in elasticity can be formulated as an output error minimization problem which, nevertheless, can not be solved without difficulties by classical numerical optimization. A review of all these previous results, where we used neural networks, filter-driven optimization and genetic algorithms is presented and in a companion lecture during this conference. The use of neural networks for the solution of the inverse problem makes possible the on-line solution of the problem. In fact, one usually approximates the inverse mapping (measurements versus crack quantities). Most of the effort is spent for the learning of this relation, while a sufficiently trained neural network provides predictions with, practically, zero computational cost. Potential applications include on-line, in-flight health monitoring systems with applications in civil and mechanical engineering and production control. In this paper we present new developments in the design of specialized neural networks for the solution of the crack identification problem. Emphasis is posed on the effective use of the learning data, which are produced by the boundary element method. Several technical data will be discussed. They include thoughts about the effective choice of the neural network architecture, the number of training examples and of the learning algorithms will be provided, together with the results of our recent numerical investigation. A detailed application for one or more elliptical cracks using static analysis results with the use of back-propagation trained neural networks will be provided. The general methodology follows our previously published results. By using more refined algorithms for the numerical solution of the neural network learning problem, which are based on the MERLIN optimization system developed in the department of the second author, we are able to solve complicated tasks. First results based on dynamic investigations (wave propagation driven

  8. Chronic Insomnia

    OpenAIRE

    Buysse, Daniel J.

    2008-01-01

    Ms. F, a 42-year-old divorced woman, presents for evaluation of chronic insomnia. She complains of difficulty falling asleep, often 30 minutes or longer, and difficulty maintaining sleep during the night, with frequent awakenings that often last 30 minutes or longer. These symptoms occur nearly every night, with only one or two “good” nights per month. She typically goes to bed around 10:00 p.m. to give herself adequate time for sleep, and she gets out of bed around 7:00 a.m. on work days and...

  9. Neural networks in seismic discrimination

    Energy Technology Data Exchange (ETDEWEB)

    Dowla, F.U.

    1995-01-01

    Neural networks are powerful and elegant computational tools that can be used in the analysis of geophysical signals. At Lawrence Livermore National Laboratory, we have developed neural networks to solve problems in seismic discrimination, event classification, and seismic and hydrodynamic yield estimation. Other researchers have used neural networks for seismic phase identification. We are currently developing neural networks to estimate depths of seismic events using regional seismograms. In this paper different types of network architecture and representation techniques are discussed. We address the important problem of designing neural networks with good generalization capabilities. Examples of neural networks for treaty verification applications are also described.

  10. Neural Plasticity: For Good and Bad

    Science.gov (United States)

    Møller, A. R.

    The brain's ability to change its organization and function is necessary for normal development of the nervous system and it makes it possible to adapt to changing demands but it can also cause disorders when going awry. This property, known as neural plasticity, is only evident when induced, very much like genes. Plastic changes may be programmed and providing a ``midcourse correction" during childhood development. If that is not executed in the normal way severe developmental disorders such as autism may results. Normal development of functions and anatomical organization of the brain and the spinal cord depend on appropriate sensory stimulation and motor activations. So-called enriched sensory environments have been shown to be beneficial for cognitive development and enriched acoustic environment may even slow the progression of age-related hearing loss. It is possible that the beneficial effect of physical exercise is achieved through activation of neural plasticity. The beneficial effect of training after trauma to the brain or spinal cord is mainly achieved through shifting functions from damaged brain area to other parts of the central nervous system and adapting these parts to take over the functions that are lost. This is accomplished through activation of neural plasticity. Plastic changes can also be harmful and cause symptoms and signs of disorders such as some forms of chronic pain (central neuropathic pain) and severe tinnitus. We will call such disorders ``plasticity disorders".

  11. Memory Consolidation and Neural Substrate of Reward

    Directory of Open Access Journals (Sweden)

    Redolar-Ripoll, Diego

    2012-08-01

    Full Text Available The aim of this report is to analyze the relationships between reward and learning and memory processes. Different studies have described how information about rewards influences behavior and how the brain uses this reward information to control learning and memory processes. Reward nature seems to be processed in different ways by neurons in different brain structures, ranging from the detection and perception of rewards to the use of information about predicted rewards for the control of goal-directed behavior. The neural substrate underling this processing of reward information is a reliable way of improving learning and memory processes. Evidence from several studies indicates that this neural system can facilitate memory consolidation in a wide variety of learning tasks. From a molecular perspective, certain cardinal features of reward have been described as forms of memory. Studies of human addicts and studies in animal models of addiction show that chronic drug exposure produces stable changes in the brain at the cellular and molecular levels that underlie the long-lasting behavioral plasticity associated with addiction. These molecular and cellular adaptations involved in addiction are also implicated in learning and memory processes. Dopamine seems to be a critical common signal to activate different genetic mechanisms that ultimately remodel synapses and circuits. Despite memory is an active and complex process mediated by different brain areas, the neural substrate of reward is able to improve memory consolidation in a several paradigms. We believe that there are many equivalent traits between reward and learning and memory processes.

  12. Rule Extraction:Using Neural Networks or for Neural Networks?

    Institute of Scientific and Technical Information of China (English)

    Zhi-Hua Zhou

    2004-01-01

    In the research of rule extraction from neural networks, fidelity describes how well the rules mimic the behavior of a neural network while accuracy describes how well the rules can be generalized. This paper identifies the fidelity-accuracy dilemma. It argues to distinguish rule extraction using neural networks and rule extraction for neural networks according to their different goals, where fidelity and accuracy should be excluded from the rule quality evaluation framework, respectively.

  13. Chronic kidney disease

    Science.gov (United States)

    Kidney failure - chronic; Renal failure - chronic; Chronic renal insufficiency; Chronic kidney failure; Chronic renal failure ... 2012_CKD_GL.pdf . McCullough PA. Interface between renal disease ... patients with kidney failure. N Engl J Med . 2010;362(14):1312- ...

  14. Introduction to Artificial Neural Networks

    DEFF Research Database (Denmark)

    Larsen, Jan

    1999-01-01

    The note addresses introduction to signal analysis and classification based on artificial feed-forward neural networks.......The note addresses introduction to signal analysis and classification based on artificial feed-forward neural networks....

  15. Neural mechanisms underlying morphine withdrawal in addicted patients: a review

    Directory of Open Access Journals (Sweden)

    Nima Babhadiashar

    2015-06-01

    Full Text Available Morphine is one of the most potent alkaloid in opium, which has substantial medical uses and needs and it is the first active principle purified from herbal source. Morphine has commonly been used for relief of moderate to severe pain as it acts directly on the central nervous system; nonetheless, its chronic abuse increases tolerance and physical dependence, which is commonly known as opiate addiction. Morphine withdrawal syndrome is physiological and behavioral symptoms that stem from prolonged exposure to morphine. A majority of brain regions are hypofunctional over prolonged abstinence and acute morphine withdrawal. Furthermore, several neural mechanisms are likely to contribute to morphine withdrawal. The present review summarizes the literature pertaining to neural mechanisms underlying morphine withdrawal. Despite the fact that morphine withdrawal is a complex process, it is suggested that neural mechanisms play key roles in morphine withdrawal.

  16. The quality of adolescents’ peer relationships modulates neural sensitivity to risk taking

    OpenAIRE

    Telzer, Eva H; Fuligni, Andrew J.; Lieberman, Matthew D.; MIERNICKI, MICHELLE E.; Galván, Adriana

    2014-01-01

    Adolescents' peer culture plays a key role in the development and maintenance of risk-taking behavior. Despite recent advances in developmental neuroscience suggesting that peers may increase neural sensitivity to rewards, we know relatively little about how the quality of peer relations impact adolescent risk taking. In the current 2-year three-wave longitudinal study, we examined how chronic levels of peer conflict relate to risk taking behaviorally and neurally, and whether this is modifie...

  17. Atypical Chronic Myelogenous Leukemia

    Science.gov (United States)

    ... myeloproliferative neoplasms, leukemia , and other conditions . Chronic Myelomonocytic Leukemia Key Points Chronic myelomonocytic leukemia is a disease ... chance of recovery) and treatment options. Chronic myelomonocytic leukemia is a disease in which too many myelocytes ...

  18. Experience-dependent neural plasticity in the adult damaged brain

    OpenAIRE

    Kerr, Abigail L.; Cheng, Shao-Ying; Jones, Theresa A.

    2011-01-01

    Behavioral experience is at work modifying the structure and function of the brain throughout the lifespan, but it has a particularly dramatic influence after brain injury. This review summarizes recent findings on the role of experience in reorganizing the adult damaged brain, with a focus on findings from rodent stroke models of chronic upper extremity (hand and arm) impairments. A prolonged and widespread process of repair and reorganization of surviving neural circuits is instigated by in...

  19. Introduction to neural networks

    International Nuclear Information System (INIS)

    This lecture is a presentation of today's research in neural computation. Neural computation is inspired by knowledge from neuro-science. It draws its methods in large degree from statistical physics and its potential applications lie mainly in computer science and engineering. Neural networks models are algorithms for cognitive tasks, such as learning and optimization, which are based on concepts derived from research into the nature of the brain. The lecture first gives an historical presentation of neural networks development and interest in performing complex tasks. Then, an exhaustive overview of data management and networks computation methods is given: the supervised learning and the associative memory problem, the capacity of networks, the Perceptron networks, the functional link networks, the Madaline (Multiple Adalines) networks, the back-propagation networks, the reduced coulomb energy (RCE) networks, the unsupervised learning and the competitive learning and vector quantization. An example of application in high energy physics is given with the trigger systems and track recognition system (track parametrization, event selection and particle identification) developed for the CPLEAR experiment detectors from the LEAR at CERN. (J.S.). 56 refs., 20 figs., 1 tab., 1 appendix

  20. Neural Network Ensembles

    DEFF Research Database (Denmark)

    Hansen, Lars Kai; Salamon, Peter

    1990-01-01

    We propose several means for improving the performance an training of neural networks for classification. We use crossvalidation as a tool for optimizing network parameters and architecture. We show further that the remaining generalization error can be reduced by invoking ensembles of similar...... networks....

  1. Chronic mucus hypersecretion

    DEFF Research Database (Denmark)

    Harmsen, L; Thomsen, S F; Sylvan Ingebrigtsen, Truls;

    2010-01-01

    Chronic mucus hypersecretion (CMH) is a common condition in patients with chronic respiratory diseases. Little is known about the incidence, prevalence and determinants of CMH in younger individuals....

  2. Chronic sleep disturbance and neural injury: links to neurodegenerative disease

    Directory of Open Access Journals (Sweden)

    Abbott SM

    2016-01-01

    Full Text Available Sabra M Abbott,1 Aleksandar Videnovic21Department of Neurology, Northwestern Feinberg School of Medicine, Chicago, IL, USA; 2Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA Abstract: Sleep–wake disruption is frequently observed and often one of the earliest reported symptoms of many neurodegenerative disorders. This provides insight into the underlying pathophysiology of these disorders, as sleep–wake abnormalities are often accompanied by neurodegenerative or neurotransmitter changes. However, in addition to being a symptom of the underlying neurodegenerative condition, there is also emerging evidence that sleep disturbance itself may contribute to the development and facilitate the progression of several of these disorders. Due to its impact both as an early symptom and as a potential factor contributing to ongoing neurodegeneration, the sleep–wake cycle is an ideal target for further study for potential interventions not only to lessen the burden of these diseases but also to slow their progression. In this review, we will highlight the sleep phenotypes associated with some of the major neurodegenerative disorders, focusing on the circadian disruption associated with Alzheimer’s disease, the rapid eye movement behavior disorder and sleep fragmentation associated with Parkinson’s disease, and the insomnia and circadian dysregulation associated with Huntington’s disease. Keywords: sleep, neurodegeneration, Alzheimer's disease, Parkinson's disease, Huntington's disease

  3. A brain signature to differentiate acute and chronic pain in rats

    OpenAIRE

    Yifei eGuo; Yuzheng eWang; Yabin eSun; Jin-Yan eWang

    2016-01-01

    The transition from acute pain to chronic pain entails considerable changes of patients at multiple levels of the nervous system and in psychological states. An accurate differentiation between acute and chronic pain is essential in pain management as it may help optimize analgesic treatments according to the pain state of patients. Given that acute and chronic pain could modulate brain states in different ways and that brain states could greatly shape the neural processing of external inputs...

  4. Partially flexible MEMS neural probe composed of polyimide and sucrose gel for reducing brain damage during and after implantation

    International Nuclear Information System (INIS)

    This paper presents a flexible microelectromechanical systems (MEMS) neural probe that minimizes neuron damage and immune response, suitable for chronic recording applications. MEMS neural probes with various features such as high electrode densities have been actively investigated for neuron stimulation and recording to study brain functions. However, successful recording of neural signals in chronic application using rigid silicon probes still remains challenging because of cell death and macrophages accumulated around the electrodes over time from continuous brain movement. Thus, in this paper, we propose a new flexible MEMS neural probe that consists of two segments: a polyimide-based, flexible segment for connection and a rigid segment composed of thin silicon for insertion. While the flexible connection segment is designed to reduce the long-term chronic neuron damage, the thin insertion segment is designed to minimize the brain damage during the insertion process. The proposed flexible neural probe was successfully fabricated using the MEMS process on a silicon on insulator wafer. For a successful insertion, a biodegradable sucrose gel is coated on the flexible segment to temporarily increase the probe stiffness to prevent buckling. After the insertion, the sucrose gel dissolves inside the brain exposing the polyimide probe. By performing an insertion test, we confirm that the flexible probe has enough stiffness. In addition, by monitoring immune responses and brain histology, we successfully demonstrate that the proposed flexible neural probe incurs fivefold less neural damage than that incurred by a conventional silicon neural probe. Therefore, the presented flexible neural probe is a promising candidate for recording stable neural signals for long-time chronic applications. (paper)

  5. Chronic urticaria

    Directory of Open Access Journals (Sweden)

    Sandeep Sachdeva

    2011-01-01

    Full Text Available Chronic urticaria (CU is a disturbing allergic condition of the skin. Although frequently benign, it may sometimes be a red flag sign of a serious internal disease. A multitude of etiologies have been implicated in the causation of CU, including physical, infective, vasculitic, psychological and idiopathic. An autoimmune basis of most of the ′idiopathic′ forms is now hypothesized. Histamine released from mast cells is the major effector in pathogenesis and it is clinically characterized by wheals that have a tendency to recur. Laboratory investigations aimed at a specific etiology are not always conclusive, though may be suggestive of an underlying condition. A clinical search for associated systemic disease is strongly advocated under appropriate circumstances. The mainstay of treatment remains H1 antihistaminics. These may be combined with complementary pharmacopeia in the form of H2 blockers, doxepin, nifedipine and leukotriene inhibitors. More radical therapy in the form of immunoglobulins, plasmapheresis and cyclophosphamide may be required for recalcitrant cases. Autologous transfusion and alternative remedies like acupuncture have prospects for future. A stepwise management results in favorable outcomes. An update on CU based on our experience with patients at a tertiary care centre is presented.

  6. It's All in the Rhythm: The Role of Cannabinoids in Neural Oscillations and Psychosis.

    Science.gov (United States)

    Skosnik, Patrick D; Cortes-Briones, Jose A; Hajós, Mihály

    2016-04-01

    Evidence has accumulated over the past several decades suggesting that both exocannabinoids and endocannabinoids play a role in the pathophysiology of schizophrenia. The current article presents evidence suggesting that one of the mechanisms whereby cannabinoids induce psychosis is through the alteration in synchronized neural oscillations. Neural oscillations, particularly in the gamma (30-80 Hz) and theta (4-7 Hz) ranges, are disrupted in schizophrenia and are involved in various areas of perceptual and cognitive function. Regarding cannabinoids, preclinical evidence from slice and local field potential recordings has shown that central cannabinoid receptor (cannabinoid receptor type 1) agonists decrease the power of neural oscillations, particularly in the gamma and theta bands. Further, the administration of cannabinoids during critical stages of neural development has been shown to disrupt the brain's ability to generate synchronized neural oscillations in adulthood. In humans, studies examining the effects of chronic cannabis use (utilizing electroencephalography) have shown abnormalities in neural oscillations in a pattern similar to those observed in schizophrenia. Finally, recent studies in humans have also shown disruptions in neural oscillations after the acute administration of delta-9-tetrahydrocannabinol, the primary psychoactive constituent in cannabis. Taken together, these data suggest that both acute and chronic cannabinoids can disrupt the ability of the brain to generate synchronized oscillations at functionally relevant frequencies. Hence, this may represent one of the primary mechanisms whereby cannabinoids induce disruptions in attention, working memory, sensory-motor integration, and many other psychosis-related behavioral effects. PMID:26850792

  7. Neuromodulation of chronic headaches

    DEFF Research Database (Denmark)

    Martelletti, Paolo; Jensen, Rigmor H; Antal, Andrea;

    2013-01-01

    The medical treatment of patients with chronic primary headache syndromes (chronic migraine, chronic tension-type headache, chronic cluster headache, hemicrania continua) is challenging as serious side effects frequently complicate the course of medical treatment and some patients may be even...

  8. Optical imaging of neural and hemodynamic brain activity

    Science.gov (United States)

    Schei, Jennifer Lynn

    Optical imaging technologies can be used to record neural and hemodynamic activity. Neural activity elicits physiological changes that alter the optical tissue properties. Specifically, changes in polarized light are concomitant with neural depolarization. We measured polarization changes from an isolated lobster nerve during action potential propagation using both reflected and transmitted light. In transmission mode, polarization changes were largest throughout the center of the nerve, suggesting that most of the optical signal arose from the inner nerve bundle. In reflection mode, polarization changes were largest near the edges, suggesting that most of the optical signal arose from the outer sheath. To overcome irregular cell orientation found in the brain, we measured polarization changes from a nerve tied in a knot. Our results show that neural activation produces polarization changes that can be imaged even without regular cell orientations. Neural activation expends energy resources and elicits metabolic delivery through blood vessel dilation, increasing blood flow and volume. We used spectroscopic imaging techniques combined with electrophysiological measurements to record evoked neural and hemodynamic responses from the auditory cortex of the rat. By using implantable optics, we measured responses across natural wake and sleep states, as well as responses following different amounts of sleep deprivation. During quiet sleep, evoked metabolic responses were larger compared to wake, perhaps because blood vessels were more compliant. When animals were sleep deprived, evoked hemodynamic responses were smaller following longer periods of deprivation. These results suggest that prolonged neural activity through sleep deprivation may diminish vascular compliance as indicated by the blunted vascular response. Subsequent sleep may allow vessels to relax, restoring their ability to deliver blood. These results also suggest that severe sleep deprivation or chronic

  9. Effect of expiratory load on neural inspiratory drive

    Institute of Scientific and Technical Information of China (English)

    XIAO Si-chang; LU Yi-rong; GUO Hong-xi; QIU Zhi-hui; LUO Yuan-ming

    2012-01-01

    Background Neural respiratory drive is usually measured during inspiration,even in patients with chronic obstructive pulmonary disease (COPD) in whom the primary physiological deficit is expiratory flow limitation.The purpose of the study was to test the hypothesis that inspiratory muscle neural respiratory drive could be used to assess expiratory load.Methods Ten healthy young men,(26±4) years old,were asked to expire through a tube immersed in water where an expiratory load was required.The load was judged by the depth of the tube in water and the different loads (0 cmH2O,10 cmH2O,20 cmH2O and 30 cmH2O) were randomly introduced.Each expiratory load lasted for 3-5 minutes and inspiration was unimpeded throughout.Diaphragm electromyogram (EMG) and transdiaphragmatic pressure were recorded by a catheter with 10 metal coils and two balloons.Incremental cycle exercise with and without an expiratory load at 30 cmH2O was also performed.Results Neural drive during expiratory loaded breathing was larger than during unloaded breathing but neural drive did not increase proportionally with increasing expiratory load; neural drive during expiratory loading at 0,10,20 and 30 cmH2O was (10.1±3.1) μV,(16.7±7.3) μV,(18.4±10.7) μV and (22.9±13.2) μV,respectively.Neural drive as a percentage of maximum at the end of exercise with or without load was similar ((57.4±11.0)% max vs.(62.7±16.4)% max,P >0.05).Conclusion Neural respiratory drive measured at inspiration does not accurately quantify expiratory load either at rest or during exercise.

  10. Neural tube defects

    Directory of Open Access Journals (Sweden)

    M.E. Marshall

    1981-09-01

    Full Text Available Neural tube defects refer to any defect in the morphogenesis of the neural tube, the most common types being spina bifida and anencephaly. Spina bifida has been recognised in skeletons found in north-eastern Morocco and estimated to have an age of almost 12 000 years. It was also known to the ancient Greek and Arabian physicians who thought that the bony defect was due to the tumour. The term spina bifida was first used by Professor Nicolai Tulp of Amsterdam in 1652. Many other terms have been used to describe this defect, but spina bifida remains the most useful general term, as it describes the separation of the vertebral elements in the midline.

  11. Analysis of neural data

    CERN Document Server

    Kass, Robert E; Brown, Emery N

    2014-01-01

    Continual improvements in data collection and processing have had a huge impact on brain research, producing data sets that are often large and complicated. By emphasizing a few fundamental principles, and a handful of ubiquitous techniques, Analysis of Neural Data provides a unified treatment of analytical methods that have become essential for contemporary researchers. Throughout the book ideas are illustrated with more than 100 examples drawn from the literature, ranging from electrophysiology, to neuroimaging, to behavior. By demonstrating the commonality among various statistical approaches the authors provide the crucial tools for gaining knowledge from diverse types of data. Aimed at experimentalists with only high-school level mathematics, as well as computationally-oriented neuroscientists who have limited familiarity with statistics, Analysis of Neural Data serves as both a self-contained introduction and a reference work.

  12. Quantum Neural Networks

    CERN Document Server

    Gupta, S; Gupta, Sanjay

    2002-01-01

    This paper initiates the study of quantum computing within the constraints of using a polylogarithmic ($O(\\log^k n), k\\geq 1$) number of qubits and a polylogarithmic number of computation steps. The current research in the literature has focussed on using a polynomial number of qubits. A new mathematical model of computation called \\emph{Quantum Neural Networks (QNNs)} is defined, building on Deutsch's model of quantum computational network. The model introduces a nonlinear and irreversible gate, similar to the speculative operator defined by Abrams and Lloyd. The precise dynamics of this operator are defined and while giving examples in which nonlinear Schr\\"{o}dinger's equations are applied, we speculate on its possible implementation. The many practical problems associated with the current model of quantum computing are alleviated in the new model. It is shown that QNNs of logarithmic size and constant depth have the same computational power as threshold circuits, which are used for modeling neural network...

  13. Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    Kapil Nahar

    2012-12-01

    Full Text Available An artificial neural network is an information-processing paradigm that is inspired by the way biological nervous systems, such as the brain, process information. The key element of this paradigm is the novel structure of the information processing system. It is composed of a large number of highly interconnected processing elements (neurons working in unison to solve specific problems. Ann’s, like people, learn by example.

  14. Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    Kapil Nahar

    2012-12-01

    Full Text Available An artificial neural network is an information-processing paradigm that is inspired by the way biological nervous systems, such as the brain, process information.The key element of this paradigm is the novel structure of the information processing system. It is composed of a large number of highly interconnected processing elements (neurons working in unison to solve specific problems.Ann’s, like people, learn by example.

  15. Electronic Neural Networks

    Science.gov (United States)

    Lambe, John; Moopen, Alexander; Thakoor, Anilkumar P.

    1988-01-01

    Memory based on neural network models content-addressable and fault-tolerant. System includes electronic equivalent of synaptic network; particular, matrix of programmable binary switching elements over which data distributed. Switches programmed in parallel by outputs of serial-input/parallel-output shift registers. Input and output terminals of bank of high-gain nonlinear amplifiers connected in nonlinear-feedback configuration by switches and by memory-prompting shift registers.

  16. Neural networks for triggering

    Energy Technology Data Exchange (ETDEWEB)

    Denby, B. (Fermi National Accelerator Lab., Batavia, IL (USA)); Campbell, M. (Michigan Univ., Ann Arbor, MI (USA)); Bedeschi, F. (Istituto Nazionale di Fisica Nucleare, Pisa (Italy)); Chriss, N.; Bowers, C. (Chicago Univ., IL (USA)); Nesti, F. (Scuola Normale Superiore, Pisa (Italy))

    1990-01-01

    Two types of neural network beauty trigger architectures, based on identification of electrons in jets and recognition of secondary vertices, have been simulated in the environment of the Fermilab CDF experiment. The efficiencies for B's and rejection of background obtained are encouraging. If hardware tests are successful, the electron identification architecture will be tested in the 1991 run of CDF. 10 refs., 5 figs., 1 tab.

  17. Artificial neural network modelling

    CERN Document Server

    Samarasinghe, Sandhya

    2016-01-01

    This book covers theoretical aspects as well as recent innovative applications of Artificial Neural networks (ANNs) in natural, environmental, biological, social, industrial and automated systems. It presents recent results of ANNs in modelling small, large and complex systems under three categories, namely, 1) Networks, Structure Optimisation, Robustness and Stochasticity 2) Advances in Modelling Biological and Environmental Systems and 3) Advances in Modelling Social and Economic Systems. The book aims at serving undergraduates, postgraduates and researchers in ANN computational modelling. .

  18. Progress in neural plasticity

    Institute of Scientific and Technical Information of China (English)

    POO; Mu-Ming

    2010-01-01

    One of the properties of the nervous system is the use-dependent plasticity of neural circuits.The structure and function of neural circuits are susceptible to changes induced by prior neuronal activity,as reflected by short-and long-term modifications of synaptic efficacy and neuronal excitability.Regarded as the most attractive cellular mechanism underlying higher cognitive functions such as learning and memory,activity-dependent synaptic plasticity has been in the spotlight of modern neuroscience since 1973 when activity-induced long-term potentiation(LTP) of hippocampal synapses was first discovered.Over the last 10 years,Chinese neuroscientists have made notable contributions to the study of the cellular and molecular mechanisms of synaptic plasticity,as well as of the plasticity beyond synapses,including activity-dependent changes in intrinsic neuronal excitability,dendritic integration functions,neuron-glia signaling,and neural network activity.This work highlight some of these significant findings.

  19. Untying chronic pain

    OpenAIRE

    Häuser, Winfried; Wolfe, Frederik; Henningsen, Peter; Schmutzer, Gabriele; Brähler, Elmar; Hinz, Andreas

    2014-01-01

    Background: Chronic pain is a major public health problem. The impact of stages of chronic pain adjusted for disease load on societal burden has not been assessed in population surveys. Methods: A cross-sectional survey with 4360 people aged ≥ 14 years representative of the German population was conducted. Measures obtained included demographic variables, presence of chronic pain (based on the definition of the International Association for the Study of Pain), chronic pain stages (by chronic ...

  20. Chronic pain after hysterectomy

    DEFF Research Database (Denmark)

    Brandsborg, B.; Nikolajsen, L.; Kehlet, H.;

    2008-01-01

    BACKGROUND: Chronic pain is a well-known adverse effect of surgery, but the risk of chronic pain after gynaecological surgery is less established. METHOD: This review summarizes studies on chronic pain following hysterectomy. The underlying mechanisms and risk factors for the development of chronic...... post-hysterectomy pain are discussed. RESULTS AND CONCLUSION: Chronic pain is reported by 5-32% of women after hysterectomy. A guideline is proposed for future prospective studies Udgivelsesdato: 2008/3...

  1. Chronic pain after hysterectomy

    DEFF Research Database (Denmark)

    Brandsborg, B; Nikolajsen, L; Kehlet, Henrik;

    2008-01-01

    BACKGROUND: Chronic pain is a well-known adverse effect of surgery, but the risk of chronic pain after gynaecological surgery is less established. METHOD: This review summarizes studies on chronic pain following hysterectomy. The underlying mechanisms and risk factors for the development of chronic...... post-hysterectomy pain are discussed. RESULTS AND CONCLUSION: Chronic pain is reported by 5-32% of women after hysterectomy. A guideline is proposed for future prospective studies. Udgivelsesdato: 2008-Mar...

  2. Interaction Between Optical and Neural Factors Affecting Visual Performance

    Science.gov (United States)

    Sabesan, Ramkumar

    chronic exposure to poor optics caused neural insensitivity to fine spatial detail thus adversely limiting the achievable visual benefit when improving the eye's optical quality. Finally, we demonstrated that the altered, but plastic visual system could be re-adapted to improved optics such that it partially recovers its normal mechanism. These findings not only provide vast clinical implications for advanced customized vision correction methodologies for normal, pathologic and presbyopic eyes but also vital scientific insight into the neural processing of the visual system in response to the aberrated optics of the eye.

  3. Nanomaterial-enabled neural stimulation

    OpenAIRE

    Yongchen eWang; Liang eGuo

    2016-01-01

    Neural stimulation is a critical technique in treating neurological diseases and investigating brain functions. Traditional electrical stimulation uses electrodes to directly create intervening electric fields in the immediate vicinity of neural tissues. Second-generation stimulation techniques directly use light, magnetic fields or ultrasound in a non-contact manner. An emerging generation of non- or minimally invasive neural stimulation techniques is enabled by nanotechnology to achieve a h...

  4. Nanomaterial-Enabled Neural Stimulation

    OpenAIRE

    Wang, Yongchen; Guo, Liang

    2016-01-01

    Neural stimulation is a critical technique in treating neurological diseases and investigating brain functions. Traditional electrical stimulation uses electrodes to directly create intervening electric fields in the immediate vicinity of neural tissues. Second-generation stimulation techniques directly use light, magnetic fields or ultrasound in a non-contact manner. An emerging generation of non- or minimally invasive neural stimulation techniques is enabled by nanotechnology to achieve a h...

  5. Neural regulation of intestinal nutrient absorption.

    Science.gov (United States)

    Mourad, Fadi H; Saadé, Nayef E

    2011-10-01

    The nervous system and the gastrointestinal (GI) tract share several common features including reciprocal interconnections and several neurotransmitters and peptides known as gut peptides, neuropeptides or hormones. The processes of digestion, secretion of digestive enzymes and then absorption are regulated by the neuro-endocrine system. Luminal glucose enhances its own absorption through a neuronal reflex that involves capsaicin sensitive primary afferent (CSPA) fibres. Absorbed glucose stimulates insulin release that activates hepatoenteric neural pathways leading to an increase in the expression of glucose transporters. Adrenergic innervation increases glucose absorption through α1 and β receptors and decreases absorption through activation of α2 receptors. The vagus nerve plays an important role in the regulation of diurnal variation in transporter expression and in anticipation to food intake. Vagal CSPAs exert tonic inhibitory effects on amino acid absorption. It also plays an important role in the mediation of the inhibitory effect of intestinal amino acids on their own absorption at the level of proximal or distal segment. However, chronic extrinsic denervation leads to a decrease in intestinal amino acid absorption. Conversely, adrenergic agonists as well as activation of CSPA fibres enhance peptides uptake through the peptide transporter PEPT1. Finally, intestinal innervation plays a minimal role in the absorption of fat digestion products. Intestinal absorption of nutrients is a basic vital mechanism that depends essentially on the function of intestinal mucosa. However, intrinsic and extrinsic neural mechanisms that rely on several redundant loops are involved in immediate and long-term control of the outcome of intestinal function.

  6. Design considerations for miniaturized optical neural probes

    Science.gov (United States)

    Rudmann, Linda; Ordonez, Juan S.; Stieglitz, Thomas

    2016-03-01

    Neural probes are designed to selectively record from or stimulate nerve cells. In optogenetics it is desirable to build miniaturized and long-term stable optical neural probes, in which the light sources can be directly and chronically implanted into the animals to allow free movement and behavior. Because of the size and the beam shape of the available light sources, it is difficult to target single cells as well as spatially localized networks. We therefore investigated design considerations for packages, which encapsulate the light source hermetically and have integrated hemispherical lens structures that enable to focus the light onto the desired region, by optical simulations. Integration of a biconvex lens into the package lid (diameter = 300 μm, material: silicon carbide) increased the averaged absolute irradiance ηA by 298 % compared to a system without a lens and had a spot size of around 120 μm. Solely integrating a plano-convex lens (same diameter and material) results in an ηA of up to 227 %.

