WorldWideScience

Sample records for chronic lung inflammation

  1. Silica-induced Chronic Inflammation Promotes Lung Carcinogenesis in the Context of an Immunosuppressive Microenvironment

    Directory of Open Access Journals (Sweden)

    Javier Freire

    2013-08-01

    Full Text Available The association between inflammation and lung tumor development has been clearly demonstrated. However, little is known concerning the molecular events preceding the development of lung cancer. In this study, we characterize a chemically induced lung cancer mouse model in which lung cancer developed in the presence of silicotic chronic inflammation. Silica-induced lung inflammation increased the incidence and multiplicity of lung cancer in mice treated with N-nitrosodimethylamine, a carcinogen found in tobacco smoke. Histologic and molecular analysis revealed that concomitant chronic inflammation contributed to lung tumorigenesis through induction of preneoplastic changes in lung epithelial cells. In addition, silica-mediated inflammation generated an immunosuppressive microenvironment in which we observed increased expression of programmed cell death protein 1 (PD-1, transforming growth factor-β1, monocyte chemotactic protein 1 (MCP-1, lymphocyte-activation gene 3 (LAG3, and forkhead box P3 (FOXP3, as well as the presence of regulatory T cells. Finally, the K-RAS mutational profile of the tumors changed from Q61R to G12D mutations in the inflammatory milieu. In summary, we describe some of the early molecular changes associated to lung carcinogenesis in a chronic inflammatory microenvironment and provide novel information concerning the mechanisms underlying the formation and the fate of preneoplastic lesions in the silicotic lung.

  2. Occurrence of hypermutable Pseudomonas aeruginosa in cystic fibrosis patients is associated with the oxidative stress caused by chronic lung inflammation

    DEFF Research Database (Denmark)

    Ciofu, Oana; Riis, Bente; Pressler, Tacjana

    2005-01-01

    Oxidative stress caused by chronic lung inflammation in patients with cystic fibrosis (CF) and chronic lung infection with Pseudomonas aeruginosa is characterized by the reactive oxygen species (ROS) liberated by polymorphonuclear leukocytes (PMNs). We formulated the hypothesis that oxidation...

  3. Lung inflammation biomarkers and lung function in children chronically exposed to arsenic

    Energy Technology Data Exchange (ETDEWEB)

    Olivas-Calderón, Edgar, E-mail: edgar_olivascalderon@hotmail.com [Department of Environmental Health, Biomedical Research Center, School of Medicine, University of Coahuila, Torreon, Coahuila (Mexico); School of Medicine, University Juarez of Durango, Gomez Palacio, Durango (Mexico); Recio-Vega, Rogelio, E-mail: rrecio@yahoo.com [Department of Environmental Health, Biomedical Research Center, School of Medicine, University of Coahuila, Torreon, Coahuila (Mexico); Gandolfi, A. Jay, E-mail: gandolfi@pharmacy.arizona.edu [Southwest Environmental Health Science Center, University of Arizona, Tucson, AZ (United States); Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ (United States); Lantz, R. Clark, E-mail: lantz@email.arizona.edu [Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ (United States); Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ (United States); González-Cortes, Tania, E-mail: taniagc2201@hotmail.com [Department of Environmental Health, Biomedical Research Center, School of Medicine, University of Coahuila, Torreon, Coahuila (Mexico); Gonzalez-De Alba, Cesar, E-mail: cesargonzalezalba@hotmail.com [Department of Environmental Health, Biomedical Research Center, School of Medicine, University of Coahuila, Torreon, Coahuila (Mexico); Froines, John R., E-mail: jfroines@ucla.edu [Center for Environmental and Occupational Health, School of Public Health, University of California at Los Angeles, Los Angeles, CA (United States); Espinosa-Fematt, Jorge A., E-mail: dr.jorge.espinosa@gmail.com [School of Medicine, University Juarez of Durango, Gomez Palacio, Durango (Mexico)

    2015-09-01

    Evidence suggests that exposure to arsenic in drinking water during early childhood or in utero has been associated with an increase in respiratory symptoms or diseases in the adulthood, however only a few studies have been carried out during those sensitive windows of exposure. Recently our group demonstrated that the exposure to arsenic during early childhood or in utero in children was associated with impairment in the lung function and suggested that this adverse effect could be due to a chronic inflammation response to the metalloid. Therefore, we designed this cross-sectional study in a cohort of children associating lung inflammatory biomarkers and lung function with urinary As levels. A total of 275 healthy children were partitioned into four study groups according with their arsenic urinary levels. Inflammation biomarkers were measured in sputum by ELISA and the lung function was evaluated by spirometry. Fifty eight percent of the studied children were found to have a restrictive spirometric pattern. In the two highest exposed groups, the soluble receptor for advanced glycation end products' (sRAGE) sputum level was significantly lower and matrix metalloproteinase-9 (MMP-9) concentration was higher. When the biomarkers were correlated to the urinary arsenic species, negative associations were found between dimethylarsinic (DMA), monomethylarsonic percentage (%MMA) and dimethylarsinic percentage (%DMA) with sRAGE and positive associations between %DMA with MMP-9 and with the MMP-9/tissue inhibitor of metalloproteinase (TIMP-1) ratio. In conclusion, chronic arsenic exposure of children negatively correlates with sRAGE, and positively correlated with MMP-9 and MMP-9/TIMP-1 levels, and increases the frequency of an abnormal spirometric pattern. Arsenic-induced alterations in inflammatory biomarkers may contribute to the development of restrictive lung diseases. - Highlights: • First study in children evaluating lung inflammatory biomarkers and As levels

  4. Histologic and biochemical alterations predict pulmonary mechanical dysfunction in aging mice with chronic lung inflammation.

    Science.gov (United States)

    Massa, Christopher B; Groves, Angela M; Jaggernauth, Smita U; Laskin, Debra L; Gow, Andrew J

    2017-08-01

    Both aging and chronic inflammation produce complex structural and biochemical alterations to the lung known to impact work of breathing. Mice deficient in surfactant protein D (Sftpd) develop progressive age-related lung pathology characterized by tissue destruction/remodeling, accumulation of foamy macrophages and alteration in surfactant composition. This study proposes to relate changes in tissue structure seen in normal aging and in chronic inflammation to altered lung mechanics using a computational model. Alterations in lung function in aging and Sftpd -/- mice have been inferred from fitting simple mechanical models to respiratory impedance data (Zrs), however interpretation has been confounded by the simultaneous presence of multiple coexisting pathophysiologic processes. In contrast to the inverse modeling approach, this study uses simulation from experimental measurements to recapitulate how aging and inflammation alter Zrs. Histologic and mechanical measurements were made in C57BL6/J mice and congenic Sftpd-/- mice at 8, 27 and 80 weeks of age (n = 8/group). An anatomic computational model based on published airway morphometry was developed and Zrs was simulated between 0.5 and 20 Hz. End expiratory pressure dependent changes in airway caliber and recruitment were estimated from mechanical measurements. Tissue elements were simulated using the constant phase model of viscoelasticity. Baseline elastance distribution was estimated in 8-week-old wild type mice, and stochastically varied for each condition based on experimentally measured alteration in elastic fiber composition, alveolar geometry and surfactant composition. Weighing reduction in model error against increasing model complexity allowed for identification of essential features underlying mechanical pathology and their contribution to Zrs. Using a maximum likelihood approach, alteration in lung recruitment and diminished elastic fiber density were shown predictive of mechanical alteration at

  5. Histologic and biochemical alterations predict pulmonary mechanical dysfunction in aging mice with chronic lung inflammation.

    Directory of Open Access Journals (Sweden)

    Christopher B Massa

    2017-08-01

    Full Text Available Both aging and chronic inflammation produce complex structural and biochemical alterations to the lung known to impact work of breathing. Mice deficient in surfactant protein D (Sftpd develop progressive age-related lung pathology characterized by tissue destruction/remodeling, accumulation of foamy macrophages and alteration in surfactant composition. This study proposes to relate changes in tissue structure seen in normal aging and in chronic inflammation to altered lung mechanics using a computational model. Alterations in lung function in aging and Sftpd -/- mice have been inferred from fitting simple mechanical models to respiratory impedance data (Zrs, however interpretation has been confounded by the simultaneous presence of multiple coexisting pathophysiologic processes. In contrast to the inverse modeling approach, this study uses simulation from experimental measurements to recapitulate how aging and inflammation alter Zrs. Histologic and mechanical measurements were made in C57BL6/J mice and congenic Sftpd-/- mice at 8, 27 and 80 weeks of age (n = 8/group. An anatomic computational model based on published airway morphometry was developed and Zrs was simulated between 0.5 and 20 Hz. End expiratory pressure dependent changes in airway caliber and recruitment were estimated from mechanical measurements. Tissue elements were simulated using the constant phase model of viscoelasticity. Baseline elastance distribution was estimated in 8-week-old wild type mice, and stochastically varied for each condition based on experimentally measured alteration in elastic fiber composition, alveolar geometry and surfactant composition. Weighing reduction in model error against increasing model complexity allowed for identification of essential features underlying mechanical pathology and their contribution to Zrs. Using a maximum likelihood approach, alteration in lung recruitment and diminished elastic fiber density were shown predictive of mechanical

  6. Sub-chronic lung inflammation after airway exposures to Bacillus thuringiensis biopesticides in mice

    Directory of Open Access Journals (Sweden)

    Barfod Kenneth K

    2010-09-01

    exposures to commercial Bt based biopesticides can induce sub-chronic lung inflammation in mice, which may be the first step in the development of chronic lung diseases. Inhalation of Bt aerosols does not induce airway irritation, which could explain why workers may be less inclined to use a filter mask during the application process, and are thereby less protected from exposure to Bt spores.

  7. Angiotensin-(1?7) inhibits inflammation and oxidative stress to relieve lung injury induced by chronic intermittent hypoxia in rats

    OpenAIRE

    Lu, W.; Kang, J.; Hu, K.; Tang, S.; Zhou, X.; Yu, S.; Li, Y.; Xu, L.

    2016-01-01

    Obstructive sleep apnea is associated with inflammation and oxidative stress in lung tissues and can lead to metabolic abnormalities. We investigated the effects of angiotensin1–7 [Ang-(1–7)] on lung injury in rats induced by chronic intermittent hypoxia (CIH). We randomly assigned 32 male Sprague-Dawley rats (180–200 g) to normoxia control (NC), CIH-untreated (uCIH), Ang-(1–7)-treated normoxia control (N-A), and Ang-(1–7)-treated CIH (CIH-A) groups. Oxidative stress biomarkers were measured ...

  8. Evidence for chronic inflammation as a component of the interstitial lung disease associated with progressive systemic sclerosis

    International Nuclear Information System (INIS)

    Rossi, G.A.; Bitterman, P.B.; Rennard, S.I.; Ferrans, V.J.; Crystal, R.G.

    1985-01-01

    Progressive systemic sclerosis (PSS) is a generalized disorder characterized by fibrosis of many organs including the lung parenchyma. Unlike most other interstitial disorders, traditional concepts of the interstitial lung disease associated with PSS have held it to be a ''pure'' fibrotic disorder without a significant inflammatory component. To directly evaluate whether an active alveolitis is associated with this disorder, patients with chronic interstitial lung disease and PSS were studied by open lung biopsy, gallium-67 scanning, and bronchoalveolar lavage. Histologic evaluation of the biopsies demonstrated that the interstitial fibrosis of PSS is clearly associated with the presence of macrophages, lymphocytes, and polymorphonuclear leukocytes, both in the interstitium and on the alveolar epithelial surface. Gallium-67 scans were positive in 77% of the patients, showing diffuse, primarily lower zone uptake, suggestive of active inflammation. Consistent with the histologic findings, bronchoalveolar lavage studies demonstrated a mild increase in the proportions of neutrophils and eosinophils with occasional increased numbers of lymphocytes. Importantly, alveolar macrophages from patients with PSS showed increased release of fibronectin and alveolar-macrophage-derived growth factor, mediators that together stimulate lung fibroblasts to proliferate, thus suggesting at least one mechanism modulating the lung fibrosis of these patients

  9. Angiotensin-(1–7 inhibits inflammation and oxidative stress to relieve lung injury induced by chronic intermittent hypoxia in rats

    Directory of Open Access Journals (Sweden)

    W. Lu

    2016-01-01

    Full Text Available Obstructive sleep apnea is associated with inflammation and oxidative stress in lung tissues and can lead to metabolic abnormalities. We investigated the effects of angiotensin1–7 [Ang-(1–7] on lung injury in rats induced by chronic intermittent hypoxia (CIH. We randomly assigned 32 male Sprague-Dawley rats (180–200 g to normoxia control (NC, CIH-untreated (uCIH, Ang-(1–7-treated normoxia control (N-A, and Ang-(1–7-treated CIH (CIH-A groups. Oxidative stress biomarkers were measured in lung tissues, and expression of NADPH oxidase 4 (Nox4 and Nox subunits (p22phox, and p47phox was determined by Western blot and reverse transcription-polymerase chain reaction. Pulmonary pathological changes were more evident in the uCIH group than in the other groups. Enzyme-linked immunosorbent assays and immunohistochemical staining showed that inflammatory factor concentrations in serum and lung tissues in the uCIH group were significantly higher than those in the NC and N-A groups. Expression of inflammatory factors was significantly higher in the CIH-A group than in the NC and N-A groups, but was lower than in the uCIH group (P<0.01. Oxidative stress was markedly higher in the uCIH group than in the NC and N-A groups. Expression of Nox4 and its subunits was also increased in the uCIH group. These changes were attenuated upon Ang-(1–7 treatment. In summary, treatment with Ang-(1-7 reversed signs of CIH-induced lung injury via inhibition of inflammation and oxidative stress.

  10. Restoring Cystic Fibrosis Transmembrane Conductance Regulator Function Reduces Airway Bacteria and Inflammation in People with Cystic Fibrosis and Chronic Lung Infections.

    Science.gov (United States)

    Hisert, Katherine B; Heltshe, Sonya L; Pope, Christopher; Jorth, Peter; Wu, Xia; Edwards, Rachael M; Radey, Matthew; Accurso, Frank J; Wolter, Daniel J; Cooke, Gordon; Adam, Ryan J; Carter, Suzanne; Grogan, Brenda; Launspach, Janice L; Donnelly, Seamas C; Gallagher, Charles G; Bruce, James E; Stoltz, David A; Welsh, Michael J; Hoffman, Lucas R; McKone, Edward F; Singh, Pradeep K

    2017-06-15

    Previous work indicates that ivacaftor improves cystic fibrosis transmembrane conductance regulator (CFTR) activity and lung function in people with cystic fibrosis and G551D-CFTR mutations but does not reduce density of bacteria or markers of inflammation in the airway. These findings raise the possibility that infection and inflammation may progress independently of CFTR activity once cystic fibrosis lung disease is established. To better understand the relationship between CFTR activity, airway microbiology and inflammation, and lung function in subjects with cystic fibrosis and chronic airway infections. We studied 12 subjects with G551D-CFTR mutations and chronic airway infections before and after ivacaftor. We measured lung function, sputum bacterial content, and inflammation, and obtained chest computed tomography scans. Ivacaftor produced rapid decreases in sputum Pseudomonas aeruginosa density that began within 48 hours and continued in the first year of treatment. However, no subject eradicated their infecting P. aeruginosa strain, and after the first year P. aeruginosa densities rebounded. Sputum total bacterial concentrations also decreased, but less than P. aeruginosa. Sputum inflammatory measures decreased significantly in the first week of treatment and continued to decline over 2 years. Computed tomography scans obtained before and 1 year after ivacaftor treatment revealed that ivacaftor decreased airway mucous plugging. Ivacaftor caused marked reductions in sputum P. aeruginosa density and airway inflammation and produced modest improvements in radiographic lung disease in subjects with G551D-CFTR mutations. However, P. aeruginosa airway infection persisted. Thus, measures that control infection may be required to realize the full benefits of CFTR-targeting treatments.

  11. Molecular Analysis of a Multistep Lung Cancer Model Induced by Chronic Inflammation Reveals Epigenetic Regulation of p16, Activation of the DNA Damage Response Pathway

    Directory of Open Access Journals (Sweden)

    David Blanco

    2007-10-01

    Full Text Available The molecular hallmarks of inflammation-mediated lung carcinogenesis have not been fully clarified, mainly due to the scarcity of appropriate animal models. We have used a silica-induced multistep lung carcinogenesis model driven by chronic inflammation to study the evolution of molecular markers, genetic alterations. We analyzed markers of DNA damage response (DDR, proliferative stress, telomeric stress: δ-H2AX, p16, p53, TERT. Lung cancer-related epigenetic, genetic alterations, including promoter hypermethylation status of p16(CDKN2A, APC, CDH13, Rassf1, Nore1A, as well as mutations of Tp53, epidermal growth factor receptor, K-ras, N-ras, c-H-ras, have been also studied. Our results showed DDR pathway activation in preneoplastic lesions, in association with inducible nitric oxide synthase, p53 induction. p16 was also induced in early tumorigenic progression, was inactivated in bronchiolar dysplasias, tumors. Remarkably, lack of mutations of Ras, epidermal growth factor receptor, a very low frequency of Tp53 mutations suggest that they are not required for tumorigenesis in this model. In contrast, epigenetic alterations in p16(CDKN2A, CDH13, APC, but not in Rassf1, Nore1A, were clearly observed. These data suggest the existence of a specific molecular signature of inflammation-driven lung carcinogenesis that shares some, but not all, of the molecular landmarks of chemically induced lung cancer.

  12. Myricetin attenuates lung inflammation and provides protection ...

    African Journals Online (AJOL)

    stress in lungs ... Table 1: Effect of myricetin on oxidative stress biomarkers in the lung; mean ± SEM (n = 20); # compared with .... known to release MPO during acute inflammation .... on acute hypoxia-induced exercise intolerance and.

  13. Low-Level Laser Therapy Reduces Lung Inflammation in an Experimental Model of Chronic Obstructive Pulmonary Disease Involving P2X7 Receptor

    Directory of Open Access Journals (Sweden)

    Gabriel da Cunha Moraes

    2018-01-01

    Full Text Available Chronic obstructive pulmonary disease (COPD is a progressive disease characterized by irreversible airflow limitation, airway inflammation and remodeling, and enlargement of alveolar spaces. COPD is in the top five leading causes of deaths worldwide and presents a high economic cost. However, there are some preventive measures to lower the risk of developing COPD. Low-level laser therapy (LLLT is a new effective therapy, with very low cost and no side effects. So, our objective was to investigate if LLLT reduces pulmonary alterations in an experimental model of COPD. C57BL/6 mice were submitted to cigarette smoke for 75 days (2x/day. After 60 days to smoke exposure, the treated group was submitted to LLLT (diode laser, 660 nm, 30 mW, and 3 J/cm2 for 15 days and euthanized for morphologic and functional analysis of the lungs. Our results showed that LLLT significantly reduced the number of inflammatory cells and the proinflammatory cytokine secretion such as IL-1β, IL-6, and TNF-α in bronchoalveolar lavage fluid (BALF. We also observed that LLLT decreased collagen deposition as well as the expression of purinergic P2X7 receptor. On the other hand, LLLT increased the IL-10 release. Thus, LLLT can be pointed as a promising therapeutic approach for lung inflammatory diseases as COPD.

  14. Elevated circulating PAI-1 levels are related to lung function decline, systemic inflammation, and small airway obstruction in chronic obstructive pulmonary disease

    Directory of Open Access Journals (Sweden)

    Wang H

    2016-09-01

    correlation analysis showed that circulating PAI-1 was inversely correlated with pulmonary function parameters including the ratio of forced expiratory volume in 1 second to forced vital capacity (FEV1/FVC, FEV1/Pre (justified r=-0.308, P<0.001; justified r=-0.295, P=0.001, respectively and SAO indicators such as FEV3/FVC, MMEF25–75/Pre (justified r=-0.289, P=0.001; justified r=-0.273, P=0.002, respectively, but positively related to the inflammatory marker CRP (justified r=0.351, P<0.001, the small airway remolding biomarker TIMP-1, and MMP-9 (justified r=0.498, P<0.001; justified r=0.267, P=0.002, respectively. Besides, multivariable linear analysis showed that FEV1/FVC, CRP, and TIMP-1 were independent parameters associated with PAI-1. Conclusion: Our findings first illustrate that elevated serum PAI-1 levels are related to the lung function decline, systemic inflammation, and SAO in COPD, suggesting that PAI-1 may play critical roles in the pathogenesis of COPD. Keywords: plasminogen activator inhibitor-1 (PAI-1, chronic obstructive pulmonary disease (COPD, systemic inflammation, small airway obstruction (SAO

  15. Insulin resistance and chronic inflammation

    Directory of Open Access Journals (Sweden)

    Natalia Matulewicz

    2016-12-01

    Full Text Available Insulin resistance is a condition of reduced biological response to insulin. Growing evidence indicates the role of the chronic low-grade inflammatory response in the pathogenesis of insulin resistance. Adipose tissue in obesity is characterized by increased lipolysis with the excessive release of free fatty acids, and is also a source of proinflammatory cytokines. Both these factors may inhibit insulin action. Proinflammatory cytokines exert their effect by stimulating major inflammatory NFκB and JNK pathways within the cells. Inflammatory processes in other insulin responsive tissues may also play a role in inducing insulin resistance. This paper is an overview of the chronic low-grade inflammation in adipose tissue, skeletal muscle, liver and endothelial cells during the development of insulin resistance.

  16. A dual role for the immune response in a mouse model of inflammation-associated lung cancer

    OpenAIRE

    Dougan, Michael; Li, Danan; Neuberg, Donna; Mihm, Martin; Googe, Paul; Wong, Kwok-Kin; Dranoff, Glenn

    2011-01-01

    Lung cancer is the leading cause of cancer death worldwide. Both principal factors known to cause lung cancer, cigarette smoke and asbestos, induce pulmonary inflammation, and pulmonary inflammation has recently been implicated in several murine models of lung cancer. To further investigate the role of inflammation in the development of lung cancer, we generated mice with combined loss of IFN-γ and the β-common cytokines GM-CSF and IL-3. These immunodeficient mice develop chronic pulmonary in...

  17. Chronic inflammatory and suppurative processes in lungs

    International Nuclear Information System (INIS)

    Rozenshtraukh, L.C.; Rybakova, N.I.; Vinner, M.G.

    1987-01-01

    Roentgenologic methods of diagnosis of chronic bronchitis, bronchiectatic disease, lung abscess and gangrene, chronic non-specific pneumonia and cancer of lung and other pathalogical changes at chronic processes in lungs are discussed in detail

  18. Chronic obstructive pulmonary disease and asthma-associated Proteobacteria, but not commensal Prevotella spp., promote Toll-like receptor 2-independent lung inflammation and pathology

    DEFF Research Database (Denmark)

    Larsen, Jeppe Madura; Musavian, Hanieh Sadat; Butt, Tariq Mahmood

    2015-01-01

    B, non-typeable Haemophilus influenzae and Moraxella catarrhalis). The commensal Prevotella spp. and pathogenic Proteobacteria were found to exhibit intrinsic differences in innate inflammatory capacities on murine lung cells in vitro. In vivo in mice, non-typeable H.influenzae induced severe Toll...... response to three Gram-negative commensal Prevotella strains (Prevotella melaninogenica, Prevotella nanceiensis and Prevotella salivae) and three Gram-negative pathogenic Proteobacteria known to colonize lungs of patients with chronic obstructive pulmonary disease (COPD) and asthma (Haemophilus influenzae...

  19. Modeling of chronic ovary inflammation

    Directory of Open Access Journals (Sweden)

    N. А. Volkova

    2014-04-01

    Full Text Available In our country preservation of the population reproductive health is a high-priority direction of modern medicine. In many cases, the cause of reproductive disorders in women is a chronic infectious inflammation of the small pelvis, the frequency of which in recent years had no tendency to decrease. The choice of inactivated vaccine of Staphylococcus aureus as a phlogogen was due to the fact that the etiological role of the aerobic infection remains the leading one in gynecological pathology. The aim of research was studying of the ability to use the inactivated vaccine of Staphylococcus aureus strain 209 for modeling of chronic inflammation of the ovaries in laboratory mice. Materials and methods. 25 mature outbred white female mice weighing 18-20 g were used as experimental animals, which formed next groups: 1 control (n=5 – animals without any interventions and 2 experimental (n=20 – animals with one-fold intraperitoneal injection of inactivated Staphylococcus aureus strain 209 vaccine in the dose of 50х106 microbial bodies in 0,3 ml of physiological solution. Efficiency of the modeling pathology was performed by histomorphometric and hematological methods on the 7th, 14th, 21st and 31st days. All the manipulations with animals were carried out in accordance to the requirements of bioethics and the international principles of the European Convention for the protection of vertebrate animals. For statistical study ANOVA and t-Student tests were used with application of Microsoft Excel Program. Results. In the group of control animals the form and histological structure of ovaries were regular for mature mice without signs of inflammatory changes. The leukocyte infiltration, hemodynamic disorders and minor dystrophic changes of granulosa cells were determined on the 7th day in the ovaries of experimental animals. The increasing of observation period up to 14 days on the background of hemodynamic disorders resulted in the appearance of

  20. Early life socioeconomic adversity is associated in adult life with chronic inflammation, carotid atherosclerosis, poorer lung function and decreased cognitive performance: a cross-sectional, population-based study

    LENUS (Irish Health Repository)

    Packard, Chris J

    2011-01-17

    Abstract Background Socioeconomic gradients in health persist despite public health campaigns and improvements in healthcare. The Psychosocial and Biological Determinants of Ill-health (pSoBid) study was designed to uncover novel biomarkers of chronic disease that may help explain pathways between socioeconomic adversity and poorer physical and mental health. Methods We examined links between indicators of early life adversity, possible intermediary phenotypes, and markers of ill health in adult subjects (n = 666) recruited from affluent and deprived areas. Classical and novel risk factors for chronic disease (lung function and atherosclerosis) and for cognitive performance were assessed, and associations sought with early life variables including conditions in the parental home, family size and leg length. Results Associations were observed between father\\'s occupation, childhood home status (owner-occupier; overcrowding) and biomarkers of chronic inflammation and endothelial activation in adults (C reactive protein, interleukin 6, intercellular adhesion molecule; P < 0.0001) but not number of siblings and leg length. Lung function (forced expiratory volume in 1 second) and cognition (Choice Reaction Time, the Stroop test, Auditory Verbal Learning Test) were likewise related to early life conditions (P < 0.001). In multivariate models inclusion of inflammatory variables reduced the impact and independence of early life conditions on lung function and measures of cognitive ability. Including variables of adult socioeconomic status attenuated the early life associations with disease biomarkers. Conclusions Adverse levels of biomarkers of ill health in adults appear to be influenced by father\\'s occupation and childhood home conditions. Chronic inflammation and endothelial activation may in part act as intermediary phenotypes in this complex relationship. Reducing the \\'health divide\\' requires that these life course determinants are taken into account.

  1. Early life socioeconomic adversity is associated in adult life with chronic inflammation, carotid atherosclerosis, poorer lung function and decreased cognitive performance: a cross-sectional, population-based study

    Directory of Open Access Journals (Sweden)

    Sattar Naveed

    2011-01-01

    Full Text Available Abstract Background Socioeconomic gradients in health persist despite public health campaigns and improvements in healthcare. The Psychosocial and Biological Determinants of Ill-health (pSoBid study was designed to uncover novel biomarkers of chronic disease that may help explain pathways between socioeconomic adversity and poorer physical and mental health. Methods We examined links between indicators of early life adversity, possible intermediary phenotypes, and markers of ill health in adult subjects (n = 666 recruited from affluent and deprived areas. Classical and novel risk factors for chronic disease (lung function and atherosclerosis and for cognitive performance were assessed, and associations sought with early life variables including conditions in the parental home, family size and leg length. Results Associations were observed between father's occupation, childhood home status (owner-occupier; overcrowding and biomarkers of chronic inflammation and endothelial activation in adults (C reactive protein, interleukin 6, intercellular adhesion molecule; P P Conclusions Adverse levels of biomarkers of ill health in adults appear to be influenced by father's occupation and childhood home conditions. Chronic inflammation and endothelial activation may in part act as intermediary phenotypes in this complex relationship. Reducing the 'health divide' requires that these life course determinants are taken into account.

  2. Soluble tumor necrosis factor receptor-1 in preterm infants with chronic lung disease.

    Science.gov (United States)

    Sato, Miho; Mori, Masaaki; Nishimaki, Shigeru; An, Hiromi; Naruto, Takuya; Sugai, Toshiyuki; Shima, Yoshio; Seki, Kazuo; Yokota, Shumpei

    2010-04-01

    It is clear that inflammation plays an important role in developing chronic lung disease in preterm infants. The purpose of the present study is to investigate changes of serum soluble tumor necrosis factor receptor-1 levels over time in infants with chronic lung disease. The serum levels of soluble tumor necrosis factor receptor-1 were measured after delivery, and at 7, 14, 21 and 28 days of age in 10 infants with chronic lung disease and in 18 infants without chronic lung disease. The serum level of soluble tumor necrosis factor receptor-1 was significantly higher in infants with chronic lung disease than in infants without chronic lung disease after delivery. The differences between these two groups remained up to 28 days of age. Prenatal inflammation with persistence into postnatal inflammation may be involved in the onset of chronic lung disease.

  3. Inflammation and angiogenesis in fibrotic lung disease.

    Science.gov (United States)

    Keane, Michael P; Strieter, Robert M; Lynch, Joseph P; Belperio, John A

    2006-12-01

    The pathogenesis of pulmonary fibrosis is poorly understood. Although inflammation has been presumed to have an important role in the development of fibrosis this has been questioned recently, particularly with regard to idiopathic pulmonary fibrosis (IPF). It is, however, increasingly recognized that the polarization of the inflammatory response toward a type 2 phenotype supports fibroproliferation. Increased attention has been on the role of noninflammatory structural cells such as the fibroblast, myofibroblast, epithelial cell, and endothelial cells. Furthermore, the origin of these cells appears to be multifactorial and includes resident cells, bone marrow-derived cells, and epithelial to mesenchymal transition. Increasing evidence supports the presence of vascular remodeling in fibrotic lung disease, although the precise role in the pathogenesis of fibrosis remains to be determined. Therefore, the pathogenesis of pulmonary fibrosis is complex and involves the interaction of multiple cell types and compartments within the lung.

  4. Lung inflammation caused by inhaled toxicants: a review

    Directory of Open Access Journals (Sweden)

    Wong J

    2016-06-01

    Full Text Available John Wong, Bruce E Magun, Lisa J Wood School of Nursing, MGH Institute of Health Professions, Boston, MA, USA Abstract: Exposure of the lungs to airborne toxicants from different sources in the environment may lead to acute and chronic pulmonary or even systemic inflammation. Cigarette smoke is the leading cause of chronic obstructive pulmonary disease, although wood smoke in urban areas of underdeveloped countries is now recognized as a leading cause of respiratory disease. Mycotoxins from fungal spores pose an occupational risk for respiratory illness and also present a health hazard to those living in damp buildings. Microscopic airborne particulates of asbestos and silica (from building materials and those of heavy metals (from paint are additional sources of indoor air pollution that contributes to respiratory illness and is known to cause respiratory illness in experimental animals. Ricin in aerosolized form is a potential bioweapon that is extremely toxic yet relatively easy to produce. Although the aforementioned agents belong to different classes of toxic chemicals, their pathogenicity is similar. They induce the recruitment and activation of macrophages, activation of mitogen-activated protein kinases, inhibition of protein synthesis, and production of interleukin-1 beta. Targeting either macrophages (using nanoparticles or the production of interleukin-1 beta (using inhibitors against protein kinases, NOD-like receptor protein-3, or P2X7 may potentially be employed to treat these types of lung inflammation without affecting the natural immune response to bacterial infections. Keywords: cigarette, mycotoxin, trichothecene, ricin, inflammasome, macrophage, inhibitors

  5. Plasma 25-hydroxyvitamin D, lung function and risk of chronic obstructive pulmonary disease

    DEFF Research Database (Denmark)

    Afzal, Shoaib; Lange, Peter; Bojesen, Stig Egil

    2014-01-01

    25-hydroxyvitamin D (25(OH)D) may be associated with lung function through modulation of pulmonary protease-antiprotease imbalance, airway inflammation, lung remodelling and oxidative stress. We examined the association of plasma 25(OH)D levels with lung function, lung function decline and risk o...... of chronic obstructive pulmonary disease (COPD).......25-hydroxyvitamin D (25(OH)D) may be associated with lung function through modulation of pulmonary protease-antiprotease imbalance, airway inflammation, lung remodelling and oxidative stress. We examined the association of plasma 25(OH)D levels with lung function, lung function decline and risk...

  6. Chronic Inflammation and  T Cells

    Directory of Open Access Journals (Sweden)

    Nathan S Fay

    2016-05-01

    Full Text Available The epithelial tissues of the skin, lungs, reproductive tract, and intestines are the largest physical barriers the body has to protect against infection. Epithelial tissues are woven with a matrix of immune cells programmed to mobilize the host innate and adaptive immune responses. Included among these immune cells are  T cells that are unique in their TCR usage, location, and functions in the body. Stress reception by  T cells as a result of traumatic epithelial injury, malignancy, and/or infection induces  T cell activation. Once activated,  T cells function to repair tissue, induce inflammation, recruit leukocytes, and lyse cells. Many of these functions are mediated via the production of cytokines and growth factors upon  T cell activation. Pathogenesis of many chronic inflammatory diseases involve  T cells; some of which are exacerbated by their presence, while others are improved.  T cells require a delicate balance between their need for acute inflammatory mediators to function normally and the detrimental impact imparted by chronic inflammation. This review will focus on the recent progress made in understanding how epithelial  T cells influence the pathogenesis of chronic inflammatory diseases and how a balance between acute and chronic inflammation impacts  T cell function. Future studies will be important to understand how this balance is achieved.

  7. Nebulized hyaluronan ameliorates lung inflammation in cystic fibrosis mice.

    Science.gov (United States)

    Gavina, Manuela; Luciani, Alessandro; Villella, Valeria R; Esposito, Speranza; Ferrari, Eleonora; Bressani, Ilaria; Casale, Alida; Bruscia, Emanuela M; Maiuri, Luigi; Raia, Valeria

    2013-08-01

    Chronic lung inflammation with increased susceptibility to bacterial infections cause much of the morbidity and mortality in patients with cystic fibrosis (CF), the most common severe, autosomal recessively inherited disease in the Caucasian population. Exogenous inhaled hyaluronan (HA) can exert a protective effect against injury and beneficial effects of HA have been shown in experimental models of chronic respiratory diseases. Our objective was to examine whether exogenous administration of nebulized HA might interfere with lung inflammation in CF. F508del homozygous mice (Cftr(F508del) ) and transgenic mice overexpressing the ENaC channel β-subunit (Scnn1b-Tg) were treated with nebulized HA (0.5 mg/mouse/day for 7 days). Tumor necrosis factor-alpha (TNFα), macrophage inflammatory protein-2 (MIP-2), myeloperoxidase (MPO) levels, and macrophage infiltration were assessed on lung tissues. IB3-1 and CFBE41o-epithelial cell lines were cultured with HA (24 hr, 100 µg/ml) and Reactive Oxygen Species (ROS), Tissue Transglutaminase (TG2) SUMOylation and Peroxisome Proliferator Activated Receptor gamma (PPARγ) and phospho-p42/p44 levels were measured by dichlorodihydrofluorescein assay, or fluorescence resonance energy transfer (FRET) microscopy or immunoblots. Nebulized HA reduced TNFα expression (P < 0.005); TNFα, MIP-2, and MPO protein levels (P < 0.05); MPO activity (P < 0.05); and CD68+ cells counts (P < 0.005) in lung tissues of Cftr(F508del) and Scnn1b-Tg mice, compared with saline-treated mice. HA reduced ROS, TG2 SUMOylation, TG2 activity, phospho-p42-44, and increased PPARγ protein in both IB3-1 and CFBE41o cells (P < 0.05). Nebulized HA is effective in controlling inflammation in vivo in mice CF airways and in vitro in human airway epithelial cells. We provide the proof of concept for the use of inhaled HA as a potential anti-inflammatory drug in CF therapy. Copyright © 2012 Wiley Periodicals, Inc.

  8. Glufosinate aerogenic exposure induces glutamate and IL-1 receptor dependent lung inflammation.

    Science.gov (United States)

    Maillet, Isabelle; Perche, Olivier; Pâris, Arnaud; Richard, Olivier; Gombault, Aurélie; Herzine, Ameziane; Pichon, Jacques; Huaux, Francois; Mortaud, Stéphane; Ryffel, Bernhard; Quesniaux, Valérie F J; Montécot-Dubourg, Céline

    2016-11-01

    Glufosinate-ammonium (GLA), the active component of an herbicide, is known to cause neurotoxicity. GLA shares structural analogy with glutamate. It is a powerful inhibitor of glutamine synthetase (GS) and may bind to glutamate receptors. Since these potentials targets of GLA are present in lung and immune cells, we asked whether airway exposure to GLA may cause lung inflammation in mice. A single GLA exposure (1 mg/kg) induced seizures and inflammatory cell recruitment in the broncho-alveolar space, and increased myeloperoxidase (MPO), inducible NO synthase (iNOS), interstitial inflammation and disruption of alveolar septae within 6-24 h. Interleukin 1β (IL-1β) was increased and lung inflammation depended on IL-1 receptor 1 (IL-1R1). We demonstrate that glutamate receptor pathway is central, since the N-methyl-D-aspartate (NMDA) receptor inhibitor MK-801 prevented GLA-induced lung inflammation. Chronic exposure (0.2 mg/kg 3× per week for 4 weeks) caused moderate lung inflammation and enhanced airway hyperreactivity with significant increased airway resistance. In conclusion, GLA aerosol exposure causes glutamate signalling and IL-1R-dependent pulmonary inflammation with airway hyperreactivity in mice. © 2016 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.

  9. Titanium Dioxide Exposure Induces Acute Eosinophilic Lung Inflammation in Rabbits

    Science.gov (United States)

    CHOI, Gil Soon; OAK, Chulho; CHUN, Bong-Kwon; WILSON, Donald; JANG, Tae Won; KIM, Hee-Kyoo; JUNG, Mannhong; TUTKUN, Engin; PARK, Eun-Kee

    2014-01-01

    Titanium dioxide (TiO2) is increasingly widely used in industrial, commercial and home products. TiO2 aggravates respiratory symptoms by induction of pulmonary inflammation although the mechanisms have not been well investigated. We aimed to investigate lung inflammation in rabbits after intratracheal instillation of P25 TiO2. One ml of 10, 50 and 250 µg of P25 TiO2 was instilled into one of the lungs of rabbits, chest computed-tomography was performed, and bronchoalveolar lavage (BAL) fluid was collected before, at 1 and 24 h after P25 TiO2 exposure. Changes in inflammatory cells in the BAL fluids were measured. Lung pathological assay was also carried out at 24 h after P25 TiO2 exposure. Ground glass opacities were noted in both lungs 1 h after P25 TiO2 and saline (control) instillation. Although the control lung showed complete resolution at 24 h, the lung exposed to P25 TiO2 showed persistent ground glass opacities at 24 h. The eosinophil counts in BAL fluid were significantly increased after P25 TiO2 exposure. P25 TiO2 induced a dose dependent increase of eosinophils in BAL fluid but no significant differences in neutrophil and lymphocyte cell counts were detected. The present findings suggest that P25 TiO2 induces lung inflammation in rabbits which is associated with eosinophilic inflammation. PMID:24705802

  10. Chronic lung disease in newborns.

    Science.gov (United States)

    Sankar, M Jeeva; Agarwal, Ramesh; Deorari, Ashok K; Paul, Vinod K

    2008-04-01

    Chronic lung disease (CLD) or bronchopulmonary dysplasia (BPD) occurs in preterm infants who require respiratory support in the first few days of birth. Apart from prematurity, oxygen therapy and assisted ventilation, factors like intrauterine/postnatal infections, patent ductus arteriosus, and genetic polymorphisms also contribute to its pathogenesis. The severe form of BPD with extensive inflammatory changes is rarely seen nowadays; instead, a milder form characterized by decreased alveolar septation due to arrest in lung development is more common. A multitude of strategies, mainly pharmacological and ventilatory, have been employed for prevention and treatment of BPD. Unfortunately, most of them have not been proved to be beneficial. A comprehensive protocol for management of BPD based on the current evidence is discussed here.

  11. Lung Surfactant Protein D (SP-D) Response and Regulation During Acute and Chronic Lung Injury

    DEFF Research Database (Denmark)

    Gaunsbaek, Maria Quisgaard; Rasmussen, Karina Juhl; Beers, Michael F.

    2013-01-01

    in three murine models of lung injury, using a validated ELISA technology for estimation of SP-D levels. METHODS: Mice were exposed to lipopolysaccharide, bleomycin, or Pneumocystis carinii (Pc) and sacrificed at different time points. RESULTS: In lipopolysaccharide-challenged mice, the level of SP...... injury, with a sustained increment during chronic inflammation compared with acute inflammation. A quick upregulation of SP-D in serum in response to acute airway inflammation supports the notion that SP-D translocates from the airways into the vascular system, in favor of being synthesized systemically....... The study also confirms the concept of using increased SP-D serum levels as a biomarker of especially chronic airway inflammation....

  12. Inflammation-induced preterm lung maturation: lessons from animal experimentation.

    Science.gov (United States)

    Moss, Timothy J M; Westover, Alana J

    2017-06-01

    Intrauterine inflammation, or chorioamnionitis, is a major contributor to preterm birth. Prematurity per se is associated with considerable morbidity and mortality resulting from lung immaturity but exposure to chorioamnionitis reduces the risk of neonatal respiratory distress syndrome (RDS) in preterm infants. Animal experiments have identified that an increase in pulmonary surfactant production by the preterm lungs likely underlies this decreased risk of RDS in infants exposed to chorioamnionitis. Further animal experimentation has shown that infectious or inflammatory agents in amniotic fluid exert their effects on lung development by direct effects within the developing respiratory tract, and probably not by systemic pathways. Differences in the effects of intrauterine inflammation and glucocorticoids demonstrate that canonical glucocorticoid-mediated lung maturation is not responsible for inflammation-induced changes in lung development. Animal experimentation is identifying alternative lung maturational pathways, and transgenic animals and cell culture techniques will allow identification of novel mechanisms of lung maturation that may lead to new treatments for the prevention of RDS. Copyright © 2016. Published by Elsevier Ltd.

  13. Size effects of latex nanomaterials on lung inflammation in mice

    International Nuclear Information System (INIS)

    Inoue, Ken-ichiro; Takano, Hirohisa; Yanagisawa, Rie; Koike, Eiko; Shimada, Akinori

    2009-01-01

    Effects of nano-sized materials (nanomaterials) on sensitive population have not been well elucidated. This study examined the effects of pulmonary exposure to (latex) nanomaterials on lung inflammation related to lipopolysaccharide (LPS) or allergen in mice, especially in terms of their size-dependency. In protocol 1, ICR male mice were divided into 8 experimental groups that intratracheally received a single exposure to vehicle, latex nanomaterials (250 μg/animal) with three sizes (25, 50, and 100 nm), LPS (75 μg/animal), or LPS plus latex nanomaterials. In protocol 2, ICR male mice were divided into 8 experimental groups that intratracheally received repeated exposure to vehicle, latex nanomaterials (100 μg/animal), allergen (ovalbumin: OVA; 1 μg/animal), or allergen plus latex nanomaterials. In protocol 1, latex nanomaterials with all sizes exacerbated lung inflammation elicited by LPS, showing an overall trend of amplified lung expressions of proinflammatory cytokines. Furthermore, LPS plus nanomaterials, especially with size less than 50 nm, significantly elevated circulatory levels of fibrinogen, macrophage chemoattractant protein-1, and keratinocyte-derived chemoattractant, and von Willebrand factor as compared with LPS alone. The enhancement tended overall to be greater with the smaller nanomaterials than with the larger ones. In protocol 2, latex nanomaterials with all sizes did not significantly enhance the pathophysiology of allergic asthma, characterized by eosinophilic lung inflammation and Igs production, although latex nanomaterials with less than 50 nm significantly induced/enhanced neutrophilic lung inflammation. These results suggest that latex nanomaterials differentially affect two types of (innate and adaptive immunity-dominant) lung inflammation

  14. Chronic inflammation induces telomere dysfunction and accelerates ageing in mice

    NARCIS (Netherlands)

    Jurk, Diana; Wilson, Caroline; Passos, Joao F.; Oakley, Fiona; Correia-Melo, Clara; Greaves, Laura; Saretzki, Gabriele; Fox, Chris; Lawless, Conor; Anderson, Rhys; Hewitt, Graeme; Pender, Sylvia L. F.; Fullard, Nicola; Nelson, Glyn; Mann, Jelena; van de Sluis, Bart; Mann, Derek A.; von Zglinicki, Thomas

    Chronic inflammation is associated with normal and pathological ageing. Here we show that chronic, progressive low-grade inflammation induced by knockout of the nfkb1 subunit of the transcription factor NF-kappa B induces premature ageing in mice. We also show that these mice have reduced

  15. The Murine Lung Microbiome Changes During Lung Inflammation and Intranasal Vancomycin Treatment

    Science.gov (United States)

    Barfod, Kenneth Klingenberg; Vrankx, Katleen; Mirsepasi-Lauridsen, Hengameh Chloé; Hansen, Jitka Stilund; Hougaard, Karin Sørig; Larsen, Søren Thor; Ouwenhand, Arthur C.; Krogfelt, Karen Angeliki

    2015-01-01

    Most microbiome research related to airway diseases has focused on the gut microbiome. This is despite advances in culture independent microbial identification techniques revealing that even healthy lungs possess a unique dynamic microbiome. This conceptual change raises the question; if lung diseases could be causally linked to local dysbiosis of the local lung microbiota. Here, we manipulate the murine lung and gut microbiome, in order to show that the lung microbiota can be changed experimentally. We have used four different approaches: lung inflammation by exposure to carbon nano-tube particles, oral probiotics and oral or intranasal exposure to the antibiotic vancomycin. Bacterial DNA was extracted from broncho-alveolar and nasal lavage fluids, caecum samples and compared by DGGE. Our results show that: the lung microbiota is sex dependent and not just a reflection of the gut microbiota, and that induced inflammation can change lung microbiota. This change is not transferred to offspring. Oral probiotics in adult mice do not change lung microbiome detectible by DGGE. Nasal vancomycin can change the lung microbiome preferentially, while oral exposure does not. These observations should be considered in future studies of the causal relationship between lung microbiota and lung diseases. PMID:26668669

  16. Nano-based theranostics for chronic obstructive lung diseases: challenges and therapeutic potential.

    Science.gov (United States)

    Vij, Neeraj

    2011-09-01

    The major challenges in the delivery and therapeutic efficacy of nano-delivery systems in chronic obstructive airway conditions are airway defense, severe inflammation and mucous hypersecretion. Chronic airway inflammation and mucous hypersecretion are hallmarks of chronic obstructive airway diseases, including asthma, COPD (chronic obstructive pulmonary disease) and CF (cystic fibrosis). Distinct etiologies drive inflammation and mucous hypersecretion in these diseases, which are further induced by infection or components of cigarette smoke. Controlling chronic inflammation is at the root of treatments such as corticosteroids, antibiotics or other available drugs, which pose the challenge of sustained delivery of drugs to target cells or tissues. In spite of the wide application of nano-based drug delivery systems, very few are tested to date. Targeted nanoparticle-mediated sustained drug delivery is required to control inflammatory cell chemotaxis, fibrosis, protease-mediated chronic emphysema and/or chronic lung obstruction in COPD. Moreover, targeted epithelial delivery is indispensable for correcting the underlying defects in CF and targeted inflammatory cell delivery for controlling other chronic inflammatory lung diseases. We propose that the design and development of nano-based targeted theranostic vehicles with therapeutic, imaging and airway-defense penetrating capability, will be invaluable for treating chronic obstructive lung diseases. This paper discusses a novel nano-theranostic strategy that we are currently evaluating to treat the underlying cause of CF and COPD lung disease.

  17. Curcumin, Inflammation, and Chronic Diseases: How Are They Linked?

    Directory of Open Access Journals (Sweden)

    Yan He

    2015-05-01

    Full Text Available It is extensively verified that continued oxidative stress and oxidative damage may lead to chronic inflammation, which in turn can mediate most chronic diseases including cancer, diabetes, cardiovascular, neurological, inflammatory bowel disease and pulmonary diseases. Curcumin, a yellow coloring agent extracted from turmeric, shows strong anti-oxidative and anti-inflammatory activities when used as a remedy for the prevention and treatment of chronic diseases. How oxidative stress activates inflammatory pathways leading to the progression of chronic diseases is the focus of this review. Thus, research to date suggests that chronic inflammation, oxidative stress, and most chronic diseases are closely linked, and the antioxidant properties of curcumin can play a key role in the prevention and treatment of chronic inflammation diseases.

  18. Polyhexamethyleneguanidine phosphate induces severe lung inflammation, fibrosis, and thymic atrophy.

    Science.gov (United States)

    Song, Jeong Ah; Park, Hyun-Ju; Yang, Mi-Jin; Jung, Kyung Jin; Yang, Hyo-Seon; Song, Chang-Woo; Lee, Kyuhong

    2014-07-01

    Polyhexamethyleneguanidine phosphate (PHMG-P) has been widely used as a disinfectant because of its strong bactericidal activity and low toxicity. However, in 2011, the Korea Centers for Disease Control and Prevention and the Ministry of Health and Welfare reported that a suspicious outbreak of pulmonary disease might have originated from humidifier disinfectants. The purpose of this study was to assess the toxicity of PHMG-P following direct exposure to the lung. PHMG-P (0.3, 0.9, or 1.5 mg/kg) was instilled into the lungs of mice. The levels of proinflammatory markers and fibrotic markers were quantified in lung tissues and flow cytometry was used to evaluate T cell distribution in the thymus. Administration of PHMG-P induced proinflammatory cytokines elevation and infiltration of immune cells into the lungs. Histopathological analysis revealed a dose-dependent exacerbation of both inflammation and pulmonary fibrosis on day 14. PHMG-P also decreased the total cell number and the CD4(+)/CD8(+) cell ratio in the thymus, with the histopathological examination indicating severe reduction of cortex and medulla. The mRNA levels of biomarkers associated with T cell development also decreased markedly. These findings suggest that exposure of lung tissue to PHMG-P leads to pulmonary inflammation and fibrosis as well as thymic atrophy. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Eosinophils in the lung – modulating apoptosis and efferocytosis in airway inflammation

    Directory of Open Access Journals (Sweden)

    Jennifer M Felton

    2014-07-01

    Full Text Available Due to the key role of the lung in efficient transfer of oxygen in exchange for carbon dioxide, a controlled inflammatory response is essential for restoration of tissue homeostasis following airway exposure to bacterial pathogens or environmental toxins. Unregulated or prolonged inflammatory responses in the lungs can lead to tissue damage, disrupting normal tissue architecture and consequently compromising efficient gaseous exchange. Failure to resolve inflammation underlies the development and/or progression of a number of inflammatory lung diseases including asthma. Eosinophils, granulocytic cells of the innate immune system, are primarily involved in defence against parasitic infections. However, the propagation of the allergic inflammatory response in chronic asthma is thought to involve excessive recruitment and impaired apoptosis of eosinophils together with defective phagocytic clearance of apoptotic cells (efferocytosis. In terms of therapeutic approaches for treatment of asthma, the widespread use of glucocorticoids is associated with a number of adverse health consequences after long-term use, while some patients suffer from steroid-resistant disease. A new approach for therapeutic intervention would be to promote the resolution of inflammation via modulation of eosinophil apoptosis and the phagocytic clearance of apoptotic cells. This review focuses on the mechanisms underpinning eosinophil-mediated lung damage, currently available treatments and therapeutic targets that might in future be harnessed to facilitate inflammation resolution by the manipulation of cell survival and clearance pathways.

  20. Apocynin and ebselen reduce influenza A virus-induced lung inflammation in cigarette smoke-exposed mice.

    Science.gov (United States)

    Oostwoud, L C; Gunasinghe, P; Seow, H J; Ye, J M; Selemidis, S; Bozinovski, S; Vlahos, R

    2016-02-15

    Influenza A virus (IAV) infections are a common cause of acute exacerbations of chronic obstructive pulmonary disease (AECOPD). Oxidative stress is increased in COPD, IAV-induced lung inflammation and AECOPD. Therefore, we investigated whether targeting oxidative stress with the Nox2 oxidase inhibitors and ROS scavengers, apocynin and ebselen could ameliorate lung inflammation in a mouse model of AECOPD. Male BALB/c mice were exposed to cigarette smoke (CS) generated from 9 cigarettes per day for 4 days. On day 5, mice were infected with 1 × 10(4.5) PFUs of the IAV Mem71 (H3N1). BALF inflammation, viral titers, superoxide production and whole lung cytokine, chemokine and protease mRNA expression were assessed 3 and 7 days post infection. IAV infection resulted in a greater increase in BALF inflammation in mice that had been exposed to CS compared to non-smoking mice. This increase in BALF inflammation in CS-exposed mice caused by IAV infection was associated with elevated gene expression of pro-inflammatory cytokines, chemokines and proteases, compared to CS alone mice. Apocynin and ebselen significantly reduced the exacerbated BALF inflammation and pro-inflammatory cytokine, chemokine and protease expression caused by IAV infection in CS mice. Targeting oxidative stress using apocynin and ebselen reduces IAV-induced lung inflammation in CS-exposed mice and may be therapeutically exploited to alleviate AECOPD.

  1. Inhibition of lipopolysaccharide induced acute inflammation in lung by chlorination

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jinshan; Xue, Jinling; Xu, Bi; Xie, Jiani [Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, Beijing 100084 (China); Qiao, Juan, E-mail: qjuan@tsinghua.edu.cn [Department of Chemistry, Tsinghua University, Beijing 100084 (China); Lu, Yun, E-mail: luyun@tsinghua.edu.cn [Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, Beijing 100084 (China)

    2016-02-13

    Highlights: • Chlorination is effective to reduce the inflammation inducing capacity of LPS in lung. • LAL-detected endotoxin activity is not correlated to the potency of inflammation induction. • Alkyl chain of LPS was chlorinated in chlorination process. • LPS aggregate size decreases after chlorination. - Abstract: Lipopolysaccharide (LPS, also called endotoxin) is a pro-inflammatory constituent of gram negative bacteria and cyanobacteria, which causes a potential health risk in the process of routine urban application of reclaimed water, such as car wash, irrigation, scenic water refilling, etc. Previous studies indicated that the common disinfection treatment, chlorination, has little effect on endotoxin activity removal measured by Limulus amebocyte lysate (LAL) assay. However, in this study, significant decrease of acute inflammatory effects was observed in mouse lung, while LAL assay still presented a moderate increase of endotoxin activity. To explore the possible mechanisms, the nuclear magnetic resonance (NMR) results showed the chlorination happened in alkyl chain of LPS molecules, which could affect the interaction between LPS and LPS-binding protein. Also the size of LPS aggregates was found to drop significantly after treatment, which could be another results of chlorination caused polarity change. In conclusion, our observation demonstrated that chlorination is effective to reduce the LPS induced inflammation in lung, and it is recommended to use health effect-based methods to assess risk removal of water treatment technologies.

  2. Inhibition of lipopolysaccharide induced acute inflammation in lung by chlorination

    International Nuclear Information System (INIS)

    Zhang, Jinshan; Xue, Jinling; Xu, Bi; Xie, Jiani; Qiao, Juan; Lu, Yun

    2016-01-01

    Highlights: • Chlorination is effective to reduce the inflammation inducing capacity of LPS in lung. • LAL-detected endotoxin activity is not correlated to the potency of inflammation induction. • Alkyl chain of LPS was chlorinated in chlorination process. • LPS aggregate size decreases after chlorination. - Abstract: Lipopolysaccharide (LPS, also called endotoxin) is a pro-inflammatory constituent of gram negative bacteria and cyanobacteria, which causes a potential health risk in the process of routine urban application of reclaimed water, such as car wash, irrigation, scenic water refilling, etc. Previous studies indicated that the common disinfection treatment, chlorination, has little effect on endotoxin activity removal measured by Limulus amebocyte lysate (LAL) assay. However, in this study, significant decrease of acute inflammatory effects was observed in mouse lung, while LAL assay still presented a moderate increase of endotoxin activity. To explore the possible mechanisms, the nuclear magnetic resonance (NMR) results showed the chlorination happened in alkyl chain of LPS molecules, which could affect the interaction between LPS and LPS-binding protein. Also the size of LPS aggregates was found to drop significantly after treatment, which could be another results of chlorination caused polarity change. In conclusion, our observation demonstrated that chlorination is effective to reduce the LPS induced inflammation in lung, and it is recommended to use health effect-based methods to assess risk removal of water treatment technologies.

  3. Chronic Orbital Inflammation Associated to Hydroxyapatite Implants in Anophthalmic Sockets

    Directory of Open Access Journals (Sweden)

    Alicia Galindo-Ferreiro

    2017-12-01

    Full Text Available Purpose: We report 6 patients who received a hydroxyapatite (HA orbital implant in the socket and developed chronic orbital inflammation unresponsive to conventional medical therapy. Case Reports: We assisted 6 cases (4 males, 2 females who received an HA orbital implant in the socket between 2015 and 2016 at King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia, and developed chronic orbital inflammation with chronic discharge, redness, and pain (onset from weeks to over 2 decades after surgery. Computed tomography evaluation indicated inflammation in the orbital tissues, and histological examination showed a foreign body granulomatous reaction mainly localized around and blanching the HA implant. The condition was unresponsive to usual medical treatment and was resolved immediately after implant removal. Conclusions: Chronic inflammation can occur decades after placement of an HA implant in the orbit and can be successfully treated with implant removal.

  4. Time course of polyhexamethyleneguanidine phosphate-induced lung inflammation and fibrosis in mice.

    Science.gov (United States)

    Song, Jeongah; Kim, Woojin; Kim, Yong-Bum; Kim, Bumseok; Lee, Kyuhong

    2018-04-15

    Pulmonary fibrosis is a chronic progressive disease with unknown etiology and has poor prognosis. Polyhexamethyleneguanidine phosphate (PHMG-P) causes acute interstitial pneumonia and pulmonary fibrosis in humans when it exposed to the lung. In a previous study, when rats were exposed to PHMG-P through inhalation for 3 weeks, lung inflammation and fibrosis was observed even after 3 weeks of recovery. In this study, we aimed to determine the time course of PHMG-P-induced lung inflammation and fibrosis. We compared pathological action of PHMG-P with that of bleomycin (BLM) and investigated the mechanism underlying PHMG-P-induced lung inflammation and fibrosis. PHMG-P (0.9 mg/kg) or BLM (1.5 mg/kg) was intratracheally administered to mice. At weeks 1, 2, 4 and 10 after instillation, the levels of inflammatory and fibrotic markers and the expression of inflammasome proteins were measured. The inflammatory and fibrotic responses were upregulated until 10 and 4 weeks in the PHMG-P and BLM groups, respectively. Immune cell infiltration and considerable collagen deposition in the peribronchiolar and interstitial areas of the lungs, fibroblast proliferation, and hyperplasia of type II epithelial cells were observed. NALP3 inflammasome activation was detected in the PHMG-P group until 4 weeks, which is suspected to be the main reason for the persistent inflammatory response and exacerbation of fibrotic changes. Most importantly, the pathological changes in the PHMG-P group were similar to those observed in humidifier disinfectant-associated patients. A single exposure of PHMG-P led to persistent pulmonary inflammation and fibrosis for at least 10 weeks. Copyright © 2018. Published by Elsevier Inc.

  5. Parainflammation, chronic inflammation and age-related macular degeneration

    Science.gov (United States)

    Chen, Mei; Xu, Heping

    2016-01-01

    Inflammation is an adaptive response of the immune system to noxious insults to maintain homeostasis and restore functionality. The retina is considered an immune privileged tissue due to its unique anatomical and physiological properties. During aging, the retina suffers from a low-grade chronic oxidative insult, which sustains for decades and increases in level with advancing age. As a result, the retinal innate immune system, particularly microglia and the complement system, undergo low levels of activation (para-inflammation). In many cases, this para-inflammatory response can maintain homeostasis in the healthy aging eye. However, in patients with age-related macular degeneration (AMD), this para-inflammatory response becomes dysregulated and contributes to macular damage. Factors contributing to the dysregulation of age-related retinal para-inflammation include genetic predisposition, environmental risk factors and old age. Dysregulated para-inflammation (chronic inflammation) in AMD damages the blood retina barrier (BRB), resulting in the breach of retinal immune privilege leading to the development of retinal lesions. This review discusses the basic principles of retinal innate immune responses to endogenous chronic insults in normal aging and in AMD, and explores the difference between beneficial para-inflammation and the detrimental chronic inflammation in the context of AMD. PMID:26292978

  6. Pathogenic TH17 inflammation is sustained in the lungs by conventional dendritic cells and Toll-like receptor 4 signaling.

    Science.gov (United States)

    Shalaby, Karim H; Lyons-Cohen, Miranda R; Whitehead, Gregory S; Thomas, Seddon Y; Prinz, Immo; Nakano, Hideki; Cook, Donald N

    2017-11-14

    Mechanisms that elicit mucosal T H 17 cell responses have been described, yet how these cells are sustained in chronically inflamed tissues remains unclear. We sought to understand whether maintenance of lung T H 17 inflammation requires environmental agents in addition to antigen and to identify the lung antigen-presenting cell (APC) types that sustain the self-renewal of T H 17 cells. Animals were exposed repeatedly to aspiration of ovalbumin alone or together with environmental adjuvants, including common house dust extract (HDE), to test their role in maintaining lung inflammation. Alternatively, antigen-specific effector/memory T H 17 cells, generated in culture with CD4 + T cells from Il17a fate-mapping mice, were adoptively transferred to assess their persistence in genetically modified animals lacking distinct lung APC subsets or cell-specific Toll-like receptor (TLR) 4 signaling. T H 17 cells were also cocultured with lung APC subsets to determine which of these could revive their expansion and activation. T H 17 cells and the consequent neutrophilic inflammation were poorly sustained by inhaled antigen alone but were augmented by inhalation of antigen together with HDE. This was associated with weight loss and changes in lung physiology consistent with interstitial lung disease. The effect of HDE required TLR4 signaling predominantly in lung hematopoietic cells, including CD11c + cells. CD103 + and CD11b + conventional dendritic cells interacted directly with T H 17 cells in situ and revived the clonal expansion of T H 17 cells both ex vivo and in vivo, whereas lung macrophages and B cells could not. T H 17-dependent inflammation in the lungs can be sustained by persistent TLR4-mediated activation of lung conventional dendritic cells. Published by Elsevier Inc.

  7. The LIM-only protein FHL2 attenuates lung inflammation during bleomycin-induced fibrosis.

    Directory of Open Access Journals (Sweden)

    Abdulaleem Alnajar

    Full Text Available Fibrogenesis is usually initiated when regenerative processes have failed and/or chronic inflammation occurs. It is characterised by the activation of tissue fibroblasts and dysregulated synthesis of extracellular matrix proteins. FHL2 (four-and-a-half LIM domain protein 2 is a scaffolding protein that interacts with numerous cellular proteins, regulating signalling cascades and gene transcription. It is involved in tissue remodelling and tumour progression. Recent data suggest that FHL2 might support fibrogenesis by maintaining the transcriptional expression of alpha smooth muscle actin and the excessive synthesis and assembly of matrix proteins in activated fibroblasts. Here, we present evidence that FHL2 does not promote bleomycin-induced lung fibrosis, but rather suppresses this process by attenuating lung inflammation. Loss of FHL2 results in increased expression of the pro-inflammatory matrix protein tenascin C and downregulation of the macrophage activating C-type lectin receptor DC-SIGN. Consequently, FHL2 knockout mice developed a severe and long-lasting lung pathology following bleomycin administration due to enhanced expression of tenascin C and impaired activation of inflammation-resolving macrophages.

  8. Hypercapnic acidosis modulates inflammation, lung mechanics, and edema in the isolated perfused lung.

    Science.gov (United States)

    De Smet, Hilde R; Bersten, Andrew D; Barr, Heather A; Doyle, Ian R

    2007-12-01

    Low tidal volume (V(T)) ventilation strategies may be associated with permissive hypercapnia, which has been shown by ex vivo and in vivo studies to have protective effects. We hypothesized that hypercapnic acidosis may be synergistic with low V(T) ventilation; therefore, we studied the effects of hypercapnia and V(T) on unstimulated and lipopolysaccharide-stimulated isolated perfused lungs. Isolated perfused rat lungs were ventilated for 2 hours with low (7 mL/kg) or moderately high (20 mL/kg) V(T) and 5% or 20% CO(2), with lipopolysaccharide or saline added to the perfusate. Hypercapnia resulted in reduced pulmonary edema, lung stiffness, tumor necrosis factor alpha (TNF-alpha) and interleukin 6 (IL-6) in the lavage and perfusate. The moderately high V(T) did not cause lung injury but increased lavage IL-6 and perfusate IL-6 as well as TNF-alpha. Pulmonary edema and respiratory mechanics improved, possibly as a result of a stretch-induced increase in surfactant turnover. Lipopolysaccharide did not induce significant lung injury. We conclude that hypercapnia exerts a protective effect by modulating inflammation, lung mechanics, and edema. The moderately high V(T) used in this study stimulated inflammation but paradoxically improved edema and lung mechanics with an associated increase in surfactant release.

  9. Postnatal Infections and Immunology Affecting Chronic Lung Disease of Prematurity.

    Science.gov (United States)

    Pryhuber, Gloria S

    2015-12-01

    Premature infants suffer significant respiratory morbidity during infancy with long-term negative consequences on health, quality of life, and health care costs. Enhanced susceptibility to a variety of infections and inflammation play a large role in early and prolonged lung disease following premature birth, although the mechanisms of susceptibility and immune dysregulation are active areas of research. This article reviews aspects of host-pathogen interactions and immune responses that are altered by preterm birth and that impact chronic respiratory morbidity in these children. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. COPD and squamous cell lung cancer: aberrant inflammation and immunity is the common link.

    Science.gov (United States)

    Bozinovski, Steven; Vlahos, Ross; Anthony, Desiree; McQualter, Jonathan; Anderson, Gary; Irving, Louis; Steinfort, Daniel

    2016-02-01

    Cigarette smoking has reached epidemic proportions within many regions of the world and remains the highest risk factor for chronic obstructive pulmonary disease (COPD) and lung cancer. Squamous cell lung cancer is commonly detected in heavy smokers, where the risk of developing lung cancer is not solely defined by tobacco consumption. Although therapies that target common driver mutations in adenocarcinomas are showing some promise, they are proving ineffective in smoking-related squamous cell lung cancer. Since COPD is characterized by an excessive inflammatory and oxidative stress response, this review details how aberrant innate, adaptive and systemic inflammatory processes can contribute to lung cancer susceptibility in COPD. Activated leukocytes release increasing levels of proteases and free radicals as COPD progresses and tertiary lymphoid aggregates accumulate with increasing severity. Reactive oxygen species promote formation of reactive carbonyls that are not only tumourigenic through initiating DNA damage, but can directly alter the function of regulatory proteins involved in host immunity and tumour suppressor functions. Systemic inflammation is also markedly increased during infective exacerbations in COPD and the interplay between tumour-promoting serum amyloid A (SAA) and IL-17A is discussed. SAA is also an endogenous allosteric modifier of FPR2 expressed on immune and epithelial cells, and the therapeutic potential of targeting this receptor is proposed as a novel strategy for COPD-lung cancer overlap. © 2015 The British Pharmacological Society.

  11. [Chronic mild inflammation links obesity, metabolic syndrome, atherosclerosis and diabetes].

    Science.gov (United States)

    Andel, M; Polák, J; Kraml, P; Dlouhý, P; Stich, V

    2009-01-01

    Chronic low grade inflammation is relatively new concept in metabolic medicine. This concept describes the relations between the inflammation and adipose tissue, insulin resistence, atherosclerosis and type 2 diabetes mellitus. Macrophages and lymphocytes deposed in adipose tissue produce proinflammatory cytokines which directly or through the CRP liver secretion are targeting endothelial cells, hepatocytes and beta cells of Langerhans islets of pancreas. The dysfunction of these cells follows often further disturbances and in case of beta cells - the cell death. The connection between the adipose tissue insulin resistence, atherosclerosis and type 2 diabetes was earlier described with endocrine and metabolic descriptors. The concept of chronic low grade inflammation creates also another description of multilateral connections in metabolic syndome. The salicylates and the drugs related to them seem to have some glucose lowering properties. The recent development in the field ofchronic low grade inflammation represents also certain therapeutic hope for antiinflammatory intervention in type 2 diabetes.

  12. Genetic Deletion and Pharmacological Inhibition of PI3Kγ Reduces Neutrophilic Airway Inflammation and Lung Damage in Mice with Cystic Fibrosis-Like Lung Disease

    Directory of Open Access Journals (Sweden)

    Maria Galluzzo

    2015-01-01

    Full Text Available Purpose. Neutrophil-dominated airway inflammation is a key feature of progressive lung damage in cystic fibrosis (CF. Thus, reducing airway inflammation is a major goal to prevent lung damage in CF. However, current anti-inflammatory drugs have shown several limits. PI3Kγ plays a pivotal role in leukocyte recruitment and activation; in the present study we determined the effects of genetic deletion and pharmacologic inhibition of PI3Kγ on airway inflammation and structural lung damage in a mouse model of CF lung disease. Methods. βENaC overexpressing mice (βENaC-Tg were backcrossed with PI3Kγ-deficient (PI3KγKO mice. Tissue damage was assessed by histology and morphometry and inflammatory cell number was evaluated in bronchoalveolar lavage fluid (BALF. Furthermore, we assessed the effect of a specific PI3Kγ inhibitor (AS-605240 on inflammatory cell number in BALF. Results. Genetic deletion of PI3Kγ decreased neutrophil numbers in BALF of PI3KγKO/βENaC-Tg mice, and this was associated with reduced emphysematous changes. Treatment with the PI3Kγ inhibitor AS-605240 decreased the number of neutrophils in BALF of βENaC-Tg mice, reproducing the effect observed with genetic deletion of the enzyme. Conclusions. These results demonstrate the biological efficacy of both genetic deletion and pharmacological inhibition of PI3Kγ in reducing chronic neutrophilic inflammation in CF-like lung disease in vivo.

  13. Stem cell treatment for chronic lung diseases.

    Science.gov (United States)

    Tzouvelekis, Argyris; Ntolios, Paschalis; Bouros, Demosthenes

    2013-01-01

    Chronic lung diseases such as idiopathic pulmonary fibrosis and cystic fibrosis or chronic obstructive pulmonary disease and asthma are leading causes of morbidity and mortality worldwide with a considerable human, societal and financial burden. In view of the current disappointing status of available pharmaceutical agents, there is an urgent need for alternative more effective therapeutic approaches that will not only help to relieve patient symptoms but will also affect the natural course of the respective disease. Regenerative medicine represents a promising option with several fruitful therapeutic applications in patients suffering from chronic lung diseases. Nevertheless, despite relative enthusiasm arising from experimental data, application of stem cell therapy in the clinical setting has been severely hampered by several safety concerns arising from the major lack of knowledge on the fate of exogenously administered stem cells within chronically injured lung as well as the mechanisms regulating the activation of resident progenitor cells. On the other hand, salient data arising from few 'brave' pilot investigations of the safety of stem cell treatment in chronic lung diseases seem promising. The main scope of this review article is to summarize the current state of knowledge regarding the application status of stem cell treatment in chronic lung diseases, address important safety and efficacy issues and present future challenges and perspectives. In this review, we argue in favor of large multicenter clinical trials setting realistic goals to assess treatment efficacy. We propose the use of biomarkers that reflect clinically inconspicuous alterations of the disease molecular phenotype before rigid conclusions can be safely drawn. Copyright © 2013 S. Karger AG, Basel.

  14. Polycystic ovary syndrome and chronic inflammation: pharmacotherapeutic implications.

    Science.gov (United States)

    Sirmans, Susan Maureen; Weidman-Evans, Emily; Everton, Victoria; Thompson, Daniel

    2012-03-01

    To examine the relationship between polycystic ovary syndrome (PCOS), cardiovascular risk factors, cardiovascular disease (CVD), and chronic inflammation and analyze data regarding pharmacologic therapies that are recommended to reduce CVD risk in PCOS and the impact of those therapies on chronic inflammation. A search of MEDLINE (1950-October 2011) was conducted to identify clinical studies pertaining to the identification and treatment of CVD and chronic low-grade inflammation in PCOS. Search terms included polycystic ovary syndrome, cardiovascular disease, inflammation, metformin, thiazolidinedione, and statin. Bibliographies of these studies and review articles were also examined. English-language clinical studies evaluating the effect of metformin, thiazolidinediones, and statins on inflammatory markers, endothelial function, adhesion molecules, fibrinolysis, cytokines, and adipokines in PCOS were included. Women with PCOS have an increased prevalence of many cardiovascular risk factors including obesity, android fat distribution, insulin resistance, impaired glucose tolerance, diabetes, dyslipidemia, hypertension, and metabolic syndrome. Markers of chronic low-grade inflammation, which are associated with an increased risk of CVD, are also elevated in PCOS. Clinical guidelines recommend the use of insulin sensitizers and statins to prevent CVD in some patients with PCOS. Current literature indicates that each of these medication classes has beneficial effects on inflammation, as well. Although there are currently no studies to determine whether these treatments decrease CVD in PCOS, it can be hypothesized that drugs impacting chronic inflammation may reduce cardiovascular risk. Some studies show that metformin, thiazolidinediones, and statins have beneficial effects on inflammatory markers in PCOS; however, the data are inconsistent. There is insufficient information to recommend any pharmacologic therapies for their antiinflammatory effects in PCOS in the

  15. Intratracheal IL-6 protects against lung inflammation in direct, but not indirect, causes of acute lung injury in mice.

    Science.gov (United States)

    Bhargava, Rhea; Janssen, William; Altmann, Christopher; Andrés-Hernando, Ana; Okamura, Kayo; Vandivier, R William; Ahuja, Nilesh; Faubel, Sarah

    2013-01-01

    Serum and bronchoalveolar fluid IL-6 are increased in patients with acute respiratory distress syndrome (ARDS) and predict prolonged mechanical ventilation and poor outcomes, although the role of intra-alveolar IL-6 in indirect lung injury is unknown. We investigated the role of endogenous and exogenous intra-alveolar IL-6 in AKI-mediated lung injury (indirect lung injury), intraperitoneal (IP) endotoxin administration (indirect lung injury) and, for comparison, intratracheal (IT) endotoxin administration (direct lung injury) with the hypothesis that IL-6 would exert a pro-inflammatory effect in these causes of acute lung inflammation. Bronchoalveolar cytokines (IL-6, CXCL1, TNF-α, IL-1β, and IL-10), BAL fluid neutrophils, lung inflammation (lung cytokines, MPO activity [a biochemical marker of neutrophil infiltration]), and serum cytokines were determined in adult male C57Bl/6 mice with no intervention or 4 hours after ischemic AKI (22 minutes of renal pedicle clamping), IP endotoxin (10 µg), or IT endotoxin (80 µg) with and without intratracheal (IT) IL-6 (25 ng or 200 ng) treatment. Lung inflammation was similar after AKI, IP endotoxin, and IT endotoxin. BAL fluid IL-6 was markedly increased after IT endotoxin, and not increased after AKI or IP endotoxin. Unexpectedly, IT IL-6 exerted an anti-inflammatory effect in healthy mice characterized by reduced BAL fluid cytokines. IT IL-6 also exerted an anti-inflammatory effect in IT endotoxin characterized by reduced BAL fluid cytokines and lung inflammation; IT IL-6 had no effect on lung inflammation in AKI or IP endotoxin. IL-6 exerts an anti-inflammatory effect in direct lung injury from IT endotoxin, yet has no role in the pathogenesis or treatment of indirect lung injury from AKI or IP endotoxin. Since intra-alveolar inflammation is important in the pathogenesis of direct, but not indirect, causes of lung inflammation, IT anti-inflammatory treatments may have a role in direct, but not indirect, causes of ARDS.

  16. Chronic skin inflammation accelerates macrophage cholesterol crystal formation and atherosclerosis

    Science.gov (United States)

    Ng, Qimin; Sanda, Gregory E.; Dey, Amit K.; Teague, Heather L.; Sorokin, Alexander V.; Dagur, Pradeep K.; Silverman, Joanna I.; Harrington, Charlotte L.; Rodante, Justin A.; Rose, Shawn M.; Varghese, Nevin J.; Belur, Agastya D.; Goyal, Aditya; Gelfand, Joel M.; Springer, Danielle A.; Bleck, Christopher K.E.; Thomas, Crystal L.; Yu, Zu-Xi; Winge, Mårten C.G.; Kruth, Howard S.; Marinkovich, M. Peter; Joshi, Aditya A.; Playford, Martin P.; Mehta, Nehal N.

    2018-01-01

    Inflammation is critical to atherogenesis. Psoriasis is a chronic inflammatory skin disease that accelerates atherosclerosis in humans and provides a compelling model to understand potential pathways linking these diseases. A murine model capturing the vascular and metabolic diseases in psoriasis would accelerate our understanding and provide a platform to test emerging therapies. We aimed to characterize a new murine model of skin inflammation (Rac1V12) from a cardiovascular standpoint to identify novel atherosclerotic signaling pathways modulated in chronic skin inflammation. The RacV12 psoriasis mouse resembled the human disease state, including presence of systemic inflammation, dyslipidemia, and cardiometabolic dysfunction. Psoriasis macrophages had a proatherosclerotic phenotype with increased lipid uptake and foam cell formation, and also showed a 6-fold increase in cholesterol crystal formation. We generated a triple-genetic K14-RacV12–/+/Srb1–/–/ApoER61H/H mouse and confirmed psoriasis accelerates atherogenesis (~7-fold increase). Finally, we noted a 60% reduction in superoxide dismutase 2 (SOD2) expression in human psoriasis macrophages. When SOD2 activity was restored in macrophages, their proatherogenic phenotype reversed. We demonstrate that the K14-RacV12 murine model captures the cardiometabolic dysfunction and accelerates vascular disease observed in chronic inflammation and that skin inflammation induces a proatherosclerotic macrophage phenotype with impaired SOD2 function, which associated with accelerated atherogenesis. PMID:29321372

  17. Iron supplementation decreases severity of allergic inflammation in murine lung.

    Directory of Open Access Journals (Sweden)

    Laura P Hale

    Full Text Available The incidence and severity of allergic asthma have increased over the last century, particularly in the United States and other developed countries. This time frame was characterized by marked environmental changes, including enhanced hygiene, decreased pathogen exposure, increased exposure to inhaled pollutants, and changes in diet. Although iron is well-known to participate in critical biologic processes such as oxygen transport, energy generation, and host defense, iron deficiency remains common in the United States and world-wide. The purpose of these studies was to determine how dietary iron supplementation affected the severity of allergic inflammation in the lungs, using a classic model of IgE-mediated allergy in mice. Results showed that mice fed an iron-supplemented diet had markedly decreased allergen-induced airway hyperreactivity, eosinophil infiltration, and production of pro-inflammatory cytokines, compared with control mice on an unsupplemented diet that generated mild iron deficiency but not anemia. In vitro, iron supplementation decreased mast cell granule content, IgE-triggered degranulation, and production of pro-inflammatory cytokines post-degranulation. Taken together, these studies show that iron supplementation can decrease the severity of allergic inflammation in the lung, potentially via multiple mechanisms that affect mast cell activity. Further studies are indicated to determine the potential of iron supplementation to modulate the clinical severity of allergic diseases in humans.

