WorldWideScience

Sample records for chronic hypoxia role

  1. Nutritional status in chronic obstructive pulmonary disease: role of hypoxia.

    Science.gov (United States)

    Raguso, Comasia A; Luthy, Christophe

    2011-02-01

    In patients with chronic obstructive pulmonary disease (COPD), malnutrition and limited physical activity are very common and contribute to disease prognosis, whereas a balance between caloric intake and exercise allows body weight stability and muscle mass preservation. The goal of this review is to analyze the implications of chronic hypoxia on three key elements involved in energy homeostasis and its role in COPD cachexia. The first one is energy intake. Body weight loss, often observed in patients with COPD, is related to lack of appetite. Inflammatory cytokines are known to be involved in anorexia and to be correlated to arterial partial pressure of oxygen. Recent studies in animals have investigated the role of hypoxia in peptides involved in food consumption such as leptin, ghrelin, and adenosine monophosphate activated protein kinase. The second element is muscle function, which is strongly related to energy use. In COPD, muscle atrophy and muscle fiber shift to the glycolytic type might be an adaptation to chronic hypoxia to preserve the muscle from oxidative stress. Muscle atrophy could be the result of a marked activation of the ubiquitin-proteasome pathway as found in muscle of patients with COPD. Hypoxia, via hypoxia inducible factor-1, is implicated in mitochondrial biogenesis and autophagy. Third, hormonal control of energy balance seems to be affected in patients with COPD. Insulin resistance has been described in this group of patients as well as a sort of "growth hormone resistance." Hypoxia, by hypoxia inducible factor-1, accelerates the degradation of tri-iodothyronine and thyroxine, decreasing cellular oxygen consumption, suggesting an adaptive mechanism rather than a primary cause of COPD cachexia. COPD rehabilitation aimed at maintaining function and quality of life needs to address body weight stabilization and, in particular, muscle mass preservation. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Central role of T helper 17 cells in chronic hypoxia-induced pulmonary hypertension.

    Science.gov (United States)

    Maston, Levi D; Jones, David T; Giermakowska, Wieslawa; Howard, Tamara A; Cannon, Judy L; Wang, Wei; Wei, Yongyi; Xuan, Weimin; Resta, Thomas C; Gonzalez Bosc, Laura V

    2017-05-01

    Inflammation is a prominent pathological feature in pulmonary arterial hypertension, as demonstrated by pulmonary vascular infiltration of inflammatory cells, including T and B lymphocytes. However, the contribution of the adaptive immune system is not well characterized in pulmonary hypertension caused by chronic hypoxia. CD4 + T cells are required for initiating and maintaining inflammation, suggesting that these cells could play an important role in the pathogenesis of hypoxic pulmonary hypertension. Our objective was to test the hypothesis that CD4 + T cells, specifically the T helper 17 subset, contribute to chronic hypoxia-induced pulmonary hypertension. We compared indices of pulmonary hypertension resulting from chronic hypoxia (3 wk) in wild-type mice and recombination-activating gene 1 knockout mice (RAG1 -/- , lacking mature T and B cells). Separate sets of mice were adoptively transferred with CD4 + , CD8 + , or T helper 17 cells before normoxic or chronic hypoxic exposure to evaluate the involvement of specific T cell subsets. RAG1 -/- mice had diminished right ventricular systolic pressure and arterial remodeling compared with wild-type mice exposed to chronic hypoxia. Adoptive transfer of CD4 + but not CD8 + T cells restored the hypertensive phenotype in RAG1 -/- mice. Interestingly, RAG1 -/- mice receiving T helper 17 cells displayed evidence of pulmonary hypertension independent of chronic hypoxia. Supporting our hypothesis, depletion of CD4 + cells or treatment with SR1001, an inhibitor of T helper 17 cell development, prevented increased pressure and remodeling responses to chronic hypoxia. We conclude that T helper 17 cells play a key role in the development of chronic hypoxia-induced pulmonary hypertension. Copyright © 2017 the American Physiological Society.

  3. Neuroprotective Role of Intermittent Hypobaric Hypoxia in Unpredictable Chronic Mild Stress Induced Depression in Rats

    Science.gov (United States)

    Deep, Satayanarayan; Prasad, Dipti; Singh, Shashi Bala; Khan, Nilofar

    2016-01-01

    Hypoxic exposure results in several pathophysiological conditions associated with nervous system, these include acute and chronic mountain sickness, loss of memory, and high altitude cerebral edema. Previous reports have also suggested the role of hypoxia in pathogenesis of depression and related psychological conditions. On the other hand, sub lethal intermittent hypoxic exposure induces protection against future lethal hypoxia and may have beneficial effect. Therefore, the present study was designed to explore the neuroprotective role of intermittent hypobaric hypoxia (IHH) in Unpredictable Chronic Mild Stress (UCMS) induced depression like behaviour in rats. The IHH refers to the periodic exposures to hypoxic conditions interrupted by the normoxic or lesser hypoxic conditions. The current study examines the effect of IHH against UCMS induced depression, using elevated plus maze (EPM), open field test (OFT), force swim test (FST), as behavioural paradigm and related histological and molecular approaches. The data indicated the UCMS induced depression like behaviour as evident from decreased exploration activity in OFT with increased anxiety levels in EPM, and increased immobility time in the FST; whereas on providing the IHH (5000m altitude, 4hrs/day for two weeks) these behavioural changes were ameliorated. The morphological and molecular studies also validated the neuroprotective effect of IHH against UCMS induced neuronal loss and decreased neurogenesis. Here, we also explored the role of Brain-Derived Neurotrophic Factor (BDNF) in anticipatory action of IHH against detrimental effect of UCMS as upon blocking of BDNF-TrkB signalling the beneficial effect of IHH was nullified. Taken together, the findings of our study demonstrate that the intermittent hypoxia has a therapeutic potential similar to an antidepressant in animal model of depression and could be developed as a preventive therapeutic option against this pathophysiological state. PMID:26901349

  4. Neuroprotective Role of Intermittent Hypobaric Hypoxia in Unpredictable Chronic Mild Stress Induced Depression in Rats.

    Directory of Open Access Journals (Sweden)

    Neetu Kushwah

    Full Text Available Hypoxic exposure results in several pathophysiological conditions associated with nervous system, these include acute and chronic mountain sickness, loss of memory, and high altitude cerebral edema. Previous reports have also suggested the role of hypoxia in pathogenesis of depression and related psychological conditions. On the other hand, sub lethal intermittent hypoxic exposure induces protection against future lethal hypoxia and may have beneficial effect. Therefore, the present study was designed to explore the neuroprotective role of intermittent hypobaric hypoxia (IHH in Unpredictable Chronic Mild Stress (UCMS induced depression like behaviour in rats. The IHH refers to the periodic exposures to hypoxic conditions interrupted by the normoxic or lesser hypoxic conditions. The current study examines the effect of IHH against UCMS induced depression, using elevated plus maze (EPM, open field test (OFT, force swim test (FST, as behavioural paradigm and related histological and molecular approaches. The data indicated the UCMS induced depression like behaviour as evident from decreased exploration activity in OFT with increased anxiety levels in EPM, and increased immobility time in the FST; whereas on providing the IHH (5000m altitude, 4hrs/day for two weeks these behavioural changes were ameliorated. The morphological and molecular studies also validated the neuroprotective effect of IHH against UCMS induced neuronal loss and decreased neurogenesis. Here, we also explored the role of Brain-Derived Neurotrophic Factor (BDNF in anticipatory action of IHH against detrimental effect of UCMS as upon blocking of BDNF-TrkB signalling the beneficial effect of IHH was nullified. Taken together, the findings of our study demonstrate that the intermittent hypoxia has a therapeutic potential similar to an antidepressant in animal model of depression and could be developed as a preventive therapeutic option against this pathophysiological state.

  5. Influence of obstructive sleep apnea on fatty liver disease: role of chronic intermittent hypoxia.

    Science.gov (United States)

    Türkay, Cansel; Ozol, Duygu; Kasapoğlu, Benan; Kirbas, Ismail; Yıldırım, Zeki; Yiğitoğlu, Ramazan

    2012-02-01

    Currently the common pathogenetic mechanisms in nonalcoholic fatty liver disease (NAFLD) and obstructive sleep apnea (OSA) are gaining increased attention. The aim of this study is to find out the influence of chronic intermittent hypoxemia and OSA related parameters to the severity of NAFLD. We examined the liver functions tests and ultrasonographic data of liver as well as markers of OSA severity (apnea-hypopnea index [AHI], oxygen desaturation index, minimum oxygen saturation, percentage of time spent with S(pO(2)) hypoxia during sleep. The prevalence of NAFLD was higher in patients with severe OSA, suggesting a role for nocturnal hypoxemia in the pathogenesis of fatty liver disease.

  6. Protective role of downregulated MLK3 in myocardial adaptation to chronic hypoxia.

    Science.gov (United States)

    He, Siyi; Liu, Shunbi; Wu, Xiaochen; Xin, Mei; Ding, Sheng; Xin, Dong; Ouyang, Hui; Zhang, Jinbao

    2016-08-01

    A series of protective responses could be evoked to achieve compensatory adaptation once cardiomyocytes are subjected to chronic hypoxia. MLK3/JNK/c-jun signaling pathway was previously demonstrated to be involved in this process. In the present study, we aim to further examine the performance of MLK3 in hypoxic H9C2 cells and potential mechanism. Myocardial samples of patients with congenital heart disease (CHD) were collected. H9C2 cells were cultured in hypoxic conditions for various durations. MLK3 was silenced by transfection of shRNA to evaluate its role in cell viability. We found expression of MLK3 protein was lower in patients with cyanotic CHD. In hypoxic H9C2 cells, its expression was gradually decreased in a time-dependent manner. However, there was no significant difference about expression of MLK3 mRNA. According to the results of MTT, LDH, and TUNEL, faster cell growth curve, lower death rate, and less apoptotic cells could be observed in MLK-shRNA group compared with scramble-shRNA group. Silencing of MLK3 significantly reduced expression of cleaved caspase-3, cleaved PARP, Bad, and Bax, together with increased expression of Bcl-2 and ration of Bcl-2/Bax. Both ratio of phospho-JNK/total JNK and ratio of phospho-c-jun/total c-jun were significantly decreased once MLK3 was silenced. At various reoxygenation time, MLK3 shRNA could significantly promote cell survival and decrease cell death according to MTT and LDH. Our results suggested that chronic hypoxia could reduce MLK3 expression in a posttranscriptional regulatory manner. Downregulation of MLK3 protects H9C2 cells from hypoxia-induced apoptosis and H/R injury via blocking the activation of JNK and c-jun.

  7. Hypoxia-Inducible Factor and Its Role in the Management of Anemia in Chronic Kidney Disease

    Directory of Open Access Journals (Sweden)

    Joshua M. Kaplan

    2018-01-01

    Full Text Available Hypoxia-inducible factor (HIF plays a crucial role in the response to hypoxia at the cellular, tissue, and organism level. New agents under development to pharmacologically manipulate HIF may provide new and exciting possibilities in the treatment of anemia of chronic kidney disease (CKD as well as in multiple other disease states involving ischemia–reperfusion injury. This article provides an overview of recent studies describing current standards of care for patients with anemia in CKD and associated clinical issues, and those supporting the clinical potential for targeting HIF stabilization with HIF prolyl-hydroxylase inhibitors (HIF-PHI in these patients. Additionally, articles reporting the clinical potential for HIF-PHIs in ‘other’ putative therapeutic areas, the tissue and intracellular distribution of HIF- and prolyl-hydroxylase domain (PHD isoforms, and HIF isoforms targeted by the different PHDs, were identified. There is increasing uncertainty regarding the optimal treatment for anemia of CKD with poorer outcomes associated with treatment to higher hemoglobin targets, and the increasing use of iron and consequent risk of iron imbalance. Attainment and maintenance of more physiologic erythropoietin levels associated with HIF stabilization may improve the management of patients resistant to treatment with erythropoiesis-stimulating agents and improve outcomes at higher hemoglobin targets.

  8. Chronic Intermittent Hypoxia Induces Atherosclerosis

    OpenAIRE

    Savransky, Vladimir; Nanayakkara, Ashika; Li, Jianguo; Bevans, Shannon; Smith, Philip L.; Rodriguez, Annabelle; Polotsky, Vsevolod Y.

    2007-01-01

    Rationale: Obstructive sleep apnea, a condition leading to chronic intermittent hypoxia (CIH), is associated with hyperlipidemia, atherosclerosis, and a high cardiovascular risk. A causal link between obstructive sleep apnea and atherosclerosis has not been established.

  9. Role of oxidative stress in PKC-delta upregulation and cardioprotection induced by chronic intermittent hypoxia

    Czech Academy of Sciences Publication Activity Database

    Kolář, František; Ježková, J.; Balková, P.; Břeh, J.; Neckář, Jan; Novák, F.; Nováková, O.; Tomášová, H.; Srbová, M.; Ošťádal, Bohuslav; Wilhelm, J.; Herget, J.

    2007-01-01

    Roč. 292, č. 1 (2007), H224-H230 ISSN 0363-6135 R&D Projects: GA ČR GA305/04/0465 Grant - others:GA UK(CZ) 153/2005/B-Bio/PrF Institutional research plan: CEZ:AV0Z50110509 Keywords : ischemia-reperfusion * protein kinase C * chronic hypoxia Subject RIV: FA - Cardiovascular Diseases incl. Cardiotharic Surgery Impact factor: 3.973, year: 2007

  10. Preserved cardiac mitochondrial function and reduced ischaemia/reperfusion injury afforded by chronic continuous hypoxia: Role of opioid receptors

    Czech Academy of Sciences Publication Activity Database

    Maslov, L. N.; Naryzhnaya, N. V.; Prokudina, E. S.; Kolář, František; Gorbunov, A. S.; Zhang, Y.; Wang, H.; Tsibulnikov, S.Yu.; Portnichenko, A. G.; Lasukova, T. V.; Lishmanov, Yu. B.

    2015-01-01

    Roč. 42, č. 5 (2015), s. 496-501 ISSN 1440-1681 R&D Projects: GA ČR(CZ) GAP303/12/1162 Institutional support: RVO:67985823 Keywords : cardioprotection * chronic hypoxia * ischaemia/reperfusion * mitochondrial function * opioid receptors Subject RIV: ED - Physiology Impact factor: 2.004, year: 2015

  11. Cardiac Response to Chronic Intermittent Hypoxia with a Transition from Adaptation to Maladaptation: The Role of Hydrogen Peroxide

    Directory of Open Access Journals (Sweden)

    Xia Yin

    2012-01-01

    Full Text Available Obstructive sleep apnea (OSA is a highly prevalent respiratory disorder of sleep, and associated with chronic intermittent hypoxia (CIH. Experimental evidence indicates that CIH is a unique physiological state with potentially “adaptive” and “maladaptive” consequences for cardio-respiratory homeostasis. CIH is also a critical element accounting for most of cardiovascular complications of OSA. Cardiac response to CIH is time-dependent, showing a transition from cardiac compensative (such as hypertrophy to decompensating changes (such as failure. CIH-provoked mild and transient oxidative stress can induce adaptation, but severe and persistent oxidative stress may provoke maladaptation. Hydrogen peroxide as one of major reactive oxygen species plays an important role in the transition of adaptive to maladaptive response to OSA-associated CIH. This may account for the fact that although oxidative stress has been recognized as a driver of cardiac disease progression, clinical interventions with antioxidants have had little or no impact on heart disease and progression. Here we focus on the role of hydrogen peroxide in CIH and OSA, trying to outline the potential of antioxidative therapy in preventing CIH-induced cardiac damage.

  12. Roles and Mechanisms of Obstructive Sleep Apnea-Hypopnea Syndrome and Chronic Intermittent Hypoxia in Atherosclerosis: Evidence and Prospective

    OpenAIRE

    Ma, Linqin; Zhang, Jingchun; Liu, Yue

    2016-01-01

    The morbidity and mortality of obstructive sleep apnea-hypopnea syndrome (OSAHS) are regarded as consequences of its adverse effects on the cardiovascular system. Chronic intermittent hypoxia (CIH) induced by OSAHS can result in vascular endothelial injury, thus promoting development of atherosclerosis (AS). Studies have shown that CIH is an independent risk factor for the occurrence and development of AS, but the underlying mechanism remains unclear. Here, we review clinical and fundamental ...

  13. [Effects of chronic intermittent hypoxia on oxidative stress and inflammatory response and the interventional roles of adiponectin].

    Science.gov (United States)

    Pan, Guoyu; Su, Mei; Ding, Wenxiao; Ding, Ning; Huang, Hanpeng; Zhang, Xilong

    2015-04-28

    To explore the effects of chronic intermittent hypoxia (CIH) on oxidative stress and inflammatory response and the interventional roles of adiponectin (Ad). A total of 45 male Wistar rats were randomly divided into three groups of control group, CIH and CIH+Ad (n = 15 each). The control group breathed room air while the CIH and CIH+Ad groups received CIH 8 h/d for 5 successive weeks. The CIH+Ad group Ad had an injection of 10 µg once a week through tail vein. At the end of experiment (Day 35), comparison was performed among three groups about Ad, tumor necrosis factor α (TNF-α), C-reactive protein (CRP) and interleukin (IL) 6 from serum as well as malondialdehyde, superoxide dismutase (SOD), myeloperoxidase (MPO), reactive oxygen spieces (ROS) and nuclear factor (NF) κB from genioglossus. Serum Ad level in CIH group was lower than those in control and CIH+Ad groups ((4 208 ± 2 239) vs (7 051 ± 2 432) and (6 405 ± 2 384) ng/ml, all P statistic difference between control and CIH+Ad groups. Both serum levels of TNF-α and CRP were higher in CIH group than those in control and CIH+Ad groups ((70.87 ± 35.16) vs (26.54 ± 20.32) and (29.50 ± 22.54) pg/ml, as well as (31.84 ± 11.48) vs (22.68 ± 9.63), (25.32 ± 8.34) mg/L, all P statistical difference with CIH+Ad group (1.04 ± 0.27). CIH may induce oxidative stress and inflammation possibly through NF κB pathway while a supplement of Ad attenuates the above CIH-induced responses.

  14. Brief Daily Episode of Normoxia Inhibits Cardioprotection Conferred by Chronic Continuous Hypoxia. Role of Oxidative Stress and BKCa Channels

    Czech Academy of Sciences Publication Activity Database

    Neckář, Jan; Borchert, Gudrun H.; Hloušková, P.; Míčová, P.; Nováková, O.; Novák, F.; Hroch, M.; Papoušek, František; Ošťádal, Bohuslav; Kolář, František

    2013-01-01

    Roč. 19, č. 39 (2013), s. 6880-6889 ISSN 1381-6128 R&D Projects: GA AV ČR(CZ) IAAX01110901; GA ČR(CZ) GA305/07/0875; GA ČR(CZ) GAP303/12/1162 Institutional research plan: CEZ:AV0Z50110509 Institutional support: RVO:67985823 Keywords : chronic continuous hypoxia * reoxygenation * ischemia/reperfusion * myocardial infarction * potassium channels * oxidative stress Subject RIV: FA - Cardiovascular Diseases incl. Cardiotharic Surgery Impact factor: 3.288, year: 2013

  15. [Role of hippocampal neuronal intracellular calcium overload in modulating cognitive dysfunction and the neuronprotective effect of mematine in a mouse model of chronic intermittent hypoxia].

    Science.gov (United States)

    Ming, Hong; Chen, Rui; Wang, Jing; Ju, Jingmei; Sun, Li; Zhang, Guoxing

    2014-12-01

    To investigate the role of hippocampal intracellular calcium overload in modulating cognitive dysfunction and the neuronprotective effect of mematine in a mouse model of chronic intermittent hypoxia. 45 ICR male mice were randomly divided into 3 groups: the unhandled control group (UC group, n = 15), the chronic intermittent hypoxia (CIH group, n = 15) and the pretreatment memantine group (MEM group, n = 15). CIH and MEM mice were subjected to intermittent hypoxia while UC mice to room air for 8 h per day during 4 weeks. Mice in the MEM group were pretreated with memantine (5 mg/kg) by intraperitoneal injection before the cycle started, and those in the UC group and the CIH group were treated with same volume of physiological saline. Neurobehavioral assessments were performed by Open filed and Morris water maze, [Ca²⁺]i in hippocampal neurons was evaluate by flow cytometry, and the expression of cleaved caspase-3, phospho-ERK1/2 in hippocampus were detected by Western blotting. Compared with the UC group, CIH mice displayed markedly more locomotor activity (P overload, neuron apoptosis, dephosphorylation of ERK1/2, which can be attenuated by memantine. Memantine may have a therapeutic effect in the neurocognitive impairment associated with OSAHS.

  16. Roles and Mechanisms of Obstructive Sleep Apnea-Hypopnea Syndrome and Chronic Intermittent Hypoxia in Atherosclerosis: Evidence and Prospective.

    Science.gov (United States)

    Ma, Linqin; Zhang, Jingchun; Liu, Yue

    2016-01-01

    The morbidity and mortality of obstructive sleep apnea-hypopnea syndrome (OSAHS) are regarded as consequences of its adverse effects on the cardiovascular system. Chronic intermittent hypoxia (CIH) induced by OSAHS can result in vascular endothelial injury, thus promoting development of atherosclerosis (AS). Studies have shown that CIH is an independent risk factor for the occurrence and development of AS, but the underlying mechanism remains unclear. Here, we review clinical and fundamental studies reported during the last 10 years on the occurrence and development of AS mediated by CIH, focusing on inflammation, oxidative stress, insulin resistance, cell apoptosis, vascular endothelial injury, platelet activation, and neuroendocrine disorders. This review will offer current evidence and perspective to researchers for the development of effective intervention strategies for OSAHS-related cardiocerebrovascular diseases.

  17. Roles and Mechanisms of Obstructive Sleep Apnea-Hypopnea Syndrome and Chronic Intermittent Hypoxia in Atherosclerosis: Evidence and Prospective

    Directory of Open Access Journals (Sweden)

    Linqin Ma

    2016-01-01

    Full Text Available The morbidity and mortality of obstructive sleep apnea-hypopnea syndrome (OSAHS are regarded as consequences of its adverse effects on the cardiovascular system. Chronic intermittent hypoxia (CIH induced by OSAHS can result in vascular endothelial injury, thus promoting development of atherosclerosis (AS. Studies have shown that CIH is an independent risk factor for the occurrence and development of AS, but the underlying mechanism remains unclear. Here, we review clinical and fundamental studies reported during the last 10 years on the occurrence and development of AS mediated by CIH, focusing on inflammation, oxidative stress, insulin resistance, cell apoptosis, vascular endothelial injury, platelet activation, and neuroendocrine disorders. This review will offer current evidence and perspective to researchers for the development of effective intervention strategies for OSAHS-related cardiocerebrovascular diseases.

  18. Critical Role of Endoplasmic Reticulum Stress in Chronic Intermittent Hypoxia-Induced Deficits in Synaptic Plasticity and Long-Term Memory.

    Science.gov (United States)

    Xu, Lin-Hao; Xie, Hui; Shi, Zhi-Hui; Du, Li-Da; Wing, Yun-Kwok; Li, Albert M; Ke, Ya; Yung, Wing-Ho

    2015-09-20

    This study examined the role of endoplasmic reticulum (ER) stress in mediating chronic intermittent hypoxia (IH)-induced neurocognitive deficits. We designed experiments to demonstrate that ER stress is initiated in the hippocampus under chronic IH and determined its role in apoptotic cell death, impaired synaptic structure and plasticity, and memory deficits. Two weeks of IH disrupted ER fine structure and upregulated ER stress markers, glucose-regulated protein 78, caspase-12, and C/EBP homologous protein, in the hippocampus, which could be suppressed by ER stress inhibitors, tauroursodeoxycholic acid (TUDCA) and 4-phenylbutyric acid. Meanwhile, ER stress induced apoptosis via decreased Bcl-2, promoted reactive oxygen species production, and increased malondialdehyde formation and protein carbonyl, as well as suppressed mitochondrial function. These effects were largely prevented by ER stress inhibitors. On the other hand, suppression of oxidative stress could reduce ER stress. In addition, the length of the synaptic active zone and number of mature spines were reduced by IH. Long-term recognition memory and spatial memory were also impaired, which was accompanied by reduced long-term potentiation in the Schaffer collateral pathway. These effects were prevented by coadministration of the TUDCA. These results show that ER stress plays a critical role in underlying memory deficits in obstructive sleep apnea (OSA)-associated IH. Attenuators of ER stress may serve as novel adjunct therapeutic agents for ameliorating OSA-induced neurocognitive impairment.

  19. Psychomotor skills learning under chronic hypoxia.

    Science.gov (United States)

    Bouquet, C A; Gardette, B; Gortan, C; Abraini, J H

    1999-09-29

    Psychomotor deficits are a prominent feature in subjects exposed to hypoxia. Eight subjects exposed to chronic hypoxia during a simulated climb to 8848 m (Everest-Comex 97) were investigated using both a simple psychomotor task (Purdue pegboard) and two complex psychomotor tasks including a recognition task of either a color stimulus (high semantic level) or an abstract sign (low semantic level). Exposure to hypoxic stress mainly produced psychomotor skills learning deficits compared to control study, with greater deficits in the complex psychomotor task. The pattern of results suggests disruptions of motor strategic process. Our data further suggest that the relative strength of implicit or automatic memory processes associated with semantic information processing may increase when disturbances occur in brain functions.

  20. The role of necrosis, acute hypoxia and chronic hypoxia in 18F-FMISO PET image contrast: a computational modelling study

    Science.gov (United States)

    Warren, Daniel R.; Partridge, Mike

    2016-12-01

    Positron emission tomography (PET) using 18F-fluoromisonidazole (FMISO) is a promising technique for imaging tumour hypoxia, and a potential target for radiotherapy dose-painting. However, the relationship between FMISO uptake and oxygen partial pressure ({{P}{{\\text{O}2}}} ) is yet to be quantified fully. Tissue oxygenation varies over distances much smaller than clinical PET resolution (necrosis. This work develops a computational model of FMISO uptake in millimetre-scale tumour regions. Coupled partial differential equations govern the evolution of oxygen and FMISO distributions, and a dynamic vascular source map represents temporal variations in perfusion. Local FMISO binding capacity is modulated by the necrotic fraction. Outputs include spatiotemporal maps of {{P}{{\\text{O}2}}} and tracer accumulation, enabling calculation of tissue-to-blood ratios (TBRs) and time-activity curves (TACs) as a function of mean tissue oxygenation. The model is characterised using experimental data, finding half-maximal FMISO binding at local {{P}{{\\text{O}2}}} of 1.4 mmHg (95% CI: 0.3-2.6 mmHg) and half-maximal necrosis at 1.2 mmHg (0.1-4.9 mmHg). Simulations predict a non-linear non-monotonic relationship between FMISO activity (4 hr post-injection) and mean tissue {{P}{{\\text{O}2}}} : tracer uptake rises sharply from negligible levels in avascular tissue, peaking at  ˜5 mmHg and declining towards blood activity in well-oxygenated conditions. Greater temporal variation in perfusion increases peak TBRs (range 2.20-5.27) as a result of smaller predicted necrotic fraction, rather than fundamental differences in FMISO accumulation under acute hypoxia. Identical late FMISO uptake can occur in regions with differing {{P}{{\\text{O}2}}} and necrotic fraction, but simulated TACs indicate that additional early-phase information may allow discrimination of hypoxic and necrotic signals. We conclude that a robust approach to FMISO interpretation (and dose-painting prescription

  1. On the mechanisms that limit oxygen uptake during exercise in acute and chronic hypoxia: role of muscle mass

    DEFF Research Database (Denmark)

    Calbet, José A L; Rådegran, Göran; Boushel, Robert

    2009-01-01

    (dye dilution with Cardio-green), leg blood flow (thermodilution), intra-arterial blood pressure and femoral arterial-to-venous differences in blood gases were determined in nine lowlanders studied during incremental exercise using a large (two-legged cycle ergometer exercise: Bike) and a small (one...... altitude acclimatization. Acclimatization improved Bike peak exercise Pa,O2 from 34 +/- 1 in AH to 45 +/- 1 mmHg in CH(P Bike. Acute hypoxia resulted in reduction...... of systemic O2 delivery (46 and 21%) and leg O2 delivery (47 and 26%) during Bike and Knee, respectively, almost matching the corresponding reduction in VO2,peak. Altitude acclimatization restored fully peak systemic and leg O(2) delivery in CH (2.69 +/- 0.27 and 1.28 +/- 0.11 l min(-1), respectively) to sea...

  2. Chronic intermittent hypoxia predisposes to liver injury.

    Science.gov (United States)

    Savransky, Vladimir; Nanayakkara, Ashika; Vivero, Angelica; Li, Jianguo; Bevans, Shannon; Smith, Philip L; Torbenson, Michael S; Polotsky, Vsevolod Y

    2007-04-01

    Obstructive sleep apnea (OSA) is characterized by chronic intermittent hypoxia (CIH). OSA is associated with nonalcoholic steatohepatitis (NASH) in obese subjects. The aim of this study was to investigate the effects of CIH on the liver in the absence of obesity. Lean C57BL/6J mice (n = 15) on a regular chow diet were exposed to CIH for 12 weeks and compared with pair-fed mice exposed to intermittent air (IA, n = 15). CIH caused liver injury with an increase in serum ALT (224 +/- 39 U/l versus 118 +/- 22 U/l in the IA group, P fasting serum insulin levels, and mild elevation of fasting serum total cholesterol and triglycerides (TG). Liver TG content was unchanged, whereas cholesterol content was decreased. Histology showed swelling of hepatocytes, no evidence of hepatic steatosis, and marked accumulation of glycogen in hepatocytes. CIH led to lipid peroxidation of liver tissue with a malondialdehyde (MDA)/free fatty acids (FFA) ratio of 0.54 +/- 0.07 mmol/mol versus 0.30 +/- 0.01 mmol/mol in control animals (P obesity, CIH leads to mild liver injury via oxidative stress and excessive glycogen accumulation in hepatocytes and sensitizes the liver to a second insult, whereas NASH does not develop.

  3. Chronic intermittent hypoxia induces cardiac inflammation and dysfunction in a rat obstructive sleep apnea model.

    Science.gov (United States)

    Wei, Qin; Bian, Yeping; Yu, Fuchao; Zhang, Qiang; Zhang, Guanghao; Li, Yang; Song, Songsong; Ren, Xiaomei; Tong, Jiayi

    2016-11-01

    Chronic intermittent hypoxia is considered to play an important role in cardiovascular pathogenesis during the development of obstructive sleep apnea (OSA). We used a well-described OSA rat model induced with simultaneous intermittent hypoxia. Male Sprague Dawley rats were individually placed into plexiglass chambers with air pressure and components were electronically controlled. The rats were exposed to intermittent hypoxia 8 hours daily for 5 weeks. The changes of cardiac structure and function were examined by ultrasound. The cardiac pathology, apoptosis, and fibrosis were analyzed by H&E staining, TUNNEL assay, and picosirius staining, respectively. The expression of inflammation and fibrosis marker genes was analyzed by quantitative real-time PCR and Western blot. Chronic intermittent hypoxia/low pressure resulted in significant increase of left ventricular internal diameters (LVIDs), end-systolic volume (ESV), end-diastolic volume (EDV), and blood lactate level and marked reduction in ejection fraction and fractional shortening. Chronic intermittent hypoxia increased TUNNEL-positive myocytes, disrupted normal arrangement of cardiac fibers, and increased Sirius stained collagen fibers. The expression levels of hypoxia induced factor (HIF)-1α, NF-kB, IL-6, and matrix metallopeptidase 2 (MMP-2) were significantly increased in the heart of rats exposed to chronic intermittent hypoxia. In conclusion, the left ventricular function was adversely affected by chronic intermittent hypoxia, which is associated with increased expression of HIF-1α and NF-kB signaling molecules and development of cardiac inflammation, apoptosis and fibrosis. © 2016 by the Journal of Biomedical Research. All rights reserved.

  4. The radiation response of cells recovering after chronic hypoxia

    International Nuclear Information System (INIS)

    Kwok, T.T.; Sutherland, R.M.

    1989-01-01

    Experiments were performed to study the influence of hypoxic pretreatment on the radiation response of A431 human squamous carcinoma cells. Reaeration for 10 min after chronic hypoxia (greater than 2 h) was found to enhance the radiosensitivity of A431 cells, and the maximal effect was seen for those cells reaerated after 12 h of hypoxia. The radiosensitivity enhancement for reaerated cells after 12 h of hypoxia was maximized by 5 min after the return to aerobic conditions and reached the control level by 12 h of reaeration. This enhanced radiosensitive state was characterized by a reduced shoulder region and increased slope of the radiation dose-response curve for cells in both the exponential and plateau phases of growth. There was a slight increase in the number of G1 and decrease in the number of S and G2 + M cells for both exponential- and plateau-phase cultures following 12 h hypoxic treatment. Although growth inhibition induced by 12 h of hypoxia was seen for cells in the exponential phase, there was no cell number change in the plateau-phase culture after hypoxia. Plating efficiency (PE) of cells in both growth phases was reduced by 30% after hypoxia. Furthermore, in the exponential-phase culture, the extent of reduction in PE after hypoxia was similar among cells in different phases of the cell cycle. Although S-phase cells in exponentially growing cultures were relatively more resistant to radiation than G1 and G2 + M cells, the cell age-response pattern was the same whether the cells had been aerobic or hypoxic before reaeration and irradiation. Furthermore, the enhancement ratio associated with reaeration after 12 h of hypoxia for these three subpopulations of cells was 1.3. Our results indicate that the increase in radiosensitivity due to reaeration after chronic hypoxia is unlikely to be related to the changes of cell cycle stage and growth phase during hypoxic treatment

  5. Hypoxia Induced Factor in Chronic Kidney Disease: Friend or Foe?

    Science.gov (United States)

    Li, Weiying; Zhao, Yuliang; Fu, Ping

    2017-01-01

    Many studies have shown evidence that erythropoiesis-stimulating agents (ESAs), as a classic treatment for chronic kidney disease (CKD)-related anemia, have several disadvantages and may trigger various adverse events with long-term use. The hypoxia-induced factor (HIF) pathway has been intensively investigated in kidney disease, especially in CKD, as research has shown that HIF-mediated erythropoiesis might work as a potential therapeutic strategy for managing CKD-related anemia. Development of prolyl hydroxylase domain inhibitors (PHIs), as an effective HIF activator, is a valuable step toward finding a replacement for ESAs, which showed an effective erythropoiesis through a comprehensive and physiological approach by promoting erythropoietin production, increasing iron bioavailability and improving chronic inflammatory status. Heretofore no adverse events or obvious off-target effects have been reported in clinical trials of PHIs. Nevertheless, a cautious inspection with extended follow-up period is warranted to validate the safety of prolonged HIF elevation, especially considering its ambiguous role in fibrogenesis and inflammation responses and possible risks in accelerating vascular calcification and tumorigenesis. A weighed dosing strategy might be the key to circumvent the unexpected side-effect brought by pleotropic effects of HIF elevation and achieve a selective augmentation of HIF-mediated signaling pathway. New studies with longer follow-up period and adequate analysis about the risks for proinflammation, vascular calcification and tumorigenesis are needed to ensure the drugs are safe for long-term use before being widely accepted in daily clinical practice.

  6. Tumor Hypoxia: Causative Mechanisms, Microregional Heterogeneities, and the Role of Tissue-Based Hypoxia Markers.

    Science.gov (United States)

    Vaupel, Peter; Mayer, Arnulf

    Tumor hypoxia is a hallmark of solid malignant tumor growth, profoundly influences malignant progression and contributes to the development of therapeutic resistance. Pathogenesis of tumor hypoxia is multifactorial, with contributions from both acute and chronic factors. Spatial distribution of hypoxia within tumors is markedly heterogeneous and often changes over time, e.g., during a course of radiotherapy. Substantial changes in the oxygenation status can occur within the distance of a few cell layers, explaining the inability of currently used molecular imaging techniques to adequately assess this crucial trait. Due to the possible importance of tumor hypoxia for clinical decision-making, there is a great demand for molecular tools which may provide the necessary resolution down to the single cell level. Exogenous and endogenous markers of tumor hypoxia have been investigated for this purpose. Their potential use may be greatly enhanced by multiparametric in situ methods in experimental and human tumor tissue.

  7. Complement C3 deficiency attenuates chronic hypoxia-induced pulmonary hypertension in mice.

    Directory of Open Access Journals (Sweden)

    Eileen M Bauer

    Full Text Available Evidence suggests a role of both innate and adaptive immunity in the development of pulmonary arterial hypertension. The complement system is a key sentry of the innate immune system and bridges innate and adaptive immunity. To date there are no studies addressing a role for the complement system in pulmonary arterial hypertension.Immunofluorescent staining revealed significant C3d deposition in lung sections from IPAH patients and C57Bl6/J wild-type mice exposed to three weeks of chronic hypoxia to induce pulmonary hypertension. Right ventricular systolic pressure and right ventricular hypertrophy were increased in hypoxic vs. normoxic wild-type mice, which were attenuated in C3-/- hypoxic mice. Likewise, pulmonary vascular remodeling was attenuated in the C3-/- mice compared to wild-type mice as determined by the number of muscularized peripheral arterioles and morphometric analysis of vessel wall thickness. The loss of C3 attenuated the increase in interleukin-6 and intracellular adhesion molecule-1 expression in response to chronic hypoxia, but not endothelin-1 levels. In wild-type mice, but not C3-/- mice, chronic hypoxia led to platelet activation as assessed by bleeding time, and flow cytometry of platelets to determine cell surface P-selectin expression. In addition, tissue factor expression and fibrin deposition were increased in the lungs of WT mice in response to chronic hypoxia. These pro-thrombotic effects of hypoxia were abrogated in C3-/- mice.Herein, we provide compelling genetic evidence that the complement system plays a pathophysiologic role in the development of PAH in mice, promoting pulmonary vascular remodeling and a pro-thrombotic phenotype. In addition we demonstrate C3d deposition in IPAH patients suggesting that complement activation plays a role in the development of PAH in humans.

  8. The critical role of ERK in death resistance and invasiveness of hypoxia-selected glioblastoma cells

    International Nuclear Information System (INIS)

    Kim, Jee-Youn; Kim, Yong-Jun; Lee, Sun; Park, Jae-Hoon

    2009-01-01

    The rapid growth of tumor parenchyma leads to chronic hypoxia that can result in the selection of cancer cells with a more aggressive behavior and death-resistant potential to survive and proliferate. Thus, identifying the key molecules and molecular mechanisms responsible for the phenotypic changes associated with chronic hypoxia has valuable implications for the development of a therapeutic modality. The aim of this study was to identify the molecular basis of the phenotypic changes triggered by chronic repeated hypoxia. Hypoxia-resistant T98G (HRT98G) cells were selected by repeated exposure to hypoxia and reoxygenation. Cell death rate was determined by the trypan blue exclusion method and protein expression levels were examined by western blot analysis. The invasive phenotype of the tumor cells was determined by the Matrigel invasion assay. Immunohistochemistry was performed to analyze the expression of proteins in the brain tumor samples. The Student T-test and Pearson Chi-Square test was used for statistical analyses. We demonstrate that chronic repeated hypoxic exposures cause T98G cells to survive low oxygen tension. As compared with parent cells, hypoxia-selected T98G cells not only express higher levels of anti-apoptotic proteins such as Bcl-2, Bcl-X L , and phosphorylated ERK, but they also have a more invasive potential in Matrigel invasion chambers. Activation or suppression of ERK pathways with a specific activator or inhibitor, respectively, indicates that ERK is a key molecule responsible for death resistance under hypoxic conditions and a more invasive phenotype. Finally, we show that the activation of ERK is more prominent in malignant glioblastomas exposed to hypoxia than in low grade astrocytic glial tumors. Our study suggests that activation of ERK plays a pivotal role in death resistance under chronic hypoxia and phenotypic changes related to the invasive phenotype of HRT98G cells compared to parent cells

  9. Sympatho-adrenal activation by chronic intermittent hypoxia

    OpenAIRE

    Prabhakar, Nanduri R.; Kumar, Ganesh K.; Peng, Ying-Jie

    2012-01-01

    Recurrent apnea with chronic intermittent hypoxia (CIH) is a major clinical problem in adult humans and infants born preterm. Patients with recurrent apnea exhibit heightened sympathetic activity as well as elevated plasma catecholamine levels, and these phenotypes are effectively recapitulated in rodent models of CIH. This article summarizes findings from studies addressing sympathetic activation in recurrent apnea patients and rodent models of CIH and the underlying cellular and molecular m...

  10. Angiotensin converting enzyme 1 in the median preoptic nucleus contributes to chronic intermittent hypoxia hypertension.

    Science.gov (United States)

    Faulk, Katelynn E; Nedungadi, T Prashant; Cunningham, J Thomas

    2017-05-01

    Obstructive sleep apnea is associated with hypertension and cardiovascular disease. Chronic intermittent hypoxia is used to model the arterial hypoxemia seen in sleep apnea patients and is associated with increased sympathetic nerve activity and a sustained diurnal increase in blood pressure. The renin angiotensin system has been associated with hypertension seen in chronic intermittent hypoxia. Angiotensin converting enzyme 1, which cleaves angiotensin I to the active counterpart angiotensin II, is present within the central nervous system and has been shown to be regulated by AP-1 transcription factors, such as ΔFosB. Our previous study suggested that this transcriptional regulation in the median preoptic nucleus contributes to the sustained blood pressure seen following chronic intermittent hypoxia. Viral mediated delivery of a short hairpin RNA against angiotensin converting enzyme 1 in the median preoptic nucleus was used along with radio-telemetry measurements of blood pressure to test this hypothesis. FosB immunohistochemistry was utilized in order to assess the effects of angiotensin converting enzyme 1 knockdown on the activity of nuclei downstream from median preoptic nucleus. Angiotensin converting enzyme 1 knockdown within median preoptic nucleus significantly attenuated the sustained hypertension seen in chronic intermittent hypoxia. Angiotensin converting enzyme 1 seems to be partly responsible for regulating downstream regions involved in sympathetic and blood pressure control, such as the paraventricular nucleus and the rostral ventrolateral medulla. The data suggest that angiotensin converting enzyme 1 within median preoptic nucleus plays a critical role in the sustained hypertension seen in chronic intermittent hypoxia. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  11. Comparative and Experimental Studies on the Genes Altered by Chronic Hypoxia in Human Brain Microendothelial Cells

    Directory of Open Access Journals (Sweden)

    Eugenia Mata-Greenwood

    2017-05-01

    Full Text Available Background : Hypoxia inducible factor 1 alpha (HIF1A is a master regulator of acute hypoxia; however, with chronic hypoxia, HIF1A levels return to the normoxic levels. Importantly, the genes that are involved in the cell survival and viability under chronic hypoxia are not known. Therefore, we tested the hypothesis that chronic hypoxia leads to the upregulation of a core group of genes with associated changes in the promoter DNA methylation that mediates the cell survival under hypoxia.Results : We examined the effect of chronic hypoxia (3 days; 0.5% oxygen on human brain micro endothelial cells (HBMEC viability and apoptosis. Hypoxia caused a significant reduction in cell viability and an increase in apoptosis. Next, we examined chronic hypoxia associated changes in transcriptome and genome-wide promoter methylation. The data obtained was compared with 16 other microarray studies on chronic hypoxia. Nine genes were altered in response to chronic hypoxia in all 17 studies. Interestingly, HIF1A was not altered with chronic hypoxia in any of the studies. Furthermore, we compared our data to three other studies that identified HIF-responsive genes by various approaches. Only two genes were found to be HIF dependent. We silenced each of these 9 genes using CRISPR/Cas9 system. Downregulation of EGLN3 significantly increased the cell death under chronic hypoxia, whereas downregulation of ERO1L, ENO2, adrenomedullin, and spag4 reduced the cell death under hypoxia.Conclusions : We provide a core group of genes that regulates cellular acclimatization under chronic hypoxic stress, and most of them are HIF independent.

  12. Protective action of tetramethylpyrazine on the medulla oblongata in rats with chronic hypoxia.

    Science.gov (United States)

    Ding, Yan; Hou, Xuefei; Chen, Li; Li, Hui; Tang, Yuhong; Zhou, Hua; Zhao, Shu; Zheng, Yu

    2013-01-01

    Tetramethylpyrazine (TMP), one of the active ingredients of the Chinese herb Lingusticum Wallichii Frantchat (Chuan Xiong), plays an important role in neuroprotection. However, the protective effect of TMP on the medulla oblongata, the most important region of the brain for cardiovascular and respiratory control, during chronic hypoxia remains unclear. In this study, we examined the neuroprotective effect of TMP on the medulla oblongata after chronic hypoxic injury in rats. Male Sprague-Dawley rats were randomly divided into four groups: control group, TMP group, chronic hypoxia group, and chronic hypoxia+TMP group. Rats were exposed to hypoxia (10% (v/v) O₂) or normoxia for 6 h daily for 14 days. TMP (80 mg/kg) or vehicle (saline) was injected intraperitoneally 30 min before experimentation. Loss of neurons in the pre-Bötzinger complex, the nucleus ambiguus, the nucleus tractus solitarius, the hypoglossal nucleus and the facial nucleus were evaluated by Nissl staining. Superoxide dismutase (SOD) activity and malondialdehyde (MDA) content were measured, and apoptosis was monitored using the terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) method. The level of Bcl-2 mRNA and Bax mRNA was quantitatively measured by RT-PCR analysis. TMP protected Nissl bodies of neurons from injury in all nuclei observed, and reduced the loss of neurons in the nucleus ambiguus, the nucleus tractus solitarius, and the hypoglossal nucleus in rats subjected to chronic hypoxia. TMP upregulated SOD activity and inhibited the increase in MDA content in the medulla oblongata of hypoxic rats. In addition, TMP decreased the rate of apoptosis index (the percentage of apoptotic cells against the total number of cells) in all medullary structures examined, excepting the nucleus ambiguus and inhibited the decrease in Bcl-2 mRNA levels in the medulla oblongata following hypoxia. Our findings indicate that TMP may protect the medullary structures that are involved in

  13. Role of hypoxia-inducible factor in diabetic myocardial hypertrophy ...

    African Journals Online (AJOL)

    Purpose: This study was carried out to investigate the role of hypoxia-inducible factor (HIF) in diabetic cardiomyopathy in vitro. Methods: Hypoxia was induced chemically in H9C2 cells (cardiac hypertrophy model), and the cells were treated with phenylephrine (PE), deferoxamine (DFO), PE + DFO, and HIF-1α siRNA under ...

  14. Hypoxia-induced dysfunction of rat diaphragm: role of peroxynitrite.

    NARCIS (Netherlands)

    Zhu, X.; Heunks, L.M.A.; Versteeg, E.M.M.; Heijden, E. van der; Ennen, L.; Kuppevelt, A.H.M.S.M. van; Vina, J.; Dekhuijzen, P.N.R.

    2005-01-01

    Oxidants may play a role in hypoxia-induced respiratory muscle dysfunction. In the present study we hypothesized that hypoxia-induced impairment in diaphragm contractility is associated with elevated peroxynitrite generation. In addition, we hypothesized that strenuous contractility of the diaphragm

  15. The zinc transporter ZIP12 regulates the pulmonary vascular response to chronic hypoxia.

    Science.gov (United States)

    Zhao, Lan; Oliver, Eduardo; Maratou, Klio; Atanur, Santosh S; Dubois, Olivier D; Cotroneo, Emanuele; Chen, Chien-Nien; Wang, Lei; Arce, Cristina; Chabosseau, Pauline L; Ponsa-Cobas, Joan; Frid, Maria G; Moyon, Benjamin; Webster, Zoe; Aldashev, Almaz; Ferrer, Jorge; Rutter, Guy A; Stenmark, Kurt R; Aitman, Timothy J; Wilkins, Martin R

    2015-08-20

    The typical response of the adult mammalian pulmonary circulation to a low oxygen environment is vasoconstriction and structural remodelling of pulmonary arterioles, leading to chronic elevation of pulmonary artery pressure (pulmonary hypertension) and right ventricular hypertrophy. Some mammals, however, exhibit genetic resistance to hypoxia-induced pulmonary hypertension. We used a congenic breeding program and comparative genomics to exploit this variation in the rat and identified the gene Slc39a12 as a major regulator of hypoxia-induced pulmonary vascular remodelling. Slc39a12 encodes the zinc transporter ZIP12. Here we report that ZIP12 expression is increased in many cell types, including endothelial, smooth muscle and interstitial cells, in the remodelled pulmonary arterioles of rats, cows and humans susceptible to hypoxia-induced pulmonary hypertension. We show that ZIP12 expression in pulmonary vascular smooth muscle cells is hypoxia dependent and that targeted inhibition of ZIP12 inhibits the rise in intracellular labile zinc in hypoxia-exposed pulmonary vascular smooth muscle cells and their proliferation in culture. We demonstrate that genetic disruption of ZIP12 expression attenuates the development of pulmonary hypertension in rats housed in a hypoxic atmosphere. This new and unexpected insight into the fundamental role of a zinc transporter in mammalian pulmonary vascular homeostasis suggests a new drug target for the pharmacological management of pulmonary hypertension.

  16. Guinea Pig as a Model to Study the Carotid Body Mediated Chronic Intermittent Hypoxia Effects.

    Science.gov (United States)

    Docio, Inmaculada; Olea, Elena; Prieto-LLoret, Jesus; Gallego-Martin, Teresa; Obeso, Ana; Gomez-Niño, Angela; Rocher, Asuncion

    2018-01-01

    Clinical and experimental evidence indicates a positive correlation between chronic intermittent hypoxia (CIH), increased carotid body (CB) chemosensitivity, enhanced sympatho-respiratory coupling and arterial hypertension and cardiovascular disease. Several groups have reported that both the afferent and efferent arms of the CB chemo-reflex are enhanced in CIH animal models through the oscillatory CB activation by recurrent hypoxia/reoxygenation episodes. Accordingly, CB ablation or denervation results in the reduction of these effects. To date, no studies have determined the effects of CIH treatment in chemo-reflex sensitization in guinea pig, a rodent with a hypofunctional CB and lacking ventilatory responses to hypoxia. We hypothesized that the lack of CB hypoxia response in guinea pig would suppress chemo-reflex sensitization and thereby would attenuate or eliminate respiratory, sympathetic and cardiovascular effects of CIH treatment. The main purpose of this study was to assess if guinea pig CB undergoes overactivation by CIH and to correlate CIH effects on CB chemoreceptors with cardiovascular and respiratory responses to hypoxia. We measured CB secretory activity, ventilatory parameters, systemic arterial pressure and sympathetic activity, basal and in response to acute hypoxia in two groups of animals: control and 30 days CIH exposed male guinea pigs. Our results indicated that CIH guinea pig CB lacks activity elicited by acute hypoxia measured as catecholamine (CA) secretory response or intracellular calcium transients. Plethysmography data showed that only severe hypoxia (7% O 2 ) and hypercapnia (5% CO 2 ) induced a significant increased ventilatory response in CIH animals, together with higher oxygen consumption. Therefore, CIH exposure blunted hyperventilation to hypoxia and hypercapnia normalized to oxygen consumption. Increase in plasma CA and superior cervical ganglion CA content was found, implying a CIH induced sympathetic hyperactivity. CIH

  17. Morphological state of aorta in the fetuses and newborns suffered from chronic intrauterine hypoxia (experimental research

    Directory of Open Access Journals (Sweden)

    O. V. Kaluzhina

    2015-04-01

    Full Text Available The cardiovascular system in newborns with chronic hypoxia is affected in 40–70%. Aim. To investigate morphological state of aorta in the fetuses and newborns suffered from chronic intrauterine hypoxia. Methods and results. Aortic wall was investigated with modern morphological methods in 34 laboratory animals in order to identify the morphological features of the fetuses and newborns’ vessel affected by this pathogenic factor. It was established that chronic hypoxia leads to endothelial trophics deterioration, its flattening, dystrophic processes with following cells desquamation, density reduction of smooth muscle cells, thickening of the intima-media. Conclusion. It shows alterative-sclerotic changes in aorta in cases with chronic hypoxia influence.

  18. Role of hypoxia and hypoxia inducible factor in physiological and pathological conditions

    Directory of Open Access Journals (Sweden)

    Mozhgan Jahani

    2017-11-01

    Full Text Available Introduction: Organisms are exposed to oxygen deprivation (Hypoxia in various physiological and pathological conditions. There are different conserve evolutionary responses to counterview with this stress that primary transcriptional response to stress related to hypoxia is interceded by hypoxia-inducible factor (HIF-1 in mammals. This factor can regulate different genes that have essential roles in adaptation to this condition. In this review, the role of this factor in physiological and pathological conditions under hypoxic condition has been evaluated after examining structural features and regulation characteristics of HIF-1. Methods: First, articles related to the keywords of hypoxia and HIF-1 (from 1991-2016 were searched from valid databases such as Springer Link, Google Scholar, PubMed and Science direct. Then, the articles correlated with hypoxia, HIF-1 and their roles in physiological and pathological conditions (120 articles were searched and just 64 articles were selected for this study. Result: According to studies, there are different genes in cells and organs that can be regulated by HIF-1. Activation of genes expression by this protein occurs through its linkage to cis-acting of 50 base pair hypoxia response element (HRE region located in their promotor and enhancer. Depending on circumstances, activation of these genes can be beneficial or harmful. Conclusion: Activation of different genes in hypoxia by HIF-1 has different effects on physiological and pathological conditions. Therefore, HIF-1, as a hypoxia-inducible factor in hypoxic conditions, plays an essential role in the adaptation of cells and organs to changes related to the presence of oxygen.

  19. Hypoxia: The Force that Drives Chronic Kidney Disease

    Science.gov (United States)

    Fu, Qiangwei; Colgan, Sean P; Shelley, Carl Simon

    2016-01-01

    In the United States the prevalence of end-stage renal disease (ESRD) reached epidemic proportions in 2012 with over 600,000 patients being treated. The rates of ESRD among the elderly are disproportionally high. Consequently, as life expectancy increases and the baby-boom generation reaches retirement age, the already heavy burden imposed by ESRD on the US health care system is set to increase dramatically. ESRD represents the terminal stage of chronic kidney disease (CKD). A large body of evidence indicating that CKD is driven by renal tissue hypoxia has led to the development of therapeutic strategies that increase kidney oxygenation and the contention that chronic hypoxia is the final common pathway to end-stage renal failure. Numerous studies have demonstrated that one of the most potent means by which hypoxic conditions within the kidney produce CKD is by inducing a sustained inflammatory attack by infiltrating leukocytes. Indispensable to this attack is the acquisition by leukocytes of an adhesive phenotype. It was thought that this process resulted exclusively from leukocytes responding to cytokines released from ischemic renal endothelium. However, recently it has been demonstrated that leukocytes also become activated independent of the hypoxic response of endothelial cells. It was found that this endothelium-independent mechanism involves leukocytes directly sensing hypoxia and responding by transcriptional induction of the genes that encode the β2-integrin family of adhesion molecules. This induction likely maintains the long-term inflammation by which hypoxia drives the pathogenesis of CKD. Consequently, targeting these transcriptional mechanisms would appear to represent a promising new therapeutic strategy. PMID:26847481

  20. Role of Carotid Body in Intermittent Hypoxia-Related Hypertension.

    Science.gov (United States)

    Iturriaga, Rodrigo; Oyarce, María Paz; Dias, Ana Carolina Rodrigues

    2017-05-01

    Obstructive sleep apnea (OSA), a common breathing disorder, is recognized as an independent risk factor for systemic hypertension. Among the alterations induced by OSA, the chronic intermittent hypoxia (CIH) is considered the main factor for the hypertension. Exposure of rodents to CIH is the gold-standard method to study the mechanisms involved in the cardiovascular alterations induced by OSA. Although it is well known that CIH produces hypertension, the underlying mechanisms are not totally elucidated. It is likely that the CIH-induced systemic oxidative stress and inflammation may elicit endothelial dysfunction and increase the arterial blood pressure. In addition, OSA patients and animals exposed to CIH show sympathetic hyperactivity and potentiated cardiorespiratory responses to acute hypoxia, suggesting that CIH enhances the peripheral hypoxic chemoreflex. Recent experimental evidences support the proposal that CIH selectively enhances carotid body (CB) chemosensory reactivity to oxygen, which in turn increases sympathetic outflow leading to neurogenic hypertension. In this review, we will discuss the supporting evidence for a critical role of the CB in the generation and maintenance of the hypertension induced by CIH, also, the contribution of oxidative stress to enhance CB chemosensory drive and the activation of sympathetic-related centers in the brain.

  1. Sympatho-adrenal activation by chronic intermittent hypoxia

    Science.gov (United States)

    Kumar, Ganesh K.; Peng, Ying-Jie

    2012-01-01

    Recurrent apnea with chronic intermittent hypoxia (CIH) is a major clinical problem in adult humans and infants born preterm. Patients with recurrent apnea exhibit heightened sympathetic activity as well as elevated plasma catecholamine levels, and these phenotypes are effectively recapitulated in rodent models of CIH. This article summarizes findings from studies addressing sympathetic activation in recurrent apnea patients and rodent models of CIH and the underlying cellular and molecular mechanisms. Available evidence suggests that augmented chemoreflex and attenuated baroreflex contribute to sympathetic activation by CIH. Studies on rodents showed that CIH augments the carotid body response to hypoxia and attenuates the carotid baroreceptor response to increased sinus pressures. Processing of afferent information from chemoreceptors at the central nervous system is also facilitated by CIH. Adult and neonatal rats exposed to CIH exhibit augmented catecholamine secretion from the adrenal medulla. Adrenal demedullation prevents the elevation of circulating catecholamines in CIH-exposed rodents. Reactive oxygen species (ROS)-mediated signaling is emerging as the major cellular mechanism triggering sympatho-adrenal activation by CIH. Molecular mechanisms underlying increased ROS generation by CIH seem to involve transcriptional dysregulation of genes encoding pro-and antioxidant enzymes by hypoxia-inducible factor-1 and -2, respectively. PMID:22723632

  2. Sympatho-adrenal activation by chronic intermittent hypoxia.

    Science.gov (United States)

    Prabhakar, Nanduri R; Kumar, Ganesh K; Peng, Ying-Jie

    2012-10-15

    Recurrent apnea with chronic intermittent hypoxia (CIH) is a major clinical problem in adult humans and infants born preterm. Patients with recurrent apnea exhibit heightened sympathetic activity as well as elevated plasma catecholamine levels, and these phenotypes are effectively recapitulated in rodent models of CIH. This article summarizes findings from studies addressing sympathetic activation in recurrent apnea patients and rodent models of CIH and the underlying cellular and molecular mechanisms. Available evidence suggests that augmented chemoreflex and attenuated baroreflex contribute to sympathetic activation by CIH. Studies on rodents showed that CIH augments the carotid body response to hypoxia and attenuates the carotid baroreceptor response to increased sinus pressures. Processing of afferent information from chemoreceptors at the central nervous system is also facilitated by CIH. Adult and neonatal rats exposed to CIH exhibit augmented catecholamine secretion from the adrenal medulla. Adrenal demedullation prevents the elevation of circulating catecholamines in CIH-exposed rodents. Reactive oxygen species (ROS)-mediated signaling is emerging as the major cellular mechanism triggering sympatho-adrenal activation by CIH. Molecular mechanisms underlying increased ROS generation by CIH seem to involve transcriptional dysregulation of genes encoding pro-and antioxidant enzymes by hypoxia-inducible factor-1 and -2, respectively.

  3. CAROTID BODY POTENTIATION DURING CHRONIC INTERMITTENT HYPOXIA: IMPLICATION FOR HYPERTENSION

    Directory of Open Access Journals (Sweden)

    Rodrigo eDel Rio

    2014-11-01

    Full Text Available Autonomic dysfunction is involved in the development of hypertension in humans with obstructive sleep apnea, and animals exposed to chronic intermittent hypoxia (CIH. It has been proposed that a crucial step in the development of the hypertension is the potentiation of the carotid body (CB chemosensory responses to hypoxia, but the temporal progression of the CB chemosensory, autonomic and hypertensive changes induced by CIH are not known. We tested the hypothesis that CB potentiation precedes the autonomic imbalance and the hypertension in rats exposed to CIH. Thus, we studied the changes in CB chemosensory and ventilatory responsiveness to hypoxia, the spontaneous baroreflex sensitivity (BRS, heart rate variability (HRV and arterial blood pressure in pentobarbital anesthetized rats exposed to CIH for 7, 14 and 21 days. After 7 days of CIH, CB chemosensory and ventilatory responses to hypoxia were enhanced, while BRS was significantly reduced by 2-fold in CIH-rats compared to sham-rats. These alterations persisted until 21 days of CIH. After 14 days, CIH shifted the HRV power spectra suggesting a predominance of sympathetic over parasympathetic tone. In contrast, hypertension was found after 21 days of CIH. Concomitant changes between the gain of spectral HRV, BRS and ventilatory hypoxic chemoreflex showed that the CIH-induced BRS attenuation preceded the HRV changes. CIH induced a simultaneous decrease of the BRS gain along with an increase of the hypoxic ventilatory gain. Present results show that CIH-induced persistent hypertension was preceded by early changes in CB chemosensory control of cardiorespiratory and autonomic function.

  4. Carotid body denervation prevents fasting hyperglycemia during chronic intermittent hypoxia.

    Science.gov (United States)

    Shin, Mi-Kyung; Yao, Qiaoling; Jun, Jonathan C; Bevans-Fonti, Shannon; Yoo, Doo-Young; Han, Woobum; Mesarwi, Omar; Richardson, Ria; Fu, Ya-Yuan; Pasricha, Pankaj J; Schwartz, Alan R; Shirahata, Machiko; Polotsky, Vsevolod Y

    2014-10-01

    Obstructive sleep apnea causes chronic intermittent hypoxia (IH) and is associated with impaired glucose metabolism, but mechanisms are unknown. Carotid bodies orchestrate physiological responses to hypoxemia by activating the sympathetic nervous system. Therefore, we hypothesized that carotid body denervation would abolish glucose intolerance and insulin resistance induced by chronic IH. Male C57BL/6J mice underwent carotid sinus nerve dissection (CSND) or sham surgery and then were exposed to IH or intermittent air (IA) for 4 or 6 wk. Hypoxia was administered by decreasing a fraction of inspired oxygen from 20.9% to 6.5% once per minute, during the 12-h light phase (9 a.m.-9 p.m.). As expected, denervated mice exhibited blunted hypoxic ventilatory responses. In sham-operated mice, IH increased fasting blood glucose, baseline hepatic glucose output (HGO), and expression of a rate-liming hepatic enzyme of gluconeogenesis phosphoenolpyruvate carboxykinase (PEPCK), whereas the whole body glucose flux during hyperinsulinemic euglycemic clamp was not changed. IH did not affect glucose tolerance after adjustment for fasting hyperglycemia in the intraperitoneal glucose tolerance test. CSND prevented IH-induced fasting hyperglycemia and increases in baseline HGO and liver PEPCK expression. CSND trended to augment the insulin-stimulated glucose flux and enhanced liver Akt phosphorylation at both hypoxic and normoxic conditions. IH increased serum epinephrine levels and liver sympathetic innervation, and both increases were abolished by CSND. We conclude that chronic IH induces fasting hyperglycemia increasing baseline HGO via the CSN sympathetic output from carotid body chemoreceptors, but does not significantly impair whole body insulin sensitivity. Copyright © 2014 the American Physiological Society.

  5. [Damage effects of chronic hypoxia on medulla oblongata associated with oxidative stress and cell apoptosis].

    Science.gov (United States)

    Hou, Xuefei; Ding, Yan; Nie, Zheng; Li, Hui; Tang, Yuhong; Zhou, Hua; Chen, Li; Zheng, Yu

    2012-08-01

    The aim of this study is to study the damage effects of chronic hypoxia on medulla oblongata and to explore whether the damage is associated with oxidative stress and cell apoptosis. Adult male SD rats were randomly divided into two groups: control group and chronic hypoxia group. Medulla oblongata was obtained for the following methods of analyses. Nissl's staining was used to examine the Niss bodies of neurons in medullary respiratory related nuclei, biochemistry methods were utilized to examine oxidant stress damage induced by chronic hypoxia on medulla oblongata through measuring malondialdehyde (MDA) content and superoxide dismutase (SOD) activity, and RT-PCR technique was used to study the influence of apoptosis induced by chronic hypoxia on medulla oblongata through analyzing the levels of Bax mRNA and Bcl-2 mRNA. The results showed the optical densities of Nissl's staining in pre-BötC, NA, NTS, FN, and 12N were significantly decreased in chronic hypoxia group in comparison with that in control group (P 0.05). Bax mRNA expression had no obvious change and Bcl-2 mRNA expression significantly decreased in chronic hypoxia group in comparison with that in control group (P < 0.05). The results suggest that chronic hypoxia could bring about serious damage to medullary respiratory centers through aggravating oxidative stress and increasing cell apoptosis.

  6. Daily intermittent hypoxia enhances walking after chronic spinal cord injury

    Science.gov (United States)

    Hayes, Heather B.; Jayaraman, Arun; Herrmann, Megan; Mitchell, Gordon S.; Rymer, William Z.

    2014-01-01

    Objectives: To test the hypothesis that daily acute intermittent hypoxia (dAIH) and dAIH combined with overground walking improve walking speed and endurance in persons with chronic incomplete spinal cord injury (iSCI). Methods: Nineteen subjects completed the randomized, double-blind, placebo-controlled, crossover study. Participants received 15, 90-second hypoxic exposures (dAIH, fraction of inspired oxygen [Fio2] = 0.09) or daily normoxia (dSHAM, Fio2 = 0.21) at 60-second normoxic intervals on 5 consecutive days; dAIH was given alone or combined with 30 minutes of overground walking 1 hour later. Walking speed and endurance were quantified using 10-Meter and 6-Minute Walk Tests. The trial is registered at ClinicalTrials.gov (NCT01272349). Results: dAIH improved walking speed and endurance. Ten-Meter Walk time improved with dAIH vs dSHAM after 1 day (mean difference [MD] 3.8 seconds, 95% confidence interval [CI] 1.1–6.5 seconds, p = 0.006) and 2 weeks (MD 3.8 seconds, 95% CI 0.9–6.7 seconds, p = 0.010). Six-Minute Walk distance increased with combined dAIH + walking vs dSHAM + walking after 5 days (MD 94.4 m, 95% CI 17.5–171.3 m, p = 0.017) and 1-week follow-up (MD 97.0 m, 95% CI 20.1–173.9 m, p = 0.014). dAIH + walking increased walking distance more than dAIH after 1 day (MD 67.7 m, 95% CI 1.3–134.1 m, p = 0.046), 5 days (MD 107.0 m, 95% CI 40.6–173.4 m, p = 0.002), and 1-week follow-up (MD 136.0 m, 95% CI 65.3–206.6 m, p walking improved walking speed and distance in persons with chronic iSCI. The impact of dAIH is enhanced by combination with walking, demonstrating that combinatorial therapies may promote greater functional benefits in persons with iSCI. Classification of evidence: This study provides Class I evidence that transient hypoxia (through measured breathing treatments), along with overground walking training, improves walking speed and endurance after iSCI. PMID:24285617

  7. Overexpression of extracellular superoxide dismutase protects against brain injury induced by chronic hypoxia.

    Directory of Open Access Journals (Sweden)

    Nahla Zaghloul

    Full Text Available Extracellular superoxide dismutase (EC-SOD is an isoform of SOD normally found both intra- and extra-cellularly and accounting for most SOD activity in blood vessels. Here we explored the role of EC-SOD in protecting against brain damage induced by chronic hypoxia. EC-SOD Transgenic mice, were exposed to hypoxia (FiO2.1% for 10 days (H-KI and compared to transgenic animals housed in room air (RA-KI, wild type animals exposed to hypoxia (H-WT or wild type mice housed in room air (RA-WT. Overall brain metabolism evaluated by positron emission tomography (PET showed that H-WT mice had significantly higher uptake of 18FDG in the brain particularly the hippocampus, hypothalamus, and cerebellum. H-KI mice had comparable uptake to the RA-KI and RA-WT groups. To investigate the functional state of the hippocampus, electrophysiological techniques in ex vivo hippocampal slices were performed and showed that H-KI had normal synaptic plasticity, whereas H-WT were severely affected. Markers of oxidative stress, GFAP, IBA1, MIF, and pAMPK showed similar values in the H-KI and RA-WT groups, but were significantly increased in the H-WT group. Caspase-3 assay and histopathological studies showed significant apoptosis/cell damage in the H-WT group, but no significant difference in the H-KI group compared to the RA groups. The data suggest that EC-SOD has potential prophylactic and therapeutic roles in diseases with compromised brain oxygenation.

  8. The efficacy of antihypertensive drugs in chronic intermittent hypoxia conditions

    Science.gov (United States)

    Diogo, Lucilia N.; Monteiro, Emília C.

    2014-01-01

    Sleep apnea/hypopnea disorders include centrally originated diseases and obstructive sleep apnea (OSA). This last condition is renowned as a frequent secondary cause of hypertension (HT). The mechanisms involved in the pathogenesis of HT can be summarized in relation to two main pathways: sympathetic nervous system stimulation mediated mainly by activation of carotid body (CB) chemoreflexes and/or asphyxia, and, by no means the least important, the systemic effects of chronic intermittent hypoxia (CIH). The use of animal models has revealed that CIH is the critical stimulus underlying sympathetic activity and hypertension, and that this effect requires the presence of functional arterial chemoreceptors, which are hyperactive in CIH. These models of CIH mimic the HT observed in humans and allow the study of CIH independently without the mechanical obstruction component. The effect of continuous positive airway pressure (CPAP), the gold standard treatment for OSA patients, to reduce blood pressure seems to be modest and concomitant antihypertensive therapy is still required. We focus this review on the efficacy of pharmacological interventions to revert HT associated with CIH conditions in both animal models and humans. First, we explore the experimental animal models, developed to mimic HT related to CIH, which have been used to investigate the effect of antihypertensive drugs (AHDs). Second, we review what is known about drug efficacy to reverse HT induced by CIH in animals. Moreover, findings in humans with OSA are cited to demonstrate the lack of strong evidence for the establishment of a first-line antihypertensive regimen for these patients. Indeed, specific therapeutic guidelines for the pharmacological treatment of HT in these patients are still lacking. Finally, we discuss the future perspectives concerning the non-pharmacological and pharmacological management of this particular type of HT. PMID:25295010

  9. Adjustments in cholinergic, adrenergic and purinergic control of cardiovascular function in snapping turtle embryos (Chelydra serpentina) incubated in chronic hypoxia.

    Science.gov (United States)

    Eme, John; Rhen, Turk; Crossley, Dane A

    2014-10-01

    Adenosine is an endogenous nucleoside that acts via G-protein coupled receptors. In vertebrates, arterial or venous adenosine injection causes a rapid and large bradycardia through atrioventricular node block, a response mediated by adenosine receptors that inhibit adenylate cyclase and decrease cyclic AMP concentration. Chronic developmental hypoxia has been shown to alter cardioregulatory mechanisms in reptile embryos, but adenosine's role in mediating these responses is not known. We incubated snapping turtle embryos under chronic normoxic (N21; 21 % O2) or chronic hypoxic conditions (H10; 10 % O2) beginning at 20 % of embryonic incubation. H10 embryos at 90 % of incubation were hypotensive relative to N21 embryos in both normoxic and hypoxic conditions. Hypoxia caused a hypotensive bradycardia in both N21 and H10 embryos during the initial 30 min of exposure; however, f H and P m both trended towards increasing during the subsequent 30 min, and H10 embryos were tachycardic relative to N21 embryos in hypoxia. Following serial ≥1 h exposure to normoxic and hypoxic conditions, a single injection of adenosine (1 mg kg(-1)) was given. N21 and H10 embryos responded to adenosine injection with a rapid and large hypotensive bradycardia in both normoxia and hypoxia. Gene expression for adenosine receptors were quantified in cardiac tissue, and Adora1 mRNA was the predominant receptor subtype with transcript levels 30-82-fold higher than Adora2A or Adora2B. At 70 % of incubation, H10 embryos had lower Adora1 and Adora2B expression compared to N21 embryos. Expression of Adora1 and Adora2B decreased in N21 embryos during development and did not differ from H10 embryos at 90 % of incubation. Similar to previous results in normoxia, H10 embryos in hypoxia were chronically tachycardic compared to N21 embryos before and after complete cholinergic and adrenergic blockade. Chronic hypoxia altered the development of normal cholinergic and adrenergic tone, as well as

  10. Fetal exposure to a diabetic intrauterine environment resulted in a failure of cord blood endothelial progenitor cell adaptation against chronic hypoxia

    Directory of Open Access Journals (Sweden)

    Dincer UD

    2014-12-01

    Full Text Available U Deniz Dincer Department of Basic and Clinical Pharmacology, School of Medicine, Bezmialem Vakif University (BAVU, Fatih/Istanbul, Turkey Abstract: Gestational diabetes mellitus (GDM has long-term health consequences, and fetal exposure to a diabetic intrauterine environment increases cardiovascular risk for her adult offspring. Some part of this could be related to their endothelial progenitor cells (EPCs. Understanding the vessel-forming ability of human umbilical cord blood (HUCB-derived endothelial colony-forming cells (ECFCs against pathological stress such as GDM response to hypoxia could generate new therapeutic strategies. This study aims to investigate the role of chronic hypoxia in EPCs functional and vessel-forming ability in GDM subjects. Each ECFC was expressed in endothelial and pro-angiogenic specific markers, namely endothelial nitric oxide synthase (eNOS, platelet (PECAM-1 endothelial cell adhesion molecule 1, vascular endothelial-cadherin CdH5 (Ca-dependent cell adhesion molecule, vascular endothelial growth factor A, (VEGFA and insulin-like growth factor 1 (IGF1. Chronic hypoxia did not affect CdH5, but PECAM1 MRNA expressions were increased in control and GDM subjects. Control hypoxic and GDM normoxic VEGFA MRNA expressions and hypoxia-inducible factor 1-alpha (HIF1α protein expressions were significantly increased in HUCB ECFCs. GDM resulted in most failure of HUCB ECFC adaptation and eNOS protein expressions against chronic hypoxia. Chronic hypoxia resulted in an overall decline in HUCB ECFCs' proliferative ability due to reduction of clonogenic capacity and diminished vessel formation. Furthermore, GDM also resulted in most failure of cord blood ECFC adaptation against chronic hypoxic environment. Keywords: endothelial progenitor cells, gestational diabetes mellitus, chronic hypoxia, human cord blood

  11. The role of hypoxia inducible factor 1 (HIF-1) in hypoxia induced apoptosis

    NARCIS (Netherlands)

    Greijer, A.E.; Wall, E. van der

    2004-01-01

    Apoptosis can be induced in response to hypoxia. The severity of hypoxia determines whether cells become apoptotic or adapt to hypoxia and survive. A hypoxic environment devoid of nutrients prevents the cell undergoing energy dependent apoptosis and cells become necrotic. Apoptosis regulatory

  12. A novel adjustable automated system for inducing chronic intermittent hypoxia in mice.

    Science.gov (United States)

    Polšek, Dora; Bago, Marcel; Živaljić, Marija; Rosenzweig, Ivana; Lacza, Zsombor; Gajović, Srećko

    2017-01-01

    Sleep apnea is a chronic, widely underdiagnosed condition characterized by disruption of sleep architecture and intermittent hypoxia due to short cessations of breathing. It is a major independent risk factor for myocardial infarction, congestive heart failure and stroke as well as one of the rare modifiable risk factors for Alzheimer's Dementia. Reliable animal disease models are needed to understand the link between sleep apnea and the various clinically linked disorders. An automated system for inducing hypoxia was developed, in which the major improvement was the possibility to efficiently adjust the length and intensity of hypoxia in two different periods. The chamber used a small volume of gas allowing for fast exchanges of different oxygen levels. The mice were kept in their cages adapted with the system on the cage lid. As a proof of principle, they were exposed to a three week period of intermittent hypoxia for 8 hours a day, with 90 s intervals of 5, 7% and 21% oxygen to validate the model. Treated (n = 8) and control mice (no hypoxia, n = 7) were handled in the same manner and their hippocampal brain regions compared by histology. The chamber provided a fast, reliable and precise intermittent hypoxia, without inducing noticeable side effects to the animals. The validation experiment showed that apoptotic neurons in the hippocampus were more numerous in the mice exposed to intermittent hypoxia than in the control group, in all tested hippocampal regions (cornu ammonis 1 (CA1) P apnea, which was validated by apoptosis of hippocampal neurons.

  13. Chronic Intermittent Hypoxia Induces Chronic Low-Grade Neuroinflammation in the Dorsal Hippocampus of Mice.

    Science.gov (United States)

    Sapin, Emilie; Peyron, Christelle; Roche, Frédéric; Gay, Nadine; Carcenac, Carole; Savasta, Marc; Levy, Patrick; Dematteis, Maurice

    2015-10-01

    Obstructive sleep apnea (OSA) induces cognitive impairment that involves intermittent hypoxia (IH). Because OSA is recognized as a low-grade systemic inflammatory disease and only some patients develop cognitive deficits, we investigated whether IH-related brain consequences shared similar pathophysiology and required additional factors such as systemic inflammation to develop. Nine-week-old male C57BL/6J mice were exposed to 1 day, 6 or 24 w of IH (alternating 21-5% FiO2 every 30 sec, 8 h/day) or normoxia. Microglial changes were assessed in the functionally distinct dorsal (dH) and ventral (vH) regions of the hippocampus using Iba1 immunolabeling. Then the study concerned dH, as vH only tended to be lately affected. Seven proinflammatory and anti-inflammatory cytokine messenger RNA (mRNA) were assessed at all time points using semiquantitative real-time reverse transcription polymerase chain reaction (RT-PCR). Similar mRNA analysis was performed after 6 w IH or normoxia associated for the past 3 w with repeated intraperitoneal low-dose lipopolysaccharide or saline. Chronic (6, 24 w) but not acute IH induced significant microglial changes in dH only, including increased density and morphological features of microglia priming. In dH, acute but not chronic IH increased IL-1β and RANTES/CCL5 mRNA, whereas the other cytokines remained unchanged. In contrast, chronic IH plus lipopolysaccharide increased interleukin (IL)-6 and IL10 mRNA whereas lipopolysaccharide alone did not affect these cytokines. The obstructive sleep apnea component intermittent hypoxia (IH) causes low-grade neuroinflammation in the dorsal hippocampus of mice, including early but transient cytokine elevations, delayed but long-term microglial changes, and cytokine response alterations to lipopolysaccharide inflammatory challenge. These changes may contribute to IH-induced cognitive impairment and pathological brain aging. © 2015 Associated Professional Sleep Societies, LLC.

  14. [Effects of interleukin-18 and hypoxia-inducible factor-1α in serum and gingival tissues of rat model with periodontitis exposed to chronic intermittent hypoxia].

    Science.gov (United States)

    Wang, Bin; Wang, Xiaoqin

    2015-08-01

    This study evaluates the expression of interleukin-18 (IL-18) and hypoxia-inducible factor (HIF)-lα in rat periodontitis model exposed to normoxia and chronic intermittent hypoxia (CIH) environments. The possible correlation between periodontitis and obstructive sleep apnea-hypopnea syndrome (OSAHS) was also investigated. Methods: Thirty-two Sprague-Dawley (SD) rats were randomly assigned into four groups: normoxia control, normoxia periodontitis, hypoxia control, and hypoxia periodontitis groups. The periodontitis models were established by ligating the bilateral maxillary second molars and employing high-carbohydrate diets. Rats in hypoxia control and hypoxia periodontitis groups were exposed to CIH treatment mimicking a moderately severe OSAHS condition. All animals were sacrificed after eight weeks, and the clinical periodontal indexes were detected. The levels of IL-18 and HIF-1α in serum and gingival tissues were determined using enzyme-linked immunosorbent assay (ELISA). The correlation between attachment loss (AL) and the levels of IL-18 and HIF-lα in hypoxia periodontitis group was evaluated. The levels of IL-18 and HIF-lα in hypoxia periodontitis group were significantly higher than that in normoxia periodontitis and hypoxia control groups (Pperiodontal tissues, which is correlated with IL-18 and HIF-lα levels.

  15. Chronic hydrocephalus-induced hypoxia: increased expression of VEGFR-2+ and blood vessel density in hippocampus.

    Science.gov (United States)

    Dombrowski, S M; Deshpande, A; Dingwall, C; Leichliter, A; Leibson, Z; Luciano, M G

    2008-03-18

    Chronic hydrocephalus (CH) is a neurological disease characterized by increased cerebrospinal fluid volume and pressure that is often associated with impaired cognitive function. By and large, CH is a complex and heterogeneous cerebrospinal fluid (CSF) disorder where the exact site of brain insult is uncertain. Several mechanisms including neural compression, fiber stretch, and local or global hypoxia have been implicated in the underlying pathophysiology of CH. Specifically, the hippocampus, which plays a significant role in memory processing and is in direct contact with expanding CSF ventricles, may be involved. Using our model of chronic hydrocephalus, we quantified the density of vascular endothelial growth factor receptor 2 (VEGFR-2(+)) neurons, glial, endothelial cells, and blood vessels in hippocampal regions CA1, CA2-3, dentate gyrus and hilus using immunohistochemical and stereological methods. Density and %VEGFR-2(+) cell populations were estimated for CH animals (2-3 weeks vs. 12-16 weeks) and surgical controls (SC). Overall, we found approximately six- to eightfold increase in the cellular density of VEGFR-2(+) and more than double blood vessel density (BVd) in the hippocampus of CH compared with SC. There were no significant regional differences in VEGFR-2(+) cellular and BVd expression in the CH group. VEGFR-2(+) and BVds were significantly related to changes in CSF volume (Phypoxia conditions as previously described. These findings suggest that VEGFR-2 may play an adaptive role in angiogenesis after CH

  16. Influence of chronic prenatal hypoxia on the specialized contact apparatus of rat heart ventricles during ontogeny

    Directory of Open Access Journals (Sweden)

    N. S. Petruk

    2014-08-01

    Full Text Available Background. During prenatal development embryonic mammalian heart undergoes deep dynamic changes due to size, structure and functions. Pathological intrauterine hypoxia influences fetal development generally and cardiogeny particularly, it affects the structure and function of the heart muscle and can lead to a variety of cardiovascular abnormalities and congenital heart defects. It is known that as a result of chronic intrauterine hypoxia during the stages of prenatal ontogeny specialized intercellular apparatus of cardiomyocytes is damaged, which plays a role not only in the mechanical connections of the cardiomyocytes, but also in the electric cooperatives, metabolic conversions, the homeostasis of the ionic balance and transport morphogenetic signaling molecules which are involved into the mechanisms of cardiogeny. It contributes to the development of diseases that may be associated with impaired local distribution of specialized intercellular junctions, and manifests as arrhythmias and cardiac conduction. Objective. To determine the effects of chronic prenatal hypoxia on the structure and distribution of specialized intercellular junctions of typical cardiomyocytes in the rat ventricular myocardium at the stages of prenatal ontogeny and to evaluate morphometric parameters of intercalated disks in the postnatal period. Materials and methods. White rats were used as a material. Intrauterine hypoxia was modelled by intraperitoneal injection of sodium nitrite from 10th to 21st day of pregnancy. Hearts were investigated by the transmission electron microscopy during the stages of prenatal and postnatal ontogeny and in adult animals. Morphometric and statistical methods were applied. Pairwise comparisons between means of different groups were performed using Student’s t-test where, for each couple of normally distributed populations, the null hypothesis that the means are equal was verified. Results. The average length of desmosomes on the 20th

  17. Hypoxia triggers short term potentiation of phrenic motoneuron discharge after chronic cervical spinal cord injury

    Science.gov (United States)

    Lee, Kun-Ze; Sandhu, Milapjit S.; Dougherty, Brendan J.; Reier, Paul J.; Fuller, David D.

