WorldWideScience

Sample records for chronic ethanol ingestion-induced

  1. Norepinephrine-induced diuresis in chronically ethanol-treated rats

    Energy Technology Data Exchange (ETDEWEB)

    Pohorecky, L.A. (Rutgers Univ., Piscataway, NJ (USA))

    1989-01-01

    Previous research from this laboratory indicated that noradrenergic mechanisms might mediate ethanol diuresis. Experiments described here examined changes in sensitivity of noradrenergic mechanisms in animals chronically treated with ethanol. Norepinephrine hydrochloride (0-12 ug intracerebroventricularly) produced dose-dependent diuresis in control and ethanol treated rats on the first day of treatment. Tolerance to ethanol diuresis was present after 10 day of ethanol treatment. Lack of responsiveness to norepinephrine-induced diuresis was evident only on the 20th day of treatment in both the ethanol and dextrin-maltose groups of rats. These results indicate a temporal dissociation between the tolerance to ethanol-induced and norepinephrine-induced diuresis and suggest that norepinephrine may not play a primary role in the development of tolerance to the diuretic action of ethanol.

  2. The effects of chronic ethanol administration on amygdala neuronal firing and ethanol withdrawal seizures.

    Science.gov (United States)

    Feng, Hua-Jun; Faingold, Carl L

    2008-10-01

    Physical dependence on ethanol results in an ethanol withdrawal (ETX) syndrome including susceptibility to audiogenic seizures (AGS) in rodents after abrupt cessation of ethanol. Chronic ethanol administration and ETX induce functional changes of neurons in several brain regions, including the amygdala. Amygdala neurons are requisite elements of the neuronal network subserving AGS propagation during ETX induced by a subacute "binge" ethanol administration protocol. However, the effects of chronic ethanol administration on amygdala neuronal firing and ETX seizure behaviors are unknown. In the present study ethanol (5g/kg) was administered intragastrically in Sprague-Dawley rats once daily for 28days [chronic intermittent ethanol (CIE) protocol]. One week later the rats began receiving ethanol intragastrically three times daily for 4days (binge protocol). Microwire electrodes were implanted prior to CIE or on the day after CIE ended to record extracellular action potentials in lateral amygdala (LAMG) neurons. The first dose of ethanol administered in the binge protocol following CIE treatment did not alter LAMG neuronal firing, which contrasts with firing suppression seen previously in the binge protocol alone. These data indicate that CIE induces neuroadaptive changes in the ETX network which reduce LAMG response to ethanol. LAMG neuronal responses to acoustic stimuli prior to AGS were significantly decreased during ETX as compared to those before ethanol treatment. LAMG neurons fired tonically throughout the tonic convulsions during AGS. CIE plus binge treatment resulted in a significantly greater mean seizure duration and a significantly elevated incidence of death than was seen previously with the binge protocol alone, indicating an elevated seizure severity following chronic ethanol administration.

  3. Hepatotoxic potential of combined toluene-chronic ethanol exposure

    Energy Technology Data Exchange (ETDEWEB)

    Howell, S.R.; Christian, J.E.; Isom, G.E.

    1986-05-01

    The hepatoxic properties of concurrent chronic oral ethanol ingestion and acute toluene inhalation were evaluated. Male rats were maintained on ethanol-containing or control liquid diets for 29 days. Animals of each group were subjected to five 20-min exposures to 10 000 ppm toluene with 30 min of room air inhalation between exposures on days 22, 24, 26, and 28 of liquid diet feeding. Some of the ethanol-fed animals were withdrawn from ethanol 14 h before exposure. Ethanol-withdrawn animals displayed an increased sensitivity to the narcotic action of toluene. Animals were sacrificed and assays performed on day 29. Stress markers (plasma corticosterone, free fatty acid, and glucose) were not affected by treatments. A modest elevation in plasma aspartate amino-transferase occurred in non-withdrawn animals receiving both ethanol and toluene. Ethanol-toluene exposure increased both relative liver weight and liver triglycerides. Toluene antagonized the hypertriglyceridemia associated with chronic ethanol ingestion. This study indicates that combined ethanol and toluene exposure has minor potential to induce acute liver injury, but results in altered deposition of hepatic triglycerides.

  4. Repeated episodes of chronic intermittent ethanol promote insensitivity to devaluation of the reinforcing effect of ethanol.

    Science.gov (United States)

    Lopez, M F; Becker, H C; Chandler, L J

    2014-11-01

    Studies in animal models have shown that repeated episodes of alcohol dependence and withdrawal promote escalation of drinking that is presumably associated with alterations in the addiction neurocircuitry. Using a lithium chloride-ethanol pairing procedure to devalue the reinforcing properties of ethanol, the present study determined whether multiple cycles of chronic intermittent ethanol (CIE) exposure by vapor inhalation also alters the sensitivity of drinking behavior to the devaluation of ethanol's reinforcing effects. The effect of devaluation on operant ethanol self-administration and extinction was examined in mice prior to initiation of CIE (short drinking history) and after repeated cycles of CIE or air control exposure (long drinking history). Devaluation significantly attenuated the recovery of baseline ethanol self-administration when tested either prior to CIE or in the air-exposed controls that had experienced repeated bouts of drinking but no CIE. In contrast, in mice that had undergone repeated cycles of CIE exposure that promoted escalation of ethanol drinking, self-administration was completely resistant to the effect of devaluation. Devaluation had no effect on the time course of extinction training in either pre-CIE or post-CIE mice. Taken together, these results are consistent with the suggestion that repeated cycles of ethanol dependence and withdrawal produce escalation of ethanol self-administration that is associated with a change in sensitivity to devaluation of the reinforcing properties of ethanol.

  5. Adolescent rats are resistant to the development of ethanol-induced chronic tolerance and ethanol-induced conditioned aversion.

    Science.gov (United States)

    Pautassi, Ricardo Marcos; Godoy, Juan Carlos; Molina, Juan Carlos

    2015-11-01

    The analysis of chronic tolerance to ethanol in adult and adolescent rats has yielded mixed results. Tolerance to some effects of ethanol has been reported in adolescents, yet other studies found adults to exhibit greater tolerance than adolescents or comparable expression of the phenomena at both ages. Another unanswered question is how chronic ethanol exposure affects subsequent ethanol-mediated motivational learning at these ages. The present study examined the development of chronic tolerance to ethanol's hypothermic and motor stimulating effects, and subsequent acquisition of ethanol-mediated odor conditioning, in adolescent and adult male Wistar rats given every-other-day intragastric administrations of ethanol. Adolescent and adult rats exhibited lack of tolerance to the hypothermic effects of ethanol during an induction phase; whereas adults, but not adolescents, exhibited a trend towards a reduction in hypothermia at a challenge phase (Experiment 1). Adolescents, unlike adults, exhibited ethanol-induced motor activation after the first ethanol administration. Adults, but not adolescents, exhibited conditioned odor aversion by ethanol. Subsequent experiments conducted only in adolescents (Experiment 2, Experiment 3 and Experiment 4) manipulated the context, length and predictability of ethanol administration. These manipulations did not promote the expression of ethanol-induced tolerance. This study indicated that, when moderate ethanol doses are given every-other day for a relatively short period, adolescents are less likely than adults to develop chronic tolerance to ethanol-induced hypothermia. This resistance to tolerance development could limit long-term maintenance of ethanol intake. Adolescents, however, exhibited greater sensitivity than adults to the acute motor stimulating effects of ethanol and a blunted response to the aversive effects of ethanol. This pattern of response may put adolescents at risk for early initiation of ethanol intake.

  6. Concomitant stress potentiates the preference for, and consumption of, ethanol induced by chronic pre-exposure to ethanol.

    Science.gov (United States)

    Morais-Silva, G; Fernandes-Santos, J; Moreira-Silva, D; Marin, M T

    2016-01-01

    Ethanol abuse is linked to several acute and chronic injuries that can lead to health problems. Ethanol addiction is one of the most severe diseases linked to the abuse of this drug. Symptoms of ethanol addiction include compulsive substance intake and withdrawal syndrome. Stress exposure has an important role in addictive behavior for many drugs of abuse (including ethanol), but the consequences of stress and ethanol in the organism when these factors are concomitant results in a complex interaction. We investigated the effects of concomitant, chronic administration of ethanol and stress exposure on the withdrawal and consumption of, as well as the preference for, ethanol in mice. Male Swiss mice (30-35 g, 8-10 per group) were exposed to an ethanol liquid diet as the only source of food for 15 days. In the final 5 days, they were exposed to forced swimming stress. Twelve hours after removal of the ethanol liquid diet, animals were evaluated for ethanol withdrawal by measuring anxiety-related behaviors and locomotor activity. Twenty-four hours after evaluation of ethanol withdrawal, they were evaluated for voluntary consumption of ethanol in a "three-bottle choice" paradigm. Mice exposed to chronic consumption of ethanol had decreased locomotor activity during withdrawal. Contrary to our expectations, a concomitant forced swimming stress did not aggravate ethanol withdrawal. Nevertheless, simultaneous ethanol administration and stress exposure increased voluntary consumption of ethanol, mainly solutions containing high concentrations of ethanol. These results showed that stressful situations during ethanol intake may aggravate specific addiction-related behaviors.

  7. Concomitant stress potentiates the preference for, and consumption of, ethanol induced by chronic pre-exposure to ethanol

    Directory of Open Access Journals (Sweden)

    G. Morais-Silva

    2016-01-01

    Full Text Available Ethanol abuse is linked to several acute and chronic injuries that can lead to health problems. Ethanol addiction is one of the most severe diseases linked to the abuse of this drug. Symptoms of ethanol addiction include compulsive substance intake and withdrawal syndrome. Stress exposure has an important role in addictive behavior for many drugs of abuse (including ethanol, but the consequences of stress and ethanol in the organism when these factors are concomitant results in a complex interaction. We investigated the effects of concomitant, chronic administration of ethanol and stress exposure on the withdrawal and consumption of, as well as the preference for, ethanol in mice. Male Swiss mice (30–35 g, 8-10 per group were exposed to an ethanol liquid diet as the only source of food for 15 days. In the final 5 days, they were exposed to forced swimming stress. Twelve hours after removal of the ethanol liquid diet, animals were evaluated for ethanol withdrawal by measuring anxiety-related behaviors and locomotor activity. Twenty-four hours after evaluation of ethanol withdrawal, they were evaluated for voluntary consumption of ethanol in a “three-bottle choice” paradigm. Mice exposed to chronic consumption of ethanol had decreased locomotor activity during withdrawal. Contrary to our expectations, a concomitant forced swimming stress did not aggravate ethanol withdrawal. Nevertheless, simultaneous ethanol administration and stress exposure increased voluntary consumption of ethanol, mainly solutions containing high concentrations of ethanol. These results showed that stressful situations during ethanol intake may aggravate specific addiction-related behaviors.

  8. Chronic plus binge ethanol exposure causes more severe pancreatic injury and inflammation.

    Science.gov (United States)

    Ren, Zhenhua; Yang, Fanmuyi; Wang, Xin; Wang, Yongchao; Xu, Mei; Frank, Jacqueline A; Ke, Zun-Ji; Zhang, Zhuo; Shi, Xianglin; Luo, Jia

    2016-10-01

    Alcohol abuse increases the risk for pancreatitis. The pattern of alcohol drinking may impact its effect. We tested a hypothesis that chronic ethanol consumption in combination with binge exposure imposes more severe damage to the pancreas. C57BL/6 mice were divided into four groups: control, chronic ethanol exposure, binge ethanol exposure and chronic plus binge ethanol exposure. For the control group, mice were fed with a liquid diet for two weeks. For the chronic ethanol exposure group, mice were fed with a liquid diet containing 5% ethanol for two weeks. In the binge ethanol exposure group, mice were treated with ethanol by gavage (5g/kg, 25% ethanol w/v) daily for 3days. For the chronic plus binge exposure group, mice were fed with a liquid diet containing 5% ethanol for two weeks and exposed to ethanol by gavage during the last 3days. Chronic and binge exposure alone caused minimal pancreatic injury. However, chronic plus binge ethanol exposure induced significant apoptotic cell death. Chronic plus binge ethanol exposure altered the levels of alpha-amylase, glucose and insulin. Chronic plus binge ethanol exposure caused pancreatic inflammation which was shown by the macrophages infiltration and the increase of cytokines and chemokines. Chronic plus binge ethanol exposure increased the expression of ADH1 and CYP2E1. It also induced endoplasmic reticulum stress which was demonstrated by the unfolded protein response. In addition, chronic plus binge ethanol exposure increased protein oxidation and lipid peroxidation, indicating oxidative stress. Therefore, chronic plus binge ethanol exposure is more detrimental to the pancreas.

  9. Cytisine modulates chronic voluntary ethanol consumption and ethanol-induced striatal up-regulation of ΔFosB in mice.

    Science.gov (United States)

    Sajja, Ravi Kiran; Rahman, Shafiqur

    2013-06-01

    Chronic administration of ethanol induces persistent accumulation of ΔFosB, an important transcription factor, in the midbrain dopamine system. This process underlies the progression to addiction. Previously, we have shown that cytisine, a neuronal nicotinic acetylcholine receptor (nAChR) partial agonist, reduces various ethanol-drinking behaviors and ethanol-induced striatal dopamine function. However, the effects of cytisine on chronic ethanol drinking and ethanol-induced up-regulation of striatal ΔFosB are not known. Therefore, we examined the effects of cytisine on chronic voluntary ethanol consumption and associated striatal ΔFosB up-regulation in C57BL/6J mice using behavioral and biochemical methods. Following the chronic voluntary consumption of 15% (v/v) ethanol under a 24-h two-bottle choice intermittent access (IA; 3 sessions/week) or continuous access (CA; 24 h/d and 7 d/week) paradigm, mice received repeated intraperitoneal injections of saline or cytisine (0.5 or 3.0 mg/kg). Ethanol and water intake were monitored for 24 h post-treatment. Pretreatment with cytisine (0.5 or 1.5 mg/kg) significantly reduced ethanol consumption and preference in both paradigms at 2 h and 24 h post-treatment. The ΔFosB levels in the ventral and dorsal striatum were determined by Western blotting 18-24 h after the last point of ethanol access. In addition, cytisine (0.5 mg/kg) significantly attenuated up-regulation of ΔFosB in the ventral and dorsal striatum following chronic ethanol consumption in IA and CA paradigms. The results indicate that cytisine modulates chronic voluntary ethanol consumption and reduces ethanol-induced up-regulation of striatal ΔFosB. Further, the data suggest a critical role of nAChRs in chronic ethanol-induced neurochemical adaptations associated with ethanol addiction.

  10. Low chronic ethanol consumption affects ovulation and PGE synthesis by the cumulus cell masses in mice.

    Science.gov (United States)

    Cebral, E; Motta, A; de Gimeno, M F

    1999-02-01

    Central and gonadal function can be affected by chronic consumption of high and moderate doses of ethanol. Few studies have been conducted to determine the effect of ethanol intake at ovarian and gamete level. Previously, we showed that fertilization rates of low chronic ethanol treated female mice were diminished. Also, our recent results indicated that moderate chronic intake of ethanol by immature females could alter the ovulatory quantity and produce morphological alterations in the superovulated oocytes. Furthermore, PGE production by oocyte cumulus complexes (OCCs) was reduced in the females treated with 10% (w/v) ethanol. In the present investigation, we studied the effects of 5% ethanol treatment given to immature mice for 30 days on the quality and quantity of oocytes superovulated at 16 h posthuman chronic gonadotrophin. Treated females had impaired ovulation rates (P < 0.05) as compared to the controls. The percentage of activated and morphologically abnormal oocytes was elevated in the ethanol-treated females (P < 0.05). PGE synthesis by the OCCs was higher than in the controls (P < 0.01). In summary, the administration of long-term ethanol at a relatively low dose to immature females produces decreased ovulation rates, abnormal oocyte morphology with high spontaneous activation and altered levels of PGE production by the oocytes' cumulus complexes. The relationship between the oocyte quality and abnormal synthesis of PGE is discussed.

  11. Lactobacillus rhamnosus GG Effect on Behavior of Zebrafish During Chronic Ethanol Exposure.

    Science.gov (United States)

    Schneider, Ana Claudia Reis; Rico, Eduardo Pacheco; de Oliveira, Diogo Losch; Rosemberg, Denis Broock; Guizzo, Ranieli; Meurer, Fábio; da Silveira, Themis Reverbel

    2016-01-01

    Ethanol is a widely consumed drug, which acts on the central nervous system to induce behavioral alterations ranging from disinhibition to sedation. Recent studies have produced accumulating evidence for the therapeutic role of probiotic bacteria in behavior. We aimed to investigate the effect of Lactobacillus rhamnosus GG (LGG) on the behavior of adult zebrafish chronically exposed to ethanol. Adult wild-type zebrafish were randomly divided into four groups, each containing 15 fish. The following groups were formed: Control (C), received unsupplemented feed during the trial period; Probiotic (P), fed with feed supplemented with LGG; Ethanol (E), received unsupplemented feed and 0.5% of ethanol directly added to the tank water; and Probiotic+Ethanol (P+E), group under ethanol exposure (0.5%) and fed with LGG supplemented feed. After 2 weeks of exposure, the novel tank test was used to evaluate fish behavior, which was analyzed using computer-aided video tracking. LGG alone did not alter swimming behavior of the fish. Ethanol exposure led to robust behavioral effects in the form of reduced anxiety levels, as indicated by increased vertical exploration and more time spent in the upper region of the novel tank. The group exposed to ethanol and treated with LGG behaved similarly to animals exposed to ethanol alone. Taken together, these results show that zebrafish behavior was not altered by LGG per se, as seen in murine models. This was the first study to investigate the effects of a probiotic diet on behavior after a chronic ethanol exposure.

  12. Chronic ethanol consumption in rats produces opioid antinociceptive tolerance through inhibition of mu opioid receptor endocytosis.

    Directory of Open Access Journals (Sweden)

    Li He

    Full Text Available It is well known that the mu-opioid receptor (MOR plays an important role in the rewarding properties of ethanol. However, it is less clear how chronic ethanol consumption affects MOR signaling. Here, we demonstrate that rats with prolonged voluntary ethanol consumption develop antinociceptive tolerance to opioids. Signaling through the MOR is controlled at many levels, including via the process of endocytosis. Importantly, agonists at the MOR that promote receptor endocytosis, such as the endogenous peptides enkephalin and β-endorphin, show a reduced propensity to promote antinociceptive tolerance than do agonists, like morphine, which do not promote receptor endocytosis. These observations led us to examine whether chronic ethanol consumption produced opioid tolerance by interfering with MOR endocytosis. Indeed, here we show that chronic ethanol consumption inhibits the endocytosis of MOR in response to opioid peptide. This loss of endocytosis was accompanied by a dramatic decrease in G protein coupled receptor kinase 2 (GRK2 protein levels after chronic drinking, suggesting that loss of this component of the trafficking machinery could be a mechanism by which endocytosis is lost. We also found that MOR coupling to G-protein was decreased in ethanol-drinking rats, providing a functional explanation for loss of opioid antinociception. Together, these results suggest that chronic ethanol drinking alters the ability of MOR to endocytose in response to opioid peptides, and consequently, promotes tolerance to the effects of opioids.

  13. Acute and chronic ethanol exposure differentially alters alcohol dehydrogenase and aldehyde dehydrogenase activity in the zebrafish liver.

    Science.gov (United States)

    Tran, Steven; Nowicki, Magda; Chatterjee, Diptendu; Gerlai, Robert

    2015-01-02

    Chronic ethanol exposure paradigms have been successfully used in the past to induce behavioral and central nervous system related changes in zebrafish. However, it is currently unknown whether chronic ethanol exposure alters ethanol metabolism in adult zebrafish. In the current study we examine the effect of acute ethanol exposure on adult zebrafish behavioral responses, as well as alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) activity in the liver. We then examine how two different chronic ethanol exposure paradigms (continuous and repeated ethanol exposure) alter behavioral responses and liver enzyme activity during a subsequent acute ethanol challenge. Acute ethanol exposure increased locomotor activity in a dose-dependent manner. ADH activity was shown to exhibit an inverted U-shaped curve and ALDH activity was decreased by ethanol exposure at all doses. During the acute ethanol challenge, animals that were continuously housed in ethanol exhibited a significantly reduced locomotor response and increased ADH activity, however, ALDH activity did not change. Zebrafish that were repeatedly exposed to ethanol demonstrated a small but significant attenuation of the locomotor response during the acute ethanol challenge but ADH and ALDH activity was similar to controls. Overall, we identified two different chronic ethanol exposure paradigms that differentially alter behavioral and physiological responses in zebrafish. We speculate that these two paradigms may allow dissociation of central nervous system-related and liver enzyme-dependent ethanol induced changes in zebrafish. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Biliopancreatic duct injection of ethanol as an experimental model of acute and chronic pancreatitis in rats.

    Science.gov (United States)

    Unal, Ethem; Atalay, Suleyman; Tolan, Huseyin Kerem; Yuksekdag, Sema; Yucel, Metin; Acar, Aylin; Basak, Fatih; Gunes, Pembegul; Bas, Gurhan

    2015-01-01

    In the present study, we described an easily reproducable experimental pancreatits model induced by biliopancreatic duct injection of ethyl alcohol. Seventy Wistar albino rats were divided equally into seven groups randomly: the control group (group 1), acute pancreatitis groups; induced by 20% ethanol (group 2), 48% ethanol (group 3), 80% ethanol (group 4), chronic pancreatitis groups; induced by 20% ethanol (group 5), 48% ethanol (group 6) and by 80% ethanol (group 7). Acute pancreatitis groups were sacrified on postoperative day 3, while the control group and chronic pancreatitis groups were killed on postoperative day 7. Histopathologic evaluation was done, and P acute pancreatitis (100%). Inflammatory infiltration of neutrophils and mononuclear cells, interstitial edema, and focal necrotic areas were seen in the pancreatic tissues. Similarly, all rats in group 6 developed chronic pancreatitis (100%). Interstitial fibrosis, lymphotic infiltration, ductal dilatation, acinar cell atrophy, periductal hyperplasia were seen in the pancreatic tissues. Mortality was seen only in group 7. The biliopancreatic ductal injection of 48% ethanol induced acute and chronic pancreatitis has 100% success rate.

  15. Changes in gastrointestinal DNA synthesis produced by acute and chronic ethanol consumption in the rat: a biochemical study.

    Science.gov (United States)

    Seitz, H K; Czygan, P; Kienapfel, H; Veith, S; Schmidt-Gayk, H; Kommerell, B

    1983-02-01

    The effect of acute and chronic ethanol administration on DNA synthesis in the gastrointestinal tract of the rat was investigated. Acute intragastric ethanol administration (3 g/kg; 50%) decreased significantly in vivo DNA synthesis when measured 1 hour after alcohol application in the stomach and in the upper small intestine, whereas acute intravenous ethanol administration had no significant effect. In contrast, chronic ethanol ingestion resulted in a significant increase of in vivo and in vitro DNA synthesis in the upper gastrointestinal tract. In addition, even a more enhanced stimulation of DNA synthesis after chronic ethanol consumption was found in isolated intestinal cells. These results indicate an inhibition of gastrointestinal cell regeneration directly after the oral application of ethanol. The enhanced cellular regenerativity observed after chronic ethanol consumption may be secondary to the ethanol induced damage of the gastrointestinal tract.

  16. Autophagy Protects against CYP2E1/Chronic Ethanol-Induced Hepatotoxicity

    Directory of Open Access Journals (Sweden)

    Yongke Lu

    2015-10-01

    Full Text Available Autophagy is an intracellular pathway by which lysosomes degrade and recycle long-lived proteins and cellular organelles. The effects of ethanol on autophagy are complex but recent studies have shown that autophagy serves a protective function against ethanol-induced liver injury. Autophagy was found to also be protective against CYP2E1-dependent toxicity in vitro in HepG2 cells which express CYP2E1 and in vivo in an acute alcohol/CYPE1-dependent liver injury model. The goal of the current report was to extend the previous in vitro and acute in vivo experiments to a chronic ethanol model to evaluate whether autophagy is also protective against CYP2E1-dependent liver injury in a chronic ethanol-fed mouse model. Wild type (WT, CYP2E1 knockout (KO or CYP2E1 humanized transgenic knockin (KI, mice were fed an ethanol liquid diet or control dextrose diet for four weeks. In the last week, some mice received either saline or 3-methyladenine (3-MA, an inhibitor of autophagy, or rapamycin, which stimulates autophagy. Inhibition of autophagy by 3-MA potentiated the ethanol-induced increases in serum transaminase and triglyceride levels in the WT and KI mice but not KO mice, while rapamycin prevented the ethanol liver injury. Treatment with 3-MA enhanced the ethanol-induced fat accumulation in WT mice and caused necrosis in the KI mice; little or no effect was found in the ethanol-fed KO mice or any of the dextrose-fed mice. 3-MA treatment further lowered the ethanol-decrease in hepatic GSH levels and further increased formation of TBARS in WT and KI mice, whereas rapamycin blunted these effects of ethanol. Neither 3-MA nor rapamycin treatment affected CYP2E1 catalytic activity or content or the induction CYP2E1 by ethanol. The 3-MA treatment decreased levels of Beclin-1 and Atg 7 but increased levels of p62 in the ethanol-fed WT and KI mice whereas rapamycin had the opposite effects, validating inhibition and stimulation of autophagy, respectively. These

  17. Quercetin Attenuates Chronic Ethanol-Induced Hepatic Mitochondrial Damage through Enhanced Mitophagy.

    Science.gov (United States)

    Yu, Xiao; Xu, Yanyan; Zhang, Shanshan; Sun, Jian; Liu, Peiyi; Xiao, Lin; Tang, Yuhan; Liu, Liegang; Yao, Ping

    2016-01-05

    Emerging evidence suggested mitophagy activation mitigates ethanol-induced liver injury. However, the effect of ethanol on mitophagy is inconsistent. Importantly, the understanding of mitophagy status after chronic ethanol consumption is limited. This study evaluated the effect of quercetin, a naturally-occurring flavonoid, on chronic ethanol-induced mitochondrial damage focused on mitophagy. An ethanol regime to mice for 15 weeks (accounting for 30% of total calories) led to significant mitochondrial damage as evidenced by changes of the mitochondrial ultrastructure, loss of mitochondrial membrane potential and remodeling of membrane lipid composition, which was greatly attenuated by quercetin (100 mg/kg.bw). Moreover, quercetin blocked chronic ethanol-induced mitophagy suppression as denoted by mitophagosomes-lysosome fusion and mitophagy-related regulator elements, including LC3II, Parkin, p62 and voltage-dependent anion channel 1 (VDAC1), paralleling with increased FoxO3a nuclear translocation. AMP-activated protein kinase (AMPK) and extracellular signal regulated kinase 2 (ERK2), instead of AKT and Sirtuin 1, were involved in quercetin-mediated mitophagy activation. Quercetin alleviated ethanol-elicited mitochondrial damage through enhancing mitophagy, highlighting a promising preventive strategy for alcoholic liver disease.

  18. Mitochondrial ROS induced by chronic ethanol exposure promote hyper-activation of the NLRP3 inflammasome

    Directory of Open Access Journals (Sweden)

    Laura R. Hoyt

    2017-08-01

    Full Text Available Alcohol use disorders are common both in the United States and globally, and are associated with a variety of co-morbid, inflammation-linked diseases. The pathogenesis of many of these ailments are driven by the activation of the NLRP3 inflammasome, a multi-protein intracellular pattern recognition receptor complex that facilitates the cleavage and secretion of the pro-inflammatory cytokines IL-1β and IL-18. We hypothesized that protracted exposure of leukocytes to ethanol would amplify inflammasome activation, which would help to implicate mechanisms involved in diseases associated with both alcoholism and aberrant NLRP3 inflammasome activation. Here we show that long-term ethanol exposure of human peripheral blood mononuclear cells and a mouse macrophage cell line (J774 amplifies IL-1β secretion following stimulation with NLRP3 agonists, but not with AIM2 or NLRP1b agonists. The augmented NRLP3 activation was mediated by increases in iNOS expression and NO production, in conjunction with increases in mitochondrial membrane depolarization, oxygen consumption rate, and ROS generation in J774 cells chronically exposed to ethanol (CE cells, effects that could be inhibited by the iNOS inhibitor SEITU, the NO scavenger carboxy-PTIO, and the mitochondrial ROS scavenger MitoQ. Chronic ethanol exposure did not alter K+ efflux or Zn2+ homeostasis in CE cells, although it did result in a lower intracellular concentration of NAD+. Prolonged administration of acetaldehyde, the product of alcohol dehydrogenase (ADH mediated metabolism of ethanol, mimicked chronic ethanol exposure, whereas ADH inhibition prevented ethanol-induced IL-1β hypersecretion. Together, these results indicate that increases in iNOS and mitochondrial ROS production are critical for chronic ethanol-induced IL-1β hypersecretion, and that protracted exposure to the products of ethanol metabolism are probable mediators of NLRP3 inflammasome hyperactivation.

  19. Chronic Voluntary Ethanol Consumption Induces Favorable Ceramide Profiles in Selectively Bred Alcohol-Preferring (P Rats.

    Directory of Open Access Journals (Sweden)

    Jessica Godfrey

    Full Text Available Heavy alcohol consumption has detrimental neurologic effects, inducing widespread neuronal loss in both fetuses and adults. One proposed mechanism of ethanol-induced cell loss with sufficient exposure is an elevation in concentrations of bioactive lipids that mediate apoptosis, including the membrane sphingolipid metabolites ceramide and sphingosine. While these naturally-occurring lipids serve as important modulators of normal neuronal development, elevated levels resulting from various extracellular insults have been implicated in pathological apoptosis of neurons and oligodendrocytes in several neuroinflammatory and neurodegenerative disorders. Prior work has shown that acute administration of ethanol to developing mice increases levels of ceramide in multiple brain regions, hypothesized to be a mediator of fetal alcohol-induced neuronal loss. Elevated ceramide levels have also been implicated in ethanol-mediated neurodegeneration in adult animals and humans. Here, we determined the effect of chronic voluntary ethanol consumption on lipid profiles in brain and peripheral tissues from adult alcohol-preferring (P rats to further examine alterations in lipid composition as a potential contributor to ethanol-induced cellular damage. P rats were exposed for 13 weeks to a 20% ethanol intermittent-access drinking paradigm (45 ethanol sessions total or were given access only to water (control. Following the final session, tissues were collected for subsequent chromatographic analysis of lipid content and enzymatic gene expression. Contrary to expectations, ethanol-exposed rats displayed substantial reductions in concentrations of ceramides in forebrain and heart relative to non-exposed controls, and modest but significant decreases in liver cholesterol. qRT-PCR analysis showed a reduction in the expression of sphingolipid delta(4-desaturase (Degs2, an enzyme involved in de novo ceramide synthesis. These findings indicate that ethanol intake levels

  20. Chronic Voluntary Ethanol Consumption Induces Favorable Ceramide Profiles in Selectively Bred Alcohol-Preferring (P) Rats.

    Science.gov (United States)

    Godfrey, Jessica; Jeanguenin, Lisa; Castro, Norma; Olney, Jeffrey J; Dudley, Jason; Pipkin, Joseph; Walls, Stanley M; Wang, Wei; Herr, Deron R; Harris, Greg L; Brasser, Susan M

    2015-01-01

    Heavy alcohol consumption has detrimental neurologic effects, inducing widespread neuronal loss in both fetuses and adults. One proposed mechanism of ethanol-induced cell loss with sufficient exposure is an elevation in concentrations of bioactive lipids that mediate apoptosis, including the membrane sphingolipid metabolites ceramide and sphingosine. While these naturally-occurring lipids serve as important modulators of normal neuronal development, elevated levels resulting from various extracellular insults have been implicated in pathological apoptosis of neurons and oligodendrocytes in several neuroinflammatory and neurodegenerative disorders. Prior work has shown that acute administration of ethanol to developing mice increases levels of ceramide in multiple brain regions, hypothesized to be a mediator of fetal alcohol-induced neuronal loss. Elevated ceramide levels have also been implicated in ethanol-mediated neurodegeneration in adult animals and humans. Here, we determined the effect of chronic voluntary ethanol consumption on lipid profiles in brain and peripheral tissues from adult alcohol-preferring (P) rats to further examine alterations in lipid composition as a potential contributor to ethanol-induced cellular damage. P rats were exposed for 13 weeks to a 20% ethanol intermittent-access drinking paradigm (45 ethanol sessions total) or were given access only to water (control). Following the final session, tissues were collected for subsequent chromatographic analysis of lipid content and enzymatic gene expression. Contrary to expectations, ethanol-exposed rats displayed substantial reductions in concentrations of ceramides in forebrain and heart relative to non-exposed controls, and modest but significant decreases in liver cholesterol. qRT-PCR analysis showed a reduction in the expression of sphingolipid delta(4)-desaturase (Degs2), an enzyme involved in de novo ceramide synthesis. These findings indicate that ethanol intake levels achieved by

  1. Ethanol metabolism, oxidative stress, and endoplasmic reticulum stress responses in the lungs of hepatic alcohol dehydrogenase deficient deer mice after chronic ethanol feeding

    Energy Technology Data Exchange (ETDEWEB)

    Kaphalia, Lata [Department of Internal Medicine, The University of Texas Medical Branch, Galveston, TX 775555 (United States); Boroumand, Nahal [Department of Pathology, The University of Texas Medical Branch, Galveston, TX 775555 (United States); Hyunsu, Ju [Department of Preventive Medicine and Community Health, The University of Texas Medical Branch, Galveston, TX 775555 (United States); Kaphalia, Bhupendra S., E-mail: bkaphali@utmb.edu [Department of Pathology, The University of Texas Medical Branch, Galveston, TX 775555 (United States); Calhoun, William J. [Department of Internal Medicine, The University of Texas Medical Branch, Galveston, TX 775555 (United States)

    2014-06-01

    Consumption and over-consumption of alcoholic beverages are well-recognized contributors to a variety of pulmonary disorders, even in the absence of intoxication. The mechanisms by which alcohol (ethanol) may produce disease include oxidative stress and prolonged endoplasmic reticulum (ER) stress. Many aspects of these processes remain incompletely understood due to a lack of a suitable animal model. Chronic alcohol over-consumption reduces hepatic alcohol dehydrogenase (ADH), the principal canonical metabolic pathway of ethanol oxidation. We therefore modeled this situation using hepatic ADH-deficient deer mice fed 3.5% ethanol daily for 3 months. Blood ethanol concentration was 180 mg% in ethanol fed mice, compared to < 1.0% in the controls. Acetaldehyde (oxidative metabolite of ethanol) was minimally, but significantly increased in ethanol-fed vs. pair-fed control mice. Total fatty acid ethyl esters (FAEEs, nonoxidative metabolites of ethanol) were 47.6 μg/g in the lungs of ethanol-fed mice as compared to 1.5 μg/g in pair-fed controls. Histological and immunohistological evaluation showed perivascular and peribronchiolar lymphocytic infiltration, and significant oxidative injury, in the lungs of ethanol-fed mice compared to pair-fed controls. Several fold increases for cytochrome P450 2E1, caspase 8 and caspase 3 found in the lungs of ethanol-fed mice as compared to pair-fed controls suggest role of oxidative stress in ethanol-induced lung injury. ER stress and unfolded protein response signaling were also significantly increased in the lungs of ethanol-fed mice. Surprisingly, no significant activation of inositol-requiring enzyme-1α and spliced XBP1 was observed indicating a lack of activation of corrective mechanisms to reinstate ER homeostasis. The data suggest that oxidative stress and prolonged ER stress, coupled with formation and accumulation of cytotoxic FAEEs may contribute to the pathogenesis of alcoholic lung disease. - Highlights: • Chronic

  2. Effect of chronic ethanol ingestion and exercise training on skeletal muscle in rat.

    Science.gov (United States)

    Vila, L; Ferrando, A; Voces, J; Cabral de Oliveira, C; Prieto, J G; Alvarez, A I

    2001-09-01

    The aim of this study was to investigate the interactive effects of exercise training and chronic ethanol consumption on metabolism, capillarity, and myofibrillar composition in rat limb muscles. Male Wistar rats were treated in separate groups as follows: non exercised-control; ethanol (15%) in animals' drinking water for 12 weeks; exercise training in treadmill and ethanol administration plus exercise for 12 weeks. Ethanol administration decreased capillarity and increased piruvate kinase and lactate dehydrogenase activities in white gastrocnemius; in plantaris muscle, ethanol increased citrate synthase activity and decreased cross-sectional area of type I, IIa, and IIb fibres. Exercise increased capillarity in all four limb muscles and decreased type I fibre area in plantaris. The decreased capillarity effect induced by ethanol in some muscles, was ameliorated when alcohol was combined with exercise. While alcoholic myopathy affects predominantly type IIb fibres, ethanol administration and aerobic exercise in some cases can affect type I and type IIa fibre areas. The exercise can decrease some harmful effects produced by ethanol in the muscle, including the decrease in the fibre area and capillary density.

  3. Brain impairment in well-nourished chronic alcoholics is related to ethanol intake.

    Science.gov (United States)

    Nicolás, J M; Estruch, R; Salamero, M; Orteu, N; Fernandez-Solà, J; Sacanella, E; Urbano-Márquez, A

    1997-05-01

    To determine the influence of chronic ethanol intake on the central nervous system, we studied 40 asymptomatic, well-nourished, chronic alcoholics (mean age, 42.6 +/- 9.1 years) and 20 age-, sex-, and education-matched control subjects. Studies included neuropsychological testing, visual and short-latency auditory evoked potentials, and morphometric analysis of computed tomography scans. The mean daily ethanol consumption of the alcoholics was 204 gm over an average of 26.4 years. Compared to control subjects, chronic alcoholics exhibited a significant prolongation of the P100 latency of visual evoked potentials, and a prolongation and reduction in the amplitude of the latency of the V wave of short-latency auditory evoked potentials. These abnormalities were related to the lifetime dose of ethanol consumed. Brain morphometric analysis showed that alcoholics had a significantly greater degree of brain shrinkage with age, compared to control subjects. The cortical atrophy index correlated significantly with the lifetime ethanol consumption. Neuropsychological testing in alcoholics compared to controls revealed a significant impairment of frontal skills that was related to age, degree of scholarship, and the presence of frontal atrophy. In conclusion, well-nourished chronic alcoholics exhibited significant brain impairment, as demonstrated by neuropsychological testing, evoked potentials, and brain morphometric analysis, which was correlated with the lifetime dose of ethanol consumed.

  4. Effects of chronic ethanol exposure on neuronal function in the prefrontal cortex and extended amygdala.

    Science.gov (United States)

    Pleil, Kristen E; Lowery-Gionta, Emily G; Crowley, Nicole A; Li, Chia; Marcinkiewcz, Catherine A; Rose, Jamie H; McCall, Nora M; Maldonado-Devincci, Antoniette M; Morrow, A Leslie; Jones, Sara R; Kash, Thomas L

    2015-12-01

    Chronic alcohol consumption and withdrawal leads to anxiety, escalated alcohol drinking behavior, and alcohol dependence. Alterations in the function of key structures within the cortico-limbic neural circuit have been implicated in underlying the negative behavioral consequences of chronic alcohol exposure in both humans and rodents. Here, we used chronic intermittent ethanol vapor exposure (CIE) in male C57BL/6J mice to evaluate the effects of chronic alcohol exposure and withdrawal on anxiety-like behavior and basal synaptic function and neuronal excitability in prefrontal cortical and extended amygdala brain regions. Forty-eight hours after four cycles of CIE, mice were either assayed in the marble burying test (MBT) or their brains were harvested and whole-cell electrophysiological recordings were performed in the prelimbic and infralimbic medial prefrontal cortex (PLC and ILC), the lateral and medial central nucleus of the amygdala (lCeA and mCeA), and the dorsal and ventral bed nucleus of the stria terminalis (dBNST and vBNST). Ethanol-exposed mice displayed increased anxiety in the MBT compared to air-exposed controls, and alterations in neuronal function were observed in all brain structures examined, including several distinct differences between subregions within each structure. Chronic ethanol exposure induced hyperexcitability of the ILC, as well as a shift toward excitation in synaptic drive and hyperexcitability of vBNST neurons; in contrast, there was a net inhibition of the CeA. This study reveals extensive effects of chronic ethanol exposure on the basal function of cortico-limbic brain regions, suggests that there may be complex interactions between these regions in the regulation of ethanol-dependent alterations in anxiety state, and highlights the need for future examination of projection-specific effects of ethanol in cortico-limbic circuitry.

  5. Chronic exposure to ethanol causes steatosis and inflammation in zebrafish liver

    Science.gov (United States)

    Schneider, Ana Claudia Reis; Gregório, Cleandra; Uribe-Cruz, Carolina; Guizzo, Ranieli; Malysz, Tais; Faccioni-Heuser, Maria Cristina; Longo, Larisse; da Silveira, Themis Reverbel

    2017-01-01

    AIM To evaluate the effects of chronic exposure to ethanol in the liver and the expression of inflammatory genes in zebrafish. METHODS Zebrafish (n = 104), wild type, adult, male and female, were divided into two groups: Control and ethanol (0.05 v/v). The ethanol was directly added into water; tanks water were changed every two days and the ethanol replaced. The animals were fed twice a day with fish food until satiety. After two and four weeks of trial, livers were dissected, histological analysis (hematoxilin-eosin and Oil Red staining) and gene expression assessment of adiponectin, adiponectin receptor 2 (adipor2), sirtuin-1 (sirt-1), tumor necrosis factor-alpha (tnf-a), interleukin-1b (il-1b) and interleukin-10 (il-10) were performed. Ultrastructural evaluations were conducted at fourth week. RESULTS Exposing zebrafish to 0.5% ethanol developed intense liver steatosis after four weeks, as demonstrated by oil red staining. In ethanol-treated animals, the main ultrastructural changes were related to cytoplasmic lipid particles and droplets, increased number of rough endoplasmic reticulum cisterns and glycogen particles. Between two and four weeks, hepatic mRNA expression of il-1b, sirt-1 and adipor2 were upregulated, indicating that ethanol triggered signaling molecules which are key elements in both hepatic inflammatory and protective responses. Adiponectin was not detected in the liver of animals exposed and not exposed to ethanol, and il-10 did not show significant difference. CONCLUSION Data suggest that inflammatory signaling and ultrastructural alterations play a significant role during hepatic steatosis in zebrafish chronically exposed to ethanol. PMID:28357029

  6. Chronic ethanol exposure decreases CB1 receptor function at GABAergic synapses in the rat central amygdala.

    Science.gov (United States)

    Varodayan, Florence P; Soni, Neeraj; Bajo, Michal; Luu, George; Madamba, Samuel G; Schweitzer, Paul; Parsons, Loren H; Roberto, Marisa

    2016-07-01

    The endogenous cannabinoids (eCBs) influence the acute response to ethanol and the development of tolerance, dependence and relapse. Chronic alcohol exposure alters eCB levels and Type 1 cannabinoid receptor (CB1 ) expression and function in brain regions associated with addiction. CB1 inhibits GABA release, and GABAergic dysregulation in the central nucleus of the amygdala (CeA) is critical in the transition to alcohol dependence. We investigated possible disruptions in CB1 signaling of rat CeA GABAergic transmission following intermittent ethanol exposure. In the CeA of alcohol-naive rats, CB1 agonist WIN 55,212-2 (WIN) decreased the frequency of spontaneous and miniature GABAA receptor-mediated inhibitory postsynaptic currents (s/mIPSCs). This effect was prevented by CB1 antagonism, but not Type 2 cannabinoid receptor (CB2 ) antagonism. After 2-3 weeks of intermittent ethanol exposure, these WIN inhibitory effects were attenuated, suggesting ethanol-induced impairments in CB1 function. The CB1 antagonist AM251 revealed a tonic eCB/CB1 control of GABAergic transmission in the alcohol-naive CeA that was occluded by calcium chelation in the postsynaptic cell. Chronic ethanol exposure abolished this tonic CB1 influence on mIPSC, but not sIPSC, frequency. Finally, acute ethanol increased CeA GABA release in both naive and ethanol-exposed rats. Although CB1 activation prevented this effect, the AM251- and ethanol-induced GABA release were additive, ruling out a direct participation of CB1 signaling in the ethanol effect. Collectively, these observations demonstrate an important CB1 influence on CeA GABAergic transmission and indicate that the CeA is particularly sensitive to alcohol-induced disruptions of CB1 signaling.