  18. Role of glutathione in immunity and inflammation in the lung

    Directory of Open Access Journals (Sweden)

    Pietro Ghezzi

    2011-01-01

    Full Text Available Pietro GhezziBrighton and Sussex Medical School, Trafford Centre, Falmer, Brighton, UKAbstract: Reactive oxygen species and thiol antioxidants, including glutathione (GSH, regulate innate immunity at various levels. This review outlines the redox-sensitive steps of the cellular mechanisms implicated in inflammation and host defense against infection, and describes how GSH is not only important as an antioxidant but also as a signaling molecule. There is an extensive literature of the role of GSH in immunity. Most reviews are biased by an oversimplified picture where “bad” free radicals cause all sorts of diseases and “good” antioxidants protect from them and prevent oxidative stress. While this may be the case in certain fields (eg, toxicology, the role of thiols (the topic of this review in immunity certainly requires wearing scientist’s goggles and being prepared to accept a more complex picture. This review aims at describing the role of GSH in the lung in the context of immunity and inflammation. The first part summarizes the history and basic concepts of this picture. The second part focuses on GSH metabolism/levels in pathology, the third on the role of GSH in innate immunity and inflammation, and the fourth gives 4 examples describing the importance of GSH in the response to infections.Keywords: antioxidants, oxidative stress, sepsis, infection, cysteine

  19. Vaccination promotes TH1-like inflammation and survival in chronic Pseudomonas aeruginosa pneumonia in rats

    DEFF Research Database (Denmark)

    Johansen, H K; Hougen, H P; Cryz, S J

    1995-01-01

    In a rat model of chronic Pseudomonas aeruginosa lung infection mimicking cystic fibrosis (CF) we studied whether the inflammatory response could be altered by vaccination. Rats were immunized with either a depolymerized alginate toxin A conjugate (D-ALG toxin A), purified alginate, an O-polysacc......In a rat model of chronic Pseudomonas aeruginosa lung infection mimicking cystic fibrosis (CF) we studied whether the inflammatory response could be altered by vaccination. Rats were immunized with either a depolymerized alginate toxin A conjugate (D-ALG toxin A), purified alginate, an O......-polysaccharide toxin A conjugate, or sterile saline. After challenge none of the rats immunized with D-ALG toxin A died, in contrast to the other two vaccine groups combined (p = 0.03). A significant reduction in the severity of the macroscopic lung inflammation was seen in rats immunized with D-ALG toxin A, compared...... predominantly PMNs (TH2-like) to a chronic-type inflammation dominated by mononuclear leukocytes (TH1-like). In accordance, the antibody titers induced by the D-ALG toxin A vaccine were not different from those of the control rats after challenge. This study identifies a possible new way of modifying...

  20. Vaccination promotes TH1-like inflammation and survival in chronic Pseudomonas aeruginosa pneumonia. A new prophylactic principle

    DEFF Research Database (Denmark)

    Johansen, H K; Cryz, S J; Hougen, H P

    1997-01-01

    The ongoing lung tissue damage in chronically Pseudomonas aeruginosa infected cystic fibrosis (CF) patients has been shown to be caused by elastase liberated from polymorphonuclear leukocytes (PMN), which dominate the chronic inflammation in these patients. Most CF patients, however, contract...... the chronic lung infection with P. aeruginosa after a one-year period (median) of intermittent colonization. Therefore, prevention of the onset of the chronic infection or prevention of the dominance of the inflammation by PMNs would be important goals for a vaccine strategy against P. aeruginosa in CF....... In a rat model of acute P. aeruginosa pneumonia we studied whether it was possible to improve the initial bacterial clearance and diminish the inflammatory response by vaccination prior to challenge with free, live P. aeruginosa. The vaccines studied were PAO 579 sonicate, O-polysaccharide toxin A (TA...

  1. Inflammation and nutrition in children with chronic kidney disease

    OpenAIRE

    Tu, Juan; Cheung, Wai W; Mak, Robert H

    2016-01-01

    Chronic inflammation and nutritional imbalance are important comorbid conditions that correlate with poor clinical outcomes in children with chronic kidney disease (CKD). Nutritional disorders such as cachexia/protein energy wasting, obesity and growth retardation negatively impact the quality of life and disease progression in children with CKD. Inadequate nutrition has been associated with growth disturbances in children with CKD. On the other hand, over-nutrition and obesity are associated...

  2. Lung transplantation for chronic obstructive pulmonary disease

    Directory of Open Access Journals (Sweden)

    Liou TG

    2013-07-01

    Full Text Available Theodore G Liou, Sanjeev M Raman, Barbara C CahillDivision of Respiratory, Critical Care and Occupational Pulmonary Medicine, Department of Medicine, School of Medicine, University of Utah, Salt Lake City, Utah, USAAbstract: Patients with end-stage chronic obstructive pulmonary disease (COPD comprise the largest single lung disease group undergoing transplantation. Selection of appropriate candidates requires consideration of specific clinical characteristics, prognosis in the absence of transplantation, and likely outcome of transplantation. Increased availability of alternatives to transplantation for end-stage patients and the many efforts to increase the supply of donor organs have complicated decision making for selecting transplant candidates. Many years of technical and clinical refinements in lung transplantation methods have improved survival and quality of life outcomes. Further advances will probably come from improved selection methods for the procedure. Because no prospective trial has been performed, and because of confounding and informative censoring bias inherent in the transplant selection process in studies of the existing experience, the survival effect of lung transplant in COPD patients remains undefined. There is a lack of conclusive data on the impact of lung transplantation on quality of life. For some patients with end-stage COPD, lung transplantation remains the only option for further treatment with a hope of improved survival and quality of life. A prospective trial of lung transplantation is needed to provide better guidance concerning survival benefit, resource utilization, and quality of life effects for patients with COPD.Keywords: outcomes, emphysema, COPD, alpha-1-antitrypsin deficiency, survival, single lung transplant, bilateral sequential single lung transplant, lung volume reduction, referral, guidelines, health related quality of life

  3. Pathophysiology of Pulmonary Hypertension in Chronic Parenchymal Lung Disease.

    Science.gov (United States)

    Singh, Inderjit; Ma, Kevin Cong; Berlin, David Adam

    2016-04-01

    Pulmonary hypertension commonly complicates chronic obstructive pulmonary disease and interstitial lung disease. The association of chronic lung disease and pulmonary hypertension portends a worse prognosis. The pathophysiology of pulmonary hypertension differs in the presence or absence of lung disease. We describe the physiological determinants of the normal pulmonary circulation to better understand the pathophysiological factors implicated in chronic parenchymal lung disease-associated pulmonary hypertension. This review will focus on the pathophysiology of 3 forms of chronic lung disease-associated pulmonary hypertension: idiopathic pulmonary fibrosis, chronic obstructive pulmonary disease, and sarcoidosis. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. [Bronchial inflammation during chronic bronchitis, importance of fenspiride].

    Science.gov (United States)

    Melloni, B

    2002-09-01

    PATHOPHYSIOLOGY OF CHRONIC OBSTRUCTIVE PULMONARY DISEASE (COPD): Chronic inflammation of the upper airways, pulmonary parenchyma and pulmonary vasculature is the characteristic feature of COPD. Two mechanisms besides inflammation are also involved: oxidative stress and imbalance between proteinases and antiproteinases. Cellular infiltration of the upper airways involved neutrophils, macrophages, T lymphocytes and eosinophils. Inflammatory mediators appear to play a crucial role in the interaction between inflammation and obstruction. PROPERTIES OF FENSPIRIDE: A nonsteroidal drug, fenspiride, exhibits interesting properties documented in vitro: anti-bronchoconstriction activity, anti-secretory activity, and anti-inflammatory activity (reduction in the activity of phospholipase A2 and release of proinflammatory leukotriens). Two french clinical trials have studied the efficacy of fenspiride in patients with acute excerbation or stable COPD and have demonstrated an improvement in the group treated with fenspiride compared with the placebo group.

  5. Periodontal treatment reduces chronic systemic inflammation in peritoneal dialysis patients.

    Science.gov (United States)

    Siribamrungwong, Monchai; Yothasamutr, Kasemsuk; Puangpanngam, Kutchaporn

    2014-06-01

    Chronic systemic inflammation, a non traditional risk factor of cardiovascular diseases, is associated with increasing mortality in chronic kidney disease, especially peritoneal dialysis patients. Periodontitis is a potential treatable source of systemic inflammation in peritoneal dialysis patients. Clinical periodontal status was evaluated in 32 stable chronic peritoneal dialysis patients by plaque index and periodontal disease index. Hematologic, blood chemical, nutritional, and dialysis-related data as well as highly sensitive C-reactive protein were analyzed before and after periodontal treatment. At baseline, high sensitive C-reactive protein positively correlated with the clinical periodontal status (plaque index; r = 0.57, P periodontal disease index; r = 0.56, P periodontal therapy, clinical periodontal indexes were significantly lower and high sensitivity C-reactive protein significantly decreased from 2.93 to 2.21 mg/L. Moreover, blood urea nitrogen increased from 47.33 to 51.8 mg/dL, reflecting nutritional status improvement. Erythropoietin dosage requirement decreased from 8000 to 6000 units/week while hemoglobin level was stable. Periodontitis is an important source of chronic systemic inflammation in peritoneal dialysis patients. Treatment of periodontal diseases can improve systemic inflammation, nutritional status and erythropoietin responsiveness in peritoneal dialysis patients. © 2013 The Authors. Therapeutic Apheresis and Dialysis © 2013 International Society for Apheresis.

  6. Gut inflammation in chronic fatigue syndrome

    OpenAIRE

    Lakhan, Shaheen E; Kirchgessner, Annette

    2010-01-01

    Abstract Chronic fatigue syndrome (CFS) is a debilitating disease characterized by unexplained disabling fatigue and a combination of accompanying symptoms the pathology of which is incompletely understood. Many CFS patients complain of gut dysfunction. In fact, patients with CFS are more likely to report a previous diagnosis of irritable bowel syndrome (IBS), a common functional disorder of the gut, and experience IBS-related symptoms. Recently, evidence for interactions between the intestin...

  7. Low Tidal Volume Reduces Lung Inflammation Induced by Liquid Ventilation in Piglets With Severe Lung Injury.

    Science.gov (United States)

    Jiang, Lijun; Feng, Huizhen; Chen, Xiaofan; Liang, Kaifeng; Ni, Chengyao

    2017-05-01

    Total liquid ventilation (TLV) is an alternative treatment for severe lung injury. High tidal volume is usually required for TLV to maintain adequate CO 2 clearance. However, high tidal volume may cause alveolar barotrauma. We aim to investigate the effect of low tidal volume on pulmonary inflammation in piglets with lung injury and under TLV. After the establishment of acute lung injury model by infusing lipopolysaccharide, 12 piglets were randomly divided into two groups, TLV with high tidal volume (25 mL/kg) or with low tidal volume (6 mL/kg) for 240 min, respectively. Extracorporeal CO 2 removal was applied in low tidal volume group to improve CO 2 clearance and in high tidal volume group as sham control. Gas exchange and hemodynamic status were monitored every 30 min during TLV. At the end of the study, pulmonary mRNA expression and plasmatic concentration of interleukin-6 (IL-6) and interleukin-8 (IL-8) were measured by collecting lung tissue and blood samples from piglets. Arterial blood pressure, PaO 2 , and PaCO 2 showed no remarkable difference between groups during the observation period. Compared with high tidal volume strategy, low tidal volume resulted in 76% reduction of minute volume and over 80% reduction in peak inspiratory pressure during TLV. In addition, low tidal volume significantly diminished pulmonary mRNA expression and plasmatic level of IL-6 and IL-8. We conclude that during TLV, low tidal volume reduces lung inflammation in piglets with acute lung injury without compromising gas exchange. © 2016 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  8. Bioactive Lipids and Chronic Inflammation: Managing the Fire Within

    Directory of Open Access Journals (Sweden)

    Valerio Chiurchiù

    2018-01-01

    Full Text Available Inflammation is an immune response that works as a contained fire that is pre-emptively sparked as a defensive process during infections or upon any kind of tissue insult, and that is spontaneously extinguished after elimination or termination of the damage. However, persistent and uncontrolled immune reactions act as a wildfire that promote chronic inflammation, unresolved tissue damage and, eventually, chronic diseases. A wide network of soluble mediators, among which endogenous bioactive lipids, governs all immune processes. They are secreted by basically all cells involved in inflammatory processes and constitute the crucial infrastructure that triggers, coordinates and confines inflammatory mechanisms. However, these molecules are also deeply involved in the detrimental transition from acute to chronic inflammation, be it for persistent or excessive action of pro-inflammatory lipids or for the impairment of the functions carried out by resolving ones. As a matter of fact, bioactive lipids have been linked, to date, to several chronic diseases, including rheumatoid arthritis, atherosclerosis, diabetes, cancer, inflammatory bowel disease, systemic lupus erythematosus, and multiple sclerosis. This review summarizes current knowledge on the involvement of the main classes of endogenous bioactive lipids—namely classical eicosanoids, pro-resolving lipid mediators, lysoglycerophospholipids/sphingolipids, and endocannabinoids—in the cellular and molecular mechanisms that lead to the pathogenesis of chronic disorders.

  9. Lung disease with chronic obstruction in opium smokers in Singapore

    Science.gov (United States)

    Da Costa, J. L.; Tock, E. P. C.; Boey, H. K.

    1971-01-01

    Fifty-four opium smokers with chronic obstructive lung disease were studied for two-and-a-half years. Forty-eight patients had a cough for at least two years before the onset of inappropriate exertional dyspnoea. Fine, bubbling adventitious sounds suggesting small airway disease were heard on auscultation over the middle and lower lobes in 38 patients. The prevalence of inflammatory lung disease and chronic respiratory failure in this series is suggested as the main cause for the frequent finding of right ventricular hypertrophy and congestive heart failure. Physiological studies revealed moderate to severe airways obstruction with gross over-inflation and, in 32 patients, an additional restrictive defect probably due to peribronchiolar fibrosis. Radiological evidence of chronic bronchitis and bronchiolitis was observed in 45 patients, `pure' chronic bronchiolitis in six patients, and `widespread' emphysema in 25 patients respectively. Necropsy examinations in nine patients, however, showed destructive emphysema of variable severity in all. Chronic bronchiolitis often associated with striking bronchiolectasis was present in six cases. More severe bronchiolar rather than bronchial inflammation was noted. The heavy opium smokers had characteristic nodular shadows on chest radiography, sometimes associated with a striking reticular pattern not seen in `pure' cigarette smokers. This was due to gross pigmented dust (presumably carbon) deposition in relation to blood vessels, lymphatics, and bronchioles, and also within the alveoli. It is speculated that the initial lesion is an acquired bronchiolitis. Opium smoking induces an irritative bronchopathy favouring repeated attacks of acute bronchiolitis and eventually resulting in obliterative bronchiolitis, peribronchiolar fibrosis, chronic bronchitis, and destructive emphysema. Images PMID:5134057

  10. Inhibition of lipopolysaccharide induced acute inflammation in lung by chlorination.

    Science.gov (United States)

    Zhang, Jinshan; Xue, Jinling; Xu, Bi; Xie, Jiani; Qiao, Juan; Lu, Yun

    2016-02-13

    Lipopolysaccharide (LPS, also called endotoxin) is a pro-inflammatory constituent of gram negative bacteria and cyanobacteria, which causes a potential health risk in the process of routine urban application of reclaimed water, such as car wash, irrigation, scenic water refilling, etc. Previous studies indicated that the common disinfection treatment, chlorination, has little effect on endotoxin activity removal measured by Limulus amebocyte lysate (LAL) assay. However, in this study, significant decrease of acute inflammatory effects was observed in mouse lung, while LAL assay still presented a moderate increase of endotoxin activity. To explore the possible mechanisms, the nuclear magnetic resonance (NMR) results showed the chlorination happened in alkyl chain of LPS molecules, which could affect the interaction between LPS and LPS-binding protein. Also the size of LPS aggregates was found to drop significantly after treatment, which could be another results of chlorination caused polarity change. In conclusion, our observation demonstrated that chlorination is effective to reduce the LPS induced inflammation in lung, and it is recommended to use health effect-based methods to assess risk removal of water treatment technologies. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Punica granatum L. Leaf Extract Attenuates Lung Inflammation in Mice with Acute Lung Injury

    Science.gov (United States)

    Pinheiro, Aruanã Joaquim Matheus Costa Rodrigues; Gonçalves, Jaciara Sá; Dourado, Ádylla Wilenna Alves; de Sousa, Eduardo Martins; Brito, Natilene Mesquita; Silva, Lanna Karinny; Batista, Marisa Cristina Aranha; de Sá, Joicy Cortez; Monteiro, Cinara Regina Aragão Vieira; Fernandes, Elizabeth Soares; Campbell, Lee Ann; Zago, Patrícia Maria Wiziack

    2018-01-01

    The hydroalcoholic extract of Punica granatum (pomegranate) leaves was previously demonstrated to be anti-inflammatory in a rat model of lipopolysaccharide- (LPS-) induced acute peritonitis. Here, we investigated the anti-inflammatory effects of the ethyl acetate fraction obtained from the pomegranate leaf hydroalcoholic extract (EAFPg) on the LPS-induced acute lung injury (ALI) mouse model. Male Swiss mice received either EAFPg at different doses or dexamethasone (per os) prior to LPS intranasal instillation. Vehicle-treated mice were used as controls. Animals were culled at 4 h after LPS challenge, and the bronchoalveolar lavage fluid (BALF) and lung samples were collected for analysis. EAFPg and kaempferol effects on NO and cytokine production by LPS-stimulated RAW 264.7 macrophages were also investigated. Pretreatment with EAFPg (100–300 mg/kg) markedly reduced cell accumulation (specially neutrophils) and collagen deposition in the lungs of ALI mice. The same animals presented with reduced lung and BALF TNF-α and IL-1β expression in comparison with vehicle controls (p < 0.05). Additionally, incubation with either EAFPg or kaempferol (100 μg/ml) reduced NO production and cytokine gene expression in cultured LPS-treated RAW 264.7 macrophages. Overall, these results demonstrate that the prophylactic treatment with EAFPg attenuates acute lung inflammation. We suggest this fraction may be useful in treating ALI. PMID:29675437

  12. Punica granatum L. Leaf Extract Attenuates Lung Inflammation in Mice with Acute Lung Injury.

    Science.gov (United States)

    Pinheiro, Aruanã Joaquim Matheus Costa Rodrigues; Gonçalves, Jaciara Sá; Dourado, Ádylla Wilenna Alves; de Sousa, Eduardo Martins; Brito, Natilene Mesquita; Silva, Lanna Karinny; Batista, Marisa Cristina Aranha; de Sá, Joicy Cortez; Monteiro, Cinara Regina Aragão Vieira; Fernandes, Elizabeth Soares; Monteiro-Neto, Valério; Campbell, Lee Ann; Zago, Patrícia Maria Wiziack; Lima-Neto, Lidio Gonçalves

    2018-01-01

    The hydroalcoholic extract of Punica granatum (pomegranate) leaves was previously demonstrated to be anti-inflammatory in a rat model of lipopolysaccharide- (LPS-) induced acute peritonitis. Here, we investigated the anti-inflammatory effects of the ethyl acetate fraction obtained from the pomegranate leaf hydroalcoholic extract (EAFPg) on the LPS-induced acute lung injury (ALI) mouse model. Male Swiss mice received either EAFPg at different doses or dexamethasone (per os) prior to LPS intranasal instillation. Vehicle-treated mice were used as controls. Animals were culled at 4 h after LPS challenge, and the bronchoalveolar lavage fluid (BALF) and lung samples were collected for analysis. EAFPg and kaempferol effects on NO and cytokine production by LPS-stimulated RAW 264.7 macrophages were also investigated. Pretreatment with EAFPg (100-300 mg/kg) markedly reduced cell accumulation (specially neutrophils) and collagen deposition in the lungs of ALI mice. The same animals presented with reduced lung and BALF TNF- α and IL-1 β expression in comparison with vehicle controls ( p < 0.05). Additionally, incubation with either EAFPg or kaempferol (100  μ g/ml) reduced NO production and cytokine gene expression in cultured LPS-treated RAW 264.7 macrophages. Overall, these results demonstrate that the prophylactic treatment with EAFPg attenuates acute lung inflammation. We suggest this fraction may be useful in treating ALI.

  13. Early immune response in susceptible and resistant mice strains with chronic Pseudomonas aeruginosa lung infection determines the type of T-helper cell response

    DEFF Research Database (Denmark)

    Moser, C; Hougen, H P; Song, Z

    1999-01-01

    Most cystic fibrosis (CF) patients become chronically infected with Pseudomonas aeruginosa in the lungs. The infection is characterized by a pronounced antibody response and a persistant inflammation dominated by polymorphonuclear neutrophils. Moreover a high antibody response correlates with a p...

  14. Gut inflammation in chronic fatigue syndrome

    Directory of Open Access Journals (Sweden)

    Kirchgessner Annette

    2010-10-01

    Full Text Available Abstract Chronic fatigue syndrome (CFS is a debilitating disease characterized by unexplained disabling fatigue and a combination of accompanying symptoms the pathology of which is incompletely understood. Many CFS patients complain of gut dysfunction. In fact, patients with CFS are more likely to report a previous diagnosis of irritable bowel syndrome (IBS, a common functional disorder of the gut, and experience IBS-related symptoms. Recently, evidence for interactions between the intestinal microbiota, mucosal barrier function, and the immune system have been shown to play a role in the disorder's pathogenesis. Studies examining the microecology of the gastrointestinal (GI tract have identified specific microorganisms whose presence appears related to disease; in CFS, a role for altered intestinal microbiota in the pathogenesis of the disease has recently been suggested. Mucosal barrier dysfunction promoting bacterial translocation has also been observed. Finally, an altered mucosal immune system has been associated with the disease. In this article, we discuss the interplay between these factors in CFS and how they could play a significant role in GI dysfunction by modulating the activity of the enteric nervous system, the intrinsic innervation of the gut. If an altered intestinal microbiota, mucosal barrier dysfunction, and aberrant intestinal immunity contribute to the pathogenesis of CFS, therapeutic efforts to modify gut microbiota could be a means to modulate the development and/or progression of this disorder. For example, the administration of probiotics could alter the gut microbiota, improve mucosal barrier function, decrease pro-inflammatory cytokines, and have the potential to positively influence mood in patients where both emotional symptoms and inflammatory immune signals are elevated. Probiotics also have the potential to improve gut motility, which is dysfunctional in many CFS patients.

  15. Chronic Inflammation Links Cancer and Parkinson’s disease

    Directory of Open Access Journals (Sweden)

    Zhiming eLi

    2016-06-01

    Full Text Available An increasing number of genetic studies suggest that the pathogenesis of Parkinson’s disease (PD and cancer share common genes, pathways, and mechanisms. Despite a disruption in a wide range of similar biological processes, the end result is very different: uncontrolled proliferation and early neurodegeneration. Thus, the links between the molecular mechanisms that cause PD and cancer remain to be elucidated. We propose that chronic inflammation in neurons and tumors contributes to a microenvironment that favors the accumulation of DNA mutations and facilitates disease formation. This article appraises the key role of microglia, establishes the genetic role of COX2 and CARD15 in PD and cancer, and discusses prevention and treatment with this new perspective in mind. We examine the evidence that chronic inflammation is an important link between cancer and PD.

  16. Lung volume reduction in chronic obstructive pulmonary disease ...

    African Journals Online (AJOL)

    Lung volume reduction in chronic obstructive pulmonary disease. ... loss to improve pulmonary mechanics and compliance, thereby reducing the work of breathing. ... of obtaining similar functional advantages to surgical lung volume reduction, ...

  17. Effects of Chinese medicinal herbs on a rat model of chronic Pseudomonas aeruginosa lung infection.

    Science.gov (United States)

    Song, Z; Johansen, H K; Moser, C; Høiby, N

    1996-05-01

    The aim of the study was to evaluate the effects of two kinds of Chinese medicinal herbs, Isatis tinctoria L (ITL) and Daphne giraldii Nitsche (DGN), on a rat model of chronic Pseudomonas aeruginosa lung infection mimicking cystic fibrosis (CF). Compared to the control group, both drugs were able to reduce the incidence of lung abscess (p < 0.05) and to decrease the severity of the macroscopic pathology in lungs (p < 0.05). In the great majority of the rats, the herbs altered the inflammatory response in the lungs from an acute type inflammation, dominated by polymorphonuclear leukocytes (PMN), to a chronic type inflammation, dominated by mononuclear leukocytes (MN). DGN also improved the clearance of P. aeruginosa from the lungs (p < 0.03) compared with the control group. There were no significant differences between the control group and the two herbal groups with regard to serum IgG and IgA anti-P. aeruginosa sonicate antibodies. However, the IgM concentration in the ITL group was significantly lower than in the control group (p < 0.03). These results suggest that the two medicinal herbs might be helpful to CF patients with chronic P. aeruginosa lung infection, DGN being the most favorable.

  18. Targeting pro-resolution pathways to combat chronic inflammation in COPD.

    Science.gov (United States)

    Bozinovski, Steven; Anthony, Desiree; Vlahos, Ross

    2014-11-01

    Chronic obstructive pulmonary disease (COPD) is an inflammatory lung condition that is associated with irreversible airflow obstruction as a consequence of small airways disease, excessive mucus production and emphysema. Paradoxically, excessive inflammation fails to control microbial pathogens that not only colonise COPD airways, but also trigger acute exacerbations, which markedly increase inflammation underlying host tissue damage. Excessive production of leukocyte mobilising cytokines such as CXCL8 (IL-8) and leukotriene B4 (LTB4) in response to environmental stimuli (cigarette smoke and microbial products) are thought to maintain chronic inflammation, in conjunction with inefficient macrophage clearance of microbes and apoptotic neutrophils. In this perspective, we discuss an alternative view on why inflammation persists with a focus on why pro-resolution mediators such as lipoxin A4 (LXA4), D-series resolving and Annexin A1 fail to effectively switch off inflammation in COPD. These pro-resolving mediators converge on the G-protein coupled receptor, ALX/FPR2. This receptor is particularly relevant to COPD as the complex milieu of exogenous and host-derived mediators within the inflamed airways include agonists that potently activate ALX/FPR2, including Serum Amyloid A (SAA) and the cathelicidin, LL-37. There is emerging evidence to suggest that ALX/FPR2 can exist in alternative receptor conformations in an agonist-biased manner, which facilitates alternate functional receptor behaviors. Hence, the development of more stable pro-resolving analogs provides therapeutic opportunities to address ALX/FPR2 conformations to counteract pathogenic signaling and promote non-phlogistic clearance pathways essential for resolution of inflammation.

  19. Lung inflammation and genotoxicity in mice lungs after pulmonary exposure to candle light combustion particles

    DEFF Research Database (Denmark)

    Skovmand, Astrid; Damiao Gouveia, Ana Cecilia; Koponen, Ismo Kalevi

    2017-01-01

    Candle burning produces a large amount of particles that contribute substantially to the exposure to indoor particulate matter. The exposures to various types of combustion particles, such as diesel exhaust particles, have been associated with increased risk of lung cancer by mechanisms that invo......Candle burning produces a large amount of particles that contribute substantially to the exposure to indoor particulate matter. The exposures to various types of combustion particles, such as diesel exhaust particles, have been associated with increased risk of lung cancer by mechanisms...... that involve oxidative stress, inflammation and genotoxicity. The aim of this study was to compare pulmonary effects of candle light combustion particles (CP) with two benchmark diesel exhaust particles (A-DEP and SRM2975). Intratracheal (i.t.) instillation of CP (5mg/kg bodyweight) in C57BL/6n mice produced......-DEP or SRM2975. The i.t. instillation of CP did not generate oxidative damage to DNA in lung tissue, measured as DNA strand breaks and human 8-oxoguanine glycosylase-sensitive sites by the comet assay. The lack of genotoxic response was confirmed in lung epithelial (A549) cells, although the exposure to CP...

  20. Intratracheal IL-6 protects against lung inflammation in direct, but not indirect, causes of acute lung injury in mice.

    Directory of Open Access Journals (Sweden)

    Rhea Bhargava

    Full Text Available Serum and bronchoalveolar fluid IL-6 are increased in patients with acute respiratory distress syndrome (ARDS and predict prolonged mechanical ventilation and poor outcomes, although the role of intra-alveolar IL-6 in indirect lung injury is unknown. We investigated the role of endogenous and exogenous intra-alveolar IL-6 in AKI-mediated lung injury (indirect lung injury, intraperitoneal (IP endotoxin administration (indirect lung injury and, for comparison, intratracheal (IT endotoxin administration (direct lung injury with the hypothesis that IL-6 would exert a pro-inflammatory effect in these causes of acute lung inflammation.Bronchoalveolar cytokines (IL-6, CXCL1, TNF-α, IL-1β, and IL-10, BAL fluid neutrophils, lung inflammation (lung cytokines, MPO activity [a biochemical marker of neutrophil infiltration], and serum cytokines were determined in adult male C57Bl/6 mice with no intervention or 4 hours after ischemic AKI (22 minutes of renal pedicle clamping, IP endotoxin (10 µg, or IT endotoxin (80 µg with and without intratracheal (IT IL-6 (25 ng or 200 ng treatment.Lung inflammation was similar after AKI, IP endotoxin, and IT endotoxin. BAL fluid IL-6 was markedly increased after IT endotoxin, and not increased after AKI or IP endotoxin. Unexpectedly, IT IL-6 exerted an anti-inflammatory effect in healthy mice characterized by reduced BAL fluid cytokines. IT IL-6 also exerted an anti-inflammatory effect in IT endotoxin characterized by reduced BAL fluid cytokines and lung inflammation; IT IL-6 had no effect on lung inflammation in AKI or IP endotoxin.IL-6 exerts an anti-inflammatory effect in direct lung injury from IT endotoxin, yet has no role in the pathogenesis or treatment of indirect lung injury from AKI or IP endotoxin. Since intra-alveolar inflammation is important in the pathogenesis of direct, but not indirect, causes of lung inflammation, IT anti-inflammatory treatments may have a role in direct, but not indirect, causes of

  1. Protocols to Evaluate Cigarette Smoke-Induced Lung Inflammation and Pathology in Mice.

    Science.gov (United States)

    Vlahos, Ross; Bozinovski, Steven

    2018-01-01

    Cigarette smoking is a major cause of chronic obstructive pulmonary disease (COPD). Inhalation of cigarette smoke causes inflammation of the airways, airway wall remodelling, mucus hypersecretion and progressive airflow limitation. Much of the disease burden and health care utilisation in COPD is associated with the management of its comorbidities and infectious (viral and bacterial) exacerbations (AECOPD). Comorbidities, in particular skeletal muscle wasting, cardiovascular disease and lung cancer markedly impact on disease morbidity, progression and mortality. The mechanisms and mediators underlying COPD and its comorbidities are poorly understood and current COPD therapy is relatively ineffective. Many researchers have used animal modelling systems to explore the mechanisms underlying COPD, AECOPD and comorbidities of COPD with the goal of identifying novel therapeutic targets. Here we describe a mouse model that we have developed to define the cellular, molecular and pathological consequences of cigarette smoke exposure and the development of comorbidities of COPD.

  2. Nontypeable Haemophilus influenzae in chronic obstructive pulmonary disease and lung cancer

    Directory of Open Access Journals (Sweden)

    Seyed Javad Moghaddam

    2011-01-01

    Full Text Available Seyed Javad Moghaddam1, Cesar E Ochoa1,2, Sanjay Sethi3, Burton F Dickey1,41Department of Pulmonary Medicine, the University of Texas MD Anderson Cancer Center, Houston, TX, USA; 2Tecnológico de Monterrey School of Medicine, Monterrey, Nuevo León, Mexico; 3Department of Medicine, University at Buffalo, State University of New York, Buffalo, NY, USA; 4Center for Inflammation and Infection, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX, USAAbstract: Chronic obstructive pulmonary disease (COPD is predicted to become the third leading cause of death in the world by 2020. It is characterized by airflow limitation that is not fully reversible. The airflow limitation is usually progressive and associated with an abnormal inflammatory response of the lungs to noxious particles and gases, most commonly cigarette smoke. Among smokers with COPD, even following withdrawal of cigarette smoke, inflammation persists and lung function continues to deteriorate. One possible explanation is that bacterial colonization of smoke-damaged airways, most commonly with nontypeable Haemophilus influenzae (NTHi, perpetuates airway injury and inflammation. Furthermore, COPD has also been identified as an independent risk factor for lung cancer irrespective of concomitant cigarette smoke exposure. In this article, we review the role of NTHi in airway inflammation that may lead to COPD progression and lung cancer promotion.Keywords: COPD, NTHi, inflammation

  3. Airway inflammation in severe chronic obstructive pulmonary disease

    International Nuclear Information System (INIS)

    Turato, Graziella; Zuin, Renzo; Miniati, Massimo

    2002-01-01

    Very few studies have been made in-patient with severe chronic obstructive pulmonary disease and some of them carried out, have demonstrated an increment in the intensity of the inflammatory answer in the space and these patients' alveolar walls. However, there are not enough studies on the inflammatory answer in the small airway and in the lung glasses, object of the present study, comparing it with patient with light (COPD) or without COPD, in spite of similar history of smoker

  4. Cyclooxygenase-2 Regulates Th17 Cell Differentiation during Allergic Lung Inflammation

    OpenAIRE

    Li, Hong; Bradbury, J. Alyce; Dackor, Ryan T.; Edin, Matthew L.; Graves, Joan P.; DeGraff, Laura M.; Wang, Ping Ming; Bortner, Carl D.; Maruoka, Shuichiro; Lih, Fred B.; Cook, Donald N.; Tomer, Kenneth B.; Jetten, Anton M.; Zeldin, Darryl C.

    2011-01-01

    Rationale: Th17 cells comprise a distinct lineage of proinflammatory T helper cells that are major contributors to allergic responses. It is unknown whether cyclooxygenase (COX)-derived eicosanoids regulate Th17 cells during allergic lung inflammation.

  5. Experimental chronic Pseudomonas aeruginosa lung infection in rats. Non-specific stimulation with LPS reduces lethality as efficiently as specific immunization

    DEFF Research Database (Denmark)

    Lange, K H; Hougen, H P; Høiby, N

    1995-01-01

    In a rat model of chronic Pseudomonas aeruginosa lung infection mimicking cystic fibrosis, we investigated the possibility of preventing chronic lung inflammation or decreasing the progression of the infection. We compared the lethality, pathology, bacterial clearance, and immunogenicity after...... with either E. coli LPS or P. aeruginosa sonicate. Four and two weeks prior to challenge other rats were vaccinated with either E. coli LPS or P. aeruginosa sonicate. Controls did not receive any stimulation or vaccination. The lethality after challenge was lower in rats stimulated with E. coli LPS (p = 0...... but not to prevent the chronic P. aeruginosa lung infection and inflammation caused by alginate-embedded bacteria....

  6. Important role of platelets in modulating endotoxin-induced lung inflammation in CFTR-deficient mice.

    Directory of Open Access Journals (Sweden)

    Caiqi Zhao

    Full Text Available Mutation of CFTR (cystic fibrosis transmembrane conductance regulator leads to cystic fibrosis (CF. Patients with CF develop abnormalities of blood platelets and recurrent lung inflammation. However, whether CFTR-mutated platelets play a role in the development of lung inflammation is elusive. Therefore, we intratracheally challenged wildtype and F508del (a common type of CFTR mutation mice with LPS to observe changes of F508del platelets in the peripheral blood and indexes of lung inflammation (BAL neutrophils and protein levels. Furthermore, we investigated whether or not and how F508del platelets modulate the LPS-induced acute lung inflammation by targeting anti-platelet aggregation, depletion of neutrophils, reconstitution of bone marrow or neutrophils, blockade of P-selectin glycoprotein ligand-1 (PSGL-1, platelet activating factor (PAF, and correction of mutated CFTR trafficking. We found that LPS-challenged F508del mice developed severe thrombocytopenia and had higher levels of plasma TXB2 coincided with neutrophilic lung inflammation relative to wildtype control. Inhibition of F508del platelet aggregation or depletion of F508del neutrophils diminished the LPS-induced lung inflammation in the F508del mice. Moreover, wildtype mice reconstituted with either F508del bone marrow or neutrophils developed worse thrombocytopenia. Blocking PSGL-1, platelet activating factor (PAF, or rectifying trafficking of mutated CFTR in F508del mice diminished and alveolar neutrophil transmigration in the LPS-challenged F508del mice. These findings suggest that F508del platelets and their interaction with neutrophils are requisite for the development of LPS-induced lung inflammation and injury. As such, targeting platelets might be an emerging strategy for dampening recurrent lung inflammation in cystic fibrosis patients.

  7. A PAF receptor antagonist inhibits acute airway inflammation and late-phase responses but not chronic airway inflammation and hyperresponsiveness in a primate model of asthma

    Directory of Open Access Journals (Sweden)

    R. H. Gundel

    1992-01-01

    Full Text Available We have examined the effects of a PAF receptor antagonist, WEB 2170, on several indices of acute and chronic airway inflammation and associated changes in lung function in a primate model of allergic asthma. A single oral administration WEB 2170 provided dose related inhibition of the release of leukotriene C4 (LTC4 and prostaglandin D2 (PGD2 recovered and quantified in bronchoalveolar lavage (BAL fluid obtained during the acute phase response to inhaled antigen. In addition, oral WEB 2170 treatment in dual responder primates blocked the acute influx of neutrophils into the airways as well as the associated late-phase airway obstruction occurring 6 h after antigen inhalation. In contrast, a multiple dosing regime with WEB 2170 (once a day for 7 consecutive days failed to reduce the chronic airway inflammation (eosinophilic and associated airway hyperresponsiveness to inhaled methacholine that is characteristic of dual responder monkeys. Thus, we conclude that the generation of PAF following antigen inhalation contributes to the development of lipid mediators, acute airway inflammation and associated late-phase airway obstruction in dual responder primates; however, PAF does not play a significant role in the maintenance of chronic airway inflammation and associated airway hyperresponsiveness in this primate model.

  8. Low Level Laser Therapy Reduces the Development of Lung Inflammation Induced by Formaldehyde Exposure.

    Directory of Open Access Journals (Sweden)

    Cristiane Miranda da Silva

    Full Text Available Lung diseases constitute an important public health problem and its growing level of concern has led to efforts for the development of new therapies, particularly for the control of lung inflammation. Low Level Laser Therapy (LLLT has been highlighted as a non-invasive therapy with few side effects, but its mechanisms need to be better understood and explored. Considering that pollution causes several harmful effects on human health, including lung inflammation, in this study, we have used formaldehyde (FA, an environmental and occupational pollutant, for the induction of neutrophilic lung inflammation. Our objective was to investigate the local and systemic effects of LLLT after FA exposure. Male Wistar rats were exposed to FA (1% or vehicle (distillated water during 3 consecutive days and treated or not with LLLT (1 and 5 hours after each FA exposure. Non-manipulated rats were used as control. 24 h after the last FA exposure, we analyzed the local and systemic effects of LLLT. The treatment with LLLT reduced the development of neutrophilic lung inflammation induced by FA, as observed by the reduced number of leukocytes, mast cells degranulated, and a decreased myeloperoxidase activity in the lung. Moreover, LLLT also reduced the microvascular lung permeability in the parenchyma and the intrapulmonary bronchi. Alterations on the profile of inflammatory cytokines were evidenced by the reduced levels of IL-6 and TNF-α and the elevated levels of IL-10 in the lung. Together, our results showed that LLLT abolishes FA-induced neutrophilic lung inflammation by a reduction of the inflammatory cytokines and mast cell degranulation. This study may provide important information about the mechanisms of LLLT in lung inflammation induced by a pollutant.

  9. Autophagy deficiency in macrophages enhances NLRP3 inflammasome activity and chronic lung disease following silica exposure

    International Nuclear Information System (INIS)

    Jessop, Forrest; Hamilton, Raymond F.; Rhoderick, Joseph F.; Shaw, Pamela K.; Holian, Andrij

    2016-01-01

    Autophagy is an important metabolic mechanism that can promote cellular survival following injury. The specific contribution of autophagy to silica-induced inflammation and disease is not known. The objective of these studies was to determine the effects of silica exposure on the autophagic pathway in macrophages, as well as the general contribution of autophagy in macrophages to inflammation and disease. Silica exposure enhanced autophagic activity in vitro in Bone Marrow derived Macrophages and in vivo in Alveolar Macrophages isolated from silica-exposed mice. Impairment of autophagy in myeloid cells in vivo using Atg5 fl/fl LysM-Cre + mice resulted in enhanced cytotoxicity and inflammation after silica exposure compared to littermate controls, including elevated IL-18 and the alarmin HMGB1 in the whole lavage fluid. Autophagy deficiency caused some spontaneous inflammation and disease. Greater silica-induced acute inflammation in Atg5 fl/fl LysM-Cre + mice correlated with increased fibrosis and chronic lung disease. These studies demonstrate a critical role for autophagy in suppressing silica-induced cytotoxicity and inflammation in disease development. Furthermore, this data highlights the importance of basal autophagy in macrophages and other myeloid cells in maintaining lung homeostasis. - Highlights: • Silica exposure increases autophagy in macrophages. • Autophagy deficient mice have enhanced inflammation and silicosis. • Autophagy deficiency in macrophages results in greater silica-induced cytotoxicity. • Autophagy deficiency in macrophages increases extracellular IL-18 and HMGB1.

  10. Cardiovascular Disease and Chronic Inflammation in End Stage Kidney Disease

    Directory of Open Access Journals (Sweden)

    Sofia Zyga

    2013-01-01

    Full Text Available Background: Chronic Kidney Disease (CKD is one of the most severe diseases worldwide. In patients affected by CKD, a progressive destruction of the nephrons is observed not only in structuralbut also in functional level. Atherosclerosis is a progressive disease of large and medium-sized arteries. It is characterized by the deposition of lipids and fibrous elements and is a common complication of the uremic syndrome because of the coexistence of a wide range of risk factors. High blood pressure, anaemia, insulin resistance, inflammation, high oxidative stress are some of the most common factors that cause cardiovascular disease and atherogenesis in patients suffering from End Stage Kidney Disease (ESRD. At the same time, the inflammatory process constitutes a common element in the apparition and development of CKD. A wide range of possible causes can justify the development of inflammation under uremic conditions. Such causes are oxidative stress, oxidation, coexistentpathological conditions as well as factors that are due to renal clearance techniques. Patients in ESRD and coronary disease usually show increased acute phase products. Pre-inflammatory cytokines, such as IL-6 and TNF-a, and acute phase reactants, such as CRP and fibrinogen, are closely related. The treatment of chronic inflammation in CKD is of high importance for the development ofthe disease as well as for the treatment of cardiovascular morbidity.Conclusions: The treatment factors focus on the use of renin-angiotensic system inhibitors, acetylsalicylic acid, statins and anti-oxidant treatment in order to prevent the action of inflammatorycytokines that have the ability to activate the mechanisms of inflammation.

  11. Nanosilver induces minimal lung toxicity or inflammation in a subacute murine inhalation model

    Directory of Open Access Journals (Sweden)

    O'Shaughnessy Patrick T

    2011-01-01

    Full Text Available Abstract Background There is increasing interest in the environmental and health consequences of silver nanoparticles as the use of this material becomes widespread. Although human exposure to nanosilver is increasing, only a few studies address possible toxic effect of inhaled nanosilver. The objective of this study was to determine whether very small commercially available nanosilver induces pulmonary toxicity in mice following inhalation exposure. Results In this study, mice were exposed sub-acutely by inhalation to well-characterized nanosilver (3.3 mg/m3, 4 hours/day, 10 days, 5 ± 2 nm primary size. Toxicity was assessed by enumeration of total and differential cells, determination of total protein, lactate dehydrogenase activity and inflammatory cytokines in bronchoalveolar lavage fluid. Lungs were evaluated for histopathologic changes and the presence of silver. In contrast to published in vitro studies, minimal inflammatory response or toxicity was found following exposure to nanosilver in our in vivo study. The median retained dose of nanosilver in the lungs measured by inductively coupled plasma - optical emission spectroscopy (ICP-OES was 31 μg/g lung (dry weight immediately after the final exposure, 10 μg/g following exposure and a 3-wk rest period and zero in sham-exposed controls. Dissolution studies showed that nanosilver did not dissolve in solutions mimicking the intracellular or extracellular milieu. Conclusions Mice exposed to nanosilver showed minimal pulmonary inflammation or cytotoxicity following sub-acute exposures. However, longer term exposures with higher lung burdens of nanosilver are needed to ensure that there are no chronic effects and to evaluate possible translocation to other organs.

  12. New perspectives in monitoring lung inflammation: analysis of exhaled breath condensate

    National Research Council Canada - National Science Library

    Montuschi, Paolo

    2005-01-01

    ... diseases might be relevant to differential diagnosis. Given its noninvasiveness, this method might be suitable for longitudinal studies in patients with lung disease, including children. This book provides an introduction to the analysis of exhaled breath condensate. To provide an overview of lung inflammation, basic and clinical pharmacology of leukotrie...

  13. Non-Invasive Detection of Lung Inflammation by Near-Infrared Fluorescence Imaging Using Bimodal Liposomes.

    Science.gov (United States)

    Desu, Hari R; Wood, George C; Thoma, Laura A

    2016-01-01

    Acute lung injury (ALI) and its more severe form, acute respiratory distress syndrome results in respiratory obstruction and severe lung inflammation. Critical characteristics of ALI are alveolar edema, infiltration of leukocytes (neutrophils and monocytes), release of pro-inflammatory cytokines and chemokines into broncho-alveolar lavage fluid, and activation of integrin receptors. The purpose of the study was to demonstrate non-invasive detection of lung inflammation using integrin receptor targeted fluorescence liposomes. An inflammation similar to that observed in ALI was elicited in rodents by intra-tracheal instillation of interleukin-1beta (IL-1beta). Cyclic arginine glycine-(D)-aspartic acid-peptide (cRGD-peptide) grafted fluorescence liposomes were administered to ALI induced male Sprague-Dawley rats for targeting lung integrin receptors. Near-infrared fluorescence imaging (NIRFI) was applied for visualization and quantitation of lung inflammation. NIRFI signals were correlated with inflammatory cellular and biochemical markers of lungs. A positive correlation was observed between NIRF signals and lung inflammation markers. Compared to control group, an intense NIRF signal was observed in ALI induced rats in the window 6-24 h post-IL-1beta instillation. Interaction of integrin receptors with targeted liposomes was assumed to contribute to intense NIRF signal. RT-PCR studies showed an elevated lung expression of alphavbeta5 integrin receptors, 12 h post-IL-1beta instillation. In vitro studies demonstrated integrin receptor specificity of targeted liposomes. These targeted liposomes showed binding to alphavbeta5 integrin receptors expressed on alveolar cells. Non-invasive detection of lung inflammation was demonstrated using a combination of integrin receptor targeting and NIRFI.

  14. Neonates with reduced neonatal lung function have systemic low-grade inflammation

    DEFF Research Database (Denmark)

    Chawes, Bo L.K.; Stokholm, Jakob; Bønnelykke, Klaus

    2015-01-01

    Background: Children and adults with asthma and impaired lung function have been reported to have low-grade systemic inflammation, but it is unknown whether this inflammation starts before symptoms and in particular whether low-grade inflammation is present in asymptomatic neonates with reduced...... lung function. ObjectiveWe sought to investigate the possible association between neonatal lung function and biomarkers of systemic inflammation.  Methods: Plasma levels of high-sensitivity C-reactive protein (hs-CRP), IL-1β, IL-6, TNF-α, and CXCL8 (IL-8) were measured at age 6 months in 300 children.......  Results: The neonatal forced expiratory volume at 0.5 seconds was inversely associated with hs-CRP (β-coefficient, −0.12; 95% CI, −0.21 to −0.04; P approach, including hs-CRP, IL-6...

  15. The immune response to chronic Pseudomonas aeruginosa lung infection in cystic fibrosis patients is predominantly of the Th2 type

    DEFF Research Database (Denmark)

    Moser, C; Kjaergaard, S; Pressler, T

    2000-01-01

    Most cystic fibrosis (CF) patients with chronic Pseudomonas aeruginosa lung infection have a persistent acute type lung inflammation dominated by polymorphonuclear neutrophils (PMN) and a pronounced antibody response against P. aeruginosa. We speculated whether this immune response in CF...... is of the Th2 type and whether a change to a Th1 type immune response could improve the prognosis. Therefore, we studied 14 CF patients with (CF +P) and 14 CF patients without (CF -P) chronic P. aeruginosa lung infection. The specific production of interferon-gamma (IFN-gamma) and interleukin-4 (IL-4......: Rho=0.524; ptype immune response is most frequent in CF patients with chronic P. aeruginosa lung infection, and the patients with a Th1-dominated immune response had the best lung function. The clinical implication is that a change to a Th1 type immune response might...

  16. Effects of positive end-expiratory pressure titration and recruitment maneuver on lung inflammation and hyperinflation in experimental acid aspiration-induced lung injury.

    Science.gov (United States)

    Ambrosio, Aline M; Luo, Rubin; Fantoni, Denise T; Gutierres, Claudia; Lu, Qin; Gu, Wen-Jie; Otsuki, Denise A; Malbouisson, Luiz M S; Auler, Jose O C; Rouby, Jean-Jacques

    2012-12-01

    In acute lung injury positive end-expiratory pressure (PEEP) and recruitment maneuver are proposed to optimize arterial oxygenation. The aim of the study was to evaluate the impact of such a strategy on lung histological inflammation and hyperinflation in pigs with acid aspiration-induced lung injury. Forty-seven pigs were randomly allocated in seven groups: (1) controls spontaneously breathing; (2) without lung injury, PEEP 5 cm H2O; (3) without lung injury, PEEP titration; (4) without lung injury, PEEP titration + recruitment maneuver; (5) with lung injury, PEEP 5 cm H2O; (6) with lung injury, PEEP titration; and (7) with lung injury, PEEP titration + recruitment maneuver. Acute lung injury was induced by intratracheal instillation of hydrochloric acid. PEEP titration was performed by incremental and decremental PEEP from 5 to 20 cm H2O for optimizing arterial oxygenation. Three recruitment maneuvers (pressure of 40 cm H2O maintained for 20 s) were applied to the assigned groups at each PEEP level. Proportion of lung inflammation, hemorrhage, edema, and alveolar wall disruption were recorded on each histological field. Mean alveolar area was measured in the aerated lung regions. Acid aspiration increased mean alveolar area and produced alveolar wall disruption, lung edema, alveolar hemorrhage, and lung inflammation. PEEP titration significantly improved arterial oxygenation but simultaneously increased lung inflammation in juxta-diaphragmatic lung regions. Recruitment maneuver during PEEP titration did not induce additional increase in lung inflammation and alveolar hyperinflation. In a porcine model of acid aspiration-induced lung injury, PEEP titration aimed at optimizing arterial oxygenation, substantially increased lung inflammation. Recruitment maneuvers further improved arterial oxygenation without additional effects on inflammation and hyperinflation.

  17. Prevalence of aspergillosis in chronic lung diseases

    Directory of Open Access Journals (Sweden)

    Shahid M

    2001-01-01

    Full Text Available Eighty eight patients of chronic lung diseases (CLD attending TB and Chest department of J.N. Medical college Hospital were studied to find out the prevalence of Aspergillus in Broncho-alveolar Lavage (BAL and anti- aspergillus antibodies in their sera. Direct microscopy and fungal culture of BAL was done. Antibodies were studied by immunodiffusion (ID and Enzyme linked immunosorbent assay (ELISA. Dot blot assay for anti-aspergillus antibodies was also performed in sera of patients which were either positive by ID or by ELISA. Aspergillus was isolated in culture from 13(14.7% cases of CLD, while, 30.6% cases showed anti-aspergillus antibodies by serological methods. Aspergillus fumigatus was the predominant species isolated. 17(19.3% cases of CLD showed antibody against Aspergillus by ID, 22(25% by ELISA, while 19 of 27 seropositive cases also showed positive results by Dot Blot assay. In cases of bronchogenic carcinoma and pulmonary tuberculosis, anti-aspergillus antibodies were detected equally by ID and ELISA in 21.42% and 21.05% cases respectively. In bronchial asthma, the antibodies could be detected in 60% cases by ELISA, while, in only 10% cases by ID. ELISA was found more sensitive than ID for detection of anti-aspergillus antibodies. The sensitivity of Dot Blot lies some what between ID and ELISA. It is concluded that prevalence of Aspergillosis is quite high in chronic lung diseases, culture and serological test should be performed in conjunction and more than one type of serological tests should be performed to establish the diagnosis.

  18. Acute and chronic effects of treatment with mesenchymal stromal cells on LPS-induced pulmonary inflammation, emphysema and atherosclerosis development.

    Directory of Open Access Journals (Sweden)

    P Padmini S J Khedoe

    Full Text Available COPD is a pulmonary disorder often accompanied by cardiovascular disease (CVD, and current treatment of this comorbidity is suboptimal. Systemic inflammation in COPD triggered by smoke and microbial exposure is suggested to link COPD and CVD. Mesenchymal stromal cells (MSC possess anti-inflammatory capacities and MSC treatment is considered an attractive treatment option for various chronic inflammatory diseases. Therefore, we investigated the immunomodulatory properties of MSC in an acute and chronic model of lipopolysaccharide (LPS-induced inflammation, emphysema and atherosclerosis development in APOE*3-Leiden (E3L mice.Hyperlipidemic E3L mice were intranasally instilled with 10 μg LPS or vehicle twice in an acute 4-day study, or twice weekly during 20 weeks Western-type diet feeding in a chronic study. Mice received 0.5x106 MSC or vehicle intravenously twice after the first LPS instillation (acute study or in week 14, 16, 18 and 20 (chronic study. Inflammatory parameters were measured in bronchoalveolar lavage (BAL and lung tissue. Emphysema, pulmonary inflammation and atherosclerosis were assessed in the chronic study.In the acute study, intranasal LPS administration induced a marked systemic IL-6 response on day 3, which was inhibited after MSC treatment. Furthermore, MSC treatment reduced LPS-induced total cell count in BAL due to reduced neutrophil numbers. In the chronic study, LPS increased emphysema but did not aggravate atherosclerosis. Emphysema and atherosclerosis development were unaffected after MSC treatment.These data show that MSC inhibit LPS-induced pulmonary and systemic inflammation in the acute study, whereas MSC treatment had no effect on inflammation, emphysema and atherosclerosis development in the chronic study.

  19. Will chronic e-cigarette use cause lung disease?

    OpenAIRE

    Rowell, Temperance R.; Tarran, Robert

    2015-01-01

    Chronic tobacco smoking is a major cause of preventable morbidity and mortality worldwide. In the lung, tobacco smoking increases the risk of lung cancer, and also causes chronic obstructive pulmonary disease (COPD), which encompasses both emphysema and chronic bronchitis. E-cigarettes (E-Cigs), or electronic nicotine delivery systems, were developed over a decade ago and are designed to deliver nicotine without combusting tobacco. Although tobacco smoking has declined since the 1950s, E-Cig ...

  20. Airway inflammation in nonobstructive and obstructive chronic bronchitis with chronic haemophilus influenzae airway infection. Comparison with noninfected patients with chronic obstructive pulmonary disease

    NARCIS (Netherlands)

    Bresser, P.; Out, T. A.; van Alphen, L.; Jansen, H. M.; Lutter, R.

    2000-01-01

    Nonencapsulated Haemophilus influenzae often causes chronic infections of the lower respiratory tract in both nonobstructive and obstructive chronic bronchitis. We assessed airway inflammation in clinically stable, chronically H. influenzae-infected patients with nonobstructive (CB-HI, n = 10) and

  1. Proteases and antiproteases in chronic neutrophilic lung disease - relevance to drug discovery.

    LENUS (Irish Health Repository)

    Greene, Catherine M

    2009-10-01

    Chronic inflammatory lung diseases such as cystic fibrosis and emphysema are characterized by higher-than-normal levels of pulmonary proteases. While these enzymes play important roles such as bacterial killing, their dysregulated expression or activity can adversely impact on the inflammatory process. The existence of efficient endogenous control mechanisms that can dampen or halt this overexuberant protease activity in vivo is essential for the effective resolution of inflammatory lung disease. The function of pulmonary antiproteases is to fulfil this role. Interestingly, in addition to their antiprotease activity, protease inhibitors in the lung also often possess other intrinsic properties that contribute to microbial killing or termination of the inflammatory process. This review will outline important features of chronic inflammation that are regulated by pulmonary proteases and will describe the various mechanisms by which antiproteases attempt to counterbalance exaggerated protease-mediated inflammatory events. These proteases, antiproteases and their modifiers represent interesting targets for therapeutic intervention.

  2. Dietary supplementation of resveratrol attenuates chronic colonic inflammation in mice.

    Science.gov (United States)

    Sánchez-Fidalgo, Susana; Cárdeno, Ana; Villegas, Isabel; Talero, Elena; de la Lastra, Catalina Alarcón

    2010-05-10

    Ulcerative colitis is a nonspecific inflammatory disorder characterized by oxidative and nitrosative stress, leucocyte infiltration and upregulation of inflammatory mediators. Resveratrol is a polyphenolic compound found in grapes and wine, with multiple pharmacological actions, mainly anti-inflammatory, antioxidant, antitumour and immunomodulatory activities. The aim of this study was to investigate the effect of dietary resveratrol on chronic dextran sulphate sodium (DSS)-induced colitis. Six-week-old mice were randomized into two dietary groups: one standard diet and the other enriched with resveratrol at 20mg/kg of diet. After 30days, mice were exposed to 3% DSS for 5days developing acute colitis that progressed to severe chronic inflammation after 21days of water. Our results demonstrated that resveratrol group significantly attenuated the clinical signs such as loss of body weight, diarrhea and rectal bleeding improving results from disease activity index and inflammatory score. Moreover, the totality of resveratrol-fed animals survived and finished the treatment while animals fed with standard diet showed a mortality of 40%. Three weeks after DSS removal, the polyphenol caused substantial reductions of the rise of pro-inflammatory cytokines, TNF-alpha and IL-1beta and an increase of the anti-inflammatory cytokine IL-10. Also resveratrol reduced prostaglandin E synthase-1 (PGES-1), cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) proteins expression, via downregulation of p38, a mitogen-activated protein kinases (MAPK) signal pathway. We conclude that resveratrol diet represents a novel approach to the treatment of chronic intestinal inflammation. Copyright 2010 Elsevier B.V. All rights reserved.

  3. The combination of Bifidobacterium breve with non-digestible oligosaccharides suppresses airway inflammation in a murine model for chronic asthma.

    Science.gov (United States)

    Sagar, Seil; Vos, Arjan P; Morgan, Mary E; Garssen, Johan; Georgiou, Niki A; Boon, Louis; Kraneveld, Aletta D; Folkerts, Gert

    2014-04-01

    Over the last decade, there has been a growing interest in the use of interventions that target the intestinal microbiota as a treatment approach for asthma. This study is aimed at exploring the therapeutic effects of long-term treatment with a combination of Bifidobacterium breve with non-digestible oligosaccharides on airway inflammation and remodeling. A murine ovalbumin-induced chronic asthma model was used. Pulmonary airway inflammation; mRNA expression of pattern recognition receptors, Th-specific cytokines and transcription factors in lung tissue; expression of Foxp3 in blood Th cells; in vitro T cell activation; mast cell degranulation; and airway remodeling were examined. The combination of B. breve with non-digestible oligosaccharides suppressed pulmonary airway inflammation; reduced T cell activation and mast cell degranulation; modulated expression of pattern recognition receptors, cytokines and transcription factors; and reduced airway remodeling. The treatment induced regulatory T cell responses, as shown by increased Il10 and Foxp3 transcription in lung tissue, and augmented Foxp3 protein expression in blood CD4+CD25+Foxp3+ T cells. This specific combination of beneficial bacteria with non-digestible oligosaccharides has strong anti-inflammatory properties, possibly via the induction of a regulatory T cell response, resulting in reduced airway remodeling and, therefore, may be beneficial in the treatment of chronic inflammation in allergic asthma. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Bilirubin nanoparticles ameliorate allergic lung inflammation in a mouse model of asthma.

    Science.gov (United States)

    Kim, Dong Eon; Lee, Yonghyun; Kim, MinGyo; Lee, Soyoung; Jon, Sangyong; Lee, Seung-Hyo

    2017-09-01

    Although asthma, a chronic inflammatory airway disease, is relatively well-managed by inhaled corticosteroids, the side effects associated with the long-term use of these agents precipitate the need for alternative therapeutic options based on differing modes of action. Bilirubin, a potent endogenous antioxidant, and anti-inflammatory molecule have been shown to ameliorate asthmatic symptoms; however, its clinical translation has been limited owing to its water insolubility and associated potential toxicity. Here we report the first application of bilirubin-based nanoparticles (BRNPs) as a nanomedicine for the treatment of allergic lung inflammatory disease. BRNPs were prepared directly from self-assembly of PEGylated bilirubin in aqueous solution and had a hydrodynamic diameter of ∼100 nm. Because allergen-specific type 2 T-helper (Th2) cells play a key role in the pathogenesis and progression of allergic asthma, the effects of BRNPs on Th2 immune responses were investigated both in vivo and in vitro. BRNPs after intravenous injection (i.v.) showed much higher serum concentration and a longer circulation time of bilirubin than the intraperitoneal injection (i.p.) of BRNPs or unconjugated bilirubin (UCB). The anti-asthmatic effects of BRNPs were assessed in a mouse model of allergen-induced asthma. Compared with UCB, treatment with BRNPs suppressed the symptoms of experimental allergic asthma and dramatically ameliorated Th2-related allergic lung inflammation. Consistent with these results, BRNPs caused a reduction of Th2 cell populations and the expression of related cytokines by antibody-stimulated CD4 + T cells in vitro. Therefore, our results establish BRNPs as an important immunomodulatory agent that may be useful as a therapeutic for allergic lung inflammatory disease and other immune-mediated disorders. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Endothelial Semaphorin 7A promotes inflammation in seawater aspiration-induced acute lung injury.

    Science.gov (United States)

    Zhang, Minlong; Wang, Li; Dong, Mingqing; Li, Zhichao; Jin, Faguang

    2014-10-28

    Inflammation is involved in the pathogenesis of seawater aspiration-induced acute lung injury (ALI). Although several studies have shown that Semaphorin 7A (SEMA7A) promotes inflammation, there are limited reports regarding immunological function of SEMA7A in seawater aspiration-induced ALI. Therefore, we investigated the role of SEMA7A during seawater aspiration-induced ALI. Male Sprague-Dawley rats were underwent seawater instillation. Then, lung samples were collected at an indicated time for analysis. In addition, rat pulmonary microvascular endothelial cells (RPMVECs) were cultured and then stimulated with 25% seawater for indicated time point. After these treatments, cells samples were collected for analysis. In vivo, seawater instillation induced lung histopathologic changes, pro-inflammation cytokines release and increased expression of SEMA7A. In vitro, seawater stimulation led to pro-inflammation cytokine release, cytoskeleton remodeling and increased monolayer permeability in pulmonary microvascular endothelial cells. In addition, knockdown of hypoxia-inducible factor (HIF)-1α inhibited the seawater induced increase expression of SEMA7A. Meanwhile, knockdown of SEMA7A by specific siRNA inhibited the seawater induced aberrant inflammation, endothelial cytoskeleton remodeling and endothelial permeability. These results suggest that SEMA7A is critical in the development of lung inflammation and pulmonary edema in seawater aspiration-induced ALI, and may be a therapeutic target for this disease.

  6. Caffeine Mitigates Lung Inflammation Induced by Ischemia-Reperfusion of Lower Limbs in Rats

    Directory of Open Access Journals (Sweden)

    Wei-Chi Chou

    2015-01-01

    Full Text Available Reperfusion of ischemic limbs can induce inflammation and subsequently cause acute lung injury. Caffeine, a widely used psychostimulant, possesses potent anti-inflammatory capacity. We elucidated whether caffeine can mitigate lung inflammation caused by ischemia-reperfusion (IR of the lower limbs. Adult male Sprague-Dawley rats were randomly allocated to receive IR, IR plus caffeine (IR + Caf group, sham-operation (Sham, or sham plus caffeine (n=12 in each group. To induce IR, lower limbs were bilaterally tied by rubber bands high around each thigh for 3 hours followed by reperfusion for 3 hours. Caffeine (50 mg/kg, intraperitoneal injection was administered immediately after reperfusion. Our histological assay data revealed characteristics of severe lung inflammation in the IR group and mild to moderate characteristic of lung inflammation in the IR + Caf group. Total cells number and protein concentration in bronchoalveolar lavage fluid of the IR group were significantly higher than those of the IR + Caf group (P<0.001 and P=0.008, resp.. Similarly, pulmonary concentrations of inflammatory mediators (tumor necrosis factor-α, interleukin-1β, and macrophage inflammatory protein-2 and pulmonary myeloperoxidase activity of the IR group were significantly higher than those of the IR + Caf group (all P<0.05. These data clearly demonstrate that caffeine could mitigate lung inflammation induced by ischemia-reperfusion of the lower limbs.

  7. The role of chronic prostatic inflammation in the pathogenesis and progression of benign prostatic hyperplasia (BPH).

    Science.gov (United States)

    Gandaglia, Giorgio; Briganti, Alberto; Gontero, Paolo; Mondaini, Nicola; Novara, Giacomo; Salonia, Andrea; Sciarra, Alessandro; Montorsi, Francesco

    2013-08-01

    Several different stimuli may induce chronic prostatic inflammation, which in turn would lead to tissue damage and continuous wound healing, thus contributing to prostatic enlargement. Patients with chronic inflammation and benign prostatic hyperplasia (BPH) have been shown to have larger prostate volumes, more severe lower urinary tract symptoms (LUTS) and a higher probability of acute urinary retention than their counterparts without inflammation. Chronic inflammation could be a predictor of poor response to BPH medical treatment. Thus, the ability to identify patients with chronic inflammation would be crucial to prevent BPH progression and develop target therapies. Although the histological examination of prostatic tissue remains the only available method to diagnose chronic inflammation, different parameters, such as prostatic calcifications, prostate volume, LUTS severity, storage and prostatitis-like symptoms, poor response to medical therapies and urinary biomarkers, have been shown to be correlated with chronic inflammation. The identification of patients with BPH and chronic inflammation might be crucial in order to develop target therapies to prevent BPH progression. In this context, clinical, imaging and laboratory parameters might be used alone or in combination to identify patients that harbour chronic prostatic inflammation. © 2013 BJU International.

  8. Soyabean oil supplementation effects on perivascular inflammation in lungs induced by bisphenol a: a histological study

    International Nuclear Information System (INIS)

    Shaukat, S.; Hamid, S.; Umbreen, F.

    2017-01-01

    To determine the effect of soyabean oil supplementation on perivascular inflammation in lungs of adult mice induced by Bisphenol A (BPA). Study Design: An experimental study. Place and Duration of Study: Department of Anatomy, Army Medical College, Rawalpindi, in collaboration with the Animal House, National Institute of Health, Islamabad, from June to November 2016. Methodology:Thirty male and female BALB/c mice were divided into three groups, of 10 animals each. Group A animals served as control. Group B animals were given BPA at a dose of 50 mg/Kg body weight/day. Group C animals were given BPA and soyabean oil at doses of 50 mg/Kg body weight/day and 500 mg/day, respectively. All treatments were given once daily for a period of eight weeks. Animals were dissected 24 hours after receiving the last dose. Lung tissue specimen processing and H and E staining was carried out for routine histological study. Perivascular inflammation was morphometrically graded and statistically analysed using Chi-square test with p<0.05. Results: Grade 2 inflammation was recorded in two (20%) animals and grade 3 perivascular inflammation in 80% specimens in Group B; whereas 20% specimens of Group C had grade 2 inflammation and eight (80%) showed grade 1 inflammation. None of the control animals showed any inflammation. All groups were significantly different at p<0.001. Conclusion: BPA produced perivascular inflammation and con-commitant administration of soyabean oil diet protected against it in rodent. (author)

  9. The association between combined non-cystic fibrosis bronchiectasis and lung cancer in patients with chronic obstructive lung disease

    Directory of Open Access Journals (Sweden)

    Kim YW

    2015-05-01

    patients with squamous cell carcinoma (OR 0.11, 95% CI 0.03–0.49, P=0.001 and history of smoking (OR 0.27, 95% CI 0.12–0.57, P<0.001. However, the severity and location of bronchiectasis were not associated with the risk of lung cancer.Conclusion: Interestingly, the concomitant presence of bronchiectasis in COPD patients was associated with a lower risk of lung cancer.Keywords: bronchiectasis, lung cancer, chronic inflammation, COPD

  10. DNA methylation signatures of chronic low-grade inflammation are associated with complex diseases

    NARCIS (Netherlands)

    S. Ligthart (Symen); Marzi, C. (Carola); Aslibekyan, S. (Stella); Mendelson, M.M. (Michael M.); K.N. Conneely (Karen N.); T. Tanaka (Toshiko); Colicino, E. (Elena); L. Waite (Lindsay); R. Joehanes (Roby); W. Guan (Weihua); J. Brody (Jennifer); C.E. Elks (Cathy); R.E. Marioni (Riccardo); M.A. Jhun (Min A.); Agha, G. (Golareh); J. Bressler (Jan); C.K. Ward-Caviness (Cavin K.); B.H. Chen (Brian); T. Huan (Tianxiao); K.M. Bakulski (Kelly M.); E. Salfati (Elias); Fiorito, G. (Giovanni); S. Wahl (Simone); K. Schramm (Katharina); Sha, J. (Jin); D.G. Hernandez (Dena); Just, A.C. (Allan C.); J.A. Smith (Jennifer A); N. Sotoodehnia (Nona); L.C. Pilling (Luke); J.S. Pankow (James); Tsao, P.S. (Phil S.); Liu, C. (Chunyu); W. Zhao (Wei); S. Guarrera (Simonetta); Michopoulos, V.J. (Vasiliki J.); Smith, A.K. (Alicia K.); M.J. Peters (Marjolein); D. Melzer (David); Vokonas, P. (Pantel); M. Fornage (Myriam); H. Prokisch (Holger); J.C. Bis (Joshua); A.Y. Chu (Audrey); C. Herder (Christian); H. Grallert (Harald); C. Yao (Chen); S. Shah (Sonia); A.F. McRae (Allan F.); H. Lin; S. Horvath (Steve); Fallin, D. (Daniele); A. Hofman (Albert); N.J. Wareham (Nick); K.L. Wiggins (Kerri); A.P. Feinberg (Andrew P.); J.M. Starr (John); P.M. Visscher (Peter); J. Murabito (Joanne); Kardia, S.L.R. (Sharon L.R.); D. Absher (Devin); E.B. Binder (Elisabeth); A. Singleton (Andrew); S. Bandinelli (Stefania); A. Peters (Annette); M. Waldenberger (Melanie); G. Matullo; Schwartz, J.D. (Joel D.); E.W. Demerath (Ellen); A.G. Uitterlinden (André); Meurs, J.B.J. (Joyce B.J.); O.H. Franco (Oscar); Y.D. Chen (Y.); D. Levy (Daniel); S.T. Turner (Stephen); I.J. Deary (Ian J.); K.J. Ressler (Kerry); J. Dupuis (Josée); L. Ferrucci (Luigi); Ong, K.K. (Ken K.); T.L. Assimes (Themistocles); E.A. Boerwinkle (Eric); W. Koenig (Wolfgang); D.K. Arnett (Donna); A.A. Baccarelli (Andrea A.); E.J. Benjamin (Emelia); A. Dehghan (Abbas)

    2016-01-01

    textabstractBackground: Chronic low-grade inflammation reflects a subclinical immune response implicated in the pathogenesis of complex diseases. Identifying genetic loci where DNA methylation is associated with chronic low-grade inflammation may reveal novel pathways or therapeutic targets for

  11. Physical Activity Protects the Human Brain against Metabolic Stress Induced by a Postprandial and Chronic Inflammation

    NARCIS (Netherlands)

    Pruimboom, Leo; Raison, Charles L.; Muskiet, Frits A. J.

    2015-01-01

    In recent years, it has become clear that chronic systemic low-grade inflammation is at the root of many, if not all, typically Western diseases associated with the metabolic syndrome. While much focus has been given to sedentary lifestyle as a cause of chronic inflammation, it is less often

  12. Balance impairment and systemic inflammation in chronic obstructive pulmonary disease

    Directory of Open Access Journals (Sweden)

    Tudorache E

    2015-09-01

    Full Text Available Emanuela Tudorache,1 Cristian Oancea,1 Claudiu Avram,2 Ovidiu Fira-Mladinescu,1 Lucian Petrescu,3 Bogdan Timar4 1Department of Pulmonology, University of Medicine and Pharmacy “Victor Babes”, 2Physical Education and Sport Faculty, West University of Timisoara, 3Department of Cardiology, University of Medicine and Pharmacy “Victor Babes”, 4Department of Biostatistics and Medical Informatics, University of Medicine and Pharmacy “Victor Babes”, Timisoara, Romania Background/purpose: Chronic obstructive pulmonary disease (COPD, especially in severe forms, is commonly associated with systemic inflammation and balance impairment. The aim of our study was to evaluate the impact on equilibrium of stable and exacerbation (acute exacerbation of COPD [AECOPD] phases of COPD and to investigate if there is a connection between lower extremity muscle weakness and systemic inflammation.Methods: We enrolled 41 patients with COPD (22 stable and 19 in AECOPD and 20 healthy subjects (control group, having no significant differences regarding the anthropometric data. We analyzed the differences in balance tests scores: Falls Efficacy Scale-International (FES-I questionnaire, Berg Balance Scale (BBS, Timed Up and Go (TUG test, Single Leg Stance (SLS, 6-minute walking distance (6MWD, isometric knee extension (IKE between these groups, and also the correlation between these scores and inflammatory biomarkers.Results: The presence and severity of COPD was associated with significantly decreased score in IKE (P<0.001, 6MWD (P<0.001, SLS (P<0.001, and BBS (P<0.001, at the same time noting a significant increase in median TUG score across the studied groups (P<0.001. The AECOPD group vs stable group presented a significant increase in high-sensitive C-reactive protein (hs-CRP levels (10.60 vs 4.01; P=0.003 and decrease in PaO2 (70.1 vs 59.1; P<0.001. We observed that both IKE scores were significantly and positive correlated with all the respiratory volumes

  13. Nox1 oxidase suppresses influenza a virus-induced lung inflammation and oxidative stress.

    Directory of Open Access Journals (Sweden)

    Stavros Selemidis

    Full Text Available Influenza A virus infection is an ongoing clinical problem and thus, there is an urgent need to understand the mechanisms that regulate the lung inflammation in order to unravel novel generic pharmacological strategies. Evidence indicates that the Nox2-containing NADPH oxidase enzyme promotes influenza A virus-induced lung oxidative stress, inflammation and dysfunction via ROS generation. In addition, lung epithelial and endothelial cells express the Nox1 isoform of NADPH oxidase, placing this enzyme at key sites to regulate influenza A virus-induced lung inflammation. The aim of this study was to investigate whether Nox1 oxidase regulates the inflammatory response and the oxidative stress to influenza infection in vivo in mice. Male WT and Nox1-deficient (Nox1(-/y mice were infected with the moderately pathogenic HkX-31 (H3N2, 1×10(4 PFU influenza A virus for analysis of bodyweight, airways inflammation, oxidative stress, viral titre, lung histopathology, and cytokine/chemokine expression at 3 and 7 days post infection. HkX-31 virus infection of Nox1(-/y mice resulted in significantly greater: loss of bodyweight (Day 3; BALF neutrophilia, peri-bronchial, peri-vascular and alveolar inflammation; Nox2-dependent inflammatory cell ROS production and peri-bronchial, epithelial and endothelial oxidative stress. The expression of pro-inflammatory cytokines including CCL2, CCL3, CXCL2, IL-1β, IL-6, GM-CSF and TNF-α was higher in Nox1(-/y lungs compared to WT mice at Day 3, however, the expression of CCL2, CCL3, CXCL2, IFN-γ and the anti-inflammatory cytokine IL-10 were lower in lungs of Nox1(-/y mice vs. WT mice at Day 7. Lung viral titre, and airways infiltration of active CD8(+ and CD4(+ T lymphocytes, and of Tregs were similar between WT and Nox1(-/y mice. In conclusion, Nox1 oxidase suppresses influenza A virus induced lung inflammation and oxidative stress in mice particularly at the early phases of the infection. Nox1 and Nox2 oxidases appear

  14. Phenotypes selected during chronic lung infection in cystic fibrosis patients

    DEFF Research Database (Denmark)

    Ciofu, Oana; Mandsberg, Lotte F; Wang, Hengzhuang

    2012-01-01

    During chronic lung infection of patients with cystic fibrosis, Pseudomonas aeruginosa can survive for long periods of time under the challenging selective pressure imposed by the immune system and antibiotic treatment as a result of its biofilm mode of growth and adaptive evolution mediated by g...... the importance of biofilm prevention strategies by early aggressive antibiotic prophylaxis or therapy before phenotypic diversification during chronic lung infection of patients with cystic fibrosis....

  15. Pulmonary artery hypertension in chronic obstructive lung disease

    International Nuclear Information System (INIS)

    Dinkel, E.; Mundinger, A.; Reinbold, W.D.; Wuertemberger, G.

    1989-01-01

    Standard biplane chest X-rays were tested for the validity of morphometric criteria in the diagnosis of pulmonary artery hypertension. Twenty-seven patients suffering from chronic obstructive lung disease were examined and compared with a control group without cardiopulmonary disease. The diameter of the right and left pulmonary artery, pulmonary conus and the hilar-to-thoracic ratio were significantly increased in patients with chronic obstructive lung disease (p [de

  16. Lung injury, inflammation and Akt signaling following inhalation of particulate hexavalent chromium

    International Nuclear Information System (INIS)

    Beaver, Laura M.; Stemmy, Erik J.; Constant, Stephanie L.; Schwartz, Arnold; Little, Laura G.; Gigley, Jason P.; Chun, Gina; Sugden, Kent D.

    2009-01-01

    Certain particulate hexavalent chromium [Cr(VI)] compounds are human respiratory carcinogens that release genotoxic soluble chromate, and are associated with fibrosis, fibrosarcomas, adenocarcinomas and squamous cell carcinomas of the lung. We postulate that inflammatory processes and mediators may contribute to the etiology of Cr(VI) carcinogenesis, however the immediate (0-24 h) pathologic injury and immune responses after exposure to particulate chromates have not been adequately investigated. Our aim was to determine the nature of the lung injury, inflammatory response, and survival signaling responses following intranasal exposure of BALB/c mice to particulate basic zinc chromate. Factors associated with lung injury, inflammation and survival signaling were measured in airway lavage fluid and in lung tissue. A single chromate exposure induced an acute immune response in the lung, characterized by a rapid and significant increase in IL-6 and GRO-α levels, an influx of neutrophils, and a decline in macrophages in lung airways. Histological examination of lung tissue in animals challenged with a single chromate exposure revealed an increase in bronchiolar cell apoptosis and mucosal injury. Furthermore, chromate exposure induced injury and inflammation that progressed to alveolar and interstitial pneumonitis. Finally, a single Cr(VI) challenge resulted in a rapid and persistent increase in the number of airways immunoreactive for phosphorylation of the survival signaling protein Akt, on serine 473. These data illustrate that chromate induces both survival signaling and an inflammatory response in the lung, which we postulate may contribute to early oncogenesis

  17. The cardiopulmonary continuum systemic inflammation as 'common soil' of heart and lung disease

    NARCIS (Netherlands)

    Ukena, Christian; Mahfoud, Felix; Kindermann, Michael; Kindermann, Ingrid; Bals, Robert; Voors, Adriaan A.; van Veldhuisen, Dirk J.; Boehm, Michael

    2010-01-01

    Coronary artery disease (CAD), chronic heart failure (CHF) or chronic obstructive pulmonary disease (COPD) occur commonly in the presence of each other and are associated with similar systemic inflammatory reactions. Inflammation plays a central role in the pathogenesis of these diseases. C-reactive

  18. Allergic Lung Inflammation Aggravates Angiotensin II-Induced Abdominal Aortic Aneurysms in Mice

    DEFF Research Database (Denmark)

    Liu, Cong-Lin; Wang, Yi; Liao, Mengyang

    2016-01-01

    sensitization and challenge in mice led to the development of allergic lung inflammation (ALI). Subcutaneous infusion of angiotensin II into mice produced AAA. Simultaneous production of ALI in AAA mice doubled abdominal aortic diameter and increased macrophage and mast cell content, arterial media smooth...... and reduced lesion inflammation, plasma IgE, and bronchioalveolar inflammation. Pre-establishment of ALI also increased AAA lesion size, lesion accumulation of macrophages and mast cells, media smooth muscle cell loss, and plasma IgE, reduced plasma interleukin-5, interleukin-13, and transforming growth...... factor-β, and increased bronchioalveolar inflammation. Consequent production of ALI also doubled lesion size of pre-established AAA and increased lesion mast cell and T-cell accumulation, media smooth muscle cell loss, lesion cell proliferation and apoptosis, plasma IgE, and bronchioalveolar inflammation...