    2014-01-01

    Repeated exposure to hypoxia can induce spinal neuroplasticity as well as respiratory and somatic motor recovery after spinal cord injury (SCI). The purpose of the present study was to define the capacity for a single bout of hypoxia to trigger short-term plasticity in phrenic output after cervical SCI, and to determine the phrenic motoneuron (PhrMN) bursting and recruitment patterns underlying the response. Hypoxia-induced short term potentiation (STP) of phrenic motor output was quantified in anesthetized rats 11 wks following lateral spinal hemisection at C2 (C2Hx). A 3-min hypoxic episode (12–14% O2) always triggered STP of inspiratory burst amplitude, the magnitude of which was greater in phrenic bursting ipsilateral vs. contralateral to C2Hx. We next determined if STP could be evoked in recruited (silent) PhrMNs ipsilateral to C2Hx. Individual PhrMN action potentials were recorded during and following hypoxia using a “single fiber” approach. STP of bursting activity did not occur in cells initiating bursting at inspiratory onset, but was robust in recruited PhrMNs as well as previously active cells initiating bursting later in the inspiratory effort. We conclude that following chronic C2Hx, a single bout of hypoxia triggers recruitment of PhrMNs in the ipsilateral spinal cord with bursting that persists beyond the hypoxic exposure. The results provide further support for the use of short bouts of hypoxia as a neurorehabilitative training modality following SCI. PMID:25448009

  18. Region-specific adaptations in determinants of rat skeletal muscle oxygenation to chronic hypoxia.

    NARCIS (Netherlands)

    Wust, R.C.; Jaspers, R.T.; Heyst, A.F.J. van; Hopman, M.T.E.; Hoofd, L.J.C.; Laarse, W.J. van der; Degens, H.

    2009-01-01

    Chronic exposure to hypoxia is associated with muscle atrophy (i.e., a reduction in muscle fiber cross-sectional area), reduced oxidative capacity, and capillary growth. It is controversial whether these changes are muscle and fiber type specific. We hypothesized that different regions of the same

  19. Male fertility is reduced by chronic intermittent hypoxia mimicking sleep apnea in mice.

    Science.gov (United States)

    Torres, Marta; Laguna-Barraza, Ricardo; Dalmases, Mireia; Calle, Alexandra; Pericuesta, Eva; Montserrat, Josep M; Navajas, Daniel; Gutierrez-Adan, Alfonso; Farré, Ramon

    2014-11-01

    Obstructive sleep apnea (OSA) is characterized by intermittent hypoxia and oxidative stress. However, it is unknown whether intermittent hypoxia mimicking OSA modifies male fertility. We tested the hypothesis that male fertility is reduced by chronic intermittent hypoxia mimicking OSA in a mouse model. Case-control comparison in a murine model. University research laboratory. Eighteen F1 (C57BL/6xCBA) male mice. Mice were subjected to a pattern of periodic hypoxia (20 sec at 5% O2 followed by 40 sec of room air) 6 h/day for 60 days or normoxia. After this period, mice performed a mating trial to determine effective fertility by assessing the number of pregnant females and fetuses. After euthanasia, oxidative stress in testes was assessed by measuring the expression of glutathione peroxidase 1 (Gpx1) and superoxide dismutase-1 (Sod1) by reverse-transcription polymerase chain reaction. Sperm motility was determined by Integrated Semen Analysis System (ISAS). Intermittent hypoxia significantly increased testicular oxidative stress, showing a reduction in the expression of Gpx1 and Sod1 by 38.9% and 34.4%, respectively, as compared with normoxia (P intermittent hypoxia group (P = 0.04). The proportion of pregnant females and number of fetuses per mating was significantly lower in the intermittent hypoxia group (0.33 ± 0.10 and 2.45 ± 0.73, respectively) than in normoxic controls (0.72 ± 0.16 and 5.80 ± 1.24, respectively). These results suggest that the intermittent hypoxia associated with obstructive sleep apnea (OSA) could induce fertility reduction in male patients with this sleep breathing disorder.

  20. Chronic hypoxia alters maternal uterine and fetal hemodynamics in the full-term pregnant guinea pig.

    Science.gov (United States)

    Turan, Sifa; Aberdeen, Graham W; Thompson, Loren P

    2017-10-01

    Placental hypoxia is associated with maternal hypertension, placental insufficiency, and fetal growth restriction. In the pregnant guinea pig, prenatal hypoxia during early gestation inhibits cytotrophoblast invasion of spiral arteries, increases maternal blood pressure, and induces fetal growth restriction. In this study the impact of chronic maternal hypoxia on fetal heart structure was evaluated using four-dimensional echocardiography with spatiotemporal image correlation and tomographic ultrasound, and uterine and umbilical artery resistance/pulsatility indexes and fetal heart function were evaluated using pulsed-wave Doppler ultrasound. Pregnant guinea pigs were exposed to normoxia ( n = 7) or hypoxia (10.5% O 2 , n = 9) at 28-30 days gestation, which was maintained until full term (65 days). At full term, fetal heart structure and outflow tracts were evaluated in the four-chamber view. Fetal heart diastolic function was assessed by E wave-to-A wave diastolic filling ratios (E/A ratios) of both ventricles and systolic function by the myocardial performance index (or Tie) of left ventricles of normoxic ( n = 21) and hypoxic ( n = 17) fetuses. There were no structural abnormalities in fetal hearts. However, hypoxia induced asymmetric fetal growth restriction and increased the placental/fetal weight compared with normoxic controls. Hypoxia increased Doppler resistance and pulsatility indexes in the uterine, but not umbilical, arteries, had no effect on the Tie index, and increased the E/A ratio in left, but not right, ventricles. Thus, prolonged hypoxia, starting at midgestation, increases uterine artery resistance and generates fetal growth restriction at full term. Furthermore, the enhanced cardiac diastolic filling with no changes in systolic function or umbilical artery resistance suggests that the fetal guinea pig systemic circulation undergoes a compensated, adaptive response to prolonged hypoxia exposure. Copyright © 2017 the American Physiological

  1. Effect of superoxide anion scavenger on rat hearts with chronic intermittent hypoxia.

    Science.gov (United States)

    Pai, Peiying; Lai, Ching Jung; Lin, Ching-Yuang; Liou, Yi-Fan; Huang, Chih-Yang; Lee, Shin-Da

    2016-04-15

    Only very limited information regarding the protective effects of the superoxide anion scavenger on chronic intermittent hypoxia-induced cardiac apoptosis is available. The purpose of this study is to evaluate the effects of the superoxide anion scavenger on cardiac apoptotic and prosurvival pathways in rats with sleep apnea. Forty-two Sprague-Dawley rats were divided into three groups, rats with normoxic exposure (Control, 21% O2, 1 mo), rats with chronic intermittent hypoxia exposure (Hypoxia, 3-7% O2vs. 21% O2per 40 s cycle, 8 h per day, 1 mo), and rats with pretreatment of the superoxide anion scavenger and chronic intermittent hypoxia exposure (Hypoxia-O2 (-)-Scavenger, MnTMPyP pentachloride, 1 mg/kg ip per day; 3-7% O2vs. 21% O2per 40 s cycle, 8 h per day, 1 mo) at 5-6 mo of age. After 1 mo, the protein levels and apoptotic cells of excised hearts from three groups were measured by Western blotting and terminal deoxynucleotide transferase-mediated dUTP nick end labeling (TUNEL) assay. The superoxide anion scavenger decreased hypoxia-induced myocardial architecture abnormalities, left ventricular hypertrophy, and TUNEL-positive apoptosis. The superoxide anion scavenger decreased hypoxia-induced Fas ligand, Fas death receptors, Fas-associated death domain (FADD), activated caspase-8, and activated caspase-3 (Fas-dependent apoptotic pathway) as well as Bad, activated caspase-9 and activated caspase-3 (mitochondria-dependent apoptotic pathway), endonuclease G (EndoG), apoptosis-inducing factor (AIF), and TUNEL-positive apoptosis. The superoxide anion scavenger increased IGF-1, IGF-1R, p-PI3k, p-Akt, p-Bad, Bcl-2, and Bcl-xL (survival pathway). Our findings imply that the superoxide anion scavenger might prevent cardiac Fas-mediated and mitochondrial-mediated apoptosis and enhance the IGF-1-related survival pathway in chronic intermittent hypoxia. The superoxide anion scavenger may prevent chronic sleep apnea-enhanced cardiac apoptotic pathways and enhances

  2. Cardiovascular disease in obstructive sleep apnoea syndrome: the role of intermittent hypoxia and inflammation.

    LENUS (Irish Health Repository)

    Garvey, J F

    2012-02-01

    There is increasing evidence that intermittent hypoxia plays a role in the development of cardiovascular risk in obstructive sleep apnoea syndrome (OSAS) through the activation of inflammatory pathways. The development of translational models of intermittent hypoxia has allowed investigation of its role in the activation of inflammatory mechanisms and promotion of cardiovascular disease in OSAS. There are noticeable differences in the response to intermittent hypoxia between body tissues but the hypoxia-sensitive transcription factors hypoxia-inducible factor-1 and nuclear factor-kappaB appear to play a key role in mediating the inflammatory and cardiovascular consequences of OSAS. Expanding our understanding of these pathways, the cross-talk between them and the activation of inflammatory mechanisms by intermittent hypoxia in OSAS will provide new avenues of therapeutic opportunity for the disease.

  3. Gene expression and enzyme activities of carbonic anhydrase and glutaminase in rat kidneys induced by chronic systemic hypoxia

    Directory of Open Access Journals (Sweden)

    Andi N.K. Syarifin

    2015-11-01

    Full Text Available Background: Hypoxia can cause acidosis. Kidney plays an essential role in maintaining acid-base balance, which involves the activities of carbonic anhydrase (CA and glutaminase (GLS. This study is aimed to determine the expression and activities of the CA9 and GLS1 enzymes in relation to hypoxia inducible factor-1α (HIF-1α, a transcription factor protein which is a marker of hypoxia.Methods: This study was an in vivo experimental study with coupled paralel design. used 25 male Sprague-Dawley rats weighing 150-200 g. Rats were divided into 5 groups: the control group (normoxic condition and 4 treatment groups. The latter were kept in a hypoxic chamber (10% O2: 90% N2 for 1, 3, 5 and 7 days. All rats were euthanized after treatment, kidneys excised, tissues homogenized and investigated for gene expression of CA9, GLS1 and HIF-1α. On protein level, total enzymatic activities of CA and GLS and protein of HIF-1α were also investigated. Data were analyzed statistically using ANOVA for significance, and as its alternative, used Mann-Whitney and Kruskal-Wallis test.Results: Results showed that HIF-1α mRNA increased during hypoxia, but not HIF-1α protein. It seemed that acidosis occurs in kidney tissue, indicated by increased CA9 and GLS1 mRNA expression and specific activity of total CA and GLS1. Expression of CA9 and GLS1 mRNA both showed strong positive correlation with HIF-1α mRNA, but not with HIF-1α protein.Conclusion: It is suggested that during chronic systemic hypoxia, gene expression of CA9 and GLS1 and their enzyme activities were increased as a response to acidosis and related with the expression of HIF-1α mRNA.

  4. Hypoxia Inducible Factor 1α Promotes Endogenous Adaptive Response in Rat Model of Chronic Cerebral Hypoperfusion

    Directory of Open Access Journals (Sweden)

    Ying Yang

    2017-01-01

    Full Text Available Hypoxia inducible factor 1α (HIF-1α, a pivotal regulator of gene expression in response to hypoxia and ischemia, is now considered to regulate both pro-survival and pro-death responses depending on the duration and severity of the stress. We previously showed that chronic global cerebral hypoperfusion (CCH triggered long-lasting accumulation of HIF-1α protein in the hippocampus of rats. However, the role of the stabilized HIF-1α in CCH is obscure. Here, we knock down endogenous HIF-1α to determine whether and how HIF-1α affects the disease processes and phenotypes of CCH. Lentivirus expressing HIF-1α small hairpin RNA was injected into the bilateral hippocampus and bilateral ventricles to knock down HIF-1α gene expression in the hippocampus and other brain areas. Permanent bilateral common carotid artery occlusions, known as 2-vessel occlusions (2VOs, were used to induce CCH in rats. Angiogenesis, oxidative stress, histopathological changes of the brain, and cognitive function were tested. Knockdown of HIF-1α prior to 2VO significantly exacerbates the impairment of learning and memory after four weeks of CCH. Mechanically, reduced cerebral angiogenesis, increased oxidative damage, and increased density of astrocytes and microglia in the cortex and some subregions of hippocampus are also shown after four weeks of CCH. Furthermore, HIF-1α knockdown also disrupts upregulation of regulated downstream genes. Our findings suggest that HIF-1α-protects the brain from oxidative stress and inflammation response in the disease process of CCH. Accumulated HIF-1α during CCH mediates endogenous adaptive processes to defend against more severe hypoperfusion injury of the brain, which may provide a therapeutic benefit.

  5. The role of mRNA translation in the adaptation to hypoxia

    International Nuclear Information System (INIS)

    Koritzinsky, M.; Wouters, B.G.; Koumenis, C.

    2003-01-01

    Hypoxia commonly occurs in human tumours and is associated with a poor prognosis. We and others have shown that global mRNA translation is rapidly inhibited during hypoxia. However, some mRNAs, such as those coding for HIF-1 α and VEGF, remain efficiently translated. We therefore hypothesize that the inhibition of mRNA translation serves to promote hypoxia tolerance in two ways: i) through conservation of energy and ii) through differential gene expression involved in hypoxia adaptation. We are investigating the mechanisms responsible for the down regulation of protein synthesis during hypoxia, and how specific mRNAs maintain their ability to be translated under such conditions. Our goal is to understand the significance of these regulatory mechanisms for hypoxia tolerance in vitro and tumor growth in vivo. We have previously shown that one mechanism responsible for inhibiting protein synthesis during hypoxia is the activation of PERK, which inhibits the essential translation factor eIF2 α . Here we show that PERK-/- MEFs are not able to inhibit protein synthesis efficiently during hypoxia and are significantly less tolerant to hypoxia than wt cells. We also show that other mechanisms are important for sustained low protein synthesis during chronic hypoxia. We demonstrate that the eIF4F complex is disrupted during prolonged hypoxia, and that this is mediated by 4E-BP1 and 4E-T. eIF4F is essential for translation which is dependent upon the 5'mRNA cap-structure. These studies therefore indicate a switch from the inhibition of all translation through eIF2 α during acute hypoxia, to the inhibition of only cap-dependent translation during chronic hypoxia. This model predicts the differential induction of genes that can be translated cap-independently during chronic hypoxia, which is consistent with the observed differential translation of HIF-1 α and VEGF. The functional significance of the disruption of the eIF4F complex during hypoxia is currently being addressed

  6. A novel adjustable automated system for inducing chronic intermittent hypoxia in mice.

    Directory of Open Access Journals (Sweden)

    Dora Polšek

    Full Text Available Sleep apnea is a chronic, widely underdiagnosed condition characterized by disruption of sleep architecture and intermittent hypoxia due to short cessations of breathing. It is a major independent risk factor for myocardial infarction, congestive heart failure and stroke as well as one of the rare modifiable risk factors for Alzheimer's Dementia. Reliable animal disease models are needed to understand the link between sleep apnea and the various clinically linked disorders.An automated system for inducing hypoxia was developed, in which the major improvement was the possibility to efficiently adjust the length and intensity of hypoxia in two different periods. The chamber used a small volume of gas allowing for fast exchanges of different oxygen levels. The mice were kept in their cages adapted with the system on the cage lid. As a proof of principle, they were exposed to a three week period of intermittent hypoxia for 8 hours a day, with 90 s intervals of 5, 7% and 21% oxygen to validate the model. Treated (n = 8 and control mice (no hypoxia, n = 7 were handled in the same manner and their hippocampal brain regions compared by histology.The chamber provided a fast, reliable and precise intermittent hypoxia, without inducing noticeable side effects to the animals. The validation experiment showed that apoptotic neurons in the hippocampus were more numerous in the mice exposed to intermittent hypoxia than in the control group, in all tested hippocampal regions (cornu ammonis 1 (CA1 P <0.001; cornu ammonis 3 (CA3 P <0.001; and dentate gyrus (DG P = 0.023. In both, control and hypoxic conditions, there was a significantly higher number of apoptotic neurons in the DG compared to the CA1 and CA3 subfields (P <0.001.The new design of a hypoxic chamber provides a fast, adjustable and reliable model of obstructive sleep apnea, which was validated by apoptosis of hippocampal neurons.

  7. Modelling and simulation of the influence of acute and chronic hypoxia on [18F]fluoromisonidazole PET imaging.

    NARCIS (Netherlands)

    Monnich, D.; Troost, E.G.C.; Kaanders, J.H.A.M.; Oyen, W.J.G.; Alber, M.; Thorwarth, D.

    2012-01-01

    Tumour hypoxia can be assessed by positron emission tomography (PET) using radiotracers like [(18)F]fluoromisonidazole (Fmiso). The purpose of this work was to independently investigate the influence of chronic and acute hypoxia on the retention of Fmiso on the microscale. This was approached by

  8. Chronic intermittent hypoxia preserves bone density in a mouse model of sleep apnea.

    Science.gov (United States)

    Torres, Marta; Montserrat, Josep M; Pavía, Javier; Dalmases, Mireia; Ros, Domenec; Fernandez, Yolanda; Barbé, Ferran; Navajas, Daniel; Farré, Ramon

    2013-12-01

    Very recent clinical research has investigated whether obstructive sleep apnea (OSA) may modulate bone homeostasis but the few data available are conflicting. Here we report novel data obtained in a mouse study specifically designed to determine whether chronic intermittent hypoxia realistically mimicking OSA modifies bone mineral density (BMD). Normal male and female mice and orchidectomized mice (N=10 each group) were subjected to a pattern of high-frequency intermittent hypoxia (20s at 5% and 40s at 21%, 60 cycles/h) for 6h/day. Identical groups breathing room air (normoxia) were the controls. After 32 days of intermittent hypoxia/normoxia the trabecular bone mineral density (BMD) in the peripheral femora were measured by micro-CT scanning. When compared with normoxia (two-way ANOVA), intermittent hypoxia did not significantly modify BMD in the three animal groups tested. Data in this study suggest that the type of intermittent hypoxia characterizing OSA, applied as a single challenge, preserves bone homeostasis. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Multiple roles of hypoxia in ovarian function: roles of hypoxia-inducible factor-related and -unrelated signals during the luteal phase

    OpenAIRE

    Nishimura, Ryo; Okuda, Kiyoshi

    2015-01-01

    There is increasing interest in the role of oxygen conditions in the microenvironment of organs because of the discovery of a hypoxia-specific transcription factor, namely hypoxia-inducible factor (HIF) 1. Ovarian function has several phases that change day by day, including ovulation, follicular growth and corpus luteum formation and regression. These phases are regulated by many factors, including pituitary hormones and local hormones, such as steroids, peptides and cytokines, as well as ox...

  10. Chronic intermittent hypoxia induces atherosclerosis via activation of adipose angiopoietin-like 4.

    Science.gov (United States)

    Drager, Luciano F; Yao, Qiaoling; Hernandez, Karen L; Shin, Mi-Kyung; Bevans-Fonti, Shannon; Gay, Jason; Sussan, Thomas E; Jun, Jonathan C; Myers, Allen C; Olivecrona, Gunilla; Schwartz, Alan R; Halberg, Nils; Scherer, Philipp E; Semenza, Gregg L; Powell, David R; Polotsky, Vsevolod Y

    2013-07-15

    Obstructive sleep apnea is a risk factor for dyslipidemia and atherosclerosis, which have been attributed to chronic intermittent hypoxia (CIH). Intermittent hypoxia inhibits a key enzyme of lipoprotein clearance, lipoprotein lipase, and up-regulates a lipoprotein lipase inhibitor, angiopoietin-like 4 (Angptl4), in adipose tissue. The effects and mechanisms of Angptl4 up-regulation in sleep apnea are unknown. To examine whether CIH induces dyslipidemia and atherosclerosis by increasing adipose Angptl4 via hypoxia-inducible factor-1 (HIF-1). ApoE(-/-) mice were exposed to intermittent hypoxia or air for 4 weeks while being treated with Angptl4-neutralizing antibody or vehicle. In vehicle-treated mice, hypoxia increased adipose Angptl4 levels, inhibited adipose lipoprotein lipase, increased fasting levels of plasma triglycerides and very low density lipoprotein cholesterol, and increased the size of atherosclerotic plaques. The effects of CIH were abolished by the antibody. Hypoxia-induced increases in plasma fasting triglycerides and adipose Angptl4 were not observed in mice with germline heterozygosity for a HIF-1α knockout allele. Transgenic overexpression of HIF-1α in adipose tissue led to dyslipidemia and increased levels of adipose Angptl4. In cultured adipocytes, constitutive expression of HIF-1α increased Angptl4 levels, which was abolished by siRNA. Finally, in obese patients undergoing bariatric surgery, the severity of nocturnal hypoxemia predicted Angptl4 levels in subcutaneous adipose tissue. HIF-1-mediated increase in adipose Angptl4 and the ensuing lipoprotein lipase inactivation may contribute to atherosclerosis in patients with sleep apnea.

  11. The multi-level impact of chronic intermittent hypoxia on central auditory processing.

    Science.gov (United States)

    Wong, Eddie; Yang, Bin; Du, Lida; Ho, Wai Hong; Lau, Condon; Ke, Ya; Chan, Ying Shing; Yung, Wing Ho; Wu, Ed X

    2017-08-01

    During hypoxia, the tissues do not obtain adequate oxygen. Chronic hypoxia can lead to many health problems. A relatively common cause of chronic hypoxia is sleep apnea. Sleep apnea is a sleep breathing disorder that affects 3-7% of the population. During sleep, the patient's breathing starts and stops. This can lead to hypertension, attention deficits, and hearing disorders. In this study, we apply an established chronic intermittent hypoxemia (CIH) model of sleep apnea to study its impact on auditory processing. Adult rats were reared for seven days during sleeping hours in a gas chamber with oxygen level cycled between 10% and 21% (normal atmosphere) every 90s. During awake hours, the subjects were housed in standard conditions with normal atmosphere. CIH treatment significantly reduces arterial oxygen partial pressure and oxygen saturation during sleeping hours (relative to controls). After treatment, subjects underwent functional magnetic resonance imaging (fMRI) with broadband sound stimulation. Responses are observed in major auditory centers in all subjects, including the auditory cortex (AC) and auditory midbrain. fMRI signals from the AC are statistically significantly increased after CIH by 0.13% in the contralateral hemisphere and 0.10% in the ipsilateral hemisphere. In contrast, signals from the lateral lemniscus of the midbrain are significantly reduced by 0.39%. Signals from the neighboring inferior colliculus of the midbrain are relatively unaffected. Chronic hypoxia affects multiple levels of the auditory system and these changes are likely related to hearing disorders associated with sleep apnea. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Myocardial ischemic tolerance in rats subjected to endurance exercise training during adaptation to chronic hypoxia

    Czech Academy of Sciences Publication Activity Database

    Alánová, Petra; Chytilová, Anna; Neckář, Jan; Hrdlička, Jaroslav; Míčová, P.; Holzerová, Kristýna; Hlaváčková, Markéta; Macháčková, Kristýna; Papoušek, František; Vašinová, Jana; Benák, Daniel; Nováková, Olga; Kolář, František

    2017-01-01

    Roč. 122, č. 6 (2017), s. 1452-1461 ISSN 8750-7587 R&D Projects: GA ČR(CZ) GA13-10267S; GA ČR(CZ) GJ16-12420Y; GA ČR(CZ) GAP303/12/1162 Institutional support: RVO:67985823 Keywords : chronic hypoxia * exercise training * cardioprotection * cytokines * antioxidants Subject RIV: FA - Cardiovascular Diseases incl. Cardiotharic Surgery OBOR OECD: Physiology (including cytology) Impact factor: 3.351, year: 2016

  13. Antioxidant tempol suppresses heart cytosolic phospholipase A(2)alpha stimulated by chronic intermittent hypoxia

    Czech Academy of Sciences Publication Activity Database

    Míčová, P.; Klevstig, Martina; Holzerová, Kristýna; Vecka, M.; Žurmanová, J.; Neckář, Jan; Kolář, František; Nováková, Olga; Novotný, J.; Hlaváčková, Markéta

    2017-01-01

    Roč. 95, č. 8 (2017), s. 920-927 ISSN 0008-4212 R&D Projects: GA ČR(CZ) GJ16-12420Y; GA ČR(CZ) GA13-10267S Institutional support: RVO:67985823 Keywords : heart * chronic intermittent hypoxia * oxidative stress * phospholipases A(2) * tempol Subject RIV: FA - Cardiovascular Diseases incl. Cardiotharic Surgery OBOR OECD: Biochemistry and molecular biology Impact factor: 1.822, year: 2016

  14. The organ specificity in pathological damage of chronic intermittent hypoxia: an experimental study on rat with high-fat diet.

    Science.gov (United States)

    Wang, Hui; Tian, Jian-li; Feng, Shu-zhi; Sun, Ning; Chen, Bao-yuan; Zhang, Yun

    2013-09-01

    It is known today that sleep apnea hypopnea syndrome and its characteristic chronic intermittent hypoxia can cause damages to multiple organs, including the cardiovascular system, urinary system, and liver. It is still unclear, however, whether the damage caused by sleep apnea hypopnea syndrome and the severity of the damage are organ-specific. This research observed the pathological effects of chronic intermittent hypoxia on rat's thoracic aorta, myocardium, liver, and kidney, under the condition of lipid metabolism disturbance, through establishing the rat model of chronic intermittent hypoxia with high-fat diet by imitating the features of human sleep apnea hypopnea syndrome. In this model, 24 male Wistar rats were randomly divided into three groups: a control group fed by regular diet, a high-fat group fed by high-fat diet, and a high-fat plus intermittent hypoxia group fed by high-fat diet and treated with intermittent hypoxia 7 h a day. At the end of the ninth week, the pathological changes of rat's organs, including the thoracic aorta, myocardium, liver, and kidney are observed (under both optical microscopy and transmission electron microscopy). As the result of the experiment shows, while there was no abnormal effect observed on any organs of the control group, slight pathological changes were found in the organs of the high-fat group. For the high-fat plus intermittent hypoxia group, however, remarkably severer damages were found on all the organs. It also showed that the severity of the damage varies by organ in the high-fat plus intermittent hypoxia group, with the thoracic aorta being the worst, followed by the liver and myocardium, and the kidney being the slightest. Chronic intermittent hypoxia can lead to multiple-organ damage to rat with high-fat diet. Different organs appear to have different sensitivity to chronic intermittent hypoxia.

  15. Substance P Differentially Modulates Firing Rate of Solitary Complex (SC) Neurons from Control and Chronic Hypoxia-Adapted Adult Rats

    Science.gov (United States)

    Nichols, Nicole L.; Powell, Frank L.; Dean, Jay B.; Putnam, Robert W.

    2014-01-01

    NK1 receptors, which bind substance P, are present in the majority of brainstem regions that contain CO2/H+-sensitive neurons that play a role in central chemosensitivity. However, the effect of substance P on the chemosensitive response of neurons from these regions has not been studied. Hypoxia increases substance P release from peripheral afferents that terminate in the caudal nucleus tractus solitarius (NTS). Here we studied the effect of substance P on the chemosensitive responses of solitary complex (SC: NTS and dorsal motor nucleus) neurons from control and chronic hypoxia-adapted (CHx) adult rats. We simultaneously measured intracellular pH and electrical responses to hypercapnic acidosis in SC neurons from control and CHx adult rats using the blind whole cell patch clamp technique and fluorescence imaging microscopy. Substance P significantly increased the basal firing rate in SC neurons from control and CHx rats, although the increase was smaller in CHx rats. However, substance P did not affect the chemosensitive response of SC neurons from either group of rats. In conclusion, we found that substance P plays a role in modulating the basal firing rate of SC neurons but the magnitude of the effect is smaller for SC neurons from CHx adult rats, implying that NK1 receptors may be down regulated in CHx adult rats. Substance P does not appear to play a role in modulating the firing rate response to hypercapnic acidosis of SC neurons from either control or CHx adult rats. PMID:24516602

  16. Substance P differentially modulates firing rate of solitary complex (SC neurons from control and chronic hypoxia-adapted adult rats.

    Directory of Open Access Journals (Sweden)

    Nicole L Nichols

    Full Text Available NK1 receptors, which bind substance P, are present in the majority of brainstem regions that contain CO2/H(+-sensitive neurons that play a role in central chemosensitivity. However, the effect of substance P on the chemosensitive response of neurons from these regions has not been studied. Hypoxia increases substance P release from peripheral afferents that terminate in the caudal nucleus tractus solitarius (NTS. Here we studied the effect of substance P on the chemosensitive responses of solitary complex (SC: NTS and dorsal motor nucleus neurons from control and chronic hypoxia-adapted (CHx adult rats. We simultaneously measured intracellular pH and electrical responses to hypercapnic acidosis in SC neurons from control and CHx adult rats using the blind whole cell patch clamp technique and fluorescence imaging microscopy. Substance P significantly increased the basal firing rate in SC neurons from control and CHx rats, although the increase was smaller in CHx rats. However, substance P did not affect the chemosensitive response of SC neurons from either group of rats. In conclusion, we found that substance P plays a role in modulating the basal firing rate of SC neurons but the magnitude of the effect is smaller for SC neurons from CHx adult rats, implying that NK1 receptors may be down regulated in CHx adult rats. Substance P does not appear to play a role in modulating the firing rate response to hypercapnic acidosis of SC neurons from either control or CHx adult rats.

  17. Hif1a inactivation rescues photoreceptor degeneration induced by a chronic hypoxia-like stress.

    Science.gov (United States)

    Barben, Maya; Ail, Divya; Storti, Federica; Klee, Katrin; Schori, Christian; Samardzija, Marijana; Michalakis, Stylianos; Biel, Martin; Meneau, Isabelle; Blaser, Frank; Barthelmes, Daniel; Grimm, Christian

    2018-04-17

    Reduced choroidal blood flow and tissue changes in the ageing human eye impair oxygen delivery to photoreceptors and the retinal pigment epithelium. As a consequence, mild but chronic hypoxia may develop and disturb cell metabolism, function and ultimately survival, potentially contributing to retinal pathologies such as age-related macular degeneration (AMD). Here, we show that several hypoxia-inducible genes were expressed at higher levels in the aged human retina suggesting increased activity of hypoxia-inducible transcription factors (HIFs) during the physiological ageing process. To model chronically elevated HIF activity and investigate ensuing consequences for photoreceptors, we generated mice lacking von Hippel Lindau (VHL) protein in rods. This activated HIF transcription factors and led to a slowly progressing retinal degeneration in the ageing mouse retina. Importantly, this process depended mainly on HIF1 with only a minor contribution of HIF2. A gene therapy approach using AAV-mediated RNA interference through an anti-Hif1a shRNA significantly mitigated the degeneration suggesting a potential intervention strategy that may be applicable to human patients.

  18. Hypoxia-inducible factor-1 plays a role in phosphate-induced vascular smooth muscle cell calcification.

    Science.gov (United States)

    Mokas, Sophie; Larivière, Richard; Lamalice, Laurent; Gobeil, Stéphane; Cornfield, David N; Agharazii, Mohsen; Richard, Darren E

    2016-09-01

    Medial vascular calcification is a common complication of chronic kidney disease (CKD). Although elevated inorganic phosphate stimulates vascular smooth muscle cell (VSMC) osteogenic transdifferentiation and calcification, the mechanisms involved in their calcification during CKD are not fully defined. Because hypoxic gene activation is linked to CKD and stimulates bone cell osteogenic differentiation, we used in vivo and in vitro rodent models to define the role of hypoxic signaling during elevated inorganic phosphate-induced VSMC calcification. Cell mineralization studies showed that elevated inorganic phosphate rapidly induced VSMC calcification. Hypoxia strongly enhanced elevated inorganic phosphate-induced VSMC calcification and osteogenic transdifferentiation, as seen by osteogenic marker expression. Hypoxia-inducible factor-1 (HIF-1), the key hypoxic transcription factor, was essential for enhanced VSMC calcification. Targeting HIF-1 expression in murine VSMC blocked calcification in hypoxia with elevated inorganic phosphate while HIF-1 activators, including clinically used FG-4592/Roxadustat, recreated a procalcifying environment. Elevated inorganic phosphate rapidly activated HIF-1, even in normal oxygenation; an effect mediated by HIF-1α subunit stabilization. Thus, hypoxia synergizes with elevated inorganic phosphate to enhance VSMC osteogenic transdifferentiation. Our work identifies HIF-1 as an early CKD-related pathological event, prospective marker, and potential target against vascular calcification in CKD-relevant conditions. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  19. H,K-ATPase and carbonic anhydrase response to chronic systemic rat gastric hypoxia

    Directory of Open Access Journals (Sweden)

    Ulfah Lutfiah

    2015-11-01

    Full Text Available Background: Hypoxia may induce gastric ulcer associated with excessive hidrogen chloride (HCl secretion. Synthesis of HCl involves 2 enzymes, H,K-ATPase and carbonic anhydrase (CA. This study aimed to clarify the underlying cause of gastric ulcer in chronic hypoxic condition, by investigating the H,K-ATPase and CA9 response in rats.Methods: This study was an in vivo experiment, to know the relationship between hypoxia to expression of H,K-ATPase and CA9 mRNA, and H,K-ATPase and total CA specific activity of chronic systemic rat gastric hypoxia. The result was compared to control. Data was analyzed by SPSS. If the data distribution was normal and homogeneous, ANOVA and LSD post-hoc test were used. However, if the distribution was not normal and not homogeneous, and still as such after transformation, data was treated in non-parametric using Kruskal-Wallis and Mann Whitney test. Twenty five male Sprague-Dawley rats were divided into 5 groups: rats undergoing hypoxia for 1, 3, 5, and 7 days placed in hypoxia chamber (10% O2, 90% N2, and one control group. Following this treatment, stomach of the rats was extracted and homogenized. Expression of H,K-ATPase and CA9 mRNA was measured using real time RT-PCR. Specific activity of H,K-ATPase was measured using phosphate standard solution, and specific activity of total CA was measured using p-nitrophenol solution.Results: The expression of H,K-ATPase mRNA was higher in the first day (2.159, and drastically lowered from the third to seventh day (0.289; 0.108; 0.062. Specific activities of H,K-ATPase was slightly higher in the first day (0.765, then was lowered in the third (0.685 and fifth day (0.655, and was higher in the seventh day (0.884. The expression of CA9 mRNA was lowered progressively from the first to seventh day (0.84; 0.766; 0.736; 0.343. Specific activities of total CA was low in the first day (0.083, and was higher from the third to seventh day (0.111; 0.136; 0.144.Conclusion: In hypoxia

  20. GABA accumulating neurons are relatively resistant to chronic hypoxia in vitro: An autoradiographic study

    International Nuclear Information System (INIS)

    Sher, P.K.; Hu, S.

    1990-01-01

    Whether there is preferential loss of certain types of nerve cells or specific cellular functions after hypoxic or ischemic insults remains unclear. To evaluate this phenomenon in vitro, the vulnerability of GABAergic neurons to hypoxia was investigated both quantitatively and with autoradiography. Immature neuronal cortical cultures obtained from fetal mice were subjected to chronic hypoxia (5% O2) for 24 h or 48 h and then returned to the normoxic condition for 48 h. The shorter hypoxic exposure resulted in significantly reduced numbers of neurons in comparison to the longer exposure and also to controls (29% and 26%, respectively; p less than 0.001). LDH efflux, a reliable indicator of cell damage, also was higher after the shorter exposure insult. Nevertheless, in these same 24 h hypoxic cultures there was prominent sparing of those neurons which accumulate GABA: by 48 h of recovery GABAergic neurons constituted 29.3 +/- 2.0% of the remaining neuronal population in comparison to 11.6 +/- 0.6 and 14.4 +/- 0.8% for controls and 48 h hypoxia, respectively; (p less than 0.001). Although total GABA uptake per neuron was significantly decreased after both types of insult, there was a concomitant increase in glial GABA uptake (i.e., that which could be displaced by beta-alanine). These observations suggest that certain GABAergic cortical neurons are relatively more resistant to chronic hypoxia than the general neuronal population and that depression of overall neuronal GABA uptake may be associated with enhanced glial GABA uptake

  1. Alterations to mitochondrial fatty-acid use in skeletal muscle after chronic exposure to hypoxia depend on metabolic phenotype.

    Science.gov (United States)

    Malgoyre, Alexandra; Chabert, Clovis; Tonini, Julia; Koulmann, Nathalie; Bigard, Xavier; Sanchez, Hervé

    2017-03-01

    We investigated the effects of chronic hypoxia on the maximal use of and sensitivity of mitochondria to different substrates in rat slow-oxidative (soleus, SOL) and fast-glycolytic (extensor digitorum longus, EDL) muscles. We studied mitochondrial respiration in situ in permeabilized myofibers, using pyruvate, octanoate, palmitoyl-carnitine (PC), or palmitoyl-coenzyme A (PCoA). The hypophagia induced by hypoxia may also alter metabolism. Therefore, we used a group of pair-fed rats (reproducing the same caloric restriction, as observed in hypoxic animals), in addition to the normoxic control fed ad libitum. The resting respiratory exchange ratio decreased after 21 days of exposure to hypobaric hypoxia (simulated elevation of 5,500 m). The respiration supported by pyruvate and octanoate were unaffected. In contrast, the maximal oxidative respiratory rate for PCoA, the transport of which depends on carnitine palmitoyltransferase 1 (CPT-1), decreased in the rapid-glycolytic EDL and increased in the slow-oxidative SOL, although hypoxia improved affinity for this substrate in both muscle types. PC and PCoA were oxidized similarly in normoxic EDL, whereas chronic hypoxia limited transport at the CPT-1 step in this muscle. The effects of hypoxia were mediated by caloric restriction in the SOL and by hypoxia itself in the EDL. We conclude that improvements in mitochondrial affinity for PCoA, a physiological long-chain fatty acid, would facilitate fatty-acid use at rest after chronic hypoxia independently of quantitative alterations of mitochondria. Conversely, decreasing the maximal oxidation of PCoA in fast-glycolytic muscles would limit fatty-acid use during exercise. NEW & NOTEWORTHY Affinity for low concentrations of long-chain fatty acids (LCFA) in mitochondria skeletal muscles increases after chronic hypoxia. Combined with a lower respiratory exchange ratio, this suggests facility for fatty acid utilization at rest. This fuel preference is related to caloric

  2. Enhancement of Na/K pump activity by chronic intermittent hypobaric hypoxia protected against reperfusion injury.

    Science.gov (United States)

    Guo, Hui-Cai; Guo, Fang; Zhang, Li-Nan; Zhang, Rong; Chen, Qing; Li, Jun-Xia; Yin, Jian; Wang, Yong-Li

    2011-06-01

    Chronic intermittent hypobaric hypoxia (CIHH) has been shown to attenuate intracellular Na(+) accumulation and Ca(2+) overload during ischemia and reperfusion (I/R), both of which are closely related to the outcome of myocardial damage. Na/K pump plays an essential role in maintaining the equilibrium of intracellular Na(+) and Ca(2+) during I/R. It has been shown that enhancement of Na/K pump activity by ischemic preconditioning may be involved in the cardiac protection. Therefore, we tested whether Na/K pump was involved in the cardioprotection by CIHH. We found that Na/K pump current in cardiac myocytes of guinea pigs exposed to CIHH increased 1.45-fold. The K(1) and f(1), which reflect the portion of α(1)-isoform of Na/K pump, dramatically decreased or increased, respectively, in CIHH myocytes. Western blot analysis revealed that CIHH increased the protein expression of the α(1)-isoform by 76%, whereas the protein expression of the α(2)-isoform was not changed significantly. Na/K pump current was significantly suppressed in simulated I/R, and CIHH preserved the Na/K pump current. CIHH significantly improved the recovery of cell length and contraction during reperfusion. Furthermore, inhibition of Na/K pump by ouabain attenuated the protective effect afforded by CIHH. Collectively, these data suggest that the increase of Na/K pump activity following CIHH is due to the upregulating α(1)-isoform of Na/K pump, which may be one of the mechanisms of CIHH against I/R-induced injury.

  3. Behavioral and anatomical correlates of chronic episodic hypoxia during sleep in the rat.

    Science.gov (United States)

    Gozal, D; Daniel, J M; Dohanich, G P

    2001-04-01

    The role played by chronic episodic hypoxia (EHYP) in the neurocognitive morbidity of obstructive sleep apnea (OSA) is unknown. Sleep recordings, Morris water maze experiments, and immunohistochemistry for NMDA NR1 glutamate receptor, c-fos protein, and apoptosis [nuclear immunoreactivity for single-stranded DNA and terminal deoxynucleotidyl transferase-mediated biotinylated UTP nick end labeling assay] were conducted in EHYP-exposed Sprague Dawley male rats. Exposures consisted of up to14 d in an environmental chamber in which O(2) concentrations were cycled between 10 and 21% every 90 sec or 30 min during 12 hr of daylight. For the remaining 12 hr, EHYP rats breathed room air, while controls spent 14 d in room air. Although EHYP induced significant disruption of sleep architecture during the initial day of exposure, sleep patterns normalized thereafter. Marked increases in apoptosis occurred in the CA1 hippocampal region (sevenfold) and cortex (Cx; eightfold) after 1-2 d of EHYP but not in CA3 and were followed by decreases toward normoxic levels by 14 d. Double labeling for NMDA NR1 and c-fos revealed marked architectural disorganization in CA1 and Cx with increases in c-fos over time. Rats exposed to EHYP displayed significantly longer escape latencies and swim path lengths to escape a hidden platform during 12 training trials given over 2 d. Differences in the performances of EHYP and control rats, although reduced, persisted after 14 d of recovery. We conclude that EHYP is associated with marked cellular changes over time within neural regions associated with cognitive functions. Furthermore, EHYP impaired performance during acquisition of a cognitive spatial task without affecting sensorimotor function. Such changes may underlie components of the learning and memory impairments found in OSA.

  4. Effect of chronic intermittent hypoxia on glycometabolism in rat’ liver and the mechanism thereof

    Directory of Open Access Journals (Sweden)

    Wei YU

    2018-03-01

    Full Text Available Objective To investigate the effects of chronic intermittent hypoxia on the adipose factor and the expressions of insulin receptor substrate 2 (IRS-2, glucose transporter 2 (GLUT-2 and leptin in rat liver. Methods Twenty-four mature SD rats were randomly divided into 3 groups: control group (UC, chronic intermittent hypoxia group (CIH and reoxygenation group (RH. The arterial blood gas analysis was performed after the establishment of rat model. The serum fasting blood glucose (FBG and fasting insulin (FINS in each group were detected by peroxidase method; the concentrations of free fatty acids (FFA and leptin were detected by ELISA. The expressions of mRNA and protein of GLUT-2, IRS-2 and leptin were detected by qRT-PCR and Western blotting. Results The serous concentrations of FBG, FINS, FFA and leptin were significantly higher in CIH group than in UC group (P<0.05, and were dramatically higher in RH group than in both CIH group (P=0.003 and UC group (P=0.000. Western blotting and qRT-PCR detection showed that the protein and mRNA expressions of GLUT-2 and IRS-2 were significantly lower in CIH group than in RH group of rat liver (P<0.05, while were markedly lower in RH group than in UC group (P<0.05; the expressions of leptin protein and mRNA were significantly higher in CIH group than in RH group (P<0.05, while were obviously higher in RH group than in UC group of rat liver (P<0.05. Conclusion Insulin resistance induced by chronic intermittent hypoxia may be associated with the elevation of serum FFA and leptin, and be related to the decreased expression of GLUT-2 and IRS-2 and increased expression of leptin in liver. DOI: 10.11855/j.issn.0577-7402.2018.03.05

  5. Impaired hypoxic ventilatory response following neonatal sustained and subsequent chronic intermittent hypoxia in rats.

    Science.gov (United States)

    Mayer, C A; Ao, J; Di Fiore, J M; Martin, R J; MacFarlane, P M

    2013-06-15

    Neonatal chronic intermittent hypoxia (CIH) enhances the ventilatory sensitivity to acute hypoxia (acute hypoxic ventilatory response, HVR), whereas sustained hypoxia (SH) can have the opposite effect. Therefore, we investigated whether neonatal rats pre-treated with SH prior to CIH exhibit a modified HVR. Rat pups were exposed to CIH (5% O2/5min, 8h/day) between 6 and 15 days of postnatal age (P6-15) after pre-treatment with either normoxia or SH (11% O2; P1-5). Using whole-body plethysmography, the acute (5min, 10% O2) HVR at P16 (1 day post-CIH) was unchanged following CIH (67.9±6.7% above baseline) and also SH (58.8±10.5%) compared to age-matched normoxic rats (54.7±6.3%). In contrast, the HVR was attenuated (16.5±6.0%) in CIH exposed rats pre-treated with SH. These data suggest that while neonatal SH and CIH alone have little effect on the magnitude of the acute HVR, their combined effects impose a synergistic disturbance to postnatal development of the HVR. These data could provide important insight into the consequences of not maintaining adequate levels of oxygen saturation during the early neonatal period, especially in vulnerable preterm infants susceptible to frequent bouts of hypoxemic events (CIH) that are commonly associated with apnea of prematurity. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Reaction of the hemocoagulation system to tissue hypoxia in patients with chronic obstructive pulmonary disease

    Directory of Open Access Journals (Sweden)

    Anna A. Bulanova

    2017-01-01

    Full Text Available Background. Nowadays little data related to the hemostatic system and fibrinolysis in patients with chronic obstructive pulmonary disease (COPD are available. This is due to the lack of standardized methods for studying the hemostasis system, as well as to the lack of a single functional test that allows the evaluation of the complete fibrinogenesis cycle in whole blood.Aim. The aim of our study was to develop a functional test capable of analyzing the blood gas composition in the “point-of-care test” method for the evaluation of the hemostatic potential in patients with COPD, based on a standardized test stimulus, which is tissue hypoxia. The current level of clinical and laboratory diagnostics requires personification and research of the hemo-coagulation system in real time (point-of-care test, which allows low-frequency piezotromboelastography(NVTEG to be performed.Materials and methods. NVTEG was chosen to estimate the state of the hemocoagulation system. Ten patients with COPD and 10 healthy volunteers were examined. Hypoxia was selected as a standardized test stimulus. Hypoxia conditions were caused by smoking one standard cigarette (composition: resin 10 mg/cig., nicotine 0,7 mg/cig., CO 10 mg/cig.. The degree of tissue hypoxia was assessed with the GASTAT-navi blood gas analyzer.Results. The study has shown that in response to the standard test stimulus, which is the tissue hypoxia caused by smoking of a standardized cigarette, two types of haemostatic potential reaction were detected both in patients with COPD and healthy volunteers. The first type of reaction – “hypercoagulation” – is characterized by the formation of chronometric and structural hypercoagulation at all stages of fibrinogenesis and increased coagulation activity by 25–30% compared with the response in healthy individuals. The second type of reaction – “hypocoagulation” – is characterized by the formation of chronometric and structural

  7. Obstructive sleep apnea: role of intermittent hypoxia and inflammation.

    Science.gov (United States)

    May, Anna M; Mehra, Reena

    2014-10-01

    Obstructive sleep apnea results in intermittent hypoxia via repetitive upper airway obstruction leading to partial or complete upper airway closure, apneas and hypopneas, respectively. Intermittent hypoxia leads to sympathetic nervous system activation and oxidative stress with a resultant systemic inflammatory cascade. The putative mechanism by which obstructive sleep apnea has been linked to numerous pathologic conditions including stoke, cardiovascular disease, hypertension, and metabolic derangements is through these systemic effects. Treatment of obstructive sleep apnea appears to reduce systemic markers of inflammation and ameliorates the adverse sequelae of this disease. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  8. Increased oxidative metabolism and myoglobin expression in zebrafish muscle during chronic hypoxia

    Directory of Open Access Journals (Sweden)

    Richard T. Jaspers

    2014-07-01

    Full Text Available Fish may be extremely hypoxia resistant. We investigated how muscle fibre size and oxidative capacity in zebrafish (Danio rerio adapt during severe chronic hypoxia. Zebrafish were kept for either 3 or 6 weeks under chronic constant hypoxia (CCH (10% air/90%N2 saturated water. We analyzed cross-sectional area (CSA, succinate dehydrogenase (SDH activity, capillarization, myonuclear density, myoglobin (Mb concentration and Mb mRNA expression of high and low oxidative muscle fibres. After 3 weeks of CCH, CSA, SDH activity, Mb concentration, capillary and myonuclear density of both muscle fibre types were similar as under normoxia. In contrast, staining intensity for Mb mRNA of hypoxic high oxidative muscle fibres was 94% higher than that of normoxic controls (P<0.001. Between 3 and 6 weeks of CCH, CSA of high and low oxidative muscle fibres increased by 25 and 30%, respectively. This was similar to normoxic controls. Capillary and myonuclear density were not changed by CCH. However, in high oxidative muscle fibres of fish maintained under CCH, SDH activity, Mb concentration as well as Mb mRNA content were higher by 86%, 138% and 90%, respectively, than in muscle fibres of fish kept under normoxia (P<0.001. In low oxidative muscle fibres, SDH activity, Mb and Mb mRNA content were not significantly changed. Under normoxia, the calculated interstitial oxygen tension required to prevent anoxic cores in muscle fibres (PO2crit of high oxidative muscle fibres was between 1.0 and 1.7 mmHg. These values were similar at 3 and 6 weeks CCH. We conclude that high oxidative skeletal muscle fibres of zebrafish continue to grow and increase oxidative capacity during CCH. Oxygen supply to mitochondria in these fibres may be facilitated by an increased Mb concentration, which is regulated by an increase in Mb mRNA content per myonucleus.

  9. Hypoxia-Induced Signaling Promotes Prostate Cancer Progression: Exosomes Role as Messenger of Hypoxic Response in Tumor Microenvironment

    Science.gov (United States)

    Deep, Gagan; Panigrahi, Gati K.

    2017-01-01

    Prostate cancer (PCA) is the leading malignancy in men and the second leading cause of cancer-related deaths. Hypoxia (low O2 condition) is considered an early event in prostate carcinogenesis associated with an aggressive phenotype. In fact, clinically, hypoxia and hypoxia-related biomarkers are associated with treatment failure and disease progression. Hypoxia-inducible factor 1 (HIF-1) is the key factor that is activated under hypoxia, and mediates adaptation of cells to hypoxic conditions through regulating the expression of genes associated with angiogenesis, epithelial-to-mesenchymal transition (EMT), metastasis, survival, proliferation, metabolism, stemness, hormone-refractory progression, and therapeutic resistance. Besides HIF-1, several other signaling pathways including PI3K/Akt/mTOR, NADPH oxidase (NOX), Wnt/β-catenin, and Hedgehog are activated in cancer cells under hypoxic conditions, and also contribute in hypoxia-induced biological effects in HIF-1-dependent and -independent manners. Hypoxic cancer cells cause extensive changes in the tumor microenvironment both local and distant, and recent studies have provided ample evidence supporting the crucial role of nanosized vesicles “exosomes” in mediating hypoxia-induced tumor microenvironment remodeling. Exosomes’ role has been reported in hypoxia-induced angiogenesis, stemness, activation of cancer-associated fibroblasts (CAFs), and EMT. Together, existing literature suggests that hypoxia plays a predominant role in PCA growth and progression, and PCA could be effectively prevented and treated via targeting hypoxia/hypoxia-related signaling pathways. PMID:27279239

  10. Effect of endothelin antagonism on apnea frequency following chronic intermittent hypoxia.

    Science.gov (United States)

    Donovan, Lucas M; Liu, Yuzhen; Weiss, J Woodrow

    2014-04-01

    Chronic hypoxia increases the hypoxic ventilatory response (HVR). Augmented HVR contributes to central apneas seen in heart failure and complex sleep apnea. Endothelin receptor (ETR) antagonism decreases carotid body afferent activity following chronic intermittent hypoxia (CIH). We speculated ETR antagonism would reduce HVR and apneas following CIH. HVR and apneas were measured after exposure to CIH and room air sham (SHAM). ETR blocker Ambrisentan was administered via the chow of CIH-exposed animals from days 1 to 12 of CIH (CIH/AMB). A separate crossover group was exposed to CIH and fed normal chow (placebo) days 1-6, and Ambrisentan days 7-12 (CIH/PLA-AMB). SHAM and CIH/PLA animals were fed placebo days 1-12. The CIH/AMB and CIH/PLA-AMB rats had reduced HVR compared to CIH/PLA, similar HVR compared to sham exposed animals, and reduced apnea frequency compared to CIH/PLA animals. The reduced HVR and post-hypoxic apneas resulting from Ambrisentan administration suggests ETR antagonists may have utility in reducing central apneas following CIH. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. The Role of Hypoxia in Orthodontic Tooth Movement

    Directory of Open Access Journals (Sweden)

    A. Niklas

    2013-01-01

    Full Text Available Orthodontic forces are known to have various effects on the alveolar process, such as cell deformation, inflammation, and circulatory disturbances. Each of these conditions affecting cell differentiation, cell repair, and cell migration, is driven by numerous molecular and inflammatory mediators. As a result, bone remodeling is induced, facilitating orthodontic tooth movement. However, orthodontic forces not only have cellular effects but also induce vascular changes. Orthodontic forces are known to occlude periodontal ligament vessels on the pressure side of the dental root, decreasing the blood perfusion of the tissue. This condition is accompanied by hypoxia, which is known to either affect cell proliferation or induce apoptosis, depending on the oxygen gradient. Because upregulated tissue proliferation rates are often accompanied by angiogenesis, hypoxia may be assumed to fundamentally contribute to bone remodeling processes during orthodontic treatment.

  12. The role of hypoxia, p53, and apoptosis in human cervical carcinoma pathogenesis

    International Nuclear Information System (INIS)

    Kim, Charlotte Y.; Tsai, Mitchell H.; Osmanian, Cynthia; Calkins, Dennise P.; Graeber, Thomas G.; Greenspan, David L.; Kennedy, Andrew S.; Rinker, Lillian H.; Varia, Mahesh A.; DiPaolo, Joseph A.; Peehl, Donna M.; Raleigh, James A.; Giaccia, Amato J.

    1997-01-01

    Objective: Low oxygen tension in the tumor microenvironment may have an important role during tumor growth, and is of particular prognostic significance in human cervical carcinoma. Because some human papillomavirus (HPV) infections are associated with cervical neoplasia, the relationship between hypoxia and apoptosis in primary cervical epithelial cells containing HPV16 E6 and E7, intact HPV 16 genome, and HPV positive cervical carcinoma cell lines, was examined. In addition, the relationship between hypoxia and apoptosis in spontaneous human cervical carcinomas was determined in situ. Materials and Methods: Primary normal human cervical epithelial cells were infected with retroviral vectors containing HPV16 E6 and E7 or transfected with a plasmid containing the whole HPV 16 genome. Clones were selected in neomycin containing medium. Exponentially growing cells were incubated under aerobic conditions (20% O 2 ), anaerobic conditions (0.02% O 2 ), or irradiated with 6 Gy. Analysis of apoptotic cells was performed by staining with Hoechst dye and propidium iodide and viewing with a fluorescent microscope. To determine the level of expression of the apoptotic modulators p53 and Bax, immunoblots were performed on whole cell extracts from treated cells. A clinical tumor hypoxia study was conducted at the University of North Carolina utilizing pimonidazole, a 2-nitroimidazole compound which binds irreversibly to cellular macromolecules under low oxygen conditions. Nine patients were enrolled with biopsy proven squamous cell carcinoma of the cervix and no prior treatment. Biopsies of the gross tumor were obtained after pimonidazole infusion. Contiguous histological sections were analyzed for hypoxia using a immunohistochemical technique and for apoptosis using TUNEL. Results: In vitro, hypoxia uncoupled p53 from E6 mediated degradation, and stimulated both p53 induction and apoptosis in primary cervical epithelial cells infected with the HPV E6 and E7 genes. In contrast

  13. Early Life Exposure to Chronic Intermittent Hypoxia Primes Increased Susceptibility to Hypoxia-Induced Weakness in Rat Sternohyoid Muscle During Adulthood

    Directory of Open Access Journals (Sweden)

    Fiona B Mcdonald

    2016-03-01

    Full Text Available Intermittent hypoxia is a feature of apnea of prematurity, chronic lung disease and sleep apnea. Despite the clinical relevance, the long-term effects of hypoxic exposure in early life on respiratory control are not well defined. We recently reported that exposure to chronic intermittent hypoxia (CIH during postnatal development (pCIH causes upper airway muscle weakness in both sexes, which persists for several weeks. We sought to examine if there are persistent sex-dependent effects of pCIH on respiratory muscle function into adulthood and/or increased susceptibility to re-exposure to CIH in adulthood in animals previously exposed to CIH during postnatal development. We hypothesized that pCIH would cause long-lasting muscle impairment and increased susceptibility to subsequent hypoxia. Within 24 hours of delivery, pups and their respective dams were exposed to CIH: 90s of hypoxia reaching 5% O2 at nadir; once every 5 min, 8 hrs per day for 3 weeks. Sham groups were exposed to normoxia in parallel. Three groups were studied: sham; pCIH; and pCIH combined with adult CIH (p+aCIH, where a subset of the pCIH-exposed pups were re-exposed to the same CIH paradigm beginning at 13 weeks. Following gas exposures, sternohyoid and diaphragm muscle isometric contractile and endurance properties were examined ex vivo. There was no apparent lasting effect of pCIH on respiratory muscle function in adults. However, in both males and females, re-exposure to CIH in adulthood in pCIH-exposed animals caused sternohyoid (but not diaphragm weakness. Exposure to this paradigm of CIH in adulthood alone had no effect on muscle function. Persistent susceptibility in pCIH-exposed airway dilator muscle to subsequent hypoxic insult may have implications for the control of airway patency in adult humans exposed to intermittent hypoxic stress during early life.

  14. Early life exposure to chronic intermittent Hypoxia Primes Increased Susceptibility to Hypoxia-Induced Weakness in Rat Sternohyoid Muscle during adulthood.

    LENUS (Irish Health Repository)

    McDonald, Fiona B

    2016-03-01

    Intermittent hypoxia is a feature of apnea of prematurity (AOP), chronic lung disease, and sleep apnea. Despite the clinical relevance, the long-term effects of hypoxic exposure in early life on respiratory control are not well defined. We recently reported that exposure to chronic intermittent hypoxia (CIH) during postnatal development (pCIH) causes upper airway muscle weakness in both sexes, which persists for several weeks. We sought to examine if there are persistent sex-dependent effects of pCIH on respiratory muscle function into adulthood and\\/or increased susceptibility to re-exposure to CIH in adulthood in animals previously exposed to CIH during postnatal development. We hypothesized that pCIH would cause long-lasting muscle impairment and increased susceptibility to subsequent hypoxia. Within 24 h of delivery, pups and their respective dams were exposed to CIH: 90 s of hypoxia reaching 5% O2 at nadir; once every 5 min, 8 h per day for 3 weeks. Sham groups were exposed to normoxia in parallel. Three groups were studied: sham; pCIH; and pCIH combined with adult CIH (p+aCIH), where a subset of the pCIH-exposed pups were re-exposed to the same CIH paradigm beginning at 13 weeks. Following gas exposures, sternohyoid and diaphragm muscle isometric contractile and endurance properties were examined ex vivo. There was no apparent lasting effect of pCIH on respiratory muscle function in adults. However, in both males and females, re-exposure to CIH in adulthood in pCIH-exposed animals caused sternohyoid (but not diaphragm) weakness. Exposure to this paradigm of CIH in adulthood alone had no effect on muscle function. Persistent susceptibility in pCIH-exposed airway dilator muscle to subsequent hypoxic insult may have implications for the control of airway patency in adult humans exposed to intermittent hypoxic stress during early life.

  15. Ventilatory drive is enhanced in male and female rats following chronic intermittent hypoxia.

    Science.gov (United States)

    Edge, D; Skelly, J R; Bradford, A; O'Halloran, K D

    2009-01-01

    Obstructive sleep apnoea is characterized by chronic intermittent hypoxia (CIH) due to recurrent apnoea. We have developed a rat model of CIH, which shows evidence of impaired respiratory muscle function. In this study, we wished to characterize the ventilatory effects of CIH in conscious male and female animals. Adult male (n=14) and female (n=8) Wistar rats were used. Animals were placed in chambers daily for 8 h with free access to food and water. The gas supply to one half of the chambers alternated between air and nitrogen every 90 s, for 8 h per day, reducing ambient oxygen concentration in the chambers to 5% at the nadir (intermittent hypoxia; n=7 male, n=4 female). Air supplying the other chambers was switched every 90 s to air from a separate source, at the same flow rates, and animals in these chambers served as controls (n=7 male, n=4 female). Ventilatory measurements were made in conscious animals (typically sleeping) after 10 days using whole-body plethysmography. Normoxic ventilation was increased in both male and female CIH-treated rats compared to controls but this did not achieve statistical significance. However, ventilatory drive was increased in CIH-treated rats of both sexes as evidenced by significant increases in mean and peak inspiratory flow. Ventilatory responses to acute hypoxia (F(I)O(2) = 0.10; 6 min) and hyperoxic hypercapnia (F(I)CO(2) = 0.05; 6 min) were unaffected by CIH treatment in male and female rats (P>0.05, ANOVA). We conclude that CIH increases respiratory drive in adult rats. We speculate that this represents a form of neural plasticity that may compensate for respiratory muscle impairment that occurs in this animal model.

  16. Chronic intermittent hypoxia and obstructive sleep apnea: an experimental and clinical approach

    Science.gov (United States)

    Sforza, Emilia; Roche, Fréderic

    2016-01-01

    Obstructive sleep apnea (OSA) is a prevalent sleep disorder considered as an independent risk factor for cardiovascular consequences, such as systemic arterial hypertension, ischemic heart disease, cardiac arrhythmias, metabolic disorders, and cognitive dysfunction. The pathogenesis of OSA-related consequence is assumed to be chronic intermittent hypoxia (IH) inducing alterations at the molecular level, oxidative stress, persistent systemic inflammation, oxygen sensor activation, and increase of sympathetic activity. Overall, these mechanisms have an effect on vessel permeability and are considered to be important factors for explaining vascular, metabolic, and cognitive OSA-related consequences. The present review attempts to examine together the research paradigms and clinical studies on the effect of acute and chronic IH and the potential link with OSA. We firstly describe the literature data on the mechanisms activated by acute and chronic IH at the experimental level, which are very helpful and beneficial to explaining OSA consequences. Then, we describe in detail the effect of IH in patients with OSA that we can consider “the human model” of chronic IH. In this way, we can better understand the specific pathophysiological mechanisms proposed to explain the consequences of IH in OSA. PMID:27800512

  17. Dietary polyunsaturated fatty acids and adaptation to chronic hypoxia alter acyl composition of serum and heart lipids

    Czech Academy of Sciences Publication Activity Database

    Balková, P.; Ježková, J.; Hlaváčková, M.; Neckář, Jan; Staňková, B.; Kolář, František; Novák, F.; Nováková, O.

    2009-01-01

    Roč. 102, č. 9 (2009), s. 1297-1307 ISSN 0007-1145 R&D Projects: GA ČR(CZ) GA305/07/0875 Institutional research plan: CEZ:AV0Z50110509 Keywords : chronic hypoxia * dietary n-3 and n-6 PUFA * heart Subject RIV: FA - Cardiovascular Diseases incl. Cardiotharic Surgery Impact factor: 3.446, year: 2009

  18. Chronic Intermittent Hypoxia Induces the Long-Term Facilitation of Genioglossus Corticomotor Activity

    Directory of Open Access Journals (Sweden)

    Ying Zou

    2018-01-01

    Full Text Available Obstructive sleep apnea (OSA is characterized by the repetitive collapse of the upper airway and chronic intermittent hypoxia (CIH during sleep. It has been reported that CIH can increase the EMG activity of genioglossus in rats, which may be related to the neuromuscular compensation of OSA patients. This study aimed to explore whether CIH could induce the long-term facilitation (LTF of genioglossus corticomotor activity. 16 rats were divided into the air group (n=8 and the CIH group (n=8. The CIH group was exposed to hypoxia for 4 weeks; the air group was subjected to air under identical experimental conditions in parallel. Transcranial magnetic stimulation (TMS was applied every ten minutes and lasted for 1 h/day on the 1st, 3rd, 7th, 14th, 21st, and 28th days of air/CIH exposure. Genioglossus EMG was also recorded at the same time. Compared with the air group, the CIH group showed decreased TMS latency from 10 to 60 minutes on the 7th, 14th, 21st, and 28th days. The increased TMS amplitude lasting for 60 minutes was only observed on the 21st day. Genioglossus EMG activity increased only on the 28th day of CIH. We concluded that CIH could induce LTF of genioglossus corticomotor activity in rats.

  19. Exercise training normalizes renal blood flow responses to acute hypoxia in experimental heart failure: role of the α1-adrenergic receptor.

    Science.gov (United States)

    Pügge, Carolin; Mediratta, Jai; Marcus, Noah J; Schultz, Harold D; Schiller, Alicia M; Zucker, Irving H

    2016-02-01

    Recent data suggest that exercise training (ExT) is beneficial in chronic heart failure (CHF) because it improves autonomic and peripheral vascular function. In this study, we hypothesized that ExT in the CHF state ameliorates the renal vasoconstrictor responses to hypoxia and that this beneficial effect is mediated by changes in α1-adrenergic receptor activation. CHF was induced in rabbits. Renal blood flow (RBF) and renal vascular conductance (RVC) responses to 6 min of 5% isocapnic hypoxia were assessed in the conscious state in sedentary (SED) and ExT rabbits with CHF with and without α1-adrenergic blockade. α1-adrenergic receptor expression in the kidney cortex was also evaluated. A significant decline in baseline RBF and RVC and an exaggerated renal vasoconstriction during acute hypoxia occurred in CHF-SED rabbits compared with the prepaced state (P renal denervation (DnX) blocked the hypoxia-induced renal vasoconstriction in CHF-SED rabbits. α1-adrenergic protein in the renal cortex of animals with CHF was increased in SED animals and normalized after ExT. These data provide evidence that the acute decline in RBF during hypoxia is caused entirely by the renal nerves but is only partially mediated by α1-adrenergic receptors. Nonetheless, α1-adrenergic receptors play an important role in the beneficial effects of ExT in the kidney. Copyright © 2016 the American Physiological Society.

  20. Chronic intermittent hypoxia-hypercapnia blunts heart rate responses and alters neurotransmission to cardiac vagal neurons.

    Science.gov (United States)

    Dyavanapalli, Jhansi; Jameson, Heather; Dergacheva, Olga; Jain, Vivek; Alhusayyen, Mona; Mendelowitz, David

    2014-07-01

    Patients with obstructive sleep apnoea experience chronic intermittent hypoxia-hypercapnia (CIHH) during sleep that elicit sympathetic overactivity and diminished parasympathetic activity to the heart, leading to hypertension and depressed baroreflex sensitivity. The parasympathetic control of heart rate arises from pre-motor cardiac vagal neurons (CVNs) located in nucleus ambiguus (NA) and dorsal motor nucleus of the vagus (DMNX). The mechanisms underlying diminished vagal control of heart rate were investigated by studying the changes in blood pressure, heart rate, and neurotransmission to CVNs evoked by acute hypoxia-hypercapnia (H-H) and CIHH. In vivo telemetry recordings of blood pressure and heart rate were obtained in adult rats during 4 weeks of CIHH exposure. Retrogradely labelled CVNs were identified in an in vitro brainstem slice preparation obtained from adult rats exposed either to air or CIHH for 4 weeks. Postsynaptic inhibitory or excitatory currents were recorded using whole cell voltage clamp techniques. Rats exposed to CIHH had increases in blood pressure, leading to hypertension, and blunted heart rate responses to acute H-H. CIHH induced an increase in GABAergic and glycinergic neurotransmission to CVNs in NA and DMNX, respectively; and a reduction in glutamatergic neurotransmission to CVNs in both nuclei. CIHH blunted the bradycardia evoked by acute H-H and abolished the acute H-H evoked inhibition of GABAergic transmission while enhancing glycinergic neurotransmission to CVNs in NA. These changes with CIHH inhibit CVNs and vagal outflow to the heart, both in acute and chronic exposures to H-H, resulting in diminished levels of cardioprotective parasympathetic activity to the heart as seen in OSA patients. © 2014 The Authors. The Journal of Physiology © 2014 The Physiological Society.

  1. The value of umbilical blood 2,3 diphosphoglycerate levels in the diagnosis of chronic fetal hypoxia.

    Science.gov (United States)

    Zapadlo, M; Böswart, J; Petová, J; Hosková, K

    1990-01-01

    The authors assessed the levels of lactate and 2,3 diphosphoglycerate in the umbilical blood of 105 full-term neonates. A significant increase was found in the levels of 2,3 diphosphoglycerate in newborns of mothers with a history of imminent chronic intrauterine hypoxia. The lactate levels of these newborns were the same as in children of mothers without a history showing a risk of intrauterine hypoxia. The psychomotor development of newborns with increased levels of 2,3 diphosphoglycerate was significantly more altered than in those with normal levels in their first year of life.

  2. Systemic administration of thrombin peptide TP508 enhances VEGF-stimulated angiogenesis and attenuates effects of chronic hypoxia

    Science.gov (United States)

    Olszewska-Pazdrak, Barbara; Carney, Darrell H.

    2015-01-01

    Revascularization of chronic wounds and ischemic tissue is attenuated by endothelial dysfunction and the inability of angiogenic factors to stimulate angiogenesis. We recently showed that TP508, a nonproteolytic thrombin peptide, increases perfusion and NO-dependent vasodilation in hearts with chronic ischemia and stimulates NO production by endothelial cells. In this study, we investigated systemic in vivo effects of TP508 on VEGF-stimulated angiogenesis in vitro using aortic explants in normoxic and hypoxic conditions. Mice were injected with saline or TP508 and 24h later aortas were removed and cultured to quantify endothelial sprouting. TP508 injection increased endothelial sprouting and potentiated the in vitro response to VEGF. Exposure of control explants to hypoxia inhibited basal and VEGF-stimulated endothelial cell sprouting. This effect of hypoxia was significantly prevented by TP508 injection. Thus, TP508 systemic administration increases responsiveness of aortic endothelial cells to VEGF and diminishes the effect of chronic hypoxia on endothelial cell sprouting. Studies using human endothelial cells in culture suggest that protective effects of TP508 during hypoxia may involve stimulation of endothelial cell NO production. These data suggest potential clinical benefit of using a combination of systemic TP508 and local VEGF as a therapy for revascularization of ischemic tissue. PMID:23594718

  3. [Role of restricted nitric oxide overproduction in the cardioprotective effect of adaptation to intermittent hypoxia].

    Science.gov (United States)

    goriacheva, A V; Belkina, L M; Terekhina, O L; Dawney, H F; Mallet, R T; Smirin, B V; Smirnova, E A; Mashina, S Iu; Manukhina, E B

    2012-01-01

    Adaptation to intermittent normobaric hypoxia is cardioprotective and can stimulate nitric oxide (NO) synthesis. However the role of nitric oxide (NO) in prevention of ischemia-reperfusion (IR) injury of myocardium is controversial. This study was focused on evaluating the effect of adaptation to hypoxia and IR on NO production and development of nitrative stress in the myocardium. Adaptation to hypoxia tended to increase NO production, which was determined by the total level of plasma nitrite and nitrate, and prevented IR-induced NO overproduction. The IR-induced NO overproduction was associated with significant 3-nitrotyrosine (3-NT) accumulation in the left ventricle but not in septum or aorta. In hypoxia-adapted rats, 3-NT after IR was similar to that of control rats without IR. IHC induced marked accumulation of HIF-1alpha in the left ventricle. We suggest that HIF-1alpha contributes to NO-synthase expression during adaptation to hypoxia and thereby facilitates the increase in NO production. NO, in turn, may subsequently prevent NO overproduction during IR by a negative feedback mechanism.

  4. The role of hypoxia-inducible factor-2 in digestive system cancers.

    Science.gov (United States)

    Zhao, J; Du, F; Shen, G; Zheng, F; Xu, B

    2015-01-15

    Hypoxia is an all but ubiquitous phenomenon in cancers. Two known hypoxia-inducible factors (HIFs), HIF-1α and HIF-2α, primarily mediate the transcriptional response to hypoxia. Despite the high homology between HIF-1α and HIF-2α, emerging evidence suggests differences between both molecules in terms of transcriptional targets as well as impact on multiple physiological pathways and tumorigenesis. To date, much progress has been made toward understanding the roles of HIF-2α in digestive system cancers. Indeed, HIF-2α has been shown to regulate multiple aspects of digestive system cancers, including cell proliferation, angiogenesis and apoptosis, metabolism, metastasis and resistance to chemotherapy. These findings make HIF-2α a critical regulator of this malignant phenotype. Here we summarize the function of HIF-2 during cancer development as well as its contribution to tumorigenesis in digestive system malignancies.

  5. Chronic Prenatal Hypoxia Down-Regulated BK Channel Β1 Subunits in Mesenteric Artery Smooth Muscle Cells of the Offspring

    Directory of Open Access Journals (Sweden)

    Bailin Liu

    2018-02-01

    Full Text Available Background/Aims: Chronic hypoxia in utero could impair vascular functions in the offspring, underlying mechanisms are unclear. This study investigated functional alteration in large-conductance Ca2+-activated K+ (BK channels in offspring mesenteric arteries following prenatal hypoxia. Methods: Pregnant rats were exposed to normoxic control (21% O2, Con or hypoxic (10.5% O2, Hy conditions from gestational day 5 to 21, their 7-month-old adult male offspring were tested for blood pressure, vascular BK channel functions and expression using patch clamp and wire myograh technique, western blotting, and qRT-PCR. Results: Prenatal hypoxia increased pressor responses and vasoconstrictions to phenylephrine in the offspring. Whole-cell currents density of BK channels and amplitude of spontaneous transient outward currents (STOCs, not the frequency, were significantly reduced in Hy vascular myocytes. The sensitivity of BK channels to voltage, Ca2+, and tamoxifen were reduced in Hy myocytes, whereas the number of channels per patch and the single-channel conductance were unchanged. Prenatal hypoxia impaired NS1102- and tamoxifen-mediated relaxation in mesenteric arteries precontracted with phenylephrine in the presence of Nω-nitro-L-arginine methyl ester. The mRNA and protein expression of BK channel β1, not the α-subunit, was decreased in Hy mesenteric arteries. Conclusions: Impaired BK channel β1-subunits in vascular smooth muscle cells contributed to vascular dysfunction in the offspring exposed to prenatal hypoxia.

  6. Cycling hypoxia: A key feature of the tumor microenvironment.

    Science.gov (United States)

    Michiels, Carine; Tellier, Céline; Feron, Olivier

    2016-08-01

    A compelling body of evidence indicates that most human solid tumors contain hypoxic areas. Hypoxia is the consequence not only of the chaotic proliferation of cancer cells that places them at distance from the nearest capillary but also of the abnormal structure of the new vasculature network resulting in transient blood flow. Hence two types of hypoxia are observed in tumors: chronic and cycling (intermittent) hypoxia. Most of the current work aims at understanding the role of chronic hypoxia in tumor growth, response to treatment and metastasis. Only recently, cycling hypoxia, with spatial and temporal fluctuations in oxygen levels, has emerged as another key feature of the tumor environment that triggers different responses in comparison to chronic hypoxia. Either type of hypoxia is associated with distinct effects not only in cancer cells but also in stromal cells. In particular, cycling hypoxia has been demonstrated to favor, to a higher extent than chronic hypoxia, angiogenesis, resistance to anti-cancer treatments, intratumoral inflammation and tumor metastasis. These review details these effects as well as the signaling pathway it triggers to switch on specific transcriptomic programs. Understanding the signaling pathways through which cycling hypoxia induces these processes that support the development of an aggressive cancer could convey to the emergence of promising new cancer treatments. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Chronic intermittent but not constant hypoxia decreases NAA/Cr ratios in neonatal mouse hippocampus and thalamus.

    Science.gov (United States)

    Douglas, Robert M; Miyasaka, Naoyuki; Takahashi, Kan; Latuszek-Barrantes, Adrianna; Haddad, Gabriel G; Hetherington, Hoby P

    2007-03-01

    Chronic constant hypoxia (CCH) and chronic intermittent hypoxia (CIH) are known to have deleterious effects on the central nervous system. Because of the difference in the pattern of hypoxic exposure, it is possible that the pathological outcome would vary. The N-acetyl aspartate/creatine (NAA/Cr) ratio is a reliable marker of neuronal integrity, and this can be noninvasively measured by proton nuclear magnetic resonance spectroscopy. P2 CD1 mouse pups with their dams were exposed to either CCH, where the Fi(O(2)) was maintained at 11% continuously or to CIH, where the Fi(O(2)) was varied between 21 and 11% every 4 min. P30 mice exposed to intermittent hypoxia for 4 wk demonstrated a significant decrease in the NAA/Cr ratio in the hippocampus and thalamus, which was reversed by a subsequent exposure to 4 wk of normoxia. Meanwhile, mice exposed to 4 wk of constant hypoxia did not demonstrate any differences in their NAA/Cr ratios from controls in these brain regions. These results indicate that an intermittent pattern of hypoxic exposure may have a more adverse effect on neuronal function and integrity than a continuous one. The reversal of NAA/Cr levels to baseline during the return to normoxia indicates that therapeutic strategies targeted at alleviating the intermittent hypoxic stress in diseases, such as obstructive sleep apnea, have the potential for inducing significant neurocognitive recovery in these patients.

  8. Microenvironmental oxygen partial pressure in acute myeloid leukemia: Is there really a role for hypoxia?

    Science.gov (United States)

    Rieger, Christina T; Fiegl, Michael

    2016-07-01

    Reduced oxygen partial pressure (pO2) has been recognized as being relevant in hematopoiesis and the pathophysiology of malignant diseases. Although hypoxic (meaning insufficient supply of oxygen) and anoxic areas are present and of pathophysiologic importance (by hypoxia-induced pathways such as HiF1α) in solid tumors, this may not be true for (malignant) hematologic cells. Hematopoiesis occurs in the stem cell niche, which is characterized, among other things, by extremely low pO2. However, in contrast to solid tumors, in this context, the low pO2 is physiological and this feature, among others, is shared by the malignant stem cell niche harboring leukemia-initiating cells. Upon differentiation, hematopoietic cells are constantly exposed to changes in pO2 as they travel throughout the human body and encounter arterial and venous blood and migrate into oxygen-carrier-free tissue with low pO2. Hematologic malignancies such as acute myeloid leukemia (AML) make little difference in this respect and, whereas low oxygen is the usual environment of AML cells, recent evidence suggests no role for real hypoxia. Although there is no evidence that AML pathophysiology is related to hypoxia, leukemic blasts still show several distinct biological features when exposed to reduced pO2: they down- or upregulate membrane receptors such as CXCR4 or FLT3, activate or inhibit intracellular signaling pathways such as PI3K, and specifically secrete cytokines (IL-8). In summary, reduced pO2 should not be mistaken for hypoxia (nor should it be so called), and it does not automatically induce hypoxia-response mechanisms; therefore, a strict distinction should be made between physiologically low pO2 (physoxia) and hypoxia. Copyright © 2016 ISEH - International Society for Experimental Hematology. Published by Elsevier Inc. All rights reserved.

  9. Adaptation to periodic pressure chamber hypoxia and its influence on systolic and diastolic functions in chronic heart failure

    Directory of Open Access Journals (Sweden)

    Dmitrieva М.К.

    2012-06-01

    Full Text Available Research objective is to determine the influence of adaptation method to periodic pressure chamber hypoxia on dynamics of systolic and diastolic functions of myocardium in patients with early stages of chronic heart failure. Materials and Methods: 100 men with post-infarction cardiosclerosis at the age of 40-65 years with I and IIA stages and l-ll functional classes (NYHA of chronic heart failure have been examined. Results: Positive dynamics of systolic and diastolic cardiac functions and other parameters of echocardioscopy under the influence of the hypoxic therapy in comparison with classical physical rehabilitation have been obtained. Furthermore, a more significant effect has been observed in patients with CHF IIA. Conclusion: Improvement in the geometry of the heart has proved that adaptation method to periodic pressure chamber hypoxia could be recommended for rehabilitation of patients with heart failure of early stages.

