WorldWideScience

Sample records for chronic lung inflammation

  1. Lung inflammation biomarkers and lung function in children chronically exposed to arsenic

    Energy Technology Data Exchange (ETDEWEB)

    Olivas-Calderón, Edgar, E-mail: edgar_olivascalderon@hotmail.com [Department of Environmental Health, Biomedical Research Center, School of Medicine, University of Coahuila, Torreon, Coahuila (Mexico); School of Medicine, University Juarez of Durango, Gomez Palacio, Durango (Mexico); Recio-Vega, Rogelio, E-mail: rrecio@yahoo.com [Department of Environmental Health, Biomedical Research Center, School of Medicine, University of Coahuila, Torreon, Coahuila (Mexico); Gandolfi, A. Jay, E-mail: gandolfi@pharmacy.arizona.edu [Southwest Environmental Health Science Center, University of Arizona, Tucson, AZ (United States); Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ (United States); Lantz, R. Clark, E-mail: lantz@email.arizona.edu [Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ (United States); Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ (United States); González-Cortes, Tania, E-mail: taniagc2201@hotmail.com [Department of Environmental Health, Biomedical Research Center, School of Medicine, University of Coahuila, Torreon, Coahuila (Mexico); Gonzalez-De Alba, Cesar, E-mail: cesargonzalezalba@hotmail.com [Department of Environmental Health, Biomedical Research Center, School of Medicine, University of Coahuila, Torreon, Coahuila (Mexico); Froines, John R., E-mail: jfroines@ucla.edu [Center for Environmental and Occupational Health, School of Public Health, University of California at Los Angeles, Los Angeles, CA (United States); Espinosa-Fematt, Jorge A., E-mail: dr.jorge.espinosa@gmail.com [School of Medicine, University Juarez of Durango, Gomez Palacio, Durango (Mexico)

    2015-09-01

    Evidence suggests that exposure to arsenic in drinking water during early childhood or in utero has been associated with an increase in respiratory symptoms or diseases in the adulthood, however only a few studies have been carried out during those sensitive windows of exposure. Recently our group demonstrated that the exposure to arsenic during early childhood or in utero in children was associated with impairment in the lung function and suggested that this adverse effect could be due to a chronic inflammation response to the metalloid. Therefore, we designed this cross-sectional study in a cohort of children associating lung inflammatory biomarkers and lung function with urinary As levels. A total of 275 healthy children were partitioned into four study groups according with their arsenic urinary levels. Inflammation biomarkers were measured in sputum by ELISA and the lung function was evaluated by spirometry. Fifty eight percent of the studied children were found to have a restrictive spirometric pattern. In the two highest exposed groups, the soluble receptor for advanced glycation end products' (sRAGE) sputum level was significantly lower and matrix metalloproteinase-9 (MMP-9) concentration was higher. When the biomarkers were correlated to the urinary arsenic species, negative associations were found between dimethylarsinic (DMA), monomethylarsonic percentage (%MMA) and dimethylarsinic percentage (%DMA) with sRAGE and positive associations between %DMA with MMP-9 and with the MMP-9/tissue inhibitor of metalloproteinase (TIMP-1) ratio. In conclusion, chronic arsenic exposure of children negatively correlates with sRAGE, and positively correlated with MMP-9 and MMP-9/TIMP-1 levels, and increases the frequency of an abnormal spirometric pattern. Arsenic-induced alterations in inflammatory biomarkers may contribute to the development of restrictive lung diseases. - Highlights: • First study in children evaluating lung inflammatory biomarkers and As levels

  2. Chlamydia pneumoniae infection in mice induces chronic lung inflammation, iBALT formation, and fibrosis.

    Directory of Open Access Journals (Sweden)

    Madhulika Jupelli

    Full Text Available Chlamydia pneumoniae (CP lung infection can induce chronic lung inflammation and is associated with not only acute asthma but also COPD exacerbations. However, in mouse models of CP infection, most studies have investigated specifically the acute phase of the infection and not the longer-term chronic changes in the lungs. We infected C57BL/6 mice with 5 × 10(5 CP intratracheally and monitored inflammation, cellular infiltrates and cytokine levels over time to investigate the chronic inflammatory lung changes. While bacteria numbers declined by day 28, macrophage numbers remained high through day 35. Immune cell clusters were detected as early as day 14 and persisted through day 35, and stained positive for B, T, and follicular dendritic cells, indicating these clusters were inducible bronchus associated lymphoid tissues (iBALTs. Classically activated inflammatory M1 macrophages were the predominant subtype early on while alternatively activated M2 macrophages increased later during infection. Adoptive transfer of M1 but not M2 macrophages intratracheally 1 week after infection resulted in greater lung inflammation, severe fibrosis, and increased numbers of iBALTS 35 days after infection. In summary, we show that CP lung infection in mice induces chronic inflammatory changes including iBALT formations as well as fibrosis. These observations suggest that the M1 macrophages, which are part of the normal response to clear acute C. pneumoniae lung infection, result in an enhanced acute response when present in excess numbers, with greater inflammation, tissue injury, and severe fibrosis.

  3. Oral administration of aflatoxin G₁ induces chronic alveolar inflammation associated with lung tumorigenesis.

    Science.gov (United States)

    Liu, Chunping; Shen, Haitao; Yi, Li; Shao, Peilu; Soulika, Athena M; Meng, Xinxing; Xing, Lingxiao; Yan, Xia; Zhang, Xianghong

    2015-02-03

    Our previous studies showed oral gavage of aflatoxin G₁ (AFG₁) induced lung adenocarcinoma in NIH mice. We recently found that a single intratracheal administration of AFG₁ caused chronic inflammatory changes in rat alveolar septum. Here, we examine whether oral gavage of AFG₁ induces chronic lung inflammation and how it contributes to carcinogenesis. We evaluated chronic lung inflammatory responses in Balb/c mice after oral gavage of AFG₁ for 1, 3 and 6 months. Inflammatory responses were heightened in the lung alveolar septum, 3 and 6 months after AFG₁ treatment, evidenced by increased macrophages and lymphocytes infiltration, up-regulation of NF-κB and p-STAT3, and cytokines production. High expression levels of superoxide dismutase (SOD-2) and hemoxygenase-1 (HO-1), two established markers of oxidative stress, were detected in alveolar epithelium of AFG₁-treated mice. Promoted alveolar type II cell (AT-II) proliferation in alveolar epithelium and angiogenesis, as well as increased COX-2 expression were also observed in lung tissues of AFG₁-treated mice. Furthermore, we prolonged survival of the mice in the above model for another 6 months to examine the contribution of AFG₁-induced chronic inflammation to lung tumorigenesis. Twelve months later, we observed that AFG₁ induced alveolar epithelial hyperplasia and adenocarcinoma in Balb/c mice. Up-regulation of NF-κB, p-STAT3, and COX-2 was also induced in lung adenocarcinoma, thus establishing a link between AFG₁-induced chronic inflammation and lung tumorigenesis. This is the first study to show that oral administration of AFG₁ could induce chronic lung inflammation, which may provide a pro-tumor microenvironment to contribute to lung tumorigenesis.

  4. Lung inflammation biomarkers and lung function in children chronically exposed to arsenic

    Science.gov (United States)

    Olivas-Calderón, Edgar; Recio-Vega, Rogelio; Gandolfi, A. Jay; Lantz, R. Clark; González-Cortes, Tania; Alba, Cesar Gonzalez-De; Froines, John R.; Espinosa-Fematt, Jorge A.

    2016-01-01

    Evidence suggests that exposure to arsenic in drinking water during early childhood or in utero is associated with an increase in respiratory symptoms and diseases in adulthood, however only a few studies have been carried out during those sensitive windows of exposure. Recently our group demonstrated that exposure to arsenic during early childhood or in utero was associated with impairment in the lung function in children and suggested that this adverse effect could be due to a chronic inflammatory response to the metalloid. Therefore, a cross-sectional study was designed in a cohort of children associating lung inflammatory biomarkers and lung function with urinary As levels. A total of 275 healthy children were partitioned into four study groups according with their As levels. Inflammation biomarkers were measured in sputum by ELISA and the lung function was evaluated by spirometry. Fifty eight percent of the studied children were found to have a restrictive spirometric pattern. In the two highest exposed groups, the Soluble Receptor for Advanced Glycation Endproducts (sRAGE) sputum level was significantly lower and Matrix Metalloproteinase-9 (MMP-9) concentration was higher. When the biomarkers were correlated to the urinary arsenic species, negative associations were found between dimethylarsinic (DMA), monomethylarsenic percentage (%MMA) and dimethylarsinic percentage (%DMA) with sRAGE and positive associations between %DMA with MMP-9 and with the MMP-9/Tissue Inhibitor of Metalloproteinase (TIMP-1) ratio. In conclusion, chronic arsenic exposure of children negatively correlates with sRAGE, and positively correlated with MMP-9 and MMP-9/TIMP-1 levels, and increases the frequency of an abnormal spirometric pattern. PMID:26048584

  5. HIV Impairs Lung Epithelial Integrity and Enters the Epithelium to Promote Chronic Lung Inflammation.

    Science.gov (United States)

    Brune, Kieran A; Ferreira, Fernanda; Mandke, Pooja; Chau, Eric; Aggarwal, Neil R; D'Alessio, Franco R; Lambert, Allison A; Kirk, Gregory; Blankson, Joel; Drummond, M Bradley; Tsibris, Athe M; Sidhaye, Venkataramana K

    2016-01-01

    Several clinical studies show that individuals with HIV are at an increased risk for worsened lung function and for the development of COPD, although the mechanism underlying this increased susceptibility is poorly understood. The airway epithelium, situated at the interface between the external environment and the lung parenchyma, acts as a physical and immunological barrier that secretes mucins and cytokines in response to noxious stimuli which can contribute to the pathobiology of chronic obstructive pulmonary disease (COPD). We sought to determine the effects of HIV on the lung epithelium. We grew primary normal human bronchial epithelial (NHBE) cells and primary lung epithelial cells isolated from bronchial brushings of patients to confluence and allowed them to differentiate at an air- liquid interface (ALI) to assess the effects of HIV on the lung epithelium. We assessed changes in monolayer permeability as well as the expression of E-cadherin and inflammatory modulators to determine the effect of HIV on the lung epithelium. We measured E-cadherin protein abundance in patients with HIV compared to normal controls. Cell associated HIV RNA and DNA were quantified and the p24 viral antigen was measured in culture supernatant. Surprisingly, X4, not R5, tropic virus decreased expression of E-cadherin and increased monolayer permeability. While there was some transcriptional regulation of E-cadherin, there was significant increase in lysosome-mediated protein degradation in cells exposed to X4 tropic HIV. Interaction with CXCR4 and viral fusion with the epithelial cell were required to induce the epithelial changes. X4 tropic virus was able to enter the airway epithelial cells but not replicate in these cells, while R5 tropic viruses did not enter the epithelial cells. Significantly, X4 tropic HIV induced the expression of intercellular adhesion molecule-1 (ICAM-1) and activated extracellular signal-regulated kinase (ERK). We demonstrate that HIV can enter airway

  6. HIV Impairs Lung Epithelial Integrity and Enters the Epithelium to Promote Chronic Lung Inflammation.

    Directory of Open Access Journals (Sweden)

    Kieran A Brune

    Full Text Available Several clinical studies show that individuals with HIV are at an increased risk for worsened lung function and for the development of COPD, although the mechanism underlying this increased susceptibility is poorly understood. The airway epithelium, situated at the interface between the external environment and the lung parenchyma, acts as a physical and immunological barrier that secretes mucins and cytokines in response to noxious stimuli which can contribute to the pathobiology of chronic obstructive pulmonary disease (COPD. We sought to determine the effects of HIV on the lung epithelium. We grew primary normal human bronchial epithelial (NHBE cells and primary lung epithelial cells isolated from bronchial brushings of patients to confluence and allowed them to differentiate at an air- liquid interface (ALI to assess the effects of HIV on the lung epithelium. We assessed changes in monolayer permeability as well as the expression of E-cadherin and inflammatory modulators to determine the effect of HIV on the lung epithelium. We measured E-cadherin protein abundance in patients with HIV compared to normal controls. Cell associated HIV RNA and DNA were quantified and the p24 viral antigen was measured in culture supernatant. Surprisingly, X4, not R5, tropic virus decreased expression of E-cadherin and increased monolayer permeability. While there was some transcriptional regulation of E-cadherin, there was significant increase in lysosome-mediated protein degradation in cells exposed to X4 tropic HIV. Interaction with CXCR4 and viral fusion with the epithelial cell were required to induce the epithelial changes. X4 tropic virus was able to enter the airway epithelial cells but not replicate in these cells, while R5 tropic viruses did not enter the epithelial cells. Significantly, X4 tropic HIV induced the expression of intercellular adhesion molecule-1 (ICAM-1 and activated extracellular signal-regulated kinase (ERK. We demonstrate that HIV

  7. Sub-chronic lung inflammation after airway exposures to Bacillus thuringiensis biopesticides in mice

    Directory of Open Access Journals (Sweden)

    Barfod Kenneth K

    2010-09-01

    exposures to commercial Bt based biopesticides can induce sub-chronic lung inflammation in mice, which may be the first step in the development of chronic lung diseases. Inhalation of Bt aerosols does not induce airway irritation, which could explain why workers may be less inclined to use a filter mask during the application process, and are thereby less protected from exposure to Bt spores.

  8. Toxicogenomic analysis of susceptibility to inhaled urban particulate matter in mice with chronic lung inflammation

    Directory of Open Access Journals (Sweden)

    Yauk Carole L

    2009-03-01

    Full Text Available Abstract Background Individuals with chronic lung disease are at increased risk of adverse health effects from airborne particulate matter. Characterization of underlying pollutant-phenotype interactions may require comprehensive strategies. Here, a toxicogenomic approach was used to investigate how inflammation modifies the pulmonary response to urban particulate matter. Results Transgenic mice with constitutive pulmonary overexpression of tumour necrosis factor (TNF-α under the control of the surfactant protein C promoter and wildtype littermates (C57BL/6 background were exposed by inhalation for 4 h to particulate matter (0 or 42 mg/m3 EHC-6802 and euthanized 0 or 24 h post-exposure. The low alveolar dose of particles (16 μg did not provoke an inflammatory response in the lungs of wildtype mice, nor exacerbate the chronic inflammation in TNF animals. Real-time PCR confirmed particle-dependent increases of CYP1A1 (30–100%, endothelin-1 (20–40%, and metallothionein-II (20–40% mRNA in wildtype and TNF mice (p Conclusion Our data support the hypothesis that health effects of acute exposure to urban particles are dominated by activation of specific physiological response cascades rather than widespread changes in gene expression.

  9. Dynamic Structure of Proteoglycans/Glycosaminoglycans in the Lungs of Mice with Chronic Granulomatous Inflammation.

    Science.gov (United States)

    Kim, L B; Shkurupy, V A; Putyatina, A N

    2016-02-01

    Structure of proteoglycans in the lungs and total glycosaminoglycan content in blood serum were studied on mouse model of BCG-induced granulomatous inflammation in mice (without destructive processes in the lung parenchyma and granulomas). The maximum level of sulfated glycosaminoglycans in the lungs was detected on postinfection day 30 and was related to their involvement in initiation granulomogenesis and development of granulomas. The maximum level of total glycosaminoglycans in mouse serum on postinfection day 90 coincided with minimum level of sulfated glycosaminoglycans in the lungs. This blood/lungs ratio of glycosaminoglycans can be related to the prevalence of low-molecular-weight hyaluronan fragments promoting inflammation and fibrosis in the lungs observed at the end of the experiment (postinfection day 180).

  10. Modulation of Pseudomonas aeruginosa lipopolysaccharide-induced lung inflammation by chronic iron overload in rat.

    Science.gov (United States)

    Lê, Bá Vuong; Khorsi-Cauet, Hafida; Bach, Véronique; Gay-Quéheillard, Jérôme

    2012-03-01

    Iron constitutes a critical nutrient source for bacterial growth, so iron overload is a risk factor for bacterial infections. This study aimed at investigating the role of iron overload in modulating bacterial endotoxin-induced lung inflammation. Weaning male Wistar rats were intraperitoneally injected with saline or iron sucrose [15 mg kg(-1) body weight (bw), 3 times per week, 4 weeks]. They were then intratracheally injected with Pseudomonas aeruginosa lipopolysaccharide (LPS) (5 μg kg(-1) bw) or saline. Inflammatory indices were evaluated 4 or 18 h post-LPS/saline injection. At 4 h, LPS-treated groups revealed significant increases in the majority of inflammatory parameters (LPS-binding protein (LBP), immune cell recruitment, inflammatory cytokine synthesis, myeloperoxidase activity, and alteration of alveolar-capillary permeability), as compared with control groups. At 18 h, these parameters reduced strongly with the exception for LBP content and interleukin (IL)-10. In parallel, iron acted as a modulator of immune cell recruitment; LBP, tumor necrosis factor-α, cytokine-induced neutrophil chemoattractant 3, and IL-10 synthesis; and alveolar-capillary permeability. Therefore, P. aeruginosa LPS may only act as an acute lung inflammatory molecule, and iron overload may modulate lung inflammation by enhancing different inflammatory parameters. Thus, therapy for iron overload may be a novel and efficacious approach for the prevention and treatment of bacterial lung inflammations.

  11. Tight junctions in pulmonary epithelia during lung inflammation

    OpenAIRE

    Wittekindt, Oliver H.

    2016-01-01

    Inflammatory lung diseases like asthma bronchiale, chronic obstructive pulmonary disease and allergic airway inflammation are widespread public diseases that constitute an enormous burden to the health systems. Mainly classified as inflammatory diseases, the treatment focuses on strategies interfering with local inflammatory responses by the immune system. Inflammatory lung diseases predispose patients to severe lung failures like alveolar oedema, respiratory distress syndrome and acute lung ...

  12. Longitudinal characterization of a model of chronic allergic lung inflammation in mice using imaging, functional and immunological methods.

    Science.gov (United States)

    Changani, Kumar; Pereira, Catherine; Young, Simon; Shaw, Robert; Campbell, Simon P; Pindoria, Kashmira; Jordan, Steve; Wiley, Katherine; Bolton, Sarah; Nials, Tony; Haase, Michael; Pedrick, Mike; Knowles, Richard

    2013-12-01

    The present study investigated the role that imaging could have for assessing lung inflammation in a mouse model of HDM (house dust mite)-provoked allergic inflammation. Inflammation is usually assessed using terminal procedures such as BAL (bronchoalveolar lavage) and histopathology; however, MRI (magnetic resonance imaging) and CT (computed tomography) methods have the potential to allow longitudinal, repeated study of individual animals. Female BALB/c mice were administered daily either saline, or a solution of mixed HDM proteins sufficient to deliver a dose of 12 or 25 μg total HDM protein±budesonide (1 mg/kg of body weight, during weeks 5-7) for 7 weeks. AHR (airway hyper-responsiveness) and IgE measurements were taken on weeks 3, 5 and 7. Following imaging sessions at weeks 3, 5 and 7 lungs were prepared for histology. BAL samples were taken at week 7 and lungs prepared for histology. MRI showed a gradual weekly increase in LTI (lung tissue intensity) in animals treated with HDM compared with control. The 25 μg HDM group showed a continual significant increase in LTI between weeks 3 and 7, the 12 μg HDM-treated group showed a similar rate of increase, and plateaued by week 5. A corresponding increase in AHR, cell counts and IgE were observed. CT showed significant increases in lung tissue density from week 1 of HDM exposure and this was maintained throughout the 7 weeks. Budesonide treatment reversed the increase in tissue density. MRI and CT therefore provide non-invasive sensitive methods for longitudinally assessing lung inflammation. Lung tissue changes could be compared directly with the classical functional and inflammatory readouts, allowing more accurate assessments to be made within each animal and providing a clinically translatable approach.

  13. Molecular Analysis of a Multistep Lung Cancer Model Induced by Chronic Inflammation Reveals Epigenetic Regulation of p16 and Activation of the DNA Damage Response Pathway12

    Science.gov (United States)

    Blanco, David; Vicent, Silvestre; Fraga, Mario F; Fernandez-Garcia, Ignacio; Freire, Javier; Lujambio, Amaia; Esteller, Manel; Ortiz-de-Solorzano, Carlos; Pio, Ruben; Lecanda, Fernando; Montuenga, Luis M

    2007-01-01

    The molecular hallmarks of inflammation-mediated lung carcinogenesis have not been fully clarified, mainly due to the scarcity of appropriate animal models. We have used a silica-induced multistep lung carcinogenesis model driven by chronic inflammation to study the evolution of molecular markers and genetic alterations. We analyzed markers of DNA damage response (DDR), proliferative stress, and telomeric stress: γ-H2AX, p16, p53, and TERT. Lung cancer-related epigenetic and genetic alterations, including promoter hypermethylation status of p16(CDKN2A), APC, CDH13, Rassf1, and Nore1A, as well as mutations of Tp53, epidermal growth factor receptor, K-ras, N-ras, and c-H-ras, have been also studied. Our results showed DDR pathway activation in preneoplastic lesions, in association with inducible nitric oxide synthase and p53 induction. p16 was also induced in early tumorigenic progression and was inactivated in bronchiolar dysplasias and tumors. Remarkably, lack of mutations of Ras and epidermal growth factor receptor, and a very low frequency of Tp53 mutations suggest that they are not required for tumorigenesis in this model. In contrast, epigenetic alterations in p16(CDKN2A), CDH13, and APC, but not in Rassf1 and Nore1A, were clearly observed. These data suggest the existence of a specific molecular signature of inflammation-driven lung carcinogenesis that shares some, but not all, of the molecular landmarks of chemically induced lung cancer. PMID:17971904

  14. Effects of exercise training on atrophy gene expression in skeletal muscle of mice with chronic allergic lung inflammation

    Directory of Open Access Journals (Sweden)

    J.L.Q. Durigan

    2009-04-01

    Full Text Available We evaluated the effects of chronic allergic airway inflammation and of treadmill training (12 weeks of low and moderate intensity on muscle fiber cross-sectional area and mRNA levels of atrogin-1 and MuRF1 in the mouse tibialis anterior muscle. Six 4-month-old male BALB/c mice (28.5 ± 0.8 g per group were examined: 1 control, non-sensitized and non-trained (C; 2 ovalbumin sensitized (OA, 20 µg per mouse; 3 non-sensitized and trained at 50% maximum speed _ low intensity (PT50%; 4 non-sensitized and trained at 75% maximum speed _ moderate intensity (PT75%; 5 OA-sensitized and trained at 50% (OA+PT50%, 6 OA-sensitized and trained at 75% (OA+PT75%. There was no difference in muscle fiber cross-sectional area among groups and no difference in atrogin-1 and MuRF1 expression between C and OA groups. All exercised groups showed significantly decreased expression of atrogin-1 compared to C (1.01 ± 0.2-fold: PT50% = 0.71 ± 0.12-fold; OA+PT50% = 0.74 ± 0.03-fold; PT75% = 0.71 ± 0.09-fold; OA+PT75% = 0.74 ± 0.09-fold. Similarly significant results were obtained regarding MuRF1 gene expression compared to C (1.01 ± 0.23-fold: PT50% = 0.53 ± 0.20-fold; OA+PT50% = 0.55 ± 0.11-fold; PT75% = 0.35 ± 0.15-fold; OA+PT75% = 0.37 ± 0.08-fold. A short period of OA did not induce skeletal muscle atrophy in the mouse tibialis anterior muscle and aerobic training at low and moderate intensity negatively regulates the atrophy pathway in skeletal muscle of healthy mice or mice with allergic lung inflammation.

  15. Rat strain differences in levels and effects of chronic inflammation due to intratracheal instillation of quartz on lung tumorigenesis induced by DHPN.

    Science.gov (United States)

    Nakano, Yuko; Yokohira, Masanao; Hashimoto, Nozomi; Yamakawa, Keiko; Kishi, Sosuke; Ninomiya, Fumiko; Kanie, Shohei; Saoo, Kousuke; Imaida, Katsumi

    2014-10-01

    Chronic inflammatory effects of single intratracheal instillation (i.t.) of quartz on rat lung tumorigenesis were examined using 4 different animal models. At first, in order to determine an appropriate dose of quartz i.t. to promote lung tumorigenesis, F344 male rats were administrated single 0, 0.5, 1, 2 or 4 mg quartz/rat after initiation by N-bis(2-hydroxypropyl) nitrosamine (DHPN). Further studies were performed to examine strain differences of the effects of chronic inflammation caused by quartz i.t. in 3 strains of rat, i.e. F344, Wistar-Hannover and SD. Each was instilled with 2mg quartz/rat after DHPN administration and sacrificed in week 24. In addition, strain differences in generation of inflammation were determined at days 1 and 28. Finally, for determination of long-term effects period, F344 and Wistar-Hannover rats were similarly treated, but the experiment was terminated at week 52. In F344 rats, the tumor areas in DHPN treated groups showed a tendency to increase along with the dose of quartz. F344 rats demonstrated the highest and Wistar-Hannover rats the lowest sensitivity to quartz in acute and chronic phases in the 3 strains. In 52 week, in F344 rats, the multiplicity of tumors and the serum concentration of IL-6 in the group treated with DHPN and quartz were significantly increased. The present experiments indicated that chronic inflammation due to quartz instillation exerted promoting effects on lung carcinogenesis in F344, SD and Wistar-Hannover rats. The strain differences in tumor promotion appeared to correlate with inflammatory reactions to quartz and increase of IL-6.

  16. Inflammation in the development of lung cancer: epidemiological evidence.

    Science.gov (United States)

    Engels, Eric A

    2008-04-01

    The lung is a site for repeated or chronic inflammatory insults. Epidemiologic research has provided evidence to support the hypothesis that tissue damage caused by inflammation can initiate or promote the development of lung cancer, possibly in conjunction with tobacco use. For example, some studies suggest an increased risk of lung cancer among persons with lung infections, such as tuberculosis, bacterial pneumonia, or inflammatory lung diseases. Elevated serum levels of C-reactive protein, an inflammation marker, are associated with heightened lung cancer risk. Recent studies also demonstrate increased lung cancer risk among immunosuppressed individuals infected with HIV. Other research indicates an association between genetic polymorphisms in the inflammation pathway, which might modulate the inflammatory response and lung cancer risk.

  17. Distinct macrophage phenotypes in allergic and nonallergic lung inflammation

    NARCIS (Netherlands)

    Robbe, Patricia; Draijer, Christina; Rebelo Borg, Thiago; Luinge, Marjan; Timens, Wim; Wouters, Inge M.; Melgert, Barbro N.; Hylkema, Machteld N.

    2015-01-01

    Chronic exposure to farm environments is a risk factor for nonallergic lung disease. In contrast to allergic asthma, in which type 2 helper T cell (Th2) activation is dominant, exposure to farm dust extracts (FDE) induces Th1/Th17 lung inflammation, associated with neutrophil infiltration. Macrophag

  18. Lymphocyte 'homing' and chronic inflammation.

    Science.gov (United States)

    Sakai, Yasuhiro; Kobayashi, Motohiro

    2015-07-01

    Chronic inflammation is a response to prolonged exposure to injurious stimuli that harm and destroy tissues and promote lymphocyte infiltration into inflamed sites. Following progressive accumulation of lymphocytes, the histology of inflamed tissue begins to resemble that of peripheral lymphoid organs, which can be referred to as lymphoid neogenesis or formation of tertiary lymphoid tissues. Lymphocyte recruitment to inflamed tissues is also reminiscent of lymphocyte homing to peripheral lymphoid organs. In the latter, under physiological conditions, homing receptors expressed on lymphocytes adhere to vascular addressin expressed on high endothelial venules (HEVs), initiating a lymphocyte migration process composed of sequential adhesive interactions. Intriguingly, in chronic inflammation, HEV-like vessels are induced de novo, despite the fact that the inflamed site is not originally lymphoid tissue, and these vessels contribute to lymphocyte recruitment in a manner similar to physiological lymphocyte homing. In this review, we first describe physiological lymphocyte homing mechanisms focusing on vascular addressins. We then describe HEV-like vessel-mediated pathogenesis seen in various chronic inflammatory disorders such as Helicobacter pylori gastritis, inflammatory bowel disease (IBD), autoimmune pancreatitis and sclerosing sialadenitis, as well as chronic inflammatory cell neoplasm MALT lymphoma, with reference to our work and that of others.

  19. Hyperglycemia, tumorigenesis, and chronic inflammation.

    Science.gov (United States)

    Chang, Shu-Chun; Yang, Wei-Chung Vivian

    2016-12-01

    Hyperglycemia is the most prominent sign that characterizes diabetes. Hyperglycemia favors malignant cell growth by providing energy to cancer cells. Clinical studies also showed an increased risk of diabetes being associated with different types of cancers. In addition, poorly regulated glucose metabolism in diabetic patients is often found with increased levels of chronic inflammatory markers, e.g., interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α, and emerging evidence has highlighted activation of the immune response in the progression and development of cancer cells. Therefore, uncontrolled proinflammatory responses could conceivably create a chronic inflammatory state, promoting a tumor-favorable microenvironment and potentially triggering immune overactivation and cancer growth. To further understand how hyperglycemia contributes to immune overactivation, the tumor microenvironment and the development of chronic inflammation-associated tumors may provide insights into tumor biology and immunology. This paper provides a brief introduction to hyperglycemia-associated diseases, followed by a comprehensive overview of the current findings of regulatory molecular mechanisms of glycosylation on proteoglycans in the extracellular matrix under hyperglycemic conditions. Then, the authors discuss the role of hyperglycemia in tumorigenesis (particularly in prostate, liver, colorectal, and pancreatic cancers), as well as the contribution of hyperglycemia to chronic inflammation. The authors end with a brief discussion on the future perspectives of hyperglycemia/tumorigenesis and potential applications of alternative/effective therapeutic strategies for hyperglycemia-associated cancers.

  20. Obesity, Inflammation, and Lung Injury (OILI: The Good

    Directory of Open Access Journals (Sweden)

    Cheryl Wang

    2014-01-01

    Full Text Available Obesity becomes pandemic, predisposing these individuals to great risk for lung injury. In this review, we focused on the anti-inflammatories and addressed the following aspects: adipocytokines and obesity, inflammation and other mechanisms, adipocytokines and lung injury in obesity bridged by inflammation, and potential therapeutic targets. To sum up, the majority of evidence supported that adiponectin, omentin, and secreted frizzled-related protein 5 (SFRP5 were reduced significantly in obesity, which is associated with increased inflammation, indicated by increase of TNFα and IL-6, through activation of toll-like receptor (TLR4 and nuclear factor light chain κB (NF-κB signaling pathways. Administration of these adipocytokines promotes weight loss and reduces inflammation. Zinc-α2-glycoprotein (ZAG, vaspin, IL-10, interleukin-1 receptor antagonist (IL-1RA, transforming growth factor β (TGF-β1, and growth differentiation factor 15 (GDF15 are also regarded as anti-inflammatories. There were controversial reports. Furthermore, there is a huge lack of studies for obesity related lung injury. The effects of adiponectin on lung transplantation, asthma, chronic obstructive pulmonary diseases (COPD, and pneumonia were anti-inflammatory and protective in lung injury. Administration of IL-10 agonist reduces mortality of acute lung injury in rabbits with acute necrotizing pancreatitis, possibly through inhibiting proinflammation and strengthening host immunity. Very limited information is available for other adipocytokines.

  1. Chronic obstructive pulmonary disease and asthma-associated Proteobacteria, but not commensal Prevotella spp., promote Toll-like receptor 2-independent lung inflammation and pathology

    DEFF Research Database (Denmark)

    Larsen, Jeppe Madura; Musavian, Hanieh Sadat; Butt, Tariq Mahmood

    2015-01-01

    Recent studies of healthy human airways have revealed colonization by a distinct commensal bacterial microbiota containing Gram-negative Prevotella spp. However, the immunological properties of these bacteria in the respiratory system remain unknown. Here we compare the innate respiratory immune......-like receptor 2 (TLR2)-independent COPD-like inflammation characterized by predominant airway neutrophilia, expression of a neutrophilic cytokine/chemokine profile in lung tissue, and lung immunopathology. In comparison, P.nanceiensis induced a diminished neutrophilic airway inflammation and no detectable lung...... pathology. Interestingly, the inflammatory airway response to the Gram-negative bacteria P.nanceiensis was completely TLR2-dependent. These findings demonstrate weak inflammatory properties of Gram-negative airway commensal Prevotella spp. that may make colonization by these bacteria tolerable...

  2. Elevated circulating PAI-1 levels are related to lung function decline, systemic inflammation, and small airway obstruction in chronic obstructive pulmonary disease

    Directory of Open Access Journals (Sweden)

    Wang H

    2016-09-01

    correlation analysis showed that circulating PAI-1 was inversely correlated with pulmonary function parameters including the ratio of forced expiratory volume in 1 second to forced vital capacity (FEV1/FVC, FEV1/Pre (justified r=-0.308, P<0.001; justified r=-0.295, P=0.001, respectively and SAO indicators such as FEV3/FVC, MMEF25–75/Pre (justified r=-0.289, P=0.001; justified r=-0.273, P=0.002, respectively, but positively related to the inflammatory marker CRP (justified r=0.351, P<0.001, the small airway remolding biomarker TIMP-1, and MMP-9 (justified r=0.498, P<0.001; justified r=0.267, P=0.002, respectively. Besides, multivariable linear analysis showed that FEV1/FVC, CRP, and TIMP-1 were independent parameters associated with PAI-1. Conclusion: Our findings first illustrate that elevated serum PAI-1 levels are related to the lung function decline, systemic inflammation, and SAO in COPD, suggesting that PAI-1 may play critical roles in the pathogenesis of COPD. Keywords: plasminogen activator inhibitor-1 (PAI-1, chronic obstructive pulmonary disease (COPD, systemic inflammation, small airway obstruction (SAO

  3. The Comparison and Analysis of CTA Features of Chronic Inflammation of the Lungs and Primary Lung Cancer%肺部慢性炎症与原发性肺癌供血动脉CTA表现的影像比较分析

    Institute of Scientific and Technical Information of China (English)

    刘秀梅

    2015-01-01

    目的:对肺部慢性炎症与原发性肺癌供血动脉CTA的影像表现进行对比研究。方法以该院2010年1月—2014年10月收治的60例肺部慢性炎症患者作为慢性肺炎组、以30例原发性肺癌作为原发性肺癌组,所有患者均行64层螺旋CT扫描,以50例健康者作为对照组,对比3组研究对象的支气管动脉内径、慢性肺炎组与肺癌组的体外循环供血率。结果慢性炎症组、肺癌组与对照组的支气管动脉的内径差异均具有统计学意义。慢性炎症组肺体外循环动脉供血率为46.67%,肺癌组肺体外循环动脉供血率为16.67%,慢性炎症组显著高于肺癌组(P<0.05)。结论支气管动脉扩张普遍存在于肺部慢性炎症及原发性肺癌中,尤其肺部慢性炎症的支气管扩张更明显,两者的供血动脉CTA表现能够为临床鉴别诊断提供依据。%Objective Compare and analyze the CTA imaging features of chronic inflammation of the lungs and primary lung can-cer. Methods Select 60 cases with chronic inflammation of the lung from January 2010 to October 2014 as chronic inflammation of the lung group, select 30 cases with primary lung cancer as primary lung cancer group, and select 50 healthy controls as control group, compare the bronchial artery diameter of the three groups, and compare the extracorporeal circulation rate of blood flow of the chronic inflammation of the lung group and primary lung cancer group. Results The bronchial artery diameter of the three groups have statistical significance, P<0.05. The extracorporeal circulation rate of blood flow of the chronic inflammation of the lung group is 46.67%, that of primary lung cancer group is 16.67%, the extracorporeal circulation rate of blood flow of the chronic inflammation of the lung group is much higher than that of primary lung cancer group (P<0.05). Conclusion Both of the chronic inflammation of the lung and primary lung cancer have bronchial artery

  4. Local immunotherapy in experimental murine lung inflammation

    OpenAIRE

    sprotocols

    2015-01-01

    Authors: Caroline Uebel, Sonja Koch, Anja Maier, Nina Sopel, Anna Graser, Stephanie Mousset & Susetta Finotto ### Abstract Innovative local immunotherapy for severe lung diseases such as asthma, chronic obstructive pulmonary disease or lung cancer requires a successful delivery to access the desired cellular target in the lung. An important route is the direct instillation into the airways in contrast to delivery through the digestive tract. This protocol details a method to deliv...

  5. Susceptibility to chronic inflammation: an update.

    Science.gov (United States)

    Nasef, Noha Ahmed; Mehta, Sunali; Ferguson, Lynnette R

    2017-03-01

    Chronic inflammation is defined by the persistence of inflammatory processes beyond their physiological function, resulting in tissue destruction. Chronic inflammation is implicated in the progression of many chronic diseases and plays a central role in chronic inflammatory and autoimmune disease. As such, this review aims to collate some of the latest research in relation to genetic and environmental susceptibilities to chronic inflammation. In the genetic section, we discuss some of the updates in cytokine research and current treatments that are being developed. We also discuss newly identified canonical and non-canonical genes associated with chronic inflammation. In the environmental section, we highlight some of the latest updates and evidence in relation to the role that infection, diet and stress play in promoting inflammation. The aim of this review is to provide an overview of the latest research to build on our current understanding of chronic inflammation. It highlights the complexity associated with chronic inflammation, as well as provides insights into potential new targets for therapies that could be used to treat chronic inflammation and consequently prevent disease progression.

  6. A dual role for the immune response in a mouse model of inflammation-associated lung cancer

    OpenAIRE

    Dougan, Michael; Li, Danan; Neuberg, Donna; Mihm, Martin; Googe, Paul; Wong, Kwok-Kin; Dranoff, Glenn

    2011-01-01

    Lung cancer is the leading cause of cancer death worldwide. Both principal factors known to cause lung cancer, cigarette smoke and asbestos, induce pulmonary inflammation, and pulmonary inflammation has recently been implicated in several murine models of lung cancer. To further investigate the role of inflammation in the development of lung cancer, we generated mice with combined loss of IFN-γ and the β-common cytokines GM-CSF and IL-3. These immunodeficient mice develop chronic pulmonary in...

  7. Chronic obstructive pulmonary disease and asthma-associated Proteobacteria, but not commensal Prevotella spp., promote Toll-like receptor 2-independent lung inflammation and pathology

    DEFF Research Database (Denmark)

    Larsen, Jeppe Madura; Musavian, Hanieh Sadat; Butt, Tariq Mahmood;

    2015-01-01

    response to three Gram-negative commensal Prevotella strains (Prevotella melaninogenica, Prevotella nanceiensis and Prevotella salivae) and three Gram-negative pathogenic Proteobacteria known to colonize lungs of patients with chronic obstructive pulmonary disease (COPD) and asthma (Haemophilus influenzae...... B, non-typeable Haemophilus influenzae and Moraxella catarrhalis). The commensal Prevotella spp. and pathogenic Proteobacteria were found to exhibit intrinsic differences in innate inflammatory capacities on murine lung cells in vitro. In vivo in mice, non-typeable H.influenzae induced severe Toll...

  8. Association of current smoking with airway inflammation in chronic obstructive pulmonary disease and asymptomatic smokers

    NARCIS (Netherlands)

    Willemse, BWM; ten Hacken, NHT; Rutgers, B; Postma, DS; Timens, W

    2005-01-01

    Background: Inflammation in the airways and lung parenchyma underlies fixed airway obstruction in chronic obstructive pulmonary disease. The exact role of smoking as promoting factor of inflammation in chronic obstructive pulmonary disease is not clear, partly because studies often do not distinguis

  9. Early life socioeconomic adversity is associated in adult life with chronic inflammation, carotid atherosclerosis, poorer lung function and decreased cognitive performance: a cross-sectional, population-based study

    LENUS (Irish Health Repository)

    Packard, Chris J

    2011-01-17

    Abstract Background Socioeconomic gradients in health persist despite public health campaigns and improvements in healthcare. The Psychosocial and Biological Determinants of Ill-health (pSoBid) study was designed to uncover novel biomarkers of chronic disease that may help explain pathways between socioeconomic adversity and poorer physical and mental health. Methods We examined links between indicators of early life adversity, possible intermediary phenotypes, and markers of ill health in adult subjects (n = 666) recruited from affluent and deprived areas. Classical and novel risk factors for chronic disease (lung function and atherosclerosis) and for cognitive performance were assessed, and associations sought with early life variables including conditions in the parental home, family size and leg length. Results Associations were observed between father\\'s occupation, childhood home status (owner-occupier; overcrowding) and biomarkers of chronic inflammation and endothelial activation in adults (C reactive protein, interleukin 6, intercellular adhesion molecule; P < 0.0001) but not number of siblings and leg length. Lung function (forced expiratory volume in 1 second) and cognition (Choice Reaction Time, the Stroop test, Auditory Verbal Learning Test) were likewise related to early life conditions (P < 0.001). In multivariate models inclusion of inflammatory variables reduced the impact and independence of early life conditions on lung function and measures of cognitive ability. Including variables of adult socioeconomic status attenuated the early life associations with disease biomarkers. Conclusions Adverse levels of biomarkers of ill health in adults appear to be influenced by father\\'s occupation and childhood home conditions. Chronic inflammation and endothelial activation may in part act as intermediary phenotypes in this complex relationship. Reducing the \\'health divide\\' requires that these life course determinants are taken into account.

  10. Early life socioeconomic adversity is associated in adult life with chronic inflammation, carotid atherosclerosis, poorer lung function and decreased cognitive performance: a cross-sectional, population-based study

    Directory of Open Access Journals (Sweden)

    Sattar Naveed

    2011-01-01

    Full Text Available Abstract Background Socioeconomic gradients in health persist despite public health campaigns and improvements in healthcare. The Psychosocial and Biological Determinants of Ill-health (pSoBid study was designed to uncover novel biomarkers of chronic disease that may help explain pathways between socioeconomic adversity and poorer physical and mental health. Methods We examined links between indicators of early life adversity, possible intermediary phenotypes, and markers of ill health in adult subjects (n = 666 recruited from affluent and deprived areas. Classical and novel risk factors for chronic disease (lung function and atherosclerosis and for cognitive performance were assessed, and associations sought with early life variables including conditions in the parental home, family size and leg length. Results Associations were observed between father's occupation, childhood home status (owner-occupier; overcrowding and biomarkers of chronic inflammation and endothelial activation in adults (C reactive protein, interleukin 6, intercellular adhesion molecule; P P Conclusions Adverse levels of biomarkers of ill health in adults appear to be influenced by father's occupation and childhood home conditions. Chronic inflammation and endothelial activation may in part act as intermediary phenotypes in this complex relationship. Reducing the 'health divide' requires that these life course determinants are taken into account.

  11. Lung inflammation caused by inhaled toxicants: a review

    Directory of Open Access Journals (Sweden)

    Wong J

    2016-06-01

    Full Text Available John Wong, Bruce E Magun, Lisa J Wood School of Nursing, MGH Institute of Health Professions, Boston, MA, USA Abstract: Exposure of the lungs to airborne toxicants from different sources in the environment may lead to acute and chronic pulmonary or even systemic inflammation. Cigarette smoke is the leading cause of chronic obstructive pulmonary disease, although wood smoke in urban areas of underdeveloped countries is now recognized as a leading cause of respiratory disease. Mycotoxins from fungal spores pose an occupational risk for respiratory illness and also present a health hazard to those living in damp buildings. Microscopic airborne particulates of asbestos and silica (from building materials and those of heavy metals (from paint are additional sources of indoor air pollution that contributes to respiratory illness and is known to cause respiratory illness in experimental animals. Ricin in aerosolized form is a potential bioweapon that is extremely toxic yet relatively easy to produce. Although the aforementioned agents belong to different classes of toxic chemicals, their pathogenicity is similar. They induce the recruitment and activation of macrophages, activation of mitogen-activated protein kinases, inhibition of protein synthesis, and production of interleukin-1 beta. Targeting either macrophages (using nanoparticles or the production of interleukin-1 beta (using inhibitors against protein kinases, NOD-like receptor protein-3, or P2X7 may potentially be employed to treat these types of lung inflammation without affecting the natural immune response to bacterial infections. Keywords: cigarette, mycotoxin, trichothecene, ricin, inflammasome, macrophage, inhibitors

  12. IRF5 controls both acute and chronic inflammation.

    Science.gov (United States)

    Weiss, Miriam; Byrne, Adam J; Blazek, Katrina; Saliba, David G; Pease, James E; Perocheau, Dany; Feldmann, Marc; Udalova, Irina A

    2015-09-01

    Whereas the importance of macrophages in chronic inflammatory diseases is well recognized, there is an increasing awareness that neutrophils may also play an important role. In addition to the well-documented heterogeneity of macrophage phenotypes and functions, neutrophils also show remarkable phenotypic diversity among tissues. Understanding the molecular pathways that control this heterogeneity should provide abundant scope for the generation of more specific and effective therapeutics. We have shown that the transcription factor IFN regulatory factor 5 (IRF5) polarizes macrophages toward an inflammatory phenotype. IRF5 is also expressed in other myeloid cells, including neutrophils, where it was linked to neutrophil function. In this study we explored the role of IRF5 in models of acute inflammation, including antigen-induced inflammatory arthritis and lung injury, both involving an extensive influx of neutrophils. Mice lacking IRF5 accumulate far fewer neutrophils at the site of inflammation due to the reduced levels of chemokines important for neutrophil recruitment, such as the chemokine (C-X-C motif) ligand 1. Furthermore we found that neutrophils express little IRF5 in the joints and that their migratory properties are not affected by the IRF5 deficiency. These studies extend prior ones suggesting that inhibiting IRF5 might be useful for chronic macrophage-induced inflammation and suggest that IRF5 blockade would ameliorate more acute forms of inflammation, including lung injury.

  13. Chronic Inflammation and  T Cells

    Directory of Open Access Journals (Sweden)

    Nathan S Fay

    2016-05-01

    Full Text Available The epithelial tissues of the skin, lungs, reproductive tract, and intestines are the largest physical barriers the body has to protect against infection. Epithelial tissues are woven with a matrix of immune cells programmed to mobilize the host innate and adaptive immune responses. Included among these immune cells are  T cells that are unique in their TCR usage, location, and functions in the body. Stress reception by  T cells as a result of traumatic epithelial injury, malignancy, and/or infection induces  T cell activation. Once activated,  T cells function to repair tissue, induce inflammation, recruit leukocytes, and lyse cells. Many of these functions are mediated via the production of cytokines and growth factors upon  T cell activation. Pathogenesis of many chronic inflammatory diseases involve  T cells; some of which are exacerbated by their presence, while others are improved.  T cells require a delicate balance between their need for acute inflammatory mediators to function normally and the detrimental impact imparted by chronic inflammation. This review will focus on the recent progress made in understanding how epithelial  T cells influence the pathogenesis of chronic inflammatory diseases and how a balance between acute and chronic inflammation impacts  T cell function. Future studies will be important to understand how this balance is achieved.

  14. Common lung conditions: chronic obstructive pulmonary disease.

    Science.gov (United States)

    Delzell, John E

    2013-06-01

    The etiology of chronic obstructive pulmonary disease (COPD) is chronic lung inflammation. In the United States, this inflammation most commonly is caused by smoking. COPD is diagnosed when an at-risk patient presents with respiratory symptoms and has irreversible airway obstruction indicated by a forced expiratory volume in 1 second/forced vital capacity ratio of less than 0.7. Management goals for COPD include smoking cessation, symptom reduction, exacerbation reduction, hospitalization avoidance, and improvement of quality of life. Stable patients with COPD who remain symptomatic despite using short-acting bronchodilators should start inhaled maintenance drugs to reduce symptoms and exacerbations, avoid hospitalizations, and improve quality of life. A long-acting anticholinergic or a long-acting beta2-agonist (LABA) can be used for initial therapy; these drugs have fewer adverse effects than inhaled corticosteroids (ICS). If patients remain symptomatic despite monotherapy, dual therapy with a long-acting anticholinergic and a LABA, or a LABA and an ICS, may be beneficial. Triple therapy (ie, a long-acting anticholinergic, a LABA, and an ICS) also is used, but it is unclear if triple therapy is superior to dual therapy. Roflumilast, an oral selective inhibitor of phosphodiesterase 4, is used to manage moderate to severe COPD. Continuous oxygen therapy is indicated for patients with COPD who have severe hypoxemia (ie, PaO2 less than 55 mm Hg or an oxygen saturation less than 88% on room air). Nonpharmacologic strategies also are useful to improve patient outcomes. Pulmonary rehabilitation improves dyspnea and quality of life. Pulmonary rehabilitation after an acute exacerbation reduces hospitalizations and mortality, and improves quality of life and exercise capacity. Smoking cessation is the most effective management strategy for reducing morbidity and mortality in patients with COPD. Lung volume reduction surgery, bullectomy, and lung transplantation are

  15. The danger signal plus DNA damage two-hit hypothesis for chronic inflammation in COPD.

    Science.gov (United States)

    Aoshiba, Kazutetsu; Tsuji, Takao; Yamaguchi, Kazuhiro; Itoh, Masayuki; Nakamura, Hiroyuki

    2013-12-01

    Inflammation in chronic obstructive pulmonary disease (COPD) is thought to originate from the activation of innate immunity by a danger signal (first hit), although this mechanism does not readily explain why the inflammation becomes chronic. Here, we propose a two-hit hypothesis explaining why inflammation becomes chronic in patients with COPD. A more severe degree of inflammation exists in the lungs of patients who develop COPD than in the lungs of healthy smokers, and the large amounts of reactive oxygen species and reactive nitrogen species released from inflammatory cells are likely to induce DNA double-strand breaks (second hit) in the airways and pulmonary alveolar cells, causing apoptosis and cell senescence. The DNA damage response and senescence-associated secretory phenotype (SASP) are also likely to be activated, resulting in the production of pro-inflammatory cytokines. These pro-inflammatory cytokines further stimulate inflammatory cell infiltration, intensifying cell senescence and SASP through a positive-feedback mechanism. This vicious cycle, characterised by mutually reinforcing inflammation and DNA damage, may cause the inflammation in COPD patients to become chronic. Our hypothesis helps explain why COPD tends to occur in the elderly, why the inflammation worsens progressively, why inflammation continues even after smoking cessation, and why COPD is associated with lung cancer.

  16. Time-response relationship of nano and micro particle induced lung inflammation. Quartz as reference compound

    DEFF Research Database (Denmark)

    Roursgaard, Martin; Poulsen, Steen S; Poulsen, Lars K

    2010-01-01

    An increasing number of engineered particles, including nanoparticles, are being manufactured, increasing the need for simple low-dose toxicological screening methods. This study aimed to investigate the kinetics of biomarkers related to acute and sub-chronic particle-induced lung inflammation of...

  17. Oxidative stress and redox regulation of lung inflammation in COPD.

    Science.gov (United States)

    Rahman, I; Adcock, I M

    2006-07-01

    involved in lung inflammation. Various approaches to enhance lung antioxidant capacity and clinical trials of antioxidant compounds in chronic obstructive pulmonary disease are also discussed.

  18. Obesity, Inflammation, and Lung Injury (OILI): The Good

    OpenAIRE

    Cheryl Wang

    2014-01-01

    Obesity becomes pandemic, predisposing these individuals to great risk for lung injury. In this review, we focused on the anti-inflammatories and addressed the following aspects: adipocytokines and obesity, inflammation and other mechanisms, adipocytokines and lung injury in obesity bridged by inflammation, and potential therapeutic targets. To sum up, the majority of evidence supported that adiponectin, omentin, and secreted frizzled-related protein 5 (SFRP5) were reduced significantly in ob...

  19. Therapeutic Evaluation of Mesenchymal Stem Cells in Chronic Gut Inflammation

    Science.gov (United States)

    2015-09-01

    1 AWARD NUMBER: W81XWH-11-1-0666 TITLE: Therapeutic Evaluation of Mesenchymal Stem Cells in Chronic Gut Inflammation PRINCIPAL INVESTIGATOR...4Aug2015 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER W81XWH-11-1-0666 Therapeutic Evaluation of Mesenchymal Stem Cells in Chronic Gut Inflammation 5b...in a well-characterized mouse model of chronic colonic inflammation . Hypothesis: We propose that ex vivo-generated MSCs suppress chronic gut

  20. Glucosamine attenuates cigarette smoke-induced lung inflammation by inhibiting ROS-sensitive inflammatory signaling.

    Science.gov (United States)

    Wu, Yuh-Lin; Lin, An-Hsuan; Chen, Chao-Hung; Huang, Wen-Chien; Wang, Hsin-Yi; Liu, Meng-Han; Lee, Tzong-Shyuan; Ru Kou, Yu

    2014-04-01

    Cigarette smoking causes persistent lung inflammation that is mainly regulated by redox-sensitive pathways. We have reported that cigarette smoke (CS) activates a NADPH oxidase-dependent reactive oxygen species (ROS)-sensitive AMP-activated protein kinase (AMPK) signaling pathway leading to induction of lung inflammation. Glucosamine, a dietary supplement used to treat osteoarthritis, has antioxidant and anti-inflammatory properties. However, whether glucosamine has similar beneficial effects against CS-induced lung inflammation remains unclear. Using a murine model we show that chronic CS exposure for 4 weeks increased lung levels of 4-hydroxynonenal (an oxidative stress biomarker), phospho-AMPK, and macrophage inflammatory protein 2 and induced lung inflammation; all of these CS-induced events were suppressed by chronic treatment with glucosamine. Using human bronchial epithelial cells, we demonstrate that cigarette smoke extract (CSE) sequentially activated NADPH oxidase; increased intracellular levels of ROS; activated AMPK, mitogen-activated protein kinases (MAPKs), nuclear factor-κB (NF-κB), and signal transducer and activator of transcription proteins 3 (STAT3); and induced interleukin-8 (IL-8). Additionally, using a ROS scavenger, a siRNA that targets AMPK, and various pharmacological inhibitors, we identified the signaling cascade that leads to induction of IL-8 by CSE. All these CSE-induced events were inhibited by glucosamine pretreatment. Our findings suggest a novel role for glucosamine in alleviating the oxidative stress and lung inflammation induced by chronic CS exposure in vivo and in suppressing the CSE-induced IL-8 in vitro by inhibiting both the ROS-sensitive NADPH oxidase/AMPK/MAPK signaling pathway and the downstream transcriptional factors NF-κB and STAT3.

  1. PROGRESSION VARIANTS OF CHRONIC SYSTEMIC INFLAMMATION

    Directory of Open Access Journals (Sweden)

    E. Y. Gusev

    2009-01-01

    Full Text Available Abstract. Fourteen groups of patients have been investigated and divided into 2 classes. The first class included the following cohorts of patients: relatively healthy persons, age 18 to 55 yrs (n = 50; elderly persons 60 yrs old, as well as senior persons (n = 22; persons with chronic adnexitis, women in their 1st trimester of pregnancy (n = 16; climacteric syndrome (n = 16; autoimmune thyroiditis (n = 29. The second class of patients included following cohorts: elderly persons with chronic cardiac insufficiency (CCI II-III stage (n=49; valvular cardiac disease (rheumatism, n = 15; psoriatic arthritis (n = 12; reactive arthritis (n = 17; antiphospholipid syndrome, a sub-group in the 1st trimester of pregnancy (n = 5; systemic lupus erythematosus (n=49; decompensated atherosclerosis of femoral artery (n = 38; end-stage renal disease (n = 42. Plasma cytokines (TNFαα, IL-6, IL-8, IL-10, acute-phase C-reactive protein (CRP, cortisol, troponin I, myoglobin, D-dimers, interleukin-2 soluble receptor (IL-2sR, and eosinophil cationic protein (ECP were determined in all the patients, by means of immune chemiluminescent technique (Immulite; Siemens Medical Solutions Diagnostics, USA. The integral indices of systemic inflammatory reaction (SIR have been calculated, i.e., a Reactivity Coefficient (RC and a Reactivity Level (RL. In the patients belonging to Class 1 cohorts, an absence of chronic systemic inflammation features was revealed, despite of some signs of systemic inflammatory response. Meanwhile, a majority of Class 2 patients have shown the signs of chronic systemic inflammation stage I to III.

  2. The role of adipokines in chronic inflammation

    Directory of Open Access Journals (Sweden)

    Mancuso P

    2016-05-01

    Full Text Available Peter Mancuso Department of Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA Abstract: Adipose tissue has traditionally been defined as connective tissue that stores excess calories in the form of triacylglycerol. However, the physiologic functions attributed to adipose tissue are expanding, and it is now well established that adipose tissue is an endocrine gland. Among the endocrine factors elaborated by adipose tissue are the adipokines; hormones, similar in structure to cytokines, produced by adipose tissue in response to changes in adipocyte triacylglycerol storage and local and systemic inflammation. They inform the host regarding long-term energy storage and have a profound influence on reproductive function, blood pressure regulation, energy homeostasis, the immune response, and many other physiologic processes. The adipokines possess pro- and anti-inflammatory properties and play a critical role in integrating systemic metabolism with immune function. In calorie restriction and starvation, proinflammatory adipokines decline and anti-inflammatory adipokines increase, which informs the host of energy deficits and contributes to the suppression of immune function. In individuals with normal metabolic status, there is a balance of pro- and anti-inflammatory adipokines. This balance shifts to favor proinflammatory mediators as adipose tissue expands during the development of obesity. As a consequence, the proinflammatory status of adipose tissue contributes to a chronic low-grade state of inflammation and metabolic disorders associated with obesity. These disturbances are associated with an increased risk of metabolic disease, type 2 diabetes, cardiovascular disease, and many other pathological conditions. This review focuses on the impact of energy homeostasis on the adipokines in immune function. Keywords: calorie restriction, obesity, adipose tissue, type 2 diabetes, macrophage, infection, chronic

  3. Recovery of neutrophil apoptosis by ectoine: a new strategy against lung inflammation.

    Science.gov (United States)

    Sydlik, Ulrich; Peuschel, Henrike; Paunel-Görgülü, Adnana; Keymel, Stefanie; Krämer, Ursula; Weissenberg, Alexander; Kroker, Matthias; Seghrouchni, Samira; Heiss, Christian; Windolf, Joachim; Bilstein, Andreas; Kelm, Malte; Krutmann, Jean; Unfried, Klaus

    2013-02-01

    The life span of neutrophilic granulocytes has a determining impact on the intensity and duration of neutrophil driven lung inflammation. Based on the compatible solute ectoine, we aimed to prevent anti-apoptotic reactions in neutrophils triggered by the inflammatory microenvironment in the lung. Neutrophils from chronic obstructive pulmonary disease patients and control individuals were exposed to inflammatory mediators and xenobiotics in the presence or absence of ectoine. The in vivo relevance of this approach was tested in xenobiotic-induced lung inflammation in rats. The reduction of apoptosis rates of ex vivo-exposed neutrophils from all study groups was significantly restored in the presence of ectoine. However, natural apoptosis rates not altered by inflammatory stimuli were not changed by ectoine. Mechanistic analyses demonstrated the preventive effect of ectoine on the induction of anti-apoptotic signalling. Neutrophilic lung inflammation induced by single or multiple expositions of animals to environmental particles was reduced after the therapeutic intervention with ectoine. Analyses of neutrophils from bronchoalveolar lavage indicate that the in vivo effect is due to the restoration of neutrophil apoptosis. Ectoine, a compound of the highly compliant group of compatible solutes, demonstrates a reproducible and robust effect on the resolution of lung inflammation.

  4. Inflammation-induced preterm lung maturation: lessons from animal experimentation.

    Science.gov (United States)

    Moss, Timothy J M; Westover, Alana J

    2016-10-20

    Intrauterine inflammation, or chorioamnionitis, is a major contributor to preterm birth. Prematurity per se is associated with considerable morbidity and mortality resulting from lung immaturity but exposure to chorioamnionitis reduces the risk of neonatal respiratory distress syndrome (RDS) in preterm infants. Animal experiments have identified that an increase in pulmonary surfactant production by the preterm lungs likely underlies this decreased risk of RDS in infants exposed to chorioamnionitis. Further animal experimentation has shown that infectious or inflammatory agents in amniotic fluid exert their effects on lung development by direct effects within the developing respiratory tract, and probably not by systemic pathways. Differences in the effects of intrauterine inflammation and glucocorticoids demonstrate that canonical glucocorticoid-mediated lung maturation is not responsible for inflammation-induced changes in lung development. Animal experimentation is identifying alternative lung maturational pathways, and transgenic animals and cell culture techniques will allow identification of novel mechanisms of lung maturation that may lead to new treatments for the prevention of RDS.

  5. Scintigraphic studies of inflammation in diffuse lung disease

    Energy Technology Data Exchange (ETDEWEB)

    Line, B.R. (Albany Medical College, New York (USA))

    1991-09-01

    67Ga lung scintigraphy is an established means to assess alveolar inflammation in a wide variety of diffuse lung diseases. It can be used to monitor the extent and activity of the alveolitis during the course of the disease and as a follow-up evaluation to therapy. Although the mechanism of 67Ga localization is not established firmly, the isotope appears to act as a tracer for disturbed protein and cellular fluxes within the interstitium and alveolar spaces. The radiolabeled aerosol study may also be applied to the study of these fluxes as a reflection of inflammation and injury. Although Tc-DTPA clearance studies are highly sensitive to lung injury, they may be too nonspecific to separate lung injury from other physiologic processes effectively. 117 references.

  6. Radiolabelled cytokines for imaging chronic inflammation

    Directory of Open Access Journals (Sweden)

    Alberto Signore

    2002-09-01

    Full Text Available Diagnosis and particularly follow-up of chronic inflammatory disorders could be often difficult in clinical practice. Indeed, traditional radiological techniques reveal only structural tissue alterations and are not able to monitor functional changes occurring in tissues affected by chronic inflammation. The continuous advances in the knowledge of the pathophysioloy of chronic disorders, combined with the progress of radiochemistry, led to the development of new specific radiolabelled agents for the imaging of chronic diseases. In this scenario, cytokines, due to their pivotal role in such diseases, represent good candidates as radiopharmaceuticals.O diagnóstico, e particularmente o acompanhamento das doenças inflamatórias crônicas, pode ser freqüentemente muito difícil na prática clínica. As técnicas radiológicas tradicionais revelam somente as alterações teciduais estruturas, não sendo capazes de monitorar as alterações funcionais que ocorrem nesses tecidos afetados pela inflamação crônica. O contínuo avanço no conhecimento da fisiopatologia dessas doenças, combinado com o progresso da radioquímica, levou ao desenvolvimento de novos agentes radiomarcados para a obtenção de imagens de doenças crônicas. Nesse cenário, as citocinas, devido ao papel primordial em tais doenças, apresentam-se como fortes candidatas a radiofármacos.

  7. The role of adipokines in chronic inflammation.

    Science.gov (United States)

    Mancuso, Peter

    2016-01-01

    Adipose tissue has traditionally been defined as connective tissue that stores excess calories in the form of triacylglycerol. However, the physiologic functions attributed to adipose tissue are expanding, and it is now well established that adipose tissue is an endocrine gland. Among the endocrine factors elaborated by adipose tissue are the adipokines; hormones, similar in structure to cytokines, produced by adipose tissue in response to changes in adipocyte triacylglycerol storage and local and systemic inflammation. They inform the host regarding long-term energy storage and have a profound influence on reproductive function, blood pressure regulation, energy homeostasis, the immune response, and many other physiologic processes. The adipokines possess pro- and anti-inflammatory properties and play a critical role in integrating systemic metabolism with immune function. In calorie restriction and starvation, proinflammatory adipokines decline and anti-inflammatory adipokines increase, which informs the host of energy deficits and contributes to the suppression of immune function. In individuals with normal metabolic status, there is a balance of pro- and anti-inflammatory adipokines. This balance shifts to favor proinflammatory mediators as adipose tissue expands during the development of obesity. As a consequence, the proinflammatory status of adipose tissue contributes to a chronic low-grade state of inflammation and metabolic disorders associated with obesity. These disturbances are associated with an increased risk of metabolic disease, type 2 diabetes, cardiovascular disease, and many other pathological conditions. This review focuses on the impact of energy homeostasis on the adipokines in immune function.

  8. Chronic inflammation induces telomere dysfunction and accelerates ageing in mice

    NARCIS (Netherlands)

    Jurk, Diana; Wilson, Caroline; Passos, Joao F.; Oakley, Fiona; Correia-Melo, Clara; Greaves, Laura; Saretzki, Gabriele; Fox, Chris; Lawless, Conor; Anderson, Rhys; Hewitt, Graeme; Pender, Sylvia L. F.; Fullard, Nicola; Nelson, Glyn; Mann, Jelena; van de Sluis, Bart; Mann, Derek A.; von Zglinicki, Thomas

    2014-01-01

    Chronic inflammation is associated with normal and pathological ageing. Here we show that chronic, progressive low-grade inflammation induced by knockout of the nfkb1 subunit of the transcription factor NF-kappa B induces premature ageing in mice. We also show that these mice have reduced regenerati

  9. Cannabidiol improves lung function and inflammation in mice submitted to LPS-induced acute lung injury.

    Science.gov (United States)

    Ribeiro, A; Almeida, V I; Costola-de-Souza, C; Ferraz-de-Paula, V; Pinheiro, M L; Vitoretti, L B; Gimenes-Junior, J A; Akamine, A T; Crippa, J A; Tavares-de-Lima, W; Palermo-Neto, J

    2015-02-01

    We have previously shown that the prophylactic treatment with cannabidiol (CBD) reduces inflammation in a model of acute lung injury (ALI). In this work we analyzed the effects of the therapeutic treatment with CBD in mice subjected to the model of lipopolysaccharide (LPS)-induced ALI on pulmonary mechanics and inflammation. CBD (20 and 80 mg/kg) was administered (i.p.) to mice 6 h after LPS-induced lung inflammation. One day (24 h) after the induction of inflammation the assessment of pulmonary mechanics and inflammation were analyzed. The results show that CBD decreased total lung resistance and elastance, leukocyte migration into the lungs, myeloperoxidase activity in the lung tissue, protein concentration and production of pro-inflammatory cytokines (TNF and IL-6) and chemokines (MCP-1 and MIP-2) in the bronchoalveolar lavage supernatant. Thus, we conclude that CBD administered therapeutically, i.e. during an ongoing inflammatory process, has a potent anti-inflammatory effect and also improves the lung function in mice submitted to LPS-induced ALI. Therefore the present and previous data suggest that in the future cannabidiol might become a useful therapeutic tool for the attenuation and treatment of inflammatory lung diseases.

  10. Chronic inflammation, lymphangiogenesis, and effect of an anti-VEGFR therapy in a mouse model and in human patients with aspiration pneumonia.

    Science.gov (United States)

    Nihei, Mayumi; Okazaki, Tatsuma; Ebihara, Satoru; Kobayashi, Makoto; Niu, Kaijun; Gui, Peijun; Tamai, Tokiwa; Nukiwa, Toshihiro; Yamaya, Mutsuo; Kikuchi, Toshiaki; Nagatomi, Ryoichi; Ebihara, Takae; Ichinose, Masakazu

    2015-03-01

    Chronic inflammation induces lymphangiogenesis and blood vessel remodelling. Since aged pneumonia patients often have repeated episodes of aspiration pneumonia, the pathogenesis may involve chronic inflammation. For lymphangiogenesis, VEGFR-3 and its ligand VEGF-C are key factors. No previous studies have examined chronic inflammation or vascular changes in aspiration pneumonia or its mouse models. In lung inflammation, little is known about the effect of blocking VEGFR-3 on lung lymphangiogenesis and, moreover, its effect on the disease condition. This study aimed to establish a mouse model of aspiration pneumonia, examine the presence of chronic inflammation and vascular changes in the model and in patients, and evaluate the effect of inhibiting VEGFR-3 on the lymphangiogenesis and disease condition in this model. To induce aspiration pneumonia, we repeated inoculation of pepsin at low pH and LPS into mice for 21-28 days, durations in which bronchioalveolar lavage and plasma leakage in the lung suggested the presence of exaggerated inflammation. Conventional and immunohistochemical analysis of tracheal whole mounts suggested the presence of chronic inflammation, lymphangiogenesis, and blood vessel remodelling in the model. Quantitative RT-PCR of the trachea and lung suggested the involvement of lymphangiogenic factor VEGF-C, VEGFR-3, and pro-inflammatory cytokines. In the lung, the aspiration model showed the presence of chronic inflammation and exaggerated lymphangiogenesis. Treatment with the VEGFR inhibitor axitinib or the VEGFR-3 specific inhibitor SAR131675 impaired lymphangiogenesis in the lung and improved oxygen saturation in the aspiration model. Since the lung is the main site of aspiration pneumonia, the changes were intensive in the lung and mild in the trachea. Human lung samples also showed the presence of chronic inflammation and exaggerated lymphangiogenesis, suggesting the relevance of the model to the disease. These results suggest lymphatics in

  11. Role of arginase 1 from myeloid cells in th2-dominated lung inflammation.

    Directory of Open Access Journals (Sweden)

    Luke Barron

    Full Text Available Th2-driven lung inflammation increases Arginase 1 (Arg1 expression in alternatively-activated macrophages (AAMs. AAMs modulate T cell and wound healing responses and Arg1 might contribute to asthma pathogenesis by inhibiting nitric oxide production, regulating fibrosis, modulating arginine metabolism and restricting T cell proliferation. We used mice lacking Arg1 in myeloid cells to investigate the contribution of Arg1 to lung inflammation and pathophysiology. In six model systems encompassing acute and chronic Th2-mediated lung inflammation we observed neither a pathogenic nor protective role for myeloid-expressed Arg1. The number and composition of inflammatory cells in the airways and lungs, mucus secretion, collagen deposition, airway hyper-responsiveness, and T cell cytokine production were not altered if AAMs were deficient in Arg1 or simultaneously in both Arg1 and NOS2. Our results argue that Arg1 is a general feature of alternative activation but only selectively regulates Th2 responses. Therefore, attempts to experimentally or therapeutically inhibit arginase activity in the lung should be examined with caution.

  12. Pleurotus eryngii Ameliorates Lipopolysaccharide-Induced Lung Inflammation in Mice

    Directory of Open Access Journals (Sweden)

    Junya Kawai

    2014-01-01

    Full Text Available Pleurotus eryngii (P. eryngii is consumed as a fresh cultivated mushroom worldwide and demonstrated to have multiple beneficial effects. We investigated the anti-inflammatory effect of P. eryngii in mice with acute lung injury (ALI. Intranasal instillation of lipopolysaccharide (LPS (10 μg/site/mouse induced marked lung inflammation (increase in the number of inflammatory cells, protein leakage, and production of nitric oxide in bronchoalveolar lavage fluid as well as histopathological damage in the lung, 6 h after treatment. Mice administered heat-treated P. eryngii (0.3–1 g/kg, p.o. (HTPE 1 h before LPS challenge showed decreased pulmonary inflammation and ameliorated histopathological damage. These results suggest that HTPE has anti-inflammatory effects against ALI. Thus, P. eryngii itself may also have anti-inflammatory effects and could be a beneficial food for the prevention of ALI induced by bacterial infection.

  13. Stromal cells in chronic inflammation and tertiary lymphoid organ formation.

    Science.gov (United States)

    Buckley, Christopher D; Barone, Francesca; Nayar, Saba; Bénézech, Cecile; Caamaño, Jorge

    2015-01-01

    Inflammation is an unstable state. It either resolves or persists. Why inflammation persists and the factors that define tissue tropism remain obscure. Increasing evidence suggests that tissue-resident stromal cells not only provide positional memory but also actively regulate the differential accumulation of inflammatory cells within inflamed tissues. Furthermore, at many sites of chronic inflammation, structures that mimic secondary lymphoid tissues are observed, suggesting that chronic inflammation and lymphoid tissue formation share common activation programs. Similarly, blood and lymphatic endothelial cells contribute to tissue homeostasis and disease persistence in chronic inflammation. This review highlights our increasing understanding of the role of stromal cells in inflammation and summarizes the novel immunological role that stromal cells exert in the persistence of inflammatory diseases.

  14. Lung Compliance and Chronic Obstructive Pulmonary Disease

    Directory of Open Access Journals (Sweden)

    D. Papandrinopoulou

    2012-01-01

    Full Text Available Chronic obstructive pulmonary disease, namely, pulmonary emphysema and chronic bronchitis, is a chronic inflammatory response of the airways to noxious particles or gases, with resulting pathological and pathophysiological changes in the lung. The main pathophysiological aspects of the disease are airflow obstruction and hyperinflation. The mechanical properties of the respiratory system and its component parts are studied by determining the corresponding volume-pressure (P-V relationships. The consequences of the inflammatory response on the lung structure and function are depicted on the volume-pressure relationships.

  15. Preventive effects of sevoflurane treatment on lung inflammation in rats

    Institute of Scientific and Technical Information of China (English)

    Shu-Ye Song; Bing Zhou; Shuang-Mei Yang; Guo-Ze Liu; Jian-Min Tian; Xiu-Qin Yue

    2013-01-01

    Objective: To observe the effects of sevoflurane treatment on lung inflammation in rats with lipopoIysaccharide-induced acute lung injury (ALI). Methods: The rat model of ALI was established by intratracheal instillation of lipopolysaccharide (LPS). 45 infantile SD rats [body weight (272±15) g] were randomly divided into 3 groups (n=15): control group, LPS group, sevoflurane group. NS (1 mL/kg) was instillated in rats’airways of control group; LPS (5 mg/kg) was instillated in rats’airways of LPS group. Sevoflurane group rats received sevoflurane (2.4%) inhalation for a hour after LPS was instillated in rats’airways. Six hours after NS or LPS instillation, all rats were exsanguinated. Lung tissues were examined by HE staining. Expressions of TNF-α and ICAM1 mRNA were detected by semiquantitative RT-PCR techniques. The protein level of TNF-α and ICAM1 were assessed by western blot techniques. Results: In LPS group the permeability of lung tissues increased, organizational structure severely damaged and the alveolar wall tumed thick, with interstitial edema and Europhiles infiltrated increasingly. The LPS group had higher mRNA expressions of TNF-α and ICAM1 than control group and sevoflurane group (P<0.05), and LPS group had higher protein level of TNF-α and ICAM1 than control group and sevoflurane group (P<0.05). Conclusions: Sevoflurane treatment can attenuate lung inflammation in rats with lipopolysaccharide-induced acute lung injury.

  16. Curcumin, Inflammation, and Chronic Diseases: How Are They Linked?

    Directory of Open Access Journals (Sweden)

    Yan He

    2015-05-01

    Full Text Available It is extensively verified that continued oxidative stress and oxidative damage may lead to chronic inflammation, which in turn can mediate most chronic diseases including cancer, diabetes, cardiovascular, neurological, inflammatory bowel disease and pulmonary diseases. Curcumin, a yellow coloring agent extracted from turmeric, shows strong anti-oxidative and anti-inflammatory activities when used as a remedy for the prevention and treatment of chronic diseases. How oxidative stress activates inflammatory pathways leading to the progression of chronic diseases is the focus of this review. Thus, research to date suggests that chronic inflammation, oxidative stress, and most chronic diseases are closely linked, and the antioxidant properties of curcumin can play a key role in the prevention and treatment of chronic inflammation diseases.

  17. Curcumin, inflammation, and chronic diseases: how are they linked?

    Science.gov (United States)

    He, Yan; Yue, Yuan; Zheng, Xi; Zhang, Kun; Chen, Shaohua; Du, Zhiyun

    2015-05-20

    It is extensively verified that continued oxidative stress and oxidative damage may lead to chronic inflammation, which in turn can mediate most chronic diseases including cancer, diabetes, cardiovascular, neurological, inflammatory bowel disease and pulmonary diseases. Curcumin, a yellow coloring agent extracted from turmeric, shows strong anti-oxidative and anti-inflammatory activities when used as a remedy for the prevention and treatment of chronic diseases. How oxidative stress activates inflammatory pathways leading to the progression of chronic diseases is the focus of this review. Thus, research to date suggests that chronic inflammation, oxidative stress, and most chronic diseases are closely linked, and the antioxidant properties of curcumin can play a key role in the prevention and treatment of chronic inflammation diseases.

  18. Periodontal treatment reduces chronic systemic inflammation in peritoneal dialysis patients.

    Science.gov (United States)

    Siribamrungwong, Monchai; Yothasamutr, Kasemsuk; Puangpanngam, Kutchaporn

    2014-06-01

    Chronic systemic inflammation, a non traditional risk factor of cardiovascular diseases, is associated with increasing mortality in chronic kidney disease, especially peritoneal dialysis patients. Periodontitis is a potential treatable source of systemic inflammation in peritoneal dialysis patients. Clinical periodontal status was evaluated in 32 stable chronic peritoneal dialysis patients by plaque index and periodontal disease index. Hematologic, blood chemical, nutritional, and dialysis-related data as well as highly sensitive C-reactive protein were analyzed before and after periodontal treatment. At baseline, high sensitive C-reactive protein positively correlated with the clinical periodontal status (plaque index; r = 0.57, P chronic systemic inflammation in peritoneal dialysis patients. Treatment of periodontal diseases can improve systemic inflammation, nutritional status and erythropoietin responsiveness in peritoneal dialysis patients.

  19. Neonates with reduced neonatal lung function have systemic low-grade inflammation

    OpenAIRE

    Chawes, Bo L.K.; Stokholm, Jakob; Bønnelykke, Klaus; Pedersen, Susanne Brix; Bisgaard, Hans Flinker

    2015-01-01

    Background: Children and adults with asthma and impaired lung function have been reported to have low-grade systemic inflammation, but it is unknown whether this inflammation starts before symptoms and in particular whether low-grade inflammation is present in asymptomatic neonates with reduced lung function. ObjectiveWe sought to investigate the possible association between neonatal lung function and biomarkers of systemic inflammation. Methods: Plasma levels of high-sensitivity C-reactive p...