  7. Neural Flight Control System

    Science.gov (United States)

    Gundy-Burlet, Karen

    2003-01-01

    The Neural Flight Control System (NFCS) was developed to address the need for control systems that can be produced and tested at lower cost, easily adapted to prototype vehicles and for flight systems that can accommodate damaged control surfaces or changes to aircraft stability and control characteristics resulting from failures or accidents. NFCS utilizes on a neural network-based flight control algorithm which automatically compensates for a broad spectrum of unanticipated damage or failures of an aircraft in flight. Pilot stick and rudder pedal inputs are fed into a reference model which produces pitch, roll and yaw rate commands. The reference model frequencies and gains can be set to provide handling quality characteristics suitable for the aircraft of interest. The rate commands are used in conjunction with estimates of the aircraft s stability and control (S&C) derivatives by a simplified Dynamic Inverse controller to produce virtual elevator, aileron and rudder commands. These virtual surface deflection commands are optimally distributed across the aircraft s available control surfaces using linear programming theory. Sensor data is compared with the reference model rate commands to produce an error signal. A Proportional/Integral (PI) error controller "winds up" on the error signal and adds an augmented command to the reference model output with the effect of zeroing the error signal. In order to provide more consistent handling qualities for the pilot, neural networks learn the behavior of the error controller and add in the augmented command before the integrator winds up. In the case of damage sufficient to affect the handling qualities of the aircraft, an Adaptive Critic is utilized to reduce the reference model frequencies and gains to stay within a flyable envelope of the aircraft.

  8. Chaotic neural control

    Science.gov (United States)

    Potapov, A.; Ali, M. K.

    2001-04-01

    We consider the problem of stabilizing unstable equilibria by discrete controls (the controls take discrete values at discrete moments of time). We prove that discrete control typically creates a chaotic attractor in the vicinity of an equilibrium. Artificial neural networks with reinforcement learning are known to be able to learn such a control scheme. We consider examples of such systems, discuss some details of implementing the reinforcement learning to controlling unstable equilibria, and show that the arising dynamics is characterized by positive Lyapunov exponents, and hence is chaotic. This chaos can be observed both in the controlled system and in the activity patterns of the controller.

  9. via dynamic neural networks

    Directory of Open Access Journals (Sweden)

    J. Reyes-Reyes

    2000-01-01

    Full Text Available In this paper, an adaptive technique is suggested to provide the passivity property for a class of partially known SISO nonlinear systems. A simple Dynamic Neural Network (DNN, containing only two neurons and without any hidden-layers, is used to identify the unknown nonlinear system. By means of a Lyapunov-like analysis the new learning law for this DNN, guarantying both successful identification and passivation effects, is derived. Based on this adaptive DNN model, an adaptive feedback controller, serving for wide class of nonlinear systems with an a priori incomplete model description, is designed. Two typical examples illustrate the effectiveness of the suggested approach.

  10. Neurally augmented sexual function.

    Science.gov (United States)

    Meloy, S

    2007-01-01

    Neurally Augmented Sexual Function (NASF) is a technique utilizing epidural electrodes to restore and improve sexual function. Orgasmic dysfunction is common in adult women, affecting roughly one quarter of populations studied. Many male patients suffering from erectile dysfunction are not candidates for phosphdiesterase therapy due to concomitant nitrate therapy. Positioning the electrodes at roughly the level of the cauda equina allows for stimulation of somatic efferents and afferents as well as modifying sympathetic and parasympathetic activity. Our series of women treated by NASF is described. Our experience shows that the evaluation of potential candidates for both correctable causes and psychological screening are important considerations. PMID:17691397

  11. Space-Time Neural Networks

    Science.gov (United States)

    Villarreal, James A.; Shelton, Robert O.

    1992-01-01

    Concept of space-time neural network affords distributed temporal memory enabling such network to model complicated dynamical systems mathematically and to recognize temporally varying spatial patterns. Digital filters replace synaptic-connection weights of conventional back-error-propagation neural network.

  12. Neural Networks for Optimal Control

    DEFF Research Database (Denmark)

    Sørensen, O.

    1995-01-01

    Two neural networks are trained to act as an observer and a controller, respectively, to control a non-linear, multi-variable process.......Two neural networks are trained to act as an observer and a controller, respectively, to control a non-linear, multi-variable process....

  13. Neural networks in astronomy.

    Science.gov (United States)

    Tagliaferri, Roberto; Longo, Giuseppe; Milano, Leopoldo; Acernese, Fausto; Barone, Fabrizio; Ciaramella, Angelo; De Rosa, Rosario; Donalek, Ciro; Eleuteri, Antonio; Raiconi, Giancarlo; Sessa, Salvatore; Staiano, Antonino; Volpicelli, Alfredo

    2003-01-01

    In the last decade, the use of neural networks (NN) and of other soft computing methods has begun to spread also in the astronomical community which, due to the required accuracy of the measurements, is usually reluctant to use automatic tools to perform even the most common tasks of data reduction and data mining. The federation of heterogeneous large astronomical databases which is foreseen in the framework of the astrophysical virtual observatory and national virtual observatory projects, is, however, posing unprecedented data mining and visualization problems which will find a rather natural and user friendly answer in artificial intelligence tools based on NNs, fuzzy sets or genetic algorithms. This review is aimed to both astronomers (who often have little knowledge of the methodological background) and computer scientists (who often know little about potentially interesting applications), and therefore will be structured as follows: after giving a short introduction to the subject, we shall summarize the methodological background and focus our attention on some of the most interesting fields of application, namely: object extraction and classification, time series analysis, noise identification, and data mining. Most of the original work described in the paper has been performed in the framework of the AstroNeural collaboration (Napoli-Salerno).

  14. Analysis of neural networks

    CERN Document Server

    Heiden, Uwe

    1980-01-01

    The purpose of this work is a unified and general treatment of activity in neural networks from a mathematical pOint of view. Possible applications of the theory presented are indica­ ted throughout the text. However, they are not explored in de­ tail for two reasons : first, the universal character of n- ral activity in nearly all animals requires some type of a general approach~ secondly, the mathematical perspicuity would suffer if too many experimental details and empirical peculiarities were interspersed among the mathematical investigation. A guide to many applications is supplied by the references concerning a variety of specific issues. Of course the theory does not aim at covering all individual problems. Moreover there are other approaches to neural network theory (see e.g. Poggio-Torre, 1978) based on the different lev­ els at which the nervous system may be viewed. The theory is a deterministic one reflecting the average be­ havior of neurons or neuron pools. In this respect the essay is writt...

  15. Neural relativity principle

    Science.gov (United States)

    Koulakov, Alexei

    Olfaction is the final frontier of our senses - the one that is still almost completely mysterious to us. Despite extensive genetic and perceptual data, and a strong push to solve the neural coding problem, fundamental questions about the sense of smell remain unresolved. Unlike vision and hearing, where relatively straightforward relationships between stimulus features and neural responses have been foundational to our understanding sensory processing, it has been difficult to quantify the properties of odorant molecules that lead to olfactory percepts. In a sense, we do not have olfactory analogs of ``red'', ``green'' and ``blue''. The seminal work of Linda Buck and Richard Axel identified a diverse family of about 1000 receptor molecules that serve as odorant sensors in the nose. However, the properties of smells that these receptors detect remain a mystery. I will review our current understanding of the molecular properties important to the olfactory system. I will also describe a theory that explains how odorant identity can be preserved despite substantial changes in the odorant concentration.

  16. Chronic mucus hypersecretion

    DEFF Research Database (Denmark)

    Ulrik, Charlotte Suppli; von Linstow, Marie-Louise; Nepper-Christensen, Steen;

    2005-01-01

    To investigate if chronic mucus hypersecretion (CMH) can be used as a marker of asthma in young adults.......To investigate if chronic mucus hypersecretion (CMH) can be used as a marker of asthma in young adults....

  17. Chronic Diarrhea in Children

    Science.gov (United States)

    ... can include cramping abdominal pain nausea or vomiting fever chills bloody stools Children with chronic diarrhea who have ... can include cramping, abdominal pain, nausea or vomiting, fever, chills, or bloody stools. Children with chronic diarrhea who ...

  18. Chronic inflammatory demyelinating polyneuropathy

    Science.gov (United States)

    Polyneuropathy - chronic inflammatory; CIDP; Chronic inflammatory polyneuropathy; Guillain-Barré - CIDP ... CIDP is one cause of damage to nerves outside the brain or spinal cord ( peripheral neuropathy ). Polyneuropathy ...

  19. Chronic fatigue syndrome

    Science.gov (United States)

    Bennett RM. Fibromyalgia, chronic fatigue syndrome, and myofascial pain. In: Goldman L, Schafer AI, eds. Goldman-Cecil Medicine . 25th ed. Philadelphia, PA: Elsevier Saunders; 2016:chap 274. Engleberg NC. Chronic ...

  20. "Chronic Lyme Disease"

    Science.gov (United States)

    ... Content Marketing Share this: Main Content Area "Chronic Lyme Disease" What is "chronic Lyme disease?" Lyme disease is an infection caused by ... J Med 357:1422-30, 2008). How is Lyme disease treated? For early Lyme disease, a short ...

  1. Prostaglandins and chronic inflammation

    OpenAIRE

    Aoki, Tomohiro; Narumiya, Shuh

    2012-01-01

    Chronic inflammation is the basis of various chronic illnesses including cancer and vascular diseases. However, much has yet to be learned how inflammation becomes chronic. Prostaglandins (PGs) are well established as mediators of acute inflammation, and recent studies in experimental animals have provided evidence that they also function in transition to and maintenance of chronic inflammation. One role PGs play in such processes is amplification of cytokine signaling. As such, PGs can facil...

  2. Artificial neural networks in NDT

    International Nuclear Information System (INIS)

    Artificial neural networks, simply known as neural networks, have attracted considerable interest in recent years largely because of a growing recognition of the potential of these computational paradigms as powerful alternative models to conventional pattern recognition or function approximation techniques. The neural networks approach is having a profound effect on almost all fields, and has been utilised in fields Where experimental inter-disciplinary work is being carried out. Being a multidisciplinary subject with a broad knowledge base, Nondestructive Testing (NDT) or Nondestructive Evaluation (NDE) is no exception. This paper explains typical applications of neural networks in NDT/NDE. Three promising types of neural networks are highlighted, namely, back-propagation, binary Hopfield and Kohonen's self-organising maps. (Author)

  3. Medical diagnosis using neural network

    CERN Document Server

    Kamruzzaman, S M; Siddiquee, Abu Bakar; Mazumder, Md Ehsanul Hoque

    2010-01-01

    This research is to search for alternatives to the resolution of complex medical diagnosis where human knowledge should be apprehended in a general fashion. Successful application examples show that human diagnostic capabilities are significantly worse than the neural diagnostic system. This paper describes a modified feedforward neural network constructive algorithm (MFNNCA), a new algorithm for medical diagnosis. The new constructive algorithm with backpropagation; offer an approach for the incremental construction of near-minimal neural network architectures for pattern classification. The algorithm starts with minimal number of hidden units in the single hidden layer; additional units are added to the hidden layer one at a time to improve the accuracy of the network and to get an optimal size of a neural network. The MFNNCA was tested on several benchmarking classification problems including the cancer, heart disease and diabetes. Experimental results show that the MFNNCA can produce optimal neural networ...

  4. Neural fields theory and applications

    CERN Document Server

    Graben, Peter; Potthast, Roland; Wright, James

    2014-01-01

    With this book, the editors present the first comprehensive collection in neural field studies, authored by leading scientists in the field - among them are two of the founding-fathers of neural field theory. Up to now, research results in the field have been disseminated across a number of distinct journals from mathematics, computational neuroscience, biophysics, cognitive science and others. Starting with a tutorial for novices in neural field studies, the book comprises chapters on emergent patterns, their phase transitions and evolution, on stochastic approaches, cortical development, cognition, robotics and computation, large-scale numerical simulations, the coupling of neural fields to the electroencephalogram and phase transitions in anesthesia. The intended readership are students and scientists in applied mathematics, theoretical physics, theoretical biology, and computational neuroscience. Neural field theory and its applications have a long-standing tradition in the mathematical and computational ...

  5. Does Chronic Unpredictable Stress during Adolescence Affect Spatial Cognition in Adulthood?

    OpenAIRE

    Chaby, Lauren E; Michael J Sheriff; Hirrlinger, Amy M.; Lim, James; Thomas B Fetherston; Braithwaite, Victoria A.

    2015-01-01

    Spatial abilities allow animals to retain and cognitively manipulate information about their spatial environment and are dependent upon neural structures that mature during adolescence. Exposure to stress in adolescence is thought to disrupt neural maturation, possibly compromising cognitive processes later in life. We examined whether exposure to chronic unpredictable stress in adolescence affects spatial ability in late adulthood. We evaluated spatial learning, reference and working memory,...

  6. Chronic Inflammatory Demyelinating Polyneuropathy

    OpenAIRE

    Dimachkie, Mazen M.; Barohn, Richard J.

    2013-01-01

    Chronic Inflammatory polyneuropathies are an important group of neuromuscular disorders that present chronically and progress over more than 8 weeks, being referred to as chronic inflammatory demyelinating polyneuropathy (CIDP). Despite tremendous progress in elucidating disease pathogenesis, the exact triggering event remains unknown. Our knowledge regarding diagnosis and management of CIDP and its variants continues to expand, resulting in improved opportunities for identification and treat...

  7. Neural Alterations in Acquired Age-Related Hearing Loss

    Directory of Open Access Journals (Sweden)

    Raksha Anand Mudar

    2016-06-01

    Full Text Available Hearing loss is one of the most prevalent chronic health conditions in older adults. Growing evidence suggests that hearing loss is associated with reduced cognitive functioning and incident dementia. In this mini-review, we briefly examine literature on anatomical and functional alterations in the brains of adults with acquired age-associated hearing loss, which may underlie the cognitive consequences observed in this population, focusing on studies that have used structural and functional magnetic resonance imaging, diffusion tensor imaging, and event-related electroencephalography. We discuss structural and functional alterations observed in the temporal and frontal cortices and the limbic system. These neural alterations are discussed in the context of common cause, information-degradation, and sensory-deprivation hypotheses, and we suggest possible rehabilitation strategies. Although we are beginning to learn more about changes in neural architecture and functionality related to age-associated hearing loss, much work remains to be done. Understanding the neural alterations will provide objective markers for early identification of neural consequences of age-associated hearing loss and for evaluating benefits of intervention approaches.

  8. Learning not to fear: neural correlates of learned safety.

    Science.gov (United States)

    Kong, Eryan; Monje, Francisco J; Hirsch, Joy; Pollak, Daniela D

    2014-02-01

    The ability to recognize and properly respond to instances of protection from impending danger is critical for preventing chronic stress and anxiety-central symptoms of anxiety and affective disorders afflicting large populations of people. Learned safety encompasses learning processes, which lead to the identification of episodes of security and regulation of fear responses. On the basis of insights into the neural circuitry and molecular mechanisms involved in learned safety in mice and humans, we describe learned safety as a tool for understanding neural mechanisms involved in the pathomechanisms of specific affective disorders. This review summarizes our current knowledge on the neurobiological underpinnings of learned safety and discusses potential applications in basic and translational neurosciences.

  9. Glaucoma detection based on deep convolutional neural network.

    Science.gov (United States)

    Xiangyu Chen; Yanwu Xu; Damon Wing Kee Wong; Tien Yin Wong; Jiang Liu

    2015-08-01

    Glaucoma is a chronic and irreversible eye disease, which leads to deterioration in vision and quality of life. In this paper, we develop a deep learning (DL) architecture with convolutional neural network for automated glaucoma diagnosis. Deep learning systems, such as convolutional neural networks (CNNs), can infer a hierarchical representation of images to discriminate between glaucoma and non-glaucoma patterns for diagnostic decisions. The proposed DL architecture contains six learned layers: four convolutional layers and two fully-connected layers. Dropout and data augmentation strategies are adopted to further boost the performance of glaucoma diagnosis. Extensive experiments are performed on the ORIGA and SCES datasets. The results show area under curve (AUC) of the receiver operating characteristic curve in glaucoma detection at 0.831 and 0.887 in the two databases, much better than state-of-the-art algorithms. The method could be used for glaucoma detection. PMID:26736362

  10. Glaucoma detection based on deep convolutional neural network.

    Science.gov (United States)

    Xiangyu Chen; Yanwu Xu; Damon Wing Kee Wong; Tien Yin Wong; Jiang Liu

    2015-08-01

    Glaucoma is a chronic and irreversible eye disease, which leads to deterioration in vision and quality of life. In this paper, we develop a deep learning (DL) architecture with convolutional neural network for automated glaucoma diagnosis. Deep learning systems, such as convolutional neural networks (CNNs), can infer a hierarchical representation of images to discriminate between glaucoma and non-glaucoma patterns for diagnostic decisions. The proposed DL architecture contains six learned layers: four convolutional layers and two fully-connected layers. Dropout and data augmentation strategies are adopted to further boost the performance of glaucoma diagnosis. Extensive experiments are performed on the ORIGA and SCES datasets. The results show area under curve (AUC) of the receiver operating characteristic curve in glaucoma detection at 0.831 and 0.887 in the two databases, much better than state-of-the-art algorithms. The method could be used for glaucoma detection.

  11. A Miniaturized System for Neural Signal Acquiring and Processing

    Institute of Scientific and Technical Information of China (English)

    WANG Min; GAO Guang-hong; XIANG Dong-sheng; CAO Mao-yong; JIA Ai-bin; DING Lei; KONG Hui-min

    2008-01-01

    To collect neural activity data from awake, behaving freely animals, we develop miniaturized implantable recording system by the modern chip:Programmable System on Chip(PSoC) and through chronic electrodes in the cortex. With PSoC family member CY8C29466,the system completed operational and instrument amplifiers, filters, timers, AD convertors, and serial communication, etc. The signal processing was dealt with virtual instrument technology. All of these factors can significantly affect the price and development cycle of the project. The result showed that the system was able to record and analyze neural extrocellular discharge generated by neurons continuously for a week or more. This is very useful for the interdisciplinary research of neuroscience and information engineering technique.The circuits and architecture of the devices can be adapted for neurobiology and research with other small animals.

  12. Interacting neural networks.

    Science.gov (United States)

    Metzler, R; Kinzel, W; Kanter, I

    2000-08-01

    Several scenarios of interacting neural networks which are trained either in an identical or in a competitive way are solved analytically. In the case of identical training each perceptron receives the output of its neighbor. The symmetry of the stationary state as well as the sensitivity to the used training algorithm are investigated. Two competitive perceptrons trained on mutually exclusive learning aims and a perceptron which is trained on the opposite of its own output are examined analytically. An ensemble of competitive perceptrons is used as decision-making algorithms in a model of a closed market (El Farol Bar problem or the Minority Game. In this game, a set of agents who have to make a binary decision is considered.); each network is trained on the history of minority decisions. This ensemble of perceptrons relaxes to a stationary state whose performance can be better than random. PMID:11088736

  13. Neural Darwinism and consciousness.

    Science.gov (United States)

    Seth, Anil K; Baars, Bernard J

    2005-03-01

    Neural Darwinism (ND) is a large scale selectionist theory of brain development and function that has been hypothesized to relate to consciousness. According to ND, consciousness is entailed by reentrant interactions among neuronal populations in the thalamocortical system (the 'dynamic core'). These interactions, which permit high-order discriminations among possible core states, confer selective advantages on organisms possessing them by linking current perceptual events to a past history of value-dependent learning. Here, we assess the consistency of ND with 16 widely recognized properties of consciousness, both physiological (for example, consciousness is associated with widespread, relatively fast, low amplitude interactions in the thalamocortical system), and phenomenal (for example, consciousness involves the existence of a private flow of events available only to the experiencing subject). While no theory accounts fully for all of these properties at present, we find that ND and its recent extensions fare well.

  14. Immune mediators of chronic pelvic pain syndrome.

    Science.gov (United States)

    Murphy, Stephen F; Schaeffer, Anthony J; Thumbikat, Praveen

    2014-05-01

    The cause of chronic pelvic pain syndrome (CPPS) has yet to be established. Since the late 1980s, cytokine, chemokine, and immunological classification studies using human samples have focused on identifying biomarkers for CPPS, but no diagnostically beneficial biomarkers have been identified, and these studies have done little to deepen our understanding of the mechanisms underlying chronic prostatic pain. Given the large number of men thought to be affected by this condition and the ineffective nature of current treatments, there is a pressing need to elucidate these mechanisms. Prostatitis types IIIa and IIIb are classified according to the presence of pain without concurrent presence of bacteria; however, it is becoming more evident that, although levels of bacteria are not directly associated with levels of pain, the presence of bacteria might act as the initiating factor that drives primary activation of mast-cell-mediated inflammation in the prostate. Mast cell activation is also known to suppress regulatory T cell (Treg) control of self-tolerance and also activate neural sensitization. This combination of established autoimmunity coupled with peripheral and central neural sensitization can result in the development of multiple symptoms, including pelvic pain and bladder irritation. Identifying these mechanisms as central mediators in CPPS offers new insight into the prospective treatment of the disease. PMID:24686526

  15. Chronic granulomatous disease associated with chronic glomerulonephritis

    DEFF Research Database (Denmark)

    Frifelt, J J; Schønheyder, Henrik Carl; Valerius, Niels Henrik;

    1985-01-01

    A boy with chronic granulomatous disease (CGD) developed glomerulonephritis at the age of 12 years. The glomerulonephritis progressed to terminal uraemia at age 15 when maintenance haemodialysis was started. The clinical course was complicated by pulmonary aspergillosis and Pseudomonas septicaemia...

  16. Cooperating attackers in neural cryptography.

    Science.gov (United States)

    Shacham, Lanir N; Klein, Einat; Mislovaty, Rachel; Kanter, Ido; Kinzel, Wolfgang

    2004-06-01

    A successful attack strategy in neural cryptography is presented. The neural cryptosystem, based on synchronization of neural networks by mutual learning, has been recently shown to be secure under different attack strategies. The success of the advanced attacker presented here, called the "majority-flipping attacker," does not decay with the parameters of the model. This attacker's outstanding success is due to its using a group of attackers which cooperate throughout the synchronization process, unlike any other attack strategy known. An analytical description of this attack is also presented, and fits the results of simulations.

  17. Neural components of altruistic punishment

    Directory of Open Access Journals (Sweden)

    Emily eDu

    2015-02-01

    Full Text Available Altruistic punishment, which occurs when an individual incurs a cost to punish in response to unfairness or a norm violation, may play a role in perpetuating cooperation. The neural correlates underlying costly punishment have only recently begun to be explored. Here we review the current state of research on the neural basis of altruism from the perspectives of costly punishment, emphasizing the importance of characterizing elementary neural processes underlying a decision to punish. In particular, we emphasize three cognitive processes that contribute to the decision to altruistically punish in most scenarios: inequity aversion, cost-benefit calculation, and social reference frame to distinguish self from others. Overall, we argue for the importance of understanding the neural correlates of altruistic punishment with respect to the core computations necessary to achieve a decision to punish.

  18. Complex-Valued Neural Networks

    CERN Document Server

    Hirose, Akira

    2012-01-01

    This book is the second enlarged and revised edition of the first successful monograph on complex-valued neural networks (CVNNs) published in 2006, which lends itself to graduate and undergraduate courses in electrical engineering, informatics, control engineering, mechanics, robotics, bioengineering, and other relevant fields. In the second edition the recent trends in CVNNs research are included, resulting in e.g. almost a doubled number of references. The parametron invented in 1954 is also referred to with discussion on analogy and disparity. Also various additional arguments on the advantages of the complex-valued neural networks enhancing the difference to real-valued neural networks are given in various sections. The book is useful for those beginning their studies, for instance, in adaptive signal processing for highly functional sensing and imaging, control in unknown and changing environment, robotics inspired by human neural systems, and brain-like information processing, as well as interdisciplina...

  19. Neural components of altruistic punishment

    Science.gov (United States)

    Du, Emily; Chang, Steve W. C.

    2015-01-01

    Altruistic punishment, which occurs when an individual incurs a cost to punish in response to unfairness or a norm violation, may play a role in perpetuating cooperation. The neural correlates underlying costly punishment have only recently begun to be explored. Here we review the current state of research on the neural basis of altruism from the perspectives of costly punishment, emphasizing the importance of characterizing elementary neural processes underlying a decision to punish. In particular, we emphasize three cognitive processes that contribute to the decision to altruistically punish in most scenarios: inequity aversion, cost-benefit calculation, and social reference frame to distinguish self from others. Overall, we argue for the importance of understanding the neural correlates of altruistic punishment with respect to the core computations necessary to achieve a decision to punish. PMID:25709565

  20. Demultiplexer circuit for neural stimulation

    Science.gov (United States)

    Wessendorf, Kurt O; Okandan, Murat; Pearson, Sean

    2012-10-09

    A demultiplexer circuit is disclosed which can be used with a conventional neural stimulator to extend the number of electrodes which can be activated. The demultiplexer circuit, which is formed on a semiconductor substrate containing a power supply that provides all the dc electrical power for operation of the circuit, includes digital latches that receive and store addressing information from the neural stimulator one bit at a time. This addressing information is used to program one or more 1:2.sup.N demultiplexers in the demultiplexer circuit which then route neural stimulation signals from the neural stimulator to an electrode array which is connected to the outputs of the 1:2.sup.N demultiplexer. The demultiplexer circuit allows the number of individual electrodes in the electrode array to be increased by a factor of 2.sup.N with N generally being in a range of 2-4.

  1. Neural Networks in Control Applications

    DEFF Research Database (Denmark)

    Sørensen, O.

    The intention of this report is to make a systematic examination of the possibilities of applying neural networks in those technical areas, which are familiar to a control engineer. In other words, the potential of neural networks in control applications is given higher priority than a detailed...... study of the networks themselves. With this end in view the following restrictions have been made: - Amongst numerous neural network structures, only the Multi Layer Perceptron (a feed-forward network) is applied. - Amongst numerous training algorithms, only four algorithms are examined, all...... in a recursive form (sample updating). The simplest is the Back Probagation Error Algorithm, and the most complex is the recursive Prediction Error Method using a Gauss-Newton search direction. - Over-fitting is often considered to be a serious problem when training neural networks. This problem is specifically...

  2. What is the effect of sensory discrimination training on chronic low back pain? A systematic review

    OpenAIRE

    Kälin, Samuel; Rausch-Osthoff, Anne-Kathrin; Bauer, Christoph Michael

    2016-01-01

    Background Sensory discrimination training (SDT) for people with chronic low back pain (CLBP) is a novel approach based on theories of the cortical reorganization of the neural system. SDT aims to reverse cortical reorganization, which is observed in chronic pain patients. SDT is still a developing therapeutic approach and its effects have not been systematically reviewed. The aim of this systematic review was to evaluate if SDT decreases pain and improves function in people with CLBP. Method...

  3. Neural Networks Of VLSI Components

    Science.gov (United States)

    Eberhardt, Silvio P.

    1991-01-01

    Concept for design of electronic neural network calls for assembly of very-large-scale integrated (VLSI) circuits of few standard types. Each VLSI chip, which contains both analog and digital circuitry, used in modular or "building-block" fashion by interconnecting it in any of variety of ways with other chips. Feedforward neural network in typical situation operates under control of host computer and receives inputs from, and sends outputs to, other equipment.

  4. Neural models and physiological reality

    OpenAIRE

    Lee, Barry B.

    2008-01-01

    Neural models of retinal processing provide an important tool for analyzing retinal signals and their functional significance. However, it is here argued that in biological reality, retinal connectivity is unlikely to be as specific as ideal neural models might suggest. The retina is thought to provide functionally specific signals, but this specificity is unlikely to be anatomically complete. This is illustrated by examples of cone connectivity to macaque ganglion cells. For example, cells o...

  5. Neural stem cell derived tumourigenesis

    OpenAIRE

    Francesca Froldi; Milán Szuperák; Cheng, Louise Y.

    2015-01-01

    In the developing Drosophila CNS, two pools of neural stem cells, the symmetrically dividing progenitors in the neuroepithelium (NE) and the asymmetrically dividing neuroblasts (NBs) generate the majority of the neurons that make up the adult central nervous system (CNS). The generation of a correct sized brain depends on maintaining the fine balance between neural stem cell self-renewal and differentiation, which are regulated by cell-intrinsic and cell-extrinsic cues. In this review, we wil...

  6. What are artificial neural networks?

    DEFF Research Database (Denmark)

    Krogh, Anders

    2008-01-01

    Artificial neural networks have been applied to problems ranging from speech recognition to prediction of protein secondary structure, classification of cancers and gene prediction. How do they work and what might they be good for? Udgivelsesdato: 2008-Feb......Artificial neural networks have been applied to problems ranging from speech recognition to prediction of protein secondary structure, classification of cancers and gene prediction. How do they work and what might they be good for? Udgivelsesdato: 2008-Feb...

  7. Neural Networks for Fingerprint Recognition

    OpenAIRE

    Baldi, Pierre; Chauvin, Yves

    1993-01-01

    After collecting a data base of fingerprint images, we design a neural network algorithm for fingerprint recognition. When presented with a pair of fingerprint images, the algorithm outputs an estimate of the probability that the two images originate from the same finger. In one experiment, the neural network is trained using a few hundred pairs of images and its performance is subsequently tested using several thousand pairs of images originated from a subset of the database corresponding to...

  8. Neural Networks and Photometric Redshifts

    OpenAIRE

    Tagliaferri, Roberto; Longo, Giuseppe; Andreon, Stefano; Capozziello, Salvatore; Donalek, Ciro; Giordano, Gerardo

    2002-01-01

    We present a neural network based approach to the determination of photometric redshift. The method was tested on the Sloan Digital Sky Survey Early Data Release (SDSS-EDR) reaching an accuracy comparable and, in some cases, better than SED template fitting techniques. Different neural networks architecture have been tested and the combination of a Multi Layer Perceptron with 1 hidden layer (22 neurons) operated in a Bayesian framework, with a Self Organizing Map used to estimate the accuracy...

  9. Efficient universal computing architectures for decoding neural activity.

    Directory of Open Access Journals (Sweden)

    Benjamin I Rapoport

    Full Text Available The ability to decode neural activity into meaningful control signals for prosthetic devices is critical to the development of clinically useful brain- machine interfaces (BMIs. Such systems require input from tens to hundreds of brain-implanted recording electrodes in order to deliver robust and accurate performance; in serving that primary function they should also minimize power dissipation in order to avoid damaging neural tissue; and they should transmit data wirelessly in order to minimize the risk of infection associated with chronic, transcutaneous implants. Electronic architectures for brain- machine interfaces must therefore minimize size and power consumption, while maximizing the ability to compress data to be transmitted over limited-bandwidth wireless channels. Here we present a system of extremely low computational complexity, designed for real-time decoding of neural signals, and suited for highly scalable implantable systems. Our programmable architecture is an explicit implementation of a universal computing machine emulating the dynamics of a network of integrate-and-fire neurons; it requires no arithmetic operations except for counting, and decodes neural signals using only computationally inexpensive logic operations. The simplicity of this architecture does not compromise its ability to compress raw neural data by factors greater than [Formula: see text]. We describe a set of decoding algorithms based on this computational architecture, one designed to operate within an implanted system, minimizing its power consumption and data transmission bandwidth; and a complementary set of algorithms for learning, programming the decoder, and postprocessing the decoded output, designed to operate in an external, nonimplanted unit. The implementation of the implantable portion is estimated to require fewer than 5000 operations per second. A proof-of-concept, 32-channel field-programmable gate array (FPGA implementation of this portion

  10. Neural Control of Non-vasomotor Organs in Hypertension.

    Science.gov (United States)

    Hurr, Chansol; Young, Colin N

    2016-04-01

    Hypertension affects over 25 % of the population with the incidence continuing to rise, due in part to the growing obesity epidemic. Chronic elevations in sympathetic nerve activity (SNA) are a hallmark of the disease and contribute to elevations in blood pressure through influences on the vasculature, kidney, and heart (i.e., neurogenic hypertension). In this regard, a number of central nervous system mechanisms and neural pathways have emerged as crucial in chronically elevating SNA. However, it is important to consider that "sympathetic signatures" are present, with differential increases in SNA to regional organs that are dependent upon the disease progression. Here, we discuss recent findings on the central nervous system mechanisms and autonomic regulatory networks involved in neurogenic hypertension, in both non-obesity- and obesity-associated hypertension, with an emphasis on angiotensin-II, salt, oxidative and endoplasmic reticulum stress, inflammation, and the adipokine leptin. PMID:26957306

  11. Flexibility of neural stem cells

    Directory of Open Access Journals (Sweden)

    Eumorphia eRemboutsika

    2011-04-01

    Full Text Available Embryonic cortical neural stem cells are self-renewing progenitors that can differentiate into neurons and glia. We generated neurospheres from the developing cerebral cortex using a mouse genetic model that allows for lineage selection and found that the self-renewing neural stem cells are restricted to Sox2 expressing cells. Under normal conditions, embryonic cortical neurospheres are heterogeneous with regard to Sox2 expression and contain astrocytes, neural stem cells and neural progenitor cells sufficiently plastic to give rise to neural crest cells when transplanted into the hindbrain of E1.5 chick and E8 mouse embryos. However, when neurospheres are maintained under lineage selection, such that all cells express Sox2, neural stem cells maintain their Pax6+ cortical radial glia identity and exhibit a more restricted fate in vitro and after transplantation. These data demonstrate that Sox2 preserves the cortical identity and regulates the plasticity of self-renewing Pax6+ radial glia cells.