  19. Spred-2 deficiency exacerbates lipopolysaccharide-induced acute lung inflammation in mice.

    Directory of Open Access Journals (Sweden)

    Yang Xu

    Full Text Available BACKGROUND: Acute respiratory distress syndrome (ARDS is a severe and life-threatening acute lung injury (ALI that is caused by noxious stimuli and pathogens. ALI is characterized by marked acute inflammation with elevated alveolar cytokine levels. Mitogen-activated protein kinase (MAPK pathways are involved in cytokine production, but the mechanisms that regulate these pathways remain poorly characterized. Here, we focused on the role of Sprouty-related EVH1-domain-containing protein (Spred-2, a negative regulator of the Ras-Raf-extracellular signal-regulated kinase (ERK-MAPK pathway, in lipopolysaccharide (LPS-induced acute lung inflammation. METHODS: Wild-type (WT mice and Spred-2(-/- mice were exposed to intratracheal LPS (50 µg in 50 µL PBS to induce pulmonary inflammation. After LPS-injection, the lungs were harvested to assess leukocyte infiltration, cytokine and chemokine production, ERK-MAPK activation and immunopathology. For ex vivo experiments, alveolar macrophages were harvested from untreated WT and Spred-2(-/- mice and stimulated with LPS. In in vitro experiments, specific knock down of Spred-2 by siRNA or overexpression of Spred-2 by transfection with a plasmid encoding the Spred-2 sense sequence was introduced into murine RAW264.7 macrophage cells or MLE-12 lung epithelial cells. RESULTS: LPS-induced acute lung inflammation was significantly exacerbated in Spred-2(-/- mice compared with WT mice, as indicated by the numbers of infiltrating leukocytes, levels of alveolar TNF-α, CXCL2 and CCL2 in a later phase, and lung pathology. U0126, a selective MEK/ERK inhibitor, reduced the augmented LPS-induced inflammation in Spred-2(-/- mice. Specific knock down of Spred-2 augmented LPS-induced cytokine and chemokine responses in RAW264.7 cells and MLE-12 cells, whereas Spred-2 overexpression decreased this response in RAW264.7 cells. CONCLUSIONS: The ERK-MAPK pathway is involved in LPS-induced acute lung inflammation. Spred-2 controls

  20. Inhibition of Pyk2 blocks lung inflammation and injury in a mouse model of acute lung injury

    Directory of Open Access Journals (Sweden)

    Duan Yingli

    2012-01-01

    Full Text Available Abstract Background Proline-rich tyrosine kinase 2 (Pyk2 is essential in neutrophil degranulation and chemotaxis in vitro. However, its effect on the process of lung inflammation and edema formation during LPS induced acute lung injury (ALI remains unknown. The goal of the present study was to determine the effect of inhibiting Pyk2 on LPS-induced acute lung inflammation and injury in vivo. Methods C57BL6 mice were given either 10 mg/kg LPS or saline intratracheally. Inhibition of Pyk2 was effected by intraperitoneal administration TAT-Pyk2-CT 1 h before challenge. Bronchoalveolar lavage analysis of cell counts, lung histology and protein concentration in BAL were analyzed at 18 h after LPS treatment. KC and MIP-2 concentrations in BAL were measured by a mouse cytokine multiplex kit. The static lung compliance was determined by pressure-volume curve using a computer-controlled small animal ventilator. The extravasated Evans blue concentration in lung homogenate was determined spectrophotometrically. Results Intratracheal instillation of LPS induced significant neutrophil infiltration into the lung interstitium and alveolar space, which was attenuated by pre-treatment with TAT-Pyk2-CT. TAT-Pyk2-CT pretreatment also attenuated 1 myeloperoxidase content in lung tissues, 2 vascular leakage as measured by Evans blue dye extravasation in the lungs and the increase in protein concentration in bronchoalveolar lavage, and 3 the decrease in lung compliance. In each paradigm, treatment with control protein TAT-GFP had no blocking effect. By contrast, production of neutrophil chemokines MIP-2 and keratinocyte-derived chemokine in the bronchoalveolar lavage was not reduced by TAT-Pyk2-CT. Western blot analysis confirmed that tyrosine phosphorylation of Pyk2 in LPS-challenged lungs was reduced to control levels by TAT-Pyk2-CT pretreatment. Conclusions These results suggest that Pyk2 plays an important role in the development of acute lung injury in mice and

  1. Blood Biomarkers of Chronic Inflammation in Gulf War Illness.

    Directory of Open Access Journals (Sweden)

    Gerhard J Johnson

    Full Text Available More than twenty years following the end of the 1990-1991 Gulf War it is estimated that approximately 300,000 veterans of this conflict suffer from an unexplained chronic, multi-system disorder known as Gulf War Illness (GWI. The etiology of GWI may be exposure to chemical toxins, but it remains only partially defined, and its case definition is based only on symptoms. Objective criteria for the diagnosis of GWI are urgently needed for diagnosis and therapeutic research.This study was designed to determine if blood biomarkers could provide objective criteria to assist diagnosis of GWI.A surveillance study of 85 Gulf War Veteran volunteers identified from the Department of Veterans Affairs Minnesota Gulf War registry was performed. All subjects were deployed to the Gulf War. Fifty seven subjects had GWI defined by CDC criteria, and 28 did not have symptomatic criteria for a diagnosis of GWI. Statistical analyses were performed on peripheral blood counts and assays of 61 plasma proteins using the Mann-Whitney rank sum test to compare biomarker distributions and stepwise logistic regression to formulate a diagnostic model.Lymphocyte, monocyte, neutrophil, and platelet counts were higher in GWI subjects. Six serum proteins associated with inflammation were significantly different in GWI subjects. A diagnostic model of three biomarkers-lymphocytes, monocytes, and C reactive protein-had a predicted probability of 90% (CI 76-90% for diagnosing GWI when the probability of having GWI was above 70%.The results of the current study indicate that inflammation is a component of the pathobiology of GWI. Analysis of the data resulted in a model utilizing three readily measurable biomarkers that appears to significantly augment the symptom-based case definition of GWI. These new observations are highly relevant to the diagnosis of GWI, and to therapeutic trials.

  2. Increased alveolar soluble Annexin V promotes lung inflammation and fibrosis

    OpenAIRE

    Buckley, S.; Shi, W.; Xu, W.; Frey, M.R.; Moats, R.; Pardo, A.; Selman, M.; Warburton, D.

    2015-01-01

    The causes underlying the self-perpetuating nature of idiopathic pulmonary fibrosis (IPF), a progressive and usually lethal disease, remain unknown. We hypothesized that alveolar soluble Annexin V contributes to lung fibrosis, based on the observation that human IPF BALF containing high Annexin V levels promoted fibroblast involvement in alveolar epithelial wound healing that was reduced when Annexin V was depleted from the BALF.

  3. Stunting is characterized by chronic inflammation in Zimbabwean infants.

    Directory of Open Access Journals (Sweden)

    Andrew J Prendergast

    and that low-grade chronic inflammation may impair infant growth.

  4. Killing of Pseudomonas aeruginosa by Chicken Cathelicidin-2 Is Immunogenically Silent, Preventing Lung Inflammation In Vivo

    Science.gov (United States)

    Coorens, Maarten; Banaschewski, Brandon J. H.; Baer, Brandon J.; Yamashita, Cory; van Dijk, Albert; Veldhuizen, Ruud A. W.; Veldhuizen, Edwin J. A.

    2017-01-01

    ABSTRACT The development of antibiotic resistance by Pseudomonas aeruginosa is a major concern in the treatment of bacterial pneumonia. In the search for novel anti-infective therapies, the chicken-derived peptide cathelicidin-2 (CATH-2) has emerged as a potential candidate, with strong broad-spectrum antimicrobial activity and the ability to limit inflammation by inhibiting Toll-like receptor 2 (TLR2) and TLR4 activation. However, as it is unknown how CATH-2 affects inflammation in vivo, we investigated how CATH-2-mediated killing of P. aeruginosa affects lung inflammation in a murine model. First, murine macrophages were used to determine whether CATH-2-mediated killing of P. aeruginosa reduced proinflammatory cytokine production in vitro. Next, a murine lung model was used to analyze how CATH-2-mediated killing of P. aeruginosa affects neutrophil and macrophage recruitment as well as cytokine/chemokine production in the lung. Our results show that CATH-2 kills P. aeruginosa in an immunogenically silent manner both in vitro and in vivo. Treatment with CATH-2-killed P. aeruginosa showed reduced neutrophil recruitment to the lung as well as inhibition of cytokine and chemokine production, compared to treatment with heat- or gentamicin-killed bacteria. Together, these results show the potential for CATH-2 as a dual-activity antibiotic in bacterial pneumonia, which can both kill P. aeruginosa and prevent excessive inflammation. PMID:28947647

  5. Protease Inhibitors Extracted from Caesalpinia echinata Lam. Affect Kinin Release during Lung Inflammation

    Directory of Open Access Journals (Sweden)

    Ilana Cruz-Silva

    2016-01-01

    Full Text Available Inflammation is an essential process in many pulmonary diseases in which kinins are generated by protease action on kininogen, a phenomenon that is blocked by protease inhibitors. We evaluated kinin release in an in vivo lung inflammation model in rats, in the presence or absence of CeKI (C. echinata kallikrein inhibitor, a plasma kallikrein, cathepsin G, and proteinase-3 inhibitor, and rCeEI (recombinant C. echinata elastase inhibitor, which inhibits these proteases and also neutrophil elastase. Wistar rats were intravenously treated with buffer (negative control or inhibitors and, subsequently, lipopolysaccharide was injected into their lungs. Blood, bronchoalveolar lavage fluid (BALF, and lung tissue were collected. In plasma, kinin release was higher in the LPS-treated animals in comparison to CeKI or rCeEI groups. rCeEI-treated animals presented less kinin than CeKI-treated group. Our data suggest that kinins play a pivotal role in lung inflammation and may be generated by different enzymes; however, neutrophil elastase seems to be the most important in the lung tissue context. These results open perspectives for a better understanding of biological process where neutrophil enzymes participate and indicate these plant inhibitors and their recombinant correlates for therapeutic trials involving pulmonary diseases.

  6. Bone-marrow-derived mesenchymal stem cells inhibit gastric aspiration lung injury and inflammation in rats.

    Science.gov (United States)

    Zhou, Jing; Jiang, Liyan; Long, Xuan; Fu, Cuiping; Wang, Xiangdong; Wu, Xiaodan; Liu, Zilong; Zhu, Fen; Shi, Jindong; Li, Shanqun

    2016-09-01

    Gastric aspiration lung injury is one of the most common clinical events. This study investigated the effects of bone-marrow-derived mesenchymal stem cells (BMSCs) on combined acid plus small non-acidified particle (CASP)-induced aspiration lung injury. Enhanced green fluorescent protein (EGFP(+) ) or EGFP(-) BMSCs or 15d-PGJ2 were injected via the tail vein into rats immediately after CASP-induced aspiration lung injury. Pathological changes in lung tissues, blood gas analysis, the wet/dry weight ratio (W/D) of the lung, levels of total proteins and number of total cells and neutrophils in bronchoalveolar lavage fluid (BALF) were determined. The cytokine levels were measured using ELISA. Protein expression was determined by Western blot. Bone-marrow-derived mesenchymal stem cells treatment significantly reduced alveolar oedema, exudation and lung inflammation; increased the arterial partial pressure of oxygen; and decreased the W/D of the lung, the levels of total proteins and the number of total cells and neutrophils in BALF in the rats with CASP-induced lung injury. Bone-marrow-derived mesenchymal stem cells treatment decreased the levels of tumour necrosis factor-α and Cytokine-induced neutrophil chemoattractant (CINC)-1 and the expression of p-p65 and increased the levels of interleukin-10 and 15d-PGJ2 and the expression of peroxisome proliferator-activated receptor (PPAR)-γ in the lung tissue in CASP-induced rats. Tumour necrosis factor-α stimulated BMSCs to secrete 15d-PGJ2 . A tracking experiment showed that EGFP(+) BMSCs were able to migrate to local lung tissues. Treatment with 15d-PGJ2 also significantly inhibited CASP-induced lung inflammation and the production of pro-inflammatory cytokines. Our results show that BMSCs can protect lung tissues from gastric aspiration injury and inhibit lung inflammation in rats. A beneficial effect might be achieved through BMSC-derived 15d-PGJ2 activation of the PPAR-γ receptor, reducing the production of

  7. Modulation of lung inflammation by vessel dilator in a mouse model of allergic asthma

    Directory of Open Access Journals (Sweden)

    Cormier Stephania A

    2009-07-01

    Full Text Available Abstract Background Atrial natriuretic peptide (ANP and its receptor, NPRA, have been extensively studied in terms of cardiovascular effects. We have found that the ANP-NPRA signaling pathway is also involved in airway allergic inflammation and asthma. ANP, a C-terminal peptide (amino acid 99–126 of pro-atrial natriuretic factor (proANF and a recombinant peptide, NP73-102 (amino acid 73–102 of proANF have been reported to induce bronchoprotective effects in a mouse model of allergic asthma. In this report, we evaluated the effects of vessel dilator (VD, another N-terminal natriuretic peptide covering amino acids 31–67 of proANF, on acute lung inflammation in a mouse model of allergic asthma. Methods A549 cells were transfected with pVD or the pVAX1 control plasmid and cells were collected 24 hrs after transfection to analyze the effect of VD on inactivation of the extracellular-signal regulated receptor kinase (ERK1/2 through western blot. Luciferase assay, western blot and RT-PCR were also performed to analyze the effect of VD on NPRA expression. For determination of VD's attenuation of lung inflammation, BALB/c mice were sensitized and challenged with ovalbumin and then treated intranasally with chitosan nanoparticles containing pVD. Parameters of airway inflammation, such as airway hyperreactivity, proinflammatory cytokine levels, eosinophil recruitment and lung histopathology were compared with control mice receiving nanoparticles containing pVAX1 control plasmid. Results pVD nanoparticles inactivated ERK1/2 and downregulated NPRA expression in vitro, and intranasal treatment with pVD nanoparticles protected mice from airway inflammation. Conclusion VD's modulation of airway inflammation may result from its inactivation of ERK1/2 and downregulation of NPRA expression. Chitosan nanoparticles containing pVD may be therapeutically effective in preventing allergic airway inflammation.

  8. Endogenous PGI2 signaling through IP inhibits neutrophilic lung inflammation in LPS-induced acute lung injury mice model.

    Science.gov (United States)

    Toki, Shinji; Zhou, Weisong; Goleniewska, Kasia; Reiss, Sara; Dulek, Daniel E; Newcomb, Dawn C; Lawson, William E; Peebles, R Stokes

    2018-04-13

    Endogenous prostaglandin I 2 (PGI 2 ) has inhibitory effects on immune responses against pathogens or allergens; however, the immunomodulatory activity of endogenous PGI 2 signaling in endotoxin-induced inflammation is unknown. To test the hypothesis that endogenous PGI 2 down-regulates endotoxin-induced lung inflammation, C57BL/6 wild type (WT) and PGI 2 receptor (IP) KO mice were challenged intranasally with LPS. Urine 6-keto-PGF 1α , a stable metabolite of PGI 2, was significantly increased following the LPS-challenge, suggesting that endogenous PGI 2 signaling modulates the host response to LPS-challenge. IPKO mice had a significant increase in neutrophils in the BAL fluid as well as increased proteins of KC, LIX, and TNF-α in lung homogenates compared with WT mice. In contrast, IL-10 was decreased in LPS-challenged IPKO mice compared with WT mice. The PGI 2 analog cicaprost significantly decreased LPS-induced KC, and TNF-α, but increased IL-10 and AREG in bone marrow-derived dendritic cells (BMDCs) and bone marrow-derived macrophages (BMMs) compared with vehicle-treatment. These results indicated that endogenous PGI 2 signaling attenuated neutrophilic lung inflammation through the reduced inflammatory cytokine and chemokine and enhanced IL-10. Copyright © 2018. Published by Elsevier Inc.

  9. PET imaging of lung inflammation with [18F]FEDAC, a radioligand for translocator protein (18 kDa.

    Directory of Open Access Journals (Sweden)

    Akiko Hatori

    Full Text Available PURPOSE: The translocator protein (18 kDa (TSPO is highly expressed on the bronchial and bronchiole epithelium, submucosal glands in intrapulmonary bronchi, pneumocytes and alveolar macrophages in human lung. This study aimed to perform positron emission tomography (PET imaging of lung inflammation with [(18F]FEDAC, a specific TSPO radioligand, and to determine cellular sources enriching TSPO expression in the lung. METHODS: An acute lung injury model was prepared by intratracheal administration of lipopolysaccharide (LPS to rat. Uptake of radioactivity in the rat lungs was measured with small-animal PET after injection of [(18F]FEDAC. Presence of TSPO was examined in the lung tissue using Western blot and immunohistochemical assays. RESULTS: The uptake of [(18F]FEDAC increased in the lung with the progress of inflammation by treatment with LPS. Pretreatment with a TSPO-selective ligand PK11195 showed a significant decrease in the lung uptake of [(18F]FEDAC due to competitive binding to TSPO. TSPO expression was elevated in the inflamed lung section and its level responded to the [(18F]FEDAC uptake and severity of inflammation. Increase of TSPO expression was mainly found in the neutrophils and macrophages of inflamed lungs. CONCLUSION: From this study we conclude that PET with [(18F]FEDAC may be a useful tool for imaging TSPO expression and evaluating progress of lung inflammation. Study on human lung using [(18F]FEDAC-PET is promising.

  10. Does advanced lung inflammation index (ALI) have prognostic significance in metastatic non-small cell lung cancer?

    Science.gov (United States)

    Ozyurek, Berna Akinci; Ozdemirel, Tugce Sahin; Ozden, Sertac Buyukyaylaci; Erdoğan, Yurdanur; Ozmen, Ozlem; Kaplan, Bekir; Kaplan, Tugba

    2018-01-22

    Lung cancer is the most commonly diagnosed and death-related cancer type and is more frequent in males. Non-small-cell lung cancer (NSCLC) accounts for about 85% of all case. In this study, it was aimed to research the relationship between advanced lung inflammation index (ALI) and the primary mass maximum standardized uptake value (SUVmax) and C-reactive protein (CRP) at initial diagnosis and the prognostic value of ALI in determining the survival in metastatic NSCLC. A total of 112 patients diagnosed as stage 4 non-small-lung cancer in our hospital between January 2006 and December 2013 were included in this study. ALI was calculated as body mass index (BMI) × serum albumin/neutrophil-to-lymphocyte ratio (NLR). The patients were divided into two groups as ALI ALI ≥ 18 (low inflammation). The log-rank test and Cox proportional hazard model were used to identify predictors of mortality. Evaluation was made of 94 male and 18 female patients with a mean age of 59.7 ± 9.9 years. A statistically significant negative relationship was determined between ALI and CRP values (P ALI and SUVmax values (P = .436). The median survival time in patients with ALI ALI ≥ 18, it was 16 months (P = .095). ALI is an easily calculated indicator of inflammation in lung cancer patients. Values <18 can be considered to predict a poor prognosis. © 2018 John Wiley & Sons Ltd.

  11. Age-Related Macular Degeneration in the Aspect of Chronic Low-Grade Inflammation (Pathophysiological ParaInflammation

    Directory of Open Access Journals (Sweden)

    Małgorzata Nita

    2014-01-01

    Full Text Available The products of oxidative stress trigger chronic low-grade inflammation (pathophysiological parainflammation process in AMD patients. In early AMD, soft drusen contain many mediators of chronic low-grade inflammation such as C-reactive protein, adducts of the carboxyethylpyrrole protein, immunoglobulins, and acute phase molecules, as well as the complement-related proteins C3a, C5a, C5, C5b-9, CFH, CD35, and CD46. The complement system, mainly alternative pathway, mediates chronic autologous pathophysiological parainflammation in dry and exudative AMD, especially in the Y402H gene polymorphism, which causes hypofunction/lack of the protective complement factor H (CFH and facilitates chronic inflammation mediated by C-reactive protein (CRP. Microglial activation induces photoreceptor cells injury and leads to the development of dry AMD. Many autoantibodies (antibodies against alpha beta crystallin, alpha-actinin, amyloid, C1q, chondroitin, collagen I, collagen III, collagen IV, elastin, fibronectin, heparan sulfate, histone H2A, histone H2B, hyaluronic acid, laminin, proteoglycan, vimentin, vitronectin, and aldolase C and pyruvate kinase M2 and overexpression of Fcc receptors play role in immune-mediated inflammation in AMD patients and in animal model. Macrophages infiltration of retinal/choroidal interface acts as protective factor in early AMD (M2 phenotype macrophages; however it acts as proinflammatory and proangiogenic factor in advanced AMD (M1 and M2 phenotype macrophages.

  12. A lung segmental model of chronic Pseudomonas infection in sheep.

    Directory of Open Access Journals (Sweden)

    David Collie

    Full Text Available Chronic lung infection with Pseudomonas aeruginosa is a major contributor to morbidity, mortality and premature death in cystic fibrosis. A new paradigm for managing such infections is needed, as are relevant and translatable animal models to identify and test concepts. We sought to improve on limitations associated with existing models of infection in small animals through developing a lung segmental model of chronic Pseudomonas infection in sheep.Using local lung instillation of P. aeruginosa suspended in agar beads we were able to demonstrate that such infection led to the development of a suppurative, necrotising and pyogranulomatous pneumonia centred on the instilled beads. No overt evidence of organ or systemic compromise was apparent in any animal during the course of infection. Infection persisted in the lungs of individual animals for as long as 66 days after initial instillation. Quantitative microbiology applied to bronchoalveolar lavage fluid derived from infected segments proved an insensitive index of the presence of significant infection in lung tissue (>10(4 cfu/g.The agar bead model of chronic P. aeruginosa lung infection in sheep is a relevant platform to investigate both the pathobiology of such infections as well as novel approaches to their diagnosis and therapy. Particular ethical benefits relate to the model in terms of refining existing approaches by compromising a smaller proportion of the lung with infection and facilitating longitudinal assessment by bronchoscopy, and also potentially reducing animal numbers through facilitating within-animal comparisons of differential therapeutic approaches.

  13. A lung segmental model of chronic Pseudomonas infection in sheep.

    Science.gov (United States)

    Collie, David; Govan, John; Wright, Steven; Thornton, Elisabeth; Tennant, Peter; Smith, Sionagh; Doherty, Catherine; McLachlan, Gerry

    2013-01-01

    Chronic lung infection with Pseudomonas aeruginosa is a major contributor to morbidity, mortality and premature death in cystic fibrosis. A new paradigm for managing such infections is needed, as are relevant and translatable animal models to identify and test concepts. We sought to improve on limitations associated with existing models of infection in small animals through developing a lung segmental model of chronic Pseudomonas infection in sheep. Using local lung instillation of P. aeruginosa suspended in agar beads we were able to demonstrate that such infection led to the development of a suppurative, necrotising and pyogranulomatous pneumonia centred on the instilled beads. No overt evidence of organ or systemic compromise was apparent in any animal during the course of infection. Infection persisted in the lungs of individual animals for as long as 66 days after initial instillation. Quantitative microbiology applied to bronchoalveolar lavage fluid derived from infected segments proved an insensitive index of the presence of significant infection in lung tissue (>10(4) cfu/g). The agar bead model of chronic P. aeruginosa lung infection in sheep is a relevant platform to investigate both the pathobiology of such infections as well as novel approaches to their diagnosis and therapy. Particular ethical benefits relate to the model in terms of refining existing approaches by compromising a smaller proportion of the lung with infection and facilitating longitudinal assessment by bronchoscopy, and also potentially reducing animal numbers through facilitating within-animal comparisons of differential therapeutic approaches.

  14. Sildenafil attenuates pulmonary inflammation and fibrin deposition, mortality and right ventricular hypertrophy in neonatal hyperoxic lung injury

    Directory of Open Access Journals (Sweden)

    Boersma Hester

    2009-04-01

    Full Text Available Abstract Background Phosphodiesterase-5 inhibition with sildenafil has been used to treat severe pulmonary hypertension and bronchopulmonary dysplasia (BPD, a chronic lung disease in very preterm infants who were mechanically ventilated for respiratory distress syndrome. Methods Sildenafil treatment was investigated in 2 models of experimental BPD: a lethal neonatal model, in which rat pups were continuously exposed to hyperoxia and treated daily with sildenafil (50–150 mg/kg body weight/day; injected subcutaneously and a neonatal lung injury-recovery model in which rat pups were exposed to hyperoxia for 9 days, followed by 9 days of recovery in room air and started sildenafil treatment on day 6 of hyperoxia exposure. Parameters investigated include survival, histopathology, fibrin deposition, alveolar vascular leakage, right ventricular hypertrophy, and differential mRNA expression in lung and heart tissue. Results Prophylactic treatment with an optimal dose of sildenafil (2 × 50 mg/kg/day significantly increased lung cGMP levels, prolonged median survival, reduced fibrin deposition, total protein content in bronchoalveolar lavage fluid, inflammation and septum thickness. Treatment with sildenafil partially corrected the differential mRNA expression of amphiregulin, plasminogen activator inhibitor-1, fibroblast growth factor receptor-4 and vascular endothelial growth factor receptor-2 in the lung and of brain and c-type natriuretic peptides and the natriuretic peptide receptors NPR-A, -B, and -C in the right ventricle. In the lethal and injury-recovery model we demonstrated improved alveolarization and angiogenesis by attenuating mean linear intercept and arteriolar wall thickness and increasing pulmonary blood vessel density, and right ventricular hypertrophy (RVH. Conclusion Sildenafil treatment, started simultaneously with exposure to hyperoxia after birth, prolongs survival, increases pulmonary cGMP levels, reduces the pulmonary

  15. Prostaglandin D2 Attenuates Bleomycin-Induced Lung Inflammation and Pulmonary Fibrosis.

    Science.gov (United States)

    Kida, Taiki; Ayabe, Shinya; Omori, Keisuke; Nakamura, Tatsuro; Maehara, Toko; Aritake, Kosuke; Urade, Yoshihiro; Murata, Takahisa

    2016-01-01

    Pulmonary fibrosis is a progressive and fatal lung disease with limited therapeutic options. Although it is well known that lipid mediator prostaglandins are involved in the development of pulmonary fibrosis, the role of prostaglandin D2 (PGD2) remains unknown. Here, we investigated whether genetic disruption of hematopoietic PGD synthase (H-PGDS) affects the bleomycin-induced lung inflammation and pulmonary fibrosis in mouse. Compared with H-PGDS naïve (WT) mice, H-PGDS-deficient mice (H-PGDS-/-) represented increased collagen deposition in lungs 14 days after the bleomycin injection. The enhanced fibrotic response was accompanied by an increased mRNA expression of inflammatory mediators, including tumor necrosis factor-α, monocyte chemoattractant protein-1, and cyclooxygenase-2 on day 3. H-PGDS deficiency also increased vascular permeability on day 3 and infiltration of neutrophils and macrophages in lungs on day 3 and 7. Immunostaining showed that the neutrophils and macrophages expressed H-PGDS, and its mRNA expression was increased on day 3and 7 in WT lungs. These observations suggest that H-PGDS-derived PGD2 plays a protective role in bleomycin-induced lung inflammation and pulmonary fibrosis.

  16. Fluoxetine protects against methamphetamine‑induced lung inflammation by suppressing oxidative stress through the SERT/p38 MAPK/Nrf2 pathway in rats.

    Science.gov (United States)

    Wang, Yun; Gu, Yu-Han; Liu, Ming; Bai, Yang; Wang, Huai-Liang

    2017-02-01

    Methamphetamine (MA) abuse is a major public health and safety concern throughout the world and a growing burden on healthcare costs. The purpose of the present study was to investigate the protective effect of fluoxetine against MA‑induced chronic pulmonary inflammation and to evaluate the potential role of nuclear factor erythroid 2-related factor 2 (Nrf2)-mediated antioxidative stress. Wistar rats were divided into control, MA and two fluoxetine‑treated groups. Rats in the MA and the two fluoxetine‑treated groups were treated daily with intraperitoneal injection of 10 mg/kg MA twice daily. Rats in the two fluoxetine‑treated groups were injected intragastrically with fluoxetine (2 and 10 mg/kg) once daily, respectively. After 5 weeks, the rats were euthanized and hematoxylin and eosin staining, immunohistochemistry, western blot analysis and redox assay were performed. It was demonstrated that chronic exposure to MA can induce pulmonary inflammation in rats, with the symptoms of inflammatory cell infiltration, crowded lung parenchyma, thickened septum and a reduced number of alveolar sacs. Fluoxetine attenuated pulmonary inflammation and the expression of interleukin‑6 and tumor necrosis factor‑α in rat lungs. Fluoxetine inhibited MA‑induced increases in the expression levels of serotonin transporter (SERT) and p‑p38 mitogen‑activated protein kinase (MAPK), and reversed the MA‑induced decrease in nuclear Nrf2 and human heme oxygenase‑1 in lungs. Fluoxetine at 10 mg/kg significantly reversed the reduced glutathione (GSH) level, the ratio of GSH/oxidized glutathione, and the reactive oxygen species level in rat lungs from the MA group. These findings suggested that fluoxetine, a SERT inhibitor, has a protective effect against MA‑induced lung inflammation by suppressing oxidative stress through the SERT/p38 MAPK/Nrf2 pathway in rats.

  17. Hydrogen-rich saline inhibits tobacco smoke-induced chronic obstructive pulmonary disease by alleviating airway inflammation and mucus hypersecretion in rats.

    Science.gov (United States)

    Liu, Zibing; Geng, Wenye; Jiang, Chuanwei; Zhao, Shujun; Liu, Yong; Zhang, Ying; Qin, Shucun; Li, Chenxu; Zhang, Xinfang; Si, Yanhong

    2017-09-01

    Chronic obstructive pulmonary disease induced by tobacco smoke has been regarded as a great health problem worldwide. The purpose of this study is to evaluate the protective effect of hydrogen-rich saline, a novel antioxidant, on chronic obstructive pulmonary disease and explore the underlying mechanism. Sprague-Dawley rats were made chronic obstructive pulmonary disease models via tobacco smoke exposure for 12 weeks and the rats were treated with 10 ml/kg hydrogen-rich saline intraperitoneally during the last 4 weeks. Lung function testing indicated hydrogen-rich saline decreased lung airway resistance and increased lung compliance and the ratio of forced expiratory volume in 0.1 s/forced vital capacity in chronic obstructive pulmonary disease rats. Histological analysis revealed that hydrogen-rich saline alleviated morphological impairments of lung in tobacco smoke-induced chronic obstructive pulmonary disease rats. ELISA assay showed hydrogen-rich saline lowered the levels of pro-inflammatory cytokines (IL-8 and IL-6) and anti-inflammatory cytokine IL-10 in bronchoalveolar lavage fluid and serum of chronic obstructive pulmonary disease rats. The content of malondialdehyde in lung tissue and serum was also determined and the data indicated hydrogen-rich saline suppressed oxidative stress reaction. The protein expressions of mucin MUC5C and aquaporin 5 involved in mucus hypersecretion were analyzed by Western blot and ELISA and the data revealed that hydrogen-rich saline down-regulated MUC5AC level in bronchoalveolar lavage fluid and lung tissue and up-regulated aquaporin 5 level in lung tissue of chronic obstructive pulmonary disease rats. In conclusion, these results suggest that administration of hydrogen-rich saline exhibits significant protective effect on chronic obstructive pulmonary disease through alleviating inflammation, reducing oxidative stress and lessening mucus hypersecretion in tobacco smoke-induced chronic obstructive pulmonary disease rats

  18. Pulmonary hypertension in chronic obstructive and interstitial lung diseases

    DEFF Research Database (Denmark)

    Andersen, Charlotte U; Mellemkjær, Søren; Nielsen-Kudsk, Jens Erik

    2013-01-01

    , and is considered one of the most frequent types of PH. However, the prevalence of PH among patients with COPD and ILD is not clear. The diagnosis of PH in chronic lung disease is often established by echocardiographic screening, but definitive diagnosis requires right heart catheterization, which...... is not systematically performed in clinical practice. Given the large number of patients with chronic lung disease, biomarkers to preclude or increase suspicion of PH are needed. NT-proBNP may be used as a rule-out test, but biomarkers with a high specificity for PH are still required. It is not known whether specific...... treatment with existent drugs effective in pulmonary arterial hypertension (PAH) is beneficial in lung disease related PH. Studies investigating existing PAH drugs in animal models of lung disease related PH have indicated a positive effect, and so have case reports and open label studies. However...

  19. Ginseng treatment reduces bacterial load and lung pathology in chronic Pseudomonas aeruginosa pneumonia in rats

    DEFF Research Database (Denmark)

    Song, Z; Johansen, H K; Faber, V

    1997-01-01

    the inflammation and antibody responses could be changed by treatment with the Chinese herbal medicine ginseng. An aqueous extract of ginseng was injected subcutaneously, and cortisone and saline were used as controls. Two weeks after challenge with P. aeruginosa, the ginseng-treated group showed a significantly...... resembling a TH1-like response. On the basis of these results it is suggested that ginseng may have the potential to be a promising natural medicine, in conjunction with other forms of treatment, for CF patients with chronic P. aeruginosa lung infection....

  20. Protective effect of Arbutus unedo aqueous extract in carrageenan-induced lung inflammation in mice.

    Science.gov (United States)

    Mariotto, Sofia; Esposito, Emanuela; Di Paola, Rosanna; Ciampa, Anna; Mazzon, Emanuela; de Prati, Alessandra Carcereri; Darra, Elena; Vincenzi, Simone; Cucinotta, Giovanni; Caminiti, Rocco; Suzuki, Hisanori; Cuzzocrea, Salvatore

    2008-02-01

    In the present study, we show that an aqueous extract of Arbutus unedo L. (AuE), a Mediterranean endemic plant widely employed as an astringent, diuretic and urinary anti-septic, in vitro down-regulates the expression of some inflammatory genes, such as those encoding inducible nitric oxide synthase (iNOS) and intracellular adhesion molecule-(ICAM)-1, exerting a inhibitory action on both IFN-gamma-elicited STAT1 activation and IL-6-elicited STAT3 activation. To evaluate further the effect of AuE in animal models of acute inflammation, we examined whether AuE administration attenuates inflammatory response of murine induced by intrapleural injection of carrageenan. For this purpose we studied: (1) STAT1/3 activation, (2) TNF-alpha, IL-1beta and IL-6 production in pleural exudate, (3) lung iNOS, COX-2 and ICAM-1 expression, (4) neutrophil infiltration, (5) the nitration of cellular proteins by peroxynitrite, (6) lipid peroxidation, (7) prostaglandin E2 and nitrite/nitrate levels and (8) lung injury. We show that AuE strongly down-regulates STAT3 activation induced in the lung by carrageenan with concomitant attenuation of all parameters examined associated with inflammation, suggesting that STAT3 should be a new molecular target for anti-inflammatory treatment. This study demonstrates that acute lung inflammation is significantly attenuated by the treatment with AuE.

  1. Regulation of Endothelial Cell Inflammation and Lung PMN Infiltration by Transglutaminase 2

    Science.gov (United States)

    Bijli, Kaiser M.; Kanter, Bryce G.; Minhajuddin, Mohammad; Leonard, Antony; Xu, Lei; Fazal, Fabeha; Rahman, Arshad

    2014-01-01

    We addressed the role of transglutaminase2 (TG2), a calcium-dependent enzyme that catalyzes crosslinking of proteins, in the mechanism of endothelial cell (EC) inflammation and lung PMN infiltration. Exposure of EC to thrombin, a procoagulant and proinflammatory mediator, resulted in activation of the transcription factor NF-κB and its target genes, VCAM-1, MCP-1, and IL-6. RNAi knockdown of TG2 inhibited these responses. Analysis of NF-κB activation pathway showed that TG2 knockdown was associated with inhibition of thrombin-induced DNA binding as well as serine phosphorylation of RelA/p65, a crucial event that controls transcriptional capacity of the DNA-bound RelA/p65. These results implicate an important role for TG2 in mediating EC inflammation by promoting DNA binding and transcriptional activity of RelA/p65. Because thrombin is released in high amounts during sepsis and its concentration is elevated in plasma and lavage fluids of patients with Acute Respiratory Distress Syndrome (ARDS), we determined the in vivo relevance of TG2 in a mouse model of sepsis-induced lung PMN recruitment. A marked reduction in NF-κB activation, adhesion molecule expression, and lung PMN sequestration was observed in TG2 knockout mice compared to wild type mice exposed to endotoxemia. Together, these results identify TG2 as an important mediator of EC inflammation and lung PMN sequestration associated with intravascular coagulation and sepsis. PMID:25057925

  2. Euthanasia and Lavage Mediated Effects on Bronchoalveolar Measures of Lung Injury and Inflammation.

    Science.gov (United States)

    Tighe, Robert M; Birukova, Anastasiya; Yeager, Michael J; Reece, Sky W; Gowdy, Kymberly M

    2018-02-26

    Accurate and reproducible assessments of experimental lung injury and inflammation are critical to basic and translational research. In particular, investigators use varied methods of bronchoalveolar lavage and euthanasia but their impact to assessments of injury and inflammation are unknown. To define potential effects, we compared methods of lavage and euthanasia in uninjured mice and following a mild lung injury model (ozone). C57BL/6J male mice age 8-10 weeks underwent BAL following euthanasia with ketamine/xylazine, carbon dioxide (C0 2 ), or isoflurane. BAL methods included 800-μL instilled and withdrawn three times, and 1 or 3 passive fill(s) and drainage to 20cm H20. Parallel experiments were performed 24hr following 3hr of ozone (O 3 ) exposure at 2 parts per million (ppm). BAL total cell counts/differentials and total protein/albumin were determined. Lung histology was evaluated for lung inflammation/injury. BAL cells were cultured and stimulated with PBS, phorbol myristate acetate (PMA) or lipopolysaccharide (LPS) for 4hr and supernatants were evaluated for cytokine content. In uninjured mice, we observed differences due to the lavage and euthanasia methods. The lavage method increased uninjured and O 3 exposure total cells and total protein/albumin with 800-μL instillation having the highest values. Isoflurane increased uninjured total BAL cells, while C0 2 euthanasia increased the uninjured total protein/albumin levels. These effects limited the ability to detect differences in BAL injury measures following O 3 exposure. In conclusion, the method of lavage and euthanasia affects measures of lung inflammation/injury and should be considered a variable in model assessment.

  3. Genomic instability in quartz dust exposed rat lungs: Is inflammation responsible?

    Energy Technology Data Exchange (ETDEWEB)

    Albrecht, C; Schins, R P F [Institut fuer Umweltmedizinische Forschung (IUF) at the Heinrich Heine University Duesseldorf (Germany); Demircigil, G Cakmak; Coskun, Erdem [Gazi University, Faculty of Pharmacy, Department of Toxicology, Ankara (Turkey); Schooten, F J van [Nutrition and Toxicology Research Institute Maastricht (NUTRIM), Department of Health Risk Analysis and Toxicology, University of Maastricht (Netherlands); Borm, P J A [Centre of Expertise in Life Sciences (Cel), Hogeschool Zuyd, Heerlen (Netherlands); Knaapen, A M, E-mail: catrin.albrecht@uni-duesseldorf.d

    2009-02-01

    Exposure to quartz dusts has been associated with lung cancer and fibrosis. Although the responsible mechanisms are not completely understood, progressive inflammation with associated induction of persistent oxidative stress has been discussed as a key event for these diseases. Previously we have evaluated the kinetics of pulmonary inflammation in the rat model following a single intratracheal instillation of 2mg DQ12 quartz, either in its native form or upon its surface modification with polyvinylpyridine-N-oxide or aluminium lactate. This model has been applied now to evaluate the role of inflammation in the kinetics of induction of DNA damage and response at 3, 7, 28, and 90 days after treatment. Bronchoalveolar lavage (BAL) cell counts and differentials as well as BAL fluid myeloperoxidase activity were used as markers of inflammation. Whole lung homogenate was investigated to determine the induction of the oxidative and pre-mutagenic DNA lesion 8-hydroxy-2-deoxy-guanosine (8-OHdG) by HPLC/ECD, while mRNA and protein expression of oxidative stress and DNA damage response genes including hemeoxygenase-1 (HO-1) and apurinic/apyrimidinic endonuclease (APE/Ref-1) were evaluated using Western blotting and real time PCR. Isolated lung epithelial cells from the treated rats were used for DNA strand breakage analysis using the alkaline comet assay as well as for micronucleus scoring in May-Gruenwald-Giemsa stained cytospin preparations. In the rats that were treated with quartz, no increased 8-OHdG levels were observed, despite the presence of a marked and persistent inflammation. However, DNA strand breakage in the lung epithelial cells of the quartz treated rats was significantly enhanced at 3 days, but not at 28 days. Moreover, significantly enhanced micronucleus frequencies were observed for all four time points investigated. In the animals that were treated with the PVNO modified quartz, micronuclei scores did not differ from controls, while in those treated with

  4. Chronic interstitial lung disease in children

    Directory of Open Access Journals (Sweden)

    Matthias Griese

    2018-02-01

    Full Text Available Children's interstitial lung diseases (chILD are increasingly recognised and contain many lung developmental and genetic disorders not yet identified in adult pneumology. Worldwide, several registers have been established. The Australasian Registry Network for Orphan Lung Disease (ARNOLD has identified problems in estimating rare disease prevalence; focusing on chILD in immunocompetent patients, a period prevalence of 1.5 cases per million children and a mortality rate of 7% were determined. The chILD-EU register highlighted the workload to be covered per patient included and provided protocols for diagnosis and initial treatment, similar to the United States chILD network. Whereas case reports may be useful for young physicians to practise writing articles, cohorts of patients can catapult progress, as demonstrated by recent studies on persistent tachypnoea of infancy, hypersensitivity pneumonitis in children and interstitial lung disease related to interferonopathies from mutations in transmembrane protein 173. Translational research has linked heterozygous mutations in the ABCA3 transporter to an increased risk of interstitial lung diseases, not only in neonates, but also in older children and adults. For surfactant dysfunction disorders in infancy and early childhood, lung transplantation was reported to be as successful as in adult patients. Mutual potentiation of paediatric and adult pneumologists is mandatory in this rapidly extending field for successful future development. This brief review highlights publications in the field of paediatric interstitial lung disease as reviewed during the Clinical Year in Review session presented at the 2017 European Respiratory Society (ERS Annual Congress in Milan, Italy. It was commissioned by the ERS and critically presents progress made as well as drawbacks.

  5. Chronic inflammation modulates ghrelin levels in humans and rats.

    Science.gov (United States)

    Otero, M; Nogueiras, R; Lago, F; Dieguez, C; Gomez-Reino, J J; Gualillo, O

    2004-03-01

    The aim of this work was to investigate whether changes in plasma ghrelin, the recently discovered 28-amino acid gastric hormone that regulates growth hormone (GH) secretion and energy homeostasis, occur during inflammation in adjuvant-induced arthritis (AA) in rats. For completeness, ghrelin plasma levels were measured in rheumatoid arthritis (RA) patients. AA was induced in male Lewis rats using Freund's complete adjuvant. Animals were monitored for weight and food intake, every 2 or 3 days, along all time-course experiments. Plasma ghrelin concentrations in 31 RA patients and 18 healthy controls, as well as in rats, were determined by a specific double-antibody radioimmunoassay. Gastric ghrelin mRNA expression was evaluated by northern blot analysis. Human GH and insulin-like growth factor (IGF)-1 were determined by quantitative chemiluminescence assay. Compared with controls, arthritic rats gained significantly (P Ghrelin plasma levels were significantly lower at day 7 after arthritis induction than in controls (AA 7 = 91.2 +/- 5.6 pg/ml vs controls = 124.75 +/- 5.9 pg/ml), but they recovered to control levels by day 15. RA patients had ghrelin plasma levels significantly lower than healthy controls (RA = 24.54 +/- 2.57 pg/ml vs 39.01 +/- 4.47 pg/ml of healthy controls; P = 0.0041). In AA, there is a compensatory variation of ghrelin levels that relates to body weight adjustments. Recovery of ghrelin levels in the latter stage suggests an adaptive response and may represent a compensatory mechanism under catabolic conditions. In RA patients, chronic imbalance in ghrelin levels suggests that this gastric hormone may participate, together with other factors, in alterations of metabolic status during inflammatory stress.

  6. Collagenolytic Matrix Metalloproteinases in Chronic Obstructive Lung Disease and Cancer

    Directory of Open Access Journals (Sweden)

    Denzel Woode

    2015-02-01

    Full Text Available Chronic obstructive pulmonary disease (COPD and lung cancer result in significant morbidity and mortality worldwide. In addition to the role of environmental smoke exposure in the development of both diseases, recent epidemiological studies suggests a connection between the development of COPD and lung cancer. Furthermore, individuals with concomitant COPD and cancer have a poor prognosis when compared with individuals with lung cancer alone. The modulation of molecular pathways activated during emphysema likely lead to an increased susceptibility to lung tumor growth and metastasis. This review summarizes what is known in the literature examining the molecular pathways affecting matrix metalloproteinases (MMPs in this process as well as external factors such as smoke exposure that have an impact on tumor growth and metastasis. Increased expression of MMPs provides a unifying link between lung cancer and COPD.

  7. Collagenolytic Matrix Metalloproteinases in Chronic Obstructive Lung Disease and Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Woode, Denzel; Shiomi, Takayuki; D’Armiento, Jeanine, E-mail: jmd12@cumc.columbia.edu [Department of Anesthesiology, Columbia University, College of Physicians and Surgeons, New York, NY 10033 (United States)

    2015-02-05

    Chronic obstructive pulmonary disease (COPD) and lung cancer result in significant morbidity and mortality worldwide. In addition to the role of environmental smoke exposure in the development of both diseases, recent epidemiological studies suggests a connection between the development of COPD and lung cancer. Furthermore, individuals with concomitant COPD and cancer have a poor prognosis when compared with individuals with lung cancer alone. The modulation of molecular pathways activated during emphysema likely lead to an increased susceptibility to lung tumor growth and metastasis. This review summarizes what is known in the literature examining the molecular pathways affecting matrix metalloproteinases (MMPs) in this process as well as external factors such as smoke exposure that have an impact on tumor growth and metastasis. Increased expression of MMPs provides a unifying link between lung cancer and COPD.

  8. Collagenolytic Matrix Metalloproteinases in Chronic Obstructive Lung Disease and Cancer

    International Nuclear Information System (INIS)

    Woode, Denzel; Shiomi, Takayuki; D’Armiento, Jeanine

    2015-01-01

    Chronic obstructive pulmonary disease (COPD) and lung cancer result in significant morbidity and mortality worldwide. In addition to the role of environmental smoke exposure in the development of both diseases, recent epidemiological studies suggests a connection between the development of COPD and lung cancer. Furthermore, individuals with concomitant COPD and cancer have a poor prognosis when compared with individuals with lung cancer alone. The modulation of molecular pathways activated during emphysema likely lead to an increased susceptibility to lung tumor growth and metastasis. This review summarizes what is known in the literature examining the molecular pathways affecting matrix metalloproteinases (MMPs) in this process as well as external factors such as smoke exposure that have an impact on tumor growth and metastasis. Increased expression of MMPs provides a unifying link between lung cancer and COPD

  9. Impact of interleukin-6 on hypoxia-induced pulmonary hypertension and lung inflammation in mice

    Directory of Open Access Journals (Sweden)

    Izziki Mohamed

    2009-01-01

    Full Text Available Abstract Background Inflammation may contribute to the pathogenesis of various forms of pulmonary hypertension (PH. Recent studies in patients with idiopathic PH or PH associated with underlying diseases suggest a role for interleukin-6 (IL-6. Methods To determine whether endogenous IL-6 contributes to mediate hypoxic PH and lung inflammation, we studied IL-6-deficient (IL-6-/- and wild-type (IL-6+/+ mice exposed to hypoxia for 2 weeks. Results Right ventricular systolic pressure, right ventricle hypertrophy, and the number and media thickness of muscular pulmonary vessels were decreased in IL-6-/- mice compared to wild-type controls after 2 weeks' hypoxia, although the pressure response to acute hypoxia was similar in IL-6+/+ and IL-6-/- mice. Hypoxia exposure of IL-6+/+ mice led to marked increases in IL-6 mRNA and protein levels within the first week, with positive IL-6 immunostaining in the pulmonary vessel walls. Lung IL-6 receptor and gp 130 (the IL-6 signal transducer mRNA levels increased after 1 and 2 weeks' hypoxia. In vitro studies of cultured human pulmonary-artery smooth-muscle-cells (PA-SMCs and microvascular endothelial cells revealed prominent synthesis of IL-6 by PA-SMCs, with further stimulation by hypoxia. IL-6 also markedly stimulated PA-SMC migration without affecting proliferation. Hypoxic IL-6-/- mice showed less inflammatory cell recruitment in the lungs, compared to hypoxic wild-type mice, as assessed by lung protein levels and immunostaining for the specific macrophage marker F4/80, with no difference in lung expression of adhesion molecules or cytokines. Conclusion These data suggest that IL-6 may be actively involved in hypoxia-induced lung inflammation and pulmonary vascular remodeling in mice.

  10. Pulmonary stromal cells induce the generation of regulatory DC attenuating T-cell-mediated lung inflammation.

    Science.gov (United States)

    Li, Qian; Guo, Zhenhong; Xu, Xiongfei; Xia, Sheng; Cao, Xuetao

    2008-10-01

    The tissue microenvironment may affect the development and function of immune cells such as DC. Whether and how the pulmonary stromal microenvironment can affect the development and function of lung DC need to be investigated. Regulatory DC (DCreg) can regulate T-cell response. We wondered whether such regulatory DC exist in the lung and what is the effect of the pulmonary stromal microenvironment on the generation of DCreg. Here we demonstrate that murine pulmonary stromal cells can drive immature DC, which are regarded as being widely distributed in the lung, to proliferate and differentiate into a distinct subset of DCreg, which express high levels of CD11b but low levels of MHC class II (I-A), CD11c, secrete high amounts of IL-10, NO and prostaglandin E2 (PGE2) and suppress T-cell proliferation. The natural counterpart of DCreg in the lung with similar phenotype and regulatory function has been identified. Pulmonary stroma-derived TGF-beta is responsible for the differentiation of immature DC to DCreg, and DCreg-derived PGE2 contributes to their suppression of T-cell proliferation. Moreover, DCreg can induce the generation of CD4+CD25+Foxp3+ Treg. Importantly, infusion with DCreg attenuates T-cell-mediated eosinophilic airway inflammation in vivo. Therefore, the pulmonary microenvironment may drive the generation of DCreg, thus contributing to the maintenance of immune homoeostasis and the control of inflammation in the lung.

  11. Ab interno laser sclerostomy in aphakic patients with glaucoma and chronic inflammation.

    Science.gov (United States)

    Wilson, R P; Javitt, J C

    1990-08-15

    Five patients with aphakia, glaucoma, and chronic inflammation were treated with ab interno sclerostomy by using the continuous wave Nd:YAG laser focused through a sapphire probe. After a follow-up period of 24 to 28 months, three of five patients had good intraocular pressure control. The sclerostomy failed in one patient when it was occluded by vitreous. The second failure was attributed to closure of the sclerostomy because of chronic intraocular inflammation.

  12. Increased lung neutrophil apoptosis and inflammation resolution in nonresponding pneumonia.

    Science.gov (United States)

    Moret, I; Lorenzo, M J; Sarria, B; Cases, E; Morcillo, E; Perpiñá, M; Molina, J M; Menéndez, R

    2011-11-01

    Neutrophil activation state and its relationship with an inflammatory environment in community-acquired pneumonia (CAP) remain insufficiently elucidated. We aimed to evaluate the neutrophil apoptosis and cytokine pattern in CAP patients after 72 h of treatment, and their impact on infection resolution. Apoptosis of blood and bronchoalveolar lavage (BAL) neutrophils was measured in nonresponding CAP (NCAP), in responding CAP (blood only) and in patients without infection (control). Pro-inflammatory (interleukin (IL)-6, IL-8) and anti-inflammatory (IL-10) cytokines were measured. Main outcomes were clinical stability and days of hospitalisation. Basal neutrophil apoptosis was higher in the BAL and blood of NCAP, whereas spontaneous apoptosis (after 24 h culture) was lower. Cytokines in NCAP were higher than in responding CAP and control: IL-6 was increased in BAL and blood, IL-8 in BAL and IL-10 in blood. An increased basal apoptosis (≥20%) in BAL of NCAP was associated with lower systemic IL-10 (p<0.01), earlier clinical stability (p=0.05) and shorter hospital stay (p=0.02). A significant correlation was found for systemic IL-6 and IL-10 with days to reach stability and length of stay. After 72 h of treatment, an increased basal alveolar neutrophil apoptosis might contribute to downregulation of inflammation and to faster clinical stability.

  13. Decreased MORF leads to prolonged endoplasmic reticulum stress in periodontitis-associated chronic inflammation.

    Science.gov (United States)

    Xue, Peng; Li, Bei; An, Ying; Sun, Jin; He, Xiaoning; Hou, Rui; Dong, Guangying; Fei, Dongdong; Jin, Fang; Wang, Qintao; Jin, Yan

    2016-11-01

    The association between inflammation and endoplasmic reticulum (ER) stress has been described in many diseases. However, if and how chronic inflammation governs the unfolded protein response (UPR) and promotes ER homeostasis of chronic inflammatory disease remains elusive. In this study, chronic inflammation resulted in ER stress in mesenchymal stem cells in the setting of periodontitis. Long-term proinflammatory cytokines induced prolonged ER stress and decreased the osteogenic differentiation of periodontal ligament stem cells (PDLSCs). Interestingly, we showed that chronic inflammation decreases the expression of lysine acetyltransferase 6B (KAT6B, also called MORF), a histone acetyltransferase, and causes the upregulation of a key UPR sensor, PERK, which lead to the persistent activation of the UPR in PDLSCs. Furthermore, we found that the activation of UPR mediated by MORF in chronic inflammation contributes to the PERK-related deterioration of the osteogenic differentiation of PDLSCs both in vivo and in vitro. Taken together, our results suggest that chronic inflammation compromises UPR function through MORF-mediated-PERK transcription, which is a previously unrecognized mechanism that contributes to impaired ER function, prolonged ER stress and defective osteogenic differentiation of PDLSCs in periodontitis.

  14. The Effect of Serine Protease Inhibitors on Airway Inflammation in a Chronic Allergen-Induced Asthma Mouse Model

    Directory of Open Access Journals (Sweden)

    Chih-Che Lin

    2014-01-01

    Full Text Available Serine protease inhibitors reportedly attenuated airway inflammation and had antioxidant in multiorgan. However, the effects of the serine protease inhibitors nafamostat mesilate (FUT, gabexate mesilate (FOY, and ulinastatin (UTI on a long-term challenged mouse model of chronic asthma are unclear. BALB/c mice (6 mice/group were intratracheally inoculated with five doses of Dermatophagoides pteronyssinus (Der p; 50 μL, 1 mg/mL at one-week intervals. Therapeutic doses of FUT (0.0625 mg/kg, FOY (20 mg/kg, or UTI (10,000 U/kg were, respectively, injected intraperitoneally into these mice. Control mice received sterile PBS. At 3 days after the last challenge, mice were sacrificed to assess airway hyperresponsiveness (AHR, remodeling, and inflammation; lung histological features; and cytokine expression profiles. Compared with untreated controls, mice treated with FUT, FOY, and UTI had decreased AHR and goblet cell hyperplasia, decreased eosinophil and neutrophil infiltration, decreased Der p-induced IL-4 levels in serum and IL-5, IL-6, IL-13, and IL-17 levels in bronchoalveolar lavage fluid, and inhibited nuclear factor (NF-κB activity in lung tissues. The serine protease inhibitors FUT, FOY, and UTI have potential therapeutic benefits for treating asthma by downregulating Th2 cytokines and Th17 cell function and inhibiting NF-κB activation in lung tissue.

  15. Human adipose tissue mesenchymal stromal cells and their extracellular vesicles act differentially on lung mechanics and inflammation in experimental allergic asthma.

    Science.gov (United States)

    de Castro, Ligia Lins; Xisto, Debora Gonçalves; Kitoko, Jamil Zola; Cruz, Fernanda Ferreira; Olsen, Priscilla Christina; Redondo, Patricia Albuquerque Garcia; Ferreira, Tatiana Paula Teixeira; Weiss, Daniel Jay; Martins, Marco Aurélio; Morales, Marcelo Marcos; Rocco, Patricia Rieken Macedo

    2017-06-24

    Asthma is a chronic inflammatory disease that can be difficult to treat due to its complex pathophysiology. Most current drugs focus on controlling the inflammatory process, but are unable to revert the changes of tissue remodeling. Human mesenchymal stromal cells (MSCs) are effective at reducing inflammation and tissue remodeling; nevertheless, no study has evaluated the therapeutic effects of extracellular vesicles (EVs) obtained from human adipose tissue-derived MSCs (AD-MSC) on established airway remodeling in experimental allergic asthma. C57BL/6 female mice were sensitized and challenged with ovalbumin (OVA). Control (CTRL) animals received saline solution using the same protocol. One day after the last challenge, each group received saline, 10 5 human AD-MSCs, or EVs (released by 10 5  AD-MSCs). Seven days after treatment, animals were anesthetized for lung function assessment and subsequently euthanized. Bronchoalveolar lavage fluid (BALF), lungs, thymus, and mediastinal lymph nodes were harvested for analysis of inflammation. Collagen fiber content of airways and lung parenchyma were also evaluated. In OVA animals, AD-MSCs and EVs acted differently on static lung elastance and on BALF regulatory T cells, CD3 + CD4 + T cells, and pro-inflammatory mediators (interleukin [IL]-4, IL-5, IL-13, and eotaxin), but similarly reduced eosinophils in lung tissue, collagen fiber content in airways and lung parenchyma, levels of transforming growth factor-β in lung tissue, and CD3 + CD4 + T cell counts in the thymus. No significant changes were observed in total cell count or percentage of CD3 + CD4 + T cells in the mediastinal lymph nodes. In this immunocompetent mouse model of allergic asthma, human AD-MSCs and EVs effectively reduced eosinophil counts in lung tissue and BALF and modulated airway remodeling, but their effects on T cells differed in lung and thymus. EVs may hold promise for asthma; however, further studies are required to elucidate the different

  16. Hypertonic saline reduces inflammation and enhances the resolution of oleic acid induced acute lung injury

    Directory of Open Access Journals (Sweden)

    Costello Joseph F

    2008-07-01

    Full Text Available Abstract Background Hypertonic saline (HTS reduces the severity of lung injury in ischemia-reperfusion, endotoxin-induced and ventilation-induced lung injury. However, the potential for HTS to modulate the resolution of lung injury is not known. We investigated the potential for hypertonic saline to modulate the evolution and resolution of oleic acid induced lung injury. Methods Adult male Sprague Dawley rats were used in all experiments. Series 1 examined the potential for HTS to reduce the severity of evolving oleic acid (OA induced acute lung injury. Following intravenous OA administration, animals were randomized to receive isotonic (Control, n = 12 or hypertonic saline (HTS, n = 12, and the extent of lung injury assessed after 6 hours. Series 2 examined the potential for HTS to enhance the resolution of oleic acid (OA induced acute lung injury. Following intravenous OA administration, animals were randomized to receive isotonic (Control, n = 6 or hypertonic saline (HTS, n = 6, and the extent of lung injury assessed after 6 hours. Results In Series I, HTS significantly reduced bronchoalveolar lavage (BAL neutrophil count compared to Control [61.5 ± 9.08 versus 102.6 ± 11.89 × 103 cells.ml-1]. However, there were no between group differences with regard to: A-a O2 gradient [11.9 ± 0.5 vs. 12.0 ± 0.5 KPa]; arterial PO2; static lung compliance, or histologic injury. In contrast, in Series 2, hypertonic saline significantly reduced histologic injury and reduced BAL neutrophil count [24.5 ± 5.9 versus 46.8 ± 4.4 × 103 cells.ml-1], and interleukin-6 levels [681.9 ± 190.4 versus 1365.7 ± 246.8 pg.ml-1]. Conclusion These findings demonstrate, for the first time, the potential for HTS to reduce pulmonary inflammation and enhance the resolution of oleic acid induced lung injury.

  17. Familial idiopathic pulmonary fibrosis. Evidence of lung inflammation in unaffected family members

    International Nuclear Information System (INIS)

    Bitterman, P.B.; Rennard, S.I.; Keogh, B.A.; Wewers, M.D.; Adelberg, S.; Crystal, R.G.

    1986-01-01

    We evaluated 17 clinically unaffected members of three families with an autosomal dominant form of idiopathic pulmonary fibrosis for evidence of alveolar inflammation. Each person in the study was examined by gallium-67 scanning for a general estimate of pulmonary inflammation, and by bronchoalveolar lavage for characterization of the types of recovered cells and their state of activation. Eight of the 17 subjects had evidence of alveolar inflammation on the lavage studies. Supporting data included increased numbers of neutrophils and activated macrophages that released one or more neutrophil chemoattractants, and growth factors for lung fibroblasts--findings similar to those observed in patients with overt idiopathic pulmonary fibrosis. Four of these eight also had a positive gallium scan; in all the other clinically unaffected subjects the scan was normal. During a follow-up of two to four years in seven of the eight subjects who had evidence of inflammation, no clinical evidence of pulmonary fibrosis has appeared. These results indicate that alveolar inflammation occurs in approximately half the clinically unaffected family members at risk of inheriting autosomal dominant idiopathic pulmonary fibrosis. Whether these persons with evidence of pulmonary inflammation but no fibrosis will proceed to have clinically evident pulmonary fibrosis is not yet known

  18. Milano summer particulate matter (PM10 triggers lung inflammation and extra pulmonary adverse events in mice.

    Directory of Open Access Journals (Sweden)

    Francesca Farina

    Full Text Available Recent studies have suggested a link between particulate matter (PM exposure and increased mortality and morbidity associated with pulmonary and cardiovascular diseases; accumulating evidences point to a new role for air pollution in CNS diseases. The purpose of our study is to investigate PM10sum effects on lungs and extra pulmonary tissues. Milano PM10sum has been intratracheally instilled into BALB/c mice. Broncho Alveolar Lavage fluid, lung parenchyma, heart and brain were screened for markers of inflammation (cell counts, cytokines, ET-1, HO-1, MPO, iNOS, cytotoxicity (LDH, ALP, Hsp70, Caspase8-p18, Caspase3-p17 for a putative pro-carcinogenic marker (Cyp1B1 and for TLR4 pathway activation. Brain was also investigated for CD68, TNF-α, GFAP. In blood, cell counts were performed while plasma was screened for endothelial activation (sP-selectin, ET-1 and for inflammation markers (TNF-α, MIP-2, IL-1β, MPO. Genes up-regulation (HMOX1, Cyp1B1, IL-1β, MIP-2, MPO and miR-21 have been investigated in lungs and blood. Inflammation in the respiratory tract of PM10sum-treated mice has been confirmed in BALf and lung parenchyma by increased PMNs percentage, increased ET-1, MPO and cytokines levels. A systemic spreading of lung inflammation in PM10sum-treated mice has been related to the increased blood total cell count and neutrophils percentage, as well as to increased blood MPO. The blood-endothelium interface activation has been confirmed by significant increases of plasma ET-1 and sP-selectin. Furthermore PM10sum induced heart endothelial activation and PAHs metabolism, proved by increased ET-1 and Cyp1B1 levels. Moreover, PM10sum causes an increase in brain HO-1 and ET-1. These results state the translocation of inflammation mediators, ultrafine particles, LPS, metals associated to PM10sum, from lungs to bloodstream, thus triggering a systemic reaction, mainly involving heart and brain. Our results provided additional insight into the toxicity

  19. Simulating Sleep Apnea by Exposure to Intermittent Hypoxia Induces Inflammation in the Lung and Liver

    OpenAIRE

    da Rosa, Darlan Pase; Forgiarini, Luiz Felipe; Baronio, Diego; Feijó, Cristiano Andrade; Martinez, Dênis; Marroni, Norma Possa

    2012-01-01

    Sleep apnea is a breathing disorder that results from momentary and cyclic collapse of the upper airway, leading to intermittent hypoxia (IH). IH can lead to the formation of free radicals that increase oxidative stress, and this mechanism may explain the association between central sleep apnea and nonalcoholic steatohepatitis. We assessed the level of inflammation in the lung and liver tissue from animals subjected to intermittent hypoxia and simulated sleep apnea. A total of 12 C57BL/6 mice...

  20. Helminth-induced arginase-1 exacerbates lung inflammation and disease severity in tuberculosis

    Science.gov (United States)

    Monin, Leticia; Griffiths, Kristin L.; Lam, Wing Y.; Gopal, Radha; Kang, Dongwan D.; Ahmed, Mushtaq; Rajamanickam, Anuradha; Cruz-Lagunas, Alfredo; Zúñiga, Joaquín; Babu, Subash; Kolls, Jay K.; Mitreva, Makedonka; Rosa, Bruce A.; Ramos-Payan, Rosalio; Morrison, Thomas E.; Murray, Peter J.; Rangel-Moreno, Javier; Pearce, Edward J.; Khader, Shabaana A.

    2015-01-01

    Parasitic helminth worms, such as Schistosoma mansoni, are endemic in regions with a high prevalence of tuberculosis (TB) among the population. Human studies suggest that helminth coinfections contribute to increased TB susceptibility and increased rates of TB reactivation. Prevailing models suggest that T helper type 2 (Th2) responses induced by helminth infection impair Th1 immune responses and thereby limit Mycobacterium tuberculosis (Mtb) control. Using a pulmonary mouse model of Mtb infection, we demonstrated that S. mansoni coinfection or immunization with S. mansoni egg antigens can reversibly impair Mtb-specific T cell responses without affecting macrophage-mediated Mtb control. Instead, S. mansoni infection resulted in accumulation of high arginase-1–expressing macrophages in the lung, which formed type 2 granulomas and exacerbated inflammation in Mtb-infected mice. Treatment of coinfected animals with an antihelminthic improved Mtb-specific Th1 responses and reduced disease severity. In a genetically diverse mouse population infected with Mtb, enhanced arginase-1 activity was associated with increased lung inflammation. Moreover, in patients with pulmonary TB, lung damage correlated with increased serum activity of arginase-1, which was elevated in TB patients coinfected with helminths. Together, our data indicate that helminth coinfection induces arginase-1–expressing type 2 granulomas, thereby increasing inflammation and TB disease severity. These results also provide insight into the mechanisms by which helminth coinfections drive increased susceptibility, disease progression, and severity in TB. PMID:26571397

  1. Inducible Bronchus-Associated Lymphoid Tissue: Taming Inflammation in the Lung.

    Science.gov (United States)

    Hwang, Ji Young; Randall, Troy D; Silva-Sanchez, Aaron

    2016-01-01

    Following pulmonary inflammation, leukocytes that infiltrate the lung often assemble into structures known as inducible Bronchus-Associated Lymphoid Tissue (iBALT). Like conventional lymphoid organs, areas of iBALT have segregated B and T cell areas, specialized stromal cells, high endothelial venules, and lymphatic vessels. After inflammation is resolved, iBALT is maintained for months, independently of inflammation. Once iBALT is formed, it participates in immune responses to pulmonary antigens, including those that are unrelated to the iBALT-initiating antigen, and often alters the clinical course of disease. However, the mechanisms that govern immune responses in iBALT and determine how iBALT impacts local and systemic immunity are poorly understood. Here, we review our current understanding of iBALT formation and discuss how iBALT participates in pulmonary immunity.

  2. Role of Oxidants in Interstitial Lung Diseases: Pneumoconioses, Constrictive Bronchiolitis, and Chronic Tropical Pulmonary Eosinophilia

    Directory of Open Access Journals (Sweden)

    William N. Rom

    2011-01-01

    Full Text Available Oxidants such as superoxide anion, hydrogen peroxide, and myeloperoxidase from activated inflammatory cells in the lower respiratory tract contribute to inflammation and injury. Etiologic agents include inorganic particulates such as asbestos, silica, or coal mine dust or mixtures of inorganic dust and combustion materials found in World Trade Center dust and smoke. These etiologic agents are phagocytosed by alveolar macrophages or bronchial epithelial cells and release chemotactic factors that recruit inflammatory cells to the lung. Chemotactic factors attract and activate neutrophils, eosinophils, mast cells, and lymphocytes and further activate macrophages to release more oxidants. Inorganic dusts target alveolar macrophages, World Trade Center dust targets bronchial epithelial cells, and eosinophils characterize tropical pulmonary eosinophilia (TPE caused by filarial organisms. The technique of bronchoalveolar lavage in humans has recovered alveolar macrophages (AMs in dust diseases and eosinophils in TPE that release increased amounts of oxidants in vitro. Interestingly, TPE has massively increased eosinophils in the acute form and after treatment can still have ongoing eosinophilic inflammation. A course of prednisone for one week can reduce the oxidant burden and attendant inflammation and may be a strategy to prevent chronic TPE and interstitial lung disease.

  3. Chronic Pseudomonas aeruginosa lung infection in normal and athymic rats

    DEFF Research Database (Denmark)

    Johansen, H K; Espersen, F; Pedersen, S S

    1993-01-01

    We have compared a chronic lung infection with Pseudomonas aeruginosa embedded in alginate beads in normal and athymic rats with an acute infection with free live P. aeruginosa bacteria. The following parameters were observed and described: mortality, macroscopic and microscopic pathologic changes...

  4. Rac1 signaling regulates cigarette smoke-induced inflammation in the lung via the Erk1/2 MAPK and STAT3 pathways.

    Science.gov (United States)

    Jiang, Jun-Xia; Zhang, Shui-Juan; Shen, Hui-Juan; Guan, Yan; Liu, Qi; Zhao, Wei; Jia, Yong-Liang; Shen, Jian; Yan, Xiao-Feng; Xie, Qiang-Min

    2017-07-01

    Cigarette smoke (CS) is a major risk factor for the development of chronic obstructive pulmonary disease (COPD). Our previous studies have indicated that Rac1 is involved in lipopolysaccharide-induced pulmonary injury and CS-mediated epithelial-mesenchymal transition. However, the contribution of Rac1 activity to CS-induced lung inflammation remains not fully clear. In this study, we investigated the regulation of Rac1 in CS-induced pulmonary inflammation. Mice or 16HBE cells were exposed to CS or cigarette smoke extract (CSE) to induce acute inflammation. The lungs of mice exposed to CS showed an increase in the release of interleukin-6 (IL-6) and keratinocyte-derived chemokine (KC), as well as an accumulation of inflammatory cells, indicating high Rac1 activity. The exposure of 16HBE cells to CSE resulted in elevated Rac1 levels, as well as increased release of IL-6 and interleukin-8 (IL-8). Selective inhibition of Rac1 ameliorated the release of IL-6 and KC as well as inflammation in the lungs of CS-exposed mice. Histological assessment showed that treatment with a Rac1 inhibitor, NSC23766, led to a decrease in CD68 and CD11b positive cells and the infiltration of neutrophils and macrophages into the alveolar spaces. Selective inhibition or knockdown of Rac1 decreased IL-6 and IL-8 release in 16HBE cells induced by CSE, which correlated with CSE-induced Rac1-regulated Erk1/2 mitogen-activated protein kinase (MAPK) and signal transducer and activator of transcription-3 (STAT3) signaling. Our data suggest an important role for Rac1 in the pathological alterations associated with CS-mediated inflammation. Rac1 may be a promising therapeutic target for the treatment of CS-induced pulmonary inflammation. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Inhibitory effect of kefiran on ovalbumin-induced lung inflammation in a murine model of asthma.

    Science.gov (United States)

    Kwon, Ok-Kyoung; Ahn, Kyung-Seop; Lee, Mee-Young; Kim, So-Young; Park, Bo-Young; Kim, Mi-Kyoung; Lee, In-Young; Oh, Sei-Ryang; Lee, Hyeong-Kyu

    2008-12-01

    Kefiran is a major component of kefir which is a microbial symbiont mixture that produces jelly-like grains. This study aimed to evaluate the therapeutic availability of kefiran on the ovalbumin-induced asthma mouse model in which airway inflammation and airway hyper-responsiveness were found in the lung. BALB/c mice sensitized and challenged to ovalbumin were treated intra-gastrically with kefiran 1 hour before the ovalbumin challenge. Kefiran significantly suppressed ovalbumin-induced airway hyper-responsiveness (AHR) to inhaled methacholine. Administration of kefiran significantly inhibited the release of both eosinophils and other inflammatory cells into bronchoalveolar lavage (BAL) fluid and lung tissue which was measured by Diff-Quik. Interleukin-4 (IL-4) and interleukin-5 (IL-5) were also reduced to normal levels after administration of kefiran in BAL fluid. Histological studies demonstrate that kefiran substantially inhibited ovalbumin-induced eosinophilia in lung tissue by H&E staining and goblet cell hyperplasia in the airway by PAS staining. Taken above data, kefiran may be useful for the treatment of inflammation of lung tissue and airway hyper-responsiveness in a murine model and may have therapeutic potential for the treatment of allergic bronchial asthma.

  6. Systemic Inflammation and Lung Function Impairment in Morbidly Obese Subjects with the Metabolic Syndrome

    Directory of Open Access Journals (Sweden)

    Astrid van Huisstede

    2013-01-01

    Full Text Available Background. Obesity and asthma are associated. There is a relationship between lung function impairment and the metabolic syndrome. Whether this relationship also exists in the morbidly obese patients is still unknown. Hypothesis. Low-grade systemic inflammation associated with the metabolic syndrome causes inflammation in the lungs and, hence, lung function impairment. Methods. This is cross-sectional study of morbidly obese patients undergoing preoperative screening for bariatric surgery. Metabolic syndrome was assessed according to the revised NCEP-ATP III criteria. Results. A total of 452 patients were included. Patients with the metabolic syndrome (n=293 had significantly higher blood monocyte (mean 5.3 versus 4.9, P=0.044 and eosinophil percentages (median 1.0 versus 0.8, P=0.002, while the total leukocyte count did not differ between the groups. The FEV1/FVC ratio was significantly lower in patients with the metabolic syndrome (76.7% versus 78.2%, P=0.032. Blood eosinophils were associated with FEV1/FVC ratio (adj. B −0.113, P=0.018. Conclusion. Although the difference in FEV1/FVC ratio between the groups is relatively small, in this cross-sectional study, and its clinical relevance may be limited, these data indicate that the presence of the metabolic syndrome may influence lung function impairment, through the induction of relative eosinophilia.

  7. Metabolic Syndrome as a Factor Affecting Systemic Inflammation in Patients with Chronic Obstructive Pulmonary Disease.

    Science.gov (United States)

    Rubinsztajn, R; Przybyłowski, T; Maskey-Warzęchowska, M; Paplińska-Goryca, M; Nejman-Gryz, P; Karwat, K; Chazan, R

    2017-01-01

    Chronic obstructive pulmonary disease (COPD) is a systemic disease which may be associated with other comorbidities. The aim of the study was to estimate the incidence of metabolic syndrome (MS) in COPD patients and to assess its impact on systemic inflammation and lung function. MS was diagnosed in accordance with the recommendations of the Polish Forum for the Prevention of Cardiovascular Diseases. The study group consisted of 267 patients with stable COPD in all stages of severity. All patients underwent spirometry with bronchial reversibility testing and 6 min walk test (6MWT). The following blood tests were evaluated: lipid profile, glucose and C-reactive protein as well as serum concentration of IL-6, leptin, adiponectin, and endothelin. MS was diagnosed in 93 patients (35.8%). No differences were observed in the incidence of MS in relation to airflow limitation severity (mild; moderate; severe and very severe: 38.9; 36.3; 35.2 and 25.0%, respectively). FEV 1 (% predicted), FVC (% predicted), 6MWT distance (6MWD), age, and the number of pack-years were similar in patients with and without MS. MS was more frequent in males than females (38.7 vs. 28.4%, p > 0.05). Serum concentrations of IL-6, endothelin, leptin, and CRP were higher in the MS group, contrary to adiponectin concentration which was lower (p < 0.01). MS was more frequent in male COPD patients, but there were no differences in its frequency between patients with different severity of airflow limitation. We conclude that MS, as a comorbidity, occurs in all COPD stages and affects systemic inflammation. MS incidence does not depend on COPD severity.

  8. Neuronal and epithelial cell rescue resolves chronic systemic inflammation in the lipid storage disorder Niemann-Pick C.

    Science.gov (United States)

    Lopez, Manuel E; Klein, Andrés D; Hong, Jennifer; Dimbil, Ubah J; Scott, Matthew P

    2012-07-01

    Chronic systemic inflammation is thought to be a major contributor to metabolic and neurodegenerative diseases. Since inflammatory components are shared among different disorders, targeting inflammation is an attractive option for mitigating disease. To test the significance of inflammation in the lipid storage disorder (LSD) Niemann-Pick C (NPC), we deleted the macrophage inflammatory gene Mip1a/Ccl3 from NPC diseased mice. Deletion of Ccl3 had been reported to delay neuronal loss in Sandhoff LSD mice by inhibiting macrophage infiltration. For NPC mice, in contrast, deleting Ccl3 did not retard neurodegeneration and worsened the clinical outcome. Depletion of visceral tissue macrophages also did not alter central nervous system (CNS) pathology and instead increased liver injury, suggesting a limited macrophage infiltration response into the CNS and a beneficial role of macrophage activity in visceral tissue. Prevention of neuron loss or liver injury, even at late stages in the disease, was achieved through specific rescue of NPC disease in neurons or in liver epithelial cells, respectively. Local epithelial cell correction was also sufficient to reduce the macrophage-associated pathology in lung tissue. These results demonstrate that elevated inflammation and macrophage activity does not necessarily contribute to neurodegeneration and tissue injury, and LSD defects in immune cells may not preclude an appropriate inflammatory response. We conclude that inflammation remains secondary to neuronal and epithelial cell dysfunction and does not irreversibly contribute to the pathogenic cascade in NPC disease. Without further exploration of possible beneficial roles of inflammatory mediators, targeting inflammation may not be therapeutically effective at ameliorating disease severity.