  20. Radiopharmaceuticals for imaging chronic lymphocytic inflammation

    NARCIS (Netherlands)

    Malviya, Gaurav; De Vries, Erik F. J.; Dierckx, Rudi A.; Signore, Alberto

    2007-01-01

    In the last few decades, a number of radiopharmaceuticals for imaging inflammation have been proposed that differ in their specificity and mechanism of uptake in inflamed foci as compared to the traditional inflammation imaging agents. Radiolabelled cytokines represent a reliable tool for the precli

  1. The Jeremiah Metzger Lecture: Inflammation, Immune Modulators, and Chronic Disease.

    Science.gov (United States)

    Dubois, Raymond N

    2015-01-01

    Chronic inflammation is a risk factor for many different diseases. It is clear that inflammation is associated with degenerative brain diseases, obesity, metabolic syndrome, cardiovascular disease, diabetes, and cancer. Throughout the past 100 years, changes in the causes of death in the US have been dramatic. The most recent data indicate that cardiovascular disease and cancer are now responsible for 63% of mortality in the US population. Although progression of these diseases is related to diet, lifestyle, and genetic factors, a common but often unrecognized link is the presence of underlying chronic inflammation. As of 2014, 83.6 million people were living with some form of cardiovascular disease, 29.1 million people have been diagnosed with diabetes, 14 million people carried the diagnosis of cancer, and 5.2 million people were living with Alzheimer disease. These diseases are a huge burden on our health care system and all have been associated with chronic inflammation.

  2. The LIM-only protein FHL2 attenuates lung inflammation during bleomycin-induced fibrosis.

    Directory of Open Access Journals (Sweden)

    Abdulaleem Alnajar

    Full Text Available Fibrogenesis is usually initiated when regenerative processes have failed and/or chronic inflammation occurs. It is characterised by the activation of tissue fibroblasts and dysregulated synthesis of extracellular matrix proteins. FHL2 (four-and-a-half LIM domain protein 2 is a scaffolding protein that interacts with numerous cellular proteins, regulating signalling cascades and gene transcription. It is involved in tissue remodelling and tumour progression. Recent data suggest that FHL2 might support fibrogenesis by maintaining the transcriptional expression of alpha smooth muscle actin and the excessive synthesis and assembly of matrix proteins in activated fibroblasts. Here, we present evidence that FHL2 does not promote bleomycin-induced lung fibrosis, but rather suppresses this process by attenuating lung inflammation. Loss of FHL2 results in increased expression of the pro-inflammatory matrix protein tenascin C and downregulation of the macrophage activating C-type lectin receptor DC-SIGN. Consequently, FHL2 knockout mice developed a severe and long-lasting lung pathology following bleomycin administration due to enhanced expression of tenascin C and impaired activation of inflammation-resolving macrophages.

  3. Effect of the oral thrombin inhibitor dabigatran on allergic lung inflammation induced by repeated house dust mite administration in mice.

    Science.gov (United States)

    de Boer, Johannes D; Berkhout, Lea C; de Stoppelaar, Sacha F; Yang, Jack; Ottenhoff, Roelof; Meijers, Joost C M; Roelofs, Joris J T H; van't Veer, Cornelis; van der Poll, Tom

    2015-10-15

    Asthma is a chronic disease of the airways; asthma patients are hampered by recurrent symptoms of dyspnoea and wheezing caused by bronchial obstruction. Most asthma patients suffer from chronic allergic lung inflammation triggered by allergens such as house dust mite (HDM). Coagulation activation in the pulmonary compartment is currently recognized as a feature of allergic lung inflammation, and data suggest that coagulation proteases further drive inflammatory mechanisms. Here, we tested whether treatment with the oral thrombin inhibitor dabigatran attenuates allergic lung inflammation in a recently developed HDM-based murine asthma model. Mice were fed dabigatran (10 mg/g) or placebo chow during a 3-wk HDM airway exposure model. Dabigatran treatment caused systemic thrombin inhibitory activity corresponding with dabigatran levels reported in human trials. Surprisingly, dabigatran did not lead to inhibition of HDM-evoked coagulation activation in the lung as measured by levels of thrombin-antithrombin complexes and D-dimer. Repeated HDM administration caused an influx of eosinophils and neutrophils into the lungs, mucus production in the airways, and a T helper 2 response, as reflected by a rise in bronchoalveolar IL-4 and IL-5 levels and a systemic rise in IgE and HDM-IgG1. Dabigatran modestly improved HDM-induced lung pathology (P dabigatran in spite of adequate plasma levels, these results argue against clinical evaluation of dabigatran in patients with asthma.

  4. Bosutinib Therapy Ameliorates Lung Inflammation and Fibrosis in Experimental Silicosis

    Science.gov (United States)

    Carneiro, Priscila J.; Clevelario, Amanda L.; Padilha, Gisele A.; Silva, Johnatas D.; Kitoko, Jamil Z.; Olsen, Priscilla C.; Capelozzi, Vera L.; Rocco, Patricia R. M.; Cruz, Fernanda F.

    2017-01-01

    nodes also decreased with bosutinib therapy without affecting thymus cellularity. In vitro, bosutinib led to a decrease in IL-12 and iNOS and increase in IL-10, arginase-1, MMP-9, and TIMP-1. In conclusion, in the current model of silicosis, bosutinib therapy yielded beneficial effects on lung inflammation and remodeling, therefore resulting in lung mechanics improvement. Bosutinib may hold promise for silicosis; however, further studies are required. PMID:28360865

  5. COPD and squamous cell lung cancer: aberrant inflammation and immunity is the common link.

    Science.gov (United States)

    Bozinovski, Steven; Vlahos, Ross; Anthony, Desiree; McQualter, Jonathan; Anderson, Gary; Irving, Louis; Steinfort, Daniel

    2016-02-01

    Cigarette smoking has reached epidemic proportions within many regions of the world and remains the highest risk factor for chronic obstructive pulmonary disease (COPD) and lung cancer. Squamous cell lung cancer is commonly detected in heavy smokers, where the risk of developing lung cancer is not solely defined by tobacco consumption. Although therapies that target common driver mutations in adenocarcinomas are showing some promise, they are proving ineffective in smoking-related squamous cell lung cancer. Since COPD is characterized by an excessive inflammatory and oxidative stress response, this review details how aberrant innate, adaptive and systemic inflammatory processes can contribute to lung cancer susceptibility in COPD. Activated leukocytes release increasing levels of proteases and free radicals as COPD progresses and tertiary lymphoid aggregates accumulate with increasing severity. Reactive oxygen species promote formation of reactive carbonyls that are not only tumourigenic through initiating DNA damage, but can directly alter the function of regulatory proteins involved in host immunity and tumour suppressor functions. Systemic inflammation is also markedly increased during infective exacerbations in COPD and the interplay between tumour-promoting serum amyloid A (SAA) and IL-17A is discussed. SAA is also an endogenous allosteric modifier of FPR2 expressed on immune and epithelial cells, and the therapeutic potential of targeting this receptor is proposed as a novel strategy for COPD-lung cancer overlap.

  6. Lipopolysaccharide induced inflammation in the perivascular space in lungs

    Directory of Open Access Journals (Sweden)

    Pabst Reinhard

    2008-07-01

    Full Text Available Abstract Background Lipopolysaccharide (LPS contained in tobacco smoke and a variety of environmental and occupational dusts is a toxic agent causing lung inflammation characterized by migration of neutrophils and monocytes into alveoli. Although migration of inflammatory cells into alveoli of LPS-treated rats is well characterized, the dynamics of their accumulation in the perivascular space (PVS leading to a perivascular inflammation (PVI of pulmonary arteries is not well described. Methods Therefore, we investigated migration of neutrophils and monocytes into PVS in lungs of male Sprague-Dawley rats treated intratracheally with E. coli LPS and euthanized after 1, 6, 12, 24 and 36 hours. Control rats were treated with endotoxin-free saline. H&E stained slides were made and immunohistochemistry was performed using a monocyte marker and the chemokine Monocyte-Chemoattractant-Protein-1 (MCP-1. Computer-assisted microscopy was performed to count infiltrating cells. Results Surprisingly, the periarterial infiltration was not a constant finding in each animal although LPS-induced alveolitis was present. A clear tendency was observed that neutrophils were appearing in the PVS first within 6 hours after LPS application and were decreasing at later time points. In contrast, mononuclear cell infiltration was observed after 24 hours. In addition, MCP-1 expression was present in perivascular capillaries, arteries and the epithelium. Conclusion PVI might be a certain lung reaction pattern in the defense to infectious attacks.

  7. Improved outcome of chronic Pseudomonas aeruginosa lung infection is associated with induction of a Th1-dominated cytokine response

    DEFF Research Database (Denmark)

    Moser, C; Jensen, P O; Kobayashi, O;

    2002-01-01

    patients, the lungs of susceptible BALB/c mice were re-infected with P. aeruginosa 14 days after the initial infection. Singly-infected BALB/c mice, as well as non-infected mice, were used as controls. Decreased mortality and milder lung inflammation in re-infected BALB/c mice, as well as a tendency......Repeated challenge with antigen is involved in the pathogenesis of a variety of pulmonary diseases. Patients with cystic fibrosis (CF) experience recurrent pulmonary colonization with Pseudomonas aeruginosa before establishment of chronic lung infection. To mimic recurrent lung infections in CF...... production, in chronic P. aeruginosa lung infection in CF....

  8. Lung transplantation for chronic obstructive pulmonary disease

    Directory of Open Access Journals (Sweden)

    Liou TG

    2013-07-01

    Full Text Available Theodore G Liou, Sanjeev M Raman, Barbara C CahillDivision of Respiratory, Critical Care and Occupational Pulmonary Medicine, Department of Medicine, School of Medicine, University of Utah, Salt Lake City, Utah, USAAbstract: Patients with end-stage chronic obstructive pulmonary disease (COPD comprise the largest single lung disease group undergoing transplantation. Selection of appropriate candidates requires consideration of specific clinical characteristics, prognosis in the absence of transplantation, and likely outcome of transplantation. Increased availability of alternatives to transplantation for end-stage patients and the many efforts to increase the supply of donor organs have complicated decision making for selecting transplant candidates. Many years of technical and clinical refinements in lung transplantation methods have improved survival and quality of life outcomes. Further advances will probably come from improved selection methods for the procedure. Because no prospective trial has been performed, and because of confounding and informative censoring bias inherent in the transplant selection process in studies of the existing experience, the survival effect of lung transplant in COPD patients remains undefined. There is a lack of conclusive data on the impact of lung transplantation on quality of life. For some patients with end-stage COPD, lung transplantation remains the only option for further treatment with a hope of improved survival and quality of life. A prospective trial of lung transplantation is needed to provide better guidance concerning survival benefit, resource utilization, and quality of life effects for patients with COPD.Keywords: outcomes, emphysema, COPD, alpha-1-antitrypsin deficiency, survival, single lung transplant, bilateral sequential single lung transplant, lung volume reduction, referral, guidelines, health related quality of life

  9. Genetic Deletion and Pharmacological Inhibition of PI3Kγ Reduces Neutrophilic Airway Inflammation and Lung Damage in Mice with Cystic Fibrosis-Like Lung Disease

    Directory of Open Access Journals (Sweden)

    Maria Galluzzo

    2015-01-01

    Full Text Available Purpose. Neutrophil-dominated airway inflammation is a key feature of progressive lung damage in cystic fibrosis (CF. Thus, reducing airway inflammation is a major goal to prevent lung damage in CF. However, current anti-inflammatory drugs have shown several limits. PI3Kγ plays a pivotal role in leukocyte recruitment and activation; in the present study we determined the effects of genetic deletion and pharmacologic inhibition of PI3Kγ on airway inflammation and structural lung damage in a mouse model of CF lung disease. Methods. βENaC overexpressing mice (βENaC-Tg were backcrossed with PI3Kγ-deficient (PI3KγKO mice. Tissue damage was assessed by histology and morphometry and inflammatory cell number was evaluated in bronchoalveolar lavage fluid (BALF. Furthermore, we assessed the effect of a specific PI3Kγ inhibitor (AS-605240 on inflammatory cell number in BALF. Results. Genetic deletion of PI3Kγ decreased neutrophil numbers in BALF of PI3KγKO/βENaC-Tg mice, and this was associated with reduced emphysematous changes. Treatment with the PI3Kγ inhibitor AS-605240 decreased the number of neutrophils in BALF of βENaC-Tg mice, reproducing the effect observed with genetic deletion of the enzyme. Conclusions. These results demonstrate the biological efficacy of both genetic deletion and pharmacological inhibition of PI3Kγ in reducing chronic neutrophilic inflammation in CF-like lung disease in vivo.

  10. Leukocyte depletion during CPB: effects on inflammation and lung function.

    Science.gov (United States)

    de Amorim, Célio Gomes; Malbouisson, Luiz Marcelo Sá; da Silva, Francisco Costa; Fiorelli, Alfredo Inácio; Murakami, Caroline Kameio Fernandes; Carmona, Maria José Carvalho

    2014-02-01

    Cardiopulmonary bypass (CPB) is related to inflammatory response and pulmonary dysfunction. The aim of this study was to evaluate the effects of CPB leukocyte filtration on inflammation and lung function after coronary artery bypass grafting (CABG). A prospective randomized study was performed to compare CABG patients undergoing CPB leukocyte filtration (n = 9) or standard CPB (n = 11). Computed tomography, oxygenation, leukocyte count, hemodynamic data, PaO2/FiO2, shunt fraction, interleukins, elastase, and myeloperoxidase were evaluated. Data were analyzed using two-factor ANOVA for repeated measurements. The filtered group showed lower neutrophil counts up to 50 min of CPB, lower shunt fraction up to 6 h after surgery, and lower levels of IL-10 at the end of surgery (p CPB results in neutrophil sequestration by a short time, decreased IL-10 serum levels, and lower worsening of lung function only temporarily.

  11. Lung carcinogenesis from chronic obstructive pulmonary disease: characteristics of lung cancer from COPD and contribution of signal transducers and lung stem cells in the inflammatory microenvironment.

    Science.gov (United States)

    Sekine, Yasuo; Hata, Atsushi; Koh, Eitetsu; Hiroshima, Kenzo

    2014-07-01

    Chronic obstructive pulmonary disease (COPD) and lung cancer are closely related. The annual incidence of lung cancer arising from COPD has been reported to be 0.8-1.7 %. Treatment of lung cancer from COPD is very difficult due to low cardiopulmonary function, rapid tumor growth, and resistance to molecularly targeted therapies. Chronic inflammation caused by toxic gases can induce COPD and lung cancer. Carcinogenesis in the inflammatory microenvironment occurs during cycles of tissue injury and repair. Cellular damage can induce induction of necrotic cell death and loss of tissue integrity. Quiescent normal stem cells or differentiated progenitor cells are introduced to repair injured tissues. However, inflammatory mediators may promote the growth of bronchioalveolar stem cells, and activation of NF-κB and signal transducer and activator of transcription 3 (STAT3) play crucial roles in the development of lung cancer from COPD. Many of the protumorgenic effects of NF-κB and STAT3 activation in immune cells are mediated through paracrine signaling. NF-κB and STAT3 also contribute to epithelial-mesenchymal transition. To improve lung cancer treatment outcomes, lung cancer from COPD must be overcome. In this article, we review the characteristics of lung cancer from COPD and the mechanisms of carcinogenesis in the inflammatory microenvironment. We also propose the necessity of identifying the mechanisms underlying progression of COPD to lung cancer, and comment on the clinical implications with respect to lung cancer prevention, screening, and therapy.

  12. Thrown off balance: the effect of antenatal inflammation on the developing lung and immune system.

    Science.gov (United States)

    Kunzmann, Steffen; Collins, Jennifer J P; Kuypers, Elke; Kramer, Boris W

    2013-06-01

    In recent years, translational research with various animal models has been helpful to answer basic questions about the effect of antenatal inflammation on maturation and development of the fetal lung and immune system. The fetal lung and immune systems are very plastic and their development can be conditioned and influenced by both endogenous and/or exogenous factors. Antenatal inflammation can induce pulmonary inflammation, leading to lung injury and remodeling in the fetal lung. Exposure to antenatal inflammation can induce interleukin-1α production, which enhances surfactant protein and lipid synthesis thereby promoting lung maturation. Interleukin-1α is therefore a candidate for the link between lung inflammation and lung maturation, preventing respiratory distress syndrome in preterm infants. Antenatal inflammation can, however, cause structural changes in the fetal lung and affect the expression of growth factors, such as transforming growth factor-beta, connective tissue growth factor, fibroblast growth factor-10, or bone morphogenetic protein-4, which are essential for branching morphogenesis. These alterations cause alveolar and microvascular simplification resembling the histology of bronchopulmonary dysplasia. Antenatal inflammation may also affect neonatal outcome by modulating the responsiveness of the immune system. Lipopolysaccharide-tolerance (endotoxin hyporesponsiveness/immunoparalysis), induced by exposure to inflammation in utero, may prevent fetal lung damage, but increases susceptibility to postnatal infections. Moreover, prenatal exposure to inflammation appears to be a predisposition for the development of adverse neonatal outcomes, like bronchopulmonary dysplasia, if the preterm infant is exposed to a second postnatal hit, such as mechanical ventilation oxygen exposure, infections, or steroids.

  13. Anemia of Inflammation and Chronic Disease

    Science.gov (United States)

    ... and Prevention website. www.cdc.gov/chronicdisease/overview/index.htm . Updated August 13, 2012. Accessed July 24, 2013. [3] Besarab A, Coyne DW. Iron supplementation to treat anemia in patients with chronic kidney disease. Nature Reviews ...

  14. Association between chronic obstructive pulmonary disease and lung cancer: the missing link

    Institute of Scientific and Technical Information of China (English)

    WANG Zeng-li

    2013-01-01

    Objective This review focuses on current knowledge of specific processes that drive chronic airway inflammation which are important in the pathogenesis of both chronic obstructive pulmonary disease (COPD) and lung cancer.Data sources The data used in this review were obtained mainly from studies reported in the PubMed database (1997-2012) using the terms of COPD and lung cancer.Study selection Data from published articles about prevalence of COPD-lung cancer overlap and mechanism involved in lung cancer development in COPD were identified,retrieved and reviewed.Results COPD prevalence,morbidity and mortality vary and are directly related to the prevalence of tobacco smoking except in developing countries where air pollution resulting from the burning of biomass fuels is also important.COPD is characterized by a chronic inflammation of lower airway and,importantly,the presence of COPD increases the risk of lung cancer up to 4.5 fold among long-term smokers.COPD is by far the greatest risk factor for lung cancer amongst smokers and is found in 50%-90% of patients with lung cancer.Conclusions Both COPD and lung cancer are tobacco smoking-associated chronic diseases that cluster in families and aggravate with age,and 50%-70% of patients diagnosed with lung cancer have declined spirometric evidence of COPD.Understanding and targeting common pathogenic mechanisms for lung cancer and COPD would have potential diagnostic and therapeutic implications for patients with these lung diseases and for people at risk.

  15. Monitoring asthma in childhood: lung function, bronchial responsiveness and inflammation

    Directory of Open Access Journals (Sweden)

    Alexander Moeller

    2015-06-01

    Full Text Available This review focuses on the methods available for measuring reversible airways obstruction, bronchial hyperresponsiveness (BHR and inflammation as hallmarks of asthma, and their role in monitoring children with asthma. Persistent bronchial obstruction may occur in asymptomatic children and is considered a risk factor for severe asthma episodes and is associated with poor asthma outcome. Annual measurement of forced expiratory volume in 1 s using office based spirometry is considered useful. Other lung function measurements including the assessment of BHR may be reserved for children with possible exercise limitations, poor symptom perception and those not responding to their current treatment or with atypical asthma symptoms, and performed on a higher specialty level. To date, for most methods of measuring lung function there are no proper randomised controlled or large longitudinal studies available to establish their role in asthma management in children. Noninvasive biomarkers for monitoring inflammation in children are available, for example the measurement of exhaled nitric oxide fraction, and the assessment of induced sputum cytology or inflammatory mediators in the exhaled breath condensate. However, their role and usefulness in routine clinical practice to monitor and guide therapy remains unclear, and therefore, their use should be reserved for selected cases.

  16. Iron supplementation decreases severity of allergic inflammation in murine lung.

    Directory of Open Access Journals (Sweden)

    Laura P Hale

    Full Text Available The incidence and severity of allergic asthma have increased over the last century, particularly in the United States and other developed countries. This time frame was characterized by marked environmental changes, including enhanced hygiene, decreased pathogen exposure, increased exposure to inhaled pollutants, and changes in diet. Although iron is well-known to participate in critical biologic processes such as oxygen transport, energy generation, and host defense, iron deficiency remains common in the United States and world-wide. The purpose of these studies was to determine how dietary iron supplementation affected the severity of allergic inflammation in the lungs, using a classic model of IgE-mediated allergy in mice. Results showed that mice fed an iron-supplemented diet had markedly decreased allergen-induced airway hyperreactivity, eosinophil infiltration, and production of pro-inflammatory cytokines, compared with control mice on an unsupplemented diet that generated mild iron deficiency but not anemia. In vitro, iron supplementation decreased mast cell granule content, IgE-triggered degranulation, and production of pro-inflammatory cytokines post-degranulation. Taken together, these studies show that iron supplementation can decrease the severity of allergic inflammation in the lung, potentially via multiple mechanisms that affect mast cell activity. Further studies are indicated to determine the potential of iron supplementation to modulate the clinical severity of allergic diseases in humans.

  17. Donor smoking is associated with pulmonary edema, inflammation and epithelial dysfunction in ex vivo human donor lungs

    Science.gov (United States)

    Ware, Lorraine B.; Lee, Jae W.; Wickersham, Nancy; Nguyen, John; Matthay, Michael A.; Calfee, Carolyn S.

    2014-01-01

    Although recipients of donor lungs from smokers have worse clinical outcomes, the underlying mechanisms are unknown. We tested the association between donor smoking and the degree of pulmonary edema (as estimated by lung weight), the rate of alveolar fluid clearance (measured by airspace instillation of 5% albumin) and biomarkers of lung epithelial injury and inflammation (bronchoalveolar lavage surfactant protein-D and IL-8) in ex vivo lungs recovered from 298 organ donors. The extent of pulmonary edema was higher in current smokers (n=127) compared to non-smokers (median 408g, IQR 364-500 vs. 385g, IQR 340 - 460, p=0.009). Oxygenation at study enrollment was worse in current smokers versus non-smokers (median PaO2/FiO2 214 mmHg, IQR 126-323 vs. 266 mmHg, IQR 154-370, p=0.02). Current smokers with the highest exposure (≥20 pack-years) had significantly lower rates of alveolar fluid clearance, suggesting that the effects of cigarette smoke on alveolar epithelial fluid transport function may be dose related. BAL IL-8 was significantly higher in smokers while surfactant protein-D was lower. These findings indicate that chronic exposure to cigarette smoke has important effects on inflammation, gas exchange, lung epithelial function and lung fluid balance in the organ donor that could influence lung function in the lung transplant recipient. PMID:25146497

  18. Role of glutathione in immunity and inflammation in the lung

    Directory of Open Access Journals (Sweden)

    Pietro Ghezzi

    2011-01-01

    Full Text Available Pietro GhezziBrighton and Sussex Medical School, Trafford Centre, Falmer, Brighton, UKAbstract: Reactive oxygen species and thiol antioxidants, including glutathione (GSH, regulate innate immunity at various levels. This review outlines the redox-sensitive steps of the cellular mechanisms implicated in inflammation and host defense against infection, and describes how GSH is not only important as an antioxidant but also as a signaling molecule. There is an extensive literature of the role of GSH in immunity. Most reviews are biased by an oversimplified picture where “bad” free radicals cause all sorts of diseases and “good” antioxidants protect from them and prevent oxidative stress. While this may be the case in certain fields (eg, toxicology, the role of thiols (the topic of this review in immunity certainly requires wearing scientist’s goggles and being prepared to accept a more complex picture. This review aims at describing the role of GSH in the lung in the context of immunity and inflammation. The first part summarizes the history and basic concepts of this picture. The second part focuses on GSH metabolism/levels in pathology, the third on the role of GSH in innate immunity and inflammation, and the fourth gives 4 examples describing the importance of GSH in the response to infections.Keywords: antioxidants, oxidative stress, sepsis, infection, cysteine

  19. Inhibition of airway inflammation and remodeling by sitagliptin in murine chronic asthma.

    Science.gov (United States)

    Nader, Manar A

    2015-12-01

    In this study the role of sitagliptin, dipeptidyl peptidase inhibitor, DPP-4, and dexamethasone in ameliorating inflammation and remodeling of chronic asthma in a mouse model were investigated. Mice sensitized to ovalbumin were chronically challenged with aerosolized antigen for 3days a week continued for 8weeks. During this period animals were treated with sitagliptin or dexamethasone daily. Assessment of inflammatory cell, oxidative markers, total nitrate/nitrite (NOx), interleukin (IL)-13, transforming growth factor-beta1 (TGF-β1) in bronchoalveolar lavage (BAL) and/or lung tissue were done. Also histopathological and immuno-histochemical analysis for lung was carried out. Compared with vehicle alone, treatment with sitagliptin or dexamethasone significantly reduced accumulation of eosinophils and chronic inflammatory cells, subepithelial collagenization, and thickening of the airway epithelium. Also both drug reduced goblet cell hyperplasia, oxidative stress, TGF-β1, IL-13 and epithelial cytoplasmic immunoreactivity for nuclear factor κ-B (NFκ-B). These data indicate that sitagliptin like dexamethasone may play a beneficial role reducing airway inflammation and remodeling in chronic murine model of asthma.

  20. Pathogenesis of Myeloproliferative Neoplasms: Role and Mechanisms of Chronic Inflammation.

    Science.gov (United States)

    Hermouet, Sylvie; Bigot-Corbel, Edith; Gardie, Betty

    2015-01-01

    Myeloproliferative neoplasms (MPNs) are a heterogeneous group of clonal diseases characterized by the excessive and chronic production of mature cells from one or several of the myeloid lineages. Recent advances in the biology of MPNs have greatly facilitated their molecular diagnosis since most patients present with mutation(s) in the JAK2, MPL, or CALR genes. Yet the roles played by these mutations in the pathogenesis and main complications of the different subtypes of MPNs are not fully elucidated. Importantly, chronic inflammation has long been associated with MPN disease and some of the symptoms and complications can be linked to inflammation. Moreover, the JAK inhibitor clinical trials showed that the reduction of symptoms linked to inflammation was beneficial to patients even in the absence of significant decrease in the JAK2-V617F mutant load. These observations suggested that part of the inflammation observed in patients with JAK2-mutated MPNs may not be the consequence of JAK2 mutation. The aim of this paper is to review the different aspects of inflammation in MPNs, the molecular mechanisms involved, the role of specific genetic defects, and the evidence that increased production of certain cytokines depends or not on MPN-associated mutations, and to discuss possible nongenetic causes of inflammation.

  1. Early immune response in susceptible and resistant mice strains with chronic Pseudomonas aeruginosa lung infection determines the type of T-helper cell response

    DEFF Research Database (Denmark)

    Moser, C; Hougen, H P; Song, Z;

    1999-01-01

    Most cystic fibrosis (CF) patients become chronically infected with Pseudomonas aeruginosa in the lungs. The infection is characterized by a pronounced antibody response and a persistant inflammation dominated by polymorphonuclear neutrophils. Moreover a high antibody response correlates with a p...

  2. Neonates with reduced neonatal lung function have systemic low-grade inflammation

    DEFF Research Database (Denmark)

    Chawes, Bo L.K.; Stokholm, Jakob; Bønnelykke, Klaus;

    2015-01-01

    Background: Children and adults with asthma and impaired lung function have been reported to have low-grade systemic inflammation, but it is unknown whether this inflammation starts before symptoms and in particular whether low-grade inflammation is present in asymptomatic neonates with reduced...... lung function. ObjectiveWe sought to investigate the possible association between neonatal lung function and biomarkers of systemic inflammation.  Methods: Plasma levels of high-sensitivity C-reactive protein (hs-CRP), IL-1β, IL-6, TNF-α, and CXCL8 (IL-8) were measured at age 6 months in 300 children...

  3. VBP15, a glucocorticoid analogue, is effective at reducing allergic lung inflammation in mice.

    Directory of Open Access Journals (Sweden)

    Jesse M Damsker

    Full Text Available Asthma is a chronic inflammatory condition of the lower respiratory tract associated with airway hyperreactivity and mucus obstruction in which a majority of cases are due to an allergic response to environmental allergens. Glucocorticoids such as prednisone have been standard treatment for many inflammatory diseases for the past 60 years. However, despite their effectiveness, long-term treatment is often limited by adverse side effects believed to be caused by glucocorticoid receptor-mediated gene transcription. This has led to the pursuit of compounds that retain the anti-inflammatory properties yet lack the adverse side effects associated with traditional glucocorticoids. We have developed a novel series of steroidal analogues (VBP compounds that have been previously shown to maintain anti-inflammatory properties such as NFκB-inhibition without inducing glucocorticoid receptor-mediated gene transcription. This study was undertaken to determine the effectiveness of the lead compound, VBP15, in a mouse model of allergic lung inflammation. We show that VBP15 is as effective as the traditional glucocorticoid, prednisolone, at reducing three major hallmarks of lung inflammation--NFκB activity, leukocyte degranulation, and pro-inflammatory cytokine release from human bronchial epithelial cells obtained from patients with asthma. Moreover, we found that VBP15 is capable of reducing inflammation of the lung in vivo to an extent similar to that of prednisone. We found that prednisolone--but not VBP15 shortens the tibia in mice upon a 5 week treatment regimen suggesting effective dissociation of side effects from efficacy. These findings suggest that VBP15 may represent a potent and safer alternative to traditional glucocorticoids in the treatment of asthma and other inflammatory diseases.

  4. Invasive Aspergillus infections in hospitalized patients with chronic lung disease

    Directory of Open Access Journals (Sweden)

    Wessolossky M

    2013-05-01

    Full Text Available Mireya Wessolossky,1 Verna L Welch,2 Ajanta Sen,1 Tara M Babu,1 David R Luke21Division of Infectious Diseases, University of Massachusetts Medical School, Worcester, MA, USA; 2Medical Affairs, Pfizer Inc, Collegeville, PA, USABackground: Although invasive pulmonary aspergillosis (IPA is more prevalent in immunocompromised patients, critical care clinicians need to be aware of the occurrence of IPA in the nontraditional host, such as a patient with chronic lung disease. The purpose of this study was to describe the IPA patient with chronic lung disease and compare the data with that of immunocompromised patients.Methods: The records of 351 patients with Aspergillus were evaluated in this single-center, retrospective study for evidence and outcomes of IPA. The outcomes of 57 patients with chronic lung disease and 56 immunocompromised patients were compared. Patients with chronic lung disease were defined by one of the following descriptive terms: emphysema, asthma, idiopathic lung disease, bronchitis, bronchiectasis, sarcoid, or pulmonary leukostasis.Results: Baseline demographics were similar between the two groups. Patients with chronic lung disease were primarily defined by emphysema (61% and asthma (18%, and immunocompromised patients primarily had malignancies (27% and bone marrow transplants (14%. A higher proportion of patients with chronic lung disease had a diagnosis of IPA by bronchoalveolar lavage versus the immunocompromised group (P < 0.03. The major risk factors for IPA were found to be steroid use in the chronic lung disease group and neutropenia and prior surgical procedures in the immunocompromised group. Overall, 53% and 69% of chronic lung disease and immunocompromised patients were cured (P = 0.14; 55% of chronic lung patients and 47% of immunocompromised patients survived one month (P = 0.75.Conclusion: Nontraditional patients with IPA, such as those with chronic lung disease, have outcomes and mortality similar to that in the

  5. A comprehensive analysis of oxidative stress in the ozone-induced lung inflammation mouse model.

    Science.gov (United States)

    Wiegman, Coen H; Li, Feng; Clarke, Colin J; Jazrawi, Elen; Kirkham, Paul; Barnes, Peter J; Adcock, Ian M; Chung, Kian F

    2014-03-01

    Ozone is an oxidizing environmental pollutant that contributes significantly to respiratory health. Exposure to increased levels of ozone has been associated with worsening of symptoms of patients with asthma and COPD (chronic obstructive pulmonary disease). In the present study, we investigated the acute and chronic effects of ozone exposure-induced oxidative stress-related inflammation mechanics in mouse lung. In particular, we investigated the oxidative stress-induced effects on HDAC2 (histone deacetylase 2) modification and activation of the Nrf2 (nuclear factor erythroid-related factor 2) and HIF-1α (hypoxia-inducible factor-1α) signalling pathways. Male C57BL/6 mice were exposed to ozone (3 p.p.m.) for 3 h a day, twice a week for a period of 1, 3 or 6 weeks. Control mice were exposed to normal air. After the last exposure, mice were killed for BAL (bronchoalveolar lavage) fluid and lung tissue collection. BAL total cell counts were elevated at all of the time points studied. This was associated with increased levels of chemokines and cytokines in all ozone-exposed groups, indicating the presence of a persistent inflammatory environment in the lung. Increased inflammation and Lm (mean linear intercept) scores were observed in chronic exposed mice, indicating emphysematous changes were present in lungs of chronic exposed mice. The antioxidative stress response was active (indicated by increased Nrf2 activity and protein) after 1 week of ozone exposure, but this ability was lost after 3 and 6 weeks of ozone exposure. The transcription factor HIF-1α was elevated in 3- and 6-week ozone-exposed mice and this was associated with increased gene expression levels of several HIF-1α target genes including Hdac2 (histone deacetylase 2), Vegf (vascular endothelial growth factor), Keap1 (kelch-like ECH-associated protein 1) and Mif (macrophage migration inhibitory factor). HDAC2 protein was found to be phosphorylated and carbonylated in nuclear and cytoplasm fractions

  6. The effect of lipopolysaccharide-induced obesity and its chronic inflammation on influenza virus-related pathology.

    Science.gov (United States)

    Ahn, Sun-Young; Sohn, Sung-Hwa; Lee, Sang-Yeon; Park, Hye-Lim; Park, Yong-Wook; Kim, Hun; Nam, Jae-Hwan

    2015-11-01

    Obese individuals show increased susceptibility to infection, low vaccine efficacy, and worse pathophysiology. However, it is unclear how obesity affects these events. The aim of this study was to investigate the effect of obesity-triggered chronic inflammation on immune cells after influenza virus infection. Control and lipopolysaccharide mice, in which an osmotic pump continually released Tween saline or lipopolysaccharide, were prepared and 3 weeks later were infected with pandemic H1N1 2009 influenza A virus. In lipopolysaccharide mice, we found a reduction in macrophage activation markers in the steady state, and reduced production of pro-inflammatory cytokines including tumor necrosis factor-α, interleukin-1β, and interleukin-6, in restimulated peritoneal macrophages. Interestingly, lipopolysaccharide-triggered chronic inflammation exacerbated the severity of pathological symptoms in the lungs after challenge with influenza virus. Taken together, the increased severity of virus-induced symptoms in obese individuals with chronic inflammation may be, at least partially, caused by macrophage dysfunction.

  7. Nontypeable Haemophilus influenzae in chronic obstructive pulmonary disease and lung cancer

    Directory of Open Access Journals (Sweden)

    Seyed Javad Moghaddam

    2011-01-01

    Full Text Available Seyed Javad Moghaddam1, Cesar E Ochoa1,2, Sanjay Sethi3, Burton F Dickey1,41Department of Pulmonary Medicine, the University of Texas MD Anderson Cancer Center, Houston, TX, USA; 2Tecnológico de Monterrey School of Medicine, Monterrey, Nuevo León, Mexico; 3Department of Medicine, University at Buffalo, State University of New York, Buffalo, NY, USA; 4Center for Inflammation and Infection, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX, USAAbstract: Chronic obstructive pulmonary disease (COPD is predicted to become the third leading cause of death in the world by 2020. It is characterized by airflow limitation that is not fully reversible. The airflow limitation is usually progressive and associated with an abnormal inflammatory response of the lungs to noxious particles and gases, most commonly cigarette smoke. Among smokers with COPD, even following withdrawal of cigarette smoke, inflammation persists and lung function continues to deteriorate. One possible explanation is that bacterial colonization of smoke-damaged airways, most commonly with nontypeable Haemophilus influenzae (NTHi, perpetuates airway injury and inflammation. Furthermore, COPD has also been identified as an independent risk factor for lung cancer irrespective of concomitant cigarette smoke exposure. In this article, we review the role of NTHi in airway inflammation that may lead to COPD progression and lung cancer promotion.Keywords: COPD, NTHi, inflammation

  8. Montelukast modulates lung CysLT1 receptor expression and eosinophilic inflammation in asthmatic mice

    Institute of Scientific and Technical Information of China (English)

    Yan-jun ZHANG; Lei ZHANG; Shao-bin WANG; Hua-hao SHEN; Er-qing WEI

    2004-01-01

    AIM: To determine the expressions of cysteinyl leukotriene receptors, CysLT1 and CysLT2, in airway eosinophilic inflammation of OVA-induced asthmatic mice and the modulation by montelukast, a CysLT1 receptor antagonist.METHODS: Asthma model was induced by chronic exposure to ovalbumin (OVA) in C57BL/6 mice. The eosinophils in bronchoalveolar lavage (BAL) fluid and lung tissues were counted, IL-5 level in BAL fluid was measured,and CysLT1 and CysLT2 receptor mRNA expressions were detected by semi-quantitative RT-PCR. RESULTS:Montelukast (6 mg/kg, once per day for 20 d) significantly suppressed the increased eosinophils in BAL fluid and lung tissue, and increased IL-5 level in BAL fluid in OVA challenged mice. OVA challenge increased CysLT1 but decreased CysLT2 receptor mRNA expression. Montelukast inhibited the increased CysLT1 but not the reduced CysLT2 expression after OVA challenge. CONCLUSION: CysLT receptors are modulated immunologically, and montelukast inhibits up-regulation of CysLT1 receptor and airway eosinophilic inflammation in asthmatic mice.

  9. Bronchiolitis obliterans syndrome after lung transplantation: biomarkers for inflammation and fibrogenesis

    NARCIS (Netherlands)

    Kastelijn, E.A.

    2012-01-01

    Lung transplantation is the treatment of choice for patients with end-stage lung disease. However, long-term survival is limited due to the development of chronic rejection in the donor lung of the transplant recipient, called bronchiolitis obliterans syndrome (BOS). BOS is diagnosed after lung tr

  10. Substance P and Chronic Pain in Patients with Chronic Inflammation of Connective Tissue.

    Directory of Open Access Journals (Sweden)

    Barbara Lisowska

    Full Text Available Evidence suggests that substance P (SP is involved in chronic joint inflammation, such as the pathogenesis of rheumatoid arthritis and osteoarthritis. The goal of the research was to evaluate the correlation between chronic pain and changes in the SP level in patients with chronic inflammation of the connective tissue.Patients with osteoarthritis and rheumatoid arthritis were enrolled in this study. The relationship between chronic pain intensity and the serum SP concentration was evaluated in these groups of patients with osteoarthritis and rheumatoid arthritis.The results showed a positive correlation between the serum SP concentrations and chronic pain intensity.1. The SP serum concentration was significantly different between the groups of patients with OA and RA. 2. There was a positive correlation between the serum SP concentration and chronic pain intensity in OA and RA patients.

  11. [Corticosteroid hormones and angiotensin-converting enzyme in the dynamics of chronic granulomatous inflammation].

    Science.gov (United States)

    Cherkasova, A P; Selyatitskaya, V G

    2013-01-01

    It was studied the contents of corticosteroid hormones in the adrenal gland, plasma and 11beta-hydroxysteroid dehydrogenase activity (11betaHSD) in the liver and kidneys, as well as the activity of angiotensin-converting enzyme (ACE) in blood plasma, lung, renal cortex and liver of male rats in the dynamics of SiO2-induced inflammation. The study showed that chronic granulomatous inflammation in rats was accompanied by an initial short-term reaction to the activation of synthesis of the main glucocorticoid hormone, followed by specific inhibition of synthesis of this hormone as well as 11betaHSD activity in the adrenal gland. Inflammation caused less pronounced changes in the functional state of the renin-angiotensin system, however, inhibition of ACE activity observed in plasma, liver and kidneys during the initial period of inflammation. Factor analysis revealed a violation of intersystem relations of hypothalamic-pituitary-adrenocortical and renin-angiotensin systems in inflammation due, probably, to the modulating influence of cytokines.

  12. Chronic Inflammation and Cytokines in the Tumor Microenvironment

    Science.gov (United States)

    Landskron, Glauben; De la Fuente, Marjorie; Thuwajit, Peti; Thuwajit, Chanitra; Hermoso, Marcela A.

    2014-01-01

    Acute inflammation is a response to an alteration induced by a pathogen or a physical or chemical insult, which functions to eliminate the source of the damage and restore homeostasis to the affected tissue. However, chronic inflammation triggers cellular events that can promote malignant transformation of cells and carcinogenesis. Several inflammatory mediators, such as TNF-α, IL-6, TGF-β, and IL-10, have been shown to participate in both the initiation and progression of cancer. In this review, we explore the role of these cytokines in important events of carcinogenesis, such as their capacity to generate reactive oxygen and nitrogen species, their potential mutagenic effect, and their involvement in mechanisms for epithelial mesenchymal transition, angiogenesis, and metastasis. Finally, we will provide an in-depth analysis of the participation of these cytokines in two types of cancer attributable to chronic inflammatory disease: colitis-associated colorectal cancer and cholangiocarcinoma. PMID:24901008

  13. Chronic Inflammation and Cytokines in the Tumor Microenvironment

    Directory of Open Access Journals (Sweden)

    Glauben Landskron

    2014-01-01

    Full Text Available Acute inflammation is a response to an alteration induced by a pathogen or a physical or chemical insult, which functions to eliminate the source of the damage and restore homeostasis to the affected tissue. However, chronic inflammation triggers cellular events that can promote malignant transformation of cells and carcinogenesis. Several inflammatory mediators, such as TNF-α, IL-6, TGF-β, and IL-10, have been shown to participate in both the initiation and progression of cancer. In this review, we explore the role of these cytokines in important events of carcinogenesis, such as their capacity to generate reactive oxygen and nitrogen species, their potential mutagenic effect, and their involvement in mechanisms for epithelial mesenchymal transition, angiogenesis, and metastasis. Finally, we will provide an in-depth analysis of the participation of these cytokines in two types of cancer attributable to chronic inflammatory disease: colitis-associated colorectal cancer and cholangiocarcinoma.

  14. Autonomic fiber sprouting in the skin in chronic inflammation

    Directory of Open Access Journals (Sweden)

    Longo Geraldine

    2008-11-01

    Full Text Available Abstract Pain is a major symptom associated with chronic inflammation. In previous work from our laboratory, we have shown that in animal models of neuropathic pain there is a sprouting of sympathetic fibers into the upper dermis, a territory normally devoid of them. However, it is not known whether such sympathetic spouting, which is likely trophic factor mediated, also occurs in chronic inflammation and arthritis. In the present study, we used a rat model of chronic inflammation in which a small single dose of complete Freund's adjuvant (CFA was injected subcutaneously, unilaterally, into the plantar surface of the hindpaw. This led to a localized long-term skin inflammation and arthritis in all joints of the hindpaw. Animals were perfused with histological fixatives at 1, 2, 3 or 4 weeks after the injection. Experimental animals treated with CFA were compared to saline-injected animals. We then investigated the changes in the pattern of peripheral innervation of the peptidergic nociceptors and sympathetic fibers in rat glabrous hindpaw skin. Antibodies directed towards calcitonin gene-related peptide (CGRP and dopamine beta-hydroxylase (DBH were used for the staining of peptidergic and sympathetic fibers, respectively. Immunofluorescence was then used to analyze the different nerve fiber populations of the upper dermis. At 4 weeks following CFA treatment, DBH-immunoreactive (IR fibers were found to sprout into the upper dermis, in a pattern similar to the one we had observed in animals with a chronic constriction injury of the sciatic nerve in a previous publication. There was also a significant increase in the density of CGRP-IR fibers in the upper dermis in CFA treated animals at 2, 3 and 4 weeks post-injection. The increased peptidergic fiber innervation and the ectopic autonomic fibers found in the upper dermis may have a role in the pain-related behavior displayed by these animals.

  15. Rat models of asthma and chronic obstructive lung disease.

    Science.gov (United States)

    Martin, James G; Tamaoka, Meiyo

    2006-01-01

    The rat has been extensively used to model asthma and somewhat less extensively to model chronic obstructive pulmonary disease (COPD). The features of asthma that have been successfully modeled include allergen-induced airway constriction, eosinophilic inflammation and allergen-induced airway hyperresponsiveness. T-cell involvement has been directly demonstrated using adoptive transfer techniques. Both CD4+ and CD8+ T cells are activated in response to allergen challenge in the sensitized rat and express Thelper2 cytokines (IL-4, IL-5 and IL-13). Repeated allergen exposure causes airway remodeling. Dry gas hyperpnea challenge also evokes increases in lung resistance, allowing exercise-induced asthma to be modeled. COPD is modeled using elastase-induced parenchymal injury to mimic emphysema. Cigarette smoke-induced airspace enlargement occurs but requires months of cigarette exposure. Inflammation and fibrosis of peripheral airways is an important aspect of COPD that is less well modeled. Novel approaches to the treatment of COPD have been reported including treatments aimed at parenchymal regeneration.

  16. MUC18 Regulates Lung Rhinovirus Infection and Inflammation

    Science.gov (United States)

    Berman, Reena; Jiang, Di; Wu, Qun; Stevenson, Connor R.; Schaefer, Niccolette R.; Chu, Hong Wei

    2016-01-01

    Background MUC18 is upregulated in the lungs of asthma and COPD patients. It has been shown to have pro-inflammatory functions in cultured human airway epithelial cells during viral infections and in mice during lung bacterial infections. However, the in vivo role of MUC18 in the context of viral infections remains poorly understood. The goal of this study is to define the in vivo function of MUC18 during respiratory rhinovirus infection. Methods Muc18 wild-type (WT) and knockout (KO) mice were infected with human rhinovirus 1B (HRV-1B) and sacrificed after 1 day to determine the inflammatory and antiviral responses. To examine the direct effects of Muc18 on viral infection, tracheal epithelial cells isolated from WT and KO mice were grown under air-liquid interface and infected with HRV-1B. Finally, siRNA mediated knockdown of MUC18 was performed in human airway epithelial cells (AECs) to define the impact of MUC18 on human airway response to HRV-1B. Results Both viral load and neutrophilic inflammation were significantly decreased in Muc18 KO mice compared to WT mice. In the in vitro setting, viral load was significantly lower and antiviral gene expression was higher in airway epithelial cells of Muc18 KO mice than the WT mice. Furthermore, in MUC18 knockdown human AECs, viral load was decreased and antiviral gene expression was increased compared to controls. Conclusions Our study is the first to demonstrate MUC18’s pro-inflammatory and pro-viral function in an in vivo mouse model of rhinovirus infection. PMID:27701461

  17. Thioredoxin-1 protects against neutrophilic inflammation and emphysema progression in a mouse model of chronic obstructive pulmonary disease exacerbation.

    Directory of Open Access Journals (Sweden)

    Naoya Tanabe

    Full Text Available BACKGROUND: Exacerbations of chronic obstructive pulmonary disease (COPD are characterized by acute enhancement of airway neutrophilic inflammation under oxidative stress and can be involved in emphysema progression. However, pharmacotherapy against the neutrophilic inflammation and emphysema progression associated with exacerbation has not been established. Thioredoxin-1 has anti-oxidative and anti-inflammatory properties and it can ameliorate neutrophilic inflammation through anti-chemotactic effects and prevent cigarette smoke (CS-induced emphysema. We aimed to determine whether thioredoxin-1 can suppress neutrophilic inflammation and emphysema progression in a mouse model of COPD exacerbation and if so, to reveal the underlying mechanisms. RESULTS: Mice were exposed to CS and then challenged with polyinosine-polycytidylic acid [poly(I:C], an agonist for virus-induced innate immunity. Airway neutrophilic inflammation, oxidative stress and lung apoptosis were enhanced in smoke-sensitive C57Bl/6, but not in smoke-resistant NZW mice. Exposure to CS and poly(I:C challenge accelerated emphysema progression in C57Bl/6 mice. Thioredoxin-1 suppressed neutrophilic inflammation and emphysema progression. Poly(I:C caused early neutrophilic inflammation through keratinocyte-derived chemokine and granulocyte-macrophage colony-stimulating factor (GM-CSF release in the lung exposed to CS. Late neutrophilic inflammation was caused by persistent GM-CSF release, which thioredoxin-1 ameliorated. Thioredoxin-1 enhanced pulmonary mRNA expression of MAP kinase phosphatase 1 (MKP-1, and the suppressive effects of thioredoxin-1 on prolonged GM-CSF release and late neutrophilic inflammation disappeared by inhibiting MKP-1. CONCLUSION: Using a mouse model of COPD exacerbation, we demonstrated that thioredoxin-1 ameliorated neutrophilic inflammation by suppressing GM-CSF release, which prevented emphysema progression. Our findings deepen understanding of the mechanisms

  18. A PAF receptor antagonist inhibits acute airway inflammation and late-phase responses but not chronic airway inflammation and hyperresponsiveness in a primate model of asthma

    Directory of Open Access Journals (Sweden)

    R. H. Gundel

    1992-01-01

    Full Text Available We have examined the effects of a PAF receptor antagonist, WEB 2170, on several indices of acute and chronic airway inflammation and associated changes in lung function in a primate model of allergic asthma. A single oral administration WEB 2170 provided dose related inhibition of the release of leukotriene C4 (LTC4 and prostaglandin D2 (PGD2 recovered and quantified in bronchoalveolar lavage (BAL fluid obtained during the acute phase response to inhaled antigen. In addition, oral WEB 2170 treatment in dual responder primates blocked the acute influx of neutrophils into the airways as well as the associated late-phase airway obstruction occurring 6 h after antigen inhalation. In contrast, a multiple dosing regime with WEB 2170 (once a day for 7 consecutive days failed to reduce the chronic airway inflammation (eosinophilic and associated airway hyperresponsiveness to inhaled methacholine that is characteristic of dual responder monkeys. Thus, we conclude that the generation of PAF following antigen inhalation contributes to the development of lipid mediators, acute airway inflammation and associated late-phase airway obstruction in dual responder primates; however, PAF does not play a significant role in the maintenance of chronic airway inflammation and associated airway hyperresponsiveness in this primate model.

  19. Chronic lung allograft dysfunction after lung transplantation: novel insights into immunological mechanisms

    NARCIS (Netherlands)

    Budding, K.

    2016-01-01

    Lung transplantation (LTx) is the final treatment option for patients suffering from end-stage lung diseases. Survival after LTx is hampered by the development of chronic lung allograft dysfunction which presents itself in an obstructive form as the bronchiolitis obliterans syndrome (BOS). BOS is ha

  20. Klotho Reduction in Alveolar Macrophages Contributes to Cigarette Smoke Extract-induced Inflammation in Chronic Obstructive Pulmonary Disease.

    Science.gov (United States)

    Li, Lingling; Wang, Yujie; Gao, Wei; Yuan, Cheng; Zhang, Sini; Zhou, Hong; Huang, Mao; Yao, Xin

    2015-11-13

    Abnormal inflammation and accelerated decline in lung function occur in patients with chronic obstructive pulmonary disease (COPD). Klotho, an anti-aging protein, has an anti-inflammatory function. However, the role of Klotho has never been investigated in COPD. The aim of this study is to investigate the possible role of Klotho by alveolar macrophages in airway inflammation in COPD. Klotho levels were assessed in the lung samples and peripheral blood mononuclear cells of non-smokers, smokers, and patients with COPD. The regulation of Klotho expression by cigarette smoke extract (CSE) was studied in vitro, and small interfering RNA (siRNA) and recombinant Klotho were employed to investigate the role of Klotho on CSE-induced inflammation. Klotho expression was reduced in alveolar macrophages in the lungs and peripheral blood mononuclear cells of COPD patients. CSE decreased Klotho expression and release from MH-S cells. Knockdown of endogenous Klotho augmented the expression of the inflammatory mediators, such as MMP-9, IL-6, and TNF-α, by MH-S cells. Exogenous Klotho inhibited the expression of CSE-induced inflammatory mediators. Furthermore, we showed that Klotho interacts with IκBα of the NF-κB pathway. Dexamethasone treatment increased the expression and release level of Klotho in MH-S cells. Our findings suggest that Klotho plays a role in sustained inflammation of the lungs, which in turn may have therapeutic implications in COPD.

  1. Important role of platelets in modulating endotoxin-induced lung inflammation in CFTR-deficient mice.

    Directory of Open Access Journals (Sweden)

    Caiqi Zhao

    Full Text Available Mutation of CFTR (cystic fibrosis transmembrane conductance regulator leads to cystic fibrosis (CF. Patients with CF develop abnormalities of blood platelets and recurrent lung inflammation. However, whether CFTR-mutated platelets play a role in the development of lung inflammation is elusive. Therefore, we intratracheally challenged wildtype and F508del (a common type of CFTR mutation mice with LPS to observe changes of F508del platelets in the peripheral blood and indexes of lung inflammation (BAL neutrophils and protein levels. Furthermore, we investigated whether or not and how F508del platelets modulate the LPS-induced acute lung inflammation by targeting anti-platelet aggregation, depletion of neutrophils, reconstitution of bone marrow or neutrophils, blockade of P-selectin glycoprotein ligand-1 (PSGL-1, platelet activating factor (PAF, and correction of mutated CFTR trafficking. We found that LPS-challenged F508del mice developed severe thrombocytopenia and had higher levels of plasma TXB2 coincided with neutrophilic lung inflammation relative to wildtype control. Inhibition of F508del platelet aggregation or depletion of F508del neutrophils diminished the LPS-induced lung inflammation in the F508del mice. Moreover, wildtype mice reconstituted with either F508del bone marrow or neutrophils developed worse thrombocytopenia. Blocking PSGL-1, platelet activating factor (PAF, or rectifying trafficking of mutated CFTR in F508del mice diminished and alveolar neutrophil transmigration in the LPS-challenged F508del mice. These findings suggest that F508del platelets and their interaction with neutrophils are requisite for the development of LPS-induced lung inflammation and injury. As such, targeting platelets might be an emerging strategy for dampening recurrent lung inflammation in cystic fibrosis patients.

  2. Proteases and antiproteases in chronic neutrophilic lung disease - relevance to drug discovery.

    LENUS (Irish Health Repository)

    Greene, Catherine M

    2009-10-01

    Chronic inflammatory lung diseases such as cystic fibrosis and emphysema are characterized by higher-than-normal levels of pulmonary proteases. While these enzymes play important roles such as bacterial killing, their dysregulated expression or activity can adversely impact on the inflammatory process. The existence of efficient endogenous control mechanisms that can dampen or halt this overexuberant protease activity in vivo is essential for the effective resolution of inflammatory lung disease. The function of pulmonary antiproteases is to fulfil this role. Interestingly, in addition to their antiprotease activity, protease inhibitors in the lung also often possess other intrinsic properties that contribute to microbial killing or termination of the inflammatory process. This review will outline important features of chronic inflammation that are regulated by pulmonary proteases and will describe the various mechanisms by which antiproteases attempt to counterbalance exaggerated protease-mediated inflammatory events. These proteases, antiproteases and their modifiers represent interesting targets for therapeutic intervention.

  3. Longitudinal study of a mouse model of chronic pulmonary inflammation using breath hold gated micro-CT

    Energy Technology Data Exchange (ETDEWEB)

    Artaechevarria, Xabier; Perez-Martin, Daniel; Munoz-Barrutia, Arrate; Ortiz-de-Solorzano, Carlos [Center for Applied Medical Research, University of Navarra, Cancer Imaging Laboratory, Oncology Division, Pamplona (Spain); Blanco, David; Biurrun, Gabriel de; Montuenga, Luis M. [Center for Applied Medical Research, University of Navarra, Biomarkers Laboratory, Pamplona (Spain); Torres, Juan P. de; Zulueta, Javier J. [Clinica Universidad de Navarra, Pneumology Department, Pamplona (Spain); Bastarrika, Gorka [Clinica Universidad de Navarra, Radiology Department, Pamplona (Spain)

    2010-11-15

    To evaluate the feasibility of using automatic quantitative analysis of breath hold gated micro-CT images to detect and monitor disease in a mouse model of chronic pulmonary inflammation, and to compare image-based measurements with pulmonary function tests and histomorphometry. Forty-nine A/J mice were used, divided into control and inflammation groups. Chronic inflammation was induced by silica aspiration. Fourteen animals were imaged at baseline, and 4, 14, and 34 weeks after silica aspiration, using micro-CT synchronized with ventilator-induced breath holds. Lung input impedance was measured as well using forced oscillation techniques. Five additional animals from each group were killed after micro-CT for comparison with histomorphometry. At all time points, micro-CT measurements show statistically significant differences between the two groups, while first differences in functional test parameters appear at 14 weeks. Micro-CT measurements correlate well with histomorphometry and discriminate diseased and healthy groups better than functional tests. Longitudinal studies using breath hold gated micro-CT are feasible on the silica-induced model of chronic pulmonary inflammation, and automatic measurements from micro-CT images correlate well with histomorphometry, being more sensitive than functional tests to detect lung damage in this model. (orig.)

  4. Vaccination promotes TH1-like inflammation and survival in chronic Pseudomonas aeruginosa pneumonia. A new prophylactic principle

    DEFF Research Database (Denmark)

    Johansen, H K; Cryz, S J; Hougen, H P

    1997-01-01

    . In a rat model of acute P. aeruginosa pneumonia we studied whether it was possible to improve the initial bacterial clearance and diminish the inflammatory response by vaccination prior to challenge with free, live P. aeruginosa. The vaccines studied were PAO 579 sonicate, O-polysaccharide toxin A (TA...... of the macroscopic lung inflammation compared to the other vaccination groups (p = 0.009). The same effect could be obtained by IFN-gamma treatment (p = 0.004). The chronic P. aeruginosa lung infection was established in two inbred mice strains C3H/HeN, known as TH1 responders, and Balb/c, known as TH2 responders...

  5. Cardiovascular Disease and Chronic Inflammation in End Stage Kidney Disease

    Directory of Open Access Journals (Sweden)

    Sofia Zyga

    2013-01-01

    Full Text Available Background: Chronic Kidney Disease (CKD is one of the most severe diseases worldwide. In patients affected by CKD, a progressive destruction of the nephrons is observed not only in structuralbut also in functional level. Atherosclerosis is a progressive disease of large and medium-sized arteries. It is characterized by the deposition of lipids and fibrous elements and is a common complication of the uremic syndrome because of the coexistence of a wide range of risk factors. High blood pressure, anaemia, insulin resistance, inflammation, high oxidative stress are some of the most common factors that cause cardiovascular disease and atherogenesis in patients suffering from End Stage Kidney Disease (ESRD. At the same time, the inflammatory process constitutes a common element in the apparition and development of CKD. A wide range of possible causes can justify the development of inflammation under uremic conditions. Such causes are oxidative stress, oxidation, coexistentpathological conditions as well as factors that are due to renal clearance techniques. Patients in ESRD and coronary disease usually show increased acute phase products. Pre-inflammatory cytokines, such as IL-6 and TNF-a, and acute phase reactants, such as CRP and fibrinogen, are closely related. The treatment of chronic inflammation in CKD is of high importance for the development ofthe disease as well as for the treatment of cardiovascular morbidity.Conclusions: The treatment factors focus on the use of renin-angiotensic system inhibitors, acetylsalicylic acid, statins and anti-oxidant treatment in order to prevent the action of inflammatorycytokines that have the ability to activate the mechanisms of inflammation.

  6. Low Level Laser Therapy Reduces the Development of Lung Inflammation Induced by Formaldehyde Exposure.

    Directory of Open Access Journals (Sweden)

    Cristiane Miranda da Silva

    Full Text Available Lung diseases constitute an important public health problem and its growing level of concern has led to efforts for the development of new therapies, particularly for the control of lung inflammation. Low Level Laser Therapy (LLLT has been highlighted as a non-invasive therapy with few side effects, but its mechanisms need to be better understood and explored. Considering that pollution causes several harmful effects on human health, including lung inflammation, in this study, we have used formaldehyde (FA, an environmental and occupational pollutant, for the induction of neutrophilic lung inflammation. Our objective was to investigate the local and systemic effects of LLLT after FA exposure. Male Wistar rats were exposed to FA (1% or vehicle (distillated water during 3 consecutive days and treated or not with LLLT (1 and 5 hours after each FA exposure. Non-manipulated rats were used as control. 24 h after the last FA exposure, we analyzed the local and systemic effects of LLLT. The treatment with LLLT reduced the development of neutrophilic lung inflammation induced by FA, as observed by the reduced number of leukocytes, mast cells degranulated, and a decreased myeloperoxidase activity in the lung. Moreover, LLLT also reduced the microvascular lung permeability in the parenchyma and the intrapulmonary bronchi. Alterations on the profile of inflammatory cytokines were evidenced by the reduced levels of IL-6 and TNF-α and the elevated levels of IL-10 in the lung. Together, our results showed that LLLT abolishes FA-induced neutrophilic lung inflammation by a reduction of the inflammatory cytokines and mast cell degranulation. This study may provide important information about the mechanisms of LLLT in lung inflammation induced by a pollutant.

  7. Autophagy deficiency in macrophages enhances NLRP3 inflammasome activity and chronic lung disease following silica exposure.

    Science.gov (United States)

    Jessop, Forrest; Hamilton, Raymond F; Rhoderick, Joseph F; Shaw, Pamela K; Holian, Andrij

    2016-10-15

    Autophagy is an important metabolic mechanism that can promote cellular survival following injury. The specific contribution of autophagy to silica-induced inflammation and disease is not known. The objective of these studies was to determine the effects of silica exposure on the autophagic pathway in macrophages, as well as the general contribution of autophagy in macrophages to inflammation and disease. Silica exposure enhanced autophagic activity in vitro in Bone Marrow derived Macrophages and in vivo in Alveolar Macrophages isolated from silica-exposed mice. Impairment of autophagy in myeloid cells in vivo using Atg5(fl/fl)LysM-Cre(+) mice resulted in enhanced cytotoxicity and inflammation after silica exposure compared to littermate controls, including elevated IL-18 and the alarmin HMGB1 in the whole lavage fluid. Autophagy deficiency caused some spontaneous inflammation and disease. Greater silica-induced acute inflammation in Atg5(fl/fl)LysM-Cre(+) mice correlated with increased fibrosis and chronic lung disease. These studies demonstrate a critical role for autophagy in suppressing silica-induced cytotoxicity and inflammation in disease development. Furthermore, this data highlights the importance of basal autophagy in macrophages and other myeloid cells in maintaining lung homeostasis.

  8. Quantitative assessment of global lung inflammation following radiation therapy using FDG PET/CT: a pilot study

    Energy Technology Data Exchange (ETDEWEB)

    Abdulla, Sarah; Salavati, Ali; Saboury, Babak; Torigian, Drew A. [University of Pennsylvania, and Hospital of the University of Pennsylvania, Department of Radiology, Perelman School of Medicine, Philadelphia, PA (United States); Basu, Sandip [Bhabha Atomic Research Center, Tata Memorial Center Annexe, Radiation Medicine Center, Bombay (India); Alavi, Abass [University of Pennsylvania, and Hospital of the University of Pennsylvania, Department of Radiology, Perelman School of Medicine, Philadelphia, PA (United States); Hospital of the University of Pennsylvania, Department of Radiology, Division of Nuclear Medicine, Philadelphia, PA (United States)

    2014-02-15

    Radiation pneumonitis is the most severe dose-limiting complication in patients receiving thoracic radiation therapy. The aim of this study was to quantify global lung inflammation following radiation therapy using FDG PET/CT. We studied 20 subjects with stage III non-small-cell lung carcinoma who had undergone FDG PET/CT imaging before and after radiation therapy. On all PET/CT studies, the sectional lung volume (sLV) of each lung was calculated from each slice by multiplying the lung area by slice thickness. The sectional lung glycolysis (sLG) was calculated by multiplying the sLV and the lung sectional mean standardized uptake value (sSUVmean) on each slice passing through the lung. The lung volume (LV) was calculated by adding all sLVs from the lung, and the global lung glycolysis (GLG) was calculated by adding all sLGs from the lung. Finally, the lung SUVmean was calculated by dividing the GLG by the LV. The amount of inflammation in the lung parenchyma directly receiving radiation therapy was calculated by subtracting tumor measurements from GLG. In the lung directly receiving radiation therapy, the lung parenchyma SUVmean and global lung parenchymal glycolysis were significantly increased following therapy. In the contralateral lung (internal control), no significant changes were observed in lung SUVmean or GLG following radiation therapy. Global lung parenchymal glycolysis and lung parenchymal SUVmean may serve as potentially useful biomarkers to quantify lung inflammation on FDG PET/CT following thoracic radiation therapy. (orig.)

  9. Chronic Lymphocytic Inflammation Specifies the Organ Tropism of Prions

    Science.gov (United States)

    Heikenwalder, Mathias; Zeller, Nicolas; Seeger, Harald; Prinz, Marco; Klöhn, Peter-Christian; Schwarz, Petra; Ruddle, Nancy H.; Weissmann, Charles; Aguzzi, Adriano

    2005-02-01

    Prions typically accumulate in nervous and lymphoid tissues. Because proinflammatory cytokines and immune cells are required for lymphoid prion replication, we tested whether inflammatory conditions affect prion pathogenesis. We administered prions to mice with five inflammatory diseases of the kidney, pancreas, or liver. In all cases, chronic lymphocytic inflammation enabled prion accumulation in otherwise prion-free organs. Inflammatory foci consistently correlated with lymphotoxin up-regulation and ectopic induction of FDC-M1+ cells expressing the normal cellular prion protein PrPC. By contrast, inflamed organs of mice lacking lymphotoxin-α or its receptor did not accumulate the abnormal isoform PrPSc, nor did they display infectivity upon prion inoculation. By expanding the tissue distribution of prions, chronic inflammatory conditions may act as modifiers of natural and iatrogenic prion transmission.

  10. Persistent lung inflammation and fibrosis in serum amyloid P component (APCs-/- knockout mice.

    Directory of Open Access Journals (Sweden)

    Darrell Pilling

    Full Text Available Fibrosing diseases, such as pulmonary fibrosis, cardiac fibrosis, myelofibrosis, liver fibrosis, and renal fibrosis are chronic and debilitating conditions and are an increasing burden for the healthcare system. Fibrosis involves the accumulation and differentiation of many immune cells, including macrophages and fibroblast-like cells called fibrocytes. The plasma protein serum amyloid P component (SAP; also known as pentraxin-2, PTX2 inhibits fibrocyte differentiation in vitro, and injections of SAP inhibit fibrosis in vivo. SAP also promotes the formation of immuno-regulatory Mreg macrophages. To elucidate the endogenous function of SAP, we used bleomycin aspiration to induce pulmonary inflammation and fibrosis in mice lacking SAP. Compared to wildtype C57BL/6 mice, we find that in Apcs-/- "SAP knock-out" mice, bleomycin induces a more persistent inflammatory response and increased fibrosis. In both C57BL/6 and Apcs-/- mice, injections of exogenous SAP reduce the accumulation of inflammatory macrophages and prevent fibrosis. The types of inflammatory cells present in the lungs following bleomycin-aspiration appear similar between C57BL/6 and Apcs-/- mice, suggesting that the initial immune response is normal in the Apcs-/- mice, and that a key endogenous function of SAP is to promote the resolution of inflammation and fibrosis.

  11. The association between combined non-cystic fibrosis bronchiectasis and lung cancer in patients with chronic obstructive lung disease

    Directory of Open Access Journals (Sweden)

    Kim YW

    2015-05-01

    patients with squamous cell carcinoma (OR 0.11, 95% CI 0.03–0.49, P=0.001 and history of smoking (OR 0.27, 95% CI 0.12–0.57, P<0.001. However, the severity and location of bronchiectasis were not associated with the risk of lung cancer.Conclusion: Interestingly, the concomitant presence of bronchiectasis in COPD patients was associated with a lower risk of lung cancer.Keywords: bronchiectasis, lung cancer, chronic inflammation, COPD

  12. Effects of acute hypercapnia with and without acidosis on lung inflammation and apoptosis in experimental acute lung injury.

    Science.gov (United States)

    Nardelli, L M; Rzezinski, A; Silva, J D; Maron-Gutierrez, T; Ornellas, D S; Henriques, I; Capelozzi, V L; Teodoro, W; Morales, M M; Silva, P L; Pelosi, P; Garcia, C S N B; Rocco, P R M

    2015-01-01

    We investigated the effects of acute hypercapnic acidosis and buffered hypercapnia on lung inflammation and apoptosis in experimental acute lung injury (ALI). Twenty-four hours after paraquat injection, 28 Wistar rats were randomized into four groups (n=7/group): (1) normocapnia (NC, PaCO2=35-45 mmHg), ventilated with 0.03%CO2+21%O2+balancedN2; (2) hypercapnic acidosis (HC, PaCO2=60-70 mmHg), ventilated with 5%CO2+21%O2+balancedN2; and (3) buffered hypercapnic acidosis (BHC), ventilated with 5%CO2+21%O2+balancedN2 and treated with sodium bicarbonate (8.4%). The remaining seven animals were not mechanically ventilated (NV). The mRNA expression of interleukin (IL)-6 (p=0.003), IL-1β (pacidosis, reduced lung inflammation and lung and kidney cell apoptosis.

  13. Monoclonal antibody therapy for the treatment of asthma and chronic obstructive pulmonary disease with eosinophilic inflammation.

    Science.gov (United States)

    Nixon, John; Newbold, Paul; Mustelin, Tomas; Anderson, Gary P; Kolbeck, Roland

    2017-01-01

    Eosinophils have been linked with asthma for more than a century, but their role has been unclear. This review discusses the roles of eosinophils in asthma and chronic obstructive pulmonary disease (COPD) and describes therapeutic antibodies that affect eosinophilia. The aims of pharmacologic treatments for pulmonary conditions are to reduce symptoms, slow decline or improve lung function, and reduce the frequency and severity of exacerbations. Inhaled corticosteroids (ICS) are important in managing symptoms and exacerbations in asthma and COPD. However, control with these agents is often suboptimal, especially for patients with severe disease. Recently, new biologics that target eosinophilic inflammation, used as adjunctive therapy to corticosteroids, have proven beneficial and support a pivotal role for eosinophils in the pathology of asthma. Nucala® (mepolizumab; anti-interleukin [IL]-5) and Cinquair® (reslizumab; anti-IL-5), the second and third biologics approved, respectively, for the treatment of asthma, exemplifies these new treatment options. Emerging evidence suggests that eosinophils may contribute to exacerbations and possibly to lung function decline for a subset of patients with COPD. Here we describe the pharmacology of therapeutic antibodies inhibiting IL-5 or targeting the IL-5 receptor, as well as other cytokines contributing to eosinophilic inflammation. We discuss their roles as adjuncts to conventional therapeutic approaches, especially ICS therapy, when disease is suboptimally controlled. These agents have achieved a place in the therapeutic armamentarium for asthma and COPD and will deepen our understanding of the pathogenic role of eosinophils.

  14. Epithelial-Derived Inflammation Disrupts Elastin Assembly and Alters Saccular Stage Lung Development.

    Science.gov (United States)

    Benjamin, John T; van der Meer, Riet; Im, Amanda M; Plosa, Erin J; Zaynagetdinov, Rinat; Burman, Ankita; Havrilla, Madeline E; Gleaves, Linda A; Polosukhin, Vasiliy V; Deutsch, Gail H; Yanagisawa, Hiromi; Davidson, Jeffrey M; Prince, Lawrence S; Young, Lisa R; Blackwell, Timothy S

    2016-07-01

    The highly orchestrated interactions between the epithelium and mesenchyme required for normal lung development can be disrupted by perinatal inflammation in preterm infants, although the mechanisms are incompletely understood. We used transgenic (inhibitory κB kinase β transactivated) mice that conditionally express an activator of the NF-κB pathway in airway epithelium to investigate the impact of epithelial-derived inflammation during lung development. Epithelial NF-κB activation selectively impaired saccular stage lung development, with a phenotype comprising rapidly progressive distal airspace dilation, impaired gas exchange, and perinatal lethality. Epithelial-derived inflammation resulted in disrupted elastic fiber organization and down-regulation of elastin assembly components, including fibulins 4 and 5, lysyl oxidase like-1, and fibrillin-1. Fibulin-5 expression by saccular stage lung fibroblasts was consistently inhibited by treatment with bronchoalveolar lavage fluid from inhibitory κB kinase β transactivated mice, Escherichia coli lipopolysaccharide, or tracheal aspirates from preterm infants exposed to chorioamnionitis. Expression of a dominant NF-κB inhibitor in fibroblasts restored fibulin-5 expression after lipopolysaccharide treatment, whereas reconstitution of fibulin-5 rescued extracellular elastin assembly by saccular stage lung fibroblasts. Elastin organization was disrupted in saccular stage lungs of preterm infants exposed to systemic inflammation. Our study reveals a critical window for elastin assembly during the saccular stage that is disrupted by inflammatory signaling and could be amenable to interventions that restore elastic fiber assembly in the developing lung.

  15. The combination of Bifidobacterium breve with non-digestible oligosaccharides suppresses airway inflammation in a murine model for chronic asthma.

    Science.gov (United States)

    Sagar, Seil; Vos, Arjan P; Morgan, Mary E; Garssen, Johan; Georgiou, Niki A; Boon, Louis; Kraneveld, Aletta D; Folkerts, Gert

    2014-04-01

    Over the last decade, there has been a growing interest in the use of interventions that target the intestinal microbiota as a treatment approach for asthma. This study is aimed at exploring the therapeutic effects of long-term treatment with a combination of Bifidobacterium breve with non-digestible oligosaccharides on airway inflammation and remodeling. A murine ovalbumin-induced chronic asthma model was used. Pulmonary airway inflammation; mRNA expression of pattern recognition receptors, Th-specific cytokines and transcription factors in lung tissue; expression of Foxp3 in blood Th cells; in vitro T cell activation; mast cell degranulation; and airway remodeling were examined. The combination of B. breve with non-digestible oligosaccharides suppressed pulmonary airway inflammation; reduced T cell activation and mast cell degranulation; modulated expression of pattern recognition receptors, cytokines and transcription factors; and reduced airway remodeling. The treatment induced regulatory T cell responses, as shown by increased Il10 and Foxp3 transcription in lung tissue, and augmented Foxp3 protein expression in blood CD4+CD25+Foxp3+ T cells. This specific combination of beneficial bacteria with non-digestible oligosaccharides has strong anti-inflammatory properties, possibly via the induction of a regulatory T cell response, resulting in reduced airway remodeling and, therefore, may be beneficial in the treatment of chronic inflammation in allergic asthma.

  16. DISTINCT PHENOTYPES OF INFILTRATING CELLS DURING ACUTE AND CHRONIC LUNG REJECTION IN HUMAN HEART-LUNG TRANSPLANTS

    NARCIS (Netherlands)

    WINTER, JB; CLELLAND, C; GOUW, ASH; PROP, J

    1995-01-01

    To differentiate between acute and chronic lung rejection in an early stage, phenotypes of infiltrating inflammatory cells were analyzed in 34 transbronchial biopsies (TBBs) of 24 patients after heart-lung transplantation. TBBs were taken during during acute lung rejection and chronic lung rejection

  17. Induction and effector phase of allergic lung inflammation is independent of CCL21/CCL19 and LT-beta

    Directory of Open Access Journals (Sweden)

    Corinne Ploix, Riaz I. Zuberi, Fu-Tong Liu, Monica J. Carson, David D. Lo

    2009-01-01

    Full Text Available The chemokines CCL21 and CCL19, and cell bound TNF family ligand lymphotoxin beta (LTβ, have been associated with numerous chronic inflammatory diseases. A general role in chronic inflammatory diseases cannot be assumed however; in the case of allergic inflammatory disease, CCL21/CCL19 and LTβ have not been associated with the induction, recruitment, or effector function of Th2 cells nor dendritic cells to the lung. We have examined the induction of allergic inflammatory lung disease in mice deficient in CCL21/CCL19 or LTβ and found that both kinds of mice can develop allergic lung inflammation. To control for effects of priming differences in knockout mice, adoptive transfers of Th2 cells were also performed, and they showed that such effector cells had equivalent effects on airway hyper-responsiveness in both knockout background recipients. Moreover, class II positive antigen presenting cells (B cells and CD11c+ dendritic cells showed normal recruitment to the peribronchial spaces along with CD4 T cells. Thus, the induction of allergic responses and recruitment of both effector Th2 cells and antigen presenting cells to lung peribronchial spaces can develop independently of CCL21/CCL19 and LTβ.

  18. Bioactive Compounds Isolated from Microalgae in Chronic Inflammation and Cancer

    Directory of Open Access Journals (Sweden)

    Elena Talero

    2015-09-01

    Full Text Available The risk of onset of cancer is influenced by poorly controlled chronic inflammatory processes. Inflammatory diseases related to cancer development include inflammatory bowel disease, which can lead to colon cancer, or actinic keratosis, associated with chronic exposure to ultraviolet light, which can progress to squamous cell carcinoma. Chronic inflammatory states expose these patients to a number of signals with tumorigenic effects, including nuclear factor kappa B (NF-κB and mitogen-activated protein kinases (MAPK activation, pro-inflammatory cytokines and prostaglandins release and ROS production. In addition, the participation of inflammasomes, autophagy and sirtuins has been demonstrated in pathological processes such as inflammation and cancer. Chemoprevention consists in the use of drugs, vitamins, or nutritional supplements to reduce the risk of developing or having a recurrence of cancer. Numerous in vitro and animal studies have established the potential colon and skin cancer chemopreventive properties of substances from marine environment, including microalgae species and their products (carotenoids, fatty acids, glycolipids, polysaccharides and proteins. This review summarizes the main mechanisms of actions of these compounds in the chemoprevention of these cancers. These actions include suppression of cell proliferation, induction of apoptosis, stimulation of antimetastatic and antiangiogenic responses and increased antioxidant and anti-inflammatory activity.

  19. Caffeine Mitigates Lung Inflammation Induced by Ischemia-Reperfusion of Lower Limbs in Rats

    Directory of Open Access Journals (Sweden)

    Wei-Chi Chou

    2015-01-01

    Full Text Available Reperfusion of ischemic limbs can induce inflammation and subsequently cause acute lung injury. Caffeine, a widely used psychostimulant, possesses potent anti-inflammatory capacity. We elucidated whether caffeine can mitigate lung inflammation caused by ischemia-reperfusion (IR of the lower limbs. Adult male Sprague-Dawley rats were randomly allocated to receive IR, IR plus caffeine (IR + Caf group, sham-operation (Sham, or sham plus caffeine (n=12 in each group. To induce IR, lower limbs were bilaterally tied by rubber bands high around each thigh for 3 hours followed by reperfusion for 3 hours. Caffeine (50 mg/kg, intraperitoneal injection was administered immediately after reperfusion. Our histological assay data revealed characteristics of severe lung inflammation in the IR group and mild to moderate characteristic of lung inflammation in the IR + Caf group. Total cells number and protein concentration in bronchoalveolar lavage fluid of the IR group were significantly higher than those of the IR + Caf group (P<0.001 and P=0.008, resp.. Similarly, pulmonary concentrations of inflammatory mediators (tumor necrosis factor-α, interleukin-1β, and macrophage inflammatory protein-2 and pulmonary myeloperoxidase activity of the IR group were significantly higher than those of the IR + Caf group (all P<0.05. These data clearly demonstrate that caffeine could mitigate lung inflammation induced by ischemia-reperfusion of the lower limbs.