  12. The neural processing of taste

    Directory of Open Access Journals (Sweden)

    Katz Donald B

    2007-09-01

    Full Text Available Abstract Although there have been many recent advances in the field of gustatory neurobiology, our knowledge of how the nervous system is organized to process information about taste is still far from complete. Many studies on this topic have focused on understanding how gustatory neural circuits are spatially organized to represent information about taste quality (e.g., "sweet", "salty", "bitter", etc.. Arguments pertaining to this issue have largely centered on whether taste is carried by dedicated neural channels or a pattern of activity across a neural population. But there is now mounting evidence that the timing of neural events may also importantly contribute to the representation of taste. In this review, we attempt to summarize recent findings in the field that pertain to these issues. Both space and time are variables likely related to the mechanism of the gustatory neural code: information about taste appears to reside in spatial and temporal patterns of activation in gustatory neurons. What is more, the organization of the taste network in the brain would suggest that the parameters of space and time extend to the neural processing of gustatory information on a much grander scale.

  13. Chronic penile strangulation

    OpenAIRE

    Lopes, Roberto I.; Silvia I Lopes; Roberto N. Lopes

    2003-01-01

    Chronic penile strangulation is exceedingly rare with only 5 cases previously reported. We report an additional case of progressive penile lymphedema due to chronic intermittent strangulation caused by a rubber band applied to the penile base for 6 years. A 49-year-old man presented incapacity to exteriorize the glans penis. For erotic purposes, he had been using a rubber-enlarging band placed in the penile base for 6 years. With chronic use, he noticed that his penis swelled. Physical examin...

  14. Chronic obstructive pulmonary disease

    OpenAIRE

    NR Anthonisen

    2007-01-01

    The global prevalence of physiologically defined chronic obstructive pulmonary disease (COPD) in adults aged >40 yr is approximately 9-10 per cent. Recently, the Indian Study on Epidemiology of Asthma, Respiratory Symptoms and Chronic Bronchitis in Adults had shown that the overall prevalence of chronic bronchitis in adults >35 yr is 3.49 per cent. The development of COPD is multifactorial and the risk factors of COPD include genetic and environmental factors. Pathological changes in COPD are...

  15. neural control system

    International Nuclear Information System (INIS)

    Automatic power stabilization control is the desired objective for any reactor operation , especially, nuclear power plants. A major problem in this area is inevitable gap between a real plant ant the theory of conventional analysis and the synthesis of linear time invariant systems. in particular, the trajectory tracking control of a nonlinear plant is a class of problems in which the classical linear transfer function methods break down because no transfer function can represent the system over the entire operating region . there is a considerable amount of research on the model-inverse approach using feedback linearization technique. however, this method requires a prices plant model to implement the exact linearizing feedback, for nuclear reactor systems, this approach is not an easy task because of the uncertainty in the plant parameters and un-measurable state variables . therefore, artificial neural network (ANN) is used either in self-tuning control or in improving the conventional rule-based exper system.the main objective of this thesis is to suggest an ANN, based self-learning controller structure . this method is capable of on-line reinforcement learning and control for a nuclear reactor with a totally unknown dynamics model. previously, researches are based on back- propagation algorithm . back -propagation (BP), fast back -propagation (FBP), and levenberg-marquardt (LM), algorithms are discussed and compared for reinforcement learning. it is found that, LM algorithm is quite superior

  16. Correlational Neural Networks.

    Science.gov (United States)

    Chandar, Sarath; Khapra, Mitesh M; Larochelle, Hugo; Ravindran, Balaraman

    2016-02-01

    Common representation learning (CRL), wherein different descriptions (or views) of the data are embedded in a common subspace, has been receiving a lot of attention recently. Two popular paradigms here are canonical correlation analysis (CCA)-based approaches and autoencoder (AE)-based approaches. CCA-based approaches learn a joint representation by maximizing correlation of the views when projected to the common subspace. AE-based methods learn a common representation by minimizing the error of reconstructing the two views. Each of these approaches has its own advantages and disadvantages. For example, while CCA-based approaches outperform AE-based approaches for the task of transfer learning, they are not as scalable as the latter. In this work, we propose an AE-based approach, correlational neural network (CorrNet), that explicitly maximizes correlation among the views when projected to the common subspace. Through a series of experiments, we demonstrate that the proposed CorrNet is better than AE and CCA with respect to its ability to learn correlated common representations. We employ CorrNet for several cross-language tasks and show that the representations learned using it perform better than the ones learned using other state-of-the-art approaches. PMID:26654210

  17. Fibromyalgia, chronic fatigue syndrome, and myofascial pain.

    Science.gov (United States)

    Bennett, R

    1998-03-01

    Epidemiologic studies continue to provide evidence that fibromyalgia is part of a spectrum of chronic widespread pain. The prevalence of chronic widespread pain is several times higher than fibromyalgia as defined by the 1990 American College of Rheumatology guidelines. There is now compelling evidence of a familial clustering of fibromyalgia cases in female sufferers; whether this clustering results from nature or nature remains to be elucidated. A wide spectrum of fibromyalgia-associated symptomatology and syndromes continues to be described. During the past year the association with interstitial cystitis has been explored, and neurally mediated hypotension has been documented in both fibromyalgia and chronic fatigue syndrome. Abnormalities of the growth hormone-insulin-like growth factor-1 axis have been also documented in both fibromyalgia and chronic fatigue syndrome. The commonly reported but anecdotal association of fibromyalgia with whiplash-type neck trauma was validated in a report from Israel. However, unlike North America, 100% of Israeli patients with posttraumatic fibromyalgia returned to work. Basic research in fibromyalgia continues to pinpoint abnormal sensory processing as being integral to understanding fibromyalgia pain. Drugs such as ketamine, which block N-methyl-D-aspartate receptors (which are often upregulated in central pain states) were shown to benefit fibromyalgia pain in an experimental setting. The combination of fluoxetine and amitriptyline was reported to be more beneficial than either drug alone in patients with fibromyalgia. A high prevalence of autoantibodies to cytoskeletal and nuclear envelope proteins was found in chronic fatigue syndrome, and an increased prevalence of antipolymer antibodies was found in symptomatic silicone breast implant recipients who often have fibromyalgia.

  18. In Vitro Developmental Neurotoxicity Following Chronic Exposure to 50 Hz Extremely Low-Frequency Electromagnetic Fields in Primary Rat Cortical Cultures.

    Science.gov (United States)

    de Groot, Martje W G D M; van Kleef, Regina G D M; de Groot, Aart; Westerink, Remco H S

    2016-02-01

    Exposure to 50-60 Hz extremely low-frequency electromagnetic fields (ELF-EMFs) has increased considerably over the last decades. Several epidemiological studies suggested that ELF-EMF exposure is associated with adverse health effects, including neurotoxicity. However, these studies are debated as results are often contradictory and the possible underlying mechanisms are unknown. Since the developing nervous system is particularly vulnerable to insults, we investigate effects of chronic, developmental ELF-EMF exposure in vitro. Primary rat cortical neurons received 7 days developmental exposure to 50 Hz block-pulsed ELF-EMF (0-1000 μT) to assess effects on cell viability (Alamar Blue/CFDA assay), calcium homeostasis (single cell fluorescence microscopy), neurite outgrowth (β(III)-Tubulin immunofluorescent staining), and spontaneous neuronal activity (multi-electrode arrays). Our data demonstrate that cell viability is not affected by developmental ELF-EMF (0-1000 μT) exposure. Depolarization- and glutamate-evoked increases in intracellular calcium concentration ([Ca(2+)]i) are slightly increased at 1 μT, whereas both basal and stimulation-evoked [Ca(2+)]i show a modest inhibition at 1000 μT. Subsequent morphological analysis indicated that neurite length is unaffected up to 100 μT, but increased at 1000 μT. However, neuronal activity appeared largely unaltered following chronic ELF-EMF exposure up to 1000 μT. The effects of ELF-EMF exposure were small and largely restricted to the highest field strength (1000 μT), ie, 10 000 times above background exposure and well above current residential exposure limits. Our combined data therefore indicate that chronic ELF-EMF exposure has only limited (developmental) neurotoxic potential in vitro.

  19. Chronic diseases in adolescence

    Directory of Open Access Journals (Sweden)

    Rončević Nevenka

    2006-01-01

    Full Text Available Introduction. The prevalence of chronic diseases in adolescence is constantly increasing, especially in the last two decades. Adolescence is a period of important changes: body growth and development, sexual development, development of cognitive abilities, change in family relations and between peers, formation of personal identity and personal system of values, making decisions on future occupation etc. Chronic diseases in adolescence. Chronic disorders affect all development issues and represent an additional burden for adolescents. The interaction between chronic disorders and various development issues is complex and two-way: the disease may affect development, and development may affect the disease. Developmental, psychosocial and family factors are of great importance in the treatment of adolescents with chronic disorders. Chronic disorders affect all aspects of adolescent life, including relations with peers, school, nutrition, learning, traveling, entertainment, choice of occupation, plans for the future. Physicians should keep in mind that chronic diseases and their treatment represent only one aspect of person's life. Adolescents with chronic diseases have other needs as well, personal priorities, social roles and they expect these needs to be recognized and respected. Adolescent health care should be adjusted to the life style of adolescents.

  20. Managing your chronic pain

    Science.gov (United States)

    ... your chronic back pain To use the sharing features on this page, please enable JavaScript. Managing chronic pain means finding ways to make your back pain tolerable so you can live your life. You may not be able to ...

  1. Neural network regulation driven by autonomous neural firings

    Science.gov (United States)

    Cho, Myoung Won

    2016-07-01

    Biological neurons naturally fire spontaneously due to the existence of a noisy current. Such autonomous firings may provide a driving force for network formation because synaptic connections can be modified due to neural firings. Here, we study the effect of autonomous firings on network formation. For the temporally asymmetric Hebbian learning, bidirectional connections lose their balance easily and become unidirectional ones. Defining the difference between reciprocal connections as new variables, we could express the learning dynamics as if Ising model spins interact with each other in magnetism. We present a theoretical method to estimate the interaction between the new variables in a neural system. We apply the method to some network systems and find some tendencies of autonomous neural network regulation.

  2. Multigradient for Neural Networks for Equalizers

    Directory of Open Access Journals (Sweden)

    Chulhee Lee

    2003-06-01

    Full Text Available Recently, a new training algorithm, multigradient, has been published for neural networks and it is reported that the multigradient outperforms the backpropagation when neural networks are used as a classifier. When neural networks are used as an equalizer in communications, they can be viewed as a classifier. In this paper, we apply the multigradient algorithm to train the neural networks that are used as equalizers. Experiments show that the neural networks trained using the multigradient noticeably outperforms the neural networks trained by the backpropagation.

  3. Chronic gastritis - an update.

    Science.gov (United States)

    Varbanova, Mariya; Frauenschläger, Katrin; Malfertheiner, Peter

    2014-12-01

    Helicobacter pylori is the main aetiologic factor for chronic gastritis worldwide. The degree of inflammation and the evolution of this form of chronic gastritis can vary largely depending on bacterial virulence factors, host susceptibility factors and environmental conditions. Autoimmune gastritis is another cause of chronic inflammation in the stomach, which can occur in all age groups. This disease presents typically with vitamin B12 deficiency and pernicious anaemia. The presence of anti-parietal cell antibodies is highly specific for the diagnosis. The role of H. pylori as a trigger for autoimmune gastritis remains uncertain. Other rare conditions for chronic gastritis are chronic inflammatory conditions such as Crohn's disease or on the background of lymphocytic or collagenous gastroenteropathies. PMID:25439069

  4. [Chronic migraine: treatment].

    Science.gov (United States)

    Pascual, Julio

    2012-04-10

    We define chronic migraine as that clinical situation in which migraine attacks appear 15 or more days per month. Until recently, and in spite of its negative impact, patients with chronic migraine were excluded of the clinical trials. This manuscript revises the current treatment of chronic migraine. The first step should include the avoidance of potential precipitating/aggravating factors for chronic migraine, mainly analgesic overuse and the treatment of comorbid disorders, such as anxiety and depression. The symptomatic treatment should be based on the use of nonsteroidal anti-inflammatory agents and triptans (in this case ergotamine-containing medications. Preventive treatment includes a 'transitional' treatment with nonsteroidal anti-inflammatory agents or steroids, while preventive treatment exerts its actions. Even though those medications efficacious in episodic migraine prevention are used, the only drugs with demonstrated efficacy in the preventive treatment of chronic migraine are topiramate and pericranial infiltrations of Onabotulinumtoxin A. PMID:22532241

  5. Neural Networks for Flight Control

    Science.gov (United States)

    Jorgensen, Charles C.

    1996-01-01

    Neural networks are being developed at NASA Ames Research Center to permit real-time adaptive control of time varying nonlinear systems, enhance the fault-tolerance of mission hardware, and permit online system reconfiguration. In general, the problem of controlling time varying nonlinear systems with unknown structures has not been solved. Adaptive neural control techniques show considerable promise and are being applied to technical challenges including automated docking of spacecraft, dynamic balancing of the space station centrifuge, online reconfiguration of damaged aircraft, and reducing cost of new air and spacecraft designs. Our experiences have shown that neural network algorithms solved certain problems that conventional control methods have been unable to effectively address. These include damage mitigation in nonlinear reconfiguration flight control, early performance estimation of new aircraft designs, compensation for damaged planetary mission hardware by using redundant manipulator capability, and space sensor platform stabilization. This presentation explored these developments in the context of neural network control theory. The discussion began with an overview of why neural control has proven attractive for NASA application domains. The more important issues in control system development were then discussed with references to significant technical advances in the literature. Examples of how these methods have been applied were given, followed by projections of emerging application needs and directions.

  6. Neural probe design for reduced tissue encapsulation in CNS.

    Science.gov (United States)

    Seymour, John P; Kipke, Daryl R

    2007-09-01

    This study investigated relationships between a microscale neural probe's size and shape and its chronic reactive tissue response. Parylene-based probes were microfabricated with a thick shank (48 microm by 68 microm) and an integrated thin lateral platform (5 microm by 100 microm, either solid or one of three lattice sizes). Devices were implanted in rat cerebral cortex for 4 weeks before immunostaining for neurons, astrocytes, microglia, fibronectin, laminin, and neurofilament. While nonneuronal density (NND) generally increased and neuronal density decreased within 75 microm of a probe interface compared to unimplanted control regions, there were significant differential tissue responses within 25 microm of the platform's lateral edge compared to the shank. The NND in this region of the lateral edge was less than one-third of the corresponding region of the shank (129% and 425% increase, respectively). Moreover, neuronal density around the platform lateral edge was about one-third higher than at the shank (0.70 and 0.52 relative to control, respectively). Also, microglia reactivity and extracellular protein deposition was reduced at the lateral edge. There were no significant differences among platform designs. These results suggest that neural probe geometry is an important parameter for reducing chronic tissue encapsulation.

  7. Neural correlates of central inhibition during physical fatigue.

    Directory of Open Access Journals (Sweden)

    Masaaki Tanaka

    Full Text Available Central inhibition plays a pivotal role in determining physical performance during physical fatigue. Classical conditioning of central inhibition is believed to be associated with the pathophysiology of chronic fatigue. We tried to determine whether classical conditioning of central inhibition can really occur and to clarify the neural mechanisms of central inhibition related to classical conditioning during physical fatigue using magnetoencephalography (MEG. Eight right-handed volunteers participated in this study. We used metronome sounds as conditioned stimuli and maximum handgrip trials as unconditioned stimuli to cause central inhibition. Participants underwent MEG recording during imagery of maximum grips of the right hand guided by metronome sounds for 10 min. Thereafter, fatigue-inducing maximum handgrip trials were performed for 10 min; the metronome sounds were started 5 min after the beginning of the handgrip trials. The next day, neural activities during imagery of maximum grips of the right hand guided by metronome sounds were measured for 10 min. Levels of fatigue sensation and sympathetic nerve activity on the second day were significantly higher relative to those of the first day. Equivalent current dipoles (ECDs in the posterior cingulated cortex (PCC, with latencies of approximately 460 ms, were observed in all the participants on the second day, although ECDs were not identified in any of the participants on the first day. We demonstrated that classical conditioning of central inhibition can occur and that the PCC is involved in the neural substrates of central inhibition related to classical conditioning during physical fatigue.

  8. Neural mechanisms of mindfulness and meditation: Evidence from neuroimaging studies

    Institute of Scientific and Technical Information of China (English)

    William; R; Marchand

    2014-01-01

    Mindfulness is the dispassionate,moment-by-moment awareness of sensations,emotions and thoughts.Mindfulness-based interventions are being increasingly used for stress,psychological well being,coping with chronic illness as well as adjunctive treatments for psychiatric disorders.However,the neural mechanisms associated with mindfulness have not been well characterized.Recent functional and structural neuroimaging studies are beginning to provide insights into neural processes associated with the practice of mindfulness.A review of this literature revealed compelling evidence that mindfulness impacts the function of the medial cortex and associated default mode network as well as insula and amygdala.Additionally,mindfulness practice appears to effect lateral frontal regions and basal ganglia,at least in some cases.Structural imaging studies are consistent with these findings and also indicate changes in the hippocampus.While many questions remain unanswered,the current literature provides evidence of brain regions and networks relevant for understanding neural processes associated with mindfulness.

  9. Energy efficient neural stimulation: coupling circuit design and membrane biophysics.

    Directory of Open Access Journals (Sweden)

    Thomas J Foutz

    Full Text Available The delivery of therapeutic levels of electrical current to neural tissue is a well-established treatment for numerous indications such as Parkinson's disease and chronic pain. While the neuromodulation medical device industry has experienced steady clinical growth over the last two decades, much of the core technology underlying implanted pulse generators remain unchanged. In this study we propose some new methods for achieving increased energy-efficiency during neural stimulation. The first method exploits the biophysical features of excitable tissue through the use of a centered-triangular stimulation waveform. Neural activation with this waveform is achieved with a statistically significant reduction in energy compared to traditional rectangular waveforms. The second method demonstrates energy savings that could be achieved by advanced circuitry design. We show that the traditional practice of using a fixed compliance voltage for constant-current stimulation results in substantial energy loss. A portion of this energy can be recuperated by adjusting the compliance voltage to real-time requirements. Lastly, we demonstrate the potential impact of axon fiber diameter on defining the energy-optimal pulse-width for stimulation. When designing implantable pulse generators for energy efficiency, we propose that the future combination of a variable compliance system, a centered-triangular stimulus waveform, and an axon diameter specific stimulation pulse-width has great potential to reduce energy consumption and prolong battery life in neuromodulation devices.

  10. Chronic Inflammatory Demyelinating Polyneuropathy (CIDP)

    Science.gov (United States)

    ... People About NINDS NINDS Chronic Inflammatory Demyelinating Polyneuropathy (CIDP) Information Page Table of Contents (click to jump ... en Español What is Chronic Inflammatory Demyelinating Polyneuropathy (CIDP)? Chronic inflammatory demyelinating polyneuropathy (CIDP) is a neurological ...

  11. Stages of Chronic Myelogenous Leukemia

    Science.gov (United States)

    ... ALL Treatment Childhood AML Treatment Research Chronic Myelogenous Leukemia Treatment (PDQ®)–Patient Version General Information About Chronic Myelogenous Leukemia Go to Health Professional Version Key Points Chronic ...

  12. Stages of Chronic Lymphocytic Leukemia

    Science.gov (United States)

    ... ALL Treatment Childhood AML Treatment Research Chronic Lymphocytic Leukemia Treatment (PDQ®)–Patient Version General Information About Chronic Lymphocytic Leukemia Go to Health Professional Version Key Points Chronic ...

  13. Ultra-low noise miniaturized neural amplifier with hardware averaging

    Science.gov (United States)

    Dweiri, Yazan M.; Eggers, Thomas; McCallum, Grant; Durand, Dominique M.

    2015-08-01

    Objective. Peripheral nerves carry neural signals that could be used to control hybrid bionic systems. Cuff electrodes provide a robust and stable interface but the recorded signal amplitude is small (<3 μVrms 700 Hz-7 kHz), thereby requiring a baseline noise of less than 1 μVrms for a useful signal-to-noise ratio (SNR). Flat interface nerve electrode (FINE) contacts alone generate thermal noise of at least 0.5 μVrms therefore the amplifier should add as little noise as possible. Since mainstream neural amplifiers have a baseline noise of 2 μVrms or higher, novel designs are required. Approach. Here we apply the concept of hardware averaging to nerve recordings obtained with cuff electrodes. An optimization procedure is developed to minimize noise and power simultaneously. The novel design was based on existing neural amplifiers (Intan Technologies, LLC) and is validated with signals obtained from the FINE in chronic dog experiments. Main results. We showed that hardware averaging leads to a reduction in the total recording noise by a factor of 1/√N or less depending on the source resistance. Chronic recording of physiological activity with FINE using the presented design showed significant improvement on the recorded baseline noise with at least two parallel operation transconductance amplifiers leading to a 46.1% reduction at N = 8. The functionality of these recordings was quantified by the SNR improvement and shown to be significant for N = 3 or more. The present design was shown to be capable of generating <1.5 μVrms total recording baseline noise when connected to a FINE placed on the sciatic nerve of an awake animal. An algorithm was introduced to find the value of N that can minimize both the power consumption and the noise in order to design a miniaturized ultralow-noise neural amplifier. Significance. These results demonstrate the efficacy of hardware averaging on noise improvement for neural recording with cuff electrodes, and can accommodate the

  14. Mechanism of Chronic Pain in Rodent Brain Imaging

    Science.gov (United States)

    Chang, Pei-Ching

    Chronic pain is a significant health problem that greatly impacts the quality of life of individuals and imparts high costs to society. Despite intense research effort in understanding of the mechanism of pain, chronic pain remains a clinical problem that has few effective therapies. The advent of human brain imaging research in recent years has changed the way that chronic pain is viewed. To further extend the use of human brain imaging techniques for better therapies, the adoption of imaging technique onto the animal pain models is essential, in which underlying brain mechanisms can be systematically studied using various combination of imaging and invasive techniques. The general goal of this thesis is to addresses how brain develops and maintains chronic pain in an animal model using fMRI. We demonstrate that nucleus accumbens, the central component of mesolimbic circuitry, is essential in development of chronic pain. To advance our imaging technique, we develop an innovative methodology to carry out fMRI in awake, conscious rat. Using this cutting-edge technique, we show that allodynia is assoicated with shift brain response toward neural circuits associated nucleus accumbens and prefrontal cortex that regulate affective and cognitive component of pain. Taken together, this thesis provides a deeper understanding of how brain mediates pain. It builds on the existing body of knowledge through maximizing the depth of insight into brain imaging of chronic pain.

  15. Neural networks and statistical learning

    CERN Document Server

    Du, Ke-Lin

    2014-01-01

    Providing a broad but in-depth introduction to neural network and machine learning in a statistical framework, this book provides a single, comprehensive resource for study and further research. All the major popular neural network models and statistical learning approaches are covered with examples and exercises in every chapter to develop a practical working understanding of the content. Each of the twenty-five chapters includes state-of-the-art descriptions and important research results on the respective topics. The broad coverage includes the multilayer perceptron, the Hopfield network, associative memory models, clustering models and algorithms, the radial basis function network, recurrent neural networks, principal component analysis, nonnegative matrix factorization, independent component analysis, discriminant analysis, support vector machines, kernel methods, reinforcement learning, probabilistic and Bayesian networks, data fusion and ensemble learning, fuzzy sets and logic, neurofuzzy models, hardw...

  16. Principles of neural information processing

    CERN Document Server

    Seelen, Werner v

    2016-01-01

    In this fundamental book the authors devise a framework that describes the working of the brain as a whole. It presents a comprehensive introduction to the principles of Neural Information Processing as well as recent and authoritative research. The books´ guiding principles are the main purpose of neural activity, namely, to organize behavior to ensure survival, as well as the understanding of the evolutionary genesis of the brain. Among the developed principles and strategies belong self-organization of neural systems, flexibility, the active interpretation of the world by means of construction and prediction as well as their embedding into the world, all of which form the framework of the presented description. Since, in brains, their partial self-organization, the lifelong adaptation and their use of various methods of processing incoming information are all interconnected, the authors have chosen not only neurobiology and evolution theory as a basis for the elaboration of such a framework, but also syst...

  17. Video Compression Using Neural Network

    Directory of Open Access Journals (Sweden)

    Sangeeta Mishra

    2012-08-01

    Full Text Available Apart from the existing technology on image compression represented by series of JPEG, MPEG and H.26x standards, new technology such as neural networks and genetic algorithms are being developed to explore the future of image coding. Successful applications of neural networks to basic propagation algorithm have now become well established and other aspects of neural network involvement in this technology. In this paper different algorithms were implemented like gradient descent back propagation, gradient descent with momentum back propagation, gradient descent with adaptive learning back propagation, gradient descent with momentum and adaptive learning back propagation and Levenberg-Marquardt algorithm. The size of original video clip is 25MB and after compression it becomes 21.3MB giving the compression ratio as 85.2% and compression factor of 1.174. It was observed that the size remains same after compression but the difference is in the clarity.

  18. Neural plasticity lessons from disorders of consciousness

    Directory of Open Access Journals (Sweden)

    Athena eDemertzi

    2011-02-01

    Full Text Available Communication and intentional behavior are supported by the brain’s integrity at a structural and a functional level. When widespread loss of cerebral connectivity is brought about as a result of a severe brain injury, in many cases patients are not capable of conscious interactive behavior and are said to suffer from disorders of consciousness (e.g., coma, vegetative state /unresponsive wakefulness syndrome, minimally conscious states. This lesion paradigm has offered not only clinical insights, as how to improve diagnosis, prognosis and treatment, but also put forward scientific opportunities to study the brain’s plastic abilities. We here review interventional and observational studies performed in severely brain-injured patients with regards to recovery of consciousness. The study of the recovered conscious brain (spontaneous and/or after surgical or pharmacologic interventions, suggests a link between some specific brain areas and the capacity of the brain to sustain conscious experience, challenging at the same time the notion of fixed temporal boundaries in rehabilitative processes. Altered functional connectivity, cerebral structural reorganization as well as behavioral amelioration after invasive treatments will be discussed as the main indices for plasticity in these challenging patients. The study of patients with chronic disorders of consciousness may, thus, provide further insights not only at a clinical level (i.e., medical management and rehabilitation but also from a scientific-theoretical perspective (i.e., the brain’s plastic abilities and the pursuit of the neural correlate of consciousness.

  19. An implantable neural stimulator for intraspinal microstimulation.

    Science.gov (United States)

    Troyk, Philip R; Mushahwar, Vivian K; Stein, Richard B; Suh, Sungjae; Everaert, Dirk; Holinski, Brad; Hu, Zhe; DeMichele, Glenn; Kerns, Douglas; Kayvani, Kevin

    2012-01-01

    This paper reports on a wireless stimulator device for use in animal experiments as part of an ongoing investigation into intraspinal stimulation (ISMS) for restoration of walking in humans with spinal cord injury. The principle behind using ISMS is the activation of residual motor-control neural networks within the spinal cord ventral horn below the level of lesion following a spinal cord injury. The attractiveness to this technique is that a small number of electrodes can be used to induce bilateral walking patterns in the lower limbs. In combination with advanced feedback algorithms, ISMS has the potential to restore walking for distances that exceed that produced by other types of functional electrical stimulation. Recent acute animal experiments have demonstrated the feasibility of using ISMS to produce the coordinated walking patterns. Here we described a wireless implantable stimulation system to be used in chronic animal experiments and for providing the basis for a system suitable for use in humans. Electrical operation of the wireless system is described, including a demonstration of reverse telemetry for monitoring the stimulating electrode voltages. PMID:23366038

  20. Performance sustaining intracortical neural prostheses

    Science.gov (United States)

    Nuyujukian, Paul; Kao, Jonathan C.; Fan, Joline M.; Stavisky, Sergey D.; Ryu, Stephen I.; Shenoy, Krishna V.

    2014-12-01

    Objective. Neural prostheses, or brain-machine interfaces, aim to restore efficient communication and movement ability to those suffering from paralysis. A major challenge these systems face is robust performance, particularly with aging signal sources. The aim in this study was to develop a neural prosthesis that could sustain high performance in spite of signal instability while still minimizing retraining time. Approach. We trained two rhesus macaques implanted with intracortical microelectrode arrays 1-4 years prior to this study to acquire targets with a neurally-controlled cursor. We measured their performance via achieved bitrate (bits per second, bps). This task was repeated over contiguous days to evaluate the sustained performance across time. Main results. We found that in the monkey with a younger (i.e., two year old) implant and better signal quality, a fixed decoder could sustain performance for a month at a rate of 4 bps, the highest achieved communication rate reported to date. This fixed decoder was evaluated across 22 months and experienced a performance decline at a rate of 0.24 bps yr-1. In the monkey with the older (i.e., 3.5 year old) implant and poorer signal quality, a fixed decoder could not sustain performance for more than a few days. Nevertheless, performance in this monkey was maintained for two weeks without requiring additional online retraining time by utilizing prior days’ experimental data. Upon analysis of the changes in channel tuning, we found that this stability appeared partially attributable to the cancelling-out of neural tuning fluctuations when projected to two-dimensional cursor movements. Significance. The findings in this study (1) document the highest-performing communication neural prosthesis in monkeys, (2) confirm and extend prior reports of the stability of fixed decoders, and (3) demonstrate a protocol for system stability under conditions where fixed decoders would otherwise fail. These improvements to decoder

  1. Ocean wave forecasting using recurrent neural networks

    Digital Repository Service at National Institute of Oceanography (India)

    Mandal, S.; Prabaharan, N.

    , merchant vessel routing, nearshore construction, etc. more efficiently and safely. This paper describes an artificial neural network, namely recurrent neural network with rprop update algorithm and is applied for wave forecasting. Measured ocean waves off...

  2. Generalization performance of regularized neural network models

    DEFF Research Database (Denmark)

    Larsen, Jan; Hansen, Lars Kai

    1994-01-01

    Architecture optimization is a fundamental problem of neural network modeling. The optimal architecture is defined as the one which minimizes the generalization error. This paper addresses estimation of the generalization performance of regularized, complete neural network models. Regularization...

  3. The neural cell adhesion molecule

    DEFF Research Database (Denmark)

    Berezin, V; Bock, E; Poulsen, F M

    2000-01-01

    During the past year, the understanding of the structure and function of neural cell adhesion has advanced considerably. The three-dimensional structures of several of the individual modules of the neural cell adhesion molecule (NCAM) have been determined, as well as the structure of the complex...... between two identical fragments of the NCAM. Also during the past year, a link between homophilic cell adhesion and several signal transduction pathways has been proposed, connecting the event of cell surface adhesion to cellular responses such as neurite outgrowth. Finally, the stimulation of neurite...

  4. Neural Network Adaptations to Hardware Implementations

    OpenAIRE

    Moerland, Perry,; Fiesler,Emile

    1997-01-01

    In order to take advantage of the massive parallelism offered by artificial neural networks, hardware implementations are essential.However, most standard neural network models are not very suitable for implementation in hardware and adaptations are needed. In this section an overview is given of the various issues that are encountered when mapping an ideal neural network model onto a compact and reliable neural network hardware implementation, like quantization, handling nonuniformities and ...

  5. Neural Network Adaptations to Hardware Implementations

    OpenAIRE

    Moerland, Perry,; Fiesler,Emile; Beale, R

    1997-01-01

    In order to take advantage of the massive parallelism offered by artificial neural networks, hardware implementations are essential. However, most standard neural network models are not very suitable for implementation in hardware and adaptations are needed. In this section an overview is given of the various issues that are encountered when mapping an ideal neural network model onto a compact and reliable neural network hardware implementation, like quantization, handling nonuniformities and...