  10. The dual role of autophagy under hypoxia-involvement of interaction between autophagy and apoptosis.

    Science.gov (United States)

    Li, Mengmeng; Tan, Jin; Miao, Yuyang; Lei, Ping; Zhang, Qiang

    2015-06-01

    Hypoxia is one of severe cellular stress and it is well known to be associated with a worse outcome since a lack of oxygen accelerates the induction of apoptosis. Autophagy, an important and evolutionarily conserved mechanism for maintaining cellular homeostasis, is closely related to the apoptosis caused by hypoxia. Generally autophagy blocks the induction of apoptosis and inhibits the activation of apoptosis-associated caspase which could reduce cellular injury. However, in special cases, autophagy or autophagy-relevant proteins may help to induce apoptosis, which could aggravate cell damage under hypoxia condition. In addition, the activation of apoptosis-related proteins-caspase can also degrade autophagy-related proteins, such as Atg3, Atg4, Beclin1 protein, inhibiting autophagy. Although the relationship between autophagy and apoptosis has been known for rather complex for more than a decade, the underlying regulatory mechanisms have not been clearly understood. This short review discusses and summarizes the dual role of autophagy and the interaction and molecular regulatory mechanisms between autophagy and apoptosis under hypoxia.

  11. Role of hypoxia inducing factor-1β in alcohol-induced autophagy, steatosis and liver injury in mice.

    Directory of Open Access Journals (Sweden)

    Hong-Min Ni

    Full Text Available Chronic alcohol causes liver hypoxia and steatosis, which eventually develops into alcoholic liver disease (ALD. While it has been known that alcohol consumption activates hepatic hypoxia inducing factor-1α (HIF-1α, conflicting results regarding the role of HIF-1α in alcohol-induced liver injury and steatosis in mice have been reported. In the present study, we aimed to use hepatocyte-specific HIF-1β knockout mice to eliminate the possible compensatory effects of the single knockout of the 1α subunit of HIF to study the role of HIFs in ALD. C57BL/6 wild type mice were treated with acute ethanol to mimic human binge drinking. Matched wild-type and hepatocyte specific HIF-1β knockout mice were also subjected to a recently established Gao-binge alcohol model to mimic chronic plus binge conditions, which is quite common in human alcoholics. We found that acute alcohol treatment increased BNIP3 and BNIP3L/NIX expression in primary cultured hepatocytes and in mouse livers, suggesting that HIF may be activated in these models. We further found that hepatocyte-specific HIF-1β knockout mice developed less steatosis and liver injury following the Gao-binge model or acute ethanol treatment compared with their matched wild type mice. Mechanistically, protection against Gao-binge treatment-induced steatosis and liver injury was likely associated with increased FoxO3a activation and subsequent induction of autophagy in hepatocyte-specific HIF-1β knockout mice.

  12. Cloning of the human TASK-2 (KCNK5) promoter and its regulation by chronic hypoxia

    International Nuclear Information System (INIS)

    Brazier, Stephen P.; Mason, Helen S.; Bateson, Alan N.; Kemp, Paul J.

    2005-01-01

    The tandem P domain potassium channel family includes five members of the acid-sensing subfamily, TASK. TASK channels are active at resting potential and are inhibited by extracellular protons, suggesting they function as acid sensors and control excitability/ion homeostasis. Indeed, TASK-2 (KCNK5) has been shown to control excitability, volume regulation, bicarbonate handling, and apoptosis in a variety of tissues. With such diverse functions being ascribed to TASK-2, it is important to understand long-term as well as short-term regulation of this important channel. Thus, we have cloned the TASK-2 promoter, demonstrated that its transcriptional activity is dependent upon pO 2 , shown that deletion of overlapping consensus binding sites for NF-κB/Elk-1 ablates this O 2 sensitivity, and proved that Elk-1 binds preferentially to this site. Furthermore, the consequences of chronic hypoxia on natively expressed TASK-2 are decreased steady-state mRNA and cell depolarization showing that TASK-2 contributes to the excitability of this important lung cell type

  13. Chronic intermittent hypoxia activates nuclear factor-κB in cardiovascular tissues in vivo

    International Nuclear Information System (INIS)

    Greenberg, Harly; Ye Xiaobing; Wilson, David; Htoo, Aung K.; Hendersen, Todd; Liu Shufang

    2006-01-01

    Obstructive sleep apnea (OSA) is an important risk factor for cardiovascular morbidity and mortality. The mechanisms through which OSA promotes the development of cardiovascular disease are poorly understood. In this study, we tested the hypotheses that chronic exposure to intermittent hypoxia and reoxygenation (CIH) is a major pathologic factor causing cardiovascular inflammation, and that CIH-induces cardiovascular inflammation and pathology by activating the NF-κB pathway. We demonstrated that exposure of mice to CIH activated NF-κB in cardiovascular tissues, and that OSA patients had markedly elevated monocyte NF-κB activity, which was significantly decreased when obstructive apneas and their resultant CIH were eliminated by nocturnal CPAP therapy. The elevated NF-κB activity induced by CIH is accompanied by and temporally correlated to the increased expression of iNOS protein, a putative and important NF-κB-dependent gene product. Thus, CIH-mediated NF-κB activation may be a molecular mechanism linking OSA and cardiovascular pathologies seen in OSA patients

  14. Chronic hypoxia suppresses the CO2 response of solitary complex (SC) neurons from rats.

    Science.gov (United States)

    Nichols, Nicole L; Wilkinson, Katherine A; Powell, Frank L; Dean, Jay B; Putnam, Robert W

    2009-09-30

    We studied the effect of chronic hypobaric hypoxia (CHx; 10-11% O(2)) on the response to hypercapnia (15% CO(2)) of individual solitary complex (SC) neurons from adult rats. We simultaneously measured the intracellular pH and firing rate responses to hypercapnia of SC neurons in superfused medullary slices from control and CHx-adapted adult rats using the blind whole cell patch clamp technique and fluorescence imaging microscopy. We found that CHx caused the percentage of SC neurons inhibited by hypercapnia to significantly increase from about 10% up to about 30%, but did not significantly alter the percentage of SC neurons activated by hypercapnia (50% in control vs. 35% in CHx). Further, the magnitudes of the responses of SC neurons from control rats (chemosensitivity index for activated neurons of 166+/-11% and for inhibited neurons of 45+/-15%) were the same in SC neurons from CHx-adapted rats. This plasticity induced in chemosensitive SC neurons by CHx appears to involve intrinsic changes in neuronal properties since they were the same in synaptic blockade medium.

  15. Reducing body fat with altitude hypoxia training in swimmers: role of blood perfusion to skeletal muscles.

    Science.gov (United States)

    Chia, Michael; Liao, Chin-An; Huang, Chih-Yang; Lee, Wen-Chih; Hou, Chien-Wen; Yu, Szu-Hsien; Harris, M Brennan; Hsu, Tung-Shiung; Lee, Shin-Da; Kuo, Chia-Hua

    2013-02-28

    Swimmers tend to have greater body fat than athletes from other sports. The purpose of the study was to examine changes in body composition after altitude hypoxia exposure and the role of blood distribution to the skeletal muscle in swimmers. With a constant training volume of 12.3 km/day, young male swimmers (N = 10, 14.8 ± 0.5 years) moved from sea-level to a higher altitude of 2,300 meters. Body composition was measured before and after translocation to altitude using dual-energy X-ray absorptiometry (DXA) along with 8 control male subjects who resided at sea level for the same period of time. To determine the effects of hypoxia on muscle blood perfusion, total hemoglobin concentration (THC) was traced by near-infrared spectroscopy (NIRS) in the triceps and quadriceps muscles under glucose-ingested and insulin-secreted conditions during hypoxia exposure (16% O2) after training. While no change in body composition was found in the control group, subjects who trained at altitude had unequivocally decreased fat mass (-1.7 ± 0.3 kg, -11.4%) with increased lean mass (+0.8 ± 0.2 kg, +1.5%). Arterial oxygen saturation significantly decreased with increased plasma lactate during hypoxia recovery mimicking 2,300 meters at altitude (~93% versus ~97%). Intriguingly, hypoxia resulted in elevated muscle THC, and sympathetic nervous activities occurred in parallel with greater-percent oxygen saturation in both muscle groups. In conclusion, the present study provides evidence that increased blood distribution to the skeletal muscle under postprandial condition may contribute to the reciprocally increased muscle mass and decreased body mass after a 3-week altitude exposure in swimmers.

  16. Chronic hypoxia promotes pulmonary artery endothelial cell proliferation through H2O2-induced 5-lipoxygenase.

    Directory of Open Access Journals (Sweden)

    Kristi M Porter

    Full Text Available Pulmonary Hypertension (PH is a progressive disorder characterized by endothelial dysfunction and proliferation. Hypoxia induces PH by increasing vascular remodeling. A potential mediator in hypoxia-induced PH development is arachidonate 5-Lipoxygenase (ALOX5. While ALOX5 metabolites have been shown to promote pulmonary vasoconstriction and endothelial cell proliferation, the contribution of ALOX5 to hypoxia-induced proliferation remains unknown. We hypothesize that hypoxia exposure stimulates HPAEC proliferation by increasing ALOX5 expression and activity. To test this, human pulmonary artery endothelial cells (HPAEC were cultured under normoxic (21% O2 or hypoxic (1% O2 conditions for 24-, 48-, or 72 hours. In a subset of cells, the ALOX5 inhibitor, zileuton, or the 5-lipoxygenase activating protein inhibitor, MK-886, was administered during hypoxia exposure. ALOX5 expression was measured by qRT-PCR and western blot and HPAEC proliferation was assessed. Our results demonstrate that 24 and 48 hours of hypoxia exposure have no effect on HPAEC proliferation or ALOX5 expression. Seventy two hours of hypoxia significantly increases HPAEC ALOX5 expression, hydrogen peroxide (H2O2 release, and HPAEC proliferation. We also demonstrate that targeted ALOX5 gene silencing or inhibition of the ALOX5 pathway by pharmacological blockade attenuates hypoxia-induced HPAEC proliferation. Furthermore, our findings indicate that hypoxia-induced increases in cell proliferation and ALOX5 expression are dependent on H2O2 production, as administration of the antioxidant PEG-catalase blocks these effects and addition of H2O2 to HPAEC promotes proliferation. Overall, these studies indicate that hypoxia exposure induces HPAEC proliferation by activating the ALOX5 pathway via the generation of H2O2.

  17. Disparate roles of zinc in chemical hypoxia-induced neuronal death

    Directory of Open Access Journals (Sweden)

    Sujeong eKim

    2015-01-01

    Full Text Available Accumulating evidence has provided a causative role of zinc (Zn2+ in neuronal death following ischemic brain injury. Using a hypoxia model of primary cultured cortical neurons with hypoxia-inducing chemicals, cobalt chloride (1 mM CoCl2, deferoxamine (3 mM DFX, and sodium azide (2 mM NaN3, we evaluated whether Zn2+ is involved in hypoxic neuronal death. The hypoxic chemicals rapidly elicited intracellular Zn2+ release/accumulation in viable neurons. The immediate addition of the Zn2+ chelator, CaEDTA or N,N,N’N’-tetrakis-(2-pyridylmethyl ethylenediamine (TPEN, prevented the intracellular Zn2+ load and CoCl2-induced neuronal death, but neither 3-hour-later Zn2+ chelation nor a non-Zn2+ chelator ZnEDTA (1 mM demonstrated any effects. However, neither CaEDTA nor TPEN rescued neurons from cell death following DFX- or NaN3-induced hypoxia, whereas ZnEDTA rendered them resistant to the hypoxic injury. Instead, the immediate supplementation of Zn2+ rescued DFX- and NaN3-induced neuronal death. The iron supplementation also afforded neuroprotection against DFX-induced hypoxic injury. Thus, although intracellular Zn2+ release/accumulation is common during chemical hypoxia, Zn2+ might differently influence the subsequent fate of neurons; it appears to play a neurotoxic or neuroprotective role depending on the hypoxic chemical used. These results also suggest that different hypoxic chemicals may induce neuronal death via distinct mechanisms.

  18. Disparate roles of zinc in chemical hypoxia-induced neuronal death.

    Science.gov (United States)

    Kim, Sujeong; Seo, Jung-Woo; Oh, Shin Bi; Kim, So Hee; Kim, Inki; Suh, Nayoung; Lee, Joo-Yong

    2015-01-01

    Accumulating evidence has provided a causative role of zinc (Zn(2+)) in neuronal death following ischemic brain injury. Using a hypoxia model of primary cultured cortical neurons with hypoxia-inducing chemicals, cobalt chloride (1 mM CoCl2), deferoxamine (3 mM DFX), and sodium azide (2 mM NaN3), we evaluated whether Zn(2+) is involved in hypoxic neuronal death. The hypoxic chemicals rapidly elicited intracellular Zn(2+) release/accumulation in viable neurons. The immediate addition of the Zn(2+) chelator, CaEDTA or N,N,N'N'-tetrakis-(2-pyridylmethyl) ethylenediamine (TPEN), prevented the intracellular Zn(2+) load and CoCl2-induced neuronal death, but neither 3 hour later Zn(2+) chelation nor a non-Zn(2+) chelator ZnEDTA (1 mM) demonstrated any effects. However, neither CaEDTA nor TPEN rescued neurons from cell death following DFX- or NaN3-induced hypoxia, whereas ZnEDTA rendered them resistant to the hypoxic injury. Instead, the immediate supplementation of Zn(2+) rescued DFX- and NaN3-induced neuronal death. The iron supplementation also afforded neuroprotection against DFX-induced hypoxic injury. Thus, although intracellular Zn(2+) release/accumulation is common during chemical hypoxia, Zn(2+) might differently influence the subsequent fate of neurons; it appears to play a neurotoxic or neuroprotective role depending on the hypoxic chemical used. These results also suggest that different hypoxic chemicals may induce neuronal death via distinct mechanisms.

  19. Chronic intermittent hypoxia promotes expression of 3-mercaptopyruvate sulfurtransferase in adult rat medulla oblongata.

    Science.gov (United States)

    Li, Mingqiang; Nie, Lihong; Hu, Yajie; Yan, Xiang; Xue, Lian; Chen, Li; Zhou, Hua; Zheng, Yu

    2013-12-01

    The present experiments were carried out to investigate the expression of 3-mercaptopyruvate sulfurtransferase (3MST) in medulla oblongata of rats and effects of chronic intermittent hypoxia (CIH) on its expression. Sprague Dawley adult rats were randomly divided into two groups, including control (Con) group and CIH group. The endogenous production of hydrogen sulfide (H2S) in medulla oblongata tissue homogenates was measured using the methylene blue assay method, 3MST mRNA and protein expression were analyzed by RT-PCR and Western blotting, respectively, and the expression of 3MST in the neurons of respiratory-related nuclei in medulla oblongata of rats was investigated with immunohistochemical technique. CIH elevated the endogenous H2S production in rat medulla oblongata (Pmedulla oblongata of rats and CIH promoted their expression (P<0.01). Immunohistochemical staining indicated that 3MST existed in the neurons of pre-Bötzinger complex (pre-BötC), hypoglossal nucleus (12N), ambiguous nucleus (Amb), facial nucleus (FN) and nucleus tractus solitarius (NTS) in the animals and the mean optical densities of 3MST-positive neurons in the pre-BötC, 12N and Amb, but not in FN and NTS, were significantly increased in CIH group (P<0.05). In conclusion, 3MST exists in the neurons of medullary respiratory nuclei and its expression can be up-regulated by CIH in adult rat, suggesting that 3MST-H2S pathway may be involved in regulation of respiration and protection on medullary respiratory centers from injury induced by CIH. © 2013.

  20. Gene expression profiling of sex differences in HIF1-dependent adaptive cardiac responses to chronic hypoxia

    Czech Academy of Sciences Publication Activity Database

    Bohuslavová, Romana; Kolář, František; Kuthanová, Lada; Neckář, Jan; Tichopád, Aleš; Pavlínková, Gabriela

    2010-01-01

    Roč. 109, č. 4 (2010), s. 1195-1202 ISSN 8750-7587 R&D Projects: GA ČR GA301/09/0117 Institutional research plan: CEZ:AV0Z50520701; CEZ:AV0Z50110509 Keywords : Hypoxia inducible factor 1 alpha * hypoxia * gene expression profiling Subject RIV: EB - Genetics ; Molecular Biology Impact factor : 4.232, year: 2010

  1. The roles of autophagy and hypoxia in human inflammatory periapical lesions.

    Science.gov (United States)

    Huang, H Y; Wang, W C; Lin, P Y; Huang, C P; Chen, C Y; Chen, Y K

    2018-02-01

    To determine the expressions of hypoxia-related [hypoxia-inducible transcription factors (HIF)-1α, BCL2/adenovirus E1B 19 kDa protein-interacting protein 3 (BNIP3) and phospho-adenosine monophosphate activated protein kinase (pAMPK)] and autophagy-related [microtubule-associated protein 1 light chain 3 (LC3), beclin-1 (BECN-1), autophagy-related gene (Atg)5-12, and p62] proteins in human inflammatory periapical lesions. Fifteen samples of radicular cysts (RCs) and 21 periapical granulomas (PGs), combined with 17 healthy dental pulp tissues, were examined. Enzyme-linked immunosorbent assay (ELISA) was used to detect interleukin (IL)-1β cytokine; immunohistochemical (IHC) and Western blot (WB) analyses were employed to examine autophagy-related and hypoxia-related proteins. Transmission electron microscopy (TEM) was used to explore the ultrastructural morphology of autophagy in periapical lesions. Nonparametric Kruskal-Wallis tests and Mann-Whitney U-tests were used for statistical analyses. ELISA revealed a significantly higher (P periapical lesions than in normal pulp tissue. Immunoscores of IHC expressions of pAMPK, HIF-1α, BNIP3, BECN-1 and Atg5-12 proteins in periapical lesions were significantly higher (P periapical lesions were noted as compared to normal pulp tissue. Upon TEM, ultrastructural double-membrane autophagosomes and autolysosomes were observed in PGs and RCs. Autophagy associated with hypoxia may play a potential causative role in the development and maintenance of inflamed periapical lesions. © 2017 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  2. Beyond anaemia management: evolving role of erythropoietin therapy in neurological disorders, multiple myeloma and tumour hypoxia models.

    Science.gov (United States)

    Boogaerts, Marc; Mittelman, Moshe; Vaupel, Peter

    2005-01-01

    Recombinant human erythropoietin (epoetin) has become the standard of care in the treatment of anaemia resulting from cancer and its treatment, and chronic kidney disease. The discovery that erythropoietin and its receptor are located in regions outside the erythropoietic system has led to interest in the potential role of epoetin in other tissues, such as the central nervous system. Animal studies have shown that systemically applied epoetin can cross the blood-brain barrier, where it reduces tissue injury associated with stroke, blunt trauma and experimental autoimmune encephalomyelitis. Pilot studies in humans have shown that epoetin treatment given within 8 h of stroke reduces infarct size and results in a significantly better outcome when compared with placebo treatment. Studies also suggest that epoetin has the potential to improve cognitive impairment associated with adjuvant chemotherapy in patients with cancer. Anaemia is a major factor causing tumour hypoxia, a condition that can promote changes within neoplastic cells that further tumour survival and malignant progression and also reduces the effectiveness of several anticancer therapies including radiotherapy and oxygen-dependent cytotoxic agents. Use of epoetin to prevent or correct anaemia has the potential to reduce tumour hypoxia and improve treatment outcome. Several therapeutic studies in anaemic animals with experimental tumours have shown a beneficial effect of epoetin on delaying tumour growth. Furthermore, clinical observations in patients with multiple myeloma and animal studies have suggested that epoetin has an antimyeloma effect, mediated via the immune system through activation of CD8+ T cells. Therefore, the role of epoetin may go well beyond that of increasing haemoglobin levels in anaemic patients, although additional studies are required to confirm these promising results. Copyright 2005 S. Karger AG, Basel.

  3. Phenotypic plasticity in the common snapping turtle (Chelydra serpentina): long-term physiological effects of chronic hypoxia during embryonic development.

    Science.gov (United States)

    Wearing, Oliver H; Eme, John; Rhen, Turk; Crossley, Dane A

    2016-01-15

    Studies of embryonic and hatchling reptiles have revealed marked plasticity in morphology, metabolism, and cardiovascular function following chronic hypoxic incubation. However, the long-term effects of chronic hypoxia have not yet been investigated in these animals. The aim of this study was to determine growth and postprandial O2 consumption (V̇o2), heart rate (fH), and mean arterial pressure (Pm, in kPa) of common snapping turtles (Chelydra serpentina) that were incubated as embryos in chronic hypoxia (10% O2, H10) or normoxia (21% O2, N21). We hypothesized that hypoxic development would modify posthatching body mass, metabolic rate, and cardiovascular physiology in juvenile snapping turtles. Yearling H10 turtles were significantly smaller than yearling N21 turtles, both of which were raised posthatching in normoxic, common garden conditions. Measurement of postprandial cardiovascular parameters and O2 consumption were conducted in size-matched three-year-old H10 and N21 turtles. Both before and 12 h after feeding, H10 turtles had a significantly lower fH compared with N21 turtles. In addition, V̇o2 was significantly elevated in H10 animals compared with N21 animals 12 h after feeding, and peak postprandial V̇o2 occurred earlier in H10 animals. Pm of three-year-old turtles was not affected by feeding or hypoxic embryonic incubation. Our findings demonstrate that physiological impacts of developmental hypoxia on embryonic reptiles continue into juvenile life. Copyright © 2016 the American Physiological Society.

  4. Household air pollution and chronic hypoxia in the placenta of pregnant Nigerian women: A randomized controlled ethanol Cookstove intervention.

    Science.gov (United States)

    Dutta, Anindita; Khramtsova, Galina; Brito, Katherine; Alexander, Donee; Mueller, Ariel; Chinthala, Sireesha; Adu, Damilola; Ibigbami, Tope; Olamijulo, John; Odetunde, Abayomi; Adigun, Kehinde; Pruitt, Liese; Hurley, Ian; Olopade, Olufunmilayo; Ojengbede, Oladosu; Rana, Sarosh; Olopade, Christopher O

    2018-04-01

    Household air pollution (HAP) is associated with adverse pregnancy outcomes. Investigate impact of in-utero HAP exposure on placental development and chronic hypoxia. Markers of chronic placental hypoxia [Hofbauer cells (HBC), syncytial knots (SK), chorionic vascular density (cVD) and hypoxia-inducible factor (HIF)] were stained by hematoxylin-eosin and/or immunohistochemically in placenta samples collected from firewood-/kerosene-users (A,n=16), and ethanol-users (B,n=20) that participated in a randomized controlled intervention trial in Ibadan, Nigeria. A third group of non-smoking and presumed natural gas-using Chicago women (C,n=12) were included in this exploratory pilot to assess for possible differences in placenta histology between similar racial groups. All patients had uncomplicated pregnancies and delivered at term. HBC, SK and cVD were significantly increased among firewood-/kerosene-users compared to ethanol-users and natural gas-using Chicago women (HBC medians 5.5, 3.5, and 2.0, respectively; SK means 55.6, 41.8 and 30.1; cVD means 8.8, 6.2, and 5.2; all pfirewood/kerosene-users compared to ethanol-users with less HAP exposure and Chicago women with no presumed HAP exposure. Presence of chronic hypoxic signature in placenta of women exposed to HAP has implications for adverse pregnancy complications and future growth and development of the young children. Future larger studies need to focus on HAP exposure and placental disorders like preeclampsia and long-term health impact of in-utero exposure to HAP. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  5. Angiotensin-(1?7) inhibits inflammation and oxidative stress to relieve lung injury induced by chronic intermittent hypoxia in rats

    OpenAIRE

    Lu, W.; Kang, J.; Hu, K.; Tang, S.; Zhou, X.; Yu, S.; Li, Y.; Xu, L.

    2016-01-01

    Obstructive sleep apnea is associated with inflammation and oxidative stress in lung tissues and can lead to metabolic abnormalities. We investigated the effects of angiotensin1–7 [Ang-(1–7)] on lung injury in rats induced by chronic intermittent hypoxia (CIH). We randomly assigned 32 male Sprague-Dawley rats (180–200 g) to normoxia control (NC), CIH-untreated (uCIH), Ang-(1–7)-treated normoxia control (N-A), and Ang-(1–7)-treated CIH (CIH-A) groups. Oxidative stress biomarkers were measured ...

  6. Selective replacement of mitochondrial DNA increases the cardioprotective effect of chronic continuous hypoxia in spontaneously hypertensive rats

    Czech Academy of Sciences Publication Activity Database

    Neckář, Jan; Svatoňová, Anna; Weissová, Romana; Drahota, Zdeněk; Zajíčková, Pavlína; Brabcová, I.; Kolář, D.; Alánová, Petra; Vašinová, Jana; Šilhavý, Jan; Hlaváčková, Markéta; Tauchmannová, Kateřina; Milerová, Marie; Ošťádal, Bohuslav; Červenka, L.; Žurmanová, J.; Kalous, M.; Nováková, Olga; Novotný, J.; Pravenec, Michal; Kolář, František

    2017-01-01

    Roč. 131, č. 9 (2017), s. 865-881 ISSN 0143-5221 R&D Projects: GA ČR(CZ) GA13-10267S; GA ČR(CZ) GB14-36804G; GA MŠk(CZ) LL1204 Institutional support: RVO:67985823 Keywords : chronic hypoxia * heart * hypertension * ischaemia–reperfusion injury * mitochondrial genome * mitochondrial permeability transition pore Subject RIV: FA - Cardiovascular Diseases incl. Cardiotharic Surgery OBOR OECD: Physiology (including cytology) Impact factor: 4.936, year: 2016

  7. Evaluation of hepatic metabolism and pharmacokinetics of ibuprofen in rats under chronic hypobaric hypoxia for targeted therapy at high altitude.

    Science.gov (United States)

    Gola, Shefali; Gupta, Asheesh; Keshri, Gaurav K; Nath, Madhu; Velpandian, Thirumurthy

    2016-03-20

    With studies indicative of altered drug metabolism and pharmacokinetics (DMPK) under high altitude (HA)-induced hypobaric hypoxia, consideration of better therapeutic approaches has continuously been aimed in research for HA related illness management. DMPK of drugs like ibuprofen may get affected under hypoxia which establishes the requirement of different therapeutic dose regimen to ensure safe and effective therapy at HA. This study examined the effects of the chronic hypobaric hypoxia (CHH) on hepatic DMPK of ibuprofen in rats. Experimental animals were exposed to simulated altitude of 7620 m (∼25,000 ft) for CHH exposure (7 or 14 days) in decompression chamber and administered with ibuprofen (80 mg/kg, body weight, p.o.). Results demonstrated that CHH significantly altered PK variables of ibuprofen and activities of both phase-I and II hepatic metabolic enzymes as compared to the animals under normoxic conditions. Hepatic histopathological observations also revealed marked alterations. Increase in pro-inflammatory cytokines/chemokines viz. IL-1β, IL-2, IFN-γ, TNF-α exhibited close relevance with diminished CYP2C9 expression under CHH. Moreover, the down-regulated CYP2C9 level further supported the underlying mechanism for reduced metabolism of ibuprofen and as a result, increased retention of parent drug in the system. Increased mean retention time, Vd, T½ of ibuprofen, and decreased AUC, Cmax and clearance during CHH further strengthened the present findings. In conclusion, CHH exposure significantly affects hepatic DMPK of ibuprofen, which may further influence the usual therapeutic dose-regimen. Further, there is requirement of human studies to evaluate their susceptibility toward hypobaric hypoxia. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. p53 dependent apoptotic cell death induces embryonic malformation in Carassius auratus under chronic hypoxia.

    Directory of Open Access Journals (Sweden)

    Paramita Banerjee Sawant

    Full Text Available Hypoxia is a global phenomenon affecting recruitment as well as the embryonic development of aquatic fauna. The present study depicts hypoxia induced disruption of the intrinsic pathway of programmed cell death (PCD, leading to embryonic malformation in the goldfish, Carrasius auratus. Constant hypoxia induced the early expression of pro-apoptotic/tumor suppressor p53 and concomitant expression of the cell death molecule, caspase-3, leading to high level of DNA damage and cell death in hypoxic embryos, as compared to normoxic ones. As a result, the former showed delayed 4 and 64 celled stages and a delay in appearance of epiboly stage. Expression of p53 efficiently switched off expression of the anti-apoptotic Bcl-2 during the initial 12 hours post fertilization (hpf and caused embryonic cell death. However, after 12 hours, simultaneous downregulation of p53 and Caspase-3 and exponential increase of Bcl-2, caused uncontrolled cell proliferation and prevented essential programmed cell death (PCD, ultimately resulting in significant (p<0.05 embryonic malformation up to 144 hpf. Evidences suggest that uncontrolled cell proliferation after 12 hpf may have been due to downregulation of p53 abundance, which in turn has an influence on upregulation of anti-apoptotic Bcl-2. Therefore, we have been able to show for the first time and propose that hypoxia induced downregulation of p53 beyond 12 hpf, disrupts PCD and leads to failure in normal differentiation, causing malformation in gold fish embryos.

  9. Chitosan-shelled oxygen-loaded nanodroplets abrogate hypoxia dysregulation of human keratinocyte gelatinases and inhibitors: New insights for chronic wound healing

    International Nuclear Information System (INIS)

    Khadjavi, Amina; Magnetto, Chiara; Panariti, Alice; Argenziano, Monica; Gulino, Giulia Rossana; Rivolta, Ilaria; Cavalli, Roberta; Giribaldi, Giuliana; Guiot, Caterina; Prato, Mauro

    2015-01-01

    Background: : In chronic wounds, efficient epithelial tissue repair is hampered by hypoxia, and balances between the molecules involved in matrix turn-over such as matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) are seriously impaired. Intriguingly, new oxygenating nanocarriers such as 2H,3H-decafluoropentane-based oxygen-loaded nanodroplets (OLNs) might effectively target chronic wounds. Objective: : To investigate hypoxia and chitosan-shelled OLN effects on MMP/TIMP production by human keratinocytes. Methods: : HaCaT cells were treated for 24 h with 10% v/v OLNs both in normoxia or hypoxia. Cytotoxicity and cell viability were measured through biochemical assays; cellular uptake by confocal microscopy; and MMP and TIMP production by enzyme-linked immunosorbent assay or gelatin zymography. Results: : Normoxic HaCaT cells constitutively released MMP-2, MMP-9, TIMP-1 and TIMP-2. Hypoxia strongly impaired MMP/TIMP balances by reducing MMP-2, MMP-9, and TIMP-2, without affecting TIMP-1 release. After cellular uptake by keratinocytes, nontoxic OLNs abrogated all hypoxia effects on MMP/TIMP secretion, restoring physiological balances. OLN abilities were specifically dependent on time-sustained oxygen diffusion from OLN core. Conclusion: : Chitosan-shelled OLNs effectively counteract hypoxia-dependent dysregulation of MMP/TIMP balances in human keratinocytes. Therefore, topical administration of exogenous oxygen, properly encapsulated in nanodroplet formulations, might be a promising adjuvant approach to promote healing processes in hypoxic wounds. - Highlights: • Hypoxia impairs MMP9/TIMP1 and MMP2/TIMP2 balances in HaCaT human keratinocytes. • Chitosan-shelled oxygen-loaded nanodroplets (OLNs) are internalised by HaCaT cells. • OLNs are not toxic to HaCaT cells. • OLNs effectively counteract hypoxia effects on MMP/TIMP balances in HaCaT cells. • OLNs appear as promising and cost-effective therapeutic tools for hypoxic

  10. Chitosan-shelled oxygen-loaded nanodroplets abrogate hypoxia dysregulation of human keratinocyte gelatinases and inhibitors: New insights for chronic wound healing

    Energy Technology Data Exchange (ETDEWEB)

    Khadjavi, Amina [Dipartimento di Neuroscienze, Università di Torino, Torino (Italy); Magnetto, Chiara [Istituto Nazionale di Ricerca Metrologica (INRIM), Torino (Italy); Panariti, Alice [Dipartimento di Scienze della Salute, Università di Milano Bicocca, Monza (Italy); Argenziano, Monica [Dipartimento di Scienza e Tecnologia del Farmaco, Università di Torino, Torino (Italy); Gulino, Giulia Rossana [Dipartimento di Oncologia, Università di Torino, Torino (Italy); Rivolta, Ilaria [Dipartimento di Scienze della Salute, Università di Milano Bicocca, Monza (Italy); Cavalli, Roberta [Dipartimento di Scienza e Tecnologia del Farmaco, Università di Torino, Torino (Italy); Giribaldi, Giuliana [Dipartimento di Oncologia, Università di Torino, Torino (Italy); Guiot, Caterina [Dipartimento di Neuroscienze, Università di Torino, Torino (Italy); Prato, Mauro, E-mail: mauro.prato@unito.it [Dipartimento di Neuroscienze, Università di Torino, Torino (Italy); Dipartimento di Scienze della Sanità Pubblica e Pediatriche, Università di Torino, Torino (Italy)

    2015-08-01

    Background: : In chronic wounds, efficient epithelial tissue repair is hampered by hypoxia, and balances between the molecules involved in matrix turn-over such as matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) are seriously impaired. Intriguingly, new oxygenating nanocarriers such as 2H,3H-decafluoropentane-based oxygen-loaded nanodroplets (OLNs) might effectively target chronic wounds. Objective: : To investigate hypoxia and chitosan-shelled OLN effects on MMP/TIMP production by human keratinocytes. Methods: : HaCaT cells were treated for 24 h with 10% v/v OLNs both in normoxia or hypoxia. Cytotoxicity and cell viability were measured through biochemical assays; cellular uptake by confocal microscopy; and MMP and TIMP production by enzyme-linked immunosorbent assay or gelatin zymography. Results: : Normoxic HaCaT cells constitutively released MMP-2, MMP-9, TIMP-1 and TIMP-2. Hypoxia strongly impaired MMP/TIMP balances by reducing MMP-2, MMP-9, and TIMP-2, without affecting TIMP-1 release. After cellular uptake by keratinocytes, nontoxic OLNs abrogated all hypoxia effects on MMP/TIMP secretion, restoring physiological balances. OLN abilities were specifically dependent on time-sustained oxygen diffusion from OLN core. Conclusion: : Chitosan-shelled OLNs effectively counteract hypoxia-dependent dysregulation of MMP/TIMP balances in human keratinocytes. Therefore, topical administration of exogenous oxygen, properly encapsulated in nanodroplet formulations, might be a promising adjuvant approach to promote healing processes in hypoxic wounds. - Highlights: • Hypoxia impairs MMP9/TIMP1 and MMP2/TIMP2 balances in HaCaT human keratinocytes. • Chitosan-shelled oxygen-loaded nanodroplets (OLNs) are internalised by HaCaT cells. • OLNs are not toxic to HaCaT cells. • OLNs effectively counteract hypoxia effects on MMP/TIMP balances in HaCaT cells. • OLNs appear as promising and cost-effective therapeutic tools for hypoxic

  11. A discrete role for alternative oxidase under hypoxia to increase nitric oxide and drive energy production.

    Science.gov (United States)

    Vishwakarma, Abhaypratap; Kumari, Aprajita; Mur, Luis A J; Gupta, Kapuganti Jagadis

    2018-03-28

    Alternative oxidase (AOX) is an integral part of the mitochondrial electron transport and can prevent reactive oxygen species (ROS) and nitric oxide (NO) production under non-stressed, normoxic conditions. Here we assessed the roles of AOX by imposing stress under normoxia in comparison to hypoxic conditions using AOX over expressing (AOX OE) and anti-sense (AOX AS) transgenic Arabidopsis seedlings and roots. Under normoxic conditions stress was induced with the defence elicitor flagellin (flg22). AOX OE reduced NO production whilst this was increased in AOX AS. Moreover AOX AS also exhibited an increase in superoxide and therefore peroxynitrite, tyrosine nitration suggesting that scavenging of NO by AOX can prevent toxic peroxynitrite formation under normoxia. In contrast, during hypoxia interestingly we found that AOX is a generator of NO. Thus, the NO produced during hypoxia, was enhanced in AOX OE and suppressed in AOX AS. Additionally, treatment of WT or AOX OE with the AOX inhibitor SHAM inhibited hypoxic NO production. The enhanced levels of NO correlated with expression of non-symbiotic haemoglobin, increased NR activity and ATP production. The ATP generation was suppressed in nia1,2 mutant and non symbiotic haemoglobin antisense line treated with SHAM. Taken together these results suggest that hypoxic NO generation mediated by AOX has a discrete role by feeding into the haemoglobin-NO cycle to drive energy efficiency under conditions of low oxygen tension. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Effects and mechanism of oridonin on pulmonary hypertension induced by chronic hypoxia-hypercapnia in rats.

    Science.gov (United States)

    Wang, Liang-Xing; Sun, Yu; Chen, Chan; Huang, Xiao-Ying; Lin, Quan; Qian, Guo-Qing; Dong, Wei; Chen, Yan-Fan

    2009-06-20

    Pulmonary arterial hypertension (PAH) is characterized by suppressing apoptosis and enhancing cell proliferation in the vascular wall. Inducing pulmonary artery smooth muscle cells (PASMC) apoptosis had been regarded as a therapeutic approach for PAH. Oridonin can cause apoptosis in many cell lines, while little has been done to evaluate its effect on PASMC. Thirty male Sprague-Dawley rats were randomly assigned to three groups: normal control (NC); hypoxia-hypercapnia (HH); Hypoxia-hypercapnia + oridonin (HHO). Rats were exposed to hypoxia-hypercapnia for four weeks. Cultured human PASMC (HPASMC) were assigned to three groups: normoxia (NO); hypoxia (HY); hypoxia + oridonin (HO). The mean pulmonary artery pressure, mass ratio of right ventricle over left ventricle plus septum (RV/(LV + S)), the ratio of thickness of the pulmonary arteriole wall to vascular external diameter (WT%) and the ratio of the vessel wall area to the total area (WA%) were measured. Morphologic changes of pulmonary arteries were observed under light and electron microscopes. The apoptotic characteristics in vitro and in vivo were detected. The mPAP, RV/(LV + S), WT%, and WA% in the HH group were significantly greater than those in the NC (P HHO groups (P HHO groups; and the expression of Bcl-2 in group HH was greater than that in the NC and HHO groups. HPASMC mitochondrial membrane potentials in group HO was lower than in group HY (P < 0.01), and cyt-C in the cytoplasm, AI, and caspase-9 in the HO group were greater than that in the HY group (P < 0.01), but the expression of Bcl-2 in the HO group was less than that in the HY group (P < 0.05). The results suggest that oridonin can lower pulmonary artery pressure effectively, and inhibit pulmonary artery structural remodeling by inducing smooth cell apoptosis via a mitochondria-dependent pathway.

  13. Soluble Receptor for Advanced Glycation End Product Ameliorates Chronic Intermittent Hypoxia Induced Renal Injury, Inflammation, and Apoptosis via P38/JNK Signaling Pathways

    Directory of Open Access Journals (Sweden)

    Xu Wu

    2016-01-01

    Full Text Available Obstructive sleep apnea (OSA associated chronic kidney disease is mainly caused by chronic intermittent hypoxia (CIH triggered tissue damage. Receptor for advanced glycation end product (RAGE and its ligand high mobility group box 1 (HMGB1 are expressed on renal cells and mediate inflammatory responses in OSA-related diseases. To determine their roles in CIH-induced renal injury, soluble RAGE (sRAGE, the RAGE neutralizing antibody, was intravenously administered in a CIH model. We also evaluated the effect of sRAGE on inflammation and apoptosis. Rats were divided into four groups: (1 normal air (NA, (2 CIH, (3 CIH+sRAGE, and (4 NA+sRAGE. Our results showed that CIH accelerated renal histological injury and upregulated RAGE-HMGB1 levels involving inflammatory (NF-κB, TNF-α, and IL-6, apoptotic (Bcl-2/Bax, and mitogen-activated protein kinases (phosphorylation of P38, ERK, and JNK signal transduction pathways, which were abolished by sRAGE but p-ERK. Furthermore, sRAGE ameliorated renal dysfunction by attenuating tubular endothelial apoptosis determined by immunofluorescence staining of CD31 and TUNEL. These findings suggested that RAGE-HMGB1 activated chronic inflammatory transduction cascades that contributed to the pathogenesis of the CIH-induced renal injury. Inhibition of RAGE ligand interaction by sRAGE provided a therapeutic potential for CIH-induced renal injury, inflammation, and apoptosis through P38 and JNK pathways.

  14. Roles and regulation of ketogenesis in cultured astroglia and neurons under hypoxia and hypoglycemia.

    Science.gov (United States)

    Takahashi, Shinichi; Iizumi, Takuya; Mashima, Kyoko; Abe, Takato; Suzuki, Norihiro

    2014-09-11

    Exogenous ketone bodies (KBs), acetoacetate (AA), and β-hydroxybutyrate (BHB) act as alternative energy substrates in neural cells under starvation. The present study examined the endogenous ketogenic capacity of astroglia under hypoxia with/without glucose and the possible roles of KBs in neuronal energy metabolism. Cultured neurons and astroglia were prepared from Sprague-Dawley rats. Palmitic acid (PAL) and l-carnitine (LC) were added to the assay medium. The 4- to 24-hr production of AA and BHB was measured using the cyclic thio-NADH method. (14)C-labeled acid-soluble products (KBs) and (14)CO2 produced from [1-(14)C]PAL were also measured. l-[U-(14)C]lactic acid ([(14)C]LAC), [1-(14)C]pyruvic acid ([(14)C]PYR), or β-[1-(14)C]hydroxybutyric acid ([(14)C]BHB) was used to compare the oxidative metabolism of the glycolysis end products with that of the KBs. Some cells were placed in a hypoxic chamber (1% O2). PAL and LC induced a higher production of KBs in astroglia than in neurons, while the CO2 production from PAL was less than 5% of the KB production in both astroglia and neurons. KB production in astroglia was augmented by the AMP-activated protein kinase activators, AICAR and metformin, as well as hypoxia with/without glucose. Neuronal KB production increased under hypoxia in the absence of PAL and LC. In neurons, [(14)C]LAC and [(14)C]PYR oxidation decreased after 24 hr of hypoxia, while [(14)C]BHB oxidation was preserved. Astroglia responds to ischemia in vitro by enhancing KB production, and astroglia-produced KBs derived from fatty acid might serve as a neuronal energy substrate for the tricarboxylic acid cycle instead of lactate, as pyruvate dehydrogenase is susceptible to ischemia. © The Author(s) 2014 Reprints and permissions: sagepub.com/journalsPermissions.nav.

  15. The role of hypoxia in oral cancer and potentially malignant disorders: a review.

    Science.gov (United States)

    Kujan, Omar; Shearston, Kate; Farah, Camile S

    2017-04-01

    Oral and oropharyngeal cancer are major health problems globally with over 500 000 new cases diagnosed annually. Despite the fact that oral cancer is a preventable disease and has the potential for early detection, the overall survival rate remains at around 50%. Most oral cancer cases are preceded by a group of clinical lesions designated 'potentially malignant disorders'. It is difficult to predict if and when these lesions may transform to malignancy, and in turn it is difficult to agree on appropriate management strategies. Understanding underlying molecular pathways would help in predicting the malignant transformation of oral potentially malignant disorders and ultimately identifying effective methods for early detection and prevention of oral cancer. Reprogramming energy metabolism is an emerging hallmark of cancer that is predominantly controlled by hypoxia-induced genes regulating angiogenesis, tumour vascularization, invasion, drug resistance and metastasis. This review aims to highlight the role of hypoxia in oral carcinogenesis and to suggest future research implications in this arena. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Adiponectin protects rat myocardium against chronic intermittent hypoxia-induced injury via inhibition of endoplasmic reticulum stress.

    Directory of Open Access Journals (Sweden)

    Wenxiao Ding

    Full Text Available Obstructive sleep apnea syndrome (OSAS is associated with many cardiovascular disorders such as heart failure, hypertension, atherosclerosis, and arrhythmia and so on. Of the many associated factors, chronic intermittent hypoxia (CIH in particular is the primary player in OSAS. To assess the effects of CIH on cardiac function secondary to OSAS, we established a model to study the effects of CIH on Wistar rats. Specifically, we examined the possible underlying cellular mechanisms of hypoxic tissue damage and the possible protective role of adiponectin against hypoxic insults. In the first treatment group, rats were exposed to CIH conditions (nadir O2, 5-6% for 8 hours/day, for 5 weeks. Subsequent CIH-induced cardiac dysfunction was measured by echocardiograph. Compared with the normal control (NC group, rats in the CIH-exposed group experienced elevated levels of left ventricular end-systolic dimension and left ventricular end-systolic volume and depressed levels of left ventricular ejection fraction and left ventricular fractional shortening (p<0.05. However, when adiponectin (Ad was added in CIH + Ad group, we saw a rescue in the elevations of the aforementioned left ventricular function (p<0.05. To assess critical cardiac injury, we detected myocardial apoptosis by Terminal deoxynucleotidyl transfer-mediated dUTP nick end-labeling (TUNEL analysis. It was showed that the apoptosis percentage in CIH group (2.948% was significantly higher than that in NC group (0.4167% and CIH + Ad group (1.219% (p<0.05. Protein expressions of cleaved caspase-3, cleaved caspase-9, and cleaved-caspase-12 validated our TUNEL results (p<0.05. Mechanistically, our results demonstrated that the proteins expressed with endoplasmic reticulum stress and the expression of reactive oxygen species (ROS were significantly elevated under CIH conditions, whereas Ad supplementation partially decreased them. Overall, our results suggested that Ad augmentation could improve CIH

  17. Cardioprotective and nonprotective regimens of chronic hypoxia diversely affect the myocardial antioxidant systems

    Czech Academy of Sciences Publication Activity Database

    Kašparová, D.; Neckář, Jan; Dabrowská, L.; Novotný, J.; Mráz, J.; Kolář, František; Žurmanová, J.

    2015-01-01

    Roč. 47, č. 12 (2015), s. 612-620 ISSN 1094-8341 R&D Projects: GA ČR(CZ) GAP303/12/1162; GA ČR(CZ) GA13-10267S Institutional support: RVO:67985823 Keywords : adaptation to hypoxia * cardioprotection * ischemia-reperfusion injury * oxidative stress * antioxidant defense Subject RIV: FA - Cardiovascular Diseases incl. Cardiotharic Surgery Impact factor: 2.615, year: 2015

  18. Influence of chronic intrauterine hypoxia on development of testicles of newborns

    Directory of Open Access Journals (Sweden)

    Tatiana V. Palatova

    2018-05-01

    Material and Methods ― In the work, 10 white outbred female rats aged 4 to 10 months with a weight of 200 ± 30 g were used. Laboratory animals were divided into 2 experimental groups, 5 rats in each. The first (experimental group underwent hypoxia throughout the entire pregnancy (21 days. Modeling of hypoxia was carried out in accordance with the technique of N.N. Karkischenko (2010. The second (control group was not exposed to any treatment throughout the entire pregnancy. Results ― There was a decrease in body weight in the offspring of the experimental group as compared to the control group.Histological examination of testicular tissue showed a significant decrease in the number of tubules in the field of vision, a decrease in the diameter and area of the tubules, with a simultaneous increase in the stroma area, a decrease in the proliferative potential, and an increase in the apoptosis of gonocytes, Leydig and Sertoli cells in the experimental group. Conclusion ― as a result of the conducted studies it was found that hypoxia in the antenatal period adversely affects the number and somatometric parameters of newborn rats in the offspring. Histological examination of testicular tissue showed a significant decrease in the number of tubules in the field of vision, a decrease in the diameter and area of the tubules, with a simultaneous increase in the stromal area, a decrease in the proliferative potential, and an increase in the apoptosis of gonocytes, Leydig and Sertoli cells in the test group rats. This indicates a delay and impaired tissue development testicles in conditions of hypoxia already in the antenatal period.

  19. Upregulation of transcription factor NRF2-mediated oxidative stress response pathway in rat brain under short-term chronic hypobaric hypoxia.

    Science.gov (United States)

    Sethy, Niroj Kumar; Singh, Manjulata; Kumar, Rajesh; Ilavazhagan, Govindasamy; Bhargava, Kalpana

    2011-03-01

    Exposure to high altitude (and thus hypobaric hypoxia) induces electrophysiological, metabolic, and morphological modifications in the brain leading to several neurological clinical syndromes. Despite the known fact that hypoxia episodes in brain are a common factor for many neuropathologies, limited information is available on the underlying cellular and molecular mechanisms. In this study, we investigated the temporal effect of short-term (0-12 h) chronic hypobaric hypoxia on global gene expression of rat brain followed by detailed canonical pathway analysis and regulatory network identification. Our analysis revealed significant alteration of 33, 17, 53, 81, and 296 genes (p stress response pathway and genes were detected at all time points suggesting activation of NRF2-ARE antioxidant defense system. The results were further validated by assessing the expression levels of selected genes in temporal as well as brain regions with quantitative RT-PCR and western blot. In conclusion, our whole brain approach with temporal monitoring of gene expression patterns during hypobaric hypoxia has resulted in (1) deciphering sequence of pathways and signaling networks activated during onset of hypoxia, and (2) elucidation of NRF2-orchestrated antioxidant response as a major intrinsic defense mechanism. The results of this study will aid in better understanding and management of hypoxia-induced brain pathologies.

  20. High intensity aerobic exercise training improves chronic intermittent hypoxia-induced insulin resistance without basal autophagy modulation.

    Science.gov (United States)

    Pauly, Marion; Assense, Allan; Rondon, Aurélie; Thomas, Amandine; Dubouchaud, Hervé; Freyssenet, Damien; Benoit, Henri; Castells, Josiane; Flore, Patrice

    2017-03-03

    Chronic intermittent hypoxia (IH) associated with obstructive sleep apnea (OSA) is a major risk factor for cardiovascular and metabolic diseases (insulin resistance: IR). Autophagy is involved in the pathophysiology of IR and high intensity training (HIT) has recently emerged as a potential therapy. We aimed to confirm IH-induced IR in a tissue-dependent way and to explore the preventive effect of HIT on IR-induced by IH. Thirty Swiss 129 male mice were randomly assigned to Normoxia (N), Intermittent Hypoxia (IH: 21-5% FiO 2 , 30 s cycle, 8 h/day) or IH associated with high intensity training (IH HIT). After 8 days of HIT (2*24 min, 50 to 90% of Maximal Aerobic Speed or MAS on a treadmill) mice underwent 14 days IH or N. We found that IH induced IR, characterized by a greater glycemia, an impaired insulin sensitivity and lower AKT phosphorylation in adipose tissue and liver. Nevertheless, MAS and AKT phosphorylation were greater in muscle after IH. IH associated with HIT induced better systemic insulin sensitivity and AKT phosphorylation in liver. Autophagy markers were not altered in both conditions. These findings suggest that HIT could represent a preventive strategy to limit IH-induced IR without change of basal autophagy.

  1. Validation of housekeeping genes in the brains of rats submitted to chronic intermittent hypoxia, a sleep apnea model.

    Science.gov (United States)

    Julian, Guilherme Silva; de Oliveira, Renato Watanabe; Perry, Juliana Cini; Tufik, Sergio; Chagas, Jair Ribeiro

    2014-01-01

    Obstructive sleep apnea (OSA) is a syndrome characterized by intermittent nocturnal hypoxia, sleep fragmentation, hypercapnia and respiratory effort, and it has been associated with several complications, such as diabetes, hypertension and obesity. Quantitative real-time PCR has been performed in previous OSA-related studies; however, these studies were not validated using proper reference genes. We have examined the effects of chronic intermittent hypoxia (CIH), which is an experimental model mainly of cardiovascular consequences of OSA, on reference genes, including beta-actin, beta-2-microglobulin, glyceraldehyde-3-phosphate dehydrogenase, hypoxanthine guanine phosphoribosyl transferase and eukaryotic 18S rRNA, in different areas of the brain. All stability analyses were performed using the geNorm, Normfinder and BestKeeper software programs. With exception of the 18S rRNA, all of the evaluated genes were shown to be stable following CIH exposure. However, gene stability rankings were dependent on the area of the brain that was analyzed and varied according to the software that was used. This study demonstrated that CIH affects various brain structures differently. With the exception of the 18S rRNA, all of the tested genes are suitable for use as housekeeping genes in expression analyses.

  2. Caffeine reduces apnea frequency and enhances ventilatory long-term facilitation in rat pups raised in chronic intermittent hypoxia.

    Science.gov (United States)

    Julien, Cécile A; Joseph, Vincent; Bairam, Aida

    2010-08-01

    The mechanisms underlying the therapeutic function of caffeine on apneas in preterm neonates are not well determined. To better understand these effects, we exposed rat pups from postnatal d 3-12 to chronic intermittent hypoxia (5% O2/100 s every 10 min; 6 cycles/h followed by 1 h at 21% O2, 24 h/d), a model mimicking hypoxemic exposure in apneic neonates. Then, using whole-body plethysmography, we evaluated minute ventilation, apnea frequency, and duration after i.p injection of caffeine citrate (20 mg/kg) or saline under normoxia and in response to either sustained (FiO2 12%, 20 min) or brief (FiO2 5%, 60 s, total 10 episodes of 8 min each) hypoxia. These tests were used to assess peripheral and central components of hypoxic response. The latter also assessed the ventilatory long-term facilitation during recovery (2 h). Caffeine injection increased minute ventilation under baseline and during recovery. This effect was correlated with a decrease in apnea frequency (not duration). On the contrary, caffeine did not change the ventilatory response to sustained or brief hypoxic exposure. These results suggest that the effects of caffeine on apnea depend on increased central normoxic respiratory drive and enhancement of ventilatory long-term facilitation rather than on higher hypoxic ventilatory response.

  3. The Role of Oxidative Stress and Hypoxia in Pancreatic Beta-Cell Dysfunction in Diabetes Mellitus.

    Science.gov (United States)

    Gerber, Philipp A; Rutter, Guy A

    2017-04-01

    Metabolic syndrome is a frequent precursor of type 2 diabetes mellitus (T2D), a disease that currently affects ∼8% of the adult population worldwide. Pancreatic beta-cell dysfunction and loss are central to the disease process, although understanding of the underlying molecular mechanisms is still fragmentary. Recent Advances: Oversupply of nutrients, including glucose and fatty acids, and the subsequent overstimulation of beta cells, are believed to be an important contributor to insulin secretory failure in T2D. Hypoxia has also recently been implicated in beta-cell damage. Accumulating evidence points to a role for oxidative stress in both processes. Although the production of reactive oxygen species (ROS) results from enhanced mitochondrial respiration during stimulation with glucose and other fuels, the expression of antioxidant defense genes is unusually low (or disallowed) in beta cells. Not all subjects with metabolic syndrome and hyperglycemia go on to develop full-blown diabetes, implying an important role in disease risk for gene-environment interactions. Possession of common risk alleles at the SLC30A8 locus, encoding the beta-cell granule zinc transporter ZnT8, may affect cytosolic Zn 2+ concentrations and thus susceptibility to hypoxia and oxidative stress. Loss of normal beta-cell function, rather than total mass, is increasingly considered to be the major driver for impaired insulin secretion in diabetes. Better understanding of the role of oxidative changes, its modulation by genes involved in disease risk, and effects on beta-cell identity may facilitate the development of new therapeutic strategies to this disease. Antioxid. Redox Signal. 26, 501-518.

  4. Does hypoxia play a role in the development of sarcopenia in humans? Mechanistic insights from the Caudwell Xtreme Everest Expedition

    Directory of Open Access Journals (Sweden)

    Liesl Wandrag

    2017-10-01

    Conclusions: The putative role of GLP-1 and nitrite as mediators of the effects of hypoxia on FFM is an intriguing finding. If confirmed, nutritional and pharmacological interventions targeting these pathways may offer new avenues for prevention and treatment of sarcopenia.

  5. Chronic intermittent hypoxia exerts CNS region-specific effects on rat microglial inflammatory and TLR4 gene expression.

    Directory of Open Access Journals (Sweden)

    Stephanie M C Smith

    Full Text Available Intermittent hypoxia (IH during sleep is a hallmark of sleep apnea, causing significant neuronal apoptosis, and cognitive and behavioral deficits in CNS regions underlying memory processing and executive functions. IH-induced neuroinflammation is thought to contribute to cognitive deficits after IH. In the present studies, we tested the hypothesis that IH would differentially induce inflammatory factor gene expression in microglia in a CNS region-dependent manner, and that the effects of IH would differ temporally. To test this hypothesis, adult rats were exposed to intermittent hypoxia (2 min intervals of 10.5% O2 for 8 hours/day during their respective sleep cycles for 1, 3 or 14 days. Cortex, medulla and spinal cord tissues were dissected, microglia were immunomagnetically isolated and mRNA levels of the inflammatory genes iNOS, COX-2, TNFα, IL-1β and IL-6 and the innate immune receptor TLR4 were compared to levels in normoxia. Inflammatory gene expression was also assessed in tissue homogenates (containing all CNS cells. We found that microglia from different CNS regions responded to IH differently. Cortical microglia had longer lasting inflammatory gene expression whereas spinal microglial gene expression was rapid and transient. We also observed that inflammatory gene expression in microglia frequently differed from that in tissue homogenates from the same region, indicating that cells other than microglia also contribute to IH-induced neuroinflammation. Lastly, microglial TLR4 mRNA levels were strongly upregulated by IH in a region- and time-dependent manner, and the increase in TLR4 expression appeared to coincide with timing of peak inflammatory gene expression, suggesting that TLR4 may play a role in IH-induced neuroinflammation. Together, these data indicate that microglial-specific neuroinflammation may play distinct roles in the effects of intermittent hypoxia in different CNS regions.

  6. Pulmonary capillary recruitment in response to hypoxia in healthy humans: a possible role for hypoxic pulmonary venoconstriction?

    DEFF Research Database (Denmark)

    Taylor, Bryan J; Kjaergaard, Jesper; Snyder, Eric M

    2011-01-01

    We examined mechanisms by which hypoxia may elicit pulmonary capillary recruitment in humans. On separate occasions, twenty-five healthy adults underwent exposure to intravenous saline infusion (30 ml/kg ∼ 15 min) or 17-h normobaric hypoxia ( [FIO2 = 12.5%). Cardiac output (Q) and pulmonary...... capillary blood volume (Vc) were measured before and after saline infusion and hypoxic-exposure by a rebreathing method. Pulmonary artery systolic pressure (sPpa) and left ventricular (LV) diastolic function were assessed before and after hypoxic-exposure via echocardiography. Saline infusion increased Q......Ppa and LV diastolic function. In conclusion, hypoxia-induced pulmonary capillary recruitment in humans is only partly accounted for by changes in Q, sPpa and LV diastolic function. We speculate that hypoxic pulmonary venoconstriction may play a role in such recruitment....

  7. Analysis of the stability of housekeeping gene expression in the left cardiac ventricle of rats submitted to chronic intermittent hypoxia

    Directory of Open Access Journals (Sweden)

    Guilherme Silva Julian

    Full Text Available ABSTRACT Obstructive sleep apnea (OSA has been associated with oxidative stress and various cardiovascular consequences, such as increased cardiovascular disease risk. Quantitative real-time PCR is frequently employed to assess changes in gene expression in experimental models. In this study, we analyzed the effects of chronic intermittent hypoxia (an experimental model of OSA on housekeeping gene expression in the left cardiac ventricle of rats. Analyses via four different approaches-use of the geNorm, BestKeeper, and NormFinder algorithms; and 2−ΔCt (threshold cycle data analysis-produced similar results: all genes were found to be suitable for use, glyceraldehyde-3-phosphate dehydrogenase and 18S being classified as the most and the least stable, respectively. The use of more than one housekeeping gene is strongly advised.

  8. Determination of the dynamics of tumor hypoxia during radiation therapy using biological imaging on mouse xenograft tumors

    OpenAIRE

    Maftei, Constantin Alin

    2013-01-01

    Background: Chronic, acute and hypoxemic hypoxia can lead to resistance to radiation therapy. The purpose of this thesis was to shed light on the role of these three hypoxia subtypes in radiotherapy. Methods: The amount of total hypoxia and hypoxia subtypes were assessed ex-vivo in xenograft tumors via (immuno-)fluorescence and H&E staining. For the non-invasive detection of hypoxia, tumor-bearing mice were injected with 18F-FMISO and underwent a dynamic PET/CT scan. The hypoxic fraction ...

  9. Plasticity of cardiovascular function in snapping turtle embryos (Chelydra serpentina): chronic hypoxia alters autonomic regulation and gene expression.

    Science.gov (United States)

    Eme, John; Rhen, Turk; Tate, Kevin B; Gruchalla, Kathryn; Kohl, Zachary F; Slay, Christopher E; Crossley, Dane A

    2013-06-01

    Reptile embryos tolerate large decreases in the concentration of ambient oxygen. However, we do not fully understand the mechanisms that underlie embryonic cardiovascular short- or long-term responses to hypoxia in most species. We therefore measured cardiac growth and function in snapping turtle embryos incubated under normoxic (N21; 21% O₂) or chronic hypoxic conditions (H10; 10% O₂). We determined heart rate (fH) and mean arterial pressure (Pm) in acute normoxic (21% O₂) and acute hypoxic (10% O₂) conditions, as well as embryonic responses to cholinergic, adrenergic, and ganglionic pharmacological blockade. Compared with N21 embryos, chronic H10 embryos had smaller bodies and relatively larger hearts and were hypotensive, tachycardic, and following autonomic neural blockade showed reduced intrinsic fH at 90% of incubation. Unlike other reptile embryos, cholinergic and ganglionic receptor blockade both increased fH. β-Adrenergic receptor blockade with propranolol decreased fH, and α-adrenergic blockade with phentolamine decreased Pm. We also measured cardiac mRNA expression. Cholinergic tone was reduced in H10 embryos, but cholinergic receptor (Chrm2) mRNA levels were unchanged. However, expression of adrenergic receptor mRNA (Adrb1, Adra1a, Adra2c) and growth factor mRNA (Igf1, Igf2, Igf2r, Pdgfb) was lowered in H10 embryos. Hypoxia altered the balance between cholinergic receptors, α-adrenoreceptor and β-adrenoreceptor function, which was reflected in altered intrinsic fH and adrenergic receptor mRNA levels. This is the first study to link gene expression with morphological and cardioregulatory plasticity in a developing reptile embryo.

  10. Hypoxia-inducible factors - regulation, role and comparative aspects in tumourigenesis

    DEFF Research Database (Denmark)

    Hansen, A E; Kristensen, A T; Law, I

    2011-01-01

    important prognostic information and may help identify potential hypoxia circumventing and targeting strategies. This review summarizes current knowledge on HIF regulation and function in tumour cells and discusses the aspects of using companion animals as comparative spontaneous cancer models. Spontaneous...... tumours in companion animals hold a great research potential for the evaluation and understanding of tumour hypoxia and in the development of hypoxia-targeting therapeutics....

  11. Detection and analysis of apoptosis- and autophagy-related miRNAs of mouse vascular endothelial cells in chronic intermittent hypoxia model.

    Science.gov (United States)

    Liu, Kai-Xiong; Chen, Gong-Ping; Lin, Ping-Li; Huang, Jian-Chai; Lin, Xin; Qi, Jia-Chao; Lin, Qi-Chang

    2018-01-15

    Endothelial dysfunction is the main pathogenic mechanism of cardiovascular complications induced by obstructive sleep apnea/hyponea syndrome (OSAHS). Chronic intermittent hypoxia (CIH) is the primary factor of OSAHS-associated endothelial dysfunction. The hypoxia inducible factor (HIF) pathway regulates the expression of downstream target genes and mediates cell apoptosis caused by CIH-induced endothelial injury. miRNAs play extensive and important negative regulatory roles in this process at the post-transcriptional level. However, the regulatory mechanism of miRNAs in CIH tissue models remains unclear. The present study established a mouse aortic endothelial cell model of CIH in an attempt to screen out specific miRNAs by using miRNA chip analysis. It was found that 14 miRNAs were differentially expressed. Of them, 6 were significantly different and verified by quantitative real-time PCR (Q-PCR), of which four were up-regulated and two were down-regulated markedly. To gain an unbiased global perspective on subsequent regulation by altered miRNAs, we established signaling networks by GO to predict the target genes of the 6 miRNAs. It was found that the 6 identified miRNAs were apoptosis- or autophagy-related target genes. Down-regulation of miR-193 inhibits CIH induced endothelial injury and apoptosis- or autophagy-related protein expression. In conclusion, our results showed that CIH could induce differential expression of miRNAs, and alteration in the miRNA expression pattern was associated with the expression of apoptosis- or autophagy-related genes. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Chronic mild hypoxia promotes profound vascular remodeling in spinal cord blood vessels, preferentially in white matter, via an α5β1 integrin-mediated mechanism.

    Science.gov (United States)

    Halder, Sebok K; Kant, Ravi; Milner, Richard

    2018-05-01

    Spinal cord injury (SCI) leads to rapid destruction of neuronal tissue, resulting in devastating motor and sensory deficits. This is exacerbated by damage to spinal cord blood vessels and loss of vascular integrity. Thus, approaches that protect existing blood vessels or stimulate the growth of new blood vessels might present a novel approach to minimize loss or promote regeneration of spinal cord tissue following SCI. In light of the remarkable power of chronic mild hypoxia (CMH) to stimulate vascular remodeling in the brain, the goal of this study was to examine how CMH (8% O 2 for up to 7 days) affects blood vessel remodeling in the spinal cord. We found that CMH promoted the following: (1) endothelial proliferation and increased vascularity as a result of angiogenesis and arteriogenesis, (2) increased vascular expression of the angiogenic extracellular matrix protein fibronectin as well as concomitant increases in endothelial expression of the fibronectin receptor α5β1 integrin, (3) strongly upregulated endothelial expression of the tight junction proteins claudin-5, ZO-1 and occludin and (4) astrocyte activation. Of note, the vascular remodeling changes induced by CMH were more extensive in white matter. Interestingly, hypoxic-induced vascular remodeling in spinal cord blood vessels was markedly attenuated in mice lacking endothelial α5 integrin expression (α5-EC-KO mice). Taken together, these studies demonstrate the considerable remodeling potential of spinal cord blood vessels and highlight an important angiogenic role for the α5β1 integrin in promoting endothelial proliferation. They also imply that stimulation of the α5β1 integrin or controlled use of mild hypoxia might provide new approaches for promoting angiogenesis and improving vascular integrity in spinal cord blood vessels.

  13. Heterogeneous role of the glutathione antioxidant system in modulating the response of ESFT to fenretinide in normoxia and hypoxia.

    Directory of Open Access Journals (Sweden)

    Tapiwanashe Magwere

    Full Text Available Glutathione (GSH is implicated in drug resistance mechanisms of several cancers and is a key regulator of cell death pathways within cells. We studied Ewing's sarcoma family of tumours (ESFT cell lines and three mechanistically distinct anticancer agents (fenretinide, doxorubicin, and vincristine to investigate whether the GSH antioxidant system is involved in the reduced sensitivity to these chemotherapeutic agents in hypoxia. Cell viability and death were assessed by the trypan blue exclusion assay and annexin V-PI staining, respectively. Hypoxia significantly decreased the sensitivity of all ESFT cell lines to fenretinide-induced death, whereas the effect of doxorubicin or vincristine was marginal and cell-line-specific. The response of the GSH antioxidant system in ESFT cell lines to hypoxia was variable and also cell-line-specific, although the level of GSH appeared to be most dependent on de novo biosynthesis rather than recycling. RNAi-mediated knockdown of key GSH regulatory enzymes γ-glutamylcysteine synthetase or glutathione disulfide reductase partially reversed the hypoxia-induced resistance to fenretinide, and increasing GSH levels using N-acetylcysteine augmented the hypoxia-induced resistance in a cell line-specific manner. These observations are consistent with the conclusion that the role of the GSH antioxidant system in modulating the sensitivity of ESFT cells to fenretinide is heterogeneous depending on environment and cell type. This is likely to limit the value of targeting GSH as a therapeutic strategy to overcome hypoxia-induced drug resistance in ESFT. Whether targeting the GSH antioxidant system in conjunction with other therapeutics may benefit some patients with ESFT remains to be seen.

  14. Role of the AMPKgamma3 isoform in hypoxia-stimulated glucose transport in glycolytic skeletal muscle

    DEFF Research Database (Denmark)

    Deshmukh, Atul S; Glund, Stephan; Tom, Robby Z

    2009-01-01

    , phosphorylation of CaMKII, AMPK, ACC, and TBC1D1/D4 as well as isoform-specific AMPK activity was determined. Basal and hypoxia-mediated phosphorylation of CaMKII, AMPK, and ACC as well as alpha1- and alpha2-associated AMPK activity was comparable between AMPKgamma3-KO and wild-type mice. KN-93 reduced hypoxia...

  15. The Role of Hypoxia in the Tumor Microenvironment: Implications for Ovarian Cancer Therapy

    Science.gov (United States)

    2017-07-01

    Association for Cancer Research Publications ( Peer Reviewed) 1. Sinha S, Thomas D, Chan S, Gao Y, Brunen D, Torabi D, Reinisch A, Hernandez D, Chan A...Symposia, Keystone, CO Teaching 2017 Guest lecturer CBIO 242: Hypoxia and Angiogenesis (Stanford University) 2016 Guest lecturer CBIO 242: Hypoxia...Cancer Biology Journal Club (Stanford University) 2006 Teaching Assistant BIOM 555: Gene Expression (University of Pennsylvania)

  16. Hypoxia-driven angiogenesis: role of tip cells and extracellular matrix scaffolding.

    Science.gov (United States)

    Germain, Stéphane; Monnot, Catherine; Muller, Laurent; Eichmann, Anne

    2010-05-01

    Angiogenesis is a highly coordinated tissue remodeling process leading to blood vessel formation. Hypoxia triggers angiogenesis via induction of expression of growth factors such as vascular endothelial growth factor (VEGF). VEGF instructs endothelial cells to form tip cells, which lead outgrowing capillary sprouts, whereas Notch signaling inhibits sprout formation. Basement membrane deposition and mechanical cues from the extracellular matrix (ECM) induced by hypoxia may participate to coordinated vessel sprouting in conjunction with the VEGF and Notch signaling pathways. Hypoxia regulates ECM composition, deposition, posttranslational modifications and rearrangement. In particular, hypoxia-driven vascular remodeling is dynamically regulated through modulation of ECM-modifying enzyme activities that eventually affect both matricellular proteins and growth factor availability. Better understanding of the complex interplay between endothelial cells and soluble growth factors and mechanical factors from the ECM will certainly have significant implications for understanding the regulation of developmental and pathological angiogenesis driven by hypoxia.

  17. Effect of oxygen on cardiac differentiation in mouse iPS cells: role of hypoxia inducible factor-1 and Wnt/beta-catenin signaling.

    Directory of Open Access Journals (Sweden)

    Tanya L Medley

    Full Text Available BACKGROUND: Disturbances in oxygen levels have been found to impair cardiac organogenesis. It is known that stem cells and differentiating cells may respond variably to hypoxic conditions, whereby hypoxia may enhance stem cell pluripotency, while differentiation of multiple cell types can be restricted or enhanced under hypoxia. Here we examined whether HIF-1alpha modulated Wnt signaling affected differentiation of iPS cells into beating cardiomyocytes. OBJECTIVE: We investigated whether transient and sustained hypoxia affects differentiation of cardiomyocytes derived from murine induced pluripotent stem (iPS cells, assessed the involvement of HIF-1alpha (hypoxia-inducible factor-1alpha and the canonical Wnt pathway in this process. METHODS: Embryoid bodies (EBs derived from iPS cells were differentiated into cardiomyocytes and were exposed either to 24 h normoxia or transient hypoxia followed by a further 13 days of normoxic culture. RESULTS: At 14 days of differentiation, 59 ± 2% of normoxic EBs were beating, whilst transient hypoxia abolished beating at 14 days and EBs appeared immature. Hypoxia induced a significant increase in Brachyury and islet-1 mRNA expression, together with reduced troponin C expression. Collectively, these data suggest that transient and sustained hypoxia inhibits maturation of differentiating cardiomyocytes. Compared to normoxia, hypoxia increased HIF-1alpha, Wnt target and ligand genes in EBs, as well as accumulation of HIF-1alpha and beta-catenin in nuclear protein extracts, suggesting involvement of the Wnt/beta-catenin pathway. CONCLUSION: Hypoxia impairs cardiomyocyte differentiation and activates Wnt signaling in undifferentiated iPS cells. Taken together the study suggests that oxygenation levels play a critical role in cardiomyocyte differentiation and suggest that hypoxia may play a role in early cardiogenesis.

  18. Emerging roles of hypoxia-inducible factors and reactive oxygen species in cancer and pluripotent stem cells

    Directory of Open Access Journals (Sweden)

    Shigeo Saito

    2015-06-01

    Full Text Available Eukaryotic organisms require oxygen homeostasis to maintain proper cellular function for survival. During conditions of low oxygen tension (hypoxia, cells activate the transcription of genes that induce an adaptive response, which supplies oxygen to tissues. Hypoxia and hypoxia-inducible factors (HIFs may contribute to the maintenance of putative cancer stem cells, which can continue self-renewal indefinitely and express stemness genes in hypoxic stress environments (stem cell niches. Reactive oxygen species (ROS have long been recognized as toxic by-products of aerobic metabolism that are harmful to living cells, leading to DNA damage, senescence, or cell death. HIFs may promote a cancer stem cell state, whereas the loss of HIFs induces the production of cellular ROS and activation of proteins p53 and p16Ink4a, which lead to tumor cell death and senescence. ROS seem to inhibit HIF regulation in cancer cells. By contrast, controversial data have suggested that hypoxia increases the generation of ROS, which prevents hydroxylation of HIF proteins by inducing their transcription as negative feedback. Moreover, hypoxic conditions enhance the generation of induced pluripotent stem cells (iPSCs. During reprogramming of somatic cells into a PSC state, cells attain a metabolic state typically observed in embryonic stem cells (ESCs. ESCs and iPSCs share similar bioenergetic metabolisms, including decreased mitochondrial number and activity, and induced anaerobic glycolysis. This review discusses the current knowledge regarding the emerging roles of ROS homeostasis in cellular reprogramming and the implications of hypoxic regulation in cancer development.

  19. Effects of hypoxia on epididymal sperm parameters and protective role of ibuprofen and melatonin

    Directory of Open Access Journals (Sweden)

    Álvaro Vargas

    2011-01-01

    Full Text Available Hypobaric hypoxia is of interest due to an increase of human populations working at high altitude. Testicular damage is related to the physiological response (neoangiogenesis to increased intrascrotal blood flow as temperature rises. Hypoxia is a stress factor with overproduction of reactive oxygen species (ROS. The effect of hypoxia in mice reproductive parameters is analyzed. Animals were exposed to simulated hypoxia of 4,200 meters above sea level (m.a.s.l. in a chamber for 33.2 days, both to continuous (HH or intermittent hypoxia (HI with an intermittency period of 4 days hypoxia /4 days normoxia (500 m.a.s.l.. The anti-inflammatory drug Ibuprofen was administered to a group of mice to control vasodilation and increased blood flow. Melatonin was administered to another group of mice as a potent ROS scavenger. Animals in both HH and HI exposure were compared to normoxic non-treated controls. There was a hematological response in hypoxia, with an increase in hematocrit and reticulocytosis. There was also increased teratozoospermia. This damage was more pronounced in HH than HI, suggesting that alternating normoxic periods permits compensation for the effects of hypoxia. In both hypoxia systems, the level of lipoperoxidation and the instability of DNA increased. In HH, there was a reduction of teratozoospermia in melatonin-treated mice. Ibuprofen presented a protective effect on the same parameters as melatonin with both HI and HH. The quality of sperm DNA, fragmentation, unpacking and DNA stability diminished. In conclusion, reproductive damage elicited by HH or HI was partially ameliorated by simultaneous treatment with antiflogistic and/or antioxidant agents.

  20. Chronic intermittent hypoxia from pedo-stage decreases glucose transporter 4 expression in adipose tissue and causes insulin resistance.

    Science.gov (United States)

    Chen, Lin; Cao, Zhao-long; Han, Fang; Gao, Zhan-cheng; He, Quan-ying

    2010-02-20

    The persistence of sleep disordered breathing (SDB) symptoms after tonsil and/or adenoid (T&A) surgery are common in children with obstructive sleep apnea (OSA). We tested the hypothesis that disturbances of glucose transporters (GLUTs) in intraabdominal adipose tissue caused by chronic intermittent hypoxia (CIH) from the pedo-period could facilitate the appearance of periphery insulin resistance in Sprague-Dawley (SD) rats. We tested the hypothesis that the changes of GLUTs in adipose tissue may be one of the reasons for persistent SDB among clinical OSA children after T&A surgery. Thirty 21-day-old SD rats were randomly divided into a CIH group, a chronic continuous hypoxia (CCH) group, and a normal oxygen group (control group) and exposed for 40 days. The changes of weight, fasting blood glucose and fasting blood insulin levels were measured. Hyperinsulinemic-euglycemic clamp techniques were used to measure insulin resistance in each animal. Real-time quantitative PCR and Western blotting were used to measure GLUT mRNA and proteins in intraabdominal adipose tissue. Additional intraabdomial white adipose tissue (WAT) was also processed into paraffin sections and directly observed for GLUTs1-4 expression. When compared with control group, CIH increased blood fasting insulin levels, (245.07 +/- 53.89) pg/ml vs. (168.63 +/- 38.70) pg/ml, P = 0.038, and decreased the mean glucose infusion rate (GIR), (7.25 +/- 1.29) mg x kg(-1) x min(-1) vs. (13.34 +/- 1.54) mg x kg(-1) x min(-1), P < 0.001. GLUT-4 mRNA and protein expression was significantly reduced after CIH compared with CCH or normal oxygen rats, 0.002 +/- 0.002 vs. 0.039 +/- 0.009, P < 0.001; 0.642 +/- 0.073 vs. 1.000 +/- 0.103, P = 0.035. CIH in young rats could induce insulin resistance via adverse effects on glycometabolism. These findings emphasize the importance of early detection and treatment of insulin insensitivity in obese childhood OSA.

  1. THE EFFECT OF ADRENAL MEDULLECTOMY ON METABOLIC RESPONSES TO CHRONIC INTERMITTENT HYPOXIA

    Science.gov (United States)

    Shin, Mi-Kyung; Han, Woobum; Bevans-Fonti, Shannon; Jun, Jonathan C.; Punjabi, Naresh M.; Polotsky, Vsevolod Y.

    2014-01-01

    Obstructive sleep apnea causes intermittent hypoxia (IH) and is associated with insulin resistance and type 2 diabetes. IH increases plasma catecholamine levels, which may increase insulin resistance and suppress insulin secretion. The objective of this study was to determine if adrenal medullectomy (MED) prevents metabolic dysfunction in IH. MED or sham surgery was performed in 60 male C57BL/6J mice, which were then exposed to IH or control conditions (intermittent air) for 6 weeks. IH increased plasma epinephrine and norepinephrine levels, increased fasting blood glucose and lowered basal and glucose-stimulated insulin secretion. MED decreased baseline epinephrine and prevented the IH induced increase in epinephrine, whereas the norepinephrine response remained intact. MED improved glucose tolerance in mice exposed to IH, attenuated the impairment in basal and glucose-stimulated insulin secretion, but did not prevent IH-induced fasting hyperglycemia or insulin resistance. We conclude that the epinephrine release from the adrenal medulla during IH suppresses insulin secretion causing hyperglycemia. PMID:25179887

  2. Hypoxia-inducible factor-1 alpha has a key role in hypoxic preconditioning.

    Science.gov (United States)

    Taie, Satoshi; Ono, Junichiro; Iwanaga, Yasuyuki; Tomita, Shuhei; Asaga, Takehiko; Chujo, Kosuke; Ueki, Masaaki

    2009-08-01

    Sublethal hypoxia induces tolerance to subsequent hypoxic insults in a process known as hypoxic preconditioning (HP). Hypoxia-inducible factor-1 alpha (HIF-1 alpha) is a key transcription protein involved in the mechanism of HP. In this study, we investigated the effects of HP on tissue oxygenation and expression of HIF-1 alpha gene targets in the brain using neural cell-specific HIF-1 alpha-deficient mice. The animals were exposed to 8% oxygen for 3 hours. Twenty-four hours later, the oxygen partial pressure (pO(2)) of brain tissue and gene expression were measured during hypoxia. HP improved the pO(2) of brain tissue during subsequent hypoxia with upregulated inducible nitric oxide synthase in wild-type mice, whereas HP had no detectable effect in the mutant mice. Our results indicate that the protective effects of HP may be partially mediated by improving tissue oxygenation via HIF-1 alpha and inducible nitric oxide synthase.

  3. Hypoxia Inducible Factor-1α (HIF-1 α and its Role in Tumour Progression to Malignancy

    Directory of Open Access Journals (Sweden)

    Gaurav Mrinal Sharma

    2008-07-01

    Full Text Available Hypoxia is a condition in which an area of the body or a tissue is deprived of sufficient supply of oxygen. The lack of nutrients in a hypoxic tissue generally causes apoptosis but some cells are able to adapt to this hypoxic environment and resist apoptosis. This adaptation occurs as a result of gene activation. Hypoxia is a characteristic feature of many cancers and is the stimulus for overexpression of HIF-1α - a basic loop-helix PAS protein family subunit of HIF, which allows the cell to adapt and survive in hostile environment. The presence of hypoxia and HIF-1α is correlated with an increased risk of metastasis and techniques that can inhibit hypoxia inducible factor may be instrumental in finding a cure for cancer.