  20. Critical role for IL-18 in spontaneous lung inflammation caused by autophagy deficiency.

    Science.gov (United States)

    Abdel Fattah, Elmoataz; Bhattacharya, Abhisek; Herron, Alan; Safdar, Zeenat; Eissa, N Tony

    2015-06-01

    Autophagy is an important component of the immune response. However, the functions of autophagy in human diseases are much less understood. We studied biological consequences of autophagy deficiency in mice lacking the essential autophagy gene Atg7 or Atg5 in myeloid cells. Surprisingly, these mice presented with spontaneous sterile lung inflammation, characterized by marked recruitment of inflammatory cells, submucosal thickening, goblet cell metaplasia, and increased collagen content. Lung inflammation was associated with increase in several proinflammatory cytokines in the bronchoalveolar lavage and in serum. This inflammation was largely driven by IL-18 as a result of constitutive inflammasome activation. Following i.p. LPS injection, autophagy-deficient mice had higher levels of proinflammatory cytokines in lungs and in serum, as well as increased mortality, than control mice. Intranasal bleomycin challenge exacerbated lung inflammation in autophagy-deficient mice and produced more severe fibrotic changes than in control mice. These results uncover a new and important role for autophagy as negative regulator of lung inflammation.

  1. Systemic Inflammation in Chronic Obstructive Pulmonary Disease: May Adipose Tissue Play a Role? Review of the Literature and Future Perspectives

    Directory of Open Access Journals (Sweden)

    Ruzena Tkacova

    2010-01-01

    Full Text Available Chronic obstructive pulmonary disease (COPD is a major cause of morbidity and mortality worldwide. Low-grade systemic inflammation is considered a hallmark of COPD that potentially links COPD to increased rate of systemic manifestations of the disease. Obesity with/without the metabolic syndrome and cachexia represent two poles of metabolic abnormalities that may relate to systemic inflammation. On one hand systemic inflammatory syndrome likely reflects inflammation in the lungs, i.e. results from lung-to plasma spillover of inflammatory mediators. On the other hand, obesity-related hypoxia results in local inflammatory response within adipose tissue per se, and may contribute to elevations in circulatory mediators by spillover from the adipose tissue to the systemic compartment. The extent to which systemic hypoxia contributes to the adipose tissue inflammation remains unknown. We assume that in patients with COPD and concurrent obesity at least three factors play a role in the systemic inflammatory syndrome: the severity of pulmonary impairment, the degree of obesity-related adipose tissue hypoxia, and the severity of systemic hypoxia due to reduced pulmonary functions. The present review summarizes the epidemiological and clinical evidence linking COPD to obesity, the role of adipose tissue as an endocrine organ, and the role of hypoxia in adipose tissue inflammation.

  2. Role of TNF-α in lung tight junction alteration in mouse model of acute lung inflammation

    Directory of Open Access Journals (Sweden)

    Cuzzocrea Salvatore

    2007-10-01

    Full Text Available Abstract In the present study, we used tumor necrosis factor-R1 knock out mice (TNF-αR1KO to understand the roles of TNF-α on epithelial function in models of carrageenan-induced acute lung inflammation. In order to elucidate whether the observed anti-inflammatory status is related to the inhibition of TNF-α, we also investigated the effect of etanercept, a TNF-α soluble receptor construct, on lung TJ function. Pharmacological and genetic TNF-α inhibition significantly reduced the degree of (1 TNF-α production in pleural exudates and in the lung tissues, (2 the inflammatory cell infiltration in the pleural cavity as well as in the lung tissues (evaluated by MPO activity, (3 the alteration of ZO-1, Claudin-2, Claudin-4, Claudin-5 and β-catenin (immunohistochemistry and (4 apoptosis (TUNEL staining, Bax, Bcl-2 expression. Taken together, our results demonstrate that inhibition of TNF-α reduces the tight junction permeability in the lung tissues associated with acute lung inflammation, suggesting a possible role of TNF-α on lung barrier dysfunction.

  3. Neurological and cellular regulation of visceral hypersensitivity induced by chronic stress and colonic inflammation in rats.

    Science.gov (United States)

    Chen, J; Winston, J H; Sarna, S K

    2013-09-17

    The role of inflammation in inducing visceral hypersensitivity (VHS) in ulcerative colitis patients remains unknown. We tested the hypothesis that acute ulcerative colitis-like inflammation does not induce VHS. However, it sets up molecular conditions such that chronic stress following inflammation exaggerates single-unit afferent discharges to colorectal distension. We used dextran sodium sulfate (DSS) to induce ulcerative colitis-like inflammation and a 9-day heterotypic chronic stress protocol in rats. DSS upregulated Nav1.8 mRNA in colon-responsive dorsal root ganglion (DRG) neurons, TRPV1 in colonic muscularis externae (ME) and BDNF in spinal cord without affecting the spike frequency in spinal afferents or VMR to CRD. By contrast, chronic stress did not induce inflammation but it downregulated Kv1.1 and Kv1.4 mRNA in DRG neurons, and upregulated TRPA1 and nerve growth factor in ME, which mediated the increase of spike frequency and VMR to CRD. Chronic stress following inflammation exacerbated spike frequency in spinal afferent neurons. TRPA1 antagonist suppressed the sensitization of afferent neurons. DSS-inflammation did not affect the composition or excitation thresholds of low-threshold and high-threshold fibers. Chronic stress following inflammation increased the percent composition of high-threshold fibers and lowered the excitation threshold of both types of fibers. We conclude that not all types of inflammation induce VHS, whereas chronic stress induces VHS in the absence of inflammation.

  4. The Effect of Cigarette Smoke Exposure on the Development of Inflammation in Lungs, Gut and Joints of TNFΔARE Mice.

    Directory of Open Access Journals (Sweden)

    Liesbeth Allais

    Full Text Available The inflammatory cytokine TNF-α is a central mediator in many immune-mediated diseases, such as Crohn's disease (CD, spondyloarthritis (SpA and chronic obstructive pulmonary disease (COPD. Epidemiologic studies have shown that cigarette smoking (CS is a prominent common risk factor in these TNF-dependent diseases. We exposed TNFΔARE mice; in which a systemic TNF-α overexpression leads to the development of inflammation; to 2 or 4 weeks of air or CS. We investigated the effect of deregulated TNF expression on CS-induced pulmonary inflammation and the effect of CS exposure on the initiation and progression of gut and joint inflammation. Upon 2 weeks of CS exposure, inflammation in lungs of TNFΔARE mice was significantly aggravated. However, upon 4 weeks of CS-exposure, this aggravation was no longer observed. TNFΔARE mice have no increases in CD4+ and CD8+ T cells and a diminished neutrophil response in the lungs after 4 weeks of CS exposure. In the gut and joints of TNFΔARE mice, 2 or 4 weeks of CS exposure did not modulate the development of inflammation. In conclusion, CS exposure does not modulate gut and joint inflammation in TNFΔARE mice. The lung responses towards CS in TNFΔARE mice however depend on the duration of CS exposure.

  5. Chronic pancreatitis: Maldigestion, intestinal ecology and intestinal inflammation

    Institute of Scientific and Technical Information of China (English)

    Raffaele Pezzilli

    2009-01-01

    Exocrine pancreatic insufficiency caused by chronic pancreatitis results from various factors whichregulate digestion and absorption of nutrients. Pancreatic function has been extensively studied over the last 40 years, even if some aspects of secretion and gastrointestinal adaptation are not completely understood. The main clinical manifestations of exocrine pancreatic insufficiency are fat malabsorption, known as steatorrhea, which consists of fecal excretion of more than 6 g of fat per day, weightloss, abdominal discomfort and abdominal swelling sensation. Fat malabsorption also results in a deficit of fat-soluble vitamins (A, D, E and K) with consequent clinical manifestations. The relationships between pancreatic maldigestion, intestinal ecology and intestinal inflammation have not received particular attention, even if in clinical practice these mechanisms may be responsible for the low efficacy of pancreatic extracts in abolishing steatorrhea in some patients. The best treatments for pancreatic maldigestion should be re-evaluated, taking into account not only the correction of pancreatic insufficiency using pancreatic extracts and the best duodenal pH to permit optimal efficacy of these extracts, but we also need to consider other therapeutic approaches including the decontamination of intestinal lumen, supplementation of bile acids and, probably, the use of probiotics which may attenuate intestinal inflammation

  6. 慢性阻塞性肺疾病与慢性炎症%Chronic obstructive pulmonary disease and chronic inflammation

    Institute of Scientific and Technical Information of China (English)

    何馨; 王浩彦

    2011-01-01

    慢性阻塞性肺疾病(chronic obstructive pulmonary disease,COPD)患病率高、病程长、病死率高,已成为严重的社会负担.小气道炎症是COPD的主要病变及导致肺功能进行性损害的主要原因,同时大量研究证明COPD患者存在系统性炎症,但目前对于COPD气道炎症与系统性炎症的关系尚不十分明确.%With an increased prevalence,chronic obstructive pulmonary disease (COPD),which is characterized by airflow obstruction, has represented an increasing burden throughout the world.Inflammation of small airway is the primary lesions of COPD. It has been confirmed that airwayinflammation is the major reason which caused the damage of lung function in COPD. And lots of studies has proved that patients with COPD had systemic inflammation. However, the reason of systemic inflammation in COPD and the relationship between airway inflammation and systemic inflammation in COPD are still unclear.

  7. Disruption of immune regulation by microbial pathogens and resulting chronic inflammation.

    Science.gov (United States)

    Barth, Kenneth; Remick, Daniel G; Genco, Caroline A

    2013-07-01

    Activation of the immune response is a tightly regulated, coordinated effort that functions to control and eradicate exogenous microorganisms, while also responding to endogenous ligands. Determining the proper balance of inflammation is essential, as chronic inflammation leads to a wide array of host pathologies. Bacterial pathogens can instigate chronic inflammation via an extensive repertoire of evolved evasion strategies that perturb immune regulation. In this review, we discuss two model pathogens, Mycobacterium tuberculosis and Porphyromonas gingivalis, which efficiently escape various aspects of the immune system within professional and non-professional immune cell types to establish chronic inflammation.

  8. Physical Activity Protects the Human Brain against Metabolic Stress Induced by a Postprandial and Chronic Inflammation

    NARCIS (Netherlands)

    Pruimboom, Leo; Raison, Charles L.; Muskiet, Frits A. J.

    2015-01-01

    In recent years, it has become clear that chronic systemic low-grade inflammation is at the root of many, if not all, typically Western diseases associated with the metabolic syndrome. While much focus has been given to sedentary lifestyle as a cause of chronic inflammation, it is less often appreci

  9. Green tea polyphenols avert chronic inflammation-induced myocardial fibrosis of female rats

    Science.gov (United States)

    Objective: Green tea proposes anti-inflammatory properties which may attenuate chronic inflammation-induced fibrosis of vessels. This study evaluated whether green tea polyphenols (GTP) can avert fibrosis or vascular disruption along with mechanisms in rats with chronic inflammation. Treatments: Fo...

  10. DNA methylation signatures of chronic low-grade inflammation are associated with complex diseases

    NARCIS (Netherlands)

    S. Ligthart (Symen); Marzi, C. (Carola); Aslibekyan, S. (Stella); Mendelson, M.M. (Michael M.); K.N. Conneely (Karen N.); T. Tanaka (Toshiko); Colicino, E. (Elena); L. Waite (Lindsay); R. Joehanes (Roby); W. Guan (Weihua); J. Brody (Jennifer); C.E. Elks (Cathy); R.E. Marioni (Riccardo); M.A. Jhun (Min A.); Agha, G. (Golareh); J. Bressler (Jan); C.K. Ward-Caviness (Cavin K.); B.H. Chen (Brian); T. Huan (Tianxiao); K.M. Bakulski (Kelly M.); E. Salfati (Elias); Fiorito, G. (Giovanni); S. Wahl (Simone); K. Schramm (Katharina); Sha, J. (Jin); D.G. Hernandez (Dena); Just, A.C. (Allan C.); J.A. Smith (Jennifer A); N. Sotoodehnia (Nona); L.C. Pilling (Luke); J.S. Pankow (James); Tsao, P.S. (Phil S.); Liu, C. (Chunyu); W. Zhao (Wei); S. Guarrera (Simonetta); Michopoulos, V.J. (Vasiliki J.); Smith, A.K. (Alicia K.); M.J. Peters (Marjolein); D. Melzer (David); Vokonas, P. (Pantel); M. Fornage (Myriam); H. Prokisch (Holger); J.C. Bis (Joshua); A.Y. Chu (Audrey); C. Herder (Christian); H. Grallert (Harald); C. Yao (Chen); S. Shah (Sonia); A.F. McRae (Allan F.); H. Lin; S. Horvath (Steve); Fallin, D. (Daniele); A. Hofman (Albert); N.J. Wareham (Nick); K.L. Wiggins (Kerri); A.P. Feinberg (Andrew P.); J.M. Starr (John); P.M. Visscher (Peter); J. Murabito (Joanne); Kardia, S.L.R. (Sharon L.R.); D. Absher (Devin); E.B. Binder (Elisabeth); A. Singleton (Andrew); S. Bandinelli (Stefania); A. Peters (Annette); M. Waldenberger (Melanie); G. Matullo; Schwartz, J.D. (Joel D.); E.W. Demerath (Ellen); A.G. Uitterlinden (André); Meurs, J.B.J. (Joyce B.J.); O.H. Franco (Oscar); Y.D. Chen (Y.); D. Levy (Daniel); S.T. Turner (Stephen); I.J. Deary (Ian J.); K.J. Ressler (Kerry); J. Dupuis (Josée); L. Ferrucci (Luigi); Ong, K.K. (Ken K.); T.L. Assimes (Themistocles); E.A. Boerwinkle (Eric); W. Koenig (Wolfgang); D.K. Arnett (Donna); A.A. Baccarelli (Andrea A.); E.J. Benjamin (Emelia); A. Dehghan (Abbas)

    2016-01-01

    textabstractBackground: Chronic low-grade inflammation reflects a subclinical immune response implicated in the pathogenesis of complex diseases. Identifying genetic loci where DNA methylation is associated with chronic low-grade inflammation may reveal novel pathways or therapeutic targets for infl

  11. Epithelial NEMO links innate immunity to chronic intestinal inflammation.

    Science.gov (United States)

    Nenci, Arianna; Becker, Christoph; Wullaert, Andy; Gareus, Ralph; van Loo, Geert; Danese, Silvio; Huth, Marion; Nikolaev, Alexei; Neufert, Clemens; Madison, Blair; Gumucio, Deborah; Neurath, Markus F; Pasparakis, Manolis

    2007-03-29

    Deregulation of intestinal immune responses seems to have a principal function in the pathogenesis of inflammatory bowel disease. The gut epithelium is critically involved in the maintenance of intestinal immune homeostasis-acting as a physical barrier separating luminal bacteria and immune cells, and also expressing antimicrobial peptides. However, the molecular mechanisms that control this function of gut epithelial cells are poorly understood. Here we show that the transcription factor NF-kappaB, a master regulator of pro-inflammatory responses, functions in gut epithelial cells to control epithelial integrity and the interaction between the mucosal immune system and gut microflora. Intestinal epithelial-cell-specific inhibition of NF-kappaB through conditional ablation of NEMO (also called IkappaB kinase-gamma (IKKgamma)) or both IKK1 (IKKalpha) and IKK2 (IKKbeta)-IKK subunits essential for NF-kappaB activation-spontaneously caused severe chronic intestinal inflammation in mice. NF-kappaB deficiency led to apoptosis of colonic epithelial cells, impaired expression of antimicrobial peptides and translocation of bacteria into the mucosa. Concurrently, this epithelial defect triggered a chronic inflammatory response in the colon, initially dominated by innate immune cells but later also involving T lymphocytes. Deficiency of the gene encoding the adaptor protein MyD88 prevented the development of intestinal inflammation, demonstrating that Toll-like receptor activation by intestinal bacteria is essential for disease pathogenesis in this mouse model. Furthermore, NEMO deficiency sensitized epithelial cells to tumour-necrosis factor (TNF)-induced apoptosis, whereas TNF receptor-1 inactivation inhibited intestinal inflammation, demonstrating that TNF receptor-1 signalling is crucial for disease induction. These findings demonstrate that a primary NF-kappaB signalling defect in intestinal epithelial cells disrupts immune homeostasis in the gastrointestinal tract

  12. Balance impairment and systemic inflammation in chronic obstructive pulmonary disease

    Directory of Open Access Journals (Sweden)

    Tudorache E

    2015-09-01

    Full Text Available Emanuela Tudorache,1 Cristian Oancea,1 Claudiu Avram,2 Ovidiu Fira-Mladinescu,1 Lucian Petrescu,3 Bogdan Timar4 1Department of Pulmonology, University of Medicine and Pharmacy “Victor Babes”, 2Physical Education and Sport Faculty, West University of Timisoara, 3Department of Cardiology, University of Medicine and Pharmacy “Victor Babes”, 4Department of Biostatistics and Medical Informatics, University of Medicine and Pharmacy “Victor Babes”, Timisoara, Romania Background/purpose: Chronic obstructive pulmonary disease (COPD, especially in severe forms, is commonly associated with systemic inflammation and balance impairment. The aim of our study was to evaluate the impact on equilibrium of stable and exacerbation (acute exacerbation of COPD [AECOPD] phases of COPD and to investigate if there is a connection between lower extremity muscle weakness and systemic inflammation.Methods: We enrolled 41 patients with COPD (22 stable and 19 in AECOPD and 20 healthy subjects (control group, having no significant differences regarding the anthropometric data. We analyzed the differences in balance tests scores: Falls Efficacy Scale-International (FES-I questionnaire, Berg Balance Scale (BBS, Timed Up and Go (TUG test, Single Leg Stance (SLS, 6-minute walking distance (6MWD, isometric knee extension (IKE between these groups, and also the correlation between these scores and inflammatory biomarkers.Results: The presence and severity of COPD was associated with significantly decreased score in IKE (P<0.001, 6MWD (P<0.001, SLS (P<0.001, and BBS (P<0.001, at the same time noting a significant increase in median TUG score across the studied groups (P<0.001. The AECOPD group vs stable group presented a significant increase in high-sensitive C-reactive protein (hs-CRP levels (10.60 vs 4.01; P=0.003 and decrease in PaO2 (70.1 vs 59.1; P<0.001. We observed that both IKE scores were significantly and positive correlated with all the respiratory volumes

  13. Disruption of Immune Regulation by Microbial Pathogens and Resulting Chronic Inflammation

    OpenAIRE

    2013-01-01

    Activation of the immune response is a tightly regulated, coordinated effort that functions to control and eradicate exogenous microorganisms, while also responding to endogenous ligands. Determining the proper balance of inflammation is essential, as chronic inflammation leads to a wide array of host pathologies. Bacterial pathogens can instigate chronic inflammation via an extensive repertoire of evolved evasion strategies that perturb immune regulation. In this review, we discuss two model...

  14. Interleukin-17 and innate immunity in infections and chronic inflammation.

    Science.gov (United States)

    Isailovic, Natasa; Daigo, Kenji; Mantovani, Alberto; Selmi, Carlo

    2015-06-01

    Interleukin 17 (IL-17) includes several cytokines among which IL-17A is considered as one of the major pro-inflammatory cytokine being central to the innate and adaptive immune responses. IL-17 is produced by unconventional T cells, members of innate lymphoid cells (ILCs), mast cells, as well as typical innate immune cells, such as neutrophils and macrophages located in the epithelial barriers and characterised by a rapid response to infectious agents by recruiting neutrophils as first line of defence and inducing the production of antimicrobial peptides. Th17 responses appear pivotal in chronic and acute infections by bacteria, parasites, and fungi, as well as in autoimmune and chronic inflammatory diseases, including rheumatoid arthritis, psoriasis, and psoriatic arthritis. The data discussed in this review cumulatively indicate that innate-derived IL-17 constitutes a major element in the altered immune response against self antigens or the perpetuation of inflammation, particularly at mucosal sites. New drugs targeting the IL17 pathway include brodalumab, ixekizumab, and secukinumab and their use in psoriatic disease is expected to dramatically impact our approach to this systemic condition.

  15. Chronic administration of Abarema cochliacarpos attenuates colonic inflammation in rats

    Directory of Open Access Journals (Sweden)

    Maria Silene da Silva

    Full Text Available Inflammatory bowel diseases are characterized by a chronic clinical course of relapse and remission associated with self-destructive inflammation of the gastrointestinal tract. Active extracts from plants have emerged as natural potential candidates for its treatment. Abarema cochliacarpos (Gomes Barneby & Grimes, Fabaceae (Barbatimão, is a native medicinal plant in to Brazil. Previously we have demonstrated in an acute colitis model a marked protective effect of a butanolic extract, so we decided to assess its anti-inflammatory effect in a chronic ulcerative colitis model induced by trinitrobenzensulfonic acid (TNBS. Abarema cochliacarpos (150 mg/day, v.o. was administered for fourteen consecutive days. This treatment decreased significantly macroscopic damage as compared with TNBS. Histological analysis showed that the extract improved the microscopic structure. Myeloperoxidase activity (MPO was significantly decreased. Study of cytokines showed that TNF-α was diminished and IL-10 level was increased after Abarema cochliacarpos treatment. In order to elucidate inflammatory mechanisms, expression of cyclooxygenase (COX-2 and nitric oxide synthase (iNOS were studied showing a significant downregulation. In addition, there was reduction in the JNK and p-38 activation. Finally, IκB degradation was blocked by Abarema cochliacarpos treatment being consistent with an up-regulation of the NF-kappaB-binding activity. These results reinforce the anti-inflammatory effects described previously suggesting that Abarema cochliacarpos could provide a source for the search for new anti-inflammatory compounds useful in ulcerative colitis treatment.

  16. Novel pathways for glucocorticoid effects on neutrophils in chronic inflammation.

    Science.gov (United States)

    Goulding, N J; Euzger, H S; Butt, S K; Perretti, M

    1998-10-01

    Neutrophils have been implicated in mediating much of the tissue damage associated with chronic inflammatory diseases such as rheumatoid arthritis, where they are involved in destruction of both cartilage and bone. Glucocorticoids are powerful anti-inflammatory agents, often used in the treatment of this autoimmune disease. They exert significant inhibitory effects on neutrophil activation and functions, such as chemotaxis, adhesion, transmigration, apoptosis, oxidative burst, and phagocytosis. The mechanisms by which glucocorticoids exert these effects on neutrophils are unclear. Evidence from studies of inflammation in human subjects and animal models suggests that annexin-I an endogenous, glucocorticoid-induced protein also known as lipocortin-1, has a pivotal role in modulating neutrophil activation, transmigratory, and phagocytic functions. Furthermore, we present evidence for altered neutrophil functions in rheumatoid arthritis that correspond to a significantly reduced capacity of these cells to bind annexin-I. A proposed novel pathway for glucocorticoid actions on neutrophils involving annexin-I could explain the development of chronic neutrophil activation in diseases such as rheumatoid arthritis.

  17. A novel anti-inflammatory and pro-resolving role for resolvin D1 in acute cigarette smoke-induced lung inflammation.

    Directory of Open Access Journals (Sweden)

    Hsi-Min Hsiao

    Full Text Available Cigarette smoke is a profound pro-inflammatory stimulus that contributes to acute lung injuries and to chronic lung disease including COPD (emphysema and chronic bronchitis. Until recently, it was assumed that resolution of inflammation was a passive process that occurred once the inflammatory stimulus was removed. It is now recognized that resolution of inflammation is a bioactive process, mediated by specialized lipid mediators, and that normal homeostasis is maintained by a balance between pro-inflammatory and pro-resolving pathways. These novel small lipid mediators, including the resolvins, protectins and maresins, are bioactive products mainly derived from dietary omega-3 and omega-6 polyunsaturated fatty acids (PUFA. We hypothesize that resolvin D1 (RvD1 has potent anti-inflammatory and pro-resolving effects in a model of cigarette smoke-induced lung inflammation.Primary human lung fibroblasts, small airway epithelial cells and blood monocytes were treated with IL-1β or cigarette smoke extract in combination with RvD1 in vitro, production of pro-inflammatory mediators was measured. Mice were exposed to dilute mainstream cigarette smoke and treated with RvD1 either concurrently with smoke or after smoking cessation. The effects on lung inflammation and lung macrophage populations were assessed.RvD1 suppressed production of pro-inflammatory mediators by primary human cells in a dose-dependent manner. Treatment of mice with RvD1 concurrently with cigarette smoke exposure significantly reduced neutrophilic lung inflammation and production of pro-inflammatory cytokines, while upregulating the anti-inflammatory cytokine IL-10. RvD1 promoted differentiation of alternatively activated (M2 macrophages and neutrophil efferocytosis. RvD1 also accelerated the resolution of lung inflammation when given after the final smoke exposure.RvD1 has potent anti-inflammatory and pro-resolving effects in cells and mice exposed to cigarette smoke. Resolvins

  18. Stiffness-activated GEF-H1 expression exacerbates LPS-induced lung inflammation.

    Directory of Open Access Journals (Sweden)

    Isa Mambetsariev

    Full Text Available Acute lung injury (ALI is accompanied by decreased lung compliance. However, a role of tissue mechanics in modulation of inflammation remains unclear. We hypothesized that bacterial lipopolysacharide (LPS stimulates extracellular matrix (ECM production and vascular stiffening leading to stiffness-dependent exacerbation of endothelial cell (EC inflammatory activation and lung barrier dysfunction. Expression of GEF-H1, ICAM-1, VCAM-1, ECM proteins fibronectin and collagen, lysyl oxidase (LOX activity, interleukin-8 and activation of Rho signaling were analyzed in lung samples and pulmonary EC grown on soft (1.5 or 2.8 kPa and stiff (40 kPa substrates. LPS induced EC inflammatory activation accompanied by expression of ECM proteins, increase in LOX activity, and activation of Rho signaling. These effects were augmented in EC grown on stiff substrate. Stiffness-dependent enhancement of inflammation was associated with increased expression of Rho activator, GEF-H1. Inhibition of ECM crosslinking and stiffening by LOX suppression reduced EC inflammatory activation and GEF-H1 expression in response to LPS. In vivo, LOX inhibition attenuated LPS-induced expression of GEF-H1 and lung dysfunction. These findings present a novel mechanism of stiffness-dependent exacerbation of vascular inflammation and escalation of ALI via stimulation of GEF-H1-Rho pathway. This pathway represents a fundamental mechanism of positive feedback regulation of inflammation.

  19. Linalool inhibits cigarette smoke-induced lung inflammation by inhibiting NF-κB activation.

    Science.gov (United States)

    Ma, Jianqun; Xu, Hai; Wu, Jun; Qu, Changfa; Sun, Fenglin; Xu, Shidong

    2015-12-01

    Linalool, a natural compound that exists in the essential oils of several aromatic plants species, has been reported to have anti-inflammatory effects. However, the effects of linalool on cigarette smoke (CS)-induced acute lung inflammation have not been reported. In the present study, we investigated the protective effects of linalool on CS-induced acute lung inflammation in mice. Linalool was given i.p. to mice 2h before CS exposure daily for five consecutive days. The numbers of macrophages and neutrophils in bronchoalveolar lavage fluid (BALF) were measured. The production of TNF-α, IL-6, IL-1β, IL-8 and MCP-1 were detected by ELISA. The expression of NF-κB was detected by Western blotting. Our results showed that treatment of linalool significantly attenuated CS-induced lung inflammation, coupled with inhibited the infiltration of inflammatory cells and TNF-α, IL-6, IL-1β, IL-8 and MCP-1 production. Meanwhile, treatment of linalool inhibited CS-induced lung MPO activity and pathological changes. Furthermore, linalool suppressed CS-induced NF-κB activation in a dose-dependent manner. In conclusion, our results demonstrated that linalool protected against CS-induced lung inflammation through inhibiting CS-induced NF-κB activation.

  20. Progress on Clinical Study of Acupuncture Treatment for Chronic Pelvic Inflammation

    Institute of Scientific and Technical Information of China (English)

    ZHAO Wen-jie; HUANG Guo-qi

    2008-01-01

    @@ Chronic pelvic inflammation is mostly caused byincomplete treatment of acute pelvic inflammation orby transference from pathologic condition due to poorbody constitution, including chronic endometritis,chronic salpingo-oophoritis and chronic inflammationof connective tissue, and is a commonly andfrequently encountered disease in the gynecologydepartment. Due to long duration, intractablecondition and high recurrent rate, it is also acommonly encountered reason to induce heterotopicpregnancy, sterility, pelvic pain and pelvic adhesivediseases. In the investigative study on the domesticliterature about acupuncture treatment of chronicpelvic inflammation in the recent five years, theauthor hopes to summarize the information forreference in the clinical treatment and to point outsome issues existing in the current clinical study.

  1. Oxidative stress–induced mitochondrial dysfunction drives inflammation and airway smooth muscle remodeling in patients with chronic obstructive pulmonary disease

    Science.gov (United States)

    Wiegman, Coen H.; Michaeloudes, Charalambos; Haji, Gulammehdi; Narang, Priyanka; Clarke, Colin J.; Russell, Kirsty E.; Bao, Wuping; Pavlidis, Stelios; Barnes, Peter J.; Kanerva, Justin; Bittner, Anton; Rao, Navin; Murphy, Michael P.; Kirkham, Paul A.; Chung, Kian Fan; Adcock, Ian M.; Brightling, Christopher E.; Davies, Donna E.; Finch, Donna K.; Fisher, Andrew J.; Gaw, Alasdair; Knox, Alan J.; Mayer, Ruth J.; Polkey, Michael; Salmon, Michael; Singh, David

    2015-01-01

    Background Inflammation and oxidative stress play critical roles in patients with chronic obstructive pulmonary disease (COPD). Mitochondrial oxidative stress might be involved in driving the oxidative stress–induced pathology. Objective We sought to determine the effects of oxidative stress on mitochondrial function in the pathophysiology of airway inflammation in ozone-exposed mice and human airway smooth muscle (ASM) cells. Methods Mice were exposed to ozone, and lung inflammation, airway hyperresponsiveness (AHR), and mitochondrial function were determined. Human ASM cells were isolated from bronchial biopsy specimens from healthy subjects, smokers, and patients with COPD. Inflammation and mitochondrial function in mice and human ASM cells were measured with and without the presence of the mitochondria-targeted antioxidant MitoQ. Results Mice exposed to ozone, a source of oxidative stress, had lung inflammation and AHR associated with mitochondrial dysfunction and reflected by decreased mitochondrial membrane potential (ΔΨm), increased mitochondrial oxidative stress, and reduced mitochondrial complex I, III, and V expression. Reversal of mitochondrial dysfunction by the mitochondria-targeted antioxidant MitoQ reduced inflammation and AHR. ASM cells from patients with COPD have reduced ΔΨm, adenosine triphosphate content, complex expression, basal and maximum respiration levels, and respiratory reserve capacity compared with those from healthy control subjects, whereas mitochondrial reactive oxygen species (ROS) levels were increased. Healthy smokers were intermediate between healthy nonsmokers and patients with COPD. Hydrogen peroxide induced mitochondrial dysfunction in ASM cells from healthy subjects. MitoQ and Tiron inhibited TGF-β–induced ASM cell proliferation and CXCL8 release. Conclusions Mitochondrial dysfunction in patients with COPD is associated with excessive mitochondrial ROS levels, which contribute to enhanced inflammation and cell

  2. BIIL 284 reduces neutrophils numbers but increases P. aeruginosa bacteraemia and inflammation in mouse lungs

    Science.gov (United States)

    Döring, Gerd; Bragonzi, Alessandra; Paroni, Moira; Aktürk, Firdevs-Fatma; Cigana, Cristina; Schmidt, Annika; Gilpin, Deirdre; Heyder, Susanne; Born, Torsten; Smaczny, Christina; Kohlhäufl, Martin; Wagner, Thomas O. F.; Loebinger, Michael R.; Bilton, Diana; Tunney, Michael M.; Elborn, J. Stuart; Pier, Gerald B.; Konstan, Michael W.; Ulrich, Martina

    2014-01-01

    Background A clinical study to investigate the leukotriene B4 (LTB4)-receptor antagonist BIIL 284 in cystic fibrosis (CF) patients was prematurely terminated due to a significantly increased risk of adverse pulmonary events. We aimed to establish the effect of BIIL284 in models of Pseudomonas aeruginosa lung infection, thereby contributing to a better understanding of what could have led to adverse pulmonary events in CF patients. Methods P. aeruginosa DNA in the blood of CF patients during and after acute pulmonary exacerbations and in stable patients with non-CF bronchiectasis (NCFB) and healthy individuals was assessed by PCR. The effect of BIIL 284 treatment was tested in an agar beads murine model of Pseudomonas aeruginosa lung infection. Bacterial count and inflammation were evaluated in lung and other organs. Result Most CF patients (98%) and all patients with NCFB and healthy individuals had negative P. aeruginosa DNA in their blood. Similarly, the P. aeruginosa-infected mice showed bacterial counts in the lung but not blood or spleen. BIIL 284 treatment decreased pulmonary neutrophils and increased P. aeruginosa numbers in mouse lungs leading to significantly higher bacteremia rates and lung inflammation compared to placebo treated animals. Conclusions Decreased airway neutrophils induced lung proliferation and severe bacteraemia in a murine model of P. aeruginosa lung infection. These data suggest that caution should be taken when administering anti-inflammatory compounds to patients with bacterial infections. PMID:24183915

  3. In Vivo Imaging of Peripheral Benzodiazepine Receptors in Mouse Lungs: A Biomarker of Inflammation

    Directory of Open Access Journals (Sweden)

    Matthew J. Hardwick

    2005-10-01

    Full Text Available The ability to visualize the immune response with radioligands targeted to immune cells will enhance our understanding of cellular responses in inflammatory diseases. Peripheral benzodiazepine receptors (PBR are present in monocytes and neutrophils as well as in lung tissue. We used lipopolysaccharide (LPS as a model of inflammation to assess whether the PBR could be used as a noninvasive marker of inflammation in the lungs. Planar imaging of mice administrated 10 or 30 mg/kg LPS showed increased [123I]-(R-PK11195 radioactivity in the thorax 2 days after LPS treatment relative to control. Following imaging, lungs from control and LPS-treated mice were harvested for ex vivo gamma counting and showed significantly increased radioactivity above control levels. The specificity of the PBR response was determined using a blocking dose of nonradioactive PK11195 given 30 min prior to radiotracer injection. Static planar images of the thorax of nonradioactive PK11195 pretreated animals showed a significantly lower level of radiotracer accumulation in control and in LPS-treated animals (p < .05. These data show that LPS induces specific increases in PBR ligand binding in the lungs. We also used in vivo small-animal PET studies to demonstrate increased [11C]-(R-PK11195 accumulation in the lungs of LPS-treated mice. This study suggests that measuring PBR expression using in vivo imaging techniques may be a useful biomarker to image lung inflammation.

  4. Biomarkers in Exhaled Breath Condensate and Serum of Chronic Obstructive Pulmonary Disease and Non-Small-Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Mann Ying Lim

    2013-01-01

    Full Text Available Chronic obstructive pulmonary disease (COPD and lung cancer are leading causes of deaths worldwide which are associated with chronic inflammation and oxidative stress. Lung cancer, in particular, has a very high mortality rate due to the characteristically late diagnosis. As such, identification of novel biomarkers which allow for early diagnosis of these diseases could improve outcome and survival rate. Markers of oxidative stress in exhaled breath condensate (EBC are examples of potential diagnostic markers for both COPD and non-small-cell lung cancer (NSCLC. They may even be useful in monitoring treatment response. In the serum, S100A8, S100A9, and S100A12 of the S100 proteins are proinflammatory markers. They have been indicated in several inflammatory diseases and cancers including secondary metastasis into the lung. It is highly likely that they not only have the potential to be diagnostic biomarkers for NSCLC but also prognostic indicators and therapeutic targets.

  5. Pulmonary hypertension in chronic obstructive and interstitial lung diseases

    DEFF Research Database (Denmark)

    Andersen, Charlotte U; Mellemkjær, Søren; Nielsen-Kudsk, Jens Erik

    2013-01-01

    , and is considered one of the most frequent types of PH. However, the prevalence of PH among patients with COPD and ILD is not clear. The diagnosis of PH in chronic lung disease is often established by echocardiographic screening, but definitive diagnosis requires right heart catheterization, which...... is not systematically performed in clinical practice. Given the large number of patients with chronic lung disease, biomarkers to preclude or increase suspicion of PH are needed. NT-proBNP may be used as a rule-out test, but biomarkers with a high specificity for PH are still required. It is not known whether specific...... treatment with existent drugs effective in pulmonary arterial hypertension (PAH) is beneficial in lung disease related PH. Studies investigating existing PAH drugs in animal models of lung disease related PH have indicated a positive effect, and so have case reports and open label studies. However...

  6. Inhibition of Pyk2 blocks lung inflammation and injury in a mouse model of acute lung injury

    Directory of Open Access Journals (Sweden)

    Duan Yingli

    2012-01-01

    Full Text Available Abstract Background Proline-rich tyrosine kinase 2 (Pyk2 is essential in neutrophil degranulation and chemotaxis in vitro. However, its effect on the process of lung inflammation and edema formation during LPS induced acute lung injury (ALI remains unknown. The goal of the present study was to determine the effect of inhibiting Pyk2 on LPS-induced acute lung inflammation and injury in vivo. Methods C57BL6 mice were given either 10 mg/kg LPS or saline intratracheally. Inhibition of Pyk2 was effected by intraperitoneal administration TAT-Pyk2-CT 1 h before challenge. Bronchoalveolar lavage analysis of cell counts, lung histology and protein concentration in BAL were analyzed at 18 h after LPS treatment. KC and MIP-2 concentrations in BAL were measured by a mouse cytokine multiplex kit. The static lung compliance was determined by pressure-volume curve using a computer-controlled small animal ventilator. The extravasated Evans blue concentration in lung homogenate was determined spectrophotometrically. Results Intratracheal instillation of LPS induced significant neutrophil infiltration into the lung interstitium and alveolar space, which was attenuated by pre-treatment with TAT-Pyk2-CT. TAT-Pyk2-CT pretreatment also attenuated 1 myeloperoxidase content in lung tissues, 2 vascular leakage as measured by Evans blue dye extravasation in the lungs and the increase in protein concentration in bronchoalveolar lavage, and 3 the decrease in lung compliance. In each paradigm, treatment with control protein TAT-GFP had no blocking effect. By contrast, production of neutrophil chemokines MIP-2 and keratinocyte-derived chemokine in the bronchoalveolar lavage was not reduced by TAT-Pyk2-CT. Western blot analysis confirmed that tyrosine phosphorylation of Pyk2 in LPS-challenged lungs was reduced to control levels by TAT-Pyk2-CT pretreatment. Conclusions These results suggest that Pyk2 plays an important role in the development of acute lung injury in mice and

  7. Immunological priming requires regulatory T cells and IL-10-producing macrophages to accelerate resolution from severe lung inflammation.

    Science.gov (United States)

    Aggarwal, Neil R; Tsushima, Kenji; Eto, Yoshiki; Tripathi, Ashutosh; Mandke, Pooja; Mock, Jason R; Garibaldi, Brian T; Singer, Benjamin D; Sidhaye, Venkataramana K; Horton, Maureen R; King, Landon S; D'Alessio, Franco R

    2014-05-01

    Overwhelming lung inflammation frequently occurs following exposure to both direct infectious and noninfectious agents and is a leading cause of mortality worldwide. In that context, immunomodulatory strategies may be used to limit severity of impending organ damage. We sought to determine whether priming the lung by activating the immune system, or immunological priming, could accelerate resolution of severe lung inflammation. We assessed the importance of alveolar macrophages, regulatory T cells, and their potential interaction during immunological priming. We demonstrate that oropharyngeal delivery of low-dose LPS can immunologically prime the lung to augment alveolar macrophage production of IL-10 and enhance resolution of lung inflammation induced by a lethal dose of LPS or by Pseudomonas bacterial pneumonia. IL-10-deficient mice did not achieve priming and were unable to accelerate lung injury resolution. Depletion of lung macrophages or regulatory T cells during the priming response completely abrogated the positive effect of immunological priming on resolution of lung inflammation and significantly reduced alveolar macrophage IL-10 production. Finally, we demonstrated that oropharyngeal delivery of synthetic CpG-oligonucleotides elicited minimal lung inflammation compared with low-dose LPS but nonetheless primed the lung to accelerate resolution of lung injury following subsequent lethal LPS exposure. Immunological priming is a viable immunomodulatory strategy used to enhance resolution in an experimental acute lung injury model with the potential for therapeutic benefit against a wide array of injurious exposures.

  8. Lung Regeneration Therapy for Chronic Obstructive Pulmonary Disease

    OpenAIRE

    Oh, Dong Kyu; Kim, You-sun; Oh, Yeon-Mok

    2016-01-01

    Chronic obstructive pulmonary disease (COPD) is a critical condition with high morbidity and mortality. Although several medications are available, there are no definite treatments. However, recent advances in the understanding of stem and progenitor cells in the lung, and molecular changes during re-alveolization after pneumonectomy, have made it possible to envisage the regeneration of damaged lungs. With this background, numerous studies of stem cells and various stimulatory molecules have...

  9. Attenuation of LPS-induced lung inflammation by glucosamine in rats.

    Science.gov (United States)

    Chuang, Kun-Han; Peng, Yen-Chun; Chien, Han-Yun; Lu, Meng-Lun; Du, Hsin-I; Wu, Yuh-Lin

    2013-12-01

    Acute inflammation is often observed during acute lung injury (ALI) and acute respiratory distress syndrome. Glucosamine is known to act as an anti-inflammatory molecule. The effects of glucosamine on acute lung inflammation and its associated mechanisms remain unclear. The present study sought to address how glucosamine plays an anti-inflammatory role in acute lung inflammation in vivo and in vitro. Using the LPS intratracheal instillation-elicited rat lung inflammation model, we found that glucosamine attenuated pulmonary edema and polymorphonuclear leukocyte infiltration, as well as the production of TNF-α, IL-1β, cytokine-induced neutrophil chemoattractant (CINC)-1, macrophage inflammatory protein (MIP)-2, and nitric oxide (NO) in the bronchoalveolar lavage fluid (BALF) and in the cultured medium of BALF cells. The expression of TNF-α, IL-1β, IFN-γ, CINC-1, MIP-2, monocyte chemotactic protein-1, and inducible NO synthase (iNOS) in LPS-inflamed lung tissue was also suppressed by glucosamine. Using the rat alveolar epithelial cell line L2, we noted that the cytokine mixture (cytomix)-regulated production and mRNA expression of CINC-1 and MIP-2, NO production, the protein and mRNA expression of iNOS, iNOS mRNA stability, and iNOS promoter activity were all inhibited by glucosamine. Furthermore, glucosamine reduced LPS-mediated NF-κB signaling by decreasing IκB phosphorylation, p65 nuclear translocation, and NF-κB reporter activity. Overexpression of the p65 subunit restored the inhibitory action of glucosamine on cytomix-regulated NO production and iNOS expression. In conclusion, glucosamine appears to act as an anti-inflammatory molecule in LPS-induced lung inflammation, at least in part by targeting the NF-κB signaling pathway.

  10. Blood Biomarkers of Chronic Inflammation in Gulf War Illness.

    Directory of Open Access Journals (Sweden)

    Gerhard J Johnson

    Full Text Available More than twenty years following the end of the 1990-1991 Gulf War it is estimated that approximately 300,000 veterans of this conflict suffer from an unexplained chronic, multi-system disorder known as Gulf War Illness (GWI. The etiology of GWI may be exposure to chemical toxins, but it remains only partially defined, and its case definition is based only on symptoms. Objective criteria for the diagnosis of GWI are urgently needed for diagnosis and therapeutic research.This study was designed to determine if blood biomarkers could provide objective criteria to assist diagnosis of GWI.A surveillance study of 85 Gulf War Veteran volunteers identified from the Department of Veterans Affairs Minnesota Gulf War registry was performed. All subjects were deployed to the Gulf War. Fifty seven subjects had GWI defined by CDC criteria, and 28 did not have symptomatic criteria for a diagnosis of GWI. Statistical analyses were performed on peripheral blood counts and assays of 61 plasma proteins using the Mann-Whitney rank sum test to compare biomarker distributions and stepwise logistic regression to formulate a diagnostic model.Lymphocyte, monocyte, neutrophil, and platelet counts were higher in GWI subjects. Six serum proteins associated with inflammation were significantly different in GWI subjects. A diagnostic model of three biomarkers-lymphocytes, monocytes, and C reactive protein-had a predicted probability of 90% (CI 76-90% for diagnosing GWI when the probability of having GWI was above 70%.The results of the current study indicate that inflammation is a component of the pathobiology of GWI. Analysis of the data resulted in a model utilizing three readily measurable biomarkers that appears to significantly augment the symptom-based case definition of GWI. These new observations are highly relevant to the diagnosis of GWI, and to therapeutic trials.

  11. Effects of budesonide and N-acetylcysteine on acute lung hyperinflation, inflammation and injury in rats.

    Science.gov (United States)

    Jansson, Anne-Helene; Eriksson, Christina; Wang, Xiangdong

    2005-08-01

    Leukocyte activation and production of inflammatory mediators and reactive oxygen species are important in the pathogenesis of lipopolysaccharide (LPS)-induced acute lung injury. The present study investigated acute lung hyperinflation, edema, and lung inflammation 4 h after an intratracheal instillation of LPS (0.5, 2.5, 5, 10, 50, 100, 500, 1000, and 5000 microg/ml/kg). Effects of budesonide, an inhaled anti-inflammatory corticosteroids, and N-acetylcysteine (NAC), an antioxidant, were evaluated in Wistar rats receiving either low (2.5 microg/ml/kg) or high (50 microg/ml/kg) concentrations of LPS. This study demonstrates that LPS in a concentration-dependent pattern induces acute lung hyperinflation measured by excised lung gas volume (25-45% above control), lung injury indicated by increased lung weight (10-60%), and lung inflammation characterized by the infiltration of leukocytes (40-14000%) and neutrophils (80-17000%) and the production of cytokines (up to 2700%) and chemokines (up to 350%) in bronchoalveolar lavage fluid (BALF). Pretreatment with NAC partially prevented tumor necrosis factor alpha (TNFalpha) production induced by the low concentration of LPS, while pretreatment with budesonide totally prevented the increased production of TNFalpha, interleukin (IL)-1beta, IL-6, and monocyte chemoattractive protein (MCP)-1 after LPS challenge at both low and high concentrations. Budesonide failed to prevent BALF levels of macrophage inflammatory protein (MIP)-2 and cytokine-induced neutrophil chemoattractant 1 (GRO/CINC-1) as well as lung hyperinflation induced by both low and high concentrations of LPS. Pretreatment with budesonide totally prevented the formation of lung edema at the low concentration of LPS and had partial effects on acute lung injury and leukocyte influx at the high concentrations. Thus, our data indicate that therapeutic effects of budesonide and NAC are dependent upon the severity of the disease.

  12. Melatonin decreases the expression of inflammation and apoptosis markers in the lung of a senescence-accelerated mice model.

    Science.gov (United States)

    Puig, Ángela; Rancan, Lisa; Paredes, Sergio D; Carrasco, Adrián; Escames, Germaine; Vara, Elena; Tresguerres, Jesús A F

    2016-03-01

    Aging is associated with an increase in oxidative stress and inflammation. The aging lung is particularly affected since it is continuously exposed to environmental oxidants while antioxidant machinery weakens with age. Melatonin, a free radical scavenger, counteracts inflammation and apoptosis in healthy cells from several tissues. Its effects on the aging lung are, however, not yet fully understood. This study aimed to investigate the effect of chronic administration of melatonin on the expression of inflammation markers (TNF-α, IL-1β, NFκB2, HO-1) and apoptosis parameters (BAD, BAX, AIF) in the lung tissue of male senescence-accelerated prone mice (SAMP8). In addition, RNA oxidative damage, as the formation of 8-hydroxyguanosine (8-OHG), was also evaluated. Young and old animals, aged 2 and 10 months respectively, were divided into 4 groups: untreated young, untreated old, old mice treated with 1mg/kg/day melatonin, and old animals treated with 10mg/kg/day melatonin. Untreated young and old male senescence accelerated resistant mice (SAMR1) were used as controls. After 30 days of treatment, animals were sacrificed. Lungs were collected and immediately frozen in liquid nitrogen. mRNA and protein expressions were measured by RT-PCR and Western blotting, respectively. Levels of 8-OHG were quantified by ELISA. Mean values were analyzed using ANOVA. Old nontreated SAMP8 animals showed increased (p<0.05) mRNA and protein levels of TNF-α, IL-1β, NFκB2, and HO-1 compared to young mice and SAMR1 mice. Melatonin treatment with either dose reversed the aging-derived inflammation (p<0.05). BAD, BAX and AIF expressions also rose with aging, the effect being counteracted with melatonin (p<0.05). Aging also caused a significant elevation (p<0.05) in SAMP8 8-OHG values. This increase was not observed in animals treated with melatonin (p<0.05). In conclusion, melatonin treatment was able to modulate the inflammatory and apoptosis status of the aging lungs, exerting a

  13. Comparison of lung alveolar and tissue cells in silica-induced inflammation.

    Science.gov (United States)

    Sjöstrand, M; Absher, P M; Hemenway, D R; Trombley, L; Baldor, L C

    1991-01-01

    The silicon dioxide mineral, cristobalite (CRS) induces inflammation involving both alveolar cells and connective tissue compartments. In this study, we compared lung cells recovered by whole lung lavage and by digestion of lung tissue from rats at varying times after 8 days of exposure to aerosolized CRS. Control and exposed rats were examined between 2 and 36 wk after exposure. Lavaged cells were obtained by bronchoalveolar lavage with phosphate-buffered saline. Lung wall cells were prepared via collagenase digestion of lung tissue slices. Cells from lavage and lung wall were separated by Percoll density centrifugation. The three upper fractions, containing mostly macrophages, were cultured, and the conditioned medium was assayed for effect on lung fibroblast growth and for activity of the lysosomal enzyme, N-acetyl-beta-D-glucosaminidase. Results demonstrated that the cells separated from the lung walls exhibited different reaction patterns compared with those cells recovered by lavage. The lung wall cells exhibited a progressive increase in the number of macrophages and lymphocytes compared with a steady state in cells of the lung lavage. This increase in macrophages apparently was due to low density cells, which showed features of silica exposure. Secretion of a fibroblast-stimulating factor was consistently high by lung wall macrophages, whereas lung lavage macrophages showed inconsistent variations. The secretion of NAG was increased in lung lavage macrophages, but decreased at most observation times in lung wall macrophages. No differences were found among cells in the different density fractions regarding fibroblast stimulation and enzyme secretion.(ABSTRACT TRUNCATED AT 250 WORDS)

  14. Ginseng treatment reduces bacterial load and lung pathology in chronic Pseudomonas aeruginosa pneumonia in rats

    DEFF Research Database (Denmark)

    Song, Z; Johansen, H K; Faber, V

    1997-01-01

    the inflammation and antibody responses could be changed by treatment with the Chinese herbal medicine ginseng. An aqueous extract of ginseng was injected subcutaneously, and cortisone and saline were used as controls. Two weeks after challenge with P. aeruginosa, the ginseng-treated group showed a significantly...... resembling a TH1-like response. On the basis of these results it is suggested that ginseng may have the potential to be a promising natural medicine, in conjunction with other forms of treatment, for CF patients with chronic P. aeruginosa lung infection....

  15. Chronic inflammation-related DNA damage response: a driving force of gastric cardia carcinogenesis.

    Science.gov (United States)

    Lin, Runhua; Xiao, Dejun; Guo, Yi; Tian, Dongping; Yun, Hailong; Chen, Donglin; Su, Min

    2015-02-20

    Gastric cardia cancer (GCC) is a highly aggressive disease associated with chronic inflammation. To investigate the relationship between DNA damage response (DDR) and chronic inflammation, we collected 100 non-tumor gastric cardia specimens of Chaoshan littoral, a high-risk region for esophageal and gastric cardia cancer. A significantly higher proportion of severe chronic inflammation was found in dysplastic epithelia (80.9%) in comparison with that in non-dysplastic tissues (40.7%) (Pchronic inflammation degrees from normal to severe inflammation (Pchronic inflammation-related DNA damage response may be a driving force of gastric cardia carcinogenesis. Based on these findings, DNA damage response in non-malignant tissues may become a promising biomedical marker for predicting malignant transformation in the gastric cardia.

  16. Chronic Inflammation-Related HPV: A Driving Force Speeds Oropharyngeal Carcinogenesis.

    Science.gov (United States)

    Liu, Xin; Ma, Xiangrui; Lei, Zhengge; Feng, Hao; Wang, Shasha; Cen, Xiao; Gao, Shiyu; Jiang, Yaping; Jiang, Jian; Chen, Qianming; Tang, Yajie; Tang, Yaling; Liang, Xinhua

    2015-01-01

    Oropharyngeal squamous cell carcinoma (OPSCC) has been known to be a highly aggressive disease associated with human papilloma virus (HPV) infection. To investigate the relationship between HPV and chronic inflammation in oropharyngeal carcinogenesis, we collected 140 oral mucous fresh specimens including 50 OPSCC patients, 50 cancer in situ, 30 precancerous lesions, and 10 normal oral mucous. Our data demonstrated that there was a significantly higher proportion of severe chronic inflammation in dysplastic epithelia in comparison with that in normal tissues (Pchronic inflammation degrees from mild to severe inflammation (Pinflammation response and immune suppression in HPV-positive OPSCC. These indicated that persistent chronic inflammation-related HPV infection might drive oropharyngeal carcinogenesis and MDSCs might pay an important role during this process. Thus, a combination of HPV infection and inflammation expression might become a helpful biomedical marker to predict oropharyngeal carcinogenesis.

  17. Balance impairment and systemic inflammation in chronic obstructive pulmonary disease

    Science.gov (United States)

    Tudorache, Emanuela; Oancea, Cristian; Avram, Claudiu; Fira-Mladinescu, Ovidiu; Petrescu, Lucian; Timar, Bogdan

    2015-01-01

    Background/purpose Chronic obstructive pulmonary disease (COPD), especially in severe forms, is commonly associated with systemic inflammation and balance impairment. The aim of our study was to evaluate the impact on equilibrium of stable and exacerbation (acute exacerbation of COPD [AECOPD]) phases of COPD and to investigate if there is a connection between lower extremity muscle weakness and systemic inflammation. Methods We enrolled 41 patients with COPD (22 stable and 19 in AECOPD) and 20 healthy subjects (control group), having no significant differences regarding the anthropometric data. We analyzed the differences in balance tests scores: Falls Efficacy Scale-International (FES-I) questionnaire, Berg Balance Scale (BBS), Timed Up and Go (TUG) test, Single Leg Stance (SLS), 6-minute walking distance (6MWD), isometric knee extension (IKE) between these groups, and also the correlation between these scores and inflammatory biomarkers. Results The presence and severity of COPD was associated with significantly decreased score in IKE (P<0.001), 6MWD (P<0.001), SLS (P<0.001), and BBS (P<0.001), at the same time noting a significant increase in median TUG score across the studied groups (P<0.001). The AECOPD group vs stable group presented a significant increase in high-sensitive C-reactive protein (hs-CRP) levels (10.60 vs 4.01; P=0.003) and decrease in PaO2 (70.1 vs 59.1; P<0.001). We observed that both IKE scores were significantly and positive correlated with all the respiratory volumes. In both COPD groups, we observed that fibrinogen reversely and significantly correlated with the 6MWD, and FES-I questionnaire is correlated positively with TUG test. Hs-CRP correlated reversely with the walking test and SLS test, while correlating positively with TUG test and FES-I questionnaire. Conclusion According to this study, COPD in advanced and acute stages is associated with an increased history of falls, systemic inflammation, balance impairment, and lower extremity

  18. Collagenolytic Matrix Metalloproteinases in Chronic Obstructive Lung Disease and Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Woode, Denzel; Shiomi, Takayuki; D’Armiento, Jeanine, E-mail: jmd12@cumc.columbia.edu [Department of Anesthesiology, Columbia University, College of Physicians and Surgeons, New York, NY 10033 (United States)

    2015-02-05

    Chronic obstructive pulmonary disease (COPD) and lung cancer result in significant morbidity and mortality worldwide. In addition to the role of environmental smoke exposure in the development of both diseases, recent epidemiological studies suggests a connection between the development of COPD and lung cancer. Furthermore, individuals with concomitant COPD and cancer have a poor prognosis when compared with individuals with lung cancer alone. The modulation of molecular pathways activated during emphysema likely lead to an increased susceptibility to lung tumor growth and metastasis. This review summarizes what is known in the literature examining the molecular pathways affecting matrix metalloproteinases (MMPs) in this process as well as external factors such as smoke exposure that have an impact on tumor growth and metastasis. Increased expression of MMPs provides a unifying link between lung cancer and COPD.

  19. Collagenolytic Matrix Metalloproteinases in Chronic Obstructive Lung Disease and Cancer

    Directory of Open Access Journals (Sweden)

    Denzel Woode

    2015-02-01

    Full Text Available Chronic obstructive pulmonary disease (COPD and lung cancer result in significant morbidity and mortality worldwide. In addition to the role of environmental smoke exposure in the development of both diseases, recent epidemiological studies suggests a connection between the development of COPD and lung cancer. Furthermore, individuals with concomitant COPD and cancer have a poor prognosis when compared with individuals with lung cancer alone. The modulation of molecular pathways activated during emphysema likely lead to an increased susceptibility to lung tumor growth and metastasis. This review summarizes what is known in the literature examining the molecular pathways affecting matrix metalloproteinases (MMPs in this process as well as external factors such as smoke exposure that have an impact on tumor growth and metastasis. Increased expression of MMPs provides a unifying link between lung cancer and COPD.

  20. Interferon-beta attenuates lung inflammation following experimental subarachnoid hemorrhage

    NARCIS (Netherlands)

    Cobelens, P.M.; Tiebosch, I.A.C.W.; Dijkhuizen, R.M.; van der Meide, P.H.; Zwartbol, R.; Heijnen, C.J.; Kesecioglu, J.; van den Bergh, W.M.

    2010-01-01

    Introduction: Aneurysmal subarachnoid hemorrhage (SAH) affects relatively young people and carries a poor prognosis with a case fatality rate of 35%. One of the major systemic complications associated with SAH is acute lung injury (ALI) which occurs in up to one-third of the patients and is associat

  1. Overlap Chronic Placental Inflammation Is Associated with a Unique Gene Expression Pattern.

    Science.gov (United States)

    Raman, Kripa; Wang, Huaqing; Troncone, Michael J; Khan, Waliul I; Pare, Guillaume; Terry, Jefferson

    2015-01-01

    Breakdown of the balance between maternal pro- and anti-inflammatory pathways is thought to allow an anti-fetal maternal immune response that underlies development of chronic placental inflammation. Chronic placental inflammation is manifested by the influx of maternal inflammatory cells, including lymphocytes, histiocytes, and plasma cells, into the placental membranes, villi, and decidua. These infiltrates are recognized pathologically as chronic chorioamnionitis, chronic villitis of unknown etiology, and chronic deciduitis. Each of these histological entities is associated with adverse fetal outcomes including intrauterine growth restriction and preterm birth. Studying the gene expression patterns in chronically inflamed placenta, particularly when overlapping histologies are present, may lead to a better understanding of the underlying mechanism(s). Therefore, this study compared tissue with and without chronic placental inflammation, manifested as overlapping chronic chorioamnionitis, chronic villitis of unknown etiology, and chronic deciduitis. RNA expression profiling was conducted on formalin fixed, paraffin embedded placental tissue using Illumina microarrays. IGJ was the most significant differentially expressed gene identified and had increased expression in the inflamed tissue. In addition, IGLL1, CXCL13, CD27, CXCL9, ICOS, and KLRC1 had increased expression in the inflamed placental samples. These differentially expressed genes are associated with T follicular helper cells, natural killer cells, and B cells. Furthermore, these genes differ from those typically associated with the individual components of chronic placental inflammation, such as chronic villitis, suggesting that the inflammatory infiltrate associated with overlapping chronic chorioamnionitis, chronic villitis of unknown etiology, and chronic deciduitis differs is unique. To further explore and validate gene expression findings, we conducted immunohistochemical assessment of protein level

  2. P. aeruginosa in the paranasal sinuses and transplanted lungs have similar adaptive mutations as isolates from chronically infected CF lungs

    DEFF Research Database (Denmark)

    Ciofu, Oana; Johansen, Helle Krogh; Aanaes, Kasper;

    2013-01-01

    BACKGROUND: Pseudomonas aeruginosa cells are present as biofilms in the paranasal sinuses and the lungs of chronically infected cystic fibrosis (CF) patients. Since different inflammatory responses and selective antibiotic pressures are acting in the sinuses compared with the lungs, we compared......-lung transplantation isolates. RESULTS: The same phenotypes caused by similar mutations and similar gene expression profiles were found in mucoid and non-mucoid isolates from the paranasal sinuses and from the lungs before and after transplantation. CONCLUSION: Bilateral exchange of P. aeruginosa isolates between...... the paranasal sinuses and the lungs occurs in chronically infected patients and extensive sinus surgery before the lung transplantation might prevent infection of the new lung....

  3. Inhibition of Phosphodiesterase-4 during Pneumococcal Pneumonia Reduces Inflammation and Lung Injury in Mice.

    Science.gov (United States)

    Tavares, Luciana P; Garcia, Cristiana C; Vago, Juliana P; Queiroz-Junior, Celso M; Galvão, Izabela; David, Bruna A; Rachid, Milene A; Silva, Patrícia M R; Russo, Remo C; Teixeira, Mauro M; Sousa, Lirlândia P

    2016-07-01

    Pneumococcal pneumonia is a leading cause of mortality worldwide. The inflammatory response to bacteria is necessary to control infection, but it may also contribute to tissue damage. Phosphodiesterase-4 inhibitors, such as rolipram (ROL), effectively reduce inflammation. Here, we examined the impact of ROL in a pneumococcal pneumonia murine model. Mice were infected intranasally with 10(5)-10(6) CFU of Streptococcus pneumoniae, treated with ROL in a prophylactic or therapeutic schedule in combination, or not, with the antibiotic ceftriaxone. Inflammation and bacteria counts were assessed, and ex vivo phagocytosis assays were performed. ROL treatment during S. pneumoniae infection decreased neutrophil recruitment into lungs and airways and reduced lung injury. Prophylactic ROL treatment also decreased cytokine levels in the airways. Although modulation of inflammation by ROL ameliorated pneumonia, bacteria burden was not reduced. On the other hand, antibiotic therapy reduced bacteria without reducing neutrophil infiltration, cytokine level, or lung injury. Combined ROL and ceftriaxone treatment decreased lethality rates and was more efficient in reducing inflammation, by increasing proresolving protein annexin A1 (AnxA1) expression, and bacterial burden by enhancing phagocytosis. Lack of AnxA1 increased inflammation and lethality induced by pneumococcal infection. These data show that immunomodulatory effects of phosphodiesterase-4 inhibitors are useful during severe pneumococcal pneumonia and suggest their potential benefit as adjunctive therapy during infectious diseases.

  4. Role of glutathione in immunity and inflammation in the lung

    OpenAIRE

    2011-01-01

    Pietro GhezziBrighton and Sussex Medical School, Trafford Centre, Falmer, Brighton, UKAbstract: Reactive oxygen species and thiol antioxidants, including glutathione (GSH), regulate innate immunity at various levels. This review outlines the redox-sensitive steps of the cellular mechanisms implicated in inflammation and host defense against infection, and describes how GSH is not only important as an antioxidant but also as a signaling molecule. There is an extensive literature of the role of...

  5. Protease Inhibitors Extracted from Caesalpinia echinata Lam. Affect Kinin Release during Lung Inflammation

    Directory of Open Access Journals (Sweden)

    Ilana Cruz-Silva

    2016-01-01

    Full Text Available Inflammation is an essential process in many pulmonary diseases in which kinins are generated by protease action on kininogen, a phenomenon that is blocked by protease inhibitors. We evaluated kinin release in an in vivo lung inflammation model in rats, in the presence or absence of CeKI (C. echinata kallikrein inhibitor, a plasma kallikrein, cathepsin G, and proteinase-3 inhibitor, and rCeEI (recombinant C. echinata elastase inhibitor, which inhibits these proteases and also neutrophil elastase. Wistar rats were intravenously treated with buffer (negative control or inhibitors and, subsequently, lipopolysaccharide was injected into their lungs. Blood, bronchoalveolar lavage fluid (BALF, and lung tissue were collected. In plasma, kinin release was higher in the LPS-treated animals in comparison to CeKI or rCeEI groups. rCeEI-treated animals presented less kinin than CeKI-treated group. Our data suggest that kinins play a pivotal role in lung inflammation and may be generated by different enzymes; however, neutrophil elastase seems to be the most important in the lung tissue context. These results open perspectives for a better understanding of biological process where neutrophil enzymes participate and indicate these plant inhibitors and their recombinant correlates for therapeutic trials involving pulmonary diseases.

  6. Noncoding RNAs and chronic inflammation: Micro-managing the fire within.

    Science.gov (United States)

    Alexander, Margaret; O'Connell, Ryan M

    2015-09-01

    Inflammatory responses are essential for the clearance of pathogens and the repair of injured tissues; however, if these responses are not properly controlled chronic inflammation can occur. Chronic inflammation is now recognized as a contributing factor to many age-associated diseases including metabolic disorders, arthritis, neurodegeneration, and cardiovascular disease. Due to the connection between chronic inflammation and these diseases, it is essential to understand underlying mechanisms behind this process. In this review, factors that contribute to chronic inflammation are discussed. Further, we emphasize the emerging roles of microRNAs (miRNAs) and other noncoding RNAs (ncRNA) in regulating chronic inflammatory states, making them important future diagnostic markers and therapeutic targets.

  7. Rosiglitazone dampens pulmonary inflammation in a porcine model of acute lung injury.

    Science.gov (United States)

    Mirakaj, Valbona; Mutz, Christian; Vagts, Dierk; Henes, Janek; Haeberle, Helene A; Husung, Susanne; König, Tony; Nöldge-Schomburg, Gabriele; Rosenberger, Peter

    2014-08-01

    The hallmarks of acute lung injury (ALI) are the compromised alveolar-capillary barrier and the extravasation of leukocytes into the alveolar space. Given the fact that the peroxisome proliferator-activated receptor-γ agonist rosiglitazone holds significant anti-inflammatory properties, we aimed to evaluate whether rosiglitazone could dampen these hallmarks of local pulmonary inflammation in a porcine model of lung injury. For this purpose, we used a model of lipopolysaccharide (LPS, 50 μg/kg)-induced ALI. One hundred twenty minutes following the infusion of LPS, we started the exposure to rosiglitazone through inhalation or infusion. We found that intravenous rosiglitazone significantly controlled local pulmonary inflammation as determined through the expression of cytokines within the alveolar compartment. Furthermore, we found a significant reduction of the protein concentration and neutrophil activity within the alveolar space. In summary, we therefore conclude that the treatment with rosiglitazone might dampen local pulmonary inflammation during the initial stages of ALI.

  8. Chronic Exposure to Water-Pipe Smoke Induces Alveolar Enlargement, DNA Damage and Impairment of Lung Function

    Directory of Open Access Journals (Sweden)

    Abderrahim Nemmar

    2016-03-01

    Full Text Available Background/Aim: Epidemiological evidence indicates that water-pipe smoking (WPS adversely affects the respiratory system. However, the mechanisms underlying its effects are not well understood. Recent experimental studies reported the occurrence of lung inflammation and oxidative stress following acute and subacute exposure to WPS. Here, we wanted to verify the extent of inflammation and oxidative stress in mice chronically-exposed to WPS and to evaluate, for the first time, its effect on alveolar injury and DNA damage and their association with impairment of lung function. Methods: Mice were nose-only exposed to mainstream WPS (30 min/day; 5 days/week for 6 consecutive months. Control mice were exposed using the same protocol to atmospheric air only. At the end of the exposure period, several respiratory parameters were assessed. Results: In bronchoalveolar lavage fluid, WPS increased neutrophil and lymphocyte numbers, lactate dehydrogenase, myeloperoxidase and matrix metallopeptidase 9 activities, as well as several proinflammatory cytokines. In lung tissue, lipid peroxidation, reactive oxygen species, superoxide dismutase activity and reduced glutathione were all increased by WPS exposure. Along with oxidative stress, WPS exposure significantly increased lung DNA damage index. Histologically the lungs of WPS-exposed mice had foci of mixed inflammatory cells infiltration in the interalveolar interstitium which consisted of neutrophils, lymphocytes and macrophages. Interestingly, we found dilated alveolar spaces and alveolar ducts with damaged interalveolar septae, and impairment of lung function following WPS exposure. Conclusion: We show the persistence of lung inflammation and oxidative stress in mice chronically-exposed to WPS and demonstrate, for the first time, the occurrence of DNA damage and enlargement of alveolar spaces and ducts associated with impairment of lung function. Our findings provide novel mechanistic elucidation for the

  9. Chronic bronchitis sub-phenotype within COPD : inflammation in sputum and biopsies

    NARCIS (Netherlands)

    Snoeck-Stroband, J B; Lapperre, T S; Gosman, M M E; Boezen, H M; Timens, W; ten Hacken, N H T; Sont, J K; Sterk, P J; Hiemstra, P S

    2008-01-01

    The presence of chronic bronchitis predicts a more rapid decline of forced expiratory volume in one second (FEV(1)) in patients with chronic obstructive pulmonary disease (COPD). The hallmark of COPD is airway inflammation. It was hypothesised that COPD patients with chronic bronchitis are character

  10. Defective tryptophan catabolism underlies inflammation in mouse chronic granulomatous disease.

    Science.gov (United States)

    Romani, Luigina; Fallarino, Francesca; De Luca, Antonella; Montagnoli, Claudia; D'Angelo, Carmen; Zelante, Teresa; Vacca, Carmine; Bistoni, Francesco; Fioretti, Maria C; Grohmann, Ursula; Segal, Brahm H; Puccetti, Paolo

    2008-01-10

    Half a century ago, chronic granulomatous disease (CGD) was first described as a disease fatally affecting the ability of children to survive infections. Various milestone discoveries have since been made, from an insufficient ability of patients' leucocytes to kill microbes to the underlying genetic abnormalities. In this inherited disorder, phagocytes lack NADPH oxidase activity and do not generate reactive oxygen species, most notably superoxide anion, causing recurrent bacterial and fungal infections. Patients with CGD also suffer from chronic inflammatory conditions, most prominently granuloma formation in hollow viscera. The precise mechanisms of the increased microbial pathogenicity have been unclear, and more so the reasons for the exaggerated inflammatory response. Here we show that a superoxide-dependent step in tryptophan metabolism along the kynurenine pathway is blocked in CGD mice with lethal pulmonary aspergillosis, leading to unrestrained Vgamma1(+) gammadelta T-cell reactivity, dominant production of interleukin (IL)-17, defective regulatory T-cell activity and acute inflammatory lung injury. Although beneficial effects are induced by IL-17 neutralization or gammadelta T-cell contraction, complete cure and reversal of the hyperinflammatory phenotype are achieved by replacement therapy with a natural kynurenine distal to the blockade in the pathway. Effective therapy, which includes co-administration of recombinant interferon-gamma (IFN-gamma), restores production of downstream immunoactive metabolites and enables the emergence of regulatory Vgamma4(+) gammadelta and Foxp3(+) alphabeta T cells. Therefore, paradoxically, the lack of reactive oxygen species contributes to the hyperinflammatory phenotype associated with NADPH oxidase deficiencies, through a dysfunctional kynurenine pathway of tryptophan catabolism. Yet, this condition can be reverted by reactivating the pathway downstream of the superoxide-dependent step.

  11. Alveolar inflammation in cystic fibrosis

    DEFF Research Database (Denmark)

    Ulrich, Martina; Worlitzsch, Dieter; Viglio, Simona

    2010-01-01

    BACKGROUND: In infected lungs of the cystic fibrosis (CF) patients, opportunistic pathogens and mutated cystic fibrosis transmembrane conductance regulator protein (CFTR) contribute to chronic airway inflammation that is characterized by neutrophil/macrophage infiltration, cytokine release...... accumulated in type II alveolar epithelial cells, lacking CFTR. P. aeruginosa organisms were rarely present in inflamed alveoli. CONCLUSIONS: Chronic inflammation and remodeling is present in alveolar tissues of the CF lung and needs to be addressed by anti-inflammatory therapies....

  12. Sildenafil attenuates pulmonary inflammation and fibrin deposition, mortality and right ventricular hypertrophy in neonatal hyperoxic lung injury

    Directory of Open Access Journals (Sweden)

    Boersma Hester

    2009-04-01

    Full Text Available Abstract Background Phosphodiesterase-5 inhibition with sildenafil has been used to treat severe pulmonary hypertension and bronchopulmonary dysplasia (BPD, a chronic lung disease in very preterm infants who were mechanically ventilated for respiratory distress syndrome. Methods Sildenafil treatment was investigated in 2 models of experimental BPD: a lethal neonatal model, in which rat pups were continuously exposed to hyperoxia and treated daily with sildenafil (50–150 mg/kg body weight/day; injected subcutaneously and a neonatal lung injury-recovery model in which rat pups were exposed to hyperoxia for 9 days, followed by 9 days of recovery in room air and started sildenafil treatment on day 6 of hyperoxia exposure. Parameters investigated include survival, histopathology, fibrin deposition, alveolar vascular leakage, right ventricular hypertrophy, and differential mRNA expression in lung and heart tissue. Results Prophylactic treatment with an optimal dose of sildenafil (2 × 50 mg/kg/day significantly increased lung cGMP levels, prolonged median survival, reduced fibrin deposition, total protein content in bronchoalveolar lavage fluid, inflammation and septum thickness. Treatment with sildenafil partially corrected the differential mRNA expression of amphiregulin, plasminogen activator inhibitor-1, fibroblast growth factor receptor-4 and vascular endothelial growth factor receptor-2 in the lung and of brain and c-type natriuretic peptides and the natriuretic peptide receptors NPR-A, -B, and -C in the right ventricle. In the lethal and injury-recovery model we demonstrated improved alveolarization and angiogenesis by attenuating mean linear intercept and arteriolar wall thickness and increasing pulmonary blood vessel density, and right ventricular hypertrophy (RVH. Conclusion Sildenafil treatment, started simultaneously with exposure to hyperoxia after birth, prolongs survival, increases pulmonary cGMP levels, reduces the pulmonary

  13. Prior Lung Inflammation Impacts on Body Distribution of Gold Nanoparticles

    Directory of Open Access Journals (Sweden)

    Salik Hussain

    2013-01-01

    Full Text Available Introduction. Gold- (Au- based nanomaterials have shown promising potential in nanomedicine. The individual health status is an important determinant of the response to injury/exposure. It is, therefore, critical to evaluate exposure to Au-nanomaterials with varied preexisting health status. Objective. The goal of this research was to determine the extent of extrapulmonary translocation from healthy and inflamed lungs after pulmonary exposure to AuNPs. Male BALB/c mice received a single dose of 0.8 mg·kg−1 AuNPs (40 nm by oropharyngeal aspiration 24 hours after priming with LPS (0.4 mg·kg−1 through the same route. Metal contents were analyzed in different organs by inductively coupled plasma-mass spectrometry (ICP-MS. Results. Oropharyngeal aspiration resulted in high metal concentrations in lungs (P<0.001; however, these were much lower after pretreatment with LPS (P<0.05. Significantly higher concentrations of Au were detected in heart and thymus of healthy animals, whereas higher concentrations of Au NPs were observed in spleen in LPS-primed animals. Conclusions. The distribution of AuNPs from lungs to secondary target organs depends upon the health status, indicating that targeting of distinct secondary organs in nanomedicine needs to be considered carefully under health and inflammatory conditions.

  14. Alternatively spliced myeloid differentiation protein-2 inhibits TLR4-mediated lung inflammation.

    Science.gov (United States)

    Tumurkhuu, Gantsetseg; Dagvadorj, Jargalsaikhan; Jones, Heather D; Chen, Shuang; Shimada, Kenichi; Crother, Timothy R; Arditi, Moshe

    2015-02-15

    We previously identified a novel alternatively spliced isoform of human myeloid differentiation protein-2 (MD-2s) that competitively inhibits binding of MD-2 to TLR4 in vitro. In this study, we investigated the protective role of MD-2s in LPS-induced acute lung injury by delivering intratracheally an adenovirus construct that expressed MD-2s (Ad-MD-2s). After adenovirus-mediated gene transfer, MD-2s was strongly expressed in lung epithelial cells and readily detected in bronchoalveolar lavage fluid. Compared to adenovirus serotype 5 containing an empty vector lacking a transgene control mice, Ad-MD-2s delivery resulted in significantly less LPS-induced inflammation in the lungs, including less protein leakage, cell recruitment, and expression of proinflammatory cytokines and chemokines, such as IL-6, keratinocyte chemoattractant, and MIP-2. Bronchoalveolar lavage fluid from Ad-MD-2s mice transferred into lungs of naive mice before intratracheal LPS challenge diminished proinflammatory cytokine levels. As house dust mite (HDM) sensitization is dependent on TLR4 and HDM Der p 2, a structural homolog of MD-2, we also investigated the effect of MD-2s on HDM-induced allergic airway inflammation. Ad-MD-2s given before HDM sensitization significantly inhibited subsequent allergic airway inflammation after HDM challenge, including reductions in eosinophils, goblet cell hyperplasia, and IL-5 levels. Our study indicates that the alternatively spliced short isoform of human MD-2 could be a potential therapeutic candidate to treat human diseases induced or exacerbated by TLR4 signaling, such as Gram-negative bacterial endotoxin-induced lung injury and HDM-triggered allergic lung inflammation.