  9. Lung sound analysis helps localize airway inflammation in patients with bronchial asthma

    Directory of Open Access Journals (Sweden)

    Shimoda T

    2017-03-01

    Full Text Available Terufumi Shimoda,1 Yasushi Obase,2 Yukio Nagasaka,3 Hiroshi Nakano,1 Akiko Ishimatsu,1 Reiko Kishikawa,1 Tomoaki Iwanaga1 1Clinical Research Center, Fukuoka National Hospital, Fukuoka, 2Second Department of Internal Medicine, School of Medicine, Nagasaki University, Nagasaki, 3Kyoto Respiratory Center, Otowa Hospital, Kyoto, Japan Purpose: Airway inflammation can be detected by lung sound analysis (LSA at a single point in the posterior lower lung field. We performed LSA at 7 points to examine whether the technique could identify the location of airway inflammation in patients with asthma. Patients and methods: Breath sounds were recorded at 7 points on the body surface of 22 asthmatic subjects. Inspiration sound pressure level (ISPL, expiration sound pressure level (ESPL, and the expiration-to-inspiration sound pressure ratio (E/I were calculated in 6 frequency bands. The data were analyzed for potential correlation with spirometry, airway hyperresponsiveness (PC20, and fractional exhaled nitric oxide (FeNO. Results: The E/I data in the frequency range of 100–400 Hz (E/I low frequency [LF], E/I mid frequency [MF] were better correlated with the spirometry, PC20, and FeNO values than were the ISPL or ESPL data. The left anterior chest and left posterior lower recording positions were associated with the best correlations (forced expiratory volume in 1 second/forced vital capacity: r=–0.55 and r=–0.58; logPC20: r=–0.46 and r=–0.45; and FeNO: r=0.42 and r=0.46, respectively. The majority of asthmatic subjects with FeNO ≥70 ppb exhibited high E/I MF levels in all lung fields (excluding the trachea and V50%pred <80%, suggesting inflammation throughout the airway. Asthmatic subjects with FeNO <70 ppb showed high or low E/I MF levels depending on the recording position, indicating uneven airway inflammation. Conclusion: E/I LF and E/I MF are more useful LSA parameters for evaluating airway inflammation in bronchial asthma; 7-point lung

  10. Chronic inflammation in refractory hippocampal sclerosis-related temporal lobe epilepsy.

    Science.gov (United States)

    Gales, Jordan M; Prayson, Richard A

    2017-10-01

    Emerging evidence suggests chronic inflammation may play a role in hippocampal sclerosis-associated temporal lobe epilepsy. We sought to systematically evaluate for its presence in a group of 315 patients who underwent surgery for medically-refractory epilepsy and who had hippocampal sclerosis. Upon histologic review of hematoxylin and eosin stained tissue sections, 95 (41%) cases demonstrated the presence of lymphocytes within the perivascular region and diffusely within the brain parenchyma. Those cases with chronic inflammation evident on hematoxylin and eosin staining were significantly more likely to experience a post-operative seizure recurrence than those without it (p=0.03). In 9 cases of hippocampi with chronic inflammation observed on hematoxylin and eosin stained sections, there was a mixture of both T (CD3+) and B (CD20+) lymphocytes located around blood vessels and interspersed within the brain parenchyma and a predominance of CD4 positive T cells versus CD8 positive cells. Ten hippocampi, apparently devoid of chronic inflammation upon inspection with hematoxylin and eosin stained sections, were stained with the lymphocyte common antigen CD45. In all 10 cases, scattered lymphoid cells were observed in the brain parenchyma, suggesting some level of chronic inflammation may be present in more cases than casual inspection might suggest. This study was the first to evaluate the incidence of chronic inflammation within a large temporal lobe epilepsy population. The study findings suggest chronic inflammation may be a more common component of hippocampal sclerosis -associated temporal lobe epilepsy than previously believed. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Chronic aspergillosis of the lungs: Unravelling the terminology and radiology

    Energy Technology Data Exchange (ETDEWEB)

    Desai, S.R.; Hedayati, V.; Patel, K. [King' s College Hospital NHS Foundation Trust, The Department of Radiology, King' s Health Partners, King' s College London, London (United Kingdom); Hansell, D.M. [The Royal Brompton and Harefield NHS Foundation Trust, Department of Radiology, London (United Kingdom)

    2015-10-15

    The propensity for Aspergillus spp. to cause lung disease has long been recognised but the satisfactory classification of these disorders is challenging. The problems caused by invasive disease in severely neutropenic patients, saprophytic infection of pre-existing fibrotic cavities and allergic reactions to Aspergillus are well documented. In contrast, a more chronic form of Aspergillus-related lung disease that has the potential to cause significant morbidity and mortality is under-reported. The symptoms of this form of Aspergillus infection may be non-specific and the radiologist may be the first to suspect a diagnosis of chronic pulmonary aspergillosis. The current review considers the classification conundrums in diseases caused by Aspergillus spp. and discusses the typical clinical and radiological profile of patients with chronic pulmonary aspergillosis. (orig.)

  12. Nano-based theranostics for chronic obstructive lung diseases: challenges and therapeutic potential

    OpenAIRE

    Vij, Neeraj

    2011-01-01

    The major challenges in the delivery and therapeutic efficacy of nano-delivery systems in chronic obstructive airway conditions is airway defense, severe inflammation and mucous hypersecretion. Chronic airway inflammation and mucous hypersecretion are hallmarks of chronic obstructive airway diseases, including asthma, COPD (chronic obstructive pulmonary disease) and CF (cystic fibrosis). Distinct etiologies drive inflammation and mucous hyper secretion in these diseases, that is further induc...

  13. Inflammation and premature aging in advanced chronic kidney disease.

    Science.gov (United States)

    Kooman, Jeroen P; Dekker, Marijke J; Usvyat, Len A; Kotanko, Peter; van der Sande, Frank M; Schalkwijk, Casper G; Shiels, Paul G; Stenvinkel, Peter

    2017-10-01

    Systemic inflammation in end-stage renal disease is an established risk factor for mortality and a catalyst for other complications, which are related to a premature aging phenotype, including muscle wasting, vascular calcification, and other forms of premature vascular disease, depression, osteoporosis, and frailty. Uremic inflammation is also mechanistically related to mechanisms involved in the aging process, such as telomere shortening, mitochondrial dysfunction, and altered nutrient sensing, which can have a direct effect on cellular and tissue function. In addition to uremia-specific causes, such as abnormalities in the phosphate-Klotho axis, there are remarkable similarities between the pathophysiology of uremic inflammation and so-called "inflammaging" in the general population. Potentially relevant, but still somewhat unexplored in this respect, are abnormal or misplaced protein structures, as well as abnormalities in tissue homeostasis, which evoke danger signals through damage-associated molecular patterns, as well as the senescence-associated secretory phenotype. Systemic inflammation, in combination with the loss of kidney function, can impair the resilience of the body to external and internal stressors by reduced functional and structural tissue reserves, and by impairing normal organ crosstalk, thus providing an explanation for the greatly increased risk of homeostatic breakdown in this population. In this review, the relationship between uremic inflammation and a premature aging phenotype, as well as potential causes and consequences, are discussed. Copyright © 2017 the American Physiological Society.

  14. Protective mechanical ventilation does not exacerbate lung function impairment or lung inflammation following influenza A infection.

    Science.gov (United States)

    Zosky, Graeme R; Cannizzaro, Vincenzo; Hantos, Zoltan; Sly, Peter D

    2009-11-01

    The degree to which mechanical ventilation induces ventilator-associated lung injury is dependent on the initial acute lung injury (ALI). Viral-induced ALI is poorly studied, and this study aimed to determine whether ALI induced by a clinically relevant infection is exacerbated by protective mechanical ventilation. Adult female BALB/c mice were inoculated with 10(4.5) plaque-forming units of influenza A/Mem/1/71 in 50 microl of medium or medium alone. This study used a protective ventilation strategy, whereby mice were anesthetized, tracheostomized, and mechanically ventilated for 2 h. Lung mechanics were measured periodically throughout the ventilation period using a modification of the forced oscillation technique to obtain measures of airway resistance and coefficients of tissue damping and tissue elastance. Thoracic gas volume was measured and used to obtain specific airway resistance, tissue damping, and tissue elastance. At the end of the ventilation period, a bronchoalveolar lavage sample was collected to measure inflammatory cells, macrophage inflammatory protein-2, IL-6, TNF-alpha, and protein leak. Influenza infection caused significant increases in inflammatory cells, protein leak, and deterioration in lung mechanics that were not exacerbated by mechanical ventilation, in contrast to previous studies using bacterial and mouse-specific viral infection. This study highlighted the importance of type and severity of lung injury in determining outcome following mechanical ventilation.

  15. [Potential of antiinflammatory therapy in patients with chronic obstructive lung disease].

    Science.gov (United States)

    Fedorova, T A; Ekkert, N V; Chernekhovskaia, N E; Roĭtman, A P; Makarova, O V; Zhidkova, N V

    2005-01-01

    The aim of the study was to investigate the effects of erespal (fenspirid) on the clinical manifestations and parameters of inflammation in patients with chronic obstructive lung disease (COLD). The two stages of the study included 3-weak treatment during exacerbation periods and a 3-month outpatient follow-up during clinical remission periods. Erespal was administered twice a day in a total dose of 160 mg/day. The study included evaluation of clinical symptoms, respiratory function, bronchoscopic data, laboratory indices of inflammation, antioxydative status, life quality (LQ), as well as cytological and cytochemical analysis of induced sputum (IS). During exacerbation periods of COLD the researchers observed early and noticeable antitussive and mucolytic action of erespal, which were associated with lessening of bronchial obstruction and inflammation, significant fall of C-reactive protein level, cytosis in IS, proportion of neutrophiles (p < 0.01), elevation of lysosomal cation proteins in neutrophiles (p < 0.01), increase of total oxidant serum level (in 46.2% of the patients vs. 26.3% of the patients in the conventional therapy group). Long term (3 months) treatment with erespal led to further positive dynamics of clinical and laboratory indices of inflammation, and improved the results of cytological and cytochemical study of IS. The results of the study demonstrate that inclusion of erespal in complex therapy of COLD increases efficacy of treatment, due to its anti-inflammatory action during the periods of exacerbation and relative remission, prevents augmenting of bronchial obstruction, and improves patients' LQ.

  16. Contribution of inflammation to vascular disease in chronic kidney disease patients

    International Nuclear Information System (INIS)

    Suliman, Mohamed E.; Stenvinkel, P.

    2008-01-01

    Chronic kidney disease (CKD) is characterized by an exceptionally high mortality rate, much of which results from cardiovascular disease (CVD). Chronic low-grade inflammation, as evidenced by increased levels of pro-inflammatory cytokines and C-reactive protein (CRP), is a common feature of CKD and may cause atherosclerotic CVD through various pathogenetic mechanisms. Evidence suggests that persistent inflammation may also be a risk factor for progression of CKD, which may result in a vicious inflammation-driven circle. The causes of inflammation in CKD are multifactorial. The influence of various comorbidities may contribute to inflammation in the setting of progressive loss of renal function. Available data suggest that pro-inflammatory cytokines also play a central role in the genesis of the metabolic syndrome. There is a lack of epidemiological data on the prevalence and consequences of inflammation in relation to protein-energy wasting (PEW) and CVD in CKD patients from developing countries. The westernization of nutritional intakes and changes of life style besides the high prevalence of chronic infections in developing countries are possible additive contributors to a high prevalence of inflammation, PEW and CVD among CKD patients. Also, genetic differences may affect inflammatory responses and nutritional status and thus the susceptibility to CVD in different regions. (author)

  17. Cerium oxide nanoparticles protect rodent lungs from hypobaric hypoxia-induced oxidative stress and inflammation

    Directory of Open Access Journals (Sweden)

    Arya A

    2013-11-01

    intraperitoneal injections of low micromole concentration, we successfully localized the nanoceria in rodent lung without any inflammatory response. The lung-deposited nanoceria limited ROS formation, lipid peroxidation, and glutathione oxidation, and prevented oxidative protein modifications like nitration and carbonyl formation during hypobaric hypoxia. We also observed reduced lung inflammation in the nanoceria-injected lungs, supporting the anti-inflammatory properties of nanoceria. Conclusion: Cumulatively, these results suggest nanoceria deposit in lungs, confer protection by quenching noxious free radicals during hypobaric hypoxia, and do not evoke any inflammatory response. Keywords: nanoceria, high altitude, nanomedicine

  18. Limonene and its ozone-initiated reaction products attenuate allergic lung inflammation in mice.

    Science.gov (United States)

    Hansen, Jitka S; Nørgaard, Asger W; Koponen, Ismo K; Sørli, Jorid B; Paidi, Maya D; Hansen, Søren W K; Clausen, Per Axel; Nielsen, Gunnar D; Wolkoff, Peder; Larsen, Søren Thor

    2016-11-01

    Inhalation of indoor air pollutants may cause airway irritation and inflammation and is suspected to worsen allergic reactions. Inflammation may be due to mucosal damage, upper (sensory) and lower (pulmonary) airway irritation due to activation of the trigeminal and vagal nerves, respectively, and to neurogenic inflammation. The terpene, d-limonene, is used as a fragrance in numerous consumer products. When limonene reacts with the pulmonary irritant ozone, a complex mixture of gas and particle phase products is formed, which causes sensory irritation. This study investigated whether limonene, ozone or the reaction mixture can exacerbate allergic lung inflammation and whether airway irritation is enhanced in allergic BALB/cJ mice. Naïve and allergic (ovalbumin sensitized) mice were exposed via inhalation for three consecutive days to clean air, ozone, limonene or an ozone-limonene reaction mixture. Sensory and pulmonary irritation was investigated in addition to ovalbumin-specific antibodies, inflammatory cells, total protein and surfactant protein D in bronchoalveolar lavage fluid and hemeoxygenase-1 and cytokines in lung tissue. Overall, airway allergy was not exacerbated by any of the exposures. In contrast, it was found that limonene and the ozone-limonene reaction mixture reduced allergic inflammation possibly due to antioxidant properties. Ozone induced sensory irritation in both naïve and allergic mice. However, allergic but not naïve mice were protected from pulmonary irritation induced by ozone. This study showed that irritation responses might be modulated by airway allergy. However, aggravation of allergic symptoms was observed by neither exposure to ozone nor exposure to ozone-initiated limonene reaction products. In contrast, anti-inflammatory properties of the tested limonene-containing pollutants might attenuate airway allergy.

  19. Exercise training attenuated chronic cigarette smoking-induced up-regulation of FIZZ1/RELMα in lung of rats.

    Science.gov (United States)

    Ma, Wan-li; Cai, Peng-cheng; Xiong, Xian-zhi; Ye, Hong

    2013-02-01

    FIZZ/RELM is a new gene family named "found in inflammatory zone" (FIZZ) or "resistin-like molecule" (RELM). FIZZ1/RELMα is specifically expressed in lung tissue and associated with pulmonary inflammation. Chronic cigarette smoking up-regulates FIZZ1/RELMα expression in rat lung tissues, the mechanism of which is related to cigarette smoking-induced airway hyperresponsiveness. To investigate the effect of exercise training on chronic cigarette smoking-induced airway hyperresponsiveness and up-regulation of FIZZ1/RELMα, rat chronic cigarette smoking model was established. The rats were treated with regular exercise training and their airway responsiveness was measured. Hematoxylin and eosin (HE) staining, immunohistochemistry and in situ hybridization of lung tissues were performed to detect the expression of FIZZ1/RELMα. Results revealed that proper exercise training decreased airway hyperresponsiveness and pulmonary inflammation in rat chronic cigarette smoking model. Cigarette smoking increased the mRNA and protein levels of FIZZ1/RELMα, which were reversed by the proper exercise. It is concluded that proper exercise training prevents up-regulation of FIZZ1/RELMα induced by cigarette smoking, which may be involved in the mechanism of proper exercise training modulating airway hyperresponsiveness.

  20. Lung lobar volume in patients with chronic interstitial pneumonia

    International Nuclear Information System (INIS)

    Harada, Hisao; Koba, Hiroyuki; Saitoh, Tsukasa; Abe, Shosaku.

    1997-01-01

    We measured lung lobar volume by using helical computed tomography (HCT) in 23 patients with idiopathic interstitial pneumonia (IIP), 7 patients with chronic interstitial pneumonia associated with collagen vascular disease (CVD-IP), and 5 healthy volunteers HCT scanning was done at the maximal inspiratory level and the resting end-expiratory level. To measure lung lobar volume, we traced the lobar margin on HCT images with a digitizer and calculated the lobar volume with a personal computer. The lower lobar volume and several factors influencing it in chronic interstitial pneumonia were studied. At the maximal inspiratory level, the lower lobar volume as a percent of the whole lung volume was 46.8±4.13% (mean ± SD) in the volunteers, 39.5±6.19% in the patients with IIP, and 27.7±7. 86% in the patients with CVD-IP. The lower lobar volumes in the patients were significantly lower than in the volunteers. Patients with IIP in whom autoantibody tests were positive had lower lobar volumes that were very low and were similar to those of patients with CVD-IP. These data suggest that collagen vascular disease may develop in patients with interstitial pneumonia. The patients with IIP who had emphysematous changes on the CT scans had smaller decreases in total lung capacity and lower ratios of forced expiratory volume in one second to forced vital capacity than did those who had no emphysematous changes, those two groups did not differ in the ratio of lower lobar volume to whole lung volume. This suggests that emphysematous change is not factor influencing lower lobar volume in patients with chronic interstitial pneumonia. We conclude that chronic interstitial pneumonia together with very low values for lower lobar volume may be a pulmonary manifestation of collagen vascular disease. (author)

  1. Can mechanical ventilation strategies reduce chronic lung disease?

    Science.gov (United States)

    Donn, Steven M; Sinha, Sunil K

    2003-12-01

    Chronic lung disease (CLD) continues to be a significant complication in newborn infants undergoing mechanical ventilation for respiratory failure. Although the aetiology of CLD is multifactorial, specific factors related to mechanical ventilation, including barotrauma, volutrauma and atelectrauma, have been implicated as important aetiologic mechanisms. This article discusses the ways in which these factors might be manipulated by various mechanical ventilatory strategies to reduce ventilator-induced lung injury. These include continuous positive airway pressure, permissive hypercapnia, patient-triggered ventilation, volume-targeted ventilation, proportional assist ventilation, high-frequency ventilation and real-time monitoring.

  2. Mesoporous carbon nanomaterials induced pulmonary surfactant inhibition, cytotoxicity, inflammation and lung fibrosis.

    Science.gov (United States)

    Chen, Yunan; Yang, Yi; Xu, Bolong; Wang, Shunhao; Li, Bin; Ma, Juan; Gao, Jie; Zuo, Yi Y; Liu, Sijin

    2017-12-01

    Environmental exposure and health risk upon engineered nanomaterials are increasingly concerned. The family of mesoporous carbon nanomaterials (MCNs) is a rising star in nanotechnology for multidisciplinary research with versatile applications in electronics, energy and gas storage, and biomedicine. Meanwhile, there is mounting concern on their environmental health risks due to the growing production and usage of MCNs. The lung is the primary site for particle invasion under environmental exposure to nanomaterials. Here, we studied the comprehensive toxicological profile of MCNs in the lung under the scenario of moderate environmental exposure. It was found that at a low concentration of 10μg/mL MCNs induced biophysical inhibition of natural pulmonary surfactant. Moreover, MCNs at similar concentrations reduced viability of J774A.1 macrophages and lung epithelial A549 cells. Incubating with nature pulmonary surfactant effectively reduced the cytotoxicity of MCNs. Regarding the pro-inflammatory responses, MCNs activated macrophages in vitro, and stimulated lung inflammation in mice after inhalation exposure, associated with lung fibrosis. Moreover, we found that the size of MCNs played a significant role in regulating cytotoxicity and pro-inflammatory potential of this nanomaterial. In general, larger MCNs induced more pronounced cytotoxic and pro-inflammatory effects than their smaller counterparts. Our results provided valuable information on the toxicological profile and environmental health risks of MCNs, and suggested that fine-tuning the size of MCNs could be a practical precautionary design strategy to increase safety and biocompatibility of this nanomaterial. Copyright © 2017. Published by Elsevier B.V.

  3. Hypothalamic inflammation and food intake regulation during chronic illness

    NARCIS (Netherlands)

    Dwarkasing, J.T.; Marks, D.L.; Witkamp, R.F.; Norren, van K.

    2016-01-01

    Anorexia is a common symptom in chronic illness. It contributes to malnutrition and strongly affects survival and quality of life. A common denominator of many chronic diseases is an elevated inflammatory status, which is considered to play a pivotal role in the failure of food-intake regulating

  4. Flock worker's lung: chronic interstitial lung disease in the nylon flocking industry.

    Science.gov (United States)

    Kern, D G; Crausman, R S; Durand, K T; Nayer, A; Kuhn, C

    1998-08-15

    Two young men working at a nylon flocking plant in Rhode Island developed interstitial lung disease of unknown cause. Similar clusters at the same company's Canadian plant were reported previously. To define the extent, clinicopathologic features, and potential causes of the apparent disease outbreak. Case-finding survey and retrospective cohort study. Academic occupational medicine program. All workers employed at the Rhode Island plant on or after 15 June 1990. Symptomatic employees had chest radiography, pulmonary function tests, high-resolution computed tomography, and serologic testing. Those with unexplained radiographic or pulmonary function abnormalities underwent bronchoalveolar lavage, lung biopsy, or both. The case definition of "flock worker's lung" required histologic evidence of interstitial lung disease (or lavage evidence of lung inflammation) not explained by another condition. Eight cases of flock worker's lung were identified at the Rhode Island plant. Three cases were characterized by a high proportion of eosinophils (25% to 40%) in lavage fluid. Six of the seven patients who had biopsy had histologic findings of nonspecific interstitial pneumonia, and the seventh had bronchiolitis obliterans organizing pneumonia. All seven of these patients had peribronchovascular interstitial lymphoid nodules, usually with germinal centers, and most had lymphocytic bronchiolitis and interstitial fibrosis. All improved after leaving work. Review of the Canadian tissue specimens showed many similar histologic findings. Among the 165-member study cohort, a 48-fold or greater increase was seen in the sex-adjusted incidence rate of all interstitial lung disease. Work in the nylon flocking industry poses substantial risk for a previously unrecognized occupational interstitial lung disease. Nylon fiber is the suspected cause of this condition.

  5. One in vitro model for visceral adipose-derived fibroblasts in chronic inflammation

    International Nuclear Information System (INIS)

    Yue Guiping; Du Lirui; Xia Tao; He Xianhui; Qiu Huan; Xu Lihui; Chen Xiaodong; Feng Shengqiu; Yang Zaiqing

    2005-01-01

    One pathogenesis of the obesity-associated complications is that consistent with increased body fat mass, the elevation of adipose tissue-derived cytokines inflicts a low-grade chronic inflammation, which ultimately leads to metabolic disorders. Adipocytes and macrophages in visceral adipose (VA) have been confirmed to contribute to the chronic inflammation; however, the role of the resident fibroblasts is still unknown. We established one VA fibroblast cell line, termed VAFC. Morphological analysis indicated that there were large numbers of pits at the cell plasma membrane. In vitro VAFC cells promoted bone marrow cells to differentiate into macrophages and protected them from apoptosis in the serum-free conditions. Additionally, they also interfered in lymphocytes proliferation. On the basis of these results, this cell line might be an in vitro model for understanding the role of adipose-derived fibroblasts in obesity-associated chronic inflammation

  6. Social Isolation and Adult Mortality: The Role of Chronic Inflammation and Sex Differences

    Science.gov (United States)

    Yang, Yang Claire; McClintock, Martha K.; Kozloski, Michael; Li, Ting

    2014-01-01

    The health and survival benefits of social embeddedness have been widely documented across social species, but the underlying biophysiological mechanisms have not been elucidated in the general population. We assessed the process by which social isolation increases the risk for all-cause and chronic disease mortality through proinflammatory mechanisms. Using the 18-year mortality follow-up data (n = 6,729) from the National Health and Nutrition Examination Survey (1988–2006) on Social Network Index and multiple markers of chronic inflammation, we conducted survival analyses and found evidence that supports the mediation role of chronic inflammation in the link between social isolation and mortality. A high-risk fibrinogen level and cumulative inflammation burden may be particularly important in this link. There are notable sex differences in the mortality effects of social isolation in that they are greater for men and can be attributed in part to their heightened inflammatory responses. PMID:23653312

  7. Characteristic patterns in the fibrotic lung. Comparing idiopathic pulmonary fibrosis with chronic lung allograft dysfunction.

    Science.gov (United States)

    Fernandez, Isis E; Heinzelmann, Katharina; Verleden, Stijn; Eickelberg, Oliver

    2015-03-01

    Tissue fibrosis, a major cause of death worldwide, leads to significant organ dysfunction in any organ of the human body. In the lung, fibrosis critically impairs gas exchange, tissue oxygenation, and immune function. Idiopathic pulmonary fibrosis (IPF) is the most detrimental and lethal fibrotic disease of the lung, with an estimated median survival of 50% after 3-5 years. Lung transplantation currently remains the only therapeutic alternative for IPF and other end-stage pulmonary disorders. Posttransplant lung function, however, is compromised by short- and long-term complications, most importantly chronic lung allograft dysfunction (CLAD). CLAD affects up to 50% of all transplanted lungs after 5 years, and is characterized by small airway obstruction with pronounced epithelial injury, aberrant wound healing, and subepithelial and interstitial fibrosis. Intriguingly, the mechanisms leading to the fibrotic processes in the engrafted lung exhibit striking similarities to those in IPF; therefore, antifibrotic therapies may contribute to increased graft function and survival in CLAD. In this review, we focus on these common fibrosis-related mechanisms in IPF and CLAD, comparing and contrasting clinical phenotypes, the mechanisms of fibrogenesis, and biomarkers to monitor, predict, or prognosticate disease status.

  8. [Lung dysfunction in patients with severe chronic obstructive bronchitis].

    Science.gov (United States)

    Nefedov, V B; Popova, L A; Shergina, E A

    2005-01-01

    VC, FVC, FEV1, FEV1/VC%, PEF, MEF25, MEF50, MEF75, TCL, TGV, RV, Raw, Rin, Rex, DLCO-SS, PaO2, and PaCO2 were determined in 36 patients with severe chronic obstructive lung disease (FEV1 volumes and capacities; 83.3% of the patients had pulmonary gas exchange dysfunction. Impaired bronchial patency mainly appeared as decreased FEV1, FEV1/VC%, PEF, MEF25, MEF50, MEF75, Raw, Rin, Rex; altered lung volumes and capacities manifested by increased RV, TGV, and TLC, and by decreased VC and FVC; pulmonary gas exchange dysfunction showed up as lowered PaO2 and DLCO-SS, as decreased or increased PaCO2. The observed bronchial patency disorders varied from significant to severe; functional changes in lung volumes and capacities were mild to severe.

  9. Role of Quzhou Fructus Aurantii Extract in Preventing and Treating Acute Lung Injury and Inflammation.

    Science.gov (United States)

    Li, Lili; Zhang, Sheng; Xin, Yanfei; Sun, Junying; Xie, Feng; Yang, Lin; Chen, Zhiqin; Chen, Hao; Liu, Fang; Xuan, Yaoxian; You, Zhenqiang

    2018-01-26

    Quzhou Fructus Aurantii (QFA) is an authentic herb of local varieties in Zhejiang, China, which is usually used to treat gastrointestinal illnesses, but its effects on respiratory inflammation have not been reported yet. In our study, the anti-inflammatory activity of QFA extract (QFAE) was evaluated on copper sulfate pentahydrate (CuSO 4 ·5H 2 O)-induced transgenic neutrophil fluorescent zebrafish model. QFAE showed a significant effect of anti-inflammation in CuSO 4 ·5H 2 O-induced zebrafish by reducing the neutrophil number in the inflammatory site. We investigated the anti-inflammatory activity of QFAE on lipopolysaccharide (LPS)-induced acute lung injury (ALI) mice models and RAW 264.7 cells. QFAE had an anti-inflammatory effect on reducing total cells, neutrophils, and macrophages in BALF and attenuated alveolus collapse, neutrophils infiltration, lung W/D ratio, myeloperoxidase (MPO) protein expression and other pulmonary histological changes in lung tissues, as well as hematological changes. Levels of pro-inflammatory cytokines, including TNF, IL-6, IFN-γ, MCP-1, and IL-12p70, were decreased, whereas anti-inflammatory cytokine IL-10 was increased after treatment with QFAE both in vivo and in vitro. In summary, our results suggested that QFAE had apparent anti-inflammatory effects on CuSO 4 ·5H 2 O-induced zebrafish, LPS-induced ALI mice, and RAW 264.7 cells. Furthermore, QFAE may be a therapeutic drug to treat ALI/ARDS and other respiratory inflammations.

  10. Chronic inflammation, immune response, and infection in abdominal aortic aneurysms

    DEFF Research Database (Denmark)

    Lindholt, Jes Sanddal; Shi, G-P

    2006-01-01

    Abdominal aortic aneurysms (AAA) are associated with atherosclerosis, transmural degenerative processes, neovascularization, decrease in content of vascular smooth muscle cells, and a chronic infiltration, mainly located in the outer aortic wall. The chronic infiltration consists mainly of macrop......Abdominal aortic aneurysms (AAA) are associated with atherosclerosis, transmural degenerative processes, neovascularization, decrease in content of vascular smooth muscle cells, and a chronic infiltration, mainly located in the outer aortic wall. The chronic infiltration consists mainly...... matrix metalloproteases and cysteine proteases for aortic matrix remodeling. The lymphocyte activation may be mediated by microorganisms as well as autoantigens generated from vascular structural proteins, perhaps through molecular mimicry. As in autoimmune diseases, the risk of AAA is increased...

  11. Chronic plus binge ethanol exposure causes more severe pancreatic injury and inflammation

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Zhenhua [Department of Anatomy, School of Basic Medicine, Anhui Medical University, Hefei, Anhui, China 230032 (China); Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536 (United States); Yang, Fanmuyi; Wang, Xin; Wang, Yongchao; Xu, Mei; Frank, Jacqueline A. [Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536 (United States); Ke, Zun-ji [Department of Biochemistry, Shanghai University of Traditional Chinese Medicine, Shanghai 201203 (China); Zhang, Zhuo; Shi, Xianglin [Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, KY 40536 (United States); Luo, Jia, E-mail: jialuo888@uky.edu [Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536 (United States)

    2016-10-01

    Alcohol abuse increases the risk for pancreatitis. The pattern of alcohol drinking may impact its effect. We tested a hypothesis that chronic ethanol consumption in combination with binge exposure imposes more severe damage to the pancreas. C57BL/6 mice were divided into four groups: control, chronic ethanol exposure, binge ethanol exposure and chronic plus binge ethanol exposure. For the control group, mice were fed with a liquid diet for two weeks. For the chronic ethanol exposure group, mice were fed with a liquid diet containing 5% ethanol for two weeks. In the binge ethanol exposure group, mice were treated with ethanol by gavage (5 g/kg, 25% ethanol w/v) daily for 3 days. For the chronic plus binge exposure group, mice were fed with a liquid diet containing 5% ethanol for two weeks and exposed to ethanol by gavage during the last 3 days. Chronic and binge exposure alone caused minimal pancreatic injury. However, chronic plus binge ethanol exposure induced significant apoptotic cell death. Chronic plus binge ethanol exposure altered the levels of alpha-amylase, glucose and insulin. Chronic plus binge ethanol exposure caused pancreatic inflammation which was shown by the macrophages infiltration and the increase of cytokines and chemokines. Chronic plus binge ethanol exposure increased the expression of ADH1 and CYP2E1. It also induced endoplasmic reticulum stress which was demonstrated by the unfolded protein response. In addition, chronic plus binge ethanol exposure increased protein oxidation and lipid peroxidation, indicating oxidative stress. Therefore, chronic plus binge ethanol exposure is more detrimental to the pancreas. - Highlights: • Chronic plus binge alcohol drinking causes more pancreatic injury. • Chronic plus binge alcohol drinking induces more pancreatic inflammation. • Chronic plus binge alcohol causes more endoplasmic reticulum stress and oxidative stress.

  12. Chronic plus binge ethanol exposure causes more severe pancreatic injury and inflammation

    International Nuclear Information System (INIS)

    Ren, Zhenhua; Yang, Fanmuyi; Wang, Xin; Wang, Yongchao; Xu, Mei; Frank, Jacqueline A.; Ke, Zun-ji; Zhang, Zhuo; Shi, Xianglin; Luo, Jia

    2016-01-01

    Alcohol abuse increases the risk for pancreatitis. The pattern of alcohol drinking may impact its effect. We tested a hypothesis that chronic ethanol consumption in combination with binge exposure imposes more severe damage to the pancreas. C57BL/6 mice were divided into four groups: control, chronic ethanol exposure, binge ethanol exposure and chronic plus binge ethanol exposure. For the control group, mice were fed with a liquid diet for two weeks. For the chronic ethanol exposure group, mice were fed with a liquid diet containing 5% ethanol for two weeks. In the binge ethanol exposure group, mice were treated with ethanol by gavage (5 g/kg, 25% ethanol w/v) daily for 3 days. For the chronic plus binge exposure group, mice were fed with a liquid diet containing 5% ethanol for two weeks and exposed to ethanol by gavage during the last 3 days. Chronic and binge exposure alone caused minimal pancreatic injury. However, chronic plus binge ethanol exposure induced significant apoptotic cell death. Chronic plus binge ethanol exposure altered the levels of alpha-amylase, glucose and insulin. Chronic plus binge ethanol exposure caused pancreatic inflammation which was shown by the macrophages infiltration and the increase of cytokines and chemokines. Chronic plus binge ethanol exposure increased the expression of ADH1 and CYP2E1. It also induced endoplasmic reticulum stress which was demonstrated by the unfolded protein response. In addition, chronic plus binge ethanol exposure increased protein oxidation and lipid peroxidation, indicating oxidative stress. Therefore, chronic plus binge ethanol exposure is more detrimental to the pancreas. - Highlights: • Chronic plus binge alcohol drinking causes more pancreatic injury. • Chronic plus binge alcohol drinking induces more pancreatic inflammation. • Chronic plus binge alcohol causes more endoplasmic reticulum stress and oxidative stress.

  13. Up-Regulation of Claudin-6 in the Distal Lung Impacts Secondhand Smoke-Induced Inflammation

    Directory of Open Access Journals (Sweden)

    Joshua B. Lewis

    2016-10-01

    Full Text Available It has long been understood that increased epithelial permeability contributes to inflammation observed in many respiratory diseases. Recently, evidence has revealed that environmental exposure to noxious material such as cigarette smoke reduces tight junction barrier integrity, thus enhancing inflammatory conditions. Claudin-6 (Cldn6 is a tetraspanin transmembrane protein found within the tight junctional complex and is implicated in maintaining lung epithelial barriers. To test the hypothesis that increased Cldn6 ameliorates inflammation at the respiratory barrier, we utilized the Tet-On inducible transgenic system to conditionally over-express Clnd6 in the distal lung. Cldn6 transgenic (TG and control mice were continuously provided doxycycline from postnatal day (PN 30 until euthanasia date at PN90. A subset of Cldn6 TG and control mice were also subjected to daily secondhand tobacco smoke (SHS via a nose only inhalation system from PN30-90 and compared to room air (RA controls. Animals were euthanized on PN90 and lungs were harvested for histological and molecular characterization. Bronchoalveolar lavage fluid (BALF was procured for the assessment of inflammatory cells and molecules. Quantitative RT-PCR and immunoblotting revealed increased Cldn6 expression in TG vs. control animals and SHS decreased Cldn6 expression regardless of genetic up-regulation. Histological evaluations revealed no adverse pulmonary remodeling via Hematoxylin and Eosin (H&E staining or any qualitative alterations in the abundance of type II pneumocytes or proximal non-ciliated epithelial cells via staining for cell specific propeptide of Surfactant Protein-C (proSP-C or Club Cell Secretory Protein (CCSP, respectively. Immunoblotting and qRT-PCR confirmed the differential expression of Cldn6 and the pro-inflammatory cytokines TNF-α and IL-1β. As a general theme, inflammation induced by SHS exposure was influenced by the availability of Cldn6. These data reveal

  14. Aerobic Exercise Decreases Lung Inflammation by IgE Decrement in an OVA Mice Model.

    Science.gov (United States)

    Camargo Hizume-Kunzler, Deborah; Greiffo, Flavia R; Fortkamp, Bárbara; Ribeiro Freitas, Gabriel; Keller Nascimento, Juliana; Regina Bruggemann, Thayse; Melo Avila, Leonardo; Perini, Adenir; Bobinski, Franciane; Duarte Silva, Morgana; Rocha Lapa, Fernanda; Paula Vieira, Rodolfo; Vargas Horewicz, Verônica; Soares Dos Santos, Adair Roberto; Cattelan Bonorino, Kelly

    2017-06-01

    Aerobic exercise (AE) reduces lung function decline and risk of exacerbations in asthmatic patients. However, the inflammatory lung response involved in exercise during the sensitization remains unclear. Therefore, we evaluated the effects of exercise for 2 weeks in an experimental model of sensitization and single ovalbumin-challenge. Mice were divided into 4 groups: mice non-sensitized and not submitted to exercise (Sedentary, n=10); mice non-sensitized and submitted to exercise (Exercise, n=10); mice sensitized and exposed to ovalbumin (OVA, n=10); and mice sensitized, submitted to exercise and exposed to OVA (OVA+Exercise, n=10). 24 h after the OVA/saline exposure, we counted inflammatory cells from bronchoalveolar fluid (BALF), lung levels of total IgE, IL-4, IL-5, IL-10 and IL-1ra, measurements of OVA-specific IgG1 and IgE, and VEGF and NOS-2 expression via western blotting. AE reduced cell counts from BALF in the OVA group (p<0.05), total IgE, IL-4 and IL-5 lung levels and OVA-specific IgE and IgG1 titers (p<0.05). There was an increase of NOS-2 expression, IL-10 and IL-1ra lung levels in the OVA groups (p<0.05). Our results showed that AE attenuated the acute lung inflammation, suggesting immunomodulatory properties on the sensitization process in the early phases of antigen presentation in asthma. © Georg Thieme Verlag KG Stuttgart · New York.

  15. Acrolein induced both pulmonary inflammation and the death of lung epithelial cells.

    Science.gov (United States)

    Sun, Yang; Ito, Sachiko; Nishio, Naomi; Tanaka, Yuriko; Chen, Nana; Isobe, Ken-Ichi

    2014-09-02

    Acrolein, a compound found in cigarette smoke, is a major risk factor for respiratory diseases. Previous research determined that both acrolein and cigarette smoke produced reactive oxygen species (ROS). As many types of pulmonary injuries are associated with inflammation, this study sought to ascertain the extent to which exposure to acrolein advanced inflammatory state in the lungs. Our results showed that intranasal exposure of mice to acrolein increased CD11c(+)F4/80(high) macrophages in the lungs and increased ROS formation via induction of NF-κB signaling. Treatment with acrolein activated macrophages and led to their increased production of ROS and expression of several key pro-inflammatory cytokines. In in vitro studies, acrolein treatment of bone marrow-derived GM-CSF-dependent immature macrophages (GM-IMs), activated the cells and led to their increased production of ROS and expression of several key pro-inflammatory cytokines. Acrolein treatment of macrophages induced apoptosis of lung epithelial cells. Inclusion of an inhibitor of ROS formation markedly decreased acrolein-mediated macrophage activation and reduced the extent of epithelial cell death. These results indicate that acrolein can cause lung damage, in great part by mediating the increased release of pro-inflammatory cytokines/factors by macrophages. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  16. Liver stiffness measurement-based scoring system for significant inflammation related to chronic hepatitis B.

    Directory of Open Access Journals (Sweden)

    Mei-Zhu Hong

    Full Text Available Liver biopsy is indispensable because liver stiffness measurement alone cannot provide information on intrahepatic inflammation. However, the presence of fibrosis highly correlates with inflammation. We constructed a noninvasive model to determine significant inflammation in chronic hepatitis B patients by using liver stiffness measurement and serum markers.The training set included chronic hepatitis B patients (n = 327, and the validation set included 106 patients; liver biopsies were performed, liver histology was scored, and serum markers were investigated. All patients underwent liver stiffness measurement.An inflammation activity scoring system for significant inflammation was constructed. In the training set, the area under the curve, sensitivity, and specificity of the fibrosis-based activity score were 0.964, 91.9%, and 90.8% in the HBeAg(+ patients and 0.978, 85.0%, and 94.0% in the HBeAg(- patients, respectively. In the validation set, the area under the curve, sensitivity, and specificity of the fibrosis-based activity score were 0.971, 90.5%, and 92.5% in the HBeAg(+ patients and 0.977, 95.2%, and 95.8% in the HBeAg(- patients. The liver stiffness measurement-based activity score was comparable to that of the fibrosis-based activity score in both HBeAg(+ and HBeAg(- patients for recognizing significant inflammation (G ≥3.Significant inflammation can be accurately predicted by this novel method. The liver stiffness measurement-based scoring system can be used without the aid of computers and provides a noninvasive alternative for the prediction of chronic hepatitis B-related significant inflammation.

  17. Current concepts on oxidative/carbonyl stress, inflammation and epigenetics in pathogenesis of chronic obstructive pulmonary disease

    International Nuclear Information System (INIS)

    Yao Hongwei; Rahman, Irfan

    2011-01-01

    Chronic obstructive pulmonary disease (COPD) is a global health problem. The current therapies for COPD are poorly effective and the mainstays of pharmacotherapy are bronchodilators. A better understanding of the pathobiology of COPD is critical for the development of novel therapies. In the present review, we have discussed the roles of oxidative/aldehyde stress, inflammation/immunity, and chromatin remodeling in the pathogenesis of COPD. An imbalance of oxidants/antioxidants caused by cigarette smoke and other pollutants/biomass fuels plays an important role in the pathogenesis of COPD by regulating redox-sensitive transcription factors (e.g., NF-κB), autophagy and unfolded protein response leading to chronic lung inflammatory response. Cigarette smoke also activates canonical/alternative NF-κB pathways and their upstream kinases leading to sustained inflammatory response in lungs. Recently, epigenetic regulation has been shown to be critical for the development of COPD because the expression/activity of enzymes that regulate these epigenetic modifications have been reported to be abnormal in airways of COPD patients. Hence, the significant advances made in understanding the pathophysiology of COPD as described herein will identify novel therapeutic targets for intervention in COPD.

  18. Alcohol Exposure Alters Mouse Lung Inflammation in Response to Inhaled Dust

    Directory of Open Access Journals (Sweden)

    Jill A. Poole

    2012-07-01

    Full Text Available Alcohol exposure is associated with increased lung infections and decreased mucociliary clearance. Occupational workers exposed to dusts from concentrated animal feeding operations (CAFOs are at risk for developing chronic inflammatory lung diseases. Agricultural worker co-exposure to alcohol and organic dust has been established, although little research has been conducted on the combination effects of alcohol and organic dusts on the lung. Previously, we have shown in a mouse model that exposure to hog dust extract (HDE collected from a CAFO results in the activation of protein kinase C (PKC, elevated lavage fluid cytokines/chemokines including interleukin-6 (IL-6, and the development of significant lung pathology. Because alcohol blocks airway epithelial cell release of IL-6 in vitro, we hypothesized that alcohol exposure would alter mouse lung inflammatory responses to HDE. To test this hypothesis, C57BL/6 mice were fed 20% alcohol or water ad libitum for 6 weeks and treated with 12.5% HDE by intranasal inhalation method daily during the final three weeks. Bronchoalveolar lavage fluid (BALF, tracheas and lungs were collected. HDE stimulated a 2–4 fold increase in lung and tracheal PKCε (epsilon activity in mice, but no such increase in PKCε activity was observed in dust-exposed mice fed alcohol. Similarly, alcohol-fed mice demonstrated significantly less IL-6 in lung lavage in response to dust than that observed in control mice instilled with HDE. TNFα levels were also inhibited in the alcohol and HDE-exposed mouse lung tissue as compared to the HDE only exposed group. HDE-induced lung inflammatory aggregates clearly present in the tissue from HDE only exposed animals were not visually detectable in the HDE/alcohol co-exposure group. Statistically significant weight reductions and 20% mortality were also observed in the mice co-exposed to HDE and alcohol. These data suggest that alcohol exposure depresses the ability

  19. The Effects of Resveratrol on Inflammation and Oxidative Stress in a Rat Model of Chronic Obstructive Pulmonary Disease.

    Science.gov (United States)

    Wang, Xiao-Li; Li, Ting; Li, Ji-Hong; Miao, Shu-Ying; Xiao, Xian-Zhong

    2017-09-12

    Oxidative stress and inflammation are hypothesized to contribute to the pathogenesis of chronic obstructive pulmonary disease (COPD). Resveratrol (trans-3,5,4'-trihydroxystilbene) is known for its antioxidant and anti-inflammatory properties. The study aimed to investigate the effects of resveratrol in a rat model with COPD on the regulation of oxidative stress and inflammation via the activation of Sirtuin1 (SIRTl) and proliferator-activated receptor-γ coactivator-1α (PGC-1α). Thirty Wistar rats were randomly divided into three groups: control group, COPD group and resveratrol intervention group. The COPD model was established by instilling with lipopolysaccharide (LPS) and challenging with cigarette smoke (CS). The levels of interleukin-6 (IL-6) and interleukin-8 (IL-8) in serum were measured. The levels of malondialdehyde (MDA) and the activity of superoxide dismutase (SOD) were measured. The expression levels of SIRT1 and PGC-1α in the lung tissues were examined by immunohistochemistry as well as real-time reverse transcriptase polymerase chain reaction (real-time RT-PCR) and western blotting analysis. After the treatment with resveratrol (50 mg/kg), compared with the COPD group, alleviation of inflammation and reconstruction in the small airways of the lungs were seen. Resveratrol might be correlated not only with the lower level of MDA and the higher activity of SOD, but also with the upregulation of SIRT1 and PGC-1α expression. Resveratrol treatment decreased serum levels of IL-6 and IL-8. Our findings indicate that resveratrol had a therapeutic effect in our rat COPD model, which is related to the inhibition of oxidative stress and inflammatory response. The mechanism may be related to the activation and upgrading of the SIRT1/PGC-1α signaling pathways. Thus resveratrol might be a therapeutic modality in COPD.

  20. Will chronic e-cigarette use cause lung disease?

    Science.gov (United States)

    Rowell, Temperance R; Tarran, Robert

    2015-12-15

    Chronic tobacco smoking is a major cause of preventable morbidity and mortality worldwide. In the lung, tobacco smoking increases the risk of lung cancer, and also causes chronic obstructive pulmonary disease (COPD), which encompasses both emphysema and chronic bronchitis. E-cigarettes (E-Cigs), or electronic nicotine delivery systems, were developed over a decade ago and are designed to deliver nicotine without combusting tobacco. Although tobacco smoking has declined since the 1950s, E-Cig usage has increased, attracting both former tobacco smokers and never smokers. E-Cig liquids (e-liquids) contain nicotine in a glycerol/propylene glycol vehicle with flavorings, which are vaporized and inhaled. To date, neither E-Cig devices, nor e-liquids, are regulated by the Food and Drug Administration (FDA). The FDA has proposed a deeming rule, which aims to initiate legislation to regulate E-Cigs, but the timeline to take effect is uncertain. Proponents of E-Cigs say that they are safe and should not be regulated. Opposition is varied, with some opponents proposing that E-Cig usage will introduce a new generation to nicotine addiction, reversing the decline seen with tobacco smoking, or that E-Cigs generally may not be safe and will trigger diseases like tobacco. In this review, we shall discuss what is known about the effects of E-Cigs on the mammalian lung and isolated lung cells in vitro. We hope that collating this data will help illustrate gaps in the knowledge of this burgeoning field, directing researchers toward answering whether or not E-Cigs are capable of causing disease. Copyright © 2015 the American Physiological Society.

  1. Simulating sleep apnea by exposure to intermittent hypoxia induces inflammation in the lung and liver.

    Science.gov (United States)

    da Rosa, Darlan Pase; Forgiarini, Luiz Felipe; Baronio, Diego; Feijó, Cristiano Andrade; Martinez, Dênis; Marroni, Norma Possa

    2012-01-01

    Sleep apnea is a breathing disorder that results from momentary and cyclic collapse of the upper airway, leading to intermittent hypoxia (IH). IH can lead to the formation of free radicals that increase oxidative stress, and this mechanism may explain the association between central sleep apnea and nonalcoholic steatohepatitis. We assessed the level of inflammation in the lung and liver tissue from animals subjected to intermittent hypoxia and simulated sleep apnea. A total of 12 C57BL/6 mice were divided into two groups and then exposed to IH (n = 6) or a simulated IH (SIH) (n = 6) for 35 days. We observed an increase in oxidative damage and other changes to endogenous antioxidant enzymes in mice exposed to IH. Specifically, the expression of multiple transcription factors, including hypoxia inducible factor (HIF-1α), nuclear factor kappa B (NF-κB), and tumor necrosis factor (TNF-α), inducible NO synthase (iNOS), vascular endothelial growth factor (VEGF), and cleaved caspase 3 were shown to be increased in the IH group. Overall, we found that exposure to intermittent hypoxia for 35 days by simulating sleep apnea leads to oxidative stress, inflammation, and increased activity of caspase 3 in the liver and lung.

  2. Simulating Sleep Apnea by Exposure to Intermittent Hypoxia Induces Inflammation in the Lung and Liver

    Directory of Open Access Journals (Sweden)

    Darlan Pase da Rosa

    2012-01-01

    Full Text Available Sleep apnea is a breathing disorder that results from momentary and cyclic collapse of the upper airway, leading to intermittent hypoxia (IH. IH can lead to the formation of free radicals that increase oxidative stress, and this mechanism may explain the association between central sleep apnea and nonalcoholic steatohepatitis. We assessed the level of inflammation in the lung and liver tissue from animals subjected to intermittent hypoxia and simulated sleep apnea. A total of 12 C57BL/6 mice were divided into two groups and then exposed to IH (n=6 or a simulated IH (SIH (n=6 for 35 days. We observed an increase in oxidative damage and other changes to endogenous antioxidant enzymes in mice exposed to IH. Specifically, the expression of multiple transcription factors, including hypoxia inducible factor (HIF-1α, nuclear factor kappa B (NF-κB, and tumor necrosis factor (TNF-α, inducible NO synthase (iNOS, vascular endothelial growth factor (VEGF, and cleaved caspase 3 were shown to be increased in the IH group. Overall, we found that exposure to intermittent hypoxia for 35 days by simulating sleep apnea leads to oxidative stress, inflammation, and increased activity of caspase 3 in the liver and lung.

  3. RGD-tagged helical rosette nanotubes aggravate acute lipopolysaccharide-induced lung inflammation

    Directory of Open Access Journals (Sweden)

    Suri SS

    2011-12-01

    Full Text Available Sarabjeet Singh Suri1, Steven Mills1, Gurpreet Kaur Aulakh1, Felaniaina Rakotondradany2, Hicham Fenniri2, Baljit Singh11Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon; 2National Institute for Nanotechnology and Department of Chemistry, Edmonton, CanadaAbstract: Rosette nanotubes (RNT are a novel class of self-assembled biocompatible nanotubes that offer a built-in strategy for engineering structure and function through covalent tagging of synthetic self-assembling modules (G∧C motif. In this report, the G∧C motif was tagged with peptide Arg-Gly-Asp-Ser-Lys (RGDSK-G∧C and amino acid Lys (K-G∧C which, upon co-assembly, generate RNTs featuring RGDSK and K on their surface in predefined molar ratios. These hybrid RNTs, referred to as Kx/RGDSKy-RNT, where x and y refer to the molar ratios of K-G∧C and RGDSK–G∧C, were designed to target neutrophil integrins. A mouse model was used to investigate the effects of intravenous Kx/RGDSKy-RNT on acute lipopolysaccharide (LPS-induced lung inflammation. Healthy male C57BL/6 mice were treated intranasally with Escherichia coli LPS 80 µg and/or intravenously with K90/RGDSK10-RNT. Here we provide the first evidence that intravenous administration of K90/RGDSK10-RNT aggravates the proinflammatory effect of LPS in the mouse. LPS and K90/RGDSK10-RNT treatment groups showed significantly increased infiltration of polymorphonuclear cells in bronchoalveolar lavage fluid at all time points compared with the saline control. The combined effect of LPS and K90/RGDSK10-RNT was more pronounced than LPS alone, as shown by a significant increase in the expression of interleukin-1ß, MCP-1, MIP-1, and KC-1 in the bronchoalveolar lavage fluid and myeloperoxidase activity in the lung tissues. We conclude that K90/RGDSK10-RNT promotes acute lung inflammation, and when used along with LPS, leads to exaggerated immune response in the lung.Keywords: RGD peptide, helical rosette

  4. The Emerging Role of Chronic Low-Grade Inflammation in the Pathophysiology of Polycystic Ovary Syndrome.

    Science.gov (United States)

    Shorakae, Soulmaz; Teede, Helena; de Courten, Barbora; Lambert, Gavin; Boyle, Jacqueline; Moran, Lisa J

    2015-07-01

    Polycystic ovary syndrome (PCOS) has become increasingly common over recent years and is associated with reproductive features as well as cardiometabolic risk factors, including visceral obesity, dyslipidemia and impaired glucose homeostasis, and potentially cardiovascular disease. Emerging evidence suggests that these long-term metabolic effects are linked to a low-grade chronic inflammatory state with the triad of hyperinsulinemia, hyperandrogenism, and low-grade inflammation acting together in a vicious cycle in the pathophysiology of PCOS. Dysregulation of the sympathetic nervous system may also act as an important component, potentially creating a tetrad in the pathophysiology of PCOS. The aim of this review is to examine the role of chronic inflammation and the sympathetic nervous system in the development of obesity and PCOS and review potential therapeutic options to alleviate low-grade inflammation in this setting. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  5. Loss of hypoxia-inducible factor 2 alpha in the lung alveolar epithelium of mice leads to enhanced eosinophilic inflammation in cobalt-induced lung injury.

    Science.gov (United States)

    Proper, Steven P; Saini, Yogesh; Greenwood, Krista K; Bramble, Lori A; Downing, Nathaniel J; Harkema, Jack R; Lapres, John J

    2014-02-01

    Hard metal lung disease (HMLD) is an occupational lung disease specific to inhalation of cobalt-containing particles whose mechanism is largely unknown. Cobalt is a known hypoxia mimic and stabilizer of the alpha subunits of hypoxia-inducible factors (HIFs). Previous work revealed that though HIF1α contrib utes to cobalt toxicity in vitro, loss of HIF1α in the alveolar epithelial cells does not provide in vivo protection from cobalt-induced lung inflammation. HIF1α and HIF2α show unique tissue expression profiles, and HIF2α is known to be the predominant HIF mRNA isoform in the adult lung. Thus, if HIF2α activation by cobalt contributes to pathophysiology of HMLD, we hypothesized that loss of HIF2α in lung epithelium would provide protection from cobalt-induced inflammation. Mice with HIF2α-deficiency in Club and alveolar type II epithelial cells (ATIIs) (HIF2α(Δ/Δ)) were exposed to cobalt (60 µg/day) or saline using a subacute occupational exposure model. Bronchoalveolar lavage cellularity, cytokines, qRT-PCR, and histopathology were analyzed. Results show that loss of HIF2α leads to enhanced eosinophilic inflammation and increased goblet cell metaplasia. Additionally, control mice demonstrated a mild recovery from cobalt-induced lung injury compared with HIF2α(Δ/Δ) mice, suggesting a role for epithelial HIF2α in repair mechanisms. The expression of important cytokines, such as interleukin (IL)-5 and IL-10, displayed significant differences following cobalt exposure when HIF2α(Δ/Δ) and control mice were compared. In summary, our data suggest that although loss of HIF2α does not afford protection from cobalt-induced lung inflammation, epithelial HIF2α signaling does play an important role in modulating the inflammatory and repair response in the lung.

  6. Airway Inflammation in Chronic Rhinosinusitis with Nasal Polyps and Asthma: The United Airways Concept Further Supported

    DEFF Research Database (Denmark)

    Håkansson, Kåre; Bachert, Claus; Konge, Lars

    2015-01-01

    Background It has been established that patients with chronic rhinosinusitis with nasal polyps (CRSwNP) often have co-existing asthma. Objective We aimed to test two hypotheses: (i) upper and lower airway inflammation in CRSwNP is uniform in agreement with the united airways concept; and (ii) bro...

  7. Antioxidant Effect of Spirulina (Arthrospira) maxima on Chronic Inflammation Induced by Freund's Complete Adjuvant in Rats.

    Science.gov (United States)

    Gutiérrez-Rebolledo, Gabriel Alfonso; Galar-Martínez, Marcela; García-Rodríguez, Rosa Virginia; Chamorro-Cevallos, Germán A; Hernández-Reyes, Ana Gabriela; Martínez-Galero, Elizdath

    2015-08-01

    One of the major mechanisms in the pathogenesis of chronic inflammation is the excessive production of reactive oxygen and reactive nitrogen species, and therefore, oxidative stress. Spirulina (Arthrospira) maxima has marked antioxidant activity in vivo and in vitro, as well as anti-inflammatory activity in certain experimental models, the latter activity being mediated probably by the antioxidant activity of this cyanobacterium. In the present study, chronic inflammation was induced through injection of Freund's complete adjuvant (CFA) in rats treated daily with Spirulina (Arthrospira) maxima for 2 weeks beginning on day 14. Joint diameter, body temperature, and motor capacity were assessed each week. On days 0 and 28, total and differential leukocyte counts and serum oxidative damage were determined, the latter by assessing lipid peroxidation and protein carbonyl content. At the end of the study, oxidative damage to joints was likewise evaluated. Results show that S. maxima favors increased mobility, as well as body temperature regulation, and a number of circulating leukocytes, lymphocytes, and monocytes in specimens with CFA-induced chronic inflammation and also protects against oxidative damage in joint tissue as well as serum. In conclusion, the protection afforded by S. maxima against development of chronic inflammation is due to its antioxidant activity.

  8. The role of vitamin K in chronic aging diseases: inflammation, cardiovascular disease and osteoarthritis

    Science.gov (United States)

    Vitamin K is an enzyme cofactor required for the carboxylation of vitamin K dependent proteins, several of which have been implicated in diseases of aging. Inflammation is recognized as a crucial component of many chronic aging diseases, and evidence suggests vitamin K has an anti-inflammatory actio...

  9. High dietary fiber intake is associated with decreased inflammation and all-cause mortality in patients with chronic kidney disease

    OpenAIRE

    Raj Krishnamurthy, Vidya M.; Wei, Guo; Baird, Bradley C.; Murtaugh, Maureen; Chonchol, Michel B.; Raphael, Kalani L.; Greene, Tom; Beddhu, Srinivasan

    2011-01-01

    Chronic kidney disease is considered an inflammatory state and a high fiber intake is associated with decreased inflammation in the general population. Here, we determined whether fiber intake is associated with decreased inflammation and mortality in chronic kidney disease, and whether kidney disease modifies the associations of fiber intake with inflammation and mortality. To do this, we analyzed data from 14,543 participants in the National Health and Nutrition Examination Survey III. The ...

  10. Pulmonary Hypertension and Right Heart Dysfunction in Chronic Lung Disease

    Directory of Open Access Journals (Sweden)

    Amirmasoud Zangiabadi

    2014-01-01

    Full Text Available Group 3 pulmonary hypertension (PH is a common complication of chronic lung disease (CLD, including chronic obstructive pulmonary disease (COPD, interstitial lung disease, and sleep-disordered breathing. Development of PH is associated with poor prognosis and may progress to right heart failure, however, in the majority of the patients with CLD, PH is mild to moderate and only a small number of patients develop severe PH. The pathophysiology of PH in CLD is multifactorial and includes hypoxic pulmonary vasoconstriction, pulmonary vascular remodeling, small vessel destruction, and fibrosis. The effects of PH on the right ventricle (RV range between early RV remodeling, hypertrophy, dilatation, and eventual failure with associated increased mortality. The golden standard for diagnosis of PH is right heart catheterization, however, evidence of PH can be appreciated on clinical examination, serology, radiological imaging, and Doppler echocardiography. Treatment of PH in CLD focuses on management of the underlying lung disorder and hypoxia. There is, however, limited evidence to suggest that PH-specific vasodilators such as phosphodiesterase-type 5 inhibitors, endothelin receptor antagonists, and prostanoids may have a role in the treatment of patients with CLD and moderate-to-severe PH.

  11. Mechanisms of Physical Activity Limitation in Chronic Lung Diseases

    Directory of Open Access Journals (Sweden)

    Ioannis Vogiatzis

    2012-01-01

    Full Text Available In chronic lung diseases physical activity limitation is multifactorial involving respiratory, hemodynamic, and peripheral muscle abnormalities. The mechanisms of limitation discussed in this paper relate to (i the imbalance between ventilatory capacity and demand, (ii the imbalance between energy demand and supply to working respiratory and peripheral muscles, and (iii the factors that induce peripheral muscle dysfunction. In practice, intolerable exertional symptoms (i.e., dyspnea and/or leg discomfort are the main symptoms that limit physical performance in patients with chronic lung diseases. Furthermore, the reduced capacity for physical work and the adoption of a sedentary lifestyle, in an attempt to avoid breathlessness upon physical exertion, cause profound muscle deconditioning which in turn leads to disability and loss of functional independence. Accordingly, physical inactivity is an important component of worsening the patients’ quality of life and contributes importantly to poor prognosis. Identifying the factors which prevent a patient with lung disease to easily carry out activities of daily living provides a unique as well as important perspective for the choice of the appropriate therapeutic strategy.

  12. Mechanisms of physical activity limitation in chronic lung diseases.

    Science.gov (United States)

    Vogiatzis, Ioannis; Zakynthinos, George; Andrianopoulos, Vasileios

    2012-01-01

    In chronic lung diseases physical activity limitation is multifactorial involving respiratory, hemodynamic, and peripheral muscle abnormalities. The mechanisms of limitation discussed in this paper relate to (i) the imbalance between ventilatory capacity and demand, (ii) the imbalance between energy demand and supply to working respiratory and peripheral muscles, and (iii) the factors that induce peripheral muscle dysfunction. In practice, intolerable exertional symptoms (i.e., dyspnea) and/or leg discomfort are the main symptoms that limit physical performance in patients with chronic lung diseases. Furthermore, the reduced capacity for physical work and the adoption of a sedentary lifestyle, in an attempt to avoid breathlessness upon physical exertion, cause profound muscle deconditioning which in turn leads to disability and loss of functional independence. Accordingly, physical inactivity is an important component of worsening the patients' quality of life and contributes importantly to poor prognosis. Identifying the factors which prevent a patient with lung disease to easily carry out activities of daily living provides a unique as well as important perspective for the choice of the appropriate therapeutic strategy.

  13. Perception of climate change in patients with chronic lung disease

    Science.gov (United States)

    Götschke, Jeremias; Mertsch, Pontus; Bischof, Michael; Kneidinger, Nikolaus; Matthes, Sandhya; Renner, Ellen D.; Schultz, Konrad; Traidl-Hoffmann, Claudia; Duchna, Hans-Werner; Behr, Jürgen; Schmude, Jürgen; Huber, Rudolf M.

    2017-01-01

    Background Climate change affects human health. The respective consequences are predicted to increase in the future. Patients with chronic lung disease are particularly vulnerable to the involved environmental alterations. However, their subjective perception and reactions to these alterations remain unknown. Methods In this pilot study, we surveyed 172 adult patients who underwent pulmonary rehabilitation and 832 adult tourists without lung disease in the alpine region about their perception of being affected by climate change and their potential reaction to specific consequences. The patients’ survey also contained the COPD Assessment Test (CAT) to rate the severity of symptoms. Results Most of the patients stated asthma (73.8%), COPD (9.3%) or both (11.0%) as underlying disease while 5.8% suffered from other chronic lung diseases. Patients and tourists feel equally affected by current climate change in general, while allergic subjects in both groups feel significantly more affected (p = 0.04). The severity of symptoms assessed by CAT correlates with the degree of feeling affected (p<0.01). The main disturbing consequences for patients are decreased air quality, increasing numbers of ticks and mosquitos and a rising risk for allergy and extreme weather events such as thunderstroms, while tourists are less disturbed by these factors. Increasing number of heat-days is of little concern to both groups. Conclusion Overall patients are more sensitive to health-related consequences of climate change. Yet, the hazard of heat-days seems underestimated and awareness should be raised. PMID:29045479

  14. Effects of inhaled corticosteroids on airway inflammation in chronic obstructive pulmonary disease: a systematic review and meta-analysis

    Directory of Open Access Journals (Sweden)

    Jen R

    2012-09-01

    Full Text Available Rachel Jen,1 Stephen,1 Rennard,2 Don D Sin1,31Department of Medicine, Respiratory Division, University of British Columbia, Vancouver, BC, Canada; 2Internal Medicine Section of Pulmonary and Critical Care, Nebraska Medical Center, Omaha, NE, USA; 3Institute of Heart and Lung Health and the UBC James Hogg Research Center, St Paul's Hospital, Vancouver, BC, CanadaBackground: Chronic obstructive pulmonary disease (COPD is characterized by chronic inflammation in the small airways. The effect of inhaled corticosteroids (ICS on lung inflammation in COPD remains uncertain. We sought to determine the effects of ICS on inflammatory indices in bronchial biopsies and bronchoalveolar lavage fluid of patients with COPD.Methods: We searched Medline, Embase, Cinahl, and the Cochrane database for randomized, controlled clinical trials that used bronchial biopsies and bronchoalveolar lavage to evaluate the effects of ICS in stable COPD. For each chosen study, we calculated the mean differences in the concentrations of inflammatory cells before and after treatment in both intervention and control groups. These values were then converted into standardized mean differences (SMD to accommodate the differences in patient selection, clinical treatment, and biochemical procedures that were employed across the original studies. If significant heterogeneity was present (P < 0.1, then a random effects model was used to pool the original data; otherwise, a fixed effects model was used.Results: We identified eight original studies that met the inclusion criteria. Four studies used bronchial biopsies (n = 102 participants and showed that ICS were effective in reducing CD4 and CD8 cell counts (SMD, −0.52 units and −0.66 units, 95% confidence interval. The five studies used bronchoalveolar lavage fluid (n = 309, which together showed that ICS reduced neutrophil and lymphocyte counts (SMD, −0.64 units and −0.64 units, 95% confidence interval. ICS on the other hand

  15. Chronic prostatic infection and inflammation by Propionibacterium acnes in a rat prostate infection model.

    Science.gov (United States)

    Olsson, Jan; Drott, Johanna Bergh; Laurantzon, Lovisa; Laurantzon, Oscar; Bergh, Anders; Elgh, Fredrik

    2012-01-01

    Chronic inflammation in the prostate, seen as infiltration of inflammatory cells into the prostate gland in histological samples, affects approximately half the male population without indication of prostate disease, and is almost ubiquitous in patients diagnosed with benign prostate hyperplasia and cancer. Several studies have demonstrated the gram-positive bacterium Propionibacterium acnes to be frequently present in prostate tissue from men suffering from prostate disease. P. acnes has been shown to be associated with histological inflammation in human prostatectomy specimens, and also to induce strong inflammatory response in prostate-derived tissue culture models. The present paper describes a rat model for assessment of the pathogenic potential of P. acnes in prostate. Prostate glands of Sprague Dawley rats (n = 98) were exposed via an abdominal incision and live P. acnes or, in control rats, saline were injected into the ventral and dorso-lateral lobes. Rats were sacrificed 5 days, 3 weeks, 3 months and 6 months post infection, and prostate tissue was analyzed for bacterial content and histological inflammation. Rat sera were assessed for levels of CRP and anti-P. acnes IgG. Live P. acnes could be recovered from the dorso-lateral lobes up to 3 months post infection, while the ventral lobes were cleared from bacteria at that time. In samples up to 3 months post infection, the dorso-lateral lobes exhibited intense focal inflammation. CRP and IgG levels were elevated throughout the span of the experiment, and reached maximum levels 3 weeks and 3 months post infection, respectively. We show that P. acnes have the potential to cause chronic infection in previously healthy prostate, and that the infection has potential to cause chronic histological inflammation in the infected tissue. The high prevalence of P. acnes in human prostate tissue calls for resolution of pathogenic details. The present rat model suggests that complications such as chronic

  16. Lung function testing according leptin levels in patients with chronic obstructive pulmonary disease

    Directory of Open Access Journals (Sweden)

    O. Radchenko

    2017-02-01

    Full Text Available Chronic obstructive pulmonary disease (COPD belongs to urgent medical and social problems of our time. Prognosis of COPD is often determined by a comorbidity, in particular obesity. The key chain, which unites COPD and obesity, is systemic inflammation, in the development of which the hormone of fatty tissue leptin plays an important role. The presence of receptors to leptin in the alveolar and bronchial epithelial cells, in smooth muscle tissue and submucous bronchial membrane allowes to assume that leptin takes pathogenetic part in COPD progression. The aim of our research was to estimate the leptin level in COPD patient and analyze changes of the respiratory function depending on it. Methods. We have been examined 26 patients with exacerbation of COPD (13 male and 13 female, 58 y.o. and 20 healthy people representative by gender, age and body mass. The level of serum leptin has been defined by the solid phase enzyme linked immunosorbent analysis, lung function – by computed testing. Results and conclusion. With the leptin level increase all of the lung function parameters progressively decreased, most significant - forced vital capacity and peak expiratory flow. Patients with hyperleptinemia had significantly lower measurements of forced expiratory volume in 1 second and vital lungs capacity. Severe degree of both obstructive and restrictive changes has been found more often among patients with hyperleptinemia and leptin level has been associated with the bronchial obstruction severity.

  17. Macrophage phenotype is associated with disease severity in preterm infants with chronic lung disease.

    Science.gov (United States)

    Prince, Lynne R; Maxwell, Nicola C; Gill, Sharonjit K; Dockrell, David H; Sabroe, Ian; McGreal, Eamon P; Kotecha, Sailesh; Whyte, Moira K

    2014-01-01

    The etiology of persistent lung inflammation in preterm infants with chronic lung disease of prematurity (CLD) is poorly characterized, hampering efforts to stratify prognosis and treatment. Airway macrophages are important innate immune cells with roles in both the induction and resolution of tissue inflammation. To investigate airway innate immune cellular phenotypes in preterm infants with respiratory distress syndrome (RDS) or CLD. Bronchoalveolar lavage (BAL) fluid was obtained from term and preterm infants requiring mechanical ventilation. BAL cells were phenotyped by flow cytometry. Preterm birth was associated with an increase in the proportion of non-classical CD14(+)/CD16(+) monocytes on the day of delivery (58.9 ± 5.8% of total mononuclear cells in preterm vs 33.0 ± 6.1% in term infants, p = 0.02). Infants with RDS were born with significantly more CD36(+) macrophages compared with the CLD group (70.3 ± 5.3% in RDS vs 37.6 ± 8.9% in control, p = 0.02). At day 3, infants born at a low gestational age are more likely to have greater numbers of CD14(+) mononuclear phagocytes in the airway (p = 0.03), but fewer of these cells are functionally polarized as assessed by HLA-DR (p = 0.05) or CD36 (p = 0.05) positivity, suggesting increased recruitment of monocytes or a failure to mature these cells in the lung. These findings suggest that macrophage polarization may be affected by gestational maturity, that more immature macrophage phenotypes may be associated with the progression of RDS to CLD and that phenotyping mononuclear cells in BAL could predict disease outcome.

  18. Macrophage phenotype is associated with disease severity in preterm infants with chronic lung disease.

    Directory of Open Access Journals (Sweden)

    Lynne R Prince

    Full Text Available The etiology of persistent lung inflammation in preterm infants with chronic lung disease of prematurity (CLD is poorly characterized, hampering efforts to stratify prognosis and treatment. Airway macrophages are important innate immune cells with roles in both the induction and resolution of tissue inflammation.To investigate airway innate immune cellular phenotypes in preterm infants with respiratory distress syndrome (RDS or CLD.Bronchoalveolar lavage (BAL fluid was obtained from term and preterm infants requiring mechanical ventilation. BAL cells were phenotyped by flow cytometry.Preterm birth was associated with an increase in the proportion of non-classical CD14(+/CD16(+ monocytes on the day of delivery (58.9 ± 5.8% of total mononuclear cells in preterm vs 33.0 ± 6.1% in term infants, p = 0.02. Infants with RDS were born with significantly more CD36(+ macrophages compared with the CLD group (70.3 ± 5.3% in RDS vs 37.6 ± 8.9% in control, p = 0.02. At day 3, infants born at a low gestational age are more likely to have greater numbers of CD14(+ mononuclear phagocytes in the airway (p = 0.03, but fewer of these cells are functionally polarized as assessed by HLA-DR (p = 0.05 or CD36 (p = 0.05 positivity, suggesting increased recruitment of monocytes or a failure to mature these cells in the lung.These findings suggest that macrophage polarization may be affected by gestational maturity, that more immature macrophage phenotypes may be associated with the progression of RDS to CLD and that phenotyping mononuclear cells in BAL could predict disease outcome.

  19. Pulmonary Surfactants for Acute and Chronic Lung Diseases (Part II

    Directory of Open Access Journals (Sweden)

    O. A. Rozenberg

    2014-01-01

    Full Text Available Part 2 of the review considers the problem of surfactant therapy for acute respiratory distress syndrome (ARDS in adults and young and old children. It gives information on the results of surfactant therapy and prevention of ARDS in patients with severe concurrent trauma, inhalation injuries, complications due to complex expanded chest surgery, or severe pneumonias, including bilateral pneumonia in the presence of A/H1N1 influenza. There are data on the use of a surfactant in obstetric care and prevention of primary graft dysfunction during lung transplantation. The results of longterm use of surfactant therapy in Russia, suggesting that death rates from ARDS may be substantially reduced (to 20% are discussed. Examples of surfactant therapy for other noncritical lung diseases, such as permanent athelectasis, chronic obstructive pulmonary diseases, and asthma, as well tuberculosis, are also considered.

  20. Chronic inflammation as a promotor of mutagenesis in essential thrombocythemia, polycythemia vera and myelofibrosis. A human inflammation model for cancer development?

    DEFF Research Database (Denmark)

    Hasselbalch, Hans K

    2013-01-01

    The Philadelphia-negative chronic myeloproliferative neoplasms (MPNs) are acquired stem cell neoplasms, in which a stem cell lesion induces an autonomous proliferative advantage. In addition to the JAK2V617 mutation several other mutations have been described. Recently chronic inflammation has be...

  1. Inflammation mediators in employees in chronic exposure to neurotoxicants

    Directory of Open Access Journals (Sweden)

    Galina Bodienkova

    2014-08-01

    Full Text Available Objectives: The aim of this work is to perform comparative estimation of cytokines levels in chlorinated hydrocarbons and metallic mercury exposure in employees in the dynamics of neurologic disorders formation. Material and Methods: The contents of cytokines IL-1β, IL-2, IL-4, IL-6, TNF-α, INF-γ were determined in blood sera using the method of hardphasic immunoferment analysis. The significance of different average values was assessed using the parametric and non-parametric criteria - Student (in normal distribution and Mann-Whitney tests taking into account the Bonferonni correction (non-difference from normal distribution. Results: It was shown that, a number of inflammation mediators with the dominance, depending on the expositional toxicant and expression of neurological deficiency, take part in the neurointoxication development. Healthy employees show pro-inflammatory responses with different expression degree, which dominate in the immune regulation processes regardless of the expositional factors (metallic mercury vapors and chlorinated hydrocarbons. Conclusions: The production intensity and interconnection between the pro- and anti-inflammatory cytokines may change in the occupational injuries of the nervous system development process. The decrease in the serum concentrations of cytokines along with the increase of clinical manifestation severity may prove dysregulation of the immune system, which promotes maintaining of pathological process and progradient process of neurointoxication. The most obvious is the imbalance of cytokines in the employees exposed to metallic mercury (in all the examined groups that increases neurointoxication in the distant period.

  2. Lung inflammation and genotoxicity following pulmonary exposure to nanoparticles in ApoE-/- mice

    Directory of Open Access Journals (Sweden)

    Ladefoged Ole

    2009-01-01

    Full Text Available Abstract Background The toxic and inflammatory potential of 5 different types of nanoparticles were studied in a sensitive model for pulmonary effects in apolipoprotein E knockout mice (ApoE-/-. We studied the effects instillation or inhalation Printex 90 of carbon black (CB and compared CB instillation in ApoE-/- and C57 mice. Three and 24 h after pulmonary exposure, inflammation was assessed by mRNA levels of cytokines in lung tissue, cell composition, genotoxicity, protein and lactate dehydrogenase activity in broncho-alveolar lavage (BAL fluid. Results Firstly, we found that intratracheal instillation of CB caused far more pulmonary toxicity in ApoE-/- mice than in C57 mice. Secondly, we showed that instillation of CB was more toxic than inhalation of a presumed similar dose with respect to inflammation in the lungs of ApoE-/- mice. Thirdly, we compared effects of instillation in ApoE-/- mice of three carbonaceous particles; CB, fullerenes C60 (C60 and single walled carbon nanotubes (SWCNT as well as gold particles and quantum dots (QDs. Characterization of the instillation media revealed that all particles were delivered as agglomerates and aggregates. Significant increases in Il-6, Mip-2 and Mcp-1 mRNA were detected in lung tissue, 3 h and 24 h following instillation of SWCNT, CB and QDs. DNA damage in BAL cells, the fraction of neutrophils in BAL cells and protein in BAL fluid increased statistically significantly. Gold and C60 particles caused much weaker inflammatory responses. Conclusion Our data suggest that ApoE-/- model is sensitive for evaluating particle induced inflammation. Overall QDs had greatest effects followed by CB and SWCNT with C60 and gold being least inflammatory and DNA-damaging. However the gold was used at a much lower mass dose than the other particles. The strong effects of QDs were likely due to Cd release. The surface area of the instilled dose correlated well the inflammatory response for low toxicity particles.

  3. Diet, inflammation, and chronic kidney disease: getting to the heart of the matter.

    Science.gov (United States)

    Neade, Tina; Uribarri, Jaime

    2008-01-01

    Cardiovascular disease (CVD) remains a leading cause of death in patients with chronic kidney disease (CKD). CVD is now thought to result from the interplay of several factors including inflammation, oxidative stress and endothelial dysfunction. Advanced glycation end products (AGE) are known to be elevated in patients with CKD and these compounds possess these pro-oxidant, pro-inflammatory and anti-endothelial properties. There has been a great deal of literature linking diet and inflammation, and recent work has shown the diet to be a significant contributor to the body's AGE pool. We herein hypothesize that a diet high in AGE plays an important role in the initiation of chronic subclinical inflammation that seems to underlie the high prevalence of CVD in CKD patients. Herein we will briefly examine the evidence linking different components of diet with inflammation in CKD patients. We will then focus on the role of dietary AGEs in inflammation and potentially CVD in CKD, and in conclusion, we will propose dietary modifications as part of a multifactorial approach to ameliorate unhealthy lifestyles among CKD patients. The most important message is that simple changes in culinary technique rather than in the food nutrient composition may be the most important part of preventing CVD in this population.

  4. Occlusion of retinal capillaries caused by glial cell proliferation in chronic ocular inflammation.

    Science.gov (United States)

    Bianchi, E; Ripandelli, G; Feher, J; Plateroti, A M; Plateroti, R; Kovacs, I; Plateroti, P; Taurone, S; Artico, M

    2015-01-01

    The inner blood-retinal barrier is a gliovascular unit in which glial cells surround capillary endothelial cells and regulate retinal capillaries by paracrine interactions. During chronic ocular inflammation, microvascular complications can give rise to vascular proliferative lesions, which compromise visual acuity. This pathologic remodelling caused by proliferating Müller cells determines occlusion of retinal capillaries. The aim of the present study was to identify qualitative and quantitative alterations in the retinal capillaries in patients with post-traumatic chronic ocular inflammation or post-thrombotic vascular glaucoma. Moreover, we investigated the potential role of vascular endothelial growth factor (VEGF) and pro-inflammatory cytokines in retinal inflammation. Our electron microscopy findings demonstrated that during chronic ocular inflammation, thickening of the basement membrane, loss of pericytes and endothelial cells and proliferation of Müller cells occur with irreversible occlusion of retinal capillaries. Angiogenesis takes place as part of a regenerative reaction that results in fibrosis. We believe that VEGF and pro-inflammatory cytokines may be potential therapeutic targets in the treatment of this disease although further studies are required to confirm these findings.

  5. The effects of exogenous surfactant administration on ventilation-induced inflammation in mouse models of lung injury.

    Science.gov (United States)

    Puntorieri, Valeria; Hiansen, Josh Qua; McCaig, Lynda A; Yao, Li-Juan; Veldhuizen, Ruud A W; Lewis, James F

    2013-11-20

    Mechanical ventilation (MV) is an essential supportive therapy for acute lung injury (ALI); however it can also contribute to systemic inflammation. Since pulmonary surfactant has anti-inflammatory properties, the aim of the study was to investigate the effect of exogenous surfactant administration on ventilation-induced systemic inflammation. Mice were randomized to receive an intra-tracheal instillation of a natural exogenous surfactant preparation (bLES, 50 mg/kg) or no treatment as a control. MV was then performed using the isolated and perfused mouse lung (IPML) set up. This model allowed for lung perfusion during MV. In experiment 1, mice were exposed to mechanical ventilation only (tidal volume =20 mL/kg, 2 hours). In experiment 2, hydrochloric acid or air was instilled intra-tracheally four hours before applying exogenous surfactant and ventilation (tidal volume =5 mL/kg, 2 hours). For both experiments, exogenous surfactant administration led to increased total and functional surfactant in the treated groups compared to the controls. Exogenous surfactant administration in mice exposed to MV only did not affect peak inspiratory pressure (PIP), lung IL-6 levels and the development of perfusate inflammation compared to non-treated controls. Acid injured mice exposed to conventional MV showed elevated PIP, lung IL-6 and protein levels and greater perfusate inflammation compared to air instilled controls. Instillation of exogenous surfactant did not influence the development of lung injury. Moreover, exogenous surfactant was not effective in reducing the concentration of inflammatory cytokines in the perfusate. The data indicates that exogenous surfactant did not mitigate ventilation-induced systemic inflammation in our models. Future studies will focus on altering surfactant composition to improve its immuno-modulating activity.

  6. Chronic gastrointestinal inflammation induces anxiety-like behavior and alters central nervous system biochemistry in mice.