  4. Kinetic Investigations of the Role of Factor Inhibiting Hypoxia-inducible Factor (FIH) as an Oxygen Sensor.

    Science.gov (United States)

    Tarhonskaya, Hanna; Hardy, Adam P; Howe, Emily A; Loik, Nikita D; Kramer, Holger B; McCullagh, James S O; Schofield, Christopher J; Flashman, Emily

    2015-08-07

    The hypoxia-inducible factor (HIF) hydroxylases regulate hypoxia sensing in animals. In humans, they comprise three prolyl hydroxylases (PHD1-3 or EGLN1-3) and factor inhibiting HIF (FIH). FIH is an asparaginyl hydroxylase catalyzing post-translational modification of HIF-α, resulting in reduction of HIF-mediated transcription. Like the PHDs, FIH is proposed to have a hypoxia-sensing role in cells, enabling responses to changes in cellular O2 availability. PHD2, the most important human PHD isoform, is proposed to be biochemically/kinetically suited as a hypoxia sensor due to its relatively high sensitivity to changes in O2 concentration and slow reaction with O2. To ascertain whether these parameters are conserved among the HIF hydroxylases, we compared the reactions of FIH and PHD2 with O2. Consistent with previous reports, we found lower Km(app)(O2) values for FIH than for PHD2 with all HIF-derived substrates. Under pre-steady-state conditions, the O2-initiated FIH reaction is significantly faster than that of PHD2. We then investigated the kinetics with respect to O2 of the FIH reaction with ankyrin repeat domain (ARD) substrates. FIH has lower Km(app)(O2) values for the tested ARDs than HIF-α substrates, and pre-steady-state O2-initiated reactions were faster with ARDs than with HIF-α substrates. The results correlate with cellular studies showing that FIH is active at lower O2 concentrations than the PHDs and suggest that competition between HIF-α and ARDs for FIH is likely to be biologically relevant, particularly in hypoxic conditions. The overall results are consistent with the proposal that the kinetic properties of individual oxygenases reflect their biological capacity to act as hypoxia sensors. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Impact of Chronic Neonatal Intermittent Hypoxia on Severity of Retinal Damage in a Rat Model of Oxygen-Induced Retinopathy.

    Science.gov (United States)

    Beharry, Kay D; Cai, Charles L; Ahmad, Taimur; Guzel, Sibel; Valencia, Gloria B; Aranda, Jacob V

    2018-01-01

    Neonatal intermittent hypoxia (IH) followed by re-oxygenation in normoxia or supplemental oxygen (IHR) increases the risk for severe retinopathy of prematurity (ROP). The exact timing for the onset of retinal damage which may guide strategic interventions during retinal development, is unknown. We tested the hypothesis that chronic exposure of the immature retina to neonatal IH induces early manifestations of retinal damage that can be utilized as key time points for strategic pharmacologic intervention. Newborn rats were exposed to IH within 2 hours of birth (P0) until P14, or allowed to recover in room air (RA) from P14 to P21 (IHR). Retinal integrity and angiogenesis biomarkers were progressively assessed before (P0), during IH, and post IH (recovery in RA), or IHR, and compared to normoxic age-matched controls. Retinal damage occurred as early as day 3 of neonatal IH, consistent with vascular abnormalities and disturbances in the astrocytic template. These abnormalities worsened during IHR. Pharmacologic and non-pharmacologic interventions to identify, prevent, or minimize neonatal IH should be implemented shortly after birth in high risk preterm newborns. This strategy may lead to a reduction in the outcome of severe ROP requiring later invasive treatments.

  6. Cyclooxygenases 1 and 2 differentially regulate blood pressure and cerebrovascular responses to acute and chronic intermittent hypoxia: implications for sleep apnea.

    Science.gov (United States)

    Beaudin, Andrew E; Pun, Matiram; Yang, Christina; Nicholl, David D M; Steinback, Craig D; Slater, Donna M; Wynne-Edwards, Katherine E; Hanly, Patrick J; Ahmed, Sofia B; Poulin, Marc J

    2014-05-09

    Obstructive sleep apnea (OSA) is associated with increased risk of cardiovascular and cerebrovascular disease resulting from intermittent hypoxia (IH)-induced inflammation. Cyclooxygenase (COX)-formed prostanoids mediate the inflammatory response, and regulate blood pressure and cerebral blood flow (CBF), but their role in blood pressure and CBF responses to IH is unknown. Therefore, this study's objective was to determine the role of prostanoids in cardiovascular and cerebrovascular responses to IH. Twelve healthy, male participants underwent three, 6-hour IH exposures. For 4 days before each IH exposure, participants ingested a placebo, indomethacin (nonselective COX inhibitor), or Celebrex(®) (selective COX-2 inhibitor) in a double-blind, randomized, crossover study design. Pre- and post-IH blood pressure, CBF, and urinary prostanoids were assessed. Additionally, blood pressure and urinary prostanoids were assessed in newly diagnosed, untreated OSA patients (n=33). Nonselective COX inhibition increased pre-IH blood pressure (P ≤ 0.04) and decreased pre-IH CBF (P=0.04) while neither physiological variable was affected by COX-2 inhibition (P ≥ 0.90). Post-IH, MAP was elevated (P ≤ 0.05) and CBF was unchanged with placebo and nonselective COX inhibition. Selective COX-2 inhibition abrogated the IH-induced MAP increase (P=0.19), but resulted in lower post-IH CBF (P=0.01). Prostanoids were unaffected by IH, except prostaglandin E2 was elevated with the placebo (P=0.02). Finally, OSA patients had elevated blood pressure (P ≤ 0.4) and COX-1 formed thromboxane A2 concentrations (P=0.02). COX-2 and COX-1 have divergent roles in modulating vascular responses to acute and chronic IH. Moreover, COX-1 inhibition may mitigate cardiovascular and cerebrovascular morbidity in OSA. www.clinicaltrials.gov. Unique identifier: NCT01280006.

  7. The role of sympathetic reflex control of cerebral blood flow and microcirculation during normoxia and hypoxia

    International Nuclear Information System (INIS)

    Kissen, I.

    1989-01-01

    The purpose of this study was to investigate the hypothesis that there is sympathetic reflex regulation of the cerebral blood flow (CBF) and the utilization of microvessels during normoxia and hypoxia. Regional CBF was determined in conscious Long Evans rats with 4-iodo[N-methyl- 14 C]antipyrine. The percentage of the microvessels perfused as determined by comparing perfused microvessels (FITC-dextran), with the total microvasculature (alkaline phosphatase stain). To test this hypothesis, arcs of the proposed reflex were eliminated. The first experiment examined the effect of bilateral superior cervical ganglionectomy on CBF and microcirulation during normoxia and hypoxia. CBF increased during hypoxia from 67 ± 2 to 115 ± 3 ml/min/100 g in control, and from 77 ± 2 to 155 ± 6 ml/min/100 g in ganglionectomized animals. In control, hypoxic flow to caudal areas was higher than to rostral areas and that difference was prevented by ganglionectomy. Utilization of arterioles during hypoxia increased from 51 ± 2% to 63 ± 2% in control, and from 52 ± 1% to 77 ± 2% in ganglionectomized group. The percent perfused capillaries during normoxia was 49 ± 2% in control, and 52 ± 1% in ganglionectomized group, and during hypoxia it was 73 ± 2% in both groups. In the second study, cerebral vascular responses to hypoxia were determined after administration of alpha-adrenoceptor antagonists N-methyl chlorpromazine (does not cross the blood-brain barrier), and phenoxybenzamine (crosses the blood-brain barrier). Neither phenoxybenzamine nor N-methyl chlorpromazine affected CBF and microcirculation during normoxia. During hypoxia, they similarly reversed the rostral to caudal gradient of flow, increased utilization of arterioles in rostral brain areas, and did not affect capillaries

  8. NFAT5 is activated by hypoxia: role in ischemia and reperfusion in the rat kidney.

    Directory of Open Access Journals (Sweden)

    Sandra Villanueva

    Full Text Available The current hypothesis postulates that NFAT5 activation in the kidney's inner medulla is due to hypertonicity, resulting in cell protection. Additionally, the renal medulla is hypoxic (10-18 mmHg; however there is no information about the effect of hypoxia on NFAT5. Using in vivo and in vitro models, we evaluated the effect of reducing the partial pressure of oxygen (PO(2 on NFAT5 activity. We found that 1 Anoxia increased NFAT5 expression and nuclear translocation in primary cultures of IMCD cells from rat kidney. 2 Anoxia increased transcriptional activity and nuclear translocation of NFAT5 in HEK293 cells. 3 The dose-response curve demonstrated that HIF-1α peaked at 2.5% and NFAT5 at 1% of O(2. 4 At 2.5% of O(2, the time-course curve of hypoxia demonstrated earlier induction of HIF-1α gene expression than NFAT5. 5 siRNA knockdown of NFAT5 increased the hypoxia-induced cell death. 6 siRNA knockdown of HIF-1α did not affect the NFAT5 induction by hypoxia. Additionally, HIF-1α was still induced by hypoxia even when NFAT5 was knocked down. 7 NFAT5 and HIF-1α expression were increased in kidney (cortex and medulla from rats subjected to an experimental model of ischemia and reperfusion (I/R. 7 Experimental I/R increased the NFAT5-target gene aldose reductase (AR. 8 NFAT5 activators (ATM and PI3K were induced in vitro (HEK293 cells and in vivo (I/R kidneys with the same timing of NFAT5. 8 Wortmannin, which inhibits ATM and PI3K, reduces hypoxia-induced NFAT5 transcriptional activation in HEK293 cells. These results demonstrate for the first time that NFAT5 is induced by hypoxia and could be a protective factor against ischemic damage.

  9. Unraveling the role of hypoxia-inducible factor (HIF)-1α and HIF-2α in the adaption process of human microvascular endothelial cells (HMEC-1) to hypoxia: Redundant HIF-dependent regulation of macrophage migration inhibitory factor.

    Science.gov (United States)

    Hahne, Martin; Schumann, Peggy; Mursell, Mathias; Strehl, Cindy; Hoff, Paula; Buttgereit, Frank; Gaber, Timo

    2018-03-01

    Hypoxia driven angiogenesis is a prominent feature of tissue regeneration, inflammation and tumor growth and is regulated by hypoxia-inducible factor (HIF)-1 and -2. The distinct functions of HIFs in the hypoxia-induced angiogenesis and metabolic switch of endothelial cells are still unknown and therefore aim of this study. We investigated the role of HIF-1 and -2 in the adaptation of immortalized human microvascular endothelial cells (HMEC-1) to hypoxic conditions (1% O 2 ) in terms of angiogenesis, cytokine secretion, gene expression and ATP/ADP-ratio using shRNA-mediated reduction of the oxygen sensitive α-subunits of either HIF-1 or HIF-2 or the combination of both. Reduction of HIF-1α diminished cellular energy, hypoxia-induced glycolytic gene expression, and angiogenesis not altering pro-angiogenic factors. Reduction of HIF-2α diminished hypoxia-induced pro-angiogenic factors, enhanced anti-angiogenic factors and attenuated angiogenesis not altering glycolytic gene expression. Reduction of both HIFs reduced cell survival, gene expression of glycolytic enzymes and pro-angiogenic factors as compared to the corresponding control. Finally, we identified the macrophage migration inhibitory factor (MIF) to be redundantly regulated by HIF-1 and HIF-2 and to be essential in the process of hypoxia-driven angiogenesis. Our results demonstrate a major impact of HIF-1 and HIF-2 on hypoxia-induced angiogenesis indicating distinct but also overlapping functions of HIF-1 and HIF-2. These findings open new possibilities for therapeutic approaches by specifically targeting the HIF-1 and HIF-2 or their target MIF. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Sensory Processing and Integration at the Carotid Body Tripartite Synapse: Neurotransmitter Functions and Effects of Chronic Hypoxia

    Directory of Open Access Journals (Sweden)

    Erin M. Leonard

    2018-03-01

    action potential firing at petrosal nerve endings. This review will update current ideas concerning the presynaptic and postsynaptic mechanisms that underlie chemosensory processing in the CB. Paracrine signaling pathways will be highlighted, and particularly those that allow the glial-like type II cells to participate in the integrated sensory response during exposures to chemostimuli, including acute and chronic hypoxia.

  11. Hypoxia inducible factor 3α plays a critical role in alveolarization and distal epithelial cell differentiation during mouse lung development.

    Directory of Open Access Journals (Sweden)

    Yadi Huang

    Full Text Available Lung development occurs under relative hypoxia and the most important oxygen-sensitive response pathway is driven by Hypoxia Inducible Factors (HIF. HIFs are heterodimeric transcription factors of an oxygen-sensitive subunit, HIFα, and a constitutively expressed subunit, HIF1β. HIF1α and HIF2α, encoded by two separate genes, contribute to the activation of hypoxia inducible genes. A third HIFα gene, HIF3α, is subject to alternative promoter usage and splicing, leading to three major isoforms, HIF3α, NEPAS and IPAS. HIF3α gene products add to the complexity of the hypoxia response as they function as dominant negative inhibitors (IPAS or weak transcriptional activators (HIF3α/NEPAS. Previously, we and others have shown the importance of the Hif1α and Hif2α factors in lung development, and here we investigated the role of Hif3α during pulmonary development. Therefore, HIF3α was conditionally expressed in airway epithelial cells during gestation and although HIF3α transgenic mice were born alive and appeared normal, their lungs showed clear abnormalities, including a post-pseudoglandular branching defect and a decreased number of alveoli. The HIF3α expressing lungs displayed reduced numbers of Clara cells, alveolar epithelial type I and type II cells. As a result of HIF3α expression, the level of Hif2α was reduced, but that of Hif1α was not affected. Two regulatory genes, Rarβ, involved in alveologenesis, and Foxp2, a transcriptional repressor of the Clara cell specific Ccsp gene, were significantly upregulated in the HIF3α expressing lungs. In addition, aberrant basal cells were observed distally as determined by the expression of Sox2 and p63. We show that Hif3α binds a conserved HRE site in the Sox2 promoter and weakly transactivated a reporter construct containing the Sox2 promoter region. Moreover, Hif3α affected the expression of genes not typically involved in the hypoxia response, providing evidence for a novel

  12. Chronic intermittent hypoxia induces changes on the expression and activity of neprilysin (EC 3.4.24.16) in the brain of rats.

    Science.gov (United States)

    de Oliveira, Renato W; Julian, Guilherme S; Perry, Juliana C; Tufik, Sergio; Chagas, Jair R

    2018-04-24

    Obstructive sleep apnea (OSA) is a frequent sleeping breathing disorder associated with cognitive impairments. Neprilysin (NEP) is responsible for degrading several substrates related to cognition; however, the effect of chronic intermittent hypoxia (CIH) on NEP is still unknown. This study aimed to evaluate the expression and activity of NEP under CIH in cognitive-related brain structures. Western blot, qRT-PCR and enzyme activity assay, demonstrated that a six-week intermittent hypoxia increased NEP expression and activity, selectively in temporal cortex, but not in the hippocampus and frontal cortex. The increase in NEP activity and expression was reverted followed by two weeks recovery in normoxia. These data show that CIH protocol increases the expression and activity of NEP selectively in the temporal cortex. Additional mechanisms must be investigated to elucidate the effects of CIH in cognition. Copyright © 2018. Published by Elsevier B.V.

  13. Long-Term Chronic Intermittent Hypobaric Hypoxia Induces Glucose Transporter (GLUT4 Translocation Through AMP-Activated Protein Kinase (AMPK in the Soleus Muscle in Lean Rats

    Directory of Open Access Journals (Sweden)

    Patricia Siques

    2018-06-01

    Full Text Available Background: In chronic hypoxia (CH and short-term chronic intermittent hypoxia (CIH exposure, glycemia and insulin levels decrease and insulin sensitivity increases, which can be explained by changes in glucose transport at skeletal muscles involving GLUT1, GLUT4, Akt, and AMPK, as well as GLUT4 translocation to cell membranes. However, during long-term CIH, there is no information regarding whether these changes occur similarly or differently than in other types of hypoxia exposure. This study evaluated the levels of AMPK and Akt and the location of GLUT4 in the soleus muscles of lean rats exposed to long-term CIH, CH, and normoxia (NX and compared the findings.Methods: Thirty male adult rats were randomly assigned to three groups: a NX (760 Torr group (n = 10, a CIH group (2 days hypoxia/2 days NX; n = 10 and a CH group (n = 10. Rats were exposed to hypoxia for 30 days in a hypobaric chamber set at 428 Torr (4,600 m. Feeding (10 g daily and fasting times were accurately controlled. Measurements included food intake (every 4 days, weight, hematocrit, hemoglobin, glycemia, serum insulin (by ELISA, and insulin sensitivity at days 0 and 30. GLUT1, GLUT4, AMPK levels and Akt activation in rat soleus muscles were determined by western blot. GLUT4 translocation was measured with confocal microscopy at day 30.Results: (1 Weight loss and increases in hematocrit and hemoglobin were found in both hypoxic groups (p < 0.05. (2 A moderate decrease in glycemia and plasma insulin was found. (3 Insulin sensitivity was greater in the CIH group (p < 0.05. (4 There were no changes in GLUT1, GLUT4 levels or in Akt activation. (5 The level of activated AMPK was increased only in the CIH group (p < 0.05. (6 Increased GLUT4 translocation to the plasma membrane of soleus muscle cells was observed in the CIH group (p < 0.05.Conclusion: In lean rats experiencing long-term CIH, glycemia and insulin levels decrease and insulin sensitivity increases. Interestingly, there

  14. Hypoxia Room

    Data.gov (United States)

    Federal Laboratory Consortium — The Hypoxia Room is a 8x8x8 ft. clear vinyl plastic and aluminum frame construction enclosure located within USAREIM laboratory 028. The Hypoxia Room (manufactured...

  15. Analysis of the stability of housekeeping gene expression in the left cardiac ventricle of rats submitted to chronic intermittent hypoxia.

    Science.gov (United States)

    Julian, Guilherme Silva; Oliveira, Renato Watanabe de; Tufik, Sergio; Chagas, Jair Ribeiro

    2016-01-01

    Obstructive sleep apnea (OSA) has been associated with oxidative stress and various cardiovascular consequences, such as increased cardiovascular disease risk. Quantitative real-time PCR is frequently employed to assess changes in gene expression in experimental models. In this study, we analyzed the effects of chronic intermittent hypoxia (an experimental model of OSA) on housekeeping gene expression in the left cardiac ventricle of rats. Analyses via four different approaches-use of the geNorm, BestKeeper, and NormFinder algorithms; and 2-ΔCt (threshold cycle) data analysis-produced similar results: all genes were found to be suitable for use, glyceraldehyde-3-phosphate dehydrogenase and 18S being classified as the most and the least stable, respectively. The use of more than one housekeeping gene is strongly advised. RESUMO A apneia obstrutiva do sono (AOS) tem sido associada ao estresse oxidativo e a várias consequências cardiovasculares, tais como risco aumentado de doença cardiovascular. A PCR quantitativa em tempo real é frequentemente empregada para avaliar alterações na expressão gênica em modelos experimentais. Neste estudo, analisamos os efeitos da hipóxia intermitente crônica (um modelo experimental de AOS) na expressão de genes de referência no ventrículo cardíaco esquerdo de ratos. Análises a partir de quatro abordagens - uso dos algoritmos geNorm, BestKeeper e NormFinder e análise de dados 2-ΔCt (ciclo limiar) - produziram resultados semelhantes: todos os genes mostraram-se adequados para uso, sendo que gliceraldeído-3-fosfato desidrogenase e 18S foram classificados como o mais e o menos estável, respectivamente. A utilização de mais de um gene de referência é altamente recomendada.

  16. Ageing and chronic intermittent hypoxia mimicking sleep apnea do not modify local brain tissue stiffness in healthy mice.

    Science.gov (United States)

    Jorba, Ignasi; Menal, Maria José; Torres, Marta; Gozal, David; Piñol-Ripoll, Gerard; Colell, Anna; Montserrat, Josep M; Navajas, Daniel; Farré, Ramon; Almendros, Isaac

    2017-07-01

    Recent evidence suggests that obstructive sleep apnea (OSA) may increase the risk of Alzheimer´s disease (AD), with the latter promoting alterations in brain tissue stiffness, a feature of ageing. Here, we assessed the effects of age and intermittent hypoxia (IH) on brain tissue stiffness in a mouse model of OSA. Two-month-old and 18-month-old mice (N=10 each) were subjected to IH (20% O 2 40s - 6% O 2 20s) for 8 weeks (6h/day). Corresponding control groups for each age were kept under normoxic conditions in room air (RA). After sacrifice, the brain was excised and 200-micron coronal slices were cut with a vibratome. Local stiffness of the cortex and hippocampus were assessed in brain slices placed in an Atomic Force Microscope. For both brain regions, the Young's modulus (E) in each animal was computed as the average values from 9 force-indentation curves. Cortex E mean (±SE) values were 442±122Pa (RA) and 455±120 (IH) for young mice and 433±44 (RA) and 405±101 (IH) for old mice. Hippocampal E values were 376±62 (RA) and 474±94 (IH) for young mice and 486±93 (RA) and 521±210 (IH) for old mice. For both cortex and hippocampus, 2-way ANOVA indicated no statistically significant effects of age or challenge (IH vs. RA) on E values. Thus, neither chronic IH mimicking OSA nor ageing up to late middle age appear to modify local brain tissue stiffness in otherwise healthy mice. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Chronic intermittent hypoxia alters local respiratory circuit function at the level of the preBötzinger complex

    Directory of Open Access Journals (Sweden)

    Alfredo J Garcia

    2016-02-01

    Full Text Available Chronic intermittent hypoxia (CIH is a common state experienced in several breathing disorders, including obstructive sleep apnea (OSA and apneas of prematurity. Unraveling how CIH affects the CNS, and in turn how the CNS contributes to apneas is perhaps the most challenging task. The preBötzinger complex (preBötC is a pre-motor respiratory network critical for inspiratory rhythm generation. Here, we test the hypothesis that CIH increases irregular output from the isolated preBötC, which can be mitigated by antioxidant treatment. Electrophysiological recordings from brainstem slices revealed that CIH enhanced burst-to-burst irregularity in period and/or amplitude. Irregularities represented a change in individual fidelity among preBötC neurons, and changed transmission from preBötC to the hypoglossal motor nucleus (XIIn, which resulted in increased transmission failure to XIIn. CIH increased the degree of lipid peroxidation in the preBötC and treatment with the antioxidant, 5,10,15,20-Tetrakis (1-methylpyridinium-4-yl-21H,23H-porphyrin manganese(III pentachloride (MnTMPyP, reduced CIH-mediated irregularities on the network rhythm and improved transmission of preBötC to the XIIn. These findings suggest that CIH promotes a pro-oxidant state that destabilizes rhythmogenesis originating from the preBötC and changes the local rhythm generating circuit which in turn, can lead to intermittent transmission failure to the XIIn. We propose that these CIH-mediated effects represent a part of the central mechanism that may perpetuate apneas and respiratory instability, which are hallmark traits in several dysautonomic conditions.

  18. Angiotensin-(1–7 inhibits inflammation and oxidative stress to relieve lung injury induced by chronic intermittent hypoxia in rats

    Directory of Open Access Journals (Sweden)

    W. Lu

    2016-01-01

    Full Text Available Obstructive sleep apnea is associated with inflammation and oxidative stress in lung tissues and can lead to metabolic abnormalities. We investigated the effects of angiotensin1–7 [Ang-(1–7] on lung injury in rats induced by chronic intermittent hypoxia (CIH. We randomly assigned 32 male Sprague-Dawley rats (180–200 g to normoxia control (NC, CIH-untreated (uCIH, Ang-(1–7-treated normoxia control (N-A, and Ang-(1–7-treated CIH (CIH-A groups. Oxidative stress biomarkers were measured in lung tissues, and expression of NADPH oxidase 4 (Nox4 and Nox subunits (p22phox, and p47phox was determined by Western blot and reverse transcription-polymerase chain reaction. Pulmonary pathological changes were more evident in the uCIH group than in the other groups. Enzyme-linked immunosorbent assays and immunohistochemical staining showed that inflammatory factor concentrations in serum and lung tissues in the uCIH group were significantly higher than those in the NC and N-A groups. Expression of inflammatory factors was significantly higher in the CIH-A group than in the NC and N-A groups, but was lower than in the uCIH group (P<0.01. Oxidative stress was markedly higher in the uCIH group than in the NC and N-A groups. Expression of Nox4 and its subunits was also increased in the uCIH group. These changes were attenuated upon Ang-(1–7 treatment. In summary, treatment with Ang-(1-7 reversed signs of CIH-induced lung injury via inhibition of inflammation and oxidative stress.

  19. Prognostic role of hypoxia-inducible factor-1 alpha expression in osteosarcoma: a meta-analysis

    Directory of Open Access Journals (Sweden)

    Ren HY

    2016-03-01

    Full Text Available Hai-Yong Ren,1 Yin-Hua Zhang,1,2 Heng-Yuan Li,1 Tao Xie,1 Ling-Ling Sun,1 Ting Zhu,1 Sheng-Dong Wang,1 Zhao-Ming Ye1 1Department of Orthopaedics, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 2The First Department of Orthopaedics, Hospital of Zhejiang General Corps of Armed Police Forces, Jiaxing, People’s Republic of China Background: Hypoxia-inducible factor-1α (HIF-1α plays an important role in tumor progression and metastasis. A number of studies have investigated the association of HIF-1α with prognosis and clinicopathological characteristics of osteosarcoma but yielded inconsistent results.  Method: Systematic computerized searches were performed in PubMed, Embase, and Web of Science databases for relevant original articles. The pooled hazard ratios (HRs and odds ratios (ORs with corresponding confidence intervals (CIs were calculated to assess the prognostic value of HIF-1α expression. The standard mean difference was used to analyze the continuous variable.  Results: Finally, nine studies comprising 486 patients were subjected to final analysis. Protein expression level of HIF-1α was found to be significantly related to overall survival (HR =3.0; 95% CI: 1.46–6.15, disease-free survival (HR =2.23; 95% CI: 1.26–3.92, pathologic grade (OR =21.33; 95% CI: 4.60–98.88, tumor stage (OR =10.29; 95% CI: 3.55–29.82, chemotherapy response (OR =9.68; 95% CI: 1.87–50.18, metastasis (OR =5.06; 95% CI: 2.87–8.92, and microvessel density (standard mean difference =2.83; 95% CI: 2.28–3.39.  Conclusion: This meta-analysis revealed that overexpression of HIF-1α is a predictive factor of poor outcomes for osteosarcoma. HIF-1α appeared to play an important role in prognostic evaluation and may be a potential target in antitumoral therapy. Keywords: HIF-1α, osteosarcoma, prognosis, meta-analysis

  20. The role of GABA in the hypoxia tolerance of the epaulette shark

    International Nuclear Information System (INIS)

    Wise, G.; Mulvey, J.; Renshaw, G.M.C.; Dodd, P.R.

    1998-01-01

    Full text: The epaulette shark responds to hypoxia with brain hypometabolism which is correlated with increased levels of gamma-aminobutyric acid (GABA). We examined GABA-like immunoreactivity (GABA-IR) and the density and binding characteristics of GABA A receptors in the Epaulette shark brainstem. These studies were conducted to investigate changes in response to hypoxia. Experimental animals were exposed to eight cycles of an extreme hypoxic regimen (5% of normoxia). Animals were anaesthetised with 80mg/L of MS222 and the brain was dissected and processed either for immunohistochemistry or receptor ligand binding. Membranes were prepared at 4 deg C according to a previously reported protocol and the binding characteristics of [ 3 H]flunitrazeparn ([ 3 H]FNZ) were examined using an in vitro centrifugation assay. We report on the effect of hypoxia on specific [ 3 H]FNZ binding characteristics. GABA-IR was detected using a primary antibody dilution of 1:15 000 and the Vector ABC method. We report that an overall increase in the optical density of GABA-IR occurs with significant increases in three out of the four brainstem nuclei examined in experimental animals. The results of these studies are discussed in conjunction with the hypoxia-tolerance .of the epaulette shark. Copyright (1998) Australian Neuroscience Society

  1. The role of hypoxia in structuring macrobenthos community off the Louisiana shelf

    Science.gov (United States)

    Shivarudrappa, S. K.; Briggs, K.

    2013-12-01

    Core samples were collected from 24 box cores belonging to four different provinces with varying hypoxia frequency and history in the northern Gulf of Mexico. Macrobenthos from these four provinces were sampled in spring, summer and late-summer seasons. According to historical data of bottom water oxygen concentration since 1985, the control province was exposed to hypoxia rarefaction curves of expected species diversity. Impact of grain size and organic matter concentration on the community structure was assessed using non-metric multi-dimensional scaling. Different species dominated by their abundance or their biomass at all four provinces, but the effect was magnified in the provinces other than the control. Capitellid, cossurid and spionid polychaetes dominated by abundance, whereas maldanid and nephtyid polychaetes and Nemerteans dominated by biomass. This implies that the fauna responsible for dominance by their abundance were small, opportunistic deposit feeders, and that large carnivores contributed to dominance by their biomass. Although species and abundance changed from province to province and season to season, the functional groups were nevertheless dominated, in order, by subsurface deposit feeders, surface deposit feeders, and carnivores at all provinces in all three seasons. This study provides insight into compositional changes in the macrobenthic community due to hypoxia and subsequent recovery from hypoxia on the northern Gulf of Mexico shelf between the Mississippi and Atchafalaya Rivers.

  2. Effect of adrenal medullectomy on metabolic responses to chronic intermittent hypoxia in the frequently sampled intravenous glucose tolerance test.

    Science.gov (United States)

    Shin, Mi-Kyung; Han, Woobum; Joo, Hoon; Bevans-Fonti, Shannon; Shiota, Masakazu; Stefanovski, Darko; Polotsky, Vsevolod Y

    2017-04-01

    Obstructive sleep apnea is associated with type 2 diabetes. We have previously developed a mouse model of intermittent hypoxia (IH) mimicking oxyhemoglobin desaturations in patients with sleep apnea and have shown that IH increases fasting glucose, hepatic glucose output, and plasma catecholamines. We hypothesize that adrenal medulla modulates glucose responses to IH and that such responses can be prevented by adrenal medullectomy. We performed adrenal medullectomy or sham surgery in lean C57BL/6J mice, which were exposed to IH or intermittent air (control) for 4 wk followed by the frequently sampled intravenous glucose tolerance test (FSIVGTT) in unanesthetized unrestrained animals. IH was administered during the 12-h light phase (9 AM to 9 PM) by decreasing inspired oxygen from 21 to 6.5% 60 cycles/h. Insulin sensitivity (S I ), insulin independent glucose disposal [glucose effectiveness (S G )], and the insulin response to glucose (AIR G ) were determined using the minimal model method. In contrast to our previous data obtained in restrained mice, IH did not affect fasting blood glucose and plasma insulin levels in sham-operated mice. IH significantly decreased S G but did not affect S I and AIR G Adrenal medullectomy decreased fasting blood glucose and plasma insulin levels and increased glycogen synthesis in the liver in hypoxic mice but did not have a significant effect on the FSIVGTT metrics. We conclude that, in the absence of restraints, IH has no effect on glucose metabolism in lean mice with exception of decreased S G , whereas adrenal medullectomy decreases fasting glucose and insulin levels in the IH environment. NEW & NOTEWORTHY To our knowledge, this is the first study examining the role of adrenal catecholamines in glucose metabolism during intermittent hypoxia (IH) in unanesthetized unrestrained C57BL/6J mice. We report that IH did not affect fasting glucose and insulin levels nor insulin sensitivity and insulin secretion during, whereas glucose

  3. Hypoxia/reoxygenation increases the permeability of endothelial cell monolayers: Role of oxygen radicals

    International Nuclear Information System (INIS)

    Inauen, W.; Payne, D.K.; Kvietys, P.R.; Granger, D.N.

    1990-01-01

    We assessed the effect of hypoxia/reoxygenation on 14C-albumin flux across endothelial monolayers. Cultured bovine pulmonary artery endothelial cells were grown to confluence on nitrocellulose filters (pore size 12 microns). The endothelialized filters were mounted in Ussing-type chambers which were filled with cell culture medium (M 199). Equimolar amounts (33 nM) of 14C-labeled and unlabeled albumin were added to the hot and cold chambers, respectively. The monolayers were then exposed to successive periods (90 min) of normoxia (pO2 145 mmHg), hypoxia (pO2 20 mmHg), and reoxygenation (pO2 145 mmHg). A gas bubbling system was used to control media pO2 and to ensure adequate mixing. Four aliquots of culture media were taken during each period in order to calculate the 14C-albumin permeability across the endothelialized filter. In some experiments, either the xanthine oxidase inhibitor, oxypurinol (10 microM), or superoxide dismutase (600 U/mL), was added to the media immediately prior to the experiments. As compared to the normoxic control period, albumin permeability was 1.5 times higher during hypoxia (p less than 0.01) and 2.3 times higher during reoxygenation (p less than 0.01). The reoxygenation-induced increase in albumin permeability was prevented by either oxypurinol or superoxide dismutase. These data indicate that xanthine oxidase-derived oxygen radicals contribute to the hypoxia/reoxygenation-induced endothelial cell dysfunction. The altered endothelial barrier function induced by hypoxia/reoxygenation is consistent with the microvascular dysfunction observed following reperfusion of ischemic tissues

  4. Network-based association of hypoxia-responsive genes with cardiovascular diseases

    International Nuclear Information System (INIS)

    Wang, Rui-Sheng; Oldham, William M; Loscalzo, Joseph

    2014-01-01

    Molecular oxygen is indispensable for cellular viability and function. Hypoxia is a stress condition in which oxygen demand exceeds supply. Low cellular oxygen content induces a number of molecular changes to activate regulatory pathways responsible for increasing the oxygen supply and optimizing cellular metabolism under limited oxygen conditions. Hypoxia plays critical roles in the pathobiology of many diseases, such as cancer, heart failure, myocardial ischemia, stroke, and chronic lung diseases. Although the complicated associations between hypoxia and cardiovascular (and cerebrovascular) diseases (CVD) have been recognized for some time, there are few studies that investigate their biological link from a systems biology perspective. In this study, we integrate hypoxia genes, CVD genes, and the human protein interactome in order to explore the relationship between hypoxia and cardiovascular diseases at a systems level. We show that hypoxia genes are much closer to CVD genes in the human protein interactome than that expected by chance. We also find that hypoxia genes play significant bridging roles in connecting different cardiovascular diseases. We construct a hypoxia-CVD bipartite network and find several interesting hypoxia-CVD modules with significant gene ontology similarity. Finally, we show that hypoxia genes tend to have more CVD interactors in the human interactome than in random networks of matching topology. Based on these observations, we can predict novel genes that may be associated with CVD. This network-based association study gives us a broad view of the relationships between hypoxia and cardiovascular diseases and provides new insights into the role of hypoxia in cardiovascular biology. (paper)

  5. Roles of nitric oxide, nitrite and myoglobin on myocardial efficiency in trout (Oncorthynchus mykiss) and goldfish (Carassius auratus): implications for hypoxia tolerance

    DEFF Research Database (Denmark)

    Pedersen, Claus Lunde; Faggiano, Serena; Helbo, Signe

    2010-01-01

    The roles of nitric oxide synthase activity (NOS), nitrite and myoglobin (Mb) in the regulation of myocardial function during hypoxia were examined in trout and goldfish, a hypoxia-intolerant and hypoxia-tolerant species, respectively. We measured the effect of NOS inhibition, adrenaline and nitr......The roles of nitric oxide synthase activity (NOS), nitrite and myoglobin (Mb) in the regulation of myocardial function during hypoxia were examined in trout and goldfish, a hypoxia-intolerant and hypoxia-tolerant species, respectively. We measured the effect of NOS inhibition, adrenaline...... in both trout and goldfish myocardium, with trout showing a significant increase in the O2 utilization efficiency, i.e. the ratio of twitch force to O2 consumption, suggesting an increased anaerobic metabolism. NOS inhibition enhanced myocardial O2 consumption and decreased efficiency, indicating...... that mitochondrial respiration is under a tone of NOS-produced NO. When trout myocardial twitch force and O2 consumption are enhanced by adrenaline, this NO tone disappears. Consistent with its conversion to NO, nitrite reduced O2 consumption and increased myocardial efficiency in trout but not in goldfish...

  6. The role of hypoxia inducible factor-1 alpha in bypassing oncogene-induced senescence.

    Directory of Open Access Journals (Sweden)

    Mehtap Kilic Eren

    Full Text Available Oncogene induced senescence (OIS is a sustained anti-proliferative response acutely induced in primary cells via activation of mitogenic oncogenes such as Ras/BRAF. This mechanism acts as an initial barrier preventing normal cells transformation into malignant cell. Besides oncogenic activation and DNA damage response (DDR, senescence is modulated by a plethora of other factors, and one of the most important one is oxygen tension of the tissue. The aim of this study was to determine the impact of hypoxia on RasV12-induced senescence in human diploid fibroblasts (HDFs. We showed here that hypoxia prevents execution of oncogene induced senescence (OIS, through a strong down-regulation of senescence hallmarks, such as SA- β-galactosidase, H3K9me3, HP1γ, p53, p21CIP1 and p16INK4a in association with induction of hypoxia inducible factor-1α (HIF-1α. In addition, hypoxia also decreased marks of H-RasV12-induced DDR in both cell lines through down-regulation of ATM/ATR, Chk1 and Chk2 phosphorylation as well as decreased γ-H2AX positivity. Utilizing shRNA system targeting HIF-1α we show that HIF-1α is directly involved in down regulation of p53 and its target p21CIP1 but not p16INK4a. In line with this finding we found that knock down of HIF-1α leads to a strong induction of apoptotic response, but not restoration of senescence in Ras expressing HDFs in hypoxia. This indicates that HIF-1α is an important player in early steps of tumorigenesis, leading to suppression of senescence through its negative regulation of p53 and p21CIP1. In our work we describe a mechanism through which hypoxia and specifically HIF-1α preclude cells from maintaining senescence-driven anti proliferative response. These findings indicate the possible mechanism through which hypoxic environment helps premalignant cells to evade impingement of cellular failsafe pathways.

  7. A method for measuring brain partial pressure of oxygen in unanesthetized unrestrained subjects: the effect of acute and chronic hypoxia on brain tissue PO(2).

    Science.gov (United States)

    Ortiz-Prado, E; Natah, Siraj; Srinivasan, Sathyanarayanan; Dunn, Jeff F

    2010-11-30

    The level of tissue oxygenation provides information related to the balance between oxygen delivery, oxygen utilization, tissue reactivity and morphology during physiological conditions. Tissue partial pressure of oxygen (PtO(2)) is influenced by the use of anesthesia or restraint. These factors may impact the absolute level of PtO(2). In this study we present a novel fiber optic method to measure brain PtO(2). This method can be used in unanesthetized, unrestrained animals, provides absolute values for PO(2), has a stable calibration, does not consume oxygen and is MRI compatible. Brain PtO(2) was studied during acute hypoxia, as well as before and after 28 days of high altitude acclimatization. A sensor was chronically implanted in the frontal cortex of eight Wistar rats. It is comprised of a fiber optic probe with a tip containing material that fluoresces with an oxygen dependent lifetime. Brain PtO(2) declines by 80% and 76% pre- and post-acclimatization, respectively, when the fraction of inspired oxygen declines from 0.21 to 0.08. In addition, a linear relationship between brain PtO(2) and inspired O(2) levels was demonstrated r(2)=0.98 and r(2)=0.99 (pre- and post-acclimatization). Hypoxia acclimatization resulted in an increase in the overall brain PtO(2) by approximately 35%. This paper demonstrates the use of a novel chronically implanted fiber optic based sensor for measuring absolute PtO(2). It shows a very strong linear relationship in awake animals between inspired O(2) and tissue O(2), and shows that there is a proportional increase in PtO(2) over a range of inspired values after exposure to chronic hypoxia. Copyright © 2010 Elsevier B.V. All rights reserved.

  8. Toll-like receptor 4 mediates microglial activation and production of inflammatory mediators in neonatal rat brain following hypoxia: role of TLR4 in hypoxic microglia

    Science.gov (United States)

    2013-01-01

    Background Hypoxia induces microglial activation which causes damage to the developing brain. Microglia derived inflammatory mediators may contribute to this process. Toll-like receptor 4 (TLR4) has been reported to induce microglial activation and cytokines production in brain injuries; however, its role in hypoxic injury remains uncertain. We investigate here TLR4 expression and its roles in neuroinflammation in neonatal rats following hypoxic injury. Methods One day old Wistar rats were subjected to hypoxia for 2 h. Primary cultured microglia and BV-2 cells were subjected to hypoxia for different durations. TLR4 expression in microglia was determined by RT-PCR, western blot and immunofluorescence staining. Small interfering RNA (siRNA) transfection and antibody neutralization were employed to downregulate TLR4 in BV-2 and primary culture. mRNA and protein expression of tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β) and inducible nitric oxide synthase (iNOS) was assessed. Reactive oxygen species (ROS), nitric oxide (NO) and NF-κB levels were determined by flow cytometry, colorimetric and ELISA assays respectively. Hypoxia-inducible factor-1 alpha (HIF-1α) mRNA and protein expression was quantified and where necessary, the protein expression was depleted by antibody neutralization. In vivo inhibition of TLR4 with CLI-095 injection was carried out followed by investigation of inflammatory mediators expression via double immunofluorescence staining. Results TLR4 immunofluorescence and protein expression in the corpus callosum and cerebellum in neonatal microglia were markedly enhanced post-hypoxia. In vitro, TLR4 protein expression was significantly increased in both primary microglia and BV-2 cells post-hypoxia. TLR4 neutralization in primary cultured microglia attenuated the hypoxia-induced expression of TNF-α, IL-1β and iNOS. siRNA knockdown of TLR4 reduced hypoxia-induced upregulation of TNF-α, IL-1β, iNOS, ROS and NO in BV-2 cells. TLR4

  9. Does hypoxia play a role in the development of sarcopenia in humans? Mechanistic insights from the Caudwell Xtreme Everest Expedition.

    Science.gov (United States)

    Wandrag, Liesl; Siervo, Mario; Riley, Heather L; Khosravi, Maryam; Fernandez, Bernadette O; Leckstrom, Carl A; Martin, Daniel S; Mitchell, Kay; Levett, Denny Z H; Montgomery, Hugh E; Mythen, Monty G; Stroud, Michael A; Grocott, Michael P W; Feelisch, Martin

    2017-10-01

    Sarcopenia refers to the involuntary loss of skeletal muscle and is a predictor of physical disability/mortality. Its pathogenesis is poorly understood, although roles for altered hypoxic signaling, oxidative stress, adipokines and inflammatory mediators have been suggested. Sarcopenia also occurs upon exposure to the hypoxia of high altitude. Using data from the Caudwell Xtreme Everest expedition we therefore sought to analyze the extent of hypoxia-induced body composition changes and identify putative pathways associated with fat-free mass (FFM) and fat mass (FM) loss. After baseline testing in London (75m), 24 investigators ascended from Kathmandu (1300m) to Everest base camp (EBC 5300m) over 13 days. Fourteen investigators climbed above EBC, eight of whom reached the summit (8848m). Assessments were conducted at baseline, during ascent and after one, six and eight week(s) of arrival at EBC. Changes in body composition (FM, FFM, total body water, intra- and extra-cellular water) were measured by bioelectrical impedance. Biomarkers of nitric oxide and oxidative stress were measured together with adipokines, inflammatory, metabolic and vascular markers. Participants lost a substantial, but variable, amount of body weight (7.3±4.9kg by expedition end; pFFM was observed, and after eight weeks, the proportion of FFM loss was 48% greater than FM loss (pFFM loss. GLP-1 (r=-0.45, pFFM loss. In a multivariate model, GLP-1, insulin and nitrite were significant predictors of FFM loss while protein carbonyls were predicted FM loss. The putative role of GLP-1 and nitrite as mediators of the effects of hypoxia on FFM is an intriguing finding. If confirmed, nutritional and pharmacological interventions targeting these pathways may offer new avenues for prevention and treatment of sarcopenia. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  10. The role of the ATPase inhibitor factor 1 (IF1) in cancer cells adaptation to hypoxia and anoxia.

    Science.gov (United States)

    Sgarbi, G; Barbato, S; Costanzini, A; Solaini, G; Baracca, A

    2018-02-01

    The physiological role of the mitochondrial ATP synthase complex is to generate ATP through oxidative phosphorylation. Indeed, the enzyme can reverse its activity and hydrolyze ATP under ischemic conditions, as shown in isolated mitochondria and in mammalian heart and liver. However, what occurs when cancer cells experience hypoxia or anoxia has not been well explored. In the present study, we investigated the bioenergetics of cancer cells under hypoxic/anoxic conditions with particular emphasis on ATP synthase, and the conditions driving it to work in reverse. In this context, we further examined the role exerted by its endogenous inhibitor factor, IF 1 , that it is overexpressed in cancer cells. Metabolic and bioenergetic analysis of cancer cells exposed to severe hypoxia (down to 0.1% O 2 ) unexpectedly showed that Δψ m is preserved independently of the presence of IF 1 and that ATP synthase still phosphorylates ADP though at a much lower rate than in normoxia. However, when we induced an anoxia-mimicking condition by collapsing Δμ Η + with the FCCP uncoupler, the IF 1 -silenced clones only reversed the ATP synthase activity hydrolyzing ATP in order to reconstitute the electrochemical proton gradient. Notably, in cancer cells IF 1 overexpression fully prevents ATP synthase hydrolytic activity activation under uncoupling conditions. Therefore, our results suggest that IF 1 overexpression promotes cancer cells survival under temporary anoxic conditions by preserving cellular ATP despite mitochondria dysfunction. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Changes in orexinergic immunoreactivity of the piglet hypothalamus and pons after exposure to chronic postnatal nicotine and intermittent hypercapnic hypoxia.

    Science.gov (United States)

    Hunt, Nicholas J; Russell, Benjamin; Du, Man K; Waters, Karen A; Machaalani, Rita

    2016-06-01

    We recently showed that orexin expression in sudden infant death syndrome (SIDS) infants was reduced by 21% in the hypothalamus and by 40-50% in the pons as compared with controls. Orexin maintains wakefulness/sleeping states, arousal, and rapid eye movement sleep, abnormalities of which have been reported in SIDS. This study examined the effects of two prominent risk factors for SIDS, intermittent hypercapnic hypoxia (IHH) (prone-sleeping) and chronic nicotine exposure (cigarette-smoking), on orexin A (OxA) and orexin B (OxB) expression in piglets. Piglets were randomly assigned to five groups: saline control (n = 7), air control (n = 7), nicotine [2 mg/kg per day (14 days)] (n = 7), IHH (6 min of 7% O2 /8% CO2 alternating with 6-min periods of breathing air, for four cycles) (n = 7), and the combination of nicotine and IHH (N + IHH) (n = 7). OxA/OxB expression was quantified in the central tuberal hypothalamus [dorsal medial hypothalamus (DMH), perifornical area (PeF), and lateral hypothalamus], and the dorsal raphe, locus coeruleus of the pons. Nicotine and N + IHH exposures significantly increased: (i) orexin expression in the hypothalamus and pons; and (ii) the total number of neurons in the DMH and PeF. IHH decreased orexin expression in the hypothalamus and pons without changing neuronal numbers. Linear relationships existed between the percentage of orexin-positive neurons and the area of pontine orexin immunoreactivity of control and exposure piglets. These results demonstrate that postnatal nicotine exposure increases the proportion of orexin-positive neurons in the hypothalamus and fibre expression in the pons, and that IHH exposure does not prevent the nicotine-induced increase. Thus, although both nicotine and IHH are risk factors for SIDS, it appears they have opposing effects on OxA and OxB expression, with the IHH exposure closely mimicking what we recently found in SIDS. © 2016 Federation of European Neuroscience Societies and John

  12. The role of glycogen, glucose and lactate in neuronal activity during hypoxia in the hooded seal (Cystophora cristata) brain.

    Science.gov (United States)

    Czech-Damal, N U; Geiseler, S J; Hoff, M L M; Schliep, R; Ramirez, J-M; Folkow, L P; Burmester, T

    2014-09-05

    The brains of diving mammals are repeatedly exposed to hypoxic conditions during diving. Brain neurons of the hooded seal (Cystophora cristata) have been shown to be more hypoxia tolerant than those of mice, but the underlying mechanisms are not clear. Here we investigated the roles of different metabolic substrates for maintenance of neuronal activity and integrity, by comparing the in vitro spontaneous neuronal activity of brain slices from layer V of the visual cortex of hooded seals with those in mice (Mus musculus). Studies were conducted by manipulating the composition of the artificial cerebrospinal fluid (aCSF), containing either 10 mM glucose, or 20 mM lactate, or no external carbohydrate supply (aglycemia). Normoxic, hypoxic and ischemic conditions were applied. The lack of glucose or the application of lactate in the aCSF containing no glucose had little effect on the neuronal activity of seal neurons in either normoxia or hypoxia, while neurons from mice survived in hypoxia only few minutes regardless of the composition of the aCSF. We propose that seal neurons have higher intrinsic energy stores. Indeed, we found about three times higher glycogen stores in the seal brain (∼4.1 ng per μg total protein in the seal cerebrum) than in the mouse brain. Notably, in aCSF containing no glucose, seal neurons can tolerate 20 mM lactate while in mouse neuronal activity vanished after few minutes even in normoxia. This can be considered as an adaptation to long dives, during which lactate accumulates in the blood. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  13. Influence exerted by new pyrimidine derivatives on cerebral circulation auto-regulation and vasodilatating function of vessels endothelium in rats' brains under chronic hemic hypoxia

    Directory of Open Access Journals (Sweden)

    A.V. Voronkov

    2018-03-01

    Full Text Available Our research goal was to examine influences exerted by new pyrimidine derivatives coded as BL0 and BL2 on cerebral hemodynamics auto-regulation parameters and vasodilatating function of vessels endothelium as risk factors causing ischemic and hemorrhagic strokes under chronic hemic hypoxia. We performed an experiment on white Wistar rats to prove that endothelial dysfunction which evolves under chronic hemic hypoxia leads to disorders in endothelium-mediated mechanisms for cerebral circulation auto-regulation in rats. We modeled hypoxia in animals via granting them free access to 0.2 % sodium nitrite solution instead of ordinary drinking water. Endothelial dysfunction was confirmed as per disorders in vasodilatation and vasoconstriction reactions at intravenous introduction of acetyl choline (0.1 mg/kg and methyl ether hydrochloride nitro-L-arginine (10 mg/kg. Cerebral blood flow speed was measured with MM-D-K-Minimax v.2.1. ultrasound Doppler. We assessed cerebral circulation auto-regulation as per compression test results which allowed us to calculate overshoot coefficient and auto-regulation power. Examined pyrimidine derivatives and comparison preparations were introduced orally 60 minutes prior to taking readings. Mexidol doses were calculated on the basis of interspecific recalculation of a maximum daily dose for a man. Nicergoline dose was taken as a most effective one as per literature data. When new pyrimidine derivatives BL0 and BL2 are applied under chronic hemic hypoxia, it causes overshoot coefficient to grow authentically higher than in a negative control group but it doesn't exert any positive influence on collateral reserve parameter, namely auto-regulation power. BL0 and BL2 improve endothelium vasodilatating function at intravenous acetylcholine introduction (0.1 mg/kg and don't exert any influence on vasoconstricting function at L-NAME intravenous introduction (10 mg/kg. The examined substance BL0 has more apparent

  14. The role of wind field induced flow velocities in destratification and hypoxia reduction at Meiling Bay of large shallow Lake Taihu, China.

    Science.gov (United States)

    Jalil, Abdul; Li, Yiping; Du, Wei; Wang, Wencai; Wang, Jianwei; Gao, Xiaomeng; Khan, Hafiz Osama Sarwar; Pan, Baozhu; Acharya, Kumud

    2018-01-01

    Wind induced flow velocity patterns and associated thermal destratification can drive to hypoxia reduction in large shallow lakes. The effects of wind induced hydrodynamic changes on destratification and hypoxia reduction were investigated at the Meiling bay (N 31° 22' 56.4″, E 120° 9' 38.3″) of Lake Taihu, China. Vertical flow velocity profile analysis showed surface flow velocities consistency with the wind field and lower flow velocity profiles were also consistent (but with delay response time) when the wind speed was higher than 6.2 m/s. Wind field and temperature found the control parameters for hypoxia reduction and for water quality conditions at the surface and bottom profiles of lake. The critical temperature for hypoxia reduction at the surface and the bottom profile was ≤24.1C° (below which hypoxic conditions were found reduced). Strong prevailing wind field (onshore wind directions ESE, SE, SSE and E, wind speed ranges of 2.4-9.1 m/s) reduced the temperature (22C° to 24.1C°) caused reduction of hypoxia at the near surface with a rise in water levels whereas, low to medium prevailing wind field did not supported destratification which increased temperature resulting in increased hypoxia. Non-prevailing wind directions (offshore) were not found supportive for the reduction of hypoxia in study area due to less variable wind field. Daytime wind field found more variable (as compared to night time) which increased the thermal destratification during daytime and found supportive for destratification and hypoxia reduction. The second order exponential correlation found between surface temperature and Chlorophyll-a (R 2 : 0.2858, Adjusted R-square: 0.2144 RMSE: 4.395), Dissolved Oxygen (R 2 : 0.596, Adjusted R-square: 0.5942, RMSE: 0.3042) concentrations. The findings of the present study reveal the driving mechanism of wind induced thermal destratification and hypoxic conditions, which may further help to evaluate the wind role in eutrophication

  15. Role of acid-sensing ion channels in hypoxia- and hypercapnia-induced ventilatory responses.

    Directory of Open Access Journals (Sweden)

    Neil D Detweiler

    Full Text Available Previous reports indicate roles for acid-sensing ion channels (ASICs in both peripheral and central chemoreception, but the contributions of ASICs to ventilatory drive in conscious, unrestrained animals remain largely unknown. We tested the hypotheses that ASICs contribute to hypoxic- and hypercapnic-ventilatory responses. Blood samples taken from conscious, unrestrained mice chronically instrumented with femoral artery catheters were used to assess arterial O2, CO2, and pH levels during exposure to inspired gas mixtures designed to cause isocapnic hypoxemia or hypercapnia. Whole-body plethysmography was used to monitor ventilatory parameters in conscious, unrestrained ASIC1, ASIC2, or ASIC3 knockout (-/- and wild-type (WT mice at baseline, during isocapnic hypoxemia and during hypercapnia. Hypercapnia increased respiratory frequency, tidal volume, and minute ventilation in all groups of mice, but there were no differences between ASIC1-/-, ASIC2-/-, or ASIC3-/- and WT. Isocapnic hypoxemia also increased respiratory frequency, tidal volume, and minute ventilation in all groups of mice. Minute ventilation in ASIC2-/- mice during isocapnic hypoxemia was significantly lower compared to WT, but there were no differences in the responses to isocapnic hypoxemia between ASIC1-/- or ASIC3-/- compared to WT. Surprisingly, these findings show that loss of individual ASIC subunits does not substantially alter hypercapnic or hypoxic ventilatory responses.

  16. Treatment fractionation for stereotactic radiotherapy of lung tumours: a modelling study of the influence of chronic and acute hypoxia on tumour control probability

    International Nuclear Information System (INIS)

    Lindblom, Emely; Antonovic, Laura; Dasu, Alexandru; Lax, Ingmar; Wersäll, Peter; Toma-Dasu, Iuliana

    2014-01-01

    Stereotactic body radiotherapy (SBRT) for non-small-cell lung cancer (NSCLC) has led to promising local control and overall survival for fractionation schemes with increasingly high fractional doses. A point has however been reached where the number of fractions used might be too low to allow efficient local inter-fraction reoxygenation of the hypoxic cells residing in the tumour. It was therefore the purpose of this study to investigate the impact of hypoxia and extreme hypofractionation on the tumour control probability (TCP) from SBRT. A three-dimensional model of tumour oxygenation able to simulate oxygenation changes on the microscale was used. The TCP was determined for clinically relevant SBRT fractionation schedules of 1, 3 and 5 fractions assuming either static tumour oxygenation or that the oxygenation changes locally between fractions due to fast reoxygenation of acute hypoxia without an overall reduction in chronic hypoxia. For the schedules applying three or five fractions the doses required to achieve satisfying levels of TCP were considerably lower when local oxygenation changes were assumed compared to the case of static oxygenation; a decrease in D 50 of 17.7 Gy was observed for a five-fractions schedule applied to a 20% hypoxic tumour when fast reoxygenation was modelled. Assuming local oxygenation changes, the total doses required for a tumor control probability of 50% were of similar size for one, three and five fractions. Although attractive from a practical point of view, extreme hypofractionation using just one single fraction may result in impaired local control of hypoxic tumours, as it eliminates the possibility for any kind of reoxygenation

  17. Low vascularization of the nephrogenic zone of the fetal kidney suggests a major role for hypoxia in human nephrogenesis.

    Science.gov (United States)

    Gerosa, C; Fanni, D; Faa, A; Van Eyken, P; Ravarino, A; Fanos, V; Faa, G

    2017-09-01

    CD31 reactivity is generally utilized as a marker of endothelial cells. CD31 immunoreactivity in the developing human kidney revealed that fetal glomerular capillary endothelial cells change their immunohistochemical phenotype during maturation. The aim of this study was to analyze CD31 reactivity in the fetal human kidney in the different stages of intrauterine development: We observed different distribution of CD31-reactive vascular progenitors in the different areas of the developing kidney. In particular, the nephrogenic zone and the renal capsule were characterized by a scarcity of CD31-reactive cells at all gestational ages. These data suggest the hypothesis that nephrogenesis does not need high oxygen levels and confirms a major role of hypoxia in nephrogenesis.

  18. Potential role of the glycolytic oscillator in acute hypoxia in tumors

    International Nuclear Information System (INIS)

    Fru, Leonard Che; Adamson, Erin B; Campos, David D; Fain, Sean B; Song, Chihwa; Kissick, Michael W; Jacques, Steven L; Van der Kogel, Albert J; Nickel, Kwang P; Kimple, Randall J

    2015-01-01

    Tumor acute hypoxia has a dynamic component that is also, at least partially, coherent. Using blood oxygen level dependent magnetic resonance imaging, we observed coherent oscillations in hemoglobin saturation dynamics in cell line xenograft models of head and neck squamous cell carcinoma. We posit a well-established biochemical nonlinear oscillatory mechanism called the glycolytic oscillator as a potential cause of the coherent oscillations in tumors. These data suggest that metabolic changes within individual tumor cells may affect the local tumor microenvironment including oxygen availability and therefore radiosensitivity. These individual cells can synchronize the oscillations in patches of similar intermediate glucose levels. These alterations have potentially important implications for radiation therapy and are a potential target for optimizing the cancer response to radiation. (paper)

  19. Neurosis of acquired helplessness and role of hypoxia in the formation of this disorder in rats.

    Science.gov (United States)

    Vvedenskaya, O Yu; Avrushchenko, M A; Bol'shakova, T D; Khitrov, N K; Moroz, V V

    2003-04-01

    Acquisition of instrumental defense response with pain reinforcement uncertainty (25% reinforcement) induced the development of acquired helplessness in 50% rats. Acquired helplessness is characterized by the absence of responses to conditioned (light) and unconditioned stimuli (pain), minor response of plasma corticosterone to learning, gas markers of circulatory cerebral hypoxia (Delta A/V pO2 carotid artery/jugular vein), low sensitivity to severe hypobaric conditions, and high resistance of Purkinje cells in the cerebellum. Piracetam improved learning and prevented the development of acquired helplessness. Local changes in cerebral blood flow and energy deficit in neurons responsible for emotional stress during acquired helplessness impair adaptive capacity, but reduce energy consumption and protect neuronal structures.

  20. Transcriptome analysis of the spalax hypoxia survival response includes suppression of apoptosis and tight control of angiogenesis

    Directory of Open Access Journals (Sweden)

    Malik Assaf

    2012-11-01

    Full Text Available Abstract Background The development of complex responses to hypoxia has played a key role in the evolution of mammals, as inadequate response to this condition is frequently associated with cardiovascular diseases, developmental disorders, and cancers. Though numerous studies have used mice and rats in order to explore mechanisms that contribute to hypoxia tolerance, these studies are limited due to the high sensitivity of most rodents to severe hypoxia. The blind subterranean mole rat Spalax is a hypoxia tolerant rodent, which exhibits unique longevity and therefore has invaluable potential in hypoxia and cancer research. Results Using microarrays, transcript abundance was measured in brain and muscle tissues from Spalax and rat individuals exposed to acute and chronic hypoxia for varying durations. We found that Spalax global gene expression response to hypoxia differs from that of rat and is characterized by the activation of functional groups of genes that have not been strongly associated with the response to hypoxia in hypoxia sensitive mammals. Using functional enrichment analysis of Spalax hypoxia induced genes we found highly significant overrepresentation of groups of genes involved in anti apoptosis, cancer, embryonic/sexual development, epidermal growth factor receptor binding, coordinated suppression and activation of distinct groups of transcription factors and membrane receptors, in addition to angiogenic related processes. We also detected hypoxia induced increases of different critical Spalax hub gene transcripts, including antiangiogenic genes associated with cancer tolerance in Down syndrome human individuals. Conclusions This is the most comprehensive study of Spalax large scale gene expression response to hypoxia to date, and the first to use custom Spalax microarrays. Our work presents novel patterns that may underlie mechanisms with critical importance to the evolution of hypoxia tolerance, with special relevance to

  1. Angiotensin-(1-7 relieved renal injury induced by chronic intermittent hypoxia in rats by reducing inflammation, oxidative stress and fibrosis

    Directory of Open Access Journals (Sweden)

    W. Lu

    Full Text Available We aimed to study the renal injury and hypertension induced by chronic intermittent hypoxia (CIH and the protective effects mediated by angiotensin 1-7 [Ang(1-7]. We randomly assigned 32 male Sprague-Dawley rats (body weight 180-200 g to normoxia control, CIH, Ang(1-7-treated normoxia, and Ang(1-7-treated CIH groups. Systolic blood pressure (SBP was monitored at the start and end of each week. Renal sympathetic nerve activity (RSNA was recorded. CTGF and TGF-β were detected by immunohistochemistry and western blotting. Tissue parameters of oxidative stress were also determined. In addition, renal levels of interleukin-6, tumor necrosis factor-α, nitrotyrosine, and hypoxia-inducible factor-1α were determined by immunohistochemistry, immunoblotting, and ELISA. TUNEL assay results and cleaved caspase 3 and 12 were also determined. Ang(1-7 induced a reduction in SBP together with a restoration of RSNA in the rat model of CIH. Ang(1-7 treatment also suppressed the production of reactive oxygen species, reduced renal tissue inflammation, ameliorated mesangial expansion, and decreased renal fibrosis. Thus, Ang(1-7 treatment exerted renoprotective effects on CIH-induced renal injury and was associated with a reduction of oxidative stress, inflammation and fibrosis. Ang(1-7 might therefore represent a promising therapy for obstructive sleep apnea-related hypertension and renal injury.

  2. Fisetin and Its Role in Chronic Diseases.

    Science.gov (United States)

    Pal, Harish C; Pearlman, Ross L; Afaq, Farrukh

    2016-01-01

    Chronic inflammation is a prolonged and dysregulated immune response leading to a wide variety of physiological and pathological conditions such as neurological abnormalities, cardiovascular diseases, diabetes, obesity, pulmonary diseases, immunological diseases, cancers, and other life-threatening conditions. Therefore, inhibition of persistent inflammation will reduce the risk of inflammation-associated chronic diseases. Inflammation-related chronic diseases require chronic treatment without side effects. Use of traditional medicines and restricted diet has been utilized by mankind for ages to prevent or treat several chronic diseases. Bioactive dietary agents or "Nutraceuticals" present in several fruits, vegetables, legumes, cereals, fibers, and certain spices have shown potential to inhibit or reverse the inflammatory responses and several chronic diseases related to chronic inflammation. Due to safe, nontoxic, and preventive benefits, the use of nutraceuticals as dietary supplements or functional foods has increased in the Western world. Fisetin (3,3',4',7-tetrahydroxyflavone) is a dietary flavonoid found in various fruits (strawberries, apples, mangoes, persimmons, kiwis, and grapes), vegetables (tomatoes, onions, and cucumbers), nuts, and wine that has shown strong anti-inflammatory, anti-oxidant, anti-tumorigenic, anti-invasive, anti-angiogenic, anti-diabetic, neuroprotective, and cardioprotective effects in cell culture and in animal models relevant to human diseases. In this chapter, we discuss the beneficial pharmacological effects of fisetin against different pathological conditions with special emphasis on diseases related to chronic inflammatory conditions.

  3. Preventive and Therapeutic Role of Functional Ingredients of Barley Grass for Chronic Diseases in Human Beings

    Directory of Open Access Journals (Sweden)

    Yawen Zeng

    2018-01-01

    Full Text Available Barley grass powder is the best functional food that provides nutrition and eliminates toxins from cells in human beings; however, its functional ingredients have played an important role as health benefit. In order to better cognize the preventive and therapeutic role of barley grass for chronic diseases, we carried out the systematic strategies for functional ingredients of barley grass, based on the comprehensive databases, especially the PubMed, Baidu, ISI Web of Science, and CNKI, between 2008 and 2017. Barley grass is rich in functional ingredients, such as gamma-aminobutyric acid (GABA, flavonoids, saponarin, lutonarin, superoxide dismutase (SOD, K, Ca, Se, tryptophan, chlorophyll, vitamins (A, B1, C, and E, dietary fiber, polysaccharide, alkaloid, metallothioneins, and polyphenols. Barley grass promotes sleep; has antidiabetic effect; regulates blood pressure; enhances immunity; protects liver; has anti-acne/detoxifying and antidepressant effects; improves gastrointestinal function; has anticancer, anti-inflammatory, antioxidant, hypolipidemic, and antigout effects; reduces hyperuricemia; prevents hypoxia, cardiovascular diseases, fatigue, and constipation; alleviates atopic dermatitis; is a calcium supplement; improves cognition; and so on. These results support that barley grass may be one of the best functional foods for preventive chronic diseases and the best raw material of modern diet structure in promoting the development of large health industry and further reveal that GABA, flavonoids, SOD, K-Ca, vitamins, and tryptophan mechanism of barley grass have preventive and therapeutic role for chronic diseases. This paper can be used as a scientific evidence for developing functional foods and novel drugs for barley grass for preventive chronic diseases.

  4. WE-FG-BRA-08: Potential Role of the Glycolytic Oscillator in Acute Hypoxia in Tumors

    International Nuclear Information System (INIS)

    Che Fru, L; Adamson, E; Campos, D; Song, C; Kimple, R; Fain, S; Kissick, M; Jacques, S; Kogel, A van der; Nickel, K

    2016-01-01

    Purpose: Oscillatory dynamics in acute hypoxia have been observed, but poorly understood. They have mostly been attributed to vascular perturbations, but no link has yet been made to metabolic causes. We set out to determine the fundamental frequencies and test for coherence in tumor oxygen dynamics and spatial properties. Methods: Severe combined immunodeficient (SCID) mice were inoculated onto bilateral flanks with human derived head and neck carcinoma (UW-SCC22) cell line xenografts. Oxygen dynamics were monitored in the tumor every minute for an hour using three modalities: blood oxygen level dependent - magnetic resonance imaging (BOLD-MRI), hemoglobin oxygen saturation photoacoustic, and locally manufactured optical probes for spectral fitting. A statistical test was used to separate fluctuating from non-fluctuating voxels and pixels in BOLD-MRI and photoacoustic data respectively. The power spectrum density (PSD) and the autocorrelation functions were calculated for the time series of each voxel, pixel and region, of the BOLD-MRI, photoacoustic or fiber optic data respectively. Results: Using all three techniques, intermittent oxygen dynamics with both coherent and incoherent signatures was observed in the tumors. Upon averaging the PSDs of fluctuating voxels and pixels, it was found that these oscillations occurred with periods of minutes to tens of minutes from all three approaches. Observations from the BOLD-MRI and photoacoustic data showed that clusters of voxels oscillated in a synchronized manner. Conclusion: We were able to use three different modalities to show that fluctuation in tumor oxygen is both coherent and incoherent, with periods of minutes to tens of minutes. These periods are very similar to those from the well-established metabolic, non-linear biomechanical phenomenon called the glycolytic oscillator. This may provide an additional explanation to the cause of cyclic hypoxia. Such dynamics could have profound implications in

  5. WE-FG-BRA-08: Potential Role of the Glycolytic Oscillator in Acute Hypoxia in Tumors

    Energy Technology Data Exchange (ETDEWEB)

    Che Fru, L [University of Wisconsin, Madison, Madison, WI (United States); Adamson, E; Campos, D; Song, C; Kimple, R [University of Wisconsin Madison, Madison, WI (United States); Fain, S; Kissick, M [University of Wisconsin, Madison, WI (United States); Jacques, S [Oregon Health and Science University, Portland OR USA, Portland, OR (United States); Kogel, A van der [University of Wisconsin - Madison, Madison, WI (United States); Nickel, K [University of Wisconsin Madison, Madison, Wisconsin (United States)

    2016-06-15

    Purpose: Oscillatory dynamics in acute hypoxia have been observed, but poorly understood. They have mostly been attributed to vascular perturbations, but no link has yet been made to metabolic causes. We set out to determine the fundamental frequencies and test for coherence in tumor oxygen dynamics and spatial properties. Methods: Severe combined immunodeficient (SCID) mice were inoculated onto bilateral flanks with human derived head and neck carcinoma (UW-SCC22) cell line xenografts. Oxygen dynamics were monitored in the tumor every minute for an hour using three modalities: blood oxygen level dependent - magnetic resonance imaging (BOLD-MRI), hemoglobin oxygen saturation photoacoustic, and locally manufactured optical probes for spectral fitting. A statistical test was used to separate fluctuating from non-fluctuating voxels and pixels in BOLD-MRI and photoacoustic data respectively. The power spectrum density (PSD) and the autocorrelation functions were calculated for the time series of each voxel, pixel and region, of the BOLD-MRI, photoacoustic or fiber optic data respectively. Results: Using all three techniques, intermittent oxygen dynamics with both coherent and incoherent signatures was observed in the tumors. Upon averaging the PSDs of fluctuating voxels and pixels, it was found that these oscillations occurred with periods of minutes to tens of minutes from all three approaches. Observations from the BOLD-MRI and photoacoustic data showed that clusters of voxels oscillated in a synchronized manner. Conclusion: We were able to use three different modalities to show that fluctuation in tumor oxygen is both coherent and incoherent, with periods of minutes to tens of minutes. These periods are very similar to those from the well-established metabolic, non-linear biomechanical phenomenon called the glycolytic oscillator. This may provide an additional explanation to the cause of cyclic hypoxia. Such dynamics could have profound implications in

  6. Glucoregulatory consequences and cardiorespiratory parameters in rats exposed to chronic-intermittent hypoxia: Effects of the duration of exposure and losartan

    Directory of Open Access Journals (Sweden)

    Victor B Fenik

    2012-04-01

    Full Text Available Background: Obstructive sleep apnea (OSA is associated with glucose intolerance. Both chronic sleep disruption and recurrent blood oxygen desaturations (chronic-intermittent hypoxia – CIH may cause, or exacerbate, metabolic derangements. Methods: To assess the impact of CIH alone, without accompanying upper airway obstructions, on the counter-regulatory response to glucose load and cardiorespiratory parameters, we exposed adult male Sprague-Dawley rats to CIH or sham room air exchanges for 10 h/day for 7, 21 or 35 days and then, one day after conclusion of CIH exposure, conducted intravenous glucose tolerance tests (ivgtt under urethane anesthesia. Additional rats underwent 35 days of CIH followed by 35 days of regular housing, or had 35 day-long CIH exposure combined with daily administration of the type 1 angiotensin II receptor antagonist, losartan (15 mg/kg, p.o., and then were also subjected to ivgtt. Results: Compared with the corresponding control groups, CIH rats had progressively reduced glucose-stimulated insulin release and impaired glucose clearance, only mildly elevated heart rate and/or arterial blood pressure and slightly reduced respiratory rate. The differences in insulin release between the CIH and sham-treated rats disappeared in the rats normally housed for 35 days after 35 days of CIH/sham exposure. The losartan-treated rats had improved insulin sensitivity, with no evidence of suppressed insulin release in the CIH group. Conclusions: In adult rats, the glucose-stimulated insulin release is gradually suppressed with the duration of exposure to CIH, but the effect is reversible. Elimination of the detrimental effect of CIH on insulin release by losartan suggests that CIH disrupts glucoregulation through angiotensin/catecholaminergic pathways. Accordingly, treatment with continuous positive airway pressure may ameliorate pre-diabetic conditions in OSA patients, in part, by reducing sympathoexcitatory effects of recurrent

  7. Angiotensin II type 1a receptors in subfornical organ contribute towards chronic intermittent hypoxia-associated sustained increase in mean arterial pressure.

    Science.gov (United States)

    Saxena, Ashwini; Little, Joel T; Nedungadi, T Prashant; Cunningham, J Thomas

    2015-03-01

    Sleep apnea is associated with hypertension. The mechanisms contributing to a sustained increase in mean arterial pressure (MAP) even during normoxic awake-state remain unknown. Rats exposed to chronic intermittent hypoxia for 7 days, a model of the hypoxemia associated with sleep apnea, exhibit sustained increases in MAP even during the normoxic dark phase. Activation of the renin-angiotensin system (RAS) has been implicated in chronic intermittent hypoxia (CIH) hypertension. Since the subfornical organ (SFO) serves as a primary target for the central actions of circulating ANG II, we tested the effects of ANG II type 1a receptor (AT1aR) knockdown in the SFO on the sustained increase in MAP in this CIH model. Adeno-associated virus carrying green fluorescent protein (GFP) and small-hairpin RNA against either AT1aR or a scrambled control sequence (SCM) was stereotaxically injected in the SFO of rats. After recovery, MAP, heart rate, respiratory rate, and activity were continuously recorded using radiotelemetry. In the normoxic groups, the recorded variables did not deviate from the baseline values. Both CIH groups exhibited significant increases in MAP during CIH exposures (P < 0.05). During the normoxic dark phase in the CIH groups, only the SCM-injected group exhibited a sustained increase in MAP (P < 0.05). The AT1aR-CIH group showed significant decreases in FosB/ΔFosB staining in the median preoptic nucleus and the paraventricular nuclei of the hypothalamus compared with the SCM-CIH group. Our data indicate that AT1aRs in the SFO are critical for the sustained elevation in MAP and increased FosB/ΔFosB expression in forebrain autonomic nuclei associated with CIH. Copyright © 2015 the American Physiological Society.

  8. The role of hypoxia response element in TGFβ-induced carbonic anhydrase IX expression in Hep3B human hepatoma cells

    Directory of Open Access Journals (Sweden)

    Yildirim Hatice

    2017-01-01

    Full Text Available Carbonic anhydrase IX (CAIX is a hypoxia-regulated gene. It is over expressed in a variety of cancers, including hepatocellular cancer. Transforming growth factor β (TGFβ is considered to have an impact on cancer biology due to its important roles in cell proliferation and differentiation. The effect of the TGFβ on CAIX expression under hypoxia and the mechanism underlying the role of the hypoxia response element (HRE on this expression are unknown. In this study, we demonstrate that TGFβ upregulates CAIX expression under hypoxic conditions in the Hep3B hepatoma cell line, indicating that the mitogen-activated protein kinase (MAPK- and phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K-signaling pathways might be responsible for this response. Site-directed mutagenesis of the HRE region in CAIX promoter reduced the TGFβ-induced CAIX promoter activity, pointing to the significance of HRE for this response. Up regulation of TGFβ-stimulated CAIX expression was consistent with the up regulation of promoter activity of five different truncated constructs of the CAIX promoter under hypoxia. Our findings show that the HRE region is critical for TGFβ-induced CAIX expression, which is mainly controlled by MAPK and PI3K pathways.

  9. The role of open ocean boundary forcing on seasonal to decadal-scale variability and long-term change of natural shelf hypoxia

    International Nuclear Information System (INIS)

    Monteiro, Pedro M S; Dewitte, Boris; Paulmier, Aurelien; Scranton, Mary I; Van der Plas, Anja K

    2011-01-01

    In this study we investigate the possible reasons for the widespread differences between the seasonal cycles of carbon production and export compared to those of hypoxia in eastern boundary upwelling systems. An idealized model is proposed that qualitatively characterizes the relative roles of physics and biogeochemical fluxes. The model is tested on three contrasting upwelling systems: the Benguela (from relatively aerated to interannual anoxic), the Humboldt (sub-oxic and interannually anoxic) and the Cariaco (permanently anoxic). Overall we propose that shelf hypoxia variability can be explained on the basis of the interaction between ventilation by ocean boundary forcing through ocean-shelf exchange and the role of shelf geometry in the retention of shelf-based particulate organic carbon (POC) fluxes. We aim to identify the hypoxia regimes associated with low ventilation-wide-shelf systems and high ventilation-narrow-shelf systems, considering them as extremes of conditions controlled by the two factors. We propose that this may help to explain differences in the seasonal cycles of the biogeochemical drivers and responses as well as difference between upwelling systems and within individual upwelling systems. It is suggested that when seasonal hypoxia emerges it does so preferentially at a wide-shelf part of a system.

  10. Effect of acute intermittent hypoxia on motor function in individuals with chronic spinal cord injury following ibuprofen pretreatment: A pilot study.

    Science.gov (United States)

    Lynch, Meaghan; Duffell, Lynsey; Sandhu, Milap; Srivatsan, Sudarshan; Deatsch, Kelly; Kessler, Allison; Mitchell, Gordon S; Jayaraman, Arun; Rymer, William Zev

    2017-05-01

    Acute intermittent hypoxia (AIH) enhances lower extremity motor function in humans with chronic incomplete spinal cord injury (SCI). AIH-induced spinal plasticity is inhibited by systemic inflammation in animal models. Since SCI is frequently associated with systemic inflammation in humans, we tested the hypothesis that pretreatment with the anti-inflammatory agent ibuprofen enhances the effects of AIH. A randomized, double-blinded, placebo-controlled crossover design was used. Nine adults (mean age 51.1 ± 13.1 years) with chronic motor-incomplete SCI (7.7 ± 6.3 years post-injury) received a single dose of ibuprofen (800 mg) or placebo, 90 minutes prior to AIH. For AIH, 9% O 2 for 90 seconds was interspersed with 21% O 2 for 60 seconds. Maximal voluntary ankle plantar flexion isometric torque was assessed prior to, and at 0, 30, and 60 minutes post-AIH. Surface electromyography (EMG) of plantar flexor muscles was also recorded. Torque increased significantly after AIH at 30 (P = 0.007; by ∼20%) and 60 (P Ibuprofen did not augment the effects of AIH. EMG activity did not increase significantly after AIH; however, there was a significant association between increases in torque and EMG in both gastrocnemius (R 2  = 0.17, P ibuprofen pretreatment. Our study re-confirms the ability of AIH to enhance leg strength in persons with chronic incomplete SCI.

  11. Chronic Hypoxia Enhances Expression and Activity of Mitochondrial Creatine Kinase and Hexokinase in the Rat Ventricular Myocardium

    Czech Academy of Sciences Publication Activity Database

    Wasková-Arnoštová, P.; Kašparová, D.; Elsnicová, B.; Novotný, J.; Neckář, Jan; Kolář, František; Žurmanová, J.

    2014-01-01

    Roč. 33, č. 2 (2014), s. 310-320 ISSN 1015-8987 R&D Projects: GA AV ČR(CZ) IAAX01110901; GA ČR(CZ) GAP303/12/1162 Grant - others:Univerzita Karlova(CZ) 349211; GA AV ČR(CZ) IAA601110908 Institutional support: RVO:67985823 Keywords : creatine kinase * hexokinase * normobaric hypoxia * left ventricle * right ventricle * mitochondria co-localization Subject RIV: FA - Cardiovascular Diseases incl. Cardiotharic Surgery Impact factor: 2.875, year: 2014

  12. Could Uric acid have a Pathogenic Role in Chronic Allograft ...

    African Journals Online (AJOL)

    Introduction: Chronic allograft dysfunction (CAD) is the primary cause of chronic graft failure after kidney transplantation. The pathogenesis of CAD involves both antigen-dependent and antigen-independent mechanisms. Serum uric acid could have a role in both mechanisms. Review: Hyperuricemia in subjects with renal ...

  13. Role of rectal myomectomy in refractory chronic constipation ...

    African Journals Online (AJOL)

    Background: To assess the role of diagnostic and therapeutic value of anorectal myectomy in cases of chronic refractory constipation. Materials and Methods: Twenty-eight patients 11 months to 9 years of age presenting with chronic constipation, with contrast enema showing dilated rectum and sigmoid colon were included ...

  14. Revisiting the Role of TRP, Orai, and ASIC Channels in the Pulmonary Arterial Response to Hypoxia

    Directory of Open Access Journals (Sweden)

    Roberto V. Reyes

    2018-05-01

    Full Text Available The pulmonary arteries are exquisitely responsive to oxygen changes. They rapidly and proportionally contract as arterial PO2 decrease, and they relax as arterial PO2 is re-established. The hypoxic pulmonary vasoconstriction (HPV is intrinsic since it does not require neural or endocrine factors, as evidenced in isolated vessels. On the other hand, pulmonary arteries also respond to sustained hypoxia with structural and functional remodeling, involving growth of smooth muscle medial layer and later recruitment of adventitial fibroblasts, secreted mitogens from endothelium and changes in the response to vasoconstrictor and vasodilator stimuli. Hypoxic pulmonary arterial vasoconstriction and remodeling are relevant biological responses both under physiological and pathological conditions, to explain matching between ventilation and perfusion, fetal to neonatal transition of pulmonary circulation and pulmonary artery over-constriction and thickening in pulmonary hypertension. Store operated channels (SOC and receptor operated channels (ROC are plasma membrane cationic channels that mediate calcium influx in response to depletion of internal calcium stores or receptor activation, respectively. They are involved in both HPV and pathological remodeling since their pharmacological blockade or genetic suppression of several of the Stim, Orai, TRP, or ASIC proteins in SOC or ROC complexes attenuate the calcium increase, the tension development, the pulmonary artery smooth muscle proliferation, and pulmonary arterial hypertension. In this Mini Review, we discussed the evidence obtained in in vivo animal models, at the level of isolated organ or cells of pulmonary arteries, and we identified and discussed the questions for future research needed to validate these signaling complexes as targets against pulmonary hypertension.