  15. Alternatively spliced myeloid differentiation protein-2 (MD-2s) protein inhibits TLR4-mediated lung inflammation

    Science.gov (United States)

    Tumurkhuu, Gantsetseg; Dagvadorj, Jargalsaikhan; Jones, Heather D.; Chen, Shuang; Shimada, Kenichi; Crother, Timothy R.; Arditi, Moshe

    2014-01-01

    We previously identified a novel alternatively spliced isoform of human myeloid differentiation protein-2 (MD-2s) that competitively inhibits binding of MD-2 to TLR4 in vitro. Here we investigated the protective role of MD-2s in LPS-induced acute lung injury by delivering intracheally (i.t.) an adenovirus construct that expressed MD-2s (Ad-MD-2s). After adenovirus-mediated gene transfer, MD-2s was strongly expressed in lung epithelial cells and readily detected in bronchoalveolar lavage fluid (BALF). Compared to Ad-EV control mice, Ad-MD-2s delivery resulted in significantly less LPS-induced inflammation in the lungs, including less protein leakage, cell recruitment, and expression of proinflammatory cytokines and chemokines, such as IL-6, KC, and MIP-2. BALF from Ad-MD-2s mice transferred into lungs of naive mice before i.t. LPS challenge diminished pro-inflammatory cytokine levels. As house dust mite (HDM) sensitization is dependent on TLR4 and HDM Der p 2, a structural homolog of MD-2, we also investigated the effect of MD-2s on house dust mite (HDM)-induced allergic airway inflammation. Ad-MD-2s given before HDM sensitization significantly inhibited subsequent allergic airway inflammation after HDM challenge, including reductions in eosinophils, goblet cell hyperplasia, and IL-5 levels. Our study indicates that the alternatively spliced short isoform of human MD-2 could be a potential therapeutic candidate to treat human diseases induced or exacerbated by TLR4 signaling, such as Gram-negative bacterial endotoxin-induced lung injury and house dust mite-triggered allergic lung inflammation. PMID:25576596

  16. Age-Related Macular Degeneration in the Aspect of Chronic Low-Grade Inflammation (Pathophysiological ParaInflammation

    Directory of Open Access Journals (Sweden)

    Małgorzata Nita

    2014-01-01

    Full Text Available The products of oxidative stress trigger chronic low-grade inflammation (pathophysiological parainflammation process in AMD patients. In early AMD, soft drusen contain many mediators of chronic low-grade inflammation such as C-reactive protein, adducts of the carboxyethylpyrrole protein, immunoglobulins, and acute phase molecules, as well as the complement-related proteins C3a, C5a, C5, C5b-9, CFH, CD35, and CD46. The complement system, mainly alternative pathway, mediates chronic autologous pathophysiological parainflammation in dry and exudative AMD, especially in the Y402H gene polymorphism, which causes hypofunction/lack of the protective complement factor H (CFH and facilitates chronic inflammation mediated by C-reactive protein (CRP. Microglial activation induces photoreceptor cells injury and leads to the development of dry AMD. Many autoantibodies (antibodies against alpha beta crystallin, alpha-actinin, amyloid, C1q, chondroitin, collagen I, collagen III, collagen IV, elastin, fibronectin, heparan sulfate, histone H2A, histone H2B, hyaluronic acid, laminin, proteoglycan, vimentin, vitronectin, and aldolase C and pyruvate kinase M2 and overexpression of Fcc receptors play role in immune-mediated inflammation in AMD patients and in animal model. Macrophages infiltration of retinal/choroidal interface acts as protective factor in early AMD (M2 phenotype macrophages; however it acts as proinflammatory and proangiogenic factor in advanced AMD (M1 and M2 phenotype macrophages.

  17. The Prevalence of Oral Inflammation Among Denture Wearing Patients with Chronic Obstructive Pulmonary Disease.

    Science.gov (United States)

    Przybyłowska, D; Rubinsztajn, R; Chazan, R; Swoboda-Kopeć, E; Kostrzewa-Janicka, J; Mierzwińska-Nastalska, E

    2015-01-01

    Oral inflammation is an important contributor to the etiology of chronic obstructive pulmonary disease, which can impact patient's health status. Previous studies indicate that people with poor oral health are at higher risk for nosocomial pneumonia. Denture wearing is one promoting factor in the development of mucosal infections. Colonization of the denture plaque by Gram-negative bacteria, Candida spp., or other respiratory pathogens, occurring locally, may be aspirated to the lungs. The studies showed that chronic obstructive pulmonary disease (COPD) patients treated with combinations of medicines with corticosteroids more frequently suffer from Candida-associated denture stomatitis. Treatment of oral candidiasis in patients with COPD constitutes a therapeutic problem. Therefore, it is essential to pay attention to the condition of oral mucosal membrane and denture hygiene habits. The guidelines for care and maintenance of dentures for COPD patients are presented in this paper. The majority of patients required improvement of their prosthetic and oral hygiene. Standard oral hygiene procedures in relation to dentures, conducted for prophylaxis of stomatitis complicated by mucosal infection among immunocompromised patients, are essential to maintain healthy oral tissues. The elimination of traumatic denture action in dental office, compliance with oral and denture hygiene, proper use and storage of prosthetic appliances in a dry environment outside the oral cavity can reduce susceptibility to infection. Proper attention to hygiene, including brushing and rinsing the mouth, may also help prevent denture stomatitis in these patients.

  18. Physical Activity Protects the Human Brain against Metabolic Stress Induced by a Postprandial and Chronic Inflammation

    Directory of Open Access Journals (Sweden)

    Leo Pruimboom

    2015-01-01

    Full Text Available In recent years, it has become clear that chronic systemic low-grade inflammation is at the root of many, if not all, typically Western diseases associated with the metabolic syndrome. While much focus has been given to sedentary lifestyle as a cause of chronic inflammation, it is less often appreciated that chronic inflammation may also promote a sedentary lifestyle, which in turn causes chronic inflammation. Given that even minor increases in chronic inflammation reduce brain volume in otherwise healthy individuals, the bidirectional relationship between inflammation and sedentary behaviour may explain why humans have lost brain volume in the last 30,000 years and also intelligence in the last 30 years. We review evidence that lack of physical activity induces chronic low-grade inflammation and, consequently, an energy conflict between the selfish immune system and the selfish brain. Although the notion that increased physical activity would improve health in the modern world is widespread, here we provide a novel perspective on this truism by providing evidence that recovery of normal human behaviour, such as spontaneous physical activity, would calm proinflammatory activity, thereby allocating more energy to the brain and other organs, and by doing so would improve human health.

  19. Physical Activity Protects the Human Brain against Metabolic Stress Induced by a Postprandial and Chronic Inflammation.

    Science.gov (United States)

    Pruimboom, Leo; Raison, Charles L; Muskiet, Frits A J

    2015-01-01

    In recent years, it has become clear that chronic systemic low-grade inflammation is at the root of many, if not all, typically Western diseases associated with the metabolic syndrome. While much focus has been given to sedentary lifestyle as a cause of chronic inflammation, it is less often appreciated that chronic inflammation may also promote a sedentary lifestyle, which in turn causes chronic inflammation. Given that even minor increases in chronic inflammation reduce brain volume in otherwise healthy individuals, the bidirectional relationship between inflammation and sedentary behaviour may explain why humans have lost brain volume in the last 30,000 years and also intelligence in the last 30 years. We review evidence that lack of physical activity induces chronic low-grade inflammation and, consequently, an energy conflict between the selfish immune system and the selfish brain. Although the notion that increased physical activity would improve health in the modern world is widespread, here we provide a novel perspective on this truism by providing evidence that recovery of normal human behaviour, such as spontaneous physical activity, would calm proinflammatory activity, thereby allocating more energy to the brain and other organs, and by doing so would improve human health.

  20. Chronic Pseudomonas aeruginosa lung infection in normal and athymic rats

    DEFF Research Database (Denmark)

    Johansen, H K; Espersen, F; Pedersen, S S

    1993-01-01

    We have compared a chronic lung infection with Pseudomonas aeruginosa embedded in alginate beads in normal and athymic rats with an acute infection with free live P. aeruginosa bacteria. The following parameters were observed and described: mortality, macroscopic and microscopic pathologic change...

  1. Lung Regeneration Therapy for Chronic Obstructive Pulmonary Disease.

    Science.gov (United States)

    Oh, Dong Kyu; Kim, You-Sun; Oh, Yeon-Mok

    2017-01-01

    Chronic obstructive pulmonary disease (COPD) is a critical condition with high morbidity and mortality. Although several medications are available, there are no definite treatments. However, recent advances in the understanding of stem and progenitor cells in the lung, and molecular changes during re-alveolization after pneumonectomy, have made it possible to envisage the regeneration of damaged lungs. With this background, numerous studies of stem cells and various stimulatory molecules have been undertaken, to try and regenerate destroyed lungs in animal models of COPD. Both the cell and drug therapies show promising results. However, in contrast to the successes in laboratories, no clinical trials have exhibited satisfactory efficacy, although they were generally safe and tolerable. In this article, we review the previous experimental and clinical trials, and summarize the recent advances in lung regeneration therapy for COPD. Furthermore, we discuss the current limitations and future perspectives of this emerging field.

  2. An Uncaria tomentosa (cat's claw) extract protects mice against ozone-induced lung inflammation.

    Science.gov (United States)

    Cisneros, Francisco J; Jayo, Manuel; Niedziela, Linda

    2005-01-15

    Ozone (O(3)) inhalation has been associated with respiratory tract inflammation and lung functional alterations. To characterize the O(3)-induced lung inflammation in mice, the effective dose and exposure time were determined. Total protein levels of bronchoalveolar lavage fluid (BALF), cytological smears, and lung histopathology and morphometry were used to assess and measure the degree of pulmonary inflammation in the mouse model. Ozone inhalation caused acute pneumonitis that was characterized by a high number of infiltrating neutrophils (PMNs) immediately after exposure and increased levels of protein in BALF in mice killed 8h after O(3) exposure. The anti-inflammatory properties of Uncaria tomentosa (UT) have been documented previously. To evaluate the anti-inflammatory effects of UT, male mice were given an UT extract for 8 days, exposed to O(3), and killed 0 or 8 h after O(3) exposure. When compared to untreated controls, UT-treated mice had significantly (p < 0.05) lower levels of protein in BALF, lower degree of epithelial necrosis, higher number of intact epithelial cell nuclei in bronchial wall, and decreased number of PMNs in the bronchiolar lumen. Therefore, UT extract appeared to prevent O(3)-induced respiratory inflammation in male mice.

  3. Chronic aspergillosis of the lungs: Unravelling the terminology and radiology

    Energy Technology Data Exchange (ETDEWEB)

    Desai, S.R.; Hedayati, V.; Patel, K. [King' s College Hospital NHS Foundation Trust, The Department of Radiology, King' s Health Partners, King' s College London, London (United Kingdom); Hansell, D.M. [The Royal Brompton and Harefield NHS Foundation Trust, Department of Radiology, London (United Kingdom)

    2015-10-15

    The propensity for Aspergillus spp. to cause lung disease has long been recognised but the satisfactory classification of these disorders is challenging. The problems caused by invasive disease in severely neutropenic patients, saprophytic infection of pre-existing fibrotic cavities and allergic reactions to Aspergillus are well documented. In contrast, a more chronic form of Aspergillus-related lung disease that has the potential to cause significant morbidity and mortality is under-reported. The symptoms of this form of Aspergillus infection may be non-specific and the radiologist may be the first to suspect a diagnosis of chronic pulmonary aspergillosis. The current review considers the classification conundrums in diseases caused by Aspergillus spp. and discusses the typical clinical and radiological profile of patients with chronic pulmonary aspergillosis. (orig.)

  4. Role of Oxidants in Interstitial Lung Diseases: Pneumoconioses, Constrictive Bronchiolitis, and Chronic Tropical Pulmonary Eosinophilia

    Directory of Open Access Journals (Sweden)

    William N. Rom

    2011-01-01

    Full Text Available Oxidants such as superoxide anion, hydrogen peroxide, and myeloperoxidase from activated inflammatory cells in the lower respiratory tract contribute to inflammation and injury. Etiologic agents include inorganic particulates such as asbestos, silica, or coal mine dust or mixtures of inorganic dust and combustion materials found in World Trade Center dust and smoke. These etiologic agents are phagocytosed by alveolar macrophages or bronchial epithelial cells and release chemotactic factors that recruit inflammatory cells to the lung. Chemotactic factors attract and activate neutrophils, eosinophils, mast cells, and lymphocytes and further activate macrophages to release more oxidants. Inorganic dusts target alveolar macrophages, World Trade Center dust targets bronchial epithelial cells, and eosinophils characterize tropical pulmonary eosinophilia (TPE caused by filarial organisms. The technique of bronchoalveolar lavage in humans has recovered alveolar macrophages (AMs in dust diseases and eosinophils in TPE that release increased amounts of oxidants in vitro. Interestingly, TPE has massively increased eosinophils in the acute form and after treatment can still have ongoing eosinophilic inflammation. A course of prednisone for one week can reduce the oxidant burden and attendant inflammation and may be a strategy to prevent chronic TPE and interstitial lung disease.

  5. Allergic airway inflammation decreases lung bacterial burden following acute Klebsiella pneumoniae infection in a neutrophil- and CCL8-dependent manner.

    Science.gov (United States)

    Dulek, Daniel E; Newcomb, Dawn C; Goleniewska, Kasia; Cephus, Jaqueline; Zhou, Weisong; Reiss, Sara; Toki, Shinji; Ye, Fei; Zaynagetdinov, Rinat; Sherrill, Taylor P; Blackwell, Timothy S; Moore, Martin L; Boyd, Kelli L; Kolls, Jay K; Peebles, R Stokes

    2014-09-01

    The Th17 cytokines interleukin-17A (IL-17A), IL-17F, and IL-22 are critical for the lung immune response to a variety of bacterial pathogens, including Klebsiella pneumoniae. Th2 cytokine expression in the airways is a characteristic feature of asthma and allergic airway inflammation. The Th2 cytokines IL-4 and IL-13 diminish ex vivo and in vivo IL-17A protein expression by Th17 cells. To determine the effect of IL-4 and IL-13 on IL-17-dependent lung immune responses to acute bacterial infection, we developed a combined model in which allergic airway inflammation and lung IL-4 and IL-13 expression were induced by ovalbumin sensitization and challenge prior to acute lung infection with K. pneumoniae. We hypothesized that preexisting allergic airway inflammation decreases lung IL-17A expression and airway neutrophil recruitment in response to acute K. pneumoniae infection and thereby increases the lung K. pneumoniae burden. As hypothesized, we found that allergic airway inflammation decreased the number of K. pneumoniae-induced airway neutrophils and lung IL-17A, IL-17F, and IL-22 expression. Despite the marked reduction in postinfection airway neutrophilia and lung expression of Th17 cytokines, allergic airway inflammation significantly decreased the lung K. pneumoniae burden and postinfection mortality. We showed that the decreased lung K. pneumoniae burden was independent of IL-4, IL-5, and IL-17A and partially dependent on IL-13 and STAT6. Additionally, we demonstrated that the decreased lung K. pneumoniae burden associated with allergic airway inflammation was both neutrophil and CCL8 dependent. These findings suggest a novel role for CCL8 in lung antibacterial immunity against K. pneumoniae and suggest new mechanisms of orchestrating lung antibacterial immunity.

  6. No Influence of Type 2 Diabetes on Chronic Inflammation and Oxidative Stress in Obese Patients

    Directory of Open Access Journals (Sweden)

    Adriana Florinela CĂTOI

    2014-03-01

    Full Text Available Obesity per se carries the features of chronic inflammation and oxidative stress that interrelate in a complex network and exert an important role in the onset of several complications such as type 2 diabetes, atherosclerosis and cardiovascular events. On the other hand, it seems that hyperglycemia per se as well as insulin resistance (independent of hyperglycemia, both induce increased oxidative stress. The aim of our study was to analyze proinflammatory and oxidative stress markers in obese patients with and without type 2 diabetes and to verify the hypothesis that type 2 diabetes associated with obesity would promote a higher chronic inflammation and oxidative stress state as compared to obesity alone. We found no differences between the two groups of patients regarding chronic inflammation and oxidative stress markers. Therefore we may conclude that there is no influence of type 2 diabetes on chronic inflammation and oxidative stress in obese patients.

  7. Regional pulmonary inflammation in an endotoxemic ovine acute lung injury model.

    Science.gov (United States)

    Fernandez-Bustamante, A; Easley, R B; Fuld, M; Mulreany, D; Chon, D; Lewis, J F; Simon, B A

    2012-08-15

    The regional distribution of inflammation during acute lung injury (ALI) is not well known. In an ovine ALI model we studied regional alveolar inflammation, surfactant composition, and CT-derived regional specific volume change (sVol) and specific compliance (sC). 18 ventilated adult sheep received IV lipopolysaccharide (LPS) until severe ALI was achieved. Blood and bronchoalveolar lavage (BAL) samples from apical and basal lung regions were obtained at baseline and injury time points, for analysis of cytokines (IL-6, IL-1β), BAL protein and surfactant composition. Whole lung CT images were obtained in 4 additional sheep. BAL protein and IL-1β were significantly higher in injured apical vs. basal regions. No significant regional surfactant composition changes were observed. Baseline sVol and sC were lower in apex vs. base; ALI enhanced this cranio-caudal difference, reaching statistical significance only for sC. This study suggests that apical lung regions show greater inflammation than basal ones during IV LPS-induced ALI which may relate to differences in regional mechanical events.

  8. Chronic hepatitis B infection presenting with chronic lymphocytic inflammation with pontine perivascular enhancement responsive to steroids (CLIPPERS): a case report

    OpenAIRE

    Weng, Ching-Fu; Chan, Ding-Cheng; Chen, Ya-Fang; Liu, Fei-Chih; Liou, Horng-Huei

    2015-01-01

    Introduction Chronic lymphocytic inflammation with pontine perivascular enhancement responsive to steroids is a brainstem disorder characterized by perivascular pathologic reaction with lymphocyte infiltration and leading to diplopia, facial palsy, dysarthria, and gait ataxia. It was thought to be an autoimmune disorder without distinct pathogenesis. Chronic hepatitis B virus infection has been proposed in correlation with autoimmune diseases, including central nervous system demyelinating di...

  9. Deficiency of phospholipase A2 receptor exacerbates ovalbumin-induced lung inflammation.

    Science.gov (United States)

    Tamaru, Shun; Mishina, Hideto; Watanabe, Yosuke; Watanabe, Kazuhiro; Fujioka, Daisuke; Takahashi, Soichiro; Suzuki, Koji; Nakamura, Takamitsu; Obata, Jun-Ei; Kawabata, Kenichi; Yokota, Yasunori; Murakami, Makoto; Hanasaki, Kohji; Kugiyama, Kiyotaka

    2013-08-01

    Secretory phospholipase A2 (sPLA2) plays a critical role in the genesis of lung inflammation through proinflammatory eicosanoids. A previous in vitro experiment showed a possible role of cell surface receptor for sPLA2 (PLA2R) in the clearance of extracellular sPLA2. PLA2R and groups IB and X sPLA2 are expressed in the lung. This study examined a pathogenic role of PLA2R in airway inflammation using PLA2R-deficient (PLA2R(-/-)) mice. Airway inflammation was induced by immunosensitization with OVA. Compared with wild-type (PLA2R(+/+)) mice, PLA2R(-/-) mice had a significantly greater infiltration of inflammatory cells around the airways, higher levels of groups IB and X sPLA2, eicosanoids, and Th2 cytokines, and higher numbers of eosinophils and neutrophils in bronchoalveolar lavage fluid after OVA treatment. In PLA2R(-/-) mice, intratracheally instilled [(125)I]-labeled sPLA2-IB was cleared much more slowly from bronchoalveolar lavage fluid compared with PLA2R(+/+) mice. The degradation of the instilled [(125)I]-labeled sPLA2-IB, as assessed by trichloroacetic acid-soluble radioactivity in bronchoalveolar lavage fluid after instillation, was lower in PLA2R(-/-) mice than in PLA2R(+/+) mice. In conclusion, PLA2R deficiency increased sPLA2-IB and -X levels in the lung through their impaired clearance from the lung, leading to exaggeration of lung inflammation induced by OVA treatment in a murine model.

  10. Effect of Obesity and Chronic Inflammation on TRAIL-Based Immunotherapy for Advanced Breast Cancer

    Science.gov (United States)

    2015-04-01

    Award Number: W81XWH-11-1-0271 TITLE: “Effect of obesity and chronic inflammation on TRAIL-based immunotherapy for advanced breast cancer...JAN 2015 4. TITLE AND SUBTITLE Effect of Obesity and Chronic Inflammation on TRAIL-Based Immunotherapy for Advanced Breast Cancer 5a. CONTRACT NUMBER...arise in cancer patients, rendering antitumor immune responses ineffective. In addition, epidemiological studies have demonstrated that obese

  11. Ab interno laser sclerostomy in aphakic patients with glaucoma and chronic inflammation.

    Science.gov (United States)

    Wilson, R P; Javitt, J C

    1990-08-15

    Five patients with aphakia, glaucoma, and chronic inflammation were treated with ab interno sclerostomy by using the continuous wave Nd:YAG laser focused through a sapphire probe. After a follow-up period of 24 to 28 months, three of five patients had good intraocular pressure control. The sclerostomy failed in one patient when it was occluded by vitreous. The second failure was attributed to closure of the sclerostomy because of chronic intraocular inflammation.

  12. Genomic instability in quartz dust exposed rat lungs: Is inflammation responsible?

    Energy Technology Data Exchange (ETDEWEB)

    Albrecht, C; Schins, R P F [Institut fuer Umweltmedizinische Forschung (IUF) at the Heinrich Heine University Duesseldorf (Germany); Demircigil, G Cakmak; Coskun, Erdem [Gazi University, Faculty of Pharmacy, Department of Toxicology, Ankara (Turkey); Schooten, F J van [Nutrition and Toxicology Research Institute Maastricht (NUTRIM), Department of Health Risk Analysis and Toxicology, University of Maastricht (Netherlands); Borm, P J A [Centre of Expertise in Life Sciences (Cel), Hogeschool Zuyd, Heerlen (Netherlands); Knaapen, A M, E-mail: catrin.albrecht@uni-duesseldorf.d

    2009-02-01

    Exposure to quartz dusts has been associated with lung cancer and fibrosis. Although the responsible mechanisms are not completely understood, progressive inflammation with associated induction of persistent oxidative stress has been discussed as a key event for these diseases. Previously we have evaluated the kinetics of pulmonary inflammation in the rat model following a single intratracheal instillation of 2mg DQ12 quartz, either in its native form or upon its surface modification with polyvinylpyridine-N-oxide or aluminium lactate. This model has been applied now to evaluate the role of inflammation in the kinetics of induction of DNA damage and response at 3, 7, 28, and 90 days after treatment. Bronchoalveolar lavage (BAL) cell counts and differentials as well as BAL fluid myeloperoxidase activity were used as markers of inflammation. Whole lung homogenate was investigated to determine the induction of the oxidative and pre-mutagenic DNA lesion 8-hydroxy-2-deoxy-guanosine (8-OHdG) by HPLC/ECD, while mRNA and protein expression of oxidative stress and DNA damage response genes including hemeoxygenase-1 (HO-1) and apurinic/apyrimidinic endonuclease (APE/Ref-1) were evaluated using Western blotting and real time PCR. Isolated lung epithelial cells from the treated rats were used for DNA strand breakage analysis using the alkaline comet assay as well as for micronucleus scoring in May-Gruenwald-Giemsa stained cytospin preparations. In the rats that were treated with quartz, no increased 8-OHdG levels were observed, despite the presence of a marked and persistent inflammation. However, DNA strand breakage in the lung epithelial cells of the quartz treated rats was significantly enhanced at 3 days, but not at 28 days. Moreover, significantly enhanced micronucleus frequencies were observed for all four time points investigated. In the animals that were treated with the PVNO modified quartz, micronuclei scores did not differ from controls, while in those treated with

  13. Allergic Lung Inflammation Aggravates Angiotensin II-Induced Abdominal Aortic Aneurysms in Mice

    DEFF Research Database (Denmark)

    Liu, Cong-Lin; Wang, Yi; Liao, Mengyang

    2016-01-01

    OBJECTIVE: Asthma and abdominal aortic aneurysms (AAA) both involve inflammation. Patients with asthma have an increased risk of developing AAA or experiencing aortic rupture. This study tests the development of one disease on the progression of the other. APPROACH AND RESULTS: Ovalbumin...... sensitization and challenge in mice led to the development of allergic lung inflammation (ALI). Subcutaneous infusion of angiotensin II into mice produced AAA. Simultaneous production of ALI in AAA mice doubled abdominal aortic diameter and increased macrophage and mast cell content, arterial media smooth...

  14. Potential contribution of Type I lung epithelial cells to chronic neonatal lung disease

    Directory of Open Access Journals (Sweden)

    Henry J. Rozycki

    2014-05-01

    Full Text Available The alveolar surface is covered by large flat Type I cells (alveolar epithelial cells 1, AEC1. The normal physiological function of AEC1s involves gas exchange, based on their location in approximation to the capillary endothelium and their thinness, and in ion and water flux, as shown by the presence of solute active transport proteins, water channels, and impermeable tight junctions between cells. With the recent ability to produce relatively pure cultures of AEC1 cells, new functions have been described. These may be relevant to lung injury, repair and the abnormal development that characterizes bronchopulmonary dysplasia. To hypothesize a potential role for AEC1 in the development of lung injury and abnormal repair/development in premature lungs, evidence is presented for their presence in the developing lung, how their source may not be the Type II cell (AEC2 as has been assumed for forty years, and how the cell can be damaged by same type of stressors as those which lead to bronchopulmonary dysplasia (BPD. Recent work shows that the cells are part of the innate immune response, capable of producing pro-inflammatory mediators, which could contribute to the increase in inflammation seen in early bronchopulmonary dysplasia. One of the receptors found exclusively on AEC1 cells in the lung, called RAGE, may also have a role in increased inflammation, and to alveolar simplification. While the current evidence for AEC1 involvement in BPD is circumstantial and limited at present, the accumulating data supports several hypotheses and questions regarding potential differences in the behavior of AEC1 cells from newborn and premature lung compared with the adult lung.

  15. Role of interleukin 18 in acute lung inflammation induced by gut ischemia reperfusion

    Institute of Scientific and Technical Information of China (English)

    Yong-Jie Yang; Yun Shen; Song-Hua Chen; Xi-Rui Ge

    2005-01-01

    AIM: To study the changes of endogenous interleukin 18 (IL-18) levels and evaluate the role of IL-18 on lung injury following gut ischemia/reperfusion.METHODS: A superior mesenteric artery occlusion model was selected for this research. The mice were randomly divided into four groups: Sham operation (sham), ischemia (0.5 h) followed by different times of reperfusion (I/R),and I/R pretreated with exogenous IL-18 (I/R+IL-18) or IL-18 neutralizing antibody (I/R+IL-18Ab) 15 min before ischemia. Serum IL-18 levels were detected by Western blot and ELISA, and the levels of IL-18 in lung tissue were evaluated by immunohistochemical staining. For the study of pulmonary inflammation, the lung myeloperoxidase (MPO) contents and morphological changes were evaluated.RESULTS: Gut ischemia/reperfusion induced rapid increase of serum IL-18 levels, peaked at 1 h after reperfusion and then declined. The levels of IL-18 in lung tissue were gradually enhanced as the progress of reperfusion.Compared with I/R group, exogenous administration of IL-18 (I/R+IL-18) further remarkably enhanced the pulmonary MPO activity and inflammatory cell infiltration,and in I/R+IL-18Ab group, the content of MPO were significantly reduced and lung inflammation was also decreased.CONCLUSION: Gut ischemia/reperfusion induces the increase of IL-18 expression, which may make IL-18 act as an important proinflammatory cytokine and contribute to gut ischemia/reperfusion-induced lung inflammation.

  16. Impact of interleukin-6 on hypoxia-induced pulmonary hypertension and lung inflammation in mice

    Directory of Open Access Journals (Sweden)

    Izziki Mohamed

    2009-01-01

    Full Text Available Abstract Background Inflammation may contribute to the pathogenesis of various forms of pulmonary hypertension (PH. Recent studies in patients with idiopathic PH or PH associated with underlying diseases suggest a role for interleukin-6 (IL-6. Methods To determine whether endogenous IL-6 contributes to mediate hypoxic PH and lung inflammation, we studied IL-6-deficient (IL-6-/- and wild-type (IL-6+/+ mice exposed to hypoxia for 2 weeks. Results Right ventricular systolic pressure, right ventricle hypertrophy, and the number and media thickness of muscular pulmonary vessels were decreased in IL-6-/- mice compared to wild-type controls after 2 weeks' hypoxia, although the pressure response to acute hypoxia was similar in IL-6+/+ and IL-6-/- mice. Hypoxia exposure of IL-6+/+ mice led to marked increases in IL-6 mRNA and protein levels within the first week, with positive IL-6 immunostaining in the pulmonary vessel walls. Lung IL-6 receptor and gp 130 (the IL-6 signal transducer mRNA levels increased after 1 and 2 weeks' hypoxia. In vitro studies of cultured human pulmonary-artery smooth-muscle-cells (PA-SMCs and microvascular endothelial cells revealed prominent synthesis of IL-6 by PA-SMCs, with further stimulation by hypoxia. IL-6 also markedly stimulated PA-SMC migration without affecting proliferation. Hypoxic IL-6-/- mice showed less inflammatory cell recruitment in the lungs, compared to hypoxic wild-type mice, as assessed by lung protein levels and immunostaining for the specific macrophage marker F4/80, with no difference in lung expression of adhesion molecules or cytokines. Conclusion These data suggest that IL-6 may be actively involved in hypoxia-induced lung inflammation and pulmonary vascular remodeling in mice.

  17. Pulmonary hypertension in chronic interstitial lung diseases

    Directory of Open Access Journals (Sweden)

    Antonella Caminati

    2013-09-01

    Full Text Available Pulmonary hypertension (PH is a common complication of interstitial lung diseases (ILDs, particularly in idiopathic pulmonary fibrosis and ILD associated with connective tissue disease. However, other lung diseases, such as combined pulmonary fibrosis and emphysema syndrome, pulmonary Langerhans cell histiocytosis, and lymphangioleiomyomatosis, may also include PH in their clinical manifestations. In all of these diseases, PH is associated with reduced exercise capacity and poor prognosis. The degree of PH in ILDs is typically mild-to-moderate. However, some of these patients may develop a disproportionate increase in PH that cannot be justified solely by hypoxia and parenchymal injury: this condition has been termed “out-of-proportion” PH. The pathogenesis of PH in these diseases is various, incompletely understood and may be multifactorial. The clinical suspicion (i.e. increased dyspnoea, low diffusion capacity and echocardiographic assessment are the first steps towards proper diagnosis of PH; however, right heart catheterisation remains the current gold standard for diagnosis of PH. At present, no specific therapies have been approved for the treatment of PH in patients with ILDs.

  18. Pharmacological characterisation of anti-inflammatory compounds in acute and chronic mouse models of cigarette smoke-induced inflammation

    Directory of Open Access Journals (Sweden)

    Mok Joanie

    2010-09-01

    Full Text Available Abstract Background Candidate compounds being developed to treat chronic obstructive pulmonary disease are typically assessed using either acute or chronic mouse smoking models; however, in both systems compounds have almost always been administered prophylactically. Our aim was to determine whether the prophylactic effects of reference anti-inflammatory compounds in acute mouse smoking models reflected their therapeutic effects in (more clinically relevant chronic systems. Methods To do this, we started by examining the type of inflammatory cell infiltrate which occurred after acute (3 days or chronic (12 weeks cigarette smoke exposure (CSE using female, C57BL/6 mice (n = 7-10. To compare the effects of anti-inflammatory compounds in these models, mice were exposed to either 3 days of CSE concomitant with compound dosing or 14 weeks of CSE with dosing beginning after week 12. Budesonide (1 mg kg-1; i.n., q.d., roflumilast (3 mg kg-1; p.o., q.d. and fluvastatin (2 mg kg-1; p.o., b.i.d. were dosed 1 h before (and 5 h after for fluvastatin CSE. These dose levels were selected because they have previously been shown to be efficacious in mouse models of lung inflammation. Bronchoalveolar lavage fluid (BALF leukocyte number was the primary endpoint in both models as this is also a primary endpoint in early clinical studies. Results To start, we confirmed that the inflammatory phenotypes were different after acute (3 days versus chronic (12 weeks CSE. The inflammation in the acute systems was predominantly neutrophilic, while in the more chronic CSE systems BALF neutrophils (PMNs, macrophage and lymphocyte numbers were all increased (p Conclusions These results demonstrate that the acute, prophylactic systems can be used to identify compounds with therapeutic potential, but may not predict a compound's efficacy in chronic smoke exposure models.

  19. Global analysis of gene expression in pulmonary fibrosis reveals distinct programs regulating lung inflammation and fibrosis

    Science.gov (United States)

    Kaminski, Naftali; Allard, John D.; Pittet, Jean F.; Zuo, Fengrong; Griffiths, Mark J. D.; Morris, David; Huang, Xiaozhu; Sheppard, Dean; Heller, Renu A.

    2000-02-01

    The molecular mechanisms of pulmonary fibrosis are poorly understood. We have used oligonucleotide arrays to analyze the gene expression programs that underlie pulmonary fibrosis in response to bleomycin, a drug that causes lung inflammation and fibrosis, in two strains of susceptible mice (129 and C57BL/6). We then compared the gene expression patterns in these mice with 129 mice carrying a null mutation in the epithelial-restricted integrin 6 subunit (6/-), which develop inflammation but are protected from pulmonary fibrosis. Cluster analysis identified two distinct groups of genes involved in the inflammatory and fibrotic responses. Analysis of gene expression at multiple time points after bleomycin administration revealed sequential induction of subsets of genes that characterize each response. The availability of this comprehensive data set should accelerate the development of more effective strategies for intervention at the various stages in the development of fibrotic diseases of the lungs and other organs.

  20. Heterozygosity in the glutathione synthesis gene Gclm increases sensitivity to diesel exhaust particulate induced lung inflammation in mice

    Science.gov (United States)

    Weldy, Chad S.; White, Collin C.; Wilkerson, Hui-Wen; Larson, Timothy V.; Stewart, James A.; Gill, Sean E.; Parks, William C.; Kavanagh, Terrance J.

    2012-01-01

    Context Inhalation of ambient fine particulate matter (PM2.5) is associated with adverse respiratory and cardiovascular effects. A major fraction of PM2.5 in urban settings is diesel exhaust particulate (DEP), and DEP-induced lung inflammation is likely a critical event mediating many of its adverse health effects. Oxidative stress has been proposed to be an important factor in PM2.5-induced lung inflammation, and the balance between pro- and antioxidants is an important regulator of this inflammation. An important intracellular antioxidant is the tripeptide thiol glutathione (GSH). Glutamate cysteine ligase (GCL) carries out the first step in GSH synthesis. In humans, relatively common genetic polymorphisms in both the catalytic (Gclc) and modifier (Gclm) subunits of GCL have been associated with increased risk for lung and cardiovascular diseases. Objective This study was aimed to determine the effects of Gclm expression on lung inflammation following DEP exposure in mice. Materials and methods We exposed Gclm wild type, heterozygous, and null mice to DEP via intranasal instillation and assessed lung inflammation as determined by neutrophils and inflammatory cytokines in lung lavage, inflammatory cytokine mRNA levels in lung tissue, as well as total lung GSH, Gclc, and Gclm protein levels. Results The Gclm heterozygosity was associated with a significant increase in DEP-induced lung inflammation when compared to that of wild type mice. Discussion and conclusion This finding indicates that GSH synthesis can mediate DEP-induced lung inflammation and suggests that polymorphisms in Gclm may be an important factor in determining adverse health outcomes in humans following inhalation of PM2.5. PMID:21967497

  1. Soluble CD59 is a Novel Biomarker for the Prediction of Obstructive Chronic Lung Allograft Dysfunction After Lung Transplantation.

    Science.gov (United States)

    Budding, Kevin; van de Graaf, Eduard A; Kardol-Hoefnagel, Tineke; Kwakkel-van Erp, Johanna M; Luijk, Bart D; Oudijk, Erik-Jan D; van Kessel, Diana A; Grutters, Jan C; Hack, C Erik; Otten, Henderikus G

    2016-05-24

    CD59 is a complement regulatory protein that inhibits membrane attack complex formation. A soluble form of CD59 (sCD59) is present in various body fluids and is associated with cellular damage after acute myocardial infarction. Lung transplantation (LTx) is the final treatment for end-stage lung diseases, however overall survival is hampered by chronic lung allograft dysfunction development, which presents itself obstructively as the bronchiolitis obliterans syndrome (BOS). We hypothesized that, due to cellular damage and activation during chronic inflammation, sCD59 serum levels can be used as biomarker preceding BOS development. We analyzed sCD59 serum concentrations in 90 LTx patients, of whom 20 developed BOS. We observed that BOS patients exhibited higher sCD59 serum concentrations at the time of diagnosis compared to clinically matched non-BOS patients (p = 0.018). Furthermore, sCD59 titers were elevated at 6 months post-LTx (p = 0.0020), when patients had no BOS-related symptoms. Survival-analysis showed that LTx patients with sCD59 titers ≥400 pg/ml 6 months post-LTx have a significant (p < 0.0001) lower chance of BOS-free survival than patients with titers ≤400 pg/ml, 32% vs. 80% respectively, which was confirmed by multivariate analysis (hazard ratio 6.2, p < 0.0001). We propose that circulating sCD59 levels constitute a novel biomarker to identify patients at risk for BOS following LTx.

  2. The triterpenoid CDDO-Me inhibits bleomycin-induced lung inflammation and fibrosis.

    Directory of Open Access Journals (Sweden)

    Ajit A Kulkarni

    Full Text Available Pulmonary Fibrosis (PF is a devastating progressive disease in which normal lung structure and function is compromised by scarring. Lung fibrosis can be caused by thoracic radiation, injury from chemotherapy and systemic diseases such as rheumatoid arthritis that involve inflammatory responses. CDDO-Me (Methyl 2-cyano-3,12-dioxooleana-1,9(11dien-28-oate, Bardoxolone methyl is a novel triterpenoid with anti-fibrotic and anti-inflammatory properties as shown by our in vitro studies. Based on this evidence, we hypothesized that CDDO-Me would reduce lung inflammation, fibrosis and lung function impairment in a bleomycin model of lung injury and fibrosis. To test this hypothesis, mice received bleomycin via oropharyngeal aspiration (OA on day zero and CDDO-Me during the inflammatory phase from days -1 to 9 every other day. Bronchoalveolar lavage fluid (BALF and lung tissue were harvested on day 7 to evaluate inflammation, while fibrosis and lung function were evaluated on day 21. On day 7, CDDO-Me reduced total BALF protein by 50%, alveolar macrophage infiltration by 40%, neutrophil infiltration by 90% (p≤0.01, inhibited production of the inflammatory cytokines KC and IL-6 by over 90% (p≤0.001, and excess production of the pro-fibrotic cytokine TGFβ by 50%. CDDO-Me also inhibited α-smooth muscle actin and fibronectin mRNA by 50% (p≤0.05. On day 21, CDDO-Me treatment reduced histological fibrosis, collagen deposition and αSMA production. Lung function was significantly improved at day 21 by treatment with CDDO-Me, as demonstrated by respiratory rate and dynamic compliance. These new findings reveal that CDDO-Me exhibits potent anti-fibrotic and anti-inflammatory properties in vivo. CDDO-Me is a potential new class of drugs to arrest inflammation and ameliorate fibrosis in patients who are predisposed to lung injury and fibrosis incited by cancer treatments (e.g. chemotherapy and radiation and by systemic autoimmune diseases.

  3. Effects of exercise training on chronic inflammation in obesity : current evidence and potential mechanisms.

    Science.gov (United States)

    You, Tongjian; Arsenis, Nicole C; Disanzo, Beth L; Lamonte, Michael J

    2013-04-01

    Chronic, systemic inflammation is an independent risk factor for several major clinical diseases. In obesity, circulating levels of inflammatory markers are elevated, possibly due to increased production of pro-inflammatory cytokines from several tissues/cells, including macrophages within adipose tissue, vascular endothelial cells and peripheral blood mononuclear cells. Recent evidence supports that adipose tissue hypoxia may be an important mechanism through which enlarged adipose tissue elicits local tissue inflammation and further contributes to systemic inflammation. Current evidence supports that exercise training, such as aerobic and resistance exercise, reduces chronic inflammation, especially in obese individuals with high levels of inflammatory biomarkers undergoing a longer-term intervention. Several studies have reported that this effect is independent of the exercise-induced weight loss. There are several mechanisms through which exercise training reduces chronic inflammation, including its effect on muscle tissue to generate muscle-derived, anti-inflammatory 'myokine', its effect on adipose tissue to improve hypoxia and reduce local adipose tissue inflammation, its effect on endothelial cells to reduce leukocyte adhesion and cytokine production systemically, and its effect on the immune system to lower the number of pro-inflammatory cells and reduce pro-inflammatory cytokine production per cell. Of these potential mechanisms, the effect of exercise training on adipose tissue oxygenation is worth further investigation, as it is very likely that exercise training stimulates adipose tissue angiogenesis and increases blood flow, thereby reducing hypoxia and the associated chronic inflammation in adipose tissue of obese individuals.

  4. Carbon nanotubes induce inflammation but decrease the production of reactive oxygen species in lung.

    Science.gov (United States)

    Crouzier, D; Follot, S; Gentilhomme, E; Flahaut, E; Arnaud, R; Dabouis, V; Castellarin, C; Debouzy, J C

    2010-06-04

    With the rapid spread of carbon nanotubes (CNTs) applications, the respiratory toxicity of these compounds has attracted the attention of many scientists. Several studies have reported that after lung administration, CNTs could induce granuloma, fibrosis, or inflammation. By comparison with the mechanisms involved with other toxic particles such as asbestos, this effect could be attributed to an increase of oxidative stress. The aim of the present work was to test this hypothesis in vivo. Mice were intranasally instilled with 1.5mg/kg of double walled carbon nanotubes (DWCNTs). Six, 24, or 48h after administration, inflammation and localisation of DWCNTs in lungs were microscopically observed. Local oxidative perturbations were investigated using ESR spin trapping experiments, and systemic inflammation was assessed by measuring the plasma concentration of cytokines TNF-alpha, IL-1alpha, IL-1beta, IL-6, IGF-1, Leptin, G-CSF, and VEGF. Examination of lungs and the elevation of proinflammatory cytokines in the plasma (Leptin and IL-6 at 6h) confirmed the induction of an inflammatory reaction. This inflammatory reaction was accompanied by a decrease in the local oxidative stress. This effect could be attributed to the scavenger capability of pure CNTs.

  5. Susceptibility to quantum dot induced lung inflammation differs widely among the Collaborative Cross founder mouse strains

    Science.gov (United States)

    Scoville, David K.; White, Collin C.; Botta, Dianne; McConnachie, Lisa A.; Zadworny, Megan E.; Schmuck, Stefanie C.; Hu, Xiaoge; Gao, Xiaohu; Yu, Jianbo; Dills, Russell L.; Sheppard, Lianne; Delaney, Martha A.; Griffith, William C.; Beyer, Richard P.; Zangar, Richard C.; Pounds, Joel G.; Faustman, Elaine M.; Kavanagh, Terrance J.

    2015-01-01

    Quantum dots (QDs) are engineered semiconductor nanoparticles with unique physicochemical properties that make them potentially useful in clinical, research and industrial settings. However, a growing body of evidence indicates that like other engineered nanomaterials, QDs have the potential to be respiratory hazards, especially in the context of the manufacture of QDs and products containing them, as well as exposures to consumers using these products. The overall goal of this study was to investigate the role of mouse strain in determining susceptibility to QD-induced pulmonary inflammation and toxicity. Male mice from 8 genetically diverse inbred strains (the Collaborative Cross founder strains) were exposed to CdSe–ZnS core–shell QDs stabilized with an amphiphilic polymer. QD treatment resulted in significant increases in the percentage of neutrophils and levels of cytokines present in bronchoalveolar lavage fluid (BALF) obtained from NOD/ShiLtJ and NZO/HlLtJ mice relative to their saline (Sal) treated controls. Cadmium measurements in lung tissue indicated strain-dependent differences in disposition of QDs in the lung. Total glutathione levels in lung tissue were significantly correlated with percent neutrophils in BALF as well as with lung tissue Cd levels. Our findings indicate that QD-induced acute lung inflammation is mouse strain dependent, that it is heritable, and that the choice of mouse strain is an important consideration in planning QD toxicity studies. These data also suggest that formal genetic analyses using additional strains or recombinant inbred strains from these mice could be useful for discovering potential QD-induced inflammation susceptibility loci. PMID:26476918

  6. R-roscovitine reduces lung inflammation induced by lipoteichoic acid and Streptococcus pneumoniae.

    Science.gov (United States)

    Hoogendijk, Arie J; Roelofs, Joris J T H; Duitman, Janwillem; van Lieshout, Miriam H P; Blok, Dana C; van der Poll, Tom; Wieland, Catharina W

    2012-09-25

    Bacterial pneumonia remains associated with high morbidity and mortality. The gram-positive pathogen Streptococcus pneumoniae is the most common cause of community-acquired pneumonia. Lipoteichoic acid (LTA) is an important proinflammatory component of the gram-positive bacterial cell wall. R-roscovitine, a purine analog, is a potent cyclin-dependent kinase (CDK)-1, -2, -5 and -7 inhibitor that has the ability to inhibit the cell cycle and to induce polymorphonuclear cell (PMN) apoptosis. We sought to investigate the effect of R-roscovitine on LTA-induced activation of cell lines with relevance for lung inflammation in vitro and on lung inflammation elicited by either LTA or viable S. pneumoniae in vivo. In vitro R-roscovitine enhanced apoptosis in PMNs and reduced tumor necrosis factor (TNF)-α and keratinocyte chemoattractant (KC) production in MH-S (alveolar macrophage) and MLE-12/MLE-15 (respiratory epithelial) cell lines. In vivo R-roscovitine treatment reduced PMN numbers in bronchoalveolar lavage fluid during LTA-induced lung inflammation; this effect was reversed by inhibiting apoptosis. Postponed treatment with R-roscovitine (24 and 72 h) diminished PMN numbers in lung tissue during gram-positive pneumonia; this step was associated with a transient increase in pulmonary bacterial loads. R-roscovitine inhibits proinflammatory responses induced by the gram-positive stimuli LTA and S. pneumoniae. R-roscovitine reduces PMN numbers in lungs upon LTA administration by enhancing apoptosis. The reduction in PMN numbers caused by R-roscovitine during S. pneumoniae pneumonia may hamper antibacterial defense.

  7. Substance P at the Nexus of Mind and Body in Chronic Inflammation and Affective Disorders

    Science.gov (United States)

    Rosenkranz, Melissa A.

    2007-01-01

    For decades, research has demonstrated that chronic diseases characterized by dysregulation of inflammation are particularly susceptible to exacerbation by stress and emotion. Likewise, rates of depression and anxiety are overrepresented in individuals suffering from chronic inflammatory disease. In recent years, substance P has been implicated in…

  8. Chronic inflammation as a promotor of mutagenesis in essential thrombocythemia, polycythemia vera and myelofibrosis. A human inflammation model for cancer development?

    DEFF Research Database (Denmark)

    Hasselbalch, Hans K

    2013-01-01

    The Philadelphia-negative chronic myeloproliferative neoplasms (MPNs) are acquired stem cell neoplasms, in which a stem cell lesion induces an autonomous proliferative advantage. In addition to the JAK2V617 mutation several other mutations have been described. Recently chronic inflammation has been......-risk microenvironment for induction of mutations due to the persistent inflammation-induced oxidative damage to DNA in hematopoietic cells. Alterations in the epigenome induced by the chronic inflammatory drive may likely elicit a "epigenetic switch" promoting persistent inflammation. The perspectives of chronic...

  9. Emphysema is associated with increased inflammation in lungs of atherosclerosis-prone mice by cigarette smoke: implications in comorbidities of COPD

    Directory of Open Access Journals (Sweden)

    Yao Hongwei

    2010-07-01

    Full Text Available Abstract Background Chronic obstructive pulmonary disease is associated with numerous vascular effects including endothelial dysfunction, arterial stiffness and atherogenesis. It is also known that a decline in lung function is associated with increased cardiovascular comorbidity in smokers. The mechanism of this cardiopulmonary dual risk by cigarette smoke (CS is not known. We studied the molecular mechanisms involved in development of emphysema in atherosclerosis-prone apolipoprotein E-deficient (ApoE-/- mice in response to CS exposure. Methods Adult male and female wild-type (WT mice of genetic background C57BL/6J and ApoE-/- mice were exposed to CS, and lung inflammatory responses, oxidative stress (lipid peroxidation products, mechanical properties as well as airspace enlargement were assessed. Results and Discussion The lungs of ApoE-/- mice showed augmented inflammatory response and increased oxidative stress with development of distal airspace enlargement which was accompanied with decline in lung function. Interestingly, the levels and activities of matrix metalloproteinases (MMP-9 and MMP-12 were increased, whereas the level of eNOS was decreased in lungs of CS-exposed ApoE-/- mice as compared to air-exposed ApoE-/- mice or CS-exposed WT mice. Conclusion These findings suggest that CS causes premature emphysema and a decline of lung function in mice susceptible to cardiovascular abnormalities via abnormal lung inflammation, increased oxidative stress and alterations in levels of MMPs and eNOS.

  10. Lung transplantation: chronic allograft dysfunction and establishing immune tolerance.

    Science.gov (United States)

    Gracon, Adam S A; Wilkes, David S

    2014-08-01

    Despite significant medical advances since the advent of lung transplantation, improvements in long-term survival have been largely unrealized. Chronic lung allograft dysfunction, in particular obliterative bronchiolitis, is the primary limiting factor. The predominant etiology of obliterative bronchiolitis involves the recipient's innate and adaptive immune response to the transplanted allograft. Current therapeutic strategies have failed to provide a definitive treatment paradigm to improve long-term outcomes. Inducing immune tolerance is an emerging therapeutic strategy that abrogates allograft rejection, avoids immunosuppression, and improves long-term graft function. The aim of this review is to discuss the key immunologic components of obliterative bronchiolitis, describe the state of establishing immune tolerance in transplantation, and highlight those strategies being evaluated in lung transplantation.

  11. CC chemokine receptors and chronic inflammation--therapeutic opportunities and pharmacological challenges.

    Science.gov (United States)

    White, Gemma E; Iqbal, Asif J; Greaves, David R

    2013-01-01

    Chemokines are a family of low molecular weight proteins with an essential role in leukocyte trafficking during both homeostasis and inflammation. The CC class of chemokines consists of at least 28 members (CCL1-28) that signal through 10 known chemokine receptors (CCR1-10). CC chemokine receptors are expressed predominantly by T cells and monocyte-macrophages, cell types associated predominantly with chronic inflammation occurring over weeks or years. Chronic inflammatory diseases including rheumatoid arthritis, atherosclerosis, and metabolic syndrome are characterized by continued leukocyte infiltration into the inflammatory site, driven in large part by excessive chemokine production. Over years or decades, persistent inflammation may lead to loss of tissue architecture and function, causing severe disability or, in the case of atherosclerosis, fatal outcomes such as myocardial infarction or stroke. Despite the existence of several clinical strategies for targeting chronic inflammation, these diseases remain significant causes of morbidity and mortality globally, with a concomitant economic impact. Thus, the development of novel therapeutic agents for the treatment of chronic inflammatory disease continues to be a priority. In this review we introduce CC chemokine receptors as critical mediators of chronic inflammatory responses and explore their potential role as pharmacological targets. We discuss functions of individual CC chemokine receptors based on in vitro pharmacological data as well as transgenic animal studies. Focusing on three key forms of chronic inflammation--rheumatoid arthritis, atherosclerosis, and metabolic syndrome--we describe the pathologic function of CC chemokine receptors and their possible relevance as therapeutic targets.

  12. Bacterial sinusitis can be a focus for initial lung colonisation and chronic lung infection in patients with cystic fibrosis

    DEFF Research Database (Denmark)

    Aanæs, Kasper

    2013-01-01

    A major purpose of treating patients with cystic fibrosis (CF) is to prevent or delay chronic lung infections with CF-pathogenic Gram-negative bacteria. In the intermittent stage, bacteria can usually be eradicated from the lungs with antibiotics, but following eradication, the next lung colonisa...... therapy, e.g. saline and antibiotic irrigations....

  13. Lung function tests in neonates and infants with chronic lung disease: lung and chest-wall mechanics.

    Science.gov (United States)

    Gappa, Monika; Pillow, J Jane; Allen, Julian; Mayer, Oscar; Stocks, Janet

    2006-04-01

    This is the fifth paper in a review series that summarizes available data and critically discusses the potential role of lung function testing in infants and young children with acute neonatal respiratory disorders and chronic lung disease of infancy (CLDI). This review focuses on respiratory mechanics, including chest-wall and tissue mechanics, obtained in the intensive care setting and in infants during unassisted breathing. Following orientation of the reader to the subject area, we focused comments on areas of enquiry proposed in the introductory paper to this series. The quality of the published literature is reviewed critically with respect to relevant methods, equipment and study design, limitations and strengths of different techniques, and availability and appropriateness of reference data. Recommendations to guide future investigations in this field are provided. Numerous different methods have been used to assess respiratory mechanics with the aims of describing pulmonary status in preterm infants and assessing the effect of therapeutic interventions such as surfactant treatment, antenatal or postnatal steroids, or bronchodilator treatment. Interpretation of many of these studies is limited because lung volume was not measured simultaneously. In addition, populations are not comparable, and the number of infants studied has generally been small. Nevertheless, results appear to support the pathophysiological concept that immaturity of the lung leads to impaired lung function, which may improve with growth and development, irrespective of the diagnosis of chronic lung disease. To fully understand the impact of immaturity on the developing lung, it is unlikely that a single parameter such as respiratory compliance or resistance will accurately describe underlying changes. Assessment of respiratory mechanics will have to be supplemented by assessment of lung volume and airway function. New methods such as the low-frequency forced oscillation technique, which

  14. High mobility group box 1 protein as a late-acting mediator of acute lung inflammation.

    Science.gov (United States)

    Lutz, Waldemar; Stetkiewicz, Jan

    2004-01-01

    Acute inflammatory lung injury is often a delayed complication of critical illness and is associated with increased mortality. High mobility group box 1 (HMGB1) protein, in addition to its role as a transcriptional regulator factor, has been identified as a late mediator of endotoxin lethality and might be also involved in the development and progression of acute lung injury. HMGB1 protein itself can cause an acute inflammatory response manifested by increased production of proinflammatory cytokines and neutrophil accumulation. The delayed kinetics of HMGB1 protein release indicate that this protein is a distal mediator of acute inflamatory lung injury. Anti-HMGB1 protein antibodies attenuated endotoxin-induced lung injury, but not the early release of TNF-alpha and IL-1beta, indicating that HMGB1 protein is a late mediator of endotoxin-induced acute lung injury. HMGB1 protein is not released by apoptotic cells but is passively released by necrotic or damaged somatic and immune cells and it functions as a major stimulus of necrosis-induced inflammation. HMGB1 protein is also released by activated monocytes/macrophages and induces delayed and biphasic release of proinflammatory mediators from these cells. HMGB1 protein failed to stimulate cytokines release in lymphocytes, indicating that cellular stimulation is specific. We would like to suggest that HMGB1 protein may be also a primary mediator of the inflammatory responses to lung cells injury caused by toxic environmental chemicals.

  15. Activated protein C protection from lung inflammation in endotoxin-induced injury.

    Science.gov (United States)

    Pirrone, Federica; Mazzola, Silvia M; Pastore, Camilla; Paltrinieri, Saverio; Sironi, Giuseppe; Riccaboni, Pietro; Viola, Manuela; Passi, Alberto; Clement, Maria G; Albertini, Mariangela

    2008-11-01

    We studied the protection of recombinant human activated protein C (rhAPC) in endotoxin-induced lung inflammation and injury and whether this effect is correlated with modulation of lung matrix metalloproteinase (MMP) activity. We randomly assigned 12 Large White pigs to receive intravenous Escher-ichia coli lipopolysaccharide (LPS; 40 mu g/kg/hr), rhAPC (24 mu g/ kg/hr), or both. We monitored respiratory mechanics and function, cell counts, and cytokine concentrations in bron-choalveolar lavage fluid (BALF). Lung samples were collected for the zymography of MMP-2 and MMP-9 activities and for histology. In septic pigs, rhAPC decreased proMMP-9 release as well as MMP-9 activation, and increased proMMP-2 presence without any evident activation compared with specimens that were given LPS alone. In addition, lung injury in rhAPC-treated animals was significantly attenuated, as shown by higher respiratory compliance, delayed increase in tumor necrosis alfa and interleukin-1beta as well as neutrophil recruitment in the BALF, reduced lung edema, and histologic changes. In conclusion, rhAPC is beneficial in acute lung injury, and the protection may depend, at least in part, on modulation of MMP-2/9 activity.

  16. Linalool attenuates lung inflammation induced by Pasteurella multocida via activating Nrf-2 signaling pathway.

    Science.gov (United States)

    Wu, Qianchao; Yu, Lijun; Qiu, Jiaming; Shen, Bingyu; Wang, Di; Soromou, Lanan Wassy; Feng, Haihua

    2014-08-01

    Pasteurellosis caused by Pasteurella multocida manifest often as respiratory infection in farmed small ruminants. Although the incidence of pasteurellosis due to P. multocida mainly takes the form of pneumonia, there is limited information on host factors that play a role in disease pathogenesis in the milieu of host-pathogen interactions. Nuclear factor-erythroid 2 related factor 2 (Nrf-2), a critical regulator for various inflammatory and immune responses by controlling oxidative stress, may play an important role in the processes of inflammation induced by P. multocida. In this study, linalool, a natural compound of the essential oils in several aromatic plant species, elevated nuclear Nrf-2 protein translocation in the A549 lung cell line and in vivo. The P. multocida-induced pro-inflammatory cytokines expression was abrogated by Nrf-2 siRNA. Postponed treatment with linalool decreased lung neutrophil accumulation and enhanced clearance of P. multocida. Furthermore, linalool significantly increased the expression of antioxidant enzymes regulated by Nrf-2 and diminished lung tissue levels of several pro-inflammatory cytokines, including tumor necrosis factor α (TNF-α) and interleukin (IL)-6. In addition, animals treated with linalool had a marked improvement in survival. These findings have uncovered that linalool acts as a novel Nrf-2 activator for a novel therapeutic strategy in pathogen-mediated lung inflammation.

  17. Neutrophilic airways inflammation in lung cancer: the role of exhaled LTB-4 and IL-8

    Directory of Open Access Journals (Sweden)

    Orlando Silvio

    2011-06-01

    Full Text Available Abstract Background Recent advances in lung cancer biology presuppose its inflammatory origin. In this regard, LTB-4 and IL-8 are recognized to play a crucial role in neutrophil recruitment into airways during lung cancer. Notwithstanding the intriguing hypothesis, the exact role of neutrophilic inflammation in tumour biology remains complex and not completely known. The aim of this study was to give our contribution in this field by investigating LTB-4 and IL-8 in the breath condensate of NSCLC patients and verifying their role in cancer development and progression. Method We enrolled 50 NSCLC patients and 35 controls. LTB-4 and IL-8 concentrations were measured in the breath condensate and the blood of all the subjects under study using EIA kits. Thirty NSCLC patients and ten controls underwent induced sputum collection and analysis. Results LTB-4 and IL-8 resulted higher in breath condensate and the blood of NSCLC patients compared to controls. Significantly higher concentrations were found as the cancer stages progressed. A positive correlation was observed between exhaled IL-8 and LTB-4 and the percentage of neutrophils in the induced sputum. Conclusion The high concentrations of exhaled LTB-4 and IL-8 showed the presence of a neutrophilic inflammation in the airways of NSCLC patients and gave a further support to the inflammatory signalling in lung cancer. These exhaled proteins could represent a suitable non-invasive marker in the diagnosis and monitoring of lung cancer.

  18. Treatment with the hyaluronic Acid synthesis inhibitor 4-methylumbelliferone suppresses LPS-induced lung inflammation.

    Science.gov (United States)

    McKallip, Robert J; Ban, Hao; Uchakina, Olga N

    2015-01-01

    Exposure to bacterial endotoxins, such as lipopolysaccharide (LPS), can lead to the induction of acute lung injury/acute respiratory distress syndrome (ALI/ARDS). To date, there are no known effective treatments for LPS-induced inflammation. In the current study, we investigated the potential use of the hyaluronic acid (HA) synthesis inhibitor 4-methylumbelliferone (4-MU) on LPS-induced acute lung inflammation. Culturing LPS-activated immune cells with 4-MU led to reduced proliferation, reduced cytokine production, and an increase in apoptosis when compared to untreated cells. Treatment of mice with 4-MU led to protection from LPS-induced lung injury. Specifically, 4-MU treatment led to a reduction in LPS-induced hyaluronic acid synthase (HAS) messenger RNA (mRNA) levels, reduction in lung permeability, and reduction in proinflammatory cytokine production. Taken together, these results suggest that use of 4-MU to target HA production may be an effective treatment for the inflammatory response following exposure to LPS.

  19. Systemic Inflammation and Lung Function Impairment in Morbidly Obese Subjects with the Metabolic Syndrome

    Directory of Open Access Journals (Sweden)

    Astrid van Huisstede

    2013-01-01

    Full Text Available Background. Obesity and asthma are associated. There is a relationship between lung function impairment and the metabolic syndrome. Whether this relationship also exists in the morbidly obese patients is still unknown. Hypothesis. Low-grade systemic inflammation associated with the metabolic syndrome causes inflammation in the lungs and, hence, lung function impairment. Methods. This is cross-sectional study of morbidly obese patients undergoing preoperative screening for bariatric surgery. Metabolic syndrome was assessed according to the revised NCEP-ATP III criteria. Results. A total of 452 patients were included. Patients with the metabolic syndrome (n=293 had significantly higher blood monocyte (mean 5.3 versus 4.9, P=0.044 and eosinophil percentages (median 1.0 versus 0.8, P=0.002, while the total leukocyte count did not differ between the groups. The FEV1/FVC ratio was significantly lower in patients with the metabolic syndrome (76.7% versus 78.2%, P=0.032. Blood eosinophils were associated with FEV1/FVC ratio (adj. B −0.113, P=0.018. Conclusion. Although the difference in FEV1/FVC ratio between the groups is relatively small, in this cross-sectional study, and its clinical relevance may be limited, these data indicate that the presence of the metabolic syndrome may influence lung function impairment, through the induction of relative eosinophilia.

  20. Relationship between body composition, inflammation and lung function in overweight and obese asthma

    Directory of Open Access Journals (Sweden)

    Scott Hayley A

    2012-02-01

    Full Text Available Abstract Background The obese-asthma phenotype is not well defined. The aim of this study was to examine both mechanical and inflammatory influences, by comparing lung function with body composition and airway inflammation in overweight and obese asthma. Methods Overweight and obese (BMI 28-40 kg/m2 adults with asthma (n = 44 completed lung function assessment and underwent full-body dual energy x-ray absorptiometry. Venous blood samples and induced sputum were analysed for inflammatory markers. Results In females, android and thoracic fat tissue and total body lean tissue were inversely correlated with expiratory reserve volume (ERV. Conversely in males, fat tissue was not correlated with lung function, however there was a positive association between android and thoracic lean tissue and ERV. Lower body (gynoid and leg lean tissue was positively associated with sputum %neutrophils in females, while leptin was positively associated with android and thoracic fat tissue in males. Conclusions This study suggests that both body composition and inflammation independently affect lung function, with distinct differences between males and females. Lean tissue exacerbates the obese-asthma phenotype in females and the mechanism responsible for this finding warrants further investigation.

  1. Treatment with the Hyaluronic Acid Synthesis Inhibitor 4-Methylumbelliferone Suppresses SEB-Induced Lung Inflammation

    Directory of Open Access Journals (Sweden)

    Olga N. Uchakina

    2013-10-01

    Full Text Available Exposure to bacterial superantigens, such as staphylococcal enterotoxin B (SEB, can lead to the induction of acute lung injury/acute respiratory distress syndrome (ALI/ARDS. To date, there are no known effective treatments for SEB-induced inflammation. In the current study we investigated the potential use of the hyaluronic acid synthase inhibitor 4-methylumbelliferone (4-MU on staphylococcal enterotoxin B (SEB induced acute lung inflammation. Culturing SEB-activated immune cells with 4-MU led to reduced proliferation, reduced cytokine production as well as an increase in apoptosis when compared to untreated cells. Treatment of mice with 4-MU led to protection from SEB-induced lung injury. Specifically, 4-MU treatment led to a reduction in SEB-induced HA levels, reduction in lung permeability, and reduced pro-inflammatory cytokine production. Taken together, these results suggest that use of 4-MU to target hyaluronic acid production may be an effective treatment for the inflammatory response following exposure to SEB.

  2. Adult Lysophosphatidic Acid Receptor 1-Deficient Rats with Hyperoxia-Induced Neonatal Chronic Lung Disease Are Protected against Lipopolysaccharide-Induced Acute Lung Injury

    Science.gov (United States)

    Chen, Xueyu; Walther, Frans J.; Laghmani, El H.; Hoogeboom, Annemarie M.; Hogen-Esch, Anne C. B.; van Ark, Ingrid; Folkerts, Gert; Wagenaar, Gerry T. M.

    2017-01-01

    Aim: Survivors of neonatal chronic lung disease or bronchopulmonary dysplasia (BPD) suffer from compromised lung function and are at high risk for developing lung injury by multiple insults later in life. Because neonatal lysophosphatidic acid receptor-1 (LPAR1)-deficient rats are protected against hyperoxia-induced lung injury, we hypothesize that LPAR1-deficiency may protect adult survivors of BPD from a second hit response against lipopolysaccharides (LPS)-induced lung injury. Methods: Directly after birth, Wistar control and LPAR1-deficient rat pups were exposed to hyperoxia (90%) for 8 days followed by recovery in room air. After 7 weeks, male rats received either LPS (2 mg kg−1) or 0.9% NaCl by intraperitoneal injection. Alveolar development and lung inflammation were investigated by morphometric analysis, IL-6 production, and mRNA expression of cytokines, chemokines, coagulation factors, and an indicator of oxidative stress. Results: LPAR1-deficient and control rats developed hyperoxia-induced neonatal emphysema, which persisted into adulthood, as demonstrated by alveolar enlargement and decreased vessel density. LPAR1-deficiency protected against LPS-induced lung injury. Adult controls with BPD exhibited an exacerbated response toward LPS with an increased expression of pro-inflammatory mRNAs, whereas LPAR1-deficient rats with BPD were less sensitive to this “second hit” with a decreased pulmonary influx of macrophages and neutrophils, interleukin-6 (IL-6) production, and mRNA expression of IL-6, monocyte chemoattractant protein-1, cytokine-induced neutrophil chemoattractant 1, plasminogen activator inhibitor-1, and tissue factor. Conclusion: LPAR1-deficient rats have increased hyperoxia-induced BPD survival rates and, despite the presence of neonatal emphysema, are less sensitive to an aggravated “second hit” than Wistar controls with BPD. Intervening in LPA-LPAR1-dependent signaling may not only have therapeutic potential for neonatal chronic

  3. FcgammaRIIb inhibits allergic lung inflammation in a murine model of allergic asthma.

    Directory of Open Access Journals (Sweden)

    Nilesh Dharajiya

    Full Text Available Allergic asthma is characterized by airway eosinophilia, increased mucin production and allergen-specific IgE. Fc gamma receptor IIb (FcgammaRIIb, an inhibitory IgG receptor, has recently emerged as a negative regulator of allergic diseases like anaphylaxis and allergic rhinitis. However, no studies to date have evaluated its role in allergic asthma. Our main objective was to study the role of FcgammaRIIb in allergic lung inflammation. We used a murine model of allergic airway inflammation. Inflammation was quantified by BAL inflammatory cells and airway mucin production. FcgammaRIIb expression was measured by qPCR and flow cytometry and the cytokines were quantified by ELISA. Compared to wild type animals, FcgammaRIIb deficient mice mount a vigorous allergic lung inflammation characterized by increased bronchoalveolar lavage fluid cellularity, eosinophilia and mucin content upon ragweed extract (RWE challenge. RWE challenge in sensitized mice upregulated FcgammaRIIb in the lungs. Disruption of IFN-gamma gene abrogated this upregulation. Treatment of naïve mice with the Th1-inducing agent CpG DNA increased FcgammaRIIb expression in the lungs. Furthermore, treatment of sensitized mice with CpG DNA prior to RWE challenge induced greater upregulation of FcgammaRIIb than RWE challenge alone. These observations indicated that RWE challenge upregulated FcgammaRIIb in the lungs by IFN-gamma- and Th1-dependent mechanisms. RWE challenge upregulated FcgammaRIIb on pulmonary CD14+/MHC II+ mononuclear cells and CD11c+ cells. FcgammaRIIb deficient mice also exhibited an exaggerated RWE-specific IgE response upon sensitization when compared to wild type mice. We propose that FcgammaRIIb physiologically regulates allergic airway inflammation by two mechanisms: 1 allergen challenge mediates upregulation of FcgammaRIIb on pulmonary CD14+/MHC II+ mononuclear cells and CD11c+ cells by an IFN-gamma dependent mechanism; and 2 by attenuating the allergen specific Ig

  4. IL-17 is not essential for inflammation and chronic pelvic pain development in an experimental model of chronic prostatitis/chronic pelvic pain syndrome.

    Science.gov (United States)

    Motrich, Ruben D; Breser, María L; Sánchez, Leonardo R; Godoy, Gloria J; Prinz, Immo; Rivero, Virginia E

    2016-03-01

    Pain and inflammation in the absence of infection are hallmarks in chronic prostatitis and chronic pelvic pain syndrome (CP/CPPS) patients. The etiology of CP/CPPS is unclear, and autoimmunity has been proposed as a cause. Experimental autoimmune prostatitis (EAP) models have long been used for studying CP/CPPS. Herein, we studied prostate inflammation induction and chronic pelvic pain development in EAP using IL-12p40-KO, IL-4-KO, IL-17-KO, and wild-type (C57BL/6) mice. Prostate antigen (PAg) immunization in C57BL/6 mice induced specific Th1 and Th17 immune responses and severe prostate inflammation and cell infiltration, mainly composed of CD4 T cells and macrophages. Moreover, chronic pelvic pain was evidenced by increased allodynia responses. In immunized IL-17-KO mice, the presence of a prominent PAg-specific Th1 immune response caused similar prostate inflammation and chronic pelvic pain. Furthermore, markedly high PAg-specific Th1 immune responses, exacerbated prostate inflammation, and chronic pelvic pain were detected in immunized IL-4-KO mice. Conversely, immunized IL-12p40-KO mice developed PAg-specific Th2 immune responses, characterized by high IL-4 secretion and neither infiltration nor damage in the prostate. As observed in wild-type control animals, IL12p40-KO mice did not evidence tactile allodynia responses. Our results suggest that, as in patients, chronic pelvic pain is a consequence of prostate inflammation. After PAg immunization, a Th1-associated immune response develops and induces prostate inflammation and chronic pelvic pain. The absence of Th1 or Th2 cytokines, respectively, diminishes or enhances EAP susceptibility. In addition, IL-17 showed not to be essential for pathology induction and chronic pelvic pain development.

  5. The Gut as a Source of Inflammation in Chronic Kidney Disease.

    Science.gov (United States)

    Lau, Wei Ling; Kalantar-Zadeh, Kamyar; Vaziri, Nosratola D

    2015-01-01

    Chronic inflammation is a non-traditional risk factor for cardiovascular mortality in the chronic kidney disease (CKD) population. In recent years, the gastrointestinal tract has emerged as a major instigator of systemic inflammation in CKD. Postmortem studies previously discovered gut wall inflammation throughout the digestive tract in chronic dialysis patients. In CKD animals, colon wall inflammation is associated with breakdown of the epithelial tight junction barrier ('leaky gut') and translocation of bacterial DNA and endotoxin into the bloodstream. Gut bacterial DNA and endotoxin have also been detected in the serum from CKD and dialysis patients, whereby endotoxin levels increase with the CKD stage and correlate with the severity of systemic inflammation in the dialysis population. The CKD diet that is low in plant fiber and symbiotic organisms (in adherence with low potassium, low phosphorus intake) can alter the normal gut microbiome, leading to overgrowth of bacteria that produce uremic toxins such as cresyl and indoxyl molecules. The translocation of these toxins from the 'leaky gut' into the bloodstream further promotes systemic inflammation, adverse cardiovascular outcomes and CKD progression. Data are lacking on optimal fiber and yogurt consumption in CKD that would favor growth of a more symbiotic microbiome while avoiding potassium and phosphorus overload. Prebiotic and probiotic formulations have shown promise in small clinical trials, in terms of lowering serum levels of uremic toxins and improving quality of life. The evidence points to a strong relationship between intestinal inflammation and adverse outcomes in CKD, and more trials investigating gut-targeted therapeutics are needed.

  6. Contribution of Inflammation to Vascular Disease in Chronic Kidney Disease Patients

    Directory of Open Access Journals (Sweden)

    Suliman Mohamed

    2008-01-01

    Full Text Available Chronic kidney disease (CKD is characterized by an exceptionally high mortality rate, much of which results from cardiovascular disease (CVD. Chronic low-grade inflammation, as evidenced by increased levels of pro-inflammatory cytokines and C-reactive protein (CRP, is a common feature of CKD and may cause atherosclerotic CVD through various pathogenetic mechanisms. Evidence suggests that persistent inflammation may also be a risk factor for progression of CKD, which may result in a vicious inflammation-driven circle. The causes of inflammation in CKD are multifactorial. The influence of various comorbidities may contribute to inflammation in the setting of progressive loss of renal function. Available data suggest that pro-inflammatory cytokines also play a central role in the genesis of the metabolic syndrome. There is a lack of epidemiological data on the prevalence and consequences of inflammation in relation to protein-energy wasting (PEW and CVD in CKD patients from developing countries. The ′westernization′ of nutritional intakes and changes of life style besides the high prevalence of chronic infections in developing countries are possible additive contributors to a high prevalence of inflammation, PEW and CVD among CKD patients. Also, genetic differences may affect inflammatory responses and nutritional status and, thus, the susceptibility to CVD in different regions.

  7. Smoking Is Associated with Acute and Chronic Prostatic Inflammation: Results from the REDUCE Study.

    Science.gov (United States)

    Moreira, Daniel M; Nickel, J Curtis; Gerber, Leah; Muller, Roberto L; Andriole, Gerald L; Castro-Santamaria, Ramiro; Freedland, Stephen J

    2015-04-01

    Both anti- and proinflammatory effects of cigarette smoking have been described. As prostate inflammation is common, we hypothesized smoking could contribute to prostate inflammation. Thus, we evaluated the association of smoking status with acute and chronic inflammation within the prostate of men undergoing prostate biopsy. We retrospectively analyzed 8,190 men ages 50 to 75 years with PSA levels between 2.5 and 10 ng/mL enrolled in the Reduction by Dutasteride of Prostate Cancer Events study. Smoking status was self-defined as never, former, or current. Prostate inflammation was assessed by systematic central review blinded to smoking status. The association of smoking with inflammation in the baseline, 2-year, and 4-year biopsies was evaluated with univariable and multivariable logistic regressions. At study enrollment, 1,233 (15%), 3,203 (39%), and 3,754 (46%) men were current, former, and never smokers, respectively. Current smokers were significantly younger and had smaller prostates than former and never smokers (all P chronic prostate inflammations were identified in 1,261 (15%) and 6,352 (78%) baseline biopsies, respectively. In univariable analysis, current smokers were more likely to have acute inflammation than former (OR, 1.35; P, 0.001) and never smokers (OR, 1.36; P, 0.001). The results were unchanged at 2- and 4-year biopsies. In contrast, current smoking was linked with chronic inflammation in the baseline biopsy, but not at 2- and 4-year biopsies. In conclusion, among men undergoing prostate biopsy, current smoking was independently associated with acute and possibly chronic prostate inflammations.

  8. Chronic liver inflammation modifies DNA methylation at the precancerous stage of murine hepatocarcinogenesis.

    Science.gov (United States)

    Stoyanov, Evgeniy; Ludwig, Guy; Mizrahi, Lina; Olam, Devorah; Schnitzer-Perlman, Temima; Tasika, Elena; Sass, Gabriele; Tiegs, Gisa; Jiang, Yong; Nie, Ting; Kohler, James; Schinazi, Raymond F; Vertino, Paula M; Cedar, Howard; Galun, Eithan; Goldenberg, Daniel

    2015-05-10

    Chronic liver inflammation precedes the majority of hepatocellular carcinomas (HCC). Here, we explore the connection between chronic inflammation and DNA methylation in the liver at the late precancerous stages of HCC development in Mdr2(-/-) (Mdr2/Abcb4-knockout) mice, a model of inflammation-mediated HCC. Using methylated DNA immunoprecipitation followed by hybridization with "CpG islands" (CGIs) microarrays, we found specific CGIs in 76 genes which were hypermethylated in the Mdr2(-/-) liver compared to age-matched healthy controls. The observed hypermethylation resulted mainly from an age-dependent decrease of methylation of the specific CGIs in control livers with no decrease in mutant mice. Chronic inflammation did not change global levels of DNA methylation in Mdr2(-/-) liver, but caused a 2-fold decrease of the global 5-hydroxymethylcytosine level in mutants compared to controls. Liver cell fractionation revealed, that the relative hypermethylation of specific CGIs in Mdr2(-/-) livers affected either hepatocyte, or non-hepatocyte, or both fractions without a correlation between changes of gene methylation and expression. Our findings demonstrate that chronic liver inflammation causes hypermethylation of specific CGIs, which may affect both hepatocytes and non-hepatocyte liver cells. These changes may serve as useful markers of an increased regenerative activity and of a late precancerous stage in the chronically inflamed liver.