    Science.gov (United States)

    Bercik, Premysl; Verdu, Elena F; Foster, Jane A; Macri, Joseph; Potter, Murray; Huang, Xiaxing; Malinowski, Paul; Jackson, Wendy; Blennerhassett, Patricia; Neufeld, Karen A; Lu, Jun; Khan, Waliul I; Corthesy-Theulaz, Irene; Cherbut, Christine; Bergonzelli, Gabriela E; Collins, Stephen M

    2010-12-01

    Clinical and preclinical studies have associated gastrointestinal inflammation and infection with altered behavior. We investigated whether chronic gut inflammation alters behavior and brain biochemistry and examined underlying mechanisms. AKR mice were infected with the noninvasive parasite Trichuris muris and given etanercept, budesonide, or specific probiotics. Subdiaphragmatic vagotomy was performed in a subgroup of mice before infection. Gastrointestinal inflammation was assessed by histology and quantification of myeloperoxidase activity. Serum proteins were measured by proteomic analysis, circulating cytokines were measured by fluorescence activated cell sorting array, and serum tryptophan and kynurenine were measured by liquid chromatography. Behavior was assessed using light/dark preference and step-down tests. In situ hybridization was used to assess brain-derived neurotrophic factor (BDNF) expression in the brain. T muris caused mild to moderate colonic inflammation and anxiety-like behavior that was associated with decreased hippocampal BDNF messenger RNA (mRNA). Circulating tumor necrosis factor-α and interferon-γ, as well as the kynurenine and kynurenine/tryptophan ratio, were increased. Proteomic analysis showed altered levels of several proteins related to inflammation and neural function. Administration of etanercept, and to a lesser degree of budesonide, normalized behavior, reduced cytokine and kynurenine levels, but did not influence BDNF expression. The probiotic Bifidobacterium longum normalized behavior and BDNF mRNA but did not affect cytokine or kynurenine levels. Anxiety-like behavior was present in infected mice after vagotomy. Chronic gastrointestinal inflammation induces anxiety-like behavior and alters central nervous system biochemistry, which can be normalized by inflammation-dependent and -independent mechanisms, neither of which requires the integrity of the vagus nerve. Copyright © 2010 AGA Institute. Published by Elsevier Inc

  7. Metabolically induced liver inflammation leads to NASH and differs from LPS- or IL-1β-induced chronic inflammation.

    Science.gov (United States)

    Liang, Wen; Lindeman, Jan H; Menke, Aswin L; Koonen, Debby P; Morrison, Martine; Havekes, Louis M; van den Hoek, Anita M; Kleemann, Robert

    2014-05-01

    The nature of the chronic inflammatory component that drives the development of non-alcoholic steatohepatitis (NASH) is unclear and possible inflammatory triggers have not been investigated systematically. We examined the effect of non-metabolic triggers (lipopolysaccharide (LPS), interleukin-1β (IL-1β), administered by slow-release minipumps) and metabolic dietary triggers (carbohydrate, cholesterol) of inflammation on the progression of bland liver steatosis (BS) to NASH. Transgenic APOE3*Leiden.huCETP (APOE3L.CETP) mice fed a high-fat diet (HFD) developed BS after 10 weeks. Then, inflammatory triggers were superimposed or not (control) for six more weeks. Mouse livers were analyzed with particular emphasis on hallmarks of inflammation which were defined in human liver biopsies with and without NASH. Livers of HFD-treated control mice remained steatotic and did not progress to NASH. All four inflammatory triggers activated hepatic nuclear factor-κB (NF-κB) significantly and comparably (≥5-fold). However, HFD+LPS or HFD+IL-1β did not induce a NASH-like phenotype and caused intrahepatic accumulation of almost exclusively mononuclear cells. By contrast, mice treated with metabolic triggers developed NASH, characterized by enhanced steatosis, hepatocellular hypertrophy, and formation of mixed-type inflammatory foci containing myeloperoxidase-positive granulocytes (neutrophils) as well as mononuclear cells, essentially as observed in human NASH. Specific for the metabolic inducers was an activation of the proinflammatory transcription factor activator protein-1 (AP-1), neutrophil infiltration, and induction of risk factors associated with human NASH, that is, dyslipidemia (by cholesterol) and insulin resistance (by carbohydrate). In conclusion, HFD feeding followed by NF-κB activation per se (LPS, IL-1β) does not promote the transition from BS to NASH. HFD feeding followed by metabolically evoked inflammation induces additional inflammatory components

  8. Role of oxidants/inflammation in declining renal function in chronic kidney disease and normal aging.

    Science.gov (United States)

    Vlassara, Helen; Torreggiani, Massimo; Post, James B; Zheng, Feng; Uribarri, Jaime; Striker, Gary E

    2009-12-01

    Oxidant stress (OS) and inflammation increase in normal aging and in chronic kidney disease (CKD), as observed in human and animal studies. In cross-sectional studies of the US population, these changes are associated with a decrease in renal function, which is exhibited by a significant proportion of the population. However, since many normal adults have intact renal function, and longitudinal studies show that some persons maintain normal renal function with age, the link between OS, inflammation, and renal decline is not clear. In aging mice, greater oxidant intake is associated with increased age-related CKD and mortality, which suggests that interventions that reduce OS and inflammation may be beneficial for older individuals. Both OS and inflammation can be readily lowered in normal subjects and patients with CKD stage 3-4 by a simple dietary modification that lowers intake and results in reduced serum and tissue levels of advanced glycation end products. Diabetic patients, including those with microalbuminuria, have a decreased ability to metabolize and excrete oxidants prior to observable changes in serum creatinine. Thus, OS and inflammation may occur in the diabetic kidney at an early time. We review the evidence that oxidants in the diet directly lead to increased serum levels of OS and inflammatory mediators in normal aging and in CKD. We also discuss a simple dietary intervention that helps reduce OS and inflammation, an important and achievable therapeutic goal for patients with CKD and aging individuals with reduced renal function.

  9. Lung inflammation and genotoxicity following pulmonary exposure to nanoparticles in ApoE-/- mice

    DEFF Research Database (Denmark)

    Raun Jacobsen, Nicklas; Møller, Peter; Alstrup Jensen, Keld

    2009-01-01

    of three carbonaceous particles; CB, fullerenes C-60 (C-60) and single walled carbon nanotubes (SWCNT) as well as gold particles and quantum dots (QDs). Characterization of the instillation media revealed that all particles were delivered as agglomerates and aggregates. Significant increases in Il-6, Mip-2...... and Mcp-1 mRNA were detected in lung tissue, 3 h and 24 h following instillation of SWCNT, CB and QDs. DNA damage in BAL cells, the fraction of neutrophils in BAL cells and protein in BAL fluid increased statistically significantly. Gold and C-60 particles caused much weaker inflammatory responses....... Conclusion: Our data suggest that ApoE(-/-) model is sensitive for evaluating particle induced inflammation. Overall QDs had greatest effects followed by CB and SWCNT with C-60 and gold being least inflammatory and DNA-damaging. However the gold was used at a much lower mass dose than the other particles...

  10. Aspirin-triggered resolvin D1 reduces pneumococcal lung infection and inflammation in a viral and bacterial coinfection pneumonia model.

    Science.gov (United States)

    Wang, Hao; Anthony, Desiree; Yatmaz, Selcuk; Wijburg, Odilia; Satzke, Catherine; Levy, Bruce; Vlahos, Ross; Bozinovski, Steven

    2017-09-15

    Formyl peptide receptor 2/lipoxin A 4 (LXA 4 ) receptor (Fpr2/ALX) co-ordinates the transition from inflammation to resolution during acute infection by binding to distinct ligands including serum amyloid A (SAA) and Resolvin D1 (RvD1). Here, we evaluated the proresolving actions of aspirin-triggered RvD1 (AT-RvD1) in an acute coinfection pneumonia model. Coinfection with Streptococcus pneumoniae and influenza A virus (IAV) markedly increased pneumococcal lung load and neutrophilic inflammation during the resolution phase. Fpr2/ALX transcript levels were increased in the lungs of coinfected mice, and immunohistochemistry identified prominent Fpr2/ALX immunoreactivity in bronchial epithelial cells and macrophages. Levels of circulating and lung SAA were also highly increased in coinfected mice. Therapeutic treatment with exogenous AT-RvD1 during the acute phase of infection (day 4-6 post-pneumococcal inoculation) significantly reduced the pneumococcal load. AT-RvD1 also significantly reduced neutrophil elastase (NE) activity and restored total antimicrobial activity in bronchoalveolar lavage (BAL) fluid (BALF) of coinfected mice. Pneumonia severity, as measured by quantitating parenchymal inflammation or alveolitis was significantly reduced with AT-RvD1 treatment, which also reduced the number of infiltrating lung neutrophils and monocytes/macrophages as assessed by flow cytometry. The reduction in distal lung inflammation in AT-RvD1-treated mice was not associated with a significant reduction in inflammatory and chemokine mediators. In summary, we demonstrate that in the coinfection setting, SAA levels were persistently increased and exogenous AT-RvD1 facilitated more rapid clearance of pneumococci in the lungs, while concurrently reducing the severity of pneumonia by limiting excessive leukocyte chemotaxis from the infected bronchioles to distal areas of the lungs. © 2017 The Author(s).

  11. Moderately early (7-14 days) postnatal corticosteroids for preventing chronic lung disease in preterm infants.

    Science.gov (United States)

    Halliday, H L; Ehrenkranz, R A; Doyle, L W

    2003-01-01

    Corticosteroids have been used late in the neonatal period to treat chronic lung disease (CLD) in preterm babies, and early to try to prevent it. CLD is likely to be the result of persisting inflammation in the lung and the use of powerful anti-inflammatory drugs like dexamethasone has some rationale. Early use tends to be associated with increased adverse effects so that studies of moderately early treatment (7-14 days postnatal) might have the dual benefits of fewer side effects and onset of action before chronic inflammation is established. To determine if moderately early (7-14 days) postnatal corticosteroid treatment vs control (placebo or nothing) is of benefit in the prevention and/or treatment of early chronic lung disease in the preterm infant. Randomised controlled trials of postnatal corticosteroid therapy were sought from the Oxford Database of Perinatal Trials, Cochrane Database of Controlled Trials, MEDLINE (1966 - October 2002), hand searching paediatric and perinatal journals, examining previous review articles and information received from practicing neonatologists. Authors of all studies were contacted, where possible, to confirm details of reported follow-up studies, or to obtain any information about long-term follow-up where none had been reported. Randomised controlled trials of postnatal corticosteroid treatment from 7-14 days of birth in high risk preterm infants were selected for this review. Data regarding clinical outcomes including mortality, CLD (including late rescue with corticosteroids, or need for home oxygen therapy), death or CLD, failure to extubate, complications during the primary hospitalisation (including infection, hyperglycaemia, hypertension, hypertrophic cardiomyopathy, pneumothorax, severe intraventricular haemorrhage (IVH), necrotizing enterocolitis (NEC), gastrointestinal bleeding, and severe retinopathy of prematurity (ROP)), and long term outcome (including blindness, deafness, cerebral palsy and major neurosensory

  12. Inflammation in Achromobacter xylosoxidans infected cystic fibrosis patients

    DEFF Research Database (Denmark)

    Hansen, C. R.; Pressler, T.; Nielsen, K. G.

    2010-01-01

    BACKGROUND: Achromobacter xylosoxidans infection may cause conspicuous chronic pulmonary inflammation in cystic fibrosis (CF) patients similar to Pseudomonas aeruginosa and the Burkholderia cepacia complex (Bcc). Evolution in lung function was compared in chronically infected patients. Cytokine...

  13. Grain dust-induced lung inflammation is reduced by Rhodobacter sphaeroides diphosphoryl lipid A.

    Science.gov (United States)

    Jagielo, P J; Quinn, T J; Qureshi, N; Schwartz, D A

    1998-01-01

    To further determine the importance of endotoxin in grain dust-induced inflammation of the lower respiratory tract, we evaluated the efficacy of pentaacylated diphosphoryl lipid A derived from the lipopolysaccharide of Rhodobacter sphaeroides (RsDPLA) as a partial agonist of grain dust-induced airway inflammation. RsDPLA is a relatively inactive compound compared with lipid A derived from Escherichia coli (LPS) and has been demonstrated to act as a partial agonist of LPS-induced inflammation. To assess the potential stimulatory effect of RsDPLA in relation to LPS, we incubated THP-1 cells with RsDPLA (0.001-100 micrograms/ml), LPS (0.02 microgram endotoxin activity/ml), or corn dust extract (CDE; 0.02 microgram endotoxin activity/ml). Incubation with RsDPLA revealed a tumor necrosis factor (TNF)-alpha stimulatory effect at 100 micrograms/ml. In contrast, incubation with LPS or CDE resulted in TNF-alpha release at 0.02 microgram/ml. Pretreatment of THP-1 cells with varying concentrations of RsDPLA before incubation with LPS or CDE (0.02 microgram endotoxin activity/ml) resulted in a dose-dependent reduction in the LPS- or CDE-induced release of TNF-alpha with concentrations of RsDPLA of up to 10 micrograms/ml but not at 100 micrograms/ml. To further understand the role of endotoxin in grain dust-induced airway inflammation, we utilized the unique LPS inhibitory property of RsDPLA to determine the inflammatory response to inhaled CDE in mice in the presence of RsDPLA. Ten micrograms of RsDPLA intratracheally did not cause a significant inflammatory response compared with intratracheal saline. However, pretreatment of mice with 10 micrograms of RsDPLA intratracheally before exposure to CDE (5.4 and 0.2 micrograms/m3) or LPS (7.2 and 0.28 micrograms/m3) resulted in significant reductions in the lung lavage concentrations of total cells, neutrophils, and specific proinflammatory cytokines compared with mice pretreated with sterile saline. These results confirm the LPS

  14. Arterial Carboxyhemoglobin Measurement Is Useful for Evaluating Pulmonary Inflammation in Subjects with Interstitial Lung Disease.

    Science.gov (United States)

    Hara, Yu; Shinkai, Masaharu; Kanoh, Soichiro; Fujikura, Yuji; K Rubin, Bruce; Kawana, Akihiko; Kaneko, Takeshi

    2017-01-01

    Objective The arterial concentration of carboxyhemoglobin (CO-Hb) in subjects with inflammatory pulmonary disease is higher than that in healthy individuals. We retrospectively analyzed the relationship between the CO-Hb concentration and established markers of disease severity in subjects with interstitial lung disease (ILD). Methods The CO-Hb concentration was measured in subjects with newly diagnosed or untreated ILD and the relationships between the CO-Hb concentration and the serum biomarker levels, lung function, high-resolution CT (HRCT) findings, and the uptake in gallium-67 ( 67 Ga) scintigraphy were evaluated. Results Eighty-one non-smoking subjects were studied (mean age, 67 years). Among these subjects, (A) 17 had stable idiopathic pulmonary fibrosis (IPF), (B) 9 had an acute exacerbation of IPF, (C) 44 had stable non-IPF, and (D) 11 had an exacerbation of non-IPF. The CO-Hb concentrations of these subjects were (A) 1.5±0.5%, (B) 2.1±0.5%, (C) 1.2±0.4%, and (D) 1.7±0.5%. The CO-Hb concentration was positively correlated with the serum levels of surfactant protein (SP)-A (r=0.38), SP-D (r=0.39), and the inflammation index (calculated from HRCT; r=0.57) and was negatively correlated with the partial pressure of oxygen in the arterial blood (r=-0.56) and the predicted diffusion capacity of carbon monoxide (r=-0.61). The CO-Hb concentrations in subjects with a negative heart sign on 67 Ga scintigraphy were higher than those in subjects without a negative heart sign (1.4±0.5% vs. 1.1±0.3%, p=0.018). Conclusion The CO-Hb levels of subjects with ILD were increased, particularly during an exacerbation, and were correlated with the parameters that reflect pulmonary inflammation.

  15. Effect of metabolic alkalosis on respiratory function in patients with chronic obstructive lung disease.

    Science.gov (United States)

    Bear, R.; Goldstein, M.; Phillipson, E.; Ho, M.; Hammeke, M.; Feldman, R.; Handelsman, S.; Halperin, M.

    1977-01-01

    Eleven instances of a mixed acid-base disorder consisting of chronic respiratory acidosis and metabolic alkalosis were recognized in eight patients with chronic obstructive lung disease and carbon dioxide retention. Correction of the metabolic alkalosis led to substantial improvement in blood gas values and clinical symptoms. Patients with mixed chronic respiratory acidosis and metabolic alkalosis constitute a common subgroup of patients with chronic obstructive lung disease and carbon dioxide retention; these patients benefit from correction of the metabolic alkalosis. PMID:21028

  16. Increased arterial inflammation in individuals with stage 3 chronic kidney disease

    International Nuclear Information System (INIS)

    Takx, Richard A.P.; MacNabb, Megan H.; Emami, Hamed; Abdelbaky, Amr; Lavender, Zachary R.; Singh, Parmanand; Di Carli, Marcelo; Taqueti, Viviany; Foster, Courtney; Mann, Jessica; Comley, Robert A.; Weber, Chek Ing Kiu; Tawakol, Ahmed

    2016-01-01

    While it is well known that patients with chronic kidney disease (CKD) are at increased risk for the development and progression of atherosclerosis, it is not known whether arterial inflammation is increased in mild CKD. The aim of this study was to compare arterial inflammation using 18 F-FDG PET/CT in patients with CKD and in matched controls. This retrospective study included 128 patients undergoing FDG PET/CT imaging for clinical indications, comprising 64 patients with stage 3 CKD and 64 control patients matched by age, gender, and cancer history. CKD was defined according to guidelines using a calculated glomerular filtration rate (eGFR). Arterial inflammation was measured in the ascending aorta as FDG uptake on PET. Background FDG uptake (venous, subcutaneous fat and muscle) were recorded. Coronary artery calcification (CAC) was assessed using the CT images. The impact of CKD on arterial inflammation and CAC was then assessed. Arterial inflammation was higher in patients with CKD than in matched controls (standardized uptake value, SUV: 2.41 ± 0.49 vs. 2.16 ± 0.43; p = 0.002). Arterial SUV correlated inversely with eGFR (r = -0.299, p = 0.001). Venous SUV was also significantly elevated in patients with CKD, while subcutaneous fat and muscle tissue SUVs did not differ between groups. Moreover, arterial SUV remained significantly elevated in patients with CKD compared to controls after correcting for muscle and fat background, and also remained significant after adjusting for clinical risk factors. Further, CKD was associated with arterial inflammation (SUV) independent of the presence of subclinical atherosclerosis (CAC). Moderate CKD is associated with increased arterial inflammation beyond that of controls. Further, the increased arterial inflammation is independent of presence of subclinical atherosclerosis. Current risk stratification tools may underestimate the presence of atherosclerosis in patients with CKD and thereby the risk of cardiovascular

  17. Increased arterial inflammation in individuals with stage 3 chronic kidney disease

    Energy Technology Data Exchange (ETDEWEB)

    Takx, Richard A.P. [Massachusetts General Hospital and Harvard Medical School, Cardiac MR PET CT Program, Boston, MA (United States); University Medical Center Utrecht, Department of Radiology, Utrecht (Netherlands); MacNabb, Megan H.; Emami, Hamed; Abdelbaky, Amr; Lavender, Zachary R. [Massachusetts General Hospital and Harvard Medical School, Cardiac MR PET CT Program, Boston, MA (United States); Singh, Parmanand [Massachusetts General Hospital and Harvard Medical School, Cardiac MR PET CT Program, Boston, MA (United States); New York Presbyterian Hospital, Weill Cornell Medical College, Division of Cardiology, New York, NY (United States); Di Carli, Marcelo; Taqueti, Viviany; Foster, Courtney [Brigham and Women' s Hospital and Harvard Medical School, Division of Radiology, Department of Medicine, Boston, MA (United States); Mann, Jessica; Comley, Robert A.; Weber, Chek Ing Kiu [F. Hoffmann-La Roche Ltd., Basel (Switzerland); Tawakol, Ahmed [Massachusetts General Hospital and Harvard Medical School, Cardiac MR PET CT Program, Boston, MA (United States); Massachusetts General Hospital and Harvard Medical School, Cardiology Division, Boston, MA (United States); Massachusetts General Hospital, Boston, MA (United States)

    2016-02-15

    While it is well known that patients with chronic kidney disease (CKD) are at increased risk for the development and progression of atherosclerosis, it is not known whether arterial inflammation is increased in mild CKD. The aim of this study was to compare arterial inflammation using {sup 18}F-FDG PET/CT in patients with CKD and in matched controls. This retrospective study included 128 patients undergoing FDG PET/CT imaging for clinical indications, comprising 64 patients with stage 3 CKD and 64 control patients matched by age, gender, and cancer history. CKD was defined according to guidelines using a calculated glomerular filtration rate (eGFR). Arterial inflammation was measured in the ascending aorta as FDG uptake on PET. Background FDG uptake (venous, subcutaneous fat and muscle) were recorded. Coronary artery calcification (CAC) was assessed using the CT images. The impact of CKD on arterial inflammation and CAC was then assessed. Arterial inflammation was higher in patients with CKD than in matched controls (standardized uptake value, SUV: 2.41 ± 0.49 vs. 2.16 ± 0.43; p = 0.002). Arterial SUV correlated inversely with eGFR (r = -0.299, p = 0.001). Venous SUV was also significantly elevated in patients with CKD, while subcutaneous fat and muscle tissue SUVs did not differ between groups. Moreover, arterial SUV remained significantly elevated in patients with CKD compared to controls after correcting for muscle and fat background, and also remained significant after adjusting for clinical risk factors. Further, CKD was associated with arterial inflammation (SUV) independent of the presence of subclinical atherosclerosis (CAC). Moderate CKD is associated with increased arterial inflammation beyond that of controls. Further, the increased arterial inflammation is independent of presence of subclinical atherosclerosis. Current risk stratification tools may underestimate the presence of atherosclerosis in patients with CKD and thereby the risk of

  18. [Lung dysfunction in patients with mild chronic obstructive bronchitis].

    Science.gov (United States)

    Nefedov, V B; Popova, L A; Shergina, E A

    2004-01-01

    VC, FVC, FEV1, FEV1/VC%, PEF, MEF25, MEF50, MEF75, TCL, TGV, RV, Ravt, Riin, Rex, DLCO-SS, PaO2, and PaO2 were determined in 33 patients with mild chronic obstructive lung disease (FEV1 > 70% of the normal value). All the patients were found to have impaired bronchial patency; most (63.6%) patients had lung volume and capacity changes, almost half (45.5%) the patients had pulmonary gas exchange dysfunction. Impaired bronchial patency mainly appeared as decreased MEF50, MEF15, and FEV1/VC%; altered lung volumes and capacities manifested chiefly by increased RV and decreased VC; pulmonary gas exchange dysfunction showed up primarily as lowered PaO2. The magnitude of the observed functional changes was generally slight. MEF50, MEF75, FEV1/VC%, and VC dropped to 59-20 and 79-70% of the normal value, respectively. RV increased up to 142-196% of the normal value; PaO2 reduced up to 79-60% mm Hg.

  19. Altered Pulmonary Lymphatic Development in Infants with Chronic Lung Disease

    Science.gov (United States)

    McNellis, Emily M.; Mabry, Sherry M.; Taboada, Eugenio; Ekekezie, Ikechukwu I.

    2014-01-01

    Pulmonary lymphatic development in chronic lung disease (CLD) has not been investigated, and anatomy of lymphatics in human infant lungs is not well defined. Hypothesis. Pulmonary lymphatic hypoplasia is present in CLD. Method. Autopsy lung tissues of eighteen subjects gestational ages 22 to 40 weeks with and without history of respiratory morbidity were stained with monoclonal antipodoplanin and reviewed under light microscopy. Percentage of parenchyma podoplanin stained at the acinar level was determined using computerized image analysis; 9 CLD and 4 control subjects gestational ages 27 to 36 weeks were suitable for the analysis. Results. Distinct, lymphatic-specific staining with respect to other vascular structures was appreciated in all gestations. Infants with and without respiratory morbidity had comparable lymphatic distribution which extended to the alveolar ductal level. Podoplanin staining per parenchyma was increased and statistically significant in the CLD group versus controls at the alveolar ductal level (0.06% ± 0.02% versus 0.04% ± 0.01%, 95% CI −0.04% to −0.002%, P CLD. It is suggested that the findings, by expanding current knowledge of CLD pathology, may offer insight into the development of more effective therapies to tackle CLD. PMID:24527433

  20. Mediators of low-grade chronic inflammation in polycystic ovary syndrome (PCOS).

    Science.gov (United States)

    Ojeda-Ojeda, Miriam; Murri, Mora; Insenser, María; Escobar-Morreale, Héctor F

    2013-01-01

    Chronic low-grade subclinical inflammation has been increasingly recognized as an interposer in the endocrine, metabolic and reproductive disturbances that characterize the polycystic ovary syndrome (PCOS). Abdominal adiposity and obesity are often present in PCOS. Mounting evidence indicates that adipose tissue is involved in innate and adaptive immune responses. Continuous release of inflammatory mediators such as cytokines, acute phase proteins, and adipokines perpetuates the inflammatory condition associated with obesity in women with PCOS, possibly contributing to insulin resistance and other long-term cardiometabolic risk factors. Genetic variants in the genes encoding inflammation-related mediators underlie the development of PCOS and their interaction with environmental factors may contribute to the heterogeneous clinical phenotype of this syndrome. In the future, strategies ameliorating inflammation may prove useful for the management of PCOS and associated conditions.

  1. Role of radio-aerosol and perfusion lung imaging in early detection of chronic obstructive lung disease

    Energy Technology Data Exchange (ETDEWEB)

    Garg, A; Pande, J N; Guleria, J S; Gopinath, P G

    1983-04-01

    The efficacy of radio-aerosol and perfusion lung imaging in the early detection of chronic obstructive lung disease was evaluated in 38 subjects. The subjects included 5 non-smokers, 21 smokers with minimal or no respiratory symptoms and 12 patients with chronic obstructive lung disease. Each subject consented to a respiratory questionaire, detailed physical examination, chest X-ray examinations, detailed pulmonary function tests and sup(99m)Tc-radioaerosol-inhalation lung imaging. Perfusion lung imaging with sup(99m)Tc-labelled macroaggregated albumin was performed in 22 subjects. A significant correlation (P<0.001) was observed between the degree of abnormalities on radio-aerosol imaging and pulmonary function tests (PFTs) including forced expiratory volume in 1 s, maximum midexpiratory flow rate and mean transit time analysis. Abnormal radio-aerosol patterns and deranged PFTs were observed in 21 subjects each. Of 21 subjects with abnormal radioaerosol pattern 8 had normal PFTs. Of 21 subjects with abnormal PFTs 8 had normal aerosol images. Aerosol lung images and PFTs were abnormal more frequently than perfusion lung images. The results suggest that radio-aerosol lung imaging is as sensitive an indicator as PFTs for early detection of chronic obstructive lung disease and can be usefully combined with PFTs for early detection of alteration in pulmonary physiology in smokers.

  2. Local and Systemic Inflammation May Mediate Diesel Engine Exhaust-Induced Lung Function Impairment in a Chinese Occupational Cohort.

    Science.gov (United States)

    Wang, Haitao; Duan, Huawei; Meng, Tao; Yang, Mo; Cui, Lianhua; Bin, Ping; Dai, Yufei; Niu, Yong; Shen, Meili; Zhang, Liping; Zheng, Yuxin; Leng, Shuguang

    2018-04-01

    Diesel exhaust (DE) as the major source of vehicle-emitted particle matter in ambient air impairs lung function. The objectives were to assess the contribution of local (eg, the fraction of exhaled nitric oxide [FeNO] and serum Club cell secretory protein [CC16]) and systemic (eg, serum C-reaction protein [CRP] and interleukin-6 [IL-6]) inflammation to DE-induced lung function impairment using a unique cohort of diesel engine testers (DETs, n = 137) and non-DETs (n = 127), made up of current and noncurrent smokers. Urinary metabolites, FeNO, serum markers, and spirometry were assessed. A 19% reduction in CC16 and a 94% increase in CRP were identified in DETs compared with non-DETs (all p values regulatory risk assessment. Local and systemic inflammation may be key processes that contribute to the subsequent development of obstructive lung disease in DE-exposed populations.

  3. Rheumatoid arthritis-associated interstitial lung disease: lung inflammation evaluated with high resolution computed tomography scan is correlated to rheumatoid arthritis disease activity.

    Science.gov (United States)

    Pérez-Dórame, Renzo; Mejía, Mayra; Mateos-Toledo, Heidegger; Rojas-Serrano, Jorge

    2015-01-01

    To describe the association between rheumatoid arthritis disease activity (RA) and interstitial lung damage (inflammation and fibrosis), in a group of patients with rheumatoid arthritis-associated interstitial lung disease (RA-ILD). A retrospective study of RA patients with interstitial lung disease (restrictive pattern in lung function tests and evidence of interstitial lung disease in high resolution computed tomography (HRCT)). Patients were evaluated to exclude other causes of pulmonary disease. RA disease activity was measured with the CDAI index. Interstitial lung inflammation and fibrosis were determined by Kazerooni scale. We compared Kazerooni ground-glass score with the nearest CDAI score to HRCT date scan of the first medical evaluation at our institution. In nine patients, we compared the first ground-glass score with a second one after treatment with DMARDs and corticosteroids. Spearman's rank correlation coefficient was used to evaluate association between RA disease activity and the Kazerooni ground-glass and fibrosis scores. Thirty-four patients were included. A positive correlation between CDAI and ground-glass scores was found (rs=0.3767, P<0.028). Fibrosis and CDAI scores were not associated (rs=-0.0747, P<0.6745). After treatment, a downward tendency in the ground-glass score was observed (median [IQR]): (2.33 [2,3] vs. 2 [1.33-2.16]), P<0.056, along with a lesser CDAI score (27 [8-43] vs. 9 [5-12]), P<0.063. There is a correlation between RA disease activity and ground-glass appearance in the HRCT of RA-ILD patients. These results suggest a positive association between RA disease activity and lung inflammation in RA-ILD. Copyright © 2013 Elsevier España, S.L.U. All rights reserved.

  4. Iron Status and Inflammation in Early Stages of Chronic Kidney Disease

    Directory of Open Access Journals (Sweden)

    Ewelina Łukaszyk

    2015-06-01

    Full Text Available Background/Aims: One of the most common causes of anemia of chronic disease (ACD is chronic kidney disease. The main pathomechanism responsible for ACD is subclinical inflammation. The key element involved in iron metabolism is hepcidin, however, studies on new indices of iron status are in progress.The aim of the study was to assess the iron status in patients in early stages of chronic kidney disease, iron correlation with inflammation parameters and novel biomarkers of iron metabolism. Methods: The study included 69 patients. Standard laboratory measurements were used to measure the iron status, complete blood count, fibrinogen, prothrombin index, C-reactive protein concentration (CRP, creatinine, urea, uric acid. Commercially available kits were used to measure high-sensitivity CRP, interleukin 6 (IL-6, hepcidin-25, hemojuvelin, soluble transferrin receptor (sTfR, growth differentiation factor-15 (GDF-15 and zonulin. Results: Absolute iron deficiency was present in 17% of the patients, functional iron deficiency was present in 12% of the patients. Functional iron deficiency was associated with significantly higher serum levels of fibrinogen, ferritin, transferrin saturation, total iron binding capacity, hepcidin and older age relative to patients with absolute iron deficiency. In comparison with patients without iron deficiency, patients with functional iron deficiency were older, with lower prothrombin index, higher fibrinogen, CRP, hsCRP, sTfR, GDF-15, urea and lower eGFR. Hepcidin was predicted by markers of inflammation:ferritin, fibrinogen and IL-6. Conclusion: Inflammation is correlated with iron status. Novel biomarkers of iron metabolism might be useful to distinguish iron deficiency anemia connected with inflammation and absolute iron deficiency.

  5. Lipids, inflammation, and chronic kidney disease: a SHARP perspective.

    Science.gov (United States)

    Waters, David D; Vogt, Liffert

    2018-04-01

    Accumulating evidence indicates that inflammation plays a role in the initiation and progression of chronic kidney disease. In the Study of Heart and Renal Protection (SHARP) trial, higher baseline C-reactive protein and higher baseline low-density lipoprotein cholesterol levels were both associated with a higher risk of cardiovascular events, but higher baseline C-reactive protein levels were also associated with a higher risk of nonvascular events. Simvastatin/ezetimibe reduced cardiovascular events independent of baseline C-reactive protein levels. However, this observation does not exclude inflammation as a causal factor for cardiovascular disease development in chronic kidney disease patients. Copyright © 2018 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  6. Concurrent Social Disadvantages and Chronic Inflammation: The Intersection of Race and Ethnicity, Gender, and Socioeconomic Status.

    Science.gov (United States)

    Richman, Aliza D

    2017-08-28

    Disadvantaged social statuses, such as being female, poor, or a minority, are associated with increased psychosocial stress and elevated circulating concentrations of C-reactive protein, a biomarker of chronic inflammation and indicator of cardiovascular health. Individuals' experience of embodying psychosocial stress revolves around the multiplicative effects of concurrent gender, socioeconomic, and racial and ethnic identities. This study expands on prior research by examining chronic inflammation at the intersection of race and ethnicity, gender, socioeconomic status, and age group to understand which demographic subgroups in society are most vulnerable to the cumulative effects of social disadvantage. Using data from the National Health and Nutrition Examination Survey 2007-2010, the findings reveal inflammation disparities between non-poor whites and the following demographic subgroups, net of sociodemographic and biological factors: young poor Hispanic women, young poor white men, young poor and non-poor Hispanic men, middle-aged poor and non-poor black women, middle-aged poor and non-poor black men, and middle-aged poor Hispanic men. Disparities in inflammation on account of social disadvantage are most evident among those aged 45-64 years and diminish for those 65 and older in both men and women.

  7. A New Mouse Model That Spontaneously Develops Chronic Liver Inflammation and Fibrosis.

    Directory of Open Access Journals (Sweden)

    Nina Fransén-Pettersson

    Full Text Available Here we characterize a new animal model that spontaneously develops chronic inflammation and fibrosis in multiple organs, the non-obese diabetic inflammation and fibrosis (N-IF mouse. In the liver, the N-IF mouse displays inflammation and fibrosis particularly evident around portal tracts and central veins and accompanied with evidence of abnormal intrahepatic bile ducts. The extensive cellular infiltration consists mainly of macrophages, granulocytes, particularly eosinophils, and mast cells. This inflammatory syndrome is mediated by a transgenic population of natural killer T cells (NKT induced in an immunodeficient NOD genetic background. The disease is transferrable to immunodeficient recipients, while polyclonal T cells from unaffected syngeneic donors can inhibit the disease phenotype. Because of the fibrotic component, early on-set, spontaneous nature and reproducibility, this novel mouse model provides a unique tool to gain further insight into the underlying mechanisms mediating transformation of chronic inflammation into fibrosis and to evaluate intervention protocols for treating conditions of fibrotic disorders.

  8. Bifidobacterium breve and Lactobacillus rhamnosus treatment is as effective as budesonide at reducing inflammation in a murine model for chronic asthma.

    Science.gov (United States)

    Sagar, Seil; Morgan, Mary E; Chen, Si; Vos, Arjan P; Garssen, Johan; van Bergenhenegouwen, Jeroen; Boon, Louis; Georgiou, Niki A; Kraneveld, Aletta D; Folkerts, Gert

    2014-04-16

    Asthma is estimated to affect as many as 300 million people worldwide and its incidence and prevalence are rapidly increasing throughout the world, especially in children and within developing countries. Recently, there has been a growing interest in the use of potentially beneficial bacteria for allergic diseases. This study is aimed at exploring the therapeutic effects of long-term treatment with two different beneficial bacterial strains (Bifidobacterium breve M-16 V and Lactobacillus rhamnosus NutRes1) and a glucocorticoid (budesonide), as a reference treatment, on inflammatory response in a murine model for chronic allergic asthma. To mimic the chronic disease in asthmatic patients, we used the murine ovalbumin-induced asthma model combined with prolonged allergen exposure. Airway function; pulmonary airway inflammation; airway remodelling, mRNA expression of pattern recognition receptors, Th-specific cytokines and transcription factors in lung tissue; mast cell degranulation; in vitro T cell activation; and expression of Foxp3 in blood Th cells were examined. Lactobacillus rhamnosus reduced lung resistance to a similar extent as budesonide treatment in chronically asthmatic mice. Pulmonary airway inflammation, mast cell degranulation, T cell activation and airway remodelling were suppressed by all treatments. Beneficial bacteria and budesonide differentially modulated the expression of toll-like receptors (TLRs), nod-like receptors (NLRs), cytokines and T cell transcription factors. Bifidobacterium breve induced regulatory T cell responses in the airways by increasing Il10 and Foxp3 transcription in lung tissue as well as systemic by augmenting the mean fluorescence intensity of Foxp3 in blood CD4+ T cells. These findings show that Bifidobacterium breve M-16 V and Lactobacillus rhamnosus NutRes1 have strong anti-inflammatory properties that are comparable to budesonide and therefore may be beneficial in the treatment of chronic asthma.

  9. Is Chronic Inflammation a Possible Cause of Obesity-Related Depression?

    OpenAIRE

    Olszanecka-Glinianowicz, Magdalena; Zahorska-Markiewicz, Barbara; Kocełak, Piotr; Janowska, Joanna; Semik-Grabarczyk, Elżbieta; Wikarek, Tomasz; Gruszka, Wojciech; Dąbrowski, Piotr

    2009-01-01

    Adult obesity has been associated with depression, especially in women. Whether depression leads to obesity or obesity causes depression is unclear. Chronic inflammation is observed in obesity and depression. In 63 obese women without additional diseases depression level was assessed with the Beck's questionnaire. After evaluation of depression level study group was divided into groups according to the mood status (A—without depression, B—mild depression, and C—severe depression), and serum c...

  10. Comprehensive Genetic Characterization of Intraprostatic Chronic Inflammation and Prostate Cancer in African American Men

    Science.gov (United States)

    2017-09-01

    Response and Eradication of Androgen Receptor Amplification with High-dose Testosterone in Prostate Cancer ." Eur Urol 71(6): 997-998. Case Report...34 Prostate -specific Antigen Response and Eradication of Androgen Receptor Amplification with High-dose Testosterone in Prostate Cancer ." Eur Urol 71...AWARD NUMBER: W81XWH-15-1-0379 TITLE: Comprehensive genetic characterization of intraprostatic chronic inflammation and prostate cancer in

  11. Reversal of acute and chronic synovial inflammation by anti-transforming growth factor beta.

    Science.gov (United States)

    Wahl, S M; Allen, J B; Costa, G L; Wong, H L; Dasch, J R

    1993-01-01

    Transforming growth factor beta (TGF-beta) induces leukocyte recruitment and activation, events central to an inflammatory response. In this study, we demonstrate that antagonism of TGF-beta with a neutralizing antibody not only blocks inflammatory cell accumulation, but also tissue pathology in an experimental model of chronic erosive polyarthritis. Intraarticular injection of monoclonal antibody 1D11.16, which inhibits both TGF-beta 1 and TGF-beta 2 bioactivity, into animals receiving an arthropathic dose of bacterial cell walls significantly inhibits arthritis. Inhibition was observed with a single injection of 50 micrograms antibody, and a 1-mg injection blocked acute inflammation > 75% compared with the contralateral joints injected with an irrelevant isotype control antibody (MOPC21) as quantitated by an articular index (AI = 0.93 +/- 0.23 for 1D11.16, and AI = 4.0 +/- 0 on day 4; p histopathologic and radiologic evidence of a therapeutic response. These data implicate TGF-beta as a profound agonist not only in the early events responsible for synovial inflammation, but also in the chronicity of streptococcal cell wall fragment-induced inflammation culminating in destructive pathology. Interrupting the cycle of leukocyte recruitment and activation with TGF-beta antagonists may provide a mechanism for resolution of chronic destructive lesions.

  12. Inflammatory mechanisms in the lung

    Directory of Open Access Journals (Sweden)

    B Moldoveanu

    2008-12-01

    Full Text Available B Moldoveanu1, P Otmishi1, P Jani1, J Walker1,2, X Sarmiento3, J Guardiola1, M Saad1, Jerry Yu11Department of Medicine, University of Louisville, Louisville, KY, USA, 40292; 2Department of Respiratory Therapy, Bellarmine University, Louisville, KY, USA, 40205; 3Intensive Care Medicine Service, University Hospital Germans Trias i Pujol, Badalona, Spain 08916Abstract: Inflammation is the body’s response to insults, which include infection, trauma, and hypersensitivity. The inflammatory response is complex and involves a variety of mechanisms to defend against pathogens and repair tissue. In the lung, inflammation is usually caused by pathogens or by exposure to toxins, pollutants, irritants, and allergens. During inflammation, numerous types of inflammatory cells are activated. Each releases cytokines and mediators to modify activities of other inflammatory cells. Orchestration of these cells and molecules leads to progression of inflammation. Clinically, acute inflammation is seen in pneumonia and acute respiratory distress syndrome (ARDS, whereas chronic inflammation is represented by asthma and chronic obstructive pulmonary disease (COPD. Because the lung is a vital organ for gas exchange, excessive inflammation can be life threatening. Because the lung is constantly exposed to harmful pathogens, an immediate and intense defense action (mainly inflammation is required to eliminate the invaders as early as possible. A delicate balance between inflammation and anti-inflammation is essential for lung homeostasis. A full understanding of the underlying mechanisms is vital in the treatment of patients with lung inflammation. This review focuses on cellular and molecular aspects of lung inflammation during acute and chronic inflammatory states.Keywords: inflammation, lung, inflammatory mediators, cytokines

  13. Advanced Therapeutic Strategies for Chronic Lung Disease Using Nanoparticle-Based Drug Delivery

    Directory of Open Access Journals (Sweden)

    Ji Young Yhee

    2016-09-01

    Full Text Available Chronic lung diseases include a variety of obstinate and fatal diseases, including asthma, chronic obstructive pulmonary disease (COPD, cystic fibrosis (CF, idiopathic pulmonary fibrosis (IPF, and lung cancers. Pharmacotherapy is important for the treatment of chronic lung diseases, and current progress in nanoparticles offers great potential as an advanced strategy for drug delivery. Based on their biophysical properties, nanoparticles have shown improved pharmacokinetics of therapeutics and controlled drug delivery, gaining great attention. Herein, we will review the nanoparticle-based drug delivery system for the treatment of chronic lung diseases. Various types of nanoparticles will be introduced, and recent innovative efforts to utilize the nanoparticles as novel drug carriers for the effective treatment of chronic lung diseases will also be discussed.

  14. P. aeruginosa in the paranasal sinuses and transplanted lungs have similar adaptive mutations as isolates from chronically infected CF lungs

    DEFF Research Database (Denmark)

    Ciofu, Oana; Johansen, Helle Krogh; Aanaes, Kasper

    2013-01-01

    BACKGROUND: Pseudomonas aeruginosa cells are present as biofilms in the paranasal sinuses and the lungs of chronically infected cystic fibrosis (CF) patients. Since different inflammatory responses and selective antibiotic pressures are acting in the sinuses compared with the lungs, we compared...... the adaptive profiles of mucoid and non-mucoid isolates from the two locations. METHODS: We studied the genetic basis of phenotypic diversification and gene expression profiles in sequential lung and sinus P. aeruginosa isolates from four chronically infected CF patients, including pre- and post-lung...... transplantation isolates. RESULTS: The same phenotypes caused by similar mutations and similar gene expression profiles were found in mucoid and non-mucoid isolates from the paranasal sinuses and from the lungs before and after transplantation. CONCLUSION: Bilateral exchange of P. aeruginosa isolates between...

  15. Tobacco smoke exposure suppresses radiation-induced inflammation in the lung

    International Nuclear Information System (INIS)

    Bjermer, L.; Cai, Y.; Nilsson, K.; Hellstroem, S.; Henriksson, R.

    1993-01-01

    Previous studies on patients with breast cancer, who received postsurgical irradiation, displayed a markedly suppressed inflammatory response in the lung of smoking patients compared to nonsmokers. The aim of the present study was to investigate further the effect of exposure to tobacco smoke on the development of irradiation-induced pneumonitis in the rat. Four groups of animals were used: controls (C); those exposed to tobacco smoke (S); those irradiated but not exposed to smoke (RNS); and those irradiated and exposed to tobacco smoke (RS). The rats were exposed to a diluted main stream of cigarette smoke, at a concentration of about 0.4 mgxl -1 , in a nose-only exposure system for 1 hxday -1 , 5 daysxweek -1 for 10 weeks. Exposure to tobacco smoke started 3 weeks before irradiation. The basal one third of both lungs was exposed to a single radiation dose of 28 Gy (6 MeV photons). All animals were killed 7 weeks after irradiation. We compared findings in bronchoalveolar lavage (BAL) and tissue morphology. The alveolar tissue showed less inflammation in the RS-group than in the RNS-group. Most strikingly, mast cells were increased one hundredfold in the lung interstitium and thirty fold in the peribronchial area in the RNS-group, whereas no increase was found in the RS-group or in the controls. The alveolar septa of the RNS-group were thickened, with occurrence of inflammatory cells and mast cells, whereas the RS-group displayed no difference as compared to the non-irradiated, nonsmoking group (C). There was a marked discrepancy between the findings in BAL and tissue of the alveolar space or lung interstitium. In BAL, neutrophils, and to a lesser extent lymphocytes, were increased both in the RS- and RNS-group; however, with significantly higher numbers in the RNS-group. In contrast, the cells in the alveolar space and interstitium were dominated by mononuclear cells, mainly macrophages. Moreover, a more than twenty fold increase in total cells in the alveolar

  16. 18FDG uptake associated with CT density on PET/CT in lungs with and without chronic interstitial lung diseases

    International Nuclear Information System (INIS)

    Inoue, Kentaro; Okada, Ken; Taki, Yasuyuki; Goto, Ryoi; Kinomura, Shigeo; Fukuda, Hiroshi

    2009-01-01

    The dependent-density of computed tomography (CT) images of positron emission tomography (PET)/CT is sometimes difficult to distinguish from chronic interstitial lung disease (ILD) when it accompanies increased 18 F-fluorodeoxy-D-glucose ( 18 FDG) uptake. Though the possible utility of 18 FDG-PET for the diagnosis of active ILD has been reported, the clinical relevance of mild lung 18 FDG uptake in ILD cases without signs and symptoms suggesting acute progression has not been described. This study aimed to test relationships between 18 FDG uptake and lung density on CT using PET/CT in patients with normal lung as well as clinically stable chronic ILD. Thirty-six patients with normal lungs (controls) and 28 patients with chronic ILD (ILD cases) without acute exacerbation were retrospectively selected from 18 FDG PET/CT scans performed in examination of malignant neoplasms. Elliptical regions of interest (ROIs) were placed on the lung. The relationships between CT density and 18 FDG uptake between the control and ILD cases were tested. The CT density and 18 FDG uptake had a linear correlation in both the controls and the ILD cases without a difference in their regression slopes, and they were overlapped between the controls and the ILD cases with higher mean values in the ILD cases. Lung 18 FDG uptake was considered to reflect a gravity-dependent tissue density in the normal lung. Though the lung 18 FDG uptake as well as the CT density tended to be higher in chronic ILD patients, it may be difficult to distinguish them in normal dependent regions from those related to chronic ILD in some cases. (author)

  17. Angiotensin II type 2 receptor agonist Compound 21 attenuates pulmonary inflammation in a model of acute lung injury

    Directory of Open Access Journals (Sweden)

    Menk M

    2018-05-01

    Full Text Available Mario Menk, Jan Adriaan Graw, Clarissa von Haefen, Hendrik Steinkraus, Burkhard Lachmann, Claudia D Spies, David Schwaiberger Department of Anesthesiology and Operative Intensive Care Medicine, Charité – University Medicine Berlin, FreieUniversität Berlin, Humboldt-Universitätzu Berlin, and Berlin Institute of Health, Germany Purpose: Although the role of the angiotensin II type 2 (AT2 receptor in acute lung injury is not yet completely understood, a protective role of this receptor subtype has been suggested. We hypothesized that, in a rodent model of acute lung injury, stimulation of the AT2 receptor with the direct agonist Compound 21 (C21 might have a beneficial effect on pulmonary inflammation and might improve pulmonary gas exchange. Materials and methods: Male adult rats were divided into a treatment group that received pulmonary lavage followed by mechanical ventilation (LAV, n=9, a group receiving pulmonary lavage, mechanical ventilation, and direct stimulation of the AT2 receptor with C21 (LAV+C21, n=9, and a control group that received mechanical ventilation only (control, n=9. Arterial blood gas analysis was performed every 30 min throughout the 240-min observation period. Lung tissue and plasma samples were obtained at 240 min after the start of mechanical ventilation. Protein content and surface activity of bronchoalveolar lavage fluid were assessed and the wet/dry-weight ratio of lungs was determined. Transcriptional and translational regulation of pro- and antiinflammatory cytokines IL-1β, tumor necrosis factor-alpha, IL-6, IL-10, and IL-4 was determined in lungs and in plasma. Results: Pulmonary lavage led to a significant impairment of gas exchange, the formation of lung edema, and the induction of pulmonary inflammation. Protein content of lavage fluid was increased and contained washed-out surfactant. Direct AT2 receptor stimulation with C21 led to a significant inhibition of tumor necrosis factor-alpha and IL-6

  18. Oxygen titration strategies in chronic neonatal lung disease.

    Science.gov (United States)

    Primhak, Robert

    2010-09-01

    The history of oxygen therapy in neonatology has been littered with error. Controversies remain in a number of areas of oxygen therapy, including targets and strategies in supplemental oxygen therapy in Chronic Neonatal Lung Disease (CNLD). This article reviews some of these controversies, and makes some recommendations based on the available evidence. In graduates of neonatal units who are left with CNLD, oxygen saturation should be kept above 93-95%, with levels below 90% being avoided as far as possible. Titration of oxygen should be done using oximetry recordings which include periods of different activities. Weaning of oxygen supplementation should only be done based on satisfactory recordings during a trial of a lower flow. There is insufficient evidence to say whether weaning for increasing hours a day or stepwise weaning to a continuous lower flow is a better method. Copyright 2010 Elsevier Ltd. All rights reserved.

  19. Long term cardiovascular consequences of chronic lung disease of prematurity.

    Science.gov (United States)

    Poon, Chuen Yeow; Edwards, Martin Oliver; Kotecha, Sailesh

    2013-12-01

    Pulmonary arterial (PA) hypertension in preterm infant is an important consequence of chronic lung disease of prematurity (CLD) arising mainly due to impaired alveolar development and dysregulated angiogenesis of the pulmonary circulation. Although PA pressure and resistance in these children normalise by school age, their pulmonary vasculature remains hyper-reactive to hypoxia until early childhood. Furthermore, there is evidence that systemic blood pressure in preterm born children with or without CLD is mildly increased at school age and in young adulthood when compared to term-born children. Arterial stiffness may be increased in CLD survivors due to increased smooth muscle tone of the pre-resistance and resistance vessels rather than the loss of elasticity in the large arteries. This review explores the long term effects of CLD on the pulmonary and systemic circulations along with their clinical correlates and therapeutic approaches. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Mast cell stabilization alleviates acute lung injury after orthotopic autologous liver transplantation in rats by downregulating inflammation.

    Directory of Open Access Journals (Sweden)

    Ailan Zhang

    Full Text Available BACKGROUND: Acute lung injury (ALI is one of the most severe complications after orthotopic liver transplantation. Amplified inflammatory response after transplantation contributes to the process of ALI, but the mechanism underlying inflammation activation is not completely understood. We have demonstrated that mast cell stabilization attenuated inflammation and ALI in a rodent intestine ischemia/reperfusion model. We hypothesized that upregulation of inflammation triggered by mast cell activation may be involve in ALI after liver transplantation. METHODS: Adult male Sprague-Dawley rats received orthotopic autologous liver transplantation (OALT and were executed 4, 8, 16, and 24 h after OALT. The rats were pretreated with the mast cell stabilizers cromolyn sodium or ketotifen 15 min before OALT and executed 8 h after OALT. Lung tissues and arterial blood were collected to evaluate lung injury. β-hexosaminidase and mast cell tryptase levels were assessed to determine the activation of mast cells. Tumor necrosis factor α (TNF-α, interleukin (IL-1β and IL-6 in serum and lung tissue were analyzed by enzyme-linked immunosorbent assay. Nuclear factor-kappa B (NF-κB p65 translocation was assessed by Western blot. RESULTS: The rats that underwent OALT exhibited severe pulmonary damage with a high wet-to-dry ratio, low partial pressure of oxygen, and low precursor surfactant protein C levels, which corresponded to the significant elevation of pro-inflammatory cytokines, β-hexosaminidase, and tryptase levels in serum and lung tissues. The severity of ALI progressed and maximized 8 h after OALT. Mast cell stabilization significantly inhibited the activation of mast cells, downregulated pro-inflammatory cytokine levels and translocation of NF-κB, and attenuated OALT-induced ALI. CONCLUSIONS: Mast cell activation amplified inflammation and played an important role in the process of post-OALT related ALI.

  1. Effect of Hedera helix on lung histopathology in chronic asthma.

    Science.gov (United States)

    Hocaoglu, Arzu Babayigit; Karaman, Ozkan; Erge, Duygu Olmez; Erbil, Guven; Yilmaz, Osman; Kivcak, Bijen; Bagriyanik, H Alper; Uzuner, Nevin

    2012-12-01

    Hedera helix is widely used to treat bronchial asthma for many years. However, effects of this herb on lung histopathology is still far from clear. We aimed to determine the effect of oral administration of Hedera helix on lung histopathology in a murine model of chronic asthma.BALB/c mice were divided into four groups; I (Placebo), II (Hedera helix), III (Dexamethasone) and IV (Control). All mice except controls were sensitized and challenged with ovalbumin. Then, mice in group I received saline, group II 100 mg/kg Hedera helix and group III 1 mg/kg dexamethasone via orogastic gavage once daily for one week. Airway histopathology was evaluated by using light and electron microscopy in all groups.Goblet cell numbers and thicknesses of basement membrane were found significantly lower in group II, but there was no statistically significant difference in terms of number of mast cells, thicknesses of epithelium and subepithelial smooth muscle layers between group I and II. When Hedera helix and dexamethasone groups were compared with each other, thickness of epithelium, subepithelial muscle layers, number of mast cells and goblet cells of group III were significantly ameliorated when compared with the group II. Although Hedera helix administration reduced only goblet cell counts and the thicknesses of basement membrane in the asthmatic airways, dexamethasone ameliorated all histopathologic parameters except thickness of basement membrane better than Hedera helix.

  2. [Impaired lung function in patients with moderate chronic obstructive bronchitis].

    Science.gov (United States)

    Nefedov, V B; Popova, L A; Shergina, E A

    2004-01-01

    VC, FVC, FEV1, FEV1/VC%, PEF, MEF25, MEF50, MEF75, TLC, TGV, RV, Raw, Rin, Rex, DLCO-SS, paO2 and paCO2 were determined in 22 patients with moderate chronic obstructive bronchitis (FEV1, 79-50% of the normal value). All the patients were found to have impaired bronchial patency, 90.9% of the patients had lung volume and capacity changes; pulmonary gas exchange dysfunction was present in 72.7%. Bronchial patency impairments were manifested by a decrease in FEV1, FEV1/VC%, PEF, MEF25, MEF50, MEF75, and an increase in Raw, Rin, Rex. Changes in the lung volumes and capacities appeared as higher RV, TGV, TLC, lower VC and FVC. Pulmonary gas exchange dysfunction showed up as a reduction in pO2 and DLCO-SS a reduction and an increase in paCO2. The magnitude of the functional changes observed in most patients was low. Significant and pronounced disorders were seen in one third of the patients.

  3. Lung radiology and pulmonary function of children chronically exposed to air pollution.

    Science.gov (United States)

    Calderón-Garcidueñas, Lilian; Mora-Tiscareño, Antonieta; Fordham, Lynn A; Chung, Charles J; Valencia-Salazar, Gildardo; Flores-Gómez, Silvia; Solt, Anna C; Gomez-del Campo, Alberto; Jardón-Torres, Ricardo; Henríquez-Roldán, Carlos; Hazucha, Milan J; Reed, William

    2006-09-01

    We analyzed the chest radiographs (CXRs) of 249 clinically healthy children, 230 from southwest Mexico City and 19 from Tlaxcala. In contrast to children from Tlaxcala, children from southwest Mexico City were chronically exposed to ozone levels exceeding the U.S. National Ambient Air Quality Standards for an average of 4.7 hr/day and to concentrations of particulate matter (PM) with aerodynamic diameters lung function tests based on predicted values. These findings are consistent with bronchiolar, peribronchiolar, and/or alveolar duct inflammation, possibly caused by ozone, PM, and lipopolysaccharide exposure. The epidemiologic implications of these findings are important for children residing in polluted environments, because bronchiolar disease could lead to chronic pulmonary disease later in life.

  4. Effects of mycobacteria major secretion protein, Ag85B, on allergic inflammation in the lung.

    Directory of Open Access Journals (Sweden)

    Yusuke Tsujimura

    Full Text Available Many epidemiological studies have suggested that the recent increase in prevalence and severity of allergic diseases such as asthma is inversely correlated with Mycobacterium bovis bacillus Calmette Guerin (BCG vaccination. However, the underlying mechanisms by which mycobacterial components suppress allergic diseases are not yet fully understood. Here we showed the inhibitory mechanisms for development of allergic airway inflammation by using highly purified recombinant Ag85B (rAg85B, which is one of the major protein antigens secreted from M. tuberculosis. Ag85B is thought to be a single immunogenic protein that can elicit a strong Th1-type immune response in hosts infected with mycobacteria, including individuals vaccinated with BCG. Administration of rAg85B showed a strong inhibitory effect on the development of allergic airway inflammation with induction of Th1-response and IL-17and IL-22 production. Both cytokines induced by rAg85B were involved in the induction of Th17-related cytokine-production innate immune cells in the lung. Administration of neutralizing antibodies to IL-17 or IL-22 in rAg85B-treated mice revealed that IL-17 induced the infiltration of neutrophils in BAL fluid and that allergen-induced bronchial eosinophilia was inhibited by IL-22. Furthermore, enhancement of the expression of genes associated with tissue homeostasis and wound healing was observed in bronchial tissues after rAg85B administration in a Th17-related cytokine dependent manner. The results of this study provide evidence for the potential usefulness of rAg85B as a novel approach for anti-allergic effect and tissue repair other than the role as a conventional TB vaccine.

  5. β-Catenin is required for the differentiation of iNKT2 and iNKT17 cells that augment IL-25-dependent lung inflammation

    OpenAIRE

    Berga-Bolaños, Rosa; Sharma, Archna; Steinke, Farrah C.; Pyaram, Kalyani; Kim, Yeung-Hyen; Sultana, Dil A.; Fang, Jessie X.; Chang, Cheong-Hee; Xue, Hai-Hui; Heller, Nicola M.; Sen, Jyoti Misra

    2015-01-01

    Background Invariant Natural Killer T (iNKT) cells have been implicated in lung inflammation in humans and also shown to be a key cell type in inducing allergic lung inflammation in mouse models. iNKT cells differentiate and acquire functional characteristics during development in the thymus. However, the correlation between development of iNKT cells in the thymus and role in lung inflammation remains unknown. In addition, transcriptional control of differentiation of iNKT cells into iNKT cel...

  6. Human umbilical cord mesenchymal stem cells reduce systemic inflammation and attenuate LPS-induced acute lung injury in rats

    Directory of Open Access Journals (Sweden)

    Li Jianjun

    2012-09-01

    Full Text Available Abstract Background Mesenchymal stem cells (MSCs possess potent immunomodulatory properties and simultaneously lack the ability to illicit immune responses. Hence, MSCs have emerged as a promising candidate for cellular therapeutics for inflammatory diseases. Within the context of this study, we investigated whether human umbilical cord-derived mesenchymal stem cells (UC-MSCs could ameliorate lipopolysaccharide- (LPS- induced acute lung injury (ALI in a rat model. Methods ALI was induced via injection of LPS. Rats were divided into three groups: (1 saline group(control, (2 LPS group, and (3 MSC + LPS group. The rats were sacrificed at 6, 24, and 48 hours after injection. Serum, bronchoalveolar lavage fluid (BALF, and lungs were collected for cytokine concentration measurements, assessment of lung injury, and histology. Results UC-MSCs increased survival rate and suppressed LPS-induced increase of serum concentrations of pro-inflammatory mediators TNF-α, IL-1β, and IL-6 without decreasing the level of anti-inflammatory cytokine IL-10. The MSC + LPS group exhibited significant improvements in lung inflammation, injury, edema, lung wet/dry ratio, protein concentration, and neutrophil counts in the BALF, as well as improved myeloperoxidase (MPO activity in the lung tissue. Furthermore, UC-MSCs decreased malondialdehyde (MDA production and increased Heme Oxygenase-1 (HO-1 protein production and activity in the lung tissue. Conclusion UC-MSCs noticeably increased the survival rate of rats suffering from LPS-induced lung injury and significantly reduced systemic and pulmonary inflammation. Promoting anti-inflammatory homeostasis and reducing oxidative stress might be the therapeutic basis of UC-MSCs.

  7. S1P-induced airway smooth muscle hyperresponsiveness and lung inflammation in vivo: molecular and cellular mechanisms.

    Science.gov (United States)

    Roviezzo, F; Sorrentino, R; Bertolino, A; De Gruttola, L; Terlizzi, M; Pinto, A; Napolitano, M; Castello, G; D'Agostino, B; Ianaro, A; Sorrentino, R; Cirino, G

    2015-04-01

    Sphingosine-1-phosphate (S1P) has been shown to be involved in the asthmatic disease as well in preclinical mouse experimental models of this disease. The aim of this study was to understand the mechanism(s) underlying S1P effects on the lung. BALB/c, mast cell-deficient and Nude mice were injected with S1P (s.c.) on days 0 and 7. Functional, molecular and cellular studies were performed. S1P administration to BALB/c mice increased airway smooth muscle reactivity, mucus production, PGD2 , IgE, IL-4 and IL-13 release. These features were associated to a higher recruitment of mast cells to the lung. Mast cell-deficient Kit (W) (-sh/) (W) (-sh) mice injected with S1P did not display airway smooth muscle hyper-reactivity. However, lung inflammation and IgE production were still present. Treatment in vivo with the anti-CD23 antibody B3B4, which blocks IgE production, inhibited both S1P-induced airway smooth muscle reactivity in vitro and lung inflammation. S1P administration to Nude mice did not elicit airway smooth muscle hyper-reactivity and lung inflammation. Naïve (untreated) mice subjected to the adoptive transfer of CD4+ T-cells harvested from S1P-treated mice presented all the features elicited by S1P in the lung. S1P triggers a cascade of events that sequentially involves T-cells, IgE and mast cells reproducing several asthma-like features. This model may represent a useful tool for defining the role of S1P in the mechanism of action of currently-used drugs as well as in the development of new therapeutic approaches for asthma-like diseases. © 2014 The British Pharmacological Society.

  8. Maternal Income during Pregnancy is Associated with Chronic Placental Inflammation at Birth.

    Science.gov (United States)

    Keenan-Devlin, Lauren S; Ernst, Linda M; Ross, Kharah M; Qadir, Sameen; Grobman, William A; Holl, Jane L; Crockett, Amy; Miller, Gregory E; Borders, Ann E B

    2017-08-01

    Objective  This study aims to examine whether maternal household income is associated with histological evidence of chronic placental inflammation. Study Design  A total of 152 participants completed surveys of household income and consented to placenta collection at delivery and postpartum chart review for birth outcomes. Placental inflammatory lesions were evaluated via histological examination of the membranes, basal plate, and villous parenchyma by a single, experienced pathologist. Associations between household income and the presence of inflammatory lesions were adjusted for known perinatal risk factors. Results  Overall, 45% of participants reporting household income below $30,000/y had chronic placental inflammation, compared with 25% of participants reporting income above $100,000 annually (odds ratio [OR] = 4.23, 95% confidence interval [CI] = 1.25, 14.28; p  = 0.02). Middle-income groups showed intermediate rates of chronic inflammatory lesions, at 40% for those reporting $30,000 and 50,000 (OR = 3.60, 95% CI = 1.05, 12.53; p  = 0.04) and 38% for those reporting $50,000 to 100,000 (OR = 1.57, 95% CI = 0.60, 4.14; p  = 0.36). Results remained significant after adjustment for maternal age, race, and marital status. Conclusion  Chronic placental inflammation is associated with maternal household income. Greater occurrence of placental lesions in low-income mothers may arise from a systemic inflammatory response to social and physical environmental factors. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  9. Guidance Cue Netrin-1 and the Regulation of Inflammation in Acute and Chronic Kidney Disease

    Directory of Open Access Journals (Sweden)

    Punithavathi Ranganathan

    2014-01-01

    Full Text Available Acute kidney injury (AKI is a common problem in the hospital setting and intensive care unit. Despite improved understanding, there are no effective therapies available to treat AKI. A large body of evidence strongly suggests that ischemia reperfusion injury is an inflammatory disease mediated by both adaptive and innate immune systems. Cell migration also plays an important role in embryonic development and inflammation, and this process is highly regulated to ensure tissue homeostasis. One such paradigm exists in the developing nervous system, where neuronal migration is mediated by a balance between chemoattractive and chemorepulsive signals. The ability of the guidance molecule netrin-1 to repulse or abolish attraction of neuronal cells expressing the UNC5B receptor makes it an attractive candidate for the regulation of inflammatory cell migration. Recent identification of netrin-1 as regulators of immune cell migration has led to a large number of studies looking into how netrin-1 controls inflammation and inflammatory cell migration. This review will focus on recent advances in understanding netrin-1 mediated regulation of inflammation during acute and chronic kidney disease and whether netrin-1 and its receptor activation can be used to treat acute and chronic kidney disease.

  10. [Chronic low-grade inflammation, lipid risk factors and mortality in functionally dependent elderly].

    Science.gov (United States)

    Vasović, Olga; Trifunović, Danijela; Despotovié, Nebojsa; Milosević, Dragoslav P

    2010-07-01

    It has been proved that a highly sensitive C-reactive protein (hsCRP) can be used as an established marker of chronic inflammation for cardiovascular risk assessment. Since mean values of both low-density cholesterol (LDL-C) and high-density lipoprotein cholesterol (HDL-C) decrease during aging, the knowledge that increased hsCRP concentration predicts mortality (Mt) would influence therapy and treatment outcome. The aim of this study was to examine importance of chronic low grade inflammation and its association with lipid risk factors for all-cause Mt in functionally dependent elderly. The participants of this longitudinal prospective study were 257 functionally dependent elderly aged 65-99 years. Baseline measurements: anthropometric measurements, blood pressure, fasting plasma total cholesterol (TC), triglyceride (TG), HDL-C, LDL-C, non-HDL-C, hemoglobin Alc (HbA1c) were recorded and different lipid ratios were calculated. Inflammation was assessed by the levels of white blood cells, fibrinogen and hsCRP. The participants with hsCRP grater than 10 mg/L were excluded from the study. The residual participants (77.4% women) were divided into three groups according to their hsCRP levels: a low (agressive lipid lowering treatment.

  11. Lung function and airway inflammation in rats following exposure to combustion products of carbon-graphite/epoxy composite material: comparison to a rodent model of acute lung injury.

    Science.gov (United States)

    Whitehead, Gregory S; Grasman, Keith A; Kimmel, Edgar C

    2003-02-01

    Pulmonary function and inflammation in the lungs of rodents exposed by inhalation to carbon/graphite/epoxy advanced composite material (ACM) combustion products were compared to that of a rodent model of acute lung injury (ALI) produced by pneumotoxic paraquat dichloride. This investigation was undertaken to determine if short-term exposure to ACM smoke induces ALI; and to determine if smoke-related responses were similar to the pathogenic mechanisms of a model of lung vascular injury. We examined the time-course for mechanical lung function, infiltration of inflammatory cells into the lung, and the expression of three inflammatory cytokines, tumor necrosis factor-alpha (TNF-alpha), macrophage inflammatory protein-2 (MIP-2) and interferon-gamma (IFN-gamma). Male Fischer-344 rats were either exposed to 26.8-29.8 g/m(3) nominal concentrations of smoke or were given i.p. injections of paraquat dichloride. Measurements were determined at 1, 2, 3, and 7 days post exposure. In the smoke-challenged rats, there were no changes in lung function indicative of ALI throughout the 7-day observation period, despite the acute lethality of the smoke atmosphere. However, the animals showed signs of pulmonary inflammation. The expression of TNF-alpha was significantly increased in the lavage fluid 1 day following exposure, which preceded the maximum leukocyte infiltration. MIP-2 levels were significantly increased in lavage fluid at days 2, 3, and 7. This followed the leukocyte infiltration. IFN-gamma was significantly increased in the lung tissue at day 7, which occurred during the resolution of the inflammatory response. The paraquat, which was also lethal to a small percentage of the animals, caused several physiologic changes characteristic of ALI, including significant decreases in lung compliance, lung volumes/capacities, distribution of ventilation, and gas exchange capacity. The expression of TNF-alpha and MIP-2 increased significantly in the lung tissue as well as in the

  12. Airway inflammation in chronic obstructive pulmonary disease (COPD): a true paradox.

    Science.gov (United States)

    Eapen, Mathew Suji; Myers, Stephen; Walters, Eugene Haydn; Sohal, Sukhwinder Singh

    2017-10-01

    Chronic obstructive pulmonary disease (COPD) is primarily an airway condition, which mainly affects cigarette smokers and presents with shortness of breath that is progressive and poorly reversible. In COPD research, there has been a long held belief that airway disease progression is due to inflammation. Although this may be true in the airway lumen with innate immunity activated by the effect of smoke or secondary to infection, the accurate picture of inflammatory cells in the airway wall, where the pathophysiological COPD remodeling occurs, is uncertain and debatable. Areas covered: The current review provides a comprehensive literature survey of the changes in the main inflammatory cells in human COPD patients and focuses on contrarian views that affect the prevailing dogma on inflammation. The review also delves into the role of oxidative stress and inflammasomes in modulating the immune response in COPD. Further, the effects of inflammation in affecting the epithelium, fibroblasts, and airway remodeling are discussed. Expert commentary: Inflammation as a driving force for airway wall damage and remodelling in early COPD is at the very least 'oversimplified' and is likely to be misleading. This has serious implications for rational thinking about the illness, including pathogenesis and designing therapy.

  13. Mechanical stress as the common denominator between chronic inflammation, cancer and Alzheimer’s disease

    Directory of Open Access Journals (Sweden)

    Marcel eLevy Nogueira

    2015-09-01

    Full Text Available The pathogenesis of common diseases such as Alzheimer’s disease (AD and cancer are currently poorly understood. Inflammation is a common risk factor for cancer and AD. Recent data, provided by our group and from others, demonstrate that increased pressure and inflammation are synonymous. There is a continuous increase in pressure from inflammation to fibrosis and then cancer. This in line with the numerous papers reporting high interstitial pressure in cancer. But most authors focus on the role of pressure in the lack of delivery of chemotherapy in the center of the tumor. Pressure may also be a key factor in carcinogenesis. Increased pressure is responsible for oncogene activation and cytokine secretion. Accumulation of mechanical stress plays a key role in the development of diseases of old age such as cardiomyopathy, atherosclerosis and osteoarthritis. Growing evidence suggest also a possible link between mechanical stress in the pathogenesis of AD. The aim of this review is to describe environmental and endogenous mechanical factors possibly playing a pivotal role in the mechanism of chronic inflammation, AD and cancer.

  14. Aspiration, Localized Pulmonary Inflammation, and Predictors of Early-Onset Bronchiolitis Obliterans Syndrome after Lung Transplantation

    Science.gov (United States)

    Fisichella, P Marco; Davis, Christopher S; Lowery, Erin; Ramirez, Luis; Gamelli, Richard L; Kovacs, Elizabeth J

    2014-01-01

    BACKGROUND We hypothesized that immune mediator concentrations in the bronchoalveolar fluid (BALF) are predictive of bronchiolitis obliterans syndrome (BOS) and demonstrate specific patterns of dysregulation, depending on the presence of acute cellular rejection, BOS, aspiration, and timing of lung transplantation. STUDY DESIGN We prospectively collected 257 BALF samples from 105 lung transplant recipients. The BALF samples were assessed for absolute and differential white blood cell counts and 34 proteins implicated in pulmonary immunity, inflammation, fibrosis, and aspiration. RESULTS There were elevated BALF concentrations of interleukin (IL)-15, IL-17, basic fibroblast growth factor, tumor necrosis factor–α, and myeloperoxidase, and reduced concentrations of α1-antitrypsin, which were predictive of early-onset BOS. Patients with BOS had an increased percentage of BALF lymphocytes and neutrophils, with a reduced percentage of macrophages (p < 0.05). The BALF concentrations of IL-1β; IL-8; interferon-γ–induced protein 10; regulated upon activation, normal T-cell expressed and secreted; neutrophil elastase; and pepsin were higher in patients with BOS (p < 0.05). Among those with BOS, BALF concentrations of IL-1RA; IL-8; eotaxin; interferon-γ–induced protein 10; regulated upon activation, normal T-cell expressed and secreted; myeloperoxidase; and neutrophil elastase were positively correlated with time since transplantation (p < 0.01). Those with worse grades of acute cellular rejection had an increased percentage of lymphocytes in their BALF (p < 0.0001) and reduced BALF concentrations of IL-1β, IL-7, IL-9, IL-12, granulocyte colony-stimulating factor, granulocyte-macrophage colony-stimulating factor, interferon-γ, and vascular endothelial growth factor (p ≤ 0.001). Patients with aspiration based on detectable pepsin had increased percentage of neutrophils (p < 0.001) and reduced BALF concentrations of IL-12 (p < 0.001). CONCLUSIONS The BALF levels

  15. VEGF controls lung Th2 inflammation via the miR-1–Mpl (myeloproliferative leukemia virus oncogene)–P-selectin axis

    Science.gov (United States)

    Vasavada, Hema; Zhang, Jian-ge; Ahangari, Farida; Niu, Naiqian; Liu, Qing; Lee, Chun Geun; Cohn, Lauren

    2013-01-01

    Asthma, the prototypic Th2-mediated inflammatory disorder of the lung, is an emergent disease worldwide. Vascular endothelial growth factor (VEGF) is a critical regulator of pulmonary Th2 inflammation, but the underlying mechanism and the roles of microRNAs (miRNAs) in this process have not been defined. Here we show that lung-specific overexpression of VEGF decreases miR-1 expression in the lung, most prominently in the endothelium, and a similar down-regulation occurs in lung endothelium in Th2 inflammation models. Intranasal delivery of miR-1 inhibited inflammatory responses to ovalbumin, house dust mite, and IL-13 overexpression. Blocking VEGF inhibited Th2-mediated lung inflammation, and this was restored by antagonizing miR-1. Using mRNA arrays, Argonaute pull-down assays, luciferase expression assays, and mutational analysis, we identified Mpl as a direct target of miR-1 and showed that VEGF controls the expression of endothelial Mpl during Th2 inflammation via the regulation of miR-1. In vivo knockdown of Mpl inhibited Th2 inflammation and indirectly inhibited the expression of P-selectin in lung endothelium. These experiments define a novel VEGF–miR-1–Mpl–P-selectin effector pathway in lung Th2 inflammation and herald the utility of miR-1 and Mpl as potential therapeutic targets for asthma. PMID:24043765

  16. VEGF controls lung Th2 inflammation via the miR-1-Mpl (myeloproliferative leukemia virus oncogene)-P-selectin axis.

    Science.gov (United States)

    Takyar, Seyedtaghi; Vasavada, Hema; Zhang, Jian-ge; Ahangari, Farida; Niu, Naiqian; Liu, Qing; Lee, Chun Geun; Cohn, Lauren; Elias, Jack A

    2013-09-23

    Asthma, the prototypic Th2-mediated inflammatory disorder of the lung, is an emergent disease worldwide. Vascular endothelial growth factor (VEGF) is a critical regulator of pulmonary Th2 inflammation, but the underlying mechanism and the roles of microRNAs (miRNAs) in this process have not been defined. Here we show that lung-specific overexpression of VEGF decreases miR-1 expression in the lung, most prominently in the endothelium, and a similar down-regulation occurs in lung endothelium in Th2 inflammation models. Intranasal delivery of miR-1 inhibited inflammatory responses to ovalbumin, house dust mite, and IL-13 overexpression. Blocking VEGF inhibited Th2-mediated lung inflammation, and this was restored by antagonizing miR-1. Using mRNA arrays, Argonaute pull-down assays, luciferase expression assays, and mutational analysis, we identified Mpl as a direct target of miR-1 and showed that VEGF controls the expression of endothelial Mpl during Th2 inflammation via the regulation of miR-1. In vivo knockdown of Mpl inhibited Th2 inflammation and indirectly inhibited the expression of P-selectin in lung endothelium. These experiments define a novel VEGF-miR-1-Mpl-P-selectin effector pathway in lung Th2 inflammation and herald the utility of miR-1 and Mpl as potential therapeutic targets for asthma.

  17. Evolutionary medicine and bone loss in chronic inflammatory diseases--A theory of inflammation-related osteopenia.

    Science.gov (United States)

    Straub, Rainer H; Cutolo, Maurizio; Pacifici, Roberto

    2015-10-01

    Bone loss is typical in chronic inflammatory diseases such as rheumatoid arthritis, psoriasis, ankylosing spondylitis, systemic lupus erythematosus, multiple sclerosis, inflammatory bowel diseases, pemphigus vulgaris, and others. It is also typical in transplantation-related inflammation and during the process of aging. While we recognized that bone loss is tightly linked to immune system activation or inflamm-aging in the form of acute, chronic active, or chronic smoldering inflammation, bone loss is typically discussed to be an "accident of inflammation." Extensive literature search in PubMed central. Using elements of evolutionary medicine, energy regulation, and neuroendocrine regulation of homeostasis and immune function, we work out that bone waste is an adaptive, evolutionarily positively selected program that is absolutely necessary during acute inflammation. However, when acute inflammation enters a chronic state due to the inability to terminate inflammation (e.g., in autoimmunity or in continuous immunity against microbes), the acute program of bone loss is a misguided adaptive program. The article highlights the complexity of interwoven pathways of osteopenia. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Role of eosinophils in airway inflammation of chronic obstructive pulmonary disease

    Directory of Open Access Journals (Sweden)

    Tashkin DP

    2018-01-01

    Full Text Available Donald P Tashkin,1 Michael E Wechsler2 1Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; 2Department of Medicine, National Jewish Health, Denver, CO, USA Abstract: COPD is a significant cause of morbidity and mortality. In some patients with COPD, eosinophils contribute to inflammation that promotes airway obstruction; approximately a third of stable COPD patients have evidence of eosinophilic inflammation. Although the eosinophil threshold associated with clinical relevance in patients with COPD is currently subject to debate, eosinophil counts hold potential as biomarkers to guide therapy. In particular, eosinophil counts may be useful in assessing which patients may benefit from inhaled corticosteroid therapy, particularly regarding exacerbation prevention. In addition, several therapies targeting eosinophilic inflammation are available or in development, including monoclonal antibodies targeting the IL5 ligand, the IL5 receptor, IL4, and IL13. The goal of this review was to describe the biologic characteristics of eosinophils, their role in COPD during exacerbations and stable disease, and their use as biomarkers to aid treatment decisions. We also propose an algorithm for inhaled corticosteroid use, taking into consideration eosinophil counts and pneumonia history, and emerging eosinophil-targeted therapies in COPD. Keywords: lung disease, pulmonary diseases, corticosteroids, asthma, pneumonia

  19. Cumulative childhood risk is associated with a new measure of chronic inflammation in adulthood

    DEFF Research Database (Denmark)

    Rasmussen, Line Jee Hartmann; Moffitt, Terrie E; Eugen-Olsen, Jesper

    2018-01-01

    BACKGROUND: Childhood risk factors are associated with elevated inflammatory biomarkers in adulthood, but it is unknown whether these risk factors are associated with increased adult levels of the chronic inflammation marker soluble urokinase plasminogen activator receptor (suPAR). We aimed to test...... the hypothesis that childhood exposure to risk factors for adult disease is associated with elevated suPAR in adulthood and to compare suPAR with the oft-reported inflammatory biomarker C-reactive protein (CRP). METHODS: Prospective study of a population-representative 1972-1973 birth cohort; the Dunedin...... Multidisciplinary Health and Development Study observed participants to age 38 years. Main childhood predictors were poor health, socioeconomic disadvantage, adverse childhood experiences (ACEs), low IQ, and poor self-control. Main adult outcomes were adulthood inflammation measured as suPAR and high...