  7. Differential Effects of Chronic and Chronic-Intermittent Ethanol Treatment and Its Withdrawal on the Expression of miRNAs

    Directory of Open Access Journals (Sweden)

    Joanne M. Lewohl

    2013-05-01

    Full Text Available Chronic and excessive alcohol misuse results in changes in the expression of selected miRNAs and their mRNA targets in specific regions of the human brain. These expression changes likely underlie the cellular adaptations to long term alcohol misuse. In order to delineate the mechanism by which these expression changes occur, we have measured the expression of six miRNAs including miR-7, miR-153, miR-152, miR-15B, miR-203 and miR-144 in HEK293T, SH SY5Y and 1321 N1 cells following exposure to ethanol. These miRNAs are predicted to target key genes involved in the pathophysiology of alcoholism. Chronic and chronic-intermittent exposure to ethanol, and its removal, resulted in specific changes in miRNA expression in each cell line suggesting that different expression patterns can be elicited with different exposure paradigms and that the mechanism of ethanol’s effects is dependent on cell type. Specifically, chronic exposure to ethanol for five days followed by a five day withdrawal period resulted in up-regulation of several miRNAs in each of these cell lines similar to expression changes identified in post mortem human brain. Thus, this model can be used to elucidate the role of miRNAs in regulating gene expression changes that occur in response to ethanol exposure.

  8. Phosphorylation Regulates Removal of Synaptic N-Methyl-d-Aspartate Receptors after Withdrawal from Chronic Ethanol Exposure

    OpenAIRE

    Clapp, Peter; Gibson, Emily S.; Dell'Acqua, Mark L.; Hoffman, Paula L.

    2010-01-01

    Alterations in N-methyl-d-aspartate receptor (NMDAR) protein levels or subcellular localization in brain after chronic ethanol exposure may contribute to withdrawal-associated seizures and neurotoxicity. We have investigated synaptic localization of NMDARs in cultured hippocampal pyramidal neurons after prolonged (7 days) exposure to, and acute withdrawal from, 80 mM ethanol using fluorescence immunocytochemistry techniques. After chronic ethanol exposure, there was a significant increase in ...

  9. Gene expression changes in the nucleus accumbens of alcohol-preferring rats following chronic ethanol consumption.

    Science.gov (United States)

    Bell, Richard L; Kimpel, Mark W; McClintick, Jeanette N; Strother, Wendy N; Carr, Lucinda G; Liang, Tiebing; Rodd, Zachary A; Mayfield, R Dayne; Edenberg, Howard J; McBride, William J

    2009-11-01

    The objective of this study was to determine the effects of binge-like alcohol drinking on gene expression changes in the nucleus accumbens (ACB) of alcohol-preferring (P) rats. Adult male P rats were given ethanol under multiple scheduled access (MSA; three 1-h dark cycle sessions/day) conditions for 8 weeks. For comparison purposes, a second ethanol drinking group was given continuous/daily alcohol access (CA; 24h/day). A third group was ethanol-naïve (W group). Average ethanol intakes for the CA and MSA groups were approximately 9.5 and 6.5 g/kg/day, respectively. Fifteen hours after the last drinking episode, rats were euthanized, the brains extracted, and the ACB dissected. RNA was extracted and purified for microarray analysis. The only significant differences were between the CA and W groups (palcohol consumption and preference; 4 of these genes (Tgfa, Hspa5, Mtus1 and Creb3l2) are involved in anti-apoptosis and increased transcription, suggesting that they may be contributing to cellular protection and maintaining high alcohol intakes. Overall, these findings suggest that chronic CA drinking results in genomic changes that can be observed during the early acute phase of ethanol withdrawal. Conversely, chronic MSA drinking, with its associated protracted withdrawal periods, results in genomic changes that may be masked by tight regulation of these genes following repeated experiences of ethanol withdrawal.

  10. In Vivo Acute on Chronic Ethanol Effects in Liver: A Mouse Model Exhibiting Exacerbated Injury, Altered Metabolic and Epigenetic Responses.

    Science.gov (United States)

    Shukla, Shivendra D; Aroor, Annayya R; Restrepo, Ricardo; Kharbanda, Kusum K; Ibdah, Jamal A

    2015-11-20

    Chronic alcoholics who also binge drink (i.e., acute on chronic) are prone to an exacerbated liver injury but its mechanism is not understood. We therefore investigated the in vivo effects of chronic and binge ethanol ingestion and compared to chronic ethanol followed by three repeat binge ethanol on the liver of male C57/BL6 mice fed ethanol in liquid diet (4%) for four weeks followed by binge ethanol (intragastric administration, 3.5 g/kg body weight, three doses, 12h apart). Chronic followed by binge ethanol exacerbated fat accumulation, necrosis, decrease in hepatic SAM and SAM:SAH ratio, increase in adenosine levels, and elevated CYP2E1 levels. Histone H3 lysine acetylation (H3AcK9), dually modified phosphoacetylated histone H3 (H3AcK9/PS10), and phosphorylated H2AX increased after binge whereas phosphorylation of histone H3 ser 10 (H3S10) and H3 ser 28 (H3S28) increased after chronic ethanol-binge. Histone H3 lysine 4 and 9 dimethylation increased with a marked dimethylation in H3K9 in chronic ethanol binge group. Trimethylated histone H3 levels did not change. Nuclear levels of histone acetyl transferase GCN5 and histone deacetylase HDAC3 were elevated whereas phospho-CREB decreased in a distinctive manner. Taken together, acute on chronic ethanol ingestion caused amplification of liver injury and elicited characteristic profiles of histone modifications, metabolic alterations, and changes in nuclear protein levels. These findings demonstrate that chronic ethanol exposure renders liver more susceptible to repeat acute/binge ethanol induced acceleration of alcoholic liver disease.

  11. Ginger extract protects rat's kidneys against oxidative damage after chronic ethanol administration.

    Science.gov (United States)

    Shirpoor, Aireza; Rezaei, Farzaneh; Fard, Amin Abdollahzade; Afshari, Ali Taghizadeh; Gharalari, Farzaneh Hosseini; Rasmi, Yousef

    2016-12-01

    Chronic alcohol ingestion is associated with pronounced detrimental effects on the renal system. In the current study, the protective effect of ginger extract on ethanol-induced damage was evaluated through determining 8-OHdG, cystatin C, glomerular filtration rate, and pathological changes such as cell proliferation and fibrosis in rats' kidneys. Male wistar rats were randomly divided into three groups and were treated as follows: (1) control, (2) ethanol and (3) ginger extract treated ethanolic (GETE) groups. After a six weeks period of treatment, the results revealed proliferation of glomerular and tubular cells, fibrosis in glomerular and peritubular and a significant rise in the level of 8-OHdG, cystatin C, plasma urea and creatinine. Moreover, compared to the control group, the ethanol group showed a significant decrease in the urine creatinine and creatinine clearance. In addition, significant amelioration of changes in the structure of kidneys, along with restoration of the biochemical alterations were found in the ginger extract treated ethanolic group, compared to the ethanol group. These findings indicate that ethanol induces kidneys abnormality by oxidative DNA damage and oxidative stress, and that these effects can be alleviated using ginger as an antioxidant and anti-inflammatory agent.

  12. Chronic ethanol exposure inhibits distraction osteogenesis in a mouse model: role of the TNF signaling axis

    Science.gov (United States)

    Tumor necrosis factor-alpha (TNF-alpha) is an inflammatory cytokine that modulates osteoblastogenesis. In addition, the demonstrated inhibitory effects of chronic ethanol exposure on direct bone formation in rats are hypothetically mediated by TNF-alpha signaling. The effects in mice are unreported....

  13. Epigenetics of proteasome inhibition in the liver of rats fed ethanol chronically

    Institute of Scientific and Technical Information of China (English)

    Joan Oliva; Jennifer Dedes; Jun Li; Samuel W French; Fawzia Bardag-Gorce

    2009-01-01

    AIM: To examine the effects of ethanol-induced proteasome inhibition, and the effects of proteasome inhibition in the regulation of epigenetic mechanisms. METHODS: Rats were fed ethanol for 1 mo using the Tsukamoto-French model and were compared to rats given the proteasome inhibitor PS-341 (Bortezomib, Velcade.) by intraperitoneal injection. Microarray analysis and real time PCR were performed and proteasome activity assays and Western blot analysis were performed using isolated nuclei. RESULTS: Chronic ethanol feeding caused a significant inhibition of the ubiquitin proteasome pathway in the nucleus, which led to changes in the turnover of transcriptional factors, histone-modifying enzymes, and, therefore, affected epigenetic mechanisms. Chronic ethanol feeding was related to an increase in histone acetylation, and it is hypothesized that the proteasome proteolytic activity regulated histone modifications by controlling the stability of histone modifying enzymes, and, therefore, regulated the chromatin structure, allowing easy access to chromatin by RNA polymerase, and, thus, proper gene expression. Proteasome inhibition by PS-341 increased histone acetylation similar to chronic ethanol feeding. In addition, proteasome inhibition caused dramatic changes in hepatic remethylation reactions as there was a significant decrease in the enzymes responsible for the regeneration of S-adenosylmethionine, and, in particular, a significant decrease in the betainehomocysteine methyltransferase enzyme. This suggested that hypomethylation was associated with proteasome inhibition, as indicated by the decrease in histone methylation. CONCLUSION: The role of proteasome inhibition in regulating epigenetic mechanisms, and its link to liver injury in alcoholic liver disease, is thus a promising approach to study liver injury due to chronic ethanol consumption.

  14. Differences of acute versus chronic ethanol exposure on anxiety-like behavioral responses in zebrafish.

    Science.gov (United States)

    Mathur, Priya; Guo, Su

    2011-06-01

    Zebrafish, a vertebrate model organism amenable to high throughput screening, is an attractive system to model and study the mechanisms underlying human diseases. Alcoholism and alcoholic medical disorders are among the most debilitating diseases, yet the mechanisms by which ethanol inflicts the disease states are not well understood. In recent years zebrafish behavior assays have been used to study learning and memory, fear and anxiety, and social behavior. It is important to characterize the effects of ethanol on zebrafish behavioral repertoires in order to successfully harvest the strength of zebrafish for alcohol research. One prominent effect of alcohol in humans is its effect on anxiety, with acute intermediate doses relieving anxiety and withdrawal from chronic exposure increasing anxiety, both of which have significant contributions to alcohol dependence. In this study, we assess the effects of both acute and chronic ethanol exposure on anxiety-like behaviors in zebrafish, using two behavioral paradigms, the Novel Tank Diving Test and the Light/Dark Choice Assay. Acute ethanol exposure exerted significant dose-dependent anxiolytic effects. However, withdrawal from repeated intermittent ethanol exposure disabled recovery from heightened anxiety. These results demonstrate that zebrafish exhibit different anxiety-like behavioral responses to acute and chronic ethanol exposure, which are remarkably similar to these effects of alcohol in humans. Because of the accessibility of zebrafish to high throughput screening, our results suggest that genes and small molecules identified in zebrafish will be of relevance to understand how acute versus chronic alcohol exposure have opposing effects on the state of anxiety in humans. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Chronic ethanol consumption in mice alters hepatocyte lipid droplet properties

    Science.gov (United States)

    Background: Hepatosteatosis is a common pathological feature of impaired hepatic metabolism following chronic alcohol consumption. Although often benign and reversible, it is widely believed that steatosis is a risk factor for development of advanced liver pathologies, including steatohepatitis and ...

  16. Prenatal caffeine ingestion induces transgenerational neuroendocrine metabolic programming alteration in second generation rats

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Hanwen [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071 (China); Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071 (China); Deng, Zixin; Liu, Lian; Shen, Lang; Kou, Hao; He, Zheng [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071 (China); Ping, Jie; Xu, Dan [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071 (China); Research Center of Food and Drug Evaluation, Wuhan University, Wuhan 430071 (China); Ma, Lu [Department of Epidemiology and Health Statistics, Public Health School of Wuhan University, Wuhan 430071 (China); Chen, Liaobin, E-mail: lbchen@whu.edu.cn [Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071 (China); Wang, Hui, E-mail: wanghui19@whu.edu.cn [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071 (China); Research Center of Food and Drug Evaluation, Wuhan University, Wuhan 430071 (China)

    2014-02-01

    Our previous studies have demonstrated that prenatal caffeine ingestion induces an increased susceptibility to metabolic syndrome with alterations of glucose and lipid metabolic phenotypes in adult first generation (F1) of intrauterine growth retardation (IUGR) rats, and the underlying mechanism is originated from a hypothalamic–pituitary–adrenal (HPA) axis-associated neuroendocrine metabolic programming alteration in utero. This study aims to investigate the transgenerational effects of this programming alteration in adult second generation (F2). Pregnant Wistar rats were administered with caffeine (120 mg/kg·d) from gestational day 11 until delivery. Four groups in F2 were set according to the cross-mating between control and caffeine-induced IUGR rats. F2 were subjected to a fortnight ice water swimming stimulus on postnatal month 4, and blood samples were collected before and after stress. Results showed that the majority of the activities of HPA axis and phenotypes of glucose and lipid metabolism were altered in F2. Particularly, comparing with the control group, caffeine groups had an enhanced corticosterone levels after chronic stress. Compared with before stress, the serum glucose levels were increased in some groups whereas the triglyceride levels were decreased. Furthermore, total cholesterol gain rates were enhanced but the high-density lipoprotein-cholesterol gain rates were decreased in most caffeine groups after stress. These transgenerational effects were characterized partially with gender and parental differences. Taken together, these results indicate that the reproductive and developmental toxicities and the neuroendocrine metabolic programming mechanism by prenatal caffeine ingestion have transgenerational effects in rats, which may help to explain the susceptibility to metabolic syndrome and associated diseases in F2. - Highlights: • Caffeine-induced neuroendocrine metabolic programming of HPA has hereditary effect. • Caffeine

  17. Stress-induced enhancement of ethanol intake in C57BL/6J mice with a history of chronic ethanol exposure: Involvement of kappa opioid receptors

    Directory of Open Access Journals (Sweden)

    Rachel Ivy Anderson

    2016-02-01

    Full Text Available Our laboratory has previously demonstrated that daily forced swim stress (FSS prior to ethanol drinking sessions facilitates enhanced ethanol consumption in mice with a history of chronic intermittent ethanol (CIE vapor exposure without altering ethanol intake in air-exposed controls. Because both stress and chronic ethanol exposure have been shown to activate the dynorphin/kappa opioid receptor (KOR system, the present study was designed to explore a potential role for KORs in modulating stress effects on ethanol consumption in the CIE model of dependence and relapse drinking. After stable baseline ethanol intake was established in adult male C57BL/6J mice, subjects received chronic intermittent exposure (16 hr/day x 4 days/week to ethanol vapor (CIE group or air (CTL group. Weekly cycles of inhalation exposure were alternated with 5-day limited access drinking tests (1 hour access to 15% ethanol. Experiment 1 compared effects of daily FSS and KOR activation on ethanol consumption. CIE and CTL mice were either exposed to FSS (10 min, the KOR agonist U50,488 (5 mg/kg, or a vehicle injection (non-stressed condition prior to each daily drinking session during test weeks. FSS selectively increased drinking in CIE mice. U50,488 mimicked this effect in CIE mice, but also increased drinking in CTL mice. Experiment 2 assessed effects of KOR blockade on stress-induced drinking in CIE and CTL mice. Stressed and non-stressed mice were administered the short-acting KOR antagonist LY2444296 (0 or 5 mg/kg 30 min prior to each drinking session during test weeks. FSS selectively increased ethanol consumption in CIE mice, an effect that was abolished by LY2444296 pretreatment. In Experiment 3, CIE and CTL mice were administered one of four doses of U50,488 (0,1.25, 2.5, 5.0 mg/kg one hour prior to each daily drinking test (in lieu of FSS. All doses of U50,488 increased ethanol consumption in both CIE and CTL mice. The U50,488-induced increase in drinking was

  18. [Hormonal induction of tyrosine aminotransferase in animal liver during chronic poisoning with ethanol and carbon tetrachloride].

    Science.gov (United States)

    Goncharova, L V

    1982-01-01

    Repeated administration of ethanol into animals within 14 and 21 days decreased or completely abolished the inducing effect of ethanol on the tyrosine aminotransferase activity (TAT) in liver tissue. At the same time, the inducing effect of hydrocortisone was maintained although at the lower level as compared with the intact animals. Chronic poisoning of the animals with CCl4 within 4 weeks inhibited the inducing effect. As compared with controls the inducing effect of hydrocortisone was distinctly lower in the animals poisoned with CCl4.

  19. Ethanol metabolism, oxidative stress, and endoplasmic reticulum stress responses in the lungs of hepatic alcohol dehydrogenase deficient deer mice after chronic ethanol feeding.

    Science.gov (United States)

    Kaphalia, Lata; Boroumand, Nahal; Hyunsu, Ju; Kaphalia, Bhupendra S; Calhoun, William J

    2014-06-01

    Consumption and over-consumption of alcoholic beverages are well-recognized contributors to a variety of pulmonary disorders, even in the absence of intoxication. The mechanisms by which alcohol (ethanol) may produce disease include oxidative stress and prolonged endoplasmic reticulum (ER) stress. Many aspects of these processes remain incompletely understood due to a lack of a suitable animal model. Chronic alcohol over-consumption reduces hepatic alcohol dehydrogenase (ADH), the principal canonical metabolic pathway of ethanol oxidation. We therefore modeled this situation using hepatic ADH-deficient deer mice fed 3.5% ethanol daily for 3 months. Blood ethanol concentration was 180 mg% in ethanol fed mice, compared to alcoholic lung disease. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Periodontal inflammation induced by chronic ethanol consumption in ovariectomized rats

    OpenAIRE

    2016-01-01

    The immune system plays an important role in the pathogenesis of periodontal diseases. The host may modulate periodontal inflammatory reactions and it determines variances in the individual susceptibility and in the periodontal disease progression speed. Osteoporosis and alcoholism are described as risk indicators of periodontal disease among the systemic acquired factors. Objective: The current study aims to analyze chronic alcohol consumption influence on induced periodontitis in rats prese...

  1. Ganoderma Lucidum Pharmacopuncture for Teating Ethanol-induced Chronic Gastric Ulcers in Rats

    Directory of Open Access Journals (Sweden)

    Jae-Heung Park

    2015-03-01

    Full Text Available Objectives: The stomach is a sensitive digestive organ that is susceptible to exogenous pathogens from the diet. In response to such pathogens, the stomach induces oxidative stress, which might be related to the development of both gastric organic disorders such as gastritis, gastric ulcers, and gastric cancer, and functional disorders such as functional dyspepsia. This study was accomplished to investigate the effect of Ganoderma lucidum pharmacopuncture (GLP on chronic gastric ulcers in rats. Methods: The rats were divided into 4 groups of 8 animals each: the normal, the control, the normal saline (NP and the GLP groups. In this study, the modified ethanol gastritis model was used. The rats were administrated 56% ethanol orally every other day. The dose of ethanol was 8 g/kg body weight. The normal group received the same amount of normal saline instead of ethanol. The NP and the GLP groups were treated with injection of saline and GLP respectively. The control group received no treatment. Two local acupoints CV12 (中脘 and ST36 (足三里 were used. All laboratory rats underwent treatment for 15 days. On last day, the rats were sacrificed and their stomachs were immediately excised. Results: Ulcers of the gastric mucosa appeared as elongated bands of hemorrhagic lesions parallel to the long axis of the stomach. In the NP and GLP groups, the injuries to the gastric mucosal injuries were not as severe as they were in the control group. Wound healings of the chronic gastric ulcers was promoted by using GLP and significant alterations of the indices in the gastric mucosa were observed. Such protection was demonstrated by gross appearance, histology and immunehistochemistry staining for Bcl-2-associated X (BAX, B-cell lymphoma 2 (Bcl-2 and Transforming growth factor-beta 1 (TGF-β1. Conclusion: These results suggest that GLP at CV12 and ST36 can provide significant protection to the gastric mucosa against an ethanol induced chronic gastric ulcer.

  2. Chronic ethanol exposure produces time- and brain region-dependent changes in gene coexpression networks.

    Directory of Open Access Journals (Sweden)

    Elizabeth A Osterndorff-Kahanek

    Full Text Available Repeated ethanol exposure and withdrawal in mice increases voluntary drinking and represents an animal model of physical dependence. We examined time- and brain region-dependent changes in gene coexpression networks in amygdala (AMY, nucleus accumbens (NAC, prefrontal cortex (PFC, and liver after four weekly cycles of chronic intermittent ethanol (CIE vapor exposure in C57BL/6J mice. Microarrays were used to compare gene expression profiles at 0-, 8-, and 120-hours following the last ethanol exposure. Each brain region exhibited a large number of differentially expressed genes (2,000-3,000 at the 0- and 8-hour time points, but fewer changes were detected at the 120-hour time point (400-600. Within each region, there was little gene overlap across time (~20%. All brain regions were significantly enriched with differentially expressed immune-related genes at the 8-hour time point. Weighted gene correlation network analysis identified modules that were highly enriched with differentially expressed genes at the 0- and 8-hour time points with virtually no enrichment at 120 hours. Modules enriched for both ethanol-responsive and cell-specific genes were identified in each brain region. These results indicate that chronic alcohol exposure causes global 'rewiring' of coexpression systems involving glial and immune signaling as well as neuronal genes.

  3. (-) Epigallocatechin Gallate (EGCG) Prevents Lipid Changes and Collagen Abnormalities in Chronic Ethanol-Fed Rats.

    Science.gov (United States)

    Kaviarasan, S; Viswanathan, P; Ravichandran, M K; Anuradha, C V

    2008-01-01

    ABSTRACT The objective of the study is to examine the influence of (-) epigallocatechin gallate (EGCG), a green tea component, on lipid and collagen abnormalities in chronic ethanol-fed rats. Solubility properties, aldehyde content, fluorescence, and peroxidation were analyzed in collagen samples isolated from liver. Chronic alcoholism (6 g/kg/day x 60 days) was associated with fatty liver and collagen accumulation. Significant alterations in the levels of lipids (cholesterol, phospholipids, free fatty acids, and triglycerides) and total collagen were observed in liver. Collagen obtained from ethanol-fed rats showed alterations in solubility properties, increased fluorescence, peroxidation, and aldehyde content. Coadministration of EGCG along with ethanol significantly reduced the levels of liver lipids and collagen, improved the solubility properties of collagen, and caused a reduction in cross-linking as evidenced by a decrease in fluorescence, peroxidation, and aldehyde content. Histology of liver sections of ethanol-fed rats showed accumulation of fat and collagen, which were largely prevented by EGCG administration. The possible mechanisms in the protective action of EGCG in alcoholic liver disease are suggested and discussed.

  4. Increased anxiety, voluntary alcohol consumption and ethanol-induced place preference in mice following chronic psychosocial stress.

    Science.gov (United States)

    Bahi, Amine

    2013-07-01

    Stress exposure is known to be a risk factor for alcohol use and anxiety disorders. Comorbid chronic stress and alcohol dependence may lead to a complicated and potentially severe treatment profile. To gain an understanding of the interaction between chronic psychosocial stress and drug exposure, we studied the effects of concomitant chronic stress exposure on alcohol reward using two-bottle choice and ethanol-conditioned place preference (CPP). The study consisted of exposure of the chronic subordinate colony (CSC) mice "intruders" to an aggressive "resident" mouse for 19 consecutive days. Control mice were single housed (SHC). Ethanol consumption using two-bottle choice paradigm and ethanol CPP acquisition was assessed at the end of this time period. As expected, CSC exposure increased anxiety-like behavior and reduced weight gain as compared to SHC controls. Importantly, in the two-bottle choice procedure, CSC mice showed higher alcohol intake than SHC. When testing their response to ethanol-induced CPP, CSC mice achieved higher preference for the ethanol-paired chamber. In fact, CSC exposure increased ethanol-CPP acquisition. Taken together, these data demonstrate the long-term consequences of chronic psychosocial stress on alcohol intake in male mice, suggesting chronic stress as a risk factor for developing alcohol consumption and/or anxiety disorders.

  5. Chronic psychosocial stress causes delayed extinction and exacerbates reinstatement of ethanol-induced conditioned place preference in mice

    OpenAIRE

    Bahi, Amine; Dreyer, Jean-Luc

    2014-01-01

    Objective: Here, we examined the impact of chronic subordinate colony (CSC) exposure on EtOH-CPP extinction, as well as ethanol-induced reinstatement of CPP.Methods: Mice were conditioned with saline or 1.5 g/kg ethanol and were tested in the EtOH-CPP model. In the first experiment, the mice were subjected to 19 days of chronic stress, and EtOH-CPP extinction was assessed during seven daily trials without ethanol injection. In the second experiment and after the EtOH-CPP test, the mice were s...

  6. Acute but not chronic ethanol exposure impairs retinol oxidation in the small and large intestine of the rat

    DEFF Research Database (Denmark)

    Parlesak, Alexandr; Ellendt, K.; Lindros, K.

    2005-01-01

    BACKGROUND AND AIM: Ethanol has been shown to inhibit retinol oxidation at the level of alcohol dehydrogenase in liver and colon but not previously in the small intestine. In the present study we investigated how chronic alcohol feeding and acute ethanol exposure affects retinol dehydrogenase...... activity in the colon and small intestine of the rat. METHODS: Rats were fed ethanol in a liquid diet for six weeks. Control rats received a similar diet but with ethanol isocalorically replaced by carbohydrates. Retinol dehydrogenase was analyzed from cell cytosol samples from the small and the large...... higher, respectively). While chronic alcohol feeding did not affect these parameters, acute ethanol exposure reduced V(max) and V(max)/K(m) dose-dependently (p

  7. Time-Course Analysis of Brain Regional Expression Network Responses to Chronic Intermittent Ethanol and Withdrawal: Implications for Mechanisms Underlying Excessive Ethanol Consumption.

    Science.gov (United States)

    Smith, Maren L; Lopez, Marcelo F; Archer, Kellie J; Wolen, Aaron R; Becker, Howard C; Miles, Michael F

    2016-01-01

    Long lasting abusive consumption, dependence, and withdrawal are characteristic features of alcohol use disorders (AUD). Mechanistically, persistent changes in gene expression are hypothesized to contribute to brain adaptations leading to ethanol toxicity and AUD. We employed repeated chronic intermittent ethanol (CIE) exposure by vapor chamber as a mouse model to simulate the cycles of ethanol exposure and withdrawal commonly seen with AUD. This model has been shown to induce progressive ethanol consumption in rodents. Brain CIE-responsive expression networks were identified by microarray analysis across five regions of the mesolimbic dopamine system and extended amygdala with tissue harvested from 0-hours to 7-days following CIE. Weighted Gene Correlated Network Analysis (WGCNA) was used to identify gene networks over-represented for CIE-induced temporal expression changes across brain regions. Differential gene expression analysis showed that long-lasting gene regulation occurred 7-days after the final cycle of ethanol exposure only in prefrontal cortex (PFC) and hippocampus. Across all brain regions, however, ethanol-responsive expression changes occurred mainly within the first 8-hours after removal from ethanol. Bioinformatics analysis showed that neuroinflammatory responses were seen across multiple brain regions at early time-points, whereas co-expression modules related to neuroplasticity, chromatin remodeling, and neurodevelopment were seen at later time-points and in specific brain regions (PFC or HPC). In PFC a module containing Bdnf was identified as highly CIE responsive in a biphasic manner, with peak changes at 0 hours and 5 days following CIE, suggesting a possible role in mechanisms underlying long-term molecular and behavioral response to CIE. Bioinformatics analysis of this network and several other modules identified Let-7 family microRNAs as potential regulators of gene expression changes induced by CIE. Our results suggest a complex temporal

  8. Time-Course Analysis of Brain Regional Expression Network Responses to Chronic Intermittent Ethanol and Withdrawal: Implications for Mechanisms Underlying Excessive Ethanol Consumption.

    Directory of Open Access Journals (Sweden)

    Maren L Smith

    Full Text Available Long lasting abusive consumption, dependence, and withdrawal are characteristic features of alcohol use disorders (AUD. Mechanistically, persistent changes in gene expression are hypothesized to contribute to brain adaptations leading to ethanol toxicity and AUD. We employed repeated chronic intermittent ethanol (CIE exposure by vapor chamber as a mouse model to simulate the cycles of ethanol exposure and withdrawal commonly seen with AUD. This model has been shown to induce progressive ethanol consumption in rodents. Brain CIE-responsive expression networks were identified by microarray analysis across five regions of the mesolimbic dopamine system and extended amygdala with tissue harvested from 0-hours to 7-days following CIE. Weighted Gene Correlated Network Analysis (WGCNA was used to identify gene networks over-represented for CIE-induced temporal expression changes across brain regions. Differential gene expression analysis showed that long-lasting gene regulation occurred 7-days after the final cycle of ethanol exposure only in prefrontal cortex (PFC and hippocampus. Across all brain regions, however, ethanol-responsive expression changes occurred mainly within the first 8-hours after removal from ethanol. Bioinformatics analysis showed that neuroinflammatory responses were seen across multiple brain regions at early time-points, whereas co-expression modules related to neuroplasticity, chromatin remodeling, and neurodevelopment were seen at later time-points and in specific brain regions (PFC or HPC. In PFC a module containing Bdnf was identified as highly CIE responsive in a biphasic manner, with peak changes at 0 hours and 5 days following CIE, suggesting a possible role in mechanisms underlying long-term molecular and behavioral response to CIE. Bioinformatics analysis of this network and several other modules identified Let-7 family microRNAs as potential regulators of gene expression changes induced by CIE. Our results suggest a

  9. Chronic Ethanol During Adolescence Impacts Corticolimbic Dendritic Spines and Behavior.

    Science.gov (United States)

    Jury, Nicholas J; Pollack, Gabrielle A; Ward, Meredith J; Bezek, Jessica L; Ng, Alexandra J; Pinard, Courtney R; Bergstrom, Hadley C; Holmes, Andrew

    2017-07-01

    Risk for alcohol use disorders (AUDs) in adulthood is linked to alcohol drinking during adolescence, but understanding of the neural and behavioral consequences of alcohol exposure during adolescence remains incomplete. Here, we examined the neurobehavioral impact of adolescent chronic intermittent EtOH (CIE) vapor exposure in mice. C57BL/6J-background Thy1-EGFP mice were CIE-exposed during adolescence or adulthood and examined, as adults, for alterations in the density and morphology of dendritic spines in infralimbic (IL) cortex, prelimbic (PL) cortex, and basolateral amygdala (BLA). In parallel, adolescent- and adult-exposed C57BL/6J mice were tested as adults for 2-bottle EtOH drinking, sensitivity to EtOH intoxication (loss of righting reflex [LORR]), blood EtOH clearance, and measures of operant responding for food reward. CIE during adolescence decreased IL neuronal spine density and increased the head width of relatively wide-head IL and BLA spines, whereas CIE decreased head width of relatively narrow-head BLA spines. Adolescents had higher EtOH consumption prior to CIE than adults, while CIE during adulthood, but not adolescence, increased EtOH consumption relative to pre-CIE baseline. CIE produced a tolerance-like decrease in LORR sensitivity to EtOH challenge, irrespective of the age at which mice received CIE exposure. Mice exposed to CIE during adolescence, but not adulthood, required more sessions than AIR controls to reliably respond for food reward on a fixed-ratio (FR) 1, but not subsequent FR3, reinforcement schedule. On a progressive ratio reinforcement schedule, break point responding was higher in the adolescent- than the adult-exposed mice, regardless of CIE. Finally, footshock punishment markedly suppressed responding for reward in all groups. Exposure to CIE during adolescence altered dendritic spine density and morphology in IL and BLA neurons, in parallel with a limited set of behavioral alterations. Together, these data add to growing

  10. Effects of ethanol on social avoidance induced by chronic social defeat stress in mice.

    Science.gov (United States)

    Favoretto, Cristiane A; Macedo, Giovana C; Quadros, Isabel M H

    2017-01-01

    In rodents, chronic social defeat stress promotes deficits in social interest and social interaction. We further explored these antisocial effects by comparing the consequences of two different defeat stress protocols (episodic vs. continuous stress) in a social investigation test. We expected that continuous, but not episodic, stress would induce social deficits in this model. Furthermore, we tested whether a potentially anxiolytic dose of ethanol reverses social deficits induced by defeat stress. Male Swiss mice were exposed to a 10-day social defeat protocol, using daily confrontations with an aggressive resident mouse. Episodic stress consisted of brief defeat episodes, after which the defeated mouse was returned to its home cage, until the next defeat 24 h later (n = 7-11/group). For continuous stress, similar defeat episodes were followed by cohabitation with the aggressive resident for 24 h, separated by a perforated divider, until the following defeat (n = 8-14/group). Eight days after stress termination, defeated and control mice were assessed in a social investigation test, after treatment with ethanol (1.0 g/kg, i.p.) or 0.9% saline. Considering the time spent investigating a social target, mice exposed to episodic or continuous social stress showed less social investigation than controls (p stress or ethanol. Thus, a history of social defeat stress, whether episodic or continuous, promotes deficits in social investigation that were not reversed by acute treatment with ethanol.

  11. Camellia sinensis (L. Kuntze Extract Ameliorates Chronic Ethanol-Induced Hepatotoxicity in Albino Rats

    Directory of Open Access Journals (Sweden)

    Poonam Lodhi

    2014-01-01

    Full Text Available The goal of this study was to investigate the hepatoprotective effects of aqueous extract of Camellia sinensis or green tea extract (AQGTE in chronic ethanol-induced albino rats. All animals were divided into 4 groups in the study for a 5-week duration. 50% ethanol was given orally to the rats with two doses (5 mg/kg bw and 10 mg/kg bw of AQGTE. Ethanol administration caused a significant increase in the levels of plasma and serum enzymatic markers, alanine aminotransferase (ALT, aspartate aminotransferase (AST, and alkaline phosphatase (ALP, and nonenzymatic markers (cholesterol and triglycerides, lipid peroxidation contents, malondialdehyde (MDA, and glutathione-S-transferase (GST, and decreased the activities of total proteins, albumin, and cellular antioxidant defense enzymes such as superoxide dismutase (SOD. The elevation and reduction in these biochemical enzymes caused the damage in hepatocytes histologically due to the high production of ROS, which retards the antioxidant defense capacity of cell. AQGTE was capable of recovering the level of these markers and the damaged hepatocytes to their normal structures. These results support the suggestion that AQGTE was able to enhance hepatoprotective and antioxidant effects in vivo against ethanol-induced toxicity.

  12. Chronic ethanol consumption decreases the phorbol ester binding to membranal but not cytosolic protein kinase C in rat brain.

    Science.gov (United States)

    Pandey, S C; Dwivedi, Y; Piano, M R; Schwertz, D W; Davis, J M; Pandey, G N

    1993-01-01

    We examined the effect of 60 days of ethanol treatment on protein kinase C (PKC) in membrane and cytosolic fractions of the rat cerebral cortex. Membranal and cytosolic PKC were determined by binding technique using [3H]-phorbol 12,13 dibutyrate (PDBU) as radioligand and phorbol 12-myristate 13-acetate (PMA) as displacer. Chronic ethanol consumption resulted in a decrease in the maximum number of binding sites (Bmax) of [3H]-PDBU binding to membranal PKC without significant change in the apparent dissociation constant (KD) in the rat cortex. We also observed that chronic ethanol consumption had no significant effect on Bmax or KD of [3H]-PDBU binding to cytosolic PKC in the rat cerebral cortex. These results suggest that chronic ethanol consumption leads to the down-regulation of brain PKC associated with membrane but not with cytosol.

  13. Upregulation of Cannabinoid Type 1 Receptors in Dopamine D2 Receptor Knockout Mice Is Reversed by Chronic Forced Ethanol Consumption

    Energy Technology Data Exchange (ETDEWEB)

    Thanos, P.K.; Wang, G.; Thanos, P.K.; Gopez, V.; Delis, F.; Michaelides, M.; Grand, D.K.; Wang, G.-J.; Kunos, G.; Volkow, N.D.

    2011-01-01

    The anatomical proximity of the cannabinoid type 1 (CNR1/CB1R) and the dopamine D2 receptors (DRD2), their ability to form CB1R-DRD2 heteromers, their opposing roles in locomotion, and their involvement in ethanol's reinforcing and addictive properties prompted us to study the levels and distribution of CB1R after chronic ethanol intake, in the presence and absence of DRD2. We monitored the drinking patterns and locomotor activity of Drd2+/+ and Drd2-/- mice consuming either water or a 20% (v/v) ethanol solution (forced ethanol intake) for 6 months and used the selective CB1 receptor antagonist [{sup 3}H]SR141716A to quantify CB1R levels in different brain regions with in vitro receptor autoradiography. We found that the lack of DRD2 leads to a marked upregulation (approximately 2-fold increase) of CB1R in the cerebral cortex, the caudate-putamen, and the nucleus accumbens, which was reversed by chronic ethanol intake. The results suggest that DRD2-mediated dopaminergic neurotransmission and chronic ethanol intake exert an inhibitory effect on cannabinoid receptor expression in cortical and striatal regions implicated in the reinforcing and addictive properties of ethanol.

  14. Chronic methylphenidate exposure during adolescence reduces striatal synaptic responses to ethanol.

    Science.gov (United States)

    Crowley, Nicole A; Cody, Patrick A; Davis, Margaret I; Lovinger, David M; Mateo, Yolanda

    2014-02-01

    Dopamine (DA) plays an important role in integrative functions contributing to adaptive behaviors. In support of this essential function, DA modulates synaptic plasticity in different brain areas, including the striatum. Many drugs used for cognitive enhancement are psychostimulants, such as methylphenidate (MPH), which enhance DA levels. MPH treatment is of interest during adolescence, a period of enhanced neurodevelopment during which the DA system is in a state of flux. Recent epidemiological studies report the co-abuse of MPH and ethanol in adolescents and young adults. Although repeated MPH treatment produces enduring changes that affect subsequent behavioral responses to other psychostimulants, few studies have investigated the interactions between MPH and ethanol. Here we addressed whether chronic therapeutic exposure to MPH during adolescence predisposed mice to an altered response to ethanol and whether this was accompanied by altered DA release and striatal plasticity. C57BL/6J mice were administered MPH (3-6 mg/kg/day) via the drinking water between post-natal days 30 and 60. Voltammetry experiments showed that sufficient brain MPH concentrations were achieved during adolescence in mice to increase the DA clearance in adulthood. The treatment also increased long-term depression and reduced the effects of ethanol on striatal synaptic responses. Although the injection of 0.4 or 2 g/kg ethanol dose-dependently decreased locomotion in control mice, only the higher dose decreased locomotion in MPH-treated mice. These results suggested that the administration of MPH during development promoted long-term effects on synaptic plasticity in forebrain regions targeted by DA. These changes in plasticity might, in turn, underlie alterations in behaviors controlled by these brain regions into adulthood.

  15. Effects of six weeks of chronic ethanol administration on the behavioral outcome of rats after lateral fluid percussion brain injury.

    Science.gov (United States)

    Zhang, L; Maki, A; Dhillon, H S; Barron, S; Clerici, W J; Hicks, R; Kraemer, P J; Butcher, J; Prasad, R M

    1999-03-01

    This study examined the effects of 6 weeks of chronic ethanol administration on the behavioral outcome in rats after lateral fluid percussion (FP) brain injury. Rats were given either an ethanol liquid diet (ethanol diet-groups) or a pair-fed isocaloric sucrose control diet (control diet groups) for 6 weeks. After 6 weeks, the ethanol diet was discontinued for the ethanol diet rats and they were then given the control sucrose diet for 2 days. During those 2 days, the rats were trained to perform a beam-walking task and subjected to either lateral FP brain injury of low to moderate severity (1.8 atm) or to sham operation. In both the control diet and the ethanol diet groups, lateral FP brain injury caused beam-walking impairment on days 1 and 2 and spatial learning disability on days 7 and 8 after brain injury. There were no significant differences in beam-walking performance and spatial learning disability between brain injured animals from the control and ethanol diet groups. However, a trend towards greater behavioral deficits was observed in brain injured animals in the ethanol diet group. Histologic analysis of both diet groups after behavioral assessment revealed comparable ipsilateral cortical damage and observable CA3 neuronal loss in the ipsilateral hippocampus. These results only suggest that chronic ethanol administration, longer than six weeks of administration, may worsen behavioral outcome following lateral FP brain injury. For more significant behavioral and/or morphological change to occur, we would suggest that the duration of chronic ethanol administration must be increased.

  16. Mate Tea Prevents Oxidative Stress in the Blood and Hippocampus of Rats with Acute or Chronic Ethanol Administration

    Directory of Open Access Journals (Sweden)

    Bianca Scolaro

    2012-01-01

    Full Text Available Objective. The aim of this study was to evaluate the influence of acute and chronic intake of mate tea on the effects elicited by acute and chronic administration of ethanol. Methods. Oxidative stress was evaluated by measuring thiobarbituric acid-reactive substances (TBARS, as well as the activities of the antioxidant enzymes, catalase (CAT, glutathione peroxidase (GSH-Px, and superoxide dismutase (SOD in the hippocampus and blood of rats. Male Wistar rats were randomly assigned to four groups, for both acute and chronic treatment: (1 control group, (2 treated group, (3 intoxicated group, (4 and intoxicated group treated with mate tea. Results. Both ethanol administrations significantly increased TBARS in plasma and hippocampus of rats and altered antioxidant enzyme activities, changes which were reverted by mate tea administration. Conclusions. Data indicate that acute and chronic ethanol administration induced oxidative stress in hippocampus and blood and that mate tea treatment was able to prevent this situation.

  17. Ethanol withdrawal is required to produce persisting N-methyl-D-aspartate receptor-dependent hippocampal cytotoxicity during chronic intermittent ethanol exposure

    Science.gov (United States)

    Reynolds, Anna R.; Berry, B. Jennifer N.; Sharrett-Field, Lynda; Prendergast, Mark A.