  9. S100A8/A9 Proteins Mediate Neutrophilic Inflammation and Lung Pathology during Tuberculosis

    Science.gov (United States)

    Gopal, Radha; Monin, Leticia; Torres, Diana; Slight, Samantha; Mehra, Smriti; McKenna, Kyle C.; Fallert Junecko, Beth A.; Reinhart, Todd A.; Kolls, Jay; Báez-Saldaña, Renata; Cruz-Lagunas, Alfredo; Rodríguez-Reyna, Tatiana S.; Kumar, Nathella Pavan; Tessier, Phillipe; Roth, Johannes; Selman, Moisés; Becerril-Villanueva, Enrique; Baquera-Heredia, Javier; Cumming, Bridgette; Kasprowicz, Victoria O.; Steyn, Adrie J. C.; Babu, Subash; Kaushal, Deepak; Zúñiga, Joaquín; Vogl, Thomas; Rangel-Moreno, Javier

    2013-01-01

    Rationale: A hallmark of pulmonary tuberculosis (TB) is the formation of granulomas. However, the immune factors that drive the formation of a protective granuloma during latent TB, and the factors that drive the formation of inflammatory granulomas during active TB, are not well defined. Objectives: The objective of this study was to identify the underlying immune mechanisms involved in formation of inflammatory granulomas seen during active TB. Methods: The immune mediators involved in inflammatory granuloma formation during TB were assessed using human samples and experimental models of Mycobacterium tuberculosis infection, using molecular and immunologic techniques. Measurements and Main Results: We demonstrate that in human patients with active TB and in nonhuman primate models of M. tuberculosis infection, neutrophils producing S100 proteins are dominant within the inflammatory lung granulomas seen during active TB. Using the mouse model of TB, we demonstrate that the exacerbated lung inflammation seen as a result of neutrophilic accumulation is dependent on S100A8/A9 proteins. S100A8/A9 proteins promote neutrophil accumulation by inducing production of proinflammatory chemokines and cytokines, and influencing leukocyte trafficking. Importantly, serum levels of S100A8/A9 proteins along with neutrophil-associated chemokines, such as keratinocyte chemoattractant, can be used as potential surrogate biomarkers to assess lung inflammation and disease severity in human TB. Conclusions: Our results thus show a major pathologic role for S100A8/A9 proteins in mediating neutrophil accumulation and inflammation associated with TB. Thus, targeting specific molecules, such as S100A8/A9 proteins, has the potential to decrease lung tissue damage without impacting protective immunity against TB. PMID:24047412

  10. Prostatic inflammation induces fibrosis in a mouse model of chronic bacterial infection.

    Directory of Open Access Journals (Sweden)

    Letitia Wong

    Full Text Available Inflammation of the prostate is strongly correlated with development of lower urinary tract symptoms and several studies have implicated prostatic fibrosis in the pathogenesis of bladder outlet obstruction. It has been postulated that inflammation induces prostatic fibrosis but this relationship has never been tested. Here, we characterized the fibrotic response to inflammation in a mouse model of chronic bacterial-induced prostatic inflammation. Transurethral instillation of the uropathogenic E. coli into C3H/HeOuJ male mice induced persistent prostatic inflammation followed by a significant increase in collagen deposition and hydroxyproline content. This fibrotic response to inflammation was accompanied with an increase in collagen synthesis determined by the incorporation of 3H-hydroxyproline and mRNA expression of several collagen remodeling-associated genes, including Col1a1, Col1a2, Col3a1, Mmp2, Mmp9, and Lox. Correlation analysis revealed a positive correlation of inflammation severity with collagen deposition and immunohistochemical staining revealed that CD45+VIM+ fibrocytes were abundant in inflamed prostates at the time point coinciding with increased collagen synthesis. Furthermore, flow cytometric analysis demonstrated an increased percentage of these CD45+VIM+ fibrocytes among collagen type I expressing cells. These data show-for the first time-that chronic prostatic inflammation induces collagen deposition and implicates fibrocytes in the fibrotic process.

  11. Hypothalamic inflammation and food intake regulation during chronic illness

    NARCIS (Netherlands)

    Dwarkasing, J.T.; Marks, D.L.; Witkamp, R.F.; Norren, van K.

    2016-01-01

    Anorexia is a common symptom in chronic illness. It contributes to malnutrition and strongly affects survival and quality of life. A common denominator of many chronic diseases is an elevated inflammatory status, which is considered to play a pivotal role in the failure of food-intake regulating sys

  12. A New Mouse Model That Spontaneously Develops Chronic Liver Inflammation and Fibrosis

    Science.gov (United States)

    Fransén-Pettersson, Nina; Duarte, Nadia; Nilsson, Julia; Lundholm, Marie; Mayans, Sofia; Larefalk, Åsa; Hannibal, Tine D.; Hansen, Lisbeth; Schmidt-Christensen, Anja; Ivars, Fredrik; Cardell, Susanna; Palmqvist, Richard; Rozell, Björn

    2016-01-01

    Here we characterize a new animal model that spontaneously develops chronic inflammation and fibrosis in multiple organs, the non-obese diabetic inflammation and fibrosis (N-IF) mouse. In the liver, the N-IF mouse displays inflammation and fibrosis particularly evident around portal tracts and central veins and accompanied with evidence of abnormal intrahepatic bile ducts. The extensive cellular infiltration consists mainly of macrophages, granulocytes, particularly eosinophils, and mast cells. This inflammatory syndrome is mediated by a transgenic population of natural killer T cells (NKT) induced in an immunodeficient NOD genetic background. The disease is transferrable to immunodeficient recipients, while polyclonal T cells from unaffected syngeneic donors can inhibit the disease phenotype. Because of the fibrotic component, early on-set, spontaneous nature and reproducibility, this novel mouse model provides a unique tool to gain further insight into the underlying mechanisms mediating transformation of chronic inflammation into fibrosis and to evaluate intervention protocols for treating conditions of fibrotic disorders. PMID:27441847

  13. Ability of recombinant human catalase to suppress inflammation of the murine lung induced by influenza A.

    Science.gov (United States)

    Shi, Xunlong; Shi, Zhihui; Huang, Hai; Zhu, Hongguang; Zhou, Pei; Zhu, Haiyan; Ju, Dianwen

    2014-06-01

    Influenza A virus pandemics and emerging antiviral resistance highlight the urgent need for novel generic pharmacological strategies that reduce both viral replication and inflammation of the lung. We have previously investigated the therapeutic efficacy of recombinant human catalase (rhCAT) against viral pneumonia in mice, but the protection mechanisms involved were not explored. In the present study, we have performed a more in-depth analysis covering survival, lung inflammation, immune cell responses, production of cytokines, and inflammation signaling pathways in mice. Male imprinting control region mice were infected intranasally with high pathogenicity (H1N1) influenza A virus followed by treatment with recombinant human catalase. The administration of rhCAT resulted in a significant reduction in inflammatory cell infiltration (e.g., macrophages and neutrophils), inflammatory cytokine levels (e.g., IL-2, IL-6, TNF-α, IFN-γ), the level of the intercellular adhesion molecule 1 chemokine and the mRNA levels of toll-like receptors TLR-4, TLR-7, and NF-κB, as well as partially maintaining the activity of the antioxidant enzymes system. These findings indicated that rhCAT might play a key protective role in viral pneumonia of mice via suppression of inflammatory immune responses.

  14. A mouse model for pathogen-induced chronic inflammation at local and systemic sites.

    Science.gov (United States)

    Papadopoulos, George; Kramer, Carolyn D; Slocum, Connie S; Weinberg, Ellen O; Hua, Ning; Gudino, Cynthia V; Hamilton, James A; Genco, Caroline A

    2014-08-08

    Chronic inflammation is a major driver of pathological tissue damage and a unifying characteristic of many chronic diseases in humans including neoplastic, autoimmune, and chronic inflammatory diseases. Emerging evidence implicates pathogen-induced chronic inflammation in the development and progression of chronic diseases with a wide variety of clinical manifestations. Due to the complex and multifactorial etiology of chronic disease, designing experiments for proof of causality and the establishment of mechanistic links is nearly impossible in humans. An advantage of using animal models is that both genetic and environmental factors that may influence the course of a particular disease can be controlled. Thus, designing relevant animal models of infection represents a key step in identifying host and pathogen specific mechanisms that contribute to chronic inflammation. Here we describe a mouse model of pathogen-induced chronic inflammation at local and systemic sites following infection with the oral pathogen Porphyromonas gingivalis, a bacterium closely associated with human periodontal disease. Oral infection of specific-pathogen free mice induces a local inflammatory response resulting in destruction of tooth supporting alveolar bone, a hallmark of periodontal disease. In an established mouse model of atherosclerosis, infection with P. gingivalis accelerates inflammatory plaque deposition within the aortic sinus and innominate artery, accompanied by activation of the vascular endothelium, an increased immune cell infiltrate, and elevated expression of inflammatory mediators within lesions. We detail methodologies for the assessment of inflammation at local and systemic sites. The use of transgenic mice and defined bacterial mutants makes this model particularly suitable for identifying both host and microbial factors involved in the initiation, progression, and outcome of disease. Additionally, the model can be used to screen for novel therapeutic strategies

  15. Pulmonary Hypertension and Right Heart Dysfunction in Chronic Lung Disease

    Directory of Open Access Journals (Sweden)

    Amirmasoud Zangiabadi

    2014-01-01

    Full Text Available Group 3 pulmonary hypertension (PH is a common complication of chronic lung disease (CLD, including chronic obstructive pulmonary disease (COPD, interstitial lung disease, and sleep-disordered breathing. Development of PH is associated with poor prognosis and may progress to right heart failure, however, in the majority of the patients with CLD, PH is mild to moderate and only a small number of patients develop severe PH. The pathophysiology of PH in CLD is multifactorial and includes hypoxic pulmonary vasoconstriction, pulmonary vascular remodeling, small vessel destruction, and fibrosis. The effects of PH on the right ventricle (RV range between early RV remodeling, hypertrophy, dilatation, and eventual failure with associated increased mortality. The golden standard for diagnosis of PH is right heart catheterization, however, evidence of PH can be appreciated on clinical examination, serology, radiological imaging, and Doppler echocardiography. Treatment of PH in CLD focuses on management of the underlying lung disorder and hypoxia. There is, however, limited evidence to suggest that PH-specific vasodilators such as phosphodiesterase-type 5 inhibitors, endothelin receptor antagonists, and prostanoids may have a role in the treatment of patients with CLD and moderate-to-severe PH.

  16. Mechanisms of Physical Activity Limitation in Chronic Lung Diseases

    Directory of Open Access Journals (Sweden)

    Ioannis Vogiatzis

    2012-01-01

    Full Text Available In chronic lung diseases physical activity limitation is multifactorial involving respiratory, hemodynamic, and peripheral muscle abnormalities. The mechanisms of limitation discussed in this paper relate to (i the imbalance between ventilatory capacity and demand, (ii the imbalance between energy demand and supply to working respiratory and peripheral muscles, and (iii the factors that induce peripheral muscle dysfunction. In practice, intolerable exertional symptoms (i.e., dyspnea and/or leg discomfort are the main symptoms that limit physical performance in patients with chronic lung diseases. Furthermore, the reduced capacity for physical work and the adoption of a sedentary lifestyle, in an attempt to avoid breathlessness upon physical exertion, cause profound muscle deconditioning which in turn leads to disability and loss of functional independence. Accordingly, physical inactivity is an important component of worsening the patients’ quality of life and contributes importantly to poor prognosis. Identifying the factors which prevent a patient with lung disease to easily carry out activities of daily living provides a unique as well as important perspective for the choice of the appropriate therapeutic strategy.

  17. Effects of Liver × receptor agonist treatment on signal transduction pathways in acute lung inflammation

    Directory of Open Access Journals (Sweden)

    Bramanti Placido

    2010-02-01

    Full Text Available Abstract Background Liver × receptor α (LXRα and β (LXRβ are members of the nuclear receptor super family of ligand-activated transcription factors, a super family which includes the perhaps better known glucocorticoid receptor, estrogen receptor, thyroid receptor, and peroxisome proliferator-activated receptors. There is limited evidence that LXL activation may reduces acute lung inflammation. The aim of this study was to investigate the effects of T0901317, a potent LXR receptor ligand, in a mouse model of carrageenan-induced pleurisy. Methods Injection of carrageenan into the pleural cavity of mice elicited an acute inflammatory response characterized by: accumulation of fluid containing a large number of neutrophils (PMNs in the pleural cavity, infiltration of PMNs in lung tissues and subsequent lipid peroxidation, and increased production of nitrite/nitrate (NOx, tumor necrosis factor-α, (TNF-α and interleukin-1β (IL-1β. Furthermore, carrageenan induced the expression of iNOS, nitrotyrosine and PARP, as well as induced apoptosis (TUNEL staining and Bax and Bcl-2 expression in the lung tissues. Results Administration of T0901317, 30 min after the challenge with carrageenan, caused a significant reduction in a dose dependent manner of all the parameters of inflammation measured. Conclusions Thus, based on these findings we propose that LXR ligand such as T0901317, may be useful in the treatment of various inflammatory diseases.

  18. Contribution of alternatively activated macrophages to allergic lung inflammation: a tale of mice and men.

    Science.gov (United States)

    Dasgupta, Preeta; Keegan, Achsah D

    2012-01-01

    The concept that macrophages play an active role in inflammatory responses began its development in the late 1800s with the now iconic studies by Elie Metchnikoff using starfish larvae and Daphnia [reviewed in Kaufmann SHE: Nat Immunol 2008;9:705-712 and Cavaillon JM: J Leukoc Biol 2011;90:413-424]. Based on his observation of the phagocyte response to a foreign body (rose thorn) and yeast, he proposed that phagocytes acted in host defense and were active participants in the inflammatory process. Flash forward more than 100 years and we find that these basic tenets hold true. However, it is now appreciated that macrophages come in many different flavors and can adopt a variety of nuanced phenotypes depending on the tissue environment in which the macrophage is found. In this brief review, we discuss the role of one type of macrophage termed the alternatively activated macrophage (AAM), also known as the M2 type of macrophage, in regulating allergic lung inflammation and asthma. Recent studies using mouse models of allergic lung inflammation and samples from human asthma patients contribute to the emerging concept that AAMs are not just bystanders of the interleukin (IL)-4- and IL-13-rich environment found in allergic asthma but are also active players in orchestrating allergic lung disease.

  19. Alcohol, Inflammation and Gene Modifications in Chronic Pancreatitis

    OpenAIRE

    Raffaele Pezzilli

    2008-01-01

    The etiology of chronic pancreatitis in Western countries is associated with chronic alcohol abuse in a high percentage of cases. In fact, we found that, in 190 Italian patients with proven chronic pancreatitis who were studied in the 2005, the etiology was alcohol abuse (more than 80 g/day for at least 5 years) in 77.4% of the cases and due to other causes in 5.8% (hereditary pancreatitis in 2.6%, pancreatic malformation in 2.1%, cystic fibrosis transmembrane conductance regulator gene mutat...

  20. CD28/B7 Deficiency Attenuates Systolic Overload-Induced Congestive Heart Failure, Myocardial and Pulmonary Inflammation, and Activated T Cell Accumulation in the Heart and Lungs.

    Science.gov (United States)

    Wang, Huan; Kwak, Dongmin; Fassett, John; Hou, Lei; Xu, Xin; Burbach, Brandon J; Thenappan, Thenappan; Xu, Yawei; Ge, Jun-Bo; Shimizu, Yoji; Bache, Robert J; Chen, Yingjie

    2016-09-01

    The inflammatory response regulates congestive heart failure (CHF) development. T cell activation plays an important role in tissue inflammation. We postulate that CD28 or B7 deficiency inhibits T cell activation and attenuates CHF development by reducing systemic, cardiac, and pulmonary inflammation. We demonstrated that chronic pressure overload-induced end-stage CHF in mice is characterized by profound accumulation of activated effector T cells (CD3(+)CD44(high) cells) in the lungs and a mild but significant increase of these cells in the heart. In knockout mice lacking either CD28 or B7, there was a dramatic reduction in the accumulation of activated effector T cells in both hearts and lungs of mice under control conditions and after transverse aortic constriction. CD28 or B7 knockout significantly attenuated transverse aortic constriction-induced CHF development, as indicated by less increase of heart and lung weight and less reduction of left ventricle contractility. CD28 or B7 knockout also significantly reduced transverse aortic constriction-induced CD45(+) leukocyte, T cell, and macrophage infiltration in hearts and lungs, lowered proinflammatory cytokine expression (such as tumor necrosis factor-α and interleukin-1β) in lungs. Furthermore, CD28/B7 blockade by CTLA4-Ig treatment (250 μg/mouse every 3 days) attenuated transverse aortic constriction-induced T cell activation, left ventricle hypertrophy, and left ventricle dysfunction. Our data indicate that CD28/B7 deficiency inhibits activated effector T cell accumulation, reduces myocardial and pulmonary inflammation, and attenuates the development of CHF. Our findings suggest that strategies targeting T cell activation may be useful in treating CHF.

  1. Effect of smoking cessation on airway inflammation of rats with chronic bronchitis

    Institute of Scientific and Technical Information of China (English)

    LI Qing-yun; HUANG Shao-guang; WAN Huan-ying; WU Hua-cheng; ZHOU Tong; LI Min; DENG Wei-wu

    2007-01-01

    Background Smoking is the major cause of airway inflammation in chronic obstructive pulmonary disease (COPD),and smoking cessation is regarded as one of the important strategies for prevention and treatment of the inflammation.The inflammation of the chronic airway may be present and deteriorated even if the COPD patients stop smoking.Whether and how early smoking cessation affects the progress of inflammation is still obscure. This study was conducted to find the appropriate time for smoking cessation to terminate the airway inflammation in rats with smoke-induced chronic bronchitis.Methods A rat model of COPD was established by passively inhaling smoke mixture. Fifty-four young male Sprague-Dawley rats were randomly divided into 9 groups with different periods of smoke exposure and different time points of cessation. The inflammation markers to be detected included inflammatory cells in the bronchoalveolar lavage fluid (BALF), the myeloperoxidose (MPO) activity, the morphologic changes and the expression of ICAM-1 on the airway epithelium.Results When smoking was terminated at early stage, the inflammatory markers and related indexes were different from those of the typical chronic bronchitis group (group M7) (P<0.01). The pathologic score of group SC7 (2 weeks of smoking cessation after occurrence of typical chronic bronchitis ) was not different from that of group M7, and the level of ICAM-1 was still up-regulated (compared to group M7, P>0.05). Meanwhile, most of inflammatory cells in BALF were neutrophils compared to other groups (P<0.01).When smoking was terminated, the MPO activity was significantly lower than that of group M7 (P<0.01).Conclusions Smoking cessation at early stage can effectively inhibit the inflammatory reaction of COPD. Once chronic bronchitis occurs, little could be improved by smoking cessation.

  2. Challenges and Current Efforts in the Development of Biomarkers for Chronic Inflammatory and Remodeling Conditions of the Lungs.

    Science.gov (United States)

    Grunig, Gabriele; Baghdassarian, Aram; Park, Sung-Hyun; Pylawka, Serhiy; Bleck, Bertram; Reibman, Joan; Berman-Rosenzweig, Erika; Durmus, Nedim

    2015-01-01

    This review discusses biomarkers that are being researched for their usefulness to phenotype chronic inflammatory lung diseases that cause remodeling of the lung's architecture. The review focuses on asthma, chronic obstructive pulmonary disease (COPD), and pulmonary hypertension. Bio-markers of environmental exposure and specific classes of biomarkers (noncoding RNA, metabolism, vitamin, coagulation, and microbiome related) are also discussed. Examples of biomarkers that are in clinical use, biomarkers that are under development, and biomarkers that are still in the research phase are discussed. We chose to present examples of the research in biomarker development by diseases, because asthma, COPD, and pulmonary hypertension are distinct entities, although they clearly share processes of inflammation and remodeling.

  3. Inflammation, aging, and cancer: tumoricidal versus tumorigenesis of immunity: a common denominator mapping chronic diseases.

    Science.gov (United States)

    Khatami, Mahin

    2009-01-01

    Acute inflammation is a highly regulated defense mechanism of immune system possessing two well-balanced and biologically opposing arms termed apoptosis ('Yin') and wound healing ('Yang') processes. Unresolved or chronic inflammation (oxidative stress) is perhaps the loss of balance between 'Yin' and 'Yang' that would induce co-expression of exaggerated or 'mismatched' apoptotic and wound healing factors in the microenvironment of tissues ('immune meltdown'). Unresolved inflammation could initiate the genesis of many age-associated chronic illnesses such as autoimmune and neurodegenerative diseases or tumors/cancers. In this perspective 'birds' eye' view of major interrelated co-morbidity risk factors that participate in biological shifts of growth-arresting ('tumoricidal') or growth-promoting ('tumorigenic') properties of immune cells and the genesis of chronic inflammatory diseases and cancer will be discussed. Persistent inflammation is perhaps a common denominator in the genesis of nearly all age-associated health problems or cancer. Future challenging opportunities for diagnosis, prevention, and/or therapy of chronic illnesses will require an integrated understanding and identification of developmental phases of inflammation-induced immune dysfunction and age-associated hormonal and physiological readjustments of organ systems. Designing suitable cohort studies to establish the oxido-redox status of adults may prove to be an effective strategy in assessing individual's health toward developing personal medicine for healthy aging.

  4. Pathogenic effects of biofilm with chronic pseudomonas aeruginosa lung infection in rats

    Institute of Scientific and Technical Information of China (English)

    Ping Yan; Yiqiang Chen; Zhijun Song; Hong Wu; Jinliang Kong; Xuejun Qin

    2008-01-01

    Objective: To establish an animal model of P.aeruginosa biofilm associated with chronic pulmonary infection and investigate the pathogenic effects of biofilm. Methods: Experiments in vitro, measuring the MICS, MBCS of ievofloxacin(LFX), ceftazidime(CAZ) in PAO579 in alginate beads and planktonic PAO579. Rats were challenged with 0.1 ml of PAO579(109CFU/ml) in alginate beads or 0.1 ml of planktonic PAO579(109CFU/ml), 3,7,14 days after challenging, bacteriological, pathological features were observed. Results: The MICS, MBCS of LFX, CAZ in PAO579 in alginate beads were higher than those in planktonic PAO579 in vitro. CFU/lung in alginate beads group was significantly higher than that in planktonic bacteria group(P = 0.002, P =0.004, P = 0.002, respectively); macroscopic lung pathology and the inflammation in alginate beads group were significantly more severe compared to those in planktonic bacteria group in vivo. Conclusion: P.aeruginosa biofilm protected bacterium from killing of antibiotics and might mediate the host immune damage in the lung tissue and made bacterium evade the host immune defense.

  5. Pulmonary Surfactants for Acute and Chronic Lung Diseases (Part II

    Directory of Open Access Journals (Sweden)

    O. A. Rozenberg

    2014-01-01

    Full Text Available Part 2 of the review considers the problem of surfactant therapy for acute respiratory distress syndrome (ARDS in adults and young and old children. It gives information on the results of surfactant therapy and prevention of ARDS in patients with severe concurrent trauma, inhalation injuries, complications due to complex expanded chest surgery, or severe pneumonias, including bilateral pneumonia in the presence of A/H1N1 influenza. There are data on the use of a surfactant in obstetric care and prevention of primary graft dysfunction during lung transplantation. The results of longterm use of surfactant therapy in Russia, suggesting that death rates from ARDS may be substantially reduced (to 20% are discussed. Examples of surfactant therapy for other noncritical lung diseases, such as permanent athelectasis, chronic obstructive pulmonary diseases, and asthma, as well tuberculosis, are also considered.

  6. Chronic Inflammation in Obesity and the Metabolic Syndrome

    Directory of Open Access Journals (Sweden)

    Rosário Monteiro

    2010-01-01

    Full Text Available The increasing incidence of obesity and the metabolic syndrome is disturbing. The activation of inflammatory pathways, used normally as host defence, reminds the seriousness of this condition. There is probably more than one cause for activation of inflammation. Apparently, metabolic overload evokes stress reactions, such as oxidative, inflammatory, organelle and cell hypertrophy, generating vicious cycles. Adipocyte hypertrophy, through physical reasons, facilitates cell rupture, what will evoke an inflammatory reaction. Inability of adipose tissue development to engulf incoming fat leads to deposition in other organs, mainly in the liver, with consequences on insulin resistance. The oxidative stress which accompanies feeding, particularly when there is excessive ingestion of fat and/or other macronutrients without concomitant ingestion of antioxidant-rich foods/beverages, may contribute to inflammation attributed to obesity. Moreover, data on the interaction of microbiota with food and obesity brought new hypothesis for the obesity/fat diet relationship with inflammation. Beyond these, other phenomena, for instance psychological and/or circadian rhythm disturbances, may likewise contribute to oxidative/inflammatory status. The difficulty in the management of obesity/metabolic syndrome is linked to their multifactorial nature where environmental, genetic and psychosocial factors interact through complex networks.

  7. Impaired SNX9 Expression in Immune Cells during Chronic Inflammation: Prognostic and Diagnostic Implications.

    Science.gov (United States)

    Ish-Shalom, Eliran; Meirow, Yaron; Sade-Feldman, Moshe; Kanterman, Julia; Wang, Lynn; Mizrahi, Olga; Klieger, Yair; Baniyash, Michal

    2016-01-01

    Chronic inflammation is associated with immunosuppression and downregulated expression of the TCR CD247. In searching for new biomarkers that could validate the impaired host immune status under chronic inflammatory conditions, we discovered that sorting nexin 9 (SNX9), a protein that participates in early stages of clathrin-mediated endocytosis, is downregulated as well under such conditions. SNX9 expression was affected earlier than CD247 by the generated harmful environment, suggesting that it is a potential marker sensing the generated immunosuppressive condition. We found that myeloid-derived suppressor cells, which are elevated in the course of chronic inflammation, are responsible for the observed SNX9 reduced expression. Moreover, SNX9 downregulation is reversible, as its expression levels return to normal and immune functions are restored when the inflammatory response and/or myeloid-derived suppressor cells are neutralized. SNX9 downregulation was detected in numerous mouse models for pathologies characterized by chronic inflammation such as chronic infection (Leishmania donovani), cancer (melanoma and colorectal carcinoma), and an autoimmune disease (rheumatoid arthritis). Interestingly, reduced levels of SNX9 were also observed in blood samples from colorectal cancer patients, emphasizing the feasibility of its use as a diagnostic and prognostic biomarker sensing the host's immune status and inflammatory stage. Our new discovery of SNX9 as being regulated by chronic inflammation and its association with immunosuppression, in addition to the CD247 regulation under such conditions, show the global impact of chronic inflammation and the generated immune environment on different cellular pathways in a diverse spectrum of diseases.

  8. Disruption of Sirtuin 1-Mediated Control of Circadian Molecular Clock and Inflammation in Chronic Obstructive Pulmonary Disease.

    Science.gov (United States)

    Yao, Hongwei; Sundar, Isaac K; Huang, Yadi; Gerloff, Janice; Sellix, Michael T; Sime, Patricia J; Rahman, Irfan

    2015-12-01

    Chronic obstructive pulmonary disease (COPD) is the fourth most common cause of death, and it is characterized by abnormal inflammation and lung function decline. Although the circadian molecular clock regulates inflammatory responses, there is no information available regarding the impact of COPD on lung molecular clock function and its regulation by sirtuin 1 (SIRT1). We hypothesize that the molecular clock in the lungs is disrupted, leading to increased inflammatory responses in smokers and patients with COPD and its regulation by SIRT1. Lung tissues, peripheral blood mononuclear cells (PBMCs), and sputum cells were obtained from nonsmokers, smokers, and patients with COPD for measurement of core molecular clock proteins (BMAL1, CLOCK, PER1, PER2, and CRY1), clock-associated nuclear receptors (REV-ERBα, REV-ERBβ, and RORα), and SIRT1 by immunohistochemistry, immunofluorescence, and immunoblot. PBMCs were treated with the SIRT1 activator SRT1720 followed by LPS treatment, and supernatant was collected at 6-hour intervals. Levels of IL-8, IL-6, and TNF-α released from PBMCs were determined by ELISA. Expression of BMAL1, PER2, CRY1, and REV-ERBα was reduced in PBMCs, sputum cells, and lung tissues from smokers and patients with COPD when compared with nonsmokers. SRT1720 treatment attenuated LPS-mediated reduction of BMAL1 and REV-ERBα in PBMCs from nonsmokers. Additionally, LPS differentially affected the timing and amplitude of cytokine (IL-8, IL-6, and TNF-α) release from PBMCs in nonsmokers, smokers, and patients with COPD. Moreover, SRT1720 was able to inhibit LPS-induced cytokine release from cultured PBMCs. In conclusion, disruption of the molecular clock due to SIRT1 reduction contributes to abnormal inflammatory response in smokers and patients with COPD.

  9. The putative role of ovary removal and progesterone when considering the effect of formaldehyde exposure on lung inflammation induced by ovalbumin

    OpenAIRE

    2013-01-01

    OBJECTIVE: Formaldehyde exposure during the menstrual cycle is known to affect the course of allergic lung inflammation. Because our previous data demonstrated that formaldehyde combined with an ovariectomy reduced allergic lung inflammation, we investigated the putative role of ovary removal and progesterone treatment when considering the effect of formaldehyde on allergic lung inflammation. METHOD: Ovariectomized rats and their matched controls were exposed to formaldehyde (1%...

  10. Macrophage phenotype is associated with disease severity in preterm infants with chronic lung disease.

    Directory of Open Access Journals (Sweden)

    Lynne R Prince

    Full Text Available BACKGROUND: The etiology of persistent lung inflammation in preterm infants with chronic lung disease of prematurity (CLD is poorly characterized, hampering efforts to stratify prognosis and treatment. Airway macrophages are important innate immune cells with roles in both the induction and resolution of tissue inflammation. OBJECTIVES: To investigate airway innate immune cellular phenotypes in preterm infants with respiratory distress syndrome (RDS or CLD. METHODS: Bronchoalveolar lavage (BAL fluid was obtained from term and preterm infants requiring mechanical ventilation. BAL cells were phenotyped by flow cytometry. RESULTS: Preterm birth was associated with an increase in the proportion of non-classical CD14(+/CD16(+ monocytes on the day of delivery (58.9 ± 5.8% of total mononuclear cells in preterm vs 33.0 ± 6.1% in term infants, p = 0.02. Infants with RDS were born with significantly more CD36(+ macrophages compared with the CLD group (70.3 ± 5.3% in RDS vs 37.6 ± 8.9% in control, p = 0.02. At day 3, infants born at a low gestational age are more likely to have greater numbers of CD14(+ mononuclear phagocytes in the airway (p = 0.03, but fewer of these cells are functionally polarized as assessed by HLA-DR (p = 0.05 or CD36 (p = 0.05 positivity, suggesting increased recruitment of monocytes or a failure to mature these cells in the lung. CONCLUSIONS: These findings suggest that macrophage polarization may be affected by gestational maturity, that more immature macrophage phenotypes may be associated with the progression of RDS to CLD and that phenotyping mononuclear cells in BAL could predict disease outcome.

  11. Effect of low tidal volume ventilation on lung function and inflammation in mice

    Directory of Open Access Journals (Sweden)

    Goldmann Torsten

    2010-04-01

    Full Text Available Abstract Background A large number of studies have investigated the effects of high tidal volume ventilation in mouse models. In contrast data on very short term effects of low tidal volume ventilation are sparse. Therefore we investigated the functional and structural effects of low tidal volume ventilation in mice. Methods 38 Male C57/Bl6 mice were ventilated with different tidal volumes (Vt 5, 7, and 10 ml/kg without or with application of PEEP (2 cm H2O. Four spontaneously breathing animals served as controls. Oxygen saturation and pulse rate were monitored. Lung function was measured every 5 min for at least 30 min. Afterwards lungs were removed and histological sections were stained for measurement of infiltration with polymorphonuclear leukocytes (PMN. Moreover, mRNA expression of macrophage inflammatory protein (MIP-2 and tumor necrosis factor (TNFα in the lungs was quantified using real time PCR. Results Oxygen saturation did not change significantly over time of ventilation in all groups (P > 0.05. Pulse rate dropped in all groups without PEEP during mechanical ventilation. In contrast, in the groups with PEEP pulse rate increased over time. These effects were not statistically significant (P > 0.05. Tissue damping (G and tissue elastance (H were significantly increased in all groups after 30 min of ventilation (P 0.05. Mechanical ventilation significantly increased infiltration of the lungs with PMN (P Conclusions Our data show that very short term mechanical ventilation with lower tidal volumes than 10 ml/kg did not reduce inflammation additionally. Formation of atelectasis and inadequate oxygenation with very low tidal volumes may be important factors. Application of PEEP attenuated inflammation.

  12. Liver Stiffness Measurement-Based Scoring System for Significant Inflammation Related to Chronic Hepatitis B

    Science.gov (United States)

    Hong, Mei-Zhu; Zhang, Ru-Mian; Chen, Guo-Liang; Huang, Wen-Qi; Min, Feng; Chen, Tian; Xu, Jin-Chao; Pan, Jin-Shui

    2014-01-01

    Objectives Liver biopsy is indispensable because liver stiffness measurement alone cannot provide information on intrahepatic inflammation. However, the presence of fibrosis highly correlates with inflammation. We constructed a noninvasive model to determine significant inflammation in chronic hepatitis B patients by using liver stiffness measurement and serum markers. Methods The training set included chronic hepatitis B patients (n = 327), and the validation set included 106 patients; liver biopsies were performed, liver histology was scored, and serum markers were investigated. All patients underwent liver stiffness measurement. Results An inflammation activity scoring system for significant inflammation was constructed. In the training set, the area under the curve, sensitivity, and specificity of the fibrosis-based activity score were 0.964, 91.9%, and 90.8% in the HBeAg(+) patients and 0.978, 85.0%, and 94.0% in the HBeAg(−) patients, respectively. In the validation set, the area under the curve, sensitivity, and specificity of the fibrosis-based activity score were 0.971, 90.5%, and 92.5% in the HBeAg(+) patients and 0.977, 95.2%, and 95.8% in the HBeAg(−) patients. The liver stiffness measurement-based activity score was comparable to that of the fibrosis-based activity score in both HBeAg(+) and HBeAg(−) patients for recognizing significant inflammation (G ≥3). Conclusions Significant inflammation can be accurately predicted by this novel method. The liver stiffness measurement-based scoring system can be used without the aid of computers and provides a noninvasive alternative for the prediction of chronic hepatitis B-related significant inflammation. PMID:25360742

  13. Liver stiffness measurement-based scoring system for significant inflammation related to chronic hepatitis B.

    Directory of Open Access Journals (Sweden)

    Mei-Zhu Hong

    Full Text Available Liver biopsy is indispensable because liver stiffness measurement alone cannot provide information on intrahepatic inflammation. However, the presence of fibrosis highly correlates with inflammation. We constructed a noninvasive model to determine significant inflammation in chronic hepatitis B patients by using liver stiffness measurement and serum markers.The training set included chronic hepatitis B patients (n = 327, and the validation set included 106 patients; liver biopsies were performed, liver histology was scored, and serum markers were investigated. All patients underwent liver stiffness measurement.An inflammation activity scoring system for significant inflammation was constructed. In the training set, the area under the curve, sensitivity, and specificity of the fibrosis-based activity score were 0.964, 91.9%, and 90.8% in the HBeAg(+ patients and 0.978, 85.0%, and 94.0% in the HBeAg(- patients, respectively. In the validation set, the area under the curve, sensitivity, and specificity of the fibrosis-based activity score were 0.971, 90.5%, and 92.5% in the HBeAg(+ patients and 0.977, 95.2%, and 95.8% in the HBeAg(- patients. The liver stiffness measurement-based activity score was comparable to that of the fibrosis-based activity score in both HBeAg(+ and HBeAg(- patients for recognizing significant inflammation (G ≥3.Significant inflammation can be accurately predicted by this novel method. The liver stiffness measurement-based scoring system can be used without the aid of computers and provides a noninvasive alternative for the prediction of chronic hepatitis B-related significant inflammation.

  14. Acrolein induced both pulmonary inflammation and the death of lung epithelial cells.

    Science.gov (United States)

    Sun, Yang; Ito, Sachiko; Nishio, Naomi; Tanaka, Yuriko; Chen, Nana; Isobe, Ken-Ichi

    2014-09-02

    Acrolein, a compound found in cigarette smoke, is a major risk factor for respiratory diseases. Previous research determined that both acrolein and cigarette smoke produced reactive oxygen species (ROS). As many types of pulmonary injuries are associated with inflammation, this study sought to ascertain the extent to which exposure to acrolein advanced inflammatory state in the lungs. Our results showed that intranasal exposure of mice to acrolein increased CD11c(+)F4/80(high) macrophages in the lungs and increased ROS formation via induction of NF-κB signaling. Treatment with acrolein activated macrophages and led to their increased production of ROS and expression of several key pro-inflammatory cytokines. In in vitro studies, acrolein treatment of bone marrow-derived GM-CSF-dependent immature macrophages (GM-IMs), activated the cells and led to their increased production of ROS and expression of several key pro-inflammatory cytokines. Acrolein treatment of macrophages induced apoptosis of lung epithelial cells. Inclusion of an inhibitor of ROS formation markedly decreased acrolein-mediated macrophage activation and reduced the extent of epithelial cell death. These results indicate that acrolein can cause lung damage, in great part by mediating the increased release of pro-inflammatory cytokines/factors by macrophages.

  15. Salvianolic acid B attenuates lung inflammation induced by cigarette smoke in mice.

    Science.gov (United States)

    Zhang, Dong-Fang; Zhang, Jin; Li, Ran

    2015-08-15

    Salvianolic acid B (Sal B), a bioactive compound isolated from the Chinese herb Radix Salviae Miltiorrhizae, has been reported to exhibit anti-inflammatory and anti-oxidantive effects. The aim of this study was to investigate the protective effects of Sal B on cigarette smoke (CS)-induced acute lung inflammation. Sal B was given intraperitoneally (i.p.) to mice 1h before CS exposure daily for four consecutive days. Bronchoalveolar lavage fluid (BALF) was collected to assess the levels of inflammatory cytokines and cell counts. Lung tissues were used to analysis pathological changes, total glutathione (GSH), nuclear factor erythroid-2 related factor 2 (Nrf-2), and nuclear factor-kappa B (NF-κB) expression. The results showed that Sal B inhibited CS-induced lung pathological changes, the infiltration of inflammatory cells, tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), interleukin-1β (IL-1β), and monocyte chemoattractant protein 1 (MCP-1) productions. Sal B also up-regulated CS-induced total glutathione (GSH) production. Furthermore, Sal B was found to up-regulate Nrf-2, hemeoxygenase1 (HO1) expression and suppress CS-induced NF-κB activation. In conclusion, the current study demonstrated that Sal B exhibited a protective effect on CS-induced lung injury and the possible mechanism was involved in activating Nrf-2 and inhibiting NF-κB activation.

  16. Lung inflammation and epithelial changes in a murine model of atopic asthma.

    Science.gov (United States)

    Blyth, D I; Pedrick, M S; Savage, T J; Hessel, E M; Fattah, D

    1996-05-01

    A murine model of allergen-induced airway inflammation and epithelial phenotypic change, and the time-courses of these events, are described. Mice were sensitized to ovalbumin using an adjuvant-free protocol, and challenged by multiple intratracheal instillations of ovalbumin by a non-surgical technique. Many of the characteristic features of human atopic asthma were seen in the mice. A marked eosinophilic infiltration of lung tissue and airways followed allergen challenge, and its severity increased with each challenge, as did the number of eosinophils in the blood. Lymphocytes, neutrophils, and monocytes also invaded the lungs. Airway macrophages showed signs of activation, their appearance resembling those recovered from antigen-challenged human asthmatic airways. The airway epithelium was thickened and displayed a marked goblet cell hyperplasia in terminal bronchioles and larger airways. After repeated challenges, the reticular layer beneath the basement membrane of the airway epithelium showed fibrosis, reproducing a commonly observed histologic feature of human asthma. Goblet cell hyperplasia began to appear before eosinophils or lymphocytes had migrated across the airway epithelium, and persisted for at least 11 days after the third intratracheal challenge with ovalbumin, despite the number of inflammatory cells in the lungs and airways having decreased to near-normal levels by 4 days. Plugs of mucus occluded some of the airways. These results indicate that some of the phenotypic changes in airway epithelium that follow an allergic response in the lung can be initiated before the migration of eosinophils or lymphocytes across the epithelial layer.

  17. Proteoglycans: key regulators of pulmonary inflammation and the innate immune response to lung infection.

    Science.gov (United States)

    Gill, Sean; Wight, Thomas N; Frevert, Charles W

    2010-06-01

    Exposure to viruses and bacteria results in lung infections and places a significant burden on public health. The innate immune system is an early warning system that recognizes viruses and bacteria, which results in the rapid production of inflammatory mediators such as cytokines and chemokines and the pulmonary recruitment of leukocytes. When leukocytes emigrate from the systemic circulation through the extracellular matrix (ECM) in response to lung infection they encounter proteoglycans, which consist of a core protein and their associated glycosaminoglycans. In this review, we discuss how proteoglycans serve to modify the pulmonary inflammatory response and leukocyte migration through a number of different mechanisms including: (1) The ability of soluble proteoglycans or fragments of glycosaminoglycans to activate Toll-like receptor (TLRs) signaling pathways; (2) The binding and sequestration of cytokines, chemokines, and growth factors by proteoglycans; (3) the ability of proteoglycans and hyaluronan to facilitate leukocyte adhesion and sequestration; and (4) The interactions between proteoglycans and matrix metalloproteinases (MMP) that alter the function of these proteases. In conclusion, proteoglycans fine-tune tissue inflammation through a number of different mechanisms. Clarification of the mechanisms whereby proteoglycans modulate the pulmonary inflammatory response will most likely lead to new therapeutic approaches to inflammatory lung disease and lung infection.

  18. Up-Regulation of Claudin-6 in the Distal Lung Impacts Secondhand Smoke-Induced Inflammation

    Directory of Open Access Journals (Sweden)

    Joshua B. Lewis

    2016-10-01

    Full Text Available It has long been understood that increased epithelial permeability contributes to inflammation observed in many respiratory diseases. Recently, evidence has revealed that environmental exposure to noxious material such as cigarette smoke reduces tight junction barrier integrity, thus enhancing inflammatory conditions. Claudin-6 (Cldn6 is a tetraspanin transmembrane protein found within the tight junctional complex and is implicated in maintaining lung epithelial barriers. To test the hypothesis that increased Cldn6 ameliorates inflammation at the respiratory barrier, we utilized the Tet-On inducible transgenic system to conditionally over-express Clnd6 in the distal lung. Cldn6 transgenic (TG and control mice were continuously provided doxycycline from postnatal day (PN 30 until euthanasia date at PN90. A subset of Cldn6 TG and control mice were also subjected to daily secondhand tobacco smoke (SHS via a nose only inhalation system from PN30-90 and compared to room air (RA controls. Animals were euthanized on PN90 and lungs were harvested for histological and molecular characterization. Bronchoalveolar lavage fluid (BALF was procured for the assessment of inflammatory cells and molecules. Quantitative RT-PCR and immunoblotting revealed increased Cldn6 expression in TG vs. control animals and SHS decreased Cldn6 expression regardless of genetic up-regulation. Histological evaluations revealed no adverse pulmonary remodeling via Hematoxylin and Eosin (H&E staining or any qualitative alterations in the abundance of type II pneumocytes or proximal non-ciliated epithelial cells via staining for cell specific propeptide of Surfactant Protein-C (proSP-C or Club Cell Secretory Protein (CCSP, respectively. Immunoblotting and qRT-PCR confirmed the differential expression of Cldn6 and the pro-inflammatory cytokines TNF-α and IL-1β. As a general theme, inflammation induced by SHS exposure was influenced by the availability of Cldn6. These data reveal

  19. Genetic ablation of CXCR2 protects against cigarette smoke-induced lung inflammation and injury

    Directory of Open Access Journals (Sweden)

    Chad A Lerner

    2016-10-01

    Full Text Available Antagonism of CXCR2 receptors, predominately located on neutrophils and critical for their immunomodulatory activity, is an attractive pharmacological therapeutic approach aimed at reducing the potentially damaging effects of heightened neutrophil influx into the lung caused by environmental agents including tobacco smoke. The role CXCR2 in lung inflammation in response to cigarette smoke (CS inhalation using the mutant mouse approach is not known. We hypothesized that genetic ablation of CXCR2 would protect mice against CS-induced inflammation and DNA damaging response. We used CXCR2 -/- deficient/mutant (knock-out, KO mice, and assessed the changes in critical lung inflammatory NF-B-driven chemokines released from the parenchyma of CS-exposed mice, and indications of the extent of tissue damage assessed by the number of DNA damaging γH2AX positive cells. CXCR2 KO mice exhibited protection from heightened levels of neutrophils measured in BALF taken from mice exposed to CS. IL-8 (KC mouse levels in the BALF from CS-exposed CXCR2 KO were elevated compared to WT. IL-6 levels in BALF were refractory to increase by CS in CXCR2 KO mice. There were no significant changes to MIP-2, MCP-1, or IL-1β. Total levels of NF-κB were maintained at lower levels in CS-exposed CXCR2 KO mice compared to WT mice exposed to CS. Finally CXCR2 KO mice were protected from increased number of lung cells positive for DNA damage response and senescence marker γH2AX, CXCR2 KO mice are protected from heightened inflammatory response mediated by increased neutrophil response as a result of acute 3 day CS exposure. This is also associated with changes in pro-inflammatory chemokines and reduced incursion of γH2AX indicating CXCR2 deficient mice are protected from lung injury. Thus CXCR2 may be a pharmacological target in setting of inflammation and DNA damage in the pathogenesis of COPD.

  20. Up-Regulation of Claudin-6 in the Distal Lung Impacts Secondhand Smoke-Induced Inflammation

    Science.gov (United States)

    Lewis, Joshua B.; Milner, Dallin C.; Lewis, Adam L.; Dunaway, Todd M.; Egbert, Kaleb M.; Albright, Scott C.; Merrell, Brigham J.; Monson, Troy D.; Broberg, Dallin S.; Gassman, Jason R.; Thomas, Daniel B.; Arroyo, Juan A.; Reynolds, Paul R.

    2016-01-01

    It has long been understood that increased epithelial permeability contributes to inflammation observed in many respiratory diseases. Recently, evidence has revealed that environmental exposure to noxious material such as cigarette smoke reduces tight junction barrier integrity, thus enhancing inflammatory conditions. Claudin-6 (Cldn6) is a tetraspanin transmembrane protein found within the tight junctional complex and is implicated in maintaining lung epithelial barriers. To test the hypothesis that increased Cldn6 ameliorates inflammation at the respiratory barrier, we utilized the Tet-On inducible transgenic system to conditionally over-express Clnd6 in the distal lung. Cldn6 transgenic (TG) and control mice were continuously provided doxycycline from postnatal day (PN) 30 until euthanasia date at PN90. A subset of Cldn6 TG and control mice were also subjected to daily secondhand tobacco smoke (SHS) via a nose only inhalation system from PN30-90 and compared to room air (RA) controls. Animals were euthanized on PN90 and lungs were harvested for histological and molecular characterization. Bronchoalveolar lavage fluid (BALF) was procured for the assessment of inflammatory cells and molecules. Quantitative RT-PCR and immunoblotting revealed increased Cldn6 expression in TG vs. control animals and SHS decreased Cldn6 expression regardless of genetic up-regulation. Histological evaluations revealed no adverse pulmonary remodeling via Hematoxylin and Eosin (H&E) staining or any qualitative alterations in the abundance of type II pneumocytes or proximal non-ciliated epithelial cells via staining for cell specific propeptide of Surfactant Protein-C (proSP-C) or Club Cell Secretory Protein (CCSP), respectively. Immunoblotting and qRT-PCR confirmed the differential expression of Cldn6 and the pro-inflammatory cytokines TNF-α and IL-1β. As a general theme, inflammation induced by SHS exposure was influenced by the availability of Cldn6. These data reveal captivating

  1. DIETARY FLAXSEED PREVENTS RADIATION-INDUCED OXIDATIVE LUNG DAMAGE, INFLAMMATION AND FIBROSIS IN A MOUSE MODEL OF THORACIC RADIATION INJURY

    Science.gov (United States)

    Lee, James C.; Krochak, Ryan; Blouin, Aaron; Kanterakis, Stathis; Chatterjee, Shampa; Arguiri, Evguenia; Vachani, Anil; Solomides, Charalambos C.; Cengel, Keith A.; Christofidou-Solomidou, Melpo

    2009-01-01

    Flaxseed (FS) has high contents of omega-3 fatty acids and lignans with antioxidant properties. Its use in preventing thoracic X-ray radiation therapy (XRT)-induced pneumonopathy has never been evaluated. We evaluated FS supplementation given to mice given before and post-XRT. FS-derived lignans, known for their direct antioxidant properties, were evaluated in abrogating ROS generation in cultured endothelial cells following gamma radiation exposure. Mice were fed 10% FS or isocaloric control diet for three weeks and given 13.5 Gy thoracic XRT. Lungs were evaluated at 24 hours for markers of radiation-induced injury, three weeks for acute lung damage (lipid peroxidation, lung edema and inflammation), and at four months for late lung damage (inflammation and fibrosis). FS-Lignans blunted ROS generation in vitro, resulting from radiation in a dose-dependent manner. FS-fed mice had reduced expression of lung injury biomarkers (Bax, p21, and TGF-beta1) at 24 hours following XRT and reduced oxidative lung damage as measured by malondialdehyde (MDA) levels at 3 weeks following XRT. In addition, FS-fed mice had decreased lung fibrosis as determined by hydroxyproline content and decreased inflammatory cell influx into lungs at 4 months post XRT. Importantly, when Lewis Lung carcinoma cells were injected systemically in mice, FS dietary supplementation did not appear to protect lung tumors from responding to thoracic XRT. Dietary FS is protective against pulmonary fibrosis, inflammation and oxidative lung damage in a murine model. Moreover, in this model, tumor radioprotection was not observed. FS lignans exhibited potent radiation-induced ROS scavenging action. Taken together, these data suggest that dietary flaxseed may be clinically useful as an agent to increase the therapeutic index of thoracic XRT by increasing the radiation tolerance of lung tissues. PMID:18981722

  2. Alcohol Exposure Alters Mouse Lung Inflammation in Response to Inhaled Dust

    Directory of Open Access Journals (Sweden)

    Jill A. Poole

    2012-07-01

    Full Text Available Alcohol exposure is associated with increased lung infections and decreased mucociliary clearance. Occupational workers exposed to dusts from concentrated animal feeding operations (CAFOs are at risk for developing chronic inflammatory lung diseases. Agricultural worker co-exposure to alcohol and organic dust has been established, although little research has been conducted on the combination effects of alcohol and organic dusts on the lung. Previously, we have shown in a mouse model that exposure to hog dust extract (HDE collected from a CAFO results in the activation of protein kinase C (PKC, elevated lavage fluid cytokines/chemokines including interleukin-6 (IL-6, and the development of significant lung pathology. Because alcohol blocks airway epithelial cell release of IL-6 in vitro, we hypothesized that alcohol exposure would alter mouse lung inflammatory responses to HDE. To test this hypothesis, C57BL/6 mice were fed 20% alcohol or water ad libitum for 6 weeks and treated with 12.5% HDE by intranasal inhalation method daily during the final three weeks. Bronchoalveolar lavage fluid (BALF, tracheas and lungs were collected. HDE stimulated a 2–4 fold increase in lung and tracheal PKCε (epsilon activity in mice, but no such increase in PKCε activity was observed in dust-exposed mice fed alcohol. Similarly, alcohol-fed mice demonstrated significantly less IL-6 in lung lavage in response to dust than that observed in control mice instilled with HDE. TNFα levels were also inhibited in the alcohol and HDE-exposed mouse lung tissue as compared to the HDE only exposed group. HDE-induced lung inflammatory aggregates clearly present in the tissue from HDE only exposed animals were not visually detectable in the HDE/alcohol co-exposure group. Statistically significant weight reductions and 20% mortality were also observed in the mice co-exposed to HDE and alcohol. These data suggest that alcohol exposure depresses the ability

  3. Quality of life is associated with chronic inflammation in schizophrenia: a cross-sectional study.

    Science.gov (United States)

    Faugere, M; Micoulaud-Franchi, J A; Alessandrini, M; Richieri, R; Faget-Agius, C; Auquier, P; Lançon, C; Boyer, L

    2015-06-04

    Inflammation may play a crucial role in the pathogenesis of schizophrenia. However, the association between chronic inflammation and health outcomes in schizophrenia remains unclear, particularly for patient-reported outcomes. The aim of this study was to investigate the relationship between quality of life (QoL) and chronic inflammation assessed using C -Reactive Protein (CRP) in patients with schizophrenia. Two hundred and fifty six patients with schizophrenia were enrolled in this study. After adjusting for key socio-demographic and clinical confounding factors, patients with high levels of CRP (>3.0 mg/l) had a lower QoL than patients with normal CRP levels (OR = 0.97, 95% CI = 0.94-0.99). An investigation of the dimensions of QoL revealed that psychological well-being, physical well-being and sentimental life were the most salient features of QoL associated with CRP. Significant associations were found between lower educational level (OR = 4.15, 95% CI = 1.55-11.07), higher body mass index (OR = 1.16, 95% CI = 1.06-1.28), higher Fagerström score (OR = 1.22, 95% CI = 1.01-1.47) and high levels of CRP. After replications with longitudinal approaches, the association between QoL and chronic inflammation may offer interesting interventional prospects to act both on inflammation and QoL in patients with schizophrenia.

  4. Chronic inflammation as a promotor of mutagenesis in essential thrombocythemia, polycythemia vera and myelofibrosis. A human inflammation model for cancer development?

    Science.gov (United States)

    Hasselbalch, Hans Carl

    2013-02-01

    The Philadelphia-negative chronic myeloproliferative neoplasms (MPNs) are acquired stem cell neoplasms, in which a stem cell lesion induces an autonomous proliferative advantage. In addition to the JAK2V617 mutation several other mutations have been described. Recently chronic inflammation has been proposed as a trigger and driver of clonal evolution in MPNs. Herein, it is hypothesized that sustained inflammation may elicit the stem cell insult by inducing a state of chronic oxidative stress with elevated levels of reactive oxygen species (ROS) in the bone marrow, thereby creating a high-risk microenvironment for induction of mutations due to the persistent inflammation-induced oxidative damage to DNA in hematopoietic cells. Alterations in the epigenome induced by the chronic inflammatory drive may likely elicit a "epigenetic switch" promoting persistent inflammation. The perspectives of chronic inflammation as the driver of mutagenesis in MPNs are discussed, including early intervention with interferon-alpha2 and potent anti-inflammatory agents (e.g. JAK1-2 inhibitors, histone deacetylase inhibitors, DNA-hypomethylators and statins) to disrupt the self-perpetuating chronic inflammation state and accordingly eliminating a potential trigger of clonal evolution and disease progression with myelofibrotic and leukemic transformation.

  5. Inflammation

    DEFF Research Database (Denmark)

    Holst-Hansen, Thomas

    Inflammation is an intricate response relying on the activation and response of both the innate immune system and the infected tissue to remove a threat. The pro-inflammatory NF-kappaB pathway has been studied extensively, among others because of its key role in regulation of inflammation. However...

  6. Effects of inhaled corticosteroids on airway inflammation in chronic obstructive pulmonary disease: a systematic review and meta-analysis

    Directory of Open Access Journals (Sweden)

    Jen R

    2012-09-01

    Full Text Available Rachel Jen,1 Stephen,1 Rennard,2 Don D Sin1,31Department of Medicine, Respiratory Division, University of British Columbia, Vancouver, BC, Canada; 2Internal Medicine Section of Pulmonary and Critical Care, Nebraska Medical Center, Omaha, NE, USA; 3Institute of Heart and Lung Health and the UBC James Hogg Research Center, St Paul's Hospital, Vancouver, BC, CanadaBackground: Chronic obstructive pulmonary disease (COPD is characterized by chronic inflammation in the small airways. The effect of inhaled corticosteroids (ICS on lung inflammation in COPD remains uncertain. We sought to determine the effects of ICS on inflammatory indices in bronchial biopsies and bronchoalveolar lavage fluid of patients with COPD.Methods: We searched Medline, Embase, Cinahl, and the Cochrane database for randomized, controlled clinical trials that used bronchial biopsies and bronchoalveolar lavage to evaluate the effects of ICS in stable COPD. For each chosen study, we calculated the mean differences in the concentrations of inflammatory cells before and after treatment in both intervention and control groups. These values were then converted into standardized mean differences (SMD to accommodate the differences in patient selection, clinical treatment, and biochemical procedures that were employed across the original studies. If significant heterogeneity was present (P < 0.1, then a random effects model was used to pool the original data; otherwise, a fixed effects model was used.Results: We identified eight original studies that met the inclusion criteria. Four studies used bronchial biopsies (n = 102 participants and showed that ICS were effective in reducing CD4 and CD8 cell counts (SMD, −0.52 units and −0.66 units, 95% confidence interval. The five studies used bronchoalveolar lavage fluid (n = 309, which together showed that ICS reduced neutrophil and lymphocyte counts (SMD, −0.64 units and −0.64 units, 95% confidence interval. ICS on the other hand

  7. Antioxidant Effect of Spirulina (Arthrospira) maxima on Chronic Inflammation Induced by Freund's Complete Adjuvant in Rats

    Science.gov (United States)

    Gutiérrez-Rebolledo, Gabriel Alfonso; Galar-Martínez, Marcela; García-Rodríguez, Rosa Virginia; Chamorro-Cevallos, Germán A.; Hernández-Reyes, Ana Gabriela

    2015-01-01

    Abstract One of the major mechanisms in the pathogenesis of chronic inflammation is the excessive production of reactive oxygen and reactive nitrogen species, and therefore, oxidative stress. Spirulina (Arthrospira) maxima has marked antioxidant activity in vivo and in vitro, as well as anti-inflammatory activity in certain experimental models, the latter activity being mediated probably by the antioxidant activity of this cyanobacterium. In the present study, chronic inflammation was induced through injection of Freund's complete adjuvant (CFA) in rats treated daily with Spirulina (Arthrospira) maxima for 2 weeks beginning on day 14. Joint diameter, body temperature, and motor capacity were assessed each week. On days 0 and 28, total and differential leukocyte counts and serum oxidative damage were determined, the latter by assessing lipid peroxidation and protein carbonyl content. At the end of the study, oxidative damage to joints was likewise evaluated. Results show that S. maxima favors increased mobility, as well as body temperature regulation, and a number of circulating leukocytes, lymphocytes, and monocytes in specimens with CFA-induced chronic inflammation and also protects against oxidative damage in joint tissue as well as serum. In conclusion, the protection afforded by S. maxima against development of chronic inflammation is due to its antioxidant activity. PMID:25599112

  8. Airway Inflammation in Chronic Rhinosinusitis with Nasal Polyps and Asthma: The United Airways Concept Further Supported

    DEFF Research Database (Denmark)

    Håkansson, Kåre; Bachert, Claus; Konge, Lars;

    2015-01-01

    Background It has been established that patients with chronic rhinosinusitis with nasal polyps (CRSwNP) often have co-existing asthma. Objective We aimed to test two hypotheses: (i) upper and lower airway inflammation in CRSwNP is uniform in agreement with the united airways concept; and (ii) bro...

  9. Effect of infliximab on local and systemic inflammation in chronic obstructive pulmonary disease : A pilot study

    NARCIS (Netherlands)

    Dentener, Mieke A.; Creutzberg, Eva C.; Pennings, Herman-Jan; Rijkers, Ger T.; Mercken, Evi; Wouters, Emiel F. M.

    2008-01-01

    Background: Chronic obstructive pulmonary disease ( COPD) with cachexia is characterized by inflammation reflected by increased levels of tumor necrosis factor-alpha (TNF-alpha). Objectives: In this study, infliximab, an anti-TNF-alpha antibody, was evaluated for its effects on systemic ( plasma) an

  10. Airway Inflammation in Chronic Rhinosinusitis with Nasal Polyps and Asthma: The United Airways Concept Further Supported

    DEFF Research Database (Denmark)

    Håkansson, Kåre; Bachert, Claus; Konge, Lars;

    2015-01-01

    Background It has been established that patients with chronic rhinosinusitis with nasal polyps (CRSwNP) often have co-existing asthma. Objective We aimed to test two hypotheses: (i) upper and lower airway inflammation in CRSwNP is uniform in agreement with the united airways concept; and (ii...

  11. An extended chronic lymphocytic inflammation with pontine perivascular enhancement responsive to steroids phenotype

    OpenAIRE

    Lane, Chris; Phadke, Rahul; Howard, Robin

    2014-01-01

    Chronic lymphocytic inflammation with pontine perivascular enhancement responsive to steroids (CLIPPERS) is a recently described central nervous system inflammatory condition. In this case report we describe a patient initially with features consistent with this syndrome, who represented with seizures (not previously reported in this syndrome) and corresponding prominent cortical involvement on imaging (also not previously noted). Owing to diagnostic uncertainty, cerebral biopsy was performed...

  12. Green tea polyphenols attenuate deterioration of bone microarchitecture in female rats with systemic chronic inflammation

    Science.gov (United States)

    Introduction: Our previous study demonstrated that green tea polyphenols (GTP) benefit bone health in female rats with chronic inflammation, because of GTP’s antioxidant capacity. The current study further evaluates whether GTP can restore bone microstructure along with related mechanism in rats wit...

  13. Antioxidant Effect of Spirulina (Arthrospira) maxima on Chronic Inflammation Induced by Freund's Complete Adjuvant in Rats.

    Science.gov (United States)

    Gutiérrez-Rebolledo, Gabriel Alfonso; Galar-Martínez, Marcela; García-Rodríguez, Rosa Virginia; Chamorro-Cevallos, Germán A; Hernández-Reyes, Ana Gabriela; Martínez-Galero, Elizdath

    2015-08-01

    One of the major mechanisms in the pathogenesis of chronic inflammation is the excessive production of reactive oxygen and reactive nitrogen species, and therefore, oxidative stress. Spirulina (Arthrospira) maxima has marked antioxidant activity in vivo and in vitro, as well as anti-inflammatory activity in certain experimental models, the latter activity being mediated probably by the antioxidant activity of this cyanobacterium. In the present study, chronic inflammation was induced through injection of Freund's complete adjuvant (CFA) in rats treated daily with Spirulina (Arthrospira) maxima for 2 weeks beginning on day 14. Joint diameter, body temperature, and motor capacity were assessed each week. On days 0 and 28, total and differential leukocyte counts and serum oxidative damage were determined, the latter by assessing lipid peroxidation and protein carbonyl content. At the end of the study, oxidative damage to joints was likewise evaluated. Results show that S. maxima favors increased mobility, as well as body temperature regulation, and a number of circulating leukocytes, lymphocytes, and monocytes in specimens with CFA-induced chronic inflammation and also protects against oxidative damage in joint tissue as well as serum. In conclusion, the protection afforded by S. maxima against development of chronic inflammation is due to its antioxidant activity.

  14. Clinical Observation in 102 Cases of Chronic Pelvic Inflammation Treated with Qi Jie Granules

    Institute of Scientific and Technical Information of China (English)

    章勤; 何嘉琳; 何少山; 许萍

    2004-01-01

    Objective: To observe the therapeutic effects of Qi Jie Granule (芪竭颗粒) on chronic pelvic inflammation. Method: The therapeutic effect, T-lymphocytic subgroups and indexes of blood rheology were observed when 102 cases of chronic pelvic inflammation in the treatment group were treated with Qi Jie Granule, and another 70 cases were treated with Qian Jin Pian as the controls. Results: The total effective rate was 96.08% in the treatment group, but 84.29% in the control group with a significant difference between the two groups (P<0.01). Qi Jie Granule was also found effective in improving blood viscosity and regulating T-lymphocytic subgroups, and the difference before and after the treatment was also very significant (P<0.05 or P<0.01). Conclusion: The nature of chronic pelvic inflammation is qi deficiency and blood stasis in accordance with the theory of traditional Chinese medicine (TCM). As a drug that is indicated for chronic pelvic inflammation, its mechanism may be related to the improved blood circulation, accelerated inflammatory absorption and regulated immune function.

  15. Plasma biomarkers of chronic inflammation are elevated in overweight Mexican-American children

    Science.gov (United States)

    Excess body weight is associated with an accumulation of chronic, low-grade inflammation that has been implicated in the pathophysiology of various diseases. The obesity epidemic is more prevalent in certain ethnic groups. Despite this health disparity, few published studies have measured biomarke...

  16. Osteoprotective Effect of Alfacalcidol in Female Rats with Systemic Chronic Inflammation

    Science.gov (United States)

    Studies have shown that alfacalcidol (a hydroxylated form of vitamin D) mitigates glucocorticoid-induced bone loss. This study was undertaken to explore the mechanism and bone microarchitecture of alfacalcidol in rats with systemic chronic inflammation. Thirty female rats (3-month-old) assigned to ...

  17. Altered Pulmonary Lymphatic Development in Infants with Chronic Lung Disease

    Directory of Open Access Journals (Sweden)

    Emily M. McNellis

    2014-01-01

    Full Text Available Pulmonary lymphatic development in chronic lung disease (CLD has not been investigated, and anatomy of lymphatics in human infant lungs is not well defined. Hypothesis. Pulmonary lymphatic hypoplasia is present in CLD. Method. Autopsy lung tissues of eighteen subjects gestational ages 22 to 40 weeks with and without history of respiratory morbidity were stained with monoclonal antipodoplanin and reviewed under light microscopy. Percentage of parenchyma podoplanin stained at the acinar level was determined using computerized image analysis; 9 CLD and 4 control subjects gestational ages 27 to 36 weeks were suitable for the analysis. Results. Distinct, lymphatic-specific staining with respect to other vascular structures was appreciated in all gestations. Infants with and without respiratory morbidity had comparable lymphatic distribution which extended to the alveolar ductal level. Podoplanin staining per parenchyma was increased and statistically significant in the CLD group versus controls at the alveolar ductal level (0.06% ± 0.02% versus 0.04% ± 0.01%, 95% CI −0.04% to −0.002%, P<0.03. Conclusion. Contrary to our hypothesis, the findings show that there is an increase in alveolar lymphatics in CLD. It is suggested that the findings, by expanding current knowledge of CLD pathology, may offer insight into the development of more effective therapies to tackle CLD.

  18. Simulating Sleep Apnea by Exposure to Intermittent Hypoxia Induces Inflammation in the Lung and Liver

    Directory of Open Access Journals (Sweden)

    Darlan Pase da Rosa

    2012-01-01

    Full Text Available Sleep apnea is a breathing disorder that results from momentary and cyclic collapse of the upper airway, leading to intermittent hypoxia (IH. IH can lead to the formation of free radicals that increase oxidative stress, and this mechanism may explain the association between central sleep apnea and nonalcoholic steatohepatitis. We assessed the level of inflammation in the lung and liver tissue from animals subjected to intermittent hypoxia and simulated sleep apnea. A total of 12 C57BL/6 mice were divided into two groups and then exposed to IH (n=6 or a simulated IH (SIH (n=6 for 35 days. We observed an increase in oxidative damage and other changes to endogenous antioxidant enzymes in mice exposed to IH. Specifically, the expression of multiple transcription factors, including hypoxia inducible factor (HIF-1α, nuclear factor kappa B (NF-κB, and tumor necrosis factor (TNF-α, inducible NO synthase (iNOS, vascular endothelial growth factor (VEGF, and cleaved caspase 3 were shown to be increased in the IH group. Overall, we found that exposure to intermittent hypoxia for 35 days by simulating sleep apnea leads to oxidative stress, inflammation, and increased activity of caspase 3 in the liver and lung.

  19. Loss of hypoxia-inducible factor 2 alpha in the lung alveolar epithelium of mice leads to enhanced eosinophilic inflammation in cobalt-induced lung injury.

    Science.gov (United States)

    Proper, Steven P; Saini, Yogesh; Greenwood, Krista K; Bramble, Lori A; Downing, Nathaniel J; Harkema, Jack R; Lapres, John J

    2014-02-01

    Hard metal lung disease (HMLD) is an occupational lung disease specific to inhalation of cobalt-containing particles whose mechanism is largely unknown. Cobalt is a known hypoxia mimic and stabilizer of the alpha subunits of hypoxia-inducible factors (HIFs). Previous work revealed that though HIF1α contrib utes to cobalt toxicity in vitro, loss of HIF1α in the alveolar epithelial cells does not provide in vivo protection from cobalt-induced lung inflammation. HIF1α and HIF2α show unique tissue expression profiles, and HIF2α is known to be the predominant HIF mRNA isoform in the adult lung. Thus, if HIF2α activation by cobalt contributes to pathophysiology of HMLD, we hypothesized that loss of HIF2α in lung epithelium would provide protection from cobalt-induced inflammation. Mice with HIF2α-deficiency in Club and alveolar type II epithelial cells (ATIIs) (HIF2α(Δ/Δ)) were exposed to cobalt (60 µg/day) or saline using a subacute occupational exposure model. Bronchoalveolar lavage cellularity, cytokines, qRT-PCR, and histopathology were analyzed. Results show that loss of HIF2α leads to enhanced eosinophilic inflammation and increased goblet cell metaplasia. Additionally, control mice demonstrated a mild recovery from cobalt-induced lung injury compared with HIF2α(Δ/Δ) mice, suggesting a role for epithelial HIF2α in repair mechanisms. The expression of important cytokines, such as interleukin (IL)-5 and IL-10, displayed significant differences following cobalt exposure when HIF2α(Δ/Δ) and control mice were compared. In summary, our data suggest that although loss of HIF2α does not afford protection from cobalt-induced lung inflammation, epithelial HIF2α signaling does play an important role in modulating the inflammatory and repair response in the lung.

  20. C-reactive protein, lung hyperinflation and heart rate variability in chronic obstructive pulmonary disease --a pilot study.

    Science.gov (United States)

    Corbo, Giuseppe Maria; Inchingolo, Riccardo; Sgueglia, Gregory Angelo; Lanza, Gaetano; Valente, Salvatore

    2013-04-01

    Chronic obstructive pulmonary disease (COPD) is associated to cardiovascular morbidity and mortality, and abnormalities of the autonomic nervous system have been described in subjects with severe disease. We studied heart rate variability (HRV) in COPD patients at rest and during the 6-minute Walk Test (6mWT) and the association with lung function impairment taking into account systemic inflammation. Thirty outpatients with stable COPD underwent lung function measurements, blood gas analysis, ECG Holter and transcutaneous pulse oximetry during 6mWT and then they were classified by BODE index. Also C-reactive protein (CRP) was measured. At rest, we observed a significant reduction of HRV for increasing BODE index. During the 6mWT, HRV tended to decrease in BODE 1 subjects whereas an increase was observed in BODE 2 and BODE 3-4 subjects. Subjects with elevated CRP values had a significant reduction in Standard Deviation of all normal RR intervals at rest (SDNN: p = 0.013), Total Power (TFA: p = 0.04) and Very Low Frequency band (VLF: p = 0.041). At rest, subjects with Inspiratory Capacity-to-Total Lung Capacity ratio (IC/TLC) hyperinflation indices. At rest and during submaximal exercise, COPD patients with moderate and severe disease had an abnormal cardiac autonomic modulation which was related to both systemic inflammation and lung function impairment.

  1. Smoking-induced CXCL14 expression in the human airway epithelium links chronic obstructive pulmonary disease to lung cancer.

    Science.gov (United States)

    Shaykhiev, Renat; Sackrowitz, Rachel; Fukui, Tomoya; Zuo, Wu-Lin; Chao, Ion Wa; Strulovici-Barel, Yael; Downey, Robert J; Crystal, Ronald G

    2013-09-01

    CXCL14, a recently described epithelial cytokine, plays putative multiple roles in inflammation and carcinogenesis. In the context that chronic obstructive pulmonary disease (COPD) and lung cancer are both smoking-related disorders associated with airway epithelial disorder and inflammation, we hypothesized that the airway epithelium responds to cigarette smoking with altered CXCL14 gene expression, contributing to the disease-relevant phenotype. Using genome-wide microarrays with subsequent immunohistochemical analysis, the data demonstrate that the expression of CXCL14 is up-regulated in the airway epithelium of healthy smokers and further increased in COPD smokers, especially within hyperplastic/metaplastic lesions, in association with multiple genes relevant to epithelial structural integrity and cancer. In vitro experiments revealed that the expression of CXCL14 is induced in the differentiated airway epithelium by cigarette smoke extract, and that epidermal growth factor mediates CXCL14 up-regulation in the airway epithelium through its effects on the basal stem/progenitor cell population. Analyses of two independent lung cancer cohorts revealed a dramatic up-regulation of CXCL14 expression in adenocarcinoma and squamous-cell carcinoma. High expression of the COPD-associated CXCL14-correlating cluster of genes was linked in lung adenocarcinoma with poor survival. These data suggest that the smoking-induced expression of CXCL14 in the airway epithelium represents a novel potential molecular link between smoking-associated airway epithelial injury, COPD, and lung cancer.

  2. Periodontal inflammation induced by chronic ethanol consumption in ovariectomized rats

    OpenAIRE

    2016-01-01

    The immune system plays an important role in the pathogenesis of periodontal diseases. The host may modulate periodontal inflammatory reactions and it determines variances in the individual susceptibility and in the periodontal disease progression speed. Osteoporosis and alcoholism are described as risk indicators of periodontal disease among the systemic acquired factors. Objective: The current study aims to analyze chronic alcohol consumption influence on induced periodontitis in rats prese...

  3. Combined Proteome and Eicosanoid Profiling Approach for Revealing Implications of Human Fibroblasts in Chronic Inflammation.

    Science.gov (United States)

    Tahir, Ammar; Bileck, Andrea; Muqaku, Besnik; Niederstaetter, Laura; Kreutz, Dominique; Mayer, Rupert L; Wolrab, Denise; Meier, Samuel M; Slany, Astrid; Gerner, Christopher

    2017-02-07

    During inflammation, proteins and lipids act in a concerted fashion, calling for combined analyses. Fibroblasts are powerful mediators of chronic inflammation. However, little is known about eicosanoid formation by human fibroblasts. The aim of this study was to analyze the formation of the most relevant inflammation mediators including proteins and lipids in human fibroblasts upon inflammatory stimulation and subsequent treatment with dexamethasone, a powerful antiphlogistic drug. Label-free quantification was applied for proteome profiling, while an in-house established data-dependent analysis method based on high-resolution mass spectrometry was applied for eicosadomics. Furthermore, a set of 188 metabolites was determined by targeted analysis. The secretion of 40 proteins including cytokines, proteases, and other inflammation agonists as well as 14 proinflammatory and nine anti-inflammatory eicosanoids was found significantly induced, while several acylcarnithins and sphingomyelins were found significantly downregulated upon inflammatory stimulation. Treatment with dexamethasone downregulated most cytokines and proteases, abrogated the formation of pro- but also anti-inflammatory eicosanoids, and restored normal levels of acylcarnithins but not of sphingomyelins. In addition, the chemokines CXCL1, CXCL5, CXCL6, and complement C3, known to contribute to chronic inflammation, were not counter-regulated by dexamethasone. Similar findings were obtained with human mesenchymal stem cells, and results were confirmed by targeted analysis with multiple reaction monitoring. Comparative proteome profiling regarding other cells demonstrated cell-type-specific synthesis of, among others, eicosanoid-forming enzymes as well as relevant transcription factors, allowing us to better understand cell-type-specific regulation of inflammation mediators and shedding new light on the role of fibroblasts in chronic inflammation.

  4. Pulmonary aspergillosis and aflatoxins in chronic lung diseases.

    Science.gov (United States)

    Ali, Sana; Malik, Abida; Shahid, Mohd; Bhargava, Rakesh

    2013-10-01

    Fungal infections of lung have become increasingly common during the last few decades. Aspergillosis and the role of aflatoxins in various chronic lung diseases have not been extensively studied. Bronchoalveolar lavage (BAL) samples and sera from 40 patients of chronic lung diseases were analyzed for galactomannan antigen (GM) and aflatoxin by enzyme-linked immunosorbent assay. Direct microscopy and culture of BAL samples were also done to detect the Aspergillus species. Results revealed that 15 (37.5 %) of the 40 patients had growth of Aspergillus on BAL culture. Out of these culture-positive cases, 13 (86.7 %) patients were positive for galactomannan antigen also. About 62.5 % cases did not show growth of Aspergillus in BAL culture. However, galactomannan antigen could be detected in 20 % of these patients. Overall, 20 % patients were diagnosed as proven invasive fungal disease (IFD), 32.5 % were of probable IFD, 17.5 % of possible IFD. Aspergillus growth was observed in 100 % of proven and 53.8 % of probable IFD cases. Galactomannan antigen was found in 100 % cases of proven and 76.9 % of probable IFD. Ten (25 %) patients were found to be positive for aflatoxins. It was detected in 6 (40 %) of culture-positive cases. About 62.5 % of the cases with proven IFD and 46.1 % of probable IFD had aflatoxin in their samples. Aflatoxin positivity was found to be more in patients with proven IFD than in probable IFD, and higher level of aflatoxins was detected in cases with proven IFD. Significant difference was observed in aflatoxin positivity among food grain workers when compared to other occupations.

  5. Sex influence on chronic intestinal inflammation in Helicobacter hepaticus-infected A/JCr mice.

    Science.gov (United States)

    Livingston, Robert S; Myles, Mathew H; Livingston, Beth A; Criley, Jennifer M; Franklin, Craig L

    2004-06-01

    Helicobacter hepaticus is a bacterial pathogen of mice that has been reported to cause chronic intestinal inflammation in A/JCr, germfree Swiss Webster, and immunodeficient mice. To the authors' knowledge, the influence of sex on development of chronic intestinal inflammation in H. hepaticus-infected mice has not been investigated. The purposes of the study reported here were to determine whether severity of intestinal inflammation differs between male and female A/JCr mice chronically infected with H. hepaticus and to characterize the mucosal immune response in these mice. The cecum of male and female A/JCr mice infected with H. hepaticus for 1 month and 3 months was objectively evaluated histologically for intestinal disease. Also, semi-quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) analysis was done to measure interferon-gamma (IFN-gamma), tumor necrosis factor-alpha (TNF-alpha), interleukin 4 (IL-4), IL-10, macrophage inflammatory protein-1alpha (MIP-1alpha), interferon-inducible protein of 10 kDa (IP-10), and monokine induced by gamma interferon (MIG) mRNA values in the cecal tissue of these mice. Significant differences in cecal lesion scores were not present at 1 month after infection. However, infected female mice had significantly up-regulated expression of cecal IL-10, MIP-1alpha, IP-10, and MIG mRNA compared with that in uninfected females, and expression of IL-10 and MIP-1alpha was significantly greater than that detected in infected male mice (P JCr mice, females develop more severe intestinal inflammation than do males, and the chronic mucosal inflammation is polarized toward a Th1 response that is not down-regulated by increased activity of IL-10. We propose that H. hepaticus-infected A/JCr mice will serve as a good animal model with which to study the influence of sex on bacterial-induced mucosal inflammation.