  15. Chronic hypoxia increases arterial blood pressure and reduces adenosine and ATP induced vasodilatation in skeletal muscle in healthy humans

    DEFF Research Database (Denmark)

    Calbet, J A L; Boushel, Robert Christopher; Robach, P

    2014-01-01

    into the femoral artery at sea level and then after 8-12 days of residence at 4559 m above sea level. At sea level, the infusions were carried out while the subjects breathed room air, acute hypoxia (FI O2 = 0.11) and hyperoxia (FI O2 = 1); and at altitude (FI O2 = 0.21 and 1). Skeletal muscle P2Y2 receptor...... protein expression was determined in muscle biopsies after 4 weeks at 3454 m by Western blot. RESULTS: At altitude, mean arterial blood pressure was 13% higher (91 ± 2 vs. 102 ± 3 mmHg, P sea level and was unaltered by hyperoxic breathing. Baseline leg vascular conductance was 25% lower...... at altitude than at sea level (P sea level by 24 and 38%, during the low and high ATP doses...

  16. Urinary uric acid excretion as an indicator of severe hypoxia and mortality in patients with obstructive sleep apnea and chronic obstructive pulmonary disease

    Directory of Open Access Journals (Sweden)

    E. Ozanturk

    2016-01-01

    Full Text Available Objective: Uric acid (UA is the end product of adenosine triphosphate degradation, and could increase due to hypoxia. We investigated the association of UA metabolites with nocturnal hypoxemia, apnea-hypopnea index (AHI, noninvasive mechanical ventilation (NIMV usage and five-year mortality. Materials/subjects and methods: We obtained urinary specimen before and after the night polysomnography in order to measure UA excretion and overnight change in urinary UA/creatinine ratio (ΔUA/Cr in 75 subjects (14 controls, 15 chronic obstructive pulmonary disease (COPD without nocturnal hypoxemia (NH, 15 COPD with NH, 16 obstructive sleep apnea syndrome (OSAS without NH, 15 OSAS with NH. Percentage of time spent below SaO2 of 90% (T90% for >10% of sleep time was considered as nocturnal hypoxemia. Patients were contacted after 5 years with a questionnaire including information on the use of NIMV treatment (n: 58 and urinary specimen analysis (n: 35. Results: T90% was found to be significantly correlated with UA excretion (coefficient: 0.005, 95%CI: 0.003–0.007 and ΔUA/Cr (coefficient: 0.8, 95%CI: 0.3–1.2 after adjustments for age, gender, body mass index and apnea-hypopnea index. Median and IQR (interquartile range of baseline UA excretion were 0.79 (0.51–0.89 and 0.41 (0.31–0.55 in 10 deceased and 58 surviving patients, respectively (p = 0.001. UA excretion median and IQR of baseline and 5 years of NIMV treatment were 0.41 (0.36–0.57 and 0.29 (0.23–0.37, respectively (p = 0.01. Conclusion: UA excretion, as a marker of tissue hypoxia, may be useful in the management of OSA and COPD patients. Keywords: Uric acid, Hypoxia, Obstructive sleep apnea, COPD

  17. Chronic deficiency of nitric oxide affects hypoxia inducible factor-1α (HIF-1α stability and migration in human endothelial cells.

    Directory of Open Access Journals (Sweden)

    Maria Grazia Cattaneo

    Full Text Available BACKGROUND: Endothelial dysfunction in widely diffuse disorders, such as atherosclerosis, hypertension, diabetes and senescence, is associated with nitric oxide (NO deficiency. Here, the behavioural and molecular consequences deriving from NO deficiency in human umbilical vein endothelial cells (HUVECs were investigated. RESULTS: Endothelial nitric oxide synthase (eNOS was chronically inhibited either by N(G-Nitro-L-arginine methyl ester (L-NAME treatment or its expression was down-regulated by RNA interference. After long-term L-NAME treatment, HUVECs displayed a higher migratory capability accompanied by an increased Vascular Endothelial Growth Factor (VEGF and VEGF receptor-2 (kinase insert domain receptor, KDR expression. Moreover, both pharmacological and genetic inhibition of eNOS induced a state of pseudohypoxia, revealed by the stabilization of hypoxia-inducible factor-1α (HIF-1α. Furthermore, NO loss induced a significant decrease in mitochondrial mass and energy production accompanied by a lower O(2 consumption. Notably, very low doses of chronically administered DETA/NO reverted the HIF-1α accumulation, the increased VEGF expression and the stimulated migratory behaviour detected in NO deficient cells. CONCLUSION: Based on our results, we propose that basal release of NO may act as a negative controller of HIF-1α levels with important consequences for endothelial cell physiology. Moreover, we suggest that our experimental model where eNOS activity was impaired by pharmacological and genetic inhibition may represent a good in vitro system to study endothelial dysfunction.

  18. Effect of low-frequency low-intensity ultrasound with microbubbles on prostate cancer hypoxia.

    Science.gov (United States)

    Hou, Rui; Xu, Yanjun; Lu, Qijie; Zhang, Yang; Hu, Bing

    2017-10-01

    Angiogenesis plays an important role in tumor growth, invasiveness, and metastasis. It is well established that prostate cancer is exposed to fluctuating oxygen tensions and both acute and chronic hypoxia exist, and these conditions can upregulate angiogenesis-associated proteins such as hypoxia-inducible factor 1 alpha and vascular endothelial growth factor A. Low-frequency low-intensity ultrasound with microbubbles can induce obvious microvessel damage in tumors, cause cell necrosis or apoptosis. However, there is no information about whether the blocking blood effect of low-frequency low-intensity ultrasound with microbubbles has an influence on hypoxia environment of prostate cancer. Therefore, we investigated the impact of different low-frequency low-intensity ultrasound with microbubbles radiation times on prostate tumors, observed the change in the hypoxia-inducible factor 1 alpha and vascular endothelial growth factor A protein levels, as well as cell proliferation, apoptosis, and tumor volume. The results indicated that as the radiation was repeated four times on each treatment day, the effects of interruption were durable, the cell proliferation was inhibited, and apoptosis was promoted, and the hypoxia-inducible factor 1 alpha and vascular endothelial growth factor A expression levels were lower in the treatment group than in the control group. When the radiation was carried out once per treatment day, the hypoxia response was stimulated, the hypoxia-inducible factor 1 alpha and vascular endothelial growth factor A expression levels were higher compared with the control group, and cell proliferation was promoted. In addition, the tumor volume increased obviously in the hypoxia-stimulated group, whereas tumors grew slowly in the hypoxia-suppressed group. The results of this work demonstrated that under the same conditions, different radiation times of low-frequency low-intensity ultrasound with microbubbles affect the hypoxia response differently, and the

  19. Minocycline blocks glial cell activation and ventilatory acclimatization to hypoxia.

    Science.gov (United States)

    Stokes, Jennifer A; Arbogast, Tara E; Moya, Esteban A; Fu, Zhenxing; Powell, Frank L

    2017-04-01

    Ventilatory acclimatization to hypoxia (VAH) is the time-dependent increase in ventilation, which persists upon return to normoxia and involves plasticity in both central nervous system respiratory centers and peripheral chemoreceptors. We investigated the role of glial cells in VAH in male Sprague-Dawley rats using minocycline, an antibiotic that inhibits microglia activation and has anti-inflammatory properties, and barometric pressure plethysmography to measure ventilation. Rats received either minocycline (45mg/kg ip daily) or saline beginning 1 day before and during 7 days of chronic hypoxia (CH, Pi O 2  = 70 Torr). Minocycline had no effect on normoxic control rats or the hypercapnic ventilatory response in CH rats, but minocycline significantly ( P minocycline administration during only the last 3 days of CH did not reverse VAH. Microglia and astrocyte activation in the nucleus tractus solitarius was quantified from 30 min to 7 days of CH. Microglia showed an active morphology (shorter and fewer branches) after 1 h of hypoxia and returned to the control state (longer filaments and extensive branching) after 4 h of CH. Astrocytes increased glial fibrillary acidic protein antibody immunofluorescent intensity, indicating activation, at both 4 and 24 h of CH. Minocycline had no effect on glia in normoxia but significantly decreased microglia activation at 1 h of CH and astrocyte activation at 24 h of CH. These results support a role for glial cells, providing an early signal for the induction but not maintenance of neural plasticity underlying ventilatory acclimatization to hypoxia. NEW & NOTEWORTHY The signals for neural plasticity in medullary respiratory centers underlying ventilatory acclimatization to chronic hypoxia are unknown. We show that chronic hypoxia activates microglia and subsequently astrocytes. Minocycline, an antibiotic that blocks microglial activation and has anti-inflammatory properties, also blocks astrocyte activation in respiratory

  20. Role of S100A1 in hypoxia-induced inflammatory response in cardiomyocytes via TLR4/ROS/NF-κB pathway.

    Science.gov (United States)

    Yu, Jiangkun; Lu, Yanyu; Li, Yapeng; Xiao, Lili; Xing, Yu; Li, Yanshen; Wu, Leiming

    2015-09-01

    S100A1 plays a crucial role in hypoxia-induced inflammatory response in cardiomyocytes. However, the role of S100A1 in hypoxia-induced inflammatory response in cardiomyocytes is still unknown. enzyme-linked immunosorbent assay (ELISA) was performed for the determination of inflammatory cytokines. Immunocytochemistry and immunofluorescence, Western blot analysis and Real-time polymerase chain reaction (RT-PCR) were conducted to assess protein or mRNA expressions. Fluorogenic probe dihydroethidium (DHE) was used to evaluate the generation of reactive oxygen species (ROS) while Hoechst 33342 staining for apoptosis. Small interfering RNA (siRNA) for S100A1 was used to evaluate the role of S100A1. The levels of ROS and inflammatory cytokine including tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6 and IL-8 in H9c2 cells were increased remarkably by hypoxia. However, IL-37 protein or mRNA levels were decreased significantly. Both Toll-like receptor 4 (TLR4) inhibitor Ethyl (6R)-6-[N-(2-Chloro-4fluorophenyl)sulfamoyl]cyclohex-1-ene-1-carboxylate (TAK-242) treatment or siRNA S100A1 downregulated TLR4 expression and inflammatory cytokine level and mRNA in H9c2 cells, as well as weakening ROS and phospho-p65 Nuclear factor (NF)-κB levels. Further, S100A1 treatment significantly reduced TNF-α protein or mRNA level whereas enhanced IL-37 protein or mRNA level, and could attenuate ROS and phospho-p65 NF-κB levels. Our results demonstrate that S100A1 can regulate the inflammatory response and oxidative stress in H9C2 cells via TLR4/ROS/NF-κB pathway. These findings provide an interesting strategy for protecting cardiomyocytes from hypoxia-induced inflammatory response. © 2015 Royal Pharmaceutical Society.

  1. Targeted expression of heme oxygenase-1 prevents the pulmonary inflammatory and vascular responses to hypoxia

    Science.gov (United States)

    Minamino, Tohru; Christou, Helen; Hsieh, Chung-Ming; Liu, Yuxiang; Dhawan, Vijender; Abraham, Nader G.; Perrella, Mark A.; Mitsialis, S. Alex; Kourembanas, Stella

    2001-07-01

    Chronic hypoxia causes pulmonary hypertension with smooth muscle cell proliferation and matrix deposition in the wall of the pulmonary arterioles. We demonstrate here that hypoxia also induces a pronounced inflammation in the lung before the structural changes of the vessel wall. The proinflammatory action of hypoxia is mediated by the induction of distinct cytokines and chemokines and is independent of tumor necrosis factor- signaling. We have previously proposed a crucial role for heme oxygenase-1 (HO-1) in protecting cardiomyocytes from hypoxic stress, and potent anti-inflammatory properties of HO-1 have been reported in models of tissue injury. We thus established transgenic mice that constitutively express HO-1 in the lung and exposed them to chronic hypoxia. HO-1 transgenic mice were protected from the development of both pulmonary inflammation as well as hypertension and vessel wall hypertrophy induced by hypoxia. Significantly, the hypoxic induction of proinflammatory cytokines and chemokines was suppressed in HO-1 transgenic mice. Our findings suggest an important protective function of enzymatic products of HO-1 activity as inhibitors of hypoxia-induced vasoconstrictive and proinflammatory pathways.

  2. Antioxidant defenses in the preterm lung: role for hypoxia-inducible factors in BPD?

    International Nuclear Information System (INIS)

    Asikainen, Tiina M.; White, Carl W.

    2005-01-01

    Pulmonary antioxidants and their therapeutic implications have been extensively studied during past decades. The purpose of this review is to briefly summarize the key findings of these studies as well as to elaborate on some novel approaches with respect to potential preventive treatments for neonatal chronic lung disease bronchopulmonary dysplasia (BPD). Such new ideas include, for example, modification of transcription factors governing the hypoxic response pathways, important in angiogenesis, cell survival, and glycolytic responses. The fundamental strategy behind that approach is that fetal lung normally develops under hypoxic conditions and that this hypoxic, growth-favoring environment is interrupted by a premature birth. Importantly, during fetal lung development, alveolar development appears to be dependent on vascular development. Therefore, enhancement of signaling factors that occur during hypoxic fetal life ('continued fetal life ex utero'), including angiogenic responses, could potentially lead to improved lung growth and thereby alleviate the alveolar and vascular hypoplasia characteristic of BPD

  3. Alteration of Inflammatory Mediators in the Upper and Lower Airways under Chronic Intermittent Hypoxia: Preliminary Animal Study

    Directory of Open Access Journals (Sweden)

    Eun Jung Lee

    2017-01-01

    Full Text Available Purpose. We hypothesized that CIH may affect the upper airway immune system and aimed to verify whether CIH can induce airway inflammation in a murine obstructive sleep apnea (OSA model. Methods. C57BL6 male mice were exposed to intermittent hypoxia (CIH group; 5 ~ 21% FiO2, 120 sec cycles, 12 h/d, n=6 or room air (Sham group, n=6 for up to 4 weeks in identical chambers. Nasal and lung tissues and lavage fluid were collected and analyzed by multiplex assay. Lung lavage fluid was also utilized for FACS analysis to determine eosinophil count. Results. We determined the protein level of 24 different cytokines, chemokines, and inflammatory mediators. Among various cytokines, levels of IL-1α, IL-1β, IL-4, IL-6, and IL-13 were significantly elevated in nose or lung tissue from the CIH group. In addition, MCP-1 and periostin were elevated in nose and lung tissue and lavage fluid from the CIH group. Conclusions. CIH for 4 weeks altered the levels of inflammatory mediators in both the nose and lungs of mouse model. We suggest that the airway immune system may be deteriorated by CIH and allergic inflammation in the upper or lower airway could be worsened by sleep apnea.

  4. Long-term exposure to hypoxia inhibits tumor progression of lung cancer in rats and mice

    International Nuclear Information System (INIS)

    Yu, Lunyin; Hales, Charles A

    2011-01-01

    Hypoxia has been identified as a major negative factor for tumor progression in clinical observations and in animal studies. However, the precise role of hypoxia in tumor progression has not been fully explained. In this study, we extensively investigated the effect of long-term exposure to hypoxia on tumor progression in vivo. Rats bearing transplanted tumors consisting of A549 human lung cancer cells (lung cancer tumor) were exposed to hypoxia for different durations and different levels of oxygen. The tumor growth and metastasis were evaluated. We also treated A549 lung cancer cells (A549 cells) with chronic hypoxia and then implanted the hypoxia-pretreated cancer cells into mice. The effect of exposure to hypoxia on metastasis of Lewis lung carcinoma in mice was also investigated. We found that long-term exposure to hypoxia a) significantly inhibited lung cancer tumor growth in xenograft and orthotopic models in rats, b) significantly reduced lymphatic metastasis of the lung cancer in rats and decreased lung metastasis of Lewis lung carcinoma in mice, c) reduced lung cancer cell proliferation and cell cycle progression in vitro, d) decreased growth of the tumors from hypoxia-pretreated A549 cells, e) decreased Na + -K + ATPase α1 expression in hypoxic lung cancer tumors, and f) increased expression of hypoxia inducible factors (HIF1α and HIF2α) but decreased microvessel density in the lung cancer tumors. In contrast to lung cancer, the growth of tumor from HCT116 human colon cancer cells (colon cancer tumor) was a) significantly enhanced in the same hypoxia conditions, accompanied by b) no significant change in expression of Na + -K + ATPase α1, c) increased HIF1α expression (no HIF2α was detected) and d) increased microvessel density in the tumor tissues. This study demonstrated that long-term exposure to hypoxia repressed tumor progression of the lung cancer from A549 cells and that decreased expression of Na + -K + ATPase was involved in hypoxic

  5. The role of hypoxia-induced factor in the regulation of oxygen homeostasis during reparative regeneration in compromised microcirculation

    Directory of Open Access Journals (Sweden)

    S. G. Izmaylov

    2017-01-01

    Full Text Available The aim of the present review is to find an answer to the clinically important question on the mechanisms regulating the activity of reparative regeneration in hypoxic conditions and potential ways to modify this process. In the recent studies, compensated hypoxia is characterized as a trigger for the regeneration, with the central regulating factor being the member of the cytokine family, hypoxia-inducible factor-1 (HIF-1. Changes in the concentration of this protein modulates cell migration, angiogenesis and epithelialmesenchymal integration; it also stimulates the proliferation of endothelial cells and fibroblasts, playing a  major role in the stimulation of wound healing, especially with compromised microcirculation, for example, diabetes mellitus. 

  6. Role of Alternative Therapies for Chronic Pain Syndromes.

    Science.gov (United States)

    Thomas, Donna-Ann; Maslin, Benjamin; Legler, Aron; Springer, Erin; Asgerally, Abbas; Vadivelu, Nalini

    2016-05-01

    There is increasing interest in the use of complimentary and alternative medicine (CAM) for the treatment of chronic pain. This review examines alternative and complimentary therapies, which can be incorporated as part of a biopsychosocial approach in the treatment of chronic pain syndromes. In the present investigation, literature from articles indexed on PubMed was evaluated including topics of alternative therapies, complimentary therapies, pain psychology, biofeedback therapy, physical exercise therapies, acupuncture, natural and herbal supplements, whole-body cryotherapy, and smartphone technologies in the treatment of chronic pain syndromes. This review highlights the key role of psychology in the treatment of chronic pain. Cognitive behavior therapy appears to be the most impactful while biofeedback therapy has also been shown to be effective for chronic pain. Exercise therapy has been shown to be effective in short-, intermediate-, and long-term pain states. When compared to that in sham controls, acupuncture has shown some benefit for neck pain immediately after the procedure and in the short term and improvement has also been demonstrated in the treatment of headaches. The role of smartphones and whole-body cryotherapy are new modalities and further studies are needed. Recent literature suggests that several alternate therapies could play a role in the treatment of chronic pain, supporting the biopsychosocial model in the treatment of pain states.

  7. Chronic Student Absenteeism: The Critical Role of School Nurses.

    Science.gov (United States)

    Jacobsen, Kathleen; Meeder, Linda; Voskuil, Vicki R

    2016-05-01

    Routine school attendance is necessary for youth to develop into well-educated, successful adult citizens who will make significant contributions to society. Yet over 5 million students in the United States are chronically absent missing more than 10% of school in a year. The growing problem of chronic absenteeism among youth can be linked to increases in chronic health conditions in childhood such as allergies, asthma, diabetes, and obesity. School nurses are in an ideal position to play a vital role in reducing chronic student absenteeism, enabling youth to achieve their maximum learning potential. However, the role of the school nurse has not historically been recognized as a key factor for assisting youth to be present and regularly engaged in school. This feature article highlights a hospital-funded school nurse program within the state of Michigan that has reduced chronic absenteeism rates by placing school nurses into schools where previously there were none. The program implemented a number of initiatives that were instrumental in increasing the health and safety of students and provides a unique "before and after" glimpse of how school nursing reduces chronic student absenteeism rates and validates the essential role of the nurse within the educational system. © 2016 The Author(s).

  8. Recent Advances on the Role of G Protein-Coupled Receptors in Hypoxia-Mediated Signaling

    OpenAIRE

    Lappano, Rosamaria; Rigiracciolo, Damiano; De Marco, Paola; Avino, Silvia; Cappello, Anna Rita; Rosano, Camillo; Maggiolini, Marcello; De Francesco, Ernestina Marianna

    2016-01-01

    G protein-coupled receptors (GPCRs) are cell surface proteins mainly involved in signal transmission; however, they play a role also in several pathophysiological conditions. Chemically heterogeneous molecules like peptides, hormones, lipids, and neurotransmitters activate second messengers and induce several biological responses by binding to these seven transmembrane receptors, which are coupled to heterotrimeric G proteins. Recently, additional molecular mechanisms have been involved in GP...

  9. Impaired response of mature adipocytes of diabetic mice to hypoxia

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Seok Jong, E-mail: seok-hong@northwestern.edu; Jin, Da P.; Buck, Donald W.; Galiano, Robert D.; Mustoe, Thomas A., E-mail: tmustoe@nmh.org

    2011-10-01

    Adipose tissue contains various cells such as infiltrated monocytes/macrophages, endothelial cells, preadipocytes, and adipocytes. Adipocytes have an endocrine function by secreting adipokines such as interleukin (IL)-6, tumor necrosis factor (TNF)-{alpha}, leptin, and adiponectin. Dysregulation of adipokines in adipose tissues leads to a chronic low-grade inflammation which could result in atherosclerosis, hypertension, and type 2 diabetes. A sustained inflammatory state, which is characterized by prolonged persistence of macrophages and neutrophils, is found in diabetic wounds. In addition, subcutaneous adipocytes are enormously increased in amount clinically in type 2 diabetes. However, the function of subcutaneous adipocytes, which play an important role in injured tissue subjected to hypoxia, has not been well characterized in vitro due to the difficulty of maintaining mature adipocytes in culture using conventional methods because of their buoyancy. In this study, we established a novel in vitro culture method of mature adipocytes by enclosing them in a hyaluronan (HA) based hydrogel to study their role in response to stress such as hypoxia. BrdU labeling and Ki67 immunostaining experiments showed that hydrogel enclosed mature adipocytes proliferate in vitro. Both mRNA and protein expression analyses for hypoxia regulated genes, such as vascular endothelial growth factor (VEGF) and heme oxygenase 1 (HO1), showed that mature adipocytes of wild type mice respond to hypoxia. In contrast, mature adipocytes of diabetic db/db and TallyHo mice did not efficiently respond to hypoxia. Our studies suggest that mature adipocytes are functionally active cells, and their abnormal function to hypoxia can be one of underlining mechanisms in type 2 diabetes.

  10. Antenatal hypoxia induces programming of reduced arterial blood pressure response in female rat offspring: role of ovarian function.

    Directory of Open Access Journals (Sweden)

    DaLiao Xiao

    Full Text Available In utero exposure to adverse environmental factors increases the risk of cardiovascular disease in adulthood. The present study tested the hypothesis that antenatal hypoxia causes a gender-dependent programming of altered arterial blood pressure response (BP in adult offspring. Time-dated pregnant rats were divided into normoxic and hypoxic (10.5% O2 from days 15 to 21 of gestation groups. The experiments were conducted in adult offspring. Antenatal hypoxia caused intrauterine growth restriction, and resulted in a gender-dependent increase Angiotensin II (Ang II-induced BP response in male offspring, but significant decrease in BP response in female offspring. The baroreflex sensitivity was not significantly altered. Consistent with the reduced blood pressure response, antenatal hypoxia significantly decreased Ang II-induced arterial vasoconstriction in female offspring. Ovariectomy had no significant effect in control animals, but significantly increased Ang II-induced maximal BP response in prenatally hypoxic animals and eliminated the difference of BP response between the two groups. Estrogen replacement in ovariectomized animals significantly decreased the BP response to angiotensin II I only in control, but not in hypoxic animals. The result suggests complex programming mechanisms of antenatal hypoxia in regulation of ovary function. Hypoxia-mediated ovary dysfunction results in the phenotype of reduced vascular contractility and BP response in female adult offspring.

  11. Chronic intermittent hypoxia is independently associated with reduced postoperative opioid consumption in bariatric patients suffering from sleep-disordered breathing.

    Directory of Open Access Journals (Sweden)

    Alparslan Turan

    Full Text Available Evidence suggests that recurrent nocturnal hypoxemia may affect pain response and/or the sensitivity to opioid analgesia. We tested the hypothesis that nocturnal hypoxemia, quantified by sleep time spent at an arterial saturation (SaO2 < 90% and minimum nocturnal SaO2 on polysomnography, are associated with decreased pain and reduced opioid consumption during the initial 72 postoperative hours in patients having laparoscopic bariatric surgery.With Institutional Review Board approval, we examined the records of all patients who underwent laparoscopic bariatric surgery between 2004 and 2010 and had an available nocturnal polysomnography study. We assessed the relationships between the time-weighted average of pain score and total opioid consumption during the initial 72 postoperative hours, and: (a the percentage of total sleep time spent at SaO2 < 90%, (b the minimum nocturnal SaO2, and (c the number of apnea/hypopnea episodes per hour of sleep. We used multivariable regression models to adjust for both clinical and sleep-related confounders.Two hundred eighteen patients were included in the analysis. Percentage of total sleep time spent at SaO2 < 90% was inversely associated with total postoperative opioid consumption; a 5-%- absolute increase in the former would relatively decrease median opioid consumption by 16% (98.75% CI: 2% to 28%, P = 0.006. However, the percentage of total sleep time spent at SaO2 < 90% was not associated with pain. The minimum nocturnal SaO2 was associated neither with total postoperative opioid consumption nor with pain. In addition, neither pain nor total opioid consumption was significantly associated with the number of apnea/hypopnea episodes per hour of sleep.Preoperative nocturnal intermittent hypoxia may enhance sensitivity to opioids.

  12. Hypoxia, Oxidative Stress and Fat

    Directory of Open Access Journals (Sweden)

    Nikolaus Netzer

    2015-06-01

    Full Text Available Metabolic disturbances in white adipose tissue in obese individuals contribute to the pathogenesis of insulin resistance and the development of type 2 diabetes mellitus. Impaired insulin action in adipocytes is associated with elevated lipolysis and increased free fatty acids leading to ectopic fat deposition in liver and skeletal muscle. Chronic adipose tissue hypoxia has been suggested to be part of pathomechanisms causing dysfunction of adipocytes. Hypoxia can provoke oxidative stress in human and animal adipocytes and reduce the production of beneficial adipokines, such as adiponectin. However, time-dose responses to hypoxia relativize the effects of hypoxic stress. Long-term exposure of fat cells to hypoxia can lead to the production of beneficial substances such as leptin. Knowledge of time-dose responses of hypoxia on white adipose tissue and the time course of generation of oxidative stress in adipocytes is still scarce. This paper reviews the potential links between adipose tissue hypoxia, oxidative stress, mitochondrial dysfunction, and low-grade inflammation caused by adipocyte hypertrophy, macrophage infiltration and production of inflammatory mediators.

  13. Chronic intermittent hypoxia impairs heart rate responses to AMPA and NMDA and induces loss of glutamate receptor neurons in nucleus ambiguous of F344 rats.

    Science.gov (United States)

    Yan, Binbin; Li, Lihua; Harden, Scott W; Gozal, David; Lin, Ying; Wead, William B; Wurster, Robert D; Cheng, Zixi Jack

    2009-02-01

    Chronic intermittent hypoxia (CIH), as occurs in sleep apnea, impairs baroreflex-mediated reductions in heart rate (HR) and enhances HR responses to electrical stimulation of vagal efferent. We tested the hypotheses that HR responses to activation of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) and N-methyl-D-aspartate (NMDA) receptors in the nucleus ambiguous (NA) are reduced in CIH-exposed rats and that this impairment is associated with degeneration of glutamate receptor (GluR)-immunoreactive NA neurons. Fischer 344 rats (3-4 mo) were exposed to room air (RA) or CIH for 35-50 days (n = 18/group). At the end of the exposures, AMPA (4 pmol, 20 nl) and NMDA (80 pmol, 20 nl) were microinjected into the same location of the left NA (-200 microm to +200 microm relative to caudal end of area postrema; n = 6/group), and HR and arterial blood pressure responses were measured. In addition, brain stem sections at the level of -800, -400, 0, +400, and +800 microm relative to obex were processed for AMPA and NMDA receptor immunohistochemistry. The number of NA neurons expressing AMPA receptors and NMDA receptors (NMDARs) was quantified. Compared with RA, we found that after CIH 1) HR responses to microinjection of AMPA into the left NA were reduced (RA -290 +/- 30 vs. CIH -227 +/- 15 beats/min, P neurons expressing GluRs contributes to impaired baroreflex control of HR in rats exposed to CIH.

  14. Chronic intermittent hypoxia induces liver fibrosis in mice with diet-induced obesity via TLR4/MyD88/MAPK/NF-kB signaling pathways.

    Science.gov (United States)

    Kang, Hyeon Hui; Kim, In Kyoung; Lee, Hye In; Joo, Hyonsoo; Lim, Jeong Uk; Lee, Jongmin; Lee, Sang Haak; Moon, Hwa Sik

    2017-08-19

    Obstructive sleep apnea (OSA) is associated with nonalcoholic fatty liver disease (NAFLD), and causes chronic intermittent hypoxia (CIH) during sleep. Inflammation is associated with the development of metabolic complications induced by CIH. Research suggests that innate immune mechanisms are involved in the pro-inflammatory pathways of liver fibrosis. The purpose of this study was to investigate whether innate immune responses induce liver fibrosis, and to evaluate mechanisms underlying hepatic inflammation related to CIH in a murine diet-induced obesity (DIO) model. Inflammatory and oxidative stress markers, TLR4, MyD88, Toll/interleukin-1-receptor-domain-containing adaptor-inducing interferon-β (TRIF), I-κB, NF-κB, p38 MAPK, c-JNK, and ERK activation, were measured in the serum and liver. As a result, α1(I)-collagen mRNA was significantly higher in DIO mice exposed to CIH than in the control groups. CIH mice exhibited liver fibrosis and significantly higher protein expression of TLR4, MyD88, phosphorylated (phospho-) I-κB, and phospho-ERK1/2 activation in the liver, and higher expression of NF-κB than that in the controls. TRIF, p38 MAPK, and JNK activation did not differ significantly between groups. We conclude that CIH in DIO mice leads to liver fibrosis via TLR4/MyD88/MAPK/NF-kB signaling pathways. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Chronic hypoxia alters calbindin D-28k immunoreactivity in lingual and laryngeal taste buds in the rat

    OpenAIRE

    Yoshida, T.; Matsuda, H.; Yamamoto, Y.; Hayashida, Y.; Tsukuda, M.; Kusakabe, T.

    2006-01-01

    The distribution and abundance of the calcium binding protein, calbindin D-28k (CB) immunoreactivity in the taste buds of the circumvallate papillae and larynx were compared between normoxic and chronically hypoxic rats (10% O2 for 8 weeks). In the normoxic rats, CB immunoreactivity was observed in some cells and fibers of the intragemmal region of the taste buds in the circumvallate papillae. In contrast, in the subgemmal region of the laryngeal taste buds, fi...

  16. School Psychologists' Role Concerning Children with Chronic Illnesses in Schools

    Science.gov (United States)

    Barraclough, Camille; Machek, Greg

    2010-01-01

    The authors examined the role of school psychologists in working with children with chronic illnesses in the schools. A total of 300 practicing school psychologists in public schools, drawn from the National Association of School Psychologists membership directory, completed a standard mail survey. The survey solicited information on (a) graduate…

  17. Detecting Chronic Fatigue Syndrome: The Role of Counselors.

    Science.gov (United States)

    Albrecht, Frank; Wallace, Marsha

    1998-01-01

    Counselors often see persons with undiagnosed cases of chronic fatigue syndrome and may play an important role in referring these clients appropriately. Terminology, screening, epidemiology, course, and treatment are reviewed. Case histories illustrate how suspected cases can be distinguished from depression and other conditions. Diagnostic…

  18. Damage of Inner Ear Sensory Hair Cells via Mitochondrial Loss in a Murine Model of Sleep Apnea With Chronic Intermittent Hypoxia.

    Science.gov (United States)

    Seo, Young Joon; Ju, Hyun Mi; Lee, Sun Hee; Kwak, Sang Hyun; Kang, Min Jung; Yoon, Joo-Heon; Kim, Chang-Hoon; Cho, Hyung-Ju

    2017-09-01

    Investigating the exact pathophysiology of obstructive sleep apnea syndrome (OSAS)-induced hearing loss is critical. We sought to verify the hypothesis that a correlation exists between mitochondrial dysfunction in inner ear hair cells and the auditory dysfunction induced by chronic intermittent hypoxia (CIH) in a murine model of sleep apnea. C57BL/6J adult male mice were randomized to 4 weeks of CIH (n = 12) or normoxia (Sham) (n = 12). Hearing threshold was determined by auditory brainstem response. The activity of mitochondria was compared between CIH and Sham mice. Histological assessment and transmission electron microscopy were performed for assessing morphologic changes in mitochondria. The number of mtDNA copies as well as the levels of PGC1-α, Tfam, and VDAC (voltage-dependent anion channel) were determined in the hair cells of CIH mice. We observed that hearing ability in CIH mice was impaired and hair-cell mitochondria in CIH mice were fewer compared to that in Sham and also displayed an aberrant morphology. The mRNA levels of PGC-1α and Tfam were higher in the CIH group than in the Sham group. Moreover, the expression of VDAC was increased in the tectorial membrane, the basilar membrane, and especially in the inner hair cells of CIH mice. This study using CIH mice as a model for OSAS provides evidence of an association between OSAS and auditory function alteration, as well as of mitochondria being part of the pathophysiology of hearing impairment. Further investigation is required to determine whether mitochondria could serve as a valid target for preventive or therapeutic purposes. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  19. Conversion of Stationary to Invasive Tumor Initiating Cells (TICs): Role of Hypoxia in Membrane Type 1-Matrix Metalloproteinase (MT1-MMP) Trafficking

    Science.gov (United States)

    Li, Jian; Zucker, Stanley; Pulkoski-Gross, Ashleigh; Kuscu, Cem; Karaayvaz, Mihriban; Ju, Jingfang; Yao, Herui; Song, Erwei; Cao, Jian

    2012-01-01

    Emerging evidence has implicated the role of tumor initiating cells (TICs) in the process of cancer metastasis. The mechanism underlying the conversion of TICs from stationary to invasive remains to be characterized. In this report, we employed less invasive breast cancer TICs, SK-3rd, that displays CD44high/CD24low with high mammosphere-forming and tumorigenic capacities, to investigate the mechanism by which stationary TICs are converted to invasive TICs. Invasive ability of SK-3rd TICs was markedly enhanced when the cells were cultured under hypoxic conditions. Given the role of membrane type 1-matrix metalloproteinase (MT1-MMP) in cancer invasion/metastasis, we explored a possible involvement of MT1-MMP in hypoxia-induced TIC invasion. Silencing of MT1-MMP by a shRNA approach resulted in diminution of hypoxia-induced cell invasion in vitro and metastasis in vivo. Under hypoxic conditions, MT1-MMP redistributed from cytoplasmic storage pools to the cell surface of TICs, which coincides with the increased cell invasion. In addition, CD44, a cancer stem-like cell marker, inversely correlated with increased cell surface MT1-MMP. Interestingly, cell surface MT1-MMP gradually disappeared when the hypoxia-treated cells were switched to normoxia, suggesting the plasticity of TICs in response to oxygen content. Furthermore, we dissected the pathways leading to upregulated MT1-MMP in cytoplasmic storage pools under normoxic conditions, by demonstrating a cascade involving Twist1-miR10b-HoxD10 leading to enhanced MT1-MMP expression in SK-3rd TICs. These observations suggest that MT1-MMP is a key molecule capable of executing conversion of stationary TICs to invasive TICs under hypoxic conditions and thereby controlling metastasis. PMID:22679501

  20. Acclimatory responses of the Daphnia pulex proteome to environmental changes. I. Chronic exposure to hypoxia affects the oxygen transport system and carbohydrate metabolism

    Directory of Open Access Journals (Sweden)

    Madlung Johannes

    2009-04-01

    Full Text Available Abstract Background Freshwater planktonic crustaceans of the genus Daphnia show a remarkable plasticity to cope with environmental changes in oxygen concentration and temperature. One of the key proteins of adaptive gene control in Daphnia pulex under hypoxia is hemoglobin (Hb, which increases in hemolymph concentration by an order of magnitude and shows an enhanced oxygen affinity due to changes in subunit composition. To explore the full spectrum of adaptive protein expression in response to low-oxygen conditions, two-dimensional gel electrophoresis and mass spectrometry were used to analyze the proteome composition of animals acclimated to normoxia (oxygen partial pressure [Po2]: 20 kPa and hypoxia (Po2: 3 kPa, respectively. Results The comparative proteome analysis showed an up-regulation of more than 50 protein spots under hypoxia. Identification of a major share of these spots revealed acclimatory changes for Hb, glycolytic enzymes (enolase, and enzymes involved in the degradation of storage and structural carbohydrates (e.g. cellubiohydrolase. Proteolytic enzymes remained constitutively expressed on a high level. Conclusion Acclimatory adjustments of the D. pulex proteome to hypoxia included a strong induction of Hb and carbohydrate-degrading enzymes. The scenario of adaptive protein expression under environmental hypoxia can be interpreted as a process to improve oxygen transport and carbohydrate provision for the maintenance of ATP production, even during short episodes of tissue hypoxia requiring support from anaerobic metabolism.

  1. Vital role of protein kinase C-related kinase (PRK1) in the formation and stability of neurites during hypoxia

    OpenAIRE

    Thauerer, Bettina; zur Nedden, Stephanie; Baier-Bitterlich, Gabriele

    2010-01-01

    Exposure of pheochromocytoma (PC12) cells to hypoxia (1% O2) favors differentiation at the expense of cell viability. Additional incubation with nerve growth factor (NGF) and guanosine, a purine nucleoside with neurotrophin characteristics, rescued cell viability and further enhanced the extension of neurites. In parallel, an increase in the activity of protein kinase C-related kinase (PRK1), which is known to be involved in regulation of the actin cytoskeleton, was observed in hypoxic cells....

  2. Investigating the Regulation and Potential Role of Nonhypoxic Hypoxia Inducible Factor 1 (HIF 1) in Aromatase Inhibitor Resistant Breast Cancer

    Science.gov (United States)

    2015-12-01

    hypoxia response element ( HRE , 5’-GCGTG- 3’) occurs under basal conditions in LTLTCa cells and is significantly decreased by treatment with HER2...inhibitor lapatinib. Experiments to accomplish this task for vimentin were completed and reported in the 2014 annual summary. A potential HRE was located... HRE to which HIF-1 binds, were used for real-time PCR. ChIP real-time PCR results are expressed as the fold increase, compared with vehicle-treated

  3. Effect of hypoxia on cerebral blood flow regulation during rest and exercise : role of cerebral oxygen delivery on performance

    OpenAIRE

    Fan, J.-L.

    2014-01-01

    Adequate supply of oxygen to the brain is critical for maintaining normal brain function. Severe hypoxia, such as that experienced during high altitude ascent, presents a unique challenge to brain oxygen (O2) supply. During high-intensity exercise, hyperventilation-induced hypocapnia leads to cerebral vasoconstriction, followed by reductions in cerebral blood flow (CBF), oxygen delivery (DO2), and tissue oxygenation. This reduced O2 supply to the brain could potentially account for the reduce...

  4. Adaptive remodeling of skeletal muscle energy metabolism in high-altitude hypoxia: Lessons from AltitudeOmics.

    Science.gov (United States)

    Chicco, Adam J; Le, Catherine H; Gnaiger, Erich; Dreyer, Hans C; Muyskens, Jonathan B; D'Alessandro, Angelo; Nemkov, Travis; Hocker, Austin D; Prenni, Jessica E; Wolfe, Lisa M; Sindt, Nathan M; Lovering, Andrew T; Subudhi, Andrew W; Roach, Robert C

    2018-05-04

    Metabolic responses to hypoxia play important roles in cell survival strategies and disease pathogenesis in humans. However, the homeostatic adjustments that balance changes in energy supply and demand to maintain organismal function under chronic low oxygen conditions remain incompletely understood, making it difficult to distinguish adaptive from maladaptive responses in hypoxia-related pathologies. We integrated metabolomic and proteomic profiling with mitochondrial respirometry and blood gas analyses to comprehensively define the physiological responses of skeletal muscle energy metabolism to 16 days of high-altitude hypoxia (5260 m) in healthy volunteers from the AltitudeOmics project. In contrast to the view that hypoxia down-regulates aerobic metabolism, results show that mitochondria play a central role in muscle hypoxia adaptation by supporting higher resting phosphorylation potential and enhancing the efficiency of long-chain acylcarnitine oxidation. This directs increases in muscle glucose toward pentose phosphate and one-carbon metabolism pathways that support cytosolic redox balance and help mitigate the effects of increased protein and purine nucleotide catabolism in hypoxia. Muscle accumulation of free amino acids favor these adjustments by coordinating cytosolic and mitochondrial pathways to rid the cell of excess nitrogen, but might ultimately limit muscle oxidative capacity in vivo Collectively, these studies illustrate how an integration of aerobic and anaerobic metabolism is required for physiological hypoxia adaptation in skeletal muscle, and highlight protein catabolism and allosteric regulation as unexpected orchestrators of metabolic remodeling in this context. These findings have important implications for the management of hypoxia-related diseases and other conditions associated with chronic catabolic stress. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. [Role of ATP-sensitive potassium channel activators in liver mitochondrial function in rats with different resistance to hypoxia].

    Science.gov (United States)

    Tkachenko, H M; Kurhaliuk, N M; Vovkanych, L S

    2003-01-01

    Effects of ATP-sensitive potassium (KATP) channels opener pinacidil (0.06 mg/kg) and inhibitor glibenclamide (1 mg/kg) in rats with different resistance to hypoxia on indices of ADP-stimulation of mitochondrial respiration by Chance, calcium capacity and processes of lipid peroxidation in liver has been investigated. We used next substrates of oxidation: 0.35 mM succinate, 1 mM alpha-ketoglutarate. Additional analyses contain the next inhibitors: mitochondrial fermentative complex I-10 mkM rotenone, succinate dehydrogenase 2 mM malonic acid. It was shown that effects of pinacidil induced the increasing of oxidative phosporylation efficacy and ATP synthesis together with lowering of calcium capacity in rats with low resistance to hypoxia. Effects of pinacidil were leveled by glibenclamide. These changes are connected with the increasing of respiratory rate, calcium overload and intensification of lipid peroxidation processes. A conclusion was made about protective effect of pinacidil on mitochondrial functioning by economization of oxygen-dependent processes, adaptive potentialities of organisms with low resistance to hypoxia being increased.

  6. Role of JAK-STAT pathway in reducing cardiomyocytes hypoxia/reoxygenation injury induced by S1P postconditioning.

    Science.gov (United States)

    Wang, Yuqing; Wang, Dongfei; Zhang, Lizhi; Ye, Fangyu; Li, Mengmeng; Wen, Ke

    2016-08-05

    This experiment was designed to explore the protection of sphingosine1-phosphate (S1P) postconditioning on rat myocardial cells injured by hypoxia/reoxygenation acting via the Janus kinase-signal transducer and activator of transcription (JAK-STAT) signal pathway. The data showed that S1P could significantly increase cell viability, lower the rate of apoptosis, decrease the content of lactate dehydrogenase (LDH) and caspase3 activity in the culture medium, increase the activity of total superoxide dismutase (T-SOD) and manganese superoxide dismutase (Mn-SOD), reduce the loss of mitochondrial membrane potential and the fluorescence intensity of intracellular calcium, as well as increase the phosphorylation of JAK2 and STAT3 in comparison with the H/R group. When the JAK inhibitor AG490 or the STAT inhibitor stattic were added, the effects of S1P were inhibited. Our date shows that S1P protects H9c2 cells from hypoxia/reoxygenation injury and that the protection by S1P was inhibited by AG490 and stattic. Therefore S1P protects H9c2 cells against hypoxia/reoxygenation injury via the JAK-STAT pathway. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Hypoxia induces dilated cardiomyopathy in the chick embryo: mechanism, intervention, and long-term consequences

    NARCIS (Netherlands)

    Tintu, Andrei; Rouwet, Ellen; Verlohren, Stefan; Brinkmann, Joep; Ahmad, Shakil; Crispi, Fatima; van Bilsen, Marc; Carmeliet, Peter; Staff, Anne Cathrine; Tjwa, Marc; Cetin, Irene; Gratacos, Eduard; Hernandez-Andrade, Edgar; Hofstra, Leo; Jacobs, Michael; Lamers, Wouter H.; Morano, Ingo; Safak, Erdal; Ahmed, Asif; le Noble, Ferdinand

    2009-01-01

    BACKGROUND: Intrauterine growth restriction is associated with an increased future risk for developing cardiovascular diseases. Hypoxia in utero is a common clinical cause of fetal growth restriction. We have previously shown that chronic hypoxia alters cardiovascular development in chick embryos.

  8. Hypoxia induces dilated cardiomyopathy in the chick embryo: Mechanism, intervention, and long-term consequences

    NARCIS (Netherlands)

    A. Tintu (Andrei); E.V. Rouwet (Ellen); S. Verlohren (Stefan); J. Brinkmann (Joep); S. Ahmad (Shakil); F. Crispi (Fatima); M. van Bilsen (Marc); P. Carmeliet (Peter); A.C. Staff (Anne Cathrine); I. Cetin (Irene); E. Gratacos (Eduard); E. Hernandez-Andrade (Edgar); L. Hofstra (Leo); M. Jacobs (Michael); W.H. Lamers (Wouter); I. Morano (Ingo); E. Safak (Erdal); A. Ahmed (Asif); F. Noble (Ferdinand)

    2009-01-01

    textabstractBackground: Intrauterine growth restriction is associated with an increased future risk for developing cardiovascular diseases. Hypoxia in utero is a common clinical cause of fetal growth restriction. We have previously shown that chronic hypoxia alters cardiovascular development in

  9. Intermittent hypoxia from obstructive sleep apnea may cause neuronal impairment and dysfunction in central nervous system: the potential roles played by microglia

    Directory of Open Access Journals (Sweden)

    Yang Q

    2013-08-01

    Full Text Available Qingchan Yang,1,* Yan Wang,2,* Jing Feng,2 Jie Cao,2 Baoyuan Chen2 1Graduate School of Tianjin Medical University, 2Respiratory Department, Tianjin Medical University General Hospital, Tianjin, People's Republic of China *These authors contributed equally to this work Abstract: Obstructive sleep apnea (OSA is a common condition characterized by repetitive episodes of complete (apnea or partial (hypopnea obstruction of the upper airway during sleep, resulting in oxygen desaturation and arousal from sleep. Intermittent hypoxia (IH resulting from OSA may cause structural neuron damage and dysfunction in the central nervous system (CNS. Clinically, it manifests as neurocognitive and behavioral deficits with oxidative stress and inflammatory impairment as its pathophysiological basis, which are mediated by microglia at the cellular level. Microglia are dominant proinflammatory cells in the CNS. They induce CNS oxidative stress and inflammation, mainly through mitochondria, reduced nicotinamide adenine dinucleotide phosphate oxidase, and the release of excitatory toxic neurotransmitters. The balance between neurotoxic versus protective and anti- versus proinflammatory microglial factors might determine the final roles of microglia after IH exposure from OSA. Microglia inflammatory impairments will continue and cascade persistently upon activation, ultimately resulting in clinically significant neuron damage and dysfunction in the CNS. In this review article, we summarize the mechanisms of structural neuron damage in the CNS and its concomitant dysfunction due to IH from OSA, and the potential roles played by microglia in this process. Keywords: intermittent hypoxia, obstructive sleep apnea, microglia, inflammation, apoptosis

  10. Ibuprofen Blunts Ventilatory Acclimatization to Sustained Hypoxia in Humans.

    Directory of Open Access Journals (Sweden)

    Kemal Erdem Basaran

    Full Text Available Ventilatory acclimatization to hypoxia is a time-dependent increase in ventilation and the hypoxic ventilatory response (HVR that involves neural plasticity in both carotid body chemoreceptors and brainstem respiratory centers. The mechanisms of such plasticity are not completely understood but recent animal studies show it can be blocked by administering ibuprofen, a nonsteroidal anti-inflammatory drug, during chronic hypoxia. We tested the hypothesis that ibuprofen would also block the increase in HVR with chronic hypoxia in humans in 15 healthy men and women using a double-blind, placebo controlled, cross-over trial. The isocapnic HVR was measured with standard methods in subjects treated with ibuprofen (400 mg every 8 hrs or placebo for 48 hours at sea level and 48 hours at high altitude (3,800 m. Subjects returned to sea level for at least 30 days prior to repeating the protocol with the opposite treatment. Ibuprofen significantly decreased the HVR after acclimatization to high altitude compared to placebo but it did not affect ventilation or arterial O2 saturation breathing ambient air at high altitude. Hence, compensatory responses prevent hypoventilation with decreased isocapnic ventilatory O2-sensitivity from ibuprofen at this altitude. The effect of ibuprofen to decrease the HVR in humans provides the first experimental evidence that a signaling mechanism described for ventilatory acclimatization to hypoxia in animal models also occurs in people. This establishes a foundation for the future experiments to test the potential role of different mechanisms for neural plasticity and ventilatory acclimatization in humans with chronic hypoxemia from lung disease.

  11. The Role of Bystander Effects in the Antitumor Activity of the Hypoxia-Activated Prodrug PR-104

    Science.gov (United States)

    Foehrenbacher, Annika; Patel, Kashyap; Abbattista, Maria R.; Guise, Chris P.; Secomb, Timothy W.; Wilson, William R.; Hicks, Kevin O.

    2013-01-01

    Activation of prodrugs in tumors (e.g., by bioreduction in hypoxic zones) has the potential to generate active metabolites that can diffuse within the tumor microenvironment. Such “bystander effects” may offset spatial heterogeneity in prodrug activation but the relative importance of this effect is not understood. Here, we quantify the contribution of bystander effects to antitumor activity for the first time, by developing a spatially resolved pharmacokinetic/pharmacodynamic (SR-PK/PD) model for PR-104, a phosphate ester pre-prodrug that is converted systemically to the hypoxia-activated prodrug PR-104A. Using Green’s function methods we calculated concentrations of oxygen, PR-104A and its active metabolites, and resultant cell killing, at each point of a mapped three-dimensional tumor microregion. Model parameters were determined in vitro, using single cell suspensions to determine relationships between PR-104A metabolism and clonogenic cell killing, and multicellular layer (MCL) cultures to measure tissue diffusion coefficients. LC-MS/MS detection of active metabolites in the extracellular medium following exposure of anoxic single cell suspensions and MCLs to PR-104A confirmed that metabolites can diffuse out of cells and through a tissue-like environment. The SR-PK/PD model estimated that bystander effects contribute 30 and 50% of PR-104 activity in SiHa and HCT116 tumors, respectively. Testing the model by modulating PR-104A-activating reductases and hypoxia in tumor xenografts showed overall clonogenic killing broadly consistent with model predictions. Overall, our data suggest that bystander effects are important in PR-104 antitumor activity, although their reach may be limited by macroregional heterogeneity in hypoxia and reductase expression in tumors. The reported computational and experimental techniques are broadly applicable to all targeted anticancer prodrugs and could be used to identify strategies for rational prodrug optimization. PMID

  12. Down-regulation of vascular PPAR-γ contributes to endothelial dysfunction in high-fat diet-induced obese mice exposed to chronic intermittent hypoxia.

    Science.gov (United States)

    Zhang, Yanan; Zhang, Chunlian; Li, Haiou; Hou, Jingdong

    2017-10-14

    Obstructive sleep apnea (OSA), characterized by chronic intermittent hypoxia (CIH), is associated with endothelial dysfunction. The prevalence of OSA is linked to an epidemic of obesity. CIH has recently been reported to cause endothelial dysfunction in diet-induced obese animals by exaggerating oxidative stress and inflammation, but the underlying mechanism remains unclear. PPAR-γ, a ligand-inducible transcription factor that exerts anti-oxidant and anti-inflammatory effects, is down-regulated in the peripheral tissues in diet-induce obesity. We tested the hypothesis that down-regulation of vascular PPAR-γ in diet-induced obesity enhances inflammation and oxidative stress in response to CIH, resulting in endothelial dysfunction. Male C57BL/6 mice were fed either a high-fat diet (HFD) or a low-fat diet (LFD) and simultaneously exposed to CIH or intermittent air for 6 weeks. An additional HFD group received a combination of CIH and PPAR-γ agonist pioglitazone for 6 weeks. Endothelial-dependent vasodilation was impaired only in HFD group exposed to CIH, compared with other groups, but was restored by concomitant pioglitazone treatment. Molecular studies revealed that vascular PPAR-γ expression and activity were reduced in HFD groups, compared with LFD groups, but were reversed by pioglitazone treatment. In addition, CIH elevated vascular expression of NADPH oxidase 4 and dihydroethidium fluorescence, and increased expression of proinflammatory cytokines TNF-α and IL-1β in both LFD and HFD groups, but these increases was significantly greater in HFD group, along with decreased vascular eNOS activity. Pioglitazone treatment of HFD group prevented CIH-induced changes in above molecular markers. The results suggest that HFD-induced obesity down-regulates vascular PPAR-γ, which results in exaggerated oxidative stress and inflammation in response to CIH, contributing to endothelial dysfunction. This finding may provide new insights into the mechanisms by which OSA

  13. Mitochondrial Roles and Cytoprotection in Chronic Liver Injury

    Directory of Open Access Journals (Sweden)

    Davide Degli Esposti

    2012-01-01

    Full Text Available The liver is one of the richest organs in terms of number and density of mitochondria. Most chronic liver diseases are associated with the accumulation of damaged mitochondria. Hepatic mitochondria have unique features compared to other organs' mitochondria, since they are the hub that integrates hepatic metabolism of carbohydrates, lipids and proteins. Mitochondria are also essential in hepatocyte survival as mediator of apoptosis and necrosis. Hepatocytes have developed different mechanisms to keep mitochondrial integrity or to prevent the effects of mitochondrial lesions, in particular regulating organelle biogenesis and degradation. In this paper, we will focus on the role of mitochondria in liver physiology, such as hepatic metabolism, reactive oxygen species homeostasis and cell survival. We will also focus on chronic liver pathologies, especially those linked to alcohol, virus, drugs or metabolic syndrome and we will discuss how mitochondria could provide a promising therapeutic target in these contexts.

  14. Role of Proteases in Chronic Obstructive Pulmonary Disease

    Directory of Open Access Journals (Sweden)

    Kailash C. Pandey

    2017-08-01

    Full Text Available Chronic obstructive pulmonary disease (COPD is generally associated with progressive destruction of airways and lung parenchyma. Various factors play an important role in the development and progression of COPD, like imbalance of proteases, environmental and genetic factors and oxidative stress. This review is specifically focused on the role of proteases and their imbalance in COPD. There are three classes (serine, mettalo, and cysteine of proteases involved in COPD. In serine proteases, neutrophil elastase, cathepsin G, and proteinase-3 are involved in destruction of alveolar tissue. Matrix-mettaloproteinase-9, 12, 13, plays an influential role in severity of COPD. Among cysteine proteases, caspase-3, caspases-8 and caspase-9 play an important role in controlling apoptosis. These proteases activities can be regulated by inhibitors like α-1-antitrypsin, neutrophil elastase inhibitor, and leukocyte protease inhibitor. Studies suggest that neutrophil elastase may be a therapeutic target for COPD, and specific inhibitor against this enzyme has potential role to control the disease. Current study suggests that Dipeptidyl Peptidase IV is a potential marker for COPD. Since the expression of proteases and its inhibitors play an important role in COPD pathogenesis, therefore, it is worth investigating the role of proteases and their regulation. Understanding the biochemical basis of COPD pathogenesis using advanced tools in protease biochemistry and aiming toward translational research from bench-to-bedside will have great impact to deal with this health problem.

  15. The role of arthroscopy in chronic elbow instability.

    Science.gov (United States)

    Goodwin, David; Dynin, Maria; Macdonnell, J Ryan; Kessler, Michael W

    2013-12-01

    Elbow arthroscopy has had an emerging role in the management of many disorders of the elbow. In patients with chronic elbow instability, several arthroscopic techniques have been described in the diagnosis and management of posterolateral rotatory instability and valgus instability. We performed a systematic review investigating the role of arthroscopy in posterolateral rotatory instability and valgus instability in the elbow using the PubMed and CINAHL (Cumulative Index to Nursing and Allied Health Literature) databases, and the Cochrane Database of Systematic Reviews, consisting of articles from peer-reviewed journals published in the English language after January 1, 1991. Search criteria initially identified 249 articles. Twenty-five articles met criteria for inclusion. This included 17 review articles, 4 cadaveric studies, 3 retrospective studies, and 1 prospective study. Two of the retrospective studies compared arthroscopic and open techniques. Articles included in this systematic review concluded that arthroscopy is an accurate adjunct to physical examination and imaging in the diagnosis of chronic elbow instability and affords an exceptional view of the joint with the ability to address intra-articular pathologic conditions. Arthroscopic surgical techniques have shown equivalent clinical outcomes in a comparison of arthroscopic and open techniques. Elbow arthroscopy is a valuable tool in the diagnosis and management of chronic elbow instability. Patients treated arthroscopically benefit from additional diagnostic techniques, improved visualization of the elbow joint, the ability to address coexisting intra-articular pathologic conditions, and minimal soft tissue injury with no clinical consequences in outcomes. With such significant advantages, the use of elbow arthroscopy is likely to expand in the management of chronic elbow instability. Level IV, systematic review. Copyright © 2013 Arthroscopy Association of North America. Published by Elsevier Inc

  16. Nontypeable Haemophilus influenzae biofilms: role in chronic airway infections

    Directory of Open Access Journals (Sweden)

    W Edward Swords

    2012-07-01

    Full Text Available Like many pathogens inhabiting mucosal surfaces, nontypeable Haemophilus influenzae (NTHi forms multicellular biofilm communities both in vitro and in various infection models. In the past 15 years much has been learned about determinants of biofilm formation by this organism and potential roles in bacterial virulence, especially in the context of chronic and recurrent infections. However, this concept has not been without some degree of controversy, and in the past some have expressed doubts about the relevance of NTHi biofilms to disease. In this review, I will summarize the present information on the composition and potential role(s of NTHi biofilms in different clinical contexts, as well as highlight potential areas for future work.

  17. Nontypeable Haemophilus influenzae biofilms: role in chronic airway infections.

    Science.gov (United States)

    Swords, W Edward

    2012-01-01

    Like many pathogens inhabiting mucosal surfaces, nontypeable Haemophilus influenzae (NTHi) forms multicellular biofilm communities both in vitro and in various infection models. In the past 15 years much has been learned about determinants of biofilm formation by this organism and potential roles in bacterial virulence, especially in the context of chronic and recurrent infections. However, this concept has not been without some degree of controversy, and in the past some have expressed doubts about the relevance of NTHi biofilms to disease. In this review, I will summarize the present information on the composition and potential role(s) of NTHi biofilms in different clinical contexts, as well as highlight potential areas for future work.

  18. Hypoxia: From Placental Development to Fetal Programming.

    Science.gov (United States)

    Fajersztajn, Lais; Veras, Mariana Matera

    2017-10-16

    Hypoxia may influence normal and different pathological processes. Low oxygenation activates a variety of responses, many of them regulated by hypoxia-inducible factor 1 complex, which is mostly involved in cellular control of O 2 consumption and delivery, inhibition of growth and development, and promotion of anaerobic metabolism. Hypoxia plays a significant physiological role in fetal development; it is involved in different embryonic processes, for example, placentation, angiogenesis, and hematopoiesis. More recently, fetal hypoxia has been associated directly or indirectly with fetal programming of heart, brain, and kidney function and metabolism in adulthood. In this review, the role of hypoxia in fetal development, placentation, and fetal programming is summarized. Hypoxia is a basic mechanism involved in different pregnancy disorders and fetal health developmental complications. Although there are scientific data showing that hypoxia mediates changes in the growth trajectory of the fetus, modulates gene expression by epigenetic mechanisms, and determines the health status later in adulthood, more mechanistic studies are needed. Furthermore, if we consider that intrauterine hypoxia is not a rare event, and can be a consequence of unavoidable exposures to air pollution, nutritional deficiencies, obesity, and other very common conditions (drug addiction and stress), the health of future generations may be damaged and the incidence of some diseases will markedly increase as a consequence of disturbed fetal programming. Birth Defects Research 109:1377-1385, 2017.© 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  19. Identification of Hypoxia-Regulated Proteins Using MALDI-Mass Spectrometry Imaging Combined with Quantitative Proteomics

    DEFF Research Database (Denmark)

    Djidja, Marie-Claude; Chang, Joan; Hadjiprocopis, Andreas

    2014-01-01

    Hypoxia is present in most solid tumors and is clinically correlated with increased metastasis and poor patient survival. While studies have demonstrated the role of hypoxia and hypoxia-regulated proteins in cancer progression, no attempts have been made to identify hypoxia-regulated proteins using...

  20. Chronic intermittent hypoxia affects the cytosolic phospholipase A(2)alpha/cyclooxygenase 2 pathway via beta(2)-adrenoceptor-mediated ERK/p38 stimulation

    Czech Academy of Sciences Publication Activity Database

    Míčová, P.; Hahnová, K.; Hlaváčková, Markéta; Elsnicová, B.; Chytilová, Anna; Holzerová, Kristýna; Žurmanová, J.; Neckář, Jan; Kolář, František; Nováková, Olga; Novotný, J.

    2016-01-01

    Roč. 423, 1-2 (2016), s. 151-163 ISSN 0300-8177 R&D Projects: GA ČR(CZ) GA13-10267S Institutional support: RVO:67985823 Keywords : heart * hypoxia * ischemia/reperfusion * phospholipase A2 * cyclooxygenase 2 * beta-adrenoceptor * MAPK Subject RIV: FA - Cardiovascular Diseases incl. Cardiotharic Surgery Impact factor: 2.669, year: 2016

  1. Control of the cerebral circulation and metabolism by the rostral ventrolateral medulla: Possible role in the cerebrovascular response to hypoxia

    International Nuclear Information System (INIS)

    Underwood, M.D.

    1988-01-01

    Neurons within the rostral ventrolateral medulla (RVL) corresponding to the location of adrenaline neurons of the C1 group (C1 area) maintain resting levels of arterial pressure (AP) and mediate the reflex cardiovascular responses to baro- and chemoreceptor activation and cerebral ischemia. The author therefore sought to determine whether neurons in the C1 area: (a) modulate regional cerebral blood flow (rCBF) and/or cerebral glucose utilization (rCGU), (b) participate in the maintenance of resting levels of CBF and CGU, and (c) mediate the CBF response to hypoxia. Rats were anesthetized, paralyzed and ventilated. The RVL was stimulated electrically or chemically, with kainic acid; lesions were placed electrolytically. rCBF was measured using 14-C-iodoantipyrine and rCGU with 14 C-2-deoxyglucose in 11 dissected brain regions

  2. Role of transglutaminase 2 in PAC1 receptor mediated protection against hypoxia-induced cell death and neurite outgrowth in differentiating N2a neuroblastoma cells.

    Science.gov (United States)

    Algarni, Alanood S; Hargreaves, Alan J; Dickenson, John M

    2017-03-15

    The PAC 1 receptor and tissue transglutaminase (TG2) play important roles in neurite outgrowth and modulation of neuronal cell survival. In this study, we investigated the regulation of TG2 activity by the PAC 1 receptor in retinoic acid-induced differentiating N2a neuroblastoma cells. TG2 transamidase activity was determined using an amine incorporation and a peptide cross linking assay. In situ TG2 activity was assessed by visualising the incorporation of biotin-X-cadaverine using confocal microscopy. TG2 phosphorylation was monitored via immunoprecipitation and Western blotting. The role of TG2 in PAC 1 receptor-induced cytoprotection and neurite outgrowth was investigated by monitoring hypoxia-induced cell death and appearance of axonal-like processes, respectively. The amine incorporation and protein crosslinking activity of TG2 increased in a time and concentration-dependent manner following stimulation with pituitary adenylate cyclase-activating polypeptide-27 (PACAP-27). PACAP-27 mediated increases in TG2 activity were abolished by the TG2 inhibitors Z-DON and R283 and by pharmacological inhibition of protein kinase A (KT 5720 and Rp-cAMPs), protein kinase C (Ro 31-8220), MEK1/2 (PD 98059), and removal of extracellular Ca 2+ . Fluorescence microscopy demonstrated PACAP-27 induced in situ TG2 activity. TG2 inhibition blocked PACAP-27 induced attenuation of hypoxia-induced cell death and outgrowth of axon-like processes. TG2 activation and cytoprotection were also observed in human SH-SY5Y cells. Together, these results demonstrate that TG2 activity was stimulated downstream of the PAC 1 receptor via a multi protein kinase dependent pathway. Furthermore, PAC 1 receptor-induced cytoprotection and neurite outgrowth are dependent upon TG2. These results highlight the importance of TG2 in the cellular functions of the PAC 1 receptor. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. VEGF secretion during hypoxia depends on free radicals-induced Fyn kinase activity in mast cells

    International Nuclear Information System (INIS)

    Garcia-Roman, Jonathan; Ibarra-Sanchez, Alfredo; Lamas, Monica; Gonzalez Espinosa, Claudia

    2010-01-01

    Research highlights: → Bone marrow-derived mast cells (BMMCs) secrete functional VEGF but do not degranulate after Cobalt chloride-induced hypoxia. → CoCl 2 -induced VEGF secretion in mast cells occurs by a Ca 2+ -insensitive but brefeldin A and Tetanus toxin-sensitive mechanism. → Trolox and N-acetylcysteine inhibit hypoxia-induced VEGF secretion but only Trolox inhibits FcεRI-dependent anaphylactic degranulation in mast cells. → Src family kinase Fyn activation after free radical production is necessary for hypoxia-induced VEGF secretion in mast cells. -- Abstract: Mast cells (MC) have an important role in pathologic conditions such as asthma and chronic obstructive pulmonary disease (COPD), where hypoxia conduce to deleterious inflammatory response. MC contribute to hypoxia-induced angiogenesis producing factors such as vascular endothelial growth factor (VEGF), but the mechanisms behind the control of hypoxia-induced VEGF secretion in this cell type is poorly understood. We used the hypoxia-mimicking agent cobalt chloride (CoCl 2 ) to analyze VEGF secretion in murine bone marrow-derived mast cells (BMMCs). We found that CoCl 2 promotes a sustained production of functional VEGF, able to induce proliferation of endothelial cells in vitro. CoCl 2 -induced VEGF secretion was independent of calcium rise but dependent on tetanus toxin-sensitive vesicle-associated membrane proteins (VAMPs). VEGF exocytosis required free radicals formation and the activation of Src family kinases. Interestingly, an important deficiency on CoCl 2 -induced VEGF secretion was observed in Fyn kinase-deficient BMMCs. Moreover, Fyn kinase was activated by CoCl 2 in WT cells and this activation was prevented by treatment with antioxidants such as Trolox and N-acetylcysteine. Our results show that BMMCs are able to release VEGF under hypoxic conditions through a tetanus toxin-sensitive mechanism, promoted by free radicals-dependent Fyn kinase activation.

  4. VEGF secretion during hypoxia depends on free radicals-induced Fyn kinase activity in mast cells

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Roman, Jonathan; Ibarra-Sanchez, Alfredo; Lamas, Monica [Departamento de Farmacobiologia, Centro de Investigacion y de Estudios Avanzados del IPN (Cinvestav, IPN) (Mexico); Gonzalez Espinosa, Claudia, E-mail: cgonzal@cinvestav.mx [Departamento de Farmacobiologia, Centro de Investigacion y de Estudios Avanzados del IPN (Cinvestav, IPN) (Mexico)

    2010-10-15

    Research highlights: {yields} Bone marrow-derived mast cells (BMMCs) secrete functional VEGF but do not degranulate after Cobalt chloride-induced hypoxia. {yields} CoCl{sub 2}-induced VEGF secretion in mast cells occurs by a Ca{sup 2+}-insensitive but brefeldin A and Tetanus toxin-sensitive mechanism. {yields} Trolox and N-acetylcysteine inhibit hypoxia-induced VEGF secretion but only Trolox inhibits Fc{epsilon}RI-dependent anaphylactic degranulation in mast cells. {yields} Src family kinase Fyn activation after free radical production is necessary for hypoxia-induced VEGF secretion in mast cells. -- Abstract: Mast cells (MC) have an important role in pathologic conditions such as asthma and chronic obstructive pulmonary disease (COPD), where hypoxia conduce to deleterious inflammatory response. MC contribute to hypoxia-induced angiogenesis producing factors such as vascular endothelial growth factor (VEGF), but the mechanisms behind the control of hypoxia-induced VEGF secretion in this cell type is poorly understood. We used the hypoxia-mimicking agent cobalt chloride (CoCl{sub 2}) to analyze VEGF secretion in murine bone marrow-derived mast cells (BMMCs). We found that CoCl{sub 2} promotes a sustained production of functional VEGF, able to induce proliferation of endothelial cells in vitro. CoCl{sub 2}-induced VEGF secretion was independent of calcium rise but dependent on tetanus toxin-sensitive vesicle-associated membrane proteins (VAMPs). VEGF exocytosis required free radicals formation and the activation of Src family kinases. Interestingly, an important deficiency on CoCl{sub 2}-induced VEGF secretion was observed in Fyn kinase-deficient BMMCs. Moreover, Fyn kinase was activated by CoCl{sub 2} in WT cells and this activation was prevented by treatment with antioxidants such as Trolox and N-acetylcysteine. Our results show that BMMCs are able to release VEGF under hypoxic conditions through a tetanus toxin-sensitive mechanism, promoted by free radicals

  5. Ultrastructural analysis of the structure and distribution of the adherens junctions in the rats’ ventricular myocardium during postnatal stages of ontogeny after the infl uence of chronic prenatal hypoxia

    Directory of Open Access Journals (Sweden)

    N. S. Petruk

    2013-12-01

    Full Text Available Background. Antenatal and prenatal hypoxia causes changes in all the organs of fetuses and newborns and in the heart, particularly. Hypoxic damage of the cardiovascular system occurs in 40-70% of newborns. Currently we observe the increase of meaning of the morphological studies for the prenatal diagnosis of human’s heart diseases. It’s known that in adaptive remodeling of cardiomyocytes in the postnatal cardiogenesis of rat redistribution of diffusely located intercellular junctions from the periphery to the terminal areas of the cell occurs. The formation of a definitive pattern of intercellular junctions is completed at the puberty. But how chronic prenatal hypoxia influences the specialized adherens junctions in the rats’ ventricular myocardium is completely unknown and this requires further study. Objective. To provide complex qualitative and quantitative comparative ultrastructural analysis of the intercellular connection changes in rat ventricular myocardium on the stages of postnatal ontogenesis in the norm and under the chronic fetal hypoxia. Materials and methods. We have conducted ultrastructural analysis and distribution of the adherens junctions in the rats’ ventricles on the 1st, 3rd, 7th, 14th, 30th days during postnatal ontogeny and among mature animals in the normal development and under the chronic fetal hypoxia. Experimental chronic hypoxia was modeled by intraperitoneal injection of 1% aqueous solution of the NaNO2 in a daily dose of 50 mg/kg of body weight in the term from 10th to 21st days of pregnancy. Transmission electron microscopy, morphometric and statistical methods were applied. Pairwise comparisons between means of different groups were performed using a Student t-test where, for each couple of normally distributed populations, the null hypothesis that the means are equal was verified. Results. Pronounced increase (80,6%; p <0,05 of the content of desmosomes in the intercalated disk in the period from 7th

  6. Adaptation to chronic continuous hypoxia potentiates Akt/HK2 anti-apoptotic pathway during brief myocardial ischemia/reperfusion insult

    Czech Academy of Sciences Publication Activity Database

    Kolář, D.; Grešíková, M.; Wasková-Arnoštová, P.; Elsnicová, B.; Kohutová, J.; Horníková, D.; Vebr, P.; Neckář, Jan; Blahová, T.; Kašparová, D.; Novotný, J.; Kolář, František; Nováková, O.; Žurmanová, J.M.

    2017-01-01

    Roč. 432, 1-2 (2017), s. 99-108 ISSN 0300-8177 R&D Projects: GA ČR(CZ) GA13-10267S Institutional support: RVO:67985823 Keywords : heart * hypoxia * ischemia/reperfusion * hexokinase * protein kinase B/Akt * mitochondria Subject RIV: FA - Cardiovascular Diseases incl. Cardiotharic Surgery OBOR OECD: Biochemistry and molecular biology Impact factor: 2.669, year: 2016

  7. The role of Cajal cells in chronic prostatitis.

    Science.gov (United States)

    Haki Yuksel, Ozgur; Urkmez, Ahmet; Verit, Ayhan

    2016-07-04

    Types of prostatitis can be defined as groups of syndromes in adult men associated with infectious and noninfectious causes characterized frequently by lower abdominal and perineal signs and diverse clinical symptoms and complications. Etiopathogenesis of chronic prostatitis is not well defined. Moreover, its treatment outcomes are not satisfactory. Presence of c-kit positive interstitial cells in human prostate is already known. It has been demonstrated that these cells can be pacemaker cells which trigger spontaneous slow-wave electrical activity in the prostate and can be responsible for the transport of glandular secretion from acinar cells into major and minor prostatic ducts and finally into urethra. In the light of all these data, when presence of a possible inflammatory pathology is thought to involve prostate that secretes and has a reservoir which drains its secretion (for prostate, prostatic urethra), two points are worth mentioning. Impairment of secretion mechanism and collection of secretion within the organ with reflux of the microbial material from its reservoir back into prostate gland. Both of these potential conditions can be explained by ductal neuromuscular mechanism, which induces secretion. We think that in this neuromuscular mechanism interstitial Cajal cells have an important role in chronic prostatitis. Our hypothesis is that curability of prostatitis is correlated with the number of Cajal cells not subjected to apoptosis.

  8. [Chronic heart failure and cachexia: role of endocrine system].

    Science.gov (United States)

    Dei Cas, A; Muoio, A; Zavaroni, I

    2011-12-01

    Chronic heart failure (CHF) is a major health problem that carries a devastating prognosis. The prognosis worsens considerably once cardiac cachexia has been diagnosed. Neurohormonal, metabolic, hemodynamic and immunological alterations are involved in the initiation and progression of cardiac cachexia. Cachexia is characterized by a hypothalamic inappropriate response to the mechanisms controlling energy homeostasis. Levels of the anorexigenic hormone leptin are decreased whereas the orexigenic gherlin hormone levels are normal or elevated. Nevertheless, energy intake is not increased as expected due to a persistent activation of the proopiomelanocortin (POMC) system (anorexigenic) paralleled by a decreased activity of the neuropeptide Y (NPY, orexigenic) neurons. Cachexia is also characterized by an imbalance in anabolic (impairment in the growth hormone/insulin-like growth factor-I axis, insulin resistance) and catabolic (increased levels of catecholamines, increased cortisol/dehydroepiandrosterone ratio and activation of proinflammatory cytokines such as tumor necrosis factor-alpha, interleuchin-6, interleuchin-1') at the basis of the wasting process. This review discusses the complex role of the endocrine system in modulating energy balance, appetite and metabolism in patients with chronic heart failure. A joint multidisciplinary effort of the cardiologists, immunologists and endocrinologists might be useful to identify the precise mechanisms involved in the neuroendocrine alteration and to develop therapeutic strategies able to improve the prognosis of CHF patients.

  9. The role of Cajal cells in chronic prostatitis

    Directory of Open Access Journals (Sweden)

    Ozgur Haki Yuksel

    2016-07-01

    Full Text Available Types of prostatitis can be defined as groups of syndromes in adult men associated with infectious and noninfectious causes characterized frequently by lower abdominal and perineal signs and diverse clinical symptoms and complications. Etiopathogenesis of chronic prostatitis is not well defined. Moreover, its treatment outcomes are not satisfactory. Presence of c-kit positive interstitial cells in human prostate is already known. It has been demonstrated that these cells can be pacemaker cells which trigger spontaneous slow-wave electrical activity in the prostate and can be responsible for the transport of glandular secretion from acinar cells into major and minor prostatic ducts and finally into urethra. In the light of all these data, when presence of a possible inflammatory pathology is thought to involve prostate that secretes and has a reservoir which drains its secretion (for prostate, prostatic urethra, two points are worth mentioning. Impairment of secretion mechanism and collection of secretion within the organ with reflux of the microbial material from its reservoir back into prostate gland. Both of these potential conditions can be explained by ductal neuromuscular mechanism, which induces secretion. We think that in this neuromuscular mechanism interstitial Cajal cells have an important role in chronic prostatitis. Our hypothesis is that curability of prostatitis is correlated with the number of Cajal cells not subjected to apoptosis.

  10. Childhood chronic gastritis and duodenitis: Role of altered sensory neuromediators.

    Science.gov (United States)

    Islek, Ali; Yilmaz, Aygen; Elpek, Gulsum Ozlem; Erin, Nuray

    2016-10-07

    To investigate the roles of the neuropeptides vasoactive intestinal peptide (VIP), substance P (SP), and calcitonin gene-related peptide (CGRP) in chronic gastritis and duodenitis in children. Biopsy samples from the gastric and duodenal mucosa of 52 patients and 30 control subjects were obtained. Samples were taken for pathological examination, immunohistochemical staining, enzyme activity measurements and quantitative measurements of tissue peptide levels. We observed differential effects of the disease on peptide levels, which were somewhat different from previously reported changes in chronic gastritis in adults. Specifically, SP was increased and CGRP and VIP were decreased in patients with gastritis. The changes were more prominent at sites where gastritis was severe, but significant changes were also observed in neighboring areas where gastritis was less severe. Furthermore, the degree of changes was correlated with the pathological grade of the disease. The expression of CD10, the enzyme primarily involved in SP hydrolysis, was also decreased in patients with duodenitis. Based on these findings, we propose that decreased levels of VIP and CGRP and increased levels of SP contribute to pathological changes in gastric mucosa. Hence, new treatments targeting these molecules may have therapeutic and preventive effects.

  11. Kinetic modeling in PET imaging of hypoxia

    DEFF Research Database (Denmark)

    Li, Fan; Jørgensen, Jesper Tranekjær; Hansen, Anders E

    2014-01-01

    be used for non-invasive mapping of tissue oxygenation in vivo and several hypoxia specific PET tracers have been developed. Evaluation of PET data in the clinic is commonly based on visual assessment together with semiquantitative measurements e.g. standard uptake value (SUV). However, dynamic PET......Tumor hypoxia is associated with increased therapeutic resistance leading to poor treatment outcome. Therefore the ability to detect and quantify intratumoral oxygenation could play an important role in future individual personalized treatment strategies. Positron Emission Tomography (PET) can...... analysis for PET imaging of hypoxia....

  12. Role of hypoxia-inducible factor-α in hepatitis-B-virus X protein-mediated MDR1 activation

    International Nuclear Information System (INIS)

    Han, Hyo-Kyung; Han, Chang Yeob; Cheon, Eun-Pa; Lee, Jaewon; Kang, Keon Wook

    2007-01-01

    The transition from chemotherapy-responsive cancer cells to chemotherapy-resistant cancer cells is mainly accompanied by the increased expression of multi-drug resistance 1 (MDR1). We found that hepatitis-B-virus X protein (HBx) increases the transcriptional activity and protein level of MDR1 in a hepatoma cell line, H4IIE. In addition, HBx overexpression made H4IIE cells more resistant to verapamil-uptake. HBx stabilized hypoxia-inducible factor-1α (HIF-1α) and induced the nuclear translocation of C/EBPβ. Reporter gene analyses showed that HBx increased the reporter activity in the cells transfected with the reporter containing MDR1 gene promoter. Moreover, the luciferase reporter gene activity was significantly inhibited by HIF-1α siRNA but not by overexpression of C/EBP dominant negative mutant. These results imply that HBx increases the MDR1 transporter activity through the transcriptional activation of the MDR1 gene with HIF-1α activation, and suggest HIF-1α for the therapeutic target of HBV-mediated chemoresistance

  13. Chronic Treatment with a Water-Soluble Extract from the Culture Medium of Ganoderma lucidum Mycelia Prevents Apoptosis and Necroptosis in Hypoxia/Ischemia-Induced Injury of Type 2 Diabetic Mouse Brain

    Directory of Open Access Journals (Sweden)

    Meiyan Xuan

    2015-01-01

    Full Text Available Type 2 diabetes mellitus has been known to increase systemic oxidative stress by chronic hyperglycemia and visceral obesity and aggravate cerebral ischemic injury. On the basis of our previous study regarding a water-soluble extract from the culture medium of Ganoderma lucidum mycelia (designed as MAK, which exerts antioxidative and neuroprotective effects, the present study was conducted to evaluate the preventive effects of MAK on apoptosis and necroptosis (a programmed necrosis induced by hypoxia/ischemia (H/I in type 2 diabetic KKAy mice. H/I was induced by a combination of unilateral common carotid artery ligation with hypoxia (8% O2 for 20 min and subsequent reoxygenation. Pretreatment with MAK (1 g/kg, p.o. for a week significantly reduced H/I-induced neurological deficits and brain infarction volume assessed at 24 h of reoxygenation. Histochemical analysis showed that MAK significantly suppressed superoxide production, neuronal cell death, and vacuolation in the ischemic penumbra, which was accompanied by a decrease in the numbers of TUNEL- or cleaved caspase-3-positive cells. Furthermore, MAK decreased the expression of receptor-interacting protein kinase 3 mRNA and protein, a key molecule for necroptosis. These results suggest that MAK confers resistance to apoptotic and necroptotic cell death and relieves H/I-induced cerebral ischemic injury in type 2 diabetic mice.

  14. Chronic Respiratory Infection in Patients with Chronic Obstructive Pulmonary Disease: What Is the Role of Antibiotics?