    2015-01-01

    Chronic intermittent ethanol consumption is associated with neurodegeneration and cognitive deficits in preclinical laboratory animals and in the clinical population. While previous work suggests a role for neuroadaptations in the N-methyl-D-aspartate (NMDA) receptor in the development of ethanol dependence and manifestation of withdrawal, the relative roles of ethanol exposure and ethanol withdrawal in producing these effects have not been fully characterized. To examine underlying cytotoxic mechanisms associated with CIE exposure, organotypic hippocampal slices were exposed to 1–3 cycles of ethanol (50 mM) in cell culture medium for 5 days, followed by 24-hours of ethanol withdrawal in which a portion of slices were exposed to competitive NMDA receptor antagonist (2R)-amino-5-phosphonovaleric acid (APV; 40 µM). Cytotoxicity was assessed using immunohistochemical labeling of neuron specific nuclear protein (NeuN; Fox-3), a marker of mature neurons, and thionine (2%) staining of Nissl bodies. Multiple cycles of CIE produced neurotoxicity, as reflected in persisting losses of neuron NeuN immunoreactivity and thionine staining in each of the primary cell layers of the hippocampal formation. Hippocampi aged in vitro were significantly more sensitive to the toxic effects of multiple CIEs than were non-aged hippocampi. This effect was not demonstrated in slices exposed to continuous ethanol, in the absence of withdrawal, or to a single exposure/withdrawal regimen. Exposure to APV significantly attenuated the cytotoxicity observed in the primary cell layers of the hippocampus. The present findings suggest that ethanol withdrawal is required to produce NMDA receptor-dependent hippocampal cytotoxicity, particularly in the aging hippocampus in vitro. PMID:25746220

  18. Oxidative damage and histopathological changes in lung of rat chronically exposed to nicotine alone or associated to ethanol.

    Science.gov (United States)

    Dhouib, H; Jallouli, M; Draief, M; Bouraoui, S; El-Fazâa, S

    2015-12-01

    Smoking is the most important preventable risk factor of chronic obstructive pulmonary disease and lung cancer. This study was designed to investigate oxidative damage and histopathological changes in lung tissue of rats chronically exposed to nicotine alone or supplemented with ethanol. Twenty-four male Wistar rats divided into three groups were used for the study. The nicotine group received nicotine (2.5mg/kg/day); the nicotine-ethanol group was given simultaneously same dose of nicotine plus ethanol (0.2g/kg/day), while the control group was administered only normal saline (1 ml/kg/day). The treatment was administered by subcutaneous injection once daily for a period of 18 weeks. Chronic nicotine administration alone or combined to ethanol caused a significant increase in malondialdehyde (MDA) level, superoxide dismutase (SOD) activity and catalase (CAT) activity in lung tissue compared to control rats suggesting an oxidative damage. However, these increases were mostly prominent in nicotine group. The histopathological examination of lung tissue of rats in both treated groups revealed many alterations in the pulmonary structures such as emphysema change (disappearance of the alveolar septa, increased irregularity and size of air sacs) and marked lymphocytic infiltration in perivascular and interstitial areas. However, the changes characterized in the nicotine group (pulmonary congestion, hemorrhage into alveoli and interstitial areas, edema) were more drastic than those observed in the nicotine-ethanol group, and they can be attributed to a significant degree of capillary endothelial permeability and microvascular leak. Conversely, the ethanol supplementation caused an appearance of fatty change and fibrosis in pulmonary tissue essentially due to a metabolism of ethanol. Finally, the lung damage illustrated in nicotine group was more severe than that observed in the nicotine-ethanol group. We conclude that the combined administration of nicotine and ethanol

  19. Projection neurons in the cortex and hippocampus: differential effects of chronic khat and ethanol exposure in adult male rats

    Science.gov (United States)

    Alele, Paul E; Matovu, Daniel; Imanirampa, Lawrence; Ajayi, Abayomi M; Kasule, Gyaviira T

    2016-01-01

    Background Recent evidence suggests that many individuals who chew khat recreationally also drink ethanol to offset the stimulating effect of khat. The objective of this study was to describe the separate and interactive effects of chronic ethanol and khat exposure on key projection neurons in the cortex and hippocampus of young adult male rats. Methods Young adult male Sprague Dawley rats were divided into six treatment groups: 2 g/kg khat, 4 g/kg khat, 4 g/kg ethanol, combined khat and ethanol (4 g/kg each), a normal saline control, and an untreated group. Treatments were administered orally for 28 continuous days; brains were then harvested, sectioned, and routine hematoxylin–eosin staining was done. Following photomicrography, ImageJ® software captured data regarding neuron number and size. Results No differences occurred in counts of both granular and pyramidal projection neurons in the motor cortex and all four subfields of the hippocampal formation. Khat dose-dependently increased pyramidal neuron size in the motor cortex and the CA3 region, but had different effects on granular neuron size in the dentate gyrus and the motor cortex. Mean pyramidal neuron size for the ethanol-only treatment was larger than that for the 2 g/kg khat group, and the saline control group, in CA3 and in the motor cortex. Concomitant khat and ethanol increased granular neuron size in the motor cortex, compared to the 2 g/kg khat group, the 4 g/kg khat group, and the 4 g/kg ethanol group. In the CA3 region, the 4 g/kg ethanol group showed a larger mean pyramidal neuron size than the combined khat and ethanol group. Conclusion These results suggest that concomitant khat and ethanol exposure changes granular and pyramidal projection neuron sizes differentially in the motor cortex and hippocampus, compared to the effects of chronic exposure to these two drugs separately.

  20. Chronic ethanol feeding promotes azoxymethane and dextran sulfate sodium-induced colonic tumorigenesis potentially by enhancing mucosal inflammation.

    Science.gov (United States)

    Shukla, Pradeep K; Chaudhry, Kamaljit K; Mir, Hina; Gangwar, Ruchika; Yadav, Nikki; Manda, Bhargavi; Meena, Avtar S; Rao, RadhaKrishna

    2016-03-07

    Alcohol consumption is one of the major risk factors for colorectal cancer. However, the mechanism involved in this effect of alcohol is unknown. We evaluated the effect of chronic ethanol feeding on azoxymethane and dextran sulfate sodium (AOM/DSS)-induced carcinogenesis in mouse colon. Inflammation in colonic mucosa was assessed at a precancerous stage by evaluating mucosal infiltration of neutrophils and macrophages, and analysis of cytokine and chemokine gene expression. Chronic ethanol feeding significantly increased the number and size of polyps in colon of AOM/DSS treated mice. Confocal microscopic and immunoblot analyses showed a significant elevation of phospho-Smad, VEGF and HIF1α in the colonic mucosa. RT-PCR analysis at a precancerous stage indicated that ethanol significantly increases the expression of cytokines IL-1α, IL-6 and TNFα, and the chemokines CCL5/RANTES, CXCL9/MIG and CXCL10/IP-10 in the colonic mucosa of AOM/DSS treated mice. Confocal microscopy showed that ethanol feeding induces a dramatic elevation of myeloperoxidase, Gr1 and CD68-positive cells in the colonic mucosa of AOM/DSS-treated mice. Ethanol feeding enhanced AOM/DSS-induced suppression of tight junction protein expression and elevated cell proliferation marker, Ki-67 in the colonic epithelium. This study demonstrates that chronic ethanol feeding promotes colonic tumorigenesis potentially by enhancing inflammation and elevation of proinflammatory cytokines and chemokines.

  1. Interactions between chronic ethanol consumption and thiamine deficiency on neural plasticity, spatial memory and cognitive flexibility

    Science.gov (United States)

    Vedder, Lindsey C.; Hall, Joseph M.; Jabrouin, Kimberly R.; Savage, Lisa M.

    2015-01-01

    Background Many alcoholics display moderate to severe cognitive dysfunction accompanied by brain pathology. A factor confounded with prolonged heavy alcohol consumption is poor nutrition and many alcoholics are thiamine deficient. Thus, thiamine deficiency (TD) has emerged as a key factor underlying alcohol–related brain damage (ARBD). TD in humans can lead to Wernicke Encephalitis that can progress into Wernicke–Korsakoff Syndrome and these disorders have a high prevalence among alcoholics. Animal models are critical for determining the exact contributions of ethanol- and TD-induced neurotoxicity, as well as the interactions of those factors to brain and cognitive dysfunction. Methods Adult rats were randomly assigned to one of six treatment conditions: Chronic ethanol treatment (CET) where rats consumed a 20% v/v solution of ethanol over 6 months; Severe pyrithiamine-induced TD (PTD-MAS); Moderate PTD (PTD-EAS); Moderate PTD followed by CET (PTD-CET); Moderate PTD during CET (CET-PTD); Pair-fed control (PF). After recovery from treatment, all rats were tested on spontaneous alternation and attentional set-shifting. After behavioral testing, brains were harvested for determination of mature brain-derived neurotrophic factor (BDNF) and thalamic pathology. Results Moderate TD combined with CET, regardless of treatment order, produced significant impairments in spatial memory, cognitive flexibility and reductions in brain plasticity as measured by BDNF levels in the frontal cortex and hippocampus. These alterations are greater than those seen in moderate TD alone and the synergistic effects of moderate TD with CET leads to a unique cognitive profile. However, CET did not exacerbate thalamic pathology seen after moderate TD. Conclusions These data support the emerging theory that subclinical TD during chronic heavy alcohol consumption is critical for the development of significant cognitive impairment associated with ARBD. PMID:26419807

  2. Increased brain dopamine D4-like binding after chronic ethanol is not associated with behavioral sensitization in mice.

    Science.gov (United States)

    Quadros, Isabel Marian Hartmann; Nobrega, Jose Nascimento; Hipolide, Debora Cristina; Souza-Formigoni, Maria Lucia Oliveira

    2005-10-01

    Dopaminergic D4 receptors have been hypothesized to be involved in neuropsychiatric disorders and substance abuse. In mice, repeated ethanol administration may induce behavioral sensitization, a phenomenon of increased sensitivity to the drug's stimulant properties. This study aimed to analyze brain D4 receptors binding in mice with different levels of behavioral sensitization to ethanol. Male Swiss mice received 2.2 g/kg ethanol (n = 64) or saline (n = 16) intraperitoneally daily for 21 days and were weekly tested for locomotor activity and for blood ethanol levels. According to the locomotor scores presented across test days, ethanol-treated mice were classified as "sensitized" or "nonsensitized." Twenty-four hours after the last administration, mice were sacrificed and brains were processed for autoradiography. Brain D4 binding was assessed by quantitative autoradiography using [3H]nemonapride + raclopride in three groups: saline-treated controls (n = 10), ethanol-sensitized (n = 11), and ethanol-nonsensitized (n = 9) mice. Both sensitized and nonsensitized mice showed higher D4 binding densities than saline-treated controls in the posterior caudate-putamen and the olfactory tubercle (p < .02), but only sensitized mice presented higher D4 binding than controls at the lateral septal nucleus (p < .02). However, there were no differences between sensitized and nonsensitized mice in any of the brain regions analyzed. Furthermore, sensitized and nonsensitized mice presented similar blood ethanol levels during the treatment. The higher D4 binding levels observed in both ethanol-treated subgroups (sensitized and nonsensitized) suggest that chronic ethanol treatment may induce upregulation of D4 receptors in specific brain regions. However, this mechanism does not seem to be associated with the differential ability to develop behavioral sensitization to ethanol in mice.

  3. Chronic ethanol exposure increases voluntary home cage intake in adult male, but not female, Long-Evans rats.

    Science.gov (United States)

    Morales, Melissa; McGinnis, Molly M; McCool, Brian A

    2015-12-01

    The current experiment examined the effects of 10 days of chronic intermittent ethanol (CIE) exposure on anxiety-like behavior and home cage ethanol intake using a 20% intermittent access (M, W, F) paradigm in male and female Long-Evans rats. Withdrawal from alcohol dependence contributes to relapse in humans and increases in anxiety-like behavior and voluntary ethanol consumption in preclinical models. Our laboratory has shown that 10 days of CIE exposure produces both behavioral and neurophysiological alterations associated with withdrawal in male rats; however, we have yet to examine the effects of this exposure regime on ethanol intake in females. During baseline, females consumed more ethanol than males but, unlike males, did not show escalations in intake. Rats were then exposed to CIE and were again given intermittent access to 20% ethanol. CIE males increased their intake compared to baseline, whereas air-exposed males did not. Ethanol intake in females was unaffected by CIE exposure. Notably, both sexes expressed significantly elevated withdrawal-associated anxiety-like behavior in the plus maze. Finally, rats were injected with the cannabinoid CB1 receptor antagonist, SR141716A (0, 1, 3, 10mg/kg, i.p.) which reduced ethanol intake in both sexes. However, females appear to be more sensitive to lower doses of this CB1 receptor antagonist. Our results show that females consume more ethanol than males; however, they did not escalate their intake using the intermittent access paradigm. Unlike males, CIE exposure had no effect on drinking in females. It is possible that females may be less sensitive than males to ethanol-induced increases in drinking after a short CIE exposure. Lastly, our results demonstrate that males and females may have different pharmacological sensitivities to CB1 receptor blockade on ethanol intake, at least under the current conditions.

  4. Effects of Chronic Ethanol Consumption on Rat GABAA and Strychnine-sensitive Glycine Receptors Expressed by Lateral/Basolateral Amygdala Neurons

    Science.gov (United States)

    McCool, Brian A.; Frye, Gerald D.; Pulido, Marisa D.; Botting, Shaleen K.

    2010-01-01

    It is well known that the anxiolytic potential of ethanol is maintained during chronic exposure. We have confirmed this using a light-dark box paradigm following chronic ethanol ingestion via a liquid diet. However, cessation from chronic ethanol exposure is known to cause severe withdrawal anxiety. These opposing effects on anxiety likely result from neuro-adaptations of neurotransmitter systems within the brain regions regulating anxiety. Recent work highlights the importance of amygdala ligand-gated chloride channels in the expression of anxiety. We have therefore examined the effects of chronic ethanol exposure on GABAA and strychnine-sensitive glycine receptors expressed by acutely isolated adult rat lateral/basolateral amygdala neurons. Chronic ethanol exposure increased the functional expression of GABAA receptors in acutely isolated basolateral amygdala neurons without altering strychnine-sensitive glycine receptors. Neither the acute ethanol nor benzodiazepine sensitivity of either receptor system was affected. We explored the likelihood that subunit composition might influence each receptor’s response to chronic ethanol. Importantly, when expressed in a mammalian heterologous system, GABAA receptors composed of unique α subunits were differentially sensitive to acute ethanol. Likewise, the presence of the β subunit appeared to influence the acute ethanol sensitivity of glycine receptors containing the α2 subunit. Our results suggest that the facilitation of GABAA receptors during chronic ethanol exposure may help explain the maintenance of ethanol’s anti-anxiety effects during chronic ethanol exposure. Furthermore, the subunit composition of GABAA and strychnine-sensitive glycine receptors may ultimately influence the response of each system to chronic ethanol exposure. PMID:12560122

  5. Switch from excitatory to inhibitory actions of ethanol on dopamine levels after chronic exposure: Role of kappa opioid receptors.

    Science.gov (United States)

    Karkhanis, Anushree N; Huggins, Kimberly N; Rose, Jamie H; Jones, Sara R

    2016-11-01

    Acute ethanol exposure is known to stimulate the dopamine system; however, chronic exposure has been shown to downregulate the dopamine system. In rodents, chronic intermittent exposure (CIE) to ethanol also increases negative affect during withdrawal, such as, increases in anxiety- and depressive-like behavior. Moreover, CIE exposure results in increased ethanol drinking and preference during withdrawal. Previous literature documents reductions in CIE-induced anxiety-, depressive-like behaviors and ethanol intake in response to kappa opioid receptor (KOR) blockade. KORs are located on presynaptic dopamine terminals in the nucleus accumbens (NAc) and inhibit release, an effect which has been linked to negative affective behaviors. Previous reports show an upregulation in KOR function following extended CIE exposure; however it is not clear whether there is a direct link between KOR upregulation and dopamine downregulation during withdrawal from CIE. This study aimed to examine the effects of KOR modulation on dopamine responses to ethanol of behaving mice exposed to air or ethanol vapor in a repeated intermittent pattern. First, we showed that KORs have a greater response to an agonist after moderate CIE compared to air exposed mice using ex vivo fast scan cyclic voltammetry. Second, using in vivo microdialysis, we showed that, in contrast to the expected increase in extracellular levels of dopamine following an acute ethanol challenge in air exposed mice, CIE exposed mice exhibited a robust decrease in dopamine levels. Third, we showed that blockade of KORs reversed the aberrant inhibitory dopamine response to ethanol in CIE exposed mice while not affecting the air exposed mice demonstrating that inhibition of KORs "rescued" dopamine responses in CIE exposed mice. Taken together, these findings indicate that augmentation of dynorphin/KOR system activity drives the reduction in stimulated (electrical and ethanol) dopamine release in the NAc. Thus, blockade of

  6. Chronic intermittent toluene inhalation initiated during adolescence in rats does not alter voluntary consumption of ethanol in adulthood.

    Science.gov (United States)

    Dick, Alec L W; Lawrence, Andrew J; Duncan, Jhodie R

    2014-09-01

    Voluntary inhalation of organic solvents, such as toluene, is particularly prevalent in adolescent populations and is considered to be a contributing factor to substance use and dependence later in life. While inhalants are often the initial "drug" experienced during this period, alcohol is another substance readily abused by adolescent populations. Although both substances are thought to have similar actions within the brain, our understanding of the implications of adolescent inhalant abuse upon subsequent exposure to alcohol remains to be investigated. Thus, this study aimed to assess locomotor responses to acute ethanol and voluntary ethanol consumption following a period of toluene inhalation throughout adolescence/early adulthood. Adolescent male Wistar rats (postnatal day [PN] 27) inhaled air or toluene (3000 ppm) for 1 h/day, 3 days/week for 4 (PN 27-52) or 8 weeks (PN 27-80) to mimic the patterns observed in human inhalant abusers. Following the exposure period, cross-sensitization to acute ethanol challenge (0.5 g/kg, intra-peritoneally [i.p.]), and voluntary consumption of 20% ethanol in a chronic intermittent 2-bottle choice paradigm, were assessed. Hepatic ethanol and acetaldehyde metabolism and liver histopathology were also investigated. Chronic intermittent toluene (CIT) exposure throughout adolescence for up to 8 weeks did not alter the behavioral response to acute ethanol or voluntary consumption of ethanol in adulthood, although an age-dependent effect on ethanol consumption was observed (p<0.05). Both liver function and pathology did not differ between treatment groups. Thus, in the paradigm employed, CIT exposure throughout adolescence and early adulthood did not predispose rats to subsequent locomotor sensitivity or voluntary consumption of ethanol in adulthood. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Chronic ethanol consumption increases the levels of chemerin in the serum and adipose tissue of humans and rats

    Institute of Scientific and Technical Information of China (English)

    Rui-zhen REN; Xu ZHANG; Jin XU; Hai-qing ZHANG; Chun-xiao YU; Ming-feng CAO; Ling GAO; Qing-bo GUAN; Jia-jun ZHAO

    2012-01-01

    Chemerin is a new adipokine involved in adipogenesis and insulin resistance.Since ethanol affects the insulin sensitivity that is closely associated with adipokines.The aim of this study was to investigate the effects of ethanol on chemerin in humans and rats.Methods:In the human study,148 men who consumed alcohol for more than 3 years and 55 men who abstained from alcohol were included.Based on ethanol consumption per day,the drinkers were classified into 3 groups:low-dose (<15 g/d),middle-dose (15-47.9 g/d) and high-dose (≥48 g/d).Anthropometric measurementsand serum parameters were collected.In the rat study,27 male Wistar rats were randomly divided into 4 groups administered water or ethanol (0.5,2.5,or 5 g·kg-1·d-1) for 22 weeks.The chemerin levels in the sera,visceral adipose tissue (VAT) and liver were measured using ELISA.Results:In the high-dose group of humans and middle- and high-dose groups of rats,chronic ethanol consumption significantly increased the serum chemerin level.Both the middle- and high-dose ethanol significantly increased the chemerin level in the VAT of rats.In humans,triglyceride,fasting glucose,insulin and HOMA-IR were independently associated with chemerin.In rats,the serum chemerin level was positively correlated with chemerin in the VAT after adjustments for the liver chemerin (r=+0.768).High-dose ethanol significantly increased the body fat in humans and the VAT in rats.Conclusion:Chronic ethanol consumption dose-dependently increases the chemerin levels in the serum and VAT.The serum chemerin level is associated with metabolic parameters in humans.The increased serum chemerin level is mainly attributed to an elevation of chemerin in the VAT after the ethanol treatment.

  8. Chronic ethanol ingestion, type 2 diabetes mellitus, and brain-derived neurotrophic factor (BDNF) in rats.

    Science.gov (United States)

    Jung, Kyu-In; Ju, Anes; Lee, Hee-Mi; Lee, Seong-Su; Song, Chan-Hee; Won, Wang-Youn; Jeong, Jae-Seung; Hong, Oak-Kee; Kim, Jae-Hwa; Kim, Dai-Jin

    2011-01-07

    Chronic alcohol consumption contributes to the development of type 2 diabetes mellitus (T2DM) while decreasing the level of brain-derived neurotrophic factor (BDNF). BDNF may be an important regulator of glucose metabolism, so it may be associated with an increased risk for T2DM in alcoholism. We evaluated the association of chronic heavy alcohol exposure, T2DM and BDNF level. Ten week-old type 2 diabetic OLETF rats and non-diabetic LETO rats of similar weight were used. The rats were randomized by weight into four treatment groups: (1) OLETF-Ethanol (O-E, n=13), (2) OLETF-Control (O-C, n=15), (3) LETO-Ethanol (L-E, n=11), and (4) LETO-Control (L-C, n=14). The ethanol groups were fed an isocaloric liquid diet containing ethanol while the control groups were fed with the same diet containing maltose-dextran over a 6-week period using a pair-feeding control model in order to regulate different caloric ingestion. After 6 weeks of feeding, an Intraperitoneal Glucose Tolerance Test (IP-GTT) was performed and BDNF levels were analyzed. Prior to IP-GTT, the mean glucose levels in the O-E, O-C, L-E, and L-C groups were 90.38±12.84, 102.13±5.04, 95.18±6.43, and 102.36±4.43mg/dL, respectively. Thirty minutes after intraperitoneal injection, the mean glucose levels were 262.62±63.77, 229.07±51.30, 163.45±26.63, and 156.64±34.42mg/dL, respectively; the increased amount of the mean glucose level in the O-E group was significantly higher than that in the O-C group (palcohol ingestion may aggravate T2DM and may possibly lower BDNF level.

  9. Proteomic analysis of 4-hydroxynonenal (4-HNE modified proteins in liver mitochondria from chronic ethanol-fed rats

    Directory of Open Access Journals (Sweden)

    Kelly K. Andringa

    2014-01-01

    Full Text Available Chronic ethanol-mediated oxidative stress and lipid peroxidation increases the levels of various reactive lipid species including 4-hydroxynonenal (4-HNE, which can subsequently modify proteins in the liver. It has been proposed that 4-HNE modification adversely affects the structure and/or function of mitochondrial proteins, thereby impairing mitochondrial metabolism. To determine whether chronic ethanol consumption increases levels of 4-HNE modified proteins in mitochondria, male rats were fed control and ethanol-containing diets for 5 weeks and mitochondrial samples were analyzed using complementary proteomic methods. Five protein bands (approx. 35, 45, 50, 70, and 90 kDa showed strong immunoreactivity for 4-HNE modified proteins in liver mitochondria from control and ethanol-fed rats when proteins were separated by standard 1D SDS-PAGE. Using high-resolution proteomic methods (2D IEF/SDS-PAGE and BN-PAGE we identified several mitochondrial proteins immunoreactive for 4-HNE, which included mitofilin, dimethylglycine dehydrogenase, choline dehydrogenase, electron transfer flavoprotein α, cytochrome c1, enoyl CoA hydratase, and cytochrome c. The electron transfer flavoprotein α consistently showed increased 4-HNE immunoreactivity in mitochondria from ethanol-fed rats as compared to mitochondria from the control group. Increased 4-HNE reactivity was also detected for dimethylglycine dehydrogenase, enoyl CoA hydratase, and cytochrome c in ethanol samples when mitochondria were analyzed by BN-PAGE. In summary, this work identifies new targets of 4-HNE modification in mitochondria and provides useful information needed to better understand the molecular mechanisms underpinning chronic ethanol-induced mitochondrial dysfunction and liver injury.

  10. Sub-chronic safety evaluation of the ethanol extract of Aralia elata leaves in Beagle dogs.

    Science.gov (United States)

    Li, Fengjin; He, Xiaoli; Niu, Wenying; Feng, Yuenan; Bian, Jingqi; Kuang, Haixue; Xiao, Hongbin

    2016-08-01

    Aralia elata Seem. (A. elata) is a traditional Chinese medicine to treat some diseases. This investigation aims to evaluate the pharmaceutical safety of the ethanol extract of A. elata leaves, namely ethanol leaves extract (ELE), in Beagle dogs. In sub-chronic oral toxicity study, dogs were treated with the ELE at doses of 50, 100 and 200 mg/kg for 12 weeks and followed by 4 weeks recovery period. During experimental period, clinical signs, mortality, body temperature, food consumption and body weight were recorded. Analysis of electrocardiogram, urinalysis, ophthalmoscopy, hematology, serum biochemistry, organ weights and histopathology were performed. The results showed that both food consumption and body weight significantly decreased in high-dose group. Treatment-related side effects and mortality were observed in high-dose female dogs. Some parameters showed significant alterations in electrocardiogram, urinalysis, serum biochemistry and relative organ weights. These alterations were not related to dose or consistent across gender, which were ascribed to incidental and biological variability. The findings in this study indicated that the no-observed adverse effect level (NOAEL) of the ELE was 100 mg/kg in dogs and provided a vital reference for selecting a safe application dosage for human consumption.

  11. Chronic ethanol exposure decreases CB1 receptor function at GABAergic synapses in the rat central amygdala

    DEFF Research Database (Denmark)

    Varodayan, Florence P.; Soni, Neeraj; Bajo, Michal

    2016-01-01

    The endogenous cannabinoids (eCBs) influence the acute response to ethanol and the development of tolerance, dependence and relapse. Chronic alcohol exposure alters eCB levels and Type 1 cannabinoid receptor (CB1) expression and function in brain regions associated with addiction. CB1 inhibits GABA...

  12. A novel mouse model for the study of the inhibitory effects of chronic ethanol exposure on direct bone formation

    Science.gov (United States)

    Excessive alcohol consumption has been reported to interfere with human bone homeostasis and repair in multiple ways. Previous studies have demonstrated that chronic ethanol exposure in the rat via an intragastric dietary delivery system inhibits direct bone formation during distraction osteogenesis...

  13. Post-weaning environmental enrichment, but not chronic maternal isolation, enhanced ethanol intake during periadolescence and early adulthood

    Directory of Open Access Journals (Sweden)

    Luciana Rocio Berardo

    2016-10-01

    Full Text Available This study analyzed ethanol intake in male and female Wistar rats exposed to maternal separation (MS during infancy (postnatal days 1-21, PD1-21 and environmental enrichment (EE during adolescence (PD 21-42. Previous work revealed that MS enhances ethanol consumption during adulthood. It is still unknown if a similar effect is found during adolescence. Several studies, in turn, have revealed that EE reverses stress experiences, and reduces ethanol consumption and reinforcement; although others reported greater ethanol intake after EE. The interactive effects between these treatments upon ethanol’s effects and intake have yet to be explored. We assessed chronic ethanol intake and preference (twelve two-bottle daily sessions, spread across 30 days, 1st session on PD46 in rats exposed to MS and EE. The main finding was that male – but not female – rats that had been exposed to EE consumed more ethanol than controls given standard housing, an effect that was not affected by MS. Subsequent experiments assessed several factors associated with heightened ethanol consumption in males exposed to MS and EE; namely taste aversive conditioning and hypnotic-sedative consequences of ethanol. We also measured anxiety response in the light-dark box and in the elevated plus maze tests; and exploratory patterns of novel stimuli and behaviors indicative of risk assessment and risk-taking, via a modified version of the concentric square field (CSF test. Aversive conditioning, hypnosis and sleep time were similar in males exposed or not to environmental enrichment. EE males, however, exhibited heightened exploration of novel stimuli and greater risk taking behaviors in the CSF test. It is likely that the promoting effect of EE upon ethanol intake was due to these effects upon exploratory and risk-taking behaviors.

  14. Repeated Cycles of Chronic Intermittent Ethanol Exposure Increases Basal Glutamate in the Nucleus Accumbens of Mice without affecting glutamate transport

    Directory of Open Access Journals (Sweden)

    William C. Griffin

    2015-02-01

    Full Text Available Repeated cycles of chronic intermittent ethanol (CIE exposure increase voluntary consumption of ethanol in mice. Previous work has shown that extracellular glutamate in the nucleus accumbens (NAc is significantly elevated in ethanol dependent mice and that pharmacologically manipulating glutamate concentrations in the NAc will alter ethanol drinking, indicating that glutamate homeostasis plays a crucial role in ethanol drinking in this model. The present studies were designed to measure extracellular glutamate at a time point in which mice would ordinarily be allowed voluntary access to ethanol in the CIE model and, additionally, to measure glutamate transport capacity in the NAc at the same time point. Extracellular glutamate was measured using quantitative microdialysis procedures. Glutamate transport capacity was measured under Na+ dependent and Na+ independent conditions to determine whether the function of excitatory amino acid transporters (EAATs; also known as system XAG or of system Xc- (Glial cysteine-glutamate exchanger was influenced by CIE exposure. The results of the quantitative microdialysis experiment confirm increased extracellular glutamate (~2 –fold in the NAc of CIE exposed mice (i.e. ethanol-dependent compared to non-dependent mice in the NAc, consistent with earlier work. However, the increase in extracellular glutamate was not due to altered transporter function in the NAc of ethanol-dependent mice, because neither Na+ dependent nor Na+ independent glutamate transport was significantly altered by CIE exposure. These findings point to the possibility that hyperexcitability of cortical-striatal pathways underlies the increases in extracellular glutamate found in the nucleus accumbens of ethanol-dependent mice.

  15. Drinking typography established by scheduled induction predicts chronic heavy drinking in a monkey model of ethanol self-administration.

    Science.gov (United States)

    Grant, Kathleen A; Leng, Xiaoyan; Green, Heather L; Szeliga, Kendall T; Rogers, Laura S M; Gonzales, Steven W

    2008-10-01

    We have developed an animal model of alcohol self-administration that initially employs schedule-induced polydipsia (SIP) to establish reliable ethanol consumption under open access (22 h/d) conditions with food and water concurrently available. SIP is an adjunctive behavior that is generated by constraining access to an important commodity (e.g., flavored food). The induction schedule and ethanol polydipsia generated under these conditions affords the opportunity to investigate the development of drinking typologies that lead to chronic, excessive alcohol consumption. Adult male cynomolgus monkeys (Macaca fascicularis) were induced to drink water and 4% (w/v in water) ethanol by a Fixed-Time 300 seconds (FT-300 seconds) schedule of banana-flavored pellet delivery. The FT-300 seconds schedule was in effect for 120 consecutive sessions, with daily induction doses increasing from 0.0 to 0.5 g/kg to 1.0 g/kg to 1.5 g/kg every 30 days. Following induction, the monkeys were allowed concurrent access to 4% (w/v) ethanol and water for 22 h/day for 12 months. Drinking typographies during the induction of drinking 1.5 g/kg ethanol emerged that were highly predictive of the daily ethanol intake over the next 12 months. Specifically, the frequency in which monkeys ingested 1.5 g/kg ethanol without a 5-minute lapse in drinking (defined as a bout of drinking) during induction strongly predicted (correlation 0.91) subsequent ethanol intake over the next 12 months of open access to ethanol. Blood ethanol during induction were highly correlated with intake and with drinking typography and ranged from 100 to 160 mg% when the monkeys drank their 1.5 g/kg dose in a single bout. Forty percent of the population became heavy drinkers (mean daily intakes >3.0 g/kg for 12 months) characterized by frequent "spree" drinking (intakes >4.0 g/kg/d). This model of ethanol self-administration identifies early alcohol drinking typographies (gulping the equivalent of 6 drinks) that evolve into

  16. Chronic Social Stress and Ethanol Increase Expression of KLF11, a Cell Death Mediator, in Rat Brain.

    Science.gov (United States)

    Duncan, Jeremy; Wang, Niping; Zhang, Xiao; Johnson, Shakevia; Harris, Sharonda; Zheng, Baoying; Zhang, Qinli; Rajkowska, Grazyna; Miguel-Hidalgo, Jose Javier; Sittman, Donald; Ou, Xiao-Ming; Stockmeier, Craig A; Wang, Jun Ming

    2015-07-01

    Major depressive disorder and alcoholism are significant health burdens that can affect executive functioning, cognitive ability, job responsibilities, and personal relationships. Studies in animal models related to depression or alcoholism reveal that the expression of Krüppel-like factor 11 (KLF11, also called TIEG2) is elevated in frontal cortex, which suggests that KLF11 may play a role in stress- or ethanol-induced psychiatric conditions. KLF11 is a transcriptional activator of monoamine oxidase A and B, but also serves other functions in cell cycle regulation and apoptotic cell death. In the present study, immunohistochemistry was used to quantify intensity of nuclear KLF11, combined with an unbiased stereological approach to assess nuclei in fronto-limbic, limbic, and other brain regions of rats exposed chronically to social defeat or ethanol. KLF11 immunoreactivity was increased significantly in the medial prefrontal cortex, frontal cortex, and hippocampus of both stressed rats and rats fed ethanol. However, expression of KLF11 protein was not significantly affected in the thalamus, hypothalamus, or amygdala in either treatment group compared to respective control rats. Triple-label immunofluorescence revealed that KLF11 protein was localized in nuclei of neurons and astrocytes. KLF11 was also co-localized with the immunoreactivity of cleaved caspase-3. In addition, Western blot analysis revealed a significant reduction in anti-apoptotic protein, Bcl-xL, but an increase of caspase-3 expression in the frontal cortex of ethanol-treated rats compared to ethanol-preferring controls. Thus, KLF11 protein is up-regulated following chronic exposure to stress or ethanol in a region-specific manner and may contribute to pro-apoptotic signaling in ethanol-treated rats. Further investigation into the KLF11 signaling cascade as a mechanism for neurotoxicity and cell death in depression and alcoholism may provide novel pharmacological targets to lessen brain damage and

  17. Chronic ethanol exposure increases the non-dominant glucocorticoid, corticosterone, in the near-term pregnant guinea pig.

    Science.gov (United States)

    Hewitt, Amy J; Dobson, Christine C; Brien, James F; Wynne-Edwards, Katherine E; Reynolds, James N

    2014-08-01

    Maternal-fetal signaling is critical for optimal fetal development and postnatal outcomes. Chronic ethanol exposure alters programming of the fetal hypothalamic-pituitary-adrenal (HPA) axis, resulting in a myriad of neurochemical and behavioral alterations in postnatal life. Based on a recent study which showed that human intra-partum fetal stress increased fetal secretion of corticosterone, the non-dominant glucocorticoid, this investigation tested the hypothesis that an established model of HPA axis programming, chronic maternal ethanol administration to the pregnant guinea pig, would result in preferential elevation of corticosterone, which is also the non-dominant glucocorticoid. Starting on gestational day (GD) 2, guinea pigs received oral administration of ethanol (4 g/kg maternal body weight/day) or isocaloric-sucrose/pair-feeding. Each treatment was administered daily and continued until GD 45, 55, or 65 (approximately 3 days pre-term), when pregnant animals were euthanized and fetuses delivered by Caesarean section. Maternal and fetal plasma samples were collected. After sample preparation (protein precipitation and C-18 solid phase extraction), plasma cortisol and corticosterone concentrations were determined simultaneously by liquid chromatography coupled to tandem mass spectrometry. As predicted, chronic ethanol exposure increased both fetal and maternal plasma corticosterone concentration in late gestation. In contrast, plasma cortisol did not differ across maternal treatments in maternal or fetal samples. The plasma concentration of both maternal glucocorticoids increased with gestational age. Thus, corticosterone, the non-dominant glucocorticoid, but not cortisol, was elevated by chronic ethanol exposure, which may have effects on HPA function in later life.

  18. Chronic intermittent ethanol induced axon and myelin degeneration is attenuated by calpain inhibition.

    Science.gov (United States)

    Samantaray, Supriti; Knaryan, Varduhi H; Patel, Kaushal S; Mulholland, Patrick J; Becker, Howard C; Banik, Naren L

    2015-10-01

    Chronic alcohol consumption causes multifaceted damage to the central nervous system (CNS), underlying mechanisms of which are gradually being unraveled. In our previous studies, activation of calpain, a calcium-activated neutral protease has been found to cause detrimental alterations in spinal motor neurons following ethanol (EtOH) exposure in vitro. However, it is not known whether calpain plays a pivotal role in chronic EtOH exposure-induced structural damage to CNS in vivo. To test the possible involvement of calpain in EtOH-associated neurodegenerative mechanisms the present investigation was conducted in a well-established mouse model of alcohol dependence - chronic intermittent EtOH (CIE) exposure and withdrawal. Our studies indicated significant loss of axonal proteins (neurofilament light and heavy, 50-60%), myelin proteins (myelin basic protein, 20-40% proteolipid protein, 25%) and enzyme (2', 3'-cyclic-nucleotide 3'-phosphodiesterase, 21-55%) following CIE in multiple regions of brain including hippocampus, corpus callosum, cerebellum, and importantly in spinal cord. These CIE-induced deleterious effects escalated after withdrawal in each CNS region tested. Increased expression and activity of calpain along with enhanced ratio of active calpain to calpastatin (sole endogenous inhibitor) was observed after withdrawal compared to EtOH exposure. Pharmacological inhibition of calpain with calpeptin (25 μg/kg) prior to each EtOH vapor inhalation significantly attenuated damage to axons and myelin as demonstrated by immuno-profiles of axonal and myelin proteins, and Luxol Fast Blue staining. Calpain inhibition significantly protected the ultrastructural integrity of axons and myelin compared to control as confirmed by electron microscopy. Together, these findings confirm CIE exposure and withdrawal induced structural alterations in axons and myelin, predominantly after withdrawal and corroborate calpain inhibition as a potential protective strategy against

  19. Anxiolytic Effects of Herbal Ethanol Extract from Gynostemma pentaphyllum in Mice after Exposure to Chronic Stress

    Directory of Open Access Journals (Sweden)

    Myung Koo Lee

    2013-04-01

    Full Text Available In this study, the effects of herbal ethanol extracts of Gynostemma pentaphyllum (GP-EX, on chronic electric footshock (EF stress-induced anxiety disorders were investigated in mice, which were orally treated with GP-EX (30 mg/kg and 50 mg/kg once a day for 14 days, followed by exposure to EF stress (2 mA, with an interval and duration of 10 s for 3 min. After the final exposure to EF stress, the elevated plus-maze and marble burying tests were performed, and the levels of dopamine and serotonin in the brain, the serum levels of corticosterone, and the expression of c-Fos in the paraventricular nuclei (PVN were determined. Treatment with GP-EX (30 mg/kg and 50 mg/kg significantly recovered the number of entries into open arms and time spent on open arms, which was reduced by chronic EF stress. GP-EX (30 mg/kg and 50 mg/kg also reduced the number of marbles buried, which was increased by chronic EF stress. In addition, electric EF stress significantly decreased the levels of dopamine and serotonin in the brain, which was recovered by treatment with GP-EX (30 mg/kg and 50 mg/kg. The serum levels of corticosterone, which were markedly increased by chronic EF stress, were reduced by treatment with GP-EX (30 mg/kg and 50 mg/kg. Chronic EF stress-induced increases in c-Fos expression were also markedly reduced by GP-EX (30 mg/kg and 50 mg/kg in the PVN. These results suggest that GP-EX shows anxiolytic functions, determined by the elevated plus-maze and marble burying tests, which are mediated by modulating the activity of dopamine and serotonin neurons as well as the expression of c-Fos in the brain, and the serum levels of corticosterone. Clinical trials of herbal GP-EX and its bioactive components need further investigation.

  20. Anxiolytic effects of herbal ethanol extract from Gynostemma pentaphyllum in mice after exposure to chronic stress.

    Science.gov (United States)

    Choi, Hyun Sook; Zhao, Ting Ting; Shin, Keon Sung; Kim, Seung Hwan; Hwang, Bang Yeon; Lee, Chong Kil; Lee, Myung Koo

    2013-04-12

    In this study, the effects of herbal ethanol extracts of Gynostemma pentaphyllum (GP-EX), on chronic electric footshock (EF) stress-induced anxiety disorders were investigated in mice, which were orally treated with GP-EX (30 mg/kg and 50 mg/kg) once a day for 14 days, followed by exposure to EF stress (2 mA, with an interval and duration of 10 s for 3 min). After the final exposure to EF stress, the elevated plus-maze and marble burying tests were performed, and the levels of dopamine and serotonin in the brain, the serum levels of corticosterone, and the expression of c-Fos in the paraventricular nuclei (PVN) were determined. Treatment with GP-EX (30 mg/kg and 50 mg/kg) significantly recovered the number of entries into open arms and time spent on open arms, which was reduced by chronic EF stress. GP-EX (30 mg/kg and 50 mg/kg) also reduced the number of marbles buried, which was increased by chronic EF stress. In addition, electric EF stress significantly decreased the levels of dopamine and serotonin in the brain, which was recovered by treatment with GP-EX (30 mg/kg and 50 mg/kg). The serum levels of corticosterone, which were markedly increased by chronic EF stress, were reduced by treatment with GP-EX (30 mg/kg and 50 mg/kg). Chronic EF stress-induced increases in c-Fos expression were also markedly reduced by GP-EX (30 mg/kg and 50 mg/kg) in the PVN. These results suggest that GP-EX shows anxiolytic functions, determined by the elevated plus-maze and marble burying tests, which are mediated by modulating the activity of dopamine and serotonin neurons as well as the expression of c-Fos in the brain, and the serum levels of corticosterone. Clinical trials of herbal GP-EX and its bioactive components need further investigation.

  1. Reversing gastric mucosal alterations during ethanol-induced chronic gastritis in rats by oral administration of Opuntia ficus- indica mucilage

    Institute of Scientific and Technical Information of China (English)

    Ricardo Vázquez-Ramírez; Marisela Olguín-Martínez; Carlos Kubli-Garfias; Rolando Hernández-Mu(n)oz

    2006-01-01

    AIM: To study the effect of mucilage obtained from cladodes of Opuntia ficus-indica (Cactaceae) on the healing of ethanol-induced gastritis in rats.METHODS: Chronic gastric mucosa injury was treated with mucilage (5 mg/kg per day) after it was induced by ethanol. Lipid composition, activity of 5'-nucleotidase (a membrane-associated ectoenzyme) and cytosolic activities of lactate and alcohol dehydrogenases in the plasma membrane of gastric mucosa were determined.Histological studies of gastric samples from the experimental groups were included.RESULTS: Ethanol elicited the histological profile of gastritis characterized by loss of the surface epithelium and infiltration of polymorphonuclear leukocytes.Phosphatidylcholine (PC) decreased and cholesterol content increased in plasma membranes of the gastric mucosa. In addition, cytosolic activity increased while the activity of alcohol dehydrogenases decreased. The administration of mucilage promptly corrected these enzymatic changes. In fact, mucilage readily accelerated restoration of the ethanol-induced histological alterations and the disturbances in plasma membranes of gastric mucosa, showing a univocal anti-inflammatory effect.The activity of 5'-nucleotidase correlated with the changes in lipid composition and the fluidity of gastric mucosal plasma membranes.CONCLUSION: The beneficial action of mucilage seems correlated with stabilization of plasma membranes of damaged gastric mucosa. Molecular interactions between mucilage monosaccharides and membrane phospholipids,mainly PC and phosphatidylethanolamine (PE), may be the relevant features responsible for changing activities of membrane-attached proteins during the healing process after chronic gastric mucosal damage.