  20. Intestinal inflammation in TNBS sensitized rats as a model of chronic inflammatory bowel disease

    Directory of Open Access Journals (Sweden)

    N. Selve

    1992-01-01

    Full Text Available An enteritis, based on a delayed-type hypersensitivity reaction, was induced in TNBS (2,4,4-trinitrobenzenesulphonic acid sensitized rats by multiple intrajejunal challenge with TNBS via an implanted catheter. This treatment induced chronic inflammation of the distal small intestine characterized by intense hyperaemia, oedema and gut wall thickening as assessed by macroscopic scoring and weighing a defined part of the dissected intestine. Histologically, the inflammatory response included mucosal and submucosal cell infiltration by lymphocytes and histiocytes, transmural granulomatous inflammation with multinucleated cells and activated mesenteric lymph nodes. Ex vivo stimulated release of the inflammatory mediator LTB4 in the dissected part of the intestine was increased following TNBS treatment. Drug treatment with sulphasalazine or 5-aminosalicylic acid improved the enteritis score and attenuated TNBS induced oedema formation and LTB4 production. The applicability and relevance of this new model are discussed with respect to drug development and basic research of inflammatory bowel diseases.

  1. Gut-associated lymphoid tissue, T cell trafficking, and chronic intestinal inflammation.

    Science.gov (United States)

    Koboziev, Iurii; Karlsson, Fridrik; Grisham, Matthew B

    2010-10-01

    The etiologies of the inflammatory bowel diseases (IBD; Crohn's disease, ulcerative colitis) have not been fully elucidated. However, there is very good evidence implicating T cell and T cell trafficking to the gut and its associated lymphoid tissue as important components in disease pathogenesis. The objective of this review is to provide an overview of the mechanisms involved in naive and effector T cell trafficking to the gut-associated lymphoid tissue (GALT; Peyer's patches, isolated lymphoid follicles), mesenteric lymph nodes and intestine in response to commensal enteric antigens under physiological conditions as well as during the induction of chronic gut inflammation. In addition, recent data suggests that the GALT may not be required for enteric antigen-driven intestinal inflammation in certain mouse models of IBD. These new data suggest a possible paradigm shift in our understanding of how and where naive T cells become activated to yield disease-producing effector cells. © 2010 New York Academy of Sciences.

  2. Roles of Chronic Low-Grade Inflammation in the Development of Ectopic Fat Deposition

    Directory of Open Access Journals (Sweden)

    Lulu Liu

    2014-01-01

    Full Text Available Pattern of fat distribution is a major determinant for metabolic homeostasis. As a depot of energy, the storage of triglycerides in adipose tissue contributes to the normal fat distribution. Decreased capacity of fat storage in adipose tissue may result in ectopic fat deposition in nonadipose tissues such as liver, pancreas, and kidney. As a critical biomarker of metabolic complications, chronic low-grade inflammation may have the ability to affect the process of lipid accumulation and further lead to the disorder of fat distribution. In this review, we have collected the evidence linking inflammation with ectopic fat deposition to get a better understanding of the underlying mechanism, which may provide us with novel therapeutic strategies for metabolic disorders.

  3. Low-grade chronic inflammation in the peripheral blood and ovaries of women with polycystic ovarian syndrome.

    Science.gov (United States)

    Xiong, Yong-lao; Liang, Xiao-yan; Yang, Xing; Li, Yi; Wei, Li-na

    2011-11-01

    The purpose of this study was to investigate chronic inflammation in the peripheral blood and ovaries of patients with polycystic ovary syndrome (PCOS). 86 PCOS patients and 50 controls were randomly enrolled in the study. Serum follicle stimulating hormone (FSH), luteinizing hormone (LH), testosterone (T), blood routine test, lipid metabolism index, inflammation cytokines were detected. Ovary samples from PCOS group and control group were collected for macrophage and lymphocyte immunohistochemistry staining. Patients with PCOS showed significantly higher serum CRP, lymphocytes, monocytes, eosinophilic granulocytes, as well as higher triglycerides (TG), TNF-α and IL-6. PCOS ovary had greater number of macrophages and lymphocytes immersed throughout. In conclusion, PCOS patients exhibited hypertriglyceridemia and chronic inflammation, with elevated peripheral lymphocytes, monocytes, and eosinophilic granulocytes. In addition, their ovaries showed persistent chronic inflammation with a larger number of inflammatory cells immersed. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  4. Genetic variant in the 3'-untranslated region of VEGFR1 gene influences chronic obstructive pulmonary disease and lung cancer development in Chinese population.

    Science.gov (United States)

    Wang, Hui; Yang, Lei; Deng, Jieqiong; Wang, Bo; Yang, Xiaorong; Yang, Rongrong; Cheng, Mei; Fang, Wenxiang; Qiu, Fuman; Zhang, Xin; Ji, Weidong; Ran, Pixin; Zhou, Yifeng; Lu, Jiachun

    2014-09-01

    Lung inflammation and epithelial to mesenchymal transition (EMT) are two pathogenic features for the two contextual diseases: chronic obstructive pulmonary disease (COPD) and lung cancer. VEGFR1 (or FLT1) plays a certain role in promoting tumour growth, inflammation and EMT. To simultaneously test the association between the single nucleotide polymorphisms (SNPs) in VEGFR1 and risk of COPD and lung cancer would reveal genetic mechanisms shared by these two diseases and joint aetiology. We conducted a two-population hospital-based case-control study. Three potential functional SNPs (rs664393, rs7326277 and rs9554314) were genotyped in southern Chinese and validated in eastern Chinese to explore their associations with COPD risk in 1511 COPD patients and 1677 normal lung function controls, and with lung cancer risk in 1559 lung cancer cases and 1679 cancer-free controls. We also detected the function of the promising SNP. Individuals carrying the rs7326277C (CT+CC) variant genotypes of VEGFR1 had a significant decrease in risk of both COPD (OR = 0.78; 95% CI = 0.68-0.90) and lung cancer (OR = 0.79; 95% CI = 0.64-0.98), compared with those carrying the rs7326277TT genotype. Functional assays further showed that the rs7326277C genotypes had lower transcriptional activity and caused decreased VEGFR expression, compared with the rs7326277TT genotype. However, no significant association was observed for the other two SNPs (rs664393 and rs9554314) and either COPD or lung cancer risk. Our data suggested that the rs7326277C variant of VEGFR1 could reduce both COPD and lung cancer risk by lowering VEGFR1 mRNA expression; the SNP might be a common susceptible locus for both COPD and lung cancer. © The Author 2014. Published by Oxford University Press on behalf of the UK Environmental Mutagen Society. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Exposure to low doses of formaldehyde during pregnancy suppresses the development of allergic lung inflammation in offspring

    International Nuclear Information System (INIS)

    Maiellaro, Marília; Correa-Costa, Matheus; Vitoretti, Luana Beatriz; Gimenes Júnior, João Antônio; Câmara, Niels Olsen Saraiva; Tavares-de-Lima, Wothan; Farsky, Sandra Helena Poliselli; Lino-dos-Santos-Franco, Adriana

    2014-01-01

    Formaldehyde (FA) is an environmental and occupational pollutant, and its toxic effects on the immune system have been shown. Nevertheless, no data are available regarding the programming mechanisms after FA exposure and its repercussions for the immune systems of offspring. In this study, our objective was to investigate the effects of low-dose exposure of FA on pregnant rats and its repercussion for the development of allergic lung inflammation in offspring. Pregnant Wistar rats were assigned in 3 groups: P (rats exposed to FA (0.75 ppm, 1 h/day, 5 days/week, for 21 days)), C (rats exposed to vehicle of FA (distillated water)) and B (rats non-manipulated). After 30 days of age, the offspring was sensitised with ovalbumin (OVA)-alum and challenged with aerosolized OVA (1%, 15 min, 3 days). After 24 h the OVA challenge the parameters were evaluated. Our data showed that low-dose exposure to FA during pregnancy induced low birth weight and suppressed the development of allergic lung inflammation and tracheal hyperresponsiveness in offspring by mechanisms mediated by reduced anaphylactic antibodies synthesis, IL-6 and TNF-alpha secretion. Elevated levels of IL-10 were found. Any systemic alteration was detected in the exposed pregnant rats, although oxidative stress in the uterine environment was evident at the moment of the delivery based on elevated COX-1 expression and reduced cNOS and SOD-2 in the uterus. Therefore, we show the putative programming mechanisms induced by FA on the immune system for the first time and the mechanisms involved may be related to oxidative stress in the foetal microenvironment. - Highlights: • Formaldehyde exposure does not cause lung inflammation in pregnant rats. • Formaldehyde exposure suppresses allergic lung inflammation in the offspring. • Formaldehyde exposure induces oxidative stress in uterine environment

  6. Exposure to low doses of formaldehyde during pregnancy suppresses the development of allergic lung inflammation in offspring

    Energy Technology Data Exchange (ETDEWEB)

    Maiellaro, Marília [Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo (Brazil); Correa-Costa, Matheus [Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo (Brazil); Vitoretti, Luana Beatriz; Gimenes Júnior, João Antônio [Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo (Brazil); Câmara, Niels Olsen Saraiva [Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo (Brazil); Tavares-de-Lima, Wothan [Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo (Brazil); Farsky, Sandra Helena Poliselli [Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo (Brazil); Lino-dos-Santos-Franco, Adriana, E-mail: adrilino@usp.br [Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo (Brazil)

    2014-08-01

    Formaldehyde (FA) is an environmental and occupational pollutant, and its toxic effects on the immune system have been shown. Nevertheless, no data are available regarding the programming mechanisms after FA exposure and its repercussions for the immune systems of offspring. In this study, our objective was to investigate the effects of low-dose exposure of FA on pregnant rats and its repercussion for the development of allergic lung inflammation in offspring. Pregnant Wistar rats were assigned in 3 groups: P (rats exposed to FA (0.75 ppm, 1 h/day, 5 days/week, for 21 days)), C (rats exposed to vehicle of FA (distillated water)) and B (rats non-manipulated). After 30 days of age, the offspring was sensitised with ovalbumin (OVA)-alum and challenged with aerosolized OVA (1%, 15 min, 3 days). After 24 h the OVA challenge the parameters were evaluated. Our data showed that low-dose exposure to FA during pregnancy induced low birth weight and suppressed the development of allergic lung inflammation and tracheal hyperresponsiveness in offspring by mechanisms mediated by reduced anaphylactic antibodies synthesis, IL-6 and TNF-alpha secretion. Elevated levels of IL-10 were found. Any systemic alteration was detected in the exposed pregnant rats, although oxidative stress in the uterine environment was evident at the moment of the delivery based on elevated COX-1 expression and reduced cNOS and SOD-2 in the uterus. Therefore, we show the putative programming mechanisms induced by FA on the immune system for the first time and the mechanisms involved may be related to oxidative stress in the foetal microenvironment. - Highlights: • Formaldehyde exposure does not cause lung inflammation in pregnant rats. • Formaldehyde exposure suppresses allergic lung inflammation in the offspring. • Formaldehyde exposure induces oxidative stress in uterine environment.

  7. H2S Attenuates LPS-Induced Acute Lung Injury by Reducing Oxidative/Nitrative Stress and Inflammation

    Directory of Open Access Journals (Sweden)

    Hong-Xia Zhang

    2016-12-01

    Full Text Available Background: Hydrogen sulfide (H2S, known as the third endogenous gaseous transmitter, has received increasing attention because of its diverse effects, including angiogenesis, vascular relaxation and myocardial protection.We aimed to investigate the role of H2S in oxidative/nitrative stress and inflammation in acute lung injury (ALI induced by endotoxemia. Methods: Male ICR mice were divided in six groups: (1 Control group; (2 GYY4137treatment group; (3 L-NAME treatment group; (4 lipopolysaccharide (LPS treatment group; (5 LPS with GYY4137 treatment group; and (6 LPS with L-NAME treatment group. The lungs were analysed by histology, NO production in the mouse lungs determined by modified Griess (Sigma-Aldrich reaction, cytokine levels utilizing commercialkits, and protein abundance by Western blotting. Results: GYY4137, a slowly-releasing H2S donor, improved the histopathological changes in the lungs of endotoxemic mice. Treatment with NG-nitro-L-arginine methyl ester (L-NAME, a nitric oxide synthase (NOS inhibitor, increased anti-oxidant biomarkers such as thetotal antioxidant capacity (T-AOC and theactivities of catalase (CAT and superoxide dismutase (SOD but decreased a marker of peroxynitrite (ONOO- action and 3-nitrotyrosine (3-NT in endotoxemic lung. L-NAME administration also suppressed inflammation in endotoxemic lung, as evidenced by the decreased pulmonary levels of interleukin (IL-6, IL-8, and myeloperoxidase (MPO and the increased level of anti-inflammatory cytokine IL-10. GYY4137 treatment reversed endotoxin-induced oxidative/nitrative stress, as evidenced by a decrease in malondialdehyde (MDA, hydrogenperoxide (H2O2 and 3-NT and an increase in the antioxidant biomarker ratio of reduced/oxidized glutathione(GSH/GSSG ratio and T-AOC, CAT and SOD activity. GYY4137 also attenuated endotoxin-induced lung inflammation. Moreover, treatment with GYY4137 inhibited inducible NOS (iNOS expression and nitric oxide (NO production in the

  8. Noninvasive scoring system for significant inflammation related to chronic hepatitis B

    Science.gov (United States)

    Hong, Mei-Zhu; Ye, Linglong; Jin, Li-Xin; Ren, Yan-Dan; Yu, Xiao-Fang; Liu, Xiao-Bin; Zhang, Ru-Mian; Fang, Kuangnan; Pan, Jin-Shui

    2017-03-01

    Although a liver stiffness measurement-based model can precisely predict significant intrahepatic inflammation, transient elastography is not commonly available in a primary care center. Additionally, high body mass index and bilirubinemia have notable effects on the accuracy of transient elastography. The present study aimed to create a noninvasive scoring system for the prediction of intrahepatic inflammatory activity related to chronic hepatitis B, without the aid of transient elastography. A total of 396 patients with chronic hepatitis B were enrolled in the present study. Liver biopsies were performed, liver histology was scored using the Scheuer scoring system, and serum markers and liver function were investigated. Inflammatory activity scoring models were constructed for both hepatitis B envelope antigen (+) and hepatitis B envelope antigen (-) patients. The sensitivity, specificity, positive predictive value, negative predictive value, and area under the curve were 86.00%, 84.80%, 62.32%, 95.39%, and 0.9219, respectively, in the hepatitis B envelope antigen (+) group and 91.89%, 89.86%, 70.83%, 97.64%, and 0.9691, respectively, in the hepatitis B envelope antigen (-) group. Significant inflammation related to chronic hepatitis B can be predicted with satisfactory accuracy by using our logistic regression-based scoring system.

  9. Chronic obstructive pulmonary disease and obstructive sleep apnea: overlaps in pathophysiology, systemic inflammation, and cardiovascular disease.

    LENUS (Irish Health Repository)

    McNicholas, Walter T

    2012-02-01

    Chronic obstructive pulmonary disease (COPD) and obstructive sleep apnea syndrome represent two of the most prevalent chronic respiratory disorders in clinical practice, and cardiovascular diseases represent a major comorbidity in each disorder. The two disorders coexist (overlap syndrome) in approximately 1% of adults but asymptomatic lower airway obstruction together with sleep-disordered breathing is more prevalent. Although obstructive sleep apnea syndrome has similar prevalence in COPD as the general population, and vice versa, factors such as body mass index and smoking influence relationships. Nocturnal oxygen desaturation develops in COPD, independent of apnea\\/hypopnea, and is more severe in the overlap syndrome, thus predisposing to pulmonary hypertension. Furthermore, upper airway flow limitation contributes to nocturnal desaturation in COPD without apnea\\/hypopnea. Evidence of systemic inflammation in COPD and sleep apnea, involving C-reactive protein and IL-6, in addition to nuclear factor-kappaB-dependent pathways involving tumor necrosis factor-alpha and IL-8, provides insight into potential basic interactions between both disorders. Furthermore, oxidative stress develops in each disorder, in addition to activation and\\/or dysfunction of circulating leukocytes. These findings are clinically relevant because systemic inflammation may contribute to the pathogenesis of cardiovascular diseases and the cell\\/molecular pathways involved are similar to those identified in COPD and sleep apnea. However, the pathophysiological and clinical significance of systemic inflammation in COPD and sleep apnea is not proven, and thus, studies of patients with the overlap syndrome should provide insight into the mechanisms of systemic inflammation in COPD and sleep apnea, in addition to potential relationships with cardiovascular disease.

  10. Chronic intermittent hypoxia induces cardiac inflammation and dysfunction in a rat obstructive sleep apnea model.

    Science.gov (United States)

    Wei, Qin; Bian, Yeping; Yu, Fuchao; Zhang, Qiang; Zhang, Guanghao; Li, Yang; Song, Songsong; Ren, Xiaomei; Tong, Jiayi

    2016-11-01

    Chronic intermittent hypoxia is considered to play an important role in cardiovascular pathogenesis during the development of obstructive sleep apnea (OSA). We used a well-described OSA rat model induced with simultaneous intermittent hypoxia. Male Sprague Dawley rats were individually placed into plexiglass chambers with air pressure and components were electronically controlled. The rats were exposed to intermittent hypoxia 8 hours daily for 5 weeks. The changes of cardiac structure and function were examined by ultrasound. The cardiac pathology, apoptosis, and fibrosis were analyzed by H&E staining, TUNNEL assay, and picosirius staining, respectively. The expression of inflammation and fibrosis marker genes was analyzed by quantitative real-time PCR and Western blot. Chronic intermittent hypoxia/low pressure resulted in significant increase of left ventricular internal diameters (LVIDs), end-systolic volume (ESV), end-diastolic volume (EDV), and blood lactate level and marked reduction in ejection fraction and fractional shortening. Chronic intermittent hypoxia increased TUNNEL-positive myocytes, disrupted normal arrangement of cardiac fibers, and increased Sirius stained collagen fibers. The expression levels of hypoxia induced factor (HIF)-1α, NF-kB, IL-6, and matrix metallopeptidase 2 (MMP-2) were significantly increased in the heart of rats exposed to chronic intermittent hypoxia. In conclusion, the left ventricular function was adversely affected by chronic intermittent hypoxia, which is associated with increased expression of HIF-1α and NF-kB signaling molecules and development of cardiac inflammation, apoptosis and fibrosis. © 2016 by the Journal of Biomedical Research. All rights reserved.

  11. Positive relationship between p42.3 gene and inflammation in chronic non-atrophic gastritis.

    Science.gov (United States)

    Chen, Ping; Cui, Yun; Fu, Qing Yan; Lu, You Yong; Fang, Jing Yuan; Chen, Xiao Yu

    2015-10-01

    Gastric cancer (GC) is a typical type of inflammation-related tumor. The p42.3 gene is shown to be highly expressed in GC, but its association with gastritis remains unknown. We aimed to explore the relationship between gastric inflammation and p42.3 gene in vitro and in vivo. Normal gastric epithelial cells (GES-1) were treated with Helicobacter pylori (H. pylori) and tumor necrosis factor (TNF)-α. Total cell mRNA and protein were extracted and collected, and polymerase chain reaction and Western blot were performed to determine the relative expression of p42.3 gene. In total, 291 biopsy samples from patients with chronic non-atrophic gastritis were collected and immunohistochemistry was used to measure the p42.3 protein expression. The association between p42.3 protein expression and the clinicopathological characteristics of these patients were analyzed. Both H. pylori and TNF-α significantly enhanced the p42.3 protein expression in GES-1 cells in a time and dose-dependent manner. In addition, p42.3 gene expression was positively associated with the severity of gastric mucosal inflammation and H. pylori infection (P = 0.000). Its expression was significantly more common in severe gastric inflammation and in H. pylori-infected cases. p42.3 gene expression is associated with gastric mucosal inflammation that can be upregulated by TNF-α and H. pylori infection. © 2015 Chinese Medical Association Shanghai Branch, Chinese Society of Gastroenterology, Renji Hospital Affiliated to Shanghai Jiaotong University School of Medicine and Wiley Publishing Asia Pty Ltd.

  12. Skin condition and its relationship to systemic inflammation in chronic obstructive pulmonary disease.

    Science.gov (United States)

    Majewski, Sebastian; Pietrzak, Anna; Tworek, Damian; Szewczyk, Karolina; Kumor-Kisielewska, Anna; Kurmanowska, Zofia; Górski, Paweł; Zalewska-Janowska, Anna; Piotrowski, Wojciech Jerzy

    2017-01-01

    The systemic (extrapulmonary) effects and comorbidities of chronic obstructive pulmonary disease (COPD) contribute substantially to its burden. The supposed link between COPD and its systemic effects on distal organs could be due to the low-grade systemic inflammation. The aim of this study was to investigate whether the systemic inflammation may influence the skin condition in COPD patients. Forty patients with confirmed diagnosis of COPD and a control group consisting of 30 healthy smokers and 20 healthy never-smokers were studied. Transepidermal water loss, stratum corneum hydration, skin sebum content, melanin index, erythema index, and skin temperature were measured with worldwide-acknowledged biophysical measuring methods at the volar forearm of all participants using a multifunctional skin physiology monitor. Biomarkers of systemic inflammation, including high-sensitivity C-reactive protein (hsCRP), interleukin-6 (IL-6), and tumor necrosis factor α (TNF-α), were measured in serum using commercially available enzyme-linked immunosorbent assays. There were significant differences between COPD patients and healthy never-smokers in skin temperature, melanin index, sebum content, and hydration level ( P skin measured. The mean levels of hsCRP and IL-6 in serum were significantly higher in COPD patients and healthy smokers in comparison with healthy never-smokers. There were significant correlations between skin temperature and serum hsCRP ( R =0.40; P =0.02) as well as skin temperature and serum IL-6 ( R =0.49; P =0.005) in smokers. Stratum corneum hydration correlated significantly with serum TNF-α ( R =0.37; P =0.01) in COPD patients. Differences noted in several skin biophysical properties and biomarkers of systemic inflammation between COPD patients, smokers, and healthy never-smokers may suggest a possible link between smoking-driven, low-grade systemic inflammation, and the overall skin condition.

  13. Leukocyte telomere length in major depression: correlations with chronicity, inflammation and oxidative stress--preliminary findings.

    Directory of Open Access Journals (Sweden)

    Owen M Wolkowitz

    2011-03-01

    Full Text Available Depression is associated with an unusually high rate of aging-related illnesses and early mortality. One aspect of "accelerated aging" in depression may be shortened leukocyte telomeres. When telomeres critically shorten, as often occurs with repeated mitoses or in response to oxidation and inflammation, cells may die. Indeed, leukocyte telomere shortening predicts early mortality and medical illnesses in non-depressed populations. We sought to determine if leukocyte telomeres are shortened in Major Depressive Disorder (MDD, whether this is a function of lifetime depression exposure and whether this is related to putative mediators, oxidation and inflammation.Leukocyte telomere length was compared between 18 unmedicated MDD subjects and 17 controls and was correlated with lifetime depression chronicity and peripheral markers of oxidation (F2-isoprostane/Vitamin C ratio and inflammation (IL-6. Analyses were controlled for age and sex.The depressed group, as a whole, did not differ from the controls in telomere length. However, telomere length was significantly inversely correlated with lifetime depression exposure, even after controlling for age (p<0.05. Average telomere length in the depressed subjects who were above the median of lifetime depression exposure (≥9.2 years' cumulative duration was 281 base pairs shorter than that in controls (p<0.05, corresponding to approximately seven years of "accelerated cell aging." Telomere length was inversely correlated with oxidative stress in the depressed subjects (p<0.01 and in the controls (p<0.05 and with inflammation in the depressed subjects (p<0.05.These preliminary data indicate that accelerated aging at the level of leukocyte telomeres is proportional to lifetime exposure to MDD. This might be related to cumulative exposure to oxidative stress and inflammation in MDD. This suggest that telomere shortening does not antedate depression and is not an intrinsic feature. Rather, telomere shortening

  14. LPS-induced lung inflammation in marmoset monkeys - an acute model for anti-inflammatory drug testing.

    Directory of Open Access Journals (Sweden)

    Sophie Seehase

    Full Text Available Increasing incidence and substantial morbidity and mortality of respiratory diseases requires the development of new human-specific anti-inflammatory and disease-modifying therapeutics. Therefore, new predictive animal models that closely reflect human lung pathology are needed. In the current study, a tiered acute lipopolysaccharide (LPS-induced inflammation model was established in marmoset monkeys (Callithrix jacchus to reflect crucial features of inflammatory lung diseases. Firstly, in an ex vivo approach marmoset and, for the purposes of comparison, human precision-cut lung slices (PCLS were stimulated with LPS in the presence or absence of the phosphodiesterase-4 (PDE4 inhibitor roflumilast. Pro-inflammatory cytokines including tumor necrosis factor-alpha (TNF-α and macrophage inflammatory protein-1 beta (MIP-1β were measured. The corticosteroid dexamethasone was used as treatment control. Secondly, in an in vivo approach marmosets were pre-treated with roflumilast or dexamethasone and unilaterally challenged with LPS. Ipsilateral bronchoalveolar lavage (BAL was conducted 18 hours after LPS challenge. BAL fluid was processed and analyzed for neutrophils, TNF-α, and MIP-1β. TNF-α release in marmoset PCLS correlated significantly with human PCLS. Roflumilast treatment significantly reduced TNF-α secretion ex vivo in both species, with comparable half maximal inhibitory concentration (IC(50. LPS instillation into marmoset lungs caused a profound inflammation as shown by neutrophilic influx and increased TNF-α and MIP-1β levels in BAL fluid. This inflammatory response was significantly suppressed by roflumilast and dexamethasone. The close similarity of marmoset and human lungs regarding LPS-induced inflammation and the significant anti-inflammatory effect of approved pharmaceuticals assess the suitability of marmoset monkeys to serve as a promising model for studying anti-inflammatory drugs.

  15. Gastrointestinal symptoms, inflammation and hypoalbuminemia in chronic kidney disease patients: a cross-sectional study.

    Science.gov (United States)

    Zhang, Xuehan; Bansal, Nisha; Go, Alan S; Hsu, Chi-Yuan

    2015-12-11

    Few studies have focused on investigating hypoalbuminemia in patients during earlier stages of chronic kidney disease (CKD). In particular, little is known about the role of gastrointestinal (GI) symptoms. Our goal in this paper is to study how GI symptoms relate to serum albumin levels in CKD, especially in the context of and compared with inflammation. We performed a cross-sectional study of 3599 patients with chronic kidney disease enrolled in the Chronic Renal Insufficiency Cohort (CRIC) study. All subjects were asked to complete the Modification of Diet in Renal Disease (MDRD) study patient symptom form. Our main predictor is GI symptom score. Serum level of C-reactive protein (CRP) was measured as well. Main outcome measures are serum albumin levels and prevalence of hypoalbuminemia. Of the participants assessed, mean serum albumin was 3.95 ± 0.46 g/dL; 12.7 % had hypoalbuminemia. Patients with lower estimated glomerular filtration rate (eGFR) were likely to have more GI symptoms (apparent at an eGFR Patients with worse GI symptoms had lower dietary protein intake. GI symptoms, like inflammation, were risk factors for lower serum albumin levels. However, adding GI symptom score or CRP into the multivariable regression analysis, did not attenuate the association between lower eGFR and lower albumin or hypoalbuminemia. Increased prevalence of GI symptoms become apparent among CKD patients at relatively high eGFR levels (45 ml/min/1.73 m(2)), long before ESRD. Patients with more severe GI symptoms scores are more likely to have hypoalbuminemia. But our data do not support GI symptoms/decreased protein intake or inflammation as being the main determinants of serum albumin level in CKD patients.

  16. Hypothyroidism being caused by chronic autoimmune inflammation of the thyroid gland

    Directory of Open Access Journals (Sweden)

    Katarzyna Szwajkosz

    2017-04-01

    Full Text Available Disorders of the endocrine system are extremely important problems in Poland and around the world. According to the data presented by the Central Statistical Office in Poland in 2006, 22 % of the population suffered from thyroid disorders.  Hypothyroidism is usually caused by chronic autoimmune inflammation of the thyroid gland. It is one of the most common disorders of the thyroid concerning approximately 2% of the adult population. This disorder is related to higher risk of overweight and obesity due to decreased total body metabolism. Furthermore, it predisposes to dyslipidaemia thus increases the risk of cardiovascular disease.

  17. Expression of Heat Shock Protein 27 in Benign Prostatic Hyperplasia with Chronic Inflammation

    OpenAIRE

    Jiang, Yuqing; Wang, Xiuli; Guo, Yuexian; Li, Wenping; Yang, Shijie; Li, Wei; Cai, Wenqing

    2015-01-01

    Background Heat shock protein 27 (HSP 27) is known as a mediator in immune response and has been recently found to be expressed in prostate cancer. This study aimed to investigate the role of HSP27 in inflammatory BPH. Material/Methods Hospitalized BPH patients who received TURP were divided into 4 groups by the presence and degrees of chronic inflammation: non-inflammatory BPH (NI BPH), mild-inflammatory BPH (MI BPH), moderate-inflammatory BPH (MOI BPH), and severe-inflammatory BPH (SI BPH)....

  18. Chronic obstructive lung disease and posttraumatic stress disorder: current perspectives

    Directory of Open Access Journals (Sweden)

    Abrams TE

    2015-10-01

    Full Text Available Thad E Abrams,1,2 Amy Blevins,1,3 Mark W Vander Weg1,2,4 1Department of Internal Medicine, University of Iowa, 2Center for Comprehensive Access and Delivery Research and Evaluation, Iowa City VA Health Care System, 3Hardin Health Sciences Library, 4Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, USA Background: Several studies have reported on the co-occurrence of chronic obstructive pulmonary disease (COPD and psychiatric conditions, with the most robust evidence base demonstrating an impact of comorbid anxiety and depression on COPD-related outcomes. In recent years, research has sought to determine if there is a co-occurrence between COPD and posttraumatic stress disorder (PTSD as well as for associations between PTSD and COPD-related outcomes. To date, there have been no published reviews summarizing this emerging literature.Objectives: The primary objective of this review was to determine if there is adequate evidence to support a co-occurrence between PTSD and COPD. Secondary objectives were to: 1 determine if there are important clinical considerations regarding the impact of PTSD on COPD management, and 2 identify targeted areas for further research.Methods: A structured review was performed using a systematic search strategy limited to studies in English, addressing adults, and to articles that examined: 1 the co-occurrence of COPD and PTSD and 2 the impact of PTSD on COPD-related outcomes. To be included, articles must have addressed some type of nonreversible obstructive lung pathology.Results: A total of 598 articles were identified for initial review. Upon applying the inclusion and exclusion criteria, n=19 articles or abstracts addressed our stated objectives. Overall, there is inconclusive evidence to support the co-occurrence between PTSD and COPD. Studies finding a significant co-occurrence generally had inferior methods of identifying COPD; in contrast, studies that utilized more robust COPD

  19. Biodiesel versus diesel exposure: Enhanced pulmonary inflammation, oxidative stress, and differential morphological changes in the mouse lung

    International Nuclear Information System (INIS)

    Yanamala, Naveena; Hatfield, Meghan K.; Farcas, Mariana T.; Schwegler-Berry, Diane; Hummer, Jon A.; Shurin, Michael R.; Birch, M. Eileen; Gutkin, Dmitriy W.; Kisin, Elena; Kagan, Valerian E.; Bugarski, Aleksandar D.; Shvedova, Anna A.

    2013-01-01

    The use of biodiesel (BD) or its blends with petroleum diesel (D) is considered to be a viable approach to reduce occupational and environmental exposures to particulate matter (PM). Due to its lower particulate mass emissions compared to D, use of BD is thought to alleviate adverse health effects. Considering BD fuel is mainly composed of unsaturated fatty acids, we hypothesize that BD exhaust particles could induce pronounced adverse outcomes, due to their ability to readily oxidize. The main objective of this study was to compare the effects of particles generated by engine fueled with neat BD and neat petroleum-based D. Biomarkers of tissue damage and inflammation were significantly elevated in lungs of mice exposed to BD particulates. Additionally, BD particulates caused a significant accumulation of oxidatively modified proteins and an increase in 4-hydroxynonenal. The up-regulation of inflammatory cytokines/chemokines/growth factors was higher in lungs upon BD particulate exposure. Histological evaluation of lung sections indicated presence of lymphocytic infiltrate and impaired clearance with prolonged retention of BD particulate in pigment laden macrophages. Taken together, these results clearly indicate that BD exhaust particles could exert more toxic effects compared to D. - Highlights: • Exposure of mice to BDPM caused higher pulmonary toxicity compared to DPM. • Oxidative stress and inflammation were higher in BD vs to D exposed mice. • Inflammatory lymphocyte infiltrates were seen only in lungs of mice exposed to BD. • Ineffective clearance, prolonged PM retention was present only after BD exposure

  20. Biodiesel versus diesel exposure: Enhanced pulmonary inflammation, oxidative stress, and differential morphological changes in the mouse lung

    Energy Technology Data Exchange (ETDEWEB)

    Yanamala, Naveena, E-mail: wqu1@cdc.gov [Pathology and Physiology Research Branch/NIOSH/CDC, Morgantown, WV 26505 (United States); Hatfield, Meghan K., E-mail: wla4@cdc.gov [Pathology and Physiology Research Branch/NIOSH/CDC, Morgantown, WV 26505 (United States); Farcas, Mariana T., E-mail: woe7@cdc.gov [Pathology and Physiology Research Branch/NIOSH/CDC, Morgantown, WV 26505 (United States); Schwegler-Berry, Diane [Pathology and Physiology Research Branch/NIOSH/CDC, Morgantown, WV 26505 (United States); Hummer, Jon A., E-mail: qzh3@cdc.gov [Office of Mine Safety and Health Research/NIOSH/CDC, Pittsburgh, PA 15236 (United States); Shurin, Michael R., E-mail: shurinmr@upmc.edu [Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA (United States); Birch, M. Eileen, E-mail: mib2@cdc.gov [NIOSH/CDC, 4676 Columbia Parkway, Cincinnati, OH 45226 (United States); Gutkin, Dmitriy W., E-mail: dwgutkin@hotmail.com [Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA (United States); Kisin, Elena, E-mail: edk8@cdc.gov [Pathology and Physiology Research Branch/NIOSH/CDC, Morgantown, WV 26505 (United States); Kagan, Valerian E., E-mail: kagan@pitt.edu [Department of Environmental and Occupational Health, University of Pittsburgh, PA (United States); Bugarski, Aleksandar D., E-mail: zjl1@cdc.gov [Office of Mine Safety and Health Research/NIOSH/CDC, Pittsburgh, PA 15236 (United States); Shvedova, Anna A., E-mail: ats1@cdc.gov [Pathology and Physiology Research Branch/NIOSH/CDC, Morgantown, WV 26505 (United States); Department Physiology and Pharmacology, WVU, Morgantown, WV 26505 (United States)

    2013-10-15

    The use of biodiesel (BD) or its blends with petroleum diesel (D) is considered to be a viable approach to reduce occupational and environmental exposures to particulate matter (PM). Due to its lower particulate mass emissions compared to D, use of BD is thought to alleviate adverse health effects. Considering BD fuel is mainly composed of unsaturated fatty acids, we hypothesize that BD exhaust particles could induce pronounced adverse outcomes, due to their ability to readily oxidize. The main objective of this study was to compare the effects of particles generated by engine fueled with neat BD and neat petroleum-based D. Biomarkers of tissue damage and inflammation were significantly elevated in lungs of mice exposed to BD particulates. Additionally, BD particulates caused a significant accumulation of oxidatively modified proteins and an increase in 4-hydroxynonenal. The up-regulation of inflammatory cytokines/chemokines/growth factors was higher in lungs upon BD particulate exposure. Histological evaluation of lung sections indicated presence of lymphocytic infiltrate and impaired clearance with prolonged retention of BD particulate in pigment laden macrophages. Taken together, these results clearly indicate that BD exhaust particles could exert more toxic effects compared to D. - Highlights: • Exposure of mice to BDPM caused higher pulmonary toxicity compared to DPM. • Oxidative stress and inflammation were higher in BD vs to D exposed mice. • Inflammatory lymphocyte infiltrates were seen only in lungs of mice exposed to BD. • Ineffective clearance, prolonged PM retention was present only after BD exposure.

  1. Role of reactive nitrogen species generated via inducible nitric oxide synthase in vesicant-induced lung injury, inflammation and altered lung functioning

    Energy Technology Data Exchange (ETDEWEB)

    Sunil, Vasanthi R., E-mail: sunilvr@eohsi.rutgers.edu [Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy Piscataway, NJ (United States); Shen, Jianliang; Patel-Vayas, Kinal; Gow, Andrew J. [Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy Piscataway, NJ (United States); Laskin, Jeffrey D. [Department of Environmental and Occupational Medicine, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway, NJ (United States); Laskin, Debra L. [Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy Piscataway, NJ (United States)

    2012-05-15

    Pulmonary toxicity induced by sulfur mustard and related vesicants is associated with oxidative stress. In the present studies we analyzed the role of reactive nitrogen species (RNS) generated via inducible nitric oxide synthase (iNOS) in lung injury and inflammation induced by vesicants using 2-chloroethyl ethyl sulfide (CEES) as a model. C57Bl/6 (WT) and iNOS −/− mice were sacrificed 3 days or 14 days following intratracheal administration of CEES (6 mg/kg) or control. CEES intoxication resulted in transient (3 days) increases in bronchoalveolar lavage (BAL) cell and protein content in WT, but not iNOS −/− mice. This correlated with expression of Ym1, a marker of oxidative stress in alveolar macrophages and epithelial cells. In contrast, in iNOS −/− mice, Ym1 was only observed 14 days post-exposure in enlarged alveolar macrophages, suggesting that they are alternatively activated. This is supported by findings that lung tumor necrosis factor and lipocalin Lcn2 expression, mediators involved in tissue repair were also upregulated at this time in iNOS −/− mice. Conversely, CEES-induced increases in the proinflammatory genes, monocyte chemotactic protein-1 and cyclooxygenase-2, were abrogated in iNOS −/− mice. In WT mice, CEES treatment also resulted in increases in total lung resistance and decreases in compliance in response to methacholine, effects blunted by loss of iNOS. These data demonstrate that RNS, generated via iNOS play a role in the pathogenic responses to CEES, augmenting oxidative stress and inflammation and suppressing tissue repair. Elucidating inflammatory mechanisms mediating vesicant-induced lung injury is key to the development of therapeutics to treat mustard poisoning. -- Highlights: ► Lung injury, inflammation and oxidative stress are induced by the model vesicant CEES ► RNS generated via iNOS are important in the CEES-induced pulmonary toxicity ► iNOS −/− mice are protected from CEES-induced lung toxicity and

  2. Cross Cancer Genomic Investigation of Inflammation Pathway for Five Common Cancers: Lung, Ovary, Prostate, Breast, and Colorectal Cancer.

    Science.gov (United States)

    Hung, Rayjean J; Ulrich, Cornelia M; Goode, Ellen L; Brhane, Yonathan; Muir, Kenneth; Chan, Andrew T; Marchand, Loic Le; Schildkraut, Joellen; Witte, John S; Eeles, Rosalind; Boffetta, Paolo; Spitz, Margaret R; Poirier, Julia G; Rider, David N; Fridley, Brooke L; Chen, Zhihua; Haiman, Christopher; Schumacher, Fredrick; Easton, Douglas F; Landi, Maria Teresa; Brennan, Paul; Houlston, Richard; Christiani, David C; Field, John K; Bickeböller, Heike; Risch, Angela; Kote-Jarai, Zsofia; Wiklund, Fredrik; Grönberg, Henrik; Chanock, Stephen; Berndt, Sonja I; Kraft, Peter; Lindström, Sara; Al Olama, Ali Amin; Song, Honglin; Phelan, Catherine; Wentzensen, Nicholas; Peters, Ulrike; Slattery, Martha L; Sellers, Thomas A; Casey, Graham; Gruber, Stephen B; Hunter, David J; Amos, Christopher I; Henderson, Brian

    2015-11-01

    Inflammation has been hypothesized to increase the risk of cancer development as an initiator or promoter, yet no large-scale study of inherited variation across cancer sites has been conducted. We conducted a cross-cancer genomic analysis for the inflammation pathway based on 48 genome-wide association studies within the National Cancer Institute GAME-ON Network across five common cancer sites, with a total of 64 591 cancer patients and 74 467 control patients. Subset-based meta-analysis was used to account for possible disease heterogeneity, and hierarchical modeling was employed to estimate the effect of the subcomponents within the inflammation pathway. The network was visualized by enrichment map. All statistical tests were two-sided. We identified three pleiotropic loci within the inflammation pathway, including one novel locus in Ch12q24 encoding SH2B3 (rs3184504), which reached GWAS significance with a P value of 1.78 x 10(-8), and it showed an association with lung cancer (P = 2.01 x 10(-6)), colorectal cancer (GECCO P = 6.72x10(-6); CORECT P = 3.32x10(-5)), and breast cancer (P = .009). We also identified five key subpathway components with genetic variants that are relevant for the risk of these five cancer sites: inflammatory response for colorectal cancer (P = .006), inflammation related cell cycle gene for lung cancer (P = 1.35x10(-6)), and activation of immune response for ovarian cancer (P = .009). In addition, sequence variations in immune system development played a role in breast cancer etiology (P = .001) and innate immune response was involved in the risk of both colorectal (P = .022) and ovarian cancer (P = .003). Genetic variations in inflammation and its related subpathway components are keys to the development of lung, colorectal, ovary, and breast cancer, including SH2B3, which is associated with lung, colorectal, and breast cancer. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e

  3. Chest radiographs in acquired antibody deficiency syndrome with chronic granulomatous inflammation

    International Nuclear Information System (INIS)

    Qaiyumi, S.A.A.; Peest, D.; Galanski, M.; Medizinische Hochschule Hannover

    1990-01-01

    Ten cases of acquired antibody deficiency syndrome with chronic granulomatous infection were diagnosed in our hospital during the past 10 years. We were able to perform a retrospective analysis of the initial and follow-up chest radiographs in 8 of these patients. The following pathological findings could be demonstrated: 1. increased bronchovascular markings in the basal lung fields, 2. reticular densities in the middle and basal lung fields, 3. confluent nodular densities of varying size in the periphery of the basal and middle fields, 4. pulmonary infiltrates in the middle and lower lobes, 5. hilar node enlargement of moderate extent. Findings 2, 3 and 5 completely disappeared under steroid therapy whereas 1 showed only partial recovery. If both the radiologic and serologic findings are considered, it is possible to differentiate this disease from sarcoidosis. (orig.) [de

  4. Influenza Virus-Induced Lung Inflammation Was Modulated by Cigarette Smoke Exposure in Mice

    Science.gov (United States)

    Han, Yan; Ling, Man To; Mao, Huawei; Zheng, Jian; Liu, Ming; Lam, Kwok Tai; Liu, Yuan; Tu, Wenwei; Lau, Yu-Lung

    2014-01-01

    Although smokers have increased susceptibility and severity of seasonal influenza virus infection, there is no report about the risk of 2009 pandemic H1N1 (pdmH1N1) or avian H9N2 (H9N2/G1) virus infection in smokers. In our study, we used mouse model to investigate the effect of cigarette smoke on pdmH1N1 or H9N2 virus infection. Mice were exposed to cigarette smoke for 21 days and then infected with pdmH1N1 or H9N2 virus. Control mice were exposed to air in parallel. We found that cigarette smoke exposure alone significantly upregulated the lung inflammation. Such prior cigarette smoke exposure significantly reduced the disease severity of subsequent pdmH1N1 or H9N2 virus infection. For pdmH1N1 infection, cigarette smoke exposed mice had significantly lower mortality than the control mice, possibly due to the significantly decreased production of inflammatory cytokines and chemokines. Similarly, after H9N2 infection, cigarette smoke exposed mice displayed significantly less weight loss, which might be attributed to lower cytokines and chemokines production, less macrophages, neutrophils, CD4+ and CD8+ T cells infiltration and reduced lung damage compared to the control mice. To further investigate the underlying mechanism, we used nicotine to mimic the effect of cigarette smoke both in vitro and in vivo. Pre-treating the primary human macrophages with nicotine for 72 h significantly decreased their expression of cytokines and chemokines after pdmH1N1 or H9N2 infection. The mice subcutaneously and continuously treated with nicotine displayed significantly less weight loss and lower inflammatory response than the control mice upon pdmH1N1 or H9N2 infection. Moreover, α7 nicotinic acetylcholine receptor knockout mice had more body weight loss than wild-type mice after cigarette smoke exposure and H9N2 infection. Our study provided the first evidence that the pathogenicity of both pdmH1N1 and H9N2 viruses was alleviated in cigarette smoke exposed mice, which might

  5. Influenza virus-induced lung inflammation was modulated by cigarette smoke exposure in mice.

    Directory of Open Access Journals (Sweden)

    Yan Han

    Full Text Available Although smokers have increased susceptibility and severity of seasonal influenza virus infection, there is no report about the risk of 2009 pandemic H1N1 (pdmH1N1 or avian H9N2 (H9N2/G1 virus infection in smokers. In our study, we used mouse model to investigate the effect of cigarette smoke on pdmH1N1 or H9N2 virus infection. Mice were exposed to cigarette smoke for 21 days and then infected with pdmH1N1 or H9N2 virus. Control mice were exposed to air in parallel. We found that cigarette smoke exposure alone significantly upregulated the lung inflammation. Such prior cigarette smoke exposure significantly reduced the disease severity of subsequent pdmH1N1 or H9N2 virus infection. For pdmH1N1 infection, cigarette smoke exposed mice had significantly lower mortality than the control mice, possibly due to the significantly decreased production of inflammatory cytokines and chemokines. Similarly, after H9N2 infection, cigarette smoke exposed mice displayed significantly less weight loss, which might be attributed to lower cytokines and chemokines production, less macrophages, neutrophils, CD4+ and CD8+ T cells infiltration and reduced lung damage compared to the control mice. To further investigate the underlying mechanism, we used nicotine to mimic the effect of cigarette smoke both in vitro and in vivo. Pre-treating the primary human macrophages with nicotine for 72 h significantly decreased their expression of cytokines and chemokines after pdmH1N1 or H9N2 infection. The mice subcutaneously and continuously treated with nicotine displayed significantly less weight loss and lower inflammatory response than the control mice upon pdmH1N1 or H9N2 infection. Moreover, α7 nicotinic acetylcholine receptor knockout mice had more body weight loss than wild-type mice after cigarette smoke exposure and H9N2 infection. Our study provided the first evidence that the pathogenicity of both pdmH1N1 and H9N2 viruses was alleviated in cigarette smoke exposed

  6. Chronic inflammation of the prostate type IV with respect to risk of prostate cancer

    Directory of Open Access Journals (Sweden)

    Antonio B. Porcaro

    2014-09-01

    Full Text Available Background: Chronic inflammatory infiltrate (CII might be involved in prostate cancer (PCA and benign hyperplasia (BPH; however, its significance is controversial. Chronic inflammatory prostatitis type IV is the most common non cancer diagnosis in men undergoing biopsy because of suspected PCA. Objective: To evaluate potential associations of coexistent CII and PCA in biopsy specimens after prostate assessment. Design, setting, and participants: Between January 2007 and December 2008, 415 consecutive patients who underwent prostate biopsy were retrospectively evaluated. The investigated variables included Age (years and PSA (ug/l; moreover, CII+, glandular atrophy (GA+, glandular hyperplasia (GH+, prostate Intraepithelial neoplasm (PIN+, atypical small acinar cell proliferation (ASAP+ and PCA positive cores (P+ were evaluated as categorical and continuous (proportion of positive cores. Outcome measurements and statistical analysis: Associations of CII+ and PCA risk were assessed by statistical methods. Results and limitations: In the patient population, a biopsy core positive for PCA was detected in 34.2% of cases and the rate of high grade PCA (HGPCA: bGS ! 8 resulted 4.82%. CII+ significantly and inversely associated with a positive biopsy core P+ (P < 0.0001; OR = 0.26 and HGPCA (P = 0.0005; OR = 0.05. Moreover, the associations indicated that patients with coexistent CII+ on needle biopsy were 74% less likely to have coexistent PCA than men without CII+ as well as 95% less likely to have HGPCA in the biopsy core than men without coexistent CII+. There were limits in our study which was single centre and included only one dedicated pathologist. Conclusions: There was an inverse association of chronic inflammation of the prostate type IV and risk of PCA; moreover, HGPCA was less likely to be detected in cancers associated with coexistent CII. In prostate microenvironment, prostate chronic inflammation may be protective; however, its role in

  7. Radiolabelled Interleukin-12, a new radiopharmaceutical for imaging chronic TH1-mediated inflammation

    International Nuclear Information System (INIS)

    Annovazzi, A.; Cornelissen, B.; Slegers, G.; D'Alessandria, C.; Bonanno, E.; Signore, A.

    2003-01-01

    Full text: Cytokines have been extensively used to image inflammatory processes (IL1, IL2, IL6, IL8 and others). In particular, for chronic inflammation, labelled IL2 has been successfully used although it binds to both T helper-1 (Th1) and T helper-2 (Th2) cells. In order to increase the specificity for the detection of Th1-mediated inflammation (i.e. organ specific autoimmune diseases), we considered the possibility to label the interleukin-12 (IL12), an heterodimeric cytokine which play a key role in the development of Th1 cells. Objectives: Aim of the present study was to label the Interleukin-12 with 123I and to test its potential as radiopharmaceutical to image chronic inflammatory disorders. Methods: IL12 was labelled with 123I using the IODOGEN method and purified by gel-filtration chromatography on PD10 columns. 123I-IL12 biodistribution was studied in normal NMRI mice at 1,2 and 4h after injection. A mouse model of autoimmune chronic colitis induced by intrarectal instillation of Trinitrobenzen sulfonic acid (TNBS) has been used for imaging purposes and, as controls, mice receiving 50% ethanol in phosphate buffer saline. Results: 123I-IL12 labelling efficiency ranged between 52-65%. Results of biodistribution studies showed a rapid plasma clearance and a main renal excretion route. No significant 123I-IL12 accumulation in major organs and tissues was observed. 123I-IL12 accumulated in areas of chronic inflamed colon as assessed by histological examination. No significant 123I-IL12 uptake is detectable in mice with acute colitis, confirming the specificity of 123IIL12 binding on its receptors expressed on T-lymphocytes. Conclusions: We conclude that this cytokine could be used for the in vivo imaging of Th1 mediated inflammatory processes. (author)

  8. Neutralization of interleukin-17A delays progression of silica-induced lung inflammation and fibrosis in C57BL/6 mice

    International Nuclear Information System (INIS)

    Chen, Ying; Li, Cuiying; Weng, Dong; Song, Laiyu; Tang, Wen; Dai, Wujing; Yu, Ye; Liu, Fangwei; Zhao, Ming; Lu, Chunwei; Chen, Jie

    2014-01-01

    Silica exposure can cause lung inflammation and fibrosis, known as silicosis. Interleukin-17A (IL-17A) and Th17 cells play a pivotal role in controlling inflammatory diseases. However, the roles of IL-17A and Th17 cells in the progress of silica-induced inflammation and fibrosis are poorly understood. This study explored the effects of IL-17A on silica-induced inflammation and fibrosis. We used an anti-mouse IL-17A antibody to establish an IL-17A-neutralized mice model, and mice were exposed to silica to establish an experimental silicosis model. We showed that IL-17A neutralization delayed neutrophil accumulation and progression of silica-induced lung inflammation and fibrosis. IL-17A neutralization reduced the percentage of Th17 in CD4 + T cells, decreased IL-6 and IL-1β expression, and increased Tregs at an early phase of silica-induced inflammation. Neutralization of IL-17A delayed silica-induced Th1/Th2 immune and autoimmune responses. These results suggest that IL-17A neutralization alleviates early stage silica-induced lung inflammation and delays progression of silica-induced lung inflammation and fibrosis. Neutralization of IL-17A suppressed Th17 cell development by decreasing IL-6 and/or IL-1β and increased Tregs at an early phase of silica-induced inflammation. Neutralization of IL-17A also delayed the Th1/Th2 immune response during silica-induced lung inflammation and fibrosis. IL-17A may play a pivotal role in the early phase of silica-induced inflammation and may mediate the Th immune response to influence silica-induced lung inflammation and fibrosis in mice. - Highlights: • Neutralization of IL-17A alleviated silica-induced lung inflammation of early stage. • Neutralization of IL-17A decreased Th17 cells and increased Tregs. • IL-17A mediated the reciprocal relationship of Th17/Tregs by IL-6 and/or IL-1β. • Neutralization of IL-17A delayed silica-induced Th1/Th2 immune response. • Neutralization of IL-17A delayed silica-induced lung

  9. Neutralization of interleukin-17A delays progression of silica-induced lung inflammation and fibrosis in C57BL/6 mice

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ying; Li, Cuiying [Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang, Liaoning (China); Weng, Dong [Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang, Liaoning (China); Clinical Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai (China); Song, Laiyu; Tang, Wen; Dai, Wujing; Yu, Ye; Liu, Fangwei; Zhao, Ming; Lu, Chunwei [Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang, Liaoning (China); Chen, Jie, E-mail: chenjie@mail.cmu.edu.cn [Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang, Liaoning (China)

    2014-02-15

    Silica exposure can cause lung inflammation and fibrosis, known as silicosis. Interleukin-17A (IL-17A) and Th17 cells play a pivotal role in controlling inflammatory diseases. However, the roles of IL-17A and Th17 cells in the progress of silica-induced inflammation and fibrosis are poorly understood. This study explored the effects of IL-17A on silica-induced inflammation and fibrosis. We used an anti-mouse IL-17A antibody to establish an IL-17A-neutralized mice model, and mice were exposed to silica to establish an experimental silicosis model. We showed that IL-17A neutralization delayed neutrophil accumulation and progression of silica-induced lung inflammation and fibrosis. IL-17A neutralization reduced the percentage of Th17 in CD4 + T cells, decreased IL-6 and IL-1β expression, and increased Tregs at an early phase of silica-induced inflammation. Neutralization of IL-17A delayed silica-induced Th1/Th2 immune and autoimmune responses. These results suggest that IL-17A neutralization alleviates early stage silica-induced lung inflammation and delays progression of silica-induced lung inflammation and fibrosis. Neutralization of IL-17A suppressed Th17 cell development by decreasing IL-6 and/or IL-1β and increased Tregs at an early phase of silica-induced inflammation. Neutralization of IL-17A also delayed the Th1/Th2 immune response during silica-induced lung inflammation and fibrosis. IL-17A may play a pivotal role in the early phase of silica-induced inflammation and may mediate the Th immune response to influence silica-induced lung inflammation and fibrosis in mice. - Highlights: • Neutralization of IL-17A alleviated silica-induced lung inflammation of early stage. • Neutralization of IL-17A decreased Th17 cells and increased Tregs. • IL-17A mediated the reciprocal relationship of Th17/Tregs by IL-6 and/or IL-1β. • Neutralization of IL-17A delayed silica-induced Th1/Th2 immune response. • Neutralization of IL-17A delayed silica-induced lung

  10. Physiological and morphological determinants of maximal expiratory flow in chronic obstructive lung disease

    NARCIS (Netherlands)

    H.A.W.M. Tiddens (Harm); J.M. Bogaard (Jan); J.C. de Jongste (Johan); W.C.J. Hop (Wim); H.O. Coxson (Harvey); P.D. Pare

    1996-01-01

    textabstractMaximal expiratory flow in chronic obstructive pulmonary disease (COPD) could be reduced by three different mechanisms; loss of lung elastic recoil, decreased airway conductance upstream of flow-limiting segments; and increased collapsibility of airways.

  11. EFFECTS OF CORTICOSTEROIDS ON BRONCHODILATOR ACTION IN CHRONIC OBSTRUCTIVE LUNG-DISEASE

    NARCIS (Netherlands)

    WEMPE, JB; POSTMA, DS; BREEDERVELD, N; KORT, E; VANDERMARK, TW; KOETER, GH

    Background Short term treatment corticosteroids does not usually reduce airflow limitation and airway responsiveness in patients with chronic obstructive lung disease. We investigated whether corticosteroids modulate the effects of inhaled salbutamol and ipratropium bromide. Methods Ten non-allergic

  12. Chronic inflammation-elicited liver progenitor cell conversion to liver cancer stem cell with clinical significance.

    Science.gov (United States)

    Li, Xiao-Feng; Chen, Cheng; Xiang, Dai-Min; Qu, Le; Sun, Wen; Lu, Xin-Yuan; Zhou, Teng-Fei; Chen, Shu-Zhen; Ning, Bei-Fang; Cheng, Zhuo; Xia, Ming-Yang; Shen, Wei-Feng; Yang, Wen; Wen, Wen; Lee, Terence Kin Wah; Cong, Wen-Ming; Wang, Hong-Yang; Ding, Jin

    2017-12-01

    The substantial heterogeneity and hierarchical organization in liver cancer support the theory of liver cancer stem cells (LCSCs). However, the relationship between chronic hepatic inflammation and LCSC generation remains obscure. Here, we observed a close correlation between aggravated inflammation and liver progenitor cell (LPC) propagation in the cirrhotic liver of rats exposed to diethylnitrosamine. LPCs isolated from the rat cirrhotic liver initiated subcutaneous liver cancers in nonobese diabetic/severe combined immunodeficient mice, suggesting the malignant transformation of LPCs toward LCSCs. Interestingly, depletion of Kupffer cells in vivo attenuated the LCSC properties of transformed LPCs and suppressed cytokeratin 19/Oval cell 6-positive tumor occurrence. Conversely, LPCs cocultured with macrophages exhibited enhanced LCSC properties. We further demonstrated that macrophage-secreted tumor necrosis factor-α triggered chromosomal instability in LPCs through the deregulation of ubiquitin D and checkpoint kinase 2 and enhanced the self-renewal of LPCs through the tumor necrosis factor receptor 1/Src/signal transducer and activator of transcription 3 pathway, which synergistically contributed to the conversion of LPCs to LCSCs. Clinical investigation revealed that cytokeratin 19/Oval cell 6-positive liver cancer patients displayed a worse prognosis and exhibited superior response to sorafenib treatment. Our results not only clarify the cellular and molecular mechanisms underlying the inflammation-mediated LCSC generation but also provide a molecular classification for the individualized treatment of liver cancer. (Hepatology 2017;66:1934-1951). © 2017 by the American Association for the Study of Liver Diseases.

  13. Predicting onset of chronic lung disease using cord blood cytokines.

    Science.gov (United States)

    Takao, Daishi; Ibara, Satoshi; Tokuhisa, Takuya; Ishihara, Chie; Maede, Yoshinobu; Matsui, Takako; Tokumasu, Hironobu; Sato, Kyoko; Hirakawa, Eiji; Kabayama, Chika; Yamamoto, Masakatu

    2014-08-01

    Applicability of cord blood interleukin-6 (IL-6) and interleukin-8 (IL-8) as markers for early prediction of the onset of chronic lung disease (CLD) due to intrauterine infection was investigated in the present study. Eighty very low-birthweight infants with chorioamnionitis were divided into two groups: the CLD group (42 patients) and the non-CLD group (38 patients), according to the presence or absence of CLD, and the clinical background and cord blood IL-6 and IL-8 levels in each group were compared and investigated. The CLD group had significantly longer duration of mechanical ventilation and hospitalization (P CLD group. Using the receiver operating characteristic curves of CLD onset for both IL-6 and IL-8, the cut-off value of IL-6 for predicting onset of CLD was 48.0 pg/mL, and its sensitivity and specificity were 76% and 96%, respectively. The cut-off value for IL-8 was 66.0 pg/mL, and its sensitivity and specificity were 71% and 82%, respectively. The cord blood levels of both IL-6 and IL-8 were significantly higher in the CLD group, indicating that both IL-6 and IL-8 are useful predictors of onset of CLD. © 2014 Japan Pediatric Society.

  14. Effects of personal air pollution exposure on asthma symptoms, lung function and airway inflammation.

    Science.gov (United States)

    Chambers, L; Finch, J; Edwards, K; Jeanjean, A; Leigh, R; Gonem, S

    2018-03-11

    There is evidence that air pollution increases the risk of asthma hospitalizations and healthcare utilization, but the effects on day-to-day asthma control are not fully understood. We undertook a prospective single-centre panel study to test the hypothesis that personal air pollution exposure is associated with asthma symptoms, lung function and airway inflammation. Thirty-two patients with a clinical diagnosis of asthma were provided with a personal air pollution monitor (Cairclip NO 2 /O 3 ) which was kept on or around their person throughout the 12-week follow-up period. Ambient levels of NO 2 and particulate matter were modelled based upon satellite imaging data. Directly measured ozone, NO 2 and particulate matter levels were obtained from a monitoring station in central Leicester. Participants made daily electronic records of asthma symptoms, peak expiratory flow and exhaled nitric oxide. Spirometry and asthma symptom questionnaires were completed at fortnightly study visits. Data were analysed using linear mixed effects models and cross-correlation. Cairclip exposure data were of good quality with clear evidence of diurnal variability and a missing data rate of approximately 20%. We were unable to detect consistent relationships between personal air pollution exposure and clinical outcomes in the group as a whole. In an exploratory subgroup analysis, total oxidant exposure was associated with increased daytime symptoms in women but not men. We did not find compelling evidence that air pollution exposure impacts on day-to-day clinical control in an unselected asthma population, but further studies are required in larger populations with higher exposure levels. Women may be more susceptible than men to the effects of air pollution, an observation which requires confirmation in future studies. © 2018 John Wiley & Sons Ltd.

  15. LFG-500, a newly synthesized flavonoid, attenuates lipopolysaccharide-induced acute lung injury and inflammation in mice.

    Science.gov (United States)

    Li, Chenglin; Yang, Dan; Cao, Xin; Wang, Fan; Jiang, Haijing; Guo, Hao; Du, Lei; Guo, Qinglong; Yin, Xiaoxing

    2016-08-01

    Acute lung injury (ALI) often causes significant morbidity and mortality worldwide. Improved treatment and effective strategies are still required for ALI patients. Our previous studies demonstrated that LFG-500, a novel synthesized flavonoid, has potent anti-cancer activities, while its anti-inflammatory effect has not been revealed. In the present study, the in vivo protective effect of LFG-500 on the amelioration of lipopolysaccharide (LPS)-induced ALI and inflammation was detected. LFG-500 attenuated LPS-induced histological alterations, suppressed the infiltration of inflammatory cells in lung tissues and bronchoalveolar lavage fluid, as well as inhibited the secretion of several inflammatory cytokines, such as tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and IL-6 in lung tissues after LPS challenge. In addition, the in vitro effects and mechanisms were studied in LPS stimulated RAW 264.7 cells and THP-1 cells. LFG-500 significantly decreased the secretion and expression of TNF-α, IL-1β, and IL-6 through inhibiting the transcriptional activation of NF-κB. Moreover, overexpression of NF-κB p65 reversed the inhibitory effect of LFG-500 on LPS-induced NF-κB activation and inflammatory cytokine secretion. Further elucidation of the mechanism revealed that p38 and JNK MAPK pathways were involved in the anti-inflammation effect of LFG-500, through which LFG-500 inhibited the classical IKK-dependent pathway and led to inactivation of NF-κB. More importantly, LFG-500 suppressed the expression and nuclear localization of NF-κB in LPS-induced ALI mice. Taken together, these results demonstrated that LFG-500 could attenuate LPS-induced ALI and inflammation by suppressing NF-κB activation, which provides new evidence for the anti-inflammation activity of LFG-500. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Lung congestion in chronic heart failure: haemodynamic, clinical, and prognostic implications

    DEFF Research Database (Denmark)

    Melenovsky, Vojtech; Andersen, Mads Jønsson; Andress, Krystof

    2015-01-01

    AIMS:The goal of the study was to examine the prognostic impact, haemodynamic and clinical features associated with lung congestion in patients with chronic heart failure (HF). METHODS AND RESULTS:HF patients (n = 186) and HF-free controls (n = 21) underwent right heart catheterization...... days (interquartile range 80-875), 59 patients (32%) died. Lung congestion was associated with reduced survival (P renal dysfunction. CONCLUSION:Interstitial lung oedema is associated with pulmonary vascular disease, RV overload...

  17. Prevalence and correlates of ENDS use among adults being treated for chronic lung disease

    OpenAIRE

    Meghan Moran; Shyam Biswal; Joanna Cohen; Robert Henderson; Janet Holbrook; Venkataramana Sidhaye; Robert Wise

    2018-01-01

    Background Chronic lung disease such as asthma or COPD may be exacerbated by electronic nicotine device (ENDS) use. Despite this, little is known about the extent to which adults with chronic lung disease use ENDS and what factors are associated with use. Methods We analyzed data from the second wave of the Population Assessment of Tobacco and Health (PATH) study. The PATH study recruited 28,362 U.S. adults over the age of 18 using a multi-stage randomized sampli...

  18. Impact of daily cooling treatment on skin inflammation in patients with chronic venous disease.

    Science.gov (United States)

    Kelechi, Teresa J; Mueller, Martina; King, Dana E; Madisetti, Mohan; Prentice, Margie

    2015-05-01

    People with chronic venous disease are at high risk for developing venous leg ulcers. Inflammation is posited as a pathological factor for this chronic condition as evidenced by persistently elevated skin temperature. As part of a larger trial to test the effects of a cooling regimen on leg ulcer prevention, the objective of this preliminary study was to evaluate the first 30 days of intense daily cooling. Compared to a placebo control cuff, a gel cuff applied to the most severely affected lower leg skin for 30 min daily showed no statistically significant differences between temperatures taken in the home at baseline compared to those measured at the 1 month follow up visit. There were also no differences in temperatures noted between the two groups, although the temperatures in the treatment group were lower 30 min after treatment, an indication of adherence. There was no discernable decrease or increase in temperature at a given time point during the 30 day treatment period compared to the control group. It may be better to have patients monitor skin temperature on a daily basis and then apply the cuff as necessary, rather than requiring daily cooling based on baseline measurement. This "prn" approach may provide a sufficient cooling milieu to prevent escalation of inflammation and thwart ulcer occurrence or recurrence. Clinical trials registration #NCT01509599. Copyright © 2015 Tissue Viability Society. Published by Elsevier Ltd. All rights reserved.

  19. Low-grade chronic inflammation perpetuated by modern diet as a promoter of obesity and osteoporosis.

    Science.gov (United States)

    Ilich, Jasminka Z; Kelly, Owen J; Kim, Youjin; Spicer, Maria T

    2014-06-01

    Some of the universal characteristics of pre-agricultural hominin diets are strikingly different from the modern human diet. Hominin dietary choices were limited to wild plant and wild animal foods, while the modern diet includes more than 70 % of energy consumed from refined sugars, refined vegetable oils, and highly processed cereals and dairy products. The modern diet, with higher intake of fat has also resulted in a higher ratio of omega-6 (n-6) to omega-3 (n-3) polyunsaturated fatty acids (PUFA), contributing to low-grade chronic inflammation (LGCI) and thus promoting the development of many chronic diseases, including obesity and osteoporosis. In this review, we describe the changes in modern diet, focusing on the kind and amount of consumed fat; explain the shortcomings of the modern diet with regard to inflammatory processes; and delineate the reciprocity between adiposity and inflammatory processes, with inflammation being a common link between obesity and osteoporosis. We present the evidence that overconsumption of n-6 PUFA coupled with under-consumption of n-3 PUFA results in LGCI and, along with the increased presence of reactive oxygen species, leads to a shift in mesenchymal stem cells (precursors for both osteoblasts and adipocytes) lineage commitment toward increased adipogenesis and suppressed osteoblastogenesis. In turn, high n-6 to n-3 PUFA ratios in the modern diet, coupled with increased synthesis of pro-inflammatory cytokines due to adiposity, propagate obesity and osteoporosis by increasing or maintaining LGCI.

  20. Attenuation of acute nitrogen mustard-induced lung injury, inflammation and fibrogenesis by a nitric oxide synthase inhibitor

    Energy Technology Data Exchange (ETDEWEB)

    Malaviya, Rama; Venosa, Alessandro [Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States); Hall, LeRoy [Drug Safety Sciences, Johnson and Johnson, Raritan, NJ 08869 (United States); Gow, Andrew J. [Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States); Sinko, Patrick J. [Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States); Laskin, Jeffrey D. [Department of Environmental and Occupational Medicine, UMDNJ-Robert Wood Johnson Medical School, Piscataway, NJ 08854 (United States); Laskin, Debra L., E-mail: laskin@eohsi.rutgers.edu [Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States)

    2012-12-15

    Nitrogen mustard (NM) is a toxic vesicant known to cause damage to the respiratory tract. Injury is associated with increased expression of inducible nitric oxide synthase (iNOS). In these studies we analyzed the effects of transient inhibition of iNOS using aminoguanidine (AG) on NM-induced pulmonary toxicity. Rats were treated intratracheally with 0.125 mg/kg NM or control. Bronchoalveolar lavage fluid (BAL) and lung tissue were collected 1 d–28 d later and lung injury, oxidative stress and fibrosis assessed. NM exposure resulted in progressive histopathological changes in the lung including multifocal lesions, perivascular and peribronchial edema, inflammatory cell accumulation, alveolar fibrin deposition, bronchiolization of alveolar septal walls, and fibrosis. This was correlated with trichrome staining and expression of proliferating cell nuclear antigen (PCNA). Expression of heme oxygenase (HO)-1 and manganese superoxide dismutase (Mn-SOD) was also increased in the lung following NM exposure, along with levels of protein and inflammatory cells in BAL, consistent with oxidative stress and alveolar-epithelial injury. Both classically activated proinflammatory (iNOS{sup +} and cyclooxygenase-2{sup +}) and alternatively activated profibrotic (YM-1{sup +} and galectin-3{sup +}) macrophages appeared in the lung following NM administration; this was evident within 1 d, and persisted for 28 d. AG administration (50 mg/kg, 2 ×/day, 1 d–3 d) abrogated NM-induced injury, oxidative stress and inflammation at 1 d and 3 d post exposure, with no effects at 7 d or 28 d. These findings indicate that nitric oxide generated via iNOS contributes to acute NM-induced lung toxicity, however, transient inhibition of iNOS is not sufficient to protect against pulmonary fibrosis. -- Highlights: ► Nitrogen mustard (NM) induces acute lung injury and fibrosis. ► Pulmonary toxicity is associated with increased expression of iNOS. ► Transient inhibition of iNOS attenuates acute

  1. Capillary blood flow in the lungs of patients with chronic laryngo- and tracheostenosis

    International Nuclear Information System (INIS)

    Obukhov, N.V.; Folomeev, V.N.

    1991-01-01

    Altogether 19 patients with chronic laryngo- and tracheostenosis of different etiology with different time of canulla bearing. The patients were examined with 99m Tc-human serum albumin particles. Major disorders in the capillary blood supply of both lungs were detected. These changes were focaldiffuse. Lung abnormalities increased depending on the time of canulla bearing

  2. Dynamic FDG-PET Imaging to Differentiate Malignancies from Inflammation in Subcutaneous and In Situ Mouse Model for Non-Small Cell Lung Carcinoma (NSCLC).

    Science.gov (United States)

    Yang, Zhen; Zan, Yunlong; Zheng, Xiujuan; Hai, Wangxi; Chen, Kewei; Huang, Qiu; Xu, Yuhong; Peng, Jinliang

    2015-01-01

    [18F]fluoro-2-deoxy-D-glucose positron emission tomography (FDG-PET) has been widely used in oncologic procedures such as tumor diagnosis and staging. However, false-positive rates have been high, unacceptable and mainly caused by inflammatory lesions. Misinterpretations take place especially when non-subcutaneous inflammations appear at the tumor site, for instance in the lung. The aim of the current study is to evaluate the use of dynamic PET imaging procedure to differentiate in situ and subcutaneous non-small cell lung carcinoma (NSCLC) from inflammation, and estimate the kinetics of inflammations in various locations. Dynamic FDG-PET was performed on 33 female mice inoculated with tumor and/or inflammation subcutaneously or inside the lung. Standardized Uptake Values (SUVs) from static imaging (SUVmax) as well as values of influx rate constant (Ki) of compartmental modeling from dynamic imaging were obtained. Static and kinetic data from different lesions (tumor and inflammations) or different locations (subcutaneous, in situ and spontaneous group) were compared. Values of SUVmax showed significant difference in subcutaneous tumor and inflammation (pPET based SUVmax, both subcutaneous and in situ inflammations and malignancies can be differentiated via dynamic FDG-PET based Ki. Moreover, Values of influx rate constant Ki from compartmental modeling can offer an assessment for inflammations at different locations of the body, which also implies further validation is necessary before the replacement of in situ inflammation with its subcutaneous counterpart in animal experiments.

  3. Chronic granulomatous inflammation in teleost fish Piaractus mesopotamicus: histopathology model study

    Directory of Open Access Journals (Sweden)

    Wilson G Manrique

    2017-01-01

    Full Text Available Objective. This study evaluated the cell kinetic and formation of granuloma during chronic inflammation induced by Bacillus Calmette-Guérin (BCG in the skeletal muscle of Piaractus mesopotamicus, as a histopathology model to study innate immunity. Materials and methods. Sixty fish were divided in two groups: BCG-inoculated and non-inoculated fish and the inflammatory response analyzed 3, 7, 14, 21 and 33 days post-inoculation (DPI by histopathology after hematoxylin-eosin and Ziehl-Neelsen staining. Results. 3 DPI of BCG showed a diffuse inflammatory reaction mostly composed by mononuclear cells. The inflammation continued diffuse 7 DPI initiating the cellular organization surrounding the inoculum and have continued at 14 DPI with discrete presence of epithelioid-like type cells with acidophilic cytoplasm and floppy chromatin. Higher cellular organization (21 DPI surrounding the granuloma with intense peripheral mononuclear inflammatory infiltrate and nevertheless, an increase in the number of fibroblasts and macrophage-like cells was observed. The inflammatory process became less diffuse 33 DPI with formation of small amount of granuloma surrounded by the same type of reaction found in bigger granuloma. Both the young and old granuloma presented typical characteristic around the inoculum composed by a layer of epithelioid-like type cells, besides macrophages, some lymphocytes and abundant fibroblasts. Conclusions. This study showed the feasibility in the use of pacus to study chronic granulomatous inflammatory response induced by BCG, characterized by changes in the kinetics of inflammatory cells in skeletal muscle classifying as immune-epithelioid type, similar to granulomatous inflammation caused by M. marinum in teleost fish.

  4. Metabolic syndrome criteria as predictors of insulin resistance, inflammation and mortality in chronic hemodialysis patients.

    Science.gov (United States)

    Vogt, Barbara Perez; Souza, Priscilla L; Minicucci, Marcos Ferreira; Martin, Luis Cuadrado; Barretti, Pasqual; Caramori, Jacqueline Teixeira

    2014-10-01

    Abstract Background: Chronic kidney disease (CKD) and metabolic syndrome are characterized by overlapping disorders, including glucose intolerance, hypertension, dyslipidemia, and, in some cases, obesity. However, there are no specific criteria for the diagnosis of metabolic syndrome in CKD. Metabolic syndrome can also be associated with increased risk of mortality. Some traditional risk factors may protect dialysis patients from mortality, known as "reverse epidemiology." Metabolic syndrome might undergo reverse epidemiology. The objectives were to detect differences in frequency and metabolic characteristics associated with three sets of diagnostic criteria for metabolic syndrome, to evaluate the accuracy of insulin resistance (IR) and inflammation to identify patients with metabolic syndrome, and to investigate the effects of metabolic syndrome by three sets of diagnostic criteria on mortality in chronic hemodialysis patients. An observational study was conducted. Diagnostic criteria for metabolic syndrome proposed by National Cholesterol Education Program Adult Treatment Panel III (NCEP ATP III), International Diabetes Federation (IDF), and Harmonizing the Metabolic Syndrome (HMetS) statement were applied to 98 hemodialysis patients. The prevalence of metabolic syndrome was 51%, 66.3%, and 75.3% according to NCEP ATP III, IDF, and HMetS criteria, respectively. Diagnosis of metabolic syndrome by HMetS was simultaneously capable of revealing both inflammation and IR, whereas NCEP ATP III and IDF criteria were only able to identify IR. Mortality risk increased in the presence of metabolic syndrome regardless of the criteria used. The prevalence of metabolic syndrome in hemodialysis varies according to the diagnostic criteria used. IR and inflammation predict metabolic syndrome only when diagnosed by HMetS criteria. HMetS was the diagnostic criteria that can predict the highest risk of mortality.

  5. Bradykinin-induced lung inflammation and bronchoconstriction: role in parainfluenze-3 virus-induced inflammation and airway hyperreactivity.

    Science.gov (United States)

    Broadley, Kenneth J; Blair, Alan E; Kidd, Emma J; Bugert, Joachim J; Ford, William R

    2010-12-01

    Inhaled bradykinin causes bronchoconstriction in asthmatic subjects but not nonasthmatics. To date, animal studies with inhaled bradykinin have been performed only in anesthetized guinea pigs and rats, where it causes bronchoconstriction through sensory nerve pathways. In the present study, airway function was recorded in conscious guinea pigs by whole-body plethysmography. Inhaled bradykinin (1 mM, 20 s) caused bronchoconstriction and influx of inflammatory cells to the lungs, but only when the enzymatic breakdown of bradykinin by angiotensin-converting enzyme and neutral endopeptidase was inhibited by captopril (1 mg/kg i.p.) and phosphoramidon (10 mM, 20-min inhalation), respectively. The bronchoconstriction and cell influx were antagonized by the B(2) kinin receptor antagonist 4-(S)-amino-5-(4-{4-[2,4-dichloro-3-(2,4-dimethyl-8-quinolyloxymethyl)phenylsulfonamido]-tetrahydro-2H-4-pyranylcarbonyl}piperazino)-5-oxopentyl](trimethyl)ammonium chloride hydrochloride (MEN16132) when given by inhalation (1 and 10 μM, 20 min) and are therefore mediated via B(2) kinin receptors. However, neither intraperitioneal MEN16132 nor the peptide B(2) antagonist icatibant, by inhalation, antagonized these bradykinin responses. Sensitization of guinea pigs with ovalbumin was not sufficient to induce airway hyperreactivity (AHR) to the bronchoconstriction by inhaled bradykinin. However, ovalbumin challenge of sensitized guinea pigs caused AHR to bradykinin and histamine. Infection of guinea pigs by nasal instillation of parainfluenza-3 virus produced AHR to inhaled histamine and lung influx of inflammatory cells. These responses were attenuated by the bradykinin B(2) receptor antagonist MEN16132 and H-(4-chloro)DPhe-2'(1-naphthylalanine)-(3-aminopropyl)guanidine (VA999024), an inhibitor of tissue kallikrein, the enzyme responsible for lung synthesis of bradykinin. These results suggest that bradykinin is involved in virus-induced inflammatory cell influx and AHR.

  6. Haemophilus influenzae from Patients with Chronic Obstructive Pulmonary Disease Exacerbation Induce More Inflammation than Colonizers

    Science.gov (United States)

    Chin, Cecilia L.; Manzel, Lori J.; Lehman, Erin E.; Humlicek, Alicia L.; Shi, Lei; Starner, Timothy D.; Denning, Gerene M.; Murphy, Timothy F.; Sethi, Sanjay; Look, Dwight C.