    Science.gov (United States)

    Miravitlles, Marc; Anzueto, Antonio

    2017-06-23

    Chronic infections are associated with exacerbation in patients with chronic obstructive pulmonary disease (COPD). The major objective of the management of these patients is the prevention and effective treatment of exacerbations. Patients that have increased sputum production, associated with purulence and worsening shortness of breath, are the ones that will benefit from antibiotic therapy. It is important to give the appropriate antibiotic therapy to prevent treatment failure, relapse, and the emergence of resistant pathogens. In some patients, systemic corticosteroids are also indicated to improve symptoms. In order to identify which patients are more likely to benefit from these therapies, clinical guidelines recommend stratifying patients based on their risk factor associated with poor outcome or recurrence. It has been identified that patients with more severe disease, recurrent infection and presence of purulent sputum are the ones that will be more likely to benefit from this therapy. Another approach related to disease prevention could be the use of prophylactic antibiotics during steady state condition. Some studies have evaluated the continuous or the intermittent use of antibiotics in order to prevent exacerbations. Due to increased bacterial resistance to antibiotics and the presence of side effects, several antibiotics have been developed to be nebulized for both treatment and prevention of acute exacerbations. There is a need to design long-term studies to evaluate these interventions in the natural history of the disease. The purpose of this publication is to review our understanding of the role of bacterial infection in patients with COPD exacerbation, the role of antibiotics, and future interventions.

  15. Management of chronic pancreatitis: Role of endoscopic therapy

    Directory of Open Access Journals (Sweden)

    Manu Tandan

    2012-01-01

    Full Text Available Chronic pancreatitis (CP, a disease of varied etiology can, from the endoscopists perspective present as ductal strictures, stones, ductal leaks and fluid collections, biliary strictures or duodenal narrowing. This article deals with role of ERCP in the management of CP associated strictures and calculi. ERCP has a limited role in the diagnosis CP, though we feel that it is better at identifying small ductal calculi or leaks as compared to MRCP. Major and minor papilla sphincterotomy gives relief from pain in patients with mild or moderate ductal changes. Pancreatic ductal strictures are best managed by stenting. Use of multiple plastic stents (8.5-11Fr diameter gives relief from pain in 84% and strictures resolution in 95% on follow up of over 3 years. CP associated CBD strictures are also managed by placement of multiple stents. Covered SEMS are increasingly being used in these strictures. Surgery is often the best option for CP associated CBD strictures which recur after adequate endotherapy. ESWL is the standard of therapy for pancreatic ductal calculi which are large, as seen in the tropics and the non alcoholic form of CP. Our experience has shown complete or partial clearance with ESWL in over 90% of patients with large PD calculi. Good pain relief was seen in both on short and long term follow up. In selected patients of CP, ERCP and endotherapy should be offered as first line of treatment, as the results are comparable to surgery. Prior endotherapy also does not interfere with subsequent surgical procedures.

  16. Hypoxia and hypoxia inducible factor-1α are required for normal endometrial repair during menstruation.

    Science.gov (United States)

    Maybin, Jacqueline A; Murray, Alison A; Saunders, Philippa T K; Hirani, Nikhil; Carmeliet, Peter; Critchley, Hilary O D

    2018-01-23

    Heavy menstrual bleeding (HMB) is common and debilitating, and often requires surgery due to hormonal side effects from medical therapies. Here we show that transient, physiological hypoxia occurs in the menstrual endometrium to stabilise hypoxia inducible factor 1 (HIF-1) and drive repair of the denuded surface. We report that women with HMB have decreased endometrial HIF-1α during menstruation and prolonged menstrual bleeding. In a mouse model of simulated menses, physiological endometrial hypoxia occurs during bleeding. Maintenance of mice under hyperoxia during menses decreases HIF-1α induction and delays endometrial repair. The same effects are observed upon genetic or pharmacological reduction of endometrial HIF-1α. Conversely, artificial induction of hypoxia by pharmacological stabilisation of HIF-1α rescues the delayed endometrial repair in hypoxia-deficient mice. These data reveal a role for HIF-1 in the endometrium and suggest its pharmacological stabilisation during menses offers an effective, non-hormonal treatment for women with HMB.

  17. An Exploratory Study Into the Role of Dynamic Contrast-Enhanced Magnetic Resonance Imaging or Perfusion Computed Tomography for Detection of Intratumoral Hypoxia in Head-and-Neck Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Newbold, Kate [Royal Marsden Hospital, Sutton (United Kingdom); Castellano, Isabel [Institute of Cancer Research, London (United Kingdom); Charles-Edwards, Elizabeth [Institute of Cancer Research, Sutton, Surrey (United Kingdom); Mears, Dorothy; Sohaib, Aslam [Royal Marsden Hospital, Sutton (United Kingdom); Leach, Martin [Institute of Cancer Research, Sutton, Surrey (United Kingdom); Rhys-Evans, Peter; Clarke, Peter; Fisher, Cyril [Royal Marsden Hospital, London (United Kingdom); Harrington, Kevin [Institute of Cancer Research, London (United Kingdom); Royal Marsden Hospital, London (United Kingdom); Nutting, Christopher [Royal Marsden Hospital, London (United Kingdom)

    2009-05-01

    Purpose: Hypoxia in patients with head-and-neck cancer (HNC) is well established and known to cause radiation resistance and treatment failure in the management of HNC. This study examines the role of parameters derived from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and perfusion computed tomography (CT) as surrogate markers of intratumoral hypoxia, defined by using the exogenous marker of hypoxia pimonidazole and the endogenous marker carbonic anhydrase 9 (CA9). Methods and Materials: Patients with HNC underwent preoperative DCE-MRI, perfusion CT, and pimonidazole infusion. Imaging parameters were correlated with pimonidazole and CA9 staining. The strength of correlations was tested by using a two-tailed Spearman's rank correlation coefficient. Results: Twenty-three regions of interest were analyzed from the 7 patients who completed the DCE-MRI studies. A number of statistically significant correlations were seen between DCE-MRI parameters (volume transfer between blood plasma and extracellular extravascular space [EES], volume of EES, rate constant between EES and blood plasma, time at arrival of contrast inflow, time to peak, average gradient, and time to onset) and areas with a pimonidazole score of 4. In the case of CA9 staining, only a weak correlation was shown with wash-in rate. There were no significant correlations between perfusion CT parameters and pimonidazole staining or CA9 expression. Conclusion: Intratumoral hypoxia in patients with HNC may be predicted by using DCE-MRI; however, perfusion CT requires further investigation.

  18. Essential role for SphK1/S1P signaling to regulate hypoxia-inducible factor 2α expression and activity in cancer.

    Science.gov (United States)

    Bouquerel, P; Gstalder, C; Müller, D; Laurent, J; Brizuela, L; Sabbadini, R A; Malavaud, B; Pyronnet, S; Martineau, Y; Ader, I; Cuvillier, O

    2016-03-14

    The sphingosine kinase-1/sphingosine 1-phosphate (SphK1/S1P) signaling pathway has been reported to modulate the expression of the canonical transcription factor hypoxia-inducible HIF-1α in multiple cell lineages. HIF-2α is also frequently overexpressed in solid tumors but its role has been mostly studied in clear cell renal cell carcinoma (ccRCC), the most common form of kidney cancer, where HIF-2α has been established as a driver of a more aggressive disease. In this study, the role of SphK1/S1P signaling with regard to HIF-2α was investigated in various cancer cell models including ccRCC cells. Under hypoxic conditions or in ccRCC lacking a functional von Hippel-Lindau (VHL) gene and expressing high levels of HIF-2α, SphK1 activity controls HIF-2α expression and transcriptional activity through a phospholipase D (PLD)-driven mechanism. SphK1 silencing promotes a VHL-independent HIF-2α loss of expression and activity and reduces cell proliferation in ccRCC. Importantly, downregulation of SphK1 is associated with impaired Akt and mTOR signaling in ccRCC. Taking advantage of a monoclonal antibody neutralizing extracellular S1P, we show that inhibition of S1P extracellular signaling blocks HIF-2α accumulation in ccRCC cell lines, an effect mimicked when the S1P transporter Spns2 or the S1P receptor 1 (S1P1) is silenced. Here, we report the first evidence that the SphK1/S1P signaling pathway regulates the transcription factor hypoxia-inducible HIF-2α in diverse cancer cell lineages notably ccRCC, where HIF-2α has been established as a driver of a more aggressive disease. These findings demonstrate that SphK1/S1P signaling may act as a canonical regulator of HIF-2α expression in ccRCC, giving support to its inhibition as a therapeutic strategy that could contribute to reduce HIF-2 activity in ccRCC.

  19. Hypoxia-independent upregulation of placental hypoxia inducible factor-1α gene expression contributes to the pathogenesis of preeclampsia.

    Science.gov (United States)

    Iriyama, Takayuki; Wang, Wei; Parchim, Nicholas F; Song, Anren; Blackwell, Sean C; Sibai, Baha M; Kellems, Rodney E; Xia, Yang

    2015-06-01

    Accumulation of hypoxia inducible factor-1α (HIF-1α) is commonly an acute and beneficial response to hypoxia, whereas chronically elevated HIF-1α is associated with multiple disease conditions, including preeclampsia, a serious hypertensive disease of pregnancy. However, the molecular basis underlying the persistent elevation of placental HIF-1α in preeclampsia and its role in the pathogenesis of preeclampsia are poorly understood. Here we report that Hif-1α mRNA and HIF-1α protein were elevated in the placentas of pregnant mice infused with angiotensin II type I receptor agonistic autoantibody, a pathogenic factor in preeclampsia. Knockdown of placental Hif-1α mRNA by specific siRNA significantly attenuated hallmark features of preeclampsia induced by angiotensin II type I receptor agonistic autoantibody in pregnant mice, including hypertension, proteinuria, kidney damage, impaired placental vasculature, and elevated maternal circulating soluble fms-like tyrosine kinase-1 levels. Next, we discovered that Hif-1α mRNA levels and HIF-1α protein levels were induced in an independent preeclampsia model with infusion of the inflammatory cytokine tumor necrosis factor superfamily member 14 (LIGHT). SiRNA knockdown experiments also demonstrated that elevated HIF-1α contributed to LIGHT-induced preeclampsia features. Translational studies with human placentas showed that angiotensin II type I receptor agonistic autoantibody or LIGHT is capable of inducing HIF-1α in a hypoxia-independent manner. Moreover, increased HIF-1α was found to be responsible for angiotensin II type I receptor agonistic autoantibody or LIGHT-induced elevation of Flt-1 gene expression and production of soluble fms-like tyrosine kinase-1 in human villous explants. Overall, we demonstrated that hypoxia-independent stimulation of HIF-1α gene expression in the placenta is a common pathogenic mechanism promoting disease progression. Our findings reveal new insight to preeclampsia and highlight

  20. Migraine induced by hypoxia

    DEFF Research Database (Denmark)

    Arngrim, Nanna; Schytz, Henrik Winther; Britze, Josefine

    2016-01-01

    in the visual cortex were measured by proton magnetic resonance spectroscopy. The circumference of cranial arteries was measured by 3 T high-resolution magnetic resonance angiography. Hypoxia induced migraine-like attacks in eight patients compared to one patient after sham (P = 0.039), aura in three...... and possible aura in 4 of 15 patients. Hypoxia did not change glutamate concentration in the visual cortex compared to sham, but increased lactate concentration (P = 0.028) and circumference of the cranial arteries (P ... suggests that hypoxia may provoke migraine headache and aura symptoms in some patients. The mechanisms behind the migraine-inducing effect of hypoxia should be further investigated....

  1. The role of contact allergens in chronic idiopathic urticaria.

    Science.gov (United States)

    Hession, Meghan T; Scheinman, Pamela L

    2012-01-01

    The objective of this study was to determine whether contact allergens play a role in chronic idiopathic urticaria (CIU). We conducted a longitudinal prospective study of 23 patients with CIU. Patients were patch tested to a modified North American Contact Dermatitis Group standard, fragrance, and cosmetic series; other series were tested as warranted by relevant history and physical examination. Readings were performed at 48 and 72 hours. Patients were counseled to avoid proven contact allergens and were followed up 2 to 9 months after testing. Twenty-one of 23 patients were female. The mean age was 46 years. The mean duration of urticaria was 32 months. Of the 23 patients, 8 (35%) experienced improvement of their symptoms with allergen avoidance. Four (17%) experienced a complete remission, and 4 (17%) experienced partial improvement. Two of the complete responders challenged themselves to proven contact allergens and developed urticaria, which resolved upon allergen avoidance. The most common allergens were potassium dichromate (n = 9), nickel sulfate (n = 7), Myroxylon pereirae (n = 6), cobalt chloride, neomycin, p-phenylenediamine (n = 5); fragrance mix I, fragrance mix II (n = 4); cinnamic aldehyde (n = 3); and formaldehyde (n = 2). Patch testing may be helpful in the evaluation of CIU patients for whom previous workup has failed to reveal an etiology.

  2. Hypoxia triggers high-altitude headache with migraine features: A prospective trial.

    Science.gov (United States)

    Broessner, Gregor; Rohregger, Johanna; Wille, Maria; Lackner, Peter; Ndayisaba, Jean-Pierre; Burtscher, Martin

    2016-07-01

    Given the high prevalence and clinical impact of high-altitude headache (HAH), a better understanding of risk factors and headache characteristics may give new insights into the understanding of hypoxia being a trigger for HAH or even migraine attacks. In this prospective trial, we simulated high altitude (4500 m) by controlled normobaric hypoxia (FiO2 = 12.6%) to investigate acute mountain sickness (AMS) and headache characteristics. Clinical symptoms of AMS according to the Lake Louise Scoring system (LLS) were recorded before and after six and 12 hours in hypoxia. O2 saturation was measured using pulse oximetry at the respective time points. History of primary headache, especially episodic or chronic migraine, was a strict exclusion criterion. In total 77 volunteers (43 (55.8%) males, 34 (44.2%) females) were enrolled in this study. Sixty-three (81.18%) and 40 (71.4%) participants developed headache at six or 12 hours, respectively, with height and SpO2 being significantly different between headache groups at six hours (p headache development (p headache according to the International Classification of Headache Disorders (ICHD-3 beta) in n = 5 (8%) or n = 6 (15%), at six and 12 hours, respectively. Normobaric hypoxia is a trigger for HAH and migraine-like headache attacks even in healthy volunteers without any history of migraine. Our study confirms the pivotal role of hypoxia in the development of AMS and beyond that suggests hypoxia may be involved in migraine pathophysiology. © International Headache Society 2015.

  3. Hypoxia induces dilated cardiomyopathy in the chick embryo: mechanism, intervention, and long-term consequences.

    Directory of Open Access Journals (Sweden)

    Andrei Tintu

    Full Text Available Intrauterine growth restriction is associated with an increased future risk for developing cardiovascular diseases. Hypoxia in utero is a common clinical cause of fetal growth restriction. We have previously shown that chronic hypoxia alters cardiovascular development in chick embryos. The aim of this study was to further characterize cardiac disease in hypoxic chick embryos.Chick embryos were exposed to hypoxia and cardiac structure was examined by histological methods one day prior to hatching (E20 and at adulthood. Cardiac function was assessed in vivo by echocardiography and ex vivo by contractility measurements in isolated heart muscle bundles and isolated cardiomyocytes. Chick embryos were exposed to vascular endothelial growth factor (VEGF and its scavenger soluble VEGF receptor-1 (sFlt-1 to investigate the potential role of this hypoxia-regulated cytokine.Growth restricted hypoxic chick embryos showed cardiomyopathy as evidenced by left ventricular (LV dilatation, reduced ventricular wall mass and increased apoptosis. Hypoxic hearts displayed pump dysfunction with decreased LV ejection fractions, accompanied by signs of diastolic dysfunction. Cardiomyopathy caused by hypoxia persisted into adulthood. Hypoxic embryonic hearts showed increases in VEGF expression. Systemic administration of rhVEGF(165 to normoxic chick embryos resulted in LV dilatation and a dose-dependent loss of LV wall mass. Lowering VEGF levels in hypoxic embryonic chick hearts by systemic administration of sFlt-1 yielded an almost complete normalization of the phenotype.Our data show that hypoxia causes a decreased cardiac performance and cardiomyopathy in chick embryos, involving a significant VEGF-mediated component. This cardiomyopathy persists into adulthood.

  4. LncRNA TUG1 serves an important role in hypoxia-induced myocardial cell injury by regulating the miR-145-5p-Binp3 axis

    Science.gov (United States)

    Wu, Zhongwei; Zhao, Shengji; Li, Chunfu; Liu, Chaoquan

    2018-01-01

    The aim of the present study was to investigate the function of long non-coding RNA TUG1 in hypoxia-induced myocardial cell injury and to explore the potential molecular mechanisms. The cardiomyocyte cell line H9c2 was cultured under hypoxic and normoxic conditions. TUG1 expression under hypoxic conditions was then detected. The effects of TUG1 overexpression on viability, apoptosis, migration and invasion were assayed. In addition, the microRNA (miR)-145-5p expression was detected. Following H9c2 cell transfection with miR-145-5p mimics, the H9c2 cell viability, apoptosis, migration and invasion were also detected. Additionally, the target gene of miR-145-5p was assayed by Luciferase reporter assay. The protein expressions of Wnt-3a, Wnt5a, and β-catenin in H9c2 cells under hypoxic conditions were also determined. The results revealed that hypoxia induced injury in H9c2 cells, including inhibiting cell viability, migration and invasion, and promoting cell apoptosis. Overexpression of TUG1 aggravated hypoxia-induced injury in H9c2 cells. In addition, miR-145-5p was negatively regulated by TUG1, and TUG1 overexpression aggravated hypoxia-induced injury via the downregulation of miR-145-5p. Furthermore, B-cell lymphoma 2 interacting protein 3 (Bnip3) was a target of miR-145-5p, and overexpression of Bnip3 aggravated hypoxia-induced cell injury by activating Wnt/β-catenin signaling pathways in H9c2 cells. In conclusion, overexpression of TUG1 aggravated hypoxia-induced injury in cardiomyocytes by regulating the miR-145-5p-Binp3 axis. Activation of the Wnt/β-catenin signaling pathway may be a key mechanism to mediate the role of TUG1 in regulating hypoxia-induced myocardial injury. TUG1 may be an effective diagnostic marker and therapeutic target for myocardial ischemia. PMID:29207102

  5. Selective vulnerability in brain hypoxia

    DEFF Research Database (Denmark)

    Cervos-Navarro, J.; Diemer, Nils Henrik

    1991-01-01

    Neuropathology, selective vulnerability, brain hypoxia, vascular factors, excitotoxicity, ion homeostasis......Neuropathology, selective vulnerability, brain hypoxia, vascular factors, excitotoxicity, ion homeostasis...

  6. Role of 3T multiparametric-MRI with BOLD hypoxia imaging for diagnosis and post therapy response evaluation of postoperative recurrent cervical cancers

    Directory of Open Access Journals (Sweden)

    Abhishek Mahajan

    2016-01-01

    Conclusion: Conventional-MR with MPMRI significantly increases the diagnostic accuracy for suspected vaginal vault/local recurrence. Post therapy serial MPMRI with hypoxia imaging follow-up objectively documents the response. MPMRI and BOLD hypoxia imaging provide information regarding tumor biology at the molecular, subcellular, cellular and tissue levels and this information may be used as an appropriate and reliable biologic target for radiation dose painting to optimize therapy in future.

  7. The Role of Hypoxia-Inducible Factor-1α, Glucose Transporter-1, (GLUT-1 and Carbon Anhydrase IX in Endometrial Cancer Patients

    Directory of Open Access Journals (Sweden)

    Pawel Sadlecki

    2014-01-01

    Full Text Available Hypoxia-inducible factor-1α (HIF-1α, glucose transporter-1 (GLUT-1, and carbon anhydrase IX (CAIX are important molecules that allow adaptation to hypoxic environments. The aim of our study was to investigate the correlation between HIF-1α, GLUT-1, and CAIX protein level with the clinicopathological features of endometrial cancer patients. Materials and Methods. 92 endometrial cancer patients, aged 37–84, were enrolled to our study. In all patients clinical stage, histologic grade, myometrial invasion, lymph node, and distant metastases were determined. Moreover, the survival time was assessed. Immunohistochemical analyses were performed on archive formalin fixed paraffin embedded tissue sections. Results. High significant differences (P=0.0115 were reported between HIF-1α expression and the histologic subtype of cancer. Higher HIF-1α expression was associated with the higher risk of recurrence (P=0.0434. The results of GLUT-1 and CAIX expression did not reveal any significant differences between the proteins expression in the primary tumor and the clinicopathological features. Conclusion. The important role of HIF-1α in the group of patients with the high risk of recurrence and the negative histologic subtype of the tumor suggest that the expression of this factor might be useful in the panel of accessory pathomorphological tests and could be helpful in establishing more accurate prognosis in endometrial cancer patients.

  8. Endogenous markers of tumor hypoxia. Predictors of clinical radiation resistance?

    International Nuclear Information System (INIS)

    Vordermark, D.; Brown, J.M.

    2003-01-01

    Background: Eppendorf electrode measurements of tumor oxygenation have defined an adverse effect of tumor hypoxia on prognosis after radiotherapy and other treatment modalities, in particular in head and neck and cervix carcinomas as well as soft tissue sarcomas. Recently, the immunohistochemical detection of proteins involved in the ''hypoxic response'' of tumor cells has been discussed as a method to estimate hypoxia in clinical tumor specimens. Material and Methods: This review focuses on clinical and experimental data, regarding prognostic impact and comparability with other methods of hypoxia detection, for three proteins suggested as endogenous markers of tumor hypoxia: hypoxia-inducible factor-1α (HIF-1α), carbonic anhydrase 9 (CA 9), and glucose transporter 1 (GLUT1). Results: None of the three potential hypoxia markers is exclusively hypoxia-specific, and in each case protein can be detected under normoxic conditions in vitro. HIF-1α responds rapidly to hypoxia but also to reoxygenation, making this marker quite unstable in the context of clinical sample collection. The perinecrotic labeling pattern typical of chronic hypoxia and a reasonable agreement with injectable hypoxia markers such as pimonidazole have most consistently been described for CA 9. All three markers showed correlation with Eppendorf electrode measurements of tumor oxygenation in carcinoma of the cervix. In nine of 13 reports, among them all three that refer to curative radiotherapy for head and neck cancer, HIF-1α overexpression was associated with poor outcome. CA 9 was an adverse prognostic factor in cervix, head and neck and lung cancer, but not in two other head and neck cancer reports. GLUT1 predicted for poor survival in colorectal, cervix and lung cancer. Conclusion: Endogenous markers have the potential to indicate therapeutically relevant levels of hypoxia within tumors. Clinical trials assessing a marker's ability to predict a benefit from specific hypoxia

  9. Roles of p300 and cyclic adenosine monophosphate response element binding protein in high glucose-induced hypoxia-inducible factor 1α inactivation under hypoxic conditions.

    Science.gov (United States)

    Ding, Lingtao; Yang, Minlie; Zhao, Tianlan; Lv, Guozhong

    2017-05-01

    Given the high prevalence of diabetes and burn injuries worldwide, it is essential to dissect the underlying mechanism of delayed burn wound healing in diabetes patients, especially the high glucose-induced hypoxia-inducible factor 1 (HIF-1)-mediated transcription defects. Human umbilical vein endothelial cells were cultured with low or high concentrations of glucose. HIF-1α-induced vascular endothelial growth factor (VEGF) transcription was measured by luciferase assay. Immunofluorescence staining was carried out to visualize cyclic adenosine monophosphate response element binding protein (CREB) localization. Immunoprecipitation was carried out to characterize the association between HIF-1α/p300/CREB. To test whether p300, CREB or p300+CREB co-overexpression was sufficient to rescue the HIF-1-mediated transcription defect after high glucose exposure, p300, CREB or p300+CREB co-overexpression were engineered, and VEGF expression was quantified. Finally, in vitro angiogenesis assay was carried out to test whether the high glucose-induced angiogenesis defect is rescuable by p300 and CREB co-overexpression. Chronic high glucose treatment resulted in impaired HIF-1-induced VEGF transcription and CREB exclusion from the nucleus. P300 or CREB overexpression alone cannot rescue high glucose-induced HIF-1α transcription defects. In contrast, co-overexpression of p300 and CREB dramatically ameliorated high glucose-induced impairment of HIF-1-mediated VEGF transcription, as well as in vitro angiogenesis. Finally, we showed that co-overexpression of p300 and CREB rectifies the dissociation of HIF-1α-p300-CREB protein complex in chronic high glucose-treated cells. Both p300 and CREB are required for the function integrity of HIF-1α transcription machinery and subsequent angiogenesis, suggesting future studies to improve burn wound healing might be directed to optimization of the interaction between p300, CREB and HIF-1α. © 2016 The Authors. Journal of Diabetes

  10. Hypoxia-based strategies for regenerative dentistry-Views from the different dental fields.

    Science.gov (United States)

    Müller, Anna Sonja; Janjić, Klara; Lilaj, Bledar; Edelmayer, Michael; Agis, Hermann

    2017-09-01

    The understanding of the cell biological processes underlying development and regeneration of oral tissues leads to novel regenerative approaches. Over the past years, knowledge on key roles of the hypoxia-based response has become more profound. Based on these findings, novel regenerative approaches for dentistry are emerging, which target cellular oxygen sensors. These approaches include hypoxia pre-conditioning and pharmacologically simulated hypoxia. The increase in studies on hypoxia and hypoxia-based strategies in regenerative dentistry highlights the growing attention to hypoxia's role in regeneration and its underlying biology, as well as its application in a therapeutic setting. In this narrative review, we present the current knowledge on the role of hypoxia in oral tissues and review the proposed hypoxia-based approaches in different fields of dentistry, including endodontics, orthodontics, periodontics, and oral surgery. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Hypoxia Inducible Factor Signaling and Experimental Persistent Pulmonary Hypertension of the Newborn: A Therapeutic Opportunity

    Directory of Open Access Journals (Sweden)

    Stephen eWedgwood

    2015-03-01

    Full Text Available BACKGROUND: Mitochondrial reactive oxygen species levels and nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB activity are increased in a lamb model of persistent pulmonary hypertension of the newborn (PPHN. These events can trigger hypoxia inducible factor (HIF signaling in response to hypoxia, which has been shown to contribute to pulmonary vascular remodeling in rodent models of pulmonary hypertension. However the role of HIF signaling in chronic intrauterine pulmonary hypertension is not well understood.AIM: To determine if HIF signaling is increased in the lamb model of PPHN, and to identify the underlying mechanisms. RESULTS: PPHN was induced in lambs by antenatal ligation of the ductus arteriosus at 128 days gestation. After 9 days, lungs and pulmonary artery smooth muscle cells (PASMC were isolated from control and PPHN lambs. HIF-1α expression was increased in PPHN lungs and HIF activity was increased in PPHN PASMC relative to controls. Hypoxia increased HIF activity to a greater degree in PPHN vs. control PASMC. Control PASMC were exposed to cyclic stretch at 1Hz and 15% elongation for 24h, as an in vitro model of vascular stress. Stretch increased HIF activity, which was attenuated by inhibition of mitochondrial complex III and NFκB.CONCLUSION: Increased HIF signaling in PPHN is triggered by stretch, via mechanisms involving mitochondrial ROS and NFκB. Hypoxia substantially amplifies HIF activity in PPHN vascular cells. Targeting these signaling molecules may attenuate and reverse pulmonary vascular remodeling associated with PPHN.

  12. Hypoxia determines survival outcomes of bacterial infection through HIF-1α-dependent reprogramming of leukocyte metabolism

    OpenAIRE

    Thompson, A.A.R.; Dickinson, R.S.; Murphy, F.; Thomson, J.P.; Marriott, H.M.; Tavares, A.; Willson, J.; Williams, L.; Lewis, A.; Mirchandani, A.; Coelho, P.D.S.; Doherty, C.; Ryan, E.; Watts, E.; Morton, N.M.

    2017-01-01

    Hypoxia and bacterial infection frequently coexist, in both acute and chronic clinical settings, and typically result in adverse clinical outcomes. To ameliorate this morbidity, we investigated the interaction between hypoxia and the host response. In the context of acute hypoxia, both Staphylococcus aureus and Streptococcus pneumoniae infections rapidly induced progressive neutrophil-mediated morbidity and mortality, with associated hypothermia and cardiovascular compromise. Preconditioning ...

  13. Overexpression of Hypoxia-Inducible Factor-1α Exacerbates Endothelial Barrier Dysfunction Induced by Hypoxia

    Directory of Open Access Journals (Sweden)

    Pei Wang

    2013-09-01

    Full Text Available Background/Aims: The mechanisms involved in endothelial barrier dysfunction induced by hypoxia are incompletely understood. There is debate about the role of hypoxia-inducible factor-1α (HIF-1α in endothelial barrier disruption. The aim of this study was to investigate the effect of genetic overexpression of HIF-1α on barrier function and the underlying mechanisms in hypoxic endothelial cells. Methods: The plasmid pcDNA3.1/V5-His-HIF-1α was stably transfected into human endothelial cells. The cells were exposed to normoxia or hypoxia. The mRNA and protein expressions of HIF-1α were detected by RT-PCR and Western blot respectively. The barrier function was assessed by measuring the transendothelial electrical resistance (TER. The Western blot analysis was used to determine the protein expression of glucose transporter-1 (GLUT-1, zonular occludens-1 (ZO-1, occludin, and myosin light chain kinase (MLCK in endothelial cells. The mRNA expression of proinflammatory cytokines was detected by qRT-PCR. Results: Genetic overexpression of HIF-1α significantly increased the mRNA and protein expression of HIF-1α in endothelial cells. The overexpression of HIF-1α enhanced the hypoxia-induced increase of HIF-1α and GLUT-1 protein expression. HIF-1α overexpression not only exacerbated hypoxia-induced endothelial barrier dysfunction but also augmented hypoxia-induced up-regulation of MLCK protein expression. HIF-1α overexpression also enhanced IL-1β, IL-6 and TNF-α mRNA expression. Conclusion: We provide evidence that genetic overexpression of HIF-1α aggravates the hypoxia-induced endothelial barrier dysfunction via enhancing the up-regulation of MLCK protein expression caused by hypoxia, suggesting a potential role for HIF-1α in the pathogenesis of endothelial barrier dysfunction in hypoxia.

  14. Evaluation of Notch and Hypoxia Signaling Pathways in Chemically ...

    African Journals Online (AJOL)

    Hepatocellular carcinoma (HCC) is a common worldwide malignancy. Notch signaling pathway contributes to the genesis of diverse cancers, however, its role in HCC is unclear. Hypoxia is a common feature of HCC. Signal integration between Notch and hypoxia may be involved in HCC. The aim of this study was to ...

  15. The role of metformin and resveratrol in the prevention of hypoxia-inducible factor 1α accumulation and fibrosis in hypoxic adipose tissue.

    Science.gov (United States)

    Li, Xiaole; Li, Jia; Wang, Lulu; Li, Aiyun; Qiu, Zhixia; Qi, Lian-Wen; Kou, Junping; Liu, Kang; Liu, Baolin; Huang, Fang

    2016-06-01

    Hypoxic activation of hypoxia-inducible factor 1α (HIF-1α) and fibrosis in adipose tissue contribute to adipose dysfunction. This study was designed to investigate the effects of metformin and resveratrol on the regulation of HIF-1α and fibrosis in hypoxic adipose tissue. Mice were fed a high-fat diet to induce hypoxia and fibrosis in adipose tissue; adipose tissue incubated in vitro in 1% O2 showed a similar change. The effects of metformin and resveratrol on hypoxia, HIF-1α accumulation, endoplasmic reticulum stress and gene expressions of extracellular matrix components and pro-inflammatory cytokines were examined. Oral administration of metformin or resveratrol prevented hypoxia and reduced HIF-1α accumulation with dephosphorylation of inositol-requiring enzyme 1α and eukaryotic initiation factor 2α, indicative of suppression of hypoxic HIF-1α activation and endoplasmic reticulum stress. Metformin and resveratrol down-regulated gene expressions of Col3α, Col6α, elastin and lysyl oxidase and thereby reduced collagen deposition in adipose tissue. The increased gene expressions of TNF-α, IL-6, monocyte chemoattractant protein 1 and F4/80 were also down-regulated by metformin and resveratrol. Metformin and resveratrol had similar effects in adipose tissue exposed to 1% O2 . Metformin reduced ATP production and prevented the reduction in oxygen tension in 3T3-L1 cells, suggesting that it prevented hypoxia by limiting oxygen consumption, whereas resveratrol reduced HIF-1α accumulation by promoting its proteasomal degradation via the regulation of AMPK/SIRT1. Hypoxia and fibrosis are early causes of adipose dysfunction in obesity. Both metformin and resveratrol effectively inhibited HIF-1α activation-induced fibrosis and inflammation in adipose tissue, although by different mechanisms. © 2016 The British Pharmacological Society.

  16. Characterization of CgHIFα-Like, a Novel bHLH-PAS Transcription Factor Family Member, and Its Role under Hypoxia Stress in the Pacific Oyster Crassostrea gigas.

    Directory of Open Access Journals (Sweden)

    Ting Wang

    Full Text Available Hypoxia-inducible factor (HIF, a critical member of the basic-helix-loop-helix (bHLH-containing Per-Arnt-Sim (PAS protein family, is a master transcription factor involved in maintaining oxygen homeostasis. In the present study, we isolated and characterized a novel bHLH-PAS family member, CgHIFα-like gene, from the Pacific oyster Crassostrea gigas, and determined its importance during hypoxia stress. The 3020-bp CgHIFα-like cDNA encoded a protein of 888 amino acids. The predicted CgHIFα-like amino acid sequence was conserved in the N-terminal bHLH, PAS, and PAC domains (but not in the C-terminal domain and was most closely related to the HIF family in the bHLH-PAS protein phylogenic tree. Similar to the mammalian HIF-1α, CgHIFα-like could be expressed as four mRNA isoforms containing alternative 5'-untranslated regions and different translation initiation codons. At the mRNA level, these isoforms were expressed in a tissue-specific manner and showed increased transcription to varying degrees under hypoxic conditions. Additionally, the western blot analysis demonstrated that CgHIFα-like was induced by hypoxia. Electrophoretic mobility shift assay indicated that CgHIFα-like could bind to the hypoxia responsive element (HRE, whereas dual-luciferase reporter analysis demonstrated that CgHIFα-like could transactivate the reporter gene containing the HREs. In addition to CgHIFα-like, we identified CgARNT from the C. gigas, analyzed its expression pattern, and confirmed its interaction with CgHIFα-like using a yeast two-hybrid assay. In conclusion, this is the first report on the cloning and characterization of a novel hypoxia transcription factor in mollusks, which could accumulate under hypoxia and regulate hypoxia related gene expression by binding to HRE and dimerizing with CgARNT. As only one member of HIF has been identified in invertebrates to date, our results provide new insights into the unique mechanisms of hypoxia tolerance in

  17. Chronic heart failure: Role of the GP in management

    Directory of Open Access Journals (Sweden)

    Leon Piterman

    2018-02-01

    Full Text Available The commonest cause of chronic heat failure in China is ischemic heart disease, followed by hypertension and valvular heart disease. Echocardiography is essential in establishing a diagnosis as well as helping to identify a cause and to monitor progress. Management includes nonpharmacological as well as pharmacological treatment, and self-care with careful monitoring of salt and fluid intake as well as regular weight measurement. Care planning and team-based care are essential in managing patients with chronic heart failure, who often have concurrent multimorbidity and are receiving polypharmacy.

  18. Nitroimidazoles and imaging hypoxia

    International Nuclear Information System (INIS)

    Nunn, A.; Linder, K.; Strauss, H.W.

    1995-01-01

    A class of compounds known to undergo different intracellular metabolism depending on the availability of oxygen in tissue, the nitroimidazoles, have been advocated for imaging hypoxic tissue. In the presence of normal oxygen levels the molecule is immediately reoxidized. In hypoxic tissue the low oxygen concentration is not able to effectively compete to reoxidize the molecule and further reduction appears to take place. The association is not irreversible. Nitroimidazoles for in vivo imaging using radiohalogenated derivatives of misonidazole have recently been employed in patients. Two major problems with fluoromisonidazole are its relatively low concentration within the lesion and the need to wait several hours to permit clearance of the agent from the normoxic background tissue. Even with high-resolution positron emission tomographic imaging, this combination of circumstances makes successful evaluation of hypoxic lesions a challenge. Single-photon agents, with their longer half-lives and comparable biological properties, offer a greater opportunity for successful imaging. In 1992 technetium-99m labeled nitroimidazoles were described that seem to have at least comparable in vivo characteristics. Laboratory studies have demonstrated preferential binding of these agents to hypoxic tissue in the myocardium, in the brain, and in tumors. These investigations indicate that imaging can provide direct evidence of tissue with low oxygen levels that is viable. Even from this early vantage point the utility of measuring tissue oxygen levels with external imaging suggests that hypoxia imaging could play a major role in clinical decision making. (orig./MG)

  19. Developmental Hypoxia Has Negligible Effects on Long-Term Hypoxia Tolerance and Aerobic Metabolism of Atlantic Salmon (Salmo salar).

    Science.gov (United States)

    Wood, Andrew T; Clark, Timothy D; Andrewartha, Sarah J; Elliott, Nicholas G; Frappell, Peter B

    Exposure to developmental hypoxia can have long-term impacts on the physiological performance of fish because of irreversible plasticity. Wild and captive-reared Atlantic salmon (Salmo salar) can be exposed to hypoxic conditions during development and continue to experience fluctuating oxygen levels as juveniles and adults. Here, we examine whether developmental hypoxia impacts subsequent hypoxia tolerance and aerobic performance of Atlantic salmon. Individuals at 8°C were exposed to 50% (hypoxia) or 100% (normoxia) dissolved oxygen (DO) saturation (as percent of air saturation) from fertilization for ∼100 d (800 degree days) and then raised in normoxic conditions for a further 15 mo. At 18 mo after fertilization, aerobic scope was calculated in normoxia (100% DO) and acute (18 h) hypoxia (50% DO) from the difference between the minimum and maximum oxygen consumption rates ([Formula: see text] and [Formula: see text], respectively) at 10°C. Hypoxia tolerance was determined as the DO at which loss of equilibrium (LOE) occurred in a constantly decreasing DO environment. There was no difference in [Formula: see text], [Formula: see text], or aerobic scope between fish raised in hypoxia or normoxia. There was some evidence that hypoxia tolerance was lower (higher DO at LOE) in hypoxia-raised fish compared with those raised in normoxia, but the magnitude of the effect was small (12.52% DO vs. 11.73% DO at LOE). Acute hypoxia significantly reduced aerobic scope by reducing [Formula: see text], while [Formula: see text] remained unchanged. Interestingly, acute hypoxia uncovered individual-level relationships between DO at LOE and [Formula: see text], [Formula: see text], and aerobic scope. We discuss our findings in the context of developmental trajectories and the role of aerobic performance in hypoxia tolerance.

  20. Investigating the Regulation and Potential Role of Nonhypoxic Hypoxia-Inducible Factor 1 (HIF-1) in Aromatase Inhibitor Resistant Breast Cancer

    Science.gov (United States)

    2013-10-01

    hypoxia responsive element ( HRE ) to which HIF-1 binds in order to regulate vimentin gene expresson has not been identified. We have currently, analyzed...the vimentin promoter and have identified 2 potential HRE sites, based on sequence (Figure 5). Primers have been designed and ordered, and

  1. Further evidence of the in vivo role of erythropoietin or companion molecules induced by hypoxia on proliferation and continuing differentiation of BFU-e in PCDC

    International Nuclear Information System (INIS)

    Harigaya, K.; Cronkite, E.P.; Miller, M.E.; Moccia, G.

    1981-01-01

    Normal and plethoric bone marrow cells were grown in plasma clot diffusion chambers (PCDC) implanted into the peritoneum of normal mice or mice submitted to 7 h of hypoxia (23,000 ft) daily, on a single day or on 2 consecutive days at different times after implantation of the PCDC's. Daily discontinuous hypoxia (DDH) produced more 6-day bursts than other treatments. Hypoxia on days 1 and 2 after implantation was nearly as effective as DDH on day-6 bursts. Erythropoietin (Ep) levels were measured by bioassay on both diffusion chamber (DC) contents and serum. Serum Ep levels peaked after a 7-hr hypoxic exposure while the DC content Ep levels were in the nondetectable range. The data implies that either higher than normal Ep levels or a companion molecule(s) produced by hypoxia are required for 1 to 2 days early in the culture period to force an increasing number of BFU-d-e down the erythrocytic pathway and thus increase red cell production at times of need in vivo

  2. Hypoxia and hypoxia mimetics decrease aquaporin 5 (AQP5 expression through both hypoxia inducible factor-1α and proteasome-mediated pathways.

    Directory of Open Access Journals (Sweden)

    Jitesh D Kawedia

    Full Text Available The alveolar epithelium plays a central role in gas exchange and fluid transport, and is therefore critical for normal lung function. Since the bulk of water flux across this epithelium depends on the membrane water channel Aquaporin 5 (AQP5, we asked whether hypoxia had any effect on AQP5 expression. We show that hypoxia causes a significant (70% decrease in AQP5 expression in the lungs of mice exposed to hypoxia. Hypoxia and the hypoxia mimetic, cobalt, also caused similar decreases in AQP5 mRNA and protein expression in the mouse lung epithelial cell line MLE-12. The action of hypoxia and cobalt on AQP5 transcription was demonstrated by directly quantifying heternonuclear RNA by real-time PCR. Dominant negative mutants of Hypoxia Inducible Factor (HIF-1α and HIF-1α siRNA blocked the action of cobalt, showing that HIF-1α is a key component in this mechanism. The proteasome inhibitors, lactacystin or proteasome inhibitor-III completely abolished the effect of hypoxia and cobalt both at the protein and mRNA level indicating that the proteasome pathway is probably involved not only for the stability of HIF-1α protein, but for the stability of unidentified transcription factors that regulate AQP5 transcription. These studies reveal a potentially important physiological mechanism linking hypoxic stress and membrane water channels.

  3. Hypoxia and Hypoxia Mimetics Decrease Aquaporin 5 (AQP5) Expression through Both Hypoxia Inducible Factor-1α and Proteasome-Mediated Pathways

    Science.gov (United States)

    Kawedia, Jitesh D.; Yang, Fan; Sartor, Maureen A.; Gozal, David; Czyzyk-Krzeska, Maria; Menon, Anil G.

    2013-01-01

    The alveolar epithelium plays a central role in gas exchange and fluid transport, and is therefore critical for normal lung function. Since the bulk of water flux across this epithelium depends on the membrane water channel Aquaporin 5 (AQP5), we asked whether hypoxia had any effect on AQP5 expression. We show that hypoxia causes a significant (70%) decrease in AQP5 expression in the lungs of mice exposed to hypoxia. Hypoxia and the hypoxia mimetic, cobalt, also caused similar decreases in AQP5 mRNA and protein expression in the mouse lung epithelial cell line MLE-12. The action of hypoxia and cobalt on AQP5 transcription was demonstrated by directly quantifying heternonuclear RNA by real-time PCR. Dominant negative mutants of Hypoxia Inducible Factor (HIF-1α) and HIF-1α siRNA blocked the action of cobalt, showing that HIF-1α is a key component in this mechanism. The proteasome inhibitors, lactacystin or proteasome inhibitor-III completely abolished the effect of hypoxia and cobalt both at the protein and mRNA level indicating that the proteasome pathway is probably involved not only for the stability of HIF-1α protein, but for the stability of unidentified transcription factors that regulate AQP5 transcription. These studies reveal a potentially important physiological mechanism linking hypoxic stress and membrane water channels. PMID:23469202

  4. Accelerated Aging during Chronic Oxidative Stress: A Role for PARP-1

    Directory of Open Access Journals (Sweden)

    Daniëlle M. P. H. J. Boesten

    2013-01-01

    Full Text Available Oxidative stress plays a major role in the pathophysiology of chronic inflammatory disease and it has also been linked to accelerated telomere shortening. Telomeres are specialized structures at the ends of linear chromosomes that protect these ends from degradation and fusion. Telomeres shorten with each cell division eventually leading to cellular senescence. Research has shown that poly(ADP-ribose polymerase-1 (PARP-1 and subtelomeric methylation play a role in telomere stability. We hypothesized that PARP-1 plays a role in accelerated aging in chronic inflammatory diseases due to its role as coactivator of NF-κb and AP-1. Therefore we evaluated the effect of chronic PARP-1 inhibition (by fisetin and minocycline in human fibroblasts (HF cultured under normal conditions and under conditions of chronic oxidative stress, induced by tert-butyl hydroperoxide (t-BHP. Results showed that PARP-1 inhibition under normal culturing conditions accelerated the rate of telomere shortening. However, under conditions of chronic oxidative stress, PARP-1 inhibition did not show accelerated telomere shortening. We also observed a strong correlation between telomere length and subtelomeric methylation status of HF cells. We conclude that chronic PARP-1 inhibition appears to be beneficial in conditions of chronic oxidative stress but may be detrimental under relatively normal conditions.

  5. The role of interstitial changes in the progression of chronic kidney disease

    Directory of Open Access Journals (Sweden)

    Beata Sulikowska

    2015-07-01

    Full Text Available Interstitium – the renal tubulointerstitial compartment – is located between the renal tubule basement membrane and microcirculation vessels. Interstitial fibroblasts produce the extracellular matrix and constitute the structure’s cellular skeleton, regulating spatial relationships between its components (microenvironment.The tubular epithelium and endothelium cooperate within an integrated microenvironment. Structural or functional impairment of the extracellular matrix, microcirculation vessels or tubular epithelium results in disturbances of tubulointerstitial compartment components.In the course of glomerular kidney diseases, the intrarenal RAA system becomes activated and inflammatory mediators are released. Interstitial inflammation and microcirculatory disorders develop, inducing adverse consequences, manifested mainly through the process of hypoxia and inflammation.Inflammation-induced increase in interleukin-1 (TNF-α expression leads to increased concentrations of VEGF, ICAM-1, angiotensin II, IL-6 and IL-8. Cytokines activate fibroblasts, myofibroblasts and endothelial cells. Fibrosis is also triggered by HIF-1alpha pathway activation, resulting in vascular growth and fibroblast proliferation. This reaction likewise occurs through activation of NF-ĸβ, EPO, GLUT-1, IGF-1 and INOS.Interstitial fibrosis is one of the factors determining the clinical course of kidney diseases. Apart from inducing fibrosis, microcirculatory disorders lead to the progression of hypoxia.Angiogenesis is a part of the repair process accompanying fibrosis. Its determinant is the normal function and structure of endothelial cells manifested by their ability to migrate and proliferate in response to, inter alia, angiopoietins, VEGF and nitric oxide synthase.Administering a three-drug RAAS-inhibiting therapy to patients with chronic glomerulopathies improves tubular function, measured by the decrease in excretion of NAG and propeptide of type III

  6. ON THE ROLE OF BACTERIAL MICROFLORA IN ETIOLOGY OF CHRONIC ADENOIDITIS IN CHILDREN

    Directory of Open Access Journals (Sweden)

    D. A. Tulupov

    2014-01-01

    Full Text Available A review of the results of clinical studies on the role of pathogenic bacterial microflora in etiology of chronic adenoiditis in children is shown in this article. According to the literature data the main cause of the development of chronic diseases of the nasopharynx in children is viral infection. The role of the bacterial microflora is secondary, but nevertheless significant. The main bacterial pathogens isolated from the nasopharynx of children with chronic adenoiditis are Staphylococcus aureus, Haemophilus influenzae and Streptococcus pneumonia. However there is significant dissociation in the prevalence of these bacterial agents according to the data of different scientists. Ability of the bacteria to produce biomembranes plays significant role in formation of persistence of the above-mentioned pathogens in the nasopharynx in chronic adenoiditis. Bacterial biomembranes as well as the revealing of the large amounts of bacteria within the tissues of adenoids determines discussions on possibilities of systemic and topical antibacterial treatment. 

  7. Hypoxia-induced pulmonary vascular remodeling: cellular and molecular mechanisms.

    Science.gov (United States)

    Stenmark, Kurt R; Fagan, Karen A; Frid, Maria G

    2006-09-29

    Chronic hypoxic exposure induces changes in the structure of pulmonary arteries, as well as in the biochemical and functional phenotypes of each of the vascular cell types, from the hilum of the lung to the most peripheral vessels in the alveolar wall. The magnitude and the specific profile of the changes depend on the species, sex, and the developmental stage at which the exposure to hypoxia occurred. Further, hypoxia-induced changes are site specific, such that the remodeling process in the large vessels differs from that in the smallest vessels. The cellular and molecular mechanisms vary and depend on the cellular composition of vessels at particular sites along the longitudinal axis of the pulmonary vasculature, as well as on local environmental factors. Each of the resident vascular cell types (ie, endothelial, smooth muscle, adventitial fibroblast) undergo site- and time-dependent alterations in proliferation, matrix protein production, expression of growth factors, cytokines, and receptors, and each resident cell type plays a specific role in the overall remodeling response. In addition, hypoxic exposure induces an inflammatory response within the vessel wall, and the recruited circulating progenitor cells contribute significantly to the structural remodeling and persistent vasoconstriction of the pulmonary circulation. The possibility exists that the lung or lung vessels also contain resident progenitor cells that participate in the remodeling process. Thus the hypoxia-induced remodeling of the pulmonary circulation is a highly complex process where numerous interactive events must be taken into account as we search for newer, more effective therapeutic interventions. This review provides perspectives on each of the aforementioned areas.

  8. Chronic pelvic pain syndrome: role of a thorough clinical assessment.

    Science.gov (United States)

    Quaghebeur, Jörgen; Wyndaele, Jean-Jacques

    2015-04-01

    Chronic pelvic pain syndrome (CPPS) presents with a variety of symptoms affecting multiple systems. There is no universal treatment that can be given to all patients with CPPS. The results of treatment depend greatly on an accurate diagnosis. A thorough clinical assessment, including a "four-step plan", should include paying special attention to the musculoskeletal system. This assessment is not difficult to perform and provides valuable information on possible muscular problems and neuropathy.

  9. The role of blood flow in chronic duodenal ulcer

    Energy Technology Data Exchange (ETDEWEB)

    Gompertz, R.H.K.; Mathie, R.T.; Michalowski, A.S.; Spencer, J.; Baron, J.H.; Williamson, R.C.N.

    1996-01-01

    Changes in gastroduodenal blood flow have been implicated in the pathogenesis of duodenal ulcer. The authors have studied duodenal blood flow during the development of an acute to chronic duodenal ulcer by using the abscopal model, in which ulcers are generated as an indirect effect of lower mediastinal irradiation. Female CFLP mice were randomly allocated to one of three groups. Irradiated ``controls`` received 18 Gy 250 kV X-rays to the upper mediastinum. The lower mediastinum group received the same dose of irradiation, which has been shown to induce typical chronic duodenal ulcers in 45% of animals so treated. Animals were studied by means of radiolabelled microspheres 3 or 7 days later. Proximal duodenal blood flow specifically was reduced by 32% in the lower mediastinum group compared with irradiated controls at 7 days. There was no significant difference in blood flow to the stomach and to the distal duodenum. The decrease in proximal duodenal blood flow in the lower mediastinum group did not differ in the five animals that developed ulcer compared with the seven that did not. Although, there is an overall decrease in duodenal blood flow associated with chronic duodenal ulcer, reduced blood flow may not explain individual susceptibility to ulceration. 21 refs., 1 fig., 2 tabs.

  10. Role of the inflammasome in chronic obstructive pulmonary disease (COPD).

    Science.gov (United States)

    Colarusso, Chiara; Terlizzi, Michela; Molino, Antonio; Pinto, Aldo; Sorrentino, Rosalinda

    2017-10-10

    Inflammation is central to the development of chronic obstructive pulmonary disease (COPD), a pulmonary disorder characterized by chronic bronchitis, chronic airway obstruction, emphysema, associated to progressive and irreversible decline of lung function. Emerging genetic and pharmacological evidence suggests that IL-1-like cytokines are highly detected in the sputum and broncho-alveolar lavage (BAL) of COPD patients, implying the involvement of the multiprotein complex inflammasome. So far, scientific evidence has focused on nucleotide-binding oligomerization domain-like receptors protein 3 (NLRP3) inflammasome, a specialized inflammatory signaling platform that governs the maturation and secretion of IL-1-like cytokines through the regulation of caspase-1-dependent proteolytic processing. Some studies revealed that it is involved during airway inflammation typical of COPD. Based on the influence of cigarette smoke in various respiratory diseases, including COPD, in this view we report its effects in inflammatory and immune responses in COPD mouse models and in human subjects affected by COPD. In sharp contrast to what reported on experimental and clinical studies, randomized clinical trials show that indirect inflammasome inhibitors did not have any beneficial effect in moderate to severe COPD patients.

  11. Role of transglutaminase 2 in A1 adenosine receptor- and β2-adrenoceptor-mediated pharmacological pre- and post-conditioning against hypoxia-reoxygenation-induced cell death in H9c2 cells.

    Science.gov (United States)

    Vyas, Falguni S; Nelson, Carl P; Dickenson, John M

    2018-01-15

    Pharmacologically-induced pre- and post-conditioning represent attractive therapeutic strategies to reduce ischaemia/reperfusion injury during cardiac surgery and following myocardial infarction. We have previously reported that transglutaminase 2 (TG2) activity is modulated by the A 1 adenosine receptor and β 2 -adrenoceptor in H9c2 cardiomyoblasts. The primary aim of this study was to determine the role of TG2 in A 1 adenosine receptor and β 2 -adrenoceptor-induced pharmacological pre- and post-conditioning in the H9c2 cells. H9c2 cells were exposed to 8h hypoxia (1% O 2 ) followed by 18h reoxygenation, after which cell viability was assessed by monitoring mitochondrial reduction of MTT, lactate dehydrogenase release and caspase-3 activation. N 6 -cyclopentyladenosine (CPA; A 1 adenosine receptor agonist), formoterol (β 2 -adrenoceptor agonist) or isoprenaline (non-selective β-adrenoceptor agonist) were added before hypoxia/reoxygenation (pre-conditioning) or at the start of reoxygenation following hypoxia (post-conditioning). Pharmacological pre- and post-conditioning with CPA and isoprenaline significantly reduced hypoxia/reoxygenation-induced cell death. In contrast, formoterol did not elicit protection. Pre-treatment with pertussis toxin (G i/o -protein inhibitor), DPCPX (A 1 adenosine receptor antagonist) or TG2 inhibitors (Z-DON and R283) attenuated the A 1 adenosine receptor-induced pharmacological pre- and post-conditioning. Similarly, pertussis toxin, ICI 118,551 (β 2 -adrenoceptor antagonist) or TG2 inhibition attenuated the isoprenaline-induced cell survival. Knockdown of TG2 using small interfering RNA (siRNA) attenuated CPA and isoprenaline-induced pharmacological pre- and post-conditioning. Finally, proteomic analysis following isoprenaline treatment identified known (e.g. protein S100-A6) and novel (e.g. adenine phosphoribosyltransferase) protein substrates for TG2. These results have shown that A 1 adenosine receptor and β 2 -adrenoceptor

  12. Impact of Hypoxia on the Metastatic Potential of Human Prostate Cancer Cells

    International Nuclear Information System (INIS)

    Dai Yao; Bae, Kyungmi; Siemann, Dietmar W.

    2011-01-01

    Purpose: Intratumoral hypoxia is known to be associated with radioresistance and metastasis. The present study examined the effect of acute and chronic hypoxia on the metastatic potential of prostate cancer PC-3, DU145, and LNCaP cells. Methods and Materials: Cell proliferation and clonogenicity were tested by MTT assay and colony formation assay, respectively. 'Wound-healing' and Matrigel-based chamber assays were used to monitor cell motility and invasion. Hypoxia-inducible factor 1 alpha (HIF-1α) expression was tested by Western blot, and HIF-1-target gene expression was detected by real-time polymerase chain reaction. Secretion of matrix metalloproteinases (MMPs) was determined by gelatin zymography. Results: When PC-3 cells were exposed to 1% oxygen (hypoxia) for various periods of time, chronic hypoxia (≥24 h) decreased cell proliferation and induced cell death. In contrast, prostate cancer cells exposed to acute hypoxia (≤6 h) displayed increased motility, clonogenic survival, and invasive capacity. At the molecular level, both hypoxia and anoxia transiently stabilized HIF-1α. Exposure to hypoxia also induced the early expression of MMP-2, an invasiveness-related gene. Treatment with the HIF-1 inhibitor YC-1 attenuated the acute hypoxia-induced migration, invasion, and MMP-2 activity. Conclusions: The length of oxygen deprivation strongly affected the functional behavior of all three prostate cancer cell lines. Acute hypoxia in particular was found to promote a more aggressive metastatic phenotype.

  13. Kinetic modeling in PET imaging of hypoxia

    Science.gov (United States)

    Li, Fan; Joergensen, Jesper T; Hansen, Anders E; Kjaer, Andreas

    2014-01-01

    Tumor hypoxia is associated with increased therapeutic resistance leading to poor treatment outcome. Therefore the ability to detect and quantify intratumoral oxygenation could play an important role in future individual personalized treatment strategies. Positron Emission Tomography (PET) can be used for non-invasive mapping of tissue oxygenation in vivo and several hypoxia specific PET tracers have been developed. Evaluation of PET data in the clinic is commonly based on visual assessment together with semiquantitative measurements e.g. standard uptake value (SUV). However, dynamic PET contains additional valuable information on the temporal changes in tracer distribution. Kinetic modeling can be used to extract relevant pharmacokinetic parameters of tracer behavior in vivo that reflects relevant physiological processes. In this paper, we review the potential contribution of kinetic analysis for PET imaging of hypoxia. PMID:25250200

  14. Functional role of CCL5/RANTES for HCC progression during chronic liver disease

    NARCIS (Netherlands)

    Mohs, Antje; Kuttkat, Nadine; Reissing, Johanna; Zimmermann, Henning Wolfgang; Sonntag, Roland; Proudfoot, Amanda; Youssef, Sameh A.; de Bruin, Alain; Cubero, Francisco Javier; Trautwein, Christian

    Background & Aims: During liver inflammation, triggering fibrogenesis and carcinogenesis immune cells play a pivotal role. In the present study we investigated the role of CCL5 in human and in murine models of chronic liver inflammation leading to hepatocellular carcinoma (HCC) development. Methods:

  15. Hypoxia targeting copper complexes

    International Nuclear Information System (INIS)

    Dearling, J.L.

    1998-11-01

    The importance and incidence of tumour hypoxia, its measurement and current treatments available, including pharmacological and radiopharmacological methods of targeting hypoxia, are discussed. A variety of in vitro and in vivo methods for imposing hypoxia have been developed and are reviewed. Copper, its chemistry, biochemistry and radiochemistry, the potential for use of copper radionuclides and its use to date in this field is considered with particular reference to the thiosemicarbazones. Their biological activity, metal chelation, in vitro and in vivo studies of their radiocopper complexes and the potential for their use as hypoxia targeting radiopharmaceuticals is described. The reduction of the copper(II) complex to copper(l), its pivotal importance in their biological behaviour, and the potential for manipulation of this to effect hypoxia selectivity are described. An in vitro method for assessing the hypoxia selectivity of radiopharmaceuticals is reported. The rapid deoxygenation and high viability of a mammalian cell culture in this system is discussed and factors which may affect the cellular uptake of a radiopharmaceutical are described. The design, synthesis and complexation with copper and radiocopper of a range of bis(thiosemicarbazones) is reported. Synthesis of these compounds is simple giving high yields of pure products. The characteristics of the radiocopper complexes ( 64 Cu) including lipophilicity and redox activity are reported (reduction potentials in the range -0.314 - -0.590 V). High cellular uptakes of the radiocopper complexes of the ligands, in hypoxic and normoxic EMT6 and CHO320 cells, were observed. Extremes of selectivity are shown ranging from the hypoxia selective 64 Cu(II)ATSM to normoxic cell selective 64 Cu(II)GTS. The selectivities observed are compared with the physico chemical characteristics of the complexes. A good correlation exists between selectivity of the complex and its Cu(II)/Cu(I) reduction potential, with hypoxia

  16. Enhanced carotid body chemosensory activity and the cardiovascular alterations induced by intermittent hypoxia

    Directory of Open Access Journals (Sweden)

    Rodrigo eIturriaga

    2014-12-01

    Full Text Available The carotid body (CB plays a main role in the maintenance of the oxygen homeostasis. The hypoxic stimulation of the CB increases the chemosensory discharge, which in turn elicits reflex sympathetic, cardiovascular and ventilatory adjustments. An exacerbate carotid chemosensory activity has been associated with human sympathetic-mediated diseases such as hypertension, insulin resistance, heart failure and obstructive sleep apnea (OSA. Indeed, the CB chemosensory discharge becomes tonically hypereactive in experimental models of OSA and heart failure. Chronic intermittent hypoxia (CIH, a main feature of OSA, enhances CB chemosensory baseline discharges in normoxia and in response to hypoxia, inducing sympathetic overactivity and hypertension. Oxidative stress, increased levels of ET-1, Angiotensin II and pro-inflammatory cytokines, along with a reduced production of NO in the CB, have been associated with the enhanced carotid chemosensory activity. In this review, we will discuss new evidence supporting a main role for the CB chemoreceptor in the autonomic and cardiorespiratory alterations induced by intermittent hypoxia, as well as the molecular mechanisms involved in the CB chemosensory potentiation.

  17. Enhanced carotid body chemosensory activity and the cardiovascular alterations induced by intermittent hypoxia

    Science.gov (United States)

    Iturriaga, Rodrigo; Andrade, David C.; Del Rio, Rodrigo

    2014-01-01

    The carotid body (CB) plays a main role in the maintenance of the oxygen homeostasis. The hypoxic stimulation of the CB increases the chemosensory discharge, which in turn elicits reflex sympathetic, cardiovascular, and ventilatory adjustments. An exacerbate carotid chemosensory activity has been associated with human sympathetic-mediated diseases such as hypertension, insulin resistance, heart failure, and obstructive sleep apnea (OSA). Indeed, the CB chemosensory discharge becomes tonically hypereactive in experimental models of OSA and heart failure. Chronic intermittent hypoxia (CIH), a main feature of OSA, enhances CB chemosensory baseline discharges in normoxia and in response to hypoxia, inducing sympathetic overactivity and hypertension. Oxidative stress, increased levels of ET-1, Angiotensin II and pro-inflammatory cytokines, along with a reduced production of NO in the CB, have been associated with the enhanced carotid chemosensory activity. In this review, we will discuss new evidence supporting a main role for the CB chemoreceptor in the autonomic and cardiorespiratory alterations induced by intermittent hypoxia, as well as the molecular mechanisms involved in the CB chemosensory potentiation. PMID:25520668

  18. Role of autoimmunity in nonviral chronic liver disease.

    Science.gov (United States)

    Amarapurkar, D N; Amarapurkar, A D

    2000-11-01

    To evaluate the prevalence and clinical profile of autoimmune hepatitis (AIH) in patients with chronic liver disease. Four hundred and thirty five consecutive patient with chronic liver disease seen in our department from January 1997 to December 1998 were studied with detailed history and clinical examination. All the patients underwent liver function tests, ultrasonography, isotope liver scanning, viral markers, autoimmune markers ANA, ASMA, LKM1 and AMA (by immunofluorescence technique) and liver histology whenever permissible. Appropriate work up for Wilson's disease was done whenever suspected clinically. Diagnosis of autoimmune hepatitis was made by the composite scoring system by international autoimmune hepatitis group. Twenty out of the 435 patients met the criteria of definite autoimmune hepatitis and seven patient had probable autoimmune hepatitis. Forty out of 408 patients showed markers of autoimmunity positive but did not qualify diagnosis of AIH on composite scores. Demographic profile of 27 patients with autoimmune hepatitis was as follows; male:female ratio 1:8, mean age 39.8 +/- 13 years (Range 4-65 years); mode of presentation as cirrhosis 11/27 (40.7%), chronic hepatitis 12/27 (44.4%) and acute hepatitis 4/27 (14.8%). Elevated serum bilirubin levels were seen in 12 (44.4%) patients while mean serum aminotransferases levels were 249 +/- 343 and 262 +/- 418 respectively. Other disease associations seen were as follows: diabetes in 4 (14.8%), rheumatoid arthritis in 3 (11%), hypothyroidism in 2 (7.4%) and ulcerative colitis in 1 (3.7%). The pattern of autoimmune markers was ANA +ve 23/27 (85%) (+ve titres of ANA > 1:80 in adults and 1:20 in children), ASMA +ve in 16/27 (59.2%) (+ve titres of ASMA > 1:40) and LKM1 in 3 patients. AMA in tires less than 1:80 was found in 3 patients. Liver histology changes seen were lymphoplasmacytic infiltrates (100%), bridging necrosis (93%), liver cell rossetting (80%) and fibrosis with or without cirrhosis (50

  19. Qidantongmai Protects Endothelial Cells Against Hypoxia-Induced ...

    African Journals Online (AJOL)

    induced damage. The ability of QDTM to modulate the serum VEGF-A level may play an important role in its effects on endothelial cells. Key words: Traditional Chinese Medicine, human umbilical vein endothelial cells, hypoxia, VEGF ...

  20. Role of MR imaging in chronic wrist pain

    International Nuclear Information System (INIS)

    Zanetti, Marco; Saupe, Nadja; Nagy, Ladislav

    2007-01-01

    Magnetic resonance (MR) imaging for chronic wrist pain is challenging. Correct assessment of the triangular fibrocartilage, hyaline cartilage, ligaments, and tendons has become mandatory for comprehensive decision making in wrist surgery. The MR technique, potential and limits of MR imaging in patients with chronic wrist pain will be discussed. MR arthrography with injection of gadolinium-containing contrast material into the distal radioulnar joint is suggested for evaluation of the triangular fibrocartilage. The clinically meaningful ulnar-sided peripheral tears are otherwise hard to diagnose. The diagnostic performance of MR imaging for interosseous ligament tears varies considerably. The sensitivity for scapholunate ligament tears is consistently better than for lunotriquetral ligament tears. Gadolinium-enhanced MR imaging is considered to be the best technique for detecting established avascularity of bone, but the assessment of the MR results remains challenging. Most cases of ulnar impaction syndrome have characteristic focal signal intensity changes in the ulnar aspect of the lunate. Avascular necrosis of the lunate (Kienboeck's disease) is characterized by signal changes starting in the proximal radial aspect of the lunate. MR imaging is extremely sensitive for occult fractures. Questions arise if occult posttraumatic bone lesions seen on MR images only necessarily require the same treatment as fractures evident on plain films or computed tomography (CT) images. MR imaging and ultrasound are equally effective for detecting occult carpal ganglia. Carpe bossu (carpal boss) is a bony protuberance of a carpometacarpal joint II and III which may be associated with pain. (orig.)

  1. Role of MR imaging in chronic wrist pain

    Energy Technology Data Exchange (ETDEWEB)

    Zanetti, Marco; Saupe, Nadja [University Hospital Balgrist, Department of Radiology, Zurich (Switzerland); Nagy, Ladislav [University Hospital Balgrist, Department of Orthopedic Surgery, Zurich (Switzerland)

    2007-04-15

    Magnetic resonance (MR) imaging for chronic wrist pain is challenging. Correct assessment of the triangular fibrocartilage, hyaline cartilage, ligaments, and tendons has become mandatory for comprehensive decision making in wrist surgery. The MR technique, potential and limits of MR imaging in patients with chronic wrist pain will be discussed. MR arthrography with injection of gadolinium-containing contrast material into the distal radioulnar joint is suggested for evaluation of the triangular fibrocartilage. The clinically meaningful ulnar-sided peripheral tears are otherwise hard to diagnose. The diagnostic performance of MR imaging for interosseous ligament tears varies considerably. The sensitivity for scapholunate ligament tears is consistently better than for lunotriquetral ligament tears. Gadolinium-enhanced MR imaging is considered to be the best technique for detecting established avascularity of bone, but the assessment of the MR results remains challenging. Most cases of ulnar impaction syndrome have characteristic focal signal intensity changes in the ulnar aspect of the lunate. Avascular necrosis of the lunate (Kienboeck's disease) is characterized by signal changes starting in the proximal radial aspect of the lunate. MR imaging is extremely sensitive for occult fractures. Questions arise if occult posttraumatic bone lesions seen on MR images only necessarily require the same treatment as fractures evident on plain films or computed tomography (CT) images. MR imaging and ultrasound are equally effective for detecting occult carpal ganglia. Carpe bossu (carpal boss) is a bony protuberance of a carpometacarpal joint II and III which may be associated with pain. (orig.)

  2. Role of 3T multiparametric-MRI with BOLD hypoxia imaging for diagnosis and post therapy response evaluation of postoperative recurrent cervical cancers

    International Nuclear Information System (INIS)

    Mahajan, Abhishek; Engineer, Reena; Chopra, Supriya; Mahanshetty, Umesh; Juvekar, S.L.; Shrivastava, S.K.; Desekar, Naresh; Thakur, M.H.

    2015-01-01

    •In operated cervix cancer, the accuracy of diagnosing vaginal vault/local recurrent lesions was higher at combined multiparametric MR imaging and conventional MR imaging (100%) than at conventional MR imaging (70%) or multiparametric MR imaging (96.7%) alone.•We found a significant correlation between percentage tumor regression and pre-treatment parameters: NEI (p = 0.02), the maximum slope (p = 0.04), mADC value (p = 0.001) and amount of hypoxic fraction present in the pretherapy MRI (p = 0.01).•Multiparametric and BOLD hypoxia MR Imaging are feasible and reliable in diagnosing post-operative recurrence in cervical cancer and should be applied when there is clinical suspicion of post-operative recurrence.•Quantitative image features obtained at multiparametric-MRI with BOLD hypoxia imaging has potential to be an appropriate and reliable biologic target for radiation dose painting to optimize therapy in future. In operated cervix cancer, the accuracy of diagnosing vaginal vault/local recurrent lesions was higher at combined multiparametric MR imaging and conventional MR imaging (100%) than at conventional MR imaging (70%) or multiparametric MR imaging (96.7%) alone. We found a significant correlation between percentage tumor regression and pre-treatment parameters: NEI (p = 0.02), the maximum slope (p = 0.04), mADC value (p = 0.001) and amount of hypoxic fraction present in the pretherapy MRI (p = 0.01). Multiparametric and BOLD hypoxia MR Imaging are feasible and reliable in diagnosing post-operative recurrence in cervical cancer and should be applied when there is clinical suspicion of post-operative recurrence. Quantitative image features obtained at multiparametric-MRI with BOLD hypoxia imaging has potential to be an appropriate and reliable biologic target for radiation dose painting to optimize therapy in future. To assess the diagnostic value of multiparametric-MRI (MPMRI) with hypoxia imaging as a functional marker for characterizing and detecting

  3. Depression and Chronic Health Conditions Among Latinos: The Role of Social Networks.

    Science.gov (United States)

    Soto, Sandra; Arredondo, Elva M; Villodas, Miguel T; Elder, John P; Quintanar, Elena; Madanat, Hala

    2016-12-01

    The purpose of this study was to examine the "buffering hypothesis" of social network characteristics in the association between chronic conditions and depression among Latinos. Cross-sectional self-report data from the San Diego Prevention Research Center's community survey of Latinos were used (n = 393). Separate multiple logistic regression models tested the role of chronic conditions and social network characteristics in the likelihood of moderate-to-severe depressive symptoms. Having a greater proportion of the network comprised of friends increased the likelihood of depression among those with high cholesterol. Having a greater proportion of women in the social network was directly related to the increased likelihood of depression, regardless of the presence of chronic health conditions. Findings suggest that network characteristics may play a role in the link between chronic conditions and depression among Latinos. Future research should explore strategies targeting the social networks of Latinos to improve health outcomes.

  4. Role of hypoxia and growth and differentiation factor-5 on differentiation of human mesenchymal stem cells towards intervertebral nucleus pulposus-like cells

    Directory of Open Access Journals (Sweden)

    JV Stoyanov

    2011-06-01

    Full Text Available There is evidence that mesenchymal stem cells (MSCs can differentiate towards an intervertebral disc (IVD-like phenotype. We compared the standard chondrogenic protocol using transforming growth factor beta-1 (TGFß to the effects of hypoxia, growth and differentiation factor-5 (GDF5, and coculture with bovine nucleus pulposus cells (bNPC. The efficacy of molecules recently discovered as possible nucleus pulposus (NP markers to differentiate between chondrogenic and IVD-like differentiation was evaluated. MSCs were isolated from human bone marrow and encapsulated in alginate beads. Beads were cultured in DMEM (control supplemented with TGFß or GDF5 or under indirect coculture with bNPC. All groups were incubated at low (2 % or normal (20 % oxygen tension for 28 days. Hypoxia increased aggrecan and collagen II gene expression in all groups. The hypoxic GDF5 and TGFß groups demonstrated most increased aggrecan and collagen II mRNA levels and glycosaminoglycan accumulation. Collagen I and X were most up-regulated in the TGFß groups. From the NP markers, cytokeratin-19 was expressed to highest extent in the hypoxic GDF5 groups; lowest expression was observed in the TGFß group. Levels of forkhead box F1 were down-regulated by TGFß and up-regulated by coculture with bNPC. Carbonic anhydrase 12 was also down-regulated in the TGFß group and showed highest expression in the GDF5 group cocultured with bNPC under hypoxia. Trends in gene expression regulation were confirmed on the protein level using immunohistochemistry. We conclude that hypoxia and GDF5 may be suitable for directing MSCs towards the IVD-like phenotype.

  5. Hypoxic regulation of β-1,3-glucuronyltransferase 1 expression in nucleus pulposus cells of the rat intervertebral disc: role of hypoxia-inducible factor proteins.

    Science.gov (United States)

    Gogate, Shilpa S; Nasser, Rena; Shapiro, Irving M; Risbud, Makarand V

    2011-07-01

    To determine whether hypoxia and hypoxia-inducible factor (HIF) proteins regulate expression of β-1,3-glucuronyltransferase 1 (GlcAT-1), a key enzyme in glycosaminoglycan synthesis in nucleus pulposus cells. Real-time reverse transcriptase-polymerase chain reaction and Western blotting were used to measure GlcAT-1 expression. Transfections were performed to determine the effect of HIF-1α and HIF-2α on GlcAT-1 promoter activity. Under hypoxic conditions there was an increase in GlcAT-1 expression; a significant increase in promoter activity was seen both in nucleus pulposus cells and in N1511 chondrocytes. We investigated whether HIF controlled GlcAT-1 expression. Suppression of HIF-1α and HIF-2α induced GlcAT-1 promoter activity and expression only in nucleus pulposus cells. Transfection with CA-HIF-1α as well as with CA-HIF-2α suppressed GlcAT-1 promoter activity only in nucleus pulposus cells, suggesting a cell type-specific regulation. Site-directed mutagenesis and deletion constructs were used to further confirm the suppressive effect of HIFs on GlcAT-1 promoter function in nucleus pulposus cells. Although it was evident that interaction of HIF with hypoxia-responsive elements resulted in suppression of basal promoter activity, it was not necessary for transcriptional suppression. This result suggested both a direct and an indirect mode of regulation, possibly through recruitment of a HIF-dependent repressor. Finally, we showed that hypoxic expression of GlcAT-1 was also partially dependent on MAPK signaling. These studies demonstrate that hypoxia regulates GlcAT-1 expression through a signaling network comprising both activator and suppressor molecules, and that this regulation is unique to nucleus pulposus cells. Copyright © 2011 by the American College of Rheumatology.

  6. Pimonidazole: a novel hypoxia marker for complementary study of tumor hypoxia and tumor biology

    International Nuclear Information System (INIS)

    Varia, Mahesh A.; Kennedy, Andrew S.; Calkins-Adams, Dennise P.; Rinker, Lillian; Novotny, Debra; Fowler, Wesley C.; Raleigh, James A.

    1997-01-01

    Purpose/Objectives: Tumor hypoxia appears to be associated with treatment resistance and with gene expression that may lead to hypoxia-mediated selection of tumor cells as a source for cell growth and metastases. The objective of this study was to develop complementary techniques of hypoxia detection with molecular markers of cell proliferation and metastases in order to investigate the role of tumor hypoxia in tumor biology. Materials and Methods: Pimonidazole is a 2-nitroimidazole which is reductively-activated and becomes covalently bound to thiol-containing proteins only in hypoxic cells. These adducts can be detected using immunohistochemistry, enzyme linked immunosorbent assay or flow cytometry as a measure of hypoxia in tumors. Quantitative immunohistochemical analysis has been completed for five patients with squamous cell carcinoma of the cervix who were given pimonidazole hydrochloride (0.5 g/m 2 intravenously) followed by cervical biopsies 24 hours later. Informed consent was obtained according to a protocol approved by the Institutional Review Board. A minimum of 3 random biopsies were obtained from the tumors and at least four sections examined from each biopsy site. Formalin fixed, paraffin embedded tissue sections were immunostained for pimonidazole binding using a mouse monoclonal antibody. Commercially available monoclonal antibodies were used to detect cell proliferation markers MIB-1 (Ki-67) and to detect vascular endothelial growth factor (VEGF) in tumor cells in contiguous sections. The extent of immunostaining was expressed as the percent of immunostained to total tumor cells as determined by Chalkley point counting. Results: No clinical toxicities were associated with pimonidazole infusion. Immunostaining with pimonidazole antibody was observed in all patients indicating the presence of tumor hypoxia. Qualitatively there is little or no overlap between the areas of hypoxia and proliferation. Quantitative data tabulated below show the

  7. Avulsion fractures and chronic avulsion injuries of the knee: role of MR imaging

    International Nuclear Information System (INIS)

    Mellado, J.M.; Ramos, A.; Salvado, E.; Camins, A.; Sauri, A.; Calmet, J.

    2002-01-01

    Avulsion fractures and chronic avulsion injuries of the knee are common lesions in sports-related trauma, especially among adolescents. Magnetic resonance imaging may prove useful in detecting and characterizing such lesions, and has several advantages with regard to other imaging modalities. We review, illustrate, and discuss the MR imaging features of some of the more frequent avulsion fractures and chronic avulsion injuries of the knee, including avulsion fractures of the cruciate ligaments, avulsion fractures of lateral and medial stabilizers, avulsion fractures and chronic avulsion injuries of the extensor mechanism, and avulsive cortical irregularities of the distal femur. The role of MR imaging in evaluating such lesions is emphasized. (orig.)

  8. Elevation of hypoxia resistance with the use of gutimine

    Energy Technology Data Exchange (ETDEWEB)

    Vinogradov, V.M.; Pastushenkov, L.V.; Sumina, E.N.

    Experimental data demonstrating the protection from the adverse effects of hypoxia offered by the antioxidant gutimine and its analogs are presented. The experiments included preliminary studies of hypoxia resistance and recovery under simulated altitude, studies of circulatory hypoxia in the brain and in intrauterine fetuses, studies of myocardial ischemia during acute and chronic experiments and studies where cardiac, kidney and limb circulation is cut off. The compound was also found to be effective in cases of hemorrhagic hypotension, complex hypoxia in peritonitis, meningococcal meningitis, and the weakening of uterine muscle contractility during prolonged deliveries, and in cranial-cerebral trauma. Mechanisms of the antihypoxic action of gutimine and its analogs have been found to include the reduction of oxygen utilization, the activation of aerobic and anaerobic metabolism, the acceleration of lactate utilization, the inhibition of lipolysis in fat tissue, and stabilization of cell membranes. Clinical observations also support the experimental data.

  9. Pharmacist's role in dispensing opioids for acute and chronic pain.

    Science.gov (United States)

    Marlowe, Karen F; Geiler, Richard

    2012-10-01

    Pain continues to be a serious health care concern in the United States. Patients with chronic pain experience the impact of the disease throughout their lives including their social interactions, family relationships, and in many cases economic productivity. Multiple surveys have found that many pharmacists hold misconceptions regarding opioids, pain disease states, and their understandings of current regulations. Multiple barriers affect the ability of pharmacists to deliver care to patients' prescribed opioid therapy. Inadequate communication between health care professionals and patients is one of the hurdles, which prevents quality care. Increased communication between health care providers including access to health information is one step, which is crucial to improving provision of pharmacotherapy. Finally, the quality of educational opportunities relative to opioids and pain management specifically for pharmacists needs to be increased, and consideration needs to be given for making appropriate pain management education mandatory.

  10. Occupational Therapy's Role in Cancer Survivorship as a Chronic Condition.

    Science.gov (United States)

    Baxter, Mary Frances; Newman, Robin; Longpré, Sheila M; Polo, Katie M

    Improved medical care has resulted in a documented increase in cancer survivors in the United States. Cancer survivors face challenges in participation across all facets of life as a result of the cancer and subsequent cancer treatments. Long-term and late-term sequelae can result in impairments in neurological systems, decreased stamina, loss of range of motion, and changes in sensation and cognition. These impairments are often long lasting, which categorizes cancer survivorship as a chronic condition. This categorization presents treatment challenges, especially in creating rehabilitation and habilitation service options that support cancer survivors. Occupational therapy provides a unique focus that can benefit cancer survivors as they face limitations in participation in all aspects of daily living. Research, advocacy, and education efforts are needed to focus on the specific rehabilitation and habilitation needs of cancer survivors to increase access to occupational therapy's distinct value. Copyright © 2017 by the American Occupational Therapy Association, Inc.

  11. [Chronic blepharitis: which role for Demodex folliculorum? A case report].

    Science.gov (United States)

    Martinaud, C; Gaillard, T; Pons, S; Fournier, B; Brisou, P

    2009-01-01

    We present a 73-year-old woman presented to our hospital with a 2 years history of eyes itching. The ophthalmological testing was normal. Physical examination revealed blepharitis and lesions acnea-like on mouth, nose and chest. Biological testing revealed no abnormalities. Histologic study and direct immunofluorescence on a cutaneous biopsy were no contributive. The research of an allergic origine was practised by cutaneous and serological tests and negative. An examination of eyelashes was performed and yielded Demodex. Demodex folliculorum is a mite that is the most common permanent ectoparasite of humans, which is thought to be linked to blepharitis and allergic blepharoconjunctivis with rosacea, although much controversy persists. Recent studies demonstrate a high frequence of chronic blepharitis when Demodex are abundant. Several molecules can be used to treat this infestation. Parasiticide as oral ivermectine may be useful when the infestation is important.