  6. Building a Chaotic Proved Neural Network

    CERN Document Server

    Bahi, Jacques M; Salomon, Michel

    2011-01-01

    Chaotic neural networks have received a great deal of attention these last years. In this paper we establish a precise correspondence between the so-called chaotic iterations and a particular class of artificial neural networks: global recurrent multi-layer perceptrons. We show formally that it is possible to make these iterations behave chaotically, as defined by Devaney, and thus we obtain the first neural networks proven chaotic. Several neural networks with different architectures are trained to exhibit a chaotical behavior.

  7. Chronicity and control

    DEFF Research Database (Denmark)

    Whyte, Susan Reynolds

    2012-01-01

    This paper proposes a way of framing the study of ‘noncommunicable diseases’ within the more general area of chronic conditions. Focusing on Africa, it takes as points of departure the situation in Uganda, and the approach to health issues developed by a group of European and African colleagues...... over the years. It suggests a pragmatic analysis that places people's perceptions and practices within a field of possibilities shaped by policy, health care systems, and life conditions. In this field, the dimensions of chronicity and control are the distinctive analytical issues. They lead...... on to consideration of patterns of sociality related to chronic conditions and their treatment....

  8. Tongue piercing and chronic abdominal pain with nausea and vomiting--two cases.

    Science.gov (United States)

    Chung, Myung Kyu; Chung, Danielle; LaRiccia, Patrick J

    2015-01-01

    Chronic upper gastrointestinal (GI) symptoms of unclear etiology are frustrating to patients and physicians alike. The integrative medicine procedures of acupuncture and neural therapy may provide treatment options. Tongue piercing, which is prevalent in 5.6% of the adolescent population, may be a contributing factor in upper gastrointestinal symptoms. The objectives of the study were as follows: (1) To demonstrate the usefulness of an integrative medicine treatment approach in two cases of patients with chronic abdominal pain, nausea, and vomiting of unclear etiology who had failed standard medical management. (2) To identify scars from tongue piercings as a possible contributing factor in chronic upper GI symptoms of unclear etiology. Two retrospective case studies are presented of young adult females who were seen in a private multi-physician integrative medicine practice in the US. The patients were treated with neural therapy and acupuncture. The desired outcome was the cessation or reduction of the frequency of abdominal pain, nausea, and vomiting. Both patients had resolution of their symptoms. From this study, we have concluded the following: (1) Tongue scars from tongue rings may be causes of chronic upper gastrointestinal symptoms. (2) Neural therapy and acupuncture may be helpful in the treatment of chronic upper GI symptoms related to tongue scars. PMID:25457444

  9. Neural markers of positive reappraisal and their associations with trait reappraisal and worry.

    Science.gov (United States)

    Moser, Jason S; Hartwig, Rachel; Moran, Tim P; Jendrusina, Alexander A; Kross, Ethan

    2014-02-01

    Positively reinterpreting negative experiences is important for psychological well-being and represents a key mechanism of cognitive-behavioral therapies for emotional problems. Yet, little is known about the neural mechanisms that underlie this process and how they relate to clinically relevant individual differences. Here we demonstrate using event-related potentials (ERPs) that positively reappraising distress-inducing images is associated with early increases in frontal control activity and later decreases in parietal arousal-related activity. Moreover, we show that people's chronic tendencies to reappraise versus worry modulate neural activity in opposing directions--trait reappraisal predicts decreases in parietal arousal-related activity during positive reappraisal implementation whereas worry predicts increases in the same waveform. These findings provide novel insights into the neural time course of positive reappraisal. They also speak to the potential clinical utility of neurophysiological measures as relatively inexpensive, noninvasive biomarkers that could serve as risk indicators and treatment mediators. PMID:24661162

  10. Model Of Neural Network With Creative Dynamics

    Science.gov (United States)

    Zak, Michail; Barhen, Jacob

    1993-01-01

    Paper presents analysis of mathematical model of one-neuron/one-synapse neural network featuring coupled activation and learning dynamics and parametrical periodic excitation. Demonstrates self-programming, partly random behavior of suitable designed neural network; believed to be related to spontaneity and creativity of biological neural networks.

  11. Analysis of Neural Networks through Base Functions

    NARCIS (Netherlands)

    Zwaag, van der B.J.; Slump, C.H.; Spaanenburg, L.

    2002-01-01

    Problem statement. Despite their success-story, neural networks have one major disadvantage compared to other techniques: the inability to explain comprehensively how a trained neural network reaches its output; neural networks are not only (incorrectly) seen as a "magic tool" but possibly even more

  12. Simplified LQG Control with Neural Networks

    DEFF Research Database (Denmark)

    Sørensen, O.

    1997-01-01

    A new neural network application for non-linear state control is described. One neural network is modelled to form a Kalmann predictor and trained to act as an optimal state observer for a non-linear process. Another neural network is modelled to form a state controller and trained to produce...

  13. Determination of platinum by radiochemical neutron activation analysis in neural tissues from rats, monkeys and patients treated with cisplatin

    DEFF Research Database (Denmark)

    Rietz, B.; Krarup-Hansen, A.; Rorth, M.

    2001-01-01

    of the animals mentioned and in the neural tissues of human patients. For the determination of platinum in the tissues radiochemical neutron activation analysis has been used. The detection limit is 1 ng Pt g(-1). The platinum results indicate that platinum becomes accumulated in the dorsal root ganglia......Cisplatin is one of the most used antineoplastic drugs, essential for the treatment of germ cell tumours. Its use in medical treatment of cancer patients often causes chronic peripheral neuropathy in these patients. The distribution of cisplatin in neural tissues is, therefore, of great interest....... Rats and monkeys were used as animal models for the study of sensory changes in different neural tissues, like spinal cord (ventral and dorsal part), dorsal root ganglia and sural nerve. The study was combined with quantitative measurements of the content of platinum in the neural tissues...

  14. Neural dysregulation of peripheral insulin action and blood pressure by brain endoplasmic reticulum stress

    OpenAIRE

    Purkayastha, Sudarshana; Zhang, Hai; Zhang, Guo; Ahmed, Zaghloul; Wang, Yi; Cai, Dongsheng

    2011-01-01

    Chronic endoplasmic reticulum (ER) stress was recently revealed to affect hypothalamic neuroendocrine pathways that regulate feeding and body weight. However, it remains unexplored whether brain ER stress could use a neural route to rapidly cause the peripheral disorders that underlie the development of type 2 diabetes (T2D) and the metabolic syndrome. Using a pharmacologic model that delivered ER stress inducer thapsigargin into the brain, this study demonstrated that a short-term brain ER s...

  15. Poly(3,4-ethylenedioxythiophene) as a Micro-Neural Interface Material for Electrostimulation

    OpenAIRE

    Seth J Wilks; Sarah M Richardson-Burn; Hendricks, Jeffrey L.; David Martin; Otto, Kevin J.

    2009-01-01

    Chronic microstimulation-based devices are being investigated to treat conditions such as blindness, deafness, pain, paralysis and epilepsy. Small area electrodes are desired to achieve high selectivity. However, a major trade-off with electrode miniaturization is an increase in impedance and charge density requirements. Thus, the development of novel materials with lower interfacial impedance and enhanced charge storage capacity is essential for the development of micro-neural interface-ba...

  16. Neural Correlates of Impulsive Aggressive Behavior in Subjects With a History of Alcohol Dependence

    OpenAIRE

    Kose, Samet; Steinberg, Joel L.; Moeller, F Gerard; Gowin, Joshua L.; Zuniga, Edward; Kamdar, Zahra N.; Schmitz, Joy M.; Lane, Scott D.

    2015-01-01

    Alcohol-related aggression is a complex and problematic phenomenon with profound public health consequences. We examined neural correlates potentially moderating the relationship between human aggressive behavior and chronic alcohol use. Thirteen subjects meeting DSM–IV criteria for past alcohol-dependence in remission (AD) and 13 matched healthy controls (CONT) participated in an fMRI study adapted from a laboratory model of human aggressive behavior (Point Subtraction Aggression Paradigm, o...

  17. Neural chips, neural computers and application in high and superhigh energy physics experiments

    International Nuclear Information System (INIS)

    Architecture peculiarity and characteristics of series of neural chips and neural computes used in scientific instruments are considered. Tendency of development and use of them in high energy and superhigh energy physics experiments are described. Comparative data which characterize the efficient use of neural chips for useful event selection, classification elementary particles, reconstruction of tracks of charged particles and for search of hypothesis Higgs particles are given. The characteristics of native neural chips and accelerated neural boards are considered

  18. Bioimpedance modeling to monitor astrocytic response to chronically implanted electrodes

    Science.gov (United States)

    McConnell, G. C.; Butera, R. J.; Bellamkonda, R. V.

    2009-10-01

    The widespread adoption of neural prosthetic devices is currently hindered by our inability to reliably record neural signals from chronically implanted electrodes. The extent to which the local tissue response to implanted electrodes influences recording failure is not well understood. To investigate this phenomenon, impedance spectroscopy has shown promise for use as a non-invasive tool to estimate the local tissue response to microelectrodes. Here, we model impedance spectra from chronically implanted rats using the well-established Cole model, and perform a correlation analysis of modeled parameters with histological markers of astroglial scar, including glial fibrillary acid protein (GFAP) and 4',6-diamidino-2- phenylindole (DAPI). Correlations between modeled parameters and GFAP were significant for three parameters studied: Py value, Ro and |Z|1 kHz, and in all cases were confined to the first 100 µm from the interface. Py value was the only parameter also correlated with DAPI in the first 100 µm. Our experimental results, along with computer simulations, suggest that astrocytes are a predominant cellular player affecting electrical impedance spectra. The results also suggest that the largest contribution from reactive astrocytes on impedance spectra occurs in the first 100 µm from the interface, where electrodes are most likely to record electrical signals. These results form the basis for future approaches where impedance spectroscopy can be used to evaluate neural implants, evaluate strategies to minimize scar and potentially develop closed-loop prosthetic devices.

  19. Chronic Condition Data Warehouse

    Data.gov (United States)

    U.S. Department of Health & Human Services — The CMS Chronic Condition Data Warehouse (CCW) provides researchers with Medicare and Medicaid beneficiary, claims, and assessment data linked by beneficiary across...

  20. Sleep and Chronic Disease

    Science.gov (United States)

    ... message, please visit this page: About CDC.gov . Sleep About Us About Sleep Key Sleep Disorders Sleep ... Sheets Data & Statistics Projects and Partners Resources Events Sleep and Chronic Disease Recommend on Facebook Tweet Share ...

  1. What Is Chronic Pain?

    Medline Plus

    Full Text Available ... Contact Us Shop FAQs The Art of Pain Management Resources Going to the ER Glossary Surveys What We Have Learned Communication Tools Videos Pain Management Programs Resource Guide to Chronic Pain Treatments Pain ...

  2. What Is Chronic Pain?

    Medline Plus

    Full Text Available Already a member? Log In or Sign Up Home About Us Support the ACPA Contact Us Shop ... for Understanding Pain September is Pain Awareness Month Home Pain Management Tools Videos What Is Chronic Pain? ...

  3. What Is Chronic Pain?

    Medline Plus

    Full Text Available ... chronic pain there may be no apparent physical injury or illness to explain it. The physician and ... expected period of healing for an illness or injury. You can experience pain even if you are ...

  4. Chronic rhinosinusitis pathogenesis.

    Science.gov (United States)

    Stevens, Whitney W; Lee, Robert J; Schleimer, Robert P; Cohen, Noam A

    2015-12-01

    There are a variety of medical conditions associated with chronic sinonasal inflammation, including chronic rhinosinusitis (CRS) and cystic fibrosis. In particular, CRS can be divided into 2 major subgroups based on whether nasal polyps are present or absent. Unfortunately, clinical treatment strategies for patients with chronic sinonasal inflammation are limited, in part because the underlying mechanisms contributing to disease pathology are heterogeneous and not entirely known. It is hypothesized that alterations in mucociliary clearance, abnormalities in the sinonasal epithelial cell barrier, and tissue remodeling all contribute to the chronic inflammatory and tissue-deforming processes characteristic of CRS. Additionally, the host innate and adaptive immune responses are also significantly activated and might be involved in pathogenesis. Recent advancements in the understanding of CRS pathogenesis are highlighted in this review, with special focus placed on the roles of epithelial cells and the host immune response in patients with cystic fibrosis, CRS without nasal polyps, or CRS with nasal polyps. PMID:26654193

  5. Chronic penile strangulation

    Directory of Open Access Journals (Sweden)

    Lopes Roberto I

    2003-01-01

    Full Text Available Chronic penile strangulation is exceedingly rare with only 5 cases previously reported. We report an additional case of progressive penile lymphedema due to chronic intermittent strangulation caused by a rubber band applied to the penile base for 6 years. A 49-year-old man presented incapacity to exteriorize the glans penis. For erotic purposes, he had been using a rubber-enlarging band placed in the penile base for 6 years. With chronic use, he noticed that his penis swelled. Physical examination revealed lymphedema of the penis, phimosis and a stricture in the penile base. The patient was submitted to circumcision and the lymphedema remained stable 10 months postoperatively. Chronic penile incarceration usually causes penile lymphedema and urinary disturbance. Treatment consists of removal of foreign devices and surgical treatment of lymphedema.

  6. Chronic Conditions Dashboard

    Data.gov (United States)

    U.S. Department of Health & Human Services — The CMS Chronic Conditions Dashboard presents statistical views of information on the prevalence, utilization and Medicare spending for Medicare beneficiaries with...

  7. What Is Chronic Pain?

    Medline Plus

    Full Text Available ... after a period of time the spinal cord has changed, after a period of time there are ... absence of an apparent cause. But chronic pain has a physiological or neurological basis even when we ...

  8. Chronic Kidney Disease

    Science.gov (United States)

    You have two kidneys, each about the size of your fist. Their main job is to filter wastes and excess water out of ... help control blood pressure, and make hormones. Chronic kidney disease (CKD) means that your kidneys are damaged ...

  9. Chronic Conditions Chartbook

    Data.gov (United States)

    U.S. Department of Health & Human Services — Chronic Conditions among Medicare Beneficiaries is a chartbook prepared by the Centers for Medicare and Medicaid Services and created to provide an overview of...

  10. What Is Chronic Pain?

    Medline Plus

    Full Text Available ... Programs Resource Guide to Chronic Pain Treatments Pain Awareness Toolkits Partners for Understanding Pain September is Pain Awareness Month Home Pain Management Tools Videos What Is ...

  11. Chronic Fatigue Syndrome

    Science.gov (United States)

    Chronic fatigue syndrome (CFS) is a disorder that causes extreme fatigue. This fatigue is not the kind of tired feeling that ... activities. The main symptom of CFS is severe fatigue that lasts for 6 months or more. You ...

  12. Chronic dysimmune neuropathies: Beyond chronic demyelinating polyradiculoneuropathy

    Directory of Open Access Journals (Sweden)

    Khadilkar Satish

    2011-01-01

    Full Text Available The spectrum of chronic dysimmune neuropathies has widened well beyond chronic demyelinating polyradiculoneuropathy (CIDP. Pure motor (multifocal motor neuropathy, sensorimotor with asymmetrical involvement (multifocal acquired demylinating sensory and motor neuropathy, exclusively distal sensory (distal acquired demyelinating sensory neuropathy and very proximal sensory (chronic immune sensory polyradiculopathy constitute the variants of CIDP. Correct diagnosis of these entities is of importance in terms of initiation of appropriate therapy as well as prognostication of these patients. The rates of detection of immune-mediated neuropathies with monoclonal cell proliferation (monoclonal gammopathy of unknown significance, multiple myeloma, etc. have been facilitated as better diagnostic tools such as serum immunofixation electrophoresis are being used more often. Immune neuropathies associated with malignancies and systemic vasculitic disorders are being defined further and treated early with better understanding of the disease processes. As this field of dysimmune neuropathies will evolve in the future, some of the curious aspects of the clinical presentations and response patterns to different immunosuppressants or immunomodulators will be further elucidated. This review also discusses representative case studies.

  13. Neural Control of the Circulation

    Science.gov (United States)

    Thomas, Gail D.

    2011-01-01

    The purpose of this brief review is to highlight key concepts about the neural control of the circulation that graduate and medical students should be expected to incorporate into their general knowledge of human physiology. The focus is largely on the sympathetic nerves, which have a dominant role in cardiovascular control due to their effects to…

  14. Neural Network based Consumption Forecasting

    DEFF Research Database (Denmark)

    Madsen, Per Printz

    2016-01-01

    This paper describe a Neural Network based method for consumption forecasting. This work has been financed by the The ENCOURAGE project. The aims of The ENCOURAGE project is to develop embedded intelligence and integration technologies that will directly optimize energy use in buildings and enable...

  15. Nanomaterial-enabled neural stimulation

    Directory of Open Access Journals (Sweden)

    Yongchen eWang

    2016-03-01

    Full Text Available Neural stimulation is a critical technique in treating neurological diseases and investigating brain functions. Traditional electrical stimulation uses electrodes to directly create intervening electric fields in the immediate vicinity of neural tissues. Second-generation stimulation techniques directly use light, magnetic fields or ultrasound in a non-contact manner. An emerging generation of non- or minimally invasive neural stimulation techniques is enabled by nanotechnology to achieve a high spatial resolution and cell-type specificity. In these techniques, a nanomaterial converts a remotely transmitted primary stimulus such as a light, magnetic or ultrasonic signal to a localized secondary stimulus such as an electric field or heat to stimulate neurons. The ease of surface modification and bio-conjugation of nanomaterials facilitates cell-type-specific targeting, designated placement and highly localized membrane activation. This review focuses on nanomaterial-enabled neural stimulation techniques primarily involving opto-electric, opto-thermal, magneto-electric, magneto-thermal and acousto-electric transduction mechanisms. Stimulation techniques based on other possible transduction schemes and general consideration for these emerging neurotechnologies are also discussed.

  16. Nanomaterial-Enabled Neural Stimulation.

    Science.gov (United States)

    Wang, Yongchen; Guo, Liang

    2016-01-01

    Neural stimulation is a critical technique in treating neurological diseases and investigating brain functions. Traditional electrical stimulation uses electrodes to directly create intervening electric fields in the immediate vicinity of neural tissues. Second-generation stimulation techniques directly use light, magnetic fields or ultrasound in a non-contact manner. An emerging generation of non- or minimally invasive neural stimulation techniques is enabled by nanotechnology to achieve a high spatial resolution and cell-type specificity. In these techniques, a nanomaterial converts a remotely transmitted primary stimulus such as a light, magnetic or ultrasonic signal to a localized secondary stimulus such as an electric field or heat to stimulate neurons. The ease of surface modification and bio-conjugation of nanomaterials facilitates cell-type-specific targeting, designated placement and highly localized membrane activation. This review focuses on nanomaterial-enabled neural stimulation techniques primarily involving opto-electric, opto-thermal, magneto-electric, magneto-thermal and acousto-electric transduction mechanisms. Stimulation techniques based on other possible transduction schemes and general consideration for these emerging neurotechnologies are also discussed.

  17. Nanomaterial-Enabled Neural Stimulation.

    Science.gov (United States)

    Wang, Yongchen; Guo, Liang

    2016-01-01

    Neural stimulation is a critical technique in treating neurological diseases and investigating brain functions. Traditional electrical stimulation uses electrodes to directly create intervening electric fields in the immediate vicinity of neural tissues. Second-generation stimulation techniques directly use light, magnetic fields or ultrasound in a non-contact manner. An emerging generation of non- or minimally invasive neural stimulation techniques is enabled by nanotechnology to achieve a high spatial resolution and cell-type specificity. In these techniques, a nanomaterial converts a remotely transmitted primary stimulus such as a light, magnetic or ultrasonic signal to a localized secondary stimulus such as an electric field or heat to stimulate neurons. The ease of surface modification and bio-conjugation of nanomaterials facilitates cell-type-specific targeting, designated placement and highly localized membrane activation. This review focuses on nanomaterial-enabled neural stimulation techniques primarily involving opto-electric, opto-thermal, magneto-electric, magneto-thermal and acousto-electric transduction mechanisms. Stimulation techniques based on other possible transduction schemes and general consideration for these emerging neurotechnologies are also discussed. PMID:27013938

  18. Memory Storage and Neural Systems.

    Science.gov (United States)

    Alkon, Daniel L.

    1989-01-01

    Investigates memory storage and molecular nature of associative-memory formation by analyzing Pavlovian conditioning in marine snails and rabbits. Presented is the design of a computer-based memory system (neural networks) using the rules acquired in the investigation. Reports that the artificial network recognized patterns well. (YP)

  19. Neural Basis of Visual Distraction

    Science.gov (United States)

    Kim, So-Yeon; Hopfinger, Joseph B.

    2010-01-01

    The ability to maintain focus and avoid distraction by goal-irrelevant stimuli is critical for performing many tasks and may be a key deficit in attention-related problems. Recent studies have demonstrated that irrelevant stimuli that are consciously perceived may be filtered out on a neural level and not cause the distraction triggered by…

  20. Phase Transitions of Neural Networks

    OpenAIRE

    Kinzel, Wolfgang

    1997-01-01

    The cooperative behaviour of interacting neurons and synapses is studied using models and methods from statistical physics. The competition between training error and entropy may lead to discontinuous properties of the neural network. This is demonstrated for a few examples: Perceptron, associative memory, learning from examples, generalization, multilayer networks, structure recognition, Bayesian estimate, on-line training, noise estimation and time series generation.

  1. Artificial neural networks in medicine

    Energy Technology Data Exchange (ETDEWEB)

    Keller, P.E.

    1994-07-01

    This Technology Brief provides an overview of artificial neural networks (ANN). A definition and explanation of an ANN is given and situations in which an ANN is used are described. ANN applications to medicine specifically are then explored and the areas in which it is currently being used are discussed. Included are medical diagnostic aides, biochemical analysis, medical image analysis and drug development.

  2. Medical Imaging with Neural Networks

    International Nuclear Information System (INIS)

    The objective of this paper is to provide an overview of the recent developments in the use of artificial neural networks in medical imaging. The areas of medical imaging that are covered include : ultrasound, magnetic resonance, nuclear medicine and radiological (including computerized tomography). (authors)

  3. Aphasia Classification Using Neural Networks

    DEFF Research Database (Denmark)

    Axer, H.; Jantzen, Jan; Berks, G.;

    2000-01-01

    A web-based software model (http://fuzzy.iau.dtu.dk/aphasia.nsf) was developed as an example for classification of aphasia using neural networks. Two multilayer perceptrons were used to classify the type of aphasia (Broca, Wernicke, anomic, global) according to the results in some subtests...

  4. Idiopathic chronic eosinophilic pneumonia

    OpenAIRE

    Cordier Jean-François; Marchand Eric

    2006-01-01

    Abstract Idiopathic chronic eosinophilic pneumonia (ICEP) is characterized by subacute or chronic respiratory and general symptoms, alveolar and/or blood eosinophilia, and peripheral pulmonary infiltrates on chest imaging. Eosinophilia is present in most cases, usually in excess of 1000/mm3. In absence of significant blood eosinophilia, a diagnosis of ICEP is supported by the demonstration of bronchoalveolar lavage eosinophilia. ICEP is typically associated with eosinophil counts higher than ...

  5. Experimental chronic periodontitis morphogenesis

    OpenAIRE

    Schneider S.A.

    2011-01-01

    Morphogenesis of periodontium tissue in a model of chronic periodontitis was studied. Adult Wistar rats wereused in a model; chronic periodontitis was developed through mastication-related loading decrease. Histological assessmentof periodontium tissue was conducted at Days 7, 14, 21 and 30. It was demonstrated that dystrophic tissue changes prevailover the inflammatory one in this particular experimental model. The structural elements of periodontium were involved intothe pathologic process ...

  6. The neural crest and neural crest cells: discovery and significance for theories of embryonic organization

    Indian Academy of Sciences (India)

    Brian K Hall

    2008-12-01

    The neural crest has long fascinated developmental biologists, and, increasingly over the past decades, evolutionary and evolutionary developmental biologists. The neural crest is the name given to the fold of ectoderm at the junction between neural and epidermal ectoderm in neurula-stage vertebrate embryos. In this sense, the neural crest is a morphological term akin to head fold or limb bud. This region of the dorsal neural tube consists of neural crest cells, a special population(s) of cell, that give rise to an astonishing number of cell types and to an equally astonishing number of tissues and organs. Neural crest cell contributions may be direct — providing cells — or indirect — providing a necessary, often inductive, environment in which other cells develop. The enormous range of cell types produced provides an important source of evidence of the neural crest as a germ layer, bringing the number of germ layers to four — ectoderm, endoderm, mesoderm, and neural crest. In this paper I provide a brief overview of the major phases of investigation into the neural crest and the major players involved, discuss how the origin of the neural crest relates to the origin of the nervous system in vertebrate embryos, discuss the impact on the germ-layer theory of the discovery of the neural crest and of secondary neurulation, and present evidence of the neural crest as the fourth germ layer. A companion paper (Hall, Evol. Biol. 2008) deals with the evolutionary origins of the neural crest and neural crest cells.

  7. Transplanted neural stem/precursor cells instruct phagocytes and reduce secondary tissue damage in the injured spinal cord.

    Science.gov (United States)

    Cusimano, Melania; Biziato, Daniela; Brambilla, Elena; Donegà, Matteo; Alfaro-Cervello, Clara; Snider, Silvia; Salani, Giuliana; Pucci, Ferdinando; Comi, Giancarlo; Garcia-Verdugo, Jose Manuel; De Palma, Michele; Martino, Gianvito; Pluchino, Stefano

    2012-02-01

    Transplanted neural stem/precursor cells possess peculiar therapeutic plasticity and can simultaneously instruct several therapeutic mechanisms in addition to cell replacement. Here, we interrogated the therapeutic plasticity of neural stem/precursor cells after their focal implantation in the severely contused spinal cord. We injected syngeneic neural stem/precursor cells at the proximal and distal ends of the contused mouse spinal cord and analysed locomotor functions and relevant secondary pathological events in the mice, cell fate of transplanted neural stem/precursor cells, and gene expression and inflammatory cell infiltration at the injured site. We used two different doses of neural stem/precursor cells and two treatment schedules, either subacute (7 days) or early chronic (21 days) neural stem/precursor cell transplantation after the induction of experimental thoracic severe spinal cord injury. Only the subacute transplant of neural stem/precursor cells enhanced the recovery of locomotor functions of mice with spinal cord injury. Transplanted neural stem/precursor cells survived undifferentiated at the level of the peri-lesion environment and established contacts with endogenous phagocytes via cellular-junctional coupling. This was associated with significant modulation of the expression levels of important inflammatory cell transcripts in vivo. Transplanted neural stem/precursor cells skewed the inflammatory cell infiltrate at the injured site by reducing the proportion of 'classically-activated' (M1-like) macrophages, while promoting the healing of the injured cord. We here identify a precise window of opportunity for the treatment of complex spinal cord injuries with therapeutically plastic somatic stem cells, and suggest that neural stem/precursor cells have the ability to re-programme the local inflammatory cell microenvironment from a 'hostile' to an 'instructive' role, thus facilitating the healing or regeneration past the lesion.

  8. Hypertension in Chronic Glomerulonephritis.

    Science.gov (United States)

    Ihm, Chun-Gyoo

    2015-12-01

    Chronic glomerulonephritis (GN), which includes focal segmental glomerulosclerosis and proliferative forms of GN such as IgA nephropathy, increases the risk of hypertension. Hypertension in chronic GN is primarily volume dependent, and this increase in blood volume is not related to the deterioration of renal function. Patients with chronic GN become salt sensitive as renal damage including arteriolosclerosis progresses and the consequent renal ischemia causes the stimulation of the intrarenal renin-angiotensin-aldosterone system(RAAS). Overactivity of the sympathetic nervous system also contributes to hypertension in chronic GN. According to the KDIGO guideline, the available evidence indicates that the target BP should be ≤140mmHg systolic and ≤90mmHg diastolic in chronic kidney disease patients without albuminuria. In most patients with an albumin excretion rate of ≥30mg/24 h (i.e., those with both micro-and macroalbuminuria), a lower target of ≤130mmHg systolic and ≤80mmHg diastolic is suggested. The use of agents that block the RAAS system is recommended or suggested in all patients with an albumin excretion rate of ≥30mg/ 24 h. The combination of a RAAS blockade with a calcium channel blocker and a diuretic may be effective in attaining the target BP, and in reducing the amount of urinary protein excretion in patients with chronic GN. PMID:26848302

  9. [Neural mechanisms of decision making].

    Science.gov (United States)

    Funahashi, Shintaro

    2008-09-01

    Decision-making plays an important role in the transformation of incoming sensory information to purposeful actions. Many decisions have important biological and social consequences, while others may have a more limited impact on our everyday life. The neural mechanisms of decision-making currently constitute an important subject under intense investigation in the field of cognitive and behavioral neuroscience. Among the investigations, on this topic, those involving sensory discrimination tasks using visual motion have provided a wealth of information about the nature of the neural circuitry required to perform perceptual decision-making. For example, by using a motion discrimination task, Shadlen and Newsome have shown an essential role of area LIP in perceptual decision-making. On the other hand, the importance of reward and reward expectations as determinants of decision-making is increasingly appreciated. In particular, reinforcement learning and economic theories, such as game theory, have provided valuable insights into the brain functions related to decision-making. By using a competitive game analogous to matching pennies against a computer, Lee's group showed that in monkeys, previous selections modulated prefrontal neural activity and that this modulation affected the current choice behavior. The prefrontal cortex has been shown to participate in decision-making in free-choice conditions. By using a task involving the free choice of 1 target from multiple saccade targets, Funahashi's group examined the prefrontal participation in decision-making in a free-choice condition. They compared the activities of prefrontal neurons during an oculomotor delay task with forced-choice conditions and free-choice conditions and identified the neural components reflecting the underlying decision-making processes. Although several attempts have been made to understand the neural mechanisms of decision-making, further investigations are required to fully understand these

  10. Micro- and nanotechnologies for optical neural interfaces

    Directory of Open Access Journals (Sweden)

    Ferruccio ePisanello

    2016-03-01

    Full Text Available In last decade, the possibility to optically interface with the mammalian brain in vivo has allowed unprecedented investigation of functional connectivity of neural circuitry. Together with new genetic and molecular techniques to optically trigger and monitor neural activity, a new generation of optical neural interfaces is being developed, mainly thanks to the exploitation of both bottom-up and top-down nanofabrication approaches. This review discusses the role of nanotechnologies for optical neural interfaces, with particular emphasis on new devices and methodologies for optogenetic control of neural activity and unconventional methods for detection and triggering of action potentials using optically-active colloidal nanoparticles.

  11. Impaired Hippocampal Neuroligin-2 Function by Chronic Stress or Synthetic Peptide Treatment is Linked to Social Deficits and Increased Aggression

    DEFF Research Database (Denmark)

    van der Kooij, Michael A; Fantin, Martina; Kraev, Igor;

    2014-01-01

    display reduced sociability and increased aggression. This occurs along with a reduction of NLGN-2, but not NLGN-1 expression (as shown with Western blot, immunohistochemistry and electron microscopy analyses), throughout the hippocampus and detectable in different layers of the CA1, CA3 and DG subfields...... and are related to similar abnormalities in animal models. Chronic stress increases the likelihood for affective disorders and has been shown to induce changes in neural structure and function in different brain regions, with the hippocampus being highly vulnerable to stress. Previous studies have shown evidence...... of chronic stress-induced changes in the neural E/I balance in the hippocampus. Therefore, we hypothesized that chronic restraint stress would lead to reduced hippocampal NLGN-2 levels, in association with alterations in social behavior. We found that rats submitted to chronic restraint stress in adulthood...

  12. Fuzzy logic systems are equivalent to feedforward neural networks

    Institute of Scientific and Technical Information of China (English)

    李洪兴

    2000-01-01

    Fuzzy logic systems and feedforward neural networks are equivalent in essence. First, interpolation representations of fuzzy logic systems are introduced and several important conclusions are given. Then three important kinds of neural networks are defined, i.e. linear neural networks, rectangle wave neural networks and nonlinear neural networks. Then it is proved that nonlinear neural networks can be represented by rectangle wave neural networks. Based on the results mentioned above, the equivalence between fuzzy logic systems and feedforward neural networks is proved, which will be very useful for theoretical research or applications on fuzzy logic systems or neural networks by means of combining fuzzy logic systems with neural networks.