  6. Inflammation and lung maturation from stretch injury in preterm fetal sheep.

    Science.gov (United States)

    Hillman, Noah H; Polglase, Graeme R; Pillow, J Jane; Saito, Masatoshi; Kallapur, Suhas G; Jobe, Alan H

    2011-02-01

    Mechanical ventilation is a risk factor for the development of bronchopulmonary dysplasia in premature infants. Fifteen minutes of high tidal volume (V(T)) ventilation induces inflammatory cytokine expression in small airways and lung parenchyma within 3 h. Our objective was to describe the temporal progression of cytokine and maturation responses to lung injury in fetal sheep exposed to a defined 15-min stretch injury. After maternal anesthesia and hysterotomy, 129-day gestation fetal lambs (n = 7-8/group) had the head and chest exteriorized. Each fetus was intubated, and airway fluid was gently removed. While placental support was maintained, the fetus received ventilation with an escalating V(T) to 15 ml/kg without positive end-expiratory pressure (PEEP) for 15 min using heated, humidified 100% nitrogen. The fetus was then returned to the uterus for 1, 6, or 24 h. Control lambs received a PEEP of 2 cmH(2)O for 15 min. Tissue samples from the lung and systemic organs were evaluated. Stretch injury increased the early response gene Egr-1 and increased expression of pro- and anti-inflammatory cytokines within 1 h. The injury induced granulocyte/macrophage colony-stimulating factor mRNA and matured monocytes to alveolar macrophages by 24 h. The mRNA for the surfactant proteins A, B, and C increased in the lungs by 24 h. The airway epithelium demonstrated dynamic changes in heat shock protein 70 (HSP70) over time. Serum cortisol levels did not increase, and induction of systemic inflammation was minimal. We conclude that a brief period of high V(T) ventilation causes a proinflammatory cascade, a maturation of lung monocytic cells, and an induction of surfactant protein mRNA.

  7. Role of macrophage chemoattractant protein-1 in acute inflammation after lung contusion.

    Science.gov (United States)

    Suresh, Madathilparambil V; Yu, Bi; Machado-Aranda, David; Bender, Matthew D; Ochoa-Frongia, Laura; Helinski, Jadwiga D; Davidson, Bruce A; Knight, Paul R; Hogaboam, Cory M; Moore, Bethany B; Raghavendran, Krishnan

    2012-06-01

    Lung contusion (LC), commonly observed in patients with thoracic trauma is a leading risk factor for development of acute lung injury/acute respiratory distress syndrome. Previously, we have shown that CC chemokine ligand (CCL)-2, a monotactic chemokine abundant in the lungs, is significantly elevated in LC. This study investigated the nature of protection afforded by CCL-2 in acute lung injury/acute respiratory distress syndrome during LC, using rats and CC chemokine receptor (CCR) 2 knockout (CCR2(-/-)) mice. Rats injected with a polyclonal antibody to CCL-2 showed higher levels of albumin and IL-6 in the bronchoalveolar lavage and myeloperoxidase in the lung tissue after LC. Closed-chest bilateral LC demonstrated CCL-2 localization in alveolar macrophages (AMs) and epithelial cells. Subsequent experiments performed using a murine model of LC showed that the extent of injury, assessed by pulmonary compliance and albumin levels in the bronchoalveolar lavage, was higher in the CCR2(-/-) mice when compared with the wild-type (WT) mice. We also found increased release of IL-1β, IL-6, macrophage inflammatory protein-1, and keratinocyte chemoattractant, lower recruitment of AMs, and higher neutrophil infiltration and phagocytic activity in CCR2(-/-) mice at 24 hours. However, impaired phagocytic activity was observed at 48 hours compared with the WT. Production of CCL-2 and macrophage chemoattractant protein-5 was increased in the absence of CCR2, thus suggesting a negative feedback mechanism of regulation. Isolated AMs in the CCR2(-/-) mice showed a predominant M1 phenotype compared with the predominant M2 phenotype in WT mice. Taken together, the above results show that CCL-2 is functionally important in the down-modulation of injury and inflammation in LC.

  8. RGD-tagged helical rosette nanotubes aggravate acute lipopolysaccharide-induced lung inflammation

    Directory of Open Access Journals (Sweden)

    Suri SS

    2011-12-01

    Full Text Available Sarabjeet Singh Suri1, Steven Mills1, Gurpreet Kaur Aulakh1, Felaniaina Rakotondradany2, Hicham Fenniri2, Baljit Singh11Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon; 2National Institute for Nanotechnology and Department of Chemistry, Edmonton, CanadaAbstract: Rosette nanotubes (RNT are a novel class of self-assembled biocompatible nanotubes that offer a built-in strategy for engineering structure and function through covalent tagging of synthetic self-assembling modules (G∧C motif. In this report, the G∧C motif was tagged with peptide Arg-Gly-Asp-Ser-Lys (RGDSK-G∧C and amino acid Lys (K-G∧C which, upon co-assembly, generate RNTs featuring RGDSK and K on their surface in predefined molar ratios. These hybrid RNTs, referred to as Kx/RGDSKy-RNT, where x and y refer to the molar ratios of K-G∧C and RGDSK–G∧C, were designed to target neutrophil integrins. A mouse model was used to investigate the effects of intravenous Kx/RGDSKy-RNT on acute lipopolysaccharide (LPS-induced lung inflammation. Healthy male C57BL/6 mice were treated intranasally with Escherichia coli LPS 80 µg and/or intravenously with K90/RGDSK10-RNT. Here we provide the first evidence that intravenous administration of K90/RGDSK10-RNT aggravates the proinflammatory effect of LPS in the mouse. LPS and K90/RGDSK10-RNT treatment groups showed significantly increased infiltration of polymorphonuclear cells in bronchoalveolar lavage fluid at all time points compared with the saline control. The combined effect of LPS and K90/RGDSK10-RNT was more pronounced than LPS alone, as shown by a significant increase in the expression of interleukin-1ß, MCP-1, MIP-1, and KC-1 in the bronchoalveolar lavage fluid and myeloperoxidase activity in the lung tissues. We conclude that K90/RGDSK10-RNT promotes acute lung inflammation, and when used along with LPS, leads to exaggerated immune response in the lung.Keywords: RGD peptide, helical rosette

  9. Reactive species and DNA damage in chronic inflammation: reconciling chemical mechanisms and biological fates.

    Science.gov (United States)

    Lonkar, Pallavi; Dedon, Peter C

    2011-05-01

    Chronic inflammation has long been recognized as a risk factor for many human cancers. One mechanistic link between inflammation and cancer involves the generation of nitric oxide, superoxide and other reactive oxygen and nitrogen species by macrophages and neutrophils that infiltrate sites of inflammation. Although pathologically high levels of these reactive species cause damage to biological molecules, including DNA, nitric oxide at lower levels plays important physiological roles in cell signaling and apoptosis. This raises the question of inflammation-induced imbalances in physiological and pathological pathways mediated by chemical mediators of inflammation. At pathological levels, the damage sustained by nucleic acids represents the full spectrum of chemistries and likely plays an important role in carcinogenesis. This suggests that DNA damage products could serve as biomarkers of inflammation and oxidative stress in clinically accessible compartments such as blood and urine. However, recent studies of the biotransformation of DNA damage products before excretion point to a weakness in our understanding of the biological fates of the DNA lesions and thus to a limitation in the use of DNA lesions as biomarkers. This review will address these and other issues surrounding inflammation-mediated DNA damage on the road to cancer.

  10. Obesity-induced chronic inflammation in C57Bl6J mice, a novel risk factor in the progression of renal AA amyloidosis?

    NARCIS (Netherlands)

    Van Der Heijden, R.A.; Sheedfar, F.; Bijzet, J.; Hazenberg, B.P.; Koonen, D.P.; Heeringa, P.

    2015-01-01

    Background: Compelling evidence links obesity induced systemic inflammation to the development of chronic kidney disease (CKD). This systemic inflammation may result from exacerbated adipose inflammation. Besides the known detrimental effects of typical pro-inflammatory factors secreted by the adipo

  11. Age influence on mice lung tissue response to [i]Aspergillus fumigatus[/i] chronic exposure

    Directory of Open Access Journals (Sweden)

    Marta Kinga Lemieszek

    2015-02-01

    Full Text Available [b]Introduction and objective[/b]. Exposure to conidia of [i]Aspergillus fumigatus[/i] was described as a causative factor of a number of the respiratory system diseases, including asthma, chronic eosinophilic pneumonia, hypersensitivity pneumonitis and bronchopulmonary aspergillosis. The study investigates the effects of the repeated exposure to [i]A. fumigatus[/i] in mice pulmonary compartment. Our work tackles two, so far insufficiently addressed, important aspects of interaction between affected organism and[i] A. fumigatus[/i]: 1 recurrent character of exposure (characteristic for pathomechanism of the abovementioned disease states and 2 impact of aging, potentially important for the differentiation response to an antigen. [b]Materials and methods[/b]. In order to dissect alterations of the immune system involved with both aging and chronic exposure to [i]A. fumigatus[/i], we used 3- and 18-month-old C57BL/6J mice exposed to repeated[i] A. fumigatus[/i] inhalations for 7 and 28 days. Changes in lung tissue were monitored by histological and biochemical evaluation. Concentration of pro- and anti-inflammatory cytokines in lung homogenates was assessed by ELISA tests. [b]Results and conclusions. [/b]Our study demonstrated that chronic inflammation in pulmonary compartment, characterized by the significant increase of proinflammatory cytokines (IL1, IL6, IL10 levels, was the dominant feature of mice response to repeated [i]A. fumigatus[/i] inhalations. The pattern of cytokines’ profile in the course of exposure was similar in both age groups, however in old mice the growth of the cytokines’ levels was more pronounced (especially in case of IL1.

  12. Living near a Major Road in Beijing: Association with Lower Lung Function, Airway Acidification, and Chronic Cough

    Science.gov (United States)

    Hu, Zhan-Wei; Zhao, Yan-Ni; Cheng, Yuan; Guo, Cui-Yan; Wang, Xi; Li, Nan; Liu, Jun-Qing; Kang, Hui; Xia, Guo-Guang; Hu, Ping; Zhang, Ping-Ji; Ma, Jing; Liu, Ying; Zhang, Cheng; Su, Li; Wang, Guang-Fa

    2016-01-01

    Background: The effects of near-road pollution on lung function in China have not been well studied. We aimed to investigate the effects of long-term exposure to traffic-related air pollution on lung function, airway inflammation, and respiratory symptoms. Methods: We enrolled 1003 residents aged 57.96 ± 8.99 years living in the Shichahai Community in Beijing. Distances between home addresses and the nearest major roads were measured to calculate home-road distance. We used the distance categories 1, 2, and 3, representing 200 m, respectively, as the dose indicator for traffic-related air pollution exposure. Lung function, exhaled breath condensate (EBC) pH, and interleukin 6 levels were measured. As a follow-up, 398 participants had a second lung function assessment about 3 years later, and lung function decline was also examined as an outcome. We used regression analysis to assess the impacts of home-road distance on lung function and respiratory symptoms. As the EBC biomarker data were not normally distributed, we performed correlation analysis between home-road distance categories and EBC biomarkers. Results: Participants living a shorter distance from major roads had lower percentage of predicted value of forced expiratory volume in 1 s (FEV1% −1.54, 95% confidence interval [CI]: −0.20 to −2.89). The odds ratio for chronic cough was 2.54 (95% CI: 1.57–4.10) for category 1 and 1.97 (95% CI: 1.16–3.37) for category 2, compared with category 3. EBC pH was positively correlated with road distance (rank correlation coefficient of Spearman [rs] = 0.176, P air pollution in people who live near major roads in Beijing is associated with lower lung function, airway acidification, and a higher prevalence of chronic cough. EBC pH is a potential useful biomarker for evaluating air pollution exposure. PMID:27625090

  13. Lung Function, Airway Inflammation, and Polycyclic Aromatic Hydrocarbons Exposure in Mexican Schoolchildren

    Science.gov (United States)

    Barraza-Villarreal, Albino; Escamilla-Nuñez, Maria Consuelo; Schilmann, Astrid; Hernandez-Cadena, Leticia; Li, Zheng; Romanoff, Lovisa; Sjödin, Andreas; Del Río-Navarro, Blanca Estela; Díaz-Sanchez, David; Díaz-Barriga, Fernando; Sly, Peter; Romieu, Isabelle

    2015-01-01

    Objective To determine the association of exposure to polycyclic aromatic hydrocarbons (PAHs) with lung function and pH of exhaled breath condensate (EBC) in Mexican schoolchildren. Methods A pilot study was performed in a subsample of 64 schoolchildren from Mexico City. Lung function and pH of EBC were measured and metabolites of PAHs in urine samples were determined. The association was analyzed using robust regression models. Results A 10% increase in the concentrations of 2-hydroxyfluorene was significantly negatively associated with forced expiratory volume in 1 second (−11.2 mL, 95% CI: −22.2 to −0.02), forced vital capacity (−11.6 mL, 95% CI: −22.9 to −0.2), and pH of EBC (−0.035, 95% CI: −0.066 to −0.005). Conclusion Biomarkers of PAHs exposure were inversely associated with lung function and decrease of ph of EBC as a marker of airway inflammation in Mexican schoolchildren. PMID:24500378

  14. Lung hyperinflation in chronic obstructive pulmonary disease: mechanisms, clinical implications and treatment.

    Science.gov (United States)

    Langer, Daniel; Ciavaglia, Casey E; Neder, J Alberto; Webb, Katherine A; O'Donnell, Denis E

    2014-12-01

    Lung hyperinflation is highly prevalent in patients with chronic obstructive pulmonary disease and occurs across the continuum of the disease. A growing body of evidence suggests that lung hyperinflation contributes to dyspnea and activity limitation in chronic obstructive pulmonary disease and is an important independent risk factor for mortality. In this review, we will summarize the recent literature on pathogenesis and clinical implications of lung hyperinflation. We will outline the contribution of lung hyperinflation to exercise limitation and discuss its impact on symptoms and physical activity. Finally, we will examine the physiological rationale and efficacy of selected pharmacological and non-pharmacological 'lung deflating' interventions aimed at improving symptoms and physical functioning.

  15. 肥胖与慢性炎症%Obesity and chronic inflammation

    Institute of Scientific and Technical Information of China (English)

    孙波; 李辉; 王宁

    2012-01-01

    肥胖及其相关的代谢类疾病严重影响人类的健康,而肥胖诱导的慢性炎症是胰岛素抵抗和代谢综合症发病的关键因素.脂肪组织慢性炎症发生的机制及其与代谢综合症的关系已经成为全球瞩目的研究热点.慢性炎症的特征主要包括脂肪组织中促炎细胞因子表达量增加,抗炎细胞因子表达量降低以及大量巨噬细胞浸润.鉴于肥胖及其相关代谢综合症对人类健康的巨大危害,现对慢性炎症的发生机制,肥胖和慢性炎症之间的关系,脂肪组织炎症中巨噬细胞浸润以及和信号传导通路进行综述.%Obesity and its related metabolic diseases have a serious impact on human health, the obesity-induced chronic inflammation is a key factor for the development of insulin resistance and metabolic syndrome. So the mechanisms of chronic inflammation in adipose tissue and the relationship between chronic inflammation and metabolic syndrome have become a worldwide research hotspot. Chronic inflammation is mainly characterized by an increased expression of pro-inflammatory cytokines, a reduced expression of anti-inflammatory cytokines and the infiltration of abundant macrophages in adipose tissue. Obesity and its related metabolic syndrome are greatly harmful to human health. In this study, we summarized the mechanism of chronic inflammation, the relationship between obesity and adipsoe chronic inflammation, the macrophage infiltration in adipose inflammation, and signaling pathways.

  16. Driving performance in patients with chronic obstructive lung disease, interstitial lung disease and healthy controls

    DEFF Research Database (Denmark)

    Prior, Thomas Skovhus; Troelsen, Thomas Tværmose; Hilberg, Ole

    2015-01-01

    INTRODUCTION: Cognitive deficits in patients suffering from chronic obstructive pulmonary disease (COPD) have been described and hypoxaemia has been addressed as a possible cause. Cognitive functions in patients with interstitial lung disease (ILD) are not well studied. These patients are taking....... METHODS: 16 patients with COPD (8 receivers and 8 non-receivers of long-term oxygen therapy (LTOT)), 8 patients with ILD (consisting of idiopathic interstitial pneumonias) and 8 healthy controls were tested in a driving simulator. Each test lasted 45 min. In the oxygen intervention part of the study...

  17. Inflammation mediators in employees in chronic exposure to neurotoxicants

    Directory of Open Access Journals (Sweden)

    Galina Bodienkova

    2014-08-01

    Full Text Available Objectives: The aim of this work is to perform comparative estimation of cytokines levels in chlorinated hydrocarbons and metallic mercury exposure in employees in the dynamics of neurologic disorders formation. Material and Methods: The contents of cytokines IL-1β, IL-2, IL-4, IL-6, TNF-α, INF-γ were determined in blood sera using the method of hardphasic immunoferment analysis. The significance of different average values was assessed using the parametric and non-parametric criteria - Student (in normal distribution and Mann-Whitney tests taking into account the Bonferonni correction (non-difference from normal distribution. Results: It was shown that, a number of inflammation mediators with the dominance, depending on the expositional toxicant and expression of neurological deficiency, take part in the neurointoxication development. Healthy employees show pro-inflammatory responses with different expression degree, which dominate in the immune regulation processes regardless of the expositional factors (metallic mercury vapors and chlorinated hydrocarbons. Conclusions: The production intensity and interconnection between the pro- and anti-inflammatory cytokines may change in the occupational injuries of the nervous system development process. The decrease in the serum concentrations of cytokines along with the increase of clinical manifestation severity may prove dysregulation of the immune system, which promotes maintaining of pathological process and progradient process of neurointoxication. The most obvious is the imbalance of cytokines in the employees exposed to metallic mercury (in all the examined groups that increases neurointoxication in the distant period.

  18. Role of recently migrated monocytes in cigarette smoke-induced lung inflammation in different strain of mice.

    Directory of Open Access Journals (Sweden)

    Sandra Pérez-Rial

    Full Text Available This study investigates the role of proinflammatory monocytes recruited from blood circulation and recovered in bronchoalveolar lavage (BAL fluid in mediating the lung damage in a model of acute cigarette smoke (CS-induced lung inflammation in two strains of mice with different susceptibility to develop emphysema (susceptible -C57BL/6J and non susceptible -129S2/SvHsd. Exposure to whole-body CS for 3 consecutive research cigarettes in one single day induced acute inflammation in the lung of mice. Analysis of BAL fluid showed more influx of recently migrated monocytes at 72 h after CS-exposition in susceptible compared to non susceptible mice. It correlated with an increase in MMP-12 and TNF-α protein levels in the lung tissue, and with an increment of NF-κB translocation to the nucleus measured by electrophoretic mobility shift assay in C57BL/6J mice. To determine the functional role of these proinflammatory monocytes in mediating CS-induced airway inflammation, alveolar macrophages and blood monocytes were transiently removed by pretreatment with intratracheal and intravenous liposome-encapsulated CL2MDP, given 2 and 4 days prior to CS exposure and their repopulation was studied. Monocytes/macrophages were maximally depleted 48 h after last liposome application and subsequently recently migrated monocytes reappeared in BAL fluid of susceptible mice at 72 h after CS exposure. Recently migrated monocytes influx to the lung correlated with an increase in the MMP-12 protein level in the lung tissue, indicating that the increase in proinflammatory monocytes is associated with a major tissue damaging. Therefore our data confirm that the recruitment of proinflammatory recently migrated monocytes from the blood are responsible for the increase in MMP-12 and has an important role in the pathogenesis of lung disease induced by acute lung inflammation. These results could contribute to understanding the different susceptibility to CS of these strains of

  19. Cerium Oxide Nanoparticles in Lung Acutely Induce Oxidative Stress, Inflammation, and DNA Damage in Various Organs of Mice

    Directory of Open Access Journals (Sweden)

    Abderrahim Nemmar

    2017-01-01

    Full Text Available CeO2 nanoparticles (CeO2 NPs which are used as a diesel fuel additive are emitted in the particulate phase in the exhaust, posing a health concern. However, limited information exists regarding the in vivo acute toxicity of CeO2 NPs on multiple organs. Presently, we investigated the acute (24 h effects of intratracheally instilled CeO2 NPs in mice (0.5 mg/kg on oxidative stress, inflammation, and DNA damage in major organs including lung, heart, liver, kidneys, spleen, and brain. Lipid peroxidation measured by malondialdehyde production was increased in the lungs only, and reactive oxygen species were increased in the lung, heart, kidney, and brain. Superoxide dismutase activity was decreased in the lung, liver, and kidney, whereas glutathione increased in lung but it decreased in the kidney. Total nitric oxide was increased in the lung and spleen but it decreased in the heart. Tumour necrosis factor-α increased in all organs studied. Interleukin- (IL- 6 increased in the lung, heart, liver, kidney, and spleen. IL-1β augmented in the lung, heart, kidney, and spleen. Moreover, CeO2 NPs induced DNA damage, assessed by COMET assay, in all organs studied. Collectively, these findings indicate that pulmonary exposure to CeO2 NPs causes oxidative stress, inflammation, and DNA damage in multiple organs.

  20. Bubbly and cystic appearance in chronic lung disease: Is this diagnosed as Wilson-Mikity syndrome?

    Science.gov (United States)

    Namba, Fumihiko; Fujimura, Masanori; Tamura, Masanori

    2016-04-01

    Wilson-Mikity syndrome (WMS) was first reported in 1960 by Wilson and Mikity. They described preterm infants who developed areas of cystic emphysema in the first month of life with subsequent progression to chronic lung disease (CLD) of infancy, although these infants did not exhibit early respiratory distress, such as respiratory distress syndrome (RDS). This condition was widely accepted over the next 20 years, but WMS is now rarely mentioned and is commonly considered an anachronism. In Japan, CLD is classified into six types according to the presence of RDS and/or intrauterine inflammation and appearance on chest X-ray. One type of CLD (type III, which accounts for 13.5% of all CLD) is defined as history of intrauterine inflammation and the typical bubbly and cystic appearance on chest X-ray described in the original report of WMS. There is insufficient evidence to determine whether WMS exists or whether WMS is relatively common only in Japan and not in other countries. It is important, however, to distinguish this type of CLD from other types because the strategy for the prevention or treatment of CLD should be different according to its origin, cause, and risk factors.

  1. Pro-calcitonin and inflammation in chronic hemodialysis

    Directory of Open Access Journals (Sweden)

    Hernán Trimarchi

    2013-10-01

    Full Text Available Procalcitonin (PCT has emerged as a marker of infection, a frequent complication in hemodialysis (HD. We analyzed PCT levels in chronic non-acutely infected HD subjects, assessed its correlation with inflammatory and nutritional markers and propose a PCT reference value for non-infected HD patients.In an observational cross-sectional study, 48 chronic HD patients and 36 controls were analyzed. Variables: age, gender, time on HD; diabetes; vascular access, PCT, C-reactive protein (CRP, albumin, malnutrition inflammatory score (MIS, hematocrit, leukocyte count, and body mass index (BMI. Subsequently, control (G1, n = 36, 43% vs. non-infected patients (G2, n = 48, 57% groups were compared. In control subjects (G1, age: 54.3 ± 13.7 years, range (r: 30-81; males: 19 (53%; median PCT 0.034 ng/ml (r: 0.02-0.08; median CRP 0.80 mg/dl (r: 0.36-3.9; p95 PCT level: 0.063 ng/ml. In G2, age: 60.2 ± 15.2 years; males 32 (67%, time on HD: 27.0 ± 24.4; diabetics: 19 (32%; median PCT: 0.26 ng/ml (r: 0.09-0.82; CRP: 1.1 mg/dl (r: 0.5-6.2; p95 PCT level: 0.8 ng/ml. In control subjects, PCT and CRP were significantly lower than in G2: PCT: 0.034 vs. 0.26 ng/ml, p = 0.0001; CRP: 0.8 vs. 1.1 mg/dl, p = 0.0004. PCT-CRP correlation in G2: ρ = 0.287, p = 0.048. PCT and CRP concentrations are elevated in chronic non-acutely infected HD subjects, independently of infection, diabetes and vascular access. A p95 PCT level of 0.8 ng/ml may be considered as the upper normal reference value in non-acutely infected HD subjects. The PCT cut-off level in HD is yet to be determined in HD.

  2. Altered microvascular hemodynamics during the induction and perpetuation of chronic gut inflammation.

    Science.gov (United States)

    Harris, Norman R; Whatley, Joseph R; Carter, Patsy R; Morgan, Georgia A; Grisham, Matthew B

    2009-04-01

    Adoptive transfer of naïve CD4+ T cells into lymphopenic mice induces chronic small and large bowel inflammation similar to Crohn's disease. Although much is now known regarding the immunopathology in this model of inflammatory bowel disease, virtually nothing is known about the microvascular hemodynamic changes during the induction and perpetuation of chronic gut inflammation. In this study, CD4+CD45RBhigh T cells obtained from healthy C57BL/6 donor mice were transferred into lymphopenic recombinase-activating gene-1-deficient (RAG knockout) mice, which induced small and large bowel inflammation. At various time points following reconstitution (3 days-9 wk), intravital microscopy was used to examine the microvessels in the submucosa of the ileum and proximal colon following infusion of fluorescently labeled platelets and injection of rhodamine 6G (to label leukocytes). Hemodynamic measurements and the extent of blood cell adhesion to the venular wall were compared with measurements in unreconstituted RAG knockout controls. In 50% compared with controls, with this decrease also observed at 4-5 and 7-9 wk postreconstitution. At 7-9 wk, arteriolar diameters were found to be approximately 15% larger than in controls, but, despite this dilation, flow rates in the individual vessels were decreased by approximately 30%. Venular platelet and leukocyte adherence were not significantly elevated above controls; however, an association was found between platelet adherence and venular shear rate. In summary, significant decreases in arteriolar velocity and shear rates are observed in this model of chronic gut inflammation.

  3. A self-propagating matrix metalloprotease-9 (MMP-9 dependent cycle of chronic neutrophilic inflammation.

    Directory of Open Access Journals (Sweden)

    Xin Xu

    Full Text Available BACKGROUND: Chronic neutrophilic inflammation is a poorly understood feature in a variety of diseases with notable worldwide morbidity and mortality. We have recently characterized N-acetyl Pro-Gly-Pro (Ac-PGP as an important neutrophil (PMN chemoattractant in chronic inflammation generated from the breakdown of collagen by the actions of MMP-9. MMP-9 is present in the granules of PMNs and is differentially released during inflammation but whether Ac-PGP contributes to this ongoing proteolytic activity in chronic neutrophilic inflammation is currently unknown. METHODOLOGY/PRINCIPAL FINDINGS: Utilizing isolated primary blood PMNs from human donors, we found that Ac-PGP induces significant release of MMP-9 and concurrently activates the ERK1/2 MAPK pathway. This MMP-9 release is attenuated by an inhibitor of ERK1/2 MAPK and upstream blockade of CXCR1 and CXCR2 receptors with repertaxin leads to decreased MMP-9 release and ERK 1/2 MAPK activation. Supernatants obtained from PMNs stimulated by Ac-PGP generate more Ac-PGP when incubated with intact collagen ex vivo; this effect is inhibited by an ERK1/2 pathway inhibitor. Finally, clinical samples from individuals with CF demonstrate a notable correlation between Ac-PGP (as measured by liquid chromatography-tandem mass spectrometry and MMP-9 levels even when accounting for total PMN burden. CONCLUSIONS/SIGNIFICANCE: These data indicate that ECM-derived Ac-PGP could result in a feed-forward cycle by releasing MMP-9 from activated PMNs through the ligation of CXCR1 and CXCR2 and subsequent activation of the ERK1/2 MAPK, highlighting for the first time a matrix-derived chemokine (matrikine augmenting its generation through a discrete receptor/intracellular signaling pathway. These findings have notable implications to the development unrelenting chronic PMN inflammation in human disease.

  4. Lung inflammation and genotoxicity following pulmonary exposure to nanoparticles in ApoE-/- mice

    Directory of Open Access Journals (Sweden)

    Ladefoged Ole

    2009-01-01

    Full Text Available Abstract Background The toxic and inflammatory potential of 5 different types of nanoparticles were studied in a sensitive model for pulmonary effects in apolipoprotein E knockout mice (ApoE-/-. We studied the effects instillation or inhalation Printex 90 of carbon black (CB and compared CB instillation in ApoE-/- and C57 mice. Three and 24 h after pulmonary exposure, inflammation was assessed by mRNA levels of cytokines in lung tissue, cell composition, genotoxicity, protein and lactate dehydrogenase activity in broncho-alveolar lavage (BAL fluid. Results Firstly, we found that intratracheal instillation of CB caused far more pulmonary toxicity in ApoE-/- mice than in C57 mice. Secondly, we showed that instillation of CB was more toxic than inhalation of a presumed similar dose with respect to inflammation in the lungs of ApoE-/- mice. Thirdly, we compared effects of instillation in ApoE-/- mice of three carbonaceous particles; CB, fullerenes C60 (C60 and single walled carbon nanotubes (SWCNT as well as gold particles and quantum dots (QDs. Characterization of the instillation media revealed that all particles were delivered as agglomerates and aggregates. Significant increases in Il-6, Mip-2 and Mcp-1 mRNA were detected in lung tissue, 3 h and 24 h following instillation of SWCNT, CB and QDs. DNA damage in BAL cells, the fraction of neutrophils in BAL cells and protein in BAL fluid increased statistically significantly. Gold and C60 particles caused much weaker inflammatory responses. Conclusion Our data suggest that ApoE-/- model is sensitive for evaluating particle induced inflammation. Overall QDs had greatest effects followed by CB and SWCNT with C60 and gold being least inflammatory and DNA-damaging. However the gold was used at a much lower mass dose than the other particles. The strong effects of QDs were likely due to Cd release. The surface area of the instilled dose correlated well the inflammatory response for low toxicity particles.

  5. S-adenosylmethionine reduces airway inflammation and fibrosis in a murine model of chronic severe asthma via suppression of oxidative stress.

    Science.gov (United States)

    Yoon, Sun-Young; Hong, Gyong Hwa; Kwon, Hyouk-Soo; Park, Sunjoo; Park, So Young; Shin, Bomi; Kim, Tae-Bum; Moon, Hee-Bom; Cho, You Sook

    2016-06-03

    Increased oxidative stress has an important role in asthmatic airway inflammation and remodeling. A potent methyl donor, S-adenosylmethionine (SAMe), is known to protect against tissue injury and fibrosis through modulation of oxidative stress. The aim of this study was to evaluate the effect of SAMe on airway inflammation and remodeling in a murine model of chronic asthma. A mouse model was generated by repeated intranasal challenge with ovalbumin and Aspergillus fungal protease twice a week for 8 weeks. SAMe was orally administered every 24 h for 8 weeks. We performed bronchoalveolar lavage (BAL) fluid analysis and histopathological examination. The levels of various cytokines and 4-hydroxy-2-nonenal (HNE) were measured in the lung tissue. Cultured macrophages and fibroblasts were employed to evaluate the underlying anti-inflammatory and antifibrotic mechanisms of SAMe. The magnitude of airway inflammation and fibrosis, as well as the total BAL cell counts, were significantly suppressed in the SAMe-treated groups. A reduction in T helper type 2 pro-inflammatory cytokines and HNE levels was observed in mouse lung tissue after SAMe administration. Macrophages cultured with SAMe also showed reduced cellular oxidative stress and pro-inflammatory cytokine production. Moreover, SAMe treatment attenuated transforming growth factor-β (TGF-β)-induced fibronectin expression in cultured fibroblasts. SAMe had a suppressive effect on airway inflammation and fibrosis in a mouse model of chronic asthma, at least partially through the attenuation of oxidative stress and TGF-β-induced fibronectin expression. The results of this study suggest a potential role for SAMe as a novel therapeutic agent in chronic asthma.

  6. Influence of Hepatic Inflammation on FibroScan Findings in Diagnosing Fibrosis in Patients with Chronic Hepatitis B.

    Science.gov (United States)

    Zeng, Xianghua; Xu, Cheng; He, Dengming; Zhang, Huiyan; Xia, Jie; Shi, Dairong; Kong, Lingjun; He, Xiaoqin; Wang, Yuming

    2015-06-01

    Hepatic inflammation may affect the performance of FibroScan. This prospective study investigated the influence of hepatic inflammation on liver stiffness measurement (LSM) values by assessing FibroScan and liver biopsy findings in 325 patients with chronic hepatitis B. Liver fibrosis and inflammation were classified into five stages (S0-S4) and grades (G0-G4) according to the Scheuer scoring system. LSM values were correlated with fibrosis stage and inflammation grade (r = 0.479, p inflammation grade, no significant differences were found between patients with significant fibrosis (S2-S4) (p > 0.05). For inflammation grades G0, G1, G2 and G3, areas under receiver operating characteristic curves of FibroScan for significant fibrosis were 0.8267 (p Inflammation has a significant influence on LSM values in patients with chronic hepatitis B with mild fibrosis, but not in those with significant fibrosis.

  7. STIM1 controls T cell-mediated immune regulation and inflammation in chronic infection.

    Science.gov (United States)

    Desvignes, Ludovic; Weidinger, Carl; Shaw, Patrick; Vaeth, Martin; Ribierre, Theo; Liu, Menghan; Fergus, Tawania; Kozhaya, Lina; McVoy, Lauren; Unutmaz, Derya; Ernst, Joel D; Feske, Stefan

    2015-06-01

    Chronic infections induce a complex immune response that controls pathogen replication, but also causes pathology due to sustained inflammation. Ca2+ influx mediates T cell function and immunity to infection, and patients with inherited mutations in the gene encoding the Ca2+ channel ORAI1 or its activator stromal interaction molecule 1 (STIM1) are immunodeficient and prone to chronic infection by various pathogens, including Mycobacterium tuberculosis (Mtb). Here, we demonstrate that STIM1 is required for T cell-mediated immune regulation during chronic Mtb infection. Compared with WT animals, mice with T cell-specific Stim1 deletion died prematurely during the chronic phase of infection and had increased bacterial burdens and severe pulmonary inflammation, with increased myeloid and lymphoid cell infiltration. Although STIM1-deficient T cells exhibited markedly reduced IFN-γ production during the early phase of Mtb infection, bacterial growth was not immediately exacerbated. During the chronic phase, however, STIM1-deficient T cells displayed enhanced IFN-γ production in response to elevated levels of IL-12 and IL-18. The lack of STIM1 in T cells was associated with impaired activation-induced cell death upon repeated TCR engagement and pulmonary lymphocytosis and hyperinflammation in Mtb-infected mice. Chronically Mtb-infected, STIM1-deficient mice had reduced levels of inducible regulatory T cells (iTregs) due to a T cell-intrinsic requirement for STIM1 in iTreg differentiation and excessive production of IFN-γ and IL-12, which suppress iTreg differentiation and maintenance. Thus, STIM1 controls multiple aspects of T cell-mediated immune regulation to limit injurious inflammation during chronic infection.

  8. Lung-function trajectories leading to chronic obstructive pulmonary disease

    DEFF Research Database (Denmark)

    Lange, Peter; Celli, B.; Agustí, A.;

    2015-01-01

    population norms. METHODS: We stratified participants in three independent cohorts (the Framingham Offspring Cohort, the Copenhagen City Heart Study, and the Lovelace Smokers Cohort) according to lung function (FEV1 ≥80% or age of patients, approximately...... at the end of the observation period had had a normal FEV1 before 40 years of age and had a rapid decline in FEV1 thereafter, with a mean (±SD) decline of 53±21 ml per year. The remaining half had had a low FEV1 in early adulthood and a subsequent mean decline in FEV1 of 27±18 ml per year (P...BACKGROUND: Chronic obstructive pulmonary disease (COPD) is thought to result from an accelerated decline in forced expiratory volume in 1 second (FEV1) over time. Yet it is possible that a normal decline in FEV1 could also lead to COPD in persons whose maximally attained FEV1 is less than...

  9. An anti-human ICAM-1 antibody inhibits rhinovirus-induced exacerbations of lung inflammation.

    Directory of Open Access Journals (Sweden)

    Stephanie Traub

    Full Text Available Human rhinoviruses (HRV cause the majority of common colds and acute exacerbations of asthma and chronic obstructive pulmonary disease (COPD. Effective therapies are urgently needed, but no licensed treatments or vaccines currently exist. Of the 100 identified serotypes, ∼90% bind domain 1 of human intercellular adhesion molecule-1 (ICAM-1 as their cellular receptor, making this an attractive target for development of therapies; however, ICAM-1 domain 1 is also required for host defence and regulation of cell trafficking, principally via its major ligand LFA-1. Using a mouse anti-human ICAM-1 antibody (14C11 that specifically binds domain 1 of human ICAM-1, we show that 14C11 administered topically or systemically prevented entry of two major groups of rhinoviruses, HRV16 and HRV14, and reduced cellular inflammation, pro-inflammatory cytokine induction and virus load in vivo. 14C11 also reduced cellular inflammation and Th2 cytokine/chemokine production in a model of major group HRV-induced asthma exacerbation. Interestingly, 14C11 did not prevent cell adhesion via human ICAM-1/LFA-1 interactions in vitro, suggesting the epitope targeted by 14C11 was specific for viral entry. Thus a human ICAM-1 domain-1-specific antibody can prevent major group HRV entry and induction of airway inflammation in vivo.

  10. Increased arterial inflammation in individuals with stage 3 chronic kidney disease

    Energy Technology Data Exchange (ETDEWEB)

    Takx, Richard A.P. [Massachusetts General Hospital and Harvard Medical School, Cardiac MR PET CT Program, Boston, MA (United States); University Medical Center Utrecht, Department of Radiology, Utrecht (Netherlands); MacNabb, Megan H.; Emami, Hamed; Abdelbaky, Amr; Lavender, Zachary R. [Massachusetts General Hospital and Harvard Medical School, Cardiac MR PET CT Program, Boston, MA (United States); Singh, Parmanand [Massachusetts General Hospital and Harvard Medical School, Cardiac MR PET CT Program, Boston, MA (United States); New York Presbyterian Hospital, Weill Cornell Medical College, Division of Cardiology, New York, NY (United States); Di Carli, Marcelo; Taqueti, Viviany; Foster, Courtney [Brigham and Women' s Hospital and Harvard Medical School, Division of Radiology, Department of Medicine, Boston, MA (United States); Mann, Jessica; Comley, Robert A.; Weber, Chek Ing Kiu [F. Hoffmann-La Roche Ltd., Basel (Switzerland); Tawakol, Ahmed [Massachusetts General Hospital and Harvard Medical School, Cardiac MR PET CT Program, Boston, MA (United States); Massachusetts General Hospital and Harvard Medical School, Cardiology Division, Boston, MA (United States); Massachusetts General Hospital, Boston, MA (United States)

    2016-02-15

    While it is well known that patients with chronic kidney disease (CKD) are at increased risk for the development and progression of atherosclerosis, it is not known whether arterial inflammation is increased in mild CKD. The aim of this study was to compare arterial inflammation using {sup 18}F-FDG PET/CT in patients with CKD and in matched controls. This retrospective study included 128 patients undergoing FDG PET/CT imaging for clinical indications, comprising 64 patients with stage 3 CKD and 64 control patients matched by age, gender, and cancer history. CKD was defined according to guidelines using a calculated glomerular filtration rate (eGFR). Arterial inflammation was measured in the ascending aorta as FDG uptake on PET. Background FDG uptake (venous, subcutaneous fat and muscle) were recorded. Coronary artery calcification (CAC) was assessed using the CT images. The impact of CKD on arterial inflammation and CAC was then assessed. Arterial inflammation was higher in patients with CKD than in matched controls (standardized uptake value, SUV: 2.41 ± 0.49 vs. 2.16 ± 0.43; p = 0.002). Arterial SUV correlated inversely with eGFR (r = -0.299, p = 0.001). Venous SUV was also significantly elevated in patients with CKD, while subcutaneous fat and muscle tissue SUVs did not differ between groups. Moreover, arterial SUV remained significantly elevated in patients with CKD compared to controls after correcting for muscle and fat background, and also remained significant after adjusting for clinical risk factors. Further, CKD was associated with arterial inflammation (SUV) independent of the presence of subclinical atherosclerosis (CAC). Moderate CKD is associated with increased arterial inflammation beyond that of controls. Further, the increased arterial inflammation is independent of presence of subclinical atherosclerosis. Current risk stratification tools may underestimate the presence of atherosclerosis in patients with CKD and thereby the risk of

  11. The role of iron in Libby amphibole-induced acute lung injury and inflammation.

    Science.gov (United States)

    Shannahan, Jonathan H; Ghio, Andrew J; Schladweiler, Mette C; McGee, John K; Richards, Judy H; Gavett, Stephen H; Kodavanti, Urmila P

    2011-05-01

    Complexation of host iron (Fe) on the surface of inhaled asbestos fibers has been postulated to cause oxidative stress contributing to in vivo pulmonary injury and inflammation. We examined the role of Fe in Libby amphibole (LA; mean length 4.99 µm ± 4.53 and width 0.28 µm ± 0.19) asbestos-induced inflammogenic effects in vitro and in vivo. LA contained acid-leachable Fe and silicon. In a cell-free media containing FeCl(3), LA bound #17 µg of Fe/mg of fiber and increased reactive oxygen species generation #3.5 fold, which was reduced by deferoxamine (DEF) treatment. In BEAS-2B cells exposure to LA, LA loaded with Fe (FeLA), or LA with DEF did not increase HO-1 or ferritin mRNA expression. LA increased IL-8 expression, which was reduced by Fe loading but increased by DEF. To determine the role of Fe in LA-induced lung injury in vivo, spontaneously hypertensive rats were exposed intratracheally to either saline (300 µL), DEF (1 mg), FeCl(3) (21 µg), LA (0.5 mg), FeLA (0.5 mg), or LA + DEF (0.5 mg). LA caused BALF neutrophils to increase 24 h post-exposure. Loading of Fe on LA but not chelation slightly decreased neutrophilic influx (LA + DEF > LA > FeLA). At 4 h post-exposure, LA-induced lung expression of MIP-2 was reduced in rats exposed to FeLA but increased by LA + DEF (LA + DEF > LA > FeLA). Ferritin mRNA was elevated in rats exposed to FeLA compared to LA. In conclusion, the acute inflammatory response to respirable fibers and particles may be inhibited in the presence of surface-complexed or cellular bioavailable Fe. Cell and tissue Fe-overload conditions may influence the pulmonary injury and inflammation caused by fibers.

  12. Acute lung inflammation in Klebsiella pneumoniae B5055-induced pneumonia and sepsis in BALB/c mice: a comparative study.

    Science.gov (United States)

    Kumar, Vijay; Chhibber, Sanjay

    2011-10-01

    Lungs play an important role in the body's defense against a variety of pathogens, but this network of immune system-mediated defense can be deregulated during acute pulmonary infections. The present study compares acute lung inflammation occurring during Klebsiella pneumoniae B5055-induced pneumonia and sepsis in BALB/c mice. Pneumonia was induced by intranasal instillation of bacteria (10(4) cfu), while sepsis was developed by placing the fibrin-thrombin clot containing known amount of bacteria (10(2) cfu) into the peritoneal cavity of animals. Mice with sepsis showed 100% mortality within five post-infection days, whereas all the animals with pneumonia survived. In animals suffering from K. pneumoniae B5055-induced pneumonia, all the inflammatory parameters (TNF-α, IL-1α, MPO, MDA, and NO) were found to be maximum till third post-infection day, after that, a decline was observed, whereas in septic animals, all the above-mentioned markers of inflammation kept on increasing. Histopathological study showed presence of alternatively activated alveolar macrophages (or foam cells) in lungs of mice with pneumonia after third post-infection day, which might have contributed to the induction of resolution of inflammation, but no such observation was made in lungs of septic mice. Hence, during pneumonia, controlled activation of macrophages may lead to resolution of inflammation.

  13. Lung radiology and pulmonary function of children chronically exposed to air pollution.

    Science.gov (United States)

    Calderón-Garcidueñas, Lilian; Mora-Tiscareño, Antonieta; Fordham, Lynn A; Chung, Charles J; Valencia-Salazar, Gildardo; Flores-Gómez, Silvia; Solt, Anna C; Gomez-del Campo, Alberto; Jardón-Torres, Ricardo; Henríquez-Roldán, Carlos; Hazucha, Milan J; Reed, William

    2006-09-01

    We analyzed the chest radiographs (CXRs) of 249 clinically healthy children, 230 from southwest Mexico City and 19 from Tlaxcala. In contrast to children from Tlaxcala, children from southwest Mexico City were chronically exposed to ozone levels exceeding the U.S. National Ambient Air Quality Standards for an average of 4.7 hr/day and to concentrations of particulate matter (PM) with aerodynamic diameters lung function tests based on predicted values. These findings are consistent with bronchiolar, peribronchiolar, and/or alveolar duct inflammation, possibly caused by ozone, PM, and lipopolysaccharide exposure. The epidemiologic implications of these findings are important for children residing in polluted environments, because bronchiolar disease could lead to chronic pulmonary disease later in life.

  14. Chronic plus binge ethanol exposure causes more severe pancreatic injury and inflammation.

    Science.gov (United States)

    Ren, Zhenhua; Yang, Fanmuyi; Wang, Xin; Wang, Yongchao; Xu, Mei; Frank, Jacqueline A; Ke, Zun-Ji; Zhang, Zhuo; Shi, Xianglin; Luo, Jia

    2016-10-01

    Alcohol abuse increases the risk for pancreatitis. The pattern of alcohol drinking may impact its effect. We tested a hypothesis that chronic ethanol consumption in combination with binge exposure imposes more severe damage to the pancreas. C57BL/6 mice were divided into four groups: control, chronic ethanol exposure, binge ethanol exposure and chronic plus binge ethanol exposure. For the control group, mice were fed with a liquid diet for two weeks. For the chronic ethanol exposure group, mice were fed with a liquid diet containing 5% ethanol for two weeks. In the binge ethanol exposure group, mice were treated with ethanol by gavage (5g/kg, 25% ethanol w/v) daily for 3days. For the chronic plus binge exposure group, mice were fed with a liquid diet containing 5% ethanol for two weeks and exposed to ethanol by gavage during the last 3days. Chronic and binge exposure alone caused minimal pancreatic injury. However, chronic plus binge ethanol exposure induced significant apoptotic cell death. Chronic plus binge ethanol exposure altered the levels of alpha-amylase, glucose and insulin. Chronic plus binge ethanol exposure caused pancreatic inflammation which was shown by the macrophages infiltration and the increase of cytokines and chemokines. Chronic plus binge ethanol exposure increased the expression of ADH1 and CYP2E1. It also induced endoplasmic reticulum stress which was demonstrated by the unfolded protein response. In addition, chronic plus binge ethanol exposure increased protein oxidation and lipid peroxidation, indicating oxidative stress. Therefore, chronic plus binge ethanol exposure is more detrimental to the pancreas.

  15. Inflammatory mechanisms in the lung

    Directory of Open Access Journals (Sweden)

    B Moldoveanu

    2008-12-01

    Full Text Available B Moldoveanu1, P Otmishi1, P Jani1, J Walker1,2, X Sarmiento3, J Guardiola1, M Saad1, Jerry Yu11Department of Medicine, University of Louisville, Louisville, KY, USA, 40292; 2Department of Respiratory Therapy, Bellarmine University, Louisville, KY, USA, 40205; 3Intensive Care Medicine Service, University Hospital Germans Trias i Pujol, Badalona, Spain 08916Abstract: Inflammation is the body’s response to insults, which include infection, trauma, and hypersensitivity. The inflammatory response is complex and involves a variety of mechanisms to defend against pathogens and repair tissue. In the lung, inflammation is usually caused by pathogens or by exposure to toxins, pollutants, irritants, and allergens. During inflammation, numerous types of inflammatory cells are activated. Each releases cytokines and mediators to modify activities of other inflammatory cells. Orchestration of these cells and molecules leads to progression of inflammation. Clinically, acute inflammation is seen in pneumonia and acute respiratory distress syndrome (ARDS, whereas chronic inflammation is represented by asthma and chronic obstructive pulmonary disease (COPD. Because the lung is a vital organ for gas exchange, excessive inflammation can be life threatening. Because the lung is constantly exposed to harmful pathogens, an immediate and intense defense action (mainly inflammation is required to eliminate the invaders as early as possible. A delicate balance between inflammation and anti-inflammation is essential for lung homeostasis. A full understanding of the underlying mechanisms is vital in the treatment of patients with lung inflammation. This review focuses on cellular and molecular aspects of lung inflammation during acute and chronic inflammatory states.Keywords: inflammation, lung, inflammatory mediators, cytokines

  16. Implanted neural electrodes cause chronic, local inflammation that is correlated with local neurodegeneration

    Science.gov (United States)

    McConnell, George C.; Rees, Howard D.; Levey, Allan I.; Gutekunst, Claire-Anne; Gross, Robert E.; Bellamkonda, Ravi V.

    2009-10-01

    Prosthetic devices that are controlled by intracortical electrodes recording one's 'thoughts' are a reality today, and no longer merely in the realm of science fiction. However, widespread clinical use of implanted electrodes is hampered by a lack of reliability in chronic recordings, independent of the type of electrodes used. One major hypothesis has been that astroglial scar electrically impedes the electrodes. However, there is a temporal discrepancy between stabilization of scar's electrical properties and recording failure with recording failure lagging by 1 month. In this study, we test a possible explanation for this discrepancy: the hypothesis that chronic inflammation, due to the persistent presence of the electrode, causes a local neurodegenerative state in the immediate vicinity of the electrode. Through modulation of chronic inflammation via stab wound, electrode geometry and age-matched control, we found that after 16 weeks, animals with an increased level of chronic inflammation were associated with increased neuronal and dendritic, but not axonal, loss. We observed increased neuronal and dendritic loss 16 weeks after implantation compared to 8 weeks after implantation, suggesting that the local neurodegenerative state is progressive. After 16 weeks, we observed axonal pathology in the form of hyperphosphorylation of the protein tau in the immediate vicinity of the microelectrodes (as observed in Alzheimer's disease and other tauopathies). The results of this study suggest that a local, late onset neurodegenerative disease-like state surrounds the chronic electrodes and is a potential cause for chronic recording failure. These results also inform strategies to enhance our capability to attain reliable long-term recordings from implantable electrodes in the CNS.

  17. Tracking of Inhaled Near-Infrared Fluorescent Nanoparticles in Lungs of SKH-1 Mice with Allergic Airway Inflammation.

    Science.gov (United States)

    Markus, M Andrea; Napp, Joanna; Behnke, Thomas; Mitkovski, Miso; Monecke, Sebastian; Dullin, Christian; Kilfeather, Stephen; Dressel, Ralf; Resch-Genger, Ute; Alves, Frauke

    2015-12-22

    Molecular imaging of inflammatory lung diseases, such as asthma, has been limited to date. The recruitment of innate immune cells to the airways is central to the inflammation process. This study exploits these cells for imaging purposes within the lung, using inhaled polystyrene nanoparticles loaded with the near-infrared fluorescence dye Itrybe (Itrybe-NPs). By means of in vivo and ex vivo fluorescence reflectance imaging of an ovalbumin-based allergic airway inflammation (AAI) model in hairless SKH-1 mice, we show that subsequent to intranasal application of Itrybe-NPs, AAI lungs display fluorescence intensities significantly higher than those in lungs of control mice for at least 24 h. Ex vivo immunofluorescence analysis of lung tissue demonstrates the uptake of Itrybe-NPs predominantly by CD68(+)CD11c(+)ECF-L(+)MHCII(low) cells, identifying them as alveolar M2 macrophages in the peribronchial and alveolar areas. The in vivo results were validated by confocal microscopy, overlapping tile analysis, and flow cytometry, showing an amount of Itrybe-NP-containing macrophages in lungs of AAI mice significantly larger than that in controls. A small percentage of NP-containing cells were identified as dendritic cells. Flow cytometry of tracheobronchial lymph nodes showed that Itrybe-NPs were negligible in lung draining lymph nodes 24 h after inhalation. This imaging approach may advance preclinical monitoring of AAI in vivo over time and aid the investigation of the role that macrophages play during lung inflammation. Furthermore, it allows for tracking of inhaled nanoparticles and can hence be utilized for studies of the fate of potential new nanotherapeutics.

  18. Deficits in lung alveolarization and function after systemic maternal inflammation and neonatal hyperoxia exposure

    Science.gov (United States)

    Heyob, Kathryn M.; Rogers, Lynette K.; Welty, Stephen E.

    2010-01-01

    Systemic maternal inflammation contributes to preterm birth and is associated with development of bronchopulmonary dysplasia (BPD). Infants with BPD exhibit decreased alveolarization, diffuse interstitial fibrosis with thickened alveolar septa, and impaired pulmonary function. We tested the hypothesis that systemic prenatal LPS administration to pregnant mice followed by postnatal hyperoxia exposure is associated with prolonged alterations in pulmonary structure and function after return to room air (RA) that are more severe than hyperoxia exposure alone. Timed-pregnant C3H/HeN mice were dosed with LPS (80 μg/kg) or saline on gestation day 16. Newborn pups were exposed to RA or 85% O2 for 14 days and then to RA for an additional 14 days. Data were collected and analyzed on postnatal days 14 and 28. The combination of prenatal LPS and postnatal hyperoxia exposure generated a phenotype with more inflammation (measured as no. of macrophages per high-power field) than either insult alone at day 28. The combined exposures were associated with a diffuse fibrotic response [measured as hydroxyproline content (μg)] but did not induce a more severe developmental arrest than hyperoxia alone. Pulmonary function tests indicated that hyperoxia, independent of maternal exposure, induced compliance decreases on day 14 that did not persist after RA recovery. Either treatment alone or combined induced an increase in resistance on day 14, but the increase persisted on day 28 only in pups receiving the combined treatment. In conclusion, the combination of systemic maternal inflammation and neonatal hyperoxia induced a prolonged phenotype of arrested alveolarization, diffuse fibrosis, and impaired lung mechanics that mimics human BPD. This new model should be useful in designing studies of specific mechanisms and interventions that could ultimately be utilized to define therapies to prevent BPD in premature infants. PMID:20223995

  19. Possible contribution of chronic inflammation in the induction of cancer in rheumatic diseases.

    Science.gov (United States)

    Cutolo, Maurizio; Paolino, Sabrina; Pizzorni, Carmen

    2014-01-01

    Several chronic inflammatory conditions and autoimmune diseases involving different organs and tissues have been found at risk of progression to cancer. A wide array of proinflammatory cytokines, prostaglandins, nitric oxide products, and matricellular proteins are closely involved in premalignant and malignant transition of cells almost always in a background of chronic inflammation. Interestingly, epigenetic perturbations (i.e. miRNA aberrations, altered DNA methylation) together with important steroid hormone metabolic changes (i.e. oestrogens), or the altered vitamin D concentrations that may unbalance the immune / inflammatory response, have been found linked to the risk and severity in several chronic inflammatory conditions, as well as in cancer. In particular, it is evident, that not only the parent oestrogen but also oestrogen metabolites should be taken into account when this process is evaluated, specially the formation of catecholoestrogen metabolites, that are capable of forming either stable or depurinating DNA adducts, which can cause extensive DNA damage. It is interesting that today the successful treatment of several chronic immune/inflammatory rheumatic diseases is obtained also by using medications initially developed for their use in oncology. The circadian increase of growth factors, specially during the late night, in both chronic inflammation and in cancer patients, as well as the presence of oestrogen-regulated circadian mechanisms, suggests further important links.

  20. Thymic involution perturbs negative selection leading to autoreactive T cells that induce chronic inflammation.

    Science.gov (United States)

    Coder, Brandon D; Wang, Hongjun; Ruan, Linhui; Su, Dong-Ming

    2015-06-15

    Thymic involution and the subsequent amplified release of autoreactive T cells increase the susceptibility toward developing autoimmunity, but whether they induce chronic inflammation with advanced age remains unclear. The presence of chronic low-level proinflammatory factors in elderly individuals (termed inflammaging) is a significant risk factor for morbidity and mortality in virtually every chronic age-related disease. To determine how thymic involution leads to the persistent release and activation of autoreactive T cells capable of inducing inflammaging, we used a Foxn1 conditional knockout mouse model that induces accelerated thymic involution while maintaining a young periphery. We found that thymic involution leads to T cell activation shortly after thymic egress, which is accompanied by a chronic inflammatory phenotype consisting of cellular infiltration into non-lymphoid tissues, increased TNF-α production, and elevated serum IL-6. Autoreactive T cell clones were detected in the periphery of Foxn1 conditional knockout mice. A failure of negative selection, facilitated by decreased expression of Aire rather than impaired regulatory T cell generation, led to autoreactive T cell generation. Furthermore, the young environment can reverse age-related regulatory T cell accumulation in naturally aged mice, but not inflammatory infiltration. Taken together, these findings identify thymic involution and the persistent activation of autoreactive T cells as a contributing source of chronic inflammation (inflammaging).

  1. Carbon nanoparticles induce ceramide- and lipid raft-dependent signalling in lung epithelial cells: a target for a preventive strategy against environmentally-induced lung inflammation

    Directory of Open Access Journals (Sweden)

    Peuschel Henrike

    2012-12-01

    Full Text Available Abstract Background Particulate air pollution in lung epithelial cells induces pathogenic endpoints like proliferation, apoptosis, and pro-inflammatory reactions. The activation of the epidermal growth factor receptor (EGFR is a key event responsible for signalling events involving mitogen activated protein kinases specific for these endpoints. The molecular events leading to receptor activation however are not well understood. These events are relevant for the toxicological evaluation of inhalable particles as well as for potential preventive strategies in situations when particulate air pollution cannot be avoided. The current study therefore had the objective to elucidate membrane-coupled events leading to EGFR activation and the subsequent signalling cascade in lung epithelial cells. Furthermore, we aimed to identify the molecular target of ectoine, a biophysical active substance which we described to prevent carbon nanoparticle-induced lung inflammation. Methods Membrane signalling events were investigated in isolated lipid rafts from lung epithelial cells with regard to lipid and protein content of the signalling platforms. Using positive and negative intervention approaches, lipid raft changes, subsequent signalling events, and lung inflammation were investigated in vitro in lung epithelial cells (RLE-6TN and in vivo in exposed animals. Results Carbon nanoparticle treatment specifically led to an accumulation of ceramides in lipid rafts. Detailed analyses demonstrated a causal link of ceramides and subsequent EGFR activation coupled with a loss of the receptor in the lipid raft fractions. In vitro and in vivo investigations demonstrate the relevance of these events for carbon nanoparticle-induced lung inflammation. Moreover, the compatible solute ectoine was able to prevent ceramide-mediated EGFR phosphorylation and subsequent signalling as well as lung inflammation in vivo. Conclusion The data identify a so far unknown event in pro

  2. A New Mouse Model That Spontaneously Develops Chronic Liver Inflammation and Fibrosis.

    Directory of Open Access Journals (Sweden)

    Nina Fransén-Pettersson

    Full Text Available Here we characterize a new animal model that spontaneously develops chronic inflammation and fibrosis in multiple organs, the non-obese diabetic inflammation and fibrosis (N-IF mouse. In the liver, the N-IF mouse displays inflammation and fibrosis particularly evident around portal tracts and central veins and accompanied with evidence of abnormal intrahepatic bile ducts. The extensive cellular infiltration consists mainly of macrophages, granulocytes, particularly eosinophils, and mast cells. This inflammatory syndrome is mediated by a transgenic population of natural killer T cells (NKT induced in an immunodeficient NOD genetic background. The disease is transferrable to immunodeficient recipients, while polyclonal T cells from unaffected syngeneic donors can inhibit the disease phenotype. Because of the fibrotic component, early on-set, spontaneous nature and reproducibility, this novel mouse model provides a unique tool to gain further insight into the underlying mechanisms mediating transformation of chronic inflammation into fibrosis and to evaluate intervention protocols for treating conditions of fibrotic disorders.

  3. FOS EXPRESSION IN LUMBARSACRAL SPINAL CORD AND MEDULLA OBLONGATA INDUCED BY CHRONIC COLONIC INFLAMMATION IN RATS

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Objective To investigate Fos expression in rat lumbarsacral spinal cord and medulla oblongata induced by chronic colonic inflammation. Methods Thirty-three male Sprague-Dawley rats were randomly divided into two groups: experimental group: colonic inflammation was induced in seventeen rats by intraluminal administration of trinitrobenzenesulfonic acid (TNBS); control group: saline was administered intraluminally in sixteen rats; After 3, 7, 14 and 28 days of administration, lumbarsacral spinal cord and medulla oblongata were removed and processed for Fos immunohistochemistry. Results Fos-immunoreactive (Fos-IR) neurons induced by TNBS administration were primarily distributed in deep laminae (laminae Ⅲ-Ⅳ,Ⅴ-Ⅵ) in the spinal dorsal horn and in medullary visceral zone (MVZ) in the medulla oblongata. The number of Fos-IR cells in the spinal cord and MVZ in rats after 7 and 14 days of TNBS administration were significantly higher than that in the control rats (P<0.05). After 28 days of TNBS instillation, the number of Fos-IR neurons in MVZ decreased and became comparable to the control group. However, the number of Fos cells in the spinal cord in some rats were still significantly increased compared with the control rats (P<0.05). Conclusion Fos-IR neurons after colonic inflammation recovery may play an important role in the development of visceral hypersensitivity. Medulla oblongata was a less important structure than the spinal cord in inducing visceral hypersensitivity after chronic colonic inflammation.

  4. Impact of diabetes type II and chronic inflammation on pancreatic cancer

    OpenAIRE

    Zechner, Dietmar; Radecke, Tobias; Amme, Jonas; Bürtin, Florian; Albert, Ann-Christin; Partecke, Lars Ivo; Vollmar, Brigitte

    2015-01-01

    Background We explored if known risk factors for pancreatic cancer such as type II diabetes and chronic inflammation, influence the pathophysiology of an established primary tumor in the pancreas and if administration of metformin has an impact on tumor growth. Methods Pancreatic carcinomas were assessed in a syngeneic orthotopic pancreas adenocarcinoma model after injection of 6606PDA cells in the pancreas head of either B6.V-Lepob/ob mice exhibiting a type II diabetes-like syndrome or normo...

  5. Is Chronic Inflammation a Possible Cause of Obesity-Related Depression?

    OpenAIRE

    Magdalena Olszanecka-Glinianowicz; Barbara Zahorska-Markiewicz; Piotr Kocełak; Joanna Janowska; Elżbieta Semik-Grabarczyk; Tomasz Wikarek; Wojciech Gruszka; Piotr Dąbrowski

    2009-01-01

    Adult obesity has been associated with depression, especially in women. Whether depression leads to obesity or obesity causes depression is unclear. Chronic inflammation is observed in obesity and depression. In 63 obese women without additional diseases depression level was assessed with the Beck's questionnaire. After evaluation of depression level study group was divided into groups according to the mood status (A—without depression, B—mild depression, and C—severe depression), and serum c...

  6. Intestinal inflammation in TNBS sensitized rats as a model of chronic inflammatory bowel disease

    OpenAIRE

    Selve, N.; Wöhrmann, T.

    1992-01-01

    An enteritis, based on a delayed-type hypersensitivity reaction, was induced in TNBS (2,4,4-trinitrobenzenesulphonic acid) sensitized rats by multiple intrajejunal challenge with TNBS via an implanted catheter. This treatment induced chronic inflammation of the distal small intestine characterized by intense hyperaemia, oedema and gut wall thickening as assessed by macroscopic scoring and weighing a defined part of the dissected intestine. Histologically, the inflammatory response included mu...

  7. Duration of chronic inflammation alters gene expression in muscle from untreated girls with juvenile dermatomyositis

    Directory of Open Access Journals (Sweden)

    Gordish-Dressman Heather

    2008-07-01

    Full Text Available Abstract Background To evaluate the impact of the duration of chronic inflammation on gene expression in skeletal muscle biopsies (MBx from untreated children with juvenile dermatomyositis (JDM and identify genes and biological processes associated with the disease progression, expression profiling data from 16 girls with active symptoms of JDM greater than or equal to 2 months were compared with 3 girls with active symptoms less than 2 months. Results Seventy-nine genes were differentially expressed between the groups with long or short duration of untreated disease. Genes involved in immune responses and vasculature remodelling were expressed at a higher level in muscle biopsies from children with greater or equal to 2 months of symptoms, while genes involved in stress responses and protein turnover were expressed at a lower level. Among the 79 genes, expression of 9 genes showed a significant linear regression relationship with the duration of untreated disease. Five differentially expressed genes – HLA-DQA1, smooth muscle myosin heavy chain, clusterin, plexin D1 and tenomodulin – were verified by quantitative RT-PCR. The chronic inflammation of longer disease duration was also associated with increased DC-LAMP+ and BDCA2+ mature dendritic cells, identified by immunohistochemistry. Conclusion We conclude that chronic inflammation alters the gene expression patterns in muscle of untreated children with JDM. Symptoms lasting greater or equal to 2 months were associated with dendritic cell maturation and anti-angiogenic vascular remodelling, directly contributing to disease pathophysiology.

  8. Effect of Hedera helix on lung histopathology in chronic asthma.

    Directory of Open Access Journals (Sweden)

    Arzu Babayigit Hocaoglu

    2012-12-01

    Full Text Available Hedera helix  is widely used to treat bronchial asthma for many years. However, effects of this herb on lung histopathology is still far from clear. We aimed to determine the effect of oral administration of Hedera helix on lung histopathology in a murine model of chronic asthma.BALB/c  mice  were  divided  into  four  groups;   I  (Placebo,  II  (Hedera  helix, III (Dexamethasone and IV (Control. All mice except controls were sensitized and challenged with ovalbumin. Then, mice in group I received saline, group II 100 mg/kg Hedera helix and group III 1 mg/kg  dexamethasone via orogastic gavage once daily for one week. Airway histopathology was evaluated by using light and electron microscopy in all groups.Goblet  cell numbers and thicknesses of basement membrane were found  significantly lower in group II, but there was no statistically significant difference in terms of number of mast cells, thicknesses of epithelium and subepithelial smooth muscle layers between group I and II. When Hedera helix and dexamethasone groups were compared with each other, thickness of epithelium, subepithelial muscle layers, number of mast cells and goblet cells of group III were significantly ameliorated when compared with the group II.Although Hedera helix administration reduced only goblet cell counts and the thicknesses of basement membrane  in the  asthmatic airways, dexamethasone ameliorated all histopathologic parameters except thickness of  basement  membrane  better  than  Hedera helix.

  9. Synergistic Effect of Green Tea Polyphenols and Vitamin D on Chronic Inflammation-Induced Bone Loss in Female Rats

    Science.gov (United States)

    Our recent study demonstrated a bone-protective role of green tea polyphenols (GTPs), extracted from green tea, in chronic inflammation-induced bone loss of female rats through reduction of inflammation and oxidative stress. This study further examines effects of GTPs in conjunction with vitamin D (...

  10. Chronic obstructive lung disease and posttraumatic stress disorder: current perspectives

    Directory of Open Access Journals (Sweden)

    Abrams TE

    2015-10-01

    Full Text Available Thad E Abrams,1,2 Amy Blevins,1,3 Mark W Vander Weg1,2,4 1Department of Internal Medicine, University of Iowa, 2Center for Comprehensive Access and Delivery Research and Evaluation, Iowa City VA Health Care System, 3Hardin Health Sciences Library, 4Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, USA Background: Several studies have reported on the co-occurrence of chronic obstructive pulmonary disease (COPD and psychiatric conditions, with the most robust evidence base demonstrating an impact of comorbid anxiety and depression on COPD-related outcomes. In recent years, research has sought to determine if there is a co-occurrence between COPD and posttraumatic stress disorder (PTSD as well as for associations between PTSD and COPD-related outcomes. To date, there have been no published reviews summarizing this emerging literature.Objectives: The primary objective of this review was to determine if there is adequate evidence to support a co-occurrence between PTSD and COPD. Secondary objectives were to: 1 determine if there are important clinical considerations regarding the impact of PTSD on COPD management, and 2 identify targeted areas for further research.Methods: A structured review was performed using a systematic search strategy limited to studies in English, addressing adults, and to articles that examined: 1 the co-occurrence of COPD and PTSD and 2 the impact of PTSD on COPD-related outcomes. To be included, articles must have addressed some type of nonreversible obstructive lung pathology.Results: A total of 598 articles were identified for initial review. Upon applying the inclusion and exclusion criteria, n=19 articles or abstracts addressed our stated objectives. Overall, there is inconclusive evidence to support the co-occurrence between PTSD and COPD. Studies finding a significant co-occurrence generally had inferior methods of identifying COPD; in contrast, studies that utilized more robust COPD

  11. Signs of ongoing inflammation in female patients with chronic widespread pain

    Science.gov (United States)

    Gerdle, Björn; Ghafouri, Bijar; Ghafouri, Nazdar; Bäckryd, Emmanuel; Gordh, Torsten

    2017-01-01

    Abstract This cross-sectional study investigates the plasma inflammatory profile of chronic widespread pain (CWP) patients compared to healthy controls (CON). Rather than analyzing a relatively few substances at a time, we used a new multiplex proximity extension assay (PEA) panel that enabled the simultaneous analysis of 92 inflammation-related proteins, mainly cytokines and chemokines. Seventeen women with CWP and 21 female CON participated and a venous blood sample was drawn from all subjects. Pain intensity and pain thresholds for pressure, heat, and cold were registered. A PEA panel (92 proteins) was used to analyze the blood samples. Multivariate data analysis by projection was used in the statistical analyses. Eleven proteins significantly differentiated the CON and CWP subjects (R2 = 0.58, Q2 = 0.37, analysis of variance of cross-validated predictive residuals P = 0.006). It was not possible to significantly regress pain thresholds within each group (CON or CWP). Positive significant correlations existed between several proteins and pain intensities in CWP, but the model reliability of the regression was poor. CWP was associated with systemic low-grade inflammation. Larger studies are needed to confirm the results and to investigate which alterations are condition-specific and which are common across chronic pain conditions. The presence of inflammation could promote the spreading of pain, a hallmark sign of CWP. As it has been suggested that prevalent comorbidities to pain (e.g., depression and anxiety, poor sleep, and tiredness) also are associated with inflammation, it will be important to determine whether inflammation may be a common mediator. PMID:28248866

  12. Engagement of specific innate immune signaling pathways during Porphyromonas gingivalis induced chronic inflammation and atherosclerosis.

    Science.gov (United States)

    Gibson, Frank C; Ukai, Takashi; Genco, Caroline A

    2008-01-01

    Toll-like receptors (TLRs) are a group of pathogen-associated molecular pattern receptors, which play an important role in innate immune signaling in response to microbial infection. It has been demonstrated that TLRs are differentially up regulated in response to microbial infection and chronic inflammatory diseases such as atherosclerosis. The expression of TLRs are markedly augmented in human atherosclerotic lesions and this occurs preferentially by endothelial cells and macrophages in areas infiltrated with inflammatory cells. Furthermore polymorphisms in the human gene encoding one TLR receptor (TLR4) which attenuates receptor signaling and diminishes the inflammatory response to gram-negative pathogens, is associated with low levels of certain circulating mediators of inflammation and a decreased risk for atherosclerosis in humans. Recent advances have established a fundamental role for inflammation in mediating all stages of atherosclerosis. However, the triggers that initiate and sustain the inflammatory process have not been definitively identified. Although definitive proof of a role of infection contributing to atherogenesis is lacking, multiple investigations have demonstrated that infectious agents evoke cellular and molecular changes supportive of such a role. Evidence in humans suggesting that periodontal infection predisposes to atherosclerosis is derived from studies demonstrating that the periodontal pathogen Porphyromonas gingivalis resides in the wall of atherosclerotic vessels and seroepidemiological studies demonstrating an association between pathogen-specific IgG antibodies and atherosclerosis. Our recent work with P. gingivalis has demonstrated the effectiveness of specific intervention strategies (immunization) in the prevention of pathogen-accelerated atherosclerosis. We have also established that the inflammatory signaling pathways that P. gingivalis utilizes is dependent on the cell type and this specificity clearly influences innate

  13. TRPV1 and TRPA1 antagonists prevent the transition of acute to chronic inflammation and pain in chronic pancreatitis.

    Science.gov (United States)

    Schwartz, Erica S; La, Jun-Ho; Scheff, Nicole N; Davis, Brian M; Albers, Kathryn M; Gebhart, G F

    2013-03-27

    Visceral afferents expressing transient receptor potential (TRP) channels TRPV1 and TRPA1 are thought to be required for neurogenic inflammation and development of inflammatory hyperalgesia. Using a mouse model of chronic pancreatitis (CP) produced by repeated episodes (twice weekly) of caerulein-induced AP (AP), we studied the involvement of these TRP channels in pancreatic inflammation and pain-related behaviors. Antagonists of the two TRP channels were administered at different times to block the neurogenic component of AP. Six bouts of AP (over 3 wks) increased pancreatic inflammation and pain-related behaviors, produced fibrosis and sprouting of pancreatic nerve fibers, and increased TRPV1 and TRPA1 gene transcripts and a nociceptive marker, pERK, in pancreas afferent somata. Treatment with TRP antagonists, when initiated before week 3, decreased pancreatic inflammation and pain-related behaviors and also blocked the development of histopathological changes in the pancreas and upregulation of TRPV1, TRPA1, and pERK in pancreatic afferents. Continued treatment with TRP antagonists blocked the development of CP and pain behaviors even when mice were challenged with seven more weeks of twice weekly caerulein. When started after week 3, however, treatment with TRP antagonists was ineffective in blocking the transition from AP to CP and the emergence of pain behaviors. These results suggest: (1) an important role for neurogenic inflammation in pancreatitis and pain-related behaviors, (2) that there is a transition from AP to CP, after which TRP channel antagonism is ineffective, and thus (3) that early intervention with TRP channel antagonists may attenuate the transition to and development of CP effectively.

  14. Apios americana Medik Extract Alleviates Lung Inflammation in Influenza Virus H1N1- and Endotoxin-Induced Acute Lung Injury.

    Science.gov (United States)

    Sohn, Sung-Hwa; Lee, Sang-Yeon; Cui, Jun; Jang, Ho Hee; Kang, Tae-Hoon; Kim, Jong-Keun; Kim, In-Kyoung; Lee, Deuk-Ki; Choi, Seulgi; Yoon, Il-Sub; Chung, Ji-Woo; Nam, Jae-Hwan

    2015-12-28

    Apios americana Medik (hereinafter Apios) has been reported to treat diseases, including cancer, hypertension, obesity, and diabetes. The therapeutic effect of Apios is likely to be associated with its anti-inflammatory activity. This study was conducted to evaluate the protective effects of Apios in animal models of acute lung injury induced by lipopolysaccharide (LPS) or pandemic H1N1 2009 influenza A virus (H1N1). Mice were exposed to LPS or H1N1 for 2-4 days to induce acute lung injury. The treatment groups were administered Apios extracts via oral injection for 8 weeks before LPS treatment or H1N1 infection. To investigate the effects of Apios, we assessed the mice for in vivo effects of Apios on immune cell infiltration and the level of pro-inflammatory cytokines in the bronchoalveolar lavage (BAL) fluid, and histopathological changes in the lung. After induction of acute lung injury, the numbers of neutrophils and total cells were lower in the Apios-treated groups than in the non-Apios-treated LPS and H1N1 groups. The Apios groups tended to have lower levels of tumor necrosis factor-a and interleukin-6 in BAL fluid. In addition, the histopathological changes in the lungs were markedly reduced in the Apios-treated groups. These data suggest that Apios treatment reduces LPS- and H1N1-induced lung inflammation. These protective effects of Apios suggest that it may have therapeutic potential in acute lung injury.

  15. Cerebellar white matter inflammation and demyelination in chronic relapsing experimental allergic encephalomyelitis

    DEFF Research Database (Denmark)

    Wanscher, B.; Sørensen, P. S.; Juhler, M.;

    1993-01-01

    Experimental allergic encephalomyelitis, demyelination, inflammation, immunology, neuropathology......Experimental allergic encephalomyelitis, demyelination, inflammation, immunology, neuropathology...

  16. Chronic Mild Prenatal Stress Exacerbates the Allergen-Induced Airway Inflammation in Rats

    Directory of Open Access Journals (Sweden)

    Paulo J. Nogueira

    1999-01-01

    Full Text Available The effects of chronic mild prenatal stress on leukocyte infiltration into the airways was investigated in rat offspring. The chronic prenatal stress consisted of transitory and variable changes in the rat's living conditions. Offspring at adult age were actively sensitized (day 0 and intratracheally challenged (day 14 with ovalbumin. Bronchoalveolar lavage was performed in the offspring at 48 h after intratracheal challenge with ovalbumin. A significant increase in total leukocyte infiltration was observed in the nonstressed offspring group and this was associated with a marked recruitment of eosinophils without a significant effect on the influx of neutrophils and mononuclear cells. In the prenatal stressed offspring, the counts of both total leukocyte and eosinophils, as well as mononuclear cells, was increased by 50% compared to the non-stressed offspring. We provide here the first experimental evidence that chronic mild unpredictable prenatal stress produces a marked increase in the allergen-induced airway inflammation in the rat offspring.