  12. Role of leptin in reverse epidemiology in chronic kidney disease

    DEFF Research Database (Denmark)

    Scholze, Alexandra; Tepel, Martin

    2007-01-01

    Leptin is mainly produced by adipocytes and metabolized in the kidney. Leptin is taken up into the central nervous system by a saturable transport system, and controls appetite in rodents and in healthy subjects. Leptin acts on peripheral tissue and increases the inflammatory response by stimulat......Leptin is mainly produced by adipocytes and metabolized in the kidney. Leptin is taken up into the central nervous system by a saturable transport system, and controls appetite in rodents and in healthy subjects. Leptin acts on peripheral tissue and increases the inflammatory response......, indicating leptin resistance. In healthy subjects increased leptin concentration constitutes a biomarker for increased cardiovascular risk. On the other hand, a recent prospective long-term study in patients with chronic kidney disease stage 5 on hemodialysis therapy showed that reduced serum leptin...... concentration is an independent risk factor for mortality in these patients....

  13. The role of bacterial biofilms in chronic infections

    DEFF Research Database (Denmark)

    Bjarnsholt, Thomas

    2013-01-01

    wounds, chronic otitis media and implant- and catheter-associated infections, affect millions of people in the developed world each year and many deaths occur as a consequence. In general, bacteria have two life forms during growth and proliferation. In one form, the bacteria exist as single, independent...... cells (planktonic) whereas in the other form, bacteria are organized into sessile aggregates. The latter form is commonly referred to as the biofilm growth phenotype. Acute infections are assumed to involve planktonic bacteria, which are generally treatable with antibiotics, although successful......Acute infections caused by pathogenic bacteria have been studied extensively for well over 100 years. These infections killed millions of people in previous centuries, but they have been combated effectively by the development of modern vaccines, antibiotics and infection control measures. Most...

  14. Reducing chronic obstructive pulmonary disease readmissions: the role of the durable medical equipment provider.

    Science.gov (United States)

    Messenger, Robert W

    2012-01-01

    Exacerbation and frequent rehospitalization in chronic obstructive pulmonary disease exacts a heavy toll on the US health care system. To address these issues, new initiatives have been proposed that are largely based on financial penalties to promote patient education and postdischarge care. However, as laudable as these goals are, improving outcomes in the chronic obstructive pulmonary disease population is more confounding than it may first appear. Chronic hypoxia, cognitive dysfunction, poor nutrition, and economic disadvantage are just a few of the challenges that require creative solutions and ongoing support. Case managers need to utilize all the potential products and services that can assist in improving outcomes for these patients. Durable medical equipment providers are often viewed as purveyors of medical equipment that offer little in the form of clinical support. However, in many cases these providers represent an overlooked resource that provides individualized, highly structured patient education and ongoing support programs. The challenge is in identifying those durable medical equipment providers that offer patients contemporary technology, and have both the resources and the commitment to provide patient support that is amenable to the goals of the hospital. This article reviews many of the confounding issues that contribute to the frequent rehospitalization of chronic obstructive pulmonary disease patients. Recommendations to improve patient education and oxygen therapy outcomes are provided along with suggestions to aid in the vetting of durable medical equipment providers. Acute care hospitals, long-term acute care hospitals, extended care facilities, integrated delivery systems. 1. An understanding of the complex variables that play in the management of chronic obstructive pulmonary disease will help the case manager to plan an effective course of care. 2. Case managers need to ensure that patients receive long-term oxygen technology that

  15. Mechanisms Causing Hypoxia in the Baltic Sea at Different Spatial and Temporal Scales

    Science.gov (United States)

    Conley, D. J.; Carstensen, J.; Gustafsson, B.; Slomp, C. P.

    2016-02-01

    A number of synthesis efforts have documented the world-wide increase in hypoxia, which is primarily driven by nutrient inputs with consequent organic matter enrichment. Physical factors including freshwater or saltwater inputs, stratification and temperature also play an important role in causing and sustaining hypoxia. The Baltic Sea provides an interesting case study to examine changes in oxygen dynamics over time because of the diversity of the types of hypoxia that occur, which ranges from episodic to seasonal hypoxia to perennial hypoxia. Hypoxia varies spatially across the basin with differences between open water bottoms and coastal systems. In addition, the extent and intensity of hypoxia has also varied greatly over the history of the basin, e.g. the last 8000 years. We will examine the mechanisms causing hypoxia at different spatial and temporal scales. The hydrodynamical setting is an important governing factor controlling possible time scales of hypoxia, but enhanced nutrient fluxes and global warming amplify oxygen depletion when oxygen supply by physical processes cannot meet oxygen demands from respiration. Our results indicate that climate change is counteracting management efforts to reduce hypoxia. We will address how hypoxia in the Baltic Sea is terminated at different scales. More importantly, we will explore the prospects of getting rid of hypoxia with the nutrient reductions that have been agreed upon by the countries in the Baltic Sea basin and discuss the time scales of improvement in bottom water oxygen conditions.

  16. [Effect of intermittent hypoxia of sleep apnea on embryonic rat cortical neurons in vitro].

    Science.gov (United States)

    Zhang, Chanjuan; Li, Yanzhong; Wang, Yan

    2015-05-01

    To investigate the effects of different pattens of intermittent hypoxia on the activity and apoptosis of primary cultured rat embryonic cortical neurons, and to evaluate the role of intermittent hypoxia in the mechanism of obstructive sleep syndrom induced cognitive function loss. The embryonic cerebral cortical neurons were cultured in vitro and were identified by immunofluorescence. Cultured neurons were randomly divided into intermittent hypoxia group, intermittent normal oxygen group, persistent hypoxia group and the control group, and intermittent hypoxia group was divided into five subgroups according to different frequency and time-bound. Neurons were exposed in different modes of hypoxia. MTT colorimetry was used to detect the viability of the neurons, and DAPI colorated measurement was used to calculate the percentages of neuron apoptosis. There were significantly different effects between all subgroups of intermittent hypoxia and the continued hypoxia group on neuronal activity and apoptosis (P Intermittent hypoxia groups with different frequency and time had no difference in neuronal activity and apoptosis (P > 0.05). The effect of intermittent hypoxia was more serious than that of continued hypoxia on neuronal activity and apoptosis; The impact of intermittent hypoxia on neuronal activity and apoptosis may be an important factor in obstructive sleep apnea related cognitive impairment.

  17. Hypoxia-induced DNA hypermethylation in human pulmonary fibroblasts is associated with Thy-1 promoter methylation and the development of a pro-fibrotic phenotype

    Directory of Open Access Journals (Sweden)

    Robinson Claire M

    2012-08-01

    Full Text Available Abstract Background Pulmonary fibrosis is a debilitating and lethal disease with no effective treatment options. Understanding the pathological processes at play will direct the application of novel therapeutic avenues. Hypoxia has been implicated in the pathogenesis of pulmonary fibrosis yet the precise mechanism by which it contributes to disease progression remains to be fully elucidated. It has been shown that chronic hypoxia can alter DNA methylation patterns in tumour-derived cell lines. This epigenetic alteration can induce changes in cellular phenotype with promoter methylation being associated with gene silencing. Of particular relevance to idiopathic pulmonary fibrosis (IPF is the observation that Thy-1 promoter methylation is associated with a myofibroblast phenotype where loss of Thy-1 occurs alongside increased alpha smooth muscle actin (α-SMA expression. The initial aim of this study was to determine whether hypoxia regulates DNA methylation in normal human lung fibroblasts (CCD19Lu. As it has been reported that hypoxia suppresses Thy-1 expression during lung development we also studied the effect of hypoxia on Thy-1 promoter methylation and gene expression. Methods CCD19Lu were grown for up to 8 days in hypoxia and assessed for global changes in DNA methylation using flow cytometry. Real-time PCR was used to quantify expression of Thy-1, α-SMA, collagen I and III. Genomic DNA was bisulphite treated and methylation specific PCR (MSPCR was used to examine the methylation status of the Thy-1 promoter. Results Significant global hypermethylation was detected in hypoxic fibroblasts relative to normoxic controls and was accompanied by increased expression of myofibroblast markers. Thy-1 mRNA expression was suppressed in hypoxic cells, which was restored with the demethylating agent 5-aza-2′-deoxycytidine. MSPCR revealed that Thy-1 became methylated following fibroblast exposure to 1% O2. Conclusion These data suggest that global and

  18. Wound care matrices for chronic leg ulcers: role in therapy

    Directory of Open Access Journals (Sweden)

    Sano H

    2015-07-01

    Full Text Available Hitomi Sano,1 Sachio Kouraba,2 Rei Ogawa11Department of Plastic, Reconstructive, and Aesthetic Surgery, Nippon Medical School, Tokyo, Japan; 2Sapporo Wound Care and Anti-Aging Laboratory, Sapporo, JapanAbstract: Chronic leg ulcers are a significant health care concern. Although deep wounds are usually treated by flap transfers, the operation is invasive and associates with serious complications. Skin grafts may be a less invasive means of covering wounds. However, skin grafts cannot survive on deep defects unless high-quality granulation tissue can first be generated in the defects. Technologies that generate high-quality granulation tissue are needed. One possibility is to use wound care matrices, which are bioengineered skin and soft tissue substitutes. Because they all support the healing process by providing a premade extracellular matrix material, these matrices can be termed “extracellular matrix replacement therapies”. The matrix promotes wound healing by acting as a scaffold for regeneration, attracting host cytokines to the wound, stimulating wound epithelialization and angiogenesis, and providing the wound bed with bioactive components. This therapy has lasting benefits as it not only helps large skin defects to be closed with thin skin grafts or patch grafts but also restores cosmetic appearance and proper function. In particular, since it acts as a layer that slides over the subcutaneous fascia, it provides skin elasticity, tear resistance, and texture. Several therapies and products employing wound care matrices for wound management have been developed recently. Some of these can be applied in combination with negative pressure wound therapy or beneficial materials that promote wound healing and can be incorporated into the matrix. To date, the clinical studies on these approaches suggest that wound care matrices promote spontaneous wound healing or can be used to facilitate skin grafting, thereby avoiding the need to use

  19. Inhibition of calcium uptake during hypoxia in developing zebrafish is mediated by hypoxia-inducible factor.

    Science.gov (United States)

    Kwong, Raymond W M; Kumai, Yusuke; Tzaneva, Velislava; Azzi, Estelle; Hochhold, Nina; Robertson, Cayleih; Pelster, Bernd; Perry, Steve F

    2016-12-15

    The present study investigated the potential role of hypoxia-inducible factor (HIF) in calcium homeostasis in developing zebrafish (Danio rerio). It was demonstrated that zebrafish raised in hypoxic water (30 mmHg; control, 155 mmHg P O 2 ) until 4 days post-fertilization exhibited a substantial reduction in whole-body Ca 2+ levels and Ca 2+ uptake. Ca 2+ uptake in hypoxia-treated fish did not return to pre-hypoxia (control) levels within 2 h of transfer back to normoxic water. Results from real-time PCR showed that hypoxia decreased the whole-body mRNA expression levels of the epithelial Ca 2+ channel (ecac), but not plasma membrane Ca 2+ -ATPase (pmca2) or Na + /Ca 2+ -exchanger (ncx1b). Whole-mount in situ hybridization revealed that the number of ecac-expressing ionocytes was reduced in fish raised in hypoxic water. These findings suggested that hypoxic treatment suppressed the expression of ecac, thereby reducing Ca 2+ influx. To further evaluate the potential mechanisms for the effects of hypoxia on Ca 2+ regulation, a functional gene knockdown approach was employed to prevent the expression of HIF-1αb during hypoxic treatment. Consistent with a role for HIF-1αb in regulating Ca 2+ balance during hypoxia, the results demonstrated that the reduction of Ca 2+ uptake associated with hypoxic exposure was not observed in fish experiencing HIF-1αb knockdown. Additionally, the effects of hypoxia on reducing the number of ecac-expressing ionocytes was less pronounced in HIF-1αb-deficient fish. Overall, the current study revealed that hypoxic exposure inhibited Ca 2+ uptake in developing zebrafish, probably owing to HIF-1αb-mediated suppression of ecac expression. © 2016. Published by The Company of Biologists Ltd.

  20. Altered Wnt Signaling Pathway in Cognitive Impairment Caused by Chronic Intermittent Hypoxia: Focus on Glycogen Synthase Kinase-3β and β-catenin

    Directory of Open Access Journals (Sweden)

    Yue-Ying Pan

    2016-01-01

    Conclusions: Wnt/β-catenin signaling pathway abnormalities possibly play an important role in the development of cognitive deficits among mice exposed to CIH and that LiCl might attenuate CIH-induced cognitive impairment via Wnt/β-catenin signaling pathway.

  1. Role of Alveolar Macrophages in Chronic Obstructive Pulmonary Disease

    Science.gov (United States)

    Vlahos, Ross; Bozinovski, Steven

    2014-01-01

    Alveolar macrophages (AMs) represent a unique leukocyte population that responds to airborne irritants and microbes. This distinct microenvironment coordinates the maturation of long-lived AMs, which originate from fetal blood monocytes and self-renew through mechanisms dependent on GM-CSF and CSF-1 signaling. Peripheral blood monocytes can also replenish lung macrophages; however, this appears to occur in a stimuli specific manner. In addition to mounting an appropriate immune response during infection and injury, AMs actively coordinate the resolution of inflammation through efferocytosis of apoptotic cells. Any perturbation of this process can lead to deleterious responses. In chronic obstructive pulmonary disease (COPD), there is an accumulation of airway macrophages that do not conform to the classic M1/M2 dichotomy. There is also a skewed transcriptome profile that favors expression of wound-healing M2 markers, which is reflective of a deficiency to resolve inflammation. Endogenous mediators that can promote an imbalance in inhibitory M1 vs. healing M2 macrophages are discussed, as they are the plausible mechanisms underlying why AMs fail to effectively resolve inflammation and restore normal lung homeostasis in COPD. PMID:25309536

  2. [Role of debridement in treatment of chronic wounds].

    Science.gov (United States)

    Huljev, Dubravko; Gajić, Aleksandar; Triller, Ciril; Leskovec, Nada Kecelj

    2012-10-01

    Debridement is the process of removing dead tissue from the wound bed. Since devitalized tissue can obstruct or completely stop healing of the wound, it is indicated to debride wound bed as part of the treatment process. The aim of debridement is to transform a chronic wound into an acute wound and to initiate the process of healing. Debridement is the foundation of each wound treatment and it has to be repeated, depending on the necrotic tissue formation. There are several types of debridement: surgical, autolytic, chemical, enzymatic, mechanical, and biological. Using previous knowledge and advances in technology, new types of debridement have been introduced. Besides standard methods, methods of pulsed lavage debridement (hydro-surgery, water-jet) and ultrasound-assisted wound treatment (UAW) are ever more widely introduced. The method of debridement the clinician will choose depends on the amount of necrotic (devitalized) tissue in the wound bed, the size and depth of the wound, the underlying disease, the possible comorbidity, as well as on the general condition of the patient. Frequently, the methods of debridement are combined in order to achieve better removal of devitalized tissue. Debridement in addition significantly reduces bacterial burden. Regardless of the method of debridement, it is essential to take pain to the lowest point.

  3. Urinary hemosiderin: role in evaluation of chronic venous insufficiency

    Directory of Open Access Journals (Sweden)

    Ashish Lal Shrestha

    2012-08-01

    Full Text Available Chronic venous insufficiency (CVI leads to skin changes with dermal hemosiderin deposition. We studied the presence of hemosiderin in the urine to assess if this could be used as a biochemical marker for CVI. Hereby we present a case control study conducted in a tertiary care centre in South India. There were 100 cases with evidence of advanced CVI (the Clinical-Etiology-Anatomy-Pathophysiology classification: C5, C6 confirmed by duplex scanning. Controls were 50 patients with leg ulcers due to other etiologies. All patients were subjected to urinary hemosiderin testing. In all 100 patients with CVI (C5 and C6 disease axial venous reflux was confirmed by duplex ultrasound. Superficial venous reflux was noted in 71% of patients and deep venous reflux in 54.%. Primary venous insufficiency was the etiology in 81% of patients. Only 4/100 patients had detectable amounts of hemosiderin in the urine. Urine hemosiderin testing to determine presence or absence of CVI yielded the following values: positive predictive value-80%; negative predictive value-33%; sensitivity-4% and specificity-98%. The test could not be recommended as a marker of CVI. In Indian patients urinary hemosiderin is not a useful screening test in CVI.

  4. Chronic venous leg ulcers – role of topical zinc

    Directory of Open Access Journals (Sweden)

    Maher SF

    2015-06-01

    Full Text Available Sara F Maher Physical Therapy Program, Department of Healthcare Sciences, Wayne State University, Detroit, MI, USA Abstract: Topical zinc has been used in the treatment of wounds for over 3,000 years, and is reported to have antiseptic, astringent, anti-inflammatory, antimicrobial, and wound healing properties. Fourteen studies were identified and reviewed, to assess the efficacy of this treatment modality as either a bandage or skin protectant in the treatment of venous ulcers. The authors of three studies reported improved healing time or success rate in wounds treated with zinc-based products. However, the authors of one study attributed the faster healing rate mainly to the extra compression (that improved venous blood return, delivered by the non-elastic paste bandage, and not by the zinc oxide alone. The quality of evidence is fair, as 50% of the studies were conducted prior to 2000 and 50% of the studies utilized fewer than 45 patients randomized to two or more groups. Other treatments have been reported to be more cost-effective than zinc, including hydrocolloids, four-layer compression systems, and CircAid Thera-boots. Finally, zinc was reported to be less comfortable, less easy to use, and caused increased pain, in comparison to other products on the market. This literature review, therefore, demonstrated that current evidence is insufficient to determine the effectiveness of zinc-based products in the treatment of venous wounds. Future research is needed focusing on larger, high-quality trials with an emphasis on quality of life issues and cost-effectiveness of treatment. Keywords: chronic wounds, leg ulcers, venous insufficiency, topical zinc

  5. Role of laparoscopy in evaluation of chronic pelvic pain

    Directory of Open Access Journals (Sweden)

    Hebbar Shripad

    2005-01-01

    Full Text Available Introduction: Chronic pelvic pain (CPP is a common medical problem affecting women. Too often the physical signs are not specific. This study aims at determining the accuracy of diagnostic laparoscopy over clinical pelvic examination. Settings and Design: A retrospective study of patients who underwent diagnostic laparoscopy for CPP. Materials and Methods: The medical records of 86 women who underwent laparoscopic evaluation for CPP of at least 6-month duration were reviewed for presentation of symptoms, pelvic examination findings at the admission, operative findings and follow up when available. Statistical analysis used: McNemar Chi-square test for frequencies in a 2 x 2 table. Results: The most common presentation was acyclic lower abdominal pain (79.1%, followed by congestive dysmenorrhoea (26.7%. 61.6% of women did not reveal any significant signs on pelvic examination. Pelvic tenderness was elicited in 27.9%. Diagnostic laparoscopy revealed significant pelvic pathology in 58% of those who essentially had normal pervaginal findings. The most common pelvic pathology by laparoscopy was pelvic adhesions (20.9%, followed by pelvic congestion (18.6%. Laparoscopic adhesiolyis achieved pain relief only in one-third of the women. Conclusion: The study revealed very low incidence of endometriosis (4.7%. Overall clinical examination could detect abnormality in only 38% of women, where as laparoscopy could detect significant pathology in 66% of women with CPP. This shows superiority of diagnostic laparoscopy over clinical examination in detection of aetiology in women with CPP (P < 0.001. Adhesiolysis helps only small proportion of women in achieving pain control.

  6. Metabolic Profiles in Ovine Carotid Arteries with Developmental Maturation and Long-Term Hypoxia.

    Directory of Open Access Journals (Sweden)

    Ravi Goyal

    Full Text Available Long-term hypoxia (LTH is an important stressor related to health and disease during development. At different time points from fetus to adult, we are exposed to hypoxic stress because of placental insufficiency, high-altitude residence, smoking, chronic anemia, pulmonary, and heart disorders, as well as cancers. Intrauterine hypoxia can lead to fetal growth restriction and long-term sequelae such as cognitive impairments, hypertension, cardiovascular disorders, diabetes, and schizophrenia. Similarly, prolonged hypoxic exposure during adult life can lead to acute mountain sickness, chronic fatigue, chronic headache, cognitive impairment, acute cerebral and/or pulmonary edema, and death.LTH also can lead to alteration in metabolites such as fumarate, 2-oxoglutarate, malate, and lactate, which are linked to epigenetic regulation of gene expression. Importantly, during the intrauterine life, a fetus is under a relative hypoxic environment, as compared to newborn or adult. Thus, the changes in gene expression with development from fetus to newborn to adult may be as a consequence of underlying changes in the metabolic profile because of the hypoxic environment along with developmental maturation. To examine this possibility, we examined the metabolic profile in carotid arteries from near-term fetus, newborn, and adult sheep in both normoxic and long-term hypoxic acclimatized groups.Our results demonstrate that LTH differentially regulated glucose metabolism, mitochondrial metabolism, nicotinamide cofactor metabolism, oxidative stress and antioxidants, membrane lipid hydrolysis, and free fatty acid metabolism, each of which may play a role in genetic-epigenetic regulation.

  7. The impact of hypoxia on oncolytic virotherapy

    Directory of Open Access Journals (Sweden)

    Guo ZS

    2011-11-01

    Full Text Available Z Sheng GuoUniversity of Pittsburgh Cancer Institute and Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USAAbstract: The hypoxic tumor microenvironment plays significant roles in tumor cell metabolism and survival, tumor growth, and progression. Hypoxia modulates target genes in target cells mainly through an oxygen-sensing signaling pathway mediated by hypoxia-inducible factor of transcription factors. As a result, hypoxic tumor cells are resistant to conventional therapeutics such as radiation and chemotherapy. Oncolytic virotherapy may be a promising novel therapeutic for hypoxic cancer. Some oncolytic viruses are better adapted than others to the hypoxic tumor environment. Replication of adenoviruses from both groups B and C is inhibited, yet replication of herpes simplex virus is enhanced. Hypoxia seems to exert little or no effect on the replication of other oncolytic viruses. Vaccinia virus displayed increased cytotoxicity in some hypoxic cancer cells even though viral protein synthesis and transgene expression were not affected. Vesicular stomatitis virus replicated to similar levels in both hypoxic and normoxic conditions, and is effective for killing hypoxic cancer cells. However, vesicular stomatitis virus and reovirus, but not encephalomyocarditis virus, are sensitive to elevated levels of hypoxia-inducible factor-1α in renal cancer cells with the loss of von Hippel–Lindau tumor suppressor protein, because elevated hypoxia-inducible factor activity confers dramatically enhanced resistance to cytotoxicity mediated by vesicular stomatitis virus or reovirus. A variety of hypoxia-selective and tumor-type-specific oncolytic adenoviruses, generated by incorporating hypoxia-responsive elements into synthetic promoters to control essential genes for viral replication or therapeutic genes, have been shown to be safe and efficacious. Hypoxic tumor-homing macrophages can function effectively as carrier

  8. Chronic stress and illness in children: the role of allostatic load.

    Science.gov (United States)

    Johnston-Brooks, C H; Lewis, M A; Evans, G W; Whalen, C K

    1998-01-01

    Recent studies of stress have highlighted the contributions of chronic psychological and environmental stressors to health and well-being. Children may be especially vulnerable to the negative effects of chronic stressors. Allostasis, the body's ability to adapt and adjust to environmental demands, has been proposed as an explanatory mechanism for the stress-health link, yet empirical evidence is minimal. This study tested the proposition that allostasis may be an underlying physiological mechanism linking chronic stress to poor health outcomes in school-aged children. Specifically, we examined whether allostasis would mediate or moderate the link between chronic stress and health. To test the hypothesis that allostasis contributes to the relation between chronic stress and poor health, we examined household density as a chronic environmental stressor, cardiovascular reactivity (CVR) as a marker of allostatic load, and number of school absences due to illness as the health outcome in a sample of 81 boys. Structural equation modeling indicated that the mediating model fit the data well, accounting for 17% of the variance in days ill. Results provide the first evidence that CVR may mediate the relation between household density and medical illness in children. More generally, these findings support the role of allostasis as an underlying mechanism in the link between chronic stress and health.

  9. Maternal allopurinol during fetal hypoxia lowers cord blood levels of the brain injury marker S-100B

    NARCIS (Netherlands)

    Torrance, Helen L.; Benders, Manon J.; Derks, Jan B.; Rademaker, Carin M. A.; Bos, Arie F.; Van Den Berg, Paul; Longini, Mariangela; Buonocore, Giuseppe; Venegas, MariaElena; Baquero, Hernando; Visser, Gerard H. A.; Van Bel, Frank

    BACKGROUND: Fetal hypoxia is an important determinant of neonatal encephalopathy caused by birth asphyxia, in which hypoxia-induced free radical formation plays an important role. HYPOTHESIS: Maternal treatment with allopurinol, will cross the placenta during fetal hypoxia (rimary outcome) and

  10. Exercise-induced myokines and their role in chronic diseases

    DEFF Research Database (Denmark)

    Pedersen, Bente K

    2011-01-01

    increases the risk of type 2 diabetes, cardiovascular diseases (CVD), colon cancer and postmenopausal breast cancer. These diseases constitute a network of related diseases, also called "the diseasome of physical inactivity". In this review, physical inactivity is given the central role as an independent...... and strong risk factor for accumulation of visceral fat and consequently the activation of a network of systemic inflammatory pathways, which promote development of neurodegeneration as well as insulin resistance, atherosclerosis, and tumour growth. The recent finding that muscles produce and release...

  11. Role of the chronic bacterial infection in urinary bladder carcinogenesis

    International Nuclear Information System (INIS)

    Higgy, N.A.

    1985-01-01

    The purpose of this thesis was to determine whether or not bacterial infection of the urinary bladder had a role in urinary bladder carcinogenesis. To investigate this proposition, four separate studies were conducted. The first study developed an experimental animal model where bacterial infection of the urinary bladder could be introduced and maintained for a period in excess of one year. The method of infection, inoculation of bacteria (Escherichia coli type 04) subserosally into the vesical wall, successfully caused persistent infection in the majority of animals. In the second study the temporal effects of bacterial infection on the induction of urothelial ornithine decarboxylase (ODC) and 3 H-thymidine uptake and DNA synthesis were examined. Bacterial infection of the urinary bladder induced urothelial ODC with a peak in enzyme activity 6 hr after infection. 3 H-Thymidine uptake and DNA synthesis peaked 48 hr after infection and coincided with the urothelial hyperplasia that occurred in response to the infection. In the third study the specific bladder carcinogen N-butyl-N-(4-hydroxybutyl)nitrosamine (BBN) was given to rats concurrent with the urinary bacterial infection. In the fourth study rats were administered sodium nitrate and either dibutylamine or piperazine in the drinking water. The infected group developed bladder tumors while none were detected in the non-infected rats. From these studies it may be concluded that bacterial infection may have a significant role in the process of urinary bladder carcinogenesis

  12. Hypoxia-Inducible Histone Lysine Demethylases: Impact on the Aging Process and Age-Related Diseases

    Science.gov (United States)

    Salminen, Antero; Kaarniranta, Kai; Kauppinen, Anu

    2016-01-01

    Hypoxia is an environmental stress at high altitude and underground conditions but it is also present in many chronic age-related diseases, where blood flow into tissues is impaired. The oxygen-sensing system stimulates gene expression protecting tissues against hypoxic insults. Hypoxia stabilizes the expression of hypoxia-inducible transcription factor-1α (HIF-1α), which controls the expression of hundreds of survival genes related to e.g. enhanced energy metabolism and autophagy. Moreover, many stress-related signaling mechanisms, such as oxidative stress and energy metabolic disturbances, as well as the signaling cascades via ceramide, mTOR, NF-κB, and TGF-β pathways, can also induce the expression of HIF-1α protein to facilitate cell survival in normoxia. Hypoxia is linked to prominent epigenetic changes in chromatin landscape. Screening studies have indicated that the stabilization of HIF-1α increases the expression of distinct histone lysine demethylases (KDM). HIF-1α stimulates the expression of KDM3A, KDM4B, KDM4C, and KDM6B, which enhance gene transcription by demethylating H3K9 and H3K27 sites (repressive epigenetic marks). In addition, HIF-1α induces the expression of KDM2B and KDM5B, which repress transcription by demethylating H3K4me2,3 sites (activating marks). Hypoxia-inducible KDMs support locally the gene transcription induced by HIF-1α, although they can also control genome-wide chromatin landscape, especially KDMs which demethylate H3K9 and H3K27 sites. These epigenetic marks have important role in the control of heterochromatin segments and 3D folding of chromosomes, as well as the genetic loci regulating cell type commitment, proliferation, and cellular senescence, e.g. the INK4 box. A chronic stimulation of HIF-1α can provoke tissue fibrosis and cellular senescence, which both are increasingly present with aging and age-related diseases. We will review the regulation of HIF-1α-dependent induction of KDMs and clarify their role in

  13. The Role of Team Climate in Improving the Quality of Chronic Care Delivery: A Longitudinal Study among Professionals Working with Chronically Ill Adolescents in Transitional Care Programmes

    NARCIS (Netherlands)

    J.M. Cramm (Jane); M.M.H. Strating (Mathilde); A.P. Nieboer (Anna)

    2014-01-01

    markdownabstractAbstract Objectives:This study aimed to (1) evaluate the effectiveness of implementing transition programmes inimproving the quality of chronic care delivery and(2) identify the predictive role of (changes in) teamclimate on the quality of chronic care delivery over time.

  14. Endogenous markers of tumor hypoxia. Predictors of clinical radiation resistance?

    Energy Technology Data Exchange (ETDEWEB)

    Vordermark, D. [Dept. of Radiation Oncology, Univ. of Wuerzburg (Germany); Dept. of Radiation Oncology, Stanford Univ. School of Medicine, Stanford, CA (United States); Brown, J.M. [Dept. of Radiation Oncology, Stanford Univ. School of Medicine, Stanford, CA (United States)

    2003-12-01

    Background: Eppendorf electrode measurements of tumor oxygenation have defined an adverse effect of tumor hypoxia on prognosis after radiotherapy and other treatment modalities, in particular in head and neck and cervix carcinomas as well as soft tissue sarcomas. Recently, the immunohistochemical detection of proteins involved in the ''hypoxic response'' of tumor cells has been discussed as a method to estimate hypoxia in clinical tumor specimens. Material and Methods: This review focuses on clinical and experimental data, regarding prognostic impact and comparability with other methods of hypoxia detection, for three proteins suggested as endogenous markers of tumor hypoxia: hypoxia-inducible factor-1{alpha} (HIF-1{alpha}), carbonic anhydrase 9 (CA 9), and glucose transporter 1 (GLUT1). Results: None of the three potential hypoxia markers is exclusively hypoxia-specific, and in each case protein can be detected under normoxic conditions in vitro. HIF-1{alpha} responds rapidly to hypoxia but also to reoxygenation, making this marker quite unstable in the context of clinical sample collection. The perinecrotic labeling pattern typical of chronic hypoxia and a reasonable agreement with injectable hypoxia markers such as pimonidazole have most consistently been described for CA 9. All three markers showed correlation with Eppendorf electrode measurements of tumor oxygenation in carcinoma of the cervix. In nine of 13 reports, among them all three that refer to curative radiotherapy for head and neck cancer, HIF-1{alpha} overexpression was associated with poor outcome. CA 9 was an adverse prognostic factor in cervix, head and neck and lung cancer, but not in two other head and neck cancer reports. GLUT1 predicted for poor survival in colorectal, cervix and lung cancer. Conclusion: Endogenous markers have the potential to indicate therapeutically relevant levels of hypoxia within tumors. Clinical trials assessing a marker's ability to predict a

  15. Chronic Toxic Metal Exposure and Cardiovascular Disease: Mechanisms of Risk and Emerging Role of Chelation Therapy.

    Science.gov (United States)

    Aneni, Ehimen C; Escolar, Esteban; Lamas, Gervasio A

    2016-12-01

    Over the last few decades, there has been a growing body of epidemiologic evidence linking chronic toxic metal exposure to cardiovascular disease-related morbidity and mortality. The recent and unexpectedly positive findings from a randomized, double-blind, multicenter trial of metal chelation for the secondary prevention of atherosclerotic cardiovascular disease (Trial to Assess Chelation Therapy (TACT)) have focused the discussion on the role of chronic exposure to toxic metals in the development and propagation of cardiovascular disease and the role of toxic metal chelation therapy in the secondary prevention of cardiovascular disease. This review summarizes the most recent evidence linking chronic toxic metal exposure to cardiovascular disease and examines the findings of TACT.

  16. A role for homeostatic drive in the perpetuation of complex chronic illness: Gulf War Illness and chronic fatigue syndrome.

    Directory of Open Access Journals (Sweden)

    Travis J A Craddock

    Full Text Available A key component in the body's stress response, the hypothalamic-pituitary-adrenal (HPA axis orchestrates changes across a broad range of major biological systems. Its dysfunction has been associated with numerous chronic diseases including Gulf War Illness (GWI and chronic fatigue syndrome (CFS. Though tightly coupled with other components of endocrine and immune function, few models of HPA function account for these interactions. Here we extend conventional models of HPA function by including feed-forward and feedback interaction with sex hormone regulation and immune response. We use this multi-axis model to explore the role of homeostatic regulation in perpetuating chronic conditions, specifically GWI and CFS. An important obstacle in building these models across regulatory systems remains the scarcity of detailed human in vivo kinetic data as its collection can present significant health risks to subjects. We circumvented this using a discrete logic representation based solely on literature of physiological and biochemical connectivity to provide a qualitative description of system behavior. This connectivity model linked molecular variables across the HPA axis, hypothalamic-pituitary-gonadal (HPG axis in men and women, as well as a simple immune network. Inclusion of these interactions produced multiple alternate homeostatic states and sexually dimorphic responses. Experimental data for endocrine-immune markers measured in male GWI subjects showed the greatest alignment with predictions of a naturally occurring alternate steady state presenting with hypercortisolism, low testosterone and a shift towards a Th1 immune response. In female CFS subjects, expression of these markers aligned with an alternate homeostatic state displaying hypocortisolism, high estradiol, and a shift towards an anti-inflammatory Th2 activation. These results support a role for homeostatic drive in perpetuating dysfunctional cortisol levels through persistent

  17. Metallothionein as a compensatory component prevents intermittent hypoxia-induced cardiomyopathy in mice

    International Nuclear Information System (INIS)

    Yin, Xia; Zhou, Shanshan; Zheng, Yang; Tan, Yi; Kong, Maiying; Wang, Bo; Feng, Wenke; Epstein, Paul N.; Cai, Jun; Cai, Lu

    2014-01-01

    Obstructive sleep apnea (OSA) causes chronic intermittent hypoxia (IH) to induce cardiovascular disease, which may be related to oxidative damage. Metallothionein (MT) has been extensively proved to be an endogenous and highly inducible antioxidant protein expressed in the heart. Therefore, we tested the hypotheses that oxidative stress plays a critical role in OSA induced cardiac damage and MT protects the heart from OSA-induced cardiomyopathy. To mimic hypoxia/reoxygenation events that occur in adult OSA patients, mice were exposed to IH for 3 days to 8 weeks. The IH paradigm consisted of alternating cycles of 20.9% O 2 /8% O 2 F I O 2 (30 episodes per hour) with 20 s at the nadir F I O 2 for 12 h a day during daylight. IH significantly increased the ratio of heart weight to tibia length at 4 weeks with a decrease in cardiac function from 4 to 8 weeks. Cardiac oxidative damage and fibrosis were observed after 4 and 8 weeks of IH exposures. Endogenous MT expression was up-regulated in response to 3-day IH, but significantly decreased at 4 and 8 weeks of IH. In support of MT as a major compensatory component, mice with cardiac overexpression of MT gene and mice with global MT gene deletion were completely resistant, and highly sensitive, respectively, to chronic IH induced cardiac effects. These findings suggest that chronic IH induces cardiomyopathy characterized by oxidative stress-mediated cardiac damage and the antioxidant MT protects the heart from such pathological and functional changes. - Highlights: • The effect of intermittent hypoxia (IH) on cardiac metallothionein (MT) • Cardiac MT expression was up-regulated in response to 3-day IH. • Exposure to 4- or 8-week IH downregulated cardiac MT expression. • Overexpression of cardiac MT protects from IH-induced cardiac damage. • Global deletion of MT gene made the heart more sensitive to IH damage

  18. Hypoxia promotes tumor growth in linking angiogenesis to immune escape

    Directory of Open Access Journals (Sweden)

    Salem eCHOUAIB

    2012-02-01

    Full Text Available Despite the impressive progress over the past decade, in the field of tumor immunology, such as the identification of tumor antigens and antigenic peptides as potential targets, there are still many obstacles in eliciting an effective immune response to eradicate cancer. It has become increasingly clear that tumor microenvironment plays a crucial role in the control of immune protection and contains many overlapping mechanisms to evade antigen specific immunotherapy. Obviously, tumors have evolved to utilize hypoxic stress to their own advantage by activating key biochemical and cellular pathways that are important in progression, survival and metastasis. Among the hypoxia-induced genes, hypoxia-inducible factor (HIF-1 and vascular endothelial growth factor (VEGF play a determinant role in promoting tumor cell growth and survival. In this regard, hypoxia is emerging as an attractive target for cancer therapy. How the microenvironmental hypoxia poses both obstacles and opportunities for new therapeutic immune interventions will be discussed.

  19. Hypoxia and Angiogenesis in Endometrioid Endometrial Carcinogenesis

    Directory of Open Access Journals (Sweden)

    Nicole Horrée

    2007-01-01

    Full Text Available Background: Hypoxia-inducible factor 1α (HIF-1α plays an essential role in the adaptive response of cells to hypoxia, triggering biologic events associated with aggressive tumor behavior. Methods: Expression of HIF-1α and proteins in the HIF-1α pathway (Glut-1, CAIX, VEGF in paraffin-embedded specimens of normal (n = 17, premalignant (n = 17 and endometrioid endometrial carcinoma (n = 39 was explored by immunohistochemistry, in relation to microvessel density (MVD. Results: HIF-1α overexpression was absent in inactive endometrium but present in hyperplasia (61% and carcinoma (87%, with increasing expression in a perinecrotic fashion pointing to underlying hypoxia. No membranous expression of Glut-1 and CAIX was noticed in inactive endometrium, in contrast with expression in hyperplasia (Glut-1 0%, CAIX 61%, only focal and diffuse and carcinoma (Glut-1 94.6%, CAIX 92%, both mostly perinecrotically. Diffuse HIF-1α was accompanied by activation of downstream targets. VEGF was significantly higher expressed in hyperplasias and carcinomas compared to inactive endometrium. MVD was higher in hyperplasias and carcinomas than in normal endometrium (p < 0.001. Conclusion: HIF-1α and its downstream genes are increasingly expressed from normal through premalignant to endometrioid adenocarcinoma of the endometrium, paralleled by activation of its downstream genes and increased angiogenesis. This underlines the potential importance of hypoxia and its key regulator HIF-1α in endometrial carcinogenesis.

  20. Assessment of Hypoxia in the Stroma of Patient-Derived Pancreatic Tumor Xenografts

    Energy Technology Data Exchange (ETDEWEB)

    Lohse, Ines; Lourenco, Corey; Ibrahimov, Emin; Pintilie, Melania [Ontario Cancer Institute and Campbell Family Cancer Research Institute, Princess Margaret Cancer Center, University Health Network, 610 University Ave., Toronto, ON M5G2M9 (Canada); Tsao, Ming-Sound [Ontario Cancer Institute and Campbell Family Cancer Research Institute, Princess Margaret Cancer Center, University Health Network, 610 University Ave., Toronto, ON M5G2M9 (Canada); Department of Pathology, University Health Network, 200 Elizabeth Street, Toronto, ON M5G2C4 (Canada); Department of Laboratory Medicine and Pathobiology, 27 King’s College Circle, University of Toronto, Toronto, ON M5S1A1 (Canada); Hedley, David W., E-mail: david.hedley@uhn.ca [Ontario Cancer Institute and Campbell Family Cancer Research Institute, Princess Margaret Cancer Center, University Health Network, 610 University Ave., Toronto, ON M5G2M9 (Canada); Departments of Medical Biophysics University of Toronto, 610 University Ave., Toronto, ON M5G2M9 (Canada); Departments of Medicine, University of Toronto, 610 University Ave., Toronto, ON M5G2M9 (Canada); Department of Medical Oncology and Hematology, Princess Margaret Cancer Center, 610 University Ave., Toronto, ON M5G2M9 (Canada)

    2014-02-26

    The unusually dense stroma of pancreatic cancers is thought to play an important role in their biological aggression. The presence of hypoxia is also considered an adverse prognostic factor. Although it is usually assumed that this is the result of effects of hypoxia on the epithelial component, it is possible that hypoxia exerts indirect effects via the tumor stroma. We therefore measured hypoxia in the stroma of a series of primary pancreatic cancer xenografts. Nine patient-derived pancreatic xenografts representing a range of oxygenation levels were labeled by immunohistochemistry for EF5 and analyzed using semi-automated pattern recognition software. Hypoxia in the tumor and stroma was correlated with tumor growth and metastatic potential. The extent of hypoxia varied from 1%–39% between the different models. EF5 labeling in the stroma ranged from 0–20% between models, and was correlated with the level of hypoxia in the tumor cell area, but not microvessel density. Tumor hypoxia correlated with spontaneous metastasis formation with the exception of one hypoxic model that showed disproportionately low levels of hypoxia in the stroma and was non-metastatic. Our results demonstrate that hypoxia exists in the stroma of primary pancreatic cancer xenografts and suggest that stromal hypoxia impacts the metastatic potential.

  1. Hypoxia and hypoxia-inducible factors as regulators of T cell development, differentiation, and function

    Science.gov (United States)

    McNamee, Eóin N.; Johnson, Darlynn Korns; Homann, Dirk

    2014-01-01

    Oxygen is a molecule that is central to cellular respiration and viability, yet there are multiple physiologic and pathological contexts in which cells experience conditions of insufficient oxygen availability, a state known as hypoxia. Given the metabolic challenges of a low oxygen environment, hypoxia elicits a range of adaptive responses at the cellular, tissue, and systemic level to promote continued survival and function. Within this context, T lymphocytes are a highly migratory cell type of the adaptive immune system that frequently encounters a wide range of oxygen tensions in both health and disease. It is now clear that oxygen availability regulates T cell differentiation and function, a response orchestrated in large part by the hypoxia-inducible factor transcription factors. Here, we discuss the physiologic scope of hypoxia and hypoxic signaling, the contribution of these pathways in regulating T cell biology, and current gaps in our understanding. Finally, we discuss how emerging therapies that modulate the hypoxic response may offer new modalities to alter T cell function and the outcome of acute and chronic pathologies. PMID:22961658

  2. Imaging tumor hypoxia: Blood-borne delivery of imaging agents is fundamentally different in hypoxia subtypes

    Directory of Open Access Journals (Sweden)

    Peter Vaupel

    2014-03-01

    Full Text Available Hypoxic tissue subvolumes are a hallmark feature of solid malignant tumors, relevant for cancer therapy and patient outcome because they increase both the intrinsic aggressiveness of tumor cells and their resistance to several commonly used anticancer strategies. Pathogenetic mechanisms leading to hypoxia are diverse, may coexist within the same tumor and are commonly grouped according to the duration of their effects. Chronic hypoxia is mainly caused by diffusion limitations resulting from enlarged intercapillary distances and adverse diffusion geometries and — to a lesser extent — by hypoxemia, compromised perfusion or long-lasting microregional flow stops. Conversely, acute hypoxia preferentially results from transient disruptions in perfusion. While each of these features of the tumor microenvironment can contribute to a critical reduction of oxygen availability, the delivery of imaging agents (as well as nutrients and anticancer agents may be compromised or remain unaffected. Thus, a critical appraisal of the effects of the various mechanisms leading to hypoxia with regard to the blood-borne delivery of imaging agents is necessary to judge their ability to correctly represent the hypoxic phenotype of solid malignancies.

  3. Targeted activation of endothelin-1 exacerbates hypoxia-induced pulmonary hypertension

    International Nuclear Information System (INIS)

    Satwiko, Muhammad Gahan; Ikeda, Koji; Nakayama, Kazuhiko; Yagi, Keiko; Hocher, Berthold; Hirata, Ken-ichi; Emoto, Noriaki

    2015-01-01

    Pulmonary arterial hypertension (PAH) is a fatal disease that eventually results in right heart failure and death. Current pharmacologic therapies for PAH are limited, and there are no drugs that could completely cure PAH. Enhanced activity of endothelin system has been implicated in PAH severity and endothelin receptor antagonists have been used clinically to treat PAH. However, there is limited experimental evidence on the direct role of enhanced endothelin system activity in PAH. Here, we investigated the correlation between endothelin-1 (ET-1) and PAH using ET-1 transgenic (ETTG) mice. Exposure to chronic hypoxia increased right ventricular pressure and pulmonary arterial wall thickness in ETTG mice compared to those in wild type mice. Of note, ETTG mice exhibited modest but significant increase in right ventricular pressure and vessel wall thickness relative to wild type mice even under normoxic conditions. To induce severe PAH, we administered SU5416, a vascular endothelial growth factor receptor inhibitor, combined with exposure to chronic hypoxia. Treatment with SU5416 modestly aggravated hypoxia-induced pulmonary hypertension, right ventricular hypertrophy, and pulmonary arterial vessel wall thickening in ETTG mice in association with increased interleukin-6 expression in blood vessels. However, there was no sign of obliterative endothelial cell proliferation and plexiform lesion formation in the lungs. These results demonstrated that enhanced endothelin system activity could be a causative factor in the development of PAH and provided rationale for the inhibition of endothelin system to treat PAH. - Highlights: • Role of endothelin-1 in pulmonary arterial hypertension (PAH) was investigated. • The endothelin-1 transgenic (ETTG) and wild type (WT) mice were analyzed. • ETTG mice spontaneously developed PAH under normoxia conditions. • SU5416 further aggravated PAH in ETTG mice. • Enhanced endothelin system activity could be a causative factor in

  4. Targeted activation of endothelin-1 exacerbates hypoxia-induced pulmonary hypertension

    Energy Technology Data Exchange (ETDEWEB)

    Satwiko, Muhammad Gahan [Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe (Japan); Ikeda, Koji [Department of Clinical Pharmacy, Kobe Pharmaceutical University, Kobe (Japan); Nakayama, Kazuhiko [Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe (Japan); Yagi, Keiko [Department of Clinical Pharmacy, Kobe Pharmaceutical University, Kobe (Japan); Hocher, Berthold [Institute for Nutritional Science, University of Potsdam, Potsdam (Germany); Hirata, Ken-ichi [Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe (Japan); Emoto, Noriaki, E-mail: emoto@med.kobe-u.ac.jp [Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe (Japan); Department of Clinical Pharmacy, Kobe Pharmaceutical University, Kobe (Japan)

    2015-09-25

    Pulmonary arterial hypertension (PAH) is a fatal disease that eventually results in right heart failure and death. Current pharmacologic therapies for PAH are limited, and there are no drugs that could completely cure PAH. Enhanced activity of endothelin system has been implicated in PAH severity and endothelin receptor antagonists have been used clinically to treat PAH. However, there is limited experimental evidence on the direct role of enhanced endothelin system activity in PAH. Here, we investigated the correlation between endothelin-1 (ET-1) and PAH using ET-1 transgenic (ETTG) mice. Exposure to chronic hypoxia increased right ventricular pressure and pulmonary arterial wall thickness in ETTG mice compared to those in wild type mice. Of note, ETTG mice exhibited modest but significant increase in right ventricular pressure and vessel wall thickness relative to wild type mice even under normoxic conditions. To induce severe PAH, we administered SU5416, a vascular endothelial growth factor receptor inhibitor, combined with exposure to chronic hypoxia. Treatment with SU5416 modestly aggravated hypoxia-induced pulmonary hypertension, right ventricular hypertrophy, and pulmonary arterial vessel wall thickening in ETTG mice in association with increased interleukin-6 expression in blood vessels. However, there was no sign of obliterative endothelial cell proliferation and plexiform lesion formation in the lungs. These results demonstrated that enhanced endothelin system activity could be a causative factor in the development of PAH and provided rationale for the inhibition of endothelin system to treat PAH. - Highlights: • Role of endothelin-1 in pulmonary arterial hypertension (PAH) was investigated. • The endothelin-1 transgenic (ETTG) and wild type (WT) mice were analyzed. • ETTG mice spontaneously developed PAH under normoxia conditions. • SU5416 further aggravated PAH in ETTG mice. • Enhanced endothelin system activity could be a causative factor in

  5. Optical imaging of tumor hypoxia dynamics

    Science.gov (United States)

    Palmer, Gregory M.; Fontanella, Andrew N.; Zhang, Guoqing; Hanna, Gabi; Fraser, Cassandra L.; Dewhirst, Mark W.

    2010-11-01

    The influence of the tumor microenvironment and hypoxia plays a significant role in determining cancer progression, treatment response, and treatment resistance. That the tumor microenvironment is highly heterogeneous with significant intratumor and intertumor variability presents a significant challenge in developing effective cancer therapies. Critical to understanding the role of the tumor microenvironment is the ability to dynamically quantify oxygen levels in the vasculature and tissue in order to elucidate the roles of oxygen supply and consumption, spatially and temporally. To this end, we describe the use of hyperspectral imaging to characterize hemoglobin absorption to quantify hemoglobin content and oxygen saturation, as well as dual emissive fluorescent/phosphorescent boron nanoparticles, which serve as ratiometric indicators of tissue oxygen tension. Applying these techniques to a window-chamber tumor model illustrates the role of fluctuations in hemoglobin saturation in driving changes in tissue oxygenation, the two being significantly correlated (r = 0.77). Finally, a green-fluorescence-protein reporter for hypoxia inducible factor-1 (HIF-1) provides an endpoint for hypoxic stress in the tumor, which is used to demonstrate a significant association between tumor hypoxia dynamics and HIF-1 activity in an in vivo demonstration of the technique.

  6. Hypoxia in tumors: pathogenesis-related classification, characterization of hypoxia subtypes, and associated biological and clinical implications.

    Science.gov (United States)

    Vaupel, Peter; Mayer, Arnulf

    2014-01-01

    Hypoxia is a hallmark of tumors leading to (mal-)adaptive processes, development of aggressive phenotypes and treatment resistance. Based on underlying mechanisms and their duration, two main types of hypoxia have been identified, coexisting with complex spatial and temporal heterogeneities. Chronic hypoxia is mainly caused by diffusion limitations due to enlarged diffusion distances and adverse diffusion geometries (e.g., concurrent vs. countercurrent microvessels, Krogh- vs. Hill-type diffusion geometry) and, to a lesser extent, by hypoxemia (e.g., in anemic patients, HbCO formation in heavy smokers), and a compromised perfusion or flow stop (e.g., due to disturbed Starling forces or intratumor solid stress). Acute hypoxia mainly results from transient disruptions in perfusion (e.g., vascular occlusion by cell aggregates), fluctuating red blood cell fluxes or short-term contractions of the interstitial matrix. In each of these hypoxia subtypes oxygen supply is critically reduced, but perfusion-dependent nutrient supply, waste removal, delivery of anticancer or diagnostic agents, and repair competence can be impaired or may not be affected. This detailed differentiation of tumor hypoxia may impact on our understanding of tumor biology and may aid in the development of novel treatment strategies, tumor detection by imaging and tumor targeting, and is thus of great clinical relevance.

  7. Expression of DDX3 is directly modulated by hypoxia inducible factor-1 alpha in breast epithelial cells.

    Directory of Open Access Journals (Sweden)

    Mahendran Botlagunta

    2011-03-01

    Full Text Available DEAD box protein, DDX3, is aberrantly expressed in breast cancer cells ranging from weakly invasive to aggressive phenotypes and functions as an important regulator of cancer cell growth and survival. Here, we demonstrate that hypoxia inducible factor-1α is a transcriptional activator of DDX3 in breast cancer cells. Within the promoter region of the human DDX3 gene, we identified three putative hypoxia inducible factor-1 responsive elements. By luciferase reporter assays in combination with mutated hypoxia inducible factor-1 responsive elements, we determined that the hypoxia inducible factor-1 responsive element at position -153 relative to the translation start site is essential for transcriptional activation of DDX3 under hypoxic conditions. We also demonstrated that hypoxia inducible factor-1 binds to the DDX3 promoter and that the binding is specific, as revealed by siRNA against hypoxia inducible factor-1 and chromatin immunoprecipitation assays. Thus, the activation of DDX3 expression during hypoxia is due to the direct binding of hypoxia inducible factor-1 to hypoxia responsive elements in the DDX3 promoter. In addition, we observed a significant overlap in the protein expression pattern of hypoxia inducible factor-1α and DDX3 in MDA-MB-231 xenograft tumors. Taken together, our results demonstrate, for the first time, the role of DDX3 as a hypoxia-inducible gene that exhibits enhanced expression through the interaction of hypoxia inducible factor-1 with hypoxia inducible factor-1 responsive elements in its promoter region.

  8. Hypoxia-Inducible Factor 3 Is an Oxygen-Dependent Transcription Activator and Regulates a Distinct Transcriptional Response to Hypoxia

    Directory of Open Access Journals (Sweden)

    Peng Zhang

    2014-03-01

    Full Text Available Hypoxia-inducible factors (HIFs play key roles in the cellular response to hypoxia. It is widely accepted that whereas HIF-1 and HIF-2 function as transcriptional activators, HIF-3 inhibits HIF-1/2α action. Contrary to this idea, we show that zebrafish Hif-3α has strong transactivation activity. Hif-3α is degraded under normoxia. Mutation of P393, P493, and L503 inhibits this oxygen-dependent degradation. Transcriptomics and chromatin immunoprecipitation analyses identify genes that are regulated by Hif-3α, Hif-1α, or both. Under hypoxia or when overexpressed, Hif-3α binds to its target gene promoters and upregulates their expression. Dominant-negative inhibition and knockdown of Hif-3α abolish hypoxia-induced Hif-3α-promoter binding and gene expression. Hif-3α not only mediates hypoxia-induced growth and developmental retardation but also possesses hypoxia-independent activities. Importantly, transactivation activity is conserved and human HIF-3α upregulates similar genes in human cells. These findings suggest that Hif-3 is an oxygen-dependent transcription factor and activates a distinct transcriptional response to hypoxia.

  9. MicroRNA-195 induced apoptosis in hypoxic chondrocytes by targeting hypoxia-inducible factor 1 alpha.

    Science.gov (United States)

    Bai, R; Zhao, A-Q; Zhao, Z-Q; Liu, W-L; Jian, D-M

    2015-02-01

    The chondrocytes, the resident cells of cartilage, are maintained and take effects in the whole life upon chronic hypoxic exposure, which hypoxia-inducible factor 1 alpha (HIF-1α) play pivotal roles in response to. Dysregulation of some microRNA (miRNAs) have also been identified to be involved in hypoxia-related physiologic and pathophysiologic responses in some tissues or cell lines. However, the mechanism of miRNAs reponse to hypoxia remain largely unknown in chondrocytes, including the microRNA-195 (miR-195). AIM To investigate the effects of microRNAs (miRNAs) and hypoxia-inducible factor 1 alpha (HIF-1α) on chondrocytes in physiologic environment. We compared the expression of miR-195 and HIF-1α mRNA on hypoxia with that on normoxia in ATDC 5 cells by qRT-PCR. Further experiments was performed to confirmed the relationships of miR-195 and HIF-1α by bioinformatics analysis and dual reporter gene assay. we also assessed the effect of miR-195 on apoptosis in hypoxic ATDC 5 cells by transfect with miR-195 mimics. It was found the downregulated miR-195 and upregulated HIF-1α were present in hypoxic ATDC 5 cells. miR-195 negatively regulated HIF-1α by targeting its 3'-untranslated region. Moreover, the founding indicated miR-195 greatly increased apoptosis and downregulated HIF-1α mRNA occurred simultaneously in hypoxic chondrocytes. We concluded that miR-195 induced apoptosis in hypoxic chondrocytes by directly targeting HIF-1α.

  10. Role of Hypoxia-inducible factor-1 and its target genes in human lung adenocarcinoma cells after photon- versus carbon ion irradiation; Expression HIF-1-abhaengiger Gene in humanen Lungenadenokarzinom (A549)-Zellen und deren Regulation nach Photonen- und Schwerionenbestrahlung

    Energy Technology Data Exchange (ETDEWEB)

    Bill, Verena Maria

    2013-11-26

    Exposed to hypoxia tumor cells are notably resistant to photon irradiation. The hypoxiainducible transcription factor 1α (HIF-1α) seems to play a fundamental role in this resistance, while its role after heavy-ion beam remains unknown. The intention of this study was to determine how A549-cells (non-small-cell lung carcinoma) react in different oxygenation states after irradiation with photons or heavy ions, particularly in regards to their expression of HIF-1 target genes. Resistance of hypoxic A549 cells after photon irradiation was documented by cellular and clonogenic survival. In contrast, cellular survival after heavy-ion irradiation in hypoxic cells was not elevated to normoxic cells. Among the oxygen dependent regulation of HIF-1 target genes, gene expression analyses showed an increased expression of GLUT-1, LDH-A, PDK-1 and VEGF after photon irradiation but not after heavy-ion irradiation after 48 hours in normoxic cells. As expected, CDKN1A as inhibitor of cell cycle progression showed higher expression after both radiation forms; interestingly CDKN1A was also in an oxygen dependent manner lightly upregulated. In western blot analyses we demonstrated a significant increase of HIF-1 and GLUT-1 caused by hypoxia, but only a tendency of increased protein level in hypoxia after photon irradiation and no changes after heavy-ion irradiation. Significantly higher protein level of secreted VEGF-A could be measured 72 hours after photon irradiation in normoxic cells by ELISA analyses. Controversially discussed, I could not detect an association between HIF-1 and SCF or Trx-1 in A549-cells in this study. Whereas Trx-1-expression was neither influenced by changed oxygen partial pressure nor irradiation, I could show increased SCF mRNA by quantitative Real Time-PCR and secreted protein level by ELISA after photon irradiation independent of oxygen state. In summary, this study showed that HIF-1 and its target genes (GLUT-1, LDHA; PDK, VEGF) and also SCF was

  11. Hypoxia determines survival outcomes of bacterial infection through HIF-1alpha dependent re-programming of leukocyte metabolism *

    OpenAIRE

    Thompson, A.A.R.; Dickinson, R.S.; Murphy, F.; Thomson, J. P.; Marriott, H.M.; Tavares, A.; Willson, J.; Williams, L.; Lewis, A.; Mirchandani, A.; Dos Santos Coelho, P.; Doherty, C.; Ryan, E.; Watts, E.; Morton, N. M.

    2017-01-01

    Hypoxia and bacterial infection frequently co-exist, in both acute and chronic clinical settings, and typically result in adverse clinical outcomes. To ameliorate this morbidity, we investigated the interaction between hypoxia and the host response. In the context of acute hypoxia, both S. aureus and S. pneumoniae infections rapidly induced progressive neutrophil mediated morbidity and mortality, with associated hypothermia and cardiovascular compromise. Preconditioning animals through longer...

  12. In immune defense: redefining the role of the immune system in chronic disease.

    Science.gov (United States)

    Rubinow, Katya B; Rubinow, David R

    2017-03-01

    The recognition of altered immune system function in many chronic disease states has proven to be a pivotal advance in biomedical research over the past decade. For many metabolic and mood disorders, this altered immune activity has been characterized as inflammation, with the attendant assumption that the immune response is aberrant. However, accumulating evidence challenges this assumption and suggests that the immune system may be mounting adaptive responses to chronic stressors. Further, the inordinate complexity of immune function renders a simplistic, binary model incapable of capturing critical mechanistic insights. In this perspective article, we propose alternative paradigms for understanding the role of the immune system in chronic disease. By invoking allostasis or systems biology rather than inflammation, we can ascribe greater functional significance to immune mediators, gain newfound appreciation of the adaptive facets of altered immune activity, and better avoid the potentially disastrous effects of translating erroneous assumptions into novel therapeutic strategies.

  13. Social Isolation and Adult Mortality: The Role of Chronic Inflammation and Sex Differences

    Science.gov (United States)

    Yang, Yang Claire; McClintock, Martha K.; Kozloski, Michael; Li, Ting

    2014-01-01

    The health and survival benefits of social embeddedness have been widely documented across social species, but the underlying biophysiological mechanisms have not been elucidated in the general population. We assessed the process by which social isolation increases the risk for all-cause and chronic disease mortality through proinflammatory mechanisms. Using the 18-year mortality follow-up data (n = 6,729) from the National Health and Nutrition Examination Survey (1988–2006) on Social Network Index and multiple markers of chronic inflammation, we conducted survival analyses and found evidence that supports the mediation role of chronic inflammation in the link between social isolation and mortality. A high-risk fibrinogen level and cumulative inflammation burden may be particularly important in this link. There are notable sex differences in the mortality effects of social isolation in that they are greater for men and can be attributed in part to their heightened inflammatory responses. PMID:23653312

  14. Paediatric chronic illness and educational failure: the role of emotional and behavioural problems.

    Science.gov (United States)

    Layte, Richard; McCrory, Cathal

    2013-08-01

    Chronic illness in childhood is associated with worse educational outcomes. The association is usually explained via lowered cognitive development, decreased readiness to learn and school absence. However, this paper examines whether worse psychological adjustment may also play a role. We use data from the Growing Up in Ireland study, a cohort study, which collected data on 8,568 nine-year-old children through the Irish national school system using a two-stage sampling method. Maximum likelihood path analytic models are used to assess the direct effect of child chronic illness on reading and maths test scores and the mediating role of emotional and behavioural problems. In unadjusted analyses, children with a mental and behavioural condition scored 14.5 % points less on reading tests and 16.9 % points less on maths tests than their healthy peers. Children with non-mental and behavioural conditions scored 3 % points less on both tests, a significant difference. Mental and behavioural (OR, 9.58) and other chronic conditions (OR, 1.61) were significantly more likely to have 'high' levels of difficulties on the SDQ. Path analysis models showed that the association between chronic illness and educational test scores was completely mediated by emotional and behavioural problems controlling for school absence and bullying by peers. Child and adolescent chronic illness can have significant effects on educational development and a long-lasting impact on future life-chances. The psychological adjustment of the child is important in mediating the effect of chronic illness on educational outcomes. Interventions should target this developmental pathway.

  15. [Patient's role and chronic disease in Mali: between policies and expert and lay practices].

    Science.gov (United States)

    Gobatto, Isabelle; Tijou Traoré, Annick; Martini, Jessica

    2016-01-01

    The growing burden of non-communicable diseases challenges health systems of low-and middle-income countries and requires health care reform by the introduction of models focused on patient participation. This article puts into perspective the management of two chronic diseases, diabetes and HIV/AIDS, in Mali. It explores the way in which the patient’s role is conceived and implemented at three levels: policy-makers, healthcare professionals and patients, in order to more clearly understand the dynamics and rationales underlying promotion of the patient’s role in the context of a low-income country. Results were derived from qualitative interviews conducted between 2010 and 2012 with key stakeholders involved in policy, healthcare professionals and patients, and from observations of healthcare relationships in two specialized healthcare structures in Bamako. The chronic nature of the disease is not sufficient to define the patient’s role in healthcare. Other factors also influence the emergence and practice of an active patient care model: the political, clinical and social history of the disease; the institutional work contexts of healthcare professionals; patients’ representations and practices. Patients are well aware of the role they need to play in the management of a chronic disease and they develop resources to remain active. These various dynamics should be better taken into account to make effective changes in the health care system and to strengthen patients’ autonomy.

  16. ROCK2 mediates the proliferation of pulmonary arterial endothelial cells induced by hypoxia in the development of pulmonary arterial hypertension

    OpenAIRE

    QIAO, FENG; ZOU, ZHITIAN; LIU, CHUNHUI; ZHU, XIAOFENG; WANG, XIAOQIANG; YANG, CHENGPENG; JIANG, TENGJIAO; CHEN, YING

    2016-01-01

    It has been reported that RhoA activation and Rho-kinase (ROCK) expression are increased in chronic hypoxic lungs, and the long-term inhibition of ROCK markedly improves the survival of patients with pulmonary arterial hypertension (PAH). However, whether Rho-kinase α (ROCK2) participates in regulation of the growth of pulmonary arterial endothelial cells (PAECs) remains unknown. The aim of the present study was to investigate the effect of hypoxia on the proliferation of PAECs and the role o...

  17. Extreme hypoxia tolerance of naked mole-rat brain.

    Science.gov (United States)

    Larson, John; Park, Thomas J

    2009-12-09

    Mammalian brains have extremely high levels of aerobic metabolism and typically suffer irreversible damage after brief periods of oxygen deprivation such as occur during stroke or cardiac arrest. Here we report that brain tissue from naked mole-rats, rodents that live in a chronically low-oxygen environment, is remarkably resistant to hypoxia: naked mole-rat neurons maintain synaptic transmission much longer than mouse neurons and can recover from periods of anoxia exceeding 30 min. We suggest that brain tolerance to hypoxia may result from slowed or arrested brain development in these extremely long-lived animals.

  18. RNA Sequencing Reveals that Kaposi Sarcoma-Associated Herpesvirus Infection Mimics Hypoxia Gene Expression Signature

    Science.gov (United States)

    Viollet, Coralie; Davis, David A.; Tekeste, Shewit S.; Reczko, Martin; Pezzella, Francesco; Ragoussis, Jiannis

    2017-01-01

    Kaposi sarcoma-associated herpesvirus (KSHV) causes several tumors and hyperproliferative disorders. Hypoxia and hypoxia-inducible factors (HIFs) activate latent and lytic KSHV genes, and several KSHV proteins increase the cellular levels of HIF. Here, we used RNA sequencing, qRT-PCR, Taqman assays, and pathway analysis to explore the miRNA and mRNA response of uninfected and KSHV-infected cells to hypoxia, to compare this with the genetic changes seen in chronic latent KSHV infection, and to explore the degree to which hypoxia and KSHV infection interact in modulating mRNA and miRNA expression. We found that the gene expression signatures for KSHV infection and hypoxia have a 34% overlap. Moreover, there were considerable similarities between the genes up-regulated by hypoxia in uninfected (SLK) and in KSHV-infected (SLKK) cells. hsa-miR-210, a HIF-target known to have pro-angiogenic and anti-apoptotic properties, was significantly up-regulated by both KSHV infection and hypoxia using Taqman assays. Interestingly, expression of KSHV-encoded miRNAs was not affected by hypoxia. These results demonstrate that KSHV harnesses a part of the hypoxic cellular response and that a substantial portion of hypoxia-induced changes in cellular gene expression are induced by KSHV infection. Therefore, targeting hypoxic pathways may be a useful way to develop therapeutic strategies for KSHV-related diseases. PMID:28046107

  19. Therapeutic Role of Functional Components in Alliums for Preventive Chronic Disease in Human Being

    Directory of Open Access Journals (Sweden)

    Yawen Zeng

    2017-01-01

    Full Text Available Objectives. Functional components in alliums have long been maintained to play a key role in modifying the major risk factors for chronic disease. To obtain a better understanding of alliums for chronic disease prevention, we conducted a systematic review for risk factors and prevention strategies for chronic disease of functional components in alliums, based on a comprehensive English literature search that was conducted using various electronic search databases, especially the PubMed, ISI Web of Science, and CNKI for the period 2007–2016. Allium genus especially garlic, onion, and Chinese chive is rich in organosulfur compounds, quercetin, flavonoids, saponins, and others, which have anticancer, preventive cardiovascular and heart diseases, anti-inflammation, antiobesity, antidiabetes, antioxidants, antimicrobial activity, neuroprotective and immunological effects, and so on. These results support Allium genus; garlic and onion especially may be the promising dietotherapeutic vegetables and organopolysulfides as well as quercetin mechanism in the treatment of chronic diseases. This review may be used as scientific basis for the development of functional food, nutraceuticals, and alternative drugs to improve the chronic diseases.

  20. Role of anuloma viloma pranayama in reducing stress in chronic alcoholics

    International Nuclear Information System (INIS)

    Kumar, L.R.

    2011-01-01

    Despite improved clinical care, heightened public awareness and wide spread use of health innovations, alcoholism remains a leading cause of death in many parts of the world. Chronic alcoholics suffer from stress and multitude of symptoms. The progressive addiction to alcohol will gradually nullify all other interests in the patient's life so that a deterioration of the physical, psychological, social, cultural and religious values takes place. The role of yoga in healing asthma, arthritis and other disorders has been known. Methods: Breathing technique (Anuloma Viloma Pranayama) was taught to chronic alcoholics. Using galvanic skin resistance, stress levels were measured before and after anuloma viloma yoga in controls and chronic alcoholics. Results: Reduced stress levels were noted using the galvanic skin resistance in both controls and chronic alcoholics after yogic breathing. Conclusion: There is a promising effect of simple yoga techniques in organising effective rehabilitation and treatment programmes to reduce stress in chronic alcoholics. This study would help to chart out a better management programme for enhancing relapse and alleviate the symptoms. (author)

  1. Role of Porphyromonas gingivalis HmuY in Immunopathogenesis of Chronic Periodontitis

    Directory of Open Access Journals (Sweden)

    P. C. Carvalho-Filho

    2016-01-01

    Full Text Available Periodontitis is a multifactorial disease, with participation of bacterial, environmental, and host factors. It results from synergistic and dysbiotic multispecies microorganisms, critical “keystone pathogens,” affecting the whole bacterial community. The purpose of this study was to review the role of Porphyromonas gingivalis in the immunopathogenesis of chronic periodontitis, with special attention paid to HmuY. The host response during periodontitis involves the innate and adaptive immune system, leading to chronic inflammation and progressive destruction of tooth-supporting tissues. In this proinflammatory process, the ability of P. gingivalis to evade the host immune response and access nutrients in the microenvironment is directly related to its survival, proliferation, and infection. Furthermore, heme is an essential nutrient for development of these bacteria, and HmuY is responsible for its capture from host heme-binding proteins. The inflammatory potential of P. gingivalis HmuY has been shown, including induction of high levels of proinflammatory cytokines and CCL2, decreased levels of IL-8, and increased levels of anti-HmuY IgG and IgG1 antibodies in individuals with chronic periodontitis. Therefore, the HmuY protein might be a promising target for therapeutic strategies and for development of diagnostic methods in chronic periodontitis, especially in the case of patients with chronic periodontitis not responding to treatment, monitoring, and maintenance therapy.

  2. The role of helicobacter pylori infection in the pathogenesis of chronic urticaria

    International Nuclear Information System (INIS)

    Ghazzawi, I.M.; Obidat, N.A.

    2004-01-01

    Objective: To determine the prevalence of H. pylori infection in patients with idiopathic chronic urticaria (ICU) and to see if eradication of the bacterium affects the course of the urticaria. Patients and Methods: One hundred patients with idiopathic chronic urticaria and 43 healthy subjects (matched for age and sex) underwent serological testing for H. pylori infection. All patients with idiopathic chronic urticaria were examined for Helicobacter pylori infection with the /sup 13/C-urea test as well as the serological testing. Gastric biopsy was obtained from 36 patients. Patients with proven Helicobacter pylori infection were given treatment for 2 weeks. Six weeks afterwards they were tested again for Helicobacter pylori infection, and their urticaria was clinically assessed. Results: There was no significant difference in the seroprevalence of H. pylori infection between : idiopathic chronic urticaria patients and healthy subjects. Helicobacter pylori was detected in 76% of patients and 69.8% of controls. Out of the 76 patients treated, only 24 showed complete remission of their urticaria after successfully eradicating Helicobacter pylori infection, the others only having some improvement in their symptoms. Conclusion: Patients with idiopathic chronic urticaria have similar high rates of H. pylori infection as healthy subjects. Bacterium eradication is associated with improvement of urticaria symptoms, suggesting a possible role of Helicobacter pylori in the pathogenesis of this skin disorder. (author)

  3. Role of Porphyromonas gingivalis HmuY in Immunopathogenesis of Chronic Periodontitis

    Science.gov (United States)

    Gomes-Filho, I. S.; Meyer, R.; Olczak, T.; Xavier, M. T.; Trindade, S. C.

    2016-01-01

    Periodontitis is a multifactorial disease, with participation of bacterial, environmental, and host factors. It results from synergistic and dysbiotic multispecies microorganisms, critical “keystone pathogens,” affecting the whole bacterial community. The purpose of this study was to review the role of Porphyromonas gingivalis in the immunopathogenesis of chronic periodontitis, with special attention paid to HmuY. The host response during periodontitis involves the innate and adaptive immune system, leading to chronic inflammation and progressive destruction of tooth-supporting tissues. In this proinflammatory process, the ability of P. gingivalis to evade the host immune response and access nutrients in the microenvironment is directly related to its survival, proliferation, and infection. Furthermore, heme is an essential nutrient for development of these bacteria, and HmuY is responsible for its capture from host heme-binding proteins. The inflammatory potential of P. gingivalis HmuY has been shown, including induction of high levels of proinflammatory cytokines and CCL2, decreased levels of IL-8, and increased levels of anti-HmuY IgG and IgG1 antibodies in individuals with chronic periodontitis. Therefore, the HmuY protein might be a promising target for therapeutic strategies and for development of diagnostic methods in chronic periodontitis, especially in the case of patients with chronic periodontitis not responding to treatment, monitoring, and maintenance therapy. PMID:27403039

  4. Decreased "ineffective erythropoiesis" preserves polycythemia in mice under long-term hypoxia.

    Science.gov (United States)

    Harada, Tomonori; Tsuboi, Isao; Hirabayashi, Yukio; Kosaku, Kazuhiro; Naito, Michiko; Hara, Hiroyuki; Inoue, Tohru; Aizawa, Shin

    2015-05-01

    Hypoxia induces innumerable changes in humans and other animals, including an increase in peripheral red blood cells (polycythemia) caused by the activation of erythropoiesis mediated by increased erythropoietin (EPO) production. However, the elevation of EPO is limited and levels return to normal ranges under normoxia within 5-7 days of exposure to hypoxia, whereas polycythemia continues for as long as hypoxia persists. We investigated erythropoiesis in bone marrow and spleens from mouse models of long-term normobaric hypoxia (10 % O2) to clarify the mechanism of prolonged polycythemia in chronic hypoxia. The numbers of erythroid colony-forming units (CFU-E) in the spleen remarkably increased along with elevated serum EPO levels indicating the activation of erythropoiesis during the first 7 days of hypoxia. After 14 days of hypoxia, the numbers of CFU-E returned to normoxic levels, whereas polycythemia persisted for >140 days. Flow cytometry revealed a prolonged increase in the numbers of TER119-positive cells (erythroid cells derived from pro-erythroblasts through mature erythrocyte stages), especially the TER119 (high) CD71 (high) population, in bone marrow. The numbers of annexin-V-positive cells among the TER119-positive cells particularly declined under chronic hypoxia, suggesting that the numbers of apoptotic cells decrease during erythroid cell maturation. Furthermore, RT-PCR analysis showed that the RNA expression of BMP-4 and stem cell factor that reduces apoptotic changes during erythroid cell proliferation and maturation was increased in bone marrow under hypoxia. These findings indicated that decreased apoptosis of erythroid cells during erythropoiesis contributes to polycythemia in mice during chronic exposure to long-term hypoxia.

  5. Adrenocortical and Adipose Responses to High-Altitude-Induced, Long-Term Hypoxia in the Ovine Fetus

    Directory of Open Access Journals (Sweden)

    Dean A. Myers

    2012-01-01

    Full Text Available By late gestation, the maturing hypothalamo-pituitary-adrenal (HPA axis aids the fetus in responding to stress. Hypoxia represents a significant threat to the fetus accompanying situations such as preeclampsia, smoking, high altitude, and preterm labor. We developed a model of high-altitude (3,820 m, long-term hypoxia (LTH in pregnant sheep. We describe the impact of LTH on the fetal HPA axis at the level of the hypothalamic paraventricular nucleus (PVN, anterior pituitary corticotrope, and adrenal cortex. At the PVN and anterior pituitary, the responses to LTH are consistent with hypoxia being a potent activator of the HPA axis and potentially maladaptive, while the adrenocortical response to LTH appears to be primarily adaptive. We discuss mechanisms involved in the delicate balance between these seemingly opposing responses that preserve the normal ontogenic rise in fetal plasma cortisol essential for organ maturation and in this species, birth. Further, we examine the response to, and ramifications of, an acute secondary stressor in the LTH fetus. We provide an integrative model on the potential role of adipose in modulating these responses to LTH. Integration of these adaptive responses to LTH plays a key role in promoting normal fetal growth and development under conditions of a chronic stress.

  6. Fetal programming of chronic kidney disease: the role of maternal smoking, mitochondrial dysfunction, and epigenetic modfification.

    Science.gov (United States)

    Stangenberg, Stephanie; Chen, Hui; Wong, Muh Geot; Pollock, Carol A; Saad, Sonia

    2015-06-01

    The role of an adverse in utero environment in the programming of chronic kidney disease in the adult offspring is increasingly recognized. The cellular and molecular mechanisms linking the in utero environment and future disease susceptibility remain unknown. Maternal smoking is a common modifiable adverse in utero exposure, potentially associated with both mitochondrial dysfunction and epigenetic modification in the offspring. While studies are emerging that point toward a key role of mitochondrial dysfunction in acute and chronic kidney disease, it may have its origin in early development, becoming clinically apparent when secondary insults occur. Aberrant epigenetic programming may add an additional layer of complexity to orchestrate fibrogenesis in the kidney and susceptibility to chronic kidney disease in later life. In this review, we explore the evidence for mitochondrial dysfunction and epigenetic modification through aberrant DNA methylation as key mechanistic aspects of fetal programming of chronic kidney disease and discuss their potential use in diagnostics and targets for therapy. Copyright © 2015 the American Physiological Society.

  7. The Coconstruction of Couples' Roles in Parenting Children With a Chronic Health Condition.

    Science.gov (United States)

    McNeill, Ted; Nicholas, David; Beaton, John; Montgomery, Gert; MacCulloch, Radha; Gearing, Robin; Selkirk, Enid

    2014-08-01

    In this study we explored the ways that mothers and fathers of children who have a chronic health condition coconstructed their parenting roles. We wanted to move beyond the standard focus on individual parenting behaviors and use a grounded theory approach to better capture the dyadic and interpersonal gestalt of how parents worked out their roles. We explored multiple factors that influenced their decision making and the unique models that each couple developed. We held conjoint qualitative interviews with 20 couples from the Toronto area, as well as follow-up interviews with individual partners in five of these couples. Our findings introduce several concepts (such as role negotiation, complementarity and symmetry of roles, and "good enough" role performance) that form an explanatory model. A key finding is the diversity of ways in which couples adapted to the parenting challenges they faced. Implications in conceptual, clinical, and research areas are presented. © The Author(s) 2014.

  8. Assessment of hypoxia and TNF-alpha response by a vector with HRE and NF-kappaB response elements.

    Science.gov (United States)

    Chen, Zhilin; Eadie, Ashley L; Hall, Sean R; Ballantyne, Laurel; Ademidun, David; Tse, M Yat; Pang, Stephen C; Melo, Luis G; Ward, Christopher A; Brunt, Keith R

    2017-01-01

    Hypoxia and inflammatory cytokine activation (H&I) are common processes in many acute and chronic diseases. Thus, a single vector that responds to both hypoxia and inflammatory cytokines, such as TNF-alpha, is useful for assesing the severity of such diseases. Adaptation to hypoxia is regulated primarily by hypoxia inducible transcription factor (HIF alpha) nuclear proteins that engage genes containing a hypoxia response element (HRE). Inflammation activates a multitude of cytokines, including TNF-alpha, that invariably modulate activation of the nuclear factor kappa B (NF-kB) transcription factor. We constructed a vector that encompassed both a hypoxia response element (HRE), and a NF-kappaB responsive element. We show that this vector was functionally responsive to both hypoxia and TNF-alpha, in vitro and in vivo . Thus, this vector might be suitable for the detection and assessment of hypoxia or TNF-alpha.

  9. HIF-VEGF pathways are critical for chronic otitis media in Junbo and Jeff mouse mutants.

    Directory of Open Access Journals (Sweden)

    Michael T Cheeseman

    2011-10-01

    Full Text Available Otitis media with effusion (OME is the commonest cause of hearing loss in children, yet the underlying genetic pathways and mechanisms involved are incompletely understood. Ventilation of the middle ear with tympanostomy tubes is the commonest surgical procedure in children and the best treatment for chronic OME, but the mechanism by which they work remains uncertain. As hypoxia is a common feature of inflamed microenvironments, moderation of hypoxia may be a significant contributory mechanism. We have investigated the occurrence of hypoxia and hypoxia-inducible factor (HIF mediated responses in Junbo and Jeff mouse mutant models, which develop spontaneous chronic otitis media. We found that Jeff and Junbo mice labeled in vivo with pimonidazole showed cellular hypoxia in inflammatory cells in the bulla lumen, and in Junbo the middle ear mucosa was also hypoxic. The bulla fluid inflammatory cell numbers were greater and the upregulation of inflammatory gene networks were more pronounced in Junbo than Jeff. Hif-1α gene expression was elevated in bulla fluid inflammatory cells, and there was upregulation of its target genes including Vegfa in Junbo and Jeff. We therefore investigated the effects in Junbo of small-molecule inhibitors of VEGFR signaling (PTK787, SU-11248, and BAY 43-9006 and destabilizing HIF by inhibiting its chaperone HSP90 with 17-DMAG. We found that both classes of inhibitor significantly reduced hearing loss and the occurrence of bulla fluid and that VEGFR inhibitors moderated angiogenesis and lymphangiogenesis in the inflamed middle ear mucosa. The effectiveness of HSP90 and VEGFR signaling inhibitors in suppressing OM in the Junbo model implicates HIF-mediated VEGF as playing a pivotal role in OM pathogenesis. Our analysis of the Junbo and Jeff mutants highlights the role of hypoxia and HIF-mediated pathways, and we conclude that targeting molecules in HIF-VEGF signaling pathways has therapeutic potential in the treatment of

  10. The Role of Innate and Adaptive Immune Cells in the Immunopathogenesis of Chronic Obstructive Pulmonary Disease.

    Science.gov (United States)

    Nurwidya, Fariz; Damayanti, Triya; Yunus, Faisal

    2016-01-01

    Chronic obstructive pulmonary disease (COPD) is a chronic and progressive inflammatory disease of the airways and lungs that results in limitations of continuous airflow and is caused by exposure to noxious gasses and particles. A major cause of morbidity and mortality in adults, COPD is a complex disease pathologically mediated by many inflammatory pathways. Macrophages, neutrophils, dendritic cells, and CD8+ T-lymphocytes are the key inflammatory cells involved in COPD. Recently, the non-coding small RNA, micro-RNA, have also been intensively investigated and evidence suggest that it plays a role in the pathogenesis of COPD. Here, we discuss the accumulated evidence that has since revealed the role of each inflammatory cell and their involvement in the immunopathogenesis of COPD. Mechanisms of steroid resistance in COPD will also be briefly discussed.