  2. Betaine Treatment Attenuates Chronic Ethanol-Induced Hepatic Steatosis and Alterations to the Mitochondrial Respiratory Chain Proteome

    Directory of Open Access Journals (Sweden)

    Kusum K. Kharbanda

    2012-01-01

    Full Text Available Introduction. Mitochondrial damage and disruption in oxidative phosphorylation contributes to the pathogenesis of alcoholic liver injury. Herein, we tested the hypothesis that the hepatoprotective actions of betaine against alcoholic liver injury occur at the level of the mitochondrial proteome. Methods. Male Wister rats were pair-fed control or ethanol-containing liquid diets supplemented with or without betaine (10 mg/mL for 4-5 wks. Liver was examined for triglyceride accumulation, levels of methionine cycle metabolites, and alterations in mitochondrial proteins. Results. Chronic ethanol ingestion resulted in triglyceride accumulation which was attenuated in the ethanol plus betaine group. Blue native gel electrophoresis (BN-PAGE revealed significant decreases in the content of the intact oxidative phosphorylation complexes in mitochondria from ethanol-fed animals. The alcohol-dependent loss in many of the low molecular weight oxidative phosphorylation proteins was prevented by betaine supplementation. This protection by betaine was associated with normalization of SAM : S-adenosylhomocysteine (SAH ratios and the attenuation of the ethanol-induced increase in inducible nitric oxide synthase and nitric oxide generation in the liver. Discussion/Conclusion. In summary, betaine attenuates alcoholic steatosis and alterations to the oxidative phosphorylation system. Therefore, preservation of mitochondrial function may be another key molecular mechanism responsible for betaine hepatoprotection.

  3. Three months of chronic ethanol administration and the behavioral outcome of rats after lateral fluid percussion brain injury.

    Science.gov (United States)

    Masse, J; Billings, B; Dhillon, H S; Mace, D; Hicks, R; Barron, S; Kraemer, P J; Dendle, P; Prasad, R M

    2000-05-01

    This study examined the effects of 3 months of chronic ethanol administration (CEAn) on the behavioral outcome in rats after lateral fluid percussion (FP) brain injury. Rats were given either an ethanol liquid diet (ethanol diet groups) or a pair-fed isocaloric sucrose control diet (control diet groups) for 3 months. Then, rats from both diet groups were subjected to either lateral FP brain injury of moderate severity (1.8 atm) or to sham operation. Postinjury behavioral measurements revealed that brain injury caused significant spatial learning disability in both diet groups. There were no significant differences in spatial learning ability in the sham or brain-injured animals between the control and ethanol diets. However, a trend towards cognitive impairment in the sham animals and a trend towards reduced deficits in the brain-injured animals were observed in the ethanol diet group. Histologic analysis of injured animals from both diet groups revealed similar extents of ipsilateral cortical and hippocampal CA3 damage. These results, in general, suggest that 3 months of CEAn does not significantly alter the behavioral and morphologic outcome of experimental brain injury.

  4. Changes of phosphorylation of cAMP response element binding protein in rat nucleus accumbens after chronic ethanol intake: naloxone reversal

    Institute of Scientific and Technical Information of China (English)

    LIJing; LIYue-Hua; YUANXiao-Ru

    2003-01-01

    AIM: To study the changes in the expression and phosphorylation of cAMP response element binding protein(CREB) in the rat nucleus accumbens after chronic ethanol intake and its withdrawal. METHODS: Ethanol wasgiven in drinking water at the concentration of 6 % (v/v), for one month. Changes in the levels of CREB andphospho-CREB (p-CREB) protein in the nucleus accumbens were measured by immunohistochemistry methods.RESULTS: Ethanol given to rats in drinking water decreased the level of p-CREB protein in the nucleus accumbens(-75 %) at the time of exposure to ethanol. The decrement of p-CREB protein in the nucleus accumbens remainedat 24 h (-35 %) and 72 h (-28 %) of ethanol withdrawal, which recovered toward control level after 7 d of ethanolwithdrawal. However, chronic ethanol, as well as ethanol withdrawal failed to produce any significant alteration inthe level of CREB protein in the nucleus accumbens. Naloxone (alone) treatment of rats had no effect on the levelsof CREB and p-CREB protein in the nucleus accumbens. However, when naloxone was administered concurrentlywith ethanol treatment, it antagonized the down-regulation of p-CREB protein in the nucleus accumbens (142 %) ofrats exposed to ethanol. CONCLUSION: A long-term intake of ethanol solution down-regulates the phosphoryla-tion of CREB in the nucleus accumbens, and those changes can be reversed by naloxone, which may be one kindof the molecular mechanisms associated with ethano1 dependence.

  5. Laparoscopic Uterine Nerve Ethanol Neurolysis (LUNEN in Patients with Chronic Pelvic Pain

    Directory of Open Access Journals (Sweden)

    Seyhan Sönmez

    2016-03-01

    Full Text Available Objective: To investigate the efficacy of laparoscopic uterine nerve ethanol neurolysis (LUNEN for pain man­agement in patients with chronic pelvic pain (CPP. Methods: LUNEN, as a chemical neurolysis procedure, was performed on 22 subjects, and these were com­pared with 20 controls that had a diagnostic laparoscopy alone. Pre-treatment and postoperative 6th month Visual Analogue Scale (VAS scores were estimated and a sub­jective pain evaluation questioning patients’ satisfaction about pain relief in the 6th month after surgery was also performed. Results: A total of 31 (73.8% out of 42 CPP patients had a laparoscopic pelvic pathology. Preoperative VAS scores were similar in the groups; however, the mean postop­erative VAS score was significantly lower in the LUNEN group than in the control group (3.18 ± 2.88 vs. 5.35 ± 3.09; p=0.02. In the LUNEN group, the number of pa­tients who stated that their pain was relieved partially or completely was also significantly higher than in the con­trol group (82% vs. 40%, p=0.019. Conclusion: LUNEN is a feasible, safe and effective sur­gical alternative to traditional surgical methods in patients suffering from CPP. J Clin Exp Invest 2016; 7 (1: 7-13

  6. Chronic ethanol intake-induced changes in open-field behavior and calcium/calmodulin-dependent protein kinase Ⅳ expression in nucleus accumbens of rats: naloxone reversal

    Institute of Scientific and Technical Information of China (English)

    Jing LI; Wei-liang BIAN; Gui-qin XIE; Sheng-zhong CUI; Mei-ling WU; Yue-hua LI; Ling-li QUE; Xiao-ru YUAN

    2008-01-01

    Aim: To investigate the effects of chronic ethanol intake on the locomotor activity and the levels of calcium/calmodulin-dependent protein kinase Ⅳ (CaM kinase Ⅳ) in the nucleus accumbens (NAc) of rats. Simultaneously, the effects of non-selective opioid antagonist (naloxone) on the CaM kinase Ⅳ expression in the NAc and ethanol consumption of rats were also observed. Methods: Ethanol was administered in drinking water at the concentrations of 6% (v/v), for 28 d. The locomotor activity of rats was investigated in the open-field apparatus. CaM kinase Ⅳ levels in the NAc were analyzed using Western blotting. Results: Rats consuming ethanol solution exhibited a significant decrease of ambulation activity, accompanied by a reduced frequency of explorative rearing in an open-field task on d 7 and d 14 of chronic ethanol ingestion, whereas presumed adaptation to the neurological effects of ethanol was observed on d 28. Chronic ethanol intake elicited a significant decrease of the CaM kinase Ⅳ expression in the nuclei, but not in the cytoplasm of the NAc on d 28. Naloxone treatment significantly attenu-ated ethanol intake of rats and antagonized the decrease of CaM kinase Ⅳ in the nuclei of NAc neurons. The cytosolic CaM kinase Ⅳ protein levels of the NAc also increased in rats exposed to ethanol plus naloxone. Conclusion: Chronic ethanol intake-induced changes in explorative behavior is mediated at least partly by changes in CaM kinase Ⅳ signaling in the nuclei of the NAc, and naloxone attenuates ethanol consumption through antagonizing the downregulation of CaM kinase Ⅳ in the NAc.

  7. Disruptions in Serotonergic Regulation of Cortical Glutamate Release in Primate Insular Cortex in Response to Chronic Ethanol and Nursery Rearing

    Science.gov (United States)

    Alexander, Georgia M.; Graef, John D.; Hammarback, James A.; Nordskog, Brian K.; Burnett, Elizabeth J.; Daunais, James B.; Bennett, Allyson J.; Friedman, David P.; Suomi, Stephen J.; Godwin, Dwayne W.

    2015-01-01

    Early-life stress has been shown to increase susceptibility to anxiety and substance abuse. Disrupted activity within the anterior insular cortex (AIC) has been shown to play a role in both of these disorders. Altered serotonergic processing is implicated in controlling the activity levels of the associated cognitive networks. We therefore investigated changes in both serotonin receptor expression and glutamatergic synaptic activity in the AIC of alcohol-drinking rhesus monkeys. We studied tissues from male rhesus monkeys raised under two conditions: Male rhesus monkeys 1) “Mother reared” (MR) by adult females (n=9), or; 2) “Nursery reared” (NR), i.e., separated from their mothers and reared as a separate group under surrogate/peer-reared conditions (n=9). The NR condition represents a long-standing and well-validated nonhuman primate model of early life stress. All monkeys were trained to self-administer ethanol (4% w/v) or an isocaloric maltose-dextrin control solution. Subsets from each rearing condition were then given daily access to either ethanol, water or maltose dextrin for 12 months. Tissues were collected at necropsy and were further analyzed. Using real time RT-PCR we found that ethanol-naïve, NR monkeys had lower AIC levels of 5-HT1A and 5-HT2A receptor mRNA compared to ethanol-naïve, MR animals. While NR monkeys consumed more ethanol over the 12-month period compared to MR animals, both MR and NR animals expressed greater 5-HT1A and 5-HT2A receptor mRNA levels following chronic alcohol self-administration. The interaction between nursery-rearing conditions and alcohol consumption resulted in a significant enhancement of both 5-HT1A and 5-HT2A receptor mRNA levels such that lower expression levels observed in nursery rearing conditions were not found in the alcohol self-administration group. Using voltage clamp recordings in the whole cell configuration we recorded excitatory postsynaptic currents in both ethanol-naïve and chronic self

  8. Alternative Splicing of AMPA subunits in Prefrontal Cortical Fields of Cynomolgus Monkeys following Chronic Ethanol Self-Administration

    Directory of Open Access Journals (Sweden)

    Glen eAcosta

    2012-01-01

    Full Text Available Functional impairment of the orbital and medial prefrontal cortex underlies deficits in executive control that characterize addictive disorders, including alcohol addiction. Previous studies indicate that alcohol alters glutamate neurotransmission and one substrate of these effects may be through the reconfiguration of the subunits constituting ionotropic glutamate receptor (iGluR complexes. Glutamatergic transmission is integral to cortico-cortical and cortico-subcortical communication and alcohol-induced changes in the abundance of the receptor subunits and/or their splice variants may result in critical functional impairments of prefrontal cortex in alcohol dependence. To this end, the effects of chronic ethanol self-administration on glutamate receptor ionotropic AMPA (GRIA subunit variant and kainate (GRIK subunit mRNA expression were studied in the orbitofrontal cortex (OFC, dorsolateral prefrontal cortex (DLPFC and anterior cingulate cortex (ACC of male cynomolgus monkeys. In DLPFC, total AMPA splice variant expression and total kainate receptor subunit expression were significantly decreased in alcohol drinking monkeys. Expression levels of GRIA3 flip and flop and GRIA4 flop mRNAs in this region were positively correlated with daily ethanol intake and blood ethanol concentrations averaged over the six months prior to necropsy. In OFC, AMPA subunit splice variant expression was reduced in the alcohol treated group. GRIA2 flop mRNA levels in this region were positively correlated with daily ethanol intake and blood ethanol concentrations averaged over the six months prior to necropsy. Results from these studies provide further evidence of transcriptional regulation of iGluR subunits in the primate brain following chronic alcohol self-administration. Additional studies examining the cellular localization of such effects in the framework of primate prefrontal cortical circuitry are warranted.

  9. Chronic ethanol exposure during adolescence through early adulthood in female rats induces emotional and memory deficits associated with morphological and molecular alterations in hippocampus.

    Science.gov (United States)

    Oliveira, Ana Ca; Pereira, Maria Cs; Santana, Luana N da Silva; Fernandes, Rafael M; Teixeira, Francisco B; Oliveira, Gedeão B; Fernandes, Luanna Mp; Fontes-Júnior, Enéas A; Prediger, Rui D; Crespo-López, Maria E; Gomes-Leal, Walace; Lima, Rafael R; Maia, Cristiane do Socorro Ferraz

    2015-06-01

    There is increasing evidence that heavy ethanol exposure in early life may produce long-lasting neurobehavioral consequences, since brain structural maturation continues until adolescence. It is well established that females are more susceptible to alcohol-induced neurotoxicity and that ethanol consumption is increasing among women, especially during adolescence. In the present study, we investigated whether chronic ethanol exposure during adolescence through early adulthood in female rats may induce hippocampal histological damage and neurobehavioral impairments. Female rats were treated with distilled water or ethanol (6.5 g/kg/day, 22.5% w/v) by gavage from the 35(th)-90(th) day of life. Ethanol-exposed animals displayed reduced exploration of the central area and increased number of fecal boluses in the open field test indicative of anxiogenic responses. Moreover, chronic high ethanol exposure during adolescence induced marked impairments on short-term memory of female rats addressed on social recognition and step-down inhibitory avoidance tasks. These neurobehavioral deficits induced by ethanol exposure during adolescence through early adulthood were accompanied by the reduction of hippocampal formation volume as well as the loss of neurons, astrocytes and microglia cells in the hippocampus. These results indicate that chronic high ethanol exposure during adolescence through early adulthood in female rats induces long-lasting emotional and memory deficits associated with morphological and molecular alterations in the hippocampus. © The Author(s) 2015.

  10. Chronic intermittent ethanol exposure selectively alters the expression of Gα subunit isoforms and RGS subtypes in rat prefrontal cortex.

    Science.gov (United States)

    Luessen, D J; Sun, H; McGinnis, M M; McCool, B A; Chen, R

    2017-10-01

    Chronic alcohol exposure induces pronounced changes in GPCR-mediated G-protein signaling. Recent microarray and RNA-seq analyses suggest associations between alcohol abuse and the expression of genes involved in G-protein signaling. The activity of G-proteins (e.g. Gαi/o and Gαq) is negatively modulated by regulator of G-protein signaling (RGS) proteins which are implicated in drugs of abuse including alcohol. The present study used 7days of chronic intermittent ethanol exposure followed by 24h withdrawal (CIE) to investigate changes in mRNA and protein levels of G-protein subunit isoforms and RGS protein subtypes in rat prefrontal cortex, a region associated with cognitive deficit attributed to excessive alcohol drinking. We found that this ethanol paradigm induced differential expression of Gα subunits and RGS subtypes. For example, there were increased mRNA and protein levels of Gαi1/3 subunits and no changes in the expression of Gαs and Gαq subunits in ethanol-treated animals. Moreover, CIE increased the mRNA but not the protein levels of Gαo. Additionally, a modest increase in Gαi2 mRNA level by CIE was accompanied by a pronounced increase in its protein level. Interestingly, we found that CIE increased mRNA and protein levels of RGS2, RGS4, RGS7 and RGS19 but had no effect on the expression of RGS5, RGS6, RGS8, RGS12 or RGS17. Changes in the expression of Gα subunits and RGS subtypes could contribute to the functional alterations of certain GPCRs following chronic ethanol exposure. The present study suggests that RGS proteins may be potential new targets for intervention of alcohol abuse via modification of Gα-mediated GPCR function. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Action of metadoxine on isolated human and rat alcohol and aldehyde dehydrogenases. Effect on enzymes in chronic ethanol-fed rats.

    Science.gov (United States)

    Parés, X; Moreno, A; Peralba, J M; Font, M; Bruseghini, L; Esteras, A

    1991-01-01

    Metadoxine (pyridoxine-pyrrolidone carboxylate) has been reported to accelerate ethanol metabolism. In the present work we have investigated the effect of metadoxine on the activities of isolated alcohol and aldehyde dehydrogenases from rat and man, and on the activity of these enzymes in chronic ethanol-fed rats. Our results indicate that in vitro metadoxine does not activate any of the enzymatic forms of alcohol dehydrogenase (classes I and II) or aldehyde dehydrogenase (low-Km and high-Km, cytosolic and mitochondrial). At concentrations higher than 0.1 mM, metadoxine inhibits rat class II alcohol dehydrogenase, although this would probably not affect the physiological ethanol metabolism. Chronic ethanol intake for 5 weeks results in a 25% decrease of rat hepatic alcohol dehydrogenase (class I) activity as compared with the pair-fed controls. The simultaneous treatment with metadoxine prevents activity loss, suggesting that the positive effect of metadoxine on ethanol metabolism can be explained by the maintenance of normal levels of alcohol dehydrogenase during chronic ethanol intake. No specific effect of chronic exposure to ethanol or to metadoxine was detected on rat aldehyde dehydrogenase activity.

  12. Adaptive response to chronic mild ethanol stress involves ROS, sirtuins and changes in chromosome dosage in wine yeasts.

    Science.gov (United States)

    Adamczyk, Jagoda; Deregowska, Anna; Skoneczny, Marek; Skoneczna, Adrianna; Kwiatkowska, Aleksandra; Potocki, Leszek; Rawska, Ewa; Pabian, Sylwia; Kaplan, Jakub; Lewinska, Anna; Wnuk, Maciej

    2016-05-24

    Industrial yeast strains of economic importance used in winemaking and beer production are genomically diverse and subjected to harsh environmental conditions during fermentation. In the present study, we investigated wine yeast adaptation to chronic mild alcohol stress when cells were cultured for 100 generations in the presence of non-cytotoxic ethanol concentration. Ethanol-induced reactive oxygen species (ROS) and superoxide signals promoted growth rate during passages that was accompanied by increased expression of sirtuin proteins, Sir1, Sir2 and Sir3, and DNA-binding transcription regulator Rap1. Genome-wide array-CGH analysis revealed that yeast genome was shaped during passages. The gains of chromosomes I, III and VI and significant changes in the gene copy number in nine functional gene categories involved in metabolic processes and stress responses were observed. Ethanol-mediated gains of YRF1 and CUP1 genes were the most accented. Ethanol also induced nucleolus fragmentation that confirms that nucleolus is a stress sensor in yeasts. Taken together, we postulate that wine yeasts of different origin may adapt to mild alcohol stress by shifts in intracellular redox state promoting growth capacity, upregulation of key regulators of longevity, namely sirtuins and changes in the dosage of genes involved in the telomere maintenance and ion detoxification.

  13. Effect of chronic ethanol consumption in female rats subjected to experimental sepsis

    Energy Technology Data Exchange (ETDEWEB)

    Castro, C.L. [Programa de Pós-Graduação em Patologia, Universidade Federal Fluminense, Niterói, RJ (Brazil); Aguiar-Nemer, A.S. [Departamento de Nutrição, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, MG (Brazil); Castro-Faria-Neto, H.C. [Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, RJ (Brazil); Barros, F.R. [Programa de Pós-Graduação em Patologia, Universidade Federal Fluminense, Niterói, RJ (Brazil); Rocha, E.M.S. [Departamento de Microbiologia e Parasitologia, Universidade Federal Fluminense, Niterói, RJ (Brazil); Silva-Fonseca, V.A. [Departamento de Fisiologia e Farmacologia, Universidade Federal Fluminense, Niterói, RJ (Brazil)

    2013-12-10

    The objective of this research was to evaluate the interference of ethanol consumption by female rats with cytokines involved in the sepsis process and its correlation with mortality, the main outcome of sepsis. Female Wistar rats in estrus phase were evaluated in three experiments. Experiment 1 (n=40) was performed to determine survival rates. Experiment 2 (n=69) was designed for biochemical analysis, measurement of cytokine and estrogen levels before and after sepsis, and experiment 3 (n=10) was performed to evaluate bacterial growth by colony counts of peritoneal fluid. In all experiments, treated animals were exposed to a 10% ethanol/water solution (v/v) as the single drinking source, while untreated animals were given tap water. After 4 weeks, sepsis was induced in the rats by ip injection of feces. In experiment 1, mortality in ethanol-exposed animals was delayed compared with those that drank water (48 h; P=0.0001). Experiment 2 showed increased tumor necrosis factor alpha (TNF-α) and decreased interleukin-6 (IL-6) and macrophage migration inhibitory factor in septic animals exposed to ethanol compared to septic animals not exposed. Sepsis also increased TNF-α and IL-6 levels in both ethanol- and water-exposed groups. Biochemical analysis showed higher creatinine, alanine aminotransferase and aspartate aminotransferase and decreased glucose levels in septic animals that were exposed to ethanol. In experiment 3, septic animals exposed to ethanol showed decreased numbers of colony-forming units than septic animals exposed to water. These results suggest that ethanol consumption delays the mortality of female rats in estrus phase after sepsis induction. Female characteristics, most probably sex hormones, may be involved in cytokine expression.

  14. Effects of ethanol on voltage-sensitive Na-channels in cultured skeletal muscle: Up-regulation as a result of chronic treatment

    Energy Technology Data Exchange (ETDEWEB)

    Brodie, C.; Sampson, S.R. (Bar-Ilan Univ., Ramat-Gan (Israel))

    1990-12-01

    The effects of acute and chronic treatment with ethanol were studied on the number and activity of tetrodotoxin-sensitive Na-channels in cultured rat skeletal muscle. The number of channels was determined by measurements of specific binding of (3H) saxitoxin (STX) in whole cell preparations. Measurements were also made of the frequency and rate of rise of spontaneously occurring action potentials, which are the physiologic expression of Na-channel density. Acute ethanol (37.5-150 mM), while causing depolarization of membrane potential and blockade of electrical activity, was without effect on specific STX binding. Neither methanol, acetaldehyde nor ethylene glycol had significant effects on these properties when given acutely in the same concentrations as ethanol. Chronic ethanol caused dose-related increases in STX binding and action potential properties with maximal levels being attained after 3 days of treatment at a concentration of 150 mM. On removal of ethanol from the culture medium all properties returned to control levels after 48 hr. Both increased external K+ and tetrodotoxin, which up-regulate Na-channels by reducing cytosolic Ca++, potentiated the ethanol-induced increase in Na-channel density. The increase in STX binding was not associated with changes in affinity of the binding sites for the ligand but was completely prevented by treatment with cycloheximide and actinomycin D. The results demonstrate that ethanol interacts with the cell membrane to induce synthesis of STX-binding sites.

  15. Influence of chronic ethanol intake on mouse synaptosomal aspartyl aminopeptidase and aminopeptidase A: relationship with oxidative stress indicators.

    Science.gov (United States)

    Mayas, María Dolores; Ramírez-Expósito, María Jesús; García, María Jesús; Carrera, María Pilar; Martínez-Martos, José Manuel

    2012-08-01

    Aminopeptidase A (APA) and aspartyl aminopeptidase (ASAP) not only act as neuromodulators in the regional brain renin-angiotensin system, but also release N-terminal acidic amino acids (glutamate and aspartate). The hyperexcitability of amino acid neurotransmitters is responsible for several neurodegenerative processes affecting the central nervous system. The purpose of the present work was to study the influence of chronic ethanol intake, a well known neurotoxic compound, on APA and ASAP activity under resting and K(+)-stimulated conditions at the synapse level. APA and ASAP activity were determined against glutamate- and aspartate-β-naphthylamide respectively in mouse frontal cortex synaptosomes and in their incubation supernatant in a Ca(2+)-containing or Ca(2+)-free artificial cerebrospinal fluid. The neurotoxic effects were analyzed by determining free radical generation, peroxidation of membrane lipids and the oxidation of synaptosomal proteins. In addition, the bioenergetic behavior of synaptosomes was analyzed under different experimental protocols. We obtained several modifications in oxidative stress parameters and a preferential inhibitor effect of chronic ethanol intake on APA and ASAP activities. Although previous in vitro studies failed to show signs of neurodegeneration, these in vivo modifications in oxidative stress parameters do not seem to be related to changes in APA and ASAP, invalidating the idea that an excess of free acidic amino acids released by APA and ASAP induces neurodegeneration.

  16. Chronic ethanol consumption disrupts the core molecular clock and diurnal rhythms of metabolic genes in the liver without affecting the suprachiasmatic nucleus.

    Directory of Open Access Journals (Sweden)

    Ashley N Filiano

    Full Text Available Chronic ethanol consumption disrupts several metabolic pathways including β-oxidation and lipid biosynthesis, facilitating the development of alcoholic fatty liver disease. Many of these same metabolic pathways are directly regulated by cell autonomous circadian clocks, and recent studies suggest that disruption of daily rhythms in metabolism contributes to multiple common cardiometabolic diseases (including non-alcoholic fatty liver disease. However, it is not known whether ethanol disrupts the core molecular clock in the liver, nor whether this, in turn, alters rhythms in lipid metabolism. Herein, we tested the hypothesis that chronic ethanol consumption disrupts the molecular circadian clock in the liver and potentially changes the diurnal expression patterns of lipid metabolism genes. Consistent with previous studies, male C57BL/6J mice fed an ethanol-containing diet exhibited higher levels of liver triglycerides compared to control mice, indicating hepatic steatosis. Further, the diurnal oscillations of core clock genes (Bmal1, Clock, Cry1, Cry2, Per1, and Per2 and clock-controlled genes (Dbp, Hlf, Nocturnin, Npas2, Rev-erbα, and Tef were altered in livers from ethanol-fed mice. In contrast, ethanol had only minor effects on the expression of core clock genes in the suprachiasmatic nucleus (SCN. These results were confirmed in Per2(Luciferase knock-in mice, in which ethanol induced a phase advance in PER2::LUC bioluminescence oscillations in liver, but not SCN. Further, there was greater variability in the phase of PER2::LUC oscillations in livers from ethanol-fed mice. Ethanol consumption also affected the diurnal oscillations of metabolic genes, including Adh1, Cpt1a, Cyp2e1, Pck1, Pdk4, Ppargc1a, Ppargc1b and Srebp1c, in the livers of C57BL/6J mice. In summary, chronic ethanol consumption alters the function of the circadian clock in liver. Importantly, these results suggest that chronic ethanol consumption, at levels sufficient to

  17. Chronic ethanol consumption disrupts the core molecular clock and diurnal rhythms of metabolic genes in the liver without affecting the suprachiasmatic nucleus.

    Science.gov (United States)

    Filiano, Ashley N; Millender-Swain, Telisha; Johnson, Russell; Young, Martin E; Gamble, Karen L; Bailey, Shannon M

    2013-01-01

    Chronic ethanol consumption disrupts several metabolic pathways including β-oxidation and lipid biosynthesis, facilitating the development of alcoholic fatty liver disease. Many of these same metabolic pathways are directly regulated by cell autonomous circadian clocks, and recent studies suggest that disruption of daily rhythms in metabolism contributes to multiple common cardiometabolic diseases (including non-alcoholic fatty liver disease). However, it is not known whether ethanol disrupts the core molecular clock in the liver, nor whether this, in turn, alters rhythms in lipid metabolism. Herein, we tested the hypothesis that chronic ethanol consumption disrupts the molecular circadian clock in the liver and potentially changes the diurnal expression patterns of lipid metabolism genes. Consistent with previous studies, male C57BL/6J mice fed an ethanol-containing diet exhibited higher levels of liver triglycerides compared to control mice, indicating hepatic steatosis. Further, the diurnal oscillations of core clock genes (Bmal1, Clock, Cry1, Cry2, Per1, and Per2) and clock-controlled genes (Dbp, Hlf, Nocturnin, Npas2, Rev-erbα, and Tef) were altered in livers from ethanol-fed mice. In contrast, ethanol had only minor effects on the expression of core clock genes in the suprachiasmatic nucleus (SCN). These results were confirmed in Per2(Luciferase) knock-in mice, in which ethanol induced a phase advance in PER2::LUC bioluminescence oscillations in liver, but not SCN. Further, there was greater variability in the phase of PER2::LUC oscillations in livers from ethanol-fed mice. Ethanol consumption also affected the diurnal oscillations of metabolic genes, including Adh1, Cpt1a, Cyp2e1, Pck1, Pdk4, Ppargc1a, Ppargc1b and Srebp1c, in the livers of C57BL/6J mice. In summary, chronic ethanol consumption alters the function of the circadian clock in liver. Importantly, these results suggest that chronic ethanol consumption, at levels sufficient to cause steatosis

  18. Evaluation of direct and indirect ethanol biomarkers using a likelihood ratio approach to identify chronic alcohol abusers for forensic purposes.

    Science.gov (United States)

    Alladio, Eugenio; Martyna, Agnieszka; Salomone, Alberto; Pirro, Valentina; Vincenti, Marco; Zadora, Grzegorz

    2017-02-01

    The detection of direct ethanol metabolites, such as ethyl glucuronide (EtG) and fatty acid ethyl esters (FAEEs), in scalp hair is considered the optimal strategy to effectively recognize chronic alcohol misuses by means of specific cut-offs suggested by the Society of Hair Testing. However, several factors (e.g. hair treatments) may alter the correlation between alcohol intake and biomarkers concentrations, possibly introducing bias in the interpretative process and conclusions. 125 subjects with various drinking habits were subjected to blood and hair sampling to determine indirect (e.g. CDT) and direct alcohol biomarkers. The overall data were investigated using several multivariate statistical methods. A likelihood ratio (LR) approach was used for the first time to provide predictive models for the diagnosis of alcohol abuse, based on different combinations of direct and indirect alcohol biomarkers. LR strategies provide a more robust outcome than the plain comparison with cut-off values, where tiny changes in the analytical results can lead to dramatic divergence in the way they are interpreted. An LR model combining EtG and FAEEs hair concentrations proved to discriminate non-chronic from chronic consumers with ideal correct classification rates, whereas the contribution of indirect biomarkers proved to be negligible. Optimal results were observed using a novel approach that associates LR methods with multivariate statistics. In particular, the combination of LR approach with either Principal Component Analysis (PCA) or Linear Discriminant Analysis (LDA) proved successful in discriminating chronic from non-chronic alcohol drinkers. These LR models were subsequently tested on an independent dataset of 43 individuals, which confirmed their high efficiency. These models proved to be less prone to bias than EtG and FAEEs independently considered. In conclusion, LR models may represent an efficient strategy to sustain the diagnosis of chronic alcohol consumption

  19. Effects of chronic ethanol administration on expression of BDNF and trkB mRNAs in rat hippocampus after experimental brain injury.

    Science.gov (United States)

    Zhang, L; Dhillon, H S; Barron, S; Hicks1, R R; Prasad, R M; Seroogy, K B

    2000-06-23

    Previous evidence indicates that both chronic alcohol treatment and traumatic brain injury modulate expression of certain neurotrophins and neurotrophin receptors in cortical tissue. However, the combined effects of chronic alcohol and brain trauma on expression of neurotrophins and their receptors have not been investigated. In the present study, we examined the effects of 6 weeks of chronic ethanol administration on lateral fluid percussion (FP) brain injury-induced alterations in expression of mRNAs for the neurotrophin brain-derived neurotrophic factor (BDNF) and its high affinity receptor, trkB, in rat hippocampus. In both the control- (pair-fed isocaloric sucrose) diet and the chronic ethanol-diet groups, unilateral FP brain injury induced a bilateral increase in levels of both BDNF and trkB mRNAs in the dentate gyrus granule cell layer, and of BDNF mRNA in hippocampal region CA3. However, no significant differences in expression were found between the control-diet and ethanol-diet groups, in either the sham-injured or FP-injured animals. These findings suggest that 6 weeks of chronic ethanol administration does not alter the plasticity of hippocampal BDNF/trkB expression in response to experimental brain injury.

  20. An optimised mouse model of chronic pancreatitis with a combination of ethanol and cerulein

    OpenAIRE

    Ahmadi, Abbas; Nikkhoo, Bahram; Mokarizadeh, Aram; Rahmani, Mohammad-Reza; Fakhari, Shohreh; Mohammadi, Mehdi; Jalili, Ali

    2016-01-01

    Introduction Chronic pancreatitis (CP) is an intractable and multi-factorial disorder. Developing appropriate animal models is an essential step in pancreatitis research, and the best ones are those which mimic the human disorder both aetiologically and pathophysiologically. The current study presents an optimised protocol for creating a murine model of CP, which mimics the initial steps of chronic pancreatitis in alcohol chronic pancreatitis and compares it with two other mouse models treate...

  1. Age-dependent effects of chronic intermittent ethanol treatment: Gross motor behavior and body weight in aged, adult and adolescent rats.

    Science.gov (United States)

    Matthews, Douglas B; Mittleman, Guy

    2017-09-14

    The proportion of people in the population who are elderly is rapidly increasing. In addition, dangerous alcohol consumption in this demographic is rising. Approximately 33% of all people with an alcohol use disorder are diagnosed with late onset alcoholism. However, few suitable animal models for late onset alcoholism exist, making it difficult to investigate the impact of alcoholism later in life. The current study investigated if chronic intermittent ethanol exposure via intraperitoneal injections every other day for 20days in aged, adult and adolescent male rats differentially alters body weight and impairs gross motor behavior as measured by the aerial righting reflex. The body weight of aged and adult rats were significantly decreased by chronic intermittent ethanol exposure while the body weight of adolescent rats was not impacted. In addition, the aerial righting reflex of aged rats was significantly more impaired by alcohol exposure than the aerial righting reflex of adult or adolescent animals. Chronic intermittent ethanol exposure did not produce tolerance in the aerial righting reflex for any of the three age groups. The differential age sensitivity in the aerial righting reflex was not due to differential blood ethanol concentrations. The current work demonstrates the risk factors of chronic alcohol use in the elderly and highlights the need for additional study in this vulnerable demographic. Copyright © 2017. Published by Elsevier B.V.

  2. Chronic moderate ethanol intake differentially regulates vitamin D hydroxylases gene expression in kidneys and xenografted breast cancer cells in female mice.

    Science.gov (United States)

    García-Quiroz, Janice; García-Becerra, Rocío; Lara-Sotelo, Galia; Avila, Euclides; López, Sofía; Santos-Martínez, Nancy; Halhali, Ali; Ordaz-Rosado, David; Barrera, David; Olmos-Ortiz, Andrea; Ibarra-Sánchez, María J; Esparza-López, José; Larrea, Fernando; Díaz, Lorenza

    2017-10-01

    Factors affecting vitamin D metabolism may preclude anti-carcinogenic effects of its active metabolite calcitriol. Chronic ethanol consumption is an etiological factor for breast cancer that affects vitamin D metabolism; however, the mechanisms underlying this causal association have not been fully clarified. Using a murine model, we examined the effects of chronic moderate ethanol intake on tumoral and renal CYP27B1 and CYP24A1 gene expression, the enzymes involved in calcitriol synthesis and inactivation, respectively. Ethanol (5% w/v) was administered to 25-hydroxyvitamin D3-treated or control mice during one month. Afterwards, human breast cancer cells were xenografted and treatments continued another month. Ethanol intake decreased renal Cyp27b1 while increased tumoral CYP24A1 gene expression.Treatment with 25-hydroxyvitamin D3 significantly stimulated CYP27B1 in tumors of non-alcohol-drinking mice, while increased both renal and tumoral CYP24A1. Coadministration of ethanol and 25-hydroxyvitamin D3 reduced in 60% renal 25-hydroxyvitamin D3-dependent Cyp24a1 upregulation (P<0.05). We found 5 folds higher basal Cyp27b1 than Cyp24a1 gene expression in kidneys, whereas this relation was inverted in tumors, showing 5 folds more CYP24A1 than CYP27B1. Tumor expression of the calcitriol target cathelicidin increased only in 25-hydroxyvitamin D3-treated non-ethanol drinking animals (P<0.05). Mean final body weight was higher in 25-hydroxyvitamin D3 treated groups (P<0.001). Overall, these results suggest that moderate ethanol intake decreases renal and tumoral 25-hydroxyvitamin D3 bioconversion into calcitriol, while favors degradation of both vitamin D metabolites in breast cancer cells. The latter may partially explain why alcohol consumption is associated with vitamin D deficiency and increased breast cancer risk and progression. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Fish Oil Reduces Hepatic Injury by Maintaining Normal Intestinal Permeability and Microbiota in Chronic Ethanol-Fed Rats

    OpenAIRE

    Jiun-Rong Chen; Ya-Ling Chen; Hsiang-Chi Peng; Yu-An Lu; Hsiao-Li Chuang; Hsiao-Yun Chang; Hsiao-Yun Wang; Yu-Ju Su; Suh-Ching Yang

    2016-01-01

    The aim of this study was to investigate the ameliorative effects of fish oil on hepatic injury in ethanol-fed rats based on the intestinal permeability and microbiota. Rats were assigned to 6 groups and fed either a control diet or an ethanol diet such as C (control), CF25 (control with 25% fish oil), CF57 (control with 57% fish oil), E (ethanol), EF25 (ethanol with 25% fish oil), and EF57 (ethanol with 57% fish oil) groups. Rats were sacrificed at the end of 8 weeks. Plasma aspartate aminot...

  4. Hydroethanolic extract of Baccharis trimera promotes gastroprotection and healing of acute and chronic gastric ulcers induced by ethanol and acetic acid.

    Science.gov (United States)

    Dos Reis Lívero, Francislaine Aparecida; da Silva, Luisa Mota; Ferreira, Daniele Maria; Galuppo, Larissa Favaretto; Borato, Debora Gasparin; Prando, Thiago Bruno Lima; Lourenço, Emerson Luiz Botelho; Strapasson, Regiane Lauriano Batista; Stefanello, Maria Élida Alves; Werner, Maria Fernanda de Paula; Acco, Alexandra

    2016-09-01

    Ethanol is a psychoactive substance highly consumed around the world whose health problems include gastric lesions. Baccharis trimera is used in folk medicine for the treatment of gastrointestinal disorders. However, few studies have evaluated its biological and toxic effects. To validate the popular use of B. trimera and elucidate its possible antiulcerogenic and cytotoxic mechanisms, a hydroethanolic extract of B. trimera (HEBT) was evaluated in models of gastric lesions. Rats and mice were used to evaluate the protective and antiulcerogenic effects of HEBT on gastric lesions induced by ethanol, acetic acid, and chronic ethanol consumption. The effects of HEBT were also evaluated in a pylorus ligature model and on gastrointestinal motility. The LD50 of HEBT in mice was additionally estimated. HEBT was analyzed by nuclear magnetic resonance, and a high-performance liquid chromatography fingerprint analysis was performed. Oral HEBT administration significantly reduced the lesion area and the oxidative stress induced by acute and chronic ethanol consumption. However, HEBT did not protect against gastric wall mucus depletion and did not alter gastric secretory volume, pH, or total acidity in the pylorus ligature model. Histologically, HEBT accelerated the healing of chronic gastric ulcers in rats, reflected by contractions of the ulcer base. Flavonoids and caffeoylquinic acids were detected in HEBT, which likely contributed to the therapeutic efficacy of HEBT, preventing or reversing ethanol- and acetic acid-induced ulcers, respectively. HEBT antiulcerogenic activity may be partially attributable to the inhibition of free radical generation and subsequent prevention of lipid peroxidation. Our results indicate that HEBT has both gastroprotective and curative activity in animal models, with no toxicity.

  5. Chronic Ethanol Exposure Effects on Vitamin D Levels Among Subjects with Alcohol Use Disorder

    Science.gov (United States)

    Ogunsakin, Olalekan; Hottor, Tete; Mehta, Ashish; Lichtveld, Maureen; McCaskill, Michael

    2016-01-01

    Vitamin D has been previously recognized to play important roles in human immune system and function. In the pulmonary system, vitamin D regulates the function of antimicrobial peptides, especially cathelicidin/LL-37. Human cathelicidin/LL-37 is a bactericidal, bacteriostatic, and antiviral endogenous peptide with protective immune functions. Chronic exposure to excessive alcohol has the potential to reduce levels of vitamin D (inactive vitamin D [25(OH)D3] and active vitamin D [1, 25(OH)2D3]) and leads to downregulation of cathelicidin/LL-37. Alcohol-mediated reduction of LL-37 may be partly responsible for increased incidence of more frequent and severe respiratory infections among subjects with alcohol use disorder (AUD). The objective of this study was to investigate the mechanisms by which alcohol exerts its influence on vitamin D metabolism. In addition, the aim was to establish associations between chronic alcohol exposures, levels of pulmonary vitamin D, and cathelicidin/LL-37 using broncho-alveolar lavage fluid samples of subjects with AUD and healthy controls. Findings from the experiment showed that levels of inactive vitamin D (25(OH)D3), active vitamin D (1, 25(OH)2D3), cathelicidin/LL-37, and CYP27B1 proteins were significantly reduced (P < 0.05) when compared with the matched healthy control group. However, CYP2E1 was elevated in all the samples examined. Chronic exposure to alcohol has the potential to reduce the levels of pulmonary vitamin D and results in subsequent downregulation of the antimicrobial peptide, LL-37, in the human pulmonary system. PMID:27795667

  6. Reversing gastric mucosal alterations during ethanol-induced chronic gastritis in rats by oral administration of Opuntia ficus-indica mucilage

    Science.gov (United States)

    Vázquez-Ramírez, Ricardo; Olguín-Martínez, Marisela; Kubli-Garfias, Carlos; Hernández-Muñoz, Rolando

    2006-01-01

    AIM: To study the effect of mucilage obtained from cladodes of Opuntia ficus-indica (Cactaceae) on the healing of ethanol-induced gastritis in rats. METHODS: Chronic gastric mucosa injury was treated with mucilage (5 mg/kg per day) after it was induced by ethanol. Lipid composition, activity of 5’-nucleotidase (a membrane-associated ectoenzyme) and cytosolic activities of lactate and alcohol dehydrogenases in the plasma membrane of gastric mucosa were determined. Histological studies of gastric samples from the experimental groups were included. RESULTS: Ethanol elicited the histological profile of gastritis characterized by loss of the surface epithelium and infiltration of polymorphonuclear leukocytes. Phosphatidylcholine (PC) decreased and cholesterol content increased in plasma membranes of the gastric mucosa. In addition, cytosolic activity increased while the activity of alcohol dehydrogenases decreased. The administration of mucilage promptly corrected these enzymatic changes. In fact, mucilage readily accelerated restoration of the ethanol-induced histological alterations and the disturbances in plasma membranes of gastric mucosa, showing a univocal anti-inflammatory effect. The activity of 5’-nucleotidase correlated with the changes in lipid composition and the fluidity of gastric mucosal plasma membranes. CONCLUSION: The beneficial action of mucilage seems correlated with stabilization of plasma membranes of damaged gastric mucosa. Molecular interactions between mucilage monosaccharides and membrane phospholipids, mainly PC and phosphatidylethanolamine (PE), may be the relevant features responsible for changing activities of membrane-attached proteins during the healing process after chronic gastric mucosal damage. PMID:16865772

  7. Antihyperglycemic Effect on Chronic Administration of Butanol Fraction of Ethanol Extract of Moringa Stenopetala Leaves in Alloxan Induced Diabetic Mice

    Institute of Scientific and Technical Information of China (English)

    Alemayehu Toma; Eyasu Makonnen; Asfaw Debella; Birhanu Tesfaye

    2012-01-01

    Objective: The present study was conducted to evaluate the antihyperglycemic activity on chronic administration of the butanol fraction of the ethanol extract of Moringa Stenopetala leaves in alloxan induced diabetic mice. Methods: The mice were grouped in four groups; Normal control, Diabetic control, Butanol fraction treated and standard drug treated groups. The Diabetic mice received the butanol fraction of Moringa stenopetala daily for 28 days. Results: The butanol fraction of Moringastenopetala treatment resulted in significant reduction of fasting blood glucose level, serum total cholesterol and triglycerides level. This fraction also showed a tendency to improve body weight gain in diabetic mice. Its oral LD50 was found to be greater than 5000mg/Kg indicating its safety in mice. Conclusions: Though the mechanism of action of Moringa stenopetala seems to be similar to that of sulfonylureas, further studies should be done to confirm its mechanism of antidiabetic action. Furthermore the active principle(s) responsible for the antidabetic effects should also be identified.