    2005-01-01

    Rationale: Airway infection with Haemophilus influenzae causes airway inflammation, and isolation of new strains of this bacteria is associated with increased risk of exacerbations in patients with chronic obstructive pulmonary disease (COPD). Objective: To determine whether strains of H. influenzae associated with exacerbations cause more inflammation than strains that colonize the airways of patients with COPD. Methods: Exacerbation strains of H. influenzae were isolated from patients during exacerbation of clinical symptoms with subsequent development of a homologous serum antibody response and were compared with colonization strains that were not associated with symptom worsening or an antibody response. Bacterial strains were compared using an in vivo mouse model of airway infection and in vitro cell culture model of bacterial adherence and defense gene and signaling pathway activation in primary human airway epithelial cells. Results: H. influenzae associated with exacerbations caused more airway neutrophil recruitment compared with colonization strains in the mouse model of airway bacterial infection. Furthermore, exacerbation strains adhered to epithelial cells in significantly higher numbers and induced more interleukin-8 release after interaction with airway epithelial cells. This effect was likely mediated by increased activation of the nuclear factor-κB and p38 mitogen-activated protein kinase signaling pathways. Conclusions: The results indicate that H. influenzae strains isolated from patients during COPD exacerbations often induce more airway inflammation and likely have differences in virulence compared with colonizing strains. These findings support the concept that bacteria infecting the airway during COPD exacerbations mediate increased airway inflammation and contribute to decreased airway function. PMID:15805181

  7. Transcriptome Profiling of the Lungs Reveals Molecular Clock Genes Expression Changes after Chronic Exposure to Ambient Air Particles

    Directory of Open Access Journals (Sweden)

    Pengcheng Song

    2017-01-01

    Full Text Available The symptoms of asthma, breathlessness, insomnia, etc. all have relevance to pulmonary rhythmic disturbances. Epidemiology and toxicology studies have demonstrated that exposure to ambient air particles can result in pulmonary dysfunction. However, there are no data directly supporting a link between air pollution and circadian rhythm disorder. In the present study, we found that breathing highly polluted air resulted in changes of the molecular clock genes expression in lung by transcriptome profiling analyses in a rodent model. Compared to those exposed to filtered air, in both pregnant and offspring rats in the unfiltered group, key clock genes (Per1, Per2, Per3, Rev-erbα and Dbp expression level decreased and Bmal1 expression level increased. In both rat dams and their offspring, after continuous exposure to unfiltered air, we observed significant histologic evidence for both perivascular and peribronchial inflammation, increased tissue and systemic oxidative stress in the lungs. Our results suggest that chronic exposure to particulate matter can induce alterations of clock genes expression, which could be another important pathway for explaining the feedbacks of ambient particle exposure in addition to oxidative stress and inflammation.

  8. The Changes of Energy Interactions between Nucleus Function and Mitochondria Functions Causing Transmutation of Chronic Inflammation into Cancer Metabolism.

    Science.gov (United States)

    Ponizovskiy, Michail R

    2016-01-01

    Interactions between nucleus and mitochondria functions induce the mechanism of maintenance stability of cellular internal energy according to the first law of thermodynamics in able-bodied cells and changes the mechanisms of maintenance stability of cellular internal energy creating a transition stationary state of ablebodied cells into quasi-stationary pathologic states of acute inflammation transiting then into chronic inflammation and then transmuting into cancer metabolism. The mechanisms' influences of intruding etiologic pathologic agents (microbe, virus, etc.) lead to these changes of energy interactions between nucleus and mitochondria functions causing general acute inflammation, then passing into local chronic inflammation, and reversing into cancer metabolism transmutation. Interactions between biochemical processes and biophysical processes of cellular capacitors' operations create a supplementary mechanism of maintenance stability of cellular internal energy in the norm and in pathology. Discussion of some scientific works eliminates doubts of the authors of these works.

  9. Violacein Treatment Modulates Acute and Chronic Inflammation through the Suppression of Cytokine Production and Induction of Regulatory T Cells.

    Directory of Open Access Journals (Sweden)

    Liana Verinaud

    Full Text Available Inflammation is a necessary process to control infection. However, exacerbated inflammation, acute or chronic, promotes deleterious effects in the organism. Violacein (viola, a quorum sensing metabolite from the Gram-negative bacterium Chromobacterium violaceum, has been shown to protect mice from malaria and to have beneficial effects on tumors. However, it is not known whether this drug possesses anti-inflammatory activity. In this study, we investigated whether viola administration is able to reduce acute and chronic autoimmune inflammation. For that purpose, C57BL/6 mice were intraperitoneally injected with 1 μg of LPS and were treated with viola (3.5mg/kg via i.p. at the same time-point. Three hours later, the levels of inflammatory cytokines in the sera and phenotypical characterization of leukocytes were determined. Mice treated with viola presented a significant reduction in the production of inflammatory cytokines compared with untreated mice. Interestingly, although viola is a compound derived from bacteria, it did not induce inflammation upon administration to naïve mice. To test whether viola would protect mice from an autoimmune inflammation, Experimental Autoimmune Encephalomyelitis (EAE-inflicted mice were given viola i.p. at disease onset, at the 10th day from immunization. Viola-treated mice developed mild EAE disease in contrast with placebo-treated mice. The frequencies of dendritic cells and macrophages were unaltered in EAE mice treated with viola. However, the sole administration of viola augmented the levels of splenic regulatory T cells (CD4+Foxp3+. We also found that adoptive transfer of viola-elicited regulatory T cells significantly reduced EAE. Our study shows, for the first time, that violacein is able to modulate acute and chronic inflammation. Amelioration relied in suppression of cytokine production (in acute inflammation and stimulation of regulatory T cells (in chronic inflammation. New studies must be

  10. Effects of acute and chronic administration of methylprednisolone on oxidative stress in rat lungs

    Directory of Open Access Journals (Sweden)

    Ronaldo Lopes Torres

    2014-06-01

    Full Text Available Objective: To determine the effects of acute and chronic administration of methylprednisolone on oxidative stress, as quantified by measuring lipid peroxidation (LPO and total reactive antioxidant potential (TRAP, in rat lungs. Methods: Forty Wistar rats were divided into four groups: acute treatment, comprising rats receiving a single injection of methylprednisolone (50 mg/kg i.p.; acute control, comprising rats i.p. injected with saline; chronic treatment, comprising rats receiving methylprednisolone in drinking water (6 mg/kg per day for 30 days; and chronic control, comprising rats receiving normal drinking water. Results: The levels of TRAP were significantly higher in the acute treatment group rats than in the acute control rats, suggesting an improvement in the pulmonary defenses of the former. The levels of lung LPO were significantly higher in the chronic treatment group rats than in the chronic control rats, indicating oxidative damage in the lung tissue of the former. Conclusions: Our results suggest that the acute use of corticosteroids is beneficial to lung tissue, whereas their chronic use is not. The chronic use of methylprednisolone appears to increase lung LPO levels.

  11. mTOR regulates metabolic adaptation of APCs in the lung and controls the outcome of allergic inflammation.

    Science.gov (United States)

    Sinclair, Charles; Bommakanti, Gayathri; Gardinassi, Luiz; Loebbermann, Jens; Johnson, Matthew Joseph; Hakimpour, Paul; Hagan, Thomas; Benitez, Lydia; Todor, Andrei; Machiah, Deepa; Oriss, Timothy; Ray, Anuradha; Bosinger, Steven; Ravindran, Rajesh; Li, Shuzhao; Pulendran, Bali

    2017-09-08

    Antigen-presenting cells (APCs) occupy diverse anatomical tissues, but their tissue-restricted homeostasis remains poorly understood. Here, working with mouse models of inflammation, we found that mechanistic target of rapamycin (mTOR)-dependent metabolic adaptation was required at discrete locations. mTOR was dispensable for dendritic cell (DC) homeostasis in secondary lymphoid tissues but necessary to regulate cellular metabolism and accumulation of CD103 + DCs and alveolar macrophages in lung. Moreover, while numbers of mTOR-deficient lung CD11b + DCs were not changed, they were metabolically reprogrammed to skew allergic inflammation from eosinophilic T helper cell 2 (T H 2) to neutrophilic T H 17 polarity. The mechanism for this change was independent of translational control but dependent on inflammatory DCs, which produced interleukin-23 and increased fatty acid oxidation. mTOR therefore mediates metabolic adaptation of APCs in distinct tissues, influencing the immunological character of allergic inflammation. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  12. Ethanol metabolism, oxidative stress, and endoplasmic reticulum stress responses in the lungs of hepatic alcohol dehydrogenase deficient deer mice after chronic ethanol feeding

    Energy Technology Data Exchange (ETDEWEB)

    Kaphalia, Lata [Department of Internal Medicine, The University of Texas Medical Branch, Galveston, TX 775555 (United States); Boroumand, Nahal [Department of Pathology, The University of Texas Medical Branch, Galveston, TX 775555 (United States); Hyunsu, Ju [Department of Preventive Medicine and Community Health, The University of Texas Medical Branch, Galveston, TX 775555 (United States); Kaphalia, Bhupendra S., E-mail: bkaphali@utmb.edu [Department of Pathology, The University of Texas Medical Branch, Galveston, TX 775555 (United States); Calhoun, William J. [Department of Internal Medicine, The University of Texas Medical Branch, Galveston, TX 775555 (United States)

    2014-06-01

    ethanol feeding causes oxidative stress, ER stress and inflammation in lungs of ADH– deer mice. • Chronic ethanol feeding generates FAEEs (nonoxidative metabolites of ethanol) in lungs of ADH– deer mice. • Chronic ethanol feeding induces CYP2E1 in the lungs of ADH– deer mice. • Lack of ER homeostasis due to a prolonged ethanol feeding could trigger inflammation.

  13. Ethanol metabolism, oxidative stress, and endoplasmic reticulum stress responses in the lungs of hepatic alcohol dehydrogenase deficient deer mice after chronic ethanol feeding

    International Nuclear Information System (INIS)

    Kaphalia, Lata; Boroumand, Nahal; Hyunsu, Ju; Kaphalia, Bhupendra S.; Calhoun, William J.

    2014-01-01

    ethanol feeding causes oxidative stress, ER stress and inflammation in lungs of ADH– deer mice. • Chronic ethanol feeding generates FAEEs (nonoxidative metabolites of ethanol) in lungs of ADH– deer mice. • Chronic ethanol feeding induces CYP2E1 in the lungs of ADH– deer mice. • Lack of ER homeostasis due to a prolonged ethanol feeding could trigger inflammation

  14. Dexamethasone attenuates VEGF expression and inflammation but not barrier dysfunction in a murine model of ventilator-induced lung injury.

    Directory of Open Access Journals (Sweden)

    Maria A Hegeman

    Full Text Available BACKGROUND: Ventilator-induced lung injury (VILI is characterized by vascular leakage and inflammatory responses eventually leading to pulmonary dysfunction. Vascular endothelial growth factor (VEGF has been proposed to be involved in the pathogenesis of VILI. This study examines the inhibitory effect of dexamethasone on VEGF expression, inflammation and alveolar-capillary barrier dysfunction in an established murine model of VILI. METHODS: Healthy male C57Bl/6 mice were anesthetized, tracheotomized and mechanically ventilated for 5 hours with an inspiratory pressure of 10 cmH2O ("lower" tidal volumes of ∼7.5 ml/kg; LVT or 18 cmH2O ("higher" tidal volumes of ∼15 ml/kg; HVT. Dexamethasone was intravenously administered at the initiation of HVT-ventilation. Non-ventilated mice served as controls. Study endpoints included VEGF and inflammatory mediator expression in lung tissue, neutrophil and protein levels in bronchoalveolar lavage fluid, PaO2 to FiO2 ratios and lung wet to dry ratios. RESULTS: Particularly HVT-ventilation led to alveolar-capillary barrier dysfunction as reflected by reduced PaO2 to FiO2 ratios, elevated alveolar protein levels and increased lung wet to dry ratios. Moreover, VILI was associated with enhanced VEGF production, inflammatory mediator expression and neutrophil infiltration. Dexamethasone treatment inhibited VEGF and pro-inflammatory response in lungs of HVT-ventilated mice, without improving alveolar-capillary permeability, gas exchange and pulmonary edema formation. CONCLUSIONS: Dexamethasone treatment completely abolishes ventilator-induced VEGF expression and inflammation. However, dexamethasone does not protect against alveolar-capillary barrier dysfunction in an established murine model of VILI.

  15. Malnutrition and chronic inflammation as risk factors for sarcopenia in elderly patients with hip fracture.

    Science.gov (United States)

    Yoo, Jun-Il; Ha, Yong-Chan; Choi, Hana; Kim, Kyu-Hwang; Lee, Young-Kyun; Koo, Kyung-Hoi; Park, Ki-Soo

    2018-01-01

    To evaluate malnutrition and chronic inflammation as risk factors for sarcopenia in elderly patients with hip fractures, as defined by the criteria of the Asian Working Group on Sarcopenia (AWGS). A total of 327 elderly patients with hip fractures were enrolled in this retrospective observational study. The main outcome measure was the nutritional status and nutritional risk factors for sarcopenia in elderly patients. Diagnosis of sarcopenia was made according to the guidelines of the AWGS. Whole body densitometry analysis was used to measure skeletal muscle mass, and muscle strength was evaluated by handgrip testing. Multivariable regression analysis was utilized to analyze the nutritional risk factors for sarcopenia in patients with hip fractures. Of 327 patients with hip fractures (78 men and 249 women), the prevalence of sarcopenia was 60.3% and 30.1% in men and women, respectively. The rates of three indicators of malnutrition in men and women (low BMI, hypoalbuminemia, and hypoproteinemia) in sarcopenia patients with hip fractures were 23.4%, 31.9%, and 53.2% and 21.3%, 21.3%, and 37.3%, respectively. The prevalence of markers of chronic inflammation (increased CRP and ESR) in men and women with sarcopenia and hip fractures were 74.9% and 52.2%, and 49.3% and 85.1%, respectively. After adjusting for covariates, low BMI and hypoproteinemia in women were associated with a 2.9- and 2.1-fold greater risk of sarcopenia than non-sarcopenia, respectively. The present study revealed a strong relationship between sarcopenia and malnutrition and chronic inflammatory factors in elderly patients with hip fractures.

  16. High dietary fiber intake is associated with decreased inflammation and all-cause mortality in patients with chronic kidney disease.

    Science.gov (United States)

    Krishnamurthy, Vidya M Raj; Wei, Guo; Baird, Bradley C; Murtaugh, Maureen; Chonchol, Michel B; Raphael, Kalani L; Greene, Tom; Beddhu, Srinivasan

    2012-02-01

    Chronic kidney disease is considered an inflammatory state and a high fiber intake is associated with decreased inflammation in the general population. Here, we determined whether fiber intake is associated with decreased inflammation and mortality in chronic kidney disease, and whether kidney disease modifies the associations of fiber intake with inflammation and mortality. To do this, we analyzed data from 14,543 participants in the National Health and Nutrition Examination Survey III. The prevalence of chronic kidney disease (estimated glomerular filtration rate less than 60 ml/min per 1.73 m(2)) was 5.8%. For each 10-g/day increase in total fiber intake, the odds of elevated serum C-reactive protein levels were decreased by 11% and 38% in those without and with kidney disease, respectively. Dietary total fiber intake was not significantly associated with mortality in those without but was inversely related to mortality in those with kidney disease. The relationship of total fiber with inflammation and mortality differed significantly in those with and without kidney disease. Thus, high dietary total fiber intake is associated with lower risk of inflammation and mortality in kidney disease and these associations are stronger in magnitude in those with kidney disease. Interventional trials are needed to establish the effects of fiber intake on inflammation and mortality in kidney disease.

  17. Assessment of pathological changes associated with chronic allograft rejection and tolerance in two experimental models of rat lung transplantation.

    Science.gov (United States)

    Matsumura, Y; Marchevsky, A; Zuo, X J; Kass, R M; Matloff, J M; Jordan, S C

    1995-06-15

    Lung transplantation is now routinely performed for a wide range of end-stage cardiopulmonary disorders. Despite overcoming the problems associated with early acute rejection, chronic rejection (CR) in the form of obliterative bronchiolitis has emerged as the primary cause of late graft loss. The mechanisms involved in the development of CR of lung allografts are poorly understood, and no effective therapy is currently available. To better understand the pathological events associated with CR and tolerance, we examined two models of lung allograft rejection established in our laboratory. First, we exchanged left lung allografts between moderately histoincompatible inbred rat strains (WKY-->F344: n = 42 and F344-->WKY: n = 40). The WKY-->F344 model was previously shown to develop spontaneous tolerance, while the converse model (F344-->WKY) showed persistent acute rejection. The purpose of this investigation was to assess histopathological changes associated with long-term grafts left in place up to 140 days after transplant. To confirm that tolerance had developed, skin-grafting experiments were performed. Five skin grafts from each strain were placed on lung allograft recipients on day 35 after transplant and skin allograft survival was assessed and compared with controls. Acute rejection (AR) was graded histologically (stage O-IV) and the pathologic intensity of inflammation and CR were graded (0-4: 0 = 0%, 1 = 1-25%, 2 = 26-50%, 3 = 51-75%, and 4 = 76-100%) on percentage of involvement with the following categories being examined: (a) lymphocytic infiltration (perivascular, peribronchial, and peribronchiolar) and (b) vasculitis, edema, hemorrhage, and necrosis. Finally, chronic rejection was diagnosed by the presence of intimal hyperplasia, interstitial fibrosis, peribronchiolar fibrosis, bronchiolitis obliterans, and bronchiectasis. The WKY-->F344 animals showed progressive AR (stage III, day 21). Thereafter, the AR subsided spontaneously and was stage 0 on day

  18. Chronic occupational exposure to arsenic induces carcinogenic gene signaling networks and neoplastic transformation in human lung epithelial cells

    International Nuclear Information System (INIS)

    Stueckle, Todd A.; Lu, Yongju; Davis, Mary E.; Wang, Liying; Jiang, Bing-Hua; Holaskova, Ida; Schafer, Rosana; Barnett, John B.; Rojanasakul, Yon

    2012-01-01

    Chronic arsenic exposure remains a human health risk; however a clear mode of action to understand gene signaling-driven arsenic carcinogenesis is currently lacking. This study chronically exposed human lung epithelial BEAS-2B cells to low-dose arsenic trioxide to elucidate cancer promoting gene signaling networks associated with arsenic-transformed (B-As) cells. Following a 6 month exposure, exposed cells were assessed for enhanced cell proliferation, colony formation, invasion ability and in vivo tumor formation compared to control cell lines. Collected mRNA was subjected to whole genome expression microarray profiling followed by in silico Ingenuity Pathway Analysis (IPA) to identify lung carcinogenesis modes of action. B-As cells displayed significant increases in proliferation, colony formation and invasion ability compared to BEAS-2B cells. B-As injections into nude mice resulted in development of primary and secondary metastatic tumors. Arsenic exposure resulted in widespread up-regulation of genes associated with mitochondrial metabolism and increased reactive oxygen species protection suggesting mitochondrial dysfunction. Carcinogenic initiation via reactive oxygen species and epigenetic mechanisms was further supported by altered DNA repair, histone, and ROS-sensitive signaling. NF-κB, MAPK and NCOR1 signaling disrupted PPARα/δ-mediated lipid homeostasis. A ‘pro-cancer’ gene signaling network identified increased survival, proliferation, inflammation, metabolism, anti-apoptosis and mobility signaling. IPA-ranked signaling networks identified altered p21, EF1α, Akt, MAPK, and NF-κB signaling networks promoting genetic disorder, altered cell cycle, cancer and changes in nucleic acid and energy metabolism. In conclusion, transformed B-As cells with their whole genome expression profile provide an in vitro arsenic model for future lung cancer signaling research and data for chronic arsenic exposure risk assessment. Highlights: ► Chronic As 2 O 3

  19. Chronic occupational exposure to arsenic induces carcinogenic gene signaling networks and neoplastic transformation in human lung epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Stueckle, Todd A., E-mail: tstueckle@hsc.wvu.edu [Department of Basic Pharmaceutical Sciences, West Virginia University, Morgantown, WV 26506 (United States); Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505 (United States); Lu, Yongju, E-mail: yongju6@hotmail.com [Department of Basic Pharmaceutical Sciences, West Virginia University, Morgantown, WV 26506 (United States); Davis, Mary E., E-mail: mdavis@wvu.edu [Department of Physiology, West Virginia University, Morgantown, WV 26506 (United States); Wang, Liying, E-mail: lmw6@cdc.gov [Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505 (United States); Jiang, Bing-Hua, E-mail: bhjiang@jefferson.edu [Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107 (United States); Holaskova, Ida, E-mail: iholaskova@hsc.wvu.edu [Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, WV 26506 (United States); Schafer, Rosana, E-mail: rschafer@hsc.wvu.edu [Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, WV 26506 (United States); Barnett, John B., E-mail: jbarnett@hsc.wvu.edu [Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, WV 26506 (United States); Rojanasakul, Yon, E-mail: yrojan@hsc.wvu.edu [Department of Basic Pharmaceutical Sciences, West Virginia University, Morgantown, WV 26506 (United States)

    2012-06-01

    Chronic arsenic exposure remains a human health risk; however a clear mode of action to understand gene signaling-driven arsenic carcinogenesis is currently lacking. This study chronically exposed human lung epithelial BEAS-2B cells to low-dose arsenic trioxide to elucidate cancer promoting gene signaling networks associated with arsenic-transformed (B-As) cells. Following a 6 month exposure, exposed cells were assessed for enhanced cell proliferation, colony formation, invasion ability and in vivo tumor formation compared to control cell lines. Collected mRNA was subjected to whole genome expression microarray profiling followed by in silico Ingenuity Pathway Analysis (IPA) to identify lung carcinogenesis modes of action. B-As cells displayed significant increases in proliferation, colony formation and invasion ability compared to BEAS-2B cells. B-As injections into nude mice resulted in development of primary and secondary metastatic tumors. Arsenic exposure resulted in widespread up-regulation of genes associated with mitochondrial metabolism and increased reactive oxygen species protection suggesting mitochondrial dysfunction. Carcinogenic initiation via reactive oxygen species and epigenetic mechanisms was further supported by altered DNA repair, histone, and ROS-sensitive signaling. NF-κB, MAPK and NCOR1 signaling disrupted PPARα/δ-mediated lipid homeostasis. A ‘pro-cancer’ gene signaling network identified increased survival, proliferation, inflammation, metabolism, anti-apoptosis and mobility signaling. IPA-ranked signaling networks identified altered p21, EF1α, Akt, MAPK, and NF-κB signaling networks promoting genetic disorder, altered cell cycle, cancer and changes in nucleic acid and energy metabolism. In conclusion, transformed B-As cells with their whole genome expression profile provide an in vitro arsenic model for future lung cancer signaling research and data for chronic arsenic exposure risk assessment. Highlights: ► Chronic As{sub 2}O

  20. Sinus surgery postpones chronic Gram-negative lung infection

    DEFF Research Database (Denmark)

    Alanin, M C; Aanaes, K; Høiby, N

    2016-01-01

    of pulmonary samples positive for GNB. We investigated whether the effect is sustained. METHODOLOGY: We report the effect of ESS and adjuvant therapy three years postoperatively in a CF cohort participating in this prospective clinical follow-up study. The primary endpoint was the lung infection status defined......BACKGROUND: In patients with cystic fibrosis (CF) the sinuses are a bacterial reservoir for Gram-negative bacteria (GNB). From the sinuses the GNB can repeatedly migrate to the lungs. In a one-year follow-up study, endoscopic sinus surgery (ESS) with adjuvant therapy reduced the frequency....... The total cohort had decreasing lung function during follow-up; however, in 27 patients with improved lung infection status lung function was stable. Revision surgery was performed in 31 patients (28%). CONCLUSION: ESS with adjuvant therapy significantly improves the lung infection status for at least three...

  1. Critical role of non-muscle myosin light chain kinase in thrombin-induced endothelial cell inflammation and lung PMN infiltration.

    Science.gov (United States)

    Fazal, Fabeha; Bijli, Kaiser M; Murrill, Matthew; Leonard, Antony; Minhajuddin, Mohammad; Anwar, Khandaker N; Finkelstein, Jacob N; Watterson, D Martin; Rahman, Arshad

    2013-01-01

    The pathogenesis of acute lung injury (ALI) involves bidirectional cooperation and close interaction between inflammatory and coagulation pathways. A key molecule linking coagulation and inflammation is the procoagulant thrombin, a serine protease whose concentration is elevated in plasma and lavage fluids of patients with ALI and acute respiratory distress syndrome (ARDS). However, little is known about the mechanism by which thrombin contributes to lung inflammatory response. In this study, we developed a new mouse model that permits investigation of lung inflammation associated with intravascular coagulation. Using this mouse model and in vitro approaches, we addressed the role of non-muscle myosin light chain kinase (nmMLCK) in thrombin-induced endothelial cell (EC) inflammation and lung neutrophil (PMN) infiltration. Our in vitro experiments revealed a key role of nmMLCK in ICAM-1 expression by its ability to control nuclear translocation and transcriptional capacity of RelA/p65 in EC. When subjected to intraperitoneal thrombin challenge, wild type mice showed a marked increase in lung PMN infiltration via expression of ICAM-1. However, these responses were markedly attenuated in mice deficient in nmMLCK. These results provide mechanistic insight into lung inflammatory response associated with intravascular coagulation and identify nmMLCK as a critical target for modulation of lung inflammation.

  2. Proteomic Analysis of Lung Tissue in a Rat Acute Lung Injury Model: Identification of PRDX1 as a Promoter of Inflammation

    Directory of Open Access Journals (Sweden)

    Dongdong Liu

    2014-01-01

    Full Text Available Acute respiratory distress syndrome (ARDS remains a high morbidity and mortality disease entity in critically ill patients, despite decades of numerous investigations into its pathogenesis. To obtain global protein expression changes in acute lung injury (ALI lung tissues, we employed a high-throughput proteomics method to identify key components which may be involved in the pathogenesis of ALI. In the present study, we analyzed lung tissue proteomes of Pseudomonas aeruginosa-induced ALI rats and identified eighteen proteins whose expression levels changed more than twofold as compared to normal controls. In particular, we found that PRDX1 expression in culture medium was elevated by a lipopolysaccharide (LPS challenge in airway epithelial cells in vitro. Furthermore, overexpression of PRDX1 increased the expression of proinflammatory cytokines interleukin-6 (IL-6, interleukin-8 (IL-8, and tumor necrosis factor-α (TNF-α, whereas knockdown of PRDX1 led to downregulated expression of cytokines induced by LPS. In conclusion, our findings provide a global alteration in the proteome of lung tissues in the ALI rat model and indicate that PRDX1 may play a critical role in the pathogenesis of ARDS by promoting inflammation and represent a novel strategy for the development of new therapies against ALI.

  3. Chronic Oxidative Stress, Mitochondrial Dysfunction, Nrf2 Activation and Inflammation in the Hippocampus Accompany Heightened Systemic Inflammation and Oxidative Stress in an Animal Model of Gulf War Illness

    Science.gov (United States)

    Shetty, Geetha A.; Hattiangady, Bharathi; Upadhya, Dinesh; Bates, Adrian; Attaluri, Sahithi; Shuai, Bing; Kodali, Maheedhar; Shetty, Ashok K.

    2017-01-01

    Memory and mood dysfunction are the key symptoms of Gulf war illness (GWI), a lingering multi-symptom ailment afflicting >200,000 veterans who served in the Persian Gulf War-1. Research probing the source of the disease has demonstrated that concomitant exposures to anti-nerve gas agent pyridostigmine bromide (PB), pesticides, and war-related stress are among the chief causes of GWI. Indeed, exposures to GWI-related chemicals (GWIR-Cs) and mild stress in animal models cause memory and mood impairments alongside reduced neurogenesis and chronic low-level inflammation in the hippocampus. In the current study, we examined whether exposure to GWIR-Cs and stress causes chronic changes in the expression of genes related to increased oxidative stress, mitochondrial dysfunction, and inflammation in the hippocampus. We also investigated whether GWI is linked with chronically increased activation of Nrf2 (a master regulator of antioxidant response) in the hippocampus, and inflammation and enhanced oxidative stress at the systemic level. Adult male rats were exposed daily to low-doses of PB and pesticides (DEET and permethrin), in combination with 5 min of restraint stress for 4 weeks. Analysis of the hippocampus performed 6 months after the exposure revealed increased expression of many genes related to oxidative stress response and/or antioxidant activity (Hmox1, Sepp1, and Srxn1), reactive oxygen species metabolism (Fmo2, Sod2, and Ucp2) and oxygen transport (Ift172 and Slc38a1). Furthermore, multiple genes relevant to mitochondrial respiration (Atp6a1, Cox6a1, Cox7a2L, Ndufs7, Ndufv1, Lhpp, Slc25a10, and Ucp1) and neuroinflammation (Nfkb1, Bcl6, Csf2, IL6, Mapk1, Mapk3, Ngf, N-pac, and Prkaca) were up-regulated, alongside 73–88% reduction in the expression of anti-inflammatory genes IL4 and IL10, and nuclear translocation and increased expression of Nrf2 protein. These hippocampal changes were associated with elevated levels of pro-inflammatory cytokines and chemokines

  4. Chronic Oxidative Stress, Mitochondrial Dysfunction, Nrf2 Activation and Inflammation in the Hippocampus Accompany Heightened Systemic Inflammation and Oxidative Stress in an Animal Model of Gulf War Illness.

    Science.gov (United States)

    Shetty, Geetha A; Hattiangady, Bharathi; Upadhya, Dinesh; Bates, Adrian; Attaluri, Sahithi; Shuai, Bing; Kodali, Maheedhar; Shetty, Ashok K

    2017-01-01

    Memory and mood dysfunction are the key symptoms of Gulf war illness (GWI), a lingering multi-symptom ailment afflicting >200,000 veterans who served in the Persian Gulf War-1. Research probing the source of the disease has demonstrated that concomitant exposures to anti-nerve gas agent pyridostigmine bromide (PB), pesticides, and war-related stress are among the chief causes of GWI. Indeed, exposures to GWI-related chemicals (GWIR-Cs) and mild stress in animal models cause memory and mood impairments alongside reduced neurogenesis and chronic low-level inflammation in the hippocampus. In the current study, we examined whether exposure to GWIR-Cs and stress causes chronic changes in the expression of genes related to increased oxidative stress, mitochondrial dysfunction, and inflammation in the hippocampus. We also investigated whether GWI is linked with chronically increased activation of Nrf2 (a master regulator of antioxidant response) in the hippocampus, and inflammation and enhanced oxidative stress at the systemic level. Adult male rats were exposed daily to low-doses of PB and pesticides (DEET and permethrin), in combination with 5 min of restraint stress for 4 weeks. Analysis of the hippocampus performed 6 months after the exposure revealed increased expression of many genes related to oxidative stress response and/or antioxidant activity ( Hmox1, Sepp1 , and Srxn1 ), reactive oxygen species metabolism ( Fmo2, Sod2 , and Ucp2 ) and oxygen transport ( Ift172 and Slc38a1 ). Furthermore, multiple genes relevant to mitochondrial respiration ( Atp6a1, Cox6a1, Cox7a2L, Ndufs7, Ndufv1, Lhpp, Slc25a10 , and Ucp1 ) and neuroinflammation ( Nfkb1, Bcl6, Csf2, IL6, Mapk1, Mapk3, Ngf, N-pac , and Prkaca ) were up-regulated, alongside 73-88% reduction in the expression of anti-inflammatory genes IL4 and IL10 , and nuclear translocation and increased expression of Nrf2 protein. These hippocampal changes were associated with elevated levels of pro-inflammatory cytokines

  5. Role of the Lung Microbiome in the Pathogenesis of Chronic Obstructive Pulmonary Disease.

    Science.gov (United States)

    Wang, Lei; Hao, Ke; Yang, Ting; Wang, Chen

    2017-09-05

    The development of culture-independent techniques for microbiological analysis shows that bronchial tree is not sterile in either healthy or chronic obstructive pulmonary disease (COPD) individuals. With the advance of sequencing technologies, lung microbiome has become a new frontier for pulmonary disease research, and such advance has led to better understanding of the lung microbiome in COPD. This review aimed to summarize the recent advances in lung microbiome, its relationships with COPD, and the possible mechanisms that microbiome contributed to COPD pathogenesis. Literature search was conducted using PubMed to collect all available studies concerning lung microbiome in COPD. The search terms were "microbiome" and "chronic obstructive pulmonary disease", or "microbiome" and "lung/pulmonary". The papers in English about lung microbiome or lung microbiome in COPD were selected, and the type of articles was not limited. The lung is a complex microbial ecosystem; the microbiome in lung is a collection of viable and nonviable microbiota (bacteria, viruses, and fungi) residing in the bronchial tree and parenchymal tissues, which is important for health. The following types of respiratory samples are often used to detect the lung microbiome: sputum, bronchial aspirate, bronchoalveolar lavage, and bronchial mucosa. Disordered bacterial microbiome is participated in pathogenesis of COPD; there are also dynamic changes in microbiota during COPD exacerbations. Lung microbiome may contribute to the pathogenesis of COPD by manipulating inflammatory and/or immune process. Normal lung microbiome could be useful for prophylactic or therapeutic management in COPD, and the changes of lung microbiome could also serve as biomarkers for the evaluation of COPD.

  6. Cartography of Pathway Signal Perturbations Identifies Distinct Molecular Pathomechanisms in Malignant and Chronic Lung Diseases

    Science.gov (United States)

    Arakelyan, Arsen; Nersisyan, Lilit; Petrek, Martin; Löffler-Wirth, Henry; Binder, Hans

    2016-01-01

    Lung diseases are described by a wide variety of developmental mechanisms and clinical manifestations. Accurate classification and diagnosis of lung diseases are the bases for development of effective treatments. While extensive studies are conducted toward characterization of various lung diseases at molecular level, no systematic approach has been developed so far. Here we have applied a methodology for pathway-centered mining of high throughput gene expression data to describe a wide range of lung diseases in the light of shared and specific pathway activity profiles. We have applied an algorithm combining a Pathway Signal Flow (PSF) algorithm for estimation of pathway activity deregulation states in lung diseases and malignancies, and a Self Organizing Maps algorithm for classification and clustering of the pathway activity profiles. The analysis results allowed clearly distinguish between cancer and non-cancer lung diseases. Lung cancers were characterized by pathways implicated in cell proliferation, metabolism, while non-malignant lung diseases were characterized by deregulations in pathways involved in immune/inflammatory response and fibrotic tissue remodeling. In contrast to lung malignancies, chronic lung diseases had relatively heterogeneous pathway deregulation profiles. We identified three groups of interstitial lung diseases and showed that the development of characteristic pathological processes, such as fibrosis, can be initiated by deregulations in different signaling pathways. In conclusion, this paper describes the pathobiology of lung diseases from systems viewpoint using pathway centered high-dimensional data mining approach. Our results contribute largely to current understanding of pathological events in lung cancers and non-malignant lung diseases. Moreover, this paper provides new insight into molecular mechanisms of a number of interstitial lung diseases that have been studied to a lesser extent. PMID:27200087

  7. Obesity-induced DNA released from adipocytes stimulates chronic adipose tissue inflammation and insulin resistance.

    Science.gov (United States)

    Nishimoto, Sachiko; Fukuda, Daiju; Higashikuni, Yasutomi; Tanaka, Kimie; Hirata, Yoichiro; Murata, Chie; Kim-Kaneyama, Joo-Ri; Sato, Fukiko; Bando, Masahiro; Yagi, Shusuke; Soeki, Takeshi; Hayashi, Tetsuya; Imoto, Issei; Sakaue, Hiroshi; Shimabukuro, Michio; Sata, Masataka

    2016-03-01

    Obesity stimulates chronic inflammation in adipose tissue, which is associated with insulin resistance, although the underlying mechanism remains largely unknown. Here we showed that obesity-related adipocyte degeneration causes release of cell-free DNA (cfDNA), which promotes macrophage accumulation in adipose tissue via Toll-like receptor 9 (TLR9), originally known as a sensor of exogenous DNA fragments. Fat-fed obese wild-type mice showed increased release of cfDNA, as determined by the concentrations of single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA) in plasma. cfDNA released from degenerated adipocytes promoted monocyte chemoattractant protein-1 (MCP-1) expression in wild-type macrophages, but not in TLR9-deficient (Tlr9 (-/-) ) macrophages. Fat-fed Tlr9 (-/-) mice demonstrated reduced macrophage accumulation and inflammation in adipose tissue and better insulin sensitivity compared with wild-type mice, whereas bone marrow reconstitution with wild-type bone marrow restored the attenuation of insulin resistance observed in fat-fed Tlr9 (-/-) mice. Administration of a TLR9 inhibitory oligonucleotide to fat-fed wild-type mice reduced the accumulation of macrophages in adipose tissue and improved insulin resistance. Furthermore, in humans, plasma ssDNA level was significantly higher in patients with computed tomography-determined visceral obesity and was associated with homeostasis model assessment of insulin resistance (HOMA-IR), which is the index of insulin resistance. Our study may provide a novel mechanism for the development of sterile inflammation in adipose tissue and a potential therapeutic target for insulin resistance.

  8. Chronic urticaria in patients with autoimmune thyroiditis: Significance of severity of thyroid gland inflammation

    Directory of Open Access Journals (Sweden)

    Mustafa Gulec

    2011-01-01

    Full Text Available Background: There is a clear association between autoimmune thyroiditis (AT and chronic urticaria/angioedema (CUA. However, not all patients with AT demonstrate urticaria. Aims: The aim of the study was to investigate in which patients with AT did CUA become a problem. A sensitive inflammation marker, neopterine (NP was used to confirm whether the severity of inflammation in the thyroid gland was responsible for urticaria or not. Methods: Neopterine levels were assessed in patients with AT with urticaria and without urticaria. Furthermore, levels were compared in relation to pre and post levothyroxine treatment. Twenty-seven patients with urticaria (Group 1 and 28 patients without urticaria (Group 2 were enrolled in the study. A course of levothyroxine treatment was given to all patients, and urine neopterine levels before and after the trial were obtained. Results: All patients completed the trial. Mean age in Group 1 and Group 2 was similar (35.70 ± 10.86 years and 38.36 ± 10.38 years, respectively (P=0.358. Pre-treatment urine neopterine levels were significantly higher in Group 1 (P=0.012. Post-treatment levels decreased in each group, as expected. However, the decrease in the neopterine level was insignificant in the patients of Group 2 (P=0.282. In Group 1, a significant decrease in post-treatment neopterine levels (P=0.015 was associated with the remission of urticaria. Conclusion: In patients with CUA and AT, pre-treatment elevated levels of NP, and its decrease with levothyroxine treatment along with symptomatic relief in urticaria, may be evidence of the relationship between the degree of inflammation in thyroid and presence of urticaria.

  9. Small molecule therapeutics for inflammation-associated chronic musculoskeletal degenerative diseases: Past, present and future.

    Science.gov (United States)

    Chen, Yangwu; Huang, Jiayun; Tang, Chenqi; Chen, Xiao; Yin, Zi; Heng, Boon Chin; Chen, Weishan; Shen, Weiliang

    2017-10-01

    Inflammation-associated chronic musculoskeletal degenerative diseases (ICMDDs) like osteoarthritis and tendinopathy often results in morbidity and disability, with consequent heavy socio-economic burden. Current available therapies such as NSAIDs and glucocorticoid are palliative rather than disease-modifying. Insufficient systematic research data on disease molecular mechanism also makes it difficult to exploit valid therapeutic targets. Small molecules are designed to act on specific signaling pathways and/or mechanisms of cellular physiology and function, and have gradually shown potential for treating ICMDDs. In this review, we would examine and analyze recent developments in small molecule drugs for ICMDDs, suggest possible feasible improvements in treatment modalities, and discuss future research directions. Copyright © 2017. Published by Elsevier Inc.

  10. Effect of Helicobacter pylori infection on chronic periodontitis by the change of microecology and inflammation.

    Science.gov (United States)

    Hu, Zhekai; Zhang, Yu; Li, Zhiyu; Yu, Yuedi; Kang, Wenyan; Han, Yingnan; Geng, Xiwen; Ge, Shaohua; Sun, Yundong

    2016-10-11

    Helicobacter pylori (H. pylori), a pathogen inducing peptic disease, is recently found to be binding to the progress of periodontitis. Most previous studies are case-controlled, and they investigate the risk of H. pylori infection in disease the development of while few studies evaluate the correlation between H. pylori and periodontal pathogens. Therefore, we investigated the correlation between H. pylori infection with periodontal parameters, periodontal pathogens and inflammation. The results indicated that patients with H. pylori showed significantly higher probing depth and attachment loss than those without (p periodontitis-related molecules Wnt5a, interleukin 8 (IL-8), interleukin 6 (IL-6) and interferon gamma (IFN-γ) significantly increased (p periodontal pathogens and aggravate the progress of chronic periodontitis.

  11. Does gamma-aminobutyric acid (GABA influence the development of chronic inflammation in rheumatoid arthritis?

    Directory of Open Access Journals (Sweden)

    Bridges S Louis

    2008-01-01

    Full Text Available Abstract Background Recent studies have demonstrated a role for spinal p38 MAP kinase (MAPK in the development of chronic inflammation and peripheral arthritis and a role for GABA in the inhibition of p38 MAPK mediated effects. Integrating these data suggests that GABA may play a role in downregulating mechanisms that lead to the production of proinflammatory agents such as interleukin-1, interleukin-6, and matrix metalloproteinase 3 – agents implicated in the pathogenesis of rheumatoid arthritis (RA. Genetic studies have also associated RA with members of the p38 MAPK pathway. Hypothesis We propose a hypothesis for an inefficient GABA signaling system that results in unchecked proinflammatory cytokine production via the p38 MAPK pathway. This model also supports the need for increasing research in the integration of immunology and neuroscience.

  12. Is Chronic Inflammation a Possible Cause of Obesity-Related Depression?

    Directory of Open Access Journals (Sweden)

    Magdalena Olszanecka-Glinianowicz

    2009-01-01

    Full Text Available Adult obesity has been associated with depression, especially in women. Whether depression leads to obesity or obesity causes depression is unclear. Chronic inflammation is observed in obesity and depression. In 63 obese women without additional diseases depression level was assessed with the Beck's questionnaire. After evaluation of depression level study group was divided into groups according to the mood status (A—without depression, B—mild depression, and C—severe depression, and serum concentration of TNF-α, sTNFs, leptin, and IL-6 were measured by ELISA. No differences in age, body mass, BMI, and body composition were observed in study groups. We did not observe differences of serum concentrations of TNF-α, sTNFRs, leptin, and IL-6 between subgroup A and subgroups B and C. It seems that circulating adipokines did not exert influence on depression levels in obese women.

  13. Mediators of Inflammation and Angiogenesis in Chronic Spontaneous Urticaria: Are They Potential Biomarkers of the Disease?

    Directory of Open Access Journals (Sweden)

    Ilaria Puxeddu

    2017-01-01

    Full Text Available In chronic spontaneous urticaria (CSU, different pathophysiological mechanisms, potentially responsible for the development of the disease, have been recently described. It is likely that the activation of skin mast cells with consequent release of histamine and other proinflammatory mediators is responsible for vasodilation in the lesional skin of CSU. However, the underlying causes of mast cell activation in the disease are largely unknown and remain to be identified. Thus, in this review, we discuss new insights in the pathogenesis of CSU, focusing on inflammation and angiogenesis. The understanding of these mechanisms will enable the identification of biomarkers useful for the diagnosis, follow-up, and management of CSU and will allow the development of novel, more specific, and patient-tailored therapies.

  14. Elevated [11C]-D-Deprenyl Uptake in Chronic Whiplash Associated Disorder Suggests Persistent Musculoskeletal Inflammation

    Science.gov (United States)

    Linnman, Clas; Appel, Lieuwe; Fredrikson, Mats; Gordh, Torsten; Söderlund, Anne; Långström, Bengt; Engler, Henry

    2011-01-01

    There are few diagnostic tools for chronic musculoskeletal pain as structural imaging methods seldom reveal pathological alterations. This is especially true for Whiplash Associated Disorder, for which physical signs of persistent injuries to the neck have yet to be established. Here, we sought to visualize inflammatory processes in the neck region by means Positron Emission Tomography using the tracer 11C-D-deprenyl, a potential marker for inflammation. Twenty-two patients with enduring pain after a rear impact car accident (Whiplash Associated Disorder grade II) and 14 healthy controls were investigated. Patients displayed significantly elevated tracer uptake in the neck, particularly in regions around the spineous process of the second cervical vertebra. This suggests that whiplash patients have signs of local persistent peripheral tissue inflammation, which may potentially serve as a diagnostic biomarker. The present investigation demonstrates that painful processes in the periphery can be objectively visualized and quantified with PET and that 11C-D-deprenyl is a promising tracer for these purposes. PMID:21541010

  15. A Potential Role for Acrolein in Neutrophil-Mediated Chronic Inflammation.

    Science.gov (United States)

    Noerager, Brett D; Xu, Xin; Davis, Virginia A; Jones, Caleb W; Okafor, Svetlana; Whitehead, Alicia; Blalock, J Edwin; Jackson, Patricia L

    2015-12-01

    Neutrophils (PMNs) are key mediators of inflammatory processes throughout the body. In this study, we investigated the role of acrolein, a highly reactive aldehyde that is ubiquitously present in the environment and produced endogenously at sites of inflammation, in mediating PMN-mediated degradation of collagen facilitating proline-glycine-proline (PGP) production. We treated peripheral blood neutrophils with acrolein and analyzed cell supernatants and lysates for matrix metalloproteinase-9 (MMP-9) and prolyl endopeptidase (PE), assessed their ability to break down collagen and release PGP, and assayed for the presence of leukotriene A4 hydrolase (LTA4H) and its ability to degrade PGP. Acrolein treatment induced elevated production and functionality of collagen-degrading enzymes and generation of PGP fragments. Meanwhile, LTA4H levels and triaminopeptidase activity declined with increasing concentrations of acrolein thereby sparing PGP from enzymatic destruction. These findings suggest that acrolein exacerbates the acute inflammatory response mediated by neutrophils and sets the stage for chronic pulmonary and systemic inflammation.

  16. Chronic Inflammation and Neutrophil Activation as Possible Causes of Joint Diseases in Ballet Dancers

    Directory of Open Access Journals (Sweden)

    Leandro da Silva Borges

    2014-01-01

    Full Text Available Herein, we investigated the effects of a ballet class on the kinetic profiles of creatine kinase (CK and lactate dehydrogenase (LDH activities, cytokines, complement component 3 (C3, and the concentrations of immunoglobulin (Ig, IgA and IgM, in ballerinas. We also verified neutrophil death and ROS release. Blood samples were taken from 13 dancers before, immediately after, and 18 hours after a ballet class. The ballet class increased the plasma activities of CK-total (2.0-fold immediately after class, while the activities of CK-cardiac muscle (1.0-fold and LDH (3.0-fold were observed to increase 18 hours after the class. Levels of the TNF-α, IL-1β, IgG, and IgA were not affected under the study conditions. The exercise was found to induce neutrophil apoptosis (6.0-fold 18 hours after the ballet class. Additionally, immediately after the ballet class, the neutrophils from the ballerinas were found to be less responsive to PMA stimulus. Conclusion. Ballet class was found to result in inflammation in dancers. The inflammation caused by the ballet class remained for 18 hours after the exercise. These findings are important in preventing the development of chronic lesions that are commonly observed in dancers, such as those with arthritis and synovitis.

  17. Chronic inflammation and neutrophil activation as possible causes of joint diseases in ballet dancers.

    Science.gov (United States)

    Borges, Leandro da Silva; Bortolon, José Ricardo; Santos, Vinicius Coneglian; de Moura, Nivaldo Ribeiro; Dermargos, Alexandre; Cury-Boaventura, Maria Fernanda; Gorjão, Renata; Pithon-Curi, Tania Cristina; Hatanaka, Elaine

    2014-01-01

    Herein, we investigated the effects of a ballet class on the kinetic profiles of creatine kinase (CK) and lactate dehydrogenase (LDH) activities, cytokines, complement component 3 (C3), and the concentrations of immunoglobulin (Ig), IgA and IgM, in ballerinas. We also verified neutrophil death and ROS release. Blood samples were taken from 13 dancers before, immediately after, and 18 hours after a ballet class. The ballet class increased the plasma activities of CK-total (2.0-fold) immediately after class, while the activities of CK-cardiac muscle (1.0-fold) and LDH (3.0-fold) were observed to increase 18 hours after the class. Levels of the TNF-α , IL-1β, IgG, and IgA were not affected under the study conditions. The exercise was found to induce neutrophil apoptosis (6.0-fold) 18 hours after the ballet class. Additionally, immediately after the ballet class, the neutrophils from the ballerinas were found to be less responsive to PMA stimulus. Ballet class was found to result in inflammation in dancers. The inflammation caused by the ballet class remained for 18 hours after the exercise. These findings are important in preventing the development of chronic lesions that are commonly observed in dancers, such as those with arthritis and synovitis.

  18. Inhibition of G0/G1 Switch 2 Ameliorates Renal Inflammation in Chronic Kidney Disease

    Directory of Open Access Journals (Sweden)

    Naoya Matsunaga

    2016-11-01

    Full Text Available Chronic kidney disease (CKD is a global health problem, and novel therapies to treat CKD are urgently needed. Here, we show that inhibition of G0/G1 switch 2 (G0s2 ameliorates renal inflammation in a mouse model of CKD. Renal expression of chemokine (C-C motif ligand 2 (Ccl2 was increased in response to p65 activation in the kidneys of wild-type 5/6 nephrectomy (5/6Nx mice. Moreover, 5/6Nx Clk/Clk mice, which carry homozygous mutations in the gene encoding circadian locomotor output cycles kaput (CLOCK, did not exhibit aggravation of apoptosis or induction of F4/80-positive cells. The renal expression of G0s2 in wild-type 5/6Nx mice was important for the transactivation of Ccl2 by p65. These pathologies were ameliorated by G0s2 knockdown. Furthermore, a novel small-molecule inhibitor of G0s2 expression was identified by high-throughput chemical screening, and the inhibitor suppressed renal inflammation in 5/6Nx mice. These findings indicated that G0s2 inhibitors may have applications in the treatment of CKD.

  19. Elevated [11C]-D-deprenyl uptake in chronic Whiplash Associated Disorder suggests persistent musculoskeletal inflammation.

    Directory of Open Access Journals (Sweden)

    Clas Linnman

    Full Text Available There are few diagnostic tools for chronic musculoskeletal pain as structural imaging methods seldom reveal pathological alterations. This is especially true for Whiplash Associated Disorder, for which physical signs of persistent injuries to the neck have yet to be established. Here, we sought to visualize inflammatory processes in the neck region by means Positron Emission Tomography using the tracer (11C-D-deprenyl, a potential marker for inflammation. Twenty-two patients with enduring pain after a rear impact car accident (Whiplash Associated Disorder grade II and 14 healthy controls were investigated. Patients displayed significantly elevated tracer uptake in the neck, particularly in regions around the spineous process of the second cervical vertebra. This suggests that whiplash patients have signs of local persistent peripheral tissue inflammation, which may potentially serve as a diagnostic biomarker. The present investigation demonstrates that painful processes in the periphery can be objectively visualized and quantified with PET and that (11C-D-deprenyl is a promising tracer for these purposes.

  20. Does Regional Lung Strain Correlate With Regional Inflammation in Acute Respiratory Distress Syndrome During Nonprotective Ventilation? An Experimental Porcine Study.

    Science.gov (United States)

    Retamal, Jaime; Hurtado, Daniel; Villarroel, Nicolás; Bruhn, Alejandro; Bugedo, Guillermo; Amato, Marcelo Britto Passos; Costa, Eduardo Leite Vieira; Hedenstierna, Göran; Larsson, Anders; Borges, João Batista

    2018-06-01

    It is known that ventilator-induced lung injury causes increased pulmonary inflammation. It has been suggested that one of the underlying mechanisms may be strain. The aim of this study was to investigate whether lung regional strain correlates with regional inflammation in a porcine model of acute respiratory distress syndrome. Retrospective analysis of CT images and positron emission tomography images using [F]fluoro-2-deoxy-D-glucose. University animal research laboratory. Seven piglets subjected to experimental acute respiratory distress syndrome and five ventilated controls. Acute respiratory distress syndrome was induced by repeated lung lavages, followed by 210 minutes of injurious mechanical ventilation using low positive end-expiratory pressures (mean, 4 cm H2O) and high inspiratory pressures (mean plateau pressure, 45 cm H2O). All animals were subsequently studied with CT scans acquired at end-expiration and end-inspiration, to obtain maps of volumetric strain (inspiratory volume - expiratory volume)/expiratory volume, and dynamic positron emission tomography imaging. Strain maps and positron emission tomography images were divided into 10 isogravitational horizontal regions-of-interest, from which spatial correlation was calculated for each animal. The acute respiratory distress syndrome model resulted in a decrease in respiratory system compliance (20.3 ± 3.4 to 14.0 ± 4.9 mL/cm H2O; p < 0.05) and oxygenation (PaO2/FIO2, 489 ± 80 to 92 ± 59; p < 0.05), whereas the control animals did not exhibit changes. In the acute respiratory distress syndrome group, strain maps showed a heterogeneous distribution with a greater concentration in the intermediate gravitational regions, which was similar to the distribution of [F]fluoro-2-deoxy-D-glucose uptake observed in the positron emission tomography images, resulting in a positive spatial correlation between both variables (median R = 0.71 [0.02-0.84]; p < 0.05 in five of seven animals

  1. Vitamin D supplementation of initially vitamin D-deficient mice diminishes lung inflammation with limited effects on pulmonary epithelial integrity.

    Science.gov (United States)

    Gorman, Shelley; Buckley, Alysia G; Ling, Kak-Ming; Berry, Luke J; Fear, Vanessa S; Stick, Stephen M; Larcombe, Alexander N; Kicic, Anthony; Hart, Prue H

    2017-08-01

    In disease settings, vitamin D may be important for maintaining optimal lung epithelial integrity and suppressing inflammation, but less is known of its effects prior to disease onset. Female BALB/c dams were fed a vitamin D 3 -supplemented (2280 IU/kg, VitD + ) or nonsupplemented (0 IU/kg, VitD - ) diet from 3 weeks of age, and mated at 8 weeks of age. Male offspring were fed the same diet as their mother. Some offspring initially fed the VitD - diet were switched to a VitD + diet from 8 weeks of age (VitD -/+ ). At 12 weeks of age, signs of low-level inflammation were observed in the bronchoalveolar lavage fluid (BALF) of VitD - mice (more macrophages and neutrophils), which were suppressed by subsequent supplementation with vitamin D 3 There was no difference in the level of expression of the tight junction proteins occludin or claudin-1 in lung epithelial cells of VitD + mice compared to VitD - mice; however, claudin-1 levels were reduced when initially vitamin D-deficient mice were fed the vitamin D 3 -containing diet (VitD -/+ ). Reduced total IgM levels were detected in BALF and serum of VitD -/+ mice compared to VitD + mice. Lung mRNA levels of the vitamin D receptor (VDR) were greatest in VitD -/+ mice. Total IgG levels in BALF were greater in mice fed the vitamin D 3 -containing diet, which may be explained by increased activation of B cells in airway-draining lymph nodes. These findings suggest that supplementation of initially vitamin D-deficient mice with vitamin D 3 suppresses signs of lung inflammation but has limited effects on the epithelial integrity of the lungs. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  2. Circadian rhythm disruption impairs tissue homeostasis and exacerbates chronic inflammation in the intestine.

    Science.gov (United States)

    Pagel, René; Bär, Florian; Schröder, Torsten; Sünderhauf, Annika; Künstner, Axel; Ibrahim, Saleh M; Autenrieth, Stella E; Kalies, Kathrin; König, Peter; Tsang, Anthony H; Bettenworth, Dominik; Divanovic, Senad; Lehnert, Hendrik; Fellermann, Klaus; Oster, Henrik; Derer, Stefanie; Sina, Christian

    2017-11-01

    Endogenous circadian clocks regulate 24-h rhythms of physiology and behavior. Circadian rhythm disruption (CRD) is suggested as a risk factor for inflammatory bowel disease. However, the underlying molecular mechanisms remain unknown. Intestinal biopsies from Per1/2 mutant and wild-type (WT) mice were investigated by electron microscopy, immunohistochemistry, and bromodeoxyuridine pulse-chase experiments. TNF-α was injected intraperitoneally, with or without necrostatin-1, into Per1/2 mice or rhythmic and externally desynchronized WT mice to study intestinal epithelial cell death. Experimental chronic colitis was induced by oral administration of dextran sodium sulfate. In vitro , caspase activity was assayed in Per1/2-specific small interfering RNA-transfected cells. Wee1 was overexpressed to study antiapoptosis and the cell cycle. Genetic ablation of circadian clock function or environmental CRD in mice increased susceptibility to severe intestinal inflammation and epithelial dysregulation, accompanied by excessive necroptotic cell death and a reduced number of secretory epithelial cells. Receptor-interacting serine/threonine-protein kinase (RIP)-3-mediated intestinal necroptosis was linked to increased mitotic cell cycle arrest via Per1/2-controlled Wee1, resulting in increased antiapoptosis via cellular inhibitor of apoptosis-2. Together, our data suggest that circadian rhythm stability is pivotal for the maintenance of mucosal barrier function. CRD increases intestinal necroptosis, thus rendering the gut epithelium more susceptible to inflammatory processes.-Pagel, R., Bär, F., Schröder, T., Sünderhauf, A., Künstner, A., Ibrahim, S. M., Autenrieth, S. E., Kalies, K., König, P., Tsang, A. H., Bettenworth, D., Divanovic, S., Lehnert, H., Fellermann, K., Oster, H., Derer, S., Sina, C. Circadian rhythm disruption impairs tissue homeostasis and exacerbates chronic inflammation in the intestine. © FASEB.

  3. Long-term activation of TLR3 by Poly(I:C induces inflammation and impairs lung function in mice

    Directory of Open Access Journals (Sweden)

    Alexopoulou Lena

    2009-06-01

    Full Text Available Abstract Background The immune mechanisms associated with infection-induced disease exacerbations in asthma and COPD are not fully understood. Toll-like receptor (TLR 3 has an important role in recognition of double-stranded viral RNA, which leads to the production of various inflammatory mediators. Thus, an understanding of TLR3 activation should provide insight into the mechanisms underlying virus-induced exacerbations of pulmonary diseases. Methods TLR3 knock-out (KO mice and C57B6 (WT mice were intranasally administered repeated doses of the synthetic double stranded RNA analog poly(I:C. Results There was a significant increase in total cells, especially neutrophils, in BALF samples from poly(I:C-treated mice. In addition, IL-6, CXCL10, JE, KC, mGCSF, CCL3, CCL5, and TNFα were up regulated. Histological analyses of the lungs revealed a cellular infiltrate in the interstitium and epithelial cell hypertrophy in small bronchioles. Associated with the pro-inflammatory effects of poly(I:C, the mice exhibited significant impairment of lung function both at baseline and in response to methacholine challenge as measured by whole body plethysmography and an invasive measure of airway resistance. Importantly, TLR3 KO mice were protected from poly(I:C-induced changes in lung function at baseline, which correlated with milder inflammation in the lung, and significantly reduced epithelial cell hypertrophy. Conclusion These findings demonstrate that TLR3 activation by poly(I:C modulates the local inflammatory response in the lung and suggest a critical role of TLR3 activation in driving lung function impairment. Thus, TLR3 activation may be one mechanism through which viral infections contribute toward exacerbation of respiratory disease.

  4. Pretreatment advanced lung cancer inflammation index (ALI) for predicting early progression in nivolumab-treated patients with advanced non-small cell lung cancer.

    Science.gov (United States)

    Shiroyama, Takayuki; Suzuki, Hidekazu; Tamiya, Motohiro; Tamiya, Akihiro; Tanaka, Ayako; Okamoto, Norio; Nakahama, Kenji; Taniguchi, Yoshihiko; Isa, Shun-Ichi; Inoue, Takako; Imamura, Fumio; Atagi, Shinji; Hirashima, Tomonori

    2018-01-01

    Programmed death-ligand 1 (PD-L1) expression status is inadequate for indicating nivolumab in patients with non-small cell lung cancer (NSCLC). Because the baseline advanced lung cancer inflammation index (ALI) is reportedly associated with patient outcomes, we investigated whether the pretreatment ALI is prognostic in NSCLC patients treated with nivolumab. We retrospectively reviewed the medical records of all patients treated with nivolumab for advanced NSCLC between December 2015 and May 2016 at three Japanese institutes. Multivariate logistic regression and Cox proportional hazards models were used to assess the impact of the pretreatment ALI (and other inflammation-related parameters) on progression-free survival (PFS) and early progression (i.e., within 8 weeks after starting nivolumab). A total of 201 patients were analyzed; their median age was 68 years (range, 27-87 years), 67% were men, and 24% had an Eastern Cooperative Oncology Group (ECOG) performance status of 2 or higher. An ECOG performance status ≥2, serum albumin ALI ALI ALI was found to be a significant independent predictor of early progression in patients with advanced NSCLC receiving nivolumab, and may help identify patients likely to benefit from continued nivolumab treatment in routine clinical practice. © 2017 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  5. Comparative experimental evaluation of the efficacy of Prostamol Uno and Samprost on rat model of chronic aseptic prostate inflammation.

    Science.gov (United States)

    Pahomova, A V; Borovskaja, T G; Fomina, T I; Ermolaeva, L A; Vychuzhanina, A V; Rumpel, O A; Granstrem, O K; Baranova, O V

    2011-11-01

    Comparative experimental evaluation of the efficiency of prostatotropic drugs Prostamol Uno and Samprost on the model of the chronic aseptic prostate inflammation in rats was performed. It was established that peptide drug Samprost decelerates sclerotic processes in the prostate gland to a greater extent than herbal preparation Prostamol Uno. Both products equally stimulate secretory activity of the gland. Prostamol Uno, unlike Samprost, prevents the development of reduced sexual motivation, one of the complications of chronic prostatitis.

  6. Suppression of skin inflammation in keratinocytes and acute/chronic disease models by caffeic acid phenethyl ester.

    Science.gov (United States)

    Lim, Kyung-Min; Bae, SeungJin; Koo, Jung Eun; Kim, Eun-Sun; Bae, Ok-Nam; Lee, Joo Young

    2015-04-01

    Skin inflammation plays a central role in the pathophysiology and symptoms of diverse chronic skin diseases including atopic dermatitis (AD). In this study, we examined if caffeic acid phenethyl ester (CAPE), a skin-permeable bioactive compound from propolis, was protective against skin inflammation using in vitro cell system and in vivo animal disease models. CAPE suppressed TNF-α-induced NF-κB activation and expression of inflammatory cytokines in human keratinocytes (HaCaT). The potency and efficacy of CAPE were superior to those of a non-phenethyl derivative, caffeic acid. Consistently, topical treatment of CAPE (0.5 %) attenuated 12-O-tetradecanoylphorbol-13-acetate(TPA)-induced skin inflammation on mouse ear as CAPE reduced ear swelling and histologic inflammation scores. CAPE suppressed increased expression of pro-inflammatory molecules such as TNF-α, cyclooxygenase-2 and inducible NO synthase in TPA-stimulated skin. TPA-induced phosphorylation of IκB and ERK was blocked by CAPE suggesting that protective effects of CAPE on skin inflammation is attributed to inhibition of NF-κB activation. Most importantly, in an oxazolone-induced chronic dermatitis model, topical application of CAPE (0.5 and 1 %) was effective in alleviating AD-like symptoms such as increases of trans-epidermal water loss, skin thickening and serum IgE as well as histologic inflammation assessment. Collectively, our results propose CAPE as a promising candidate for a novel topical drug for skin inflammatory diseases.

  7. Asthma–COPD Overlap. Clinical Relevance of Genomic Signatures of Type 2 Inflammation in Chronic Obstructive Pulmonary Disease

    Science.gov (United States)

    Steiling, Katrina; van den Berge, Maarten; Hijazi, Kahkeshan; Hiemstra, Pieter S.; Postma, Dirkje S.; Lenburg, Marc E.; Spira, Avrum; Woodruff, Prescott G.

    2015-01-01

    Rationale: Chronic obstructive pulmonary disease (COPD) is a heterogeneous disease and likely includes a subgroup that is biologically comparable to asthma. Studying asthma-associated gene expression changes in COPD could add insight into COPD pathogenesis and reveal biomarkers that predict a favorable response to corticosteroids. Objectives: To determine whether asthma-associated gene signatures are increased in COPD and associated with asthma-related features. Methods: We compared disease-associated airway epithelial gene expression alterations in an asthma cohort (n = 105) and two COPD cohorts (n = 237, 171). The T helper type 2 (Th2) signature (T2S) score, a gene expression metric induced in Th2-high asthma, was evaluated in these COPD cohorts. The T2S score was correlated with asthma-related features and response to corticosteroids in COPD in a randomized, placebo-controlled trial, the Groningen and Leiden Universities study of Corticosteroids in Obstructive Lung Disease (GLUCOLD; n = 89). Measurements and Main Results: The 200 genes most differentially expressed in asthma versus healthy control subjects were enriched among genes associated with more severe airflow obstruction in these COPD cohorts (P COPD cohorts. Higher T2S scores correlated with increased airway wall eosinophil counts (P = 0.003), blood eosinophil percentage (P = 0.03), bronchodilator reversibility (P = 0.01), and improvement in hyperinflation after corticosteroid treatment (P = 0.019) in GLUCOLD. Conclusions: These data identify airway gene expression alterations that can co-occur in asthma and COPD. The association of the T2S score with increased severity and “asthma-like” features (including a favorable corticosteroid response) in COPD suggests that Th2 inflammation is important in a COPD subset that cannot be identified by clinical history of asthma. PMID:25611785

  8. Nebulized anticoagulants limit pulmonary coagulopathy, but not inflammation, in a model of experimental lung injury

    NARCIS (Netherlands)

    Hofstra, Jorrit J; Vlaar, Alexander P; Cornet, Alexander D; Dixon, Barry; Roelofs, Joris J; Choi, Goda; van der Poll, Tom; Levi, Marcel; Schultz, Marcus J

    BACKGROUND: Pulmonary coagulopathy may contribute to an adverse outcome in lung injury. We assessed the effects of local anticoagulant therapy on bronchoalveolar and systemic haemostasis in a rat model of endotoxemia-induced lung injury. METHODS: Male Sprague-Dawley rats were intravenously

  9. Chronic obstructive lung disease and posttraumatic stress disorder: current perspectives.

    Science.gov (United States)

    Abrams, Thad E; Blevins, Amy; Weg, Mark W Vander

    2015-01-01

    Several studies have reported on the co-occurrence of chronic obstructive pulmonary disease (COPD) and psychiatric conditions, with the most robust evidence base demonstrating an impact of comorbid anxiety and depression on COPD-related outcomes. In recent years, research has sought to determine if there is a co-occurrence between COPD and posttraumatic stress disorder (PTSD) as well as for associations between PTSD and COPD-related outcomes. To date, there have been no published reviews summarizing this emerging literature. The primary objective of this review was to determine if there is adequate evidence to support a co-occurrence between PTSD and COPD. Secondary objectives were to: 1) determine if there are important clinical considerations regarding the impact of PTSD on COPD management, and 2) identify targeted areas for further research. A structured review was performed using a systematic search strategy limited to studies in English, addressing adults, and to articles that examined: 1) the co-occurrence of COPD and PTSD and 2) the impact of PTSD on COPD-related outcomes. To be included, articles must have addressed some type of nonreversible obstructive lung pathology. A total of 598 articles were identified for initial review. Upon applying the inclusion and exclusion criteria, n=19 articles or abstracts addressed our stated objectives. Overall, there is inconclusive evidence to support the co-occurrence between PTSD and COPD. Studies finding a significant co-occurrence generally had inferior methods of identifying COPD; in contrast, studies that utilized more robust COPD measures (such as a physician exam) generally failed to find a relationship. Among studies that examined the impact of PTSD on COPD-related outcomes, there was more consistent evidence that PTSD affects the perception of respiratory symptom burden and management. In addition, methods for measuring an important confounder (smoking) were generally lacking. There is inconclusive evidence to

  10. ‘WNT-er is coming’: WNT signalling in chronic lung diseases

    Science.gov (United States)

    Baarsma, H A

    2017-01-01

    Chronic lung diseases represent a major public health problem with only limited therapeutic options. An important unmet need is to identify compounds and drugs that target key molecular pathways involved in the pathogenesis of chronic lung diseases. Over the last decade, there has been extensive interest in investigating Wingless/integrase-1 (WNT) signalling pathways; and WNT signal alterations have been linked to pulmonary disease pathogenesis and progression. Here, we comprehensively review the cumulative evidence for WNT pathway alterations in chronic lung pathologies, including idiopathic pulmonary fibrosis, pulmonary arterial hypertension, asthma and COPD. While many studies have focused on the canonical WNT/β-catenin signalling pathway, recent reports highlight that non-canonical WNT signalling may also significantly contribute to chronic lung pathologies; these studies will be particularly featured in this review. We further discuss recent advances uncovering the role of WNT signalling early in life, the potential of pharmaceutically modulating WNT signalling pathways and highlight (pre)clinical studies describing promising new therapies for chronic lung diseases. PMID:28416592

  11. Cholera toxin B subunit labeling in lamina II of spinal cord dorsal horn following chronic inflammation in rats.

    Science.gov (United States)

    Ma, Qing Ping; Tian, Li

    2002-07-26

    We have investigated the effect of inflammation on the labeling pattern of cholera toxin B subunit (CTB)-conjugated horseradish peroxidase, an A-fiber marker, by an intra-sciatic nerve injection of the tracer. Following chronic inflammation in one hind paw in rats, there was substantial CTB labeling in lamina II of the spinal dorsal horn, which is normally absent. However, there was no change in the labeling pattern of wheat germ agglutinin or fluoride resistant acid phosphatase/thiamine monophosphatase, two C-fiber markers. The CTB labeling in lamina II after peripheral nerve injury has been interpreted as central sprouting of A-fibers or uptake of the tracer by injured C-fibers. Our results suggest that chronic inflammation and nerve injury may share some common mechanisms in generating allodynia and hyperalgesia.

  12. Interleukin-33 from Monocytes Recruited to the Lung Contributes to House Dust Mite-Induced Airway Inflammation in a Mouse Model.

    Directory of Open Access Journals (Sweden)

    Hiroki Tashiro

    Full Text Available Interleukin-33 (IL-33 activates group 2 innate lymphoid cells (ILC2, resulting in T-helper-2 inflammation in bronchial asthma. Airway epithelial cells were reported as sources of IL-33 during apoptosis and necrosis. However, IL-33 is known to be from sources other than airway epithelial cells such as leukocytes, and the mechanisms of IL-33 production and release are not fully understood. The aim of this study was to clarify the role of IL-33 production by monocytes in airway inflammation.BALB/c mice were sensitized and challenged with a house dust mite (HDM preparation. Airway inflammation was assessed by quantifying inflammatory cells in bronchoalveolar lavage (BAL fluid, and IL-25, IL-33, and thymic stromal lymphopoietin (TSLP levels in lung. Immunohistochemistry for IL-33 in lung sections was also performed. Ly6c, CD11b, and CD11c expression was examined by flow cytometry. Clodronate liposomes were used in the HDM-airway inflammation model to deplete circulating monocytes.The IL-33, but not IL-25 or TSLP, level in lung homogenates was markedly increased in HDM mice compared to control mice. IL-33-positive cells in the lungs were identified using immunohistochemistry and were increased in areas surrounding bronchi and vasculature. Furthermore, IL-33 levels were increased in mononuclear cells derived from lungs of HDM mice compared to controls. The expression of Ly6c in mononuclear cells was significantly higher in HDM mice than in controls. Treatment with clodronate liposomes led to inhibition of not only inflammatory cells in BAL fluid, airway hyper reactivity and Th2 cytokines in lung, but also IL-33 in lung.IL-33 from monocytes recruited to the lung may contribute to the pathogenesis of HDM-induced airway inflammation.

  13. Green tea polyphenols mitigate bone loss of female rats in a chronic inflammation-induced bone loss model

    Science.gov (United States)

    The purpose of this study was to explore bioavailability, efficacy, and molecular mechanisms of green tea polyphenols (GTP) related to preventing bone loss in rats with chronic inflammation. A 2 (placebo vs. lipopolysaccharide, LPS) × 2 (no GTP vs. 0.5% GTP in drinking water) factorial design using ...

  14. Monocyte and plasma expression of TAM ligand and receptor in renal failure: Links to unregulated immunity and chronic inflammation.

    Science.gov (United States)

    Lee, Iris J; Hilliard, Brendan A; Ulas, Mehriban; Yu, Daohai; Vangala, Chandan; Rao, Swati; Lee, Jean; Gadegbeku, Crystal A; Cohen, Philip L

    2015-06-01

    Chronic inflammation is increased in patients with chronic kidney disease (CKD) and contributes to cardiovascular morbidity and mortality. Specific immune mechanisms and pathways that drive and maintain chronic inflammation in CKD are not well described. The TAM ligands (Gas6 and protein S) and receptors (Axl and Mer) have been recently recognized as playing a prominent role in immune regulation. The receptors exist in both soluble and cell-bound forms; the soluble receptors (sAxl and sMer) are believed to compete with the bound receptors and thus inhibit their function. In this study, we determined the expression of cell-bound and soluble TAM proteins in patients with CKD. CKD patients had significantly lower expression of Mer in monocytes, yet increased expression of soluble TAM receptors sAxl and sMer in plasma compared to controls. The metalloproteinase ADAM 17, responsible for cleavage of Mer to its soluble form, was increased in patient monocytes. Elevated levels of soluble TAM receptors were more evident in patients with progressive renal failure. These observations suggest that functional deficiency of TAM receptor-mediated regulation of inflammation may contribute to chronic inflammation in patients with CKD. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Inflammation and nutritional status assessment by malnutrition inflammation score and its outcome in pre-dialysis chronic kidney disease patients.

    Science.gov (United States)

    Jagadeswaran, D; Indhumathi, E; Hemamalini, A J; Sivakumar, V; Soundararajan, P; Jayakumar, M

    2018-01-09

    Malnutrition-inflammation complex syndrome (MICS), hyperhomocysteinemia, calcium and phosphate levels derangement have been predicted as important contributing factors for the progression of cardiovascular burden. Among patients with earlier stage of CKD, hypoalbuminaemia and inflammation deliberated as non-traditional cardiovascular risk factors, which add more burden to circulatory disease, mortality and rapid advancement to CKD stage 5. The aim of the study is to evaluate inflammation and nutritional status of CKD patients not on dialysis using Malnutrition inflammation score (MIS) and to verify the association with mortality in the follow-up period. In this prospective cohort study 129 (66 males, 63 females) pre-dialysis CKD patients enrolled between June 2013 to August 2014 and censored until March 2017. Malnutrition and Inflammation assessed using Malnutrition inflammation score. Blood urea nitrogen, serum creatinine, albumin, Interleukin - 6, highly sensitive C reactive protein (hsCRP), total cholesterol and anthropometric data were analyzed. The Malnutrition inflammation score in pre-dialysis CKD patients ranged from 0 to 18 with the median score of two. During 36 or more months of follow-up, there were 30 (23.2%) deaths, 35 (27%) patients initiated on hemodialysis, one (0.7%) patient was initiated on peritoneal dialysis, two (1.4%) patients underwent renal transplantation and two (1.4%) patients were lost for follow-up. In this study, 33% had varying degree of malnutrition and inflammation. Patients who had MIS ≥7 had significant increase in IL-6 (p = 0.003) and HsCRP levels (p < 0.001) when compared with other tertiles of MIS. ROC curve analysis of MIS showed 56.5% sensitivity and 81% specificity in predicting death rate (AUC 0.709; 95% CI 0.604-0.815, p < 0.001). Kaplan-Meier survival analysis showed MIS ≥7 had a strong association (log rank test, p < 0.001) with mortality during 36 and more months of follow-up time. In unadjusted analyses

  16. Signatures of reproductive events on blood counts and biomarkers of inflammation: Implications for chronic disease risk.

    Directory of Open Access Journals (Sweden)

    Daniel W Cramer

    Full Text Available Whether inflammation mediates how reproductive events affect chronic-disease risk is unclear. We studied inflammatory biomarkers in the context of reproductive events using National Health and Nutrition Examination Survey (NHANES data. From 15,986 eligible women from the 1999-2011 data cycles, we accessed information on reproductive events, blood counts, C-reactive protein (CRP, and total homocysteine (tHCY. We calculated blood-count ratios including: platelet-lymphocyte (PLR, lymphocyte-monocyte (LMR, platelet-monocyte (PMR, and neutrophil-monocyte (NMR. Using sampling weights per NHANES guidelines, means for counts, ratios, or biomarkers by reproductive events were compared using linear regression. We performed trend tests and calculated p-values with partial sum of squares F-tests. Higher PLR and lower LMR were associated with nulliparity. In postmenopausal women, lower PMR was associated with early age at first birth and higher NMR with later age at and shorter interval since last birth. Lower PNR and higher neutrophils and tHCY were associated with early natural menopause. In all women, the neutrophil count correlated positively with CRP; but, in premenopausal women, correlated inversely with tHCY. Reproductive events leave residual signatures on blood counts and inflammatory biomarkers that could underlie their links to chronic disease risk.

  17. Chikungunya Arthritis: Implications of Acute and Chronic Inflammation Mechanisms on Disease Management.

    Science.gov (United States)

    Zaid, Ali; Gérardin, Patrick; Taylor, Adam; Mostafavi, Helen; Malvy, Denis; Mahalingam, Suresh

    2018-04-01

    In the past decade, arboviruses-arthropod-borne viruses-have been the focus of public health institutions worldwide following a spate of devastating outbreaks. Chikungunya virus, an arbovirus that belongs to the alphavirus genus, is a reemerging arthritogenic virus that has caused explosive outbreaks since 2006, notably on Réunion Island, and more recently in the Caribbean, South America, India, and Southeast Asia. The severity of arthritic disease caused by chikungunya virus has prompted public health authorities in affected countries to develop specific guidelines to tackle this pathogen. Chikungunya virus disease manifests first as an acute stage of severe joint inflammation and febrile illness, which later progresses to a chronic stage, during which patients may experience debilitating and persisting articular pain for extended periods. This review aims to provide a broad perspective on current knowledge of chikungunya virus pathogenesis by identifying key clinical and experimental studies that have contributed to our understanding of chikungunya virus to date. In addition, the review explores the practical aspects of treatment and management of both acute and chronic chikungunya virus based on clinical experience during chikungunya virus outbreaks. Finally, recent findings on potential therapeutic solutions-from antiviral agents to immunomodulators-are reviewed to provide both viral immunologists and clinical rheumatologists with a balanced perspective on the nature of a reemerging arboviral disease of significant public health concern, and insight into future therapeutic approaches to better address the treatment and management of chikungunya virus. © 2017, American College of Rheumatology.

  18. Pharmacological inhibition of myostatin suppresses systemic inflammation and muscle atrophy in mice with chronic kidney disease

    Science.gov (United States)

    Zhang, Liping; Rajan, Vik; Lin, Eugene; Hu, Zhaoyong; Han, H. Q.; Zhou, Xiaolan; Song, Yanping; Min, Hosung; Wang, Xiaonan; Du, Jie; Mitch, William E.

    2011-01-01

    Chronic kidney disease (CKD) and several other catabolic conditions are characterized by increased circulating inflammatory cytokines, defects in IGF-1 signaling, abnormal muscle protein metabolism, and progressive muscle atrophy. In these conditions, no reliable treatments successfully block the development of muscle atrophy. In mice with CKD, we found a 2- to 3-fold increase in myostatin expression in muscle. Its pharmacological inhibition by subcutaneous injections of an anti-myostatin peptibody into CKD mice (IC50 ∼1.2 nM) reversed the loss of body weight (≈5–7% increase in body mass) and muscle mass (∼10% increase in muscle mass) and suppressed circulating inflammatory cytokines vs. results from CKD mice injected with PBS. Pharmacological myostatin inhibition also decreased the rate of protein degradation (16.38±1.29%; Pmyostatin expression via a NF-κB-dependent pathway, whereas muscle cells exposed to myostatin stimulated IL-6 production via p38 MAPK and MEK1 pathways. Because IL-6 stimulates muscle protein breakdown, we conclude that CKD increases myostatin through cytokine-activated pathways, leading to muscle atrophy. Myostatin antagonism might become a therapeutic strategy for improving muscle growth in CKD and other conditions with similar characteristics.—Zhang, L., Rajan, V., Lin, E., Hu, Z., Han, H.Q., Zhou, X., Song, Y., Min, H., Wang, X., Du, J., Mitch, W. E. Pharmacological inhibition of myostatin suppresses systemic inflammation and muscle atrophy in mice with chronic kidney disease. PMID:21282204

  19. Lung volume reduction in chronic obstructive pulmonary disease

    African Journals Online (AJOL)

    compliance, thereby reducing the work of breathing. ... with the objective of obtaining similar functional advantages to surgical lung volume reduction, .... Any type of antiplatelet or anticoagulant therapy that cannot be discontinued for 7 days.