  17. EFFECTS OF CORTICOSTEROIDS ON BRONCHODILATOR ACTION IN CHRONIC OBSTRUCTIVE LUNG-DISEASE

    NARCIS (Netherlands)

    WEMPE, JB; POSTMA, DS; BREEDERVELD, N; KORT, E; VANDERMARK, TW; KOETER, GH

    1992-01-01

    Background Short term treatment corticosteroids does not usually reduce airflow limitation and airway responsiveness in patients with chronic obstructive lung disease. We investigated whether corticosteroids modulate the effects of inhaled salbutamol and ipratropium bromide. Methods Ten non-allergic

  18. Cytotoxic T lymphocytes mediate chronic inflammation of the nasal mucosa of patients with atypical allergic rhinitis

    Directory of Open Access Journals (Sweden)

    Shuqi Qiu

    2011-01-01

    Full Text Available Background : The prevalence of chronic rhinitis is increasing rapidly; its pathogenesis is to be further understood; immune inflammation is one of the possible causative factors. Antigen specific CD8+ T cells play a critical role in the induction of chronic inflammation. Aims : This study aimed to investigate the role of antigen specific CD8+ T cells in the pathogenesis of chronic atypical allergic rhinitis. Material and Methods : Nasal mucosal epithelial surface scratching samples were obtained from patients with chronic obstruction atypical allergic rhinitis. Exosomes were purified from the scratching samples and examined by immune gold electron microscopy. The effect of exosomes on modulating dendritic cell′s properties, the effect of exosome-pulsed dendritic cells on naïve T cell differentiation and the antigen specific CD8+ T cell activation were observed by cell culture models. Results : Exosomes purified from patients with chronic atypical allergic rhinitis carried microbial products, Staphylococcal enterotoxin B (SEB, and airborne antigen, Derp1. Dendritic cells pulsed by SEB/Derp1-carrying exosomes showed high levels of CD80, CD86 and the major histocompatibility class I (MHCI. Exosome-pulsed dendritic cells could induce the naïve CD3+ T cells to differentiate into CD8+ T cells. Upon the exposure to a specific antigen, the CD8+ T cells released granzyme B and perforin; more than 30% antigen specific CD8+ T cells proliferated. Conclusions : Antigen specific CD8+ T cells play an important role in the pathogenesis of chronic obstruction atypical allergic rhinitis.

  19. Maternal Income during Pregnancy is Associated with Chronic Placental Inflammation at Birth.

    Science.gov (United States)

    Keenan-Devlin, Lauren S; Ernst, Linda M; Ross, Kharah M; Qadir, Sameen; Grobman, William A; Holl, Jane L; Crockett, Amy; Miller, Gregory E; Borders, Ann E B

    2017-04-06

    Objective This study aims to examine whether maternal household income is associated with histological evidence of chronic placental inflammation. Study Design A total of 152 participants completed surveys of household income and consented to placenta collection at delivery and postpartum chart review for birth outcomes. Placental inflammatory lesions were evaluated via histological examination of the membranes, basal plate, and villous parenchyma by a single, experienced pathologist. Associations between household income and the presence of inflammatory lesions were adjusted for known perinatal risk factors. Results Overall, 45% of participants reporting household income below $30,000/y had chronic placental inflammation, compared with 25% of participants reporting income above $100,000 annually (odds ratio [OR] = 4.23, 95% confidence interval [CI] = 1.25, 14.28; p = 0.02). Middle-income groups showed intermediate rates of chronic inflammatory lesions, at 40% for those reporting $30,000 and 50,000 (OR = 3.60, 95% CI = 1.05, 12.53; p = 0.04) and 38% for those reporting $50,000 to 100,000 (OR = 1.57, 95% CI = 0.60, 4.14; p = 0.36). Results remained significant after adjustment for maternal age, race, and marital status. Conclusion Chronic placental inflammation is associated with maternal household income. Greater occurrence of placental lesions in low-income mothers may arise from a systemic inflammatory response to social and physical environmental factors.

  20. Methylprednisolone stiffens aortas in lipopolysaccharide-induced chronic inflammation in rats.

    Directory of Open Access Journals (Sweden)

    Ya-Hui Ko

    Full Text Available INTRODUCTION: Glucocorticoids are commonly used as therapeutic agents in many acute and chronic inflammatory and auto-immune diseases. The current study investigated the effects of methylprednisolone (a synthetic glucocorticoid on aortic distensibility and vascular resistance in lipopolysaccharide-induced chronic inflammation in male Wistar rats. METHODS: Chronic inflammation was induced by implanting a subcutaneous slow-release ALZET osmotic pump (1 mg kg(-1 day(-1 lipopolysaccharide for either 2 or 4 weeks. Arterial wave transit time (τ was derived to describe the elastic properties of aortas using the impulse response function of the filtered aortic input impedance spectra. RESULTS: Long-term lipopolysaccharide challenge enhanced the expression of advanced glycation end products (AGEs in the aortas. Lipopolysaccharide also upregulated the inducible form of nitric oxide synthase to produce high levels of nitric oxide (NO, which resulted in vasodilation, as evidenced by the fall in total peripheral resistance (Rp . However, lipopolysaccharide challenge did not influence the elastic properties of aortas, as shown by the unaltered τ. The NO-mediated vascular relaxation may counterbalance the AGEs-induced arterial stiffening so that the aortic distensibility remained unaltered. Treating lipopolysaccharide-challenged rats with methylprednisolone prevented peripheral vasodilation because of its ability to increase Rp . However, methylprednisolone produced an increase in aorta stiffness, as manifested by the significant decline in τ. The diminished aortic distensibility by methylprednisolone paralleled a significant reduction in NO plasma levels, in the absence of any significant changes in AGEs content. CONCLUSION: Methylprednisolone stiffens aortas and elastic arteries in lipopolysaccharide-induced chronic inflammation in rats, for NO activity may be dominant as a counteraction of AGEs.

  1. Ongoing liver inflammation in patients with chronic hepatitis C and sustained virological response

    Science.gov (United States)

    Welsch, Christoph; Efinger, Mira; von Wagner, Michael; Herrmann, Eva; Zeuzem, Stefan

    2017-01-01

    Background Novel direct-acting antiviral DAA combination therapies tremendously improved sustained virologic response (SVR) rates in patients with chronic HCV infection. SVR is typically accompanied by normalization of liver enzymes, however, hepatic inflammation, i.e. persistently elevated aminotransferase levels may persist despite HCV eradication. Aim: To investigate prevalence and risk factors for ongoing hepatic inflammation after SVR in two large patient cohorts. Methods This post-hoc analysis was based on prospectively collected demographic and clinical data from 834 patients with SVR after HCV treatment with either PegIFN- or DAA-based treatment regimens from the PRAMA trial (n = 341) or patients treated at our outpatient clinic (n = 493). Results We observed an unexpected high prevalence of post-SVR inflammation, including patients who received novel IFN-free DAA-based therapies. Up to 10% of patients had ongoing elevation of aminotransferase levels and another 25% showed aminotransferase activity above the so-called healthy range. Several baseline factors were independently associated with post-SVR aminotransferase elevation. Among those, particularly male gender, advanced liver disease and markers for liver steatosis were strongly predictive for persistent ALT elevation. The use of IFN-based antiviral treatment was independently correlated with post-SVR inflammation, further supporting the overall benefit of IFN-free combination regimens. Conclusion This is the first comprehensive study on a large patient cohort investigating the prevalence and risk factors for ongoing liver inflammation after eradication of HCV. Our data show a high proportion of patients with ongoing hepatic inflammation despite HCV eradication with potential implications for the management of approximately one third of all patients upon SVR. PMID:28196130

  2. Physical activity, by enhancing parasympathetic tone and activating the cholinergic anti-inflammatory pathway, is a therapeutic strategy to restrain chronic inflammation and prevent many chronic diseases.

    Science.gov (United States)

    Lujan, Heidi L; DiCarlo, Stephen E

    2013-05-01

    Chronic diseases are the leading cause of death in the world and chronic inflammation is a key contributor to many chronic diseases. Accordingly, interventions that reduce inflammation may be effective in treating multiple adverse chronic conditions. In this context, physical activity is documented to reduce systemic low-grade inflammation and is acknowledged as an anti-inflammatory intervention. Furthermore, physically active individuals are at a lower risk of developing chronic diseases. However the mechanisms mediating this anti-inflammatory phenotype and range of health benefits are unknown. We hypothesize that the "cholinergic anti-inflammatory pathway" (CAP) mediates the anti-inflammatory phenotype and range of health benefits associated with physical activity. The CAP is an endogenous, physiological mechanism by which acetylcholine from the vagus nerve, interacts with the innate immune system to modulate and restrain the inflammatory cascade. Importantly, higher levels of physical activity are associated with enhanced parasympathetic (vagal) tone and lower levels of C-reactive protein, a marker of low-grade inflammation. Accordingly, physical activity, by enhancing parasympathetic tone and activating the CAP, may be a therapeutic strategy to restrain chronic inflammation and prevent many chronic diseases.

  3. Inhaler device preferences in older adults with chronic lung disease

    Directory of Open Access Journals (Sweden)

    Ghazala L

    2016-11-01

    Full Text Available Introduction: Patient preferences are important for medication adherence and patient satisfaction, but little is known about older adult preferences for inhaler devices. Methods: We developed a 25-item written self-administered questionnaire assessing experience with inhalers, prior inhaler education, and preferences with respect to inhaler device features and inhaler device teaching. We then conducted a cross-sectional survey of patients at least 65 years of age with chronic lung disease who had experience using inhaler devices for at least six months in the ambulatory setting. Results: Fifty participants completed the questionnaire. The majority of participants (80% reported prior experience with a metered dose inhaler (MDI, but only 26% used an MDI with a spacer. Most patients (76% had received formal instruction regarding proper use of the inhaler, but only 34% had ever been asked to demonstrate their inhaler technique. Physician recommendation for an inhaler, cost of the inhaler device, and inhaler features related to convenience were important with respect to patient preferences. With regard to inhaler education, participants prefer verbal instruction and/or hands-on demonstration at the time a new inhaler is prescribed in the setting of the prescribing provider’s office. Conclusion: Patient preferences for inhaler devices and inhaler education among older adults indicate physician recommendation, cost, and convenience are important. The impact of patient preferences on inhaler adherence and clinical outcomes remains unknown.

  4. Cavitating Lung Lesions in Chronic Thromboembolic Pulmonary Hypertension

    Directory of Open Access Journals (Sweden)

    edwin j r van beek

    2008-09-01

    Full Text Available Purpose: The aim of this study is to assess the incidence and natural history of cavitating lung lesions in chronic thromboembolic pulmonary hypertension (CTEPH, note thrombus position between patients with and without a cavity and determine whether their development is a predictor of mortality. Materials & Methods: All patients with confirmed CTEPH attending our Pulmonary Vascular Unit between February 1998 and January 2006 were identified, and a review of their notes and imaging was performed. Thrombus position, pre-disposing factors, cavity progression and mortality were noted, and comparisons made between those with and without a cavity. Results: 11 of 104 patients had a cavity (10.6%. Thrombus distribution was similar between those with and those without a cavity. Preceding infection was not proven in  most cases. 27.3% of patients with a cavity died compared to 26.8% of those without. Conclusion: Cavity formation in CTEPH is 3 times more common than in acute pulmonary embolism. Thrombus position does not predict cavity development, and the presence of a cavity may serve as an indicator of disease severity but does not appear to predict mortality.

  5. Epidemiological studies of the relationship between occupational exposures and chronic non-specific lung disease.

    NARCIS (Netherlands)

    Heederik, D.

    1990-01-01

    In this thesis the relationship between occupational exposures, lung function and Chronic Non-Specific Lung Disease is studied. The study comprises an epidemiological analysis of data from the British Pneumoconiosis Field Research among coal miners and an analysis of data gathered in the Zutphen

  6. RESPIRATORY VIRAL-INFECTIONS AGGRAVATE AIRWAY DAMAGE CAUSED BY CHRONIC REJECTION IN RAT LUNG ALLOGRAFTS

    NARCIS (Netherlands)

    WINTER, JB; GOUW, ASH; GROEN, M; WILDEVUUR, C; PROP, J

    1994-01-01

    Airway damage resulting in bronchiolitis obliterans occurs frequently in patients after heart-lung and lung transplantation. Generally, chronic rejection is assumed to be the most important cause of bronchiolitis obliterans. However, viral infections might also be potential causes of airway damage a

  7. Silicon-based quantum dots induce inflammation in human lung cells and disrupt extracellular matrix homeostasis.

    Science.gov (United States)

    Stan, Miruna-Silvia; Sima, Cornelia; Cinteza, Ludmila Otilia; Dinischiotu, Anca

    2015-08-01

    Quantum dots (QDs) are nanocrystalline semiconductor materials that have been tested for biological applications such as cancer therapy, cellular imaging and drug delivery, despite the serious lack of information of their effects on mammalian cells. The present study aimed to evaluate the potential of Si/SiO2 QDs to induce an inflammatory response in MRC-5 human lung fibroblasts. Cells were exposed to different concentrations of Si/SiO2 QDs (25-200 μg·mL(-1)) for 24, 48, 72 and 96 h. The results obtained showed that uptake of QDs was dependent on biocorona formation and the stability of nanoparticles in various biological media (minimum essential medium without or with 10% fetal bovine serum). The cell membrane damage indicated by the increase in lactate dehydrogenase release after exposure to QDs was dose- and time-dependent. The level of lysosomes increased proportionally with the concentration of QDs, whereas an accumulation of autophagosomes was also observed. Cellular morphology was affected, as shown by the disruption of actin filaments. The enhanced release of nitric oxide and the increase in interleukin-6 and interleukin-8 protein expression suggested that nanoparticles triggered an inflammatory response in MRC-5 cells. QDs decreased the protein expression and enzymatic activity of matrix metalloproteinase (MMP)-2 and MMP-9 and also MMP-1 caseinase activity, whereas the protein levels of MMP-1 and tissue inhibitor of metalloproteinase-1 increased. The present study reveals for the first time that silicon-based QDs are able to generate inflammation in lung cells and cause an imbalance in extracellular matrix turnover through a differential regulation of MMPs and tissue inhibitor of metalloproteinase-1 protein expression.

  8. Air Pollution, Airway Inflammation, and Lung Function in a Cohort Study of Mexico City Schoolchildren

    Science.gov (United States)

    Barraza-Villarreal, Albino; Sunyer, Jordi; Hernandez-Cadena, Leticia; Escamilla-Nuñez, Maria Consuelo; Sienra-Monge, Juan Jose; Ramírez-Aguilar, Matiana; Cortez-Lugo, Marlene; Holguin, Fernando; Diaz-Sánchez, David; Olin, Anna Carin; Romieu, Isabelle

    2008-01-01

    Background The biological mechanisms involved in inflammatory response to air pollution are not clearly understood. Objective In this study we assessed the association of short-term air pollutant exposure with inflammatory markers and lung function. Methods We studied a cohort of 158 asthmatic and 50 nonasthmatic school-age children, followed an average of 22 weeks. We conducted spirometric tests, measurements of fractional exhaled nitric oxide (FeNO), interleukin-8 (IL-8) in nasal lavage, and pH of exhaled breath condensate every 15 days during follow-up. Data were analyzed using linear mixed-effects models. Results An increase of 17.5 μg/m3 in the 8-hr moving average of PM2.5 levels (interquartile range) was associated with a 1.08-ppb increase in FeNO [95% confidence interval (CI), 1.01–1.16] and a 1.07-pg/mL increase in IL-8 (95% CI 0.98–1.19) in asthmatic children and a 1.16 pg/ml increase in IL-8 (95% CI, 1.00–1.36) in nonasthmatic children. The 5-day accumulated average of exposure to particulate matter < 2.5 μm in aerodynamic diamter (PM2.5) was significantly inversely associated with forced expiratory volume in 1 sec (FEV1) (p = 0.048) and forced vital capacity (FVC) (p = 0.012) in asthmatic children and with FVC (p = 0.021) in nonasthmatic children. FeNO and FEV1 were inversely associated (p = 0.005) in asthmatic children. Conclusions Exposure to PM2.5 resulted in acute airway inflammation and decrease in lung function in both asthmatic and nonasthmatic children. PMID:18560490

  9. Targeting the transcription factor Nrf2 to ameliorate oxidative stress and inflammation in chronic kidney disease.

    Science.gov (United States)

    Ruiz, Stacey; Pergola, Pablo E; Zager, Richard A; Vaziri, Nosratola D

    2013-06-01

    Oxidative stress and inflammation are mediators in the development and progression of chronic kidney disease (CKD) and its complications, and they are inseparably linked as each begets and amplifies the other. CKD-associated oxidative stress is due to increased production of reactive oxygen species (ROS) and diminished antioxidant capacity. The latter is largely caused by impaired activation of Nrf2, the transcription factor that regulates genes encoding antioxidant and detoxifying molecules. Protective effects of Nrf2 are evidenced by amelioration of oxidative stress, inflammation, and kidney disease in response to natural Nrf2 activators in animal models, while Nrf2 deletion amplifies these pathogenic pathways and leads to autoimmune nephritis. Given the role of impaired Nrf2 activity in CKD-induced oxidative stress and inflammation, interventions aimed at restoring Nrf2 may be effective in retarding CKD progression. Clinical trials of the potent Nrf2 activator bardoxolone methyl showed significant improvement in renal function in CKD patients with type 2 diabetes. However, due to unforeseen complications the BEACON trial, which was designed to investigate the effect of this drug on time to end-stage renal disease or cardiovascular death in patients with advanced CKD, was prematurely terminated. This article provides an overview of the role of impaired Nrf2 activity in the pathogenesis of CKD-associated oxidative stress and inflammation and the potential utility of targeting Nrf2 in the treatment of CKD.

  10. Mechanical stress as the common denominator between chronic inflammation, cancer and Alzheimer’s disease

    Directory of Open Access Journals (Sweden)

    Marcel eLevy Nogueira

    2015-09-01

    Full Text Available The pathogenesis of common diseases such as Alzheimer’s disease (AD and cancer are currently poorly understood. Inflammation is a common risk factor for cancer and AD. Recent data, provided by our group and from others, demonstrate that increased pressure and inflammation are synonymous. There is a continuous increase in pressure from inflammation to fibrosis and then cancer. This in line with the numerous papers reporting high interstitial pressure in cancer. But most authors focus on the role of pressure in the lack of delivery of chemotherapy in the center of the tumor. Pressure may also be a key factor in carcinogenesis. Increased pressure is responsible for oncogene activation and cytokine secretion. Accumulation of mechanical stress plays a key role in the development of diseases of old age such as cardiomyopathy, atherosclerosis and osteoarthritis. Growing evidence suggest also a possible link between mechanical stress in the pathogenesis of AD. The aim of this review is to describe environmental and endogenous mechanical factors possibly playing a pivotal role in the mechanism of chronic inflammation, AD and cancer.

  11. [Diagnosis of predisposition to chronic cor pulmonale formation in occupational lung diseases caused by dust].

    Science.gov (United States)

    Panev, N I; Korotenko, O Iu; Zakharenkov, V V; Korchagina, Iu S; Gafarov, N I

    2014-01-01

    Study covered 426 miners aged 40-54 years with previously diagnosed occupational respiratory diseases due to dust (246 patients with chronic occupational obstructive bronchitis, 98 with anthracosilicosis and 82 with chronic dust nonobstructive bronchitis). 315 (73.9%) examinees out of 426 with lung diseases due to dust demonstrated chronic cor pulnmonale. Considering high share of this complication, the authors used Bayes method to create a method to diagnose predisposition towards chronic cor pulmonale in patients with dust lung diseases through respiratory failure, concomitant coronary heart disease and arterial hypertension, blood groups ABO, MN and P, some structural and functional parameters of heart: myocardium weight index, relative wall thickness index and left ventricle sphericity index, average lung artery pressure. Increasing number of analyzed factors that directly influence chronic cor pulmonale development and selecting additional markers help to improve forecasting of the complication.

  12. Roles of Chronic Low-Grade Inflammation in the Development of Ectopic Fat Deposition

    Directory of Open Access Journals (Sweden)

    Lulu Liu

    2014-01-01

    Full Text Available Pattern of fat distribution is a major determinant for metabolic homeostasis. As a depot of energy, the storage of triglycerides in adipose tissue contributes to the normal fat distribution. Decreased capacity of fat storage in adipose tissue may result in ectopic fat deposition in nonadipose tissues such as liver, pancreas, and kidney. As a critical biomarker of metabolic complications, chronic low-grade inflammation may have the ability to affect the process of lipid accumulation and further lead to the disorder of fat distribution. In this review, we have collected the evidence linking inflammation with ectopic fat deposition to get a better understanding of the underlying mechanism, which may provide us with novel therapeutic strategies for metabolic disorders.

  13. Investigating depression-like and metabolic parameters in a chronic low-grade inflammation model

    DEFF Research Database (Denmark)

    Fischer, C. W.; Elfving, B.; Lund, S.

    2012-01-01

    values. However, a high dose of LPS caused an increase in liver weight. Analysis of cytokine and mRNA expression levels is currently being carried out and these results are pending. Our preliminary results indicate that a low dose of LPS can produce depression-like behavior, without inducing metabolic......Background: Depression has been associated with a low-grade inflammation and immune activation, as revealed by clinical studies showing elevated levels of pro-inflammatory cytokines and acute phase proteins in depressed patients. These patients are often treatment-resistant, and some studies show...... low-grade inflammation induced by lipopolysaccharide (LPS) on adult Sprague-Dawley rats on depression-like and metabolic parameters. Methods: Chronic infusion of LPS (at a high, medium and low dose) for 28 days was performed by using subcutaneously implanted osmotic minipumps (Alzet...

  14. Intestinal inflammation in TNBS sensitized rats as a model of chronic inflammatory bowel disease

    Directory of Open Access Journals (Sweden)

    N. Selve

    1992-01-01

    Full Text Available An enteritis, based on a delayed-type hypersensitivity reaction, was induced in TNBS (2,4,4-trinitrobenzenesulphonic acid sensitized rats by multiple intrajejunal challenge with TNBS via an implanted catheter. This treatment induced chronic inflammation of the distal small intestine characterized by intense hyperaemia, oedema and gut wall thickening as assessed by macroscopic scoring and weighing a defined part of the dissected intestine. Histologically, the inflammatory response included mucosal and submucosal cell infiltration by lymphocytes and histiocytes, transmural granulomatous inflammation with multinucleated cells and activated mesenteric lymph nodes. Ex vivo stimulated release of the inflammatory mediator LTB4 in the dissected part of the intestine was increased following TNBS treatment. Drug treatment with sulphasalazine or 5-aminosalicylic acid improved the enteritis score and attenuated TNBS induced oedema formation and LTB4 production. The applicability and relevance of this new model are discussed with respect to drug development and basic research of inflammatory bowel diseases.

  15. Noninvasive scoring system for significant inflammation related to chronic hepatitis B

    Science.gov (United States)

    Hong, Mei-Zhu; Ye, Linglong; Jin, Li-Xin; Ren, Yan-Dan; Yu, Xiao-Fang; Liu, Xiao-Bin; Zhang, Ru-Mian; Fang, Kuangnan; Pan, Jin-Shui

    2017-03-01

    Although a liver stiffness measurement-based model can precisely predict significant intrahepatic inflammation, transient elastography is not commonly available in a primary care center. Additionally, high body mass index and bilirubinemia have notable effects on the accuracy of transient elastography. The present study aimed to create a noninvasive scoring system for the prediction of intrahepatic inflammatory activity related to chronic hepatitis B, without the aid of transient elastography. A total of 396 patients with chronic hepatitis B were enrolled in the present study. Liver biopsies were performed, liver histology was scored using the Scheuer scoring system, and serum markers and liver function were investigated. Inflammatory activity scoring models were constructed for both hepatitis B envelope antigen (+) and hepatitis B envelope antigen (‑) patients. The sensitivity, specificity, positive predictive value, negative predictive value, and area under the curve were 86.00%, 84.80%, 62.32%, 95.39%, and 0.9219, respectively, in the hepatitis B envelope antigen (+) group and 91.89%, 89.86%, 70.83%, 97.64%, and 0.9691, respectively, in the hepatitis B envelope antigen (‑) group. Significant inflammation related to chronic hepatitis B can be predicted with satisfactory accuracy by using our logistic regression-based scoring system.

  16. Inhibition of chronic skin inflammation by topical anti-inflammatory flavonoid preparation, Ato Formula.

    Science.gov (United States)

    Lim, Hyun; Son, Kun Ho; Chang, Hyeun Wook; Kang, Sam Sik; Kim, Hyun Pyo

    2006-06-01

    Flavonoids are known as natural anti-inflammatory agents. In this investigation, an anti-inflammatory potential of new topical preparation (SK Ato Formula) containing flavonoid mixtures from Scutellaria baicalensis Georgi roots and Ginkgo biloba L. leaves with an extract of Gentiana scabra Bunge roots was evaluated in an animal model of chronic skin inflammation. Multiple 12-O-tetradecanoylphorbol-13-acetate treatments for 7 consecutive days on ICR mouse ear provoked a chronic type of skin inflammation: dermal edema, epidermal hyperplasia and infiltration of inflammatory cells. When topically applied in this model, this new formulation (5-20 microL/ear/treatment) reduced these responses. Furthermore, it inhibited prostaglandin E2 generation (17.1-33.3%) and suppressed the expression of proinflammatory genes, cyclooxygenase-2 and interleulin-1beta in the skin lesion. Although the potency of inhibition was lower than that of prednisolone, all these results suggest that Ato Formula may be beneficial for treating chronic skin inflammatory disorders such as atopic dermatitis.

  17. Bridging Lung Development with Chronic Obstructive Pulmonary Disease. Relevance of Developmental Pathways in Chronic Obstructive Pulmonary Disease Pathogenesis.

    Science.gov (United States)

    Boucherat, Olivier; Morissette, Mathieu C; Provencher, Steeve; Bonnet, Sébastien; Maltais, François

    2016-02-15

    Chronic obstructive pulmonary disease (COPD) is characterized by chronic airflow limitation. This generic term encompasses emphysema and chronic bronchitis, two common conditions, each having distinct but also overlapping features. Recent epidemiological and experimental studies have challenged the traditional view that COPD is exclusively an adult disease occurring after years of inhalational insults to the lungs, pinpointing abnormalities or disruption of the pathways that control lung development as an important susceptibility factor for adult COPD. In addition, there is growing evidence that emphysema is not solely a destructive process because it is also characterized by a failure in cell and molecular maintenance programs necessary for proper lung development. This leads to the concept that tissue regeneration required stimulation of signaling pathways that normally operate during development. We undertook a review of the literature to outline the contribution of developmental insults and genes in the occurrence and pathogenesis of COPD, respectively.

  18. Chronic lymphocytic inflammation with pontine perivascular enhancement responsive to steroids (CLIPPERS): A case report and review of literature

    OpenAIRE

    Soma Madhan Reddy; Rahul Lath; Meenakshi Swain; Alok Ranjan

    2015-01-01

    Chronic lymphocytic inflammation with pontine perivascular enhancement responsive to steroids (CLIPPERS) is a recently described inflammatory disease of central nervous system with distinct clinical and radiological features. The etiopathogenesis of this rare entity remains to be understood. The histopathological findings closely resemble chronic inflammatory diseases like sarcoidosis and malignancies like lymphoma. With advancements in serology, immunopathology and radiology CLIPPERS is iden...

  19. Intrinsic mutagenic properties of 5-chlorocytosine: A mechanistic connection between chronic inflammation and cancer.

    Science.gov (United States)

    Fedeles, Bogdan I; Freudenthal, Bret D; Yau, Emily; Singh, Vipender; Chang, Shiou-chi; Li, Deyu; Delaney, James C; Wilson, Samuel H; Essigmann, John M

    2015-08-18

    During chronic inflammation, neutrophil-secreted hypochlorous acid can damage nearby cells inducing the genomic accumulation of 5-chlorocytosine (5ClC), a known inflammation biomarker. Although 5ClC has been shown to promote epigenetic changes, it has been unknown heretofore if 5ClC directly perpetrates a mutagenic outcome within the cell. The present work shows that 5ClC is intrinsically mutagenic, both in vitro and, at a level of a single molecule per cell, in vivo. Using biochemical and genetic approaches, we have quantified the mutagenic and toxic properties of 5ClC, showing that this lesion caused C→T transitions at frequencies ranging from 3-9% depending on the polymerase traversing the lesion. X-ray crystallographic studies provided a molecular basis for the mutagenicity of 5ClC; a snapshot of human polymerase β replicating across a primed 5ClC-containing template uncovered 5ClC engaged in a nascent base pair with an incoming dATP analog. Accommodation of the chlorine substituent in the template major groove enabled a unique interaction between 5ClC and the incoming dATP, which would facilitate mutagenic lesion bypass. The type of mutation induced by 5ClC, the C→T transition, has been previously shown to occur in substantial amounts both in tissues under inflammatory stress and in the genomes of many inflammation-associated cancers. In fact, many sequence-specific mutational signatures uncovered in sequenced cancer genomes feature C→T mutations. Therefore, the mutagenic ability of 5ClC documented in the present study may constitute a direct functional link between chronic inflammation and the genetic changes that enable and promote malignant transformation.

  20. Chronic obstructive pulmonary disease and obstructive sleep apnea: overlaps in pathophysiology, systemic inflammation, and cardiovascular disease.

    LENUS (Irish Health Repository)

    McNicholas, Walter T

    2012-02-01

    Chronic obstructive pulmonary disease (COPD) and obstructive sleep apnea syndrome represent two of the most prevalent chronic respiratory disorders in clinical practice, and cardiovascular diseases represent a major comorbidity in each disorder. The two disorders coexist (overlap syndrome) in approximately 1% of adults but asymptomatic lower airway obstruction together with sleep-disordered breathing is more prevalent. Although obstructive sleep apnea syndrome has similar prevalence in COPD as the general population, and vice versa, factors such as body mass index and smoking influence relationships. Nocturnal oxygen desaturation develops in COPD, independent of apnea\\/hypopnea, and is more severe in the overlap syndrome, thus predisposing to pulmonary hypertension. Furthermore, upper airway flow limitation contributes to nocturnal desaturation in COPD without apnea\\/hypopnea. Evidence of systemic inflammation in COPD and sleep apnea, involving C-reactive protein and IL-6, in addition to nuclear factor-kappaB-dependent pathways involving tumor necrosis factor-alpha and IL-8, provides insight into potential basic interactions between both disorders. Furthermore, oxidative stress develops in each disorder, in addition to activation and\\/or dysfunction of circulating leukocytes. These findings are clinically relevant because systemic inflammation may contribute to the pathogenesis of cardiovascular diseases and the cell\\/molecular pathways involved are similar to those identified in COPD and sleep apnea. However, the pathophysiological and clinical significance of systemic inflammation in COPD and sleep apnea is not proven, and thus, studies of patients with the overlap syndrome should provide insight into the mechanisms of systemic inflammation in COPD and sleep apnea, in addition to potential relationships with cardiovascular disease.

  1. Inflammasome-IL-1-Th17 response in allergic lung inflammation

    Institute of Scientific and Technical Information of China (English)

    Anne-Gaelle Besnard; Dieudonnée Togbe; Isabelle Couillin; Zoming Tan; Song Guo Zheng; Francois Erard; Marc Le Bert; Valérie Quesniaux; Bernhard Ryffel

    2012-01-01

    Allergic asthma has increased dramatically in prevalence and severity over the last three decades.Both clinical and experimental data support an important role of Th2 cell response in the allergic response.Recent investigations revealed that airway exposure to allergen in sensitized individuals causes the release of ATP and uric acid,activating the N LRP3 inflammasome complex and cleaving pro-IL-1β to mature IL-1β through caspase-1.The production of pro-IL-1β requires a toll-like receptor (TLR) 4 signal which is provided by the allergen.IL-1β creates a pro-inflammatory milieu with the production of IL-6 and chemokines which mobilize neutrophils and enhance Th17 cell differentiation in the lung.Here,we review our results showing that NLRP3 inflammasome activation is required to develop allergic airway inflammation in mice and that IL-17 and IL-22 production by Th17 cells plays a critical role in established asthma.Therefore,inflammasome activation leading to IL-1β production contributes to the control of allergic asthma by enhancing Th17 cell differentiation.

  2. Exogenous surfactant suppresses inflammation in experimental endotoxin-induced lung injury.

    Science.gov (United States)

    Mittal, Neha; Sanyal, Sankar Nath

    2009-01-01

    Our objective was to evaluate the anti-inflammatory effects of exogenous surfactant and surfactant phospholipids on the lipopolysaccharide (LPS)-induced lung injury. Exogenous surfactant (porcine surfactant) and surfactant phospholipid (dipalmitoyl phospholipid DPPC, hexadecanol, tylaxopol) were instilled intratracheally with LPS in rats. Expression of surfactant apoproteins (SP-A) and the cyclooxygenase enzymes (COX-1 and -2) was studied by immunohistochemistry, and apoptosis was analyzed by in situ terminal dUTP nick end labeling TUNEL assay. The intracellular reactive oxygen species (ROS) was measured in the isolated macrophages by fluorescence measurement with dichlorofluorescein diacetate (DCFH-DA). LPS-induced oxidative burst and apoptosis at 72 hours were reduced by both porcine and synthetic surfactant. SP-A as well as COX-1 and -2 expressions were suppressed with synthetic surfactant treatment, whereas with porcine surfactant (P-SF) the SP-A expression was enhanced in response to LPS administration. These results indicate that exogenous surfactant inhibits LPS-induced inflammation. This anti-inflammatory activity may be an important outcome of surfactant therapy in endotoxin-induced respiratory distress.

  3. Elevated plasma levels of pigment epithelium-derived factor correlated with inflammation and lung function in COPD patients

    Directory of Open Access Journals (Sweden)

    Li X

    2015-03-01

    diagnose COPD patients and we also analyzed the correlation between PEDF and lung function.Results: First, we found that the expression of PEDF in cigarette smoke extract-treated cells increased 16.2-fold when compared with the control group. Next, we confirmed that 4 weeks’ exposure to cigarette smoke can upregulate PEDF levels in rat lung tissues. We also discovered that plasma PEDF in COPD patients was significantly increased when compared with either healthy nonsmoking or smoking subjects. Furthermore, circulating PEDF was correlated with inflammatory cytokine and blood neutrophil numbers, but it was reversely associated with a decline in forced expiratory volume in 1 second percent predicted.Conclusion: Our findings provide a novel link between PEDF and COPD. Elevated PEDF levels may be involved in promoting the development of COPD by performing proinflammatory functions. Keywords: chronic obstructive pulmonary disease, pigment epithelium-derived factor, cigarette smoke, inflammation

  4. Chronic unpredictable mild stress generates oxidative stress and systemic inflammation in rats.

    Science.gov (United States)

    López-López, Ana Laura; Jaime, Herlinda Bonilla; Escobar Villanueva, María Del Carmen; Padilla, Malinalli Brianza; Palacios, Gonzalo Vázquez; Aguilar, Francisco Javier Alarcón

    2016-07-01

    Stress is considered to be a causal agent of chronic degenerative diseases, such as cardiovascular disease, diabetes mellitus, arthritis and Alzheimer's. Chronic glucocorticoid and catecholamine release into the circulation during the stress response has been suggested to activate damage mechanisms, which in the long term produce metabolic alterations associated with oxidative stress and inflammation. However, the consequences of stress in animal models for periods longer than 40days have not been explored. The goal of this work was to determine whether chronic unpredictable mild stress (CUMS) produced alterations in the redox state and the inflammatory profile of rats after 20, 40, and 60days. CUMS consisted of random exposure of the animals to different stressors. The following activities were measured in the liver and pancreas: reduced glutathione (GSH), lipid peroxidation (LPO), superoxide dismutase (SOD), catalase (CAT), total antioxidant capacity (TAC), and protein oxidation. Similarly, serum cytokine levels (IL-6, TNF-α, IL-1β, and IL-10) were determined. CUMS activated the stress response from day 20 until day 60. In the liver and pancreas, GHS levels were decreased from day 40, whereas protein lipid peroxidation and protein oxidation were increased. This is the first work to report that the pancreas redox state is subject to chronic stress conditions. The TAC was constant in the liver and reduced in the pancreas. An increase in the TNF-α, IL-1β, and IL-6 inflammatory markers and a decrease in the IL-10 level due to CUMS was shown, thereby resulting in the generation of a systemic inflammation state after 60days of treatment. Together, the CUMS consequences on day 60 suggest that both processes can contribute to the development of chronic degenerative diseases, such as cardiovascular disease and diabetes mellitus. CUMS is an animal model that in addition to avoiding habituation activates damage mechanisms such as oxidative stress and low-grade chronic

  5. Transcriptome Profiling of the Lungs Reveals Molecular Clock Genes Expression Changes after Chronic Exposure to Ambient Air Particles

    Science.gov (United States)

    Song, Pengcheng; Li, Zhigang; Li, Xiaoqian; Yang, Lixin; Zhang, Lulu; Li, Nannan; Guo, Chen; Lu, Shuyu; Wei, Yongjie

    2017-01-01

    The symptoms of asthma, breathlessness, insomnia, etc. all have relevance to pulmonary rhythmic disturbances. Epidemiology and toxicology studies have demonstrated that exposure to ambient air particles can result in pulmonary dysfunction. However, there are no data directly supporting a link between air pollution and circadian rhythm disorder. In the present study, we found that breathing highly polluted air resulted in changes of the molecular clock genes expression in lung by transcriptome profiling analyses in a rodent model. Compared to those exposed to filtered air, in both pregnant and offspring rats in the unfiltered group, key clock genes (Per1, Per2, Per3, Rev-erbα and Dbp) expression level decreased and Bmal1 expression level increased. In both rat dams and their offspring, after continuous exposure to unfiltered air, we observed significant histologic evidence for both perivascular and peribronchial inflammation, increased tissue and systemic oxidative stress in the lungs. Our results suggest that chronic exposure to particulate matter can induce alterations of clock genes expression, which could be another important pathway for explaining the feedbacks of ambient particle exposure in addition to oxidative stress and inflammation. PMID:28106813

  6. Transcriptome Profiling of the Lungs Reveals Molecular Clock Genes Expression Changes after Chronic Exposure to Ambient Air Particles

    Directory of Open Access Journals (Sweden)

    Pengcheng Song

    2017-01-01

    Full Text Available The symptoms of asthma, breathlessness, insomnia, etc. all have relevance to pulmonary rhythmic disturbances. Epidemiology and toxicology studies have demonstrated that exposure to ambient air particles can result in pulmonary dysfunction. However, there are no data directly supporting a link between air pollution and circadian rhythm disorder. In the present study, we found that breathing highly polluted air resulted in changes of the molecular clock genes expression in lung by transcriptome profiling analyses in a rodent model. Compared to those exposed to filtered air, in both pregnant and offspring rats in the unfiltered group, key clock genes (Per1, Per2, Per3, Rev-erbα and Dbp expression level decreased and Bmal1 expression level increased. In both rat dams and their offspring, after continuous exposure to unfiltered air, we observed significant histologic evidence for both perivascular and peribronchial inflammation, increased tissue and systemic oxidative stress in the lungs. Our results suggest that chronic exposure to particulate matter can induce alterations of clock genes expression, which could be another important pathway for explaining the feedbacks of ambient particle exposure in addition to oxidative stress and inflammation.

  7. Exposure to low doses of formaldehyde during pregnancy suppresses the development of allergic lung inflammation in offspring

    Energy Technology Data Exchange (ETDEWEB)

    Maiellaro, Marília [Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo (Brazil); Correa-Costa, Matheus [Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo (Brazil); Vitoretti, Luana Beatriz; Gimenes Júnior, João Antônio [Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo (Brazil); Câmara, Niels Olsen Saraiva [Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo (Brazil); Tavares-de-Lima, Wothan [Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo (Brazil); Farsky, Sandra Helena Poliselli [Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo (Brazil); Lino-dos-Santos-Franco, Adriana, E-mail: adrilino@usp.br [Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo (Brazil)

    2014-08-01

    Formaldehyde (FA) is an environmental and occupational pollutant, and its toxic effects on the immune system have been shown. Nevertheless, no data are available regarding the programming mechanisms after FA exposure and its repercussions for the immune systems of offspring. In this study, our objective was to investigate the effects of low-dose exposure of FA on pregnant rats and its repercussion for the development of allergic lung inflammation in offspring. Pregnant Wistar rats were assigned in 3 groups: P (rats exposed to FA (0.75 ppm, 1 h/day, 5 days/week, for 21 days)), C (rats exposed to vehicle of FA (distillated water)) and B (rats non-manipulated). After 30 days of age, the offspring was sensitised with ovalbumin (OVA)-alum and challenged with aerosolized OVA (1%, 15 min, 3 days). After 24 h the OVA challenge the parameters were evaluated. Our data showed that low-dose exposure to FA during pregnancy induced low birth weight and suppressed the development of allergic lung inflammation and tracheal hyperresponsiveness in offspring by mechanisms mediated by reduced anaphylactic antibodies synthesis, IL-6 and TNF-alpha secretion. Elevated levels of IL-10 were found. Any systemic alteration was detected in the exposed pregnant rats, although oxidative stress in the uterine environment was evident at the moment of the delivery based on elevated COX-1 expression and reduced cNOS and SOD-2 in the uterus. Therefore, we show the putative programming mechanisms induced by FA on the immune system for the first time and the mechanisms involved may be related to oxidative stress in the foetal microenvironment. - Highlights: • Formaldehyde exposure does not cause lung inflammation in pregnant rats. • Formaldehyde exposure suppresses allergic lung inflammation in the offspring. • Formaldehyde exposure induces oxidative stress in uterine environment.

  8. Immunomodulatory Properties of Mesenchymal Stem Cells Can Mitigate Oxidative Stress and Inflammation Process in Human Mustard Lung.

    Science.gov (United States)

    Nejad-Moghaddam, Amir; Ajdary, Sohiela; Tahmasbpour, Eisa; Rad, Farhad Riazi; Panahi, Yunes; Ghanei, Mostafa

    2016-12-01

    Oxidative stress and inflammation are one of the main pathological consequences of sulfur mustard on human lungs. Unfortunately, there is no effective treatment to mitigate pathological effects of sulfur mustard in mustard lungs. Here, we aimed to evaluate potential efficacy of systemic mesenchymal stem cells administration on expression of oxidative stress- and inflammation-related genes in sulfur mustard-exposed patients. Our patient received 100 million cells per injection, which was continued for four injections within 2 months. Sputum samples were provided after each injection. Oxidative stress was evaluated by determining sputum levels of malondialdehyde and glutathione. Furthermore, changes in expression of several oxidative stress- (metallothionein 3, glutathione reductase, oxidative stress responsive 1, glutathione peroxidase 2, lacto peroxidase, forkhead box M1) and inflammation-related genes (matrix metallopeptidase 2, matrix metallopeptidase 9, transforming growth factor-β1, vascular endothelial growth factor, metallopeptidase inhibitor 1, metallopeptidase inhibitor 2) were also evaluated using real-time PCR after treatments. Two-lung epithelial-specific proteins including Clara cell protein 16 and Mucin-1 protein levels were measured using enzyme immunoassay method. No significant differences were found between serum levels of Clara cell protein 16 and serum Mucin-1 protein in patient before and after cell therapy. Most of the oxidative stress responsive genes, particularly oxidative stress responsive 1, were overexpressed after treatments. Expressions of antioxidants genes such as metallothionein 3, glutathione reductase and glutathione peroxidase 2 were increased after cell therapy. Upon comparison of inflammation-related genes, we observed upregulation of vascular endothelial growth factor and matrix metallopeptidase 9 after mesenchymal stem cells therapy. Additionally, a trend for increased value of glutathione and decreased levels of

  9. Leukocyte telomere length in major depression: correlations with chronicity, inflammation and oxidative stress--preliminary findings.

    Directory of Open Access Journals (Sweden)

    Owen M Wolkowitz

    Full Text Available BACKGROUND: Depression is associated with an unusually high rate of aging-related illnesses and early mortality. One aspect of "accelerated aging" in depression may be shortened leukocyte telomeres. When telomeres critically shorten, as often occurs with repeated mitoses or in response to oxidation and inflammation, cells may die. Indeed, leukocyte telomere shortening predicts early mortality and medical illnesses in non-depressed populations. We sought to determine if leukocyte telomeres are shortened in Major Depressive Disorder (MDD, whether this is a function of lifetime depression exposure and whether this is related to putative mediators, oxidation and inflammation. METHODOLOGY: Leukocyte telomere length was compared between 18 unmedicated MDD subjects and 17 controls and was correlated with lifetime depression chronicity and peripheral markers of oxidation (F2-isoprostane/Vitamin C ratio and inflammation (IL-6. Analyses were controlled for age and sex. PRINCIPAL FINDINGS: The depressed group, as a whole, did not differ from the controls in telomere length. However, telomere length was significantly inversely correlated with lifetime depression exposure, even after controlling for age (p<0.05. Average telomere length in the depressed subjects who were above the median of lifetime depression exposure (≥9.2 years' cumulative duration was 281 base pairs shorter than that in controls (p<0.05, corresponding to approximately seven years of "accelerated cell aging." Telomere length was inversely correlated with oxidative stress in the depressed subjects (p<0.01 and in the controls (p<0.05 and with inflammation in the depressed subjects (p<0.05. CONCLUSIONS: These preliminary data indicate that accelerated aging at the level of leukocyte telomeres is proportional to lifetime exposure to MDD. This might be related to cumulative exposure to oxidative stress and inflammation in MDD. This suggest that telomere shortening does not antedate depression

  10. Crosstalk between the unfolded protein response and NF-κB-mediated inflammation in the progression of chronic kidney disease.

    Science.gov (United States)

    Mohammed-Ali, Zahraa; Cruz, Gaile L; Dickhout, Jeffrey G

    2015-01-01

    The chronic inflammatory response is emerging as an important therapeutic target in progressive chronic kidney disease. A key transcription factor in the induction of chronic inflammation is NF-κB. Recent studies have demonstrated that sustained activation of the unfolded protein response (UPR) can initiate this NF-κB signaling phenomenon and thereby induce chronic kidney disease progression. A key factor influencing chronic kidney disease progression is proteinuria and this condition has now been demonstrated to induce sustained UPR activation. This review details the crosstalk between the UPR and NF-κB pathways as pertinent to chronic kidney disease. We present potential tools to study this phenomenon as well as potential therapeutics that are emerging to regulate the UPR. These therapeutics may prevent inflammation specifically induced in the kidney due to proteinuria-induced sustained UPR activation.

  11. [CLIPPERS (chronic lymphocytic inflammation with pontine perivascular enhancement responsive to steroids)].

    Science.gov (United States)

    Kan, Shinichi

    2016-09-01

    Chronic lymphocytic inflammation with pontine perivascular enhancement responsive to steroids (CLIPPERS) has been recently identified as an inflammatory central nervous system (CNS) disorder. Punctate and curvilinear gadolinium enhancement (peppering) the pons is a characteristic magnetic resonance imaging (MRI) feature of CLIPPERS. Pathogenesis of this disorder remains unknown. A specific serum or cerebrospinal fluid biomarker for this disorder is currently unknown. Whether CLIPPERS is an actual new disease or just represents overlapping symptoms from multiple diseases is still debated. Many differential diagnoses exist even when using imaging as a tool. Pre-lymphoma states, such as grade I LYG (lymphomatoid granulomatosis) and sentinel lesions of primary CNS lymphoma are the most difficult to distinguish.

  12. An extended chronic lymphocytic inflammation with pontine perivascular enhancement responsive to steroids phenotype.

    Science.gov (United States)

    Lane, Chris; Phadke, Rahul; Howard, Robin

    2014-06-25

    Chronic lymphocytic inflammation with pontine perivascular enhancement responsive to steroids (CLIPPERS) is a recently described central nervous system inflammatory condition. In this case report we describe a patient initially with features consistent with this syndrome, who represented with seizures (not previously reported in this syndrome) and corresponding prominent cortical involvement on imaging (also not previously noted). Owing to diagnostic uncertainty, cerebral biopsy was performed revealing histology consistent with CLIPPERS, excluding other differentials. Following a further brainstem relapse, this patient was treated with high-dose steroids, subsequently switched to a tapering oral regime and now, azathioprine, a steroid-sparing agent. She remains well on this.

  13. Lower grade chronic inflammation is associated with obstructive sleep apnea syndrome in type 2 diabetes mellitus

    Institute of Scientific and Technical Information of China (English)

    朱宏霞

    2014-01-01

    Objective To investigate whether the existence of obstructive sleep apnea syndrome(OSAS)in patients with type 2 diabetes(T2DM) is associated with low grade chronic inflammation.Methods Fifty-four patients hospitalized for poor glycemic control from 12/2008 to 12/2009 were divided into 2 groups,OSAS group(T2DM with OSAS,27 cases)and NOSAS group(T2DM without OSAS,27 cases).The control group consisted of 26people from a health check-up program without diabetes

  14. Ethanol metabolism, oxidative stress, and endoplasmic reticulum stress responses in the lungs of hepatic alcohol dehydrogenase deficient deer mice after chronic ethanol feeding

    Energy Technology Data Exchange (ETDEWEB)

    Kaphalia, Lata [Department of Internal Medicine, The University of Texas Medical Branch, Galveston, TX 775555 (United States); Boroumand, Nahal [Department of Pathology, The University of Texas Medical Branch, Galveston, TX 775555 (United States); Hyunsu, Ju [Department of Preventive Medicine and Community Health, The University of Texas Medical Branch, Galveston, TX 775555 (United States); Kaphalia, Bhupendra S., E-mail: bkaphali@utmb.edu [Department of Pathology, The University of Texas Medical Branch, Galveston, TX 775555 (United States); Calhoun, William J. [Department of Internal Medicine, The University of Texas Medical Branch, Galveston, TX 775555 (United States)

    2014-06-01

    ethanol feeding causes oxidative stress, ER stress and inflammation in lungs of ADH– deer mice. • Chronic ethanol feeding generates FAEEs (nonoxidative metabolites of ethanol) in lungs of ADH– deer mice. • Chronic ethanol feeding induces CYP2E1 in the lungs of ADH– deer mice. • Lack of ER homeostasis due to a prolonged ethanol feeding could trigger inflammation.

  15. LPS-induced lung inflammation in marmoset monkeys - an acute model for anti-inflammatory drug testing.

    Directory of Open Access Journals (Sweden)

    Sophie Seehase

    Full Text Available Increasing incidence and substantial morbidity and mortality of respiratory diseases requires the development of new human-specific anti-inflammatory and disease-modifying therapeutics. Therefore, new predictive animal models that closely reflect human lung pathology are needed. In the current study, a tiered acute lipopolysaccharide (LPS-induced inflammation model was established in marmoset monkeys (Callithrix jacchus to reflect crucial features of inflammatory lung diseases. Firstly, in an ex vivo approach marmoset and, for the purposes of comparison, human precision-cut lung slices (PCLS were stimulated with LPS in the presence or absence of the phosphodiesterase-4 (PDE4 inhibitor roflumilast. Pro-inflammatory cytokines including tumor necrosis factor-alpha (TNF-α and macrophage inflammatory protein-1 beta (MIP-1β were measured. The corticosteroid dexamethasone was used as treatment control. Secondly, in an in vivo approach marmosets were pre-treated with roflumilast or dexamethasone and unilaterally challenged with LPS. Ipsilateral bronchoalveolar lavage (BAL was conducted 18 hours after LPS challenge. BAL fluid was processed and analyzed for neutrophils, TNF-α, and MIP-1β. TNF-α release in marmoset PCLS correlated significantly with human PCLS. Roflumilast treatment significantly reduced TNF-α secretion ex vivo in both species, with comparable half maximal inhibitory concentration (IC(50. LPS instillation into marmoset lungs caused a profound inflammation as shown by neutrophilic influx and increased TNF-α and MIP-1β levels in BAL fluid. This inflammatory response was significantly suppressed by roflumilast and dexamethasone. The close similarity of marmoset and human lungs regarding LPS-induced inflammation and the significant anti-inflammatory effect of approved pharmaceuticals assess the suitability of marmoset monkeys to serve as a promising model for studying anti-inflammatory drugs.

  16. Persistent activation of an innate immune response translates respiratory viral infection into chronic lung disease.

    Science.gov (United States)

    Kim, Edy Y; Battaile, John T; Patel, Anand C; You, Yingjian; Agapov, Eugene; Grayson, Mitchell H; Benoit, Loralyn A; Byers, Derek E; Alevy, Yael; Tucker, Jennifer; Swanson, Suzanne; Tidwell, Rose; Tyner, Jeffrey W; Morton, Jeffrey D; Castro, Mario; Polineni, Deepika; Patterson, G Alexander; Schwendener, Reto A; Allard, John D; Peltz, Gary; Holtzman, Michael J

    2008-06-01

    To understand the pathogenesis of chronic inflammatory disease, we analyzed an experimental mouse model of chronic lung disease with pathology that resembles asthma and chronic obstructive pulmonary disease (COPD) in humans. In this model, chronic lung disease develops after an infection with a common type of respiratory virus is cleared to only trace levels of noninfectious virus. Chronic inflammatory disease is generally thought to depend on an altered adaptive immune response. However, here we find that this type of disease arises independently of an adaptive immune response and is driven instead by interleukin-13 produced by macrophages that have been stimulated by CD1d-dependent T cell receptor-invariant natural killer T (NKT) cells. This innate immune axis is also activated in the lungs of humans with chronic airway disease due to asthma or COPD. These findings provide new insight into the pathogenesis of chronic inflammatory disease with the discovery that the transition from respiratory viral infection into chronic lung disease requires persistent activation of a previously undescribed NKT cell-macrophage innate immune axis.

  17. Fat-associated lymphoid clusters control local IgM secretion during pleural infection and lung inflammation

    Science.gov (United States)

    Jackson-Jones, Lucy H.; Duncan, Sheelagh M.; Magalhaes, Marlène S.; Campbell, Sharon M.; Maizels, Rick M.; McSorley, Henry J.; Allen, Judith E.; Bénézech, Cécile

    2016-01-01

    Fat-associated lymphoid clusters (FALC) are inducible structures that support rapid innate-like B-cell immune responses in the serous cavities. Little is known about the physiological cues that activate FALCs in the pleural cavity and more generally the mechanisms controlling B-cell activation in FALCs. Here we show, using separate models of pleural nematode infection with Litomosoides sigmodontis and Altenaria alternata induced acute lung inflammation, that inflammation of the pleural cavity rapidly activates mediastinal and pericardial FALCs. IL-33 produced by FALC stroma is crucial for pleural B1-cell activation and local IgM secretion. However, B1 cells are not the direct target of IL-33, which instead requires IL-5 for activation. Moreover, lung inflammation leads to increased IL-5 production by type 2 cytokine-producing innate lymphoid cells (ILC2) in the FALC. These findings reveal a link between inflammation, IL-33 release by FALC stromal cells, ILC2 activation and pleural B-cell activation in FALCs, resulting in local and antigen-specific IgM production. PMID:27582256

  18. Role of Chitinase 3-Like-1 in Interleukin-18-Induced Pulmonary Type 1, Type 2, and Type 17 Inflammation; Alveolar Destruction; and Airway Fibrosis in the Murine Lung.

    Science.gov (United States)

    Kang, Min-Jong; Yoon, Chang Min; Nam, Milang; Kim, Do-Hyun; Choi, Je-Min; Lee, Chun Geun; Elias, Jack A

    2015-12-01

    Chitinase 3-like 1 (Chi3l1), which is also called YKL-40 in humans and BRP-39 in mice, is the prototypic chitinase-like protein. Recent studies have highlighted its impressive ability to regulate the nature of tissue inflammation and the magnitude of tissue injury and fibroproliferative repair. This can be appreciated in studies that highlight its induction after cigarette smoke exposure, during which it inhibits alveolar destruction and the genesis of pulmonary emphysema. IL-18 is also known to be induced and activated by cigarette smoke, and, in murine models, the IL-18 pathway has been shown to be necessary and sufficient to generate chronic obstructive pulmonary disease-like inflammation, fibrosis, and tissue destruction. However, the relationship between Chi3l1 and IL-18 has not been defined. To address this issue we characterized the expression of Chi3l1/BRP-39 in control and lung-targeted IL-18 transgenic mice. We also characterized the effects of transgenic IL-18 in mice with wild-type and null Chi3l1 loci. The former studies demonstrated that IL-18 is a potent stimulator of Chi3l1/BRP-39 and that this stimulation is mediated via IFN-γ-, IL-13-, and IL-17A-dependent mechanisms. The latter studies demonstrated that, in the absence of Chi3l1/BRP-39, IL-18 induced type 2 and type 17 inflammation and fibrotic airway remodeling were significantly ameliorated, whereas type 1 inflammation, emphysematous alveolar destruction, and the expression of cytotoxic T lymphocyte perforin, granzyme, and retinoic acid early transcript 1 expression were enhanced. These studies demonstrate that IL-18 is a potent stimulator of Chi3l1 and that Chi3l1 is an important mediator of IL-18-induced inflammatory, fibrotic, alveolar remodeling, and cytotoxic responses.

  19. Chronic occupational exposure to arsenic induces carcinogenic gene signaling networks and neoplastic transformation in human lung epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Stueckle, Todd A., E-mail: tstueckle@hsc.wvu.edu [Department of Basic Pharmaceutical Sciences, West Virginia University, Morgantown, WV 26506 (United States); Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505 (United States); Lu, Yongju, E-mail: yongju6@hotmail.com [Department of Basic Pharmaceutical Sciences, West Virginia University, Morgantown, WV 26506 (United States); Davis, Mary E., E-mail: mdavis@wvu.edu [Department of Physiology, West Virginia University, Morgantown, WV 26506 (United States); Wang, Liying, E-mail: lmw6@cdc.gov [Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505 (United States); Jiang, Bing-Hua, E-mail: bhjiang@jefferson.edu [Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107 (United States); Holaskova, Ida, E-mail: iholaskova@hsc.wvu.edu [Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, WV 26506 (United States); Schafer, Rosana, E-mail: rschafer@hsc.wvu.edu [Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, WV 26506 (United States); Barnett, John B., E-mail: jbarnett@hsc.wvu.edu [Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, WV 26506 (United States); Rojanasakul, Yon, E-mail: yrojan@hsc.wvu.edu [Department of Basic Pharmaceutical Sciences, West Virginia University, Morgantown, WV 26506 (United States)

    2012-06-01

    Chronic arsenic exposure remains a human health risk; however a clear mode of action to understand gene signaling-driven arsenic carcinogenesis is currently lacking. This study chronically exposed human lung epithelial BEAS-2B cells to low-dose arsenic trioxide to elucidate cancer promoting gene signaling networks associated with arsenic-transformed (B-As) cells. Following a 6 month exposure, exposed cells were assessed for enhanced cell proliferation, colony formation, invasion ability and in vivo tumor formation compared to control cell lines. Collected mRNA was subjected to whole genome expression microarray profiling followed by in silico Ingenuity Pathway Analysis (IPA) to identify lung carcinogenesis modes of action. B-As cells displayed significant increases in proliferation, colony formation and invasion ability compared to BEAS-2B cells. B-As injections into nude mice resulted in development of primary and secondary metastatic tumors. Arsenic exposure resulted in widespread up-regulation of genes associated with mitochondrial metabolism and increased reactive oxygen species protection suggesting mitochondrial dysfunction. Carcinogenic initiation via reactive oxygen species and epigenetic mechanisms was further supported by altered DNA repair, histone, and ROS-sensitive signaling. NF-κB, MAPK and NCOR1 signaling disrupted PPARα/δ-mediated lipid homeostasis. A ‘pro-cancer’ gene signaling network identified increased survival, proliferation, inflammation, metabolism, anti-apoptosis and mobility signaling. IPA-ranked signaling networks identified altered p21, EF1α, Akt, MAPK, and NF-κB signaling networks promoting genetic disorder, altered cell cycle, cancer and changes in nucleic acid and energy metabolism. In conclusion, transformed B-As cells with their whole genome expression profile provide an in vitro arsenic model for future lung cancer signaling research and data for chronic arsenic exposure risk assessment. Highlights: ► Chronic As{sub 2}O

  20. Role of reactive nitrogen species generated via inducible nitric oxide synthase in vesicant-induced lung injury, inflammation and altered lung functioning

    Energy Technology Data Exchange (ETDEWEB)

    Sunil, Vasanthi R., E-mail: sunilvr@eohsi.rutgers.edu [Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy Piscataway, NJ (United States); Shen, Jianliang; Patel-Vayas, Kinal; Gow, Andrew J. [Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy Piscataway, NJ (United States); Laskin, Jeffrey D. [Department of Environmental and Occupational Medicine, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway, NJ (United States); Laskin, Debra L. [Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy Piscataway, NJ (United States)

    2012-05-15

    Pulmonary toxicity induced by sulfur mustard and related vesicants is associated with oxidative stress. In the present studies we analyzed the role of reactive nitrogen species (RNS) generated via inducible nitric oxide synthase (iNOS) in lung injury and inflammation induced by vesicants using 2-chloroethyl ethyl sulfide (CEES) as a model. C57Bl/6 (WT) and iNOS −/− mice were sacrificed 3 days or 14 days following intratracheal administration of CEES (6 mg/kg) or control. CEES intoxication resulted in transient (3 days) increases in bronchoalveolar lavage (BAL) cell and protein content in WT, but not iNOS −/− mice. This correlated with expression of Ym1, a marker of oxidative stress in alveolar macrophages and epithelial cells. In contrast, in iNOS −/− mice, Ym1 was only observed 14 days post-exposure in enlarged alveolar macrophages, suggesting that they are alternatively activated. This is supported by findings that lung tumor necrosis factor and lipocalin Lcn2 expression, mediators involved in tissue repair were also upregulated at this time in iNOS −/− mice. Conversely, CEES-induced increases in the proinflammatory genes, monocyte chemotactic protein-1 and cyclooxygenase-2, were abrogated in iNOS −/− mice. In WT mice, CEES treatment also resulted in increases in total lung resistance and decreases in compliance in response to methacholine, effects blunted by loss of iNOS. These data demonstrate that RNS, generated via iNOS play a role in the pathogenic responses to CEES, augmenting oxidative stress and inflammation and suppressing tissue repair. Elucidating inflammatory mechanisms mediating vesicant-induced lung injury is key to the development of therapeutics to treat mustard poisoning. -- Highlights: ► Lung injury, inflammation and oxidative stress are induced by the model vesicant CEES ► RNS generated via iNOS are important in the CEES-induced pulmonary toxicity ► iNOS −/− mice are protected from CEES-induced lung toxicity and

  1. Biodiesel versus diesel exposure: Enhanced pulmonary inflammation, oxidative stress, and differential morphological changes in the mouse lung

    Energy Technology Data Exchange (ETDEWEB)

    Yanamala, Naveena, E-mail: wqu1@cdc.gov [Pathology and Physiology Research Branch/NIOSH/CDC, Morgantown, WV 26505 (United States); Hatfield, Meghan K., E-mail: wla4@cdc.gov [Pathology and Physiology Research Branch/NIOSH/CDC, Morgantown, WV 26505 (United States); Farcas, Mariana T., E-mail: woe7@cdc.gov [Pathology and Physiology Research Branch/NIOSH/CDC, Morgantown, WV 26505 (United States); Schwegler-Berry, Diane [Pathology and Physiology Research Branch/NIOSH/CDC, Morgantown, WV 26505 (United States); Hummer, Jon A., E-mail: qzh3@cdc.gov [Office of Mine Safety and Health Research/NIOSH/CDC, Pittsburgh, PA 15236 (United States); Shurin, Michael R., E-mail: shurinmr@upmc.edu [Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA (United States); Birch, M. Eileen, E-mail: mib2@cdc.gov [NIOSH/CDC, 4676 Columbia Parkway, Cincinnati, OH 45226 (United States); Gutkin, Dmitriy W., E-mail: dwgutkin@hotmail.com [Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA (United States); Kisin, Elena, E-mail: edk8@cdc.gov [Pathology and Physiology Research Branch/NIOSH/CDC, Morgantown, WV 26505 (United States); Kagan, Valerian E., E-mail: kagan@pitt.edu [Department of Environmental and Occupational Health, University of Pittsburgh, PA (United States); Bugarski, Aleksandar D., E-mail: zjl1@cdc.gov [Office of Mine Safety and Health Research/NIOSH/CDC, Pittsburgh, PA 15236 (United States); Shvedova, Anna A., E-mail: ats1@cdc.gov [Pathology and Physiology Research Branch/NIOSH/CDC, Morgantown, WV 26505 (United States); Department Physiology and Pharmacology, WVU, Morgantown, WV 26505 (United States)

    2013-10-15

    The use of biodiesel (BD) or its blends with petroleum diesel (D) is considered to be a viable approach to reduce occupational and environmental exposures to particulate matter (PM). Due to its lower particulate mass emissions compared to D, use of BD is thought to alleviate adverse health effects. Considering BD fuel is mainly composed of unsaturated fatty acids, we hypothesize that BD exhaust particles could induce pronounced adverse outcomes, due to their ability to readily oxidize. The main objective of this study was to compare the effects of particles generated by engine fueled with neat BD and neat petroleum-based D. Biomarkers of tissue damage and inflammation were significantly elevated in lungs of mice exposed to BD particulates. Additionally, BD particulates caused a significant accumulation of oxidatively modified proteins and an increase in 4-hydroxynonenal. The up-regulation of inflammatory cytokines/chemokines/growth factors was higher in lungs upon BD particulate exposure. Histological evaluation of lung sections indicated presence of lymphocytic infiltrate and impaired clearance with prolonged retention of BD particulate in pigment laden macrophages. Taken together, these results clearly indicate that BD exhaust particles could exert more toxic effects compared to D. - Highlights: • Exposure of mice to BDPM caused higher pulmonary toxicity compared to DPM. • Oxidative stress and inflammation were higher in BD vs to D exposed mice. • Inflammatory lymphocyte infiltrates were seen only in lungs of mice exposed to BD. • Ineffective clearance, prolonged PM retention was present only after BD exposure.

  2. Chronic lymphocytic inflammation with pontine perivascular enhancement responsive to steroids (CLIPPERS).

    Science.gov (United States)

    Pittock, Sean J; Debruyne, Jan; Krecke, Karl N; Giannini, Caterina; van den Ameele, Jelle; De Herdt, Veerle; McKeon, Andrew; Fealey, Robert D; Weinshenker, Brian G; Aksamit, Allen J; Krueger, Bruce R; Shuster, Elizabeth A; Keegan, B Mark

    2010-09-01

    The classification and pathological mechanisms of many central nervous system inflammatory diseases remain uncertain. In this article we report eight patients with a clinically and radiologically distinct pontine-predominant encephalomyelitis we have named 'chronic lymphocytic inflammation with pontine perivascular enhancement responsive to steroids' (CLIPPERS). The patients were assessed clinically, radiologically and pathologically at Mayo Clinic, USA and Ghent University Hospital, Belgium from 1999 to 2009. Median follow-up duration from clinical onset was 22 months (range 7-144 months). Patients underwent extensive laboratory (serum and cerebrospinal fluid), radiological and pathological testing (conjunctival, transbronchial and brain biopsies) to search for causes of an inflammatory central nervous system disorder. All eight patients (five female, three male) presented with episodic diplopia or facial paresthesias with subsequent brainstem and occasionally myelopathic symptoms and had a favourable initial response to high dose glucocorticosteroids. All patients had symmetric curvilinear gadolinium enhancement peppering the pons and extending variably into the medulla, brachium pontis, cerebellum, midbrain and occasionally spinal cord. Radiological improvement accompanied clinical response to glucocorticosteroids. Patients routinely worsened following glucocorticosteroid taper and required chronic glucocorticosteroid or other immunosuppressive therapy. Neuropathology of biopsy material from four patients demonstrated white matter perivascular, predominantly T lymphocytic, infiltrate without granulomas, infection, lymphoma or vasculitis. Chronic lymphocytic inflammation with pontine perivascular enhancement responsive to steroids is a definable, chronic inflammatory central nervous system disorder amenable to immunosuppressive treatment. The T cell predominant inflammatory pathology in affected central nervous system lesions and the clinical and radiological

  3. Chronic inflammation of the prostate type IV with respect to risk of prostate cancer

    Directory of Open Access Journals (Sweden)

    Antonio B. Porcaro

    2014-09-01

    Full Text Available Background: Chronic inflammatory infiltrate (CII might be involved in prostate cancer (PCA and benign hyperplasia (BPH; however, its significance is controversial. Chronic inflammatory prostatitis type IV is the most common non cancer diagnosis in men undergoing biopsy because of suspected PCA. Objective: To evaluate potential associations of coexistent CII and PCA in biopsy specimens after prostate assessment. Design, setting, and participants: Between January 2007 and December 2008, 415 consecutive patients who underwent prostate biopsy were retrospectively evaluated. The investigated variables included Age (years and PSA (ug/l; moreover, CII+, glandular atrophy (GA+, glandular hyperplasia (GH+, prostate Intraepithelial neoplasm (PIN+, atypical small acinar cell proliferation (ASAP+ and PCA positive cores (P+ were evaluated as categorical and continuous (proportion of positive cores. Outcome measurements and statistical analysis: Associations of CII+ and PCA risk were assessed by statistical methods. Results and limitations: In the patient population, a biopsy core positive for PCA was detected in 34.2% of cases and the rate of high grade PCA (HGPCA: bGS ! 8 resulted 4.82%. CII+ significantly and inversely associated with a positive biopsy core P+ (P < 0.0001; OR = 0.26 and HGPCA (P = 0.0005; OR = 0.05. Moreover, the associations indicated that patients with coexistent CII+ on needle biopsy were 74% less likely to have coexistent PCA than men without CII+ as well as 95% less likely to have HGPCA in the biopsy core than men without coexistent CII+. There were limits in our study which was single centre and included only one dedicated pathologist. Conclusions: There was an inverse association of chronic inflammation of the prostate type IV and risk of PCA; moreover, HGPCA was less likely to be detected in cancers associated with coexistent CII. In prostate microenvironment, prostate chronic inflammation may be protective; however, its role in

  4. Vaccination promotes TH1-like inflammation and survival in chronic Pseudomonas aeruginosa pneumonia in rats

    DEFF Research Database (Denmark)

    Johansen, H K; Hougen, H P; Cryz, S J;

    1995-01-01

    In a rat model of chronic Pseudomonas aeruginosa lung infection mimicking cystic fibrosis (CF) we studied whether the inflammatory response could be altered by vaccination. Rats were immunized with either a depolymerized alginate toxin A conjugate (D-ALG toxin A), purified alginate, an O...... with the other three groups (p = 0.009). The histopathologic response in the control rats was dominated by numerous polymorphonuclear leukocytes (PMN) surrounding the alginate beads. In contrast, the histopathologic response in rats immunized with D-ALG toxin A changed within the first week after challenge from...

  5. Living near a Major Road in Beijing: Association with Lower Lung Function, Airway Acidification, and Chronic Cough

    Institute of Scientific and Technical Information of China (English)

    Zhan-Wei Hu; Yan-Ni Zhao; Yuan Cheng; Cui-Yan Guo; Xi Wang; Nan Li; Jun-Qing Liu

    2016-01-01

    Background:The effects of near-road pollution on lung function in China have not been well studied.We aimed to investigate the effects of long-term exposure to traffic-related air pollution on lung function,airway inflammation,and respiratory symptoms.Methods:We enrolled 1003 residents aged 57.96 ± 8.99 years living in the Shichahai Community in Beijing.Distances between home addresses and the nearest major roads were measured to calculate home-road distance.We used the distance categories 1,2,and 3,representing <100 m,100-200 m,and >200 m,respectively,as the dose indicator for traffic-related air pollution exposure.Lung function,exhaled breath condensate (EBC) pH,and interleukin 6 levels were measured.As a follow-up,398 participants had a second lung function assessment about 3 years later,and lung function decline was also examined as an outcome.We used regression analysis to assess the impacts of home-road distance on lung function and respiratory symptoms.As the EBC biomarker data were not normally distributed,we performed correlation analysis between home-road distance categories and EBC biomarkers.Results:Participants living a shorter distance from major roads had lower percentage of predicted value of forced expiratory volume in 1 s (FEV1%-1.54,95% confidence interval [CI]:-0.20 to-2.89).The odds ratio for chronic cough was 2.54 (95% CI.:1.57-4.10) for category 1 and 1.97 (95% CI.:1.16-3.37) for category 2,compared with category 3.EBC pH was positively correlated with road distance (rank correlation coefficient of Spearman [rs] =0.176,P < 0.001).Conclusions:Long-term exposure to traffic-related air pollution in people who live near major roads in Beijing is associated with lower lung function,airway acidification,and a higher prevalence of chronic cough.EBC pH is a potential useful biomarker for evaluating air pollution exposure.

  6. Correlation of measurable serum markers of inflammation with lung levels following bilateral femur fracture in a rat model

    Directory of Open Access Journals (Sweden)

    Benjamin W Sears

    2010-08-01

    Full Text Available Benjamin W Sears1, Dustin Volkmer1, Sherri Yong2, Ryan D Himes1, Kristen Lauing1, Michele Morgan1, Michael D Stover1, John J Callaci11Department of Orthopaedics, 2Department of Pathology, Loyola University Medical Center, Maywood, IL, USAIntroduction: Evaluation of the systemic inflammatory status following major orthopedic trauma has become an important adjunct in basing post-injury clinical decisions. In the present study, we examined the correlation of serum and lung inflammatory marker levels following bilateral femur fracture.Materials and methods: 45 Sprague Dawley rats underwent sham operation or bilateral femoral intramedullary pinning and mid-diaphyseal closed fracture via blunt guillotine. Animals were euthanized at specific time points after injury. Serum and lung tissue were collected, and 24 inflammatory markers were analyzed by immunoassay. Lung histology was evaluated by a blinded pathologist.Results: Bilateral femur fracture significantly increased serum markers of inflammation including interleukin (IL-2, IL-6, IL-10, GM-CSF, KC/GRO, MCP-1, and WBC. Femur fracture ­significantly increased serum and lung levels of IL-1a and KC/GRO at 6 hours. Lung levels of IL-6 ­demonstrated a trend towards significance. Histologic changes in pulmonary tissue after fracture included pulmonary edema and bone elements including cellular hematopoietic cells, bone fragments and marrow emboli.Discussion and conclusion: Our results indicate that bilateral femur fracture with fixation in rats results in increases in serum markers of inflammation. Among the inflammatory markers measured, rise in the serum KC/GRO (CINC-1, a homolog to human IL-8, correlated with elevated levels of lung KC/GRO. Ultimately, analysis of serum levels of KC/GRO (CINC-1, or human IL-8, may be a useful adjunct to guide clinical decisions regarding surgical timing.Keywords: blunt trauma, injury, cytokine, IL-8, bone marrow emboli

  7. Blocking the 4-1BB Pathway Ameliorates Crystalline Silica-induced Lung Inflammation and Fibrosis in Mice.

    Science.gov (United States)

    Li, Chao; Du, Sitong; Lu, Yiping; Lu, Xiaowei; Liu, Fangwei; Chen, Ying; Weng, Dong; Chen, Jie

    2016-01-01

    Long term pulmonary exposure to crystalline silica leads to silicosis that manifests progressive interstitial fibrosis, eventually leading to respiratory failure and death. Despite efforts to eliminate silicosis, clinical cases continue to occur in both developing and developed countries. The exact mechanisms of crystalline silica-induced pulmonary fibrosis remain elusive. Herein, we find that 4-1BB is induced in response to crystalline silica injury in lungs and that it is highly expressed during development of experimental silicosis. Therefore, we explore the role of 4-1BB pathway during crystalline silica-induced lung injury and find that a specific inhibitor blocking the pathway could effectively alleviate crystalline silica-induced lung inflammation and subsequent pulmonary fibrosis in vivo. Compared to controls, the treated mice exhibited reduced Th1 and Th17 responses. The concentrations of pro-inflammatory cytokines in bronchoalveolar lavage fluid (BALF), including tumor necrosis factor (TNF)-α, interferon (IFN)-γ and interleukin (IL)-17A following crystalline silica challenge were also reduced in inhibitor-treated mice. Although there was no significant alteration in Th2 cytokines of IL-4 and IL-13, another type of pro-fibrogenic cell, regulatory T cell (Treg) was significantly affected. In addition, one of the major participants in fibrogenesis, fibrocyte recruited less due to the blockade. Furthermore, we demonstrated the decreased fibrocyte recruitment was associated with chemokine reductions in lung. Our study discovers the 4-1BB pathway signaling enhances inflammatory response and promotes pulmonary fibrosis induced by crystalline silica. The findings here provide novel insights into the molecular events that control crystalline silica-induced lung inflammation and fibrosis through regulating Th responses and the recruitment of fibrocytes in crystalline silica-exposed lung.

  8. Changing glucocorticoid action: 11β-hydroxysteroid dehydrogenase type 1 in acute and chronic inflammation.

    Science.gov (United States)

    Chapman, Karen E; Coutinho, Agnes E; Zhang, Zhenguang; Kipari, Tiina; Savill, John S; Seckl, Jonathan R

    2013-09-01

    Since the discovery of cortisone in the 1940s and its early success in treatment of rheumatoid arthritis, glucocorticoids have remained the mainstay of anti-inflammatory therapies. However, cortisone itself is intrinsically inert. To be effective, it requires conversion to cortisol, the active glucocorticoid, by the enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1). Despite the identification of 11β-HSD in liver in 1953 (which we now know to be 11β-HSD1), its physiological role has been little explored until recently. Over the past decade, however, it has become apparent that 11β-HSD1 plays an important role in shaping endogenous glucocorticoid action. Acute inflammation is more severe with 11β-HSD1-deficiency or inhibition, yet in some inflammatory settings such as obesity or diabetes, 11β-HSD1-deficiency/inhibition is beneficial, reducing inflammation. Current evidence suggests both beneficial and detrimental effects may result from 11β-HSD1 inhibition in chronic inflammatory disease. Here we review recent evidence pertaining to the role of 11β-HSD1 in inflammation. This article is part of a Special Issue entitled 'CSR 2013'.

  9. Association of Mucosal Organisms with Patterns of Inflammation in Chronic Rhinosinusitis.

    Directory of Open Access Journals (Sweden)

    Thanit Chalermwatanachai

    Full Text Available Chronic rhinosinusitis is a multifactorial process disease in which bacterial infection or colonization may play an important role in the initiation or persistence of inflammatory response. The association between mucosal bacteria presence and inflammatory patterns has only been partially explored.To demonstrate specific mucosal microorganisms possible association with inflammatory patterns.We collected nasal polyps or sinus tissues from a clinical selection of six patient groups with defined sinus disease using tissue biomarkers. In the tissues, we detected bacteria using peptide nucleic acid fluorescence in situ hybridization (PNA-FISH.After reviewing a total of 115 samples (15-20 samples per group, the mucosal presence of Staphylococcus aureus was correlated with IL-5 and SE-IgE positive chronic rhinosinusitis with nasal polyps and nasal polyps from cystic fibrosis patients. Chronic rhinosinusitis without nasal polyps with TNFα >20 pg/ml was associated with the mucosal presence of Pseudomonas aeruginosa.This study identifies the relationship between intramucosal microbes and inflammatory patterns, suggesting that bacteria may affect the type of inflammation in chronic rhinosinusitis. Additional investigation is needed to further identify the nature of the relationship.