  13. Metastable dynamics in heterogeneous neural fields.

    Science.gov (United States)

    Schwappach, Cordula; Hutt, Axel; Beim Graben, Peter

    2015-01-01

    We present numerical simulations of metastable states in heterogeneous neural fields that are connected along heteroclinic orbits. Such trajectories are possible representations of transient neural activity as observed, for example, in the electroencephalogram. Based on previous theoretical findings on learning algorithms for neural fields, we directly construct synaptic weight kernels from Lotka-Volterra neural population dynamics without supervised training approaches. We deliver a MATLAB neural field toolbox validated by two examples of one- and two-dimensional neural fields. We demonstrate trial-to-trial variability and distributed representations in our simulations which might therefore be regarded as a proof-of-concept for more advanced neural field models of metastable dynamics in neurophysiological data. PMID:26175671

  14. Hereditary chronic pancreatitis

    Directory of Open Access Journals (Sweden)

    Mössner Joachim

    2007-01-01

    Full Text Available Abstract Hereditary chronic pancreatitis (HCP is a very rare form of early onset chronic pancreatitis. With the exception of the young age at diagnosis and a slower progression, the clinical course, morphological features and laboratory findings of HCP do not differ from those of patients with alcoholic chronic pancreatitis. As well, diagnostic criteria and treatment of HCP resemble that of chronic pancreatitis of other causes. The clinical presentation is highly variable and includes chronic abdominal pain, impairment of endocrine and exocrine pancreatic function, nausea and vomiting, maldigestion, diabetes, pseudocysts, bile duct and duodenal obstruction, and rarely pancreatic cancer. Fortunately, most patients have a mild disease. Mutations in the PRSS1 gene, encoding cationic trypsinogen, play a causative role in chronic pancreatitis. It has been shown that the PRSS1 mutations increase autocatalytic conversion of trypsinogen to active trypsin, and thus probably cause premature, intrapancreatic trypsinogen activation disturbing the intrapancreatic balance of proteases and their inhibitors. Other genes, such as the anionic trypsinogen (PRSS2, the serine protease inhibitor, Kazal type 1 (SPINK1 and the cystic fibrosis transmembrane conductance regulator (CFTR have been found to be associated with chronic pancreatitis (idiopathic and hereditary as well. Genetic testing should only be performed in carefully selected patients by direct DNA sequencing and antenatal diagnosis should not be encouraged. Treatment focuses on enzyme and nutritional supplementation, pain management, pancreatic diabetes, and local organ complications, such as pseudocysts, bile duct or duodenal obstruction. The disease course and prognosis of patients with HCP is unpredictable. Pancreatic cancer risk is elevated. Therefore, HCP patients should strongly avoid environmental risk factors for pancreatic cancer.

  15. The paradox of chronic neuroinflammation, systemic immune suppression, autoimmunity after traumatic chronic spinal cord injury.

    Science.gov (United States)

    Schwab, Jan M; Zhang, Yi; Kopp, Marcel A; Brommer, Benedikt; Popovich, Phillip G

    2014-08-01

    During the transition from acute to chronic stages of recovery after spinal cord injury (SCI), there is an evolving state of immunologic dysfunction that exacerbates the problems associated with the more clinically obvious neurologic deficits. Since injury directly affects cells embedded within the "immune privileged/specialized" milieu of the spinal cord, maladaptive or inefficient responses are likely to occur. Collectively, these responses qualify as part of the continuum of "SCI disease" and are important therapeutic targets to improve neural repair and neurological outcome. Generic immune suppressive therapies have been largely unsuccessful, mostly because inflammation and immunity exert both beneficial (plasticity enhancing) and detrimental (e.g. glia- and neurodegenerative; secondary damage) effects and these functions change over time. Moreover, "compartimentalized" investigations, limited to only intraspinal inflammation and associated cellular or molecular changes in the spinal cord, neglect the reality that the structure and function of the CNS are influenced by systemic immune challenges and that the immune system is 'hardwired' into the nervous system. Here, we consider this interplay during the progression from acute to chronic SCI. Specifically, we survey impaired/non-resolving intraspinal inflammation and the paradox of systemic inflammatory responses in the context of ongoing chronic immune suppression and autoimmunity. The concepts of systemic inflammatory response syndrome (SIRS), compensatory anti-inflammatory response syndrome (CARS) and "neurogenic" spinal cord injury-induced immune depression syndrome (SCI-IDS) are discussed as determinants of impaired "host-defense" and trauma-induced autoimmunity. PMID:25017893

  16. Development and application of a microfabricated multimodal neural catheter for neuroscience.

    Science.gov (United States)

    Li, Chunyan; Wu, Zhizhen; Limnuson, Kanokwan; Cheyuo, Cletus; Wang, Ping; Ahn, Chong H; Narayan, Raj K; Hartings, Jed A

    2016-02-01

    We present a microfabricated neural catheter for real-time continuous monitoring of multiple physiological, biochemical and electrophysiological variables that are critical to the diagnosis and treatment of evolving brain injury. The first generation neural catheter was realized by polyimide-based micromachining and a spiral rolling packaging method. The mechanical design and electrical operation of the microsensors were optimized and tailored for multimodal monitoring in rat brain such that the potential thermal, chemical and electrical crosstalk among the microsensors as well as errors from micro-environmental fluctuations are minimized. In vitro cytotoxicity analyses suggest that the developed neural catheters are minimally toxic to rat cortical neuronal cultures. In addition, in vivo histopathology results showed neither acute nor chronic inflammation for 7 days post implantation. The performance of the neural catheter was assessed in an in vivo needle prick model as a translational replica of a "mini" traumatic brain injury. It successfully monitored the expected transient brain oxygen, temperature, regional cerebral blood flow, and DC potential changes during the passage of spreading depolarization waves. We envisage that the developed multimodal neural catheter can be used to decipher the causes and consequences of secondary brain injury processes with high spatial and temporal resolution while reducing the potential for iatrogenic injury inherent to current use of multiple invasive probes. PMID:26780443

  17. Management of chronic paronychia

    Directory of Open Access Journals (Sweden)

    Vineet Relhan

    2014-01-01

    Full Text Available Chronic paronychia is an inflammatory disorder of the nail folds of a toe or finger presenting as redness, tenderness, and swelling. It is recalcitrant dermatoses seen commonly in housewives and housemaids. It is a multifactorial inflammatory reaction of the proximal nail fold to irritants and allergens. Repeated bouts of inflammation lead to fibrosis of proximal nail fold with poor generation of cuticle, which in turn exposes the nail further to irritants and allergens. Thus, general preventive measures form cornerstone of the therapy. Though previously anti-fungals were the mainstay of therapy, topical steroid creams have been found to be more effective in the treatment of chronic paronychia. In recalcitrant cases, surgical treatment may be resorted to, which includes en bloc excision of the proximal nail fold or an eponychial marsupialization, with or without nail plate removal. Newer therapies and surgical modalities are being employed in the management of chronic paronychia. In this overview, we review recent epidemiological studies, present current thinking on the pathophysiology leading to chronic paronychia, discuss the challenges chronic paronychia presents, and recommend a commonsense approach to management.

  18. Autoantibodies in chronic pancreatitis

    DEFF Research Database (Denmark)

    Rumessen, J J; Marner, B; Pedersen, N T;

    1985-01-01

    In 60 consecutive patients clinically suspected of having chronic pancreatitis the serum concentration of the immunoglobulins (IgA, IgG, IgM), the IgG- and IgA-type non-organ-specific autoantibodies against nuclear material (ANA), smooth and striated muscle, mitochondria, basal membrane, and reti......In 60 consecutive patients clinically suspected of having chronic pancreatitis the serum concentration of the immunoglobulins (IgA, IgG, IgM), the IgG- and IgA-type non-organ-specific autoantibodies against nuclear material (ANA), smooth and striated muscle, mitochondria, basal membrane......, and reticulin, and the IgG- and IgA-type pancreas-specific antibodies against islet cells, acinus cells, and ductal cells (DA) were estimated blindly. In 23 of the patients chronic pancreatitis was verified, whereas chronic pancreatitis was rejected in 37 patients (control group). IgG and IgA were found...... in significantly higher concentrations in the patients with chronic pancreatitis than in the control group but within the normal range. ANA and DA occurred very frequently in both groups but with no statistical difference. Other autoantibodies only occurred sporadically. The findings of this study do not support...

  19. Chronic daily headaches

    Directory of Open Access Journals (Sweden)

    Fayyaz Ahmed

    2012-01-01

    Full Text Available Chronic Daily Headache is a descriptive term that includes disorders with headaches on more days than not and affects 4% of the general population. The condition has a debilitating effect on individuals and society through direct cost to healthcare and indirectly to the economy in general. To successfully manage chronic daily headache syndromes it is important to exclude secondary causes with comprehensive history and relevant investigations; identify risk factors that predict its development and recognise its sub-types to appropriately manage the condition. Chronic migraine, chronic tension-type headache, new daily persistent headache and medication overuse headache accounts for the vast majority of chronic daily headaches. The scope of this article is to review the primary headache disorders. Secondary headaches are not discussed except medication overuse headache that often accompanies primary headache disorders. The article critically reviews the literature on the current understanding of daily headache disorders focusing in particular on recent developments in the treatment of frequent headaches.

  20. Architecture and biological applications of artificial neural networks: a tuberculosis perspective.

    Science.gov (United States)

    Darsey, Jerry A; Griffin, William O; Joginipelli, Sravanthi; Melapu, Venkata Kiran

    2015-01-01

    Advancement of science and technology has prompted researchers to develop new intelligent systems that can solve a variety of problems such as pattern recognition, prediction, and optimization. The ability of the human brain to learn in a fashion that tolerates noise and error has attracted many researchers and provided the starting point for the development of artificial neural networks: the intelligent systems. Intelligent systems can acclimatize to the environment or data and can maximize the chances of success or improve the efficiency of a search. Due to massive parallelism with large numbers of interconnected processers and their ability to learn from the data, neural networks can solve a variety of challenging computational problems. Neural networks have the ability to derive meaning from complicated and imprecise data; they are used in detecting patterns, and trends that are too complex for humans, or other computer systems. Solutions to the toughest problems will not be found through one narrow specialization; therefore we need to combine interdisciplinary approaches to discover the solutions to a variety of problems. Many researchers in different disciplines such as medicine, bioinformatics, molecular biology, and pharmacology have successfully applied artificial neural networks. This chapter helps the reader in understanding the basics of artificial neural networks, their applications, and methodology; it also outlines the network learning process and architecture. We present a brief outline of the application of neural networks to medical diagnosis, drug discovery, gene identification, and protein structure prediction. We conclude with a summary of the results from our study on tuberculosis data using neural networks, in diagnosing active tuberculosis, and predicting chronic vs. infiltrative forms of tuberculosis. PMID:25502388

  1. Microparticle Shedding from Neural Progenitor Cells and Vascular Compartment Cells Is Increased in Ischemic Stroke.

    Directory of Open Access Journals (Sweden)

    Gemma Chiva-Blanch

    Full Text Available Ischemic stroke has shown to induce platelet and endothelial microparticle shedding, but whether stroke induces microparticle shedding from additional blood and vascular compartment cells is unclear. Neural precursor cells have been shown to replace dying neurons at sites of brain injury; however, if neural precursor cell activation is associated to microparticle shedding, and whether this activation is maintained at long term and associates to stroke type and severity remains unknown. We analyzed neural precursor cells and blood and vascular compartment cells microparticle shedding after an acute ischemic stroke.Forty-four patients were included in the study within the first 48h after the onset of stroke. The cerebral lesion size was evaluated at 3-7 days of the stroke. Circulating microparticles from neural precursor cells and blood and vascular compartment cells (platelets, endothelial cells, erythrocytes, leukocytes, lymphocytes, monocytes and smooth muscle cells were analyzed by flow cytometry at the onset of stroke and at 7 and 90 days. Forty-four age-matched high cardiovascular risk subjects without documented vascular disease were used as controls.Compared to high cardiovascular risk controls, patients showed higher number of neural precursor cell- and all blood and vascular compartment cell-derived microparticles at the onset of stroke, and after 7 and 90 days. At 90 days, neural precursor cell-derived microparticles decreased and smooth muscle cell-derived microparticles increased compared to levels at the onset of stroke, but only in those patients with the highest stroke-induced cerebral lesions.Stroke increases blood and vascular compartment cell and neural precursor cell microparticle shedding, an effect that is chronically maintained up to 90 days after the ischemic event. These results show that stroke induces a generalized blood and vascular cell activation and the initiation of neuronal cell repair process after stroke. Larger

  2. Architecture and biological applications of artificial neural networks: a tuberculosis perspective.

    Science.gov (United States)

    Darsey, Jerry A; Griffin, William O; Joginipelli, Sravanthi; Melapu, Venkata Kiran

    2015-01-01

    Advancement of science and technology has prompted researchers to develop new intelligent systems that can solve a variety of problems such as pattern recognition, prediction, and optimization. The ability of the human brain to learn in a fashion that tolerates noise and error has attracted many researchers and provided the starting point for the development of artificial neural networks: the intelligent systems. Intelligent systems can acclimatize to the environment or data and can maximize the chances of success or improve the efficiency of a search. Due to massive parallelism with large numbers of interconnected processers and their ability to learn from the data, neural networks can solve a variety of challenging computational problems. Neural networks have the ability to derive meaning from complicated and imprecise data; they are used in detecting patterns, and trends that are too complex for humans, or other computer systems. Solutions to the toughest problems will not be found through one narrow specialization; therefore we need to combine interdisciplinary approaches to discover the solutions to a variety of problems. Many researchers in different disciplines such as medicine, bioinformatics, molecular biology, and pharmacology have successfully applied artificial neural networks. This chapter helps the reader in understanding the basics of artificial neural networks, their applications, and methodology; it also outlines the network learning process and architecture. We present a brief outline of the application of neural networks to medical diagnosis, drug discovery, gene identification, and protein structure prediction. We conclude with a summary of the results from our study on tuberculosis data using neural networks, in diagnosing active tuberculosis, and predicting chronic vs. infiltrative forms of tuberculosis.

  3. Neural Excitability and Singular Bifurcations.

    Science.gov (United States)

    De Maesschalck, Peter; Wechselberger, Martin

    2015-12-01

    We discuss the notion of excitability in 2D slow/fast neural models from a geometric singular perturbation theory point of view. We focus on the inherent singular nature of slow/fast neural models and define excitability via singular bifurcations. In particular, we show that type I excitability is associated with a novel singular Bogdanov-Takens/SNIC bifurcation while type II excitability is associated with a singular Andronov-Hopf bifurcation. In both cases, canards play an important role in the understanding of the unfolding of these singular bifurcation structures. We also explain the transition between the two excitability types and highlight all bifurcations involved, thus providing a complete analysis of excitability based on geometric singular perturbation theory.

  4. Neural mechanisms of communicative innovation.

    Science.gov (United States)

    Stolk, Arjen; Verhagen, Lennart; Schoffelen, Jan-Mathijs; Oostenveld, Robert; Blokpoel, Mark; Hagoort, Peter; van Rooij, Iris; Toni, Ivan

    2013-09-01

    Human referential communication is often thought as coding-decoding a set of symbols, neglecting that establishing shared meanings requires a computational mechanism powerful enough to mutually negotiate them. Sharing the meaning of a novel symbol might rely on similar conceptual inferences across communicators or on statistical similarities in their sensorimotor behaviors. Using magnetoencephalography, we assess spectral, temporal, and spatial characteristics of neural activity evoked when people generate and understand novel shared symbols during live communicative interactions. Solving those communicative problems induced comparable changes in the spectral profile of neural activity of both communicators and addressees. This shared neuronal up-regulation was spatially localized to the right temporal lobe and the ventromedial prefrontal cortex and emerged already before the occurrence of a specific communicative problem. Communicative innovation relies on neuronal computations that are shared across generating and understanding novel shared symbols, operating over temporal scales independent from transient sensorimotor behavior.

  5. Neural Networks Methodology and Applications

    CERN Document Server

    Dreyfus, Gérard

    2005-01-01

    Neural networks represent a powerful data processing technique that has reached maturity and broad application. When clearly understood and appropriately used, they are a mandatory component in the toolbox of any engineer who wants make the best use of the available data, in order to build models, make predictions, mine data, recognize shapes or signals, etc. Ranging from theoretical foundations to real-life applications, this book is intended to provide engineers and researchers with clear methodologies for taking advantage of neural networks in industrial, financial or banking applications, many instances of which are presented in the book. For the benefit of readers wishing to gain deeper knowledge of the topics, the book features appendices that provide theoretical details for greater insight, and algorithmic details for efficient programming and implementation. The chapters have been written by experts ands seemlessly edited to present a coherent and comprehensive, yet not redundant, practically-oriented...

  6. Neural Networks and Photometric Redshifts

    CERN Document Server

    Tagliaferri, R; Andreon, S; Capozziello, S; Donalek, C; Giordano, G; Tagliaferri, Roberto; Longo, Giuseppe; Andreon, Stefano; Capozziello, Salvatore; Donalek, Ciro; Giordano, Gerardo

    2002-01-01

    We present a neural network based approach to the determination of photometric redshift. The method was tested on the Sloan Digital Sky Survey Early Data Release (SDSS-EDR) reaching an accuracy comparable and, in some cases, better than SED template fitting techniques. Different neural networks architecture have been tested and the combination of a Multi Layer Perceptron with 1 hidden layer (22 neurons) operated in a Bayesian framework, with a Self Organizing Map used to estimate the accuracy of the results, turned out to be the most effective. In the best experiment, the implemented network reached an accuracy of 0.020 (interquartile error) in the range 0

  7. Genetic attack on neural cryptography.

    Science.gov (United States)

    Ruttor, Andreas; Kinzel, Wolfgang; Naeh, Rivka; Kanter, Ido

    2006-03-01

    Different scaling properties for the complexity of bidirectional synchronization and unidirectional learning are essential for the security of neural cryptography. Incrementing the synaptic depth of the networks increases the synchronization time only polynomially, but the success of the geometric attack is reduced exponentially and it clearly fails in the limit of infinite synaptic depth. This method is improved by adding a genetic algorithm, which selects the fittest neural networks. The probability of a successful genetic attack is calculated for different model parameters using numerical simulations. The results show that scaling laws observed in the case of other attacks hold for the improved algorithm, too. The number of networks needed for an effective attack grows exponentially with increasing synaptic depth. In addition, finite-size effects caused by Hebbian and anti-Hebbian learning are analyzed. These learning rules converge to the random walk rule if the synaptic depth is small compared to the square root of the system size.

  8. Next generation neural mass models

    OpenAIRE

    Coombes, Stephen; Byrne, Áine

    2016-01-01

    Neural mass models have been actively used since the 1970s to model the coarse grained activity of large populations of neurons and synapses. They have proven especially useful in understanding brain rhythms. However, although motivated by neurobiological considerations they are phenomenological in nature, and cannot hope to recreate some of the rich repertoire of responses seen in real neuronal tissue. In this chapter we consider the $\\theta$-neuron model that has recently been shown to admi...

  9. Cortical Microstimulation for Neural Prostheses

    OpenAIRE

    Venkatraman, Subramaniam

    2010-01-01

    Brain-controlled prostheses have the potential to improve the quality of life of a large number of paralyzed persons by allowing them to control prosthetic limbs simply by thought. An essential requirement for natural use of such neural prostheses is that the user should be provided with somatosensory feedback from the artificial limb. This can be achieved by electrically stimulating small populations of neurons in the cortex; a process known as cortical microstimulation. This dissertation de...

  10. Learning with heterogeneous neural networks

    OpenAIRE

    Belanche Muñoz, Luis Antonio

    2011-01-01

    This chapter studies a class of neuron models that computes a user-defined similarity function between inputs and weights. The neuron transfer function is formed by composition of an adapted logistic function with the quasi-linear mean of the partial input-weight similarities. The neuron model is capable of dealing directly with mixtures of continuous as well as discrete quantities, among other data types and there is provision for missing values. An artificial neural network using these n...

  11. Neural Prostheses and Brain Plasticity

    OpenAIRE

    Fallon, James B.; Irvine, Dexter R. F.; Shepherd, Robert K.

    2009-01-01

    The success of modern neural prostheses is dependent on a complex interplay between the devices’ hardware and software and the dynamic environment in which the devices operate: the patient’s body or ‘wetware’. Over 110,000 severe/profoundly deaf individuals presently receive information enabling auditory awareness and speech perception from cochlear implants. The cochlear implant therefore provides a useful case study for a review of the complex interactions between hardware, software and wet...

  12. Neural crest migration: trailblazing ahead

    OpenAIRE

    Kulesa, Paul M.; McLennan, Rebecca

    2015-01-01

    Embryonic cell migration patterns are amazingly complex in the timing and spatial distribution of cells throughout the vertebrate landscape. However, advances in in vivo visualization, cell interrogation, and computational modeling are extracting critical features that underlie the mechanistic nature of these patterns. The focus of this review highlights recent advances in the study of the highly invasive neural crest cells and their migratory patterns during embryonic development. We discuss...

  13. Handbook on neural information processing

    CERN Document Server

    Maggini, Marco; Jain, Lakhmi

    2013-01-01

    This handbook presents some of the most recent topics in neural information processing, covering both theoretical concepts and practical applications. The contributions include:                         Deep architectures                         Recurrent, recursive, and graph neural networks                         Cellular neural networks                         Bayesian networks                         Approximation capabilities of neural networks                         Semi-supervised learning                         Statistical relational learning                         Kernel methods for structured data                         Multiple classifier systems                         Self organisation and modal learning                         Applications to ...

  14. Producing Insulin from Neural Cells

    OpenAIRE

    Yuichi Hori; Xueying Gu; Xiaodong Xie; Kim, Seung K.

    2005-01-01

    BACKGROUND: Success in islet-transplantation-based therapies for type 1 diabetes, coupled with a worldwide shortage of transplant-ready islets, has motivated efforts to develop renewable sources of islet-replacement tissue. Islets and neurons share features, including common developmental programs, and in some species brain neurons are the principal source of systemic insulin. METHODS AND FINDINGS: Here we show that brain-derived human neural progenitor cells, exposed to a series of signals t...

  15. Neural substrates of driving behaviour

    OpenAIRE

    Spiers, H. J.; Maguire, E. A.

    2007-01-01

    Driving a vehicle is an indispensable daily behaviour for many people, yet we know little about how it is supported by the brain. Given that driving in the real world involves the engagement of many cognitive systems that rapidly change to meet varying environmental demands, identifying its neural basis presents substantial problems. By employing a unique combination of functional magnetic resonance imaging (fMRI), an accurate interactive virtual simulation of a bustling central London (UK) a...

  16. Neural Stem Cells and Glioblastoma

    OpenAIRE

    Rispoli, Rossella; Conti, Carlo; Celli, Paolo; Caroli, Emanuela; Carletti, Sandro

    2014-01-01

    Glioblastoma multiforme represents one of the most common brain cancers with a rather heterogeneous cellular composition, as indicated by the term “multiforme". Recent reports have described the isolation and identification of cancer neural stem cells from human adult glioblastoma multiforme, which possess the capacity to establish, sustain, and expand these tumours, even under the challenging settings posed by serial transplantation experiments. Our study focused on the distribution of neura...

  17. Omalizumab for chronic urticaria

    DEFF Research Database (Denmark)

    Ivyanskiy, Ilya; Sand, Carsten; Thomsen, Simon Francis

    2012-01-01

    urticaria. We present a case series of 19 patients with chronic urticaria treated in a university department with omalizumab and give an overview of the existing literature comprising an additional 59 cases as well as a total of 139 patients enrolled in two randomized controlled trials comparing omalizumab...... with placebo. The collective evidence points to omalizumab as a safe and effective treatment option for patients with chronic urticaria who do not sufficiently respond to standard therapy as recommended by existing guidelines.......Omalizumab is a recombinant humanized monoclonal antibody that blocks the high-affinity Fc receptor of IgE. Omalizumab has been approved for the treatment of moderate to severe asthma; however, there is currently more and more data showing promising results in the management also of chronic...

  18. Neural prostheses and brain plasticity

    Science.gov (United States)

    Fallon, James B.; Irvine, Dexter R. F.; Shepherd, Robert K.

    2009-12-01

    The success of modern neural prostheses is dependent on a complex interplay between the devices' hardware and software and the dynamic environment in which the devices operate: the patient's body or 'wetware'. Over 120 000 severe/profoundly deaf individuals presently receive information enabling auditory awareness and speech perception from cochlear implants. The cochlear implant therefore provides a useful case study for a review of the complex interactions between hardware, software and wetware, and of the important role of the dynamic nature of wetware. In the case of neural prostheses, the most critical component of that wetware is the central nervous system. This paper will examine the evidence of changes in the central auditory system that contribute to changes in performance with a cochlear implant, and discuss how these changes relate to electrophysiological and functional imaging studies in humans. The relationship between the human data and evidence from animals of the remarkable capacity for plastic change of the central auditory system, even into adulthood, will then be examined. Finally, we will discuss the role of brain plasticity in neural prostheses in general.

  19. Neural Representations of Physics Concepts.

    Science.gov (United States)

    Mason, Robert A; Just, Marcel Adam

    2016-06-01

    We used functional MRI (fMRI) to assess neural representations of physics concepts (momentum, energy, etc.) in juniors, seniors, and graduate students majoring in physics or engineering. Our goal was to identify the underlying neural dimensions of these representations. Using factor analysis to reduce the number of dimensions of activation, we obtained four physics-related factors that were mapped to sets of voxels. The four factors were interpretable as causal motion visualization, periodicity, algebraic form, and energy flow. The individual concepts were identifiable from their fMRI signatures with a mean rank accuracy of .75 using a machine-learning (multivoxel) classifier. Furthermore, there was commonality in participants' neural representation of physics; a classifier trained on data from all but one participant identified the concepts in the left-out participant (mean accuracy = .71 across all nine participant samples). The findings indicate that abstract scientific concepts acquired in an educational setting evoke activation patterns that are identifiable and common, indicating that science education builds abstract knowledge using inherent, repurposed brain systems.

  20. Neural signatures of intransitive preferences

    Directory of Open Access Journals (Sweden)

    Tobias Kalenscher

    2010-06-01

    Full Text Available It is often assumed that decisions are made by rank-ordering and thus comparing the (subjective value of available choice options. Rank-ordering requires that alternatives are mentally represented at least on an ordinal scale. Because one alternative cannot be at the same time better or worse than another alternative, choices should satisfy transitivity (if alternative A is preferred over B, and B is preferred over C, A should be preferred over C. Yet, individuals often demonstrate striking violations of transitivity (preferring C over A. We used functional magnetic resonance imaging to study the neural correlates of intransitive choices between gambles varying in magnitude and probability of financial gains. Behavioral intransitivities were common. They occurred because participants did not evaluate the gambles independently, but in comparison with the alternative gamble presented. Neural value signals in prefrontal and parietal cortex were not ordinal-scaled and transitive, but reflected fluctuations in the gambles’ local, pairing-dependent preference-ranks. Detailed behavioural analysis of gamble preferences showed that, depending on the difference in the offered gambles’ attributes, participants gave variable priority to magnitude or probability and thus shifted between preferring richer or safer gambles. The variable, context-dependent priority given to magnitude and probability was tracked by insula (magnitude and posterior cingulate (probability. Their activation-balance may reflect the individual decision rules leading to intransitivities. Thus, the phenomenon of intransitivity is reflected in the organisation of the neural systems involved in risky decision-making.

  1. [Neural basis of maternal behavior].

    Science.gov (United States)

    Noriuchi, Madoka; Kikuchi, Yoshiaki

    2013-01-01

    Maternal love, which may be the core of maternal behavior, is essential for the mother-infant attachment relationship and is important for the infant's development and mental health. However, little has been known about these neural mechanisms in human mothers. We examined patterns of maternal brain activation in response to infant cues using video clips. We performed functional magnetic resonance imaging (fMRI) measurements while 13 mothers viewed video clips, with no sound, of their own infant and other infants of approximately 16 months of age who demonstrated two different attachment behaviors (smiling at the infant's mother and crying for her). We found that a limited number of the mother's brain areas were specifically involved in recognition of the mother's own infant, namely orbitofrontal cortex (OFC). and periaqueductal gray, anterior insula, and dorsal and ventrolateral parts of putamen. Additionally, we found the strong and specific mother's brain response for the mother's own infant's distress. The differential neural activation pattern was found in the dorsal region of OFC, caudate nucleus, right inferior frontal gyrus, dorsomedial prefrontal cortex (PFC), anterior cingulate, posterior cingulate, posterior superior temporal sulcus, and dorsolateral PFC. Our results showed the highly elaborate neural mechanism mediating maternal love and diverse and complex maternal behaviors for vigilant protectiveness.

  2. Photon spectrometry utilizing neural networks

    International Nuclear Information System (INIS)

    Having in mind the time spent on the uneventful work of characterization of the radiation beams used in a ionizing radiation metrology laboratory, the Metrology Service of the Centro Regional de Ciencias Nucleares do Nordeste - CRCN-NE verified the applicability of artificial intelligence (artificial neural networks) to perform the spectrometry in photon fields. For this, was developed a multilayer neural network, as an application for the classification of patterns in energy, associated with a thermoluminescent dosimetric system (TLD-700 and TLD-600). A set of dosimeters was initially exposed to various well known medium energies, between 40 keV and 1.2 MeV, coinciding with the beams determined by ISO 4037 standard, for the dose of 10 mSv in the quantity Hp(10), on a chest phantom (ISO slab phantom) with the purpose of generating a set of training data for the neural network. Subsequently, a new set of dosimeters irradiated in unknown energies was presented to the network with the purpose to test the method. The methodology used in this work was suitable for application in the classification of energy beams, having obtained 100% of the classification performed. (authors)

  3. Neural Representations of Physics Concepts.

    Science.gov (United States)

    Mason, Robert A; Just, Marcel Adam

    2016-06-01

    We used functional MRI (fMRI) to assess neural representations of physics concepts (momentum, energy, etc.) in juniors, seniors, and graduate students majoring in physics or engineering. Our goal was to identify the underlying neural dimensions of these representations. Using factor analysis to reduce the number of dimensions of activation, we obtained four physics-related factors that were mapped to sets of voxels. The four factors were interpretable as causal motion visualization, periodicity, algebraic form, and energy flow. The individual concepts were identifiable from their fMRI signatures with a mean rank accuracy of .75 using a machine-learning (multivoxel) classifier. Furthermore, there was commonality in participants' neural representation of physics; a classifier trained on data from all but one participant identified the concepts in the left-out participant (mean accuracy = .71 across all nine participant samples). The findings indicate that abstract scientific concepts acquired in an educational setting evoke activation patterns that are identifiable and common, indicating that science education builds abstract knowledge using inherent, repurposed brain systems. PMID:27113732

  4. Neural Correlates of Predictive Saccades.

    Science.gov (United States)

    Lee, Stephen M; Peltsch, Alicia; Kilmade, Maureen; Brien, Donald C; Coe, Brian C; Johnsrude, Ingrid S; Munoz, Douglas P

    2016-08-01

    Every day we generate motor responses that are timed with external cues. This phenomenon of sensorimotor synchronization has been simplified and studied extensively using finger tapping sequences that are executed in synchrony with auditory stimuli. The predictive saccade paradigm closely resembles the finger tapping task. In this paradigm, participants follow a visual target that "steps" between two fixed locations on a visual screen at predictable ISIs. Eventually, the time from target appearance to saccade initiation (i.e., saccadic RT) becomes predictive with values nearing 0 msec. Unlike the finger tapping literature, neural control of predictive behavior described within the eye movement literature has not been well established and is inconsistent, especially between neuroimaging and patient lesion studies. To resolve these discrepancies, we used fMRI to investigate the neural correlates of predictive saccades by contrasting brain areas involved with behavior generated from the predictive saccade task with behavior generated from a reactive saccade task (saccades are generated toward targets that are unpredictably timed). We observed striking differences in neural recruitment between reactive and predictive conditions: Reactive saccades recruited oculomotor structures, as predicted, whereas predictive saccades recruited brain structures that support timing in motor responses, such as the crus I of the cerebellum, and structures commonly associated with the default mode network. Therefore, our results were more consistent with those found in the finger tapping literature. PMID:27054397

  5. Chronic urticaria: recent advances.

    Science.gov (United States)

    Greaves, Malcolm W; Tan, Kian Teo

    2007-10-01

    Chronic urticaria is an umbrella term, which encompasses physical urticarias, chronic "idiopathic" urticaria and urticarial vasculitis. It is important to recognize patients with physical urticarias as the investigation and treatment differs in important ways from patients with idiopathic chronic urticaria or urticarial vasculitis. Although relatively uncommon, urticarial vasculitis is an important diagnosis to make and requires histological confirmation by biopsy. Underlying systemic disease and systemic involvement, especially of the kidneys, should be sought. It is now recognized that chronic "idiopathic" urticaria includes a subset with an autoimmune basis caused by circulating autoantibodies against the high affinity IgE receptor (FceR1) and less commonly against IgE. Although the autologous serum skin test has been proven useful in prompting search for and characterization of circulating wheal-producing factors in chronic urticaria, its specificity as a screening test for presence of functional anti-FceR1 is low, and confirmation by demonstration of histamine-releasing activity in the patient's serum must be the benchmark test in establishing this diagnosis. Improved screening tests are being sought; for example, ability of the chronic urticaria patient's serum to evoke expression of CD 203c on donor human basophils is showing some promise. The strong association between autoimmune thyroid disease and autoimmune urticaria is also an area of ongoing research. Drug treatment continues to be centered on the H1 antihistamines, and the newer second-generation compounds appear to be safe and effective even in off-label dosage. Use of systemic steroids should be confined to special circumstances such as tapering regimens for acute flare-ups. Use of leukotriene antagonists is becoming popular, but the evidence for efficacy is conflicting. Cyclosporin is also effective and can be used in selected cases of autoimmune urticaria, and it is also effective in non

  6. Chronic lead poisoning

    Energy Technology Data Exchange (ETDEWEB)

    Hess, K.; Straub, P.W.