  11. The role of ketamine in the treatment of chronic cancer pain

    OpenAIRE

    ZGAIA, ARMEANA OLIMPIA; IRIMIE, ALEXANDRU; SANDESC, DOREL; VLAD, CATALIN; LISENCU, COSMIN; ROGOBETE, ALEXANDRU; ACHIMAS-CADARIU, PATRICIU

    2015-01-01

    Background and aim Ketamine is a drug used for the induction and maintenance of general anesthesia, for the treatment of postoperative and posttraumatic acute pain, and more recently, for the reduction of postoperative opioid requirements. The main mechanism of action of ketamine is the antagonization of N-methyl-D-aspartate (NMDA) receptors that are associated with central sensitization. In the pathogenesis of chronic pain and particularly in neuropathic pain, an important role is played by ...

  12. Dehydration as a Cause of Chronic Kidney Disease: Role of Fructokinase

    Science.gov (United States)

    2016-10-01

    hyperfiltration and albuminuria in humans and laboratory animals (2- 4). In this study we sought to examine the role of vasopressin in our heat stress...and Use of Laboratory Animals . The animal protocol was approved by the Animal Care and Use Committee of the University of Colorado. Biochemical...SUPPLEMENTARY NOTES 14. ABSTRACT Our studies evaluate how recurrent dehydration can cause chronic kidney disease, an important question for the

  13. Chronic Pain Following Spinal Cord Injury: The Role of Immunogenetics and Time of Injury Pain Treatment

    Science.gov (United States)

    2017-12-01

    Award Number: W81XWH-11-1-0806 TITLE: Chronic Pain Following Spinal Cord Injury: The Role of Immunogenetics and Time of Injury Pain Treatment...OF REPORT: Final PREPARED FOR: U.S. Army Medical Research and Materiel Command Fort Detrick, Maryland 21702-5012 DISTRIBUTION STATEMENT: Approved...for Public Release; Distribution Unlimited The views, opinions and/or findings contained in this report are those of the author(s) and should not

  14. Review article: the potential role of nitric oxide in chronic inflammatory bowel disorders

    DEFF Research Database (Denmark)

    Perner, Anders; Rask-Madsen, J

    1999-01-01

    The aetiology of the chronic inflammatory bowel diseases-ulcerative colitis and Crohn's disease-as well as 'microscopic colitis'-both collagenous (COC) and lymphocytic colitis (LC)-remains unknown. Autoimmune mechanisms, cytokine polymorphism, commensal bacteria, infectious agents and vascular...... impairment have all been proposed as playing important roles in the pathogenesis of this spectrum of diseases. A variety of proinflammatory mediators, including tumour necrosis factor alpha, interleukin-1beta, interferon gamma, leukotriene B4 and platelet activating factor, promote the adherence...

  15. The expanding universe of hypoxia.

    Science.gov (United States)

    Zhang, Huafeng; Semenza, Gregg L

    2008-07-01

    Reduced oxygen availability (hypoxia) is sensed and transduced into changes in the activity or expression of cellular macromolecules. These responses impact on virtually all areas of biology and medicine. In this meeting report, we summarize major developments in the field that were presented at the 2008 Keystone Symposium on Cellular, Physiological, and Pathogenic Responses to Hypoxia.

  16. New Insights into the Roles for Basophils in Acute and Chronic Allergy

    Directory of Open Access Journals (Sweden)

    Kaori Mukai

    2009-01-01

    Full Text Available Basophils represent less than 1% of peripheral blood leukocytes. They are often recruited to the site of allergic inflammation, albeit in small numbers. However, it remained uncertain whether basophils play any significant role in allergic reactions or act as minor and redundant 'circulating mast cells'. We have recently demonstrated that basophils play critical roles in systemic anaphylaxis and chronic allergic inflammation, distinctively from mast cells. Basophils are one of the major players in the IgG-but not IgE-mediated systemic anaphylaxis, in contrast to mast cells. In response to the allergen-IgG immune complexes, basophils release the platelet-activating factor rather than histamine as the major chemical mediator to induce the systemic anaphylaxis. The depletion of basophils protects mice from death due to anaphylactic shock. Basophils also play a crucial role in the development of the IgE-mediated chronic allergic inflammation with massive eosinophil infiltration in the skin, independently of T cells and mast cells, even though basophils account for only ~2% of the infiltrates. The basophil depletion shows a therapeutic effect on on-going allergic inflammation. Accumulating evidence suggests that basophils function as initiators rather than effectors of the chronic allergic inflammation. Thus, basophils and their products seem to be promising therapeutic targets for allergic disorders.

  17. The role of team climate in improving the quality of chronic care delivery: a longitudinal study among professionals working with chronically ill adolescents in transitional care programmes.

    Science.gov (United States)

    Cramm, Jane M; Strating, Mathilde M H; Nieboer, Anna P

    2014-05-22

    This study aimed to (1) evaluate the effectiveness of implementing transition programmes in improving the quality of chronic care delivery and (2) identify the predictive role of (changes in) team climate on the quality of chronic care delivery over time. This longitudinal study was undertaken with professionals working in hospitals and rehabilitation units that participated in the transition programme 'On Your Own Feet Ahead!' in the Netherlands. A total of 145/180 respondents (80.6%) filled in the questionnaire at the beginning of the programme (T1), and 101/173 respondents (58.4%) did so 1 year later at the end of the programme (T2). A total of 90 (52%) respondents filled in the questionnaire at both time points. Two-tailed, paired t tests were used to investigate improvements over time and multilevel analyses to investigate the predictive role of (changes in) team climate on the quality of chronic care delivery. Transition programme. Quality of chronic care delivery measured with the Assessment of Chronic Illness Care Short version (ACIC-S). The overall ACIC-S score at T1 was 5.90, indicating basic or intermediate support for chronic care delivery. The mean ACIC-S score at T2 significantly improved to 6.70, indicating advanced support for chronic care. After adjusting for the quality of chronic care delivery at T1 and significant respondents' characteristics, multilevel regression analyses showed that team climate at T1 (pteam climate (pteam climate to enhance the quality of chronic care delivery to chronically ill adolescents. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  18. IGF-1 attenuates hypoxia-induced atrophy but inhibits myoglobin expression in C2C12 skeletal muscle myotubes

    NARCIS (Netherlands)

    Peters, Eva L.; van der Linde, Sandra M.; Vogel, Ilse S.P.; Haroon, Mohammad; Offringa, Carla; de Wit, Gerard M.J.; Koolwijk, Pieter; van der Laarse, Willem J.; Jaspers, Richard T.

    2017-01-01

    Chronic hypoxia is associated with muscle wasting and decreased oxidative capacity. By contrast, training under hypoxia may enhance hypertrophy and increase oxidative capacity as well as oxygen transport to the mitochondria, by increasing myoglobin (Mb) expression. The latter may be a feasible

  19. Lead intoxication under environmental hypoxia impairs oral health.

    Science.gov (United States)

    Terrizzi, Antonela R; Fernandez-Solari, Javier; Lee, Ching M; Martínez, María Pilar; Conti, María Ines

    2014-01-01

    We have reported that chronic lead intoxication under hypoxic environment induces alveolar bone loss that can lead to periodontal damage with the subsequent loss of teeth. The aim of the present study was to assess the modification of oral inflammatory parameters involved in the pathogenesis of periodontitis in the same experimental model. In gingival tissue, hypoxia increased inducible nitric oxid synthase (iNOS) activity (p lead decreased prostaglandin E2 (PGE2) content (p lead and PGE2 content was increased by both lead and hypoxia (p lead under hypoxic conditions. Results suggest a wide participation of inflammatory markers that mediate alveolar bone loss induced by these environmental conditions. The lack of information regarding oral health in lead-contaminated populations that coexist with hypoxia induced us to evaluate the alteration of inflammatory parameters in rat oral tissues to elucidate the link between periodontal damage and these environmental conditions.

  20. Fat-free mass change after nutritional rehabilitation in weight losing COPD: role of insulin, C-reactive protein and tissue hypoxia

    Directory of Open Access Journals (Sweden)

    Simonetta Baldi

    2010-02-01

    Full Text Available Simonetta Baldi, Roberto Aquilani, Gian Domenico Pinna, Paolo Poggi, Angelo De Martini, Claudio BruschiDepartment of Pneumology and Biomedical Engineering, Scientific Institute of Montescano, Salvatore Maugeri Foundation I.R.C.C.S. Pavia, ItalyBackground: Fat-free mass (FFM depletion marks the imbalance between tissue protein synthesis and breakdown in chronic obstructive pulmonary disease (COPD. To date, the role of essential amino acid supplementation (EAAs in FFM repletion has not been fully acknowledged. A pilot study was undertaken in patients attending pulmonary rehabilitation.Methods: 28 COPD patients with dynamic weight loss > 5% over the last 6 months were randomized to receive EAAs embedded in a 12-week rehabilitation program (EAAs group n = 14, or to the same program without supplementation (C group n = 14. Primary outcome measures were changes in body weight and FFM, using dual X-ray absorptiometry (DEXA.Results: At the 12th week, a body weight increment occurred in 92% and 15% of patients in the EAAs and C group, respectively, with an average increase of 3.8 ± 2.6 kg (P = 0.0002 and −0.1 ± 1.1 kg (P = 0.81, respectively. A FFM increment occurred in 69% and 15% of EAAs and C patients, respectively, with an average increase of 1.5 ± 2.6 kg (P = 0.05 and −0.1 ± 2.3 kg (P = 0.94, respectively. In the EAAs group, FFM change was significantly related to fasting insulin (r2 0.68, P < 0.0005, C-reactive protein (C-RP (r2 = 0.46, P < 0.01, and oxygen extraction tension (PaO2x (r2 = 0.46, P < 0.01 at end of treatment. These three variables were highly correlated in both groups (r > 0.7, P < 0.005 in all tests.Conclusions: Changes in FFM promoted by EAAs are related to cellular energy and tissue oxygen availability in depleted COPD. Insulin, C-RP, and PaO2x must be regarded as clinical markers of an amino acid-stimulated signaling to FFM accretion.Keywords: COPD, pulmonary rehabilitation, branched chain amino acids, insulin, systemic

  1. Melatonin modulates the fetal cardiovascular defense response to acute hypoxia.

    Science.gov (United States)

    Thakor, Avnesh S; Allison, Beth J; Niu, Youguo; Botting, Kimberley J; Serón-Ferré, Maria; Herrera, Emilio A; Giussani, Dino A

    2015-08-01

    Experimental studies in animal models supporting protective effects on the fetus of melatonin in adverse pregnancy have prompted clinical trials in human pregnancy complicated by fetal growth restriction. However, the effects of melatonin on the fetal defense to acute hypoxia, such as that which may occur during labor, remain unknown. This translational study tested the hypothesis, in vivo, that melatonin modulates the fetal cardiometabolic defense responses to acute hypoxia in chronically instrumented late gestation fetal sheep via alterations in fetal nitric oxide (NO) bioavailability. Under anesthesia, 6 fetal sheep at 0.85 gestation were instrumented with vascular catheters and a Transonic flow probe around a femoral artery. Five days later, fetuses were exposed to acute hypoxia with or without melatonin treatment. Fetal blood was taken to determine blood gas and metabolic status and plasma catecholamine concentrations. Hypoxia during melatonin treatment was repeated during in vivo NO blockade with the NO clamp. This technique permits blockade of de novo synthesis of NO while compensating for the tonic production of the gas, thereby maintaining basal cardiovascular function. Melatonin suppressed the redistribution of blood flow away from peripheral circulations and the glycemic and plasma catecholamine responses to acute hypoxia. These are important components of the fetal brain sparing response to acute hypoxia. The effects of melatonin involved NO-dependent mechanisms as the responses were reverted by fetal treatment with the NO clamp. Melatonin modulates the in vivo fetal cardiometabolic responses to acute hypoxia by increasing NO bioavailability. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Protective role of hypoxia-inducible factor-1α-dependent CD39 and CD73 in fulminant acute liver failure

    Energy Technology Data Exchange (ETDEWEB)

    Tak, Eunyoung [Asan Institute for Life Sciences and Asan-Minnesota Institute for Innovating Transplantation, Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Jung, Dong-Hwan; Kim, Seok-Hwan; Park, Gil-Chun [Division of Liver Transplantation and Hepatobiliary Surgery, Asan-Minnesota Institute for Innovating Transplantation, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Jun, Dae Young; Lee, Jooyoung [Asan Institute for Life Sciences and Asan-Minnesota Institute for Innovating Transplantation, Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Jung, Bo-hyun [Department of Surgery, Inje University Haeundae Paik Hospital, Inje University College of Medicine, Busan (Korea, Republic of); Kirchner, Varvara A. [Division of Transplantation, Department of Surgery and Asan-Minnesota Institute for Innovating Transplantation, University of Minnesota, Minneapolis, MN (United States); Hwang, Shin [Division of Liver Transplantation and Hepatobiliary Surgery, Asan-Minnesota Institute for Innovating Transplantation, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Song, Gi-Won, E-mail: drsong71@amc.seoul.kr [Division of Liver Transplantation and Hepatobiliary Surgery, Asan-Minnesota Institute for Innovating Transplantation, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Lee, Sung-Gyu [Division of Liver Transplantation and Hepatobiliary Surgery, Asan-Minnesota Institute for Innovating Transplantation, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of)

    2017-01-01

    Acute liver failure (ALF) is a severe life-threatening disease which usually arises in patients with-irreversible liver illnesses. Although human ectonucleotide triphosphate diphosphohydrolase-1, E-NTPDase1 (CD39) and ecto-5′-nucleotidase, Ecto5′NTase (CD73) are known to protect tissues from ALF, the expression and function of CD39 and CD73 during ALF are currently not fully investigated. We tested whether CD39 and CD73 are upregulated by hypoxia inducible factor (HIF)-1α, and improve ischemic tolerance to ALF. To test our hypothesis, liver biopsies were obtained and we found that CD39 and CD73 mRNA and proteins from human specimens were dramatically elevated in ALF. We investigated that induction of CD39 and CD73 in ALF-related with wild type mice. In contrast, deletion of cd39 and cd73 mice has severe ALF. In this study, we concluded that CD39 and CD73 are molecular targets for the development of drugs for ALF patients care. - Highlights: • HIF-1a is stabilized during acute liver failure • Upregulation of CD39 and CD73 following acute liver failure • CD39 and CD73 are transcriptionally induced by HIF-1a • Deletion of Cd39 and CD73 aggravates murine acute liver failure • DMOG treatment induces HIF-1a stabilization, CD39 and CD73 during acute liver failure in WT mice.

  3. Hypoxia as a biomarker for radioresistant cancer stem cells.

    Science.gov (United States)

    Peitzsch, Claudia; Perrin, Rosalind; Hill, Richard P; Dubrovska, Anna; Kurth, Ina

    2014-08-01

    Tumor initiation, growth and relapse after therapy are thought to be driven by a population of cells with stem cell characteristics, named cancer stem cells (CSC). The regulation of their radiation resistance and their maintenance is poorly understood. CSC are believed to reside preferentially in special microenvironmental niches located within tumor tissues. The features of these niches are of crucial importance for CSC self-renewal, metastatic potential and therapy resistance. One of the characteristics of solid tumors is occurrence of less oxygenated (hypoxic regions), which are believed to serve as so-called hypoxic niches for CSC. The purpose of this review was the critical discussion of the supportive role of hypoxia and hypoxia-related pathways during cancer progression and radiotherapy resistance and the relevance for therapeutic implications in the clinic. It is generally known since decades that hypoxia inside solid tumors impedes chemo- and radiotherapy. However, there is limited evidence to date that targeting hypoxic regions during conventional therapy is effective. Nonetheless improved hypoxia-imaging technologies and image guided individualized hypoxia targeted therapy in conjunction with the development of novel molecular targets may be able to challenge the protective effect on the tumor provided by hypoxia.

  4. Macrophage-mediated response to hypoxia in disease

    Directory of Open Access Journals (Sweden)

    Tazzyman S

    2014-11-01

    Full Text Available Simon Tazzyman,1 Craig Murdoch,2 James Yeomans,1 Jack Harrison,1 Munitta Muthana3 1Department of Oncology, 2School of Clinical Dentistry, 3Department of Infection and Immunity, University of Sheffield, Sheffield, UK Abstract: Hypoxia plays a critical role in the pathobiology of various inflamed, diseased tissues, including malignant tumors, atherosclerotic plaques, myocardial infarcts, the synovia of rheumatoid arthritic joints, healing wounds, and sites of bacterial infection. These areas of hypoxia form when the blood supply is occluded and/or the oxygen supply is unable to keep pace with cell growth and/or infiltration of inflammatory cells. Macrophages are ubiquitous in all tissues of the body and exhibit great plasticity, allowing them to perform divergent functions, including, among others, patrolling tissue, combating invading pathogens and tumor cells, orchestrating wound healing, and restoring homeostasis after an inflammatory response. The number of tissue macrophages increases markedly with the onset and progression of many pathological states, with many macrophages accumulating in avascular and necrotic areas, where they are exposed to hypoxia. Recent studies show that these highly versatile cells then respond rapidly to the hypoxia present by altering their expression of a wide array of genes. Here we review the evidence for hypoxia-driven macrophage inflammatory responses in various disease states, and how this influences disease progression and treatment. Keywords: macrophage, hypoxia, inflammation, cytokine

  5. Upregulated copper transporters in hypoxia-induced pulmonary hypertension.

    Directory of Open Access Journals (Sweden)

    Adriana M Zimnicka

    Full Text Available Pulmonary vascular remodeling and increased arterial wall stiffness are two major causes for the elevated pulmonary vascular resistance and pulmonary arterial pressure in patients and animals with pulmonary hypertension. Cellular copper (Cu plays an important role in angiogenesis and extracellular matrix remodeling; increased Cu in vascular smooth muscle cells has been demonstrated to be associated with atherosclerosis and hypertension in animal experiments. In this study, we show that the Cu-uptake transporter 1, CTR1, and the Cu-efflux pump, ATP7A, were both upregulated in the lung tissues and pulmonary arteries of mice with hypoxia-induced pulmonary hypertension. Hypoxia also significantly increased expression and activity of lysyl oxidase (LOX, a Cu-dependent enzyme that causes crosslinks of collagen and elastin in the extracellular matrix. In vitro experiments show that exposure to hypoxia or treatment with cobalt (CoCl2 also increased protein expression of CTR1, ATP7A, and LOX in pulmonary arterial smooth muscle cells (PASMC. In PASMC exposed to hypoxia or treated with CoCl2, we also confirmed that the Cu transport is increased using 64Cu uptake assays. Furthermore, hypoxia increased both cell migration and proliferation in a Cu-dependent manner. Downregulation of hypoxia-inducible factor 1α (HIF-1α with siRNA significantly attenuated hypoxia-mediated upregulation of CTR1 mRNA. In summary, the data from this study indicate that increased Cu transportation due to upregulated CTR1 and ATP7A in pulmonary arteries and PASMC contributes to the development of hypoxia-induced pulmonary hypertension. The increased Cu uptake and elevated ATP7A also facilitate the increase in LOX activity and thus the increase in crosslink of extracellular matrix, and eventually leading to the increase in pulmonary arterial stiffness.

  6. Role of dietary modification in alleviating chronic fatigue syndrome symptoms: a systematic review.

    Science.gov (United States)

    Jones, Kathryn; Probst, Yasmine

    2017-08-01

    To review the evidence for the role of dietary modifications in alleviating chronic fatigue syndrome symptoms. A systematic literature review was guided by PRISMA and conducted using Scopus, CINAHL Plus, Web of Science and PsycINFO scientific databases (1994-2016) to identify relevant studies. Twenty-two studies met the inclusion criteria, the quality of each paper was assessed and data extracted into a standardised tabular format. Positive outcomes were highlighted in some included studies for polyphenol intakes in animal studies, D-ribose supplementation in humans and aspects of symptom alleviation for one of three polynutrient supplement studies. Omega three fatty acid blood levels and supplementation with an omega three fatty acid supplement also displayed positive outcomes in relation to chronic fatigue syndrome symptom alleviation. Limited dietary modifications were found useful in alleviating chronic fatigue syndrome symptoms, with overall evidence narrow and inconsistent across studies. Implications for public health: Due to the individual and community impairment chronic fatigue syndrome causes the population, it is vital that awareness and further focused research on this topic is undertaken to clarify and consolidate recommendations and ensure accurate, useful distribution of information at a population level. © 2017 The Authors.

  7. [The value of Doppler sonography in the detection of fetal hypoxia].

    Science.gov (United States)

    Aranyosi, János; Zatik, János; Juhász, A Gábor; Fülesdi, Béla; Major, Tamás

    2002-10-27

    Doppler ultrasound has become a part of routine antenatal fetal surveillance during the past two decades. It provides insight into the utero-placental and fetal arterial, venous circulation non-invasively. Doppler examination has a key role in the detection of hypoxic risk since abnormal blood flow patterns can be demonstrated before the clinical manifestation of fetal disorder. Doppler velocimetry facilitates judgment in the diagnosis, monitoring fetal well-being during pregnancy and labor, scheduling antenatal tests and timing delivery. Authors review the effects of chronic and acute hypoxia on fetal hemodynamics. On the basis of the present knowledge and experience a brief summary is given about the role of Doppler velocimetry in the early detection of hypoxic fetal jeopardy during pregnancy and labor.

  8. Glycogen synthesis is induced in hypoxia by the hypoxia-inducible factor and promotes cancer cell survival

    Directory of Open Access Journals (Sweden)

    Joffrey ePelletier

    2012-02-01

    Full Text Available The hypoxia-inducible factor 1 (HIF-1, in addition to genetic and epigenetic changes, is largely responsible for alterations in cell metabolism in hypoxic tumor cells. This transcription factor not only favors cell proliferation through the metabolic shift from oxidative phosphorylation to glycolysis and lactic acid production but also stimulates nutrient supply by mediating adaptive survival mechanisms. In this study we showed that glycogen synthesis is enhanced in non-cancer and cancer cells when exposed to hypoxia, resulting in a large increase in glycogen stores. Furthermore, we demonstrated that the mRNA and protein levels of the first enzyme of glycogenesis, phosphoglucomutase1 (PGM1, were increased in hypoxia. We showed that induction of glycogen storage as well as PGM1 expression were dependent on HIF-1 and HIF-2. We established that hypoxia-induced glycogen stores are rapidly mobilized in cells that are starved of glucose. Glycogenolysis allows these hypoxia-preconditioned cells to confront and survive glucose deprivation. In contrast normoxic control cells exhibit a high rate of cell death following glucose removal. These findings point to the important role of hypoxia and HIF in inducing mechanisms of rapid adaptation and survival in response to a decrease in oxygen tension. We propose that a decrease in pO2 acts as an alarm that prepares the cells to face subsequent nutrient depletion and to survive.

  9. Glycogen Synthesis is Induced in Hypoxia by the Hypoxia-Inducible Factor and Promotes Cancer Cell Survival

    Energy Technology Data Exchange (ETDEWEB)

    Pelletier, Joffrey; Bellot, Grégory [Institute of Developmental Biology and Cancer Research, CNRS-UMR 6543, Centre Antoine Lacassagne, University of Nice-Sophia Antipolis, Nice (France); Gounon, Pierre; Lacas-Gervais, Sandra [Centre Commun de Microscopie Appliquée, University of Nice-Sophia Antipolis, Nice (France); Pouysségur, Jacques; Mazure, Nathalie M., E-mail: mazure@unice.fr [Institute of Developmental Biology and Cancer Research, CNRS-UMR 6543, Centre Antoine Lacassagne, University of Nice-Sophia Antipolis, Nice (France)

    2012-02-28

    The hypoxia-inducible factor 1 (HIF-1), in addition to genetic and epigenetic changes, is largely responsible for alterations in cell metabolism in hypoxic tumor cells. This transcription factor not only favors cell proliferation through the metabolic shift from oxidative phosphorylation to glycolysis and lactic acid production but also stimulates nutrient supply by mediating adaptive survival mechanisms. In this study we showed that glycogen synthesis is enhanced in non-cancer and cancer cells when exposed to hypoxia, resulting in a large increase in glycogen stores. Furthermore, we demonstrated that the mRNA and protein levels of the first enzyme of glycogenesis, phosphoglucomutase1 (PGM1), were increased in hypoxia. We showed that induction of glycogen storage as well as PGM1 expression were dependent on HIF-1 and HIF-2. We established that hypoxia-induced glycogen stores are rapidly mobilized in cells that are starved of glucose. Glycogenolysis allows these “hypoxia-preconditioned” cells to confront and survive glucose deprivation. In contrast normoxic control cells exhibit a high rate of cell death following glucose removal. These findings point to the important role of hypoxia and HIF in inducing mechanisms of rapid adaptation and survival in response to a decrease in oxygen tension. We propose that a decrease in pO{sub 2} acts as an “alarm” that prepares the cells to face subsequent nutrient depletion and to survive.

  10. Glycogen Synthesis is Induced in Hypoxia by the Hypoxia-Inducible Factor and Promotes Cancer Cell Survival

    International Nuclear Information System (INIS)

    Pelletier, Joffrey; Bellot, Grégory; Gounon, Pierre; Lacas-Gervais, Sandra; Pouysségur, Jacques; Mazure, Nathalie M.

    2012-01-01

    The hypoxia-inducible factor 1 (HIF-1), in addition to genetic and epigenetic changes, is largely responsible for alterations in cell metabolism in hypoxic tumor cells. This transcription factor not only favors cell proliferation through the metabolic shift from oxidative phosphorylation to glycolysis and lactic acid production but also stimulates nutrient supply by mediating adaptive survival mechanisms. In this study we showed that glycogen synthesis is enhanced in non-cancer and cancer cells when exposed to hypoxia, resulting in a large increase in glycogen stores. Furthermore, we demonstrated that the mRNA and protein levels of the first enzyme of glycogenesis, phosphoglucomutase1 (PGM1), were increased in hypoxia. We showed that induction of glycogen storage as well as PGM1 expression were dependent on HIF-1 and HIF-2. We established that hypoxia-induced glycogen stores are rapidly mobilized in cells that are starved of glucose. Glycogenolysis allows these “hypoxia-preconditioned” cells to confront and survive glucose deprivation. In contrast normoxic control cells exhibit a high rate of cell death following glucose removal. These findings point to the important role of hypoxia and HIF in inducing mechanisms of rapid adaptation and survival in response to a decrease in oxygen tension. We propose that a decrease in pO 2 acts as an “alarm” that prepares the cells to face subsequent nutrient depletion and to survive.

  11. Role of insular cortex in visceral hypersensitivity model in rats subjected to chronic stress.

    Science.gov (United States)

    Yi, LiSha; Sun, HuiHui; Ge, Chao; Chen, Ying; Peng, HaiXia; Jiang, YuanXi; Wu, Ping; Tang, YinHan; Meng, QingWei; Xu, ShuChang

    2014-12-30

    Abnormal processing of visceral sensation at the level of the central nervous system has been proven to be important in the pathophysiologic mechanisms of stress related functional gastrointestinal disorders. However, the specific mechanism is still not clear. The insular cortex (IC) was considered as one important visceral sensory area. Moreover, the IC has been shown to be involved in various neuropsychiatric diseases such as panic disorders and post-traumatic stress disorder. However, whether the IC is important in psychological stress related visceral hypersensitivity has not been studied yet. In our study, through destruction of the bilateral IC, we explored whether the IC played a critical role in the formation of visceral hypersensitivity induced by chronic stress on rats. Chronic partial restraint stress was used to establish viscerally hypersensitive rat model. Bilateral IC lesions were generated by N-methyl-D-day (door) aspartate. After a recovery period of 7 days, 14-day consecutive restraint stress was performed. The visceromotor response to colorectal distension was monitored by recording electromyogram to measure rats׳ visceral sensitivity. We found that bilateral insular cortex lesion could markedly inhibit the formation of visceral hypersensitivity induced by chronic stress. The insular cortex plays a critical role in the pathophysiology of stress-related visceral hypersensitivity.

  12. The role of acute and chronic respiratory colonization and infections in the pathogenesis of COPD.

    Science.gov (United States)

    Leung, Janice M; Tiew, Pei Yee; Mac Aogáin, Micheál; Budden, Kurtis F; Yong, Valerie Fei Lee; Thomas, Sangeeta S; Pethe, Kevin; Hansbro, Philip M; Chotirmall, Sanjay H

    2017-05-01

    COPD is a major global concern, increasingly so in the context of ageing populations. The role of infections in disease pathogenesis and progression is known to be important, yet the mechanisms involved remain to be fully elucidated. While COPD pathogens such as Haemophilus influenzae, Moraxella catarrhalis and Streptococcus pneumoniae are strongly associated with acute exacerbations of COPD (AECOPD), the clinical relevance of these pathogens in stable COPD patients remains unclear. Immune responses in stable and colonized COPD patients are comparable to those detected in AECOPD, supporting a role for chronic colonization in COPD pathogenesis through perpetuation of deleterious immune responses. Advances in molecular diagnostics and metagenomics now allow the assessment of microbe-COPD interactions with unprecedented personalization and precision, revealing changes in microbiota associated with the COPD disease state. As microbial changes associated with AECOPD, disease severity and therapeutic intervention become apparent, a renewed focus has been placed on the microbiology of COPD and the characterization of the lung microbiome in both its acute and chronic states. Characterization of bacterial, viral and fungal microbiota as part of the lung microbiome has the potential to reveal previously unrecognized prognostic markers of COPD that predict disease outcome or infection susceptibility. Addressing such knowledge gaps will ultimately lead to a more complete understanding of the microbe-host interplay in COPD. This will permit clearer distinctions between acute and chronic infections and more granular patient stratification that will enable better management of these features and of COPD. © 2017 Asian Pacific Society of Respirology.

  13. The Role of Hope for Adolescents with a Chronic Illness: An Integrative Review.

    Science.gov (United States)

    Griggs, Stephanie; Walker, Rachel K

    2016-01-01

    Hope is a human strength essential for adolescents' enduring and coping with chronic illness however, the role of hope is not well understood in this population. This integrative review describes what is currently known about the role of hope in adolescents with a chronic illness. A methodological review using an integrative approach by R. Whittemore and K. Knafl (2005) was performed. MEDLINE via Pubmed; CINAHL; PyscINFO and Google scholar were searched for articles published in peer-reviewed journals from 1995 to 2015, using search terms 'hope and chronic illness' with age limiters for all except Google scholar (title search of "hope and adolescents"). Of the 197 studies initially retrieved: a total of 27 quantitative studies, 8 qualitative studies and 19 theoretical works were selected for review. Seven themes emerged including that hope: (i) promotes health (ii) facilitates coping and adjustment, (iii) enhances quality of life, (iv) is essential in purpose in life and illness (v) improves self-esteem, (vi) is an important factor in resilience and (vii) affects maturation. Persons reporting higher levels of hope find multiple routes to goals, view setbacks as challenges, and better manage psychological symptoms. Although theory and a limited body of empirical research to date suggest a link between hopeful thinking and physical health, the specific mechanisms remain unclear. As hope is linked to resilience, further research should explore whether adolescents with higher hope return to baseline faster than their lower hope counterparts. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Hypoxia and hypoglycaemia in Ewing's sarcoma and osteosarcoma: regulation and phenotypic effects of Hypoxia-Inducible Factor

    International Nuclear Information System (INIS)

    Knowles, Helen J; Schaefer, Karl-Ludwig; Dirksen, Uta; Athanasou, Nicholas A

    2010-01-01

    Hypoxia regulates gene expression via the transcription factor HIF (Hypoxia-Inducible Factor). Little is known regarding HIF expression and function in primary bone sarcomas. We describe HIF expression and phenotypic effects of hypoxia, hypoglycaemia and HIF in Ewing's sarcoma and osteosarcoma. HIF-1α and HIF-2α immunohistochemistry was performed on a Ewing's tumour tissue array. Ewing's sarcoma and osteosarcoma cell lines were assessed for HIF pathway induction by Western blot, luciferase assay and ELISA. Effects of hypoxia, hypoglycaemia and isoform-specific HIF siRNA were assessed on proliferation, apoptosis and migration. 17/56 Ewing's tumours were HIF-1α-positive, 15 HIF-2α-positive and 10 positive for HIF-1α and HIF-2α. Expression of HIF-1α and cleaved caspase 3 localised to necrotic areas. Hypoxia induced HIF-1α and HIF-2α in Ewing's and osteosarcoma cell lines while hypoglycaemia specifically induced HIF-2α in Ewing's. Downstream transcription was HIF-1α-dependent in Ewing's sarcoma, but regulated by both isoforms in osteosarcoma. In both cell types hypoglycaemia reduced cellular proliferation by ≥ 45%, hypoxia increased apoptosis and HIF siRNA modulated hypoxic proliferation and migration. Co-localisation of HIF-1α and necrosis in Ewing's sarcoma suggests a role for hypoxia and/or hypoglycaemia in in vivo induction of HIF. In vitro data implicates hypoxia as the primary HIF stimulus in both Ewing's and osteosarcoma, driving effects on proliferation and apoptosis. These results provide a foundation from which to advance understanding of HIF function in the pathobiology of primary bone sarcomas

  15. Hypoxia and hypoglycaemia in Ewing's sarcoma and osteosarcoma: regulation and phenotypic effects of Hypoxia-Inducible Factor

    Directory of Open Access Journals (Sweden)

    Dirksen Uta

    2010-07-01

    Full Text Available Abstract Background Hypoxia regulates gene expression via the transcription factor HIF (Hypoxia-Inducible Factor. Little is known regarding HIF expression and function in primary bone sarcomas. We describe HIF expression and phenotypic effects of hypoxia, hypoglycaemia and HIF in Ewing's sarcoma and osteosarcoma. Methods HIF-1α and HIF-2α immunohistochemistry was performed on a Ewing's tumour tissue array. Ewing's sarcoma and osteosarcoma cell lines were assessed for HIF pathway induction by Western blot, luciferase assay and ELISA. Effects of hypoxia, hypoglycaemia and isoform-specific HIF siRNA were assessed on proliferation, apoptosis and migration. Results 17/56 Ewing's tumours were HIF-1α-positive, 15 HIF-2α-positive and 10 positive for HIF-1α and HIF-2α. Expression of HIF-1α and cleaved caspase 3 localised to necrotic areas. Hypoxia induced HIF-1α and HIF-2α in Ewing's and osteosarcoma cell lines while hypoglycaemia specifically induced HIF-2α in Ewing's. Downstream transcription was HIF-1α-dependent in Ewing's sarcoma, but regulated by both isoforms in osteosarcoma. In both cell types hypoglycaemia reduced cellular proliferation by ≥ 45%, hypoxia increased apoptosis and HIF siRNA modulated hypoxic proliferation and migration. Conclusions Co-localisation of HIF-1α and necrosis in Ewing's sarcoma suggests a role for hypoxia and/or hypoglycaemia in in vivo induction of HIF. In vitro data implicates hypoxia as the primary HIF stimulus in both Ewing's and osteosarcoma, driving effects on proliferation and apoptosis. These results provide a foundation from which to advance understanding of HIF function in the pathobiology of primary bone sarcomas.

  16. Hypoxia and hypoglycaemia in Ewing's sarcoma and osteosarcoma: regulation and phenotypic effects of Hypoxia-Inducible Factor.

    Science.gov (United States)

    Knowles, Helen J; Schaefer, Karl-Ludwig; Dirksen, Uta; Athanasou, Nicholas A

    2010-07-16

    Hypoxia regulates gene expression via the transcription factor HIF (Hypoxia-Inducible Factor). Little is known regarding HIF expression and function in primary bone sarcomas. We describe HIF expression and phenotypic effects of hypoxia, hypoglycaemia and HIF in Ewing's sarcoma and osteosarcoma. HIF-1alpha and HIF-2alpha immunohistochemistry was performed on a Ewing's tumour tissue array. Ewing's sarcoma and osteosarcoma cell lines were assessed for HIF pathway induction by Western blot, luciferase assay and ELISA. Effects of hypoxia, hypoglycaemia and isoform-specific HIF siRNA were assessed on proliferation, apoptosis and migration. 17/56 Ewing's tumours were HIF-1alpha-positive, 15 HIF-2alpha-positive and 10 positive for HIF-1alpha and HIF-2alpha. Expression of HIF-1alpha and cleaved caspase 3 localised to necrotic areas. Hypoxia induced HIF-1alpha and HIF-2alpha in Ewing's and osteosarcoma cell lines while hypoglycaemia specifically induced HIF-2alpha in Ewing's. Downstream transcription was HIF-1alpha-dependent in Ewing's sarcoma, but regulated by both isoforms in osteosarcoma. In both cell types hypoglycaemia reduced cellular proliferation by >or= 45%, hypoxia increased apoptosis and HIF siRNA modulated hypoxic proliferation and migration. Co-localisation of HIF-1alpha and necrosis in Ewing's sarcoma suggests a role for hypoxia and/or hypoglycaemia in in vivo induction of HIF. In vitro data implicates hypoxia as the primary HIF stimulus in both Ewing's and osteosarcoma, driving effects on proliferation and apoptosis. These results provide a foundation from which to advance understanding of HIF function in the pathobiology of primary bone sarcomas.

  17. A RNA antagonist of hypoxia-inducible factor-1alpha, EZN-2968, inhibits tumor cell growth

    DEFF Research Database (Denmark)

    Greenberger, Lee M; Horak, Ivan D; Filpula, David

    2008-01-01

    Hypoxia-inducible factor-1 (HIF-1) is a transcription factor that plays a critical role in angiogenesis, survival, metastasis, drug resistance, and glucose metabolism. Elevated expression of the alpha-subunit of HIF-1 (HIF-1alpha), which occurs in response to hypoxia or activation of growth facto...

  18. Coastal hypoxia and sediment biogeochemistry

    Directory of Open Access Journals (Sweden)

    J. J. Middelburg

    2009-07-01

    Full Text Available The intensity, duration and frequency of coastal hypoxia (oxygen concentration <63 μM are increasing due to human alteration of coastal ecosystems and changes in oceanographic conditions due to global warming. Here we provide a concise review of the consequences of coastal hypoxia for sediment biogeochemistry. Changes in bottom-water oxygen levels have consequences for early diagenetic pathways (more anaerobic at expense of aerobic pathways, the efficiency of re-oxidation of reduced metabolites and the nature, direction and magnitude of sediment-water exchange fluxes. Hypoxia may also lead to more organic matter accumulation and burial and the organic matter eventually buried is also of higher quality, i.e. less degraded. Bottom-water oxygen levels also affect the organisms involved in organic matter processing with the contribution of metazoans decreasing as oxygen levels drop. Hypoxia has a significant effect on benthic animals with the consequences that ecosystem functions related to macrofauna such as bio-irrigation and bioturbation are significantly affected by hypoxia as well. Since many microbes and microbial-mediated biogeochemical processes depend on animal-induced transport processes (e.g. re-oxidation of particulate reduced sulphur and denitrification, there are indirect hypoxia effects on biogeochemistry via the benthos. Severe long-lasting hypoxia and anoxia may result in the accumulation of reduced compounds in sediments and elimination of macrobenthic communities with the consequences that biogeochemical properties during trajectories of decreasing and increasing oxygen may be different (hysteresis with consequences for coastal ecosystem dynamics.

  19. Role of NO in adrenergic regulation of the heart after chronic gamma irradiation in 1 Gy dose

    International Nuclear Information System (INIS)

    Suvorova, T.A.; Lobanok, L.M.

    2005-01-01

    Chronic irradiation in 1 Gy dose significantly decreased adrenoreactivity of the heart. Modification of NO-mediated mechanisms plays an important role in radiation-induced changes of adrenergic control of heart functional activity and coronary flow. (authors)

  20. Poly (ADP-ribose polymerase plays an important role in intermittent hypoxia-induced cell death in rat cerebellar granule cells

    Directory of Open Access Journals (Sweden)

    Chiu Sheng-Chun

    2012-03-01

    Full Text Available Abstract Background Episodic cessation of airflow during sleep in patients with sleep apnea syndrome results in intermittent hypoxia (IH. Our aim was to investigate the effects of IH on cerebellar granule cells and to identify the mechanism of IH-induced cell death. Methods Cerebellar granule cells were freshly prepared from neonatal Sprague-Dawley rats. IH was created by culturing the cerebellar granule cells in the incubators with oscillating O2 concentration at 20% and 5% every 30 min for 1-4 days. The results of this study are based on image analysis using a confocal microscope and associated software. Cellular oxidative stress increased with increase in IH. In addition, the occurrence of cell death (apoptosis and necrosis increased as the duration of IH increased, but decreased in the presence of an iron chelator (phenanthroline or poly (ADP-ribose polymerase (PARP inhibitors [3-aminobenzamide (3-AB and DPQ]. The fluorescence of caspase-3 remained the same regardless of the duration of IH, and Western blots did not detect activation of caspase-3. However, IH increased the ratio of apoptosis-inducing factor (AIF translocation to the nucleus, while PARP inhibitors (3-AB reduced this ratio. Results According to our findings, IH increased oxidative stress and subsequently leading to cell death. This effect was at least partially mediated by PARP activation, resulting in ATP depletion, calpain activation leading to AIF translocation to the nucleus. Conclusions We suggest that IH induces cell death in rat primary cerebellar granule cells by stimulating oxidative stress PARP-mediated calpain and AIF activation.

  1. [The role of genetic polymorphisms of interleukins in chronic lymphocytic leukemia in patients of different ages].

    Science.gov (United States)

    Sirotina, S S; Tikunova, T S; Proshchaev, K I; Efremova, O A; Batlutskaia, I V; Iakunchenko, T I; Sobianin, F I; Churnosov, M I; Alekseev, S M

    2014-01-01

    Chronic lymphocytic leukemia (CLL) is a multifactorial disease, in which development the important role played the cytokine genes, in particular interleukins. This type of leukemia is more common in the elderly. The purpose of the study was to evaluate the association of genetic polymorphisms of interleukin with the development of chronic lymphocytic leukemia among residents of the Central Chernozem region of Russia. Genotyping of the -889C/T IL-1A, -590C/T IL-4 and VNTR IL-1 Ra was conducted in 206 patients with CLL and 307 individuals of the control group. The study found that the genetic risk factor for the development of CLL is allele -590T IL-4 (OR=-1,45). The development of thrombocytopenia in patients with CLL is associated with genetic variants -889T IL-1A (OR=1,95), -889TT IL-1A (OR=6,2) and IL-1Ra*1 (OR=-2,32).

  2. The Emerging Role of Chronic Low-Grade Inflammation in the Pathophysiology of Polycystic Ovary Syndrome.

    Science.gov (United States)

    Shorakae, Soulmaz; Teede, Helena; de Courten, Barbora; Lambert, Gavin; Boyle, Jacqueline; Moran, Lisa J

    2015-07-01

    Polycystic ovary syndrome (PCOS) has become increasingly common over recent years and is associated with reproductive features as well as cardiometabolic risk factors, including visceral obesity, dyslipidemia and impaired glucose homeostasis, and potentially cardiovascular disease. Emerging evidence suggests that these long-term metabolic effects are linked to a low-grade chronic inflammatory state with the triad of hyperinsulinemia, hyperandrogenism, and low-grade inflammation acting together in a vicious cycle in the pathophysiology of PCOS. Dysregulation of the sympathetic nervous system may also act as an important component, potentially creating a tetrad in the pathophysiology of PCOS. The aim of this review is to examine the role of chronic inflammation and the sympathetic nervous system in the development of obesity and PCOS and review potential therapeutic options to alleviate low-grade inflammation in this setting. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  3. Role of diagnostic laproscopy in evaluation and treatment of chronic abdominal pain in children

    International Nuclear Information System (INIS)

    Talat, N.; Afzal, M.; Ahmad, S.; Rasool, N.; Wasti, A.R.; Saleem, M.

    2016-01-01

    Background: Chronic abdominal Pain in children is a very common cause of hospital admission. Many of them are discharged without a diagnosis even after battery of investigations. Laparoscopy plays a significant role in diagnosis and management of many causes of acute and chronic abdominal pain. The purpose of this study was to determine the efficacy of laparoscopy as an efficient diagnostic and management tool in children with chronic abdominal pain. Methods: A descriptive, prospective case series was collected in the department of Paediatric surgery Mayo Hospital Lahore, over the period of 5 years between Jan 2007- Dec 2013. The data of consecutive 50 patients, who were admitted in the department with the diagnosis of chronic abdominal pain, was recorded. All patients who had 2-3 admissions in hospital for last 2 months and failed to establish a definitive diagnosis after clinical examination and base line investigations underwent laparoscopy. The details of associated symptoms, finding of laparoscopy, laparoscopic procedures done, definitive diagnosis, histopathology, complications and relief of symptoms were collected and analysed and results were evaluated using SPSS17. Results: Out of 50 patients studies, 27/50 (54 percentage) were male, 23/50 (46 percentage) were female. Age ranged from 2-12 years, with the mean age of 7.24 year. Tuberculosis abdomen, adhesions, mesenteric lymphadenitis, appendicitis and cholecystitis were the final diagnosis. Five abdomens were found normal on laparoscopy. Complete pain relief was achieved in 30/50 (60 percentage), reduced intensity of pain was gained in 12/50 (24 percentage) cases while 16 percentage (8/50) still complained of pain. Conclusions: Laparoscopy is an efficient diagnostic and treatment tool in children with chronic unexplained abdominal pain. It avoids serial examinations; prolong admission, battery of investigations and unnecessary surgeries. (author)

  4. ROLE OF DIAGNOSTIC LAPAROSCOPY IN EVALUATION AND TREATMENT OF CHRONIC ABDOMINAL PAIN IN CHILDREN.

    Science.gov (United States)

    Talat, Nabila; Afzal, Muhammad; Ahmad, Sarfraz; Rasool, Naima; Wasti, Arsalan Raza; Saleem, Muhammad

    2016-01-01

    Chronic abdominal Pain in children is a very common cause of hospital admission. Many of them are discharged without a diagnosis even after battery of investigations. Laparoscopy plays a significant role in diagnosis and management of many causes of acute and chronic abdominal pain. The purpose of this study was to determine the efficacy of laparoscopy as an efficient diagnostic and management tool in children with chronic abdominal pain. A descriptive, prospective case series was collected in the department of Paediatric surgery Mayo's Hospital Lahore, over the period of 5 years between Jan 2007-Dec 2013. The data of consecutive 50 patients, who were admitted in the department with the diagnosis of chronic abdominal pain, was recorded. All patients who had 2-3 admissions in hospital for last 2 months and failed to establish a definitive diagnosis after clinical examination and base line investigations underwent laparoscopy. The details of associated symptoms, finding of laparoscopy, laparoscopic procedures done, definitive diagnosis, histopathology, complications and relief of symptoms were collected and analysed and results were evaluated using SPSS-17. Out of 50 patients studies, 27/50 (54%) were male, 23/50 (46%) were female. Age ranged from 2-12 years, with the mean age of 7.24 year. Tuberculosis abdomen, adhesions, mesenteric lymphadenitis, appendicitis and cholecystitis were the final diagnosis. Five abdomens were found normal on laparoscopy. Complete pain relief was achieved in 30/50 (60%), reduced intensity of pain was gained in 12/50 (24%) cases while 16% (8/50) still complained of pain. Laparoscopy is an efficient diagnostic and treatment tool in children with chronic unexplained abdominal pain. It avoids serial examinations; prolong admission, battery of investigations and unnecessary surgeries.

  5. Role of TRPM8 in dorsal root ganglion in nerve injury-induced chronic pain

    Directory of Open Access Journals (Sweden)

    Su Lin

    2011-11-01

    Full Text Available Abstract Background Chronic neuropathic pain is an intractable pain with few effective treatments. Moderate cold stimulation can relieve pain, and this may be a novel train of thought for exploring new methods of analgesia. Transient receptor potential melastatin 8 (TRPM8 ion channel has been proposed to be an important molecular sensor for cold. Here we investigate the role of TRPM8 in the mechanism of chronic neuropathic pain using a rat model of chronic constriction injury (CCI to the sciatic nerve. Results Mechanical allodynia, cold and thermal hyperalgesia of CCI rats began on the 4th day following surgery and maintained at the peak during the period from the 10th to 14th day after operation. The level of TRPM8 protein in L5 dorsal root ganglion (DRG ipsilateral to nerve injury was significantly increased on the 4th day after CCI, and reached the peak on the 10th day, and remained elevated on the 14th day following CCI. This time course of the alteration of TRPM8 expression was consistent with that of CCI-induced hyperalgesic response of the operated hind paw. Besides, activation of cold receptor TRPM8 of CCI rats by intrathecal application of menthol resulted in the inhibition of mechanical allodynia and thermal hyperalgesia and the enhancement of cold hyperalgesia. In contrast, downregulation of TRPM8 protein in ipsilateral L5 DRG of CCI rats by intrathecal TRPM8 antisense oligonucleotide attenuated cold hyperalgesia, but it had no effect on CCI-induced mechanical allodynia and thermal hyperalgesia. Conclusions TRPM8 may play different roles in mechanical allodynia, cold and thermal hyperalgesia that develop after nerve injury, and it is a very promising research direction for the development of new therapies for chronic neuroapthic pain.

  6. Hypoxia inhibits hypertrophic differentiation and endochondral ossification in explanted tibiae.

    Directory of Open Access Journals (Sweden)

    Jeroen C H Leijten

    Full Text Available Hypertrophic differentiation of growth plate chondrocytes induces angiogenesis which alleviates hypoxia normally present in cartilage. In the current study, we aim to determine whether alleviation of hypoxia is merely a downstream effect of hypertrophic differentiation as previously described or whether alleviation of hypoxia and consequent changes in oxygen tension mediated signaling events also plays an active role in regulating the hypertrophic differentiation process itself.Fetal mouse tibiae (E17.5 explants were cultured up to 21 days under normoxic or hypoxic conditions (21% and 2.5% oxygen respectively. Tibiae were analyzed on growth kinetics, histology, gene expression and protein secretion.The oxygen level had a strong influence on the development of explanted fetal tibiae. Compared to hypoxia, normoxia increased the length of the tibiae, length of the hypertrophic zone, calcification of the cartilage and mRNA levels of hypertrophic differentiation-related genes e.g. MMP9, MMP13, RUNX2, COL10A1 and ALPL. Compared to normoxia, hypoxia increased the size of the cartilaginous epiphysis, length of the resting zone, calcification of the bone and mRNA levels of hyaline cartilage-related genes e.g. ACAN, COL2A1 and SOX9. Additionally, hypoxia enhanced the mRNA and protein expression of the secreted articular cartilage markers GREM1, FRZB and DKK1, which are able to inhibit hypertrophic differentiation.Collectively our data suggests that oxygen levels play an active role in the regulation of hypertrophic differentiation of hyaline chondrocytes. Normoxia stimulates hypertrophic differentiation evidenced by the expression of hypertrophic differentiation related genes. In contrast, hypoxia suppresses hypertrophic differentiation of chondrocytes, which might be at least partially explained by the induction of GREM1, FRZB and DKK1 expression.

  7. Hypoxia activates muscle-restricted coiled-coil protein (MURC) expression via transforming growth factor-β in cardiac myocytes.

    Science.gov (United States)

    Shyu, Kou-Gi; Cheng, Wen-Pin; Wang, Bao-Wei; Chang, Hang

    2014-03-01

    The expression of MURC (muscle-restricted coiled-coil protein), a hypertrophy-regulated gene, increases during pressure overload. Hypoxia can cause myocardial hypertrophy; however, how hypoxia affects the regulation of MURC in cardiomyocytes undergoing hypertrophy is still unknown. The aim of the present study was to test the hypothesis that hypoxia induces MURC expression in cardiomyocytes during hypertrophy. The expression of MURC was evaluated in cultured rat neonatal cardiomyocytes subjected to hypoxia and in an in vivo model of AMI (acute myocardial infarction) to induce myocardial hypoxia in adult rats. MURC protein and mRNA expression were significantly enhanced by hypoxia. MURC proteins induced by hypoxia were significantly blocked after the addition of PD98059 or ERK (extracellular-signal-regulated kinase) siRNA 30 min before hypoxia. Gel-shift assay showed increased DNA-binding activity of SRF (serum response factor) after hypoxia. PD98059, ERK siRNA and an anti-TGF-β (transforming growth factor-β) antibody abolished the SRF-binding activity enhanced by hypoxia or exogenous administration of TGF-β. A luciferase promoter assay demonstrated increased transcriptional activity of SRF in cardiomyocytes by hypoxia. Increased βMHC (β-myosin heavy chain) and BNP (B-type natriuretic peptide) protein expression and increased protein synthesis was identified after hypoxia with the presence of MURC in hypertrophic cardiomyocytes. MURC siRNA inhibited the hypertrophic marker protein expression and protein synthesis induced by hypoxia. AMI in adult rats also demonstrated increased MURC protein expression in the left ventricular myocardium. In conclusion, hypoxia in cultured rat neonatal cardiomyocytes increased MURC expression via the induction of TGF-β, SRF and the ERK pathway. These findings suggest that MURC plays a role in hypoxia-induced hypertrophy in cardiomyocytes.

  8. miR-138 protects cardiomyocytes from hypoxia-induced apoptosis via MLK3/JNK/c-jun pathway

    Energy Technology Data Exchange (ETDEWEB)

    He, Siyi; Liu, Peng; Jian, Zhao; Li, Jingwei; Zhu, Yun; Feng, Zezhou; Xiao, Yingbin, E-mail: xiaoyb@vip.sina.com

    2013-11-29

    Highlights: •First time to find miR-138 is up-regulated in hypoxic cardiomyocytes. •First time to find miR-138 targets MLK3 and regulates JNK/c-jun pathway. •Rare myocardial biopsy of patients with CHD were collected. •Both silence and overexpression of miR-138 were implemented. •Various methods were used to detect cell function. -- Abstract: Cardiomyocytes experience a series of complex endogenous regulatory mechanisms against apoptosis induced by chronic hypoxia. MicroRNAs are a class of endogenous small non-coding RNAs that regulate cellular pathophysiological processes. Recently, microRNA-138 (miR-138) has been found related to hypoxia, and beneficial for cell proliferation. Therefore, we intend to study the role of miR-138 in hypoxic cardiomyocytes and the main mechanism. Myocardial samples of patients with congenital heart disease (CHD) were collected to test miR-138 expression. Agomir or antagomir of miR-138 was transfected into H9C2 cells to investigate its effect on cell apoptosis. Higher miR-138 expression was observed in patients with cyanotic CHD, and its expression gradually increased with prolonged hypoxia time in H9C2 cells. Using MTT and LDH assays, cell growth was significantly greater in the agomir group than in the negative control (NC) group, while antagomir decreased cell survival. Dual luciferase reporter gene and Western-blot results confirmed MLK3 was a direct target of miR-138. It was found that miR-138 attenuated hypoxia-induced apoptosis using TUNEL, Hoechst staining and Annexin V-PE/7-AAD flow cytometry analysis. We further detected expression of apoptosis-related proteins. In the agomir group, the level of pro-apoptotic proteins such as cleaved-caspase-3, cleaved-PARP and Bad significantly reduced, while Bcl-2 and Bcl-2/Bax ratio increased. Opposite changes were observed in the antagomir group. Downstream targets of MLK3, JNK and c-jun, were also suppressed by miR-138. Our study demonstrates that up-regulation of miR-138 plays

  9. Chronic dim light at night provokes reversible depression-like phenotype: possible role for TNF.

    Science.gov (United States)

    Bedrosian, T A; Weil, Z M; Nelson, R J

    2013-08-01

    The prevalence of major depression has increased in recent decades and women are twice as likely as men to develop the disorder. Recent environmental changes almost certainly have a role in this phenomenon, but a complete set of contributors remains unspecified. Exposure to artificial light at night (LAN) has surged in prevalence during the past 50 years, coinciding with rising rates of depression. Chronic exposure to LAN is linked to increased risk of breast cancer, obesity and mood disorders, although the relationship to mood is not well characterized. In this study, we investigated the effects of chronic exposure to 5 lux LAN on depression-like behaviors in female hamsters. Using this model, we also characterized hippocampal brain-derived neurotrophic factor expression and hippocampal dendritic morphology, and investigated the reversibility of these changes 1, 2 or 4 weeks following elimination of LAN. Furthermore, we explored the mechanism of action, focusing on hippocampal proinflammatory cytokines given their dual role in synaptic plasticity and the pathogenesis of depression. Using reverse transcription-quantitative PCR, we identified a reversible increase in hippocampal tumor necrosis factor (TNF), but not interleukin-1β, mRNA expression in hamsters exposed to LAN. Direct intracerebroventricular infusion of a dominant-negative inhibitor of soluble TNF, XPro1595, prevented the development of depression-like behavior under LAN, but had no effect on dendritic spine density in the hippocampus. These results indicate a partial role for TNF in the reversible depression-like phenotype observed under chronic dim LAN. Recent environmental changes, such as LAN exposure, may warrant more attention as possible contributors to rising rates of mood disorders.

  10. Putative role of ischemic postconditioning in a rat model of limb ischemia and reperfusion: involvement of hypoxia-inducible factor-1α expression

    Energy Technology Data Exchange (ETDEWEB)

    Wang, T. [Department of Anesthesiology, Shuyang People' s Hospital, JiangSu (China); Zhou, Y.T. [Department of General Surgery, Shuyang People' s Hospital, JiangSu (China); Chen, X.N. [Institute of Pathophysiology, School of Basic Medical Sciences, LanZhou University, Lanzhou, Gansu (China); Zhu, A.X. [Department of Pharmacy, Shuyang People' s Hospital, JiangSu (China)

    2014-07-25

    Hypoxia-inducible factor-1α (HIF-1α) is one of the most potent angiogenic growth factors. It improves angiogenesis and tissue perfusion in ischemic skeletal muscle. In the present study, we tested the hypothesis that ischemic postconditioning is effective for salvaging ischemic skeletal muscle resulting from limb ischemia-reperfusion injury, and that the mechanism involves expression of HIF-1α. Wistar rats were randomly divided into three groups (n=36 each): sham-operated (group S), hindlimb ischemia-reperfusion (group IR), and ischemic postconditioning (group IPO). Each group was divided into subgroups (n=6) according to reperfusion time: immediate (0 h, T{sub 0}), 1 h (T{sub 1}), 3 h (T{sub 3}), 6 h (T{sub 6}), 12 h (T{sub 12}), and 24 h (T{sub 24}). In the IPO group, three cycles of 30-s reperfusion and 30-s femoral aortic reocclusion were carried out before reperfusion. At all reperfusion times (T{sub 0}-T{sub 24}), serum creatine kinase (CK) and lactate dehydrogenase (LDH) activities, as well as interleukin (IL)-6, IL-10, and tumor necrosis factor-α (TNF-α) concentrations, were measured in rats after they were killed. Histological and immunohistochemical methods were used to assess the skeletal muscle damage and HIF-1α expression in skeletal muscle ischemia. In groups IR and IPO, serum LDH and CK activities and TNF-α, IL-6, and IL-10 concentrations were all significantly increased compared to group S, and HIF-1α expression was up-regulated (P<0.05 or P<0.01). In group IPO, serum LDH and CK activities and TNF-α and IL-6 concentrations were significantly decreased, IL-10 concentration was increased, HlF-1α expression was down-regulated (P<0.05 or P<0.01), and the pathological changes were reduced compared to group IR. The present study suggests that ischemic postconditioning can reduce skeletal muscle damage caused by limb ischemia-reperfusion and that its mechanisms may be related to the involvement of HlF-1α in the limb ischemia-reperfusion injury

  11. Role of the B-cell receptor in chronic lymphocytic leukemia: where do we stand?

    Science.gov (United States)

    Fais, Franco; Bruno, Silvia; Ghiotto, Fabio

    2010-01-01

    The past 15 years have witnessed an enormous effort in studying B-cell Chronic Lymphocytic Leukemia. A great number of researches brought significant novel information and a better understanding of the natural history of this disease. This mini review will focus on the studies related to the Immunoglobulin variable (IgV) genes rearrangements that compose the B-cell receptor (BcR) of the leukemic clones. These studies have defined a role for the antigen(s) in the paths that lead to leukemic clone generation/expansion and underscore the informative value represented by BcR analyses.

  12. The role of the endothelium in asthma and chronic obstructive pulmonary disease (COPD).

    Science.gov (United States)

    Green, Clara E; Turner, Alice M

    2017-01-18

    COPD and asthma are important chronic inflammatory disorders with a high associated morbidity. Much research has concentrated on the role of inflammatory cells, such as the neutrophil, in these diseases, but relatively little focus has been given to the endothelial tissue, through which inflammatory cells must transmigrate to reach the lung parenchyma and cause damage. There is evidence that there is an abnormal amount of endothelial tissue in COPD and asthma and that this tissue and its' progenitor cells behave in a dysfunctional manner. This article reviews the evidence of the involvement of pulmonary endothelium in COPD and asthma and potential treatment options for this.

  13. CNS hypoxia is more pronounced in murine cerebral than noncerebral malaria and is reversed by erythropoietin

    DEFF Research Database (Denmark)

    Hempel, Casper; Combes, Valery; Hunt, Nicholas Henry

    2011-01-01

    observed in mice without CM, and hypoxia seemed to be confined to neuronal cell somas. PARP-1-deficient mice were not protected against CM, which argues against a role for cytopathic hypoxia. Erythropoietin therapy reversed the development of CM and substantially reduced the degree of neural hypoxia......Cerebral malaria (CM) is associated with high mortality and risk of sequelae, and development of adjunct therapies is hampered by limited knowledge of its pathogenesis. To assess the role of cerebral hypoxia, we used two experimental models of CM, Plasmodium berghei ANKA in CBA and C57BL/6 mice....... These findings demonstrate cerebral hypoxia in malaria, strongly associated with cerebral dysfunction and a possible target for adjunctive therapy....

  14. Gene Expression Programs in Response to Hypoxia: Cell Type Specificity and Prognostic Significance in Human Cancers.

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available BACKGROUND: Inadequate oxygen (hypoxia triggers a multifaceted cellular response that has important roles in normal physiology and in many human diseases. A transcription factor, hypoxia-inducible factor (HIF, plays a central role in the hypoxia response; its activity is regulated by the oxygen-dependent degradation of the HIF-1alpha protein. Despite the ubiquity and importance of hypoxia responses, little is known about the variation in the global transcriptional response to hypoxia among different cell types or how this variation might relate to tissue- and cell-specific diseases. METHODS AND FINDINGS: We analyzed the temporal changes in global transcript levels in response to hypoxia in primary renal proximal tubule epithelial cells, breast epithelial cells, smooth muscle cells, and endothelial cells with DNA microarrays. The extent of the transcriptional response to hypoxia was greatest in the renal tubule cells. This heightened response was associated with a uniquely high level of HIF-1alpha RNA in renal cells, and it could be diminished by reducing HIF-1alpha expression via RNA interference. A gene-expression signature of the hypoxia response, derived from our studies of cultured mammary and renal tubular epithelial cells, showed coordinated variation in several human cancers, and was a strong predictor of clinical outcomes in breast and ovarian cancers. In an analysis of a large, published gene-expression dataset from breast cancers, we found that the prognostic information in the hypoxia signature was virtually independent of that provided by the previously reported wound signature and more predictive of outcomes than any of the clinical parameters in current use. CONCLUSIONS: The transcriptional response to hypoxia varies among human cells. Some of this variation is traceable to variation in expression of the HIF1A gene. A gene-expression signature of the cellular response to hypoxia is associated with a significantly poorer prognosis

  15. The role of vitamin K in vascular calcification of patients with chronic kidney disease.

    Science.gov (United States)

    Wuyts, Julie; Dhondt, Annemieke

    2016-12-01

    Patients with chronic kidney disease (CKD) are prone to vascular calcification. Pathogenetic mechanisms of vascular calcifications have been broadly studied and discussed such as the role of hyperphosphatemia, hypercalcemia, parathormone, and vitamin D. In recent years, new insights have been gained pointing to vitamin K as a main actor. It has been discovered that vitamin K is an essential cofactor for the activation of matrix Gla protein (MGP), a calcification inhibitor in the vessel wall. Patients with CKD often suffer from vitamin K deficiency, resulting in low active MGP and eventually a lack of inhibition of vascular calcification. Vitamin K supplementation and switching warfarin to new oral anticoagulants are potential treatments. In addition, MGP may have a role as a non-invasive biomarker for vascular calcification.

  16. Is hypoxia training good for muscles and exercise performance?

    Science.gov (United States)

    Vogt, Michael; Hoppeler, Hans

    2010-01-01

    Altitude training has become very popular among athletes as a means to further increase exercise performance at sea level or to acclimatize to competition at altitude. Several approaches have evolved during the last few decades, with "live high-train low" and "live low-train high" being the most popular. This review focuses on functional, muscular, and practical aspects derived from extensive research on the "live low-train high" approach. According to this, subjects train in hypoxia but remain under normoxia for the rest of the time. It has been reasoned that exercising in hypoxia could increase the training stimulus. Hypoxia training studies published in the past have varied considerably in altitude (2300-5700 m) and training duration (10 days to 8 weeks) and the fitness of the subjects. The evidence from muscle structural, biochemical, and molecular findings point to a specific role of hypoxia in endurance training. However, based on the available performance capacity data such as maximal oxygen uptake (Vo(2)max) and (maximal) power output, hypoxia as a supplement to training is not consistently found to be advantageous for performance at sea level. Stronger evidence exists for benefits of hypoxic training on performance at altitude. "Live low-train high" may thus be considered when altitude acclimatization is not an option. In addition, the complex pattern of gene expression adaptations induced by supplemental training in hypoxia, but not normoxia, suggest that muscle tissue specifically responds to hypoxia. Whether and to what degree these gene expression changes translate into significant changes in protein concentrations that are ultimately responsible for observable structural or functional phenotypes remains open. It is conceivable that the global functional markers such as Vo(2)max and (maximal) power output are too coarse to detect more subtle changes that might still be functionally relevant, at least to high-level athletes.

  17. Restraint stress intensifies interstitial K+ accumulation during severe hypoxia

    Directory of Open Access Journals (Sweden)

    Christian eSchnell

    2012-03-01

    Full Text Available Chronic stress affects neuronal networks by inducing dendritic retraction, modifying neuronal excitability and plasticity, and modulating glial cells. To elucidate the functional consequences of chronic stress for the hippocampal network, we submitted adult rats to daily restraint stress for three weeks (6 h/day. In acute hippocampal tissue slices of stressed rats, basal synaptic function and short-term plasticity at Schaffer collateral/CA1 neuron synapses were unchanged while long-term potentiation was markedly impaired. The spatiotemporal propagation pattern of hypoxia-induced spreading depression episodes was indistinguishable among control and stress slices. However, the duration of the extracellular direct current (DC potential shift was shortened after stress. Moreover, K+ fluxes early during hypoxia were more intense, and the postsynaptic recoveries of interstitial K+ levels and synaptic function were slower. Morphometric analysis of immunohistochemically stained sections suggested hippocampal shrinkage in stressed rats, and the number of cells that are immunoreactive for GFAP (glial fibrillary acidic protein was increased in the CA1 subfield indicating activation of astrocytes. Western blots showed a marked downregulation of the inwardly rectifying K+ channel Kir4.1 in stressed rats. Yet, resting membrane potentials, input resistance and K+-induced inward currents in CA1 astrocytes were indistinguishable from controls. These data indicate an intensified interstitial K+ accumulation during hypoxia in the hippocampus of chronically stressed rats which seems to arise from a reduced interstitial volume fraction rather than impaired glial K+ buffering. One may speculate that chronic stress aggravates hypoxia-induced pathophysiological processes in the hippocampal network and that this has implications for the ischemic brain.

  18. Hypoxia-inducible factor-1α plays roles in Epstein-Barr virus's natural life cycle and tumorigenesis by inducing lytic infection through direct binding to the immediate-early BZLF1 gene promoter.

    Directory of Open Access Journals (Sweden)

    Richard J Kraus

    2017-06-01

    Full Text Available When confronted with poor oxygenation, cells adapt by activating survival signaling pathways, including the oxygen-sensitive transcriptional regulators called hypoxia-inducible factor alphas (HIF-αs. We report here that HIF-1α also regulates the life cycle of Epstein-Barr virus (EBV. Incubation of EBV-positive gastric carcinoma AGS-Akata and SNU-719 and Burkitt lymphoma Sal and KemIII cell lines with a prolyl hydroxylase inhibitor, L-mimosine or deferoxamine, or the NEDDylation inhibitor MLN4924 promoted rapid and sustained accumulation of both HIF-1α and lytic EBV antigens. ShRNA knockdown of HIF-1α significantly reduced deferoxamine-mediated lytic reactivation. HIF-1α directly bound the promoter of the EBV primary latent-lytic switch BZLF1 gene, Zp, activating transcription via a consensus hypoxia-response element (HRE located at nt -83 through -76 relative to the transcription initiation site. HIF-1α did not activate transcription from the other EBV immediate-early gene, BRLF1. Importantly, expression of HIF-1α induced EBV lytic-gene expression in cells harboring wild-type EBV, but not in cells infected with variants containing base-pair substitution mutations within this HRE. Human oral keratinocyte (NOK and gingival epithelial (hGET cells induced to differentiate by incubation with either methyl cellulose or growth in organotypic culture accumulated both HIF-1α and Blimp-1α, another cellular factor implicated in lytic reactivation. HIF-1α activity also accumulated along with Blimp-1α during B-cell differentiation into plasma cells. Furthermore, most BZLF1-expressing cells observed in lymphomas induced by EBV in NSG mice with a humanized immune system were located distal to blood vessels in hypoxic regions of the tumors. Thus, we conclude that HIF-1α plays central roles in both EBV's natural life cycle and EBV-associated tumorigenesis. We propose that drugs that induce HIF-1α protein accumulation are good candidates for

  19. The role of neuropsychological performance in the relationship between chronic pain and functional physical impairment.

    Science.gov (United States)

    Pulles, Wiesje L J A; Oosterman, Joukje M

    2011-12-01

      In this study, the relationship between pain intensity, neuropsychological, and physical function in adult chronic pain patients was examined.   Thirty participants with chronic pain completed neuropsychological tests tapping mental processing speed, memory, and executive function. Pain intensity was measured with three visual analog scales and the Pain Rating Index of the McGill Pain Questionnaire. A grip strength test, the 6-minute walk test, the Unipedal Stance Test and the Lifting Low Test were administered in order to obtain a performance-based measure of physical capacity. Self-reported physical ability was assessed with the Disability Rating Index and the Short Form-36 Physical Functioning, and Role Physical scales. Psychosocial function was examined using the Mental Health and Role Emotional subscales of the Short Form-36.   The study was set in two outpatient physical therapy clinics in The Netherlands.   The analysis showed that a lower mental processing speed was related to a higher level of pain, as well as to a lower performance-based and self-reported physical functioning. In addition, both performance-based and self-reported physical function revealed an inverse correlation with pain intensity. Psychosocial function turned out to be an important mediator of the relationship between pain and self-reported, but not performance-based, physical function. Mental processing speed, on the other hand, was found to mediate the relationship between pain and performance-based physical functioning.   The results suggest that in chronic pain patients, mental processing speed mediates the relationship between pain and physical function. Wiley Periodicals, Inc.

  20. Role of neuroendocrine and neuroimmune mechanisms in chronic inflammatory rheumatic diseases--the 10-year update.

    Science.gov (United States)

    Straub, Rainer H; Bijlsma, Johannes W J; Masi, Alfonse; Cutolo, Maurizio

    2013-12-01

    Neuroendocrine immunology in musculoskeletal diseases is an emerging scientific field. It deals with the aspects of efferent neuronal and neurohormonal bearing on the peripheral immune and musculoskeletal systems. This review aims to add new information that appeared since 2001. The following PubMed search sentence was used to find a total of 15,462 references between 2001 and March 2013: "(rheum* OR SLE OR vasculitis) AND (nerve OR hormone OR neurotransmitter OR neuropeptide OR steroid)." In a continuous process, year by year, this search strategy yielded relevant papers that were screened and collected in a database, which build the platform of this review. The main findings are the anti-inflammatory role of androgens, the loss of androgens (androgen drain), the bimodal role of estrogens (support B cells and inhibit macrophages and T cells), increased conversion of androgens to estrogens in inflammation (androgen drain), disturbances of the gonadal axis, inadequate amount of HPA axis hormones relative to inflammation (disproportion principle), biologics partly improve neuroendocrine axes, anti-corticotropin-releasing hormone therapies improve inflammation (antalarmin), bimodal role of the sympathetic nervous system (proinflammatory early, anti-inflammatory late-most probably due to catecholamine-producing local cells), anti-inflammatory role of alpha melanocyte-stimulating hormone, vasoactive intestinal peptide, and the Vagus nerve via α7 nicotinergic receptors. Circadian rhythms of hypothalamic origin are responsible for circadian rhythms of symptoms (neuroimmune link revealed). Important new pain-sensitizing immunological pathways were found in the last decade. The last decade brought much new information that gave birth to the first therapies of chronic inflammatory diseases on the basis of neuroendocrine immune targets. In addition, a new theory linked evolutionary medicine, neuroendocrine regulation of distribution of energy-rich fuels, and volume

  1. Regenerative toxicology: the role of stem cells in the development of chronic toxicities.

    Science.gov (United States)

    Canovas-Jorda, David; Louisse, Jochem; Pistollato, Francesca; Zagoura, Dimitra; Bremer, Susanne

    2014-01-01

    Human stem cell lines and their derivatives, as alternatives to the use of animal cells or cancer cell lines, have been widely discussed as cellular models in predictive toxicology. However, the role of stem cells in the development of long-term toxicities and carcinogenesis has not received great attention so far, despite growing evidence indicating the relationship of stem cell damage to adverse effects later in life. However, testing this in vitro is a scientific/technical challenge in particular due to the complex interplay of factors existing under physiological conditions. Current major research programs in stem cell toxicity are not aiming to demonstrate that stem cells can be targeted by toxicants. Therefore, this knowledge gap needs to be addressed in additional research activities developing technical solutions and defining appropriate experimental designs. The current review describes selected examples of the role of stem cells in the development of long-term toxicities in the brain, heart or liver and in the development of cancer. The presented examples illustrate the need to analyze the contribution of stem cells to chronic toxicity in order to make a final conclusion whether stem cell toxicities are an underestimated risk in mechanism-based safety assessments. This requires the development of predictive in vitro models allowing the assessment of adverse effects to stem cells on chronic toxicity and carcinogenicity.

  2. Quercetin enhances hypoxia-mediated apoptosis via direct inhibition of AMPK activity in HCT116 colon cancer.

    Science.gov (United States)

    Kim, Hak-Su; Wannatung, Tirawat; Lee, Sooho; Yang, Woo Kyeom; Chung, Sung Hyun; Lim, Jong-Seok; Choe, Wonchae; Kang, Insug; Kim, Sung-Soo; Ha, Joohun

    2012-09-01

    Tumor hypoxia is considered the best validated target in clinical oncology because of its significant contribution to chemotherapy failure and drug resistance. As an approach to target hypoxia, we assessed the potential of quercetin, a flavonoid widely distributed in plants, as a anticancer agent under hypoxic conditions and examined its pharmacological mechanisms by primarily focusing on the role of AMP-activated protein kinase (AMPK). Quercetin significantly attenuated tumor growth in an HCT116 cancer xenograft in vivo model with a substantial reduction of AMPK activity. In a cell culture system, quercetin more dramatically induced apoptosis of HCT116 cancer cells under hypoxic conditions than normoxic conditions, and this was tightly associated with inhibition of hypoxia-induced AMPK activity. An in vitro kinase assay demonstrated that quercetin directly inhibits AMPK activity. Inhibition of AMPK by expressing a dominant-negative form resulted in an increase of apoptosis under hypoxia, and a constitutively active form of AMPK effectively blocked quercetin-induced apoptosis under hypoxia. Collectively, our data suggest that quercetin directly inhibits hypoxia-induced AMPK, which plays a protective role against hypoxia. Quercetin also reduced the activity of hypoxia-inducible factor-1 (HIF-1), a major transcription factor for adaptive cellular response to hypoxia. Moreover, quercetin sensitized HCT116 cancer cells to the anticancer drugs cisplatin and etoposide under hypoxic conditions. Our findings suggest that AMPK may serve as a novel target for overcoming tumor hypoxia-associated negative aspects.

  3. Hypoxia-Related Hormonal Appetite Modulation in Humans during Rest and Exercise: Mini Review

    Directory of Open Access Journals (Sweden)

    Tadej Debevec

    2017-05-01

    Full Text Available Obesity is associated with numerous chronic ailments and represents one of the major health and economic issues in the modernized societies. Accordingly, there is an obvious need for novel treatment approaches. Recently, based on the reports of reduced appetite and subsequent weight loss following high-altitude sojourns, exposure to hypoxia has been proposed as a viable weight-reduction strategy. While altitude-related appetite modulation is complex and not entirely clear, hypoxia-induced alterations in hormonal appetite modulation might be among the key underlying mechanisms. The present paper summarizes the up-to-date research on hypoxia/altitude-induced changes in the gut and adipose tissue derived peptides related to appetite regulation. Orexigenic hormone ghrelin and anorexigenic peptides leptin, glucagon-like peptide-1, peptide YY, and cholecystokinin have to-date been investigated as potential modulators of hypoxia-driven appetite alterations. Current evidence suggests that hypoxia can, especially acutely, lead to decreased appetite, most probably via reduction of acylated ghrelin concentration. Hypoxia-related short and long-term changes in other hormonal markers are more unclear although hypoxia seems to importantly modulate leptin levels, especially following prolonged hypoxic exposures. Limited evidence also suggests that different activity levels during exposures to hypoxia do not additively affect hormonal appetite markers. Although very few studies have been performed in obese/overweight individuals, the available data indicate that hypoxia/altitude exposures do not seem to differentially affect appetite regulation via hormonal pathways in this cohort. Given the lack of experimental data, future well-controlled acute and prolonged studies are warranted to expand our understanding of hypoxia-induced hormonal appetite modulation and its kinetics in health and disease.

  4. Hypoxia Aggravates Inactivity-Related Muscle Wasting

    Directory of Open Access Journals (Sweden)

    Tadej Debevec

    2018-05-01

    Full Text Available Poor musculoskeletal state is commonly observed in numerous clinical populations such as chronic obstructive pulmonary disease (COPD and heart failure patients. It, however, remains unresolved whether systemic hypoxemia, typically associated with such clinical conditions, directly contributes to muscle deterioration. We aimed to experimentally elucidate the effects of systemic environmental hypoxia upon inactivity-related muscle wasting. For this purpose, fourteen healthy, male participants underwent three 21-day long interventions in a randomized, cross-over designed manner: (i bed rest in normoxia (NBR; PiO2 = 133.1 ± 0.3 mmHg, (ii bed rest in normobaric hypoxia (HBR; PiO2 = 90.0 ± 0.4 mmHg and ambulatory confinement in normobaric hypoxia (HAmb; PiO2 = 90.0 ± 0.4 mmHg. Peripheral quantitative computed tomography and vastus lateralis muscle biopsies were performed before and after the interventions to obtain thigh and calf muscle cross-sectional areas and muscle fiber phenotype changes, respectively. A significant reduction of thigh muscle size following NBR (-6.9%, SE 0.8%; P < 0.001 was further aggravated following HBR (-9.7%, SE 1.2%; P = 0.027. Bed rest-induced muscle wasting in the calf was, by contrast, not exacerbated by hypoxic conditions (P = 0.47. Reductions in both thigh (-2.7%, SE 1.1%, P = 0.017 and calf (-3.3%, SE 0.7%, P < 0.001 muscle size were noted following HAmb. A significant and comparable increase in type 2× fiber percentage of the vastus lateralis muscle was noted following both bed rest interventions (NBR = +3.1%, SE 2.6%, HBR = +3.9%, SE 2.7%, P < 0.05. Collectively, these data indicate that hypoxia can exacerbate inactivity-related muscle wasting in healthy active participants and moreover suggest that the combination of both, hypoxemia and lack of activity, as seen in COPD patients, might be particularly harmful for muscle tissue.

  5. Deletion of Metallothionein Exacerbates Intermittent Hypoxia-Induced Oxidative and Inflammatory Injury in Aorta

    Directory of Open Access Journals (Sweden)

    Shanshan Zhou

    2014-01-01

    Full Text Available The present study was to explore the effect of metallothionein (MT on intermittent hypoxia (IH induced aortic pathogenic changes. Markers of oxidative damages, inflammation, and vascular remodeling were observed by immunohistochemical staining after 3 days and 1, 3, and 8 weeks after IH exposures. Endogenous MT was induced after 3 days of IH but was significantly decreased after 8 weeks of IH. Compared with the wild-type mice, MT knock-out mice exhibited earlier and more severe pathogenic changes of oxidative damages, inflammatory responses, and cellular apoptosis, as indicated by the significant accumulation of collagen, increased levels of connective tissue growth factor, transforming growth factor β1, tumor necrosis factor-alpha, vascular cell adhesion molecule 1,3-nitrotyrosine, and 4-hydroxy-2-nonenal in the aorta. These findings suggested that chronic IH may lead to aortic damages characterized by oxidative stress and inflammation, and MT may play a pivotal role in the above pathogenesis process.

  6. Hypoxia tolerance, nitric oxide, and nitrite: Lessons from extreme animals

    DEFF Research Database (Denmark)

    Fago, Angela; B. Jensen, Frank

    2015-01-01

    survival resides in concerted physiological responses, including strong metabolic depression, protection against oxidative damage and – in air breathing animals - redistribution of blood flow. Each of these responses is known to be tightly regulated by nitric oxide (NO) and during hypoxia by its metabolite...... nitrite. The aim of this review is to highlight recent work illustrating the widespread roles of NO and nitrite in the tolerance to extreme oxygen deprivation, in particular in the red-eared slider turtle and crucian carp, but also in di