  8. Chronic ethanol feeding increases the severity of Staphylococcus aureus skin infections by altering local host defenses

    Science.gov (United States)

    Parlet, Corey P.; Kavanaugh, Jeffrey S.; Horswill, Alexander R.; Schlueter, Annette J.

    2015-01-01

    Alcoholics are at increased risk of Staphylococcus aureus skin infection and serious sequelae, such as bacteremia and death. Despite the association between alcoholism and severe S. aureus skin infection, the impact of EtOH on anti-S. aureus cutaneous immunity has not been investigated in a model of chronic EtOH exposure. To test the hypothesis that EtOH enhances the severity of S. aureus skin infection, mice were fed EtOH for ≥12 weeks via the Meadows-Cook model of alcoholism and inoculated with S. aureus following epidermal abrasion. Evidence of exacerbated staphylococcal disease in EtOH-fed mice included: skin lesions that were larger and contained more organisms, greater weight loss, and increased bacterial dissemination. Infected EtOH-fed mice demonstrated poor maintenance and induction of PMN responses in skin and draining LNs, respectively. Additionally, altered PMN dynamics in the skin of these mice corresponded with reduced production of IL-23 and IL-1β by CD11b+ myeloid cells and IL-17 production by γδ T cells, with the latter defect occurring in the draining LNs as well. In addition, IL-17 restoration attenuated S. aureus-induced dermatopathology and improved bacterial clearance defects in EtOH-fed mice. Taken together, the findings show, in a novel model system, that the EtOH-induced increase in S. aureus-related injury/illness corresponds with defects in the IL-23/IL-17 inflammatory axis and poor PMN accumulation at the site of infection and draining LNs. These findings offer new information about the impact of EtOH on cutaneous host-defense pathways and provide a potential mechanism explaining why alcoholics are predisposed to S. aureus skin infection. PMID:25605871

  9. Effect of chronic ethanol (EtOH) and aging on drug metabolism in F-344 male rats

    Energy Technology Data Exchange (ETDEWEB)

    Galinsky, R.E.; Johnson, D.H.; Kimura, R.E.; Franklin, M.R. (Univ. of Utah, Salt Lake City (USA))

    1989-02-09

    The effects of chronic ethanol on in vitro and in vivo drug metabolism were examined in 6 and 25 month old male Fischer 344 rats. Animals were divided into three diet groups: (1) Diet containing EtOH, (2) pair-fed controls and (3) rat chow ad lib. Rats in groups 1 and 2 were fed 3 times daily for six weeks via permanent gastrostomy and received EtOH at doses of 5-8 g/kg/day in the first 3 weeks and 12 g/kg/day for the last 3 weeks. Total caloric intake was 90-120 kcal/kg/day. After 6 weeks, the pharmacokinetics of i.v. acetaminophen (A), 30 mg/kg, were examined to probe in vivo drug conjugation. There was no effects of EtOH on the total CL of A in young or old rats. The fraction of the dose recovered in the urine as A-glucuronide and the partial clearance to A-glucuronide was increased by EtOH. There was no effect on the rate of A-sulfate formation. EtOH increased the renal clearance of A but not of A-sulfate or A-glucuronide. In vitro, EtOH increased hepatic cytochrome P-450 concentration and p-nitroanisole demethylase activity, especially in old rats where values returned to those seen in untreated young males. Erythromycin and ethylmorphine demethylase and p-nitrophenol hydroxylase activities were not increased by the EtOH treatment. EtOH increased UDP-glucuronosyltransferase activity towards 1-naphthol, but not towards morphine, estrone, or testosterone. EtOH had no effect on the cytosolic glutathione S-transferase (1-chloro-2,4-dinitrobenzene) and phenol sulfotransferase (p-nitrophenol) activities.

  10. Effect of bicuculline and angiotensin II fragment 3-7 on learning and memory processes in rats chronically treated with ethanol.

    Science.gov (United States)

    Kuziemka-Leska, M; Car, H; Wiśniewski, K

    1998-01-01

    The aim of this study was to determine the possible influence of bicuculline, the antagonist of GABA-A receptor on behavioral activity (recall, acquisition of conditioned reflexes) of angiotension II fragment 3-7 (A II 3-7) in rats chronically treated with ethanol. Long term (9 weeks) ethanol intoxication profoundly impaired learning and memory processes in all testes used. The GABA-A receptor antagonist bicuculline (0.5 mg/kg ip) did not influence exploratory and motor activity in the control rats, but we observed tendency (without significance) to decrease the locomotor activity, in the alcohol-intoxicated groups of animals, when the drug was injected together with A II 3-7 (2 microgram icv). Bicuculline did not influence retrieval process in passive avoidance recall in both investigated groups, and when the drug was given together with AII 3-7 significantly enhanced its action in the control group and in rats chronically treated with ethanol. Bicuculline significantly improved acquisition in the active avoidance test in the control and alcohol-intoxicated groups. Bicuculline injected together with A II 3-7 significantly decreased its action in the control group. Coadministration of bicuculline with A II 3-7 did not significantly change the activity of A II 3-7 in the acquisition of active avoidance test in the alcohol-intoxicated groups of rats.

  11. NEUROPEPTIDE Y (NPY) SUPPRESSES ETHANOL DRINKING IN ETHANOL-ABSTINENT, BUT NOT NON-ETHANOL-ABSTINENT, WISTAR RATS

    OpenAIRE

    Gilpin, N.W.; Stewart, R B; Badia-Elder, N.E.

    2008-01-01

    In outbred rats, increases in brain neuropeptide Y (NPY) activity suppress ethanol consumption in a variety of access conditions, but only following a history of ethanol dependence. NPY reliably suppresses ethanol drinking in alcohol-preferring (P) rats and this effect is augmented following a period of ethanol abstinence. The purpose of this experiment was to examine the effects of NPY on 2-bottle choice ethanol drinking and feeding in Wistar rats that had undergone chronic ethanol vapor exp...

  12. Chronic Nicotine Exposure Initiated in Adolescence and Unpaired to Behavioral Context Fails to Enhance Sweetened Ethanol Seeking

    Directory of Open Access Journals (Sweden)

    Aric C. Madayag

    2017-08-01

    Full Text Available Nicotine use in adolescence is pervasive in the United States and, according to the Gateway Hypothesis, may lead to progression towards other addictive substances. Given the prevalence of nicotine and ethanol comorbidity, it is difficult to ascertain if nicotine is a gateway drug for ethanol. Our study investigated the relationship between adolescent exposure to nicotine and whether this exposure alters subsequent alcohol seeking behavior. We hypothesized that rats exposed to nicotine beginning in adolescence would exhibit greater alcohol seeking behavior than non-exposed siblings. To test our hypothesis, beginning at P28, female rats were initially exposed to once daily nicotine (0.4 mg/kg, SC or saline for 5 days. Following these five initial injections, animals were trained to nose-poke for sucrose reinforcement (10%, w/v, gradually increasing to sweetened ethanol (10% sucrose; 10% ethanol, w/v on an FR5 reinforcement schedule. Nicotine injections were administered after the behavioral sessions to minimize acute effects of nicotine on operant self-administration. We measured the effects of nicotine exposure on the following aspects of ethanol seeking: self-administration, naltrexone (NTX-induced decreases, habit-directed behavior, motivation, extinction and reinstatement. Nicotine exposure did not alter self-administration or the effectiveness of NTX to reduce alcohol seeking. Nicotine exposure blocked habit-directed ethanol seeking. Finally, nicotine did not alter extinction learning or cue-induced reinstatement to sweetened ethanol seeking. Our findings suggest that nicotine exposure outside the behavioral context does not escalate ethanol seeking. Further, the Gateway Hypothesis likely applies to scenarios in which nicotine is either self-administered or physiologically active during the behavioral session.

  13. Hepatoprotective effects of Arctium lappa Linne on liver injuries induced by chronic ethanol consumption and potentiated by carbon tetrachloride.

    Science.gov (United States)

    Lin, Song-Chow; Lin, Chia-Hsien; Lin, Chun-Ching; Lin, Yun-Ho; Chen, Chin-Fa; Chen, I-Cheng; Wang, Li-Ya

    2002-01-01

    Arctium lappa Linne (burdock) is a perennial herb which is popularly cultivated as a vegetable. In order to evaluate its hepatoprotective effects, a group of rats (n = 10) was fed a liquid ethanol diet (4 g of absolute ethanol/ 80 ml of liquid basal diet) for 28 days and another group (n = 10) received a single intraperitoneal injection of 0.5 ml/kg carbon tetrachloride (CCl(4)) in order to potentiate the liver damage on the 21st day (1 day before the beginning of A. lappa treatment). Control group rats were given a liquid basal diet which did not contain absolute ethanol. When 300 mg/kg A. lappa was administered orally 3 times per day in both the 1-day and 7-day treatment groups, some biochemical and histopathological parameters were significantly altered, both in the ethanol group and the groups receiving ethanol supplemented with CCl(4). A. lappa significantly improved various pathological and biochemical parameters which were worsened by ethanol plus CCl(4)-induced liver damage, such as the ethanol plus CCl(4)-induced decreases in total cytochrome P-450 content and NADPH-cytochrome c reductase activity, increases in serum triglyceride levels and lipid peroxidation (the deleterious peroxidative and toxic malondialdehyde metabolite may be produced in quantity) and elevation of serum transaminase levels. It could even restore the glutathione content and affect the histopathological lesions. These results tended to imply that the hepatotoxicity induced by ethanol and potentiated by CCl(4) could be alleviated with 1 and 7 days of A. lappa treatment. The hepatoprotective mechanism of A. lappa could be attributed, at least in part, to its antioxidative activity, which decreases the oxidative stress of hepatocytes, or to other unknown protective mechanism(s).

  14. Distinct Effects of Nalmefene on Dopamine Uptake Rates and Kappa Opioid Receptor Activity in the Nucleus Accumbens Following Chronic Intermittent Ethanol Exposure

    Directory of Open Access Journals (Sweden)

    Jamie H. Rose

    2016-07-01

    Full Text Available The development of pharmacotherapeutics that reduce relapse to alcohol drinking in patients with alcohol dependence is of considerable research interest. Preclinical data support a role for nucleus accumbens (NAc κ opioid receptors (KOR in chronic intermittent ethanol (CIE exposure-induced increases in ethanol intake. Nalmefene, a high-affinity KOR partial agonist, reduces drinking in at-risk patients and relapse drinking in rodents, potentially due to its effects on NAc KORs. However, the effects of nalmefene on accumbal dopamine transmission and KOR function are poorly understood. We investigated the effects of nalmefene on dopamine transmission and KORs using fast scan cyclic voltammetry in NAc brain slices from male C57BL/6J mice following five weeks of CIE or air exposure. Nalmefene concentration-dependently reduced dopamine release similarly in air and CIE groups, suggesting that dynorphin tone may not be present in brain slices. Further, nalmefene attenuated dopamine uptake rates to a greater extent in brain slices from CIE-exposed mice, suggesting that dopamine transporter-KOR interactions may be fundamentally altered following CIE. Additionally, nalmefene reversed the dopamine-decreasing effects of a maximal concentration of a KOR agonist selectively in brain slices of CIE-exposed mice. It is possible that nalmefene may attenuate withdrawal-induced increases in ethanol consumption by modulation of dopamine transmission through KORs.

  15. Chronic ethanol intake modifies pyrrolidon carboxypeptidase activity in mouse frontal cortex synaptosomes under resting and K+ -stimulated conditions: role of calcium.

    Science.gov (United States)

    Mayas, María Dolores; Ramírez-Expósito, María Jesús; García-López, María Jesús; Carrera, María Pilar; Martínez-Martos, José Manuel

    2008-07-04

    Pyrrolidon carboxypeptidase (Pcp) is an omega peptidase that removes pyroglutamyl N-terminal residues of peptides such as thyrotrophin-releasing hormone (TRH), which is one of the neuropeptides that has been localized into many areas of the brain and acts as an endogenous neuromodulator of several parameters related to ethanol (EtOH) consumption. In this study, we analysed the effects of chronic EtOH intake on Pcp activity on mouse frontal cortex synaptosomes and their corresponding supernatant under basal and K+ -stimulated conditions, in presence and absence of calcium (Ca2+) to know the regulation of Pcp on TRH. In basal conditions, chronic EtOH intake significantly decreased synaptosomes Pcp activity but only in absence of Ca2+. However, supernatant Pcp activity is also decreased in presence and absence of calcium. Under K+-stimulated conditions, chronic EtOH intake decreased synaptosomes Pcp activity but only in absence of Ca2+, whereas supernatant Pcp activity was significantly decreased only in presence of Ca2+. The general inhibitory effect of chronic EtOH intake on Pcp activity suggests an inhibition of TRH metabolism and an enhancement of TRH neurotransmitter/neuromodulator functions, which could be related to putative processes of tolerance to EtOH in which TRH has been involved. Our data may also indicate that active peptides and their degrading peptidases are released together to the synaptic cleft to regulate the neurotransmitter/neuromodulator functions of these peptides, through a Ca2+ -dependent mechanism.

  16. Effects of quercetin on hyper-proliferation of gastric mucosal cells in rats treated with chronic oral ethanol through the reactive oxygen species-nitric oxide pathway

    Institute of Scientific and Technical Information of China (English)

    Jing-Li Liu; Jun Du; Ling-Ling Fan; Xiao-Yan Liu; Luo Gu; Ying-Bin Ge

    2008-01-01

    AIM:To investigate the effect of quercetin (3,3,4',5,7-pentahydroxy flavone),a major flavonoid in human diet,on hyper-proliferation of gastric mucosal cells in rats treated with chronic oral ethanol.METHODS:Forty male Sprague-Dawley rats,weighing 200-250 g,were randomly divided into control group (tap water ad//b/tum),ethanol treatment group (6 mL/L ethanol),quercetin treatment group (intragastric garage with 100 mg/kg of quercetin per day),and ethanol plus quercetin treatment group (quercetin and 6 mL/L ethanol).Expression levels of proliferating cell nuclear antigen (PCNA) and Cyclin D1 were detected by Western blot to assay gastric mucosal cell proliferation in rats.To demonstrate the influence of quercetin on the production of extra-cellular reactive oxygen species/nitrogen species (ROS/RNS) in rats,changes in levels of thiobarbituric acid reactive substance (TBAR5),protein carbonyl,nitrite and nitrate (NOx) and nitrotyrosine (NT) were determined.The activity of inducible nitric oxide synthase (NOS) including iNOS and nNOS was also detected by Western blot,RESULTS:Compared to control animals,cell proliferation in the gastric mucosa of animals subjected to ethanol treatment for 7 days was significant increased (increased to 290% for PCNA density P < 0.05,increased to150 for Cyclin D1 density P < 0.05 and 21.6 + 0.8 vs 42.3 + 0.7 for PCNA positive cells per view field),accompanied by an increase in ROS generation (1.298 ± 0.135 μmol vs 1.772 ± 0.078 μmol for TBARS P < 0.05;4.36 + 0.39 mmol vs 7.48 4- 0.40 mmol for carbonyl contents P < 0.05) and decrease in NO generation (11.334 + 0.467 μmol vs 7.978 ± 0.334 μmol P < 0.01 for NOx;8.986 ± 1.351 μmol vs 6.854 ± 0.460 μmol for nitrotyrosine P < 0.01) and nNOS activity (decreased to 43% P < 0.05).This function was abolished by the co-administration of quercetin.CONCLUSION:The antioxidant action of quercetin relies,in part,on its ability to stimulate nNOS and enhance production of NO that

  17. Deletion of GSTA4-4 results in increased mitochondrial post-translational modification of proteins by reactive aldehydes following chronic ethanol consumption in mice

    Directory of Open Access Journals (Sweden)

    Colin T. Shearn

    2016-04-01

    Full Text Available Chronic alcohol consumption induces hepatic oxidative stress resulting in production of highly reactive electrophilic α/β-unsaturated aldehydes that have the potential to modify proteins. A primary mechanism of reactive aldehyde detoxification by hepatocytes is through GSTA4-driven enzymatic conjugation with GSH. Given reports that oxidative stress initiates GSTA4 translocation to the mitochondria, we hypothesized that increased hepatocellular damage in ethanol (EtOH-fed GSTA4−/− mice is due to enhanced mitochondrial protein modification by reactive aldehydes. Chronic ingestion of EtOH increased hepatic protein carbonylation in GSTA4−/− mice as evidenced by increased 4-HNE and MDA immunostaining in the hepatic periportal region. Using mass spectrometric analysis of biotin hydrazide conjugated carbonylated proteins, a total of 829 proteins were identified in microsomal, cytosolic and mitochondrial fractions. Of these, 417 were novel to EtOH models. Focusing on mitochondrial fractions, 1.61-fold more carbonylated proteins were identified in EtOH-fed GSTA4−/− mice compared to their respective WT mice ingesting EtOH. Bioinformatic KEGG pathway analysis of carbonylated proteins from the mitochondrial fractions revealed an increased propensity for modification of proteins regulating oxidative phosphorylation, glucose, fatty acid, glutathione and amino acid metabolic processes in GSTA4−/− mice. Additional analysis revealed sites of reactive aldehyde protein modification on 26 novel peptides/proteins isolated from either SV/GSTA4−/− PF or EtOH fed mice. Among the peptides/proteins identified, ACSL, ACOX2, MTP, and THIKB contribute to regulation of fatty acid metabolism and ARG1, ARLY, and OAT, which regulate nitrogen and ammonia metabolism having direct relevance to ethanol-induced liver injury. These data define a role for GSTA4-4 in buffering hepatic oxidative stress associated with chronic alcohol consumption and that this GST

  18. Chronic intermittent ethanol exposure during adolescence: Effects on stress-induced social alterations and social drinking in adulthood.

    Science.gov (United States)

    Varlinskaya, Elena I; Kim, Esther U; Spear, Linda P

    2017-01-01

    We previously observed lasting and sex-specific detrimental consequences of early adolescent intermittent ethanol exposure (AIE), with male, but not female, rats showing social anxiety-like alterations when tested as adults. The present study used Sprague Dawley rats to assess whether social alterations induced by AIE (3.5g/kg, intragastrically, every other day, between postnatal days [P] 25-45) are further exacerbated by stressors later in life. Another aim was to determine whether AIE alone or in combination with stress influenced intake of a sweetened ethanol solution (Experiment 1) or a sweetened solution ("supersac") alone (Experiment 2) under social circumstances. Animals were exposed to restraint on P66-P70 (90min/day) or left nonstressed, with corticosterone (CORT) levels assessed on day 1 and day 5 in Experiment 2. Social anxiety-like behavior emerged after AIE in non-stressed males, but not females, whereas stress-induced social anxiety was evident only in water-exposed males and females. Adult-typical habituation of the CORT response to repeated restraint was not evident in adult animals after AIE, a lack of habituation reminiscent of that normally evident in adolescents. Neither AIE nor stress affected ethanol intake under social circumstances, although AIE and restraint independently increased adolescent-typical play fighting in males during social drinking. Among males, the combination of AIE and restraint suppressed "supersac" intake; this index of depression-like behavior was not seen in females. The results provide experimental evidence associating adolescent alcohol exposure, later stress, anxiety, and depression, with young adolescent males being particularly vulnerable to long-lasting adverse effects of repeated ethanol. This article is part of a Special Issue entitled SI: Adolescent plasticity. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Antilipogenic and Anti-Inflammatory Activities of Codonopsis lanceolata in Mice Hepatic Tissues after Chronic Ethanol Feeding

    Directory of Open Access Journals (Sweden)

    Areum Cha

    2012-01-01

    Full Text Available This study evaluated the antilipogenic and anti-inflammatory effects of Codonopsis lanceolata (C. lanceolata root extract in mice with alcohol-induced fatty liver and elucidated its underlying molecular mechanisms. Ethanol was introduced into the liquid diet by mixing it with distilled water at 5% (wt/v, providing 36% of the energy, for nine weeks. Among the three different fractions prepared from the C. lanceolata root, the C. lanceolata methanol extract (CME exhibited the most remarkable attenuation of alcohol-induced fatty liver with respect to various parameters such as hepatic free fatty acid concentration, body weight loss, and hepatic accumulations of triglyceride and cholesterol. The hepatic gene and protein expression levels were analysed via RT-PCR and Western blotting, respectively. CME feeding significantly restored the ethanol-induced downregulation of the adiponectin receptor (adipoR 1 and of adipoR2, along with their downstream molecules. Furthermore, the study data showed that CME feeding dramatically reversed ethanol-induced hepatic upregulation of toll-like receptor- (TLR- mediated signaling cascade molecules. These results indicate that the beneficial effects of CME against alcoholic fatty livers of mice appear to be with adenosine- and adiponectin-mediated regulation of hepatic steatosis and TLR-mediated modulation of hepatic proinflammatory responses.

  20. Anti-inflammatory activity of four solvent fractions of ethanol extract of Mentha spicata L. investigated on acute and chronic inflammation induced rats.

    Science.gov (United States)

    Arumugam, P; Priya, N Gayatri; Subathra, M; Ramesh, A

    2008-07-01

    Anti-inflammatory effects of four solvent fractions of ethanol extract of Mentha spicata were evaluated in acute and chronic inflammation induced in Wistar albino rats. Lipid peroxidation (LPO) and some antioxidants produced during chronic inflammation were quantitated. Hexane (320mg/kg of body weight in 25% DMSO), chloroform (320mg/kg body weight in 25% DMSO), ethyl acetate (160mg/kg body weight in 25% DMSO), aqueous (320mg/kg of body weight in ddH(2)O) fractions, two negative control groups (25% DMSO and ddH(2)O) and two anti-inflammatory drugs (Diclofenac: 25mg/kg of body weight; Indomethacin: 10mg/kg of body weight both in ddH(2)O) were administered by oral intubations to the eight groups of rats consisting six animals, each. In acute study, 1% carrageenan was injected subcutaneously in the sub-plantar region of the right hind paw after 1h of administration of test doses. The increased paw edema was measured at 0.5, 1, 2, 4, 8, 16 and 24h intervals. In the chronic study, the oral administration was carried out for seven consecutive days. On eighth day, four sterile cotton pellets (50mg each) were implanted subcutaneously in the dorsal region of the rats. On the sixteenth day, the rats were sacrificed and the cotton pellets with granulomatous tissue were dissected out and weighed (fresh and dry). Both in chronic and acute inflammation, ethyl acetate (EAF) and aqueous fraction (AF) were effective. EAF is comparable with the positive standards in chronic inflammation. The results indicate that EAF's anti-inflammatory activity is largely due to its ability to modulate in vivo antioxidants.

  1. Attenuation of oxidative stress, inflammation and apoptosis by ethanolic and aqueous extracts of Crocus sativus L. stigma after chronic constriction injury of rats

    Directory of Open Access Journals (Sweden)

    BAHAREH AMIN

    2014-12-01

    Full Text Available In our previous study, the ethanolic and aqueous extracts of Crocus sativus elicited antinociceptive effects in the chronic constriction injury (CCI model of neuropathic pain. In this study, we explored anti-inflammatory, anti-oxidant and anti-apoptotic effects of such extracts in CCI animals. A total of 72 animals were divided as vehicle-treated CCI rats, sham group, CCI animals treated with the effective dose of aqueous and ethanolic extracts (200 mg/kg, i.p.. The lumbar spinal cord levels of proinflammatory cytokines including tumor necrosis factor α (TNF-α, interleukin-1β (IL-1β and interleukin 6 (IL-6, were evaluated at days 3 and 7 after CCI (n=3, for each group. The apoptotic protein changes were evaluated at days 3 and 7 by western blotting. Oxidative stress markers including malondialdehyde (MDA and glutathione reduced (GSH, were measured on day 7 after CCI. Inflammatory cytokines levels increased in CCI animals on days 3 and 7, which were suppressed by both extracts. The ratio of Bax/ Bcl2 was elevated on day 3 but not on day 7, in CCI animals as compared to sham operated animals and decreased following treatment with both extracts at this time. Both extracts attenuated MDA and increased GSH levels in CCI animals. It may be concluded that saffron alleviates neuropathic pain, at least in part, through attenuation of proinflammatory cytokines, antioxidant activity and apoptotic pathways.

  2. Attenuation of oxidative stress, inflammation and apoptosis by ethanolic and aqueous extracts of Crocus sativus L. stigma after chronic constriction injury of rats.

    Science.gov (United States)

    Amin, Bahareh; Abnous, Khalil; Motamedshariaty, Vahideh; Hosseinzadeh, Hossein

    2014-12-01

    In our previous study, the ethanolic and aqueous extracts of Crocus sativus elicited antinociceptive effects in the chronic constriction injury (CCI) model of neuropathic pain. In this study, we explored anti-inflammatory, anti-oxidant and anti-apoptotic effects of such extracts in CCI animals. A total of 72 animals were divided as vehicle-treated CCI rats, sham group, CCI animals treated with the effective dose of aqueous and ethanolic extracts (200 mg/kg, i.p.). The lumbar spinal cord levels of proinflammatory cytokines including tumor necrosis factor α (TNF-α), interleukin-1β (IL-1β) and interleukin 6 (IL-6), were evaluated at days 3 and 7 after CCI (n=3, for each group). The apoptotic protein changes were evaluated at days 3 and 7 by western blotting. Oxidative stress markers including malondialdehyde (MDA) and glutathione reduced (GSH), were measured on day 7 after CCI. Inflammatory cytokines levels increased in CCI animals on days 3 and 7, which were suppressed by both extracts. The ratio of Bax/ Bcl2 was elevated on day 3 but not on day 7, in CCI animals as compared to sham operated animals and decreased following treatment with both extracts at this time. Both extracts attenuated MDA and increased GSH levels in CCI animals. It may be concluded that saffron alleviates neuropathic pain, at least in part, through attenuation of proinflammatory cytokines, antioxidant activity and apoptotic pathways.

  3. Ethanol poisoning

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/002644.htm Ethanol poisoning To use the sharing features on this page, please enable JavaScript. Ethanol poisoning is caused by drinking too much alcohol. ...

  4. Evaluation of Acute and Sub-chronic Toxicities of Aqueous Ethanol Root Extract of Raphia hookeri Palmaceae on Swiss Albino Rats

    Directory of Open Access Journals (Sweden)

    G.O. Mbaka

    2014-08-01

    Full Text Available This study evaluated the acute and sub-chronic toxicities of treatment with aqueous ethanol root extract of Raphia hookri (Palmaceae on rats. In acute toxicity study, the root extract in a graded doses of 125-2000 mg/kg bwt administered Intra-Peritoneal (IP produced dose dependent mortality with median acute toxicity (LD50 of approximately 562.3 mg/kg bwt. The animals fed with the extract by gavages tolerated up to 4000 mg/kg body weight (bwt with no sign of physical/behavioural changes hence 1/20th of the dose (200 mg/kg was used as the highest therapeutic dose. In sub-chronic toxicity study, significant increase (p0.05 decrease in Red Blood Cell (RBC count and haemoglobin (Hb level while White Blood Cell (WBC showed increase. In tissue analysis, the extract caused marked deleterious effect on the testes leading to drastic reduction in sperm cells whereas tissues of liver, kidney and heart however showed normal appearance.

  5. Ethanol Basics

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-01-30

    Ethanol is a widely-used, domestically-produced renewable fuel made from corn and other plant materials. More than 96% of gasoline sold in the United States contains ethanol. Learn more about this alternative fuel in the Ethanol Basics Fact Sheet, produced by the U.S. Department of Energy's Clean Cities program.

  6. Protracted abstinence from chronic ethanol exposure alters the structure of neurons and expression of oligodendrocytes and myelin in the medial prefrontal cortex.

    Science.gov (United States)

    Navarro, A I; Mandyam, C D

    2015-05-01

    In rodents, chronic intermittent ethanol vapor exposure (CIE) produces alcohol dependence, alters the structure and activity of pyramidal neurons and decreases the number of oligodendroglial progenitors in the medial prefrontal cortex (mPFC). In this study, adult Wistar rats were exposed to seven weeks of CIE and were withdrawn from CIE for 21 days (protracted abstinence; PA). Tissue enriched in the mPFC was processed for Western blot analysis and Golgi-Cox staining to investigate the long-lasting effects of CIE on the structure of mPFC neurons and the levels of myelin-associated proteins. PA increased dendritic arborization within apical dendrites of pyramidal neurons. These changes occurred concurrently with hypophosphorylation of the N-methyl-d-aspartate (NMDA) receptor 2B (NR2B) at Tyr-1472. PA increased myelin basic protein (MBP) levels which occurred concurrently with hypophosphorylation of the premyelinating oligodendrocyte bHLH transcription factor Olig2 in the mPFC. Given that PA is associated with increased sensitivity to stress and hypothalamic-pituitary-adrenal (HPA) axis dysregulation, and stress alters oligodendrocyte expression as a function of glucocorticoid receptor (GR) activation, the levels of total GR and phosphorylated GR were also evaluated. PA produced hypophosphorylation of the GR at Ser-232 without affecting expression of total protein. These findings demonstrate persistent and compensatory effects of ethanol in the mPFC long after cessation of CIE, including enhanced myelin production and impaired GR function. Collectively, these results suggest a novel relationship between oligodendrocytes and GR in the mPFC, in which stress may alter frontal cortex function in alcohol dependent subjects by promoting hypermyelination, thereby altering the cellular composition and white matter structure in the mPFC.

  7. Chronic intermittent ethanol exposure alters stress effects on (3α,5α-3-hydroxy-pregnan-20-one (3α,5α-THP immunolabeling of amygdala neurons in C57BL/6J mice

    Directory of Open Access Journals (Sweden)

    Antoniette M Maldonado-Devincci

    2016-03-01

    Full Text Available The GABAergic neuroactive steroid (3α,5α-3-hydroxy-pregnan-20-one (3α,5α-THP, allopregnanolone is decreased in various brain regions of C57BL/6J mice following exposure to an acute stressor or chronic intermittent ethanol (CIE exposure and withdrawal. It is well established that there are complex interactions between stress and ethanol drinking, with mixed literature regarding the effects of stress on ethanol intake. However, there is little research examining how chronic ethanol exposure alters stress responses. The present work examined the impact of CIE exposure and withdrawal on changes in brain levels of 3α,5α-THP, hormonal, and behavioral responses to forced swim stress (FSS. Adult male C57BL/6J mice were exposed to four cycles of CIE to induce ethanol dependence. Following 8 or 72 hr withdrawal, mice were subjected to FSS for 10 min, and 50 min later brains were collected for immunohistochemical analysis of cellular 3α,5α-THP. Behavioral and circulating corticosterone responses to the FSS were quantified. Following 8 hr withdrawal, ethanol exposure potentiated the corticosterone response to FSS. Following 72 hr withdrawal, this difference was no longer observed. Following 8 hr withdrawal, stress-exposed mice showed no differences in immobility, swimming or struggling behavior. However, following 72 hr withdrawal, ethanol-exposed mice showed less immobility and greater swimming behavior compared to air-exposed mice. Interestingly, cellular 3α,5α-THP levels were increased in the lateral amygdala 8 hr and 72 hr post-withdrawal in stressed ethanol-exposed mice compared to ethanol-exposed/non-stressed mice. In the paraventricular nucleus of the hypothalamus, stress exposure decreased 3α,5α-THP levels compared to controls following 72 hr withdrawal, but no differences were observed 8 hr post-withdrawal. There were no differences in cellular 3α,5α-THP levels in the nucleus accumbens shell at either withdrawal time point. These data

  8. Chronic prenatal ethanol exposure increases glucocorticoid-induced glutamate release in the hippocampus of the near-term foetal guinea pig.

    Science.gov (United States)

    Iqbal, U; Brien, J F; Kapoor, A; Matthews, S G; Reynolds, J N

    2006-11-01

    Exposure to high cortisol concentration can injure the developing brain, possibly via an excitotoxic mechanism involving glutamate (Glu). The present study tested the hypothesis that chronic prenatal ethanol exposure (CPEE) activates the foetal hypothalamic-pituitary-adrenal axis to produce high cortisol exposure in the foetal compartment and alters sensitivity to glucocorticoid-induced Glu release in the foetal hippocampus. Pregnant guinea pigs received daily oral administration of ethanol (4 g/kg maternal body weight/day) or isocaloric-sucrose/pair-feeding from gestational day (GD) 2 until GD 63 (term, approximately GD 68) at which time they were euthanised, 1 h after their final treatment. Adrenocorticotrophic hormone (ACTH) and cortisol concentrations were determined in foetal plasma. Basal and electrically stimulated Glu and gamma-aminobutyric acid (GABA) efflux in the presence or absence of dexamethasone (DEX), a selective glucocorticoid-receptor agonist, were determined ex vivo in foetal hippocampal slices. Glucocorticoid receptor (GR), mineralocorticoid receptor (MR) and N-methyl-D-aspartate (NMDA) receptor NR1 subunit mRNA expression were determined in situ in the hippocampus and dentate gyrus. In the near-term foetus, CPEE increased foetal plasma ACTH and cortisol concentrations. Electrically stimulated glutamate, but not GABA, release was increased in CPEE foetal hippocampal slices. Low DEX concentration (0.3 microM) decreased stimulated glutamate, but not GABA, release in both CPEE and control foetal hippocampal slices. High DEX concentration (3.0 microM) increased basal release of Glu, but not GABA, in CPEE foetal hippocampal slices. GR, but not MR, mRNA expression was elevated in the hippocampus and dentate gyrus, whereas NR1 mRNA expression was increased in the CA1 and CA3 fields of the foetal hippocampus. These data demonstrate that CPEE increases high glucocorticoid concentration-induced Glu release in the foetal hippocampus, presumably as a

  9. Effects of ethanol, acetaldehyde and cholesteryl esters on pancreatic lysosomes.

    OpenAIRE

    Wilson, J S; Apte, M V; Thomas, M. C.; Haber, P S; Pirola, R C

    1992-01-01

    Recent studies indicate that altered lysosomal function may be involved in the early stages of pancreatic injury. Chronic consumption of ethanol increases rat pancreatic lysosomal fragility. The aim of this study is to determine whether the lysosomal fragility observed after chronic ethanol consumption is mediated by ethanol per se, its oxidative metabolite acetaldehyde or cholesteryl esters (substances which accumulate in the pancreas after ethanol consumption). Pancreatic lysosomes from cho...

  10. Evaluation of aqueous and ethanolic extracts of saffron, Crocus sativus L., and its constituents, safranal and crocin in allodynia and hyperalgesia induced by chronic constriction injury model of neuropathic pain in rats.

    Science.gov (United States)

    Amin, Bahareh; Hosseinzadeh, Hossein

    2012-07-01

    The current study was designed to evaluate therapeutic potential of systemically administered ethanolic and aqueous extracts of saffron as well as its bioactive ingredients, safranal and crocin, in chronic constriction injury (CCI)-induced neuropathic pain in rats. The von Frey filaments, acetone drop, and radiant heat test were performed to assess the degree of mechanical allodynia, thermal allodynia and thermal hyperalgesia respectively, at different time intervals, i.e., one day before surgery and 3, 5, 7 and 10 days post surgery. The ambulatory behavior was evaluated using the open field test. A 7-day treatment with the ethanolic and aqueous extracts (50,100 and 200 mg/kg, i.p.) and safranal (0.025, 0.05 and 0.1 mg/kg, i.p.), attenuated the behavioral symptoms of neuropathic pain in a dose dependent manner. Crocin even at the high dose (50 mg/kg) failed to produce any protective role. However, gabapentine (100 mg/kg) as a reference drug significantly alleviated all behavioral manifestations of neuropathic pain compared to control group. In conclusion, the results of this study suggest that ethanolic and aqueous extracts of saffron as well as safranal could be useful in treatment of different kinds of neuropathic pains and as an adjuvant to conventional medicines.

  11. Cellulosic ethanol

    DEFF Research Database (Denmark)

    Lindedam, Jane; Bruun, Sander; Jørgensen, Henning

    2010-01-01

    Background Variations in sugar yield due to genotypic qualities of feedstock are largely undescribed for pilot-scale ethanol processing. Our objectives were to compare glucose and xylose yield (conversion and total sugar yield) from straw of five winter wheat cultivars at three enzyme loadings (2...

  12. 长期饮酒减少大鼠睾丸间质细胞PBR和 StAR蛋白表达%Decreased protein expressions of PBR and StAR of Leydig cells in rats with chronic ethanol feeding

    Institute of Scientific and Technical Information of China (English)

    汪海东; 郑冬梅; 冯丽; 侯晓磊; 高聆; 赵家军

    2008-01-01

    目的 研究慢性饮酒对雄性大鼠睾丸外周型苯二氮类受体(PBR)和类固醇生成快速调节蛋白(StAR)表达的影响.方法 以不同浓度的乙醇饲养40只Wistar大鼠 20 周,检测睾丸组织PBR和StAR蛋白的表达.结果 慢性饮酒Wistar大鼠的睾丸曲精小管生精细胞层明显减少,管腔中可见断裂的精子鞭毛,少见完整的精子;免疫沉淀显示PBR和StAR蛋白表达下降,与对照组相比较,小、中、大剂量饮酒组PBR和StAR表达分别下降13.8%、20.9%、50.4%和34.5%、37.7%、95.2%;免疫组化显示小、中、大剂量饮酒组睾丸间质组织中的PBR和StAR表达面积分别减少33.27 %、37.71 %、63.59 %和27.12 %、51.84 %、58.41 %.结论 慢性饮酒能降低睾丸间质PBR和StAR蛋白表达,且其与乙醇浓度呈正相关.%Objective To investigate the expressions of peripheral type benzodiazepine receptor (PBR) and steroidogenic acute regulatory protein (StAR) of testis in rats with chronic ethanol feeding.Methods Forty rats were treated with different ethanol dosages for twenty weeks, the morphology of testis and protein expressions of PBR and StAR were observed.Results In the ethanol-feeding rats, seminiferous tubular wall of testes became thin and the layer of germ cells was significantly reduced, moreover, the broken spermatozoon′s flagella were frequently observed and few integrated spermatozoa were produced.Compared with control group, the protein expressions of PBR and StAR protein were reduced by 13.8%, 20.9%, 50.4% and 34.5%, 37.7%, 95.2% in low-, middle- and high-dose ethanol feeding group respectively by immunoprecipitation.Similarly, both locating at interstitial cells in testes were also decreased by 33.27 %, 37.71 %, 63.59 % and 27.12 %, 51.84 %, 58.41% in the same ethanol feeding groups respectively by immunohistochemistry.Conclusion Both PBR and StAR protein expressions are decreased in interstitial cells of testes in chronic ethanol-feeding rats, which shows

  13. The turmeric protective properties at ethanol-induced behavioral disorders.

    Directory of Open Access Journals (Sweden)

    Goldina I.A.

    2017-03-01

    Full Text Available The aim of the study was to determine the effect of mechanically modified turmeric extract on the parameters of orienting-exploratory behavior in mice with chronic ethanol consumption. Material and methods. Mice behavior was assessed in the "open field" test. In the both control groups the animals received water or 10% ethanol solution; in the test group — turmeric extract in 10% ethanol solution. Amount of blood mononuclear cells, thymocytes, and splenocytes were estimated. Results. Analysis of the behavioral parameters in animals after chronic exposure to ethanol showed suppression of motor and exploratory components of the behavior. In mice that received both ethanol and turmeric extract recorded behavior parameters were significantly higher than in the group of animals who received ethanol only. It was shown that the turmeric extract enhances the amount of blood immune cells. Conclusion. Mechanically modified turmeric extract possesses protective properties against ethanol-induced behavioral disorders.

  14. Ethanol consumption as inductor of pancreatitis

    Institute of Scientific and Technical Information of China (English)

    José; A; Tapia; Ginés; M; Salido; Antonio; González

    2010-01-01

    Alcohol abuse is a major cause of pancreatitis, a condition that can manifest as both acute necroinflammation and chronic damage (acinar atrophy and f ibrosis). Pancreatic acinar cells can metabolize ethanol via the oxidative pathway, which generates acetaldehyde and involves the enzymes alcohol dehydrogenase and possibly cytochrome P4502E1. Additionally, ethanol can be metabolized via a nonoxidative pathway involving fatty acid ethyl ester synthases. Metabolism of ethanol by acinar and other pancreatic cells and the consequent generation of toxic metabolites, are postulated to play an important role in the development of alcohol-related acute and chronic pancreatic injury. This current work will review some recent advances in the knowledge about ethanol actions on the exocrine pancreas and its relationship to inflammatory disease and cancer.

  15. Cytologic alterations in the oral mucosa after chronic exposure to ethanol Alterações citológicas na mucosa bucal após exposição crônica ao etanol

    Directory of Open Access Journals (Sweden)

    Sílvia Regina de Almeida Reis

    2006-04-01

    Full Text Available The effects of ethanol alone on the oral mucosa are still poorly understood, especially because there are few non-smoking chronic consumers of alcoholic beverages. The aim of this study was to evaluate the frequency of micronucleus, abnormal nucleus/cytoplasm ratio, pyknosis, karyorrhexis and karyolysis in exfoliated cells from the buccal mucosa and from the lateral border of the tongue in 36 non-smoker alcoholics (ethanol group and 18 non-smokers and non-drinkers (control group. The Papanicolaou method was used. Since alcoholics generally have hepatobiliary involvement, the association between serum gamma-glutamyl transpeptidase (GGT and some of the analyzed oral mucosa alterations was also investigated. The ethanol group showed a significant increase in the frequency of all alterations analyzed in the tongue cells when compared with the control group (p 0.05; Mann-Whitney. In the ethanol group, the correlation between serum GGT and the frequency of micronucleus and abnormal nucleus/cytoplasm ratio in oral mucosa cells was not significant (p > 0.05; Spearman. In conclusion, chronic exposure to ethanol may be associated with carcinogenic cytologic changes in the oral mucosa, even in the absence of tobacco smoking. These alterations were not correlated with hepatobiliary injury.Os efeitos do etanol isoladamente sobre a mucosa bucal permanecem pouco esclarecidos, sobretudo devido ao baixo número de não-fumantes consumidores crônicos de bebidas alcoólicas. O objetivo deste estudo foi avaliar as freqüências de micronúcleo, relação núcleo/citoplasma anormal, picnose, cariorrexe e cariólise em células esfoliadas da mucosa jugal e do bordo lateral da língua de 36 alcoólatras não-fumantes (grupo etanol e 18 abstêmios de álcool e fumo (grupo controle. O método de Papanicolaou foi utilizado. Uma vez que indivíduos alcoólatras geralmente apresentam comprometimento hepatobiliar, a associação entre gama-glutamil transpeptidase (GGT s

  16. Inhibitory Effect of the Hexane Fraction of the Ethanolic Extract of the Fruits of Pterodon pubescens Benth in Acute and Chronic Inflammation

    Directory of Open Access Journals (Sweden)

    Jaqueline Hoscheid

    2013-01-01

    Full Text Available Fruits of Pterodon pubescens Benth have been used traditionally for the treatment of rheumatism, sore throat, and respiratory disorders, and also as anti-inflammatory, analgesic, depurative, tonic, and hypoglycemic agent. The study was aimed at evaluating the anti-inflammatory activity of the hexane fraction of an ethanolic extract of P. pubescens fruits. The oil from P. pubescens fruits was extracted with ethanol and partitioned with hexane. The anti-inflammatory activity was measured with increasing doses of the hexane fraction (FHPp by using a carrageenan-induced rat model of pleurisy and a rat model of complete Freund's adjuvant-induced arthritis by using an FHPp dose of 250 mg/kg for 21 days. Treatment with an FHPp resulted in anti-inflammatory activity in both models. The results of biochemical, hematological, and histological analyses indicated a significant decrease in glucose, cholesterol, and triglycerides levels (18.32%, 34.20%, and 41.70%, resp. and reduction in the numbers of total leukocytes and mononuclear cells. The FHPp dose of 1000 mg/kg induced no changes in behavioral parameters, and no animal died. The results of this study extend the findings of previous reports that have shown that administration of extracts and fractions obtained from species of the genus Pterodon exhibits anti-inflammatory activity and lacks toxicity.