    1974-02-19

    A detailed description is given of the complex pathological picture observed in the case of a worker with 30 years' occupational exposure to lead in an accumulator factory (evolution of the disease, clinical findings, autopsy). In spite of a typical clinical picture, lead is not held responsible for the terminal encephalopathy, in view of the fact that Alzheimer's syndrome was discovered at autopsy. However, the neurovegetative asthenia and progressive kidney disease without hypertonia, but with uraemia, which preceded the encephalopathy are in all probability due to chronic lead poisoning. The article discusses the diagnosis and symptomatology of chronic lead poisoning, encephalopathy and kidney disease.

  7. Omalizumab for chronic urticaria

    DEFF Research Database (Denmark)

    Ivyanskiy, Ilya; Sand, Carsten; Thomsen, Simon Francis

    2012-01-01

    urticaria. We present a case series of 19 patients with chronic urticaria treated in a university department with omalizumab and give an overview of the existing literature comprising an additional 59 cases as well as a total of 139 patients enrolled in two randomized controlled trials comparing omalizumab......Omalizumab is a recombinant humanized monoclonal antibody that blocks the high-affinity Fc receptor of IgE. Omalizumab has been approved for the treatment of moderate to severe asthma; however, there is currently more and more data showing promising results in the management also of chronic...

  8. Chronic unilateral vestibular loss.

    Science.gov (United States)

    Kerber, K A

    2016-01-01

    Chronic unilateral vestibular loss is a condition defined by the presence of reduced function of the peripheral vestibular system on one side, which has generally persisted for 3 or more months. The deficit is demonstrated by a reduction of the vestibular-ocular reflex either at the bedside or on laboratory testing. Though some patients with chronic vestibular loss have disabling symptoms, others are asymptomatic. Causes include a viral/postviral disorder, Menière's disease, structural lesions, ischemia, and trauma. Any other systemic or genetic disorder would be expected to involve both sides at some point. PMID:27638074

  9. [Histaminergic angioedema and chronic urticaria].

    Science.gov (United States)

    Hacard, Florence; Nosbaum, Audrey; Bensaid, Benoit; Nicolas, Jean-François; Augey, Frédéric; Goujon, Catherine; Bérard, Frédéric

    2015-01-01

    Most angioedemas are histaminergic and correspond to deep urticarial swelling. Recurrent histaminergic angioedema led to the diagnosis of chronic urticaria, even when there are no superficial associated hives. Chronic urticaria is a benign disease, and autoimmune in 40 % of cases. The occurrence of angioedema in chronic urticaria is not a sign of severity. The occurrence of angioedema in chronic urticaria is associated with a longer duration of urticarial disease. NSAIDs and/or systemic corticotherapy are classic triggers of angioedema in chronic urticaria. In the absence of clinical endpoints, there is no need to make further assessment in chronic urticaria good responders to antihistamines.

  10. Effects of childhood poverty and chronic stress on emotion regulatory brain function in adulthood.

    Science.gov (United States)

    Kim, Pilyoung; Evans, Gary W; Angstadt, Michael; Ho, S Shaun; Sripada, Chandra S; Swain, James E; Liberzon, Israel; Phan, K Luan

    2013-11-12

    Childhood poverty has pervasive negative physical and psychological health sequelae in adulthood. Exposure to chronic stressors may be one underlying mechanism for childhood poverty-health relations by influencing emotion regulatory systems. Animal work and human cross-sectional studies both suggest that chronic stressor exposure is associated with amygdala and prefrontal cortex regions important for emotion regulation. In this longitudinal functional magnetic resonance imaging study of 49 participants, we examined associations between childhood poverty at age 9 and adult neural circuitry activation during emotion regulation at age 24. To test developmental timing, concurrent, adult income was included as a covariate. Adults with lower family income at age 9 exhibited reduced ventrolateral and dorsolateral prefrontal cortex activity and failure to suppress amygdala activation during effortful regulation of negative emotion at age 24. In contrast to childhood income, concurrent adult income was not associated with neural activity during emotion regulation. Furthermore, chronic stressor exposure across childhood (at age 9, 13, and 17) mediated the relations between family income at age 9 and ventrolateral and dorsolateral prefrontal cortex activity at age 24. The findings demonstrate the significance of childhood chronic stress exposures in predicting neural outcomes during emotion regulation in adults who grew up in poverty.

  11. Chronic renal failure and macrogenitalia associated with genitourinary neurofibromatosis.

    Science.gov (United States)

    Dündar, Bumin Nuri; Oktem, Faruk; Armağan, Abdullah; Dündar, Nihal Olgaç; Bircan, Sema; Yesildag, Ahmet

    2010-02-01

    Neurofibromatosis (NF) is a genetic disorder of the nervous system that primarily affects the development and growth of neural cell tissues. This disorder is characterized by the development of various tumors, including neurofibromas, neuroniomas, malignant and benign peripheral nerve sheath tumors, and meningiomas. Accompanying skin changes and bone deformities are also common in NF. However, genitourinary involvement in NF is a rare condition, and penile enlargement has been reported only in a few males with plexiform NF. We report a 6-year-old boy with chronic renal failure associated with plexiform neurofibromas of the bladder and prostatic urethra which led to urinary obstruction and macrogenitalia due to genitourinary NF. PMID:19826840

  12. Democratic organization of the thalamocortical neural ensembles in nociceptive signal processing

    Institute of Scientific and Technical Information of China (English)

    LUO Fei; WANG Jin-Yan

    2008-01-01

    Acute pain is a warning protective sensation for any impending harm. However, chronic pain syndromes are often resistant diseases that may consume large amount of health care costs. It has been suggested by recent studies that pain perception may be formed in central neural networks via large-scale coding processes, which involves sensory, affective, and cognitive dimensions. Many central areas are involved in these processes, including structures from the spinal cord, the brain stem, the limbic system, to the cortices. Thus, chronic painful diseases may be the result of some abnormal coding within this network. A thorough investigation of coding mechanism of pain within the central neuromatrix will bring us great insight into the mechanisms responsible for the development of chronic pain, hence leading to novel therapeutic interventions for pain management.

  13. Coherence resonance in bursting neural networks

    Science.gov (United States)

    Kim, June Hoan; Lee, Ho Jun; Min, Cheol Hong; Lee, Kyoung J.

    2015-10-01

    Synchronized neural bursts are one of the most noticeable dynamic features of neural networks, being essential for various phenomena in neuroscience, yet their complex dynamics are not well understood. With extrinsic electrical and optical manipulations on cultured neural networks, we demonstrate that the regularity (or randomness) of burst sequences is in many cases determined by a (few) low-dimensional attractor(s) working under strong neural noise. Moreover, there is an optimal level of noise strength at which the regularity of the interburst interval sequence becomes maximal—a phenomenon of coherence resonance. The experimental observations are successfully reproduced through computer simulations on a well-established neural network model, suggesting that the same phenomena may occur in many in vivo as well as in vitro neural networks.

  14. Coherence resonance in bursting neural networks.

    Science.gov (United States)

    Kim, June Hoan; Lee, Ho Jun; Min, Cheol Hong; Lee, Kyoung J

    2015-10-01

    Synchronized neural bursts are one of the most noticeable dynamic features of neural networks, being essential for various phenomena in neuroscience, yet their complex dynamics are not well understood. With extrinsic electrical and optical manipulations on cultured neural networks, we demonstrate that the regularity (or randomness) of burst sequences is in many cases determined by a (few) low-dimensional attractor(s) working under strong neural noise. Moreover, there is an optimal level of noise strength at which the regularity of the interburst interval sequence becomes maximal-a phenomenon of coherence resonance. The experimental observations are successfully reproduced through computer simulations on a well-established neural network model, suggesting that the same phenomena may occur in many in vivo as well as in vitro neural networks.

  15. Neural origins of psychosocial functioning impairments in major depression.

    Science.gov (United States)

    Pulcu, Erdem; Elliott, Rebecca

    2015-09-01

    Major depressive disorder, a complex neuropsychiatric condition, is associated with psychosocial functioning impairments that could become chronic even after symptoms remit. Social functioning impairments in patients could also pose coping difficulties to individuals around them. In this Personal View, we trace the potential neurobiological origins of these impairments down to three candidate domains-namely, social perception and emotion processing, motivation and reward value processing, and social decision making. We argue that the neural basis of abnormalities in these domains could be detectable at different temporal stages during social interactions (eg, before and after decision stages), particularly within frontomesolimbic networks (ie, frontostriatal and amygdala-striatal circuitries). We review some of the experimental designs used to probe these circuits and suggest novel, integrative approaches. We propose that an understanding of the interactions between these domains could provide valuable insights for the clinical stratification of major depressive disorder subtypes and might inform future developments of novel treatment options in return. PMID:26360902

  16. Secure Key Exchange using Neural Network

    OpenAIRE

    Vineeta Soni

    2014-01-01

    Any cryptographic system is used to exchange confidential information securely over the public channel without any leakage of information to the unauthorized users. Neural networks can be used to generate a common secret key because the processes involve in Cryptographic system requires large computational power and very complex. Moreover Diffi hellman key exchange is suffered from man-in –the middle attack. For overcome this problem neural networks can be used.Two neural netwo...

  17. Fast Algorithms for Convolutional Neural Networks

    OpenAIRE

    Lavin, Andrew; Gray, Scott

    2015-01-01

    Deep convolutional neural networks take GPU days of compute time to train on large data sets. Pedestrian detection for self driving cars requires very low latency. Image recognition for mobile phones is constrained by limited processing resources. The success of convolutional neural networks in these situations is limited by how fast we can compute them. Conventional FFT based convolution is fast for large filters, but state of the art convolutional neural networks use small, 3x3 filters. We ...

  18. Introduction to Concepts in Artificial Neural Networks

    Science.gov (United States)

    Niebur, Dagmar

    1995-01-01

    This introduction to artificial neural networks summarizes some basic concepts of computational neuroscience and the resulting models of artificial neurons. The terminology of biological and artificial neurons, biological and machine learning and neural processing is introduced. The concepts of supervised and unsupervised learning are explained with examples from the power system area. Finally, a taxonomy of different types of neurons and different classes of artificial neural networks is presented.

  19. Process Neural Networks Theory and Applications

    CERN Document Server

    He, Xingui

    2010-01-01

    "Process Neural Networks - Theory and Applications" proposes the concept and model of a process neural network for the first time, showing how it expands the mapping relationship between the input and output of traditional neural networks, and enhancing the expression capability for practical problems, with broad applicability to solving problems relating to process in practice. Some theoretical problems such as continuity, functional approximation capability, and computing capability, are strictly proved. The application methods, network construction principles, and optimization alg

  20. Adaptive optimization and control using neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Mead, W.C.; Brown, S.K.; Jones, R.D.; Bowling, P.S.; Barnes, C.W.

    1993-10-22

    Recent work has demonstrated the ability of neural-network-based controllers to optimize and control machines with complex, non-linear, relatively unknown control spaces. We present a brief overview of neural networks via a taxonomy illustrating some capabilities of different kinds of neural networks. We present some successful control examples, particularly the optimization and control of a small-angle negative ion source.

  1. Spatiotemporal dynamics of continuum neural fields

    Science.gov (United States)

    Bressloff, Paul C.

    2012-01-01

    We survey recent analytical approaches to studying the spatiotemporal dynamics of continuum neural fields. Neural fields model the large-scale dynamics of spatially structured biological neural networks in terms of nonlinear integrodifferential equations whose associated integral kernels represent the spatial distribution of neuronal synaptic connections. They provide an important example of spatially extended excitable systems with nonlocal interactions and exhibit a wide range of spatially coherent dynamics including traveling waves oscillations and Turing-like patterns.

  2. Information Theory for Analyzing Neural Networks

    OpenAIRE

    Sørngård, Bård

    2014-01-01

    The goal of this thesis was to investigate how information theory could be used to analyze artificial neural networks. For this purpose, two problems, a classification problem and a controller problem were considered. The classification problem was solved with a feedforward neural network trained with backpropagation, the controller problem was solved with a continuous-time recurrent neural network optimized with evolution.Results from the classification problem shows that mutual information ...

  3. Sequential optimizing investing strategy with neural networks

    OpenAIRE

    Ryo Adachi; Akimichi Takemura

    2010-01-01

    In this paper we propose an investing strategy based on neural network models combined with ideas from game-theoretic probability of Shafer and Vovk. Our proposed strategy uses parameter values of a neural network with the best performance until the previous round (trading day) for deciding the investment in the current round. We compare performance of our proposed strategy with various strategies including a strategy based on supervised neural network models and show that our procedure is co...

  4. Neural crest contributions to the lamprey head

    Science.gov (United States)

    McCauley, David W.; Bronner-Fraser, Marianne

    2003-01-01

    The neural crest is a vertebrate-specific cell population that contributes to the facial skeleton and other derivatives. We have performed focal DiI injection into the cranial neural tube of the developing lamprey in order to follow the migratory pathways of discrete groups of cells from origin to destination and to compare neural crest migratory pathways in a basal vertebrate to those of gnathostomes. The results show that the general pathways of cranial neural crest migration are conserved throughout the vertebrates, with cells migrating in streams analogous to the mandibular and hyoid streams. Caudal branchial neural crest cells migrate ventrally as a sheet of cells from the hindbrain and super-pharyngeal region of the neural tube and form a cylinder surrounding a core of mesoderm in each pharyngeal arch, similar to that seen in zebrafish and axolotl. In addition to these similarities, we also uncovered important differences. Migration into the presumptive caudal branchial arches of the lamprey involves both rostral and caudal movements of neural crest cells that have not been described in gnathostomes, suggesting that barriers that constrain rostrocaudal movement of cranial neural crest cells may have arisen after the agnathan/gnathostome split. Accordingly, neural crest cells from a single axial level contributed to multiple arches and there was extensive mixing between populations. There was no apparent filling of neural crest derivatives in a ventral-to-dorsal order, as has been observed in higher vertebrates, nor did we find evidence of a neural crest contribution to cranial sensory ganglia. These results suggest that migratory constraints and additional neural crest derivatives arose later in gnathostome evolution.

  5. The Chronic Responsibility

    DEFF Research Database (Denmark)

    Ravn, Iben M; Frederiksen, Kirsten; Beedholm, Kirsten

    2016-01-01

    behavior to be the main factors influencing susceptibility to chronic diseases. We argue that this discursive construction naturalizes a division between people who can actively manage responsible self-care and those who cannot. Such discourses may serve the interests of those patients who are already...

  6. Chronic fatigue syndrome.

    NARCIS (Netherlands)

    Prins, J.B.; Meer, J.W.M. van der; Bleijenberg, G.

    2006-01-01

    During the past two decades, there has been heated debate about chronic fatigue syndrome (CFS) among researchers, practitioners, and patients. Few illnesses have been discussed so extensively. The existence of the disorder has been questioned, its underlying pathophysiology debated, and an effective

  7. Chronic Myeloproliferative Neoplasms Treatment

    Science.gov (United States)

    ... Cancers by Body Location Childhood Cancers Adolescent & Young Adult Cancers Metastatic Cancer Recurrent Cancer Research NCI’s Role in ... on the hands and feet. Muscle pain. Itching. Diarrhea . Stages of Chronic Myeloproliferative Neoplasms Key Points There is no standard staging system ...

  8. CHRONIC PROBLEM FAMILIES.

    Science.gov (United States)

    STONE, EDWARD

    THE REPORT POINTS OUT THAT, IN GENERAL, CHRONIC PROBLEM PARENTS GREW UP IN ENVIRONMENTS OF EMOTIONAL IMPOVERISHMENT, INCONSISTENCY, CONFUSION, AND DISORDER, OFTEN WITH DEPRIVATION OF FOOD, CLOTHING, AND SHELTER. THESE PARENTS CATEGORIZE PEOPLE AS THOSE WHO GIVE AND THOSE WHO TAKE. THEY BLAME THEIR PROBLEMS ON EXTERNAL CIRCUMSTANCES NOT UNDER THEIR…

  9. What Is Chronic Pain?

    Medline Plus

    Full Text Available ... manageable, but chronic pain is different. And because it is different, we need to think about it in very different ways. Ed Covington, M.D.: ... no apparent physical injury or illness to explain it. The physician and the patient are accustomed to ...

  10. Functional Magnetic Resonance Imaging of Chronic Dysarthric Speech after Childhood Brain Injury: Reliance on a Left-Hemisphere Compensatory Network

    Science.gov (United States)

    Morgan, Angela T.; Masterton, Richard; Pigdon, Lauren; Connelly, Alan; Liegeois, Frederique J.

    2013-01-01

    Severe and persistent speech disorder, dysarthria, may be present for life after brain injury in childhood, yet the neural correlates of this chronic disorder remain elusive. Although abundant literature is available on language reorganization after lesions in childhood, little is known about the capacity of motor speech networks to reorganize…

  11. Altered functional connectivity of prefrontal cortex in chronic heroin abusers

    Institute of Scientific and Technical Information of China (English)

    Yinbao Qi; Xianming Fu; Ruobing Qian; Chaoshi Niu; Xiangpin Wei

    2011-01-01

    In this study, we investigated alterations in the resting-state functional connectivity of the pre-frontal cortex in chronic heroin abusers using functional magnetic resonance imaging. We found that, compared with normal controls, in heroin abusers the left prefrontal cortex showed decreased functional connectivity with the left hippocampus, right anterior cingulate, left middle frontal gyrus, right middle frontal gyrus and right precuneus. However, the right prefrontal cortex showed decreased functional connectivity with the left orbital frontal cortex and the left middle frontal gyrus in chronic heroin abusers. These alterations of resting-state functional connectivity in the prefrontal cortices of heroin abusers suggest that their frontal executive neural network may be impaired, and that this may contribute to their continued heroin abuse and relapse after withdrawal.

  12. NeuroMEMS: Neural Probe Microtechnologies

    Directory of Open Access Journals (Sweden)

    Sam Musallam

    2008-10-01

    Full Text Available Neural probe technologies have already had a significant positive effect on our understanding of the brain by revealing the functioning of networks of biological neurons. Probes are implanted in different areas of the brain to record and/or stimulate specific sites in the brain. Neural probes are currently used in many clinical settings for diagnosis of brain diseases such as seizers, epilepsy, migraine, Alzheimer’s, and dementia. We find these devices assisting paralyzed patients by allowing them to operate computers or robots using their neural activity. In recent years, probe technologies were assisted by rapid advancements in microfabrication and microelectronic technologies and thus are enabling highly functional and robust neural probes which are opening new and exciting avenues in neural sciences and brain machine interfaces. With a wide variety of probes that have been designed, fabricated, and tested to date, this review aims to provide an overview of the advances and recent progress in the microfabrication techniques of neural probes. In addition, we aim to highlight the challenges faced in developing and implementing ultralong multi-site recording probes that are needed to monitor neural activity from deeper regions in the brain. Finally, we review techniques that can improve the biocompatibility of the neural probes to minimize the immune response and encourage neural growth around the electrodes for long term implantation studies.

  13. Artificial neural networks in nuclear medicine

    International Nuclear Information System (INIS)

    An analysis of the accessible literature on the diagnostic applicability of artificial neural networks in coronary artery disease and pulmonary embolism appears to be comparative to the diagnosis of experienced doctors dealing with nuclear medicine. Differences in the employed models of artificial neural networks indicate a constant search for the most optimal parameters, which could guarantee the ultimate accuracy in neural network activity. The diagnostic potential within systems containing artificial neural networks proves this calculation tool to be an independent or/and an additional device for supporting a doctor's diagnosis of artery disease and pulmonary embolism. (author)

  14. Fuzzy neural network theory and application

    CERN Document Server

    Liu, Puyin

    2004-01-01

    This book systematically synthesizes research achievements in the field of fuzzy neural networks in recent years. It also provides a comprehensive presentation of the developments in fuzzy neural networks, with regard to theory as well as their application to system modeling and image restoration. Special emphasis is placed on the fundamental concepts and architecture analysis of fuzzy neural networks. The book is unique in treating all kinds of fuzzy neural networks and their learning algorithms and universal approximations, and employing simulation examples which are carefully designed to he

  15. Initial conditions in the neural field model

    CERN Document Server

    Valdes-Hernandez, Pedro A

    2016-01-01

    In spite of the large amount of existing neural models in the literature, there is a lack of a systematic review of the possible effect of choosing different initial conditions on the dynamic evolution of neural systems. In this short review we intend to give insights into this topic by discussing some published examples. First, we briefly introduce the different ingredients of a neural dynamical model. Secondly, we introduce some concepts used to describe the dynamic behavior of neural models, namely phase space and its portraits, time series, spectra, multistability and bifurcations. We end with an analysis of the irreversibility of processes and its implications on the functioning of normal and pathological brains.

  16. Practical neural network recipies in C++

    CERN Document Server

    Masters

    2014-01-01

    This text serves as a cookbook for neural network solutions to practical problems using C++. It will enable those with moderate programming experience to select a neural network model appropriate to solving a particular problem, and to produce a working program implementing that network. The book provides guidance along the entire problem-solving path, including designing the training set, preprocessing variables, training and validating the network, and evaluating its performance. Though the book is not intended as a general course in neural networks, no background in neural works is assum

  17. Application of neural networks in coastal engineering

    Digital Repository Service at National Institute of Oceanography (India)

    Mandal, S.

    neural networks, J of computer aided civil and infrastructural engineering, (UK), 13, 113-120. Deo, MC and Naidu, CS (1999) Real time wave forecasting using neural networks, Ocean Engineering, 26, 191-203. Deo, MC, Gondane, DS and Kumar, VS (2002...) An application of artificial neural networks in tide-forecasting. Ocean Engineering, 29, pp 1003-1022 MandaI,S; Subba Rao and Chackraborty, l\\TV (2002) Hindcasting cyclonic waves using neural network. International Conference SHOT 2002, lIT Kharagpur, 18...

  18. Chronic Pain: Symptoms, Diagnosis, & Treatment

    Science.gov (United States)

    ... in the treatment. Treatment With chronic pain, the goal of treatment is to reduce pain and improve ... some treatments used for chronic pain. Less invasive psychotherapy, relaxation therapies, biofeedback, and behavior modification may also ...

  19. Screening for Chronic Kidney Disease

    Science.gov (United States)

    Understanding Task Force Recommendations Screening for Chronic Kidney Disease The U.S. Preventive Services Task Force (Task Force) has issued a final recommendation on Screening for Chronic Kidney Disease (CKD) . This recommendation ...

  20. Chronic Fatigue Syndrome (CFS): Symptoms

    Science.gov (United States)

    ... please visit this page: About CDC.gov . Chronic Fatigue Syndrome (CFS) Share Compartir Symptoms On this Page ... Symptoms What's the Clinical Course of CFS? Chronic fatigue syndrome can be misdiagnosed or overlooked because its ...

  1. Chronic obstructive pulmonary disease

    Directory of Open Access Journals (Sweden)

    V K Vijayan

    2013-01-01

    Full Text Available The global prevalence of physiologically defined chronic obstructive pulmonary disease (COPD in adults aged >40 yr is approximately 9-10 per cent. Recently, the Indian Study on Epidemiology of Asthma, Respiratory Symptoms and Chronic Bronchitis in Adults had shown that the overall prevalence of chronic bronchitis in adults >35 yr is 3.49 per cent. The development of COPD is multifactorial and the risk factors of COPD include genetic and environmental factors. Pathological changes in COPD are observed in central airways, small airways and alveolar space. The proposed pathogenesis of COPD includes proteinase-antiproteinase hypothesis, immunological mechanisms, oxidant-antioxidant balance, systemic inflammation, apoptosis and ineffective repair. Airflow limitation in COPD is defined as a postbronchodilator FEV1 (forced expiratory volume in 1 sec to FVC (forced vital capacity ratio <0.70. COPD is characterized by an accelerated decline in FEV1. Co morbidities associated with COPD are cardiovascular disorders (coronary artery disease and chronic heart failure, hypertension, metabolic diseases (diabetes mellitus, metabolic syndrome and obesity, bone disease (osteoporosis and osteopenia, stroke, lung cancer, cachexia, skeletal muscle weakness, anaemia, depression and cognitive decline. The assessment of COPD is required to determine the severity of the disease, its impact on the health status and the risk of future events (e.g., exacerbations, hospital admissions or death and this is essential to guide therapy. COPD is treated with inhaled bronchodilators, inhaled corticosteroids, oral theophylline and oral phosphodiesterase-4 inhibitor. Non pharmacological treatment of COPD includes smoking cessation, pulmonary rehabilitation and nutritional support. Lung volume reduction surgery and lung transplantation are advised in selected severe patients. Global strategy for the diagnosis, management and prevention of Chronic Obstructive Pulmonary Disease

  2. Hydrogel-Electrospun Fiber Mat Composite Coatings for Neural Prostheses

    Directory of Open Access Journals (Sweden)

    Ning eHan

    2011-03-01

    Full Text Available Achieving stable, long-term performance of implanted neural prosthetic devices has been challenging because of implantation related neuron loss and a foreign body response that results in encapsulating glial scar formation. To improve neuron-prosthesis integration and form chronic, stable interfaces, we investigated the potential of neurotrophin-eluting hydrogel-electrospun fiber mat (EFM composite coatings. In particular, poly(ethylene glycol-poly(ε-caprolactone (PEGPCL hydrogel- poly(ε-caprolactone (PCL EFM composites were applied as coatings for multielectrode arrays (MEAs. Coatings were stable and persisted on electrode surfaces for over 1 month under an agarose gel tissue phantom and over 9 months in a PBS immersion bath. To demonstrate drug release, a neurotrophin, nerve growth factor (NGF, was loaded in the PEGPCL hydrogel layer, and coating cytotoxicity and sustained NGF release were evaluated using a PC12 cell culture model. Quantitative MTT assays showed that these coatings had no significant toxicity toward PC12 cells, and neurite extension at day 7 and 14 confirmed sustained release of NGF at biologically significant concentrations for at least 2 weeks. Our results demonstrate that hydrogel-EFM composite materials can be applied to neural prostheses as a means to improve neuron-electrode proximity and enhance long-term device performance and function.

  3. Defining and Measuring Chronic Conditions

    Centers for Disease Control (CDC) Podcasts

    2013-05-20

    This podcast is an interview with Dr. Anand Parekh, U.S. Department of Health and Human Services Deputy Assistant Secretary for Health, and Dr. Samuel Posner, Preventing Chronic Disease Editor in Chief, about the definition and burden of multiple chronic conditions in the United States.  Created: 5/20/2013 by Preventing Chronic Disease (PCD), National Center for Chronic Disease Prevention and Health Promotion (NCCDPHP).   Date Released: 5/20/2013.

  4. The LILARTI neural network system

    Energy Technology Data Exchange (ETDEWEB)

    Allen, J.D. Jr.; Schell, F.M.; Dodd, C.V.

    1992-10-01

    The material of this Technical Memorandum is intended to provide the reader with conceptual and technical background information on the LILARTI neural network system of detail sufficient to confer an understanding of the LILARTI method as it is presently allied and to facilitate application of the method to problems beyond the scope of this document. Of particular importance in this regard are the descriptive sections and the Appendices which include operating instructions, partial listings of program output and data files, and network construction information.

  5. Physical, neural, and mental timing.

    Science.gov (United States)

    van de Grind, Wim

    2002-06-01

    The conclusions drawn by Benjamin Libet from his work with colleagues on the timing of somatosensorial conscious experiences has met with a lot of praise and criticism. In this issue we find three examples of the latter. Here I attempt to place the divide between the two opponent camps in a broader perspective by analyzing the question of the relation between physical timing, neural timing, and experiential (mental) timing. The nervous system does a sophisticated job of recombining and recoding messages from the sensorial surfaces and if these processes are slighted in a theory, it might become necessary to postulate weird operations, including subjective back-referral. Neuroscientifically inspired theories are of necessity still based on guesses, extrapolations, and philosophically dubious manners of speech. They often assume some neural correlate of consciousness (NCC) as a part of the nervous system that transforms neural activity in reportable experiences. The majority of neuroscientists appear to assume that the NCC can compare and bind activity patterns only if they arrive simultaneously at the NCC. This leads to a search for synchrony or to theories in terms of the compensation of differences in neural delays (latencies). This is the main dimension of the Libet discussion. Examples from vision research, such as "temporal-binding-by-synchrony" and the "flash-lag" effect, are then used to illustrate these reasoning patterns in more detail. Alternatively one could assume symbolic representations of time and space (symbolic "tags") that are not coded in their own dimension (not time in time and space in space). Unless such tags are multiplexed with the quality message (tickle, color, or motion), one gets a binding problem for tags. One of the hidden aspects of the discussion between Libet and opponents appears to be the following. Is the NCC smarter than the rest of the nervous system, so that it can solve the problems of local sign (e.g., "where is the event

  6. Neural correlates of viewing paintings

    DEFF Research Database (Denmark)

    Vartanian, Oshin; Skov, Martin

    2014-01-01

    Many studies involving functional magnetic resonance imaging (fMRI) have exposed participants to paintings under varying task demands. To isolate neural systems that are activated reliably across fMRI studies in response to viewing paintings regardless of variation in task demands, a quantitative...... gyrus) and scene (parahippocampal gyrus) perception, and the anterior insula-a key structure in experience of emotion. In addition, we also observed activation in the posterior cingulate cortex bilaterally-part of the brain's default network. These results suggest that viewing paintings engages not only...

  7. Dopamine neurons modulate neural encoding and expression of depression-related behaviour.

    Science.gov (United States)

    Tye, Kay M; Mirzabekov, Julie J; Warden, Melissa R; Ferenczi, Emily A; Tsai, Hsing-Chen; Finkelstein, Joel; Kim, Sung-Yon; Adhikari, Avishek; Thompson, Kimberly R; Andalman, Aaron S; Gunaydin, Lisa A; Witten, Ilana B; Deisseroth, Karl

    2013-01-24

    Major depression is characterized by diverse debilitating symptoms that include hopelessness and anhedonia. Dopamine neurons involved in reward and motivation are among many neural populations that have been hypothesized to be relevant, and certain antidepressant treatments, including medications and brain stimulation therapies, can influence the complex dopamine system. Until now it has not been possible to test this hypothesis directly, even in animal models, as existing therapeutic interventions are unable to specifically target dopamine neurons. Here we investigated directly the causal contributions of defined dopamine neurons to multidimensional depression-like phenotypes induced by chronic mild stress, by integrating behavioural, pharmacological, optogenetic and electrophysiological methods in freely moving rodents. We found that bidirectional control (inhibition or excitation) of specified midbrain dopamine neurons immediately and bidirectionally modulates (induces or relieves) multiple independent depression symptoms caused by chronic stress. By probing the circuit implementation of these effects, we observed that optogenetic recruitment of these dopamine neurons potently alters the neural encoding of depression-related behaviours in the downstream nucleus accumbens of freely moving rodents, suggesting that processes affecting depression symptoms may involve alterations in the neural encoding of action in limbic circuitry.