  20. Treatment of lung infection in patients with cystic fibrosis

    DEFF Research Database (Denmark)

    Döring, Gerd; Flume, Patrick; Heijerman, Harry

    2012-01-01

    In patients with cystic fibrosis (CF) lung damage secondary to chronic infection is the main cause of death. Treatment of lung disease to reduce the impact of infection, inflammation and subsequent lung injury is therefore of major importance. Here we discuss the present status of antibiotic...

  1. Effects of High-Intensity Swimming on Lung Inflammation and Oxidative Stress in a Murine Model of DEP-Induced Injury.

    Science.gov (United States)

    Ávila, Leonardo C M; Bruggemann, Thayse R; Bobinski, Franciane; da Silva, Morgana Duarte; Oliveira, Regiane Carvalho; Martins, Daniel Fernandes; Mazzardo-Martins, Leidiane; Duarte, Marta Maria Medeiros Frescura; de Souza, Luiz Felipe; Dafre, Alcir; Vieira, Rodolfo de Paula; Santos, Adair Roberto Soares; Bonorino, Kelly Cattelan; Hizume Kunzler, Deborah de C

    2015-01-01

    Studies have reported that exposure to diesel exhaust particles (DEPs) induces lung inflammation and increases oxidative stress, and both effects are susceptible to changes via regular aerobic exercise in rehabilitation programs. However, the effects of exercise on lungs exposed to DEP after the cessation of exercise are not clear. Therefore, the aim of this study was to evaluate the effects of high-intensity swimming on lung inflammation and oxidative stress in mice exposed to DEP concomitantly and after exercise cessation. Male Swiss mice were divided into 4 groups: Control (n = 12), Swimming (30 min/day) (n = 8), DEP (3 mg/mL-10 μL/mouse) (n = 9) and DEP+Swimming (n = 8). The high-intensity swimming was characterized by an increase in blood lactate levels greater than 1 mmoL/L between 10th and 30th minutes of exercise. Twenty-four hours after the final exposure to DEP, the anesthetized mice were euthanized, and we counted the number of total and differential inflammatory cells in the bronchoalveolar fluid (BALF), measured the lung homogenate levels of IL-1β, TNF-α, IL-6, INF-ϫ, IL-10, and IL-1ra using ELISA, and measured the levels of glutathione, non-protein thiols (GSH-t and NPSH) and the antioxidant enzymes catalase and glutathione peroxidase (GPx) in the lung. Swimming sessions decreased the number of total cells (pswimming groups compared with the control groups, as did the CAT lung levels (p = 0.0001). Simultaneously, swimming resulted in an increase in the GSH-t and NPSH lung levels in the DEP group (p = 0.0001 and pswimming sessions decreased the lung inflammation and oxidative stress status during DEP-induced lung inflammation in mice.

  2. Iron supplementation at high altitudes induces inflammation and oxidative injury to lung tissues in rats

    Energy Technology Data Exchange (ETDEWEB)

    Salama, Samir A., E-mail: salama.3@buckeyemail.osu.edu [High Altitude Research Center, Taif University, Al-Haweiah, Taif 21974 (Saudi Arabia); Department of Biochemistry, Faculty of Pharmacy, Al-Azhar University, Cairo 11751 (Egypt); Department of Pharmacology and GTMR Unit, College of Clinical Pharmacy, Taif University, Al-Haweiah, Taif 21974 (Saudi Arabia); Omar, Hany A. [Department of Pharmacology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514 (Egypt); Maghrabi, Ibrahim A. [Department of Clinical Pharmacy, College of Clinical Pharmacy, Taif University, Al-Haweiah, Taif 21974 (Saudi Arabia); AlSaeed, Mohammed S. [Department of Surgery, College of Medicine, Taif University, Al-Haweiah, Taif 21974 (Saudi Arabia); EL-Tarras, Adel E. [High Altitude Research Center, Taif University, Al-Haweiah, Taif 21974 (Saudi Arabia)

    2014-01-01

    Exposure to high altitudes is associated with hypoxia and increased vulnerability to oxidative stress. Polycythemia (increased number of circulating erythrocytes) develops to compensate the high altitude associated hypoxia. Iron supplementation is, thus, recommended to meet the demand for the physiological polycythemia. Iron is a major player in redox reactions and may exacerbate the high altitudes-associated oxidative stress. The aim of this study was to explore the potential iron-induced oxidative lung tissue injury in rats at high altitudes (6000 ft above the sea level). Iron supplementation (2 mg elemental iron/kg, once daily for 15 days) induced histopathological changes to lung tissues that include severe congestion, dilatation of the blood vessels, emphysema in the air alveoli, and peribronchial inflammatory cell infiltration. The levels of pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α), lipid peroxidation product and protein carbonyl content in lung tissues were significantly elevated. Moreover, the levels of reduced glutathione and total antioxidant capacity were significantly reduced. Co-administration of trolox, a water soluble vitamin E analog (25 mg/kg, once daily for the last 7 days of iron supplementation), alleviated the lung histological impairments, significantly decreased the pro-inflammatory cytokines, and restored the oxidative stress markers. Together, our findings indicate that iron supplementation at high altitudes induces lung tissue injury in rats. This injury could be mediated through excessive production of reactive oxygen species and induction of inflammatory responses. The study highlights the tissue injury induced by iron supplementation at high altitudes and suggests the co-administration of antioxidants such as trolox as protective measures. - Highlights: • Iron supplementation at high altitudes induced lung histological changes in rats. • Iron induced oxidative stress in lung tissues of rats at high altitudes. • Iron

  3. Iron supplementation at high altitudes induces inflammation and oxidative injury to lung tissues in rats

    International Nuclear Information System (INIS)

    Salama, Samir A.; Omar, Hany A.; Maghrabi, Ibrahim A.; AlSaeed, Mohammed S.; EL-Tarras, Adel E.

    2014-01-01

    Exposure to high altitudes is associated with hypoxia and increased vulnerability to oxidative stress. Polycythemia (increased number of circulating erythrocytes) develops to compensate the high altitude associated hypoxia. Iron supplementation is, thus, recommended to meet the demand for the physiological polycythemia. Iron is a major player in redox reactions and may exacerbate the high altitudes-associated oxidative stress. The aim of this study was to explore the potential iron-induced oxidative lung tissue injury in rats at high altitudes (6000 ft above the sea level). Iron supplementation (2 mg elemental iron/kg, once daily for 15 days) induced histopathological changes to lung tissues that include severe congestion, dilatation of the blood vessels, emphysema in the air alveoli, and peribronchial inflammatory cell infiltration. The levels of pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α), lipid peroxidation product and protein carbonyl content in lung tissues were significantly elevated. Moreover, the levels of reduced glutathione and total antioxidant capacity were significantly reduced. Co-administration of trolox, a water soluble vitamin E analog (25 mg/kg, once daily for the last 7 days of iron supplementation), alleviated the lung histological impairments, significantly decreased the pro-inflammatory cytokines, and restored the oxidative stress markers. Together, our findings indicate that iron supplementation at high altitudes induces lung tissue injury in rats. This injury could be mediated through excessive production of reactive oxygen species and induction of inflammatory responses. The study highlights the tissue injury induced by iron supplementation at high altitudes and suggests the co-administration of antioxidants such as trolox as protective measures. - Highlights: • Iron supplementation at high altitudes induced lung histological changes in rats. • Iron induced oxidative stress in lung tissues of rats at high altitudes. • Iron

  4. [Can the treatment with L-carnitine improve the inflammation in chronic hemodialysis patients?].

    Science.gov (United States)

    Grazi, G; Meriggioli, M; Donati, G

    2004-01-01

    Inflammation in patients on chronic hemodialysis (HD) is related to malnutrition and atherosclerosis; anemia is also often present in these patients. It has been demonstrated that l-carnitina treatment, in addition to reducing the need for erythropoietin (EPO), improves nutritional parameters and cardiac performance. To evaluate the effect of l-carnitine on the inflammatory pathology in patients on chronic HD, we studied 11 patients with no sure signs of malnutrition, flogistic and infective pathologies and with C-reactive protein (CRP) <2 mg/dL. We evaluated at baseline, after 6 and 12 months CRP, serum albumin, hemoglobin (Hb),nPCR and EPO weekly requirement. We observed a reduction in CRP (from 0.88 +/- 0.65 to 0.42 +/- 0.17 mg/dL after 6 months and to 0.50 + 0.36 mg/dL after 12 months), an increase in serum albumin (from 10.9 +/- 1.23 to 2.08 +/- 1.88 and to 11.8 +/- 1.15 g/dL) and an increase in nPCR (from 0.96 +/- 0.09 to 1.15 +/- 0.2 and to 1.16 +/- 0.18 g/kg/die); EPO weekly requirement decreased (from 7363 +/- 2941 to 5909 +/- 3207 units after 6 months and to 5363 +/- 3139 units after 12 months). These results seem to underline a positive effect of l-carnitine on the inflammatory pathology of patients on chronic hemodialytic treatment.

  5. Systemic inflammation, nutritional status and tumor immune microenvironment determine outcome of resected non-small cell lung cancer.

    Directory of Open Access Journals (Sweden)

    Marco Alifano

    Full Text Available BACKGROUND: Hypothesizing that nutritional status, systemic inflammation and tumoral immune microenvironment play a role as determinants of lung cancer evolution, the purpose of this study was to assess their respective impact on long-term survival in resected non-small cell lung cancers (NSCLC. METHODS AND FINDINGS: Clinical, pathological and laboratory data of 303 patients surgically treated for NSCLC were retrospectively analyzed. C-reactive protein (CRP and prealbumin levels were recorded, and tumoral infiltration by CD8+ lymphocytes and mature dendritic cells was assessed. We observed that factors related to nutritional status, systemic inflammation and tumoral immune microenvironment were correlated; significant correlations were also found between these factors and other relevant clinical-pathological parameters. With respect to outcome, at univariate analysis we found statistically significant associations between survival and the following variables: Karnofsky index, American Society of Anesthesiologists (ASA class, CRP levels, prealbumin concentrations, extent of resection, pathologic stage, pT and pN parameters, presence of vascular emboli, and tumoral infiltration by either CD8+ lymphocytes or mature dendritic cells and, among adenocarcinoma type, tumor grade (all p285 mg/L prealbumin levels and high (>96/mm2 CD8+ cell count had a 5-year survival rate of 80% [60.9-91.1] as compared to 18% [7.9-35.6] in patients with an opposite pattern of values. When stages I-II were considered alone, the prognostic significance of these factors was even more pronounced. CONCLUSIONS: Our data show that nutrition, systemic inflammation and tumoral immune contexture are prognostic determinants that, taken together, may predict outcome.

  6. Lipoxin A4 and platelet activating factor are involved in E. coli or LPS-induced lung inflammation in CFTR-deficient mice.

    Directory of Open Access Journals (Sweden)

    Haiya Wu

    Full Text Available CFTR (cystic fibrosis transmembrane conductance regulator is expressed by both neutrophils and platelets. Lack of functional CFTR could lead to severe lung infection and inflammation. Here, we found that mutation of CFTR (F508del or inhibition of CFTR in mice led to more severe thrombocytopenia, alveolar neutrocytosis and bacteriosis, and lower lipoxin A4/MIP-2 (macrophage inhibitory protein-2 or lipoxin A4/neutrophil ratios in the BAL (bronchoalveolar lavage during acute E. coli pneumonia. In vitro, inhibition of CFTR promotes MIP-2 production in LPS-stimulated neutrophils; however, lipoxin A4 could dose-dependently suppress this effect. In LPS-induced acute lung inflammation, blockade of PSGL-1 (P-selectin glycoprotein ligand-1 or P-selectin, antagonism of PAF by WEB2086, or correction of mutated CFTR trafficking by KM11060 could significantly increase plasma lipoxin A4 levels in F508del relevant to wildtype mice. Concurrently, F508del mice had higher plasma platelet activating factor (PAF levels and PAF-AH activity compared to wildtype under LPS challenge. Inhibiting hydrolysis of PAF by a specific PAF-AH (PAF-acetylhydrolase inhibitor, MAFP, could worsen LPS-induced lung inflammation in F508del mice compared to vehicle treated F508del group. Particularly, depletion of platelets in F508del mice could significantly decrease plasma lipoxin A4 and PAF-AH activity and deteriorate LPS-induced lung inflammation compared to control F508del mice. Taken together, lipoxin A4 and PAF are involved in E. coli or LPS-induced lung inflammation in CFTR-deficient mice, suggesting that lipoxin A4 and PAF might be therapeutic targets for ameliorating CFTR-deficiency deteriorated lung inflammation.

  7. Apple Polysaccharide inhibits microbial dysbiosis and chronic inflammation and modulates gut permeability in HFD-fed rats.

    Science.gov (United States)

    Wang, Sheng; Li, Qian; Zang, Yue; Zhao, Yang; Liu, Nan; Wang, Yifei; Xu, Xiaotao; Liu, Li; Mei, Qibing

    2017-06-01

    The saying "An apple a day keeps the doctor away" has been known for over 150 years, and numerous studies have shown that apple consumption is closely associated with reduced risks of chronic diseases. It has been well accepted that dysbiosis is the reflection of various chronic diseases. Therefore, this study investigates the effects of apple polysaccharides (AP) on gut dysbiosis. High-fat diet (HFD) fed rats were treated for 14 weeks with AP. The microbiota composition, microbiota-generated short chain fatty acids (SCFAs), gut permeability and chronic inflammation were analyzed. AP treatment showed higher abundance of Bacteroidetes and Lactobacillus while lower Firmicutes and Fusobacteium. AP significantly increased total SCFAs level that contributed by acetic acid and isobutyric acid. Moreover, AP dramatically alleviated dysbiosis-associated gut permeability and chronic inflammation with decreased plasma LBP, up-regulation of Occludin, down-regulation of tumor necrosis factor a (TNF-a), monocyte chemotactic protein 1 (MCP-1), chemokine ligand 1 (CXCL-1) and interleukin 1 beta (IL-1β). The potential mechanism is due to the fact that AP reduces gut permeability, which involves the induction of autophagy in goblet cells. Therefore, AP exerts health benefits through inhibiting gut dysbiosis and chronic inflammation and modulating gut permeability in HFD-induced dysbiosis rats. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Adrenal-derived stress hormones modulate ozone-induced lung injury and inflammation

    Data.gov (United States)

    U.S. Environmental Protection Agency — This data set shows high throughput gene expression assessment using RNAseq to examine how ozone-induced transcriptional changes in the lung are influenced by...

  9. Donor dopamine treatment limits pulmonary oedema and inflammation in lung allografts subjected to prolonged hypothermia

    NARCIS (Netherlands)

    Hanusch, Christine; Nowak, Kai; Toerlitz, Patrizia; Gill, Ishar S.; Song, Hui; Rafat, Neysan; Brinkkoetter, Paul T.; Leuvenink, Henri G.; Van Ackern, Klaus C.; Yard, Benito A.; Beck, Grietje C.

    2008-01-01

    Background. Endothelial barrier dysfunction severely compromises organ function after reperfusion. Because dopamine pretreatment improves hypothermia mediated barrier dysfunction, we tested the hypothesis that dopamine treatment of lung allografts positively affects tissue damage associated with

  10. Chronic obstructive pulmonary disease in patients with lung cancer: prevalence, impact and management challenges

    Directory of Open Access Journals (Sweden)

    Spyratos D

    2017-08-01

    Full Text Available Dionisios Spyratos, Eleni Papadaki, Sofia Lampaki, Theodoros Kontakiotis Pulmonary Department, Lung Cancer Oncology Unit, Aristotle University of Thessaloniki, G. Papanicolaou Hospital, Thessaloniki, Greece Abstract: Chronic obstructive pulmonary disease (COPD and lung cancer share a common etiological factor (cigarette smoking and usually coexist in everyday clinical practice. The prevalence of COPD among newly diagnosed patients with lung cancer sometimes exceeds 50%. COPD is an independent risk factor (2–4 times higher than non-COPD subjects for lung cancer development.The presence of emphysema in addition to other factors (e.g., smoking history, age could be incorporated into risk scores in order to define the most appropriate target group for lung cancer screening using low-dose computed tomography. Clinical management of patients with coexistence of COPD and lung cancer requires a multidisciplinary oncology board that includes a pulmonologist. Detailed evaluation (lung function tests, cardiopulmonary exercise test and management (inhaled drugs, smoking cessation, pulmonary rehabilitation of COPD should be taken into account for lung cancer treatment (surgical approach, radiotherapy. Keywords: lung cancer, COPD, coexistence, risk factor, therapy decisions 

  11. Low-dose computed tomography volumetry for subtyping chronic lung allograft dysfunction.

    Science.gov (United States)

    Saito, Tomohito; Horie, Miho; Sato, Masaaki; Nakajima, Daisuke; Shoushtarizadeh, Hassan; Binnie, Matthew; Azad, Sassan; Hwang, David M; Machuca, Tiago N; Waddell, Thomas K; Singer, Lianne G; Cypel, Marcelo; Liu, Mingyao; Paul, Narinder S; Keshavjee, Shaf

    2016-01-01

    The long-term success of lung transplantation is challenged by the development of chronic lung allograft dysfunction (CLAD) and its distinct subtypes of bronchiolitis obliterans syndrome (BOS) and restrictive allograft syndrome (RAS). However, the current diagnostic criteria for CLAD subtypes rely on total lung capacity (TLC), which is not always measured during routine post-transplant assessment. Our aim was to investigate the utility of low-dose 3-dimensional computed tomography (CT) lung volumetry for differentiating RAS from BOS. This study was a retrospective evaluation of 63 patients who had developed CLAD after bilateral lung or heart‒lung transplantation between 2006 and 2011, including 44 BOS and 19 RAS cases. Median post-transplant follow-up was 65 months in BOS and 27 months in RAS. The median interval between baseline and the disease-onset time-point for CT volumetry was 11 months in both BOS and RAS. Chronologic changes and diagnostic accuracy of CT lung volume (measured as percent of baseline) were investigated. RAS showed a significant decrease in CT lung volume at disease onset compared with baseline (mean 3,916 ml vs 3,055 ml when excluding opacities, p volumetry is a useful tool to differentiate patients who develop RAS from those who develop BOS. Copyright © 2016 International Society for Heart and Lung Transplantation. Published by Elsevier Inc. All rights reserved.

  12. Nonantibiotic macrolides restore airway macrophage phagocytic function with potential anti-inflammatory effects in chronic lung diseases.

    Science.gov (United States)

    Hodge, Sandra; Tran, Hai B; Hamon, Rhys; Roscioli, Eugene; Hodge, Greg; Jersmann, Hubertus; Ween, Miranda; Reynolds, Paul N; Yeung, Arthur; Treiberg, Jennifer; Wilbert, Sibylle

    2017-05-01

    We reported defective efferocytosis associated with cigarette smoking and/or airway inflammation in chronic lung diseases, including chronic obstructive pulmonary disease, severe asthma, and childhood bronchiectasis. We also showed defects in phagocytosis of nontypeable Haemophilus influenzae (NTHi), a common colonizer of the lower airway in these diseases. These defects could be substantially overcome with low-dose azithromycin; however, chronic use may induce bacterial resistance. The aim of the present study was therefore to investigate two novel macrolides-2'-desoxy-9-(S)-erythromycylamine (GS-459755) and azithromycin-based 2'-desoxy molecule (GS-560660)-with significantly diminished antibiotic activity against Staphylococcus aureus , Streptococcus pneumonia , Moraxella catarrhalis , and H. influenzae We tested their effects on efferocytosis, phagocytosis of NTHi, cell viability, receptors involved in recognition of apoptotic cells and/or NTHi (flow cytometry), secreted and cleaved intracellular IL-1β (cytometric bead array, immunofluorescence/confocal microscopy), and nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) using primary alveolar macrophages and THP-1 macrophages ± 10% cigarette smoke extract. Dose-response experiments showed optimal prophagocytic effects of GS-459755 and GS-560660 at concentrations of 0.5-1 µg/ml compared with our findings with azithromycin. Both macrolides significantly improved phagocytosis of apoptotic cells and NTHi (e.g., increases in efferocytosis and phagocytosis of NTHi: GS-459755, 23 and 22.5%, P = 0.043; GS-560660, 23.5 and 22%, P = 0.043, respectively). Macrophage viability remained >85% following 24 h exposure to either macrolide at concentrations up to 20 µg/ml. Secreted and intracellular-cleaved IL-1β was decreased with both macrolides with no significant changes in recognition molecules c-mer proto-oncogene tyrosine kinase; scavenger receptor class A, member 1; Toll

  13. Improved outcome of chronic Pseudomonas aeruginosa lung infection is associated with induction of a Th1-dominated cytokine response

    DEFF Research Database (Denmark)

    Moser, C; Jensen, P O; Kobayashi, O

    2002-01-01

    patients, the lungs of susceptible BALB/c mice were re-infected with P. aeruginosa 14 days after the initial infection. Singly-infected BALB/c mice, as well as non-infected mice, were used as controls. Decreased mortality and milder lung inflammation in re-infected BALB/c mice, as well as a tendency...

  14. Activation of pulmonary and lymph node dendritic cells during chronic Pseudomonas aeruginosa lung infection in mice

    DEFF Research Database (Denmark)

    Damlund, Dina S. M.; Christophersen, Lars; Jensen, Peter Østrup

    2016-01-01

    , the infection is not eradicated and the inflammatory response leads to gradual degradation of the lung tissue. In CF patients, a Th2-dominated adaptive immune response with a pronounced antibody response is correlated with poorer outcome. Dendritic cells (DCs) are crucial in bridging the innate immune system...... with the adaptive immune response. Once activated, the DCs deliver a set of signals to uncommitted T cells that induce development, such as expansion of regulatory T cells and polarization of Th1, Th2 or Th17 subsets. In this study, we characterized DCs in lungs and regional lymph nodes in BALB/c mice infected...... using intratracheal installation of P. aeruginosa embedded in seaweed alginate in the lungs. A significantly elevated concentration of DCs was detected earlier in the lungs than in the regional lymph nodes. To evaluate whether the chronic P. aeruginosa lung infection leads to activation of DCs...

  15. Cumulative childhood risk is associated with a new measure of chronic inflammation in adulthood.

    Science.gov (United States)

    Rasmussen, Line Jee Hartmann; Moffitt, Terrie E; Eugen-Olsen, Jesper; Belsky, Daniel W; Danese, Andrea; Harrington, HonaLee; Houts, Renate M; Poulton, Richie; Sugden, Karen; Williams, Benjamin; Caspi, Avshalom

    2018-05-09

    Childhood risk factors are associated with elevated inflammatory biomarkers in adulthood, but it is unknown whether these risk factors are associated with increased adult levels of the chronic inflammation marker soluble urokinase plasminogen activator receptor (suPAR). We aimed to test the hypothesis that childhood exposure to risk factors for adult disease is associated with elevated suPAR in adulthood and to compare suPAR with the oft-reported inflammatory biomarker C-reactive protein (CRP). Prospective study of a population-representative 1972-1973 birth cohort; the Dunedin Multidisciplinary Health and Development Study observed participants to age 38 years. Main childhood predictors were poor health, socioeconomic disadvantage, adverse childhood experiences (ACEs), low IQ, and poor self-control. Main adult outcomes were adulthood inflammation measured as suPAR and high-sensitivity CRP (hsCRP). Participants with available plasma samples at age 38 were included (N = 837, 50.5% male). suPAR (mean 2.40 ng/ml; SD 0.91) was positively correlated with hsCRP (r 0.15, p childhood risks were aggregated into a Cumulative Childhood Risk index, and controlling for sex, BMI, and smoking, Cumulative Childhood Risk was associated with higher suPAR (b 0.10; SE 0.03; p = .002). Cumulative Childhood Risk predicted elevated suPAR, after controlling for hsCRP (b 0.18; SE 0.03; p childhood risk factors was associated with higher suPAR levels, independent of CRP. suPAR is a useful addition to studies connecting childhood risk to adult inflammatory burden. © 2018 Association for Child and Adolescent Mental Health.

  16. A gut microbiota-targeted dietary intervention for amelioration of chronic inflammation underlying metabolic syndrome.

    Science.gov (United States)

    Xiao, Shuiming; Fei, Na; Pang, Xiaoyan; Shen, Jian; Wang, Linghua; Zhang, Baorang; Zhang, Menghui; Zhang, Xiaojun; Zhang, Chenhong; Li, Min; Sun, Lifeng; Xue, Zhengsheng; Wang, Jingjing; Feng, Jie; Yan, Feiyan; Zhao, Naisi; Liu, Jiaqi; Long, Wenmin; Zhao, Liping

    2014-02-01

    Chronic inflammation induced by endotoxin from a dysbiotic gut microbiota contributes to the development of obesity-related metabolic disorders. Modification of gut microbiota by a diet to balance its composition becomes a promising strategy to help manage obesity. A dietary scheme based on whole grains, traditional Chinese medicinal foods, and prebiotics (WTP diet) was designed to meet human nutritional needs as well as balance the gut microbiota. Ninety-three of 123 central obese volunteers (BMI ≥ 28 kg m(-2) ) completed a self-controlled clinical trial consisting of 9-week intervention on WTP diet followed by a 14-week maintenance period. The average weight loss reached 5.79 ± 4.64 kg (6.62 ± 4.94%), in addition to improvement in insulin sensitivity, lipid profiles, and blood pressure. Pyrosequencing of fecal samples showed that phylotypes related to endotoxin-producing opportunistic pathogens of Enterobacteriaceae and Desulfovibrionaceae were reduced significantly, while those related to gut barrier-protecting bacteria of Bifidobacteriaceae increased. Gut permeability, measured as lactulose/mannitol ratio, was decreased compared with the baseline. Plasma endotoxin load as lipopolysaccharide-binding protein was also significantly reduced, with concomitant decrease in tumor necrosis factor-α, interleukin-6, and an increase in adiponectin. These results suggest that modulation of the gut microbiota via dietary intervention may enhance the intestinal barrier integrity, reduce circulating antigen load, and ultimately ameliorate the inflammation and metabolic phenotypes. © 2013 The Authors. FEMS Microbiology Ecology pubished by John Wiley & Sons Ltd on behalf of the Federation of European Microbiological Societies.

  17. Biomarkers for Pulmonary Inflammation and Fibrosis and Lung Ventilation Function in Chinese Occupational Refractory Ceramic Fibers-Exposed Workers.

    Science.gov (United States)

    Zhu, Xiaojun; Gu, Yishuo; Ma, Wenjun; Gao, Panjun; Liu, Mengxuan; Xiao, Pei; Wang, Hongfei; Chen, Juan; Li, Tao

    2017-12-27

    Refractory ceramic fibers (RCFs) can cause adverse health effects on workers' respiratory system, yet no proper biomarkers have been used to detect early pulmonary injury of RCFs-exposed workers. This study assessed the levels of two biomarkers that are related to respiratory injury in RCFs-exposed workers, and explored their relations with lung function. The exposure levels of total dust and respirable fibers were measured simultaneously in RCFs factories. The levels of TGF-β1 and ceruloplasmin (CP) increased with the RCFs exposure level ( p relations were found between the concentrations of CP and FVC (B = -0.423, p = 0.025), or FEV₁ (B = -0.494, p = 0.014). The concentration of TGF-β1 (B = 0.103, p = 0.001) and CP (B = 8.027, p = 0.007) were associated with respirable fiber exposure level. Occupational exposure to RCFs can impair lung ventilation function and may have the potential to cause pulmonary inflammation and fibrosis. TGF-β1 and CP might be used as sensitive and noninvasive biomarkers to detect lung injury in occupational RCFs-exposed workers. Respirable fiber concentration can better reflect occupational RCFs exposure and related respiratory injuries.

  18. Novel mouse model of chronic Pseudomonas aeruginosa lung infection mimicking cystic fibrosis

    DEFF Research Database (Denmark)

    Hoffmann, Nadine; Rasmussen, Thomas Bovbjerg; Jensen, Peter Østrup

    2005-01-01

    (NH57388C) from the mucoid isolate (NH57388A) and a nonmucoid isolate (NH57388B) deficient in AHL were almost cleared from the lungs of the mice. This model, in which P. aeruginosa is protected against the defense system of the lung by alginate, is similar to the clinical situation. Therefore...... pulmonary mouse model without artificial embedding. The model is based on a stable mucoid CF sputum isolate (NH57388A) with hyperproduction of alginate due to a deletion in mucA and functional N-acylhomoserine lactone (AHL)-based quorum-sensing systems. Chronic lung infection could be established in both CF...

  19. Proteinuria: an ignored marker of inflammation and cardiovascular disease in chronic hemodialysis

    Directory of Open Access Journals (Sweden)

    Trimarchi H

    2011-12-01

    Full Text Available Hernán Trimarchi1, Alexis Muryan2, Mariana Dicugno2, Pablo Young3, Mariano Forrester1, Fernando Lombi1, Vanesa Pomeranz1, Romina Iriarte1, María Soledad Raña1, Mirta Alonso21Nephrology, 2Biochemistry, 3Internal Medicine Services, Hospital Británico de Buenos Aires, ArgentinaBackground: Cardiovascular disease is the leading cause of morbidity and mortality in hemodialysis (HD patients, the main etiologies being diabetes and hypertension. Cardiac and inflammatory biomarkers are usually employed to assess risk or damage, or during follow-up. Proteinuria is considered a strong predictor of morbidity, a cause of inflammation, oxidative stress, hemodynamic alteration, and progression of chronic kidney disease. However, proteinuria is rarely considered in the clinical assessment of HD patients.Methods: This was a concurrent, cohort-observational, cross-sectional study in which 52 chronic HD subjects were divided into three groups according to the degree of proteinuria: Group (G A: <1 g/day, n = 25; GB: 1–3 g/day, n = 13; GC: >3 g/day, n = 14. Baseline hemoglobin, albuminemia, cholesterol, body mass index, Malnutrition-Inflammatory Score, pro-B-type natriuretic peptide, troponin T, C-reactive protein (CRP, and ultrafiltration rates were analyzed.Results: There was no difference between groups in terms of baseline age, gender, hypertension, cause of renal failure, hemoglobin, cholesterol, albumin, CRP levels, cardiac biomarkers, adiponectin, body mass index, or Malnutrition-Inflammatory Score. Time on HD: GA, 34.56 ± 23.3 (range [r]: 6–88; GB, 25.15 ± 19.40 (r: 6–58; GC, 18.21 ± 9.58 (r: 6–74 months; P = 0.048. Proteinuria: GA, 0.33 ± 0.30 (r: 0.0–0.88; GB, 1.66 ± 0.54 (r: 1.03–2.75; GC, 7.18 ± 2.80 (r: 3.04–21.5 g/day; P < 0.001. Mean ultrafiltration rates were significantly different: GA, 2.80 ± 0.73; GB: 1.85 ± 0.96 liters/session; P = 0.003. Fourteen diabetic patients were identified (27%: GA, 3 (12%; GB, 3 (23%; GC, 8 (57

  20. Lung Metastases from Bile Duct Adenocarcinoma Mimicking Chronic Airway Infection and Causing Diagnostic Difficulty.

    Science.gov (United States)

    Sato, Mitsuo; Okachi, Shotaro; Fukihara, Jun; Shimoyama, Yoshie; Wakahara, Keiko; Sakakibara, Toshihiro; Hase, Tetsunari; Onishi, Yasuharu; Ogura, Yasuhiro; Maeda, Osamu; Hasegawa, Yoshinori

    2018-05-15

    We herein report a case of lung metastases with unusual radiological appearances that mimicked those of chronic airway infection, causing diagnostic difficulty. A 60-year-old woman who underwent liver transplantation from a living donor was incidentally diagnosed with bile duct adenocarcinoma after a histopathological analysis of her explanted liver. Six months later, chest computed tomography (CT) revealed bilateral bronchogenic dissemination that had gradually worsened, suggesting chronic airway infection. A biopsy with bronchoscopy from a mass lesion beyond a segmental bronchus revealed adenocarcinoma identical to that of her bile duct adenocarcinoma, leading to the diagnosis of multiple lung metastases from bile duct adenocarcinoma.

  1. Connecting the immune system, systemic chronic inflammation and the gut microbiome: The role of sex.

    Science.gov (United States)

    Rizzetto, Lisa; Fava, Francesca; Tuohy, Kieran M; Selmi, Carlo

    2018-05-31

    Unresolved low grade systemic inflammation represents the underlying pathological mechanism driving immune and metabolic pathways involved in autoimmune diseases (AID). Mechanistic studies in animal models of AID and observational studies in patients have found alterations in gut microbiota communities and their metabolites, suggesting a microbial contribution to the onset or progression of AID. The gut microbiota and its metabolites have been shown to influence immune functions and immune homeostasis both within the gut and systematically. Microbial derived-short chain fatty acid (SCFA) and bio-transformed bile acid (BA) have been shown to influence the immune system acting as ligands specific cell signaling receptors like GPRCs, TGR5 and FXR, or via epigenetic processes. Similarly, intestinal permeability (leaky gut) and bacterial translocation are important contributors to chronic systemic inflammation and, without repair of the intestinal barrier, might represent a continuous inflammatory stimulus capable of triggering autoimmune processes. Recent studies indicate gender-specific differences in immunity, with the gut microbiota shaping and being concomitantly shaped by the hormonal milieu governing differences between the sexes. A bi-directional cross-talk between microbiota and the endocrine system is emerging with bacteria being able to produce hormones (e.g. serotonin, dopamine and somatostatine), respond to host hormones (e.g. estrogens) and regulate host hormones' homeostasis (e.g by inhibiting gene prolactin transcription or converting glucocorticoids to androgens). We review herein how gut microbiota and its metabolites regulate immune function, intestinal permeability and possibly AID pathological processes. Further, we describe the dysbiosis within the gut microbiota observed in different AID and speculate how restoring gut microbiota composition and its regulatory metabolites by dietary intervention including prebiotics and probiotics could help in

  2. Low levels of the AhR in chronic obstructive pulmonary disease (COPD)-derived lung cells increases COX-2 protein by altering mRNA stability.

    Science.gov (United States)

    Zago, Michela; Sheridan, Jared A; Traboulsi, Hussein; Hecht, Emelia; Zhang, Yelu; Guerrina, Necola; Matthews, Jason; Nair, Parameswaran; Eidelman, David H; Hamid, Qutayba; Baglole, Carolyn J

    2017-01-01

    Heightened inflammation, including expression of COX-2, is associated with chronic obstructive pulmonary disease (COPD) pathogenesis. The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that is reduced in COPD-derived lung fibroblasts. The AhR also suppresses COX-2 in response to cigarette smoke, the main risk factor for COPD, by destabilizing the Cox-2 transcript by mechanisms that may involve the regulation of microRNA (miRNA). Whether reduced AhR expression is responsible for heightened COX-2 in COPD is not known. Here, we investigated the expression of COX-2 as well as the expression of miR-146a, a miRNA known to regulate COX-2 levels, in primary lung fibroblasts derived from non-smokers (Normal) and smokers (At Risk) with and without COPD. To confirm the involvement of the AhR, AhR knock-down via siRNA in Normal lung fibroblasts and MLE-12 cells was employed as were A549-AhRko cells. Basal expression of COX-2 protein was higher in COPD lung fibroblasts compared to Normal or Smoker fibroblasts but there was no difference in Cox-2 mRNA. Knockdown of AhR in lung structural cells increased COX-2 protein by stabilizing the Cox-2 transcript. There was less induction of miR-146a in COPD-derived lung fibroblasts but this was not due to the AhR. Instead, we found that RelB, an NF-κB protein, was required for transcriptional induction of both Cox-2 and miR-146a. Therefore, we conclude that the AhR controls COX-2 protein via mRNA stability by a mechanism independent of miR-146a. Low levels of the AhR may therefore contribute to the heightened inflammation common in COPD patients.

  3. Development and validation of an animal model of prostate inflammation-induced chronic pelvic pain: evaluating from inflammation of the prostate to pain behavioral modifications.

    Directory of Open Access Journals (Sweden)

    Feng Zeng

    Full Text Available BACKGROUND: Chronic prostatitis/Chronic pelvic pain syndrome (CP/CPPS is the most common type of prostatitis. Due to the lack of a suitable animal model partly, the pathogenesis for this condition is obscure. In the current study we developed and validated an animal model for nonbacterial prostatitis and prostate inflammation-induced chronic pelvic pain in rats with the use of intraprostatic injection of λ-carrageenan. METHODS: Male Sprague-Dawley rats weighing 250-350 g were used for the experiments. After intraprostatic injection of 3% λ-carrageenan, at different time points(after 24 h, 7 d, 14 d and 30 d of injection, radiant heat and von Frey filaments were applied to the scrotum of rats to measure the heat and mechanical thresholds respectively. Then the prostate was removed for histology, and cyclooxygenase (COX 2 protein expression was determined by Western-blot. Evans blue(50 mg/kg was also injected intravenously to assess for plasma protein extravasation at different time points after injection of λ-carrageenan. RESULTS: Compared to control group, inflamed animals showed a significant reduction in mechanical threshold (mechanical allodynia at 24 h and 7d(p = 0.022,0.046, respectively, and a significant reduction in heat threshold (thermal hyperalgesia at 24 h, 7d and 14 d(p = 0.014, 0.018, 0.002, respectively in the scrotal skin. Significant increase of inflammatory cell accumulation, COX2 expression and Evans blue extravasation were observed at 24 h, 7d and 14 d after injection. CONCLUSIONS: Intraprostatic λ-carrageenan injection induced neurogenic prostatitis and prostate inflammation pain, which lasted at least 2 weeks. The current model is expected to be a valuable preclinical tool to study the neurobiological mechanisms of male chronic pelvic pain.

  4. Lung Neutrophilia in Myeloperoxidase Deficient Mice during the Course of Acute Pulmonary Inflammation

    Czech Academy of Sciences Publication Activity Database

    Kremserová, Silvie; Perečko, Tomáš; Souček, Karel; Klinke, A.; Baldus, S.; Eiserich, J.P.; Kubala, Lukáš

    2016-01-01

    Roč. 2016, Č. 2016 (2016), č. článku 5219056. ISSN 1942-0900 R&D Projects: GA ČR GCP305/12/J038 Institutional support: RVO:68081707 Keywords : nitrotyrosine formation * airway inflammation * mouse neutrophils * apoptosis Subject RIV: BO - Biophysics Impact factor: 4.593, year: 2016

  5. CT of chronic infiltrative lung disease: Prevalence of mediastinal lymphadenopathy

    Energy Technology Data Exchange (ETDEWEB)

    Niimi, Hiroshi; Kang, Eun-Young; Kwong, S. [Univ. of British Columbia and Vancouver Hospital and Health Sciences Centre (Canada)] [and others

    1996-03-01

    Our goal was to determine the prevalence of mediastinal lymph node enlargement at CT in patients with diffuse infiltrative lung disease. The study was retrospective and included 175 consecutive patients with diffuse infiltrative lung diseases. Diagnoses included idiopathic pulmonary fibrosis (IPF) (n = 61), usual interstitial pneumonia associated with collagen vascular disease (CVD) (n = 20), idiopathic bronchiolitis obliterans organizing pneumonia (BOOP) (n = 22), extrinsic allergic alveolitis (EAA) (n = 17), and sarcoidosis (n = 55). Fifty-eight age-matched patients with CT of the chest performed for unrelated conditions served as controls. The presence, number, and sites of enlarged nodes (short axis {ge}10 mm in diameter) were recorded. Enlarged mediastinal nodes were present in 118 of 175 patients (67%) with infiltrative lung disease and 3 of 58 controls (5%) (p < 0.001). The prevalence of enlarged nodes was 84% (46 of 55) in sarcoidosis, 67% (41 of 61) in IPF, 70% (14 of 20) in CVD, 53% (9 of 17) in EAA, and 36% (8 of 22) in BOOP. The mean number of enlarged nodes was higher in sarcoidosis (mean 3.2) than in the other infiltrative diseases (mean 1.2) (p < 0.001). Enlarged nodes were most commonly present in station 10R, followed by 7, 4R, and 5. Patients with infiltrative lung disease frequently have enlarged mediastinal lymph nodes. However, in diseases other than sarcoid, usually only one or two nodes are enlarged and their maximal short axis diameter is <15 mm. 11 refs., 2 figs., 1 tab.

  6. Sinus surgery postpones chronic gram-negative lung infection

    DEFF Research Database (Denmark)

    Alanin, M C; Aanaes, K; Høiby, N

    2016-01-01

    Background: In patients with cystic fibrosis (CF) the sinuses are a bacterial reservoir for Gram-negative bacteria (GNB). From the sinuses the GNB can repeatedly migrate to the lungs. In a one-year follow-up study, endoscopic sinus surgery (ESS) with adjuvant therapy reduced the frequency...

  7. Antibody-mediated delivery of interleukin 4 to the neo-vasculature reduces chronic skin inflammation.

    Science.gov (United States)

    Hemmerle, Teresa; Zgraggen, Silvana; Matasci, Mattia; Halin, Cornelia; Detmar, Michael; Neri, Dario

    2014-11-01

    The antibody-mediated delivery of cytokines ("immunocytokines") to sites of pathological angiogenesis represents an attractive strategy for the development of innovative biopharmaceuticals, capable of modulating the activity of the immune system in cancer and in chronic inflammatory conditions. Recombinant IL4 has previously been shown to be therapeutically active in patients with psoriasis. The antibody-mediated delivery of this cytokine to sites of chronic skin inflammatory conditions should lead to an improved potency and selectivity, compared to non-targeted IL4. The therapeutic activity of F8-IL4, a fusion protein of the F8 antibody (specific to the alternatively-spliced EDA domain of fibronectin) with murine IL4, was investigated in three immunocompetent mouse models of skin inflammation: two induced by the TLR7/8 ligand imiquimod (in Balb/c and C57BL/6) and one mediated by the over-expression of VEGF-A. The EDA domain of fibronectin, a marker for angiogenesis, is expressed in the inflamed skin in all three models and F8-IL4 selectively localized to inflamed skin lesions following intravenous administration. The F8-IL4 fusion protein mediated a therapeutic benefit, which was superior to the one of a non-targeted version of IL4 and led to increased levels of key regulatory cytokines (including IL5, IL10, IL13, and IL27) in the inflamed skin, while IL2 levels were not affected in all treatment groups. A murine version of etanercept and a murine anti-IL17 antibody were used as positive control in the therapy experiments. Skin inflammatory lesions can be selectively targeted using anti-EDA antibody-cytokine fusion proteins and the pharmacodelivery of IL4 confers a therapeutic benefit by shifting the cytokine balance. Copyright © 2014 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  8. Metabolically induced liver inflammation leads to NASH and differs from LPS-or IL-1β-induced chronic inflammation

    NARCIS (Netherlands)

    Liang, W.; Lindeman, J.H.; Menke, A.L.; Koonen, D.P.; Morrison, M.; Havekes, L.M.; Hoek, A.M. van den; Kleemann, R.

    2014-01-01

    The nature of the chronic inflammatory component that drives the development of non-alcoholic steatohepatitis (NASH) is unclear and possible inflammatory triggers have not been investigated systematically. We examined the effect of non-metabolic triggers (lipopolysaccharide (LPS), interleukin-1β

  9. Metabolically induced liver inflammation leads to NASH and differs from LPS- or IL-1 beta-induced chronic inflammation

    NARCIS (Netherlands)

    Liang, Wen; Lindeman, Jan H.; Menke, Aswin L.; Koonen, Debby P.; Morrison, Martine; Havekes, Louis M.; van den Hoek, Anita M.; Kleemann, Robert

    The nature of the chronic inflammatory component that drives the development of non-alcoholic steatohepatitis (NASH) is unclear and possible inflammatory triggers have not been investigated systematically. We examined the effect of non-metabolic triggers (lipopolysaccharide (LPS), interleukin-1 beta

  10. Chronic low-grade inflammation, lipid risk factors and mortality in functionally dependent elderly

    Directory of Open Access Journals (Sweden)

    Vasović Olga

    2010-01-01

    Full Text Available Background/Aim. It has been proved that a highly sensitive C-reactive protein (hsCRP can be used as an established marker of chronic inflammation for cardiovascular risk assessment. Since mean values of both low-density cholesterol (LDL-C and high-density lipoprotein cholesterol (HDL-C decrease during aging, the knowledge that increased hsCRP concentration predicts mortality (Mt would influence therapy and treatment outcome. The aim of this study was to examine importance of chronic low grade inflammation and its association with lipid risk factors for all-cause Mt in functionally dependent elderly. Methods. The participants of this longitudinal prospective study were 257 functionally dependent elderly aged 65-99 years. Baseline measurements: anthropometric measurements, blood pressure, fasting plasma total cholesterol (TC, triglyceride (TG, HDL-C, LDL-C, non- HDL-C, hemoglobin A1c (HbA1c were recorded and different lipid ratios were calculated. Inflammation was assessed by the levels of white blood cells, fibrinogen and hsCRP. The participants with hsCRP grater than 10 mg/L were excluded from the study. The residual participants (77.4% women were divided into three groups according to their hsCRP levels: a low (< 1 mg/L, n = 70, average (1 to 3 mg/L, n = 69, and high (3-10 mg/L, n = 69 hsCRP group. Associations of all-cause Mt with different risk factors were examined using logistic regression analysis. Results. The hsCRP level showed a significant positive correlation with waist (r = 0.199, p = 0.004 and hip (r = 0.187, p = 0.007 circumferences, body mass index (r = 0.143, p = 0.040 and serum triglyceride level (r = 0.139, p = 0.045 and significant negative correlation with HDL-C (r = -0.164, p = 0.018. Ratios TC/HDL-C and TG/HDL-C were significantly smaller in the low hsCRP group compared to the average hsCRP group (p = 0.019, p = 0.045, respectively and without significant differences compared with the high hsCRP group. Two years after the

  11. Chronic infection with Helicobacter pylori does not provoke major systemic inflammation in healthy adults

    DEFF Research Database (Denmark)

    Brenner, H; Berg, Gabriele; Fröhlich, M

    1999-01-01

    It has been suggested that chronic infection with Helicobacter pylori (H. pylori), in particular infection with virulent strains producing the cytotoxin-associated protein CagA, may increase the risk of coronary heart disease by generation of a persistent low-grade inflammatory stimulus. We...... assessed the relation between serological markers of H. pylori infection and various markers of systemic inflammation in a population-based sample of 1834 men and women aged 18-88. A total of 39.3% of the sample had a positive IgG response, and among these a slight majority was CagA positive. Infection...... with H. pylori was unrelated to C-reactive protein and the leukocyte count, regardless of CagA status. There was an inverse relation between H. pylori infection and serum albumin. The adjusted OR (95% CI) of an albumin level in the bottom versus the top third were 2.2 (1.5-3.1) and 2.0 (1...

  12. Contribution of defective PS recognition and efferocytosis to chronic inflammation and autoimmunity

    Directory of Open Access Journals (Sweden)

    Stanley Gititu Kimani

    2014-11-01

    Full Text Available Rapid and efficient clearance of apoptotic cells results in elimination of auto-antigens and provides a strong anti-inflammatory and immunosuppressive signal to prevent autoimmunity. While professional and non-professional phagocytes utilize a wide array of surface receptors to recognize apoptotic cells, recognition of phosphatidylserine (PS on apoptotic cells by PS receptors on phagocytes is emblematic signal for efferocytosis in metazoans. PS-dependent efferocytosis is associated with production of anti-inflammatory factors such as IL-10 and TGF-β that function, in part, to maintain tolerance to auto-antigens. In contrast, when apoptotic cells fail to be recognized and processed for degradation, auto-antigens persist, which can trigger immune activation leading to autoantibody production and autoimmunity. Despite the fact that genetic mouse models clearly demonstrate that loss of PS receptors can lead to age-dependent autoimmune diseases reminiscent of systemic lupus erythematosus (SLE, link between PS and defective clearance in chronic inflammation and human autoimmunity is not well delineated. In this hypothesis and theory, we review emerging questions developing in the field that may be of relevance to SLE and human autoimmunity.

  13. Pre-clinical efficacy assessment of Malva sylvestris on chronic skin inflammation.

    Science.gov (United States)

    Prudente, Arthur S; Sponchiado, Graziela; Mendes, Daniel A G B; Soley, Bruna S; Cabrini, Daniela A; Otuki, Michel F

    2017-09-01

    In the search for improved quality of life, the treatment of skin diseases like psoriasis (hyperproliferative disease) is valid, since it causes huge social discomfort to the patient. In this context, earlier studies showed that Malva sylvestris L. has anti-inflammatory activity demonstrated by acute animal models of skin inflammation, becoming a promising target for further studies. The present investigation aimed to verify the effect of hydroalcoholic extract of M. sylvestris (HEMS) on the chronic inflammatory and hyperproliferative response caused by multiple applications of 12-O-tetradecanoylphorbol-13-acetate (TPA) on mouse ears. Topical application of HEMS reduced oedema, leukocyte migration (mono- and polymorphonuclear cells) and keratinocyte hyperproliferation, confirmed by histology and proliferating cell nuclear antigen (PCNA) immunostaining. It was found that the anti-inflammatory effects of the extract did not involve the glucocorticoid system, and its incubation with HaCaT keratinocytes caused low toxicity and reduced cell proliferation by apoptosis. Thus, HEMS proved to be effective as an anti-psoriatic therapy, with the ability to prevent keratinocyte hyperproliferation and with low toxicity by topical application. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  14. Microbiota alterations in acute and chronic gastrointestinal inflammation of cats and dogs

    Science.gov (United States)

    Honneffer, Julia B; Minamoto, Yasushi; Suchodolski, Jan S

    2014-01-01

    The intestinal microbiota is the collection of the living microorganisms (bacteria, fungi, protozoa, and viruses) inhabiting the gastrointestinal tract. Novel bacterial identification approaches have revealed that the gastrointestinal microbiota of dogs and cats is, similarly to humans, a highly complex ecosystem. Studies in dogs and cats have demonstrated that acute and chronic gastrointestinal diseases, including inflammatory bowel disease (IBD), are associated with alterations in the small intestinal and fecal microbial communities. Of interest is that these alterations are generally similar to the dysbiosis observed in humans with IBD or animal models of intestinal inflammation, suggesting that microbial responses to inflammatory conditions of the gut are conserved across mammalian host types. Studies have also revealed possible underlying susceptibilities in the innate immune system of dogs and cats with IBD, which further demonstrate the intricate relationship between gut microbiota and host health. Commonly identified microbiome changes in IBD are decreases in bacterial groups within the phyla Firmicutes and Bacteroidetes, and increases within Proteobacteia. Furthermore, a reduction in the diversity of Clostridium clusters XIVa and IV (i.e., Lachnospiraceae and Clostridium coccoides subgroups) are associated with IBD, suggesting that these bacterial groups may play an important role in maintenance of gastrointestinal health. Future studies are warranted to evaluate the functional changes associated with intestinal dysbiosis in dogs and cats. PMID:25469017

  15. Hyperglycemia Aggravates Hepatic Ischemia Reperfusion Injury by Inducing Chronic Oxidative Stress and Inflammation

    Directory of Open Access Journals (Sweden)

    Yihan Zhang

    2016-01-01

    Full Text Available Aim. To investigate whether hyperglycemia will aggravate hepatic ischemia reperfusion injury (HIRI and the underlying mechanisms. Methods. Control and streptozotocin-induced diabetic Sprague-Dawley rats were subjected to partial hepatic ischemia reperfusion. Liver histology, transferase, inflammatory cytokines, and oxidative stress were assessed accordingly. Similarly, BRL-3A hepatocytes were subjected to hypoxia/reoxygenation (H/R after high (25 mM or low (5.5 mM glucose culture. Cell viability, reactive oxygen species (ROS, and activation of nuclear factor-erythroid 2-related factor 2 (Nrf2 and nuclear factor of kappa light polypeptide gene enhancer in B-cells (NF-κB were determined. Results. Compared with control, diabetic rats presented more severe hepatic injury and increased hepatic inflammatory cytokines and oxidative stress. HIRI in diabetic rats could be ameliorated by pretreatment of N-acetyl-L-cysteine (NAC or apocynin. Excessive ROS generation and consequent Nrf2 and NF-κB translocation were determined after high glucose exposure. NF-κB translocation and its downstream cytokines were further increased in high glucose cultured group after H/R. While proper regulation of Nrf2 to its downstream antioxidases was observed in low glucose cultured group, no further induction of Nrf2 pathway by H/R after high glucose culture was identified. Conclusion. Hyperglycemia aggravates HIRI, which might be attributed to chronic oxidative stress and inflammation and potential malfunction of antioxidative system.

  16. Chronic inflammation triggered by the NLRP3 inflammasome in myeloid cells promotes growth plate dysplasia by mesenchymal cells.

    Science.gov (United States)

    Wang, Chun; Xu, Can-Xin; Alippe, Yael; Qu, Chao; Xiao, Jianqiu; Schipani, Ernestina; Civitelli, Roberto; Abu-Amer, Yousef; Mbalaviele, Gabriel

    2017-07-07

    Skeletal complications are common features of neonatal-onset multisystem inflammatory disease (NOMID), a disorder caused by NLRP3-activating mutations. NOMID mice in which NLRP3 is activated globally exhibit several characteristics of the human disease, including systemic inflammation and cartilage dysplasia, but the mechanisms of skeletal manifestations remain unknown. In this study, we find that activation of NLRP3 in myeloid cells, but not mesenchymal cells triggers chronic inflammation, which ultimately, causes growth plate and epiphyseal dysplasia in mice. These responses are IL-1 signaling-dependent, but independent of PARP1, which also functions downstream of NLRP3 and regulates skeletal homeostasis. Mechanistically, inflammation causes severe anemia and hypoxia in the bone environment, yet down-regulates the HIF-1α pathway in chondrocytes, thereby promoting the demise of these cells. Thus, activation of NLRP3 in hematopoietic cells initiates IL-1β-driven paracrine cascades, which promote abnormal growth plate development in NOMID mice.

  17. Supernatant of stored platelets causes lung inflammation and coagulopathy in a novel in vivo transfusion model

    NARCIS (Netherlands)

    Vlaar, Alexander P. J.; Hofstra, Jorrit J.; Kulik, Wim; van Lenthe, Henk; Nieuwland, Rienk; Schultz, Marcus J.; Levi, Marcel M.; Roelofs, Joris J. T. H.; Tool, Anton T. J.; de Korte, Dirk; Juffermans, Nicole P.

    2010-01-01

    Transfusion-related acute lung injury is suggested to be a "2-hit" event resulting from priming and activation of pulmonary neutrophils. Activation may result from infusion of lysophosphatidylcholines (LysoPCs), which accumulate during storage of blood products. In the present study, we developed a

  18. Pneumovirus-Induced Lung Disease in Mice Is Independent of Neutrophil-Driven Inflammation

    NARCIS (Netherlands)

    Cortjens, Bart; Lutter, René; Boon, Louis; Bem, Reinout A.; van Woensel, Job B. M.

    2016-01-01

    The human pneumovirus respiratory syncytial virus (RSV) is the most common pathogen causing lower respiratory tract disease in young children worldwide. A hallmark of severe human RSV infection is the strong neutrophil recruitment to the airways and lungs. Massive neutrophil activation has been

  19. NFE2L2 pathway polymorphisms and lung function decline in chronic obstructive pulmonary disease

    NARCIS (Netherlands)

    Sandford, Andrew J.; Malhotra, Deepti; Boezen, H. Marike; Siedlinski, Mateusz; Postma, Dirkje S.; Wong, Vivien; Akhabir, Loubna; He, Jian-Qing; Connett, John E.; Anthonisen, Nicholas R.; Pare, Peter D.; Biswal, Shyam

    2012-01-01

    Sandford AJ, Malhotra D, Boezen HM, Siedlinski M, Postma DS, Wong V, Akhabir L, He JQ, Connett JE, Anthonisen NR, Pare PD, Biswal S. NFE2L2 pathway polymorphisms and lung function decline in chronic obstructive pulmonary disease. Physiol Genomics 44: 754-763, 2012. First published June 12, 2012;

  20. Anti-proline-glycine-proline or antielastin autoantibodies are not evident in chronic inflammatory lung disease.

    LENUS (Irish Health Repository)

    Greene, Catherine M

    2010-01-01

    In patients with chronic inflammatory lung disease, pulmonary proteases can generate neoantigens from elastin and collagen with the potential to fuel autoreactive immune responses. Antielastin peptide antibodies have been implicated in the pathogenesis of tobacco-smoke-induced emphysema. Collagen-derived peptides may also play a role.

  1. Lung functions at school age and chronic exposure to outdoor and indoor air pollution

    Energy Technology Data Exchange (ETDEWEB)

    Neuberger, M; Kundi, M; Wiesenberger, W [Vienna Univ. (Austria). Dept. of Preventive Medicine

    1996-12-31

    Early signs of lung function impairment have been found correlated with annual concentrations of outdoor air pollutants and with passive smoking. To investigate the combined effects of both indicators of chronic exposure to air pollution pulmonary functions in all elementary and high school children of an Austrian town was examined for 5 years. (author)

  2. Lung mucociliary transport function in chronic bronchitis and radionuclide methods of its investigation (a review)

    International Nuclear Information System (INIS)

    Vyrenkova, N.Yu.; Faradzheva, N.A.

    1989-01-01

    Several methods for studying lung clearance of smokers and non-smoking patients with chronic bronchitis (CB) are described. Modified technique for investigating mucociliary transport (MCT) in CB patients, using 99m Tc-macroaggregate of human serum albumin, is suggested. The method enables to examine more patients and obtain the most comprehensive data on MCT state on any level of tracheobronchial tree

  3. Lung functions at school age and chronic exposure to outdoor and indoor air pollution

    Energy Technology Data Exchange (ETDEWEB)

    Neuberger, M.; Kundi, M.; Wiesenberger, W. [Vienna Univ. (Austria). Dept. of Preventive Medicine

    1995-12-31

    Early signs of lung function impairment have been found correlated with annual concentrations of outdoor air pollutants and with passive smoking. To investigate the combined effects of both indicators of chronic exposure to air pollution pulmonary functions in all elementary and high school children of an Austrian town was examined for 5 years. (author)

  4. Regulatory T Cells Contribute to the Inhibition of Radiation-Induced Acute Lung Inflammation via Bee Venom Phospholipase A₂ in Mice.

    Science.gov (United States)

    Shin, Dasom; Lee, Gihyun; Sohn, Sung-Hwa; Park, Soojin; Jung, Kyung-Hwa; Lee, Ji Min; Yang, Jieun; Cho, Jaeho; Bae, Hyunsu

    2016-04-30

    Bee venom has long been used to treat various inflammatory diseases, such as rheumatoid arthritis and multiple sclerosis. Previously, we reported that bee venom phospholipase A₂ (bvPLA₂) has an anti-inflammatory effect through the induction of regulatory T cells. Radiotherapy is a common anti-cancer method, but often causes adverse effects, such as inflammation. This study was conducted to evaluate the protective effects of bvPLA₂ in radiation-induced acute lung inflammation. Mice were focally irradiated with 75 Gy of X-rays in the lung and administered bvPLA₂ six times after radiation. To evaluate the level of inflammation, the number of immune cells, mRNA level of inflammatory cytokine, and histological changes in the lung were measured. BvPLA₂ treatment reduced the accumulation of immune cells, such as macrophages, neutrophils, lymphocytes, and eosinophils. In addition, bvPLA₂ treatment decreased inflammasome-, chemokine-, cytokine- and fibrosis-related genes' mRNA expression. The histological results also demonstrated the attenuating effect of bvPLA₂ on radiation-induced lung inflammation. Furthermore, regulatory T cell depletion abolished the therapeutic effects of bvPLA₂ in radiation-induced pneumonitis, implicating the anti-inflammatory effects of bvPLA₂ are dependent upon regulatory T cells. These results support the therapeutic potential of bvPLA₂ in radiation pneumonitis and fibrosis treatments.

  5. Effects of an Amifostine analogue on radiation induced lung inflammation and fibrosis

    International Nuclear Information System (INIS)

    Arora, Aastha; Bhuria, Vikas; Soni, Ravi; Singh, Saurabh; Hazari, Puja Panwar; Bhatt, Anant Narayan; Dwarakanath, B.S.; Pathak, Uma; Mathur, Shweta; Sandhir, Rajat

    2014-01-01

    Radiation-induced pulmonary toxicity causes significant morbidity and mortality in patients irradiated for thoracic malignancies as well as in victims of accidental radiation exposure. We have recently established the efficacy of an analogue of Amifostine (DRDE-30) in reducing the mortality of whole body irradiated mice. The widely used radioprotector Amifostine has been found to reduce the incidence of radiation induced pneumonitis during radiation therapy for non small cell lung carcinoma. In the present study, we investigated the potential of DRDE-30 in ameliorating the radiation induced lung damage. Intra-peritoneal administration of DRDE-30 at 220 mg/kg b.wt 30 min. prior to 13.5 Gy thoracic radiation enhanced the 24-month survival of C57BL/6 mice to 80% compared to 0% with radiation alone. Reduced protein content and cell number in the broncheo-alveolar lavage fluid suggested reduction in radiation induced vascular permeability in DRDE-30 treated mice. Higher levels of MnSOD and Catalase observed under these conditions indicated that strengthening of the anti-oxidant defense system by DRDE-30 could also contribute to the protection against radiation induced lung damage. Reduced levels of p-p38 observed under these conditions suggested down-regulation of the p38/MAP kinase pathway as one of the plausible mechanisms underlying anti-inflammatory effects of DRDE-30, while lower levels of Vimentin seen, indicated inhibition of epithelial to mesenchymal transition revealing its anti-fibrotic effect as well. Structural analysis with X-ray CT indicated comparable lung architecture in control and drug treated mice in terms of reduced opacity, which correlated well with the lung morphology (H and E staining) and reduced collagen deposition (trichrome staining). These results demonstrate the potential of DRDE-30 in reducing radiation induced pulmonary toxicity by attenuating the inflammatory and fibrotic responses. (author)

  6. The lung tissue microbiota of mild and moderate chronic obstructive pulmonary disease.

    Science.gov (United States)

    Pragman, Alexa A; Lyu, Tianmeng; Baller, Joshua A; Gould, Trevor J; Kelly, Rosemary F; Reilly, Cavan S; Isaacson, Richard E; Wendt, Chris H

    2018-01-09

    Oral taxa are often found in the chronic obstructive pulmonary disease (COPD) lung microbiota, but it is not clear if this is due to a physiologic process such as aspiration or experimental contamination at the time of specimen collection. Microbiota samples were obtained from nine subjects with mild or moderate COPD by swabbing lung tissue and upper airway sites during lung lobectomy. Lung specimens were not contaminated with upper airway taxa since they were obtained surgically. The microbiota were analyzed with 16S rRNA gene qPCR and 16S rRNA gene hypervariable region 3 (V3) sequencing. Data analyses were performed using QIIME, SourceTracker, and R. Streptococcus was the most common genus in the oral, bronchial, and lung tissue samples, and multiple other taxa were present in both the upper and lower airways. Each subject's own bronchial and lung tissue microbiota were more similar to each other than were the bronchial and lung tissue microbiota of two different subjects (permutation test, p = 0.0139), indicating more within-subject similarity than between-subject similarity at these two lung sites. Principal coordinate analysis of all subject samples revealed clustering by anatomic sampling site (PERMANOVA, p = 0.001), but not by subject. SourceTracker analysis found that the sources of the lung tissue microbiota were 21.1% (mean) oral microbiota, 8.7% nasal microbiota, and 70.1% unknown. An analysis using the neutral theory of community ecology revealed that the lung tissue microbiota closely reflects the bronchial, oral, and nasal microbiota (immigration parameter estimates 0.69, 0.62, and 0.74, respectively), with some evidence of ecologic drift occurring in the lung tissue. This is the first study to evaluate the mild-moderate COPD lung tissue microbiota without potential for upper airway contamination of the lung samples. In our small study of subjects with COPD, we found oral and nasal bacteria in the lung tissue microbiota, confirming that

  7. Urtica dioica attenuates ovalbumin-induced inflammation and lipid peroxidation of lung tissues in rat asthma model.

    Science.gov (United States)

    Zemmouri, Hanene; Sekiou, Omar; Ammar, Sonda; El Feki, Abdelfattah; Bouaziz, Mohamed; Messarah, Mahfoud; Boumendjel, Amel

    2017-12-01

    To find bioactive medicinal herbs exerting anti-asthmatic activity, we investigated the effect of an aqueous extract of Urtica dioica L. (Urticaceae) leaves (UD), the closest extract to the Algerian traditional use. In this study, we investigated the in vivo anti-asthmatic and antioxidant activities of nettle extract. Adult male Wistar rats were divided into four groups: Group I: negative control; group II: Ovalbumin sensitized/challenged rats (positive control); group III: received UD extract (1.5 g/kg/day) orally along the experimental protocol; group IV: received UD extract (1.5 g/kg/day) orally along the experimental protocol and sensitized/challenged with ovalbumin. After 25 days, blood and tissue samples were collected for haematological and histopathological analysis, respectively. The oxidative stress parameters were evaluated in the lungs, liver and erythrocytes. Then, correlations between markers of airway inflammation and markers of oxidative stress were explored. UD extract significantly (p nettle extract was also investigated for the total phenolic content (30.79 ± 0.96 mg gallic acid/g dry extract) and shows DPPH radical scavenging activity with 152.34 ± 0.37 μg/mL IC 50 value. The results confirmed that UD administration might be responsible for the protective effects of this extract against airway inflammation.

  8. [Evaluation of the course of chronic obstructive lung diseases according to the classifications of the European Respiratory Society and the Global Initiative on Chronic Obstructive Lung Disease].

    Science.gov (United States)

    Nefedov, V B; Shergina, E A; Popova, L A

    2006-01-01

    In 91 patients with chronic obstructive lung disease (COLD), the severity of this disease according to the Classifications of the European Respiratory Society (ERS) and the Global Initiative on Chronic Obstructive Lung Disease (GOLD) was compared with that of pulmonary dysfunction according to the data of a comprehensive study, involving the determination of bronchial patency, lung volumes, capacities, and gas-exchange function. This follows that the ERS and GOLD classifications are to be positively appraised as they provide an eligible group of patients for clinical practice in terms of the severity of pulmonary dysfunction and that of COLD. However, the concomitant clinical use of both classifications cannot be regarded as justifiable due to that there are differences in the number of detectable grades (stages) of COLD and borderline (COLD differentiating grades (stages) values of EFV1). In this connection, both classifications have approximately equally significant merits and shortcomings and it is practically impossible to give preference to one of them as the best one. The optimal way out of the established situation is to develop a new (improved) classification of the severity of COLD on the bases of these two existing classifications.

  9. No mediating effects of glycemic control and inflammation on the association between vitamin D and lung function in the general population.

    Science.gov (United States)

    Kaul, Anne; Gläser, Sven; Hannemann, Anke; Stubbe, Beate; Felix, Stefan B; Nauck, Matthias; Ewert, Ralf; Friedrich, Nele

    2017-04-01

    Vitamin D deficiency is discussed to be associated with lung health. While former studies focused on subjects suffering from pulmonary diseases, we aimed to investigate the association of 25-hydroxy vitamin D [25(OH)D] with lung function in the general population and examined whether mediating effects of inflammation, glycemic control or renal function exist. 1404 participants from the Study of Health in Pomerania with pulmonary function testing assessed by expiratory volume in 1 s (FEV 1 ), forced vital capacity (FVC), total lung capacity and Krogh index were used. Adjusted analysis of variance, linear regression models and mediation analyses were performed. Significant positive associations between 25(OH)D levels and FEV 1 , FVC and Krogh index were found. Mediator analyses revealed no mediating effect of inflammation (fibrinogen), glycemic control (HbA1c) or renal function (eGFR) on associations with FEV 1 or FVC. With respect to Krogh-Index, the association to 25(OH)D was slightly mediated by fibrinogen with a proportion mediated of 9.7%. Significant positive associations of 25(OH)D with lung function were revealed in a general population. The proposed mediating effects of inflammation, glycemic control and renal function on these relations were not confirmed. Further studies examining the causality of the association between 25(OH)D and lung function are necessary. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Effects of acteoside on lipopolysaccharide-induced inflammation in acute lung injury via regulation of NF-κB pathway in vivo and in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Jing, Wang; Chunhua, Ma, E-mail: machunhuabest@126.com; Shumin, Wang, E-mail: wangshuminch@126.com

    2015-06-01

    The purpose of the present study was to investigate the protective role of acteoside (AC) on lipopolysaccharide (LPS)-induced acute lung injury (ALI). BalB/c mice intraperitoneally received AC (30, and 60 mg/kg) or dexamethasone (2 mg/kg) 2 h prior to or after intratracheal instillation of LPS. Treatment with AC significantly decreased lung wet-to-dry weight (W/D) ratio and lung myeloperoxidase (MPO) activity and ameliorated LPS-induced lung histopathological changes. In addition, AC increased super oxide dismutase (SOD) level and inhibited malondialdehyde (MDA) content, total cell and neutrophil infiltrations, and levels of proinflammatory cytokines including tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6) in bronchoalveolar lavage fluid (BALF) in LPS-stimulated mice. Furthermore, we demonstrated that AC inhibited the phosphorylation of IκBα, nuclear factor-κB (NF-κB) p65, inhibitor of nuclear factor kappa-B kinase-α (IKK-α) and inhibitor of nuclear factor kappa-B kinase-β (IKKβ) in LPS-induced inflammation in A549 cells. Our data suggested that LPS evoked the inflammatory response in lung epithelial cells A549. The experimental results indicated that the protective mechanism of AC might be attributed partly to the inhibition of proinflammatory cytokine production and NF-κB activation. - Highlights: • Acteoside inhibited inflammation in LPS-induced lung injury in mice. • Acteoside inhibited inflammation in lung epithelial cells A549. • Acteoside inhibited NF-kB activation in LPS-induced mice and lung epithelial cells A549.

  11. Experimental chronic kidney disease attenuates ischemia-reperfusion injury in an ex vivo rat lung model.

    Directory of Open Access Journals (Sweden)

    Chung-Kan Peng

    Full Text Available Lung ischemia reperfusion injury (LIRI is one of important complications following lung transplant and cardiopulmonary bypass. Although patients on hemodialysis are still excluded as lung transplant donors because of the possible effects of renal failure on the lungs, increased organ demand has led us to evaluate the influence of chronic kidney disease (CKD on LIRI. A CKD model was induced by feeding Sprague-Dawley rats an adenine-rich (0.75% diet for 2, 4 and 6 weeks, and an isolated rat lung in situ model was used to evaluate ischemia reperfusion (IR-induced acute lung injury. The clinicopathological parameters of LIRI, including pulmonary edema, lipid peroxidation, histopathological changes, immunohistochemistry changes, chemokine CXCL1, inducible nitric oxide synthase (iNOS, proinflammatory and anti-inflammatory cytokines, heat shock protein expression, and nuclear factor-κB (NF-κB activation were determined. Our results indicated that adenine-fed rats developed CKD as characterized by increased blood urea nitrogen and creatinine levels and the deposition of crystals in the renal tubules and interstitium. IR induced a significant increase in the pulmonary arterial pressure, lung edema, lung injury scores, the expression of CXCL1 mRNA, iNOS level, and protein concentration of the bronchial alveolar lavage fluid (BALF. The tumor necrosis factor-α levels in the BALF and perfusate; the interleukin-10 level in the perfusate; and the malondialdehyde levels in the lung tissue and perfusate were also significantly increased by LIRI. Counterintuitively, adenine-induced CKD significantly attenuated the severity of lung injury induced by IR. CKD rats exhibited increased heat shock protein 70 expression and decreased activation of NF-κB signaling. In conclusion, adenine-induced CKD attenuated LIRI by inhibiting the NF-κB pathway.

  12. Inhalation exposure to chloramine T induces DNA damage and inflammation in lung of Sprague-Dawley rats.

    Science.gov (United States)

    Shim, Ilseob; Seo, Gyun-Baek; Oh, Eunha; Lee, Mimi; Kwon, Jung-Taek; Sul, Donggeun; Lee, Byung-Woo; Yoon, Byung-Il; Kim, Pilje; Choi, Kyunghee; Kim, Hyun-Mi

    2013-01-01

    Chloramine T has been widely used as a disinfectant in many areas such as kitchens, laboratories and hospitals. It has been also used as a biocide in air fresheners and deodorants which are consumer products; however, little is known about its toxic effects by inhalation route. This study was performed to identify the subacute inhalation toxicity of chloramine T under whole-body inhalation exposure conditions. Male and female groups of rats were exposed to chloramine T at concentrations of 0.2, 0.9 and 4.0 mg/m³ for 6 hr/day, 5 days/week during 4 weeks. After 28-day repeated inhalation of chloramine T, there were dose-dependently significant DNA damage in the rat tissues evaluated and inflammation was histopathologically noted around the terminal airways of the lung in both genders. As a result of the expression of three types of antioxidant enzymes (SOD-2, GPx-1, PRX-1) in rat's lung after exposure, there was no significant change of all antioxidant enzymes in the male and female rats. The results showed that no observed adverse effect level (NOAEL) was 0.2 mg/m³ in male rats and 0.9 mg/m³ in female rats under the present experimental condition.

  13. Radioaerosol lung scanning in chronic obstructive pulmonary disease (COPD) and related disorders

    International Nuclear Information System (INIS)

    Yong Whee Bahk; Soo Kyo Chung

    1994-01-01

    As a coordinated research project of the International Atomic Energy Agency (IAEA), a multicentre joint study on radioaerosol lung scan using the BARC nebulizer has prospectively been carried out during 1988-1992 with the participation of 10 member countries in Asia [Bangladesh, China, India, Indonesia, Japan, Korea, Pakistan, Philippines, Singapore and Thailand]. The study was designed so that it would primarily cover chronic obstructive pulmonary disease (COPD) and the other related and common pulmonary diseases. The study also included normal controls and asymptomatic smokers. The purposes of this presentation are three fold: firstly, to document the usefulness of the nebulizer and the validity of user's protocol in imaging COPD and other lung diseases; secondly, to discuss scan features of the individual COPD and other disorders studied and thirdly, to correlate scan alterations with radiographic findings. Before proceeding with a systematic analysis of aerosol scan patterns in the disease groups, we documented normal pattern. The next step was the assessment of scan features in those who had been smoking for more than several years but had no symptoms or signs referable to airways. The lung diseases we analyzed included COPD [emphysema, chronic bronchitis, asthma and bronchiectasis], bronchial obstruction, compensatory overinflation and other common lung diseases such as lobar pneumonia, tuberculosis, interstitial fibrosis, diffuse panbronchiolitis, lung edema and primary and metastatic lung cancers. Lung embolism, inhalation bums and glue-sniffer's lung are separately discussed by Dr. Sundram of Singapore elsewhere in this book. The larger portion of this chapter is allocated to the discussion of COPD with a special effort made in sorting out differential scan features. Diagnostic criteria in individual COPD were defined for each category of disease and basic clinical symptoms and signs and pertinent laboratory data as well as radiographic manifestations are

  14. Modeling accumulations of particles in lung during chronic inhalation exposures that lead to impaired clearance

    International Nuclear Information System (INIS)

    Wolff, R.K.; Griffith, W.C. Jr.; Cuddihy, R.G.; Snipes, M.B.; Henderson, R.F.; Mauderly, J.L.; McClellan, R.O.

    1989-01-01

    Chronic inhalation of insoluble particles of low toxicity that produce substantial lung burdens of particles, or inhalation of particles that are highly toxic to the lung, can impair clearance. This report describes model calculations of accumulations in lung of inhaled low-toxicity diesel exhaust soot and high-toxicity Ga2O3 particles. Lung burdens of diesel soot were measured periodically during a 24-mo exposure to inhaled diesel exhaust at soot concentrations of 0, 0.35, 3.5, and 7 mg m-3, 7 h d-1, 5 d wk-1. Lung burdens of Ga2O3 were measured for 1 y after a 4-wk exposure to 23 mg Ga2O3 m-3, 2 h d-1, 5 d wk-1. Lung burdens of Ga2O3 were measured for 1 y both studies using inhaled radiolabeled tracer particles. Simulation models fit the observed lung burdens of diesel soot in rats exposed to the 3.5- and 7-mg m-3 concentrations of soot only if it was assumed that clearance remained normal for several months, then virtually stopped. Impaired clearance from high-toxicity particles occurred early after accumulations of a low burden, but that from low-toxicity particles was evident only after months of exposure, when high burdens had accumulated in lung. The impairment in clearances of Ga2O3 particles and radiolabeled tracers was similar, but the impairment in clearance of diesel soot and radiolabeled tracers differed in magnitude. This might have been related to differences in particle size and composition between the tracers and diesel soot. Particle clearance impairment should be considered both in the design of chronic exposures of laboratory animals to inhaled particles and in extrapolating the results to people

  15. Radioaerosol lung scanning in chronic obstructive pulmonary disease (COPD) and related disorders

    Energy Technology Data Exchange (ETDEWEB)

    Bahk, Yong Whee [Departments of Radiology and Nuclear Medicine, Kangnam St. Mary' s Hospital, Catholic University Medical College, Seoul (Korea, Republic of); Chung, Soo Kyo [Department of Nuclear Medicine, Kangnam St. Mary' s Hospital, Catholic University Medical College, Seoul (Korea, Republic of)

    1994-07-01

    As a coordinated research project of the International Atomic Energy Agency (IAEA), a multicentre joint study on radioaerosol lung scan using the BARC nebulizer has prospectively been carried out during 1988-1992 with the participation of 10 member countries in Asia [Bangladesh, China, India, Indonesia, Japan, Korea, Pakistan, Philippines, Singapore and Thailand]. The study was designed so that it would primarily cover chronic obstructive pulmonary disease (COPD) and the other related and common pulmonary diseases. The study also included normal controls and asymptomatic smokers. The purposes of this presentation are three fold: firstly, to document the usefulness of the nebulizer and the validity of user's protocol in imaging COPD and other lung diseases; secondly, to discuss scan features of the individual COPD and other disorders studied and thirdly, to correlate scan alterations with radiographic findings. Before proceeding with a systematic analysis of aerosol scan patterns in the disease groups, we documented normal pattern. The next step was the assessment of scan features in those who had been smoking for more than several years but had no symptoms or signs referable to airways. The lung diseases we analyzed included COPD [emphysema, chronic bronchitis, asthma and bronchiectasis], bronchial obstruction, compensatory overinflation and other common lung diseases such as lobar pneumonia, tuberculosis, interstitial fibrosis, diffuse panbronchiolitis, lung edema and primary and metastatic lung cancers. Lung embolism, inhalation bums and glue-sniffer's lung are separately discussed by Dr. Sundram of Singapore elsewhere in this book. The larger portion of this chapter is allocated to the discussion of COPD with a special effort made in sorting out differential scan features. Diagnostic criteria in individual COPD were defined for each category of disease and basic clinical symptoms and signs and pertinent laboratory data as well as radiographic manifestations are

  16. Significance of zonography and bronchozonography in diagnosis of chronic nonspecific diseases if the lungs

    International Nuclear Information System (INIS)

    Mamilyaev, R.M.

    1979-01-01

    By comparing data obtained in complex x-ray examination (roentgenography, tomography, bronchotomography, zonography and bronchozonography) of 175 patients with chronic bronchitis, chronic pneumonia and chronic lung abscesses it was established that zonography and bronchozonography make it possible to obtain much more diagnostic information than tomo- and bronchotomography. Bronchial and vascular elements can be seen on zonograms 1.5-2 times more often than on tomograms. The use of zonography and bronchozonography is advisable for detection of weakly pronounced peribronchial of pleurocortical pneumosclerosis, small and medium-size inflammatory foci, small cavities of abscesses as well as for the study of changes in the lung outline and round formations with 3-4 cm in diameter. Zonography has no advantages over tomography in the studies of pulmonary abscesses accompanied by marked infiltrative changes, pneumosclerosis and reactive pleural complications

  17. Detection and Severity Scoring of Chronic Obstructive Pulmonary Disease Using Volumetric Analysis of Lung CT Images

    International Nuclear Information System (INIS)

    Hosseini, Mohammad Parsa; Soltanian-Zadeh, Hamid; Akhlaghpoor, Shahram

    2012-01-01

    Chronic obstructive pulmonary disease (COPD) is a devastating disease.While there is no cure for COPD and the lung damage associated with this disease cannot be reversed, it is still very important to diagnose it as early as possible. In this paper, we propose a novel method based on the measurement of air trapping in the lungs from CT images to dete