  10. Mast cells in chronic inflammation, pelvic pain and depression in women.

    Science.gov (United States)

    Graziottin, Alessandra; Skaper, Stephen D; Fusco, Mariella

    2014-07-01

    Inflammatory and neuroinflammatory processes are increasingly recognized as critical pathophysiologic steps in the development of multiple chronic diseases and in the etiology of persistent pain and depression. Mast cells are immune cells now viewed as cellular sensors in inflammation and immunity. When stimulated, mast cells release an array of mediators to orchestrate an inflammatory response. These mediators can directly initiate tissue responses on resident cells, and may also regulate the activity of other immune cells, including central microglia. New evidence supports the involvement of peripheral and central mast cells in the development of pain processes as well as in the transition from acute, to chronic and neuropathic pain. That behavioral and endocrine states can increase the number and activation of peripheral and brain mast cells suggests that mast cells represent the immune cells that peripherally and centrally coordinate inflammatory processes in neuropsychiatric diseases such as depression and anxiety which are associated with chronic pelvic pain. Given that increasing evidence supports the activated mast cell as a director of common inflammatory pathways/mechanisms contributing to chronic and neuropathic pelvic pain and comorbid neuropsychiatric diseases, mast cells may be considered a viable target for the multifactorial management of both pain and depression.

  11. Influenza virus-induced lung inflammation was modulated by cigarette smoke exposure in mice.

    Directory of Open Access Journals (Sweden)

    Yan Han

    Full Text Available Although smokers have increased susceptibility and severity of seasonal influenza virus infection, there is no report about the risk of 2009 pandemic H1N1 (pdmH1N1 or avian H9N2 (H9N2/G1 virus infection in smokers. In our study, we used mouse model to investigate the effect of cigarette smoke on pdmH1N1 or H9N2 virus infection. Mice were exposed to cigarette smoke for 21 days and then infected with pdmH1N1 or H9N2 virus. Control mice were exposed to air in parallel. We found that cigarette smoke exposure alone significantly upregulated the lung inflammation. Such prior cigarette smoke exposure significantly reduced the disease severity of subsequent pdmH1N1 or H9N2 virus infection. For pdmH1N1 infection, cigarette smoke exposed mice had significantly lower mortality than the control mice, possibly due to the significantly decreased production of inflammatory cytokines and chemokines. Similarly, after H9N2 infection, cigarette smoke exposed mice displayed significantly less weight loss, which might be attributed to lower cytokines and chemokines production, less macrophages, neutrophils, CD4+ and CD8+ T cells infiltration and reduced lung damage compared to the control mice. To further investigate the underlying mechanism, we used nicotine to mimic the effect of cigarette smoke both in vitro and in vivo. Pre-treating the primary human macrophages with nicotine for 72 h significantly decreased their expression of cytokines and chemokines after pdmH1N1 or H9N2 infection. The mice subcutaneously and continuously treated with nicotine displayed significantly less weight loss and lower inflammatory response than the control mice upon pdmH1N1 or H9N2 infection. Moreover, α7 nicotinic acetylcholine receptor knockout mice had more body weight loss than wild-type mice after cigarette smoke exposure and H9N2 infection. Our study provided the first evidence that the pathogenicity of both pdmH1N1 and H9N2 viruses was alleviated in cigarette smoke exposed

  12. Diethylcarbamazine Reduces Chronic Inflammation and Fibrosis in Carbon Tetrachloride- (CCl4- Induced Liver Injury in Mice

    Directory of Open Access Journals (Sweden)

    Sura Wanessa Santos Rocha

    2014-01-01

    Full Text Available This study investigated the anti-inflammatory effects of DEC on the CCl4-induced hepatotoxicity in C57BL/6 mice. Chronic inflammation was induced by i.p. administration of CCl4 0.5 μL/g of body weight through two injections a week for 6 weeks. DEC (50 mg/kg was administered by gavage for 12 days before finishing the CCl4 induction. Histological analyses of the DEC-treated group exhibited reduced inflammatory process and prevented liver necrosis and fibrosis. Immunohistochemical and immunofluorescence analyses of the DEC-treated group showed reduced COX-2, IL1β, MDA, TGF-β, and αSMA immunopositivity, besides exhibiting decreased IL1β, COX-2, NFκB, IFNγ, and TGFβ expressions in the western blot analysis. The DEC group enhanced significantly the IL-10 expression. The reduction of hepatic injury in the DEC-treated group was confirmed by the COX-2 and iNOS mRNA expression levels. Based on the results of the present study, DEC can be used as a potential anti-inflammatory drug for chronic hepatic inflammation.

  13. IL-32: A Novel Pluripotent Inflammatory Interleukin, towards Gastric Inflammation, Gastric Cancer, and Chronic Rhino Sinusitis

    Directory of Open Access Journals (Sweden)

    Muhammad Babar Khawar

    2016-01-01

    Full Text Available A vast variety of nonstructural proteins have been studied for their key roles and involvement in a number of biological phenomenona. Interleukin-32 is a novel cytokine whose presence has been confirmed in most of the mammals except rodents. The IL-32 gene was identified on human chromosome 16 p13.3. The gene has eight exons and nine splice variants, namely, IL-32α, IL-32β, IL-32γ, IL-32δ, IL-32ε, IL-32ζ, IL-32η, IL-32θ, and IL-32s. It was found to induce the expression of various inflammatory cytokines including TNF-α, IL-6, and IL-1β as well as macrophage inflammatory protein-2 (MIP-2 and has been reported previously to be involved in the pathogenesis and progression of a number of inflammatory disorders, namely, inflammatory bowel disease (IBD, gastric inflammation and cancer, rheumatoid arthritis, and chronic obstructive pulmonary disease (COPD. In the current review, we have highlighted the involvement of IL-32 in gastric cancer, gastric inflammation, and chronic rhinosinusitis. We have also tried to explore various mechanisms suspected to induce the expression of this extraordinary cytokine as well as various mechanisms of action employed by IL-32 during the mediation and progression of the above said problems.

  14. Sudden cardiac arrest in a patient with epilepsy induced by chronic inflammation on the cerebral surface

    Institute of Scientific and Technical Information of China (English)

    Yuxi Liu; Weicheng Hao; Xiaoming Yang; Yimin Wang; Yu Su

    2012-01-01

    The present study analyzed a patient with epilepsy due to chronic inflammation on the cerebral surface underwent sudden cardiac arrest. Paradoxical brain discharge, which occurred prior to epileptic seizures, induced a sudden cardiac arrest. However, when the focal brain pressure was relieved, cardiac arrest disappeared. A 27-year-old male patient underwent pre-surgical video-electroencephalogram monitoring for 160 hours. During monitoring, secondary tonic-clonic seizures occurred five times. A burst of paradoxical brain discharges occurred at 2-19 seconds (mean 8 seconds) prior to epileptic seizures. After 2-3 seconds, sudden cardiac arrest occurred and lasted for 12-22 seconds (average 16 seconds). The heart rate subsequently returned to a normal rate. Results revealed arachnoid pachymenia and adhesions, as well as mucus on the focal cerebral surface, combined with poor circulation and increased pressure. Intracranial electrodes were placed using surgical methods. Following removal of the arachnoid adhesions and mucus on the local cerebral surface, paradoxical brain discharge and epileptic seizures occurred three times, but sudden cardiac arrest was not recorded during 150-hour monitoring. Post-surgical histological examination indicated meningitis. Experimental findings suggested that paradoxical brain discharge led to cardiac arrest instead of epileptic seizures; the insult was associated with chronic inflammation on the cerebral surface, which subsequently led to hypertension and poor blood circulation in focal cerebral areas.

  15. Inflammation in Achromobacter xylosoxidans infected cystic fibrosis patients

    DEFF Research Database (Denmark)

    Hansen, C. R.; Pressler, T.; Nielsen, K. G.;

    2010-01-01

    BACKGROUND: Achromobacter xylosoxidans infection may cause conspicuous chronic pulmonary inflammation in cystic fibrosis (CF) patients similar to Pseudomonas aeruginosa and the Burkholderia cepacia complex (Bcc). Evolution in lung function was compared in chronically infected patients. Cytokine...... patients. CONCLUSION: A. xylosoxidans can cause a level of inflammation similar to P. aeruginosa in chronically infected CF patients. A. xylosoxidans is a clinically important pathogen in CF and should be treated accordingly....

  16. Neutralization of interleukin-17A delays progression of silica-induced lung inflammation and fibrosis in C57BL/6 mice

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ying; Li, Cuiying [Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang, Liaoning (China); Weng, Dong [Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang, Liaoning (China); Clinical Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai (China); Song, Laiyu; Tang, Wen; Dai, Wujing; Yu, Ye; Liu, Fangwei; Zhao, Ming; Lu, Chunwei [Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang, Liaoning (China); Chen, Jie, E-mail: chenjie@mail.cmu.edu.cn [Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang, Liaoning (China)

    2014-02-15

    Silica exposure can cause lung inflammation and fibrosis, known as silicosis. Interleukin-17A (IL-17A) and Th17 cells play a pivotal role in controlling inflammatory diseases. However, the roles of IL-17A and Th17 cells in the progress of silica-induced inflammation and fibrosis are poorly understood. This study explored the effects of IL-17A on silica-induced inflammation and fibrosis. We used an anti-mouse IL-17A antibody to establish an IL-17A-neutralized mice model, and mice were exposed to silica to establish an experimental silicosis model. We showed that IL-17A neutralization delayed neutrophil accumulation and progression of silica-induced lung inflammation and fibrosis. IL-17A neutralization reduced the percentage of Th17 in CD4 + T cells, decreased IL-6 and IL-1β expression, and increased Tregs at an early phase of silica-induced inflammation. Neutralization of IL-17A delayed silica-induced Th1/Th2 immune and autoimmune responses. These results suggest that IL-17A neutralization alleviates early stage silica-induced lung inflammation and delays progression of silica-induced lung inflammation and fibrosis. Neutralization of IL-17A suppressed Th17 cell development by decreasing IL-6 and/or IL-1β and increased Tregs at an early phase of silica-induced inflammation. Neutralization of IL-17A also delayed the Th1/Th2 immune response during silica-induced lung inflammation and fibrosis. IL-17A may play a pivotal role in the early phase of silica-induced inflammation and may mediate the Th immune response to influence silica-induced lung inflammation and fibrosis in mice. - Highlights: • Neutralization of IL-17A alleviated silica-induced lung inflammation of early stage. • Neutralization of IL-17A decreased Th17 cells and increased Tregs. • IL-17A mediated the reciprocal relationship of Th17/Tregs by IL-6 and/or IL-1β. • Neutralization of IL-17A delayed silica-induced Th1/Th2 immune response. • Neutralization of IL-17A delayed silica-induced lung

  17. Mesenchymal Stem Cell Attenuates Neutrophil-predominant Inflammation and Acute Lung Injury in an In Vivo Rat Model of Ventilator-induced Lung Injury

    Directory of Open Access Journals (Sweden)

    Tian-Shun Lai

    2015-01-01

    Full Text Available Background: Subsequent neutrophil (polymorphonuclear neutrophil [PMN]-predominant inflammatory response is a predominant feature of ventilator-induced lung injury (VILI, and mesenchymal stem cell (MSC can improve mice survival model of endotoxin-induced acute lung injury, reduce lung impairs, and enhance the repair of VILI. However, whether MSC could attenuate PMN-predominant inflammatory in the VILI is still unknown. This study aimed to test whether MSC intervention could attenuate the PMN-predominate inflammatory in the mechanical VILI. Methods: Sprague-Dawley rats were ventilated for 2 hours with large tidal volume (20 mL/kg. MSCs were given before or after ventilation. The inflammatory chemokines and gas exchange were observed and compared dynamically until 4 hours after ventilation, and pulmonary pathological change and activation of PMN were observed and compared 4 hours after ventilation. Results: Mechanical ventilation (MV caused significant lung injury reflected by increasing in PMN pulmonary sequestration, inflammatory chemokines (tumor necrosis factor-alpha, interleukin-6 and macrophage inflammatory protein 2 in the bronchoalveolar lavage fluid, and injury score of the lung tissue. These changes were accompanied with excessive PMN activation which reflected by increases in PMN elastase activity, production of radical oxygen series. MSC intervention especially pretreatment attenuated subsequent lung injury, systemic inflammation response and PMN pulmonary sequestration and excessive PMN activation initiated by injurious ventilation. Conclusions: MV causes profound lung injury and PMN-predominate inflammatory responses. The protection effect of MSC in the VILI rat model is related to the suppression of the PMN activation.

  18. Mesenchymal Stem Cell Attenuates Neutrophil-predominant Inflammation and Acute Lung Injury in an In Vivo Rat Model of Ventilator-induced Lung Injury

    Institute of Scientific and Technical Information of China (English)

    Tian-Shun Lai; Zhi-Hong Wang; Shao-Xi Cai

    2015-01-01

    Background:Subsequent neutrophil (polymorphonuclear neutrophil [PMN])-predominant inflammatory response is a predominant feature of ventilator-induced lung injury (VILI),and mesenchymal stem cell (MSC) can improve mice survival model of endotoxin-induced acute lung injury,reduce lung impairs,and enhance the repair of VILI.However,whether MSC could attenuate PMN-predominant inflammatory in the VILI is still unknown.This study aimed to test whether MSC intervention could attenuate the PMN-predominate inflammatory in the mechanical VILI.Methods:Sprague-Dawley rats were ventilated for 2 hours with large tidal volume (20 mL/kg).MSCs were given before or after ventilation.The inflammatory chemokines and gas exchange were observed and compared dynamically until 4 hours after ventilation,and pulmonary pathological change and activation of PMN were observed and compared 4 hours after ventilation.Results:Mechanical ventilation (MV) caused significant lung injury reflected by increasing in PMN pulmonary sequestration,inflammatory chemokines (tumor necrosis factor-alpha,interleukin-6 and macrophage inflammatory protein 2) in the bronchoalveolar lavage fluid,and injury score of the lung tissue.These changes were accompanied with excessive PMN activation which reflected by increases in PMN elastase activity,production of radical oxygen series.MSC intervention especially pretreatment attenuated subsequent lung injury,systemic inflammation response and PMN pulmonary sequestration and excessive PMN activation initiated by injurious ventilation.Conclusions:MV causes profound lung injury and PMN-predominate inflammatory responses.The protection effect of MSC in the VILI rat model is related to the suppression of the PMN activation.

  19. Attenuation of acute nitrogen mustard-induced lung injury, inflammation and fibrogenesis by a nitric oxide synthase inhibitor

    Energy Technology Data Exchange (ETDEWEB)

    Malaviya, Rama; Venosa, Alessandro [Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States); Hall, LeRoy [Drug Safety Sciences, Johnson and Johnson, Raritan, NJ 08869 (United States); Gow, Andrew J. [Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States); Sinko, Patrick J. [Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States); Laskin, Jeffrey D. [Department of Environmental and Occupational Medicine, UMDNJ-Robert Wood Johnson Medical School, Piscataway, NJ 08854 (United States); Laskin, Debra L., E-mail: laskin@eohsi.rutgers.edu [Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States)

    2012-12-15

    Nitrogen mustard (NM) is a toxic vesicant known to cause damage to the respiratory tract. Injury is associated with increased expression of inducible nitric oxide synthase (iNOS). In these studies we analyzed the effects of transient inhibition of iNOS using aminoguanidine (AG) on NM-induced pulmonary toxicity. Rats were treated intratracheally with 0.125 mg/kg NM or control. Bronchoalveolar lavage fluid (BAL) and lung tissue were collected 1 d–28 d later and lung injury, oxidative stress and fibrosis assessed. NM exposure resulted in progressive histopathological changes in the lung including multifocal lesions, perivascular and peribronchial edema, inflammatory cell accumulation, alveolar fibrin deposition, bronchiolization of alveolar septal walls, and fibrosis. This was correlated with trichrome staining and expression of proliferating cell nuclear antigen (PCNA). Expression of heme oxygenase (HO)-1 and manganese superoxide dismutase (Mn-SOD) was also increased in the lung following NM exposure, along with levels of protein and inflammatory cells in BAL, consistent with oxidative stress and alveolar-epithelial injury. Both classically activated proinflammatory (iNOS{sup +} and cyclooxygenase-2{sup +}) and alternatively activated profibrotic (YM-1{sup +} and galectin-3{sup +}) macrophages appeared in the lung following NM administration; this was evident within 1 d, and persisted for 28 d. AG administration (50 mg/kg, 2 ×/day, 1 d–3 d) abrogated NM-induced injury, oxidative stress and inflammation at 1 d and 3 d post exposure, with no effects at 7 d or 28 d. These findings indicate that nitric oxide generated via iNOS contributes to acute NM-induced lung toxicity, however, transient inhibition of iNOS is not sufficient to protect against pulmonary fibrosis. -- Highlights: ► Nitrogen mustard (NM) induces acute lung injury and fibrosis. ► Pulmonary toxicity is associated with increased expression of iNOS. ► Transient inhibition of iNOS attenuates acute

  20. X-Ray based Lung Function measurement–a sensitive technique to quantify lung function in allergic airway inflammation mouse models

    Science.gov (United States)

    Dullin, C.; Markus, M. A.; Larsson, E.; Tromba, G.; Hülsmann, S.; Alves, F.

    2016-11-01

    In mice, along with the assessment of eosinophils, lung function measurements, most commonly carried out by plethysmography, are essential to monitor the course of allergic airway inflammation, to examine therapy efficacy and to correlate animal with patient data. To date, plethysmography techniques either use intubation and/or restraining of the mice and are thus invasive, or are limited in their sensitivity. We present a novel unrestrained lung function method based on low-dose planar cinematic x-ray imaging (X-Ray Lung Function, XLF) and demonstrate its performance in monitoring OVA induced experimental allergic airway inflammation in mice and an improved assessment of the efficacy of the common treatment dexamethasone. We further show that XLF is more sensitive than unrestrained whole body plethysmography (UWBP) and that conventional broncho-alveolar lavage and histology provide only limited information of the efficacy of a treatment when compared to XLF. Our results highlight the fact that a multi-parametric imaging approach as delivered by XLF is needed to address the combined cellular, anatomical and functional effects that occur during the course of asthma and in response to therapy.

  1. Role of pulmonary artery reactivity and nitric oxide in injury and inflammation following lung contusion.

    Science.gov (United States)

    Lakshminrusimha, Satyan; Suresh, Madathilparambil V; Knight, Paul R; Gugino, Sylvia F; Davidson, Bruce A; Helinski, Jadwiga D; Nielsen, Lori C; Russell, James A; Yu, Bi; Zeng, Lixia; Pennathur, Subramaniam; Raghavendran, Krishnan

    2013-03-01

    The mechanisms contributing to hypoxia in lung contusion (LC) remain unclear and not temporally associated with the peak onset of acute inflammation. We investigated the role of oxidative stress in alteration of pulmonary arterial (PA) reactivity following LC. In addition, the role of antioxidants in reversing this process was examined. PaO2 and PA reactivity were measured in rats subjected to bilateral LC. Rings were pretreated with a nitric oxide synthase (NOS) inhibitor, L-nitro arginine (10(-3) M), or PEG-superoxide dismutase (SOD) and PEG-catalase (CAT), or both (L-nitro arginine + SOD/CAT). Rings were constricted with norepinephrine and relaxed with an NOS agonist (A23187) or NO donor (SNAP [S-nitrosyl amino penicillamine]). Immunochemical and mass spectrometric quantification for nitrotyrosine was performed. Rats were hypoxemic at 4 h after contusion compared with controls, but recovered by 24 h (PaO(2)/FIO(2) ratio: baseline, 443 ± 28; 4 h, 288 ± 46; and 24 h, 417 ± 23). Pulmonary arterial constriction to NOS inhibition and relaxation to A23187 were impaired 4 h after LC. Pulmonary arterial relaxation to SNAP was decreased at 4 and 24 h after LC. These alterations in PA reactivity were reversed by SOD/CAT pretreatment. SOD1 and 2 mRNA were upregulated, and soluble guanylyl cyclase mRNA was downregulated 24 h after LC. Immunohistochemistry and mass spectrometry revealed that levels of 3-nitrotyrosine were increased markedly at 4 h following LC consistent with superoxide generation and formation of peroxynitrite. Collectively, these data suggest that consumption of NO due to excess superoxide resulting in peroxynitrite formation leads to diminished vascular reactivity following LC.

  2. Transcriptomic analysis of pathways regulated by toll-like receptor 4 in a murine model of chronic pulmonary inflammation and carcinogenesis

    Directory of Open Access Journals (Sweden)

    Grissom Sherry F

    2009-11-01

    Full Text Available Abstract Background Therapeutic strategies exist for human pulmonary neoplasia, however due to the heterogeneity of the disease, most are not very effective. The innate immunity gene, toll-like receptor 4 (TLR4, protects against chronic pulmonary inflammation and tumorigenesis in mice, but the mechanism is unclear. This study was designed to identify TLR4-mediated gene expression pathways that may be used as prognostic indicators of susceptibility to lung tumorigenesis in mice and provide insight into the mechanism. Methods Whole lung mRNA was isolated from C.C3H-Tlr4Lps-d (BALBLps-d; Tlr4 mutant and BALB/c (Tlr4 normal mice following butylated hydroxytoluene (BHT-treatment (four weekly ip. injections; 150-200 mg/kg/each; "promotion". mRNA from micro-dissected tumors (adenomas and adjacent uninvolved tissue from both strains were also compared 27 wks after a single carcinogen injection (3-methylcholanthrene (MCA, 10 μg/g; "control" or followed by BHT (6 weekly ip. injections; 125-200 mg/kg/each; "progression". Bronchoalveolar lavage fluid was analyzed for inflammatory cell content and total protein determination, a marker of lung hyperpermeability; inflammation was also assessed using immunohistochemical staining for macrophages (F4/80 and lymphocytes (CD3 in mice bearing tumors (progression. Results During promotion, the majority of genes identified in the BALBLps-d compared to BALB/c mice (P Ereg, secreted phosphoprotein 1(Spp1, which can lead to cell growth and eventual tumor development. Inflammation was significantly higher in BALBLps-d compared to BALB/c mice during progression, similar to the observed response during tumor promotion in these strains. Increases in genes involved in signaling through the EGFR pathway (e.g. Ereg, Spp1 were also observed during progression in addition to continued inflammation, chemotactic, and immune response gene expression in the BALBLps-d versus BALB/c mice (P Conclusion This transcriptomic study

  3. Chronic Alcohol Ingestion in Rats Alters Lung Metabolism, Promotes Lipid Accumulation, and Impairs Alveolar Macrophage Functions

    Science.gov (United States)

    Romero, Freddy; Shah, Dilip; Duong, Michelle; Stafstrom, William; Hoek, Jan B.; Kallen, Caleb B.; Lang, Charles H.

    2014-01-01

    Chronic alcoholism impairs pulmonary immune homeostasis and predisposes to inflammatory lung diseases, including infectious pneumonia and acute respiratory distress syndrome. Although alcoholism has been shown to alter hepatic metabolism, leading to lipid accumulation, hepatitis, and, eventually, cirrhosis, the effects of alcohol on pulmonary metabolism remain largely unknown. Because both the lung and the liver actively engage in lipid synthesis, we hypothesized that chronic alcoholism would impair pulmonary metabolic homeostasis in ways similar to its effects in the liver. We reasoned that perturbations in lipid metabolism might contribute to the impaired pulmonary immunity observed in people who chronically consume alcohol. We studied the metabolic consequences of chronic alcohol consumption in rat lungs in vivo and in alveolar epithelial type II cells and alveolar macrophages (AMs) in vitro. We found that chronic alcohol ingestion significantly alters lung metabolic homeostasis, inhibiting AMP-activated protein kinase, increasing lipid synthesis, and suppressing the expression of genes essential to metabolizing fatty acids (FAs). Furthermore, we show that these metabolic alterations promoted a lung phenotype that is reminiscent of alcoholic fatty liver and is characterized by marked accumulation of triglycerides and free FAs within distal airspaces, AMs, and, to a lesser extent, alveolar epithelial type II cells. We provide evidence that the metabolic alterations in alcohol-exposed rats are mechanistically linked to immune impairments in the alcoholic lung: the elevations in FAs alter AM phenotypes and suppress both phagocytic functions and agonist-induced inflammatory responses. In summary, our work demonstrates that chronic alcohol ingestion impairs lung metabolic homeostasis and promotes pulmonary immune dysfunction. These findings suggest that therapies aimed at reversing alcohol-related metabolic alterations might be effective for preventing and

  4. Increasing Prevalence of Chronic Lung Disease in Veterans of the Wars in Iraq and Afghanistan.

    Science.gov (United States)

    Pugh, Mary Jo; Jaramillo, Carlos A; Leung, Kar-Wei; Faverio, Paola; Fleming, Nicholas; Mortensen, Eric; Amuan, Megan E; Wang, Chen-Pin; Eapen, Blessen; Restrepo, Marcos; Morris, Michael J

    2016-05-01

    Research from the wars in Afghanistan and Iraq have focused on traumatic brain injury (TBI) and mental health conditions; however, it is becoming clear that other health concerns, such as respiratory illnesses, warrant further scientific inquiry. Early reports from theater and postdeployment health assessments suggested an association with deployment-related exposures (e.g., sand, burn pits, chemical, etc.) and new-onset respiratory symptoms. We used data from Veterans Affairs medical encounters between fiscal years 2003 and 2011 to identify trends in chronic obstructive pulmonary disease, asthma, and interstitial lung disease in veterans. We used data from Veterans Affairs and Department of Defense sources to identify sociodemographic (age, sex, race), military (e.g., service branch, multiple deployments) and clinical characteristics (TBI, smoking) of individuals with and without chronic lung diseases. Generalized estimating equations found significant increases over time for chronic obstructive pulmonary disease and asthma in both unadjusted and adjusted analyses. Trends for interstitial lung disease were significant only in adjusted analyses. Age, smoking, and TBI were also significantly associated with chronic lung diseases; however, multiple deployments were not associated. Research is needed to identify which characteristics of deployment-related exposures are linked with chronic lung disease.

  5. Neovestitol, an isoflavonoid isolated from Brazilian red propolis, reduces acute and chronic inflammation: involvement of nitric oxide and IL-6

    OpenAIRE

    Marcelo Franchin; Colón, David F.; da Cunha, Marcos G; Castanheira, Fernanda V. S.; André L. L. Saraiva; Bruno Bueno-Silva; Alencar,Severino M.; Cunha, Thiago M; Rosalen, Pedro L.

    2016-01-01

    Isoflavonoids have been largely studied due to their distinct biological activities identified thus far. Herein, we evaluated the activity of neovestitol, an isoflavonoid isolated from Brazilian red propolis, in acute and chronic inflammation. As for acute inflammation, we found that neovestitol reduced neutrophil migration, leukocyte rolling and adhesion, as well as expression of ICAM-1 in the mesenteric microcirculation during lipopolysaccharide-induced acute peritonitis. No changes were ob...

  6. Violacein Treatment Modulates Acute and Chronic Inflammation through the Suppression of Cytokine Production and Induction of Regulatory T Cells.

    Science.gov (United States)

    Verinaud, Liana; Lopes, Stefanie Costa Pinto; Prado, Isabel Cristina Naranjo; Zanucoli, Fábio; Alves da Costa, Thiago; Di Gangi, Rosária; Issayama, Luidy Kazuo; Carvalho, Ana Carolina; Bonfanti, Amanda Pires; Niederauer, Guilherme Francio; Duran, Nelson; Costa, Fábio Trindade Maranhão; Oliveira, Alexandre Leite Rodrigues; Höfling, Maria Alice da Cruz; Machado, Dagmar Ruth Stach; Thomé, Rodolfo

    2015-01-01

    Inflammation is a necessary process to control infection. However, exacerbated inflammation, acute or chronic, promotes deleterious effects in the organism. Violacein (viola), a quorum sensing metabolite from the Gram-negative bacterium Chromobacterium violaceum, has been shown to protect mice from malaria and to have beneficial effects on tumors. However, it is not known whether this drug possesses anti-inflammatory activity. In this study, we investigated whether viola administration is able to reduce acute and chronic autoimmune inflammation. For that purpose, C57BL/6 mice were intraperitoneally injected with 1 μg of LPS and were treated with viola (3.5mg/kg) via i.p. at the same time-point. Three hours later, the levels of inflammatory cytokines in the sera and phenotypical characterization of leukocytes were determined. Mice treated with viola presented a significant reduction in the production of inflammatory cytokines compared with untreated mice. Interestingly, although viola is a compound derived from bacteria, it did not induce inflammation upon administration to naïve mice. To test whether viola would protect mice from an autoimmune inflammation, Experimental Autoimmune Encephalomyelitis (EAE)-inflicted mice were given viola i.p. at disease onset, at the 10th day from immunization. Viola-treated mice developed mild EAE disease in contrast with placebo-treated mice. The frequencies of dendritic cells and macrophages were unaltered in EAE mice treated with viola. However, the sole administration of viola augmented the levels of splenic regulatory T cells (CD4+Foxp3+). We also found that adoptive transfer of viola-elicited regulatory T cells significantly reduced EAE. Our study shows, for the first time, that violacein is able to modulate acute and chronic inflammation. Amelioration relied in suppression of cytokine production (in acute inflammation) and stimulation of regulatory T cells (in chronic inflammation). New studies must be conducted in order to

  7. Violacein Treatment Modulates Acute and Chronic Inflammation through the Suppression of Cytokine Production and Induction of Regulatory T Cells.

    Directory of Open Access Journals (Sweden)

    Liana Verinaud

    Full Text Available Inflammation is a necessary process to control infection. However, exacerbated inflammation, acute or chronic, promotes deleterious effects in the organism. Violacein (viola, a quorum sensing metabolite from the Gram-negative bacterium Chromobacterium violaceum, has been shown to protect mice from malaria and to have beneficial effects on tumors. However, it is not known whether this drug possesses anti-inflammatory activity. In this study, we investigated whether viola administration is able to reduce acute and chronic autoimmune inflammation. For that purpose, C57BL/6 mice were intraperitoneally injected with 1 μg of LPS and were treated with viola (3.5mg/kg via i.p. at the same time-point. Three hours later, the levels of inflammatory cytokines in the sera and phenotypical characterization of leukocytes were determined. Mice treated with viola presented a significant reduction in the production of inflammatory cytokines compared with untreated mice. Interestingly, although viola is a compound derived from bacteria, it did not induce inflammation upon administration to naïve mice. To test whether viola would protect mice from an autoimmune inflammation, Experimental Autoimmune Encephalomyelitis (EAE-inflicted mice were given viola i.p. at disease onset, at the 10th day from immunization. Viola-treated mice developed mild EAE disease in contrast with placebo-treated mice. The frequencies of dendritic cells and macrophages were unaltered in EAE mice treated with viola. However, the sole administration of viola augmented the levels of splenic regulatory T cells (CD4+Foxp3+. We also found that adoptive transfer of viola-elicited regulatory T cells significantly reduced EAE. Our study shows, for the first time, that violacein is able to modulate acute and chronic inflammation. Amelioration relied in suppression of cytokine production (in acute inflammation and stimulation of regulatory T cells (in chronic inflammation. New studies must be

  8. Delayed bone regeneration is linked to chronic inflammation in murine muscular dystrophy.

    Science.gov (United States)

    Abou-Khalil, Rana; Yang, Frank; Mortreux, Marie; Lieu, Shirley; Yu, Yan-Yiu; Wurmser, Maud; Pereira, Catia; Relaix, Frédéric; Miclau, Theodore; Marcucio, Ralph S; Colnot, Céline

    2014-02-01

    Duchenne muscular dystrophy (DMD) patients exhibit skeletal muscle weakness with continuous cycles of muscle fiber degeneration/regeneration, chronic inflammation, low bone mineral density, and increased risks of fracture. Fragility fractures and associated complications are considered as a consequence of the osteoporotic condition in these patients. Here, we aimed to establish the relationship between muscular dystrophy and fracture healing by assessing bone regeneration in mdx mice, a model of DMD with absence of osteoporosis. Our results illustrate that muscle defects in mdx mice impact the process of bone regeneration at various levels. In mdx fracture calluses, both cartilage and bone deposition were delayed followed by a delay in cartilage and bone remodeling. Vascularization of mdx fracture calluses was also decreased during the early stages of repair. Dystrophic muscles are known to contain elevated numbers of macrophages contributing to muscle degeneration. Accordingly, we observed increased macrophage recruitment in the mdx fracture calluses and abnormal macrophage accumulation throughout the process of bone regeneration. These changes in the inflammatory environment subsequently had an impact on the recruitment of osteoclasts and the remodeling phase of repair. Further damage to the mdx muscles, using a novel model of muscle trauma, amplified both the chronic inflammatory response and the delay in bone regeneration. In addition, PLX3397 treatment of mdx mice, a cFMS (colony stimulating factor receptor 1) inhibitor in monocytes, partially rescued the bone repair defect through increasing cartilage deposition and decreasing the number of macrophages. In conclusion, chronic inflammation in mdx mice contributes to the fracture healing delay and is associated with a decrease in angiogenesis and a transient delay in osteoclast recruitment. By revealing the role of dystrophic muscle in regulating the inflammatory response during bone repair, our results

  9. Stressed lungs: unveiling the role of circulating stress hormones in ozone-induced lung injury and inflammation.

    Science.gov (United States)

    Ozone, a major component of smog generated through the interaction of light and anthropogenic emissions, induces adverse pulmonary, cardiovascular, and systemic health effects upon inhalation. It is generally accepted that ozone-induced lung injury is mediated by its interaction ...

  10. Interleukin-33 drives activation of alveolar macrophages and airway inflammation in a mouse model of acute exacerbation of chronic asthma.

    Science.gov (United States)

    Bunting, Melissa M; Shadie, Alexander M; Flesher, Rylie P; Nikiforova, Valentina; Garthwaite, Linda; Tedla, Nicodemus; Herbert, Cristan; Kumar, Rakesh K

    2013-01-01

    We investigated the role of interleukin-33 (IL-33) in airway inflammation in an experimental model of an acute exacerbation of chronic asthma, which reproduces many of the features of the human disease. Systemically sensitized female BALB/c mice were challenged with a low mass concentration of aerosolized ovalbumin for 4 weeks to induce chronic asthmatic inflammation and then received a single moderate-level challenge to trigger acute airway inflammation simulating an asthmatic exacerbation. The inflammatory response and expression of cytokines and activation markers by alveolar macrophages (AM) were assessed, as was the effect of pretreatment with a neutralizing antibody to IL-33. Compared to chronically challenged mice, AM from an acute exacerbation exhibited significantly enhanced expression of markers of alternative activation, together with enhanced expression of proinflammatory cytokines and of cell surface proteins associated with antigen presentation. In parallel, there was markedly increased expression of both mRNA and immunoreactivity for IL-33 in the airways. Neutralization of IL-33 significantly decreased both airway inflammation and the expression of proinflammatory cytokines by AM. Collectively, these data indicate that in this model of an acute exacerbation of chronic asthma, IL-33 drives activation of AM and has an important role in the pathogenesis of airway inflammation.

  11. Predomination of IL-17-producing tryptase-positive/chymase-positive mast cells in azoospermic chronic testicular inflammation.

    Science.gov (United States)

    Chen, S-J; Duan, Y-G; Haidl, G; Allam, J-P

    2016-08-01

    Chronic testicular inflammation and infection have been regarded as important factors in the pathogenesis of azoospermia. As key effector cells in innate and adaptive immune system, mast cells (MCs) were observed in inflammation and autoimmune disease. Furthermore, increased expression of tryptase-positive MCs has been reported in testicular disorders associated with male infertility/subfertility. However, little is known about the potential relationship between MCs and chronic testicular inflammation in azoospermic patients. Moreover, the preferential expression of MCs' subtypes in testis of these patients is still far from being understood. Thus, this study aimed to investigate characteristics of testicular MCs as well as their subtypes in azoospermic men with chronic testicular inflammation (AZI, n = 5) by immunohistochemical techniques. Our results showed significant increase of MCs in AZI, and more importantly, considerable numbers of tryptase-positive/chymase-positive MCs could also be demonstrated in AZI, when compared to control groups representing azoospermia without chronic testicular inflammation (AZW, n = 5) and normal spermatogenesis (NT, n = 5) respectively. Most interestingly, immunofluorescence staining revealed autoimmune-associated interleukin (IL)-17-producing MCs in AZI, whereas co-expression of MC markers with tumour necrosis factor (TNF)-α, IL-10 and IL-1β could not be detected. In conclusion, AZI is associated with significant increase of tryptase-positive/chymase-positive MCs expressing IL-17, and these MCs might contribute to the pathogenesis of AZI.

  12. Interleukin-33 Drives Activation of Alveolar Macrophages and Airway Inflammation in a Mouse Model of Acute Exacerbation of Chronic Asthma

    Directory of Open Access Journals (Sweden)

    Melissa M. Bunting

    2013-01-01

    Full Text Available We investigated the role of interleukin-33 (IL-33 in airway inflammation in an experimental model of an acute exacerbation of chronic asthma, which reproduces many of the features of the human disease. Systemically sensitized female BALB/c mice were challenged with a low mass concentration of aerosolized ovalbumin for 4 weeks to induce chronic asthmatic inflammation and then received a single moderate-level challenge to trigger acute airway inflammation simulating an asthmatic exacerbation. The inflammatory response and expression of cytokines and activation markers by alveolar macrophages (AM were assessed, as was the effect of pretreatment with a neutralizing antibody to IL-33. Compared to chronically challenged mice, AM from an acute exacerbation exhibited significantly enhanced expression of markers of alternative activation, together with enhanced expression of proinflammatory cytokines and of cell surface proteins associated with antigen presentation. In parallel, there was markedly increased expression of both mRNA and immunoreactivity for IL-33 in the airways. Neutralization of IL-33 significantly decreased both airway inflammation and the expression of proinflammatory cytokines by AM. Collectively, these data indicate that in this model of an acute exacerbation of chronic asthma, IL-33 drives activation of AM and has an important role in the pathogenesis of airway inflammation.

  13. Dexamethasone attenuates VEGF expression and inflammation but not barrier dysfunction in a murine model of ventilator-induced lung injury.

    Directory of Open Access Journals (Sweden)

    Maria A Hegeman

    Full Text Available BACKGROUND: Ventilator-induced lung injury (VILI is characterized by vascular leakage and inflammatory responses eventually leading to pulmonary dysfunction. Vascular endothelial growth factor (VEGF has been proposed to be involved in the pathogenesis of VILI. This study examines the inhibitory effect of dexamethasone on VEGF expression, inflammation and alveolar-capillary barrier dysfunction in an established murine model of VILI. METHODS: Healthy male C57Bl/6 mice were anesthetized, tracheotomized and mechanically ventilated for 5 hours with an inspiratory pressure of 10 cmH2O ("lower" tidal volumes of ∼7.5 ml/kg; LVT or 18 cmH2O ("higher" tidal volumes of ∼15 ml/kg; HVT. Dexamethasone was intravenously administered at the initiation of HVT-ventilation. Non-ventilated mice served as controls. Study endpoints included VEGF and inflammatory mediator expression in lung tissue, neutrophil and protein levels in bronchoalveolar lavage fluid, PaO2 to FiO2 ratios and lung wet to dry ratios. RESULTS: Particularly HVT-ventilation led to alveolar-capillary barrier dysfunction as reflected by reduced PaO2 to FiO2 ratios, elevated alveolar protein levels and increased lung wet to dry ratios. Moreover, VILI was associated with enhanced VEGF production, inflammatory mediator expression and neutrophil infiltration. Dexamethasone treatment inhibited VEGF and pro-inflammatory response in lungs of HVT-ventilated mice, without improving alveolar-capillary permeability, gas exchange and pulmonary edema formation. CONCLUSIONS: Dexamethasone treatment completely abolishes ventilator-induced VEGF expression and inflammation. However, dexamethasone does not protect against alveolar-capillary barrier dysfunction in an established murine model of VILI.

  14. Slit2 regulates attractive eosinophil and repulsive neutrophil chemotaxis through differential srGAP1 expression during lung inflammation.

    Science.gov (United States)

    Ye, Bu-Qing; Geng, Zhen H; Ma, Li; Geng, Jian-Guo

    2010-11-15

    Directional migration of leukocytes is an essential step in leukocyte trafficking during inflammatory responses. However, the molecular mechanisms governing directional chemotaxis of leukocytes remain poorly understood. The Slit family of guidance cues has been implicated for inhibition of leuocyte migration. We report that Clara cells in the bronchial epithelium secreted Slit2, whereas eosinophils and neutrophils expressed its cell-surface receptor, Robo1. Compared to neutrophils, eosinophils exhibited a significantly lower level of Slit-Robo GTPase-activating protein 1 (srGAP1), leading to activation of Cdc42, recruitment of PI3K to Robo1, enhancment of eotaxin-induced eosinophil chemotaxis, and exaggeration of allergic airway inflammation. Notably, OVA sensitization elicited a Slit2 gradient at so-called bronchus-alveoli axis, with a higher level of Slit2 in the bronchial epithelium and a lower level in the alveolar tissue. Aerosol administration of rSlit2 accelerated eosinophil infiltration, whereas i.v. administered Slit2 reduced eosinophil deposition. In contrast, Slit2 inactivated Cdc42 and suppressed stromal cell-derived factor-1α-induced chemotaxis of neutrophils for inhibiting endotoxin-induced lung inflammation, which were reversed by blockade of srGAP1 binding to Robo1. These results indicate that the newly identified Slit2 gradient at the bronchus-alveoli axis induces attractive PI3K signaling in eosinophils and repulsive srGAP1 signaling in neutrophils through differential srGAP1 expression during lung inflammation.

  15. [Continuous positive airway pressure and high-frequency independent lung ventilation in patients with chronic obstructive lung diseases].

    Science.gov (United States)

    Fedorova, E A; Vyzhigina, M A; Gal'perin, Iu S; Zhukova, S G; Titov, V A; Godin, A V

    2004-01-01

    The original hypoxemia, hypercapnia, high pulmonary hypertension, high resistance of microcirculation vessels, right volumetric ventricular overload, persistent sub-edema of pulmonary intersticium as well as disparity of ventilation and perfusion between both lungs are the main problems in patients with chronic obstructive disease of the lungs (CODL). Such patients are, as a rule, intolerant to the independent lung collaboration or artificial single-stage ventilation (ASV). Patients with respiratory insufficiency, stages 2 and 3, and with a pronounced impaired type of ventilation have originally a deranged blood gas composition, like hypoxemia or hypercapnia. The application of volume-controllable bi-pulmonary ASV in such patients maintains an adequate gas exchange hemodynamics. However, ASV is accompanied by a significantly reduced gas-exchange function of the single ventilated lung and by essentially worsened intrapulmonary hemodynamics. Therefore, what is needed is to use alternative methods of independent lung ventilation in order to eliminate the gas-exchange impairments and to enable surgical interventions at thoracic organs in such patients (who are intolerant to ASV). A choice of a method and means of oxygen supply to the independent lung is of great importance. The possibility to avoid a high pressure in the airways, while maintaining, simultaneously, an adequate gas exchange, makes the method related with maintaining a constant positive pressure in the airways (CPPA) a priority one in case of CODL patients. The use of constant high-frequency ventilation in the independent lung in patients with obstructive pulmonary lesions does not improve the gas exchange or hemodynamics. Simultaneously, a growing total pulmonary resistance and an increasing pressure in the pulmonary artery are observed. Consequently, the discussed method must not be used for the ventilation support of the independent lung in patients with the obstructive type of the impaired external

  16. Effect of bone marrow derived mesenchymal stem cells on lung pathology and inflammation in ovalbumin-induced asthma in mouse

    Directory of Open Access Journals (Sweden)

    Maryam Mohammadian

    2016-01-01

    Full Text Available Objective(s:Bone marrow-derived mesenchymal stem cells (BMSCs have attracted significant interest to treat asthma and its complication. In this study, the effects of BMSCs on lung pathology and inflammation in an ovalbumin-induced asthma model in mouse were examined. Materials and Methods:BALB/c mice were divided into three groups: control group (animals were not sensitized, asthma group (animals were sensitized by ovalbumin, asthma+BMSC group (animals were sensitized by ovalbumin and treated with BMSCs. BMSCs were isolated and characterized and then labeled with Bromodeoxyuridine (BrdU. After that the cells transferred into asthmatic mice. Histopathological changes of the airways, BMSCs migration and total and differential white blood cell (WBC count in bronchoalveolar lavage (BAL fluid were evaluated. Results:A large number of BrdU-BMSCs were found in the lungs of mice treated with BMSCs. The histopathological changes, BAL total WBC counts and the percentage of neutrophils and eosinophils were increased in asthma group compared to the control group. Treatment with BMSCs significantly decreased airway pathological indices, inflammatory cell infiltration, and also goblet cell hyperplasia. Conclusion:The results of this study revealed that BMSCs therapy significantly suppressed the lung pathology and inflammation in the ovalbumin induced asthma model in mouse.

  17. AGEs and chronic subclinical inflammation in diabetes: disorders of immune system.

    Science.gov (United States)

    Hu, Hang; Jiang, Hongfei; Ren, Haitao; Hu, Xinlei; Wang, Xingang; Han, Chunmao

    2015-02-01

    Chronic subclinical inflammation represents a risk factor of type 2 diabetes and several diabetes complications, including neuropathy and atherosclerosis including macro-vasculopathy and micro-vasculopathy. However, the inflammatory response in the diabetic wound was shown to be remarkably hypocellular, unregulated and ineffective. Advanced glycation end products (AGEs) and one of its receptors, RAGE, were involved in inducing chronic immune imbalance in diabetic patients. Such interactions attracts immune cell into diffused glycated tissue and activates these cells to induce inflammatory damage, but disturbs the normal immune rhythm in diabetic wound. Traditional measurements of AGEs are high-performance liquid chromatography and immunohistochemistry staining, but their application faces the limitations including complexity, cost and lack of reproducibility. A new noninvasive method emerged in 2004, using skin autofluorescence as indicator for AGEs accumulation. It had been reported to be informative in evaluating the chronic risk of diabetic patients. Studies have indicated therapeutic potentials of anti-AGE recipes. These recipes can reduce AGE absorption/de novo formation, block AGE-RAGE interaction and arrest downstream signaling after RAGE activation.

  18. Promotion of Lung Health: NHLBI Workshop on the Primary Prevention of Chronic Lung Diseases

    OpenAIRE

    Camargo, Carlos A.; Budinger, G. R. Scott; Escobar, Gabriel J.; Hansel, Nadia N.; Corrine K Hanson; Gary B Huffnagle; Buist, A. Sonia

    2014-01-01

    Lung-related research primarily focuses on the etiology and management of diseases. In recent years, interest in primary prevention has grown. However, primary prevention also includes “health promotion” (actions in a population that keep an individual healthy). We encourage more research on population-based (public health) strategies that could not only maximize lung health but also mitigate “normal” age-related declines—not only for spirometry but across multiple measures of lung health. In...

  19. Intranasal organic dust exposure-induced airway adaptation response marked by persistent lung inflammation and pathology in mice

    OpenAIRE

    Poole, Jill A.; Wyatt, Todd A; Oldenburg, Peter J.; Elliott, Margaret K.; West, William W.; Sisson, Joseph H.; Von Essen, Susanna G.; Romberger, Debra J.

    2009-01-01

    Organic dust exposure in agricultural environments results in an inflammatory response that attenuates over time, but repetitive exposures can result in chronic respiratory disease. Animal models to study these mechanisms are limited. This study investigated the effects of single vs. repetitive dust-induced airway inflammation in mice by intranasal exposure method. Mice were exposed to swine facility dust extract (DE) or saline once and once daily for 1 and 2 wk. Dust exposure resulted in inc...

  20. The effect of the extract of Crocus sativus and its constituent safranal, on lung pathology and lung inflammation of ovalbumin sensitized guinea-pigs.

    Science.gov (United States)

    Boskabady, M H; Tabatabaee, A; Byrami, G

    2012-07-15

    Different pharmacological effects of Crocus sativus have been demonstrated on guinea pig tracheal chains in previous studies. In the present study, the prophylactic effect of the extract of C. sativus and its constituent, safranal on lung pathology and total and differential white blood cells (WBC) of sensitized guinea pigs was examined. Guinea pigs were sensitized with injection and inhalation of ovalbumin (OA). One group of sensitized guinea pigs were given drinking water alone (group S) and three groups were given drinking water containing three concentrations of safranal (S+SA1, S+SA2 and S+SA3 groups), three groups, drinking water containing three concentrations of extract (S+CS1, S+CS2 and S+CS3 groups) and one group drinking water containing one concentration of dexamethasone (S+D group) (n=6, for all groups). The lung pathology was evaluated in control, non treated and treated sensitized groups. Total and differential WBC counts of lung lavage were also examined. All pathological indices in group S showed significant increased compared to control group (psativus and its constituent safranal on lung inflammation of sensitized guinea pigs. The results also showed that the effect of the plant is perhaps due to its constituent safranal.

  1. Proteomic Analysis of Lung Tissue in a Rat Acute Lung Injury Model: Identification of PRDX1 as a Promoter of Inflammation

    Directory of Open Access Journals (Sweden)

    Dongdong Liu

    2014-01-01

    Full Text Available Acute respiratory distress syndrome (ARDS remains a high morbidity and mortality disease entity in critically ill patients, despite decades of numerous investigations into its pathogenesis. To obtain global protein expression changes in acute lung injury (ALI lung tissues, we employed a high-throughput proteomics method to identify key components which may be involved in the pathogenesis of ALI. In the present study, we analyzed lung tissue proteomes of Pseudomonas aeruginosa-induced ALI rats and identified eighteen proteins whose expression levels changed more than twofold as compared to normal controls. In particular, we found that PRDX1 expression in culture medium was elevated by a lipopolysaccharide (LPS challenge in airway epithelial cells in vitro. Furthermore, overexpression of PRDX1 increased the expression of proinflammatory cytokines interleukin-6 (IL-6, interleukin-8 (IL-8, and tumor necrosis factor-α (TNF-α, whereas knockdown of PRDX1 led to downregulated expression of cytokines induced by LPS. In conclusion, our findings provide a global alteration in the proteome of lung tissues in the ALI rat model and indicate that PRDX1 may play a critical role in the pathogenesis of ARDS by promoting inflammation and represent a novel strategy for the development of new therapies against ALI.

  2. COPD免疫紊乱与慢性炎症持续存在的关系%The Relationship Between Immune Disorders and Chronic Inflammation in COPD

    Institute of Scientific and Technical Information of China (English)

    牛永亮(综述); 陈兴无(审校)

    2016-01-01

    Chronic obstructive pulmonary disease ( COPD) is one of the most common diseases of the respiratory, with a gradual development. Avoiding inhaling harmful gas and medication do not prevent decline in lung function because of persistence of chronic in-flammation, which is associated with innate immunity disorders and frequent infections in the lungs of patients. Effective treatment strategies should be focused on restoring the innate immune system function.%慢性阻塞性肺疾病为呼吸科常见疾病,病情呈现逐渐性进展,药物治疗及避免有害气体接触并不能阻止肺功能下降,提示患者肺内慢性炎症持续存在,其原因与固有免疫紊乱、病原体反复感染有关。有效的治疗策略应注重恢复固有免疫系统功能。

  3. Characterization of inflammation in COPD : clinical and experimental approach

    NARCIS (Netherlands)

    Vernooy, J.H.J.

    2003-01-01

    Chronic inflammation is an important feature of COPD. This inflammatory response is not restricted to the local compartment - including airways, lung parenchyma, and pulmonary vasculature - but is also present in the circulation. However, the origin of the systemic inflammation present in COPD patie

  4. Microevolution of Pseudomonas aeruginosa to a chronic pathogen of the cystic fibrosis lung.

    Science.gov (United States)

    Hogardt, Michael; Heesemann, Jürgen

    2013-01-01

    Pseudomonas aeruginosa is the leading pathogen of chronic cystic fibrosis (CF) lung infection. Life-long persistance of P. aeruginosa in the CF lung requires a sophisticated habitat-specific adaptation of this pathogen to the heterogeneous and fluctuating lung environment. Due to the high selective pressure of inflamed CF lungs, P. aeruginosa increasingly experiences complex physiological and morphological changes. Pulmonary adaptation of P. aeruginosa is mediated by genetic variations that are fixed by the repeating interplay of mutation and selection. In this context, the emergence of hypermutable phenotypes (mutator strains) obviously improves the microevolution of P. aeruginosa to the diverse microenvironments of the CF lung. Mutator phenotypes are amplified during CF lung disease and accelerate the intraclonal diversification of P. aeruginosa. The resulting generation of numerous subclonal variants is advantegous to prepare P. aeruginosa population for unpredictable stresses (insurance hypothesis) and thus supports long-term survival of this pathogen. Oxygen restriction within CF lung environment further promotes persistence of P. aeruginosa due to increased antibiotic tolerance, alginate production and biofilm formation. Finally, P. aeruginosa shifts from an acute virulent pathogen of early infection to a host-adapted chronic virulent pathogen of end-stage infection of the CF lung. Common changes that are observed among chronic P. aeruginosa CF isolates include alterations in surface antigens, loss of virulence-associated traits, increasing antibiotic resistances, the overproduction of the exopolysaccharide alginate and the modulation of intermediary and micro-aerobic metabolic pathways (Hogardt and Heesemann, Int J Med Microbiol 300(8):557-562, 2010). Loss-of-function mutations in mucA and lasR genes determine the transition to mucoidity and loss of quorum sensing, which are hallmarks of the chronic virulence potential of P. aeruginosa. Metabolic factors

  5. Chronic Exposure to Particulate Chromate Induces Premature Centrosome Separation and Centriole Disengagement in Human Lung Cells

    Science.gov (United States)

    Martino, Julieta; Holmes, Amie L.; Xie, Hong; Wise, Sandra S.; Wise, John Pierce

    2015-01-01

    Particulate hexavalent chromium (Cr(VI)) is a well-established human lung carcinogen. Lung tumors are characterized by structural and numerical chromosome instability. Centrosome amplification is a phenotype commonly found in solid tumors, including lung tumors, which strongly correlates with chromosome instability. Human lung cells exposed to Cr(VI) exhibit centrosome amplification but the underlying phenotypes and mechanisms remain unknown. In this study, we further characterize the phenotypes of Cr(VI)-induced centrosome abnormalities. We show that Cr(VI)-induced centrosome amplification correlates with numerical chromosome instability. We also show chronic exposure to particulate Cr(VI) induces centrosomes with supernumerary centrioles and acentriolar centrosomes in human lung cells. Moreover, chronic exposure to particulate Cr(VI) affects the timing of important centriolar events. Specifically, chronic exposure to particulate Cr(VI) causes premature centriole disengagement in S and G2 phase cells. It also induces premature centrosome separation in interphase. Altogether, our data suggest that chronic exposure to particulate Cr(VI) targets the protein linkers that hold centrioles together. These centriolar linkers are important for key events of the centrosome cycle and their premature disruption might underlie Cr(VI)-induced centrosome amplification. PMID:26293554

  6. A role of NF-E2 in chronic inflammation and clonal evolution in essential thrombocythemia, polycythemia vera and myelofibrosis?

    Science.gov (United States)

    Hasselbalch, Hans C

    2014-02-01

    A novel murine model for myeloproliferative neoplasms (MPNs) generated by overexpression of the transcription factor NF-E2 has recently been described. Sustained overexpression of NF-E2 in this model induced myeloid expansion with anemia, leukocytosis and thrombocytosis. Herein, it is debated if NF-E2 overexpression also might have induced a sustained state of in vivo leukocyte and platelet activation with chronic and self-perpetuating production of inflammatory products from activated leukocytes and platelets. If so, this novel murine model also may excellently describe the deleterious impact of sustained chronic NF-E2 overexpression during uncontrolled chronic inflammation upon the hematopoietic system--the development of clonal myeloproliferation. Accordingly, this novel murine model may also have delivered the proof of concept of chronic inflammation as a trigger and driver of clonal evolution in MPNs.

  7. Does gamma-aminobutyric acid (GABA influence the development of chronic inflammation in rheumatoid arthritis?

    Directory of Open Access Journals (Sweden)

    Bridges S Louis

    2008-01-01

    Full Text Available Abstract Background Recent studies have demonstrated a role for spinal p38 MAP kinase (MAPK in the development of chronic inflammation and peripheral arthritis and a role for GABA in the inhibition of p38 MAPK mediated effects. Integrating these data suggests that GABA may play a role in downregulating mechanisms that lead to the production of proinflammatory agents such as interleukin-1, interleukin-6, and matrix metalloproteinase 3 – agents implicated in the pathogenesis of rheumatoid arthritis (RA. Genetic studies have also associated RA with members of the p38 MAPK pathway. Hypothesis We propose a hypothesis for an inefficient GABA signaling system that results in unchecked proinflammatory cytokine production via the p38 MAPK pathway. This model also supports the need for increasing research in the integration of immunology and neuroscience.

  8. [Understanding and treatment strategy of the pathogenesis of periodontal disease based on chronic inflammation].

    Science.gov (United States)

    Murakami, Tomohiko

    2016-05-01

    Prolonged inflammation continuously promotes the infiltration of macrophages in the organization and chronically induces the production of pro-inflammatory cytokines such as TNF and IL-1. In periodontal tissues, these inflammatory cytokines enhance the differentiation and activity of osteoclasts, which cause destruction of the alveolar bone. Therefore, inhibition of inflammatory cytokine production leads to the prevention or treatment of periodontal disease. IL-1 is a pro-inflammatory cytokine that strongly enhances the bone-resorbing activity of osteoclasts. Elucidation of mechanisms for the production of IL-1 is critical for understanding the pathogenesis of periodontal disease. This paper reviews recent findings of the molecular mechanisms regulating IL-1 production and focuses on inflammasome.

  9. Chronic lymphocytic inflammation with pontine perivascular enhancement responsive to steroids (CLIPPERS) after treatment for Hodgkin's lymphoma.

    Science.gov (United States)

    Mashima, Kyoko; Suzuki, Shigeaki; Mori, Takehiko; Shimizu, Toshihiko; Yamada, Satoshi; Hirose, Shigemichi; Okamoto, Shinichiro; Suzuki, Norihiro

    2015-12-01

    Chronic lymphocytic inflammation with pontine perivascular enhancement responsive to steroids (CLIPPERS) is a rare central nervous system (CNS) disorder with distinct radiological features. However, CLIPPERS may mimic CNS lymphoma, and several cases in which CLIPPERS occurred premonitory to CNS lymphoma have been reported. We report a 31-year-old man presenting with progressive gait ataxia and the characteristic MRI features of CLIPPERS. He was diagnosed with stage II Hodgkin's lymphoma at the age of 15, and we considered the possibility of newly emerged CNS lymphoma occurring in the immunosuppressive condition after the treatment of Hodgkin's lymphoma. Histological findings showed no evidence of CNS lymphoma and the neurological symptoms were resolved by steroids. Although CLIPPERS developed in the reverse order in this case, CLIPPERS should be considered in different diagnosis for CNS lymphoma.

  10. Treatment of 15 Cases of Chronic Pelvic Inflammation by Acupuncture plus Herbal Enema

    Institute of Scientific and Technical Information of China (English)

    SHEN Jian

    2005-01-01

    Fifteen cases of chronic pelvic inflammation were treated by needling Guanyuan (CV 4), Qihai (CV 6), Sanyinjiao (SP 6), Zhongji (CV 3), Shidao (ST 28), Diji (SP 8), Zusanli (ST 36), Shenshu (BL 23), Dachangshu (BL 25) and Ciliao(BL 32) in combination with herbal enema effective to clear heat and relieve toxin, activate blood and resolve stagnant blood.After 2-course treatment, 13 cases were cured and 2 cases were improved.%针刺关元,气海,三阴交,中极,水道,地机,足三里,肾俞,大肠俞和次髎穴,同时用清热解毒和活血化瘀中药进行保留灌肠,治疗了15例慢性盆腔炎患者,经过2个疗程治疗,13例痊愈,2例有效.

  11. Chronic urticaria in patients with autoimmune thyroiditis: Significance of severity of thyroid gland inflammation

    Directory of Open Access Journals (Sweden)

    Mustafa Gulec

    2011-01-01

    Full Text Available Background: There is a clear association between autoimmune thyroiditis (AT and chronic urticaria/angioedema (CUA. However, not all patients with AT demonstrate urticaria. Aims: The aim of the study was to investigate in which patients with AT did CUA become a problem. A sensitive inflammation marker, neopterine (NP was used to confirm whether the severity of inflammation in the thyroid gland was responsible for urticaria or not. Methods: Neopterine levels were assessed in patients with AT with urticaria and without urticaria. Furthermore, levels were compared in relation to pre and post levothyroxine treatment. Twenty-seven patients with urticaria (Group 1 and 28 patients without urticaria (Group 2 were enrolled in the study. A course of levothyroxine treatment was given to all patients, and urine neopterine levels before and after the trial were obtained. Results: All patients completed the trial. Mean age in Group 1 and Group 2 was similar (35.70 ± 10.86 years and 38.36 ± 10.38 years, respectively (P=0.358. Pre-treatment urine neopterine levels were significantly higher in Group 1 (P=0.012. Post-treatment levels decreased in each group, as expected. However, the decrease in the neopterine level was insignificant in the patients of Group 2 (P=0.282. In Group 1, a significant decrease in post-treatment neopterine levels (P=0.015 was associated with the remission of urticaria. Conclusion: In patients with CUA and AT, pre-treatment elevated levels of NP, and its decrease with levothyroxine treatment along with symptomatic relief in urticaria, may be evidence of the relationship between the degree of inflammation in thyroid and presence of urticaria.

  12. Metabolic acidosis and malnutrition-inflammation complex syndrome in chronic renal failure.

    Science.gov (United States)

    Kalantar-Zadeh, Kamyar; Mehrotra, Rajnish; Fouque, Denis; Kopple, Joel D

    2004-01-01

    Metabolic acidosis, a common condition in patients with renal failure, may be linked to protein-energy malnutrition (PEM) and inflammation, together also known as malnutrition-inflammation complex syndrome (MICS). Methods of serum bicarbonate measurement may misrepresent the true bicarbonate level, since the total serum carbon dioxide measurement usually overestimates the serum bicarbonate concentration. Moreover, the air transportation of blood samples to distant laboratories may lead to erroneous readings. In patients with chronic kidney disease (CKD) or end-stage renal disease (ESRD), a significant number of endocrine, musculoskeletal, and metabolic abnormalities are believed to result from acidemia. Metabolic acidosis may be related to PEM and MICS due to an increased protein catabolism, decreased protein synthesis, endocrine abnormalities including insulin resistance, decreased serum leptin level, and inflammation among individuals with renal failure. Evidence suggests that the catabolic effects of metabolic acidosis may result from an increased activity of the adenosine triphosphate (ATP)-dependent ubiquitin-proteasome and branched-chain keto acid dehydrogenase. In contrast to the metabolic studies, many epidemiologic studies in maintenance dialysis patients have indicated a paradoxically inverse association between mildly decreased serum bicarbonate and improved markers of protein-energy nutritional state. Hence metabolic acidosis may be considered as yet another element of the reverse epidemiology in ESRD patients. Interventional studies have yielded inconsistent results in CKD and ESRD patients, although in peritoneal dialysis patients, mitigating acidemia appears to more consistently improve nutritional status and reduce hospitalizations. Large-scale, prospective randomized interventional studies are needed to ascertain the potential benefits of correcting acidemia in malnourished and/or inflamed CKD and maintenance hemodialysis patients. Until then, all

  13. Comparative experimental evaluation of the efficacy of Prostamol Uno and Samprost on rat model of chronic aseptic prostate inflammation.

    Science.gov (United States)

    Pahomova, A V; Borovskaja, T G; Fomina, T I; Ermolaeva, L A; Vychuzhanina, A V; Rumpel, O A; Granstrem, O K; Baranova, O V

    2011-11-01

    Comparative experimental evaluation of the efficiency of prostatotropic drugs Prostamol Uno and Samprost on the model of the chronic aseptic prostate inflammation in rats was performed. It was established that peptide drug Samprost decelerates sclerotic processes in the prostate gland to a greater extent than herbal preparation Prostamol Uno. Both products equally stimulate secretory activity of the gland. Prostamol Uno, unlike Samprost, prevents the development of reduced sexual motivation, one of the complications of chronic prostatitis.

  14. Chronic psychosocial stress increases the risk for inflammation-related colon carcinogenesis in male mice.

    Science.gov (United States)

    Peters, Sebastian; Grunwald, Nicole; Rümmele, Petra; Endlicher, Esther; Lechner, Anja; Neumann, Inga D; Obermeier, Florian; Reber, Stefan O

    2012-07-01

    Patients with inflammatory bowel diseases (IBDs) have a higher risk of developing colorectal cancer (CRC) than the general population. Furthermore, chronic psychosocial stress increases the likelihood of developing IBD and multiple types of malignant neoplasms, including CRC. Here, for the first time, we investigate the effects of chronic psychosocial stress in male mice on an artificially induced CRC, by employing the chronic subordinate colony (CSC) housing paradigm in combination with the reliable azoxymethane (AOM)/dextran sodium sulfate (DSS) CRC model. Colonoscopy revealed that CSC mice showed accelerated macroscopic suspect lesions. In addition, more CSC mice developed low-grade dysplasia (LGD) and/or high-grade dysplasia (HGD) in the colonic tissue compared to the single-housed control mice (SHC). CSC mice showed an increased number of Ki67+ and a decreased number of terminal deoxynucleotidyl transferase dUTP nick end labeling epithelial cells in colonic tissue. Colonic liver receptor homolog-1 (LRH-1), cyclooxygenase II (COXII), tumor necrosis factor, forkhead box P3 (FoxP3) mRNA as well as colonic ß-catenin, COXII, and LRH-1 protein expression were also increased in CSC compared with SHC mice. Although the number of CD4+ Th cells was increased, a tendency toward a decreased colonic interferon-γ (IFN-γ) mRNA expression was observed. Furthermore, despite an increased percentage of CD3+ cells and CD3+/FoxP3+ double-positive cells within mesenteric lymph node cells of CSC mice, IFN-γ secretion from these cells was unaffected. Altogether, our results suggest that chronic psychosocial stress increases the risk for AOM/DSS-induced and, thus, inflammation-related CRC. Finally, assessment of additional time points may test whether the shift from tumor-protective Th1 cell to regulatory T-cell immunity represents a consequence of increased carcinogenesis or a causal factor involved in its development.

  15. Chronic Inflammation and Neutrophil Activation as Possible Causes of Joint Diseases in Ballet Dancers

    Science.gov (United States)

    Borges, Leandro da Silva; Santos, Vinicius Coneglian; de Moura, Nivaldo Ribeiro; Dermargos, Alexandre; Cury-Boaventura, Maria Fernanda; Gorjão, Renata; Pithon-Curi, Tania Cristina; Hatanaka, Elaine

    2014-01-01

    Herein, we investigated the effects of a ballet class on the kinetic profiles of creatine kinase (CK) and lactate dehydrogenase (LDH) activities, cytokines, complement component 3 (C3), and the concentrations of immunoglobulin (Ig), IgA and IgM, in ballerinas. We also verified neutrophil death and ROS release. Blood samples were taken from 13 dancers before, immediately after, and 18 hours after a ballet class. The ballet class increased the plasma activities of CK-total (2.0-fold) immediately after class, while the activities of CK-cardiac muscle (1.0-fold) and LDH (3.0-fold) were observed to increase 18 hours after the class. Levels of the TNF-α, IL-1β, IgG, and IgA were not affected under the study conditions. The exercise was found to induce neutrophil apoptosis (6.0-fold) 18 hours after the ballet class. Additionally, immediately after the ballet class, the neutrophils from the ballerinas were found to be less responsive to PMA stimulus. Conclusion. Ballet class was found to result in inflammation in dancers. The inflammation caused by the ballet class remained for 18 hours after the exercise. These findings are important in preventing the development of chronic lesions that are commonly observed in dancers, such as those with arthritis and synovitis. PMID:24701035

  16. Is airway inflammation in chronic obstructive pulmonary disease (COPD) a risk factor for cardiovascular events?

    Science.gov (United States)

    Calverley, Peter M A; Scott, Stephen

    2006-12-01

    Cardiovascular disease (CVD) is a very common cause of death in patients with chronic obstructive pulmonary disease (COPD). Smoking is a well-described risk factor for both COPD and CVD, but CVD in patients with COPD is likely to be due to other factors in addition to smoking. Inflammation may be an important common etiological link between COPD and CVD, being well described in both diseases. It is hypothesized that in COPD a "spill-over" of local airway inflammation into the systemic circulation could contribute to increased CVD in these patients. Inhaled corticosteroids (ICS) have well-documented anti-inflammatory effects and are commonly used for the treatment of COPD, but their effects on cardiovascular endpoints and all-cause mortality have only just started to be examined. A recent meta-analysis has suggested that ICS may reduce all-cause mortality in COPD by around 25%. A case-controlled study specifically examined the effects of ICS on myocardial infarction and suggested that ICS may decrease the incidence of MI by as much as 32%. A large multicenter prospective randomized trial (Towards a Revolution in COPD Health [TORCH]) is now ongoing and will examine the effect of fluticasone propionate in combination with salmeterol on all-cause mortality.

  17. A gut microbiota-targeted dietary intervention for amelioration of chronic inflammation underlying metabolic syndrome.

    Science.gov (United States)

    Xiao, Shuiming; Fei, Na; Pang, Xiaoyan; Shen, Jian; Wang, Linghua; Zhang, Baorang; Zhang, Menghui; Zhang, Xiaojun; Zhang, Chenhong; Li, Min; Sun, Lifeng; Xue, Zhengsheng; Wang, Jingjing; Feng, Jie; Yan, Feiyan; Zhao, Naisi; Liu, Jiaqi; Long, Wenmin; Zhao, Liping

    2014-02-01

    Chronic inflammation induced by endotoxin from a dysbiotic gut microbiota contributes to the development of obesity-related metabolic disorders. Modification of gut microbiota by a diet to balance its composition becomes a promising strategy to help manage obesity. A dietary scheme based on whole grains, traditional Chinese medicinal foods, and prebiotics (WTP diet) was designed to meet human nutritional needs as well as balance the gut microbiota. Ninety-three of 123 central obese volunteers (BMI ≥ 28 kg m(-2) ) completed a self-controlled clinical trial consisting of 9-week intervention on WTP diet followed by a 14-week maintenance period. The average weight loss reached 5.79 ± 4.64 kg (6.62 ± 4.94%), in addition to improvement in insulin sensitivity, lipid profiles, and blood pressure. Pyrosequencing of fecal samples showed that phylotypes related to endotoxin-producing opportunistic pathogens of Enterobacteriaceae and Desulfovibrionaceae were reduced significantly, while those related to gut barrier-protecting bacteria of Bifidobacteriaceae increased. Gut permeability, measured as lactulose/mannitol ratio, was decreased compared with the baseline. Plasma endotoxin load as lipopolysaccharide-binding protein was also significantly reduced, with concomitant decrease in tumor necrosis factor-α, interleukin-6, and an increase in adiponectin. These results suggest that modulation of the gut microbiota via dietary intervention may enhance the intestinal barrier integrity, reduce circulating antigen load, and ultimately ameliorate the inflammation and metabolic phenotypes.

  18. Chronic Multifocal Inflammation of the Alveolar Bone Mimicking Malignancy: A Case Report

    Directory of Open Access Journals (Sweden)

    Shahidi Sh.

    2012-03-01

    Full Text Available ronic inflammation of the alveolar bone is a great clinical and radiologic mimic, which merits recognition by the clinician and pathologist. The patient can thus be reassured of the proper early treatment and a favorable prognosis. Occasionally, it is difficult to differentiate inflammatory lesions from malign-ant tumors. The aim of this report is to present a case with an inflammatory lesion mimicking malignant condition.We report a 19-year-old male complaining of rapid onset gingival swelling of the right side of both jaws and looseness of the right upper molar teeth in 20 days. Based on the acute onset of the gingival hyperplasia, severe looseness of the affected teeth especially in the maxilla, and the patient's age, multifocal rapid growing malignant condition was not ruled out. The lesion was misdiagnosed as a malignant condition by clinical and radiographic examination. The whole body bone scan showed no significant increased uptake in the right oral cavity compatible with no active bony pathology. The surgical pathology findings of the lesion showed severe chronic inflammation with surface epithelial hyperplasia.The initial diagnosis of the lesion was malignant condition but it was ruled out by bone scan and histological appearance.

  19. Chronic Inflammation and Neutrophil Activation as Possible Causes of Joint Diseases in Ballet Dancers

    Directory of Open Access Journals (Sweden)

    Leandro da Silva Borges

    2014-01-01

    Full Text Available Herein, we investigated the effects of a ballet class on the kinetic profiles of creatine kinase (CK and lactate dehydrogenase (LDH activities, cytokines, complement component 3 (C3, and the concentrations of immunoglobulin (Ig, IgA and IgM, in ballerinas. We also verified neutrophil death and ROS release. Blood samples were taken from 13 dancers before, immediately after, and 18 hours after a ballet class. The ballet class increased the plasma activities of CK-total (2.0-fold immediately after class, while the activities of CK-cardiac muscle (1.0-fold and LDH (3.0-fold were observed to increase 18 hours after the class. Levels of the TNF-α, IL-1β, IgG, and IgA were not affected under the study conditions. The exercise was found to induce neutrophil apoptosis (6.0-fold 18 hours after the ballet class. Additionally, immediately after the ballet class, the neutrophils from the ballerinas were found to be less responsive to PMA stimulus. Conclusion. Ballet class was found to result in inflammation in dancers. The inflammation caused by the ballet class remained for 18 hours after the exercise. These findings are important in preventing the development of chronic lesions that are commonly observed in dancers, such as those with arthritis and synovitis.

  20. Elevated [11C]-D-deprenyl uptake in chronic Whiplash Associated Disorder suggests persistent musculoskeletal inflammation.

    Directory of Open Access Journals (Sweden)

    Clas Linnman

    Full Text Available There are few diagnostic tools for chronic musculoskeletal pain as structural imaging methods seldom reveal pathological alterations. This is especially true for Whiplash Associated Disorder, for which physical signs of persistent injuries to the neck have yet to be established. Here, we sought to visualize inflammatory processes in the neck region by means Positron Emission Tomography using the tracer (11C-D-deprenyl, a potential marker for inflammation. Twenty-two patients with enduring pain after a rear impact car accident (Whiplash Associated Disorder grade II and 14 healthy controls were investigated. Patients displayed significantly elevated tracer uptake in the neck, particularly in regions around the spineous process of the second cervical vertebra. This suggests that whiplash patients have signs of local persistent peripheral tissue inflammation, which may potentially serve as a diagnostic biomarker. The present investigation demonstrates that painful processes in the periphery can be objectively visualized and quantified with PET and that (11C-D-deprenyl is a promising tracer for these purposes.

  1. A Potential Role for Acrolein in Neutrophil-Mediated Chronic Inflammation.

    Science.gov (United States)

    Noerager, Brett D; Xu, Xin; Davis, Virginia A; Jones, Caleb W; Okafor, Svetlana; Whitehead, Alicia; Blalock, J Edwin; Jackson, Patricia L

    2015-12-01

    Neutrophils (PMNs) are key mediators of inflammatory processes throughout the body. In this study, we investigated the role of acrolein, a highly reactive aldehyde that is ubiquitously present in the environment and produced endogenously at sites of inflammation, in mediating PMN-mediated degradation of collagen facilitating proline-glycine-proline (PGP) production. We treated peripheral blood neutrophils with acrolein and analyzed cell supernatants and lysates for matrix metalloproteinase-9 (MMP-9) and prolyl endopeptidase (PE), assessed their ability to break down collagen and release PGP, and assayed for the presence of leukotriene A4 hydrolase (LTA4H) and its ability to degrade PGP. Acrolein treatment induced elevated production and functionality of collagen-degrading enzymes and generation of PGP fragments. Meanwhile, LTA4H levels and triaminopeptidase activity declined with increasing concentrations of acrolein thereby sparing PGP from enzymatic destruction. These findings suggest that acrolein exacerbates the acute inflammatory response mediated by neutrophils and sets the stage for chronic pulmonary and systemic inflammation.

  2. Role of protein tyrosine phosphatases in regulating the immune system: implications for chronic intestinal inflammation.

    Science.gov (United States)

    Spalinger, Marianne R; McCole, Declan F; Rogler, Gerhard; Scharl, Michael

    2015-03-01

    Current hypothesis suggests that genetic, immunological, and bacterial factors contribute essentially to the pathogenesis of inflammatory bowel disease. Variations within the gene loci encoding protein tyrosine phosphatases (PTPs) have been associated with the onset of inflammatory bowel disease. PTPs modulate the activity of their substrates by dephosphorylation of tyrosine residues and are critical for the regulation of fundamental cellular signaling processes. Evidence emerges that expression levels of PTPN2, PTPN11, and PTPN22 are altered in actively inflamed intestinal tissue. PTPN2 seems to be critical for protecting intestinal epithelial barrier function, regulating innate and adaptive immune responses and finally for maintaining intestinal homeostasis. These observations have been confirmed in PTPN2 knockout mice in vivo. Those animals are clearly more susceptible to intestinal and systemic inflammation and feature alterations in innate and adaptive immune responses. PTPN22 controls inflammatory signaling in lymphocytes and mononuclear cells resulting in aberrant cytokine secretion pattern and autophagosome formation. PTPN22 deficiency in vivo results in more severe colitis demonstrating the relevance of PTPN22 for intestinal homeostasis in vivo. Of note, loss of PTPN22 promotes mitogen-activated protein kinase-induced cytokine secretion but limits secretion of nuclear factor κB-associated cytokines and autophagy in mononuclear cells. Loss of PTPN11 is also associated with increased colitis severity in vivo. In summary, dysfunction of those PTPs results in aberrant and uncontrolled immune responses that result in chronic inflammatory conditions. This way, it becomes more and more evident that dysfunction of PTPs displays an important factor in the pathogenesis of chronic intestinal inflammation, in particular inflammatory bowel disease.

  3. Increased urothelial cell apoptosis and chronic inflammation are associated with recurrent urinary tract infection in women.

    Directory of Open Access Journals (Sweden)

    Fei-Chi Chuang

    Full Text Available OBJECTIVE: This study was designed to investigate whether increased urothelial cell apoptosis and chronic inflammation might contribute to recurrent urinary tract infection (UTI in women. METHODS: The bladder biopsy specimens were collected from thirty women with recurrent UTI and ten controls. The bladder biopsies were performed at one to two months after UTI episode had been completely resolved and urine analysis and urine culture all showed negativ