  8. Chronic complicated osteomyelitis

    International Nuclear Information System (INIS)

    Fourteen patients with prior trauma and/or surgery of the lower extremity and suspected active chronic osteomyelitis underwent MR imaging. Eleven patients also underwent In-111 scanning. All patients had surgical confirmation, MR imaging could assess the extent of abnormal marrow and distinguish abnormal marrow due to granulation tissue from active osteomyelitis. The presence and extent of soft-tissue infection could be determined and distinguished from bone involvement in spite of tissue distortion. The course and origin of sinus tracts could be followed. MR imaging was more sensitive to active infection than In-111 scanning. All 11 cases of active osteomyelitis were correctly diagnosed with MR imaging. In-111 scans were positive in only five of the eight cases of active infection in which scans were obtained. MR imaging is useful in chronic complicated osteomyelitis

  9. Chronic progressive multiple sclerosis

    International Nuclear Information System (INIS)

    A long-lasting immunological suppression action seems to be produced by total lymphoid irradiation; some authors emphasize the favorable effect of this treatment on chronic progressive multiple sclerosis. In order to evaluate the actual role of TLI, 6 patients affected with chronic progressive multiple sclerosis were submitted to TLI with shaped and personalized fields at the Istituto del Radio, University of Brescia, Italy. The total dose delivered was 19.8 Gy in 4 weeks, 1.8 Gy/day, 5d/w; a week elapsed between the first and the second irradiation course. Disability according to Kurtzke scale was evaluated, together with blood lymphocyte count and irradiation side-effects, over a mean follow-up period of 20.8 months (range: 13-24). Our findings indicate that: a) disease progression was not markedly reduced by TLI; b) steroid hormones responsivity was restored after irradiation, and c) side-effects were mild and tolerable

  10. [Chronic inflammatory demyelinating polyradiculoneuropathy].

    Science.gov (United States)

    Franques, J; Azulay, J-P; Pouget, J; Attarian, S

    2010-06-01

    Chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) is a demyelinating chronic neuropathy of immune origin whose diagnosis is based upon clinical, biological and electrophysiological data; previously critical to the diagnosis the nerve biopsy is now restricted to the rare situations where accurate diagnosis cannot be reached using these data alone. CIDP are mainly idiopathic, but a few associated diseases must be sought for as they require specific attention. Such associated diseases must particularly be discussed when the manifestations are severe or resistant to immunomodulating or immunosuppressive agents. Indeed, idiopathic CIDP are usually responsive to these treatments. The effectiveness of these treatments is limited by the importance of the secondary axonal loss. The dependence or the resistance may sometimes justify the association of several immunomodulating treatments. A single randomized controlled trial support the use of cytotoxic drugs and none with rituximab.

  11. Acetaminophen for Chronic Pain

    DEFF Research Database (Denmark)

    Ennis, Zandra Nymand; Dideriksen, Dorthe; Vaegter, Henrik Bjarke;

    2016-01-01

    conducted according to PRISMA guidelines. All studies were conducted in patients with hip- or knee osteoarthritis and six out of seven studies had observation periods of less than three months. All included studies showed no or little efficacy with dubious clinical relevance. In conclusion, there is little......Acetaminophen (paracetamol) is the most commonly used analgesic worldwide and recommended as first-line treatment in all pain conditions by WHO. We performed a systematic literature review to evaluate the efficacy of acetaminophen when used for chronic pain conditions. Applying three broad search...... evidence to support the efficacy of acetaminophen treatment in patients with chronic pain conditions. Assessment of continuous efficacy in the many patients using acetaminophen worldwide is recommended. This article is protected by copyright. All rights reserved....

  12. Chronic necrotizing pulmonary aspergillosis

    Directory of Open Access Journals (Sweden)

    Lovrenski Aleksandra

    2011-01-01

    Full Text Available Introduction. Chronic necrotizing pulmonary aspergillosis (CNPA is a cavitary, infectious process of lung parenchyma with slow progressive course. Vascular invasion and dissemination to other organs are unusual. Case report. We presented a 25-year old man with bilineal acute leukaemia who developed pulmonary and systemic symptoms. Chest CT showed nodular consolidations and cavitary lesions in both lungs. Bronchial biopsy revealed necrotic hyphae but it was negative for Aspergillus by culture. Serum was positive for antibodies to Aspergillus, but it was negative for antigens. A thoracoscopic lung biopsy of the upper left lobe revealed necrosis of lung tissue, with acute and chronic inflammation of the cavity wall and the presence of hyphae consistent with Aspergillus species. Conclusion. Although confirmation of the diagnosis is difficult, a combination of characteristic clinical, radiological and histological findings and either serological results positive for Aspergillus or the isolation of Aspergillus from respiratory samples are highly indicative of CNPA.

  13. Chronic cough in children.

    Science.gov (United States)

    Wagner, Johana B Castro; Pine, Harold S

    2013-08-01

    The management of chronic cough, a common complaint in children, is challenging for most health care professionals. Millions of dollars are spent every year on unnecessary testing and treatment. A rational approach based on a detailed interview and a thorough physical examination guides further intervention and management. Inexpensive and simple homemade syrups based on dark honey have proved to be an effective measure when dealing with cough in children. PMID:23905830

  14. Chronic Cough in Childhood

    OpenAIRE

    Alexander, David S.

    1982-01-01

    Persistent cough in children is a symptom, and the cause should be ascertained. Reactive airways disease is the most common reason for chronic cough in children over three to six months of age, especially at night. Under three months, the cause is likely to be more serious. Cough often disturbs parents more than the child, and physicians should consider parents' need for sleep and relief when deciding whether or not to prescribe cough suppressants. Investigations depend on the child's age, th...

  15. Chronic inflammatory systemic diseases

    OpenAIRE

    Straub, Rainer H.; Schradin, Carsten

    2016-01-01

    It has been recognized that during chronic inflammatory systemic diseases (CIDs) maladaptations of the immune, nervous, endocrine and reproductive system occur. Maladaptation leads to disease sequelae in CIDs. The ultimate reason of disease sequelae in CIDs remained unclear because clinicians do not consider bodily energy trade-offs and evolutionary medicine. We review the evolution of physiological supersystems, fitness consequences of genes involved in CIDs during different life-history sta...

  16. Chronic pneumonitis of infancy

    Energy Technology Data Exchange (ETDEWEB)

    Abe, Katsumi; Kamata, Noriko; Okazaki, Eiwa [Department of Radiology, Tokyo Metropolitan Komagome Hospital, 3-18-22 Honkomagome, Bunkyo-ku, Tokyo 113-8677 (Japan); Moriyama, Sachiko; Funata, Nobuaki [Department of Pathology, Tokyo Metropolitan Komagome Hospital, 3-18-22 Honkomagome, Bunkyo-ku, Tokyo 113-8677 (Japan); Takita, Junko; Yamada, Hideo; Takayama, Naohide [Department of Pediatrics, Tokyo Metropolitan Komagome Hospital, 3-18-22 Honkomagome, Bunkyo-ku, Tokyo 113-8677 (Japan)

    2002-07-01

    Chronic pneumonitis of infancy (CPI) is a very rare lung disease in infants and young children. We report a 33-day-old infant with CPI, focusing on the radiologic aspects of the disease. Chest radiographs showed variable and non-specific appearances including ground-glass shadowing, consolidation, volume loss, and hyperinflation. Dense alveolar opacities progressed as CPI advanced. The radiologic features of our case reflected pathologic changes. (orig.)

  17. Renal failure (chronic)

    OpenAIRE

    Clase, Catherine

    2009-01-01

    Chronic renal failure is characterised by a gradual and sustained decline in renal clearance or glomerular filtration rate (GFR). Continued progression of renal failure will lead to renal function too low to sustain healthy life. In developed countries, such people will be offered renal replacement therapy in the form of dialysis or renal transplantation. Requirement for dialysis or transplantation is termed end-stage renal disease (ESRD).Diabetes, glomerulonephritis, hypertension, pyelone...

  18. Chronic alloantibody mediated rejection

    OpenAIRE

    Smith, R. Neal; Colvin, Robert B.

    2011-01-01

    Alloantibodies clearly cause acute antibody mediated rejection, and all available evidence supports their pathogenic etiology in the development of chronic alloantibody mediated rejection (CAMR). But the slow evolution of this disease, the on-going immunosuppression, the variations in titer of alloantibodies, and variation in antigenic targets all complicate identifying which dynamic factors are most important clinically and pathologically. This review highlights the pathological factors rela...

  19. Approaching chronic cough

    OpenAIRE

    Poulose, Vijo; Tiew, Pei Yee; How, Choon How

    2016-01-01

    Chronic cough is one of the most common reasons for referral to a respiratory physician. Although fatal complications are rare, it may cause considerable distress in the patient’s daily life. Western and local data shows that in patients with a normal chest radiograph, the most common causes are postnasal drip syndrome, postinfectious cough, gastro-oesophageal reflux disease and cough variant asthma. Less common causes are the use of angiotensin-converting enzyme inhibitors, smoker’s cough an...

  20. Effect of contrasting physical exercise interventions on rapid force capacity of chronically painful muscles

    DEFF Research Database (Denmark)

    Andersen, Lars L; Andersen, Jesper L; Suetta, Charlotte;

    2009-01-01

    Rapid force capacity of chronically painful muscles is inhibited markedly more than maximal force capacity and is therefore relevant to assess in rehabilitation settings. Our objective was to investigate the effect of two contrasting types of physical exercise on rapid force capacity, as well...... as neural and muscular adaptations in women with chronic neck muscle pain. A group of employed women (n = 42) with a clinical diagnosis of trapezius myalgia participated in a 10-wk randomized controlled trial; specific strength training of the neck/shoulder muscles, general fitness training performed as leg...... torque increased 18-29% (P painful muscles is highly responsive...

  1. Radiation Behavior of Analog Neural Network Chip

    Science.gov (United States)

    Langenbacher, H.; Zee, F.; Daud, T.; Thakoor, A.

    1996-01-01

    A neural network experiment conducted for the Space Technology Research Vehicle (STRV-1) 1-b launched in June 1994. Identical sets of analog feed-forward neural network chips was used to study and compare the effects of space and ground radiation on the chips. Three failure mechanisms are noted.

  2. Heterogeneous scaffold designs for selective neural regeneration

    NARCIS (Netherlands)

    Wieringa, P.A.

    2014-01-01

    Over the past 5 decades, there has been a drive to apply technology to enhance neural regeneration in order to improve patient recovery after disease or injury. This has evolved into the field of Neural Engineering, with the aim to understand, control and exploit the development and function of neur

  3. Adaptive Neurons For Artificial Neural Networks

    Science.gov (United States)

    Tawel, Raoul

    1990-01-01

    Training time decreases dramatically. In improved mathematical model of neural-network processor, temperature of neurons (in addition to connection strengths, also called weights, of synapses) varied during supervised-learning phase of operation according to mathematical formalism and not heuristic rule. Evidence that biological neural networks also process information at neuronal level.

  4. NEURAL METHODS FOR THE FINANCIAL PREDICTION

    Directory of Open Access Journals (Sweden)

    Jerzy Balicki

    2016-06-01

    Full Text Available Artificial neural networks can be used to predict share investment on the stock market, assess the reliability of credit client or predicting banking crises. Moreover, this paper discusses the principles of cooperation neural network algorithms with evolutionary method, and support vector machines. In addition, a reference is made to other methods of artificial intelligence, which are used in finance prediction.

  5. Self-organization of neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Clark, J.W.; Winston, J.V.; Rafelski, J.

    1984-05-14

    The plastic development of a neural-network model operating autonomously in discrete time is described by the temporal modification of interneuronal coupling strengths according to momentary neural activity. A simple algorithm (brainwashing) is found which, applied to nets with initially quasirandom connectivity, leads to model networks with properties conducive to the simulation of memory and learning phenomena. 18 references, 2 figures.

  6. Self-organization of neural networks

    Science.gov (United States)

    Clark, John W.; Winston, Jeffrey V.; Rafelski, Johann

    1984-05-01

    The plastic development of a neural-network model operating autonomously in discrete time is described by the temporal modification of interneuronal coupling strengths according to momentary neural activity. A simple algorithm (“brainwashing”) is found which, applied to nets with initially quasirandom connectivity, leads to model networks with properties conductive to the simulation of memory and learning phenomena.

  7. A high-speed analog neural processor

    NARCIS (Netherlands)

    Masa, Peter; Hoen, Klaas; Wallinga, Hans

    1994-01-01

    Targeted at high-energy physics research applications, our special-purpose analog neural processor can classify up to 70 dimensional vectors within 50 nanoseconds. The decision-making process of the implemented feedforward neural network enables this type of computation to tolerate weight discretiza

  8. Neural Control of the Immune System

    Science.gov (United States)

    Sundman, Eva; Olofsson, Peder S.

    2014-01-01

    Neural reflexes support homeostasis by modulating the function of organ systems. Recent advances in neuroscience and immunology have revealed that neural reflexes also regulate the immune system. Activation of the vagus nerve modulates leukocyte cytokine production and alleviates experimental shock and autoimmune disease, and recent data have…

  9. The Elements Of Adaptive Neural Expert Systems

    Science.gov (United States)

    Healy, Michael J.

    1989-03-01

    The generalization properties of a class of neural architectures can be modelled mathematically. The model is a parallel predicate calculus based on pattern recognition and self-organization of long-term memory in a neural network. It may provide the basis for adaptive expert systems capable of inductive learning and rapid processing in a highly complex and changing environment.

  10. Neural networks and MIMD-multiprocessors

    Science.gov (United States)

    Vanhala, Jukka; Kaski, Kimmo

    1990-01-01

    Two artificial neural network models are compared. They are the Hopfield Neural Network Model and the Sparse Distributed Memory model. Distributed algorithms for both of them are designed and implemented. The run time characteristics of the algorithms are analyzed theoretically and tested in practice. The storage capacities of the networks are compared. Implementations are done using a distributed multiprocessor system.

  11. Neural-Network Computer Transforms Coordinates

    Science.gov (United States)

    Josin, Gary M.

    1990-01-01

    Numerical simulation demonstrated ability of conceptual neural-network computer to generalize what it has "learned" from few examples. Ability to generalize achieved with even simple neural network (relatively few neurons) and after exposure of network to only few "training" examples. Ability to obtain fairly accurate mappings after only few training examples used to provide solutions to otherwise intractable mapping problems.

  12. Neural Networks for Non-linear Control

    DEFF Research Database (Denmark)

    Sørensen, O.

    1994-01-01

    This paper describes how a neural network, structured as a Multi Layer Perceptron, is trained to predict, simulate and control a non-linear process.......This paper describes how a neural network, structured as a Multi Layer Perceptron, is trained to predict, simulate and control a non-linear process....

  13. Neural network modeling of emotion

    Science.gov (United States)

    Levine, Daniel S.

    2007-03-01

    This article reviews the history and development of computational neural network modeling of cognitive and behavioral processes that involve emotion. The exposition starts with models of classical conditioning dating from the early 1970s. Then it proceeds toward models of interactions between emotion and attention. Then models of emotional influences on decision making are reviewed, including some speculative (not and not yet simulated) models of the evolution of decision rules. Through the late 1980s, the neural networks developed to model emotional processes were mainly embodiments of significant functional principles motivated by psychological data. In the last two decades, network models of these processes have become much more detailed in their incorporation of known physiological properties of specific brain regions, while preserving many of the psychological principles from the earlier models. Most network models of emotional processes so far have dealt with positive and negative emotion in general, rather than specific emotions such as fear, joy, sadness, and anger. But a later section of this article reviews a few models relevant to specific emotions: one family of models of auditory fear conditioning in rats, and one model of induced pleasure enhancing creativity in humans. Then models of emotional disorders are reviewed. The article concludes with philosophical statements about the essential contributions of emotion to intelligent behavior and the importance of quantitative theories and models to the interdisciplinary enterprise of understanding the interactions of emotion, cognition, and behavior.

  14. Imaging Posture Veils Neural Signals

    Science.gov (United States)

    Thibault, Robert T.; Raz, Amir

    2016-01-01

    Whereas modern brain imaging often demands holding body positions incongruent with everyday life, posture governs both neural activity and cognitive performance. Humans commonly perform while upright; yet, many neuroimaging methodologies require participants to remain motionless and adhere to non-ecological comportments within a confined space. This inconsistency between ecological postures and imaging constraints undermines the transferability and generalizability of many a neuroimaging assay. Here we highlight the influence of posture on brain function and behavior. Specifically, we challenge the tacit assumption that brain processes and cognitive performance are comparable across a spectrum of positions. We provide an integrative synthesis regarding the increasingly prominent influence of imaging postures on autonomic function, mental capacity, sensory thresholds, and neural activity. Arguing that neuroimagers and cognitive scientists could benefit from considering the influence posture wields on both general functioning and brain activity, we examine existing imaging technologies and the potential of portable and versatile imaging devices (e.g., functional near infrared spectroscopy). Finally, we discuss ways that accounting for posture may help unveil the complex brain processes of everyday cognition.

  15. Neural Networks for Emotion Classification

    CERN Document Server

    Sun, Yafei

    2011-01-01

    It is argued that for the computer to be able to interact with humans, it needs to have the communication skills of humans. One of these skills is the ability to understand the emotional state of the person. This thesis describes a neural network-based approach for emotion classification. We learn a classifier that can recognize six basic emotions with an average accuracy of 77% over the Cohn-Kanade database. The novelty of this work is that instead of empirically selecting the parameters of the neural network, i.e. the learning rate, activation function parameter, momentum number, the number of nodes in one layer, etc. we developed a strategy that can automatically select comparatively better combination of these parameters. We also introduce another way to perform back propagation. Instead of using the partial differential of the error function, we use optimal algorithm; namely Powell's direction set to minimize the error function. We were also interested in construction an authentic emotion databases. This...

  16. Artificial neural networks in neurosurgery.

    Science.gov (United States)

    Azimi, Parisa; Mohammadi, Hasan Reza; Benzel, Edward C; Shahzadi, Sohrab; Azhari, Shirzad; Montazeri, Ali

    2015-03-01

    Artificial neural networks (ANNs) effectively analyze non-linear data sets. The aimed was A review of the relevant published articles that focused on the application of ANNs as a tool for assisting clinical decision-making in neurosurgery. A literature review of all full publications in English biomedical journals (1993-2013) was undertaken. The strategy included a combination of key words 'artificial neural networks', 'prognostic', 'brain', 'tumor tracking', 'head', 'tumor', 'spine', 'classification' and 'back pain' in the title and abstract of the manuscripts using the PubMed search engine. The major findings are summarized, with a focus on the application of ANNs for diagnostic and prognostic purposes. Finally, the future of ANNs in neurosurgery is explored. A total of 1093 citations were identified and screened. In all, 57 citations were found to be relevant. Of these, 50 articles were eligible for inclusion in this review. The synthesis of the data showed several applications of ANN in neurosurgery, including: (1) diagnosis and assessment of disease progression in low back pain, brain tumours and primary epilepsy; (2) enhancing clinically relevant information extraction from radiographic images, intracranial pressure processing, low back pain and real-time tumour tracking; (3) outcome prediction in epilepsy, brain metastases, lumbar spinal stenosis, lumbar disc herniation, childhood hydrocephalus, trauma mortality, and the occurrence of symptomatic cerebral vasospasm in patients with aneurysmal subarachnoid haemorrhage; (4) the use in the biomechanical assessments of spinal disease. ANNs can be effectively employed for diagnosis, prognosis and outcome prediction in neurosurgery.

  17. [Neural basis of procedural memory].

    Science.gov (United States)

    Mochizuki-Kawai, Hiroko

    2008-07-01

    Procedural memory is acquired by trial and error. Our daily life is supported by a number of procedural memories such as those for riding bicycle, typing, reading words, etc. Procedural memory is divided into 3 types; motor, perceptual, and cognitive. Here, the author reviews the cognitive and neural basis of procedural memory according to these 3 types. It is reported that the basal ganglia or cerebellum dysfunction causes deficits in procedural memory. Compared with age-matched healthy participants, patients with Parkinson disease (PD), Huntington disease (HD) or spinocerebellar degeneration (SCD) show deterioration in improvements in motor-type procedural memory tasks. Previous neuroimaging studies have reported that motor-type procedural memory may be supported by multiple brain regions, including the frontal and parietal regions as well as the basal ganglia (cerebellum); this was found with a serial reaction time task (SRT task). Although 2 other types of procedural memory are also maintained by multiple brain regions, the related cerebral areas depend on the type of memory. For example, it was suggested that acquisition of the perceptual type of procedural memory (e.g., ability to read mirror images of words) might be maintained by the bilateral fusiform region, while the acquisition of cognitive procedural memory might be supported by the frontal, parietal, or cerebellar regions as well as the basal ganglia. In the future, we need to cleary understand the neural "network" related to the procedural memory. PMID:18646622

  18. Learning in Artificial Neural Systems

    Science.gov (United States)

    Matheus, Christopher J.; Hohensee, William E.

    1987-01-01

    This paper presents an overview and analysis of learning in Artificial Neural Systems (ANS's). It begins with a general introduction to neural networks and connectionist approaches to information processing. The basis for learning in ANS's is then described, and compared with classical Machine learning. While similar in some ways, ANS learning deviates from tradition in its dependence on the modification of individual weights to bring about changes in a knowledge representation distributed across connections in a network. This unique form of learning is analyzed from two aspects: the selection of an appropriate network architecture for representing the problem, and the choice of a suitable learning rule capable of reproducing the desired function within the given network. The various network architectures are classified, and then identified with explicit restrictions on the types of functions they are capable of representing. The learning rules, i.e., algorithms that specify how the network weights are modified, are similarly taxonomized, and where possible, the limitations inherent to specific classes of rules are outlined.

  19. A new perspective on behavioral inconsistency and neural noise in aging: Compensatory speeding of neural communication

    Directory of Open Access Journals (Sweden)

    S. Lee Hong

    2012-09-01

    Full Text Available This paper seeks to present a new perspective on the aging brain. Here, we make connections between two key phenomena of brain aging: 1 increased neural noise or random background activity; and 2 slowing of brain activity. Our perspective proposes the possibility that the slowing of neural processing due to decreasing nerve conduction velocities leads to a compensatory speeding of neuron firing rates. These increased firing rates lead to a broader distribution of power in the frequency spectrum of neural oscillations, which we propose, can just as easily be interpreted as neural noise. Compensatory speeding of neural activity, as we present, is constrained by the: A availability of metabolic energy sources; and B competition for frequency bandwidth needed for neural communication. We propose that these constraints lead to the eventual inability to compensate for age-related declines in neural function that are manifested clinically as deficits in cognition, affect, and motor behavior.

  20. Chronic obstructive pulmonary disease.

    Science.gov (United States)

    Barnes, Peter J; Burney, Peter G J; Silverman, Edwin K; Celli, Bartolome R; Vestbo, Jørgen; Wedzicha, Jadwiga A; Wouters, Emiel F M

    2015-01-01

    Chronic obstructive pulmonary disease (COPD) is a common disease with high global morbidity and mortality. COPD is characterized by poorly reversible airway obstruction, which is confirmed by spirometry, and includes obstruction of the small airways (chronic obstructive bronchiolitis) and emphysema, which lead to air trapping and shortness of breath in response to physical exertion. The most common risk factor for the development of COPD is cigarette smoking, but other environmental factors, such as exposure to indoor air pollutants - especially in developing countries - might influence COPD risk. Not all smokers develop COPD and the reasons for disease susceptibility in these individuals have not been fully elucidated. Although the mechanisms underlying COPD remain poorly understood, the disease is associated with chronic inflammation that is usually corticosteroid resistant. In addition, COPD involves accelerated ageing of the lungs and an abnormal repair mechanism that might be driven by oxidative stress. Acute exacerbations, which are mainly triggered by viral or bacterial infections, are important as they are linked to a poor prognosis. The mainstay of the management of stable disease is the use of inhaled long-acting bronchodilators, whereas corticosteroids are beneficial primarily in patients who have coexisting features of asthma, such as eosinophilic inflammation and more reversibility of airway obstruction. Apart from smoking cessation, no treatments reduce disease progression. More research is needed to better understand disease mechanisms and to develop new treatments that reduce disease activity and progression. PMID:27189863

  1. Imaging of chronic osteomyelitis

    International Nuclear Information System (INIS)

    The diagnosis of chronic osteomyelitis is made on the basis of clinical, radiologic and histologic findings. The role of imaging in patients with known chronic osteomyelitis is to detect and to delineate areas of active infection. To correctly interpret the imaging findings, it is essential to take both the individual clinical findings and previous imaging studies into account. Reliable signs of active infection are bone marrow abscess, sequestra and sinus tract formation. Only the combined evaluation of bony changes together with alterations of the adjacent soft tissues provides good diagnostic accuracy. Projection radiography gives an overview of the condition of the bone, which provides the basis for follow-up and the selection of further imaging modalities. Computed tomography can be used to evaluate even discrete or complex bony alterations and to guide percutaneous biopsy or drainage. Magnetic resonance imaging achieves the best diagnostic sensitivity and specificity and provides superior contrast as well as anatomical resolution in both bone marrow and soft tissues. In this paper the features and clinical relevance of imaging in primary chronic osteomyelitis, posttraumatic osteomyelitis, tuberculous spondylitis and osteomyelitis of the diabetic foot are reviewed, with particular respect to MRI. (orig.)

  2. Chronic arsenic poisoning.

    Science.gov (United States)

    Hall, Alan H

    2002-03-10

    Symptomatic arsenic poisoning is not often seen in occupational exposure settings. Attempted homicide and deliberate long-term poisoning have resulted in chronic toxicity. Skin pigmentation changes, palmar and plantar hyperkeratoses, gastrointestinal symptoms, anemia, and liver disease are common. Noncirrhotic portal hypertension with bleeding esophageal varices, splenomegaly, and hypersplenism may occur. A metallic taste, gastrointestinal disturbances, and Mee's lines may be seen. Bone marrow depression is common. 'Blackfoot disease' has been associated with arsenic-contaminated drinking water in Taiwan; Raynaud's phenomenon and acrocyanosis also may occur. Large numbers of persons in areas of India, Pakistan, and several other countries have been chronically poisoned from naturally occurring arsenic in ground water. Toxic delirium and encephalopathy can be present. CCA-treated wood (chromated copper arsenate) is not a health risk unless burned in fireplaces or woodstoves. Peripheral neuropathy may also occur. Workplace exposure or chronic ingestion of arsenic-contaminated water or arsenical medications is associated with development of skin, lung, and other cancers. Treatment may incklude the use of chelating agents such as dimercaprol (BAL), dimercaptosuccinic acid (DMSA), and dimercaptopanesulfonic acid (DMPS).

  3. Neural networks with discontinuous/impact activations

    CERN Document Server

    Akhmet, Marat

    2014-01-01

    This book presents as its main subject new models in mathematical neuroscience. A wide range of neural networks models with discontinuities are discussed, including impulsive differential equations, differential equations with piecewise constant arguments, and models of mixed type. These models involve discontinuities, which are natural because huge velocities and short distances are usually observed in devices modeling the networks. A discussion of the models, appropriate for the proposed applications, is also provided. This book also: Explores questions related to the biological underpinning for models of neural networks\\ Considers neural networks modeling using differential equations with impulsive and piecewise constant argument discontinuities Provides all necessary mathematical basics for application to the theory of neural networks Neural Networks with Discontinuous/Impact Activations is an ideal book for researchers and professionals in the field of engineering mathematics that have an interest in app...

  4. Video Traffic Prediction Using Neural Networks

    Directory of Open Access Journals (Sweden)

    Miloš Oravec

    2008-10-01

    Full Text Available In this paper, we consider video stream prediction for application in services likevideo-on-demand, videoconferencing, video broadcasting, etc. The aim is to predict thevideo stream for an efficient bandwidth allocation of the video signal. Efficient predictionof traffic generated by multimedia sources is an important part of traffic and congestioncontrol procedures at the network edges. As a tool for the prediction, we use neuralnetworks – multilayer perceptron (MLP, radial basis function networks (RBF networksand backpropagation through time (BPTT neural networks. At first, we briefly introducetheoretical background of neural networks, the prediction methods and the differencebetween them. We propose also video time-series processing using moving averages.Simulation results for each type of neural network together with final comparisons arepresented. For comparison purposes, also conventional (non-neural prediction isincluded. The purpose of our work is to construct suitable neural networks for variable bitrate video prediction and evaluate them. We use video traces from [1].

  5. Auto-programmable impulse neural circuits

    Science.gov (United States)

    Watula, D.; Meador, J.

    1990-01-01

    Impulse neural networks use pulse trains to communicate neuron activation levels. Impulse neural circuits emulate natural neurons at a more detailed level than that typically employed by contemporary neural network implementation methods. An impulse neural circuit which realizes short term memory dynamics is presented. The operation of that circuit is then characterized in terms of pulse frequency modulated signals. Both fixed and programmable synapse circuits for realizing long term memory are also described. The implementation of a simple and useful unsupervised learning law is then presented. The implementation of a differential Hebbian learning rule for a specific mean-frequency signal interpretation is shown to have a straightforward implementation using digital combinational logic with a variation of a previously developed programmable synapse circuit. This circuit is expected to be exploited for simple and straightforward implementation of future auto-adaptive neural circuits.

  6. Reading and writing the neural code.

    Science.gov (United States)

    Stanley, Garrett B

    2013-03-01

    It has been more than 20 years since Bialek and colleagues published a landmark paper asking a seemingly innocuous question: what can we extract about the outside world from the spiking activity of sensory neurons? Can we read the neural code? Although this seemingly simple question has helped us shed light on the neural code, we still do not understand the anatomical and neurophysiological constraints that enable these codes to propagate across synapses and form the basis for computations that we need to interact with our environment. The sensitivity of neuronal activity to the timing of synaptic inputs naturally suggests that synchrony determines the form of the neural code, and, in turn, regulation of synchrony is a critical element in 'writing' the neural code through the artificial control of microcircuits to activate downstream structures. In this way, reading and writing the neural code are inextricably linked.

  7. 22nd Italian Workshop on Neural Nets

    CERN Document Server

    Bassis, Simone; Esposito, Anna; Morabito, Francesco

    2013-01-01

    This volume collects a selection of contributions which has been presented at the 22nd Italian Workshop on Neural Networks, the yearly meeting of the Italian Society for Neural Networks (SIREN). The conference was held in Italy, Vietri sul Mare (Salerno), during May 17-19, 2012. The annual meeting of SIREN is sponsored by International Neural Network Society (INNS), European Neural Network Society (ENNS) and IEEE Computational Intelligence Society (CIS). The book – as well as the workshop-  is organized in three main components, two special sessions and a group of regular sessions featuring different aspects and point of views of artificial neural networks and natural intelligence, also including applications of present compelling interest.

  8. International Conference on Artificial Neural Networks (ICANN)

    CERN Document Server

    Mladenov, Valeri; Kasabov, Nikola; Artificial Neural Networks : Methods and Applications in Bio-/Neuroinformatics

    2015-01-01

    The book reports on the latest theories on artificial neural networks, with a special emphasis on bio-neuroinformatics methods. It includes twenty-three papers selected from among the best contributions on bio-neuroinformatics-related issues, which were presented at the International Conference on Artificial Neural Networks, held in Sofia, Bulgaria, on September 10-13, 2013 (ICANN 2013). The book covers a broad range of topics concerning the theory and applications of artificial neural networks, including recurrent neural networks, super-Turing computation and reservoir computing, double-layer vector perceptrons, nonnegative matrix factorization, bio-inspired models of cell communities, Gestalt laws, embodied theory of language understanding, saccadic gaze shifts and memory formation, and new training algorithms for Deep Boltzmann Machines, as well as dynamic neural networks and kernel machines. It also reports on new approaches to reinforcement learning, optimal control of discrete time-delay systems, new al...

  9. Neural network signal understanding for instrumentation

    DEFF Research Database (Denmark)

    Pau, L. F.; Johansen, F. S.

    1990-01-01

    A report is presented on the use of neural signal interpretation theory and techniques for the purpose of classifying the shapes of a set of instrumentation signals, in order to calibrate devices, diagnose anomalies, generate tuning/settings, and interpret the measurement results. Neural signal...... understanding research is surveyed, and the selected implementation and its performance in terms of correct classification rates and robustness to noise are described. Formal results on neural net training time and sensitivity to weights are given. A theory for neural control using functional link nets is given......, and an explanation facility designed to help neural signal understanding is described. The results are compared to those obtained with a knowledge-based signal interpretation system using the same instrument and data...