  17. 幽门螺杆菌感染者长期饮酒时PGE2与胃癌相关病变的关系%Relationship between Prostaglandin E2 and gastric cancer-related diseases in patients with Helicobacter pylori infection with chronic ethanol ingestion

    Institute of Scientific and Technical Information of China (English)

    曲宝戈; 潘锦敦; 王中东; 韩新海; 乔瑞玲; 葛慧; 张晓光

    2012-01-01

    目的 探讨长期饮酒合并幽门螺杆菌感染患者胃液及血液中PGE2与胃癌相关性病变的关系.方法 2007年1月-2010年12月符合条件的幽门螺杆菌感染同时长期饮酒56例和单纯长期饮酒64例患者,进行内镜下胃黏膜组织活检并进行病理学观察,同时抽静脉血及胃液用ELISA法检测PGE2浓度.结果 幽门螺杆菌感染同时长期饮酒组中胃黏膜轻度萎缩亚组和轻度肠化亚组患者血清PGE2浓度明显高于长期饮酒胃黏膜轻度萎缩亚组和轻度肠化亚组患者血清PGE2浓度(P=0.02或P=0.01).长期饮酒合并幽门螺杆菌阳性感染组中胃黏膜有不典型增生亚组患者血清PGE2浓度明显高于长期饮酒组中胃黏膜有不典型增生亚组患者(P=0.02).两组患者各亚组之间胃液PGE2浓度对比,差异无统计学意义(P均>0.05).结论 幽门螺杆菌感染同时长期饮酒患者血液PGE2浓度升高与胃黏膜轻度萎缩和肠化及不典型增生之间存在明显关系,但胃液中PGE2与胃黏膜萎缩、肠化和不典型增生之间无明显关系.%Objective To explore relationship between Prostaglandin E2(PGE2) and gastric cancer-related diseases in the patients with Helicobacter pylori infection with chronic ethanol ingestion. Methods Pathology examination of gastric mucosa acquired by gastroscope was conducted in 56 patients with Helicobacter pylori infection with chronic ethanol ingestion and 64 patients with chronic ethanol ingestion from January 2007 to December 2010. PGE2 in venous blood and gastric juice sample were taken and examined by enzymelinked immunosorbent assay. Results The concentration of PGE2 in serum was seen in slight atrophy or slight intestinal metaplasia in patients with Helicobacter pylori infection with the chronic ethanol ingestion was significant higher than that in patients with the chronic ethanol ingestion only(P =0.02 or P =0. 01 ). The serum concentration of PGE2 in the gastric mucosal dysplasia group of

  18. Lithium-mediated protection against ethanol neurotoxicity

    Directory of Open Access Journals (Sweden)

    Jia Luo

    2010-06-01

    Full Text Available Lithium has long been used as a mood stabilizer in the treatment of manic-depressive (bipolar disorder. Recent studies suggest that lithium has neuroprotective properties and may be useful in the treatment of acute brain injuries such as ischemia and chronic neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease, Huntington’s disease and amyotrophic lateral sclerosis. One of the most important neuroprotective properties of lithium is its anti-apoptotic action. Ethanol is a neuroteratogen and fetal alcohol spectrum disorders (FASD are caused by maternal ethanol exposure during pregnancy. FASD is the leading cause of mental retardation. Ethanol exposure causes neuroapoptosis in the developing brain. Ethanol-induced loss of neurons in the central nervous system underlies many of the behavioral deficits observed in FASD. Excessive alcohol consumption is also associated with Wernicke–Korsakoff syndrome and neurodegeneration in the adult brain. Recent in vivo and in vitro studies indicate that lithium is able to ameliorate ethanol-induced neuroapoptosis. Lithium is an inhibitor of glycogen synthase kinase 3 (GSK3 which has recently been identified as a mediator of ethanol neurotoxicity. Lithium’s neuroprotection may be mediated by its inhibition of GSK3. In addition, lithium also affects many other signaling proteins and pathways that regulate neuronal survival and differentiation. This review discusses the recent evidence of lithium-mediated protection against ethanol neurotoxicity and potential underlying mechanisms.

  19. N-乙酰半胱氨酸对慢性饮酒大鼠肺纤维化的干预作用%The Intervention of N-Acetylcysteine on the Pulmonary Fibrosis of Chronic Ethanol Ingestion in Rats

    Institute of Scientific and Technical Information of China (English)

    王静宜; 于洪志; 武俊萍; 杜钟珍; 吴琦

    2012-01-01

    Objective: To explore the influence of N -acetylcysteine (NAC) on the pulmonary fibrosis induced by chronic ethanol ingestion in rats, and observe the changes of pathogenesis of pulmonary fibrosis with detecting the content of superoxide dismutase (SOD) and malondialdehyde (MDA) of lung tissue. Methods: Thirty healthy male Sprague-Dawley rats were randomly divided into alcohol group (n=10), alcohol+NAC group (n=10), and control group (n=10). Ethanol liquid diet was given to rats in alcohol group and alcohol+NAC group. NAC 300 mg/(kg·d) was given to rats of alcohol+NAC group. The pathological changes of lung tissue were observed after 8-week treatment. The activity of SOD and content of MDA of lung tissue were detected. Results: there were varying degree of alveolar and alveolar septal infiltration of inflammatory cells, and more deposition of collagen fibers at intervals of alveolar in alcohol group. The similar pathological changes were found in alcohol+NAC group, but the degree was lower than that of alcohol group. The degree of alveolitis and the degree of pulmonary fibrosis were lower in alcohol+NAC group than those in alcohol group (P < 0.05 or P < 0.01, respectively). The SOD activity of lung tissue was higher in alcohol+NAC group than that of alcohol group. The MDA content of lung tissue was lower in alcohol+NAC group than that of alcohol group (P < 0.05). Conclusion: NAC can increase the SOD activity and decrease the content of MDA of lung tissue, and restrain the oxidative stress induced by alcohol, decrease the degree of pulmonary fibrosis induced by chronic ethanol ingestion in rats.%目的:探讨N-乙酰半胱氨酸(NAC)对慢性饮酒大鼠肺组织的病理形态及肺组织超氧化物歧化酶(SOD)、丙二醛(MDA)含量的影响.方法:30只健康雄性大鼠随机分成乙醇组、NAC组、对照组各10只,乙醇组和NAC组每日给予乙醇液体饲料,NAC组给予NAC 300 mg/(kg·d).8周后处死,观察肺组织病理改变,检测肺组织

  20. Simultaneous Determination of Four Tanshinones by UPLC-TQ/MS and Their Pharmacokinetic Application after Administration of Single Ethanol Extract of Danshen Combined with Water Extract in Normal and Adenine-Induced Chronic Renal Failure Rats

    Directory of Open Access Journals (Sweden)

    Hong-Die Cai

    2016-11-01

    Full Text Available Salvia miltiorrhiza, one of the major traditional Chinese medicines, is commonly used and the main active ingredients—tanshinones—possess the ability to improve renal function. In this paper, the UPLC-TQ/MS method of simultaneously determining four tanshinones—tanshinone IIA, dihydrotanshinone I, tanshinone I, and cryptotanshinone—was established and applied to assess the pharmacokinetics in normal and chronic renal failure (CRF rat plasma. The pharmacokinetics of tanshinones in rats were studied after separately intragastric administration of Salvia miltiorrhiza ethanol extract (SMEE (0.65 g/kg, SMEE (0.65 g/kg combined with Salvia miltiorrhiza water extract (SMWE (1.55 g/kg. The results showed Cmax and AUC0–t of tanshinone IIA, tanshinone I, cryptotanshinone reduced by 50%~80% and CLz/F increased by 2~4 times (p < 0.05 in model group after administrated with SMEE. Nevertheless, after intragastric administration of a combination of SMWE and SMEE, the Cmax and AUC0–t of four tanshinones were upregulated and CLz/F was downregulated, which undulated similarity from the model group to the normal group with compatibility of SMEE and SMWE. These results hinted that SMWE could improve the bioavailability of tanshinones in CRF rats, which provides scientific information for further exploration the mechanism of the combination of SMWE and SMEE and offers a reference for clinical administration of Salvia miltiorrhiza.

  1. Pharmacokinetic and pharmacodynamic drug interactions with ethanol (alcohol).

    Science.gov (United States)

    Chan, Lingtak-Neander; Anderson, Gail D

    2014-12-01

    Ethanol (alcohol) is one of the most widely used legal drugs in the world. Ethanol is metabolized by alcohol dehydrogenase (ADH) and the cytochrome P450 (CYP) 2E1 drug-metabolizing enzyme that is also responsible for the biotransformation of xenobiotics and fatty acids. Drugs that inhibit ADH or CYP2E1 are the most likely theoretical compounds that would lead to a clinically significant pharmacokinetic interaction with ethanol, which include only a limited number of drugs. Acute ethanol primarily alters the pharmacokinetics of other drugs by changing the rate and extent of absorption, with more limited effects on clearance. Both acute and chronic ethanol use can cause transient changes to many physiologic responses in different organ systems such as hypotension and impairment of motor and cognitive functions, resulting in both pharmacokinetic and pharmacodynamic interactions. Evaluating drug interactions with long-term use of ethanol is uniquely challenging. Specifically, it is difficult to distinguish between the effects of long-term ethanol use on liver pathology and chronic malnutrition. Ethanol-induced liver disease results in decreased activity of hepatic metabolic enzymes and changes in protein binding. Clinical studies that include patients with chronic alcohol use may be evaluating the effects of mild cirrhosis on liver metabolism, and not just ethanol itself. The definition of chronic alcohol use is very inconsistent, which greatly affects the quality of the data and clinical application of the results. Our study of the literature has shown that a significantly higher volume of clinical studies have focused on the pharmacokinetic interactions of ethanol and other drugs. The data on pharmacodynamic interactions are more limited and future research addressing pharmacodynamic interactions with ethanol, especially regarding the non-central nervous system effects, is much needed.

  2. Ethanol Basics (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2015-01-01

    Ethanol is a widely-used, domestically-produced renewable fuel made from corn and other plant materials. More than 96% of gasoline sold in the United States contains ethanol. Learn more about this alternative fuel in the Ethanol Basics Fact Sheet, produced by the U.S. Department of Energy's Clean Cities program.

  3. Encephalon Condition in Chronic Alcohol Intoxication and the Role of Amoebic Invasion of this Organ in the Development of Ethanol Attraction in Men

    Directory of Open Access Journals (Sweden)

    Sergey V. Shormanov

    2013-12-01

    Full Text Available This presentation reviews data from studies on the encephalon in 27 men ranging in age from 21 to 51 years, showing signs of chronic alcohol intoxication and who died from causes other than skull injury and 14 control subjects. The specimens were fixed in formalin or Karnua liquid, filled with paraffin and then examined, utilizing a variety of histological, histochemical and morphometric techniques. The data refers to the structural changes in the various tissue components of the brain (nervous, glia-cells, arteries, veins, as well as pertinent information concerning the presence of Protozoa in all the sections examined which according to their morphological signs and behavioral reactions indicate that amoeba had been present. The degree of cerebral tissue insemination by these parasites has been demonstrated. The condition of the membranes of these microorganisms, their cytoplasm, nucleus and nucleoli as well as the chromatoid corpuscles has been assessed and recorded. The ability of these microorganisms to split, migrate within the CNS limits, to trigger incitement and dystrophic changes and in the case of death – calcification or exulceration is shown. Further, the issue of species characteristics of amoeba occurring in the patients’ brains is discussed. The hypothesis of a possible link of amebic invasion with the development of alcohol dependence in humans is proposed.

  4. Autophagy and ethanol neurotoxicity.

    Science.gov (United States)

    Luo, Jia

    2014-01-01

    Excessive ethanol exposure is detrimental to the brain. The developing brain is particularly vulnerable to ethanol such that prenatal ethanol exposure causes fetal alcohol spectrum disorders (FASD). Neuronal loss in the brain is the most devastating consequence and is associated with mental retardation and other behavioral deficits observed in FASD. Since alcohol consumption during pregnancy has not declined, it is imperative to elucidate the underlying mechanisms and develop effective therapeutic strategies. One cellular mechanism that acts as a protective response for the central nervous system (CNS) is autophagy. Autophagy regulates lysosomal turnover of organelles and proteins within cells, and is involved in cell differentiation, survival, metabolism, and immunity. We have recently shown that ethanol activates autophagy in the developing brain. The autophagic preconditioning alleviates ethanol-induced neuron apoptosis, whereas inhibition of autophagy potentiates ethanol-stimulated reactive oxygen species (ROS) and exacerbates ethanol-induced neuroapoptosis. The expression of genes encoding proteins required for autophagy in the CNS is developmentally regulated; their levels are much lower during an ethanol-sensitive period than during an ethanol-resistant period. Ethanol may stimulate autophagy through multiple mechanisms; these include induction of oxidative stress and endoplasmic reticulum stress, modulation of MTOR and AMPK signaling, alterations in BCL2 family proteins, and disruption of intracellular calcium (Ca2+) homeostasis. This review discusses the most recent evidence regarding the involvement of autophagy in ethanol-mediated neurotoxicity as well as the potential therapeutic approach of targeting autophagic pathways.

  5. Fermentation method producing ethanol

    Science.gov (United States)

    Wang, Daniel I. C.; Dalal, Rajen

    1986-01-01

    Ethanol is the major end product of an anaerobic, thermophilic fermentation process using a mutant strain of bacterium Clostridium thermosaccharolyticum. This organism is capable of converting hexose and pentose carbohydrates to ethanol, acetic and lactic acids. Mutants of Clostridium thermosaccharolyticum are capable of converting these substrates to ethanol in exceptionally high yield and with increased productivity. Both the mutant organism and the technique for its isolation are provided.

  6. Roles for the endocannabinoid system in ethanol-motivated behavior.

    Science.gov (United States)

    Henderson-Redmond, Angela N; Guindon, Josée; Morgan, Daniel J

    2016-02-04

    Alcohol use disorder represents a significant human health problem that leads to substantial loss of human life and financial cost to society. Currently available treatment options do not adequately address this human health problem, and thus, additional therapies are desperately needed. The endocannabinoid system has been shown, using animal models, to modulate ethanol-motivated behavior, and it has also been demonstrated that chronic ethanol exposure can have potentially long-lasting effects on the endocannabinoid system. For example, chronic exposure to ethanol, in either cell culture or preclinical rodent models, causes an increase in endocannabinoid levels that results in down-regulation of the cannabinoid receptor 1 (CB1) and uncoupling of this receptor from downstream G protein signaling pathways. Using positron emission tomography (PET), similar down-regulation of CB1 has been noted in multiple regions of the brain in human alcoholic patients. In rodents, treatment with the CB1 inverse agonist SR141716A (Rimonabant), or genetic deletion of CB1 leads to a reduction in voluntary ethanol drinking, ethanol-stimulated dopamine release in the nucleus accumbens, operant self-administration of ethanol, sensitization to the locomotor effects of ethanol, and reinstatement/relapse of ethanol-motivated behavior. Although the clinical utility of Rimonabant or other antagonists/inverse agonists for CB1 is limited due to negative neuropsychiatric side effects, negative allosteric modulators of CB1 and inhibitors of endocannabinoid catabolism represent therapeutic targets worthy of additional examination.

  7. Sucrose ingestion induces rapid AMPA receptor trafficking.

    Science.gov (United States)

    Tukey, David S; Ferreira, Jainne M; Antoine, Shannon O; D'amour, James A; Ninan, Ipe; Cabeza de Vaca, Soledad; Incontro, Salvatore; Wincott, Charlotte; Horwitz, Julian K; Hartner, Diana T; Guarini, Carlo B; Khatri, Latika; Goffer, Yossef; Xu, Duo; Titcombe, Roseann F; Khatri, Megna; Marzan, Dave S; Mahajan, Shahana S; Wang, Jing; Froemke, Robert C; Carr, Kenneth D; Aoki, Chiye; Ziff, Edward B

    2013-04-03

    The mechanisms by which natural rewards such as sugar affect synaptic transmission and behavior are largely unexplored. Here, we investigate regulation of nucleus accumbens synapses by sucrose intake. Previous studies have shown that AMPA receptor (AMPAR) trafficking is a major mechanism for regulating synaptic strength, and that in vitro, trafficking of AMPARs containing the GluA1 subunit takes place by a two-step mechanism involving extrasynaptic and then synaptic receptor transport. We report that in rat, repeated daily ingestion of a 25% sucrose solution transiently elevated spontaneous locomotion and potentiated accumbens core synapses through incorporation of Ca(2+)-permeable AMPA receptors (CPARs), which are GluA1-containing, GluA2-lacking AMPARs. Electrophysiological, biochemical, and quantitative electron microscopy studies revealed that sucrose training (7 d) induced a stable (>24 h) intraspinous GluA1 population, and that in these rats a single sucrose stimulus rapidly (5 min) but transiently (<24 h) elevated GluA1 at extrasynaptic sites. CPARs and dopamine D1 receptors were required in vivo for elevated locomotion after sucrose ingestion. Significantly, a 7 d protocol of daily ingestion of a 3% solution of saccharin, a noncaloric sweetener, induced synaptic GluA1 similarly to 25% sucrose ingestion. These findings identify multistep GluA1 trafficking, previously described in vitro, as a mechanism for acute regulation of synaptic transmission in vivo by a natural orosensory reward. Trafficking is stimulated by a chemosensory pathway that is not dependent on the caloric value of sucrose.

  8. Ethanol regulation of serum glucocorticoid kinase 1 expression in DBA2/J mouse prefrontal cortex.

    Directory of Open Access Journals (Sweden)

    Blair N Costin

    Full Text Available BACKGROUND: We previously identified a group of glucocorticoid-responsive genes, including Serum Glucocorticoid kinase 1 (Sgk1, regulated by acute ethanol in prefrontal cortex of DBA2/J mice. Acute ethanol activates the hypothalamic pituitary adrenal axis (HPA causing release of glucocorticoids. Chronic ethanol dysregulates the HPA response in both humans and rodents, possibly contributing to important interactions between stress and alcoholism. Because Sgk1 regulates ion channels and learning and memory, we hypothesized that Sgk1 contributes to HPA-dependent acute and adaptive neuronal responses to ethanol. These studies characterized acute and chronic ethanol regulation of Sgk1 mRNA and protein and their relationship with ethanol actions on the HPA axis. RESULTS: Acute ethanol increased Sgk1 mRNA expression in a dose and time dependent manner. Three separate results suggested that ethanol regulated Sgk1 via circulating glucocorticoids: acute ethanol increased glucocorticoid receptor binding to the Sgk1 promoter; adrenalectomy blocked ethanol induction of Sgk1 mRNA; and chronic ethanol exposure during locomotor sensitization down-regulated HPA axis activation and Sgk1 induction by acute ethanol. SGK1 protein had complex temporal responses to acute ethanol with rapid and transient increases in Ser422 phosphorylation at 15 min. following ethanol administration. This activating phosphorylation had functional consequences, as suggested by increased phosphorylation of the known SGK1 target, N-myc downstream-regulated gene 1 (NDRG1. After repeated ethanol administration during locomotor sensitization, basal SGK1 protein phosphorylation increased despite blunting of Sgk1 mRNA induction by ethanol. CONCLUSIONS: These results suggest that HPA axis and glucocorticoid receptor signaling mediate acute ethanol induction of Sgk1 transcription in mouse prefrontal cortex. However, acute ethanol also causes complex changes in SGK1 protein expression and

  9. ENERGY CHARACTERISTICS OF ETHANOL CHARACTERISTICS ...

    African Journals Online (AJOL)

    eobe

    1111, , , , 2222 DEPARTMENT OF MECHANICAL ENGINEERING, ... emissions Ethanol fuel is anhydrous ethanol with high ... contain between 8 and 21 carbon atoms per molecules. [5]. ..... Performance of Ethanol as a transportation Fuel,.

  10. Chronic intermittent ethanol exposure and withdrawal alters (3α,5α)-3-hydroxy-pregnan-20-one immunostaining in cortical and limbic brain regions of C57BL/6J mice.

    Science.gov (United States)

    Maldonado-Devincci, Antoniette M; Cook, Jason B; O'Buckley, Todd K; Morrow, Danielle H; McKinley, Raechel E; Lopez, Marcelo F; Becker, Howard C; Morrow, A Leslie

    2014-10-01

    The GABAergic neuroactive steroid (3α,5α)-3-hydroxy-pregnan-20-one (3α,5α-THP; allopregnanolone) has been studied during withdrawal from ethanol (EtOH) in humans, rats, and mice. Serum 3α,5α-THP levels decreased, and brain levels were not altered following acute EtOH administration (2 g/kg) in male C57BL/6J mice; however, the effects of chronic intermittent ethanol (CIE) exposure on 3α,5α-THP levels have not been examined. Given that CIE exposure changes subsequent voluntary EtOH drinking in a time-dependent fashion following repeated cycles of EtOH exposure, we conducted a time-course analysis of CIE effects on 3α,5α-THP levels in specific brain regions known to influence drinking behavior. Adult male C57BL/6J mice were exposed to 4 cycles of CIE to induce EtOH dependence. All mice were sacrificed and perfused at 1 of 2 time points, 8 or 72 hours following the final exposure cycle. Free-floating brain sections (40 μm; 3 to 5 sections/region/animal) were immunostained and analyzed to determine relative levels of cellular 3α,5α-THP. Withdrawal from CIE exposure produced time-dependent and region-specific effects on immunohistochemical detection of 3α,5α-THP levels across cortical and limbic brain regions. A transient reduction in 3α,5α-THP immunoreactivity was observed in the central nucleus of the amygdala 8 hours after withdrawal from CIE (-31.4 ± 9.3%). Decreases in 3α,5α-THP immunoreactivity were observed 72 hours following withdrawal in the medial prefrontal cortex (-25.0 ± 9.3%), nucleus accumbens core (-29.9 ± 6.6%), and dorsolateral striatum (-18.5 ± 6.0%), while an increase was observed in the CA3 pyramidal cell layer of the hippocampus (+42.8 ± 19.5%). Sustained reductions in 3α,5α-THP immunoreactivity were observed at both time points in the lateral amygdala (8 hours -28.3 ± 12.8%; 72 hours -27.5 ± 12.4%) and in the ventral tegmental area (8 hours -26.5 ± 9.9%; 72 hours -31.6 ± 13.8%). These data

  11. Alcohol oxidizing enzymes and ethanol-induced cytotoxicity in rat pancreatic acinar AR42J cells.

    Science.gov (United States)

    Bhopale, Kamlesh K; Falzon, Miriam; Ansari, G A S; Kaphalia, Bhupendra S

    2014-04-01

    Alcoholic chronic pancreatitis (ACP) is a serious inflammatory disease causing significant morbidity and mortality. Due to lack of a suitable animal model, the underlying mechanism of ACP is poorly understood. Chronic alcohol abuse inhibits alcohol dehydrogenase (ADH) and facilitates nonoxidative metabolism of ethanol to fatty acid ethyl esters (FAEEs) in the pancreas frequently damaged during chronic ethanol abuse. Earlier, we reported a concentration-dependent formation of FAEEs and cytotoxicity in ethanol-treated rat pancreatic tumor (AR42J) cells, which express high FAEE synthase activity as compared to ADH and cytochrome P450 2E1. Therefore, the present study was undertaken to investigate the role of various ethanol oxidizing enzymes in ethanol-induced pancreatic acinar cell injury. Confluent AR42J cells were pre-treated with inhibitors of ADH class I and II [4-methylpyrazole (MP)] or class I, II, and III [1,10-phenanthroline (PT)], cytochrome P450 2E1 (trans-1,2-dichloroethylene) or catalase (sodium azide) followed by incubation with 800 mg% ethanol at 37°C for 6 h. Ethanol metabolism, cell viability, cytotoxicity (apoptosis and necrosis), cell proliferation status, and formation of FAEEs in AR42J cells were measured. The cell viability and cell proliferation rate were significantly reduced in cells pretreated with 1,10-PT + ethanol followed by those with 4-MP + ethanol. In situ formation of FAEEs was twofold greater in cells incubated with 1,10-PT + ethanol and ∼1.5-fold in those treated with 4-MP + ethanol vs. respective controls. However, cells treated with inhibitors of cytochrome P450 2E1 or catalase in combination of ethanol showed no significant changes either for FAEE formation, cell death or proliferation rate. Therefore, an impaired ADH class I-III catalyzed oxidation of ethanol appears to be a key contributing factor in ethanol-induced pancreatic injury via formation of nonoxidative metabolites of ethanol.

  12. Alcohol oxidizing enzymes and ethanol-induced cytotoxicity in rat pancreatic acinar AR42J cells

    Science.gov (United States)

    Bhopale, Kamlesh K.; Falzon, Miriam; Ansari, G. A. S.

    2016-01-01

    Alcoholic chronic pancreatitis (ACP) is a serious inflammatory disease causing significant morbidity and mortality. Due to lack of a suitable animal model, the underlying mechanism of ACP is poorly understood. Chronic alcohol abuse inhibits alcohol dehydrogenase (ADH) and facilitates nonoxidative metabolism of ethanol to fatty acid ethyl esters (FAEEs) in the pancreas frequently damaged during chronic ethanol abuse. Earlier, we reported a concentration-dependent formation of FAEEs and cytotoxicity in ethanol-treated rat pancreatic tumor (AR42J) cells, which express high FAEE synthase activity as compared to ADH and cytochrome P450 2E1. Therefore, the present study was undertaken to investigate the role of various ethanol oxidizing enzymes in ethanol-induced pancreatic acinar cell injury. Confluent AR42J cells were pre-treated with inhibitors of ADH class I and II [4-methylpyrazole (MP)] or class I, II, and III [1,10-phenanthroline (PT)], cytochrome P450 2E1 (trans-1,2-dichloroethylene) or catalase (sodium azide) followed by incubation with 800 mg% ethanol at 37°C for 6 h. Ethanol metabolism, cell viability, cytotoxicity (apoptosis and necrosis), cell proliferation status, and formation of FAEEs in AR42J cells were measured. The cell viability and cell proliferation rate were significantly reduced in cells pretreated with 1,10-PT + ethanol followed by those with 4-MP + ethanol. In situ formation of FAEEs was twofold greater in cells incubated with l,10-PT + ethanol and ~1.5-fold in those treated with 4-MP + ethanol vs. respective controls. However, cells treated with inhibitors of cytochrome P450 2E1 or catalase in combination of ethanol showed no significant changes either for FAEE formation, cell death or proliferation rate. Therefore, an impaired ADH class I—III catalyzed oxidation of ethanol appears to be a key contributing factor in ethanol-induced pancreatic injury via formation of nonoxidative metabolites of ethanol. PMID:24281792

  13. Neurosteroid effects on sensitivity to ethanol

    Directory of Open Access Journals (Sweden)

    Christa M Helms

    2012-01-01

    Full Text Available Harrison and Simmonds (1984 provided the first clear evidence that neuroactive steroids act at specific neurotransmitter receptors, investigating the potentiation of muscimol-induced GABAA responses by alphaxalone (3α-hydroxy 5α -pregnane l l,20-dione in cortical slices. Within 2 years, a progesterone metabolite (3α-hydroxy-5α-pregnan-20-one, 3α,5α-THP, allopregnanolone and a deoxycorticosterone metabolite (3α,21-dihydroxy-5α-pregnan-20-one, 3α,5α-THDOC, tetrahydrodeoxycorticosterone, THDOC were shown to be positive modulators of GABAA receptors (Majewska et al., 1986. That same year, publications showed that ethanol has direct action at GABAA receptors (Allan and Harris, 1986, Suzdak et al., 1986. Thus, the GABAA receptor complex was identified as a membrane-bound target providing a pharmacological basis for shared sensitivity between neurosteroids and ethanol. The common behavioral effects of ethanol and neuroactive steroids were compared directly using drug discrimination procedures (Ator et al., 1993. The N-methyl-D-aspartate (NMDA receptor complex, a membrane-bound ionophore important for excitatory glutamate neurotransmission, was shown to be antagonized by low concentrations of ethanol (Lovinger et al., 1989. Since data were emerging for neurosteroid activity at NMDA receptors (Wu et al., 1991, the stage was set for the suggestion that neurosteroids, and physiological states that alter circulating neuroactive steroids, could affect sensitivity to alcohol (Grant et al., 1997. The unique interface of ethanol and neurosteroids encompasses molecular, cellular, physiological and behavioral processes. This review will highlight a variety of mechanisms by which neurosteroids affect sensitivity to ethanol, including metabolic pathways, physiological states associated with activity of the hypothalamic-pituitary adrenal (HPA and hypothalamic-pituitary-gonadal (HPG axes, and the effects of chronic exposure to ethanol, in addition to

  14. The effect of acute and chronic exposure to ethanol on the developing encephalon: a review Os efeitos da exposição aguda e crônica ao etanol sobre o desenvolvimento do encéfalo: uma revisão

    Directory of Open Access Journals (Sweden)

    Tales Alexandre Aversi-Ferreira

    2008-09-01

    Full Text Available OBJECTIVES: to compare the acute and chronic effects of ethanol on the neural development, by analysis of the ontogenetic neural structure of mammals. METHODS: searches were performed in the following electronic databases: MEDLINE, SciElo, PubMed, LILACS, CAPES periodical, and the Open Journal System. The descriptors used were: "chronic ethanol toxicity", "chronic alcohol toxicity", "acute ethanol toxicity", "acute alcohol", "neural ontogenic development", "neuronal migration disturbances", "neural structure". The following inclusion criteria were used: articles published between 2003 and 2007, some classic articles in the field and an important neuropsychology textbook. RESULTS: the analysis of papers revealed that, although several studies of the chronic effects of ethanol exposure on the mammalian nervous system have been conducted, only a few have investigated the acute effects of ethanol on specific days of gestation, and these studies have revealed important disorders relating to the cerebral tissue. CONCLUSIONS: it should be recommended that women refrain from the consumption of ethanol during gestational phase to protect the fetus' health. Furthermore, the acute consumption of ethanol by women nearing the eighth or ninth week of gestation has been shown to be potentially harmful to the nervous tissue of the fetus.OBJETIVOS: comparar os efeitos agudo e crônico do etanol sobre o desenvolvimento do sistema nervoso através da análise da estrutura ontogênica neural dos mamíferos. MÉTODOS: pesquisas foram feitas nas bases eletrônicas: MEDLINE, SciElo, PubMed, LILACS, CAPES periodical, Open Journal System. Os descritores usados foram: "toxidade crônica ao etanol", "toxidade crônica ao álcool", "toxicidade aguda ao etanol", "toxicidade aguda ao álcool", "desenvolvimento ontogênico neural", "distúrbios da migração neuronal", "estrutura neural".Foram considerados critérios de inclusão: artigos publicados no periódo de 2003 e 2007

  15. Effects of ethanol on the proteasome interacting proteins

    Institute of Scientific and Technical Information of China (English)

    Fawzia; Bardag-Gorce

    2010-01-01

    Proteasome dysfunction has been repeatedly reported in alcoholic liver disease. Ethanol metabolism endproducts affect the structure of the proteasome, and, therefore, change the proteasome interaction with its regulatory complexes 19S and PA28, as well as its interacting proteins. Chronic ethanol feeding alters the ubiquitin-proteasome activity by altering the interaction between the 19S and the 20S proteasome interaction. The degradation of oxidized and damaged proteins is thus decreased and leads to accum...

  16. Nonoxidative ethanol metabolism in humans-from biomarkers to bioactive lipids.

    Science.gov (United States)

    Heier, Christoph; Xie, Hao; Zimmermann, Robert

    2016-12-01

    Ethanol is a widely used psychoactive drug whose chronic abuse is associated with organ dysfunction and disease. Although the prevalent metabolic fate of ethanol in the human body is oxidation a smaller fraction undergoes nonoxidative metabolism yielding ethyl glucuronide, ethyl sulfate, phosphatidylethanol and fatty acid ethyl esters. Nonoxidative ethanol metabolites persist in tissues and body fluids for much longer than ethanol itself and represent biomarkers for the assessment of ethanol intake in clinical and forensic settings. Of note, the nonoxidative reaction of ethanol with phospholipids and fatty acids yields bioactive compounds that affect cellular signaling pathways and organelle function and may contribute to ethanol toxicity. Thus, despite low quantitative contributions of nonoxidative pathways to overall ethanol metabolism the resultant ethanol metabolites have important biological implications. In this review we summarize the current knowledge about the enzymatic formation of nonoxidative ethanol metabolites in humans and discuss the implications of nonoxidative ethanol metabolites as biomarkers of ethanol intake and mediators of ethanol toxicity. © 2016 IUBMB Life, 68(12):916-923, 2016.

  17. Time-course of behavioural changes induced by ethanol in zebrafish (Danio rerio)

    Science.gov (United States)

    Tran, Steven; Gerlai, Robert

    2013-01-01

    The zebrafish has been proposed for the study of the effects of ethanol on the vertebrate brain. Behavioural tests have been successfully employed in the phenotypical characterization of these effects. However, the short scale (minute to minute) time course of ethanol induced changes of zebrafish behaviour has not been analyzed. The current study alleviates this need using a 2 × 3 chronic × acute ethanol exposure experimental design. We first expose zebrafish to ethanol chronically using a dose escalation procedure in which fish are kept in a final concentration of 0.5% vol/vol ethanol for 10 days while control fish receive identical dosing procedures but no ethanol. Subsequently, we expose zebrafish for one hour to an acute dose of ethanol (0.00, 0.50, or 1.00 % vol.vol) and monitor their behaviour throughout this. period. We quantify the mean and within-individual temporal variance of distance travelled, distance from bottom and angular velocity using video-tracking, and establish temporal trajectories of ethanol induced behavioural changes in zebrafish. For example, we find fish of the highest acute dose group previously not exposed to chronic ethanol to exhibit an inverted U shaped temporal trajectory in distance travelled (biphasic alcohol effect). We find this response to be blunted after chronic ethanol exposure (development of tolerance). We also describe an acute ethanol withdrawal induced increase in angular velocity. We conclude that temporal analysis of zebrafish behaviour is a sensitive method for the study of chronic and acute ethanol exposure induced functional changes in the vertebrate brain. PMID:23756142

  18. Competitiveness of Brazilian Sugarcane Ethanol Compared to US Corn Ethanol

    OpenAIRE

    Crago, Christine Lasco; Khanna, Madhu; Barton, Jason; Giuliani, Eduardo; Amaral, Weber

    2010-01-01

    Corn ethanol produced in the US and sugarcane ethanol produced in Brazil are the world’s leading sources of biofuel. Current US biofuel policies create both incentives and constraints for the import of ethanol from Brazil, and together with the competitiveness and greenhouse gas intensity of sugarcane ethanol compared to corn ethanol will determine the extent of these imports. This study analyzes the supply-side determinants of this competitiveness and compares the greenhouse gas intensity of...

  19. Effects of Chronic Ethanol Intoxication on the Ultrastructures of Cerebellar Purkinje Cells in Adult Mice%慢性酒精中毒对成年小鼠小脑浦肯野细胞超微结构的影响

    Institute of Scientific and Technical Information of China (English)

    张长征; 朱庆丰

    2011-01-01

    目的 观察慢性酒精中毒所致的成年小鼠小脑皮质浦肯野细胞(Purkinje cell,PC)胞体的超微结构变化,探讨其对神经元超微结构的影响方式及生理意义.方法 用15%酒精饲喂3月龄小白鼠3个月,经行为学检测后,取小脑前叶做电镜包埋,切片,染色,透射电镜下观察并拍照.结果 酒精中毒组PC核周质中线粒体膨解,基质囊泡化;高尔基复合体扁平囊扩张;粗面内质网碎裂,核糖体颗粒减少;"空泡变性"出现;双层核膜界限不清;染色质边集等变化.结论 慢性酒精中毒可导致小脑浦肯野细胞多种细胞器出现异常改变,推测这些变化可引起胞内物质合成减少,空间构筑紊乱,神经元死亡,最终导致小脑功能损伤.%Objective We observed chronic ethanol-induced ultrastructural alterations of Purkinje cell (PC) somata in the mouse cerebellar cortex, in order to explore the manner of ethanol impacts on neuronal ultrastructures and the physiological influences underlying these alterations. Methods 3-month old mice were fed with 15% alcohol for 3 months. After the behavioral test to manifest the symptoms of ethanol intoxication, the anterior lobe from each mouse cerebellum was selected for embedding , sectioning, and staining. Undera transmission electron microscope, the organelles of PC somata were observed and photos were taken. Results The organelles in ethanol-intoxicated PCs exhibited the following changes: the mitochondria swelled and the matrix decomposed; the sacs of Golgi apparatus dilated; the rough endoplasmic reticulum (rER) collapsed, accompanied with a great loss of the ribosomes; the "vacuolation" emerged;the double nuclear membrane became illegible; and the chromatin marginally condensed in the nucleus.Conclusion Chronic ethanol intoxication induces degenerative alterations in the organelles of cerebellar PCs, which might result in the decrease in substance synthesis, the disorder in intraneuronal configuration, the

  20. Effects of a single high dose of Chlorpyrifos in long-term feeding, ethanol consumption and ethanol preference in male Wistar rats with a previous history of continued ethanol drinking.

    Science.gov (United States)

    Carvajal, Francisca; Sanchez-Amate, Maria Del Carmen; Lerma-Cabrera, José Manuel; Cubero, Inmaculada

    2014-06-01

    Chlorpyrifos (CPF) is an organophosphate compound that is slowly delivered in the organism after subcutaneous injection, keeping acetylcholinesterase (AChE) activity mildly inhibited for weeks. We have previously reported reduced voluntary ethanol drinking 8 weeks post-CPF administration in Wistar rats when AChE activity was almost completely recovered. Additionally, the OPs disrupt the functioning of certain neurochemical systems and modify the formation and/or degradation of some neuropeptides with a known role in regulating voluntary consumption of alcohol. Moreover, chronic ethanol intake significantly alters the regional expression of some of these neurochemical systems. Thus, the present study explored whether a previous history with ethanol consumption modify the disturbance in the voluntary ethanol consumption induced by CPF administration. For this aim, we measured ethanol consumption in increasing concentrations (8%, 15% and 20% w/v) from 4 days to 8 weeks following a single dose of CPF. Two experiments were carried out; experiment 1 was conducted in ethanol-naïve rats and experiment 2, in animals with a previous history of ethanol drinking before CPF administration. Additionally, food and body weight measures were collected. We report here a significant increase in ethanol consumption and preference at high ethanol concentrations (15% and 20%) in CPF-treated animals with a previous history of ethanol consumption (experiment 1) and a long-lasting increase in food intake both in ethanol-exposed (experiment 1) and ethanol-naïve CPF-treated rats (experiment 2). Present data are discussed under the interesting idea that CPF targets neurobiological pathways critically involved with ethanol consumption. Additionally, we conclude that CPF effects on voluntary ethanol consumption are ethanol-experience dependent.

  1. Scorpion ethanol extract and valproic acid effects on hippocampal glial fibrillary acidic protein expression in a rat model of chronic-kindling epilepsy induced by lithium chloride-pilocarpine

    Institute of Scientific and Technical Information of China (English)

    Yi Liang; Hongbin Sun; Liang Yu; Baoming He; Yan Xie

    2012-01-01

    The present study analyzed the effects of ethanol extracts of scorpion on epilepsy prevention and hippocampal expression of glial fibrillary acidic protein in a lithium chloride-pilocarpine epileptic rat model. Results were subsequently compared with valproic acid. Results showed gradually-increased hippocampal glial fibrillary acidic protein expression following model establishment; glial fibrillary acidic protein mRNA expression was significantly increased at 3 days, reached a peak at 7 days, and then gradually decreased thereafter. Ethanol extracts of scorpion doses of 580 and 1 160 mg/kg, as well as 120 mg/kg valproic acid, led to a decreased number of glial fibrillary acidic protein-positive cells and glial fibrillary acidic protein mRNA expression, as well as decreased seizure grades and frequency of spontaneously recurrent seizures. The effects of 1 160 mg/kg ethanol extracts of scorpion were equal to those of 120 mg/kg valproic acid. These results suggested that the anti-epileptic effect of ethanol extracts of scorpion were associated with decreased hippocampal glial fibrillary acidic protein expression in a rat model of lithium chloride-pilocarpine induced epilepsy.

  2. The effect of low concentrations of ethanol on gastric adenocarcinoma cell lines

    OpenAIRE

    Wu Lingjiao; Chen Shaohua; Zhang Yu; Pan Hongming

    2014-01-01

    Chronic alcohol consumption has been identified as a significant risk factor for cancer in humans. The aim of the study was to analyze the influence of low concentrations of ethanol on gastric adenocarcinoma cell viability, apoptosis, and changes in the expression of alcohol dehydrogenase with ethanol treatment. Gastric adenocarcinoma cell lines (MGC803, MGC823 and SGC7901) were treated with different concentrations of ethanol (0.03125%, 0.0625%, 0.125%, 0....

  3. Effects of Repeated Ethanol Exposures on NMDA Receptor Expression and Locomotor Sensitization in Mice Expressing Ethanol Resistant NMDA Receptors

    Science.gov (United States)

    den Hartog, Carolina R.; Gilstrap, Meghin; Eaton, Bethany; Lench, Daniel H.; Mulholland, Patrick J.; Homanics, Gregg. E.; Woodward, John J.

    2017-01-01

    Evidence from a large number of preclinical studies suggests that chronic exposure to drugs of abuse, such as psychostimulants or ethanol induces changes in glutamatergic transmission in key brain areas associated with reward and control of behavior. These changes include alterations in the expression of ionotropic glutamate receptors including N-methyl-D-aspartate receptors (NMDAR) that are important for regulating neuronal activity and synaptic plasticity. NMDA receptors are inhibited by ethanol and reductions in NMDA-mediated signaling are thought to trigger homestatic responses that limit ethanol's effects on glutamatergic transmission. Following repeated exposures to ethanol, these homeostatic responses may become unstable leading to an altered glutamatergic state that contributes to the escalations in drinking and cognitive deficits observed in alcohol-dependent subjects. An important unanswered question is whether ethanol-induced changes in NMDAR expression are modulated by the intrinsic sensitivity of the receptor to ethanol. In this study, we examined the effects of ethanol on NMDAR subunit expression in cortical (orbitofrontal, medial prefrontal), striatal (dorsal and ventral striatum) and limbic (dorsal hippocampus, basolateral amygdala) areas in mice genetically modified to express ethanol-resistant receptors (F639A mice). These mice have been previously shown to drink more ethanol than their wild-type counterparts and have altered behavioral responses to certain actions of ethanol. Following long-term voluntary drinking, F639A mice showed elevations in GluN2A but not GluN1 or GluN2B expression as compared to wild-type mice. Mice treated with repeated injections with ethanol (2–3.5 g/kg; i.p.) showed changes in NMDAR expression that varied in a complex manner with genotype, brain region, subunit type and exposure protocol all contributing to the observed response. F639A mice, but not wild-type mice, showed enhanced motor activity following repeated

  4. Histone acetylation of the htr3a gene in the prefrontal cortex of Wistar rats regulates ethanol-seeking behavior

    Institute of Scientific and Technical Information of China (English)

    Yahui Xu; Xuebing Liu; Xiaojie Zhang; Guanbai Zhang; Ruiling Zhang; Tieqiao Liu; Wei Hao

    2012-01-01

    Previous reports showed that decreased histone deacetylase activity significantly potentiated the rewarding effects of psychostimulants, and that encoding of the 5-HT3 receptor by the htr3a gene was related to ethanol-seeking behavior. However, the effects of a histone deacetylase inhibitor on ethanol-seeking behavior and epigenetic regulation of htr3a mRNA expression after chronic ethanol exposure are not fully understood. Using quantitative reverse transcription-polymerase chain reaction and chromatin immunoprecipitation analysis, we investigated the effects of chronic ethanol exposure and its interaction with a histone deacetylase inhibitor on histone-acetylation-mediated changes in htr3a mRNA expression in the htr3a promoter region. The conditioned place preference procedure was used to evaluate ethanol-seeking behavior. Chronic exposure to ethanol effectively elicited place conditioning. In the prefrontal cortex, the acetylation of H3K9 and htr3a mRNA expression in the htr3a promoter region were significantly higher in the ethanol group than in the saline group. The histone deacetylase inhibitor sodium butyrate potentiated the effects of ethanol on htr3a mRNA expression and enhanced ethanol-induced conditioned place preferences. These results suggest that ethanol upregulates htr3a levels through mechanisms involving H3K9 acetylation, and that histone acetylation may be a therapeutic target for treating ethanol abuse.

  5. Ethanol tolerance in yeasts.

    Science.gov (United States)

    Casey, G P; Ingledew, W M

    1986-01-01

    It is now certain that the inherent ethanol tolerance of the Saccharomyces strain used is not the prime factor regulating the level of ethanol that can be produced in a high sugar brewing, wine, sake, or distillery fermentation. In fact, in terms of the maximum concentration that these yeasts can produce under batch (16 to 17% [v/v]) or fed-batch conditions, there is clearly no difference in ethanol tolerance. This is not to say, however, that under defined conditions there is no difference in ethanol tolerance among different Saccharomyces yeasts. This property, although a genetic determinant, is clearly influenced by many factors (carbohydrate level, wort nutrition, temperature, osmotic pressure/water activity, and substrate concentration), and each yeast strain reacts to each factor differently. This will indeed lead to differences in measured tolerance. Thus, it is extremely important that each of these be taken into consideration when determining "tolerance" for a particular set of fermentation conditions. The manner in which each alcohol-related industry has evolved is now known to have played a major role in determining traditional thinking on ethanol tolerance in Saccharomyces yeasts. It is interesting to speculate on how different our thinking on ethanol tolerance would be today if sake fermentations had not evolved with successive mashing and simultaneous saccharification and fermentation of rice carbohydrate, if distillers' worts were clarified prior to fermentation but brewers' wort were not, and if grape skins with their associated unsaturated lipids had not been an integral part of red wine musts. The time is now ripe for ethanol-related industries to take advantage of these findings to improve the economies of production. In the authors' opinion, breweries could produce higher alcohol beers if oxygenation (leading to unsaturated lipids) and "usable" nitrogen source levels were increased in high gravity worts. White wine fermentations could also, if

  6. Chronic ethanol exposure combined with high fat diet up-regulates P2X7 receptors that parallels neuroinflammation and neuronal loss in C57BL/6J mice.

    Science.gov (United States)

    Asatryan, Liana; Khoja, Sheraz; Rodgers, Kathleen E; Alkana, Ronald L; Tsukamoto, Hidekazu; Davies, Daryl L

    2015-08-15

    The present investigation tested the role of ATP-activated P2X7 receptors (P2X7Rs) in alcohol-induced brain damage using a model that combines intragastric (iG) ethanol feeding and high fat diet in C57BL/6J mice (Hybrid). The Hybrid paradigm caused increased levels of pro-inflammatory markers, changes in microglia and astrocytes, reduced levels of neuronal marker NeuN and increased P2X7R expression in ethanol-sensitive brain regions. Observed changes in P2X7R and NeuN expression were more pronounced in Hybrid paradigm with inclusion of additional weekly binges. In addition, high fat diet during Hybrid exposure aggravated the increase in P2X7R expression and activation of glial cells.

  7. Inhibitors of biofilm formation by fuel ethanol contaminants

    Science.gov (United States)

    Industrial fuel ethanol production suffers from chronic and acute infections that reduce yields and cause “stuck fermentations” that result in costly shutdowns. Lactic acid bacteria, particularly Lactobacillus sp., are recognized as major contaminants. In previous studies, we observed that certain...

  8. Protective effect of the leaves of Vitex negundo against ethanol ...

    African Journals Online (AJOL)

    Cerebral oxidative stress was induced by the administration of 20% ethanol (5 ... Chronic intake of alcohol may produce functional deficits such as psychoses and ... total of five animals were used which received a single oral dose (2000 mg/kg, .... Statistical analysis of the results was carried out using GraphPad by one-way ...

  9. Genetic dissection of acute ethanol responsive gene networks in prefrontal cortex: functional and mechanistic implications.

    Directory of Open Access Journals (Sweden)

    Aaron R Wolen

    Full Text Available Individual differences in initial sensitivity to ethanol are strongly related to the heritable risk of alcoholism in humans. To elucidate key molecular networks that modulate ethanol sensitivity we performed the first systems genetics analysis of ethanol-responsive gene expression in brain regions of the mesocorticolimbic reward circuit (prefrontal cortex, nucleus accumbens, and ventral midbrain across a highly diverse family of 27 isogenic mouse strains (BXD panel before and after treatment with ethanol.Acute ethanol altered the expression of ~2,750 genes in one or more regions and 400 transcripts were jointly modulated in all three. Ethanol-responsive gene networks were extracted with a powerful graph theoretical method that efficiently summarized ethanol's effects. These networks correlated with acute behavioral responses to ethanol and other drugs of abuse. As predicted, networks were heavily populated by genes controlling synaptic transmission and neuroplasticity. Several of the most densely interconnected network hubs, including Kcnma1 and Gsk3β, are known to influence behavioral or physiological responses to ethanol, validating our overall approach. Other major hub genes like Grm3, Pten and Nrg3 represent novel targets of ethanol effects. Networks were under strong genetic control by variants that we mapped to a small number of chromosomal loci. Using a novel combination of genetic, bioinformatic and network-based approaches, we identified high priority cis-regulatory candidate genes, including Scn1b, Gria1, Sncb and Nell2.The ethanol-responsive gene networks identified here represent a previously uncharacterized intermediate phenotype between DNA variation and ethanol sensitivity in mice. Networks involved in synaptic transmission were strongly regulated by ethanol and could contribute to behavioral plasticity seen with chronic ethanol. Our novel finding that hub genes and a small number of loci exert major influence over the ethanol

  10. Genetic Dissection of Acute Ethanol Responsive Gene Networks in Prefrontal Cortex: Functional and Mechanistic Implications

    Science.gov (United States)

    Wolen, Aaron R.; Phillips, Charles A.; Langston, Michael A.; Putman, Alex H.; Vorster, Paul J.; Bruce, Nathan A.; York, Timothy P.; Williams, Robert W.; Miles, Michael F.

    2012-01-01

    Background Individual differences in initial sensitivity to ethanol are strongly related to the heritable risk of alcoholism in humans. To elucidate key molecular networks that modulate ethanol sensitivity we performed the first systems genetics analysis of ethanol-responsive gene expression in brain regions of the mesocorticolimbic reward circuit (prefrontal cortex, nucleus accumbens, and ventral midbrain) across a highly diverse family of 27 isogenic mouse strains (BXD panel) before and after treatment with ethanol. Results Acute ethanol altered the expression of ∼2,750 genes in one or more regions and 400 transcripts were jointly modulated in all three. Ethanol-responsive gene networks were extracted with a powerful graph theoretical method that efficiently summarized ethanol's effects. These networks correlated with acute behavioral responses to ethanol and other drugs of abuse. As predicted, networks were heavily populated by genes controlling synaptic transmission and neuroplasticity. Several of the most densely interconnected network hubs, including Kcnma1 and Gsk3β, are known to influence behavioral or physiological responses to ethanol, validating our overall approach. Other major hub genes like Grm3, Pten and Nrg3 represent novel targets of ethanol effects. Networks were under strong genetic control by variants that we mapped to a small number of chromosomal loci. Using a novel combination of genetic, bioinformatic and network-based approaches, we identified high priority cis-regulatory candidate genes, including Scn1b, Gria1, Sncb and Nell2. Conclusions The ethanol-responsive gene networks identified here represent a previously uncharacterized intermediate phenotype between DNA variation and ethanol sensitivity in mice. Networks involved in synaptic transmission were strongly regulated by ethanol and could contribute to behavioral plasticity seen with chronic ethanol. Our novel finding that hub genes and a small number of loci exert major influence

  11. Bioavailability of ethanol is reduced in several commonly used liquid diets.

    Science.gov (United States)

    de Fiebre, N C; de Fiebre, C M; Booker, T K; Nelson, S; Collins, A C

    1994-01-01

    Liquid diets are often used as a vehicle for chronically treating laboratory animals with ethanol. However, a recent report suggested that one or more components of these diets may bind ethanol which could result in a decrease in the bioavailability of ethanol. Consequently, we compared the blood ethanol concentration vs. time curves obtained following the intragastric (i.g.) administration of ethanol dissolved in water or in one of three liquid diets (Bioserv AIN-76, Sustacal, or Carnation Slender) using the long-sleep (LS) and short-sleep (SS) mouse lines. The initial rates of absorption were generally the same for the water-ethanol and diet-ethanol groups, but the diets generally produced lower peak levels and the areas under the ethanol concentration-time curves were less for all of the liquid diets than for the control, ethanol-water solution. In vitro dialysis experiments indicated that the Bioserv diet binds ethanol in a saturable manner. Therefore, it may be that the slower release of ethanol, which should occur as a result of binding, serves to increase the role of first pass metabolism in regulating ethanol concentrations following oral administration. Because the effects of the diets were seen even after pyrazole treatment, it may be that the lower blood ethanol levels arise because metabolism by gastric ADH, rather than hepatic ADH, is responsible for a major portion of ethanol metabolism as ethanol is slowly released by the diets. If so, the observation that the diet/water differences were uniformly greater in the LS mice may indicate that LS-SS differences in gastric ADH exist.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. Sorghum to Ethanol Research

    Energy Technology Data Exchange (ETDEWEB)

    Dahlberg, Jeffrey A. [Univ. of California, Parlier, CA (United States). Kearney Research and Extension Center; Wolfrum, Edward J. [National Renewable Energy Lab. (NREL), Golden, CO (United States). Process and Analytical Engineering Group

    2010-09-28

    The development of a robust source of renewable transportation fuel will require a large amount of biomass feedstocks. It is generally accepted that in addition to agricultural and forestry residues, we will need crops grown specifically for subsequent conversion into fuels. There has been a lot of research on several of these so-called "dedicated bioenergy crops" including switchgrass, miscanthus, sugarcane, and poplar. It is likely that all of these crops will end up playing a role as feedstocks, depending on local environmental and market conditions. Many different types of sorghum have been grown to produce syrup, grain, and animal feed for many years. It has several features that may make it as compelling as other crops mentioned above as a renewable, sustainable biomass feedstock; however, very little work has been done to investigate sorghum as a dedicated bioenergy crop. The goal of this project was to investigate the feasibility of using sorghum biomass to produce ethanol. The work performed included a detailed examination of the agronomics and composition of a large number of sorghum varieties, laboratory experiments to convert sorghum to ethanol, and economic and life-cycle analyses of the sorghum-to-ethanol process. This work showed that sorghum has a very wide range of composition, which depended on the specific sorghum cultivar as well as the growing conditions. The results of laboratory- and pilot-scale experiments indicated that a typical high-biomass sorghum variety performed very similarly to corn stover during the multi-step process required to convert biomass feedstocks to ethanol; yields of ethanol for sorghum were very similar to the corn stover used as a control in these experiments. Based on multi-year agronomic data and theoretical ethanol production, sorghum can achieve more than 1,300 gallons of ethanol per acre given the correct genetics and environment. In summary, sorghum may be a compelling dedicated bioenergy crop that could help

  13. Sorghum to Ethanol Research

    Energy Technology Data Exchange (ETDEWEB)

    Dahlberg, Jeff; Wolfrum, Ed

    2010-06-30

    The development of a robust source of renewable transportation fuel will require a large amount of biomass feedstocks. It is generally accepted that in addition to agricultural and forestry residues, we will need crops grown specifically for subsequent conversion into fuels. There has been a lot of research on several of these so-called dedicated bioenergy crops including switchgrass, miscanthus, sugarcane, and poplar. It is likely that all of these crops will end up playing a role as feedstocks, depending on local environmental and market conditions. Many different types of sorghum have been grown to produce syrup, grain, and animal feed for many years. It has several features that may make it as compelling as other crops mentioned above as a renewable, sustainable biomass feedstock; however, very little work has been done to investigate sorghum as a dedicated bioenergy crop. The goal of this project was to investigate the feasibility of using sorghum biomass to produce ethanol. The work performed included a detailed examination of the agronomics and composition of a large number of sorghum varieties, laboratory experiments to convert sorghum to ethanol, and economic and life-cycle analyses of the sorghum-to-ethanol process. This work showed that sorghum has a very wide range of composition, which depended on the specific sorghum cultivar as well as the growing conditions. The results of laboratory- and pilot-scale experiments indicated that a typical high-biomass sorghum variety performed very similarly to corn stover during the multi-step process required to convert biomass feedstocks to ethanol; yields of ethanol for sorghum were very similar to the corn stover used as a control in these experiments. Based on multi-year agronomic data and theoretical ethanol production, sorghum can achieve more than 1,300 gallons of ethanol per acre given the correct genetics and environment. In summary, sorghum may be a compelling dedicated bioenergy crop that could help

  14. Sorghum to Ethanol Research

    Energy Technology Data Exchange (ETDEWEB)

    Jeff Dahlberg, Ph D; Ed Wolfrum, Ph D

    2010-06-30

    The development of a robust source of renewable transportation fuel will require a large amount of biomass feedstocks. It is generally accepted that in addition to agricultural and forestry residues, we will need crops grown specifically for subsequent conversion into fuels. There has been a lot of research on several of these so-called "dedicated bioenergy crops" including switchgrass, miscanthus, sugarcane, and poplar. It is likely that all of these crops will end up playing a role as feedstocks, depending on local environmental and market conditions. Many different types of sorghum have been grown to produce syrup, grain, and animal feed for many years. It has several features that may make it as compelling as other crops mentioned above as a renewable, sustainable biomass feedstock; however, very little work has been done to investigate sorghum as a dedicated bioenergy crop. The goal of this project was to investigate the feasibility of using sorghum biomass to produce ethanol. The work performed included a detailed examination of the agronomics and composition of a large number of sorghum varieties, laboratory experiments to convert sorghum to ethanol, and economic and life-cycle analyses of the sorghum-to-ethanol process. This work showed that sorghum has a very wide range of composition, which depended on the specific sorghum cultivar as well as the growing conditions. The results of laboratory- and pilot-scale experiments indicated that a typical high-biomass sorghum variety performed very similarly to corn stover during the multi-step process required to convert biomass feedstocks to ethanol; yields of ethanol for sorghum were very similar to the corn stover used as a control in these experiments. Based on multi-year agronomic data and theoretical ethanol production, sorghum can achieve more than 1,300 gallons of ethanol per acre given the correct genetics and environment. In summary, sorghum may be a compelling dedicated bioenergy crop that could help

  15. Brain plasticity and cognitive functions after ethanol consumption in C57BL/6J mice

    Science.gov (United States)

    Stragier, E; Martin, V; Davenas, E; Poilbout, C; Mongeau, R; Corradetti, R; Lanfumey, L

    2015-01-01

    Acute or chronic administrations of high doses of ethanol in mice are known to produce severe cognitive deficits linked to hippocampal damage. However, we recently reported that chronic and moderate ethanol intake in C57BL/6J mice induced chromatin remodeling within the Bdnf promoters, leading to both enhanced brain-derived neurotrophic factor (BDNF) expression and hippocampal neurogenesis under free-choice protocol. We performed here a series of cellular and behavioral studies to analyze the consequences of these modifications. We showed that a 3-week chronic free-choice ethanol consumption in C57BL/6J mice led to a decrease in DNA methylation of the Bdnf gene within the CA1 and CA3 subfields of the hippocampus, and upregulated hippocampal BDNF signaling pathways mediated by ERK, AKT and CREB. However, this activation did not affect long-term potentiation in the CA1. Conversely, ethanol intake impaired learning and memory capacities analyzed in the contextual fear conditioning test and the novel object recognition task. In addition, ethanol increased behavioral perseveration in the Barnes maze test but did not alter the mouse overall spatial capacities. These data suggested that in conditions of chronic and moderate ethanol intake, the chromatin remodeling leading to BDNF signaling upregulation is probably an adaptive process, engaged via epigenetic regulations, to counteract the cognitive deficits induced by ethanol. PMID:26670281

  16. Ethanol Sensitization during Adolescence or Adulthood Induces Different Patterns of Ethanol Consumption without Affecting Ethanol Metabolism

    Science.gov (United States)

    Carrara-Nascimento, Priscila F.; Hoffmann, Lucas B.; Contó, Marcos B.; Marcourakis, Tania; Camarini, Rosana

    2017-01-01

    In previous study, we demonstrated that ethanol preexposure may increase ethanol consumption in both adolescent and adult mice, in a two-bottle choice model. We now questioned if ethanol exposure during adolescence results in changes of consumption pattern using a three-bottle choice procedure, considering drinking-in-the-dark and alcohol deprivation effect as strategies for ethanol consumption escalation. We also analyzed aldehyde dehydrogenase (ALDH) activity as a measurement of ethanol metabolism. Adolescent and adult Swiss mice were treated with saline (SAL) or 2.0 g/kg ethanol (EtOH) during 15 days (groups: Adolescent-SAL, Adolescent-EtOH, Adult-SAL and Adult-EtOH). Five days after the last injection, mice were exposed to the three-bottle choice protocol using sucrose fading procedure (4% + sucrose vs. 8%–15% ethanol + sucrose vs. water + sucrose) for 2 h during the dark phase. Sucrose was faded out from 8% to 0%. The protocol was composed of a 6-week acquisition period, followed by four withdrawals and reexposures. Both adolescent and adult mice exhibited ethanol behavioral sensitization, although the magnitude of sensitization in adolescents was lower than in adults. Adolescent-EtOH displayed an escalation of 4% ethanol consumption during acquisition that was not observed in Adult-EtOH. Moreover, Adult-EtOH consumed less 4% ethanol throughout all the experiment and less 15% ethanol in the last reexposure period than Adolescent-EtOH. ALDH activity varied with age, in which older mice showed higher ALDH than younger ones. Ethanol pretreatment or the pattern of consumption did not have influence on ALDH activity. Our data suggest that ethanol pretreatment during adolescence but not adulthood may influence the pattern of ethanol consumption toward an escalation in ethanol consumption at low dose, without exerting an impact on ALDH activity.

  17. The ethanol stress response and ethanol tolerance of Saccharomyces cerevisiae.

    Science.gov (United States)

    Stanley, D; Bandara, A; Fraser, S; Chambers, P J; Stanley, G A

    2010-07-01

    Saccharomyces cerevisiae is traditionally used for alcoholic beverage and bioethanol production; however, its performance during fermentation is compromised by the impact of ethanol accumulation on cell vitality. This article reviews studies into the molecular basis of the ethanol stress response and ethanol tolerance of S. cerevisiae; such knowledge can facilitate the development of genetic engineering strategies for improving cell performance during ethanol stress. Previous studies have used a variety of strains and conditions, which is problematic, because the impact of ethanol stress on gene expression is influenced by the environment. There is however some commonality in Gene Ontology categories affected by ethanol assault that suggests that the ethanol stress response of S. cerevisiae is compromised by constraints on energy production, leading to increased expression of genes associated with glycolysis and mitochondrial function, and decreased gene expression in energy-demanding growth-related processes. Studies using genome-wide screens suggest that the maintenance of vacuole function is important for ethanol tolerance, possibly because of the roles of this organelle in protein turnover and maintaining ion homoeostasis. Accumulation of Asr1 and Rat8 in the nucleus specifically during ethanol stress suggests S. cerevisiae has a specific response to ethanol stress although this supposition remains controversial. © 2010 The Authors. Journal compilation © 2010 The Society for Applied Microbiology.

  18. Bio-ethanol

    DEFF Research Database (Denmark)

    Wenzel, Henrik

    2007-01-01

    , that biomass substitutes gas in the heat & power sector and gas substitute oil in the transport sector. By taking this path, we overall achieve almost twice as high a CO2 reduction and save almost twice as much oil, as if we want to substitute the oil via car engines through conversion to ethanol. We must...... acknowledge that society will use natural gas and other fossil fuels for heat & power production for the next 40 years ahead. Throughout this period of time, therefore, we can save them more efficiently there, and we will only lose on CO2 and oil dependency, if we use our scarce biomass for ethanol. After...... this period of time, when we are facing a world without oil and gas, it is, moreover, very dubious if we can accept the very low efficiency of the combustion engine of say 25% energy efficiency and a conversion efficiency in ethanol fermentation of up to say 50% resulting in an overall energy conversion of 10...

  19. Xylose fermentation to ethanol

    Energy Technology Data Exchange (ETDEWEB)

    McMillan, J.D.

    1993-01-01

    The past several years have seen tremendous progress in the understanding of xylose metabolism and in the identification, characterization, and development of strains with improved xylose fermentation characteristics. A survey of the numerous microorganisms capable of directly fermenting xylose to ethanol indicates that wild-type yeast and recombinant bacteria offer the best overall performance in terms of high yield, final ethanol concentration, and volumetric productivity. The best performing bacteria, yeast, and fungi can achieve yields greater than 0.4 g/g and final ethanol concentrations approaching 5%. Productivities remain low for most yeast and particularly for fungi, but volumetric productivities exceeding 1.0 g/L-h have been reported for xylose-fermenting bacteria. In terms of wild-type microorganisms, strains of the yeast Pichia stipitis show the most promise in the short term for direct high-yield fermentation of xylose without byproduct formation. Of the recombinant xylose-fermenting microorganisms developed, recombinant E. coli ATTC 11303 (pLOI297) exhibits the most favorable performance characteristics reported to date.

  20. Effects of ethanol and NAP on cerebellar expression of the neural cell adhesion molecule L1.

    Directory of Open Access Journals (Sweden)

    Devon M Fitzgerald

    Full Text Available The neural cell adhesion molecule L1 is critical for brain development and plays a role in learning and memory in the adult. Ethanol inhibits L1-mediated cell adhesion and neurite outgrowth in cerebellar granule neurons (CGNs, and these actions might underlie the cerebellar dysmorphology of fetal alcohol spectrum disorders. The peptide NAP potently blocks ethanol inhibition of L1 adhesion and prevents ethanol teratogenesis. We used quantitative RT-PCR and Western blotting of extracts of cerebellar slices, CGNs, and astrocytes from postnatal day 7 (PD7 rats to investigate whether ethanol and NAP act in part by regulating the expression of L1. Treatment of cerebellar slices with 20 mM ethanol, 10(-12 M NAP, or both for 4 hours, 24 hours, and 10 days did not significantly affect L1 mRNA and protein levels. Similar treatment for 4 or 24 hours did not regulate L1 expression in primary cultures of CGNs and astrocytes, the predominant cerebellar cell types. Because ethanol also damages the adult cerebellum, we studied the effects of chronic ethanol exposure in adult rats. One year of binge drinking did not alter L1 gene and protein expression in extracts from whole cerebellum. Thus, ethanol does not alter L1 expression in the developing or adult cerebellum; more likely, ethanol disrupts L1 function by modifying its conformation and signaling. Likewise, NAP antagonizes the actions of ethanol without altering L1 expression.

  1. Fact sheet: Ethanol from corn

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-05-31

    This fact sheet is intended to provide an overview of the advantages of ethanol from corn, emphasizing ethanol`s contribution to environmental protection and sustainable agriculture. Ethanol, an alternative fuel used as an octane enhancer is produced through the conversion of starch to sugars by enzymes, and fermentation of these sugars to ethanol by yeast. The production process may involve wet milling or dry milling. Both these processes produce valuable by-products, in addition to ethanol and carbon dioxide. Ethanol contains about 32,000 BTU per litre. It is commonly believed that using state-of-the-art corn farming and corn processing processes, the amount of energy contained in ethanol and its by-products would be more than twice the energy required to grow and process corn into ethanol. Ethanol represents the third largest market for Ontario corn, after direct use as animal feed and wet milling for starch, corn sweetener and corn oil. The environmental consequences of using ethanol are very significant. It is estimated that a 10 per cent ethanol blend in gasoline would result in a 25 to 30 per cent decrease in carbon monoxide emissions, a 6 to 10 per cent decrease in net carbon dioxide, a slight increase in nitrous oxide emissions which, however, would still result in an overall decrease in ozone formation, since the significant reduction in carbon monoxide emissions would compensate for any slight increase in nitrous oxide. Volatile organic compounds emission would also decrease by about 7 per cent with a 10 per cent ethanol blend. High level blends could reduce VOCs production by as much as 30 per cent. 7 refs.

  2. A Sustainable Ethanol Distillation System

    Directory of Open Access Journals (Sweden)

    Yuelei Yang

    2012-01-01

    Full Text Available The discarded fruit and vegetable waste from the consumer and retailer sectors provide a reliable source for ethanol production. In this paper, an ethanol distillation system has been developed to remove the water contents from the original wash that contains only around 15% of the ethanol. The system has an ethanol production capacity of over 100,000 liters per day. It includes an ethanol condenser, a wash pre-heater, a main exhaust heat exchanger as well as a fractionating column. One unique characteristic of this system is that it utilizes the waste heat rejected from a power plant to vaporize the ethanol, thus it saves a significant amount of energy and at the same time reduces the pollution to the environment.

  3. Ethanol Regulation of Synaptic GABAA α4 Receptors Is Prevented by Protein Kinase A Activation.

    Science.gov (United States)

    Carlson, Stephen L; Bohnsack, John Peyton; Morrow, A Leslie

    2016-04-01

    Ethanol alters GABAA receptor trafficking and function through activation of protein kinases, and these changes may underlie ethanol dependence and withdrawal. In this study, we used subsynaptic fraction techniques and patch-clamp electrophysiology to investigate the biochemical and functional effects of protein kinase A (PKA) and protein kinase C (PKC) activation by ethanol on synaptic GABAA α4 receptors, a key target of ethanol-induced changes. Rat cerebral cortical neurons were grown for 18 days in vitro and exposed to ethanol and/or kinase modulators for 4 hours, a paradigm that recapitulates GABAergic changes found after chronic ethanol exposure in vivo. PKA activation by forskolin or rolipram during ethanol exposure prevented increases in P2 fraction α4 subunit abundance, whereas inhibiting PKA had no effect. Similarly, in the synaptic fraction, activation of PKA by rolipram in the presence of ethanol prevented the increase in synaptic α4 subunit abundance, whereas inhibiting PKA in the presence of ethanol was ineffective. Conversely, PKC inhibition in the presence of ethanol prevented the ethanol-induced increases in synaptic α4 subunit abundance. Finally, we found that either activating PKA or inhibiting PKC in the presence of ethanol prevented the ethanol-induced decrease in GABA miniature inhibitory postsynaptic current decay τ1, whereas inhibiting PKA had no effect. We conclude that PKA and PKC have opposing effects in the regulation of synaptic α4 receptors, with PKA activation negatively modulating, and PKC activation positively modulating, synaptic α4 subunit abundance and function. These results suggest potential targets for restoring normal GABAergic functioning in the treatment of alcohol use disorders.

  4. Protective effect of quercetin in the regression of ethanol-induced hepatotoxicity

    Directory of Open Access Journals (Sweden)

    Vidhya A

    2009-01-01

    Full Text Available This study examined the protective effects of quercetin on chronic ethanol-induced liver injury. Rats were treated with ethanol at a dose of 4 g/100 g/day for 90 days. After ethanol intoxication, levels of serum amino transferases were significantly elevated. Decreased activity of superoxide dismutase, catalase, glutathione peroxidase and glutathione reductase was also observed on ethanol administration. Increased amounts of lipid peroxidation products viz. hydroperoxides, conjugated dienes and malodialdehyde were observed on ethanol intoxication. Ethanol administration resulted in significant decrease in liver glutathione content. After 90 days, the control animals were divided into two groups, the control group and the control+quercetin group. Ethanol-treated group was divided into two groups, abstention group and quercetin-supplemented group. After 30 days, the animals were sacrificed and various biochemical parameters were analyzed. The changes in enzyme activities as well as levels of lipid peroxidation products were reversed to a certain extent by quercetin. Quercetin supplementation resulted in increase of glutathione content to a significant level compared to normal abstention group. Quercetin supplemented group showed a faster recovery than abstention group. This shows the protective effect of quercetin against chronic ethanol induced hepatotoxicity. Histopathological study is also in line with these results.

  5. Steam reforming of ethanol

    DEFF Research Database (Denmark)

    Trane-Restrup, Rasmus; Dahl, Søren; Jensen, Anker Degn

    2013-01-01

    Steam reforming (SR) of oxygenated species like bio-oil or ethanol can be used to produce hydrogen or synthesis gas from renewable resources. However, deactivation due to carbon deposition is a major challenge for these processes. In this study, different strategies to minimize carbon deposition...... on Ni-based catalysts during SR of ethanol were investigated in a flow reactor. Four different supports for Ni were tested and Ce0.6Zr0.4O2 showed the highest activity, but also suffered from severe carbon deposition at 600 °C or below. Operation at 600 °C or above were needed for full conversion...... 400 ppm of the carbon in the feed at approx. 600 °C. The different promoters did not influence the product distribution to any significant extent. Selective poisoning with small amounts of K2SO4 on Ni–CeO2/MgAl2O4 at 600 °C decreased carbon deposition from 900 to 200 ppm of the carbon in the feed...

  6. The effect of low concentrations of ethanol on gastric adenocarcinoma cell lines

    Directory of Open Access Journals (Sweden)

    Wu Lingjiao

    2013-01-01

    Full Text Available Chronic alcohol consumption was identified as a significant risk factor for cancer in humans. The aim of the study was to analyze the influence of low concentrations of ethanol on gastric adenocarcinoma cell viability, apoptosis, and changes in the expression of alcohol dehydrogenase with ethanol treatment. Gastric adenocarcinoma cell lines (MGC803, MGC823 and SGC7901 were treated with different concentrations of ethanol (0.03125%, 0.0625%, 0.125%, 0.25%, 0.5%, 1%, 2%, and 4%. The MTT (3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide assay and flow cytometry were used to analyze the effect of ethanol treatment on cell viability and apoptosis. Western blotting was used to analyze the expression of alcohol dehydrogenase in gastric carcinoma cells. Ethanol treatment inhibited cell proliferation in gastric adenocarcinoma cell lines in a significant dose-dependent manner. Ethanol induced apoptosis of gastric adenocarcinoma cells in a dose-dependent manner. The alcohol dehydrogenase activity of gastric adenocarcinoma cells increased with the increase in the concentration of ethanol. Ethanol inhibited cell viability and the growth of gastric adenocarcinoma cell lines. Low concentrations of ethanol also induced apoptosis and increased the expression of alcohol dehydrogenase of the gastric adenocarcinoma cell lines.

  7. The effect of low concentrations of ethanol on gastric adenocarcinoma cell lines

    Directory of Open Access Journals (Sweden)

    Wu Lingjiao

    2014-01-01

    Full Text Available Chronic alcohol consumption has been identified as a significant risk factor for cancer in humans. The aim of the study was to analyze the influence of low concentrations of ethanol on gastric adenocarcinoma cell viability, apoptosis, and changes in the expression of alcohol dehydrogenase with ethanol treatment. Gastric adenocarcinoma cell lines (MGC803, MGC823 and SGC7901 were treated with different concentrations of ethanol (0.03125%, 0.0625%, 0.125%, 0.25%, 0.5%, 1%, 2%, and 4%. An MTT (3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide assay and flow cytometry were used to analyze the effect of ethanol treatment on cell viability and apoptosis. Western blotting was used to analyze the expression of alcohol dehydrogenase in gastric carcinoma cells. Ethanol treatment inhibited cell proliferation in gastric adenocarcinoma cell lines in a significant dose-dependent manner. Ethanol was also able to induce the apoptosis of gastric adenocarcinoma cells in a dose-dependent manner. Alcohol dehydrogenase activity of gastric adenocarcinoma cells increased with the increase in the concentration of ethanol. Ethanol inhibited cell viability and growth of gastric adenocarcinoma cell lines. Low concentrations of ethanol also induced apoptosis and increased the expression of alcohol dehydrogenase of the gastric adenocarcinoma cell lines.

  8. Ethanol-Induced Neurodegeneration and Glial Activation in the Developing Brain

    Directory of Open Access Journals (Sweden)

    Mariko Saito

    2016-08-01

    Full Text Available Ethanol induces neurodegeneration in the developing brain, which may partially explain the long-lasting adverse effects of prenatal ethanol exposure in fetal alcohol spectrum disorders (FASD. While animal models of FASD show that ethanol-induced neurodegeneration is associated with glial activation, the relationship between glial activation and neurodegeneration has not been clarified. This review focuses on the roles of activated microglia and astrocytes in neurodegeneration triggered by ethanol in rodents during the early postnatal period (equivalent to the third trimester of human pregnancy. Previous literature indicates that acute binge-like ethanol exposure in postnatal day 7 (P7 mice induces apoptotic neurodegeneration, transient activation of microglia resulting in phagocytosis of degenerating neurons, and a prolonged increase in glial fibrillary acidic protein-positive astrocytes. In our present study, systemic administration of a moderate dose of lipopolysaccharides, which causes glial activation, attenuates ethanol-induced neurodegeneration. These studies suggest that activation of microglia and astrocytes by acute ethanol in the neonatal brain may provide neuroprotection. However, repeated or chronic ethanol can induce significant proinflammatory glial reaction and neurotoxicity. Further studies are necessary to elucidate whether acute or sustained glial activation caused by ethanol exposure in the developing brain can affect long-lasting cellular and behavioral abnormalities observed in the adult brain.

  9. Atmospheric chemistry: Ethanol and ozone

    Science.gov (United States)

    Madronich, Sasha

    2014-06-01

    Ethanol has been heralded as a cleaner fuel for cars than gasoline. An analysis of air quality data suggests that a switch from ethanol to gasoline use in São Paulo in response to changing prices led unexpectedly to lower local levels of ozone pollution.

  10. Reactions of ethanol on Ru

    NARCIS (Netherlands)

    Sturm, Jacobus Marinus; Liu, Feng; Lee, Christopher James; Bijkerk, Frederik

    2012-01-01

    The adsorption and reactions of ethanol on Ru(0001) were studied with temperatureprogrammed desorption (TPD) and reflection-absorption infrared spectroscopy (RAIRS). Ethanol was found to adsorb intact onto Ru(0001) below 100 K. Heating to 250 K resulted in formation of ethoxy groups, which undergo

  11. The effect of ethanol on sup 35 -S-TBPS binding to mouse brain membranes in the presence of chloride

    Energy Technology Data Exchange (ETDEWEB)

    Liljequist, S.; Culp, S.; Tabakoff, B. (Laboratory for Studies of Neuroadaptive Processes, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda (USA))

    1989-01-01

    The effect of in vitro and in vivo administration of ethanol on the binding of {sup 35}S-t-butyl-bicyclophosphorothionate ({sup 35}S-TBPS) to cortical brain membranes of C57B1 mice was investigated using KCl containing assay media. The in vitro addition of ethanol produced a dose-dependent inhibition of basal {sup 35}S-TBPS binding. In the presence of chloride ions, GABA and pentobarbital had a biphasic action on {sup 35}S-TBPS binding, whereas diazepam only stimulated the binding. Ethanol reduced the stimulatory effects of GABA and pentobarbital in a dose-dependent manner, but had no effect on the enhancement of {sup 35}S-TBPS binding produced by diazepam. {sup 35}S-TBPS binding to cortical brain membranes was inhibited by the putative Cl{sup -} channel blocking agent DIDS. This inhibitory action of DIDS was significantly, and dose-dependently reduced by ethanol. Chronic ethanol ingestion in vivo, which produced tolerance to and physical dependence on ethanol in the animals, did not alter the stimulatory and inhibitory effects of GABA and pentobarbital on {sup 35}S-TBPS binding. The enhancement of {sup 35}S-TBPS binding produced by diazepam was slightly, but significantly, enhanced in brain membranes from animals which had undergone 24 hours of ethanol withdrawal. Chronic ethanol treatment did not change the potency of picrotoxin and of the peripheral BDZ-receptor ligand RO 5-4864 to competitively inhibit {sup 35}S-TBPS binding. Our results suggest that in vitro addition of ethanol alters the activity of the activity of the GABA benzodiazepine (BDZ) receptor complex. Although there was no change in basal {sup 35}S-TBPS binding following chronic in vivo ethanol administration, our curent data suggest that chronic ethanol ingestion may cause specific changes of the GABA BDZ receptor proteins, in this study revealed as an altered modulation of {sup 35}S-TBPS binding by diazepam.

  12. Ethanol metabolism modifies hepatic protein acylation in mice.

    Directory of Open Access Journals (Sweden)

    Kristofer S Fritz

    Full Text Available Mitochondrial protein acetylation increases in response to chronic ethanol ingestion in mice, and is thought to reduce mitochondrial function and contribute to the pathogenesis of alcoholic liver disease. The mitochondrial deacetylase SIRT3 regulates the acetylation status of several mitochondrial proteins, including those involved in ethanol metabolism. The newly discovered desuccinylase activity of the mitochondrial sirtuin SIRT5 suggests that protein succinylation could be an important post-translational modification regulating mitochondrial metabolism. To assess the possible role of protein succinylation in ethanol metabolism, we surveyed hepatic sub-cellular protein fractions from mice fed a control or ethanol-supplemented diet for succinyl-lysine, as well as acetyl-, propionyl-, and butyryl-lysine post-translational modifications. We found mitochondrial protein propionylation increases, similar to mitochondrial protein acetylation. In contrast, mitochondrial protein succinylation is reduced. These mitochondrial protein modifications appear to be primarily driven by ethanol metabolism, and not by changes in mitochondrial sirtuin levels. Similar trends in acyl modifications were observed in the nucleus. However, comparatively fewer acyl modifications were observed in the cytoplasmic or the microsomal compartments, and were generally unchanged by ethanol metabolism. Using a mass spectrometry proteomics approach, we identified several candidate acetylated, propionylated, and succinylated proteins, which were enriched using antibodies against each modification. Additionally, we identified several acetyl and propionyl lysine residues on the same sites for a number of proteins and supports the idea of the overlapping nature of lysine-specific acylation. Thus, we show that novel post-translational modifications are present in hepatic mitochondrial, nuclear, cytoplasmic, and microsomal compartments and ethanol ingestion, and its associated

  13. BK channel β1 and β4 auxiliary subunits exert opposite influences on escalated ethanol drinking in dependent mice

    Directory of Open Access Journals (Sweden)

    Max eKreifeldt

    2013-12-01

    Full Text Available Large conductance calcium-activated potassium (BK channels play a key role in the control of neuronal activity. Ethanol is a potent activator of BK channel gating, but how this action may impact ethanol drinking still remains poorly understood. Auxiliary β subunits are known to modulate ethanol-induced potentiation of BK currents. In the present study, we investigated whether BK β1 and β4 subunits influence voluntary ethanol consumption using knockout mice. In a first experiment, mice were first subjected to continuous two-bottle choice (2BC and were then switched to intermittent 2BC, which progressively increased ethanol intake as previously described in wildtype mice. BK β1 or β4 subunit deficiency did not affect ethanol self-administration under either schedule of access. In a second experiment, mice were first trained to drink ethanol in a limited-access 2BC paradigm. BK β1 or β4 deletion did not affect baseline consumption. Weeks of 2BC were then alternated with weeks of chronic intermittent ethanol (CIE or air inhalation. As expected, a gradual escalation of ethanol drinking was observed in dependent wildtype mice, while intake remained stable in non-dependent wildtype mice. However, CIE exposure only produced a mild augmentation of ethanol consumption in BK β4 knockout mice. Conversely, ethanol drinking increased after fewer CIE cycles in BK β1 knockout mice than in wildtype mice. In conclusion, BK β1 or β4 did not influence voluntary ethanol drinking in non-dependent mice, regardless of the pattern of access to ethanol. However, deletion of BK β4 attenuated, while deletion of BK β1 accelerated, the escalation of ethanol drinking during withdrawal from CIE. Our data suggest that BK β1 and β4 subunits have an opposite influence on the negative reinforcing properties of ethanol withdrawal. Modulating the expression, distribution or interactions of BK channel auxiliary subunits may therefore represent a novel avenue for the

  14. Change of Cystine/Glutamate Antiporter Expression in Ethanol-Dependent Rats

    Directory of Open Access Journals (Sweden)

    Alessandra Tiziana Peana

    2014-10-01

    Full Text Available Background: Some drugs of abuse down regulate the expression of cystine/glutamate (xCT antiporter in the nucleus accumbens (Acb after extinction or withdrawal. The altered level of xCT exchanger in Acb, a structure involved in ethanol reinforcement, may contribute to the pathological glutamatergic signalling, linked to addiction. We hypothesised that the expression of xCT may be changed in Acb and whole brain also in non-dependent (occasional drinkers, ethanol-dependent rats, as well as, during ethanol withdrawal.Methods: Wistar rats were made ethanol-dependent by chronic exposure to an alcoholic milk beverage (from 2.4 to 7.2% v/v ethanol. Ethanol non-dependent rats were exposed to a similar, but non-alcoholic liquid diet and self-administered ethanol (10% twice a week. Withdrawal in ethanol-dependent rats was studied at 12 hours after the last ethanol-enriched diet exposure. Immediately after the measurement of somatic signs of withdrawal, Western blot analysis with a polyclonal antibody against xCT was carried out in a naïve control group, non-dependent and ethanol-dependent rats as well as withdrawal rats, in order to study the level of xCT expression in Acb and whole brain. Results. Non-dependent rats self-administered an average dose of 1.21±0.02 g/kg per session (30 min. Daily ethanol consumption during chronic exposure to the alcoholic beverage ranged from 6.30±0.16 to 13.99±0.66 g/kg. Ethanol dependent rats after suspension of the ethanol-enriched diet have shown significant somatic signs of withdrawal. Western blotting analysis of Acb lysates revealed that xCT was over expressed in ethanol-dependent rats whereas in whole brain preparations xCT was over expressed in both non-dependent and ethanol-dependent rats compared to control group. On the contrary, xCT expression during withdrawal was down regulated in Acb and restored to control level in whole brain preparations. Conclusions: The changes of xCT expression in both Acb and

  15. ETHANOL ACTION ON DOPAMINERGIC NEURONS IN THE VENTRAL TEGMENTAL AREA: INTERACTION WITH INTRINSIC ION CHANNELS AND NEUROTRANSMITTER INPUTS

    Science.gov (United States)

    Morikawa, Hitoshi; Morrisett, Richard A.

    2010-01-01

    The dopaminergic system originating in the midbrain ventral tegmental area (VTA) has been extensively studied over the past decades as a critical neural substrate involved in the development of alcoholism and addiction to other drugs of abuse. Accumulating evidence indicates that ethanol modulates the functional output of this system by directly affecting the firing activity of VTA dopamine neurons, whereas withdrawal from chronic ethanol exposure leads to a reduction in the functional output of these neurons. This chapter will provide an update on the mechanistic investigations of the acute ethanol action on dopamine neuron activity and the neuroadaptations/plasticities in the VTA produced by previous ethanol experience. PMID:20813245

  16. The Effect of Ethanol Intoxication on the Spectral Characteristics for Blood Components of White Rats

    OpenAIRE

    Korobova O.; Dudok T.; Trach I.; Moroz O.; Vlokh I.; Vlokh R.

    2003-01-01

    The present paper is devoted to studying, with the aid of different organic dyes, the transmittance spectra of hemoglobin and immunoglobulin G extracted from the blood of laboratory rats, which have been chronically intoxicated with ethanol. The differences in the spectra are detected, when compare with those for the control group. It is shown that the presence of ethanol in blood probably leads to uncoiling partially the hemoglobin molecules. The essential difference is also found in the tra...

  17. The combination of atorvastatin and ethanol is not more hepatotoxic to rats than the administration of each drug alone

    Directory of Open Access Journals (Sweden)

    D.T. Ito

    2007-03-01

    Full Text Available Animal studies and premarketing clinical trials have revealed hepatotoxicity of statins, primarily minor elevations in serum alanine aminotransferase levels. The combined chronic use of medicines and eventual ethanol abuse are common and may present a synergistic action regarding liver injury. Our objective was to study the effect of the chronic use of atorvastatin associated with acute ethanol administration on the liver in a rat model. One group of rats was treated daily for 5 days a week for 2 months with 0.8 mg/kg atorvastatin by gavage. At the end of the treatment the livers were perfused with 72 mM ethanol for 60 min. Control groups (at least 4 animals in each group consisted of a group of 2-month-old male Wistar EPM-1 rats exposed to 10% ethanol (v/v ad libitum replacing water for 2 months, followed by perfusion of the liver with 61 nM atorvastatin for 60 min, and a group of animals without chronic ethanol treatment whose livers were perfused with atorvastatin and/or ethanol. The combination of atorvastatin with ethanol did not increase the release of injury marker enzymes (alanine aminotransferase, aspartate aminotransferase, and lactic dehydrogenase from the liver and no change in liver function markers (bromosulfophthalein clearance, and oxygen consumption was observed. Our results suggest that the combination of atorvastatin with ethanol is not more hepatotoxic than the separate use of each substance.

  18. The effect of low concentrations of ethanol on gastric adenocarcinoma cell lines

    OpenAIRE

    Wu Lingjiao; Chen Shaohua; Zhang Yu; Pan Hongming

    2013-01-01

    Chronic alcohol consumption was identified as a significant risk factor for cancer in humans. The aim of the study was to analyze the influence of low concentrations of ethanol on gastric adenocarcinoma cell viability, apoptosis, and changes in the expression of alcohol dehydrogenase with ethanol treatment. Gastric adenocarcinoma cell lines (MGC803, MGC823 and SGC7901) were treated with different concentrations of ethanol (0.03125%, 0.0625%, 0.125%, 0.25%, 0.5%, 1%, 2%, and 4%). The MTT...

  19. Stress Alone or associated with Ethanol Induces Prostanoid Release in Rat Aorta via α2-Adrenoceptor

    Energy Technology Data Exchange (ETDEWEB)

    Baptista, Rafaela de Fátima Ferreira [Departamento de Farmacologia - Instituto de Biociências - Universidade Estadual Paulista - UNESP - São Paulo, SP (Brazil); Laboratório de Farmacologia - Faculdade de Medicina de Marília - FAMEMA, SP (Brazil); Taipeiro, Elane de Fátima [Laboratório de Farmacologia - Faculdade de Medicina de Marília - FAMEMA, SP (Brazil); Queiroz, Regina Helena Costa [Departamento de Análise Clínica - Toxicológica e Ciência de Alimentos - Faculdade de Ciências Farmacêuticas - USP, São Paulo, SP (Brazil); Chies, Agnaldo Bruno [Departamento de Farmacologia - Instituto de Biociências - Universidade Estadual Paulista - UNESP - São Paulo, SP (Brazil); Laboratório de Farmacologia - Faculdade de Medicina de Marília - FAMEMA, SP (Brazil); Cordellini, Sandra, E-mail: cordelli@ibb.unesp.br [Departamento de Farmacologia - Instituto de Biociências - Universidade Estadual Paulista - UNESP - São Paulo, SP (Brazil)

    2014-03-15

    Stress and ethanol are both, independently, important cardiovascular risk factors. To evaluate the cardiovascular risk of ethanol consumption and stress exposure, isolated and in association, in male adult rats. Rats were separated into 4 groups: Control, ethanol (20% in drinking water for 6 weeks), stress (immobilization 1h day/5 days a week for 6 weeks) and stress/ethanol. Concentration-responses curves to noradrenaline - in the absence and presence of yohimbine, L-NAME or indomethacin - or to phenylephrine were determined in thoracic aortas with and without endothelium. EC50 and maximum response (n=8-12) were compared using two-way ANOVA/Bonferroni method. Either stress or stress in association with ethanol consumption increased the noradrenaline maximum responses in intact aortas. This hyper-reactivity was eliminated by endothelium removal or by the presence of either indomethacin or yohimbine, but was not altered by the presence of L-NAME. Meanwhile, ethanol consumption did not alter the reactivity to noradrenaline. The phenylephrine responses in aortas both with and without endothelium also remained unaffected regardless of protocol. Chronic stress increased rat aortic responses to noradrenaline. This effect is dependent upon the vascular endothelium and involves the release of vasoconstrictor prostanoids via stimulation of endothelial alpha-2 adrenoceptors. Moreover, chronic ethanol consumption appeared to neither influence noradrenaline responses in rat thoracic aorta, nor did it modify the increase of such responses observed as a consequence of stress exposure.

  20. Stress Alone or associated with Ethanol Induces Prostanoid Release in Rat Aorta via α2-Adrenoceptor

    Science.gov (United States)

    Baptista, Rafaela de Fátima Ferreira; Taipeiro, Elane de Fátima; Queiroz, Regina Helena Costa; Chies, Agnaldo Bruno; Cordellini, Sandra

    2014-01-01

    Background Stress and ethanol are both, independently, important cardiovascular risk factors. Objective To evaluate the cardiovascular risk of ethanol consumption and stress exposure, isolated and in association, in male adult rats. Methods Rats were separated into 4 groups: Control, ethanol (20% in drinking water for 6 weeks), stress (immobilization 1h day/5 days a week for 6 weeks) and stress/ethanol. Concentration-responses curves to noradrenaline - in the absence and presence of yohimbine, L-NAME or indomethacin - or to phenylephrine were determined in thoracic aortas with and without endothelium. EC50 and maximum response (n=8-12) were compared using two-way ANOVA/Bonferroni method. Results Either stress or stress in association with ethanol consumption increased the noradrenaline maximum responses in intact aortas. This hyper-reactivity was eliminated by endothelium removal or by the presence of either indomethacin or yohimbine, but was not altered by the presence of L-NAME. Meanwhile, ethanol consumption did not alter the reactivity to noradrenaline. The phenylephrine responses in aortas both with and without endothelium also remained unaffected regardless of protocol. Conclusion Chronic stress increased rat aortic responses to noradrenaline. This effect is dependent upon the vascular endothelium and involves the release of vasoconstrictor prostanoids via stimulation of endothelial alpha-2 adrenoceptors. Moreover, chronic ethanol consumption appeared to neither influence noradrenaline responses in rat thoracic aorta, nor did it modify the increase of such responses observed as a consequence of stress exposure. PMID:24676223

  1. Ethanol-withdrawal seizures are controlled by tissue plasminogen activator via modulation of NR2B-containing NMDA receptors.

    Science.gov (United States)

    Pawlak, Robert; Melchor, Jerry P; Matys, Tomasz; Skrzypiec, Anna E; Strickland, Sidney

    2005-01-11

    Chronic ethanol abuse causes up-regulation of NMDA receptors, which underlies seizures and brain damage upon ethanol withdrawal (EW). Here we show that tissue-plasminogen activator (tPA), a protease implicated in neuronal plasticity and seizures, is induced in the limbic system by chronic ethanol consumption, temporally coinciding with up-regulation of NMDA receptors. tPA interacts with NR2B-containing NMDA receptors and is required for up-regulation of the NR2B subunit in response to ethanol. As a consequence, tPA-deficient mice have reduced NR2B, extracellular signal-regulated kinase 1/2 phosphorylation, and seizures after EW. tPA-mediated facilitation of EW seizures is abolished by NR2B-specific NMDA antagonist ifenprodil. These results indicate that tPA mediates the development of physical dependence on ethanol by regulating NR2B-containing NMDA receptors.

  2. Environmental Releases in the Fuel Ethanol Industry

    Science.gov (United States)

    Corn ethanol is the largest produced alternate biofuel in the United States. More than 13 billion gallons of ethanol were produced in 2010. The projected corn ethanol production is 15 billion gallons by 2015. With increased production of ethanol, the environmental releases from e...

  3. Orexin-1 and orexin-2 receptor antagonists reduce ethanol self-administration in high-drinking rodent models

    Directory of Open Access Journals (Sweden)

    Rachel Ivy Anderson

    2014-02-01

    Full Text Available To examine the role of orexin-1 and orexin-2 receptor activity on ethanol self-administration, compounds that differentially target orexin (OX receptor subtypes were assessed in various self-administration paradigms using high-drinking rodent models. Effects of the OX1 antagonist SB334867, the OX2 antagonist LSN2424100, and the mixed OX1/2 antagonist almorexant (ACT-078573 on home cage ethanol consumption were tested in ethanol-preferring (P rats using a 2-bottle choice procedure. In separate experiments, effects of SB334867, LSN2424100, and almorexant on operant ethanol self-administration were assessed in P rats maintained on a progressive ratio operant schedule of reinforcement. In a third series of experiments, SB334867, LSN2424100, and almorexant were administered to ethanol-preferring C57BL/6J mice to examine effects of OX receptor blockade on ethanol intake in a binge-like drinking (drinking-in-the-dark model. In P rats with chronic home cage free-choice ethanol access, SB334867 and almorexant significantly reduced ethanol intake, but almorexant also reduced water intake, suggesting nonspecific effects on consummatory behavior. In the progressive ratio operant experiments, LSN2424100 and almorexant reduced breakpoints and ethanol consumption in P rats, whereas the almorexant inactive enantiomer and SB334867 did not significantly affect the motivation to consume ethanol. As expected, vehicle-injected mice exhibited binge-like drinking patterns in the drinking-in-the-dark model. All three OX antagonists reduced both ethanol intake and resulting blood ethanol concentrations relative to vehicle-injected controls, but SB334867 and LSN2424100 also reduced sucrose consumption in a different cohort of mice, suggesting nonspecific effects. Collectively, these results contribute to a growing body of evidence indicating that OX1 and OX2 receptor activity influences ethanol self-administration, although the effects may not be selective for ethanol

  4. Ethanol production from waste materials

    Directory of Open Access Journals (Sweden)

    Muhammad Shahid Iqbal

    2012-08-01

    Full Text Available Experiment was designed for ethanol production using corn andother organic waste material containing starch contents andcellulosic material while barely used for diastase and acidicdigestion methods. The effect of temperature, yeast, barely diastaseand various dilutions of acid (sulfuric acids were investigated onethanol production. The result showed that corn yielded highamount of ethanol (445ml as compared to cellulosic material whichproduced 132ml of ethanol from one kg of weight. It was also notedthat with the increase of barely and yeast amount in a proper mannercan increase ethanol production from different starch sources. It wasalso noted that acid dilutions affected cellulose digestion where highyield of reducing sugar was noted at 0.75% of sulfuric acid dilution.It was concluded from the present experiment that economicalsources of starch and various dilutions of acids should be tried oncellulose digestion for bio-fuel production to withstand in thisenergy crisis time.

  5. Enhancement of germ cell apoptosis induced by ethanol in transgenic mice overexpressing Fas Ligand

    Institute of Scientific and Technical Information of China (English)

    HENG CHUAN XIA; FENG LI; ZHEN LI; ZU CHUAN ZHANG

    2003-01-01

    It was suggested that chronic ethanol exposure could result in testicular germ cell apoptosis, but the mechanism is still unclear. In the present study, we use a model of transgenic mice ubiquitously overexpressing human FasL to investigate whether Fas ligand plays a role in ethanol-induced testicular germ cell apoptosis. Both wild-type (WT)mice and transgenic (TG) mice were treated with acute ethanol (20% v/v) by introperitoneal injection for five times.After ethanol injection, WT mice displayed up-regulation of Fas ligand in the testes, which was shown by FITCconjugated flow cytometry and western blotting. Moreover, TG mice exhibited significantly more apoptotic germ cells than WT mice did after ethanol injection, which was demonstrated by DNA fragmentation, PI staining flow cytometry and TUNEL staining. In addition, histopathological examination revealed that degenerative changes of epithelial component of the tubules occurred in FasL overexpressing transgenic mice while testicular morphology was normal in wild-type mice after acute ethanol exposure, suggesting FasL expression determines the sensitivity of testes to ethanol in mice. In summary, we provide the direct evidences that Fas ligand mediates the apoptosis of testicular germ cells induced by acute ethanol using FasL transgenic mice.

  6. Secondary liquefaction in ethanol production

    DEFF Research Database (Denmark)

    2007-01-01

    The invention relates to a method of producing ethanol by fermentation, said method comprising a secondary liquefaction step in the presence of a themostable acid alpha-amylase or, a themostable maltogenic acid alpha-amylase.......The invention relates to a method of producing ethanol by fermentation, said method comprising a secondary liquefaction step in the presence of a themostable acid alpha-amylase or, a themostable maltogenic acid alpha-amylase....

  7. Ethanol-induced analgesia

    Energy Technology Data Exchange (ETDEWEB)

    Pohorecky, L.A.; Shah, P.

    1987-09-07

    The effect of ethanol (ET) on nociceptive sensitivity was evaluated using a new tail deflection response (TDR) method. The IP injection of ET (0.5 - 1.5 g/kg) produced raid dose-dependent analgesia. Near maximal effect (97% decrease in TDR) was produced with the 1.5 g/kg dose of ET ten minutes after injection. At ninety minutes post-injection there was still significant analgesia. Depression of ET-induced nociceptive sensitivity was partially reversed by a 1 mg/kg dose of naloxone. On the other hand, morphine (0.5 or 5.0 mg/kg IP) did not modify ET-induced analgesia, while 3.0 minutes of cold water swim (known to produce non-opioid mediated analgesia) potentiated ET-induced analgesic effect. The 0.5 g/kg dose of ET by itself did not depress motor activity in an open field test, but prevented partially the depression in motor activity produced by cold water swim (CWS). Thus, the potentiation by ET of the depression of the TDR produced by CWS cannot be ascribed to the depressant effects of ET on motor activity. 21 references, 4 figures, 1 table.

  8. Myeloperoxidase formation of PAF receptor ligands induces PAF receptor-dependent kidney injury during ethanol consumption.

    Science.gov (United States)

    Latchoumycandane, Calivarathan; Nagy, Laura E; McIntyre, Thomas M

    2015-09-01

    Cytochrome P450 2E1 (CYP2E1) induction and oxidative metabolism of ethanol in hepatocytes inflame and damage liver. Chronic ethanol ingestion also induces kidney dysfunction, which is associated with mortality from alcoholic hepatitis. Whether the kidney is directly affected by ethanol or is secondary to liver damage is not established. We found that CYP2E1 was induced in kidney tubules of mice chronically ingesting a modified Lieber-deCarli liquid ethanol diet. Phospholipids of kidney tubules were oxidized and fragmented in ethanol-fed mice with accumulation of azelaoyl phosphatidylcholine (Az-PC), a nonbiosynthetic product formed only by oxidative truncation of polyunsaturated phosphatidylcholine. Az-PC stimulates the inflammatory PAF receptor (PTAFR) abundantly expressed by neutrophils and kidney tubules, and inflammatory cells and myeloperoxidase-containing neutrophils accumulated in the kidneys of ethanol-fed mice after significant hysteresis. Decreased kidney filtration and induction of the acute kidney injury biomarker KIM-1 in tubules temporally correlated with leukocyte infiltration. Genetic ablation of PTAFR reduced accumulation of PTAFR ligands and reduced leukocyte infiltration into kidneys. Loss of this receptor in PTAFR(-/-) mice also suppressed oxidative damage and kidney dysfunction without affecting CYP2E1 induction. Neutrophilic inflammation was responsible for ethanol-induced kidney damage, because loss of neutrophil myeloperoxidase in MPO(-/-) mice was similarly protective. We conclude that ethanol catabolism in renal tubules results in a self-perpetuating cycle of CYP2E1 induction, local PTAFR ligand formation, and neutrophil infiltration and activation that leads to myeloperoxidase-dependent oxidation and damage to kidney function. Hepatocytes do not express PTAFR, so this oxidative cycle is a local response to ethanol catabolism in the kidney.

  9. Ethanol-derived immunoreactive species formed by free radical mechanisms.

    Science.gov (United States)

    Moncada, C; Torres, V; Varghese, G; Albano, E; Israel, Y

    1994-10-01

    Recent studies have shown that the alpha-hydroxyethyl radical (CH3CHOH), a metabolite of ethanol, is produced in vitro and in vivo. We report studies that establish the immunogenicity of alpha-hydroxyethyl radical-derived protein adducts. Rat liver microsomes incubated in the presence of [14C]ethanol and NADPH (under aerobic conditions) incorporate 14C into acid-stable adducts. Incorporation was markedly inhibited by the free-radical scavenger alpha-(4-pyridyl-1-oxide)-N-tert-butylnitrone. Rabbits immunized with rat liver microsomes that had been preincubated with ethanol and NADPH generated antibodies that recognized polylysine-acetaldehyde adducts and adducts formed by incubation of proteins with an alpha-hydroxyethyl radical-generating system (ethanol plus H2O2 plus Fe2+). Rabbits immunized with microsomes that had been preincubated with ethanol and NADPH plus alpha-(4-pyridyl-1-oxide)-N-tert-butylnitrone generated antibodies that recognized polylysine-acetaldehyde adducts. However, their reactivity against alpha-hydroxyethyl-derived protein epitopes was greatly reduced or was virtually abolished. Data indicate that microsomes metabolizing ethanol generate two types of adducts, acetaldehyde-derived adducts and alpha-hydroxyethyl radical-derived adducts, both of which are immunogenic. Immunization of rabbits with alpha-hydroxyethyl-bovine serum albumin adducts led to the production of antibodies that recognized alpha-hydroxyethyl-rabbit serum albumin adducts but did not recognize the native protein. Chronic alcohol feeding of rats led to the production of antibodies that recognized alpha-hydroxyethyl-rat serum albumin adducts but did not recognize rat serum albumin. The study (i) indicates that alpha-hydroxyethyl radical-derived protein adducts are immunogenic, (ii) supports earlier work that proposed that alpha-hydroxyethyl radicals generated in different systems bind covalently to proteins, and (iii) demonstrates the formation of antibodies to alpha

  10. Effect of aging on in vivo and in vitro ethanol metabolism and its toxicity in F344 rats.

    Science.gov (United States)

    Seitz, H K; Meydani, M; Ferschke, I; Simanowski, U A; Boesche, J; Bogusz, M; Hoepker, W W; Blumberg, J B; Russell, R M

    1989-08-01

    To investigate the effect of aging on ethanol metabolism, 24 male and female F344 rats aged 2 and 12 mo that were fed a laboratory diet received ethanol (1.2 and 2.5 g/kg body wt) intraperitoneally. In male rats, in vivo ethanol elimination significantly decreased according to age both at high (436 +/- 38 vs. 294 +/- 27 mg/kg.h; p less than 0.01) and low (365 +/- 19 vs. 261 +/- 8 mg/kg.h; p less than 0.01) blood ethanol concentrations. Age did not influence the specific activity of hepatic or gastric alcohol dehydrogenase, whereas the activity was significantly decreased with age in the liver (p less than 0.05) and in the stomach (p less than 0.001) when related to body weight. In addition, the activity of the hepatic microsomal ethanol oxidizing system decreased significantly according to age (8.7 +/- 0.5 vs. 6.00 +/- 0.3 nmol/min.mg micr. protein; p less than 0.001). To study the response of ethanol-metabolizing enzymes to chronic ethanol ingestion, 2- and 19-mo-old male F344 rats were pair-fed nutritionally adequate liquid diets containing 36% of total calories either as ethanol or isocaloric carbohydrate for 3 wk. In this experiment specific alcohol dehydrogenase activity was not significantly affected by age, whereas the hepatic microsomal function estimated by the determination of cytochrome P450, microsomal ethanol oxidizing system, and aniline hydroxylation as well as hepatic mitochondrial low Km-acetaldehyde dehydrogenase activity was found to be markedly depressed with age (p less than 0.01). Chronic ethanol consumption increased microsomal enzyme activities in older rats to levels comparable to those observed in young animals prior to ethanol administration. Chronic ethanol feeding also resulted in an increased hepatic fat accumulation, which was significantly enhanced in older rats. In contrast to male rats, in vivo ethanol metabolism was practically identical for 2- and 12-mo-old female rats. These data demonstrate an enhanced toxicity of alcohol in

  11. Autophagy Constitutes a Protective Mechanism against Ethanol Toxicity in Mouse Astrocytes and Neurons.

    Science.gov (United States)

    Pla, Antoni; Pascual, María; Guerri, Consuelo

    2016-01-01

    Ethanol induces brain damage and neurodegeneration by triggering inflammatory processes in glial cells through activation of Toll-like receptor 4 (TLR4) signaling. Recent evidence indicates the role of protein degradation pathways in neurodegeneration and alcoholic liver disease, but how these processes affect the brain remains elusive. We have demonstrated that chronic ethanol consumption impairs proteolytic pathways in mouse brain, and the immune response mediated by TLR4 receptors participates in these dysfunctions. We evaluate the in vitro effects of an acute ethanol dose on the autophagy-lysosome pathway (ALP) on WT and TLR4-/- mouse astrocytes and neurons in primary culture, and how these changes affect cell survival. Our results show that ethanol induces overexpression of several autophagy markers (ATG12, LC3-II, CTSB), and increases the number of lysosomes in WT astrocytes, effects accompanied by a basification of lysosomal pH and by lowered phosphorylation levels of autophagy inhibitor mTOR, along with activation of complexes beclin-1 and ULK1. Notably, we found only minor changes between control and ethanol-treated TLR4-/- mouse astroglial cells. Ethanol also triggers the expression of the inflammatory mediators iNOS and COX-2, but induces astroglial death only slightly. Blocking autophagy by using specific inhibitors increases both inflammation and cell death. Conversely, in neurons, ethanol down-regulates the autophagy pathway and triggers cell death, which is partially recovered by using autophagy enhancers. These results support the protective role of the ALP against ethanol-induced astroglial cell damage in a TLR4-dependent manner, and provide new insight into the mechanisms that underlie ethanol-induced brain damage and are neuronal sensitive to the ethanol effects.

  12. Developmental changes in the acute ethanol sensitivity of glutamatergic and GABAergic transmission in the BNST.

    Science.gov (United States)

    Wills, T A; Kash, T L; Winder, D G

    2013-11-01

    Glutamatergic and GABAergic transmission undergo significant changes during adolescence. Receptors for both of these transmitters (NMDAR, and GABAA) are known to be key targets for the acute effects of ethanol in adults. The current study set out to investigate the acute effects of ethanol on both NMDAR-mediated excitatory transmission and GABAergic inhibitory transmission within the bed nucleus of the stria terminalis (BNST) across age. The BNST is an area of the brain implicated in the negative reinforcing properties associated with alcohol dependence, and the BNST plays a critical role in stress-induced relapse. Therefore, assessing the developmental regulation of ethanol sensitivity in this key brain region is important to understanding the progression of ethanol dependence. To do this, whole-cell recordings of isolated NMDAR-evoked excitatory postsynaptic currents (eEPSCs) or evoked GABAergic inhibitory postsynaptic currents (eIPSCs) were performed on BNST neurons in slices from 4- or 8-week-old male C57BL/6J mice. Ethanol (50 mm) produced greater inhibition of NMDAR-eEPSCs in adolescent mice than in adult mice. This enhanced sensitivity in adolescence was not a result of shifts in function of the GluN2B subunit of the NMDAR, measured by Ro25-6981 inhibition and decay kinetics measured across age. Adolescent mice also exhibited greater ethanol sensitivity of GABAergic transmission, as ethanol (50 mm) enhanced eIPSCs in the BNST of adolescent but not adult mice. Collectively, this work illustrates that a moderate dose of ethanol produces greater inhibition of transmission in the BNST (through greater excitatory inhibition and enhancement of inhibitory transmission) in adolescents compared to adults. Given the role of the BNST in alcohol dependence, these developmental changes in acute ethanol sensitivity could accelerate neuroadaptations that result from chronic ethanol use during the critical period of adolescence.

  13. Ethanol Demand in United States Gasoline Production

    Energy Technology Data Exchange (ETDEWEB)

    Hadder, G.R.

    1998-11-24

    The Oak Ridge National Laboratory (OWL) Refinery Yield Model (RYM) has been used to estimate the demand for ethanol in U.S. gasoline production in year 2010. Study cases examine ethanol demand with variations in world oil price, cost of competing oxygenate, ethanol value, and gasoline specifications. For combined-regions outside California summer ethanol demand is dominated by conventional gasoline (CG) because the premised share of reformulated gasoline (RFG) production is relatively low and because CG offers greater flexibility for blending high vapor pressure components like ethanol. Vapor pressure advantages disappear for winter CG, but total ethanol used in winter RFG remains low because of the low RFG production share. In California, relatively less ethanol is used in CG because the RFG production share is very high. During the winter in California, there is a significant increase in use of ethanol in RFG, as ethanol displaces lower-vapor-pressure ethers. Estimated U.S. ethanol demand is a function of the refiner value of ethanol. For example, ethanol demand for reference conditions in year 2010 is 2 billion gallons per year (BGY) at a refiner value of $1.00 per gallon (1996 dollars), and 9 BGY at a refiner value of $0.60 per gallon. Ethanol demand could be increased with higher oil prices, or by changes in gasoline specifications for oxygen content, sulfur content, emissions of volatile organic compounds (VOCS), and octane numbers.

  14. Fermentation of hexoses to ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Gustafsson, Lena [Goeteborg Univ. (Sweden). Dept. of General and Marine Microbiology]|[Chalmers Univ. of Technology, Goeteborg (Sweden). Dept of Chemical Reaction Engineering

    2000-06-01

    The Goals of the project has been: to increase the ethanol yield by reducing the by-product formation, primarily biomass and glycerol, and to prevent stuck fermentations, i.e. to maintain a high ethanol production rate simultaneously with a high ethanol yield. The studies have been performed both in defined laboratory media and in a mixture of wood- and wheat hydrolysates. The yeast strains used have been both industrial strains of bakers yeast, Saccharomyces cerevisiae, and haploid laboratory strains. The Relevance of these studies with respect to production of ethanol to be used as fuel is explained by: With the traditional process design used today, it is very difficult to reach a yield of more than 90 % of the theoretical maximal value of ethanol based on fermented hexose. During 'normal' growth and fermentation conditions in either anaerobic batch or chemostat cultures, substrate is lost as biomass and glycerol in the range of 8 to 11 % and 6 to 11 % of the substrate consumed (kg/kg). It is essential to reduce these by-products. Traditional processes are mostly batch processes, in which there is a risk that the biocatalyst, i.e. the yeast, may become inactivated. If for example yeast biomass production is avoided by use of non-growing systems, the ethanol production rate is instantaneously reduced by at least 50%. Unfortunately, even if yeast biomass production is not avoided on purpose, it is well known that stuck fermentations caused by cell death is a problem in large scale yeast processes. The main reason for stuck fermentations is nutrient imbalances. For a good process economy, it is necessary to ensure process accessibility, i.e. to maintain a high and reproducible production rate. This will both considerably reduce the necessary total volume of the fermentors (and thereby the investment costs), and moreover minimize undesirable product fall-out.

  15. Lipids and Oxidative Stress Associated with Ethanol-Induced Neurological Damage

    Directory of Open Access Journals (Sweden)

    José A. Hernández

    2016-01-01

    Full Text Available The excessive intake of alcohol is a serious public health problem, especially given the severe damage provoked by chronic or prenatal exposure to alcohol that affects many physiological processes, such as memory, motor function, and cognitive abilities. This damage is related to the ethanol oxidation in the brain. The metabolism of ethanol to acetaldehyde and then to acetate is associated with the production of reactive oxygen species that accentuate the oxidative state of cells. This metabolism of ethanol can induce the oxidation of the fatty acids in phospholipids, and the bioactive aldehydes produced are known to be associated with neurotoxicity and neurodegeneration. As such, here we will review the role of lipids in the neuronal damage induced by ethanol-related oxidative stress and the role that lipids play in the related compensatory or defense mechanisms.

  16. High Frequency Electrical Stimulation of Lateral Habenula Reduces Voluntary Ethanol Consumption in Rats

    Science.gov (United States)

    Li, Jing; Zuo, Wanhong; Fu, Rao; Xie, Guiqin; Kaur, Amandeep; Bekker, Alex

    2016-01-01

    Background: Development of new strategies that can effectively prevent and/or treat alcohol use disorders is of paramount importance, because the currently available treatments are inadequate. Increasing evidence indicates that the lateral habenula (LHb) plays an important role in aversion, drug abuse, and depression. In light of the success of high-frequency stimulation (HFS) of the LHb in improving helplessness behavior in rodents, we assessed the effects of LHb HFS on ethanol-drinking behavior in rats. Methods: We trained rats to drink ethanol under an intermittent access two-bottle choice procedure. We used c-Fos immunohistochemistry and electrophysiological approaches to examine LHb activity. We applied a HFS protocol that has proven effective for reducing helplessness behavior in rats via a bipolar electrode implanted into the LHb. Results: c-Fos protein expression and the frequency of both spontaneous action potential firings and spontaneous excitatory postsynaptic currents were higher in LHb neurons of ethanol-withdrawn rats compared to their ethanol-naïve counterparts. HFS to the LHb produced long-term reduction of intake and preference for ethanol, without altering locomotor activity. Conversely, low-frequency electrical stimulation to the LHb or HFS applied to the nearby nucleus did not affect drinking behavior. Conclusions: Our results suggest that withdrawal from chronic ethanol exposure increases glutamate release and the activity of LHb neurons, and that functional inhibition of the LHb via HFS reduces ethanol consumption. Thus, LHb HFS could be a potential new therapeutic option for alcoholics. PMID:27234303

  17. Ethanol impairs mucosal immunity against Streptococcus pneumoniae infection by disrupting interleukin 17 gene expression.

    Science.gov (United States)

    Trevejo-Nunez, Giraldina; Chen, Kong; Dufour, Jason P; Bagby, Gregory J; Horne, William T; Nelson, Steve; Kolls, Jay K

    2015-05-01

    Acute ethanol intoxication suppresses the host immune responses against Streptococcus pneumoniae. As interleukin 17 (IL-17) is a critical cytokine in host defense against extracellular pathogens, including S. pneumoniae, we hypothesized that ethanol impairs mucosal immunity against this pathogen by disrupting IL-17 production or IL-17 receptor (IL-17R) signaling. A chronic ethanol feeding model in simian immunodeficiency virus (SIV)-infected rhesus macaques and acute ethanol intoxication in a murine model were used. Transcriptome analysis of bronchial brushes in the nonhuman primate model showed downregulation of the expression of IL-17-regulated chemokines in ethanol-fed animals, a finding also replicated in the murine model. Surprisingly, recombinant CXCL1 and CXCL5 but not IL-17 or IL-23 plus IL-1β rescued bacterial burden in the ethanol group to control levels. Taken together, the results of this study suggest that ethanol impairs IL-17-mediated chemokine production in the lung. Thus, exogenous luminal restoration of IL-17-related chemokines, CXCL1 and CXCL5, improves host defenses against S. pneumoniae.

  18. Selection and characterisation of high ethanol tolerant ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-12-17

    Dec 17, 2008 ... High level ethanol tolerant Saccharomyces yeast, Orc 6, was investigated for its potential ... bacteria for ethanol production, yeast is still the primary choice for ..... who reported high invertase activity with S. cerevisiae.

  19. Pervaporation of ethanol from lignocellulosic fermentation broth

    NARCIS (Netherlands)

    Gaykawad, S.S.; Zha, Y.; Punt, P.J.; Groenestijn, J.W. van; Wielen, L.A.M. van der; Straathof, A.J.J.

    2013-01-01

    Pervaporation can be applied in ethanol production from lignocellulosic biomass. Hydrophobic pervaporation, using a commercial PDMS membrane, was employed to concentrate the ethanol produced by fermentation of lignocellulosic hydrolysate. To our knowledge, this is the first report describing this.

  20. Prenatal ethanol exposure leads to greater ethanol-induced appetitive reinforcement.

    Science.gov (United States)

    Pautassi, Ricardo M; Nizhnikov, Michael E; Spear, Norman E; Molina, Juan C

    2012-09-01

    Prenatal ethanol significantly heightens later alcohol consumption, but the mechanisms that underlie this phenomenon are poorly understood. Little is known about the basis of 'this effect of prenatal ethanol on the sensitivity to ethanol's reinforcing effects. One possibility is that prenatal ethanol exposure makes subjects more sensitive to the appetitive effects of ethanol or less sensitive to ethanol's aversive consequences. The present study assessed ethanol-induced second-order conditioned place preference (CPP) and aversion and ethanol-induced conditioned taste aversion (CTA) in infant rats prenatally exposed to ethanol (2.0 g/kg) or vehicle (water) or left untreated. The involvement of the κ opioid receptor system in ethanol-induced CTA was also explored. When place conditioning occurred during the ascending limb of the blood-ethanol curve (Experiment 1), the pups exposed to ethanol in utero exhibited greater CPP than untreated controls, with a shift to the right of the dose-response curve. Conditioning during a later phase of intoxication (30-45 min post-administration; Experiment 2) resulted in place aversion in control pups exposed to vehicle during late gestation but not in pups that were exposed to ethanol in utero. Ethanol induced a reliable and similar CTA (Experiment 3) in the pups treated with vehicle or ethanol during gestation, and CTA was insensitive to κ antagonism. These results suggest that brief exposure to a moderate ethanol dose during late gestation promotes ethanol-mediated reinforcement and alters the expression of conditioned aversion by ethanol. This shift in the motivational reactivity to ethanol may be an underlying basis of the effect of prenatal ethanol on later ethanol acceptance.

  1. Re-engineering bacteria for ethanol production

    Science.gov (United States)

    Yomano, Lorraine P; York, Sean W; Zhou, Shengde; Shanmugam, Keelnatham; Ingram, Lonnie O

    2014-05-06

    The invention provides recombinant bacteria, which comprise a full complement of heterologous ethanol production genes. Expression of the full complement of heterologous ethanol production genes causes the recombinant bacteria to produce ethanol as the primary fermentation product when grown in mineral salts medium, without the addition of complex nutrients. Methods for producing the recombinant bacteria and methods for producing ethanol using the recombinant bacteria are also disclosed.

  2. Ethanol-water separation by pervaporation

    NARCIS (Netherlands)

    Mulder, M.H.V.; Oude Hendrickman, J.; Hegeman, H.; Smolders, C.A.

    1983-01-01

    The separation of ethanol-water mixtures is of great importance for the production of ethanol from biomass. Both ultrafiltration and pervaporation processes can be used for the continuous processing of fermentation and separation, The removal of ethanol from the ultrafiltration permeate can be

  3. Meer ethanol uit suikerbieten halen

    NARCIS (Netherlands)

    Visser, de C.L.M.

    2015-01-01

    Wageningen UR en adviesbureau DSD testen in proeffabriek Chembeet in Lelystad hoe meer ethanol uit suikerbieten is te halen. Het doel van het onderzoek is na te gaan of uit suikerbieten op een rendabele manier grondstoffen kunnen worden gehaald voor de chemische industrie.

  4. Impact of low dose prenatal ethanol exposure on glucose homeostasis in Sprague-Dawley rats aged up to eight months.

    Directory of Open Access Journals (Sweden)

    Megan E Probyn

    Full Text Available Excessive exposure to alcohol prenatally has a myriad of detrimental effects on the health and well-being of the offspring. It is unknown whether chronic low-moderate exposure of alcohol prenatally has similar and lasting effects on the adult offspring's health. Using our recently developed Sprague-Dawley rat model of 6% chronic prenatal ethanol exposure, this study aimed to determine if this modest level of exposure adversely affects glucose homeostasis in male and female offspring aged up to eight months. Plasma glucose concentrations were measured in late fetal and postnatal life. The pancreas of 30 day old offspring was analysed for β-cell mass. Glucose handling and insulin action was measured at four months using an intraperitoneal glucose tolerance test and insulin challenge, respectively. Body composition and metabolic gene expression were measured at eight months. Despite normoglycaemia in ethanol consuming dams, ethanol-exposed fetuses were hypoglycaemic at embryonic day 20. Ethanol-exposed offspring were normoglycaemic and normoinsulinaemic under basal fasting conditions and had normal pancreatic β-cell mass at postnatal day 30. However, during a glucose tolerance test, male ethanol-exposed offspring were hyperinsulinaemic with increased first phase insulin secretion. Female ethanol-exposed offspring displayed enhanced glucose clearance during an insulin challenge. Body composition and hepatic, muscle and adipose tissue metabolic gene expression levels at eight months were not altered by prenatal ethanol exposure. Low-moderate chronic prenatal ethanol exposure has subtle, sex specific effects on glucose homeostasis in the young adult rat. As aging is associated with glucose dysregulation, further studies will clarify the long lasting effects of prenatal ethanol exposure.

  5. Safety evaluation of topical applications of ethanol on the skin and inside the oral cavity

    Directory of Open Access Journals (Sweden)

    Lachenmeier Dirk W

    2008-11-01

    as a general lack of scientific research on the long-term effects, there is a requirement for independent studies on this topic. The research focus should be set on the chronic toxic effects of ethanol and acetaldehyde at the point of impact, with special regard to children and individuals with genetic deficiencies in ethanol metabolism.

  6. Membrane Tolerance to Ethanol is Rapidly Lost after Withdrawal: A Model for Studies of Membrane Adaptation

    Science.gov (United States)

    Taraschi, Theodore F.; Ellingson, John S.; Wu, Alice; Zimmerman, Robert; Rubin, Emanuel

    1986-06-01

    The structural properties of liver microsomes and erythrocytes obtained from rats that had been chronically administered ethanol were examined by electron spin resonance (ESR) following ethanol withdrawal for 1-10 days. Membranes obtained from control animals exhibited considerable molecular disordering upon the addition of ethanol in vitro (50-100 mM). Conversely, microsomal and erythrocyte membranes from alcoholic animals were resistant to this disordering by ethanol (membrane tolerance). These membrane properties were also apparent in lipid bilayers comprised of either total lipids or phospholipids isolated from the control and alcoholic animals. While several weeks of ethanol administration were required for both erythrocytes and microsomes to develop membrane tolerance, erythrocytes from alcoholic animals were disordered by ethanol in vitro after the animals had been withdrawn from ethanol for only 1 day. The same rapid loss of tolerance was observed in microsomes after 2 days of withdrawal. The same time course for the loss of tolerance was observed in lipid bilayers prepared from the total lipid and phospholipid extracts. No significant differences in the cholesterol/phospholipid ratio were observed between the microsomal or erythrocyte membranes isolated before and after withdrawal. Thus, alterations in the microsomal and erythrocyte phospholipids, and not cholesterol content, were responsible for conveying membrane tolerance. Membrane structural properties can be rapidly adjusted in a mammalian system in response to the withdrawal of the external membrane perturbant ethanol. The withdrawal model, which begins with established membrane tolerance and leads to rapid and complete loss of tolerance, provides a model to analyze the compositional changes responsible for this tolerance to disordering by ethanol.

  7. Compound list: ethanol [Open TG-GATEs

    Lifescience Database Archive (English)

    Full Text Available ethanol ETN 00137 ftp://ftp.biosciencedbc.jp/archive/open-tggates/LATEST/Human/in_vitro/ethanol....Human.in_vitro.Liver.zip ftp://ftp.biosciencedbc.jp/archive/open-tggates/LATEST/Rat/in_vitro/ethanol....Rat.in_vitro.Liver.zip ftp://ftp.biosciencedbc.jp/archive/open-tggates/LATEST/Rat/in_vivo/Liver/Single/ethanol....Rat.in_vivo.Liver.Single.zip ftp://ftp.biosciencedbc.jp/archive/open-tggates/LATEST/Rat/in_vivo/Liver/Repeat/ethanol.Rat.in_vivo.Liver.Repeat.zip ...

  8. [Ethanol metabolism and pathobiochemistry of organ damage--1992. IV. Ethanol in relation to the cardiovascular system. Hematologic, immunologic, endocrine disorders and muscle and bone damage caused by ethanol. Fetal alcohol syndrome].

    Science.gov (United States)

    Zima, T

    1993-01-01

    Peripheral vasodilatation with increased cardiac output, tachycardia and increased blood pressure are described after alcohol administration. An increased HDL-cholesterol is found in moderate drinkers (both HDL-2 and HDL-3 fractions), with diminishing risk of coronary heart diseases. Acute ethanol intake causes an increased the level of triglycerides without changes in HDL-cholesterol level. This may be put into correlation with higher incidence of cardiovascular diseases in so-called "week-end" drinkers. Alcohol abuse may result in central diabetes insipidus. An increased elimination of lactate diminishes tubular secretion of uric acid with subsequent secondary hyperuricemia. Ethanol reduced the number of lymphocytes, reduces phagocytosis by macrophages and diminishes the activity of NK-cells. Bone marrow cellulity diminishes with the subsequent reduction in erythropoiesis, trombopoiesis and leukopoiesis. Alcohol may cause sideropenic and megaloblastic anemia. There are two forms of alcohol muscle injury: the acute one, with myonecrosis and inflammatory reaction, and chronic one, with muscle weakness and atrophy. Alcohol is one of etiologic factors of osteoporosis. An acute intoxication result in transitory hypoparatthyreoidism, while chronic ethanol intake make grow the PTH level and decreases the level of D vitamin metabolises. Stimulation of cortisol secretion, decrease of testosterone level and a reversible decrease of T3 and T4 levels have been described following ethanol administration. Hypothalamic-pituitary-adrenal axis suffers alteration in alcoholics, and secondary amenorrhea is observed in female alcoholics. Ethanol behaves as an agonist on GABA receptor. Fetal alcohol syndrome together with Down's syndrome and spina bifida are the most frequent reasons of mental retardation in developed countries. Toxicity of ethanol affects the whole pregnancy period.(ABSTRACT TRUNCATED AT 250 WORDS)

  9. The global atmospheric budget of ethanol revisited

    Directory of Open Access Journals (Sweden)

    W. V. Kirstine

    2012-01-01

    Full Text Available Ethanol is an important biogenic volatile organic compound, which is increasingly used as a fuel for motor vehicles; therefore, an improved understanding of its atmospheric cycle is important. In this paper we use three sets of observational data, measured emissions of ethanol from living plants, measured concentrations of ethanol in