  10. Neural scaling laws for an uncertain world

    CERN Document Server

    Howard, Marc W

    2016-01-01

    The Weber-Fechner law describes the form of psychological space in many behavioral experiments involving perception of one-dimensional physical quantities. If the physical quantity is expressed using multiple neural receptors, then placing receptive fields evenly along a logarithmic scale naturally leads to the psychological Weber-Fechner law. In the visual system, the spacing and width of extrafoveal receptive fields are consistent with logarithmic scaling. Other sets of neural "receptors" appear to show the same qualitative properties, suggesting that this form of neural scaling reflects a solution to a very general problem. This paper argues that these neural scaling laws enable the brain to represent information about the world efficiently without making any assumptions about the statistics of the world. This analysis suggests that the organization of neural scales to represent one-dimensional quantities, including more abstract quantities such as numerosity, time, and allocentric space, should have a uni...

  11. Peripheral Neural Circuitry in Cough

    OpenAIRE

    Taylor-Clark, Thomas E

    2015-01-01

    Cough is a reflex that serves to protect the airways. Excessive or chronic coughing is a major health issue that is poorly controlled by current therapeutics. Significant effort has been made to understand the mechanisms underlying the cough reflex. The focus of this review is the evidence supporting the role of specific airway sensory nerve (afferent) populations in the initiation and modulation of the cough reflex in health and disease.

  12. A new formulation for feedforward neural networks.

    Science.gov (United States)

    Razavi, Saman; Tolson, Bryan A

    2011-10-01

    Feedforward neural network is one of the most commonly used function approximation techniques and has been applied to a wide variety of problems arising from various disciplines. However, neural networks are black-box models having multiple challenges/difficulties associated with training and generalization. This paper initially looks into the internal behavior of neural networks and develops a detailed interpretation of the neural network functional geometry. Based on this geometrical interpretation, a new set of variables describing neural networks is proposed as a more effective and geometrically interpretable alternative to the traditional set of network weights and biases. Then, this paper develops a new formulation for neural networks with respect to the newly defined variables; this reformulated neural network (ReNN) is equivalent to the common feedforward neural network but has a less complex error response surface. To demonstrate the learning ability of ReNN, in this paper, two training methods involving a derivative-based (a variation of backpropagation) and a derivative-free optimization algorithms are employed. Moreover, a new measure of regularization on the basis of the developed geometrical interpretation is proposed to evaluate and improve the generalization ability of neural networks. The value of the proposed geometrical interpretation, the ReNN approach, and the new regularization measure are demonstrated across multiple test problems. Results show that ReNN can be trained more effectively and efficiently compared to the common neural networks and the proposed regularization measure is an effective indicator of how a network would perform in terms of generalization.

  13. EDITORIAL: Special issue on applied neurodynamics: from neural dynamics to neural engineering Special issue on applied neurodynamics: from neural dynamics to neural engineering

    Science.gov (United States)

    Chiel, Hillel J.; Thomas, Peter J.

    2011-12-01

    , the sun, earth and moon) proved to be far more difficult. In the late nineteenth century, Poincaré made significant progress on this problem, introducing a geometric method of reasoning about solutions to differential equations (Diacu and Holmes 1996). This work had a powerful impact on mathematicians and physicists, and also began to influence biology. In his 1925 book, based on his work starting in 1907, and that of others, Lotka used nonlinear differential equations and concepts from dynamical systems theory to analyze a wide variety of biological problems, including oscillations in the numbers of predators and prey (Lotka 1925). Although little was known in detail about the function of the nervous system, Lotka concluded his book with speculations about consciousness and the implications this might have for creating a mathematical formulation of biological systems. Much experimental work in the 1930s and 1940s focused on the biophysical mechanisms of excitability in neural tissue, and Rashevsky and others continued to apply tools and concepts from nonlinear dynamical systems theory as a means of providing a more general framework for understanding these results (Rashevsky 1960, Landahl and Podolsky 1949). The publication of Hodgkin and Huxley's classic quantitative model of the action potential in 1952 created a new impetus for these studies (Hodgkin and Huxley 1952). In 1955, FitzHugh published an important paper that summarized much of the earlier literature, and used concepts from phase plane analysis such as asymptotic stability, saddle points, separatrices and the role of noise to provide a deeper theoretical and conceptual understanding of threshold phenomena (Fitzhugh 1955, Izhikevich and FitzHugh 2006). The Fitzhugh-Nagumo equations constituted an important two-dimensional simplification of the four-dimensional Hodgkin and Huxley equations, and gave rise to an extensive literature of analysis. Many of the papers in this special issue build on tools

  14. Induction of apoptotic death and retardation of neuronal differentiation of human neural stem cells by sodium arsenite treatment

    OpenAIRE

    Ivanov, Vladimir N.; Hei, Tom K.

    2012-01-01

    Chronic arsenic toxicity is a global health problem that affects more than 100 million people worldwide. Long-term health effects of inorganic sodium arsenite in drinking water may result in skin, lung and liver cancer and severe neurological abnormalities. We investigated in the present study whether sodium arsenite affects signaling pathways that control cell survival, proliferation and neuronal differentiation of human neural stem cells (NSC). We demonstrated that the critical signaling pa...

  15. A chronic generalized bi-directional brain-machine interface

    Science.gov (United States)

    Rouse, A. G.; Stanslaski, S. R.; Cong, P.; Jensen, R. M.; Afshar, P.; Ullestad, D.; Gupta, R.; Molnar, G. F.; Moran, D. W.; Denison, T. J.

    2011-06-01

    A bi-directional neural interface (NI) system was designed and prototyped by incorporating a novel neural recording and processing subsystem into a commercial neural stimulator architecture. The NI system prototype leverages the system infrastructure from an existing neurostimulator to ensure reliable operation in a chronic implantation environment. In addition to providing predicate therapy capabilities, the device adds key elements to facilitate chronic research, such as four channels of electrocortigram/local field potential amplification and spectral analysis, a three-axis accelerometer, algorithm processing, event-based data logging, and wireless telemetry for data uploads and algorithm/configuration updates. The custom-integrated micropower sensor and interface circuits facilitate extended operation in a power-limited device. The prototype underwent significant verification testing to ensure reliability, and meets the requirements for a class CF instrument per IEC-60601 protocols. The ability of the device system to process and aid in classifying brain states was preclinically validated using an in vivo non-human primate model for brain control of a computer cursor (i.e. brain-machine interface or BMI). The primate BMI model was chosen for its ability to quantitatively measure signal decoding performance from brain activity that is similar in both amplitude and spectral content to other biomarkers used to detect disease states (e.g. Parkinson's disease). A key goal of this research prototype is to help broaden the clinical scope and acceptance of NI techniques, particularly real-time brain state detection. These techniques have the potential to be generalized beyond motor prosthesis, and are being explored for unmet needs in other neurological conditions such as movement disorders, stroke and epilepsy.

  16. History of Chronic Subdural Hematoma.

    Science.gov (United States)

    Lee, Kyeong-Seok

    2015-10-01

    Trephination or trepanation is an intentional surgical procedure performed from the Stone Age. It looks like escaping a black evil from the head. This technique is still used for treatment of chronic subdural hematoma (SDH). Now, we know the origin, pathogenesis and natural history of this lesion. The author try to explore the history of trephination and modern discovery of chronic SDH. The author performed a detailed electronic search of PubMed. By the key word of chronic SDH, 2,593 articles were found without language restriction in May 2015. The author reviewed the fact and way, discovering the present knowledge on the chronic SDH. The first authentic report of chronic SDH was that of Wepfer in 1657. Chronic SDH was regarded as a stroke in 17th century. It was changed as an inflammatory disease in 19th century by Virchow, and became a traumatic lesion in 20th century. However, trauma is not necessary in many cases of chronic SDHs. The more important prerequisite is sufficient potential subdural space, degeneration of the brain. Modifying Virchow's description, chronic SDH is sometimes traumatic, but most often caused by severe degeneration of the brain. From Wepfer's first description, nearly 350 years passed to explore the origin, pathogenesis, and fate of chronic SDH. The nature of the black evil in the head of the Stone Age is uncovering by many authors riding the giant's shoulder. Chronic SDH should be categorized as a degenerative lesion instead of a traumatic lesion. PMID:27169062

  17. Biodegradable Cell-Seeded Nanofiber Scaffolds for Neural Repair

    Directory of Open Access Journals (Sweden)

    Karen C. Cheung

    2011-10-01

    Full Text Available Central and peripheral neural injuries are traumatic and can lead to loss of motor and sensory function, chronic pain, and permanent disability. Strategies that bridge the site of injury and allow axonal regeneration promise to have a large impact on restoring quality of life for these patients. Engineered materials can be used to guide axonal growth. Specifically, nanofiber structures can mimic the natural extracellular matrix, and aligned nanofibers have been shown to direct neurite outgrowth and support axon regeneration. In addition, cell-seeded scaffolds can assist in the remyelination of the regenerating axons. The electrospinning process allows control over fiber diameter, alignment, porosity, and morphology. Biodegradable polymers have been electrospun and their use in tissue engineering has been demonstrated. This paper discusses aspects of electrospun biodegradable nanofibers for neural regeneration, how fiber alignment affects cell alignment, and how cell-seeded scaffolds can increase the effectiveness of such implants.

  18. Neural Network Controlled Visual Saccades

    Science.gov (United States)

    Johnson, Jeffrey D.; Grogan, Timothy A.

    1989-03-01

    The paper to be presented will discuss research on a computer vision system controlled by a neural network capable of learning through classical (Pavlovian) conditioning. Through the use of unconditional stimuli (reward and punishment) the system will develop scan patterns of eye saccades necessary to differentiate and recognize members of an input set. By foveating only those portions of the input image that the system has found to be necessary for recognition the drawback of computational explosion as the size of the input image grows is avoided. The model incorporates many features found in animal vision systems, and is governed by understandable and modifiable behavior patterns similar to those reported by Pavlov in his classic study. These behavioral patterns are a result of a neuronal model, used in the network, explicitly designed to reproduce this behavior.

  19. Salience-Affected Neural Networks

    CERN Document Server

    Remmelzwaal, Leendert A; Ellis, George F R

    2010-01-01

    We present a simple neural network model which combines a locally-connected feedforward structure, as is traditionally used to model inter-neuron connectivity, with a layer of undifferentiated connections which model the diffuse projections from the human limbic system to the cortex. This new layer makes it possible to model global effects such as salience, at the same time as the local network processes task-specific or local information. This simple combination network displays interactions between salience and regular processing which correspond to known effects in the developing brain, such as enhanced learning as a result of heightened affect. The cortex biases neuronal responses to affect both learning and memory, through the use of diffuse projections from the limbic system to the cortex. Standard ANNs do not model this non-local flow of information represented by the ascending systems, which are a significant feature of the structure of the brain, and although they do allow associational learning with...

  20. Sunspot prediction using neural networks

    Science.gov (United States)

    Villarreal, James; Baffes, Paul

    1990-01-01

    The earliest systematic observance of sunspot activity is known to have been discovered by the Chinese in 1382 during the Ming Dynasty (1368 to 1644) when spots on the sun were noticed by looking at the sun through thick, forest fire smoke. Not until after the 18th century did sunspot levels become more than a source of wonderment and curiosity. Since 1834 reliable sunspot data has been collected by the National Oceanic and Atmospheric Administration (NOAA) and the U.S. Naval Observatory. Recently, considerable effort has been placed upon the study of the effects of sunspots on the ecosystem and the space environment. The efforts of the Artificial Intelligence Section of the Mission Planning and Analysis Division of the Johnson Space Center involving the prediction of sunspot activity using neural network technologies are described.

  1. Subspace learning of neural networks

    CERN Document Server

    Cheng Lv, Jian; Zhou, Jiliu

    2010-01-01

    PrefaceChapter 1. Introduction1.1 Introduction1.1.1 Linear Neural Networks1.1.2 Subspace Learning1.2 Subspace Learning Algorithms1.2.1 PCA Learning Algorithms1.2.2 MCA Learning Algorithms1.2.3 ICA Learning Algorithms1.3 Methods for Convergence Analysis1.3.1 SDT Method1.3.2 DCT Method1.3.3 DDT Method1.4 Block Algorithms1.5 Simulation Data Set and Notation1.6 ConclusionsChapter 2. PCA Learning Algorithms with Constants Learning Rates2.1 Oja's PCA Learning Algorithms2.1.1 The Algorithms2.1.2 Convergence Issue2.2 Invariant Sets2.2.1 Properties of Invariant Sets2.2.2 Conditions for Invariant Sets2.

  2. Primary neural leprosy: systematic review

    Directory of Open Access Journals (Sweden)

    Jose Antonio Garbino

    2013-06-01

    Full Text Available The authors proposed a systematic review on the current concepts of primary neural leprosy by consulting the following online databases: MEDLINE, Lilacs/SciELO, and Embase. Selected studies were classified based on the degree of recommendation and levels of scientific evidence according to the “Oxford Centre for Evidence-based Medicine”. The following aspects were reviewed: cutaneous clinical and laboratorial investigations, i.e. skin clinical exam, smears, and biopsy, and Mitsuda's reaction; neurological investigation (anamnesis, electromyography and nerve biopsy; serological investigation and molecular testing, i.e. serological testing for the detection of the phenolic glycolipid 1 (PGL-I and the polymerase chain reaction (PCR; and treatment (classification criteria for the definition of specific treatment, steroid treatment, and cure criteria.

  3. [The neural mechanisms underlying swallowing].

    Science.gov (United States)

    Inoue, Makoto

    2015-02-01

    Swallowing is regarded as the first step in nutrition; it transports food boluses and liquid from the mouth to the stomach and is a defensive response to prevent aspiration. Swallowing movements are produced by a central pattern generator (CPG) located in the lower brainstem. The swallowing CPG includes two main groups of neurons: one is located within the nucleus tractus solitarii and contains the generator neurons involved in triggering, shaping, and timing the sequential or rhythmic swallowing pattern and the other is located in the ventrolateral medulla and contains switching neurons that distribute the swallowing drive to various pools of related motoneurons. Swallowing movements can be triggered by either central inputs or peripheral inputs from pharyngeal and laryngeal regions, but the precise neural mechanisms of the swallowing CPG remain to be fully elucidated. This review discusses the fundamental knowledge of ingestion behaviors, with a focus on swallowing.

  4. Introduction to artificial neural networks.

    Science.gov (United States)

    Grossi, Enzo; Buscema, Massimo

    2007-12-01

    The coupling of computer science and theoretical bases such as nonlinear dynamics and chaos theory allows the creation of 'intelligent' agents, such as artificial neural networks (ANNs), able to adapt themselves dynamically to problems of high complexity. ANNs are able to reproduce the dynamic interaction of multiple factors simultaneously, allowing the study of complexity; they can also draw conclusions on individual basis and not as average trends. These tools can offer specific advantages with respect to classical statistical techniques. This article is designed to acquaint gastroenterologists with concepts and paradigms related to ANNs. The family of ANNs, when appropriately selected and used, permits the maximization of what can be derived from available data and from complex, dynamic, and multidimensional phenomena, which are often poorly predictable in the traditional 'cause and effect' philosophy. PMID:17998827

  5. Electrode array for neural stimulation

    Energy Technology Data Exchange (ETDEWEB)

    Wessendorf, Kurt O. (Albuquerque, NM); Okandan, Murat (Edgewood, NM); Stein, David J. (Albuquerque, NM); Yang, Pin (Albuquerque, NM); Cesarano, III, Joseph (Albuquerque, NM); Dellinger, Jennifer (Albuquerque, NM)

    2011-08-16

    An electrode array for neural stimulation is disclosed which has particular applications for use in a retinal prosthesis. The electrode array can be formed as a hermetically-sealed two-part ceramic package which includes an electronic circuit such as a demultiplexer circuit encapsulated therein. A relatively large number (up to 1000 or more) of individually-addressable electrodes are provided on a curved surface of a ceramic base portion the electrode array, while a much smaller number of electrical connections are provided on a ceramic lid of the electrode array. The base and lid can be attached using a metal-to-metal seal formed by laser brazing. Electrical connections to the electrode array can be provided by a flexible ribbon cable which can also be used to secure the electrode array in place.

  6. Neural networks for nuclear spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Keller, P.E.; Kangas, L.J.; Hashem, S.; Kouzes, R.T. [Pacific Northwest Lab., Richland, WA (United States)] [and others

    1995-12-31

    In this paper two applications of artificial neural networks (ANNs) in nuclear spectroscopy analysis are discussed. In the first application, an ANN assigns quality coefficients to alpha particle energy spectra. These spectra are used to detect plutonium contamination in the work environment. The quality coefficients represent the levels of spectral degradation caused by miscalibration and foreign matter affecting the instruments. A set of spectra was labeled with quality coefficients by an expert and used to train the ANN expert system. Our investigation shows that the expert knowledge of spectral quality can be transferred to an ANN system. The second application combines a portable gamma-ray spectrometer with an ANN. In this system the ANN is used to automatically identify, radioactive isotopes in real-time from their gamma-ray spectra. Two neural network paradigms are examined: the linear perception and the optimal linear associative memory (OLAM). A comparison of the two paradigms shows that OLAM is superior to linear perception for this application. Both networks have a linear response and are useful in determining the composition of an unknown sample when the spectrum of the unknown is a linear superposition of known spectra. One feature of this technique is that it uses the whole spectrum in the identification process instead of only the individual photo-peaks. For this reason, it is potentially more useful for processing data from lower resolution gamma-ray spectrometers. This approach has been tested with data generated by Monte Carlo simulations and with field data from sodium iodide and Germanium detectors. With the ANN approach, the intense computation takes place during the training process. Once the network is trained, normal operation consists of propagating the data through the network, which results in rapid identification of samples. This approach is useful in situations that require fast response where precise quantification is less important.

  7. Contextual behavior and neural circuits

    Directory of Open Access Journals (Sweden)

    Inah eLee

    2013-05-01

    Full Text Available Animals including humans engage in goal-directed behavior flexibly in response to items and their background, which is called contextual behavior in this review. Although the concept of context has long been studied, there are differences among researchers in defining and experimenting with the concept. The current review aims to provide a categorical framework within which not only the neural mechanisms of contextual information processing but also the contextual behavior can be studied in more concrete ways. For this purpose, we categorize contextual behavior into three subcategories as follows by considering the types of interactions among context, item, and response: contextual response selection, contextual item selection, and contextual item-response selection. Contextual response selection refers to the animal emitting different types of responses to the same item depending on the context in the background. Contextual item selection occurs when there are multiple items that need to be chosen in a contextual manner. Finally, when multiple items and multiple contexts are involved, contextual item-response selection takes place whereby the animal either choose an item or inhibit such a response depending on item-context paired association. The literature suggests that the rhinal cortical regions and the hippocampal formation play key roles in mnemonically categorizing and recognizing contextual representations and the associated items. In addition, it appears that the fronto-striatal cortical loops in connection with the contextual information-processing areas critically control the flexible deployment of adaptive action sets and motor responses for maximizing goals. We suggest that contextual information processing should be investigated in experimental settings where contextual stimuli and resulting behaviors are clearly defined and measurable, considering the dynamic top-down and bottom-up interactions among the neural systems for

  8. Chronic radiation syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Akleyev, Alexander V. [Urals Research Centre for Radiation Medicine, Chelyabinsk (Russian Federation). Clinical Dept.

    2014-04-01

    Comprehensive analysis of chronic radiation syndrome, covering epidemiology, pathogenesis, pathoanatomy, diagnosis and treatment. Based on observations in a unique sample of exposed residents of the Techa riverside villages in the Urals. Casts new light on the condition. Of value for all practitioners and researchers with an interest in chronic radiation syndrome. This book covers all aspects of chronic radiation syndrome (CRS) based on observations in a unique sample of residents of the Techa riverside villages in the southern Urals who were exposed to radioactive contamination in the 1950s owing to releases of liquid radioactive wastes from Mayak Production Association, which produced plutonium for weapons. In total, 940 cases of CRS were diagnosed in this population and these patients were subjected to detailed analysis. The opening chapters address the definition and classification of CRS, epidemiology and pathogenesis, covering molecular and cellular mechanisms, radioadaptation, and the role of tissue reactions. The pathoanatomy of CRS during the development and recovery stages is discussed for all organ systems. Clinical manifestations of CRS at the different stages are then described in detail and the dynamics of hematopoietic changes are thoroughly examined. In the following chapters, principles of diagnosis (including assessment of the exposure doses to critical organs) and differential diagnosis from a wide range of other conditions are discussed and current and potential treatment options, described. The medical and social rehabilitation of persons with CRS is also covered. This book, which casts new light on the condition, will be of value for all practitioners and researchers with an interest in CRS.

  9. Comparing artificial and biological dynamical neural networks

    Science.gov (United States)

    McAulay, Alastair D.

    2006-05-01

    Modern computers can be made more friendly and otherwise improved by making them behave more like humans. Perhaps we can learn how to do this from biology in which human brains evolved over a long period of time. Therefore, we first explain a commonly used biological neural network (BNN) model, the Wilson-Cowan neural oscillator, that has cross-coupled excitatory (positive) and inhibitory (negative) neurons. The two types of neurons are used for frequency modulation communication between neurons which provides immunity to electromagnetic interference. We then evolve, for the first time, an artificial neural network (ANN) to perform the same task. Two dynamical feed-forward artificial neural networks use cross-coupling feedback (like that in a flip-flop) to form an ANN nonlinear dynamic neural oscillator with the same equations as the Wilson-Cowan neural oscillator. Finally we show, through simulation, that the equations perform the basic neural threshold function, switching between stable zero output and a stable oscillation, that is a stable limit cycle. Optical implementation with an injected laser diode and future research are discussed.

  10. Coronary Artery Diagnosis Aided by Neural Network

    Science.gov (United States)

    Stefko, Kamil

    2007-01-01

    Coronary artery disease is due to atheromatous narrowing and subsequent occlusion of the coronary vessel. Application of optimised feed forward multi-layer back propagation neural network (MLBP) for detection of narrowing in coronary artery vessels is presented in this paper. The research was performed using 580 data records from traditional ECG exercise test confirmed by coronary arteriography results. Each record of training database included description of the state of a patient providing input data for the neural network. Level and slope of ST segment of a 12 lead ECG signal recorded at rest and after effort (48 floating point values) was the main component of input data for neural network was. Coronary arteriography results (verified the existence or absence of more than 50% stenosis of the particular coronary vessels) were used as a correct neural network training output pattern. More than 96% of cases were correctly recognised by especially optimised and a thoroughly verified neural network. Leave one out method was used for neural network verification so 580 data records could be used for training as well as for verification of neural network.

  11. Nonequilibrium landscape theory of neural networks.

    Science.gov (United States)

    Yan, Han; Zhao, Lei; Hu, Liang; Wang, Xidi; Wang, Erkang; Wang, Jin

    2013-11-01

    The brain map project aims to map out the neuron connections of the human brain. Even with all of the wirings mapped out, the global and physical understandings of the function and behavior are still challenging. Hopfield quantified the learning and memory process of symmetrically connected neural networks globally through equilibrium energy. The energy basins of attractions represent memories, and the memory retrieval dynamics is determined by the energy gradient. However, the realistic neural networks are asymmetrically connected, and oscillations cannot emerge from symmetric neural networks. Here, we developed a nonequilibrium landscape-flux theory for realistic asymmetrically connected neural networks. We uncovered the underlying potential landscape and the associated Lyapunov function for quantifying the global stability and function. We found the dynamics and oscillations in human brains responsible for cognitive processes and physiological rhythm regulations are determined not only by the landscape gradient but also by the flux. We found that the flux is closely related to the degrees of the asymmetric connections in neural networks and is the origin of the neural oscillations. The neural oscillation landscape shows a closed-ring attractor topology. The landscape gradient attracts the network down to the ring. The flux is responsible for coherent oscillations on the ring. We suggest the flux may provide the driving force for associations among memories. We applied our theory to rapid-eye movement sleep cycle. We identified the key regulation factors for function through global sensitivity analysis of landscape topography against wirings, which are in good agreements with experiments.

  12. Refractory chronic cluster headache

    DEFF Research Database (Denmark)

    Mitsikostas, Dimos D; Edvinsson, Lars; Jensen, Rigmor H;

    2014-01-01

    for clinical and research use. The preparation of the final consensus followed three stages. Internal between authors, a larger between all European Headache Federation members and finally an international one among all investigators that have published clinical studies on cluster headache the last five years......Chronic cluster headache (CCH) often resists to prophylactic pharmaceutical treatments resulting in patients' life damage. In this rare but pragmatic situation escalation to invasive management is needed but framing criteria are lacking. We aimed to reach a consensus for refractory CCH definition...

  13. Chronic granulomatous disease

    Directory of Open Access Journals (Sweden)

    Nair Pradeep

    2005-01-01

    Full Text Available A 2½-year-old child presented with multiple discrete granulomatous lesions on the face and flexural regions since the age of 2 months along with lymphadenopathy. The patient also had recurrent bouts of pyodermas and respiratory tract infections. Biopsy of the lesion showed necrosis of tissue with suppuration and histiocytes but no evidence of tuberculosis, fungal infections or atypical mycobacteria. Lymph node biopsy also showed necrosis with suppuration but no infective organism. Nitroblue tetrazolium test was negative indicating that the neutrophils failed to oxidize the dye. We are reporting here a rare case of chronic granulomatous disease.

  14. Pathogenesis of chronic urticaria.

    Science.gov (United States)

    Kaplan, A P; Greaves, M

    2009-06-01

    Chronic urticaria is defined as the presence of urticaria (hives) for at least 6 weeks with the assumption that it occurs daily or close to it. If we eliminate physical urticarias and urticarial vasculitis from consideration, the remainder can be divided into autoimmune chronic urticaria (45%) and idiopathic chronic urticaria (55%). The autoimmune subgroup is associated with the IgG anti-IgE receptor alpha subunit in 35-40% of patients and IgG anti-IgE in an additional 5-10%. These autoantibodies have been shown to activate blood basophils and cutaneous mast cells in vitro with augmentation of basophil activation by complement and release of C5a, in particular. Binding methods (immunoblot and ELISA) yield positives in many autoimmune diseases as well as occasional normal subjects or patients with other forms of urticaria but most such sera are non-functional. Activation of basophils or mast cells causing histamine release is quite specific for chronic urticaria and defines the autoimmune subgroup. Although pathogenicity is not formally proven, the antibodies cause wealing upon intradermal injection, and removal of the autoantibody leads to remission. A cellular infiltrate is seen to be characterized by mast cell degranulation and infiltration of CD4+ T lymphocytes, monocytes, neutrophils, eosinophils, and basophils. The intensity of the infiltrate and clinical severity of the disease (including accompanying angio-oedema) is more severe in the autoimmune subpopulation. This latter group also has a higher evidence of human leucocyte antigen DR alleles associated with autoimmunity and a 25% incidence of antithyroid antibodies with diagnosed hypothyroidism in some. Hypo-responsiveness of patients' basophils to anti-IgE and hyperresponsiveness to serum defines another subpopulation (at least 50%) that overlaps the idiopathic and autoimmune subgroups. Hypo-responsiveness to anti-IgE has been shown to be associated with elevated levels of cytoplasmic phosphatases that

  15. Sexuality and chronic illness.

    Science.gov (United States)

    Steinke, Elaine E

    2013-11-01

    Sexual function is often affected in individuals living with chronic illness and their partners, and multiple comorbidities increase the likelihood of sexual dysfunction. This review focuses on the areas of cardiovascular disease, respiratory conditions, and cancer, all areas for which there are practical, evidence-based strategies to guide sexual counseling. Although nurses have been reluctant to address the topic of sexuality in practice, a growing number of studies suggest that patients want nurses to address their concerns and provide resources to them. Thus, nurses must be proactive in initiating conversations on sexual issues to fill this gap in practice. PMID:24066783

  16. Chronic inflammatory demyelinative polyneuropathy

    DEFF Research Database (Denmark)

    Said, Gérard; Krarup, Christian

    2013-01-01

    Chronic inflammatory demyelinative polyneuropathy (CIDP) is an acquired polyneuropathy presumably of immunological origin. It is characterized by a progressive or a relapsing course with predominant motor deficit. The diagnosis rests on the association of non-length-dependent predominantly motor...... deficit following a progressive or a relapsing course associated with increased CSF protein content. The demonstration of asymmetrical demyelinating features on nerve conduction studies is needed for diagnosis. The outcome depends on the amplitude of axon loss associated with demyelination. CIDP must...... be differentiated from acquired demyelinative neuropathies associated with monoclonal gammopathies. CIDP responds well to treatment with corticosteroids, intravenous immunoglobulins, and plasma exchanges, at least initially....

  17. [Chronic nonbacterial osteomyelitis].

    Science.gov (United States)

    Keskitalo, Paula; Remes-Pakarinen, Terhi; Vähäsalo, Paula; Niinimäki, Jaakko; Kröger, Liisa

    2016-01-01

    Chronic nonbacterial osteomyelitis is an autoinflammatory disease occurring mainly in children and adolescents, typically involving recurrent or persistent osteitic foci. The symptom is bone pain, possibly accompanied by soft tissue tenderness. Some patients exhibit symptoms of systemic inflammation. The. precise etiology of the disease is not known, but an imbalance of inflammatory and anti-inflammatory cytokines is presumed to play a role in the development of the disease. While an anti-inflammatory analgesic is in most cases sufficient to calm down the osteitis, the use of corticosteroids, anti- TNF-a inhibitors or bisphosphonates is required in some cases. PMID:26939487

  18. Chronic granulomatous disease.

    Science.gov (United States)

    Nair, Pradeep S; Moorthy, Prasanna K; Suprakasan, S; Jayapalan, Sabeena; Preethi, K

    2005-01-01

    A 2(1/2)-year-old child presented with multiple discrete granulomatous lesions on the face and flexural regions since the age of 2 months along with lymphadenopathy. The patient also had recurrent bouts of pyodermas and respiratory tract infections. Biopsy of the lesion showed necrosis of tissue with suppuration and histiocytes but no evidence of tuberculosis, fungal infections or atypical mycobacteria. Lymph node biopsy also showed necrosis with suppuration but no infective organism. Nitroblue tetrazolium test was negative indicating that the neutrophils failed to oxidize the dye. We are reporting here a rare case of chronic granulomatous disease. PMID:16394414

  19. An implantable wireless neural interface for recording cortical circuit dynamics in moving primates

    Science.gov (United States)

    Borton, David A.; Yin, Ming; Aceros, Juan; Nurmikko, Arto

    2013-04-01

    Objective. Neural interface technology suitable for clinical translation has the potential to significantly impact the lives of amputees, spinal cord injury victims and those living with severe neuromotor disease. Such systems must be chronically safe, durable and effective. Approach. We have designed and implemented a neural interface microsystem, housed in a compact, subcutaneous and hermetically sealed titanium enclosure. The implanted device interfaces the brain with a 510k-approved, 100-element silicon-based microelectrode array via a custom hermetic feedthrough design. Full spectrum neural signals were amplified (0.1 Hz to 7.8 kHz, 200× gain) and multiplexed by a custom application specific integrated circuit, digitized and then packaged for transmission. The neural data (24 Mbps) were transmitted by a wireless data link carried on a frequency-shift-key-modulated signal at 3.2 and 3.8 GHz to a receiver 1 m away by design as a point-to-point communication link for human clinical use. The system was powered by an embedded medical grade rechargeable Li-ion battery for 7 h continuous operation between recharge via an inductive transcutaneous wireless power link at 2 MHz. Main results. Device verification and early validation were performed in both swine and non-human primate freely-moving animal models and showed that the wireless implant was electrically stable, effective in capturing and delivering broadband neural data, and safe for over one year of testing. In addition, we have used the multichannel data from these mobile animal models to demonstrate the ability to decode neural population dynamics associated with motor activity. Significance. We have developed an implanted wireless broadband neural recording device evaluated in non-human primate and swine. The use of this new implantable neural interface technology can provide insight into how to advance human neuroprostheses beyond the present early clinical trials. Further, such tools enable mobile

  20. Late and chronic Lyme disease.

    Science.gov (United States)

    Donta, Sam T

    2002-03-01

    This article reviews the late and chronic manifestations of Lyme disease. Special attention is given to the chronic manifestations of the disease, detailing its pathogenesis, clinical spectrum, and laboratory criteria for the diagnosis. Based on experimental evidence and experience, approaches to the successful treatment of the late and chronic disease are outlined. Much additional work is needed to improve the understanding of the underlying pathophysiology of the disease, its diagnosis and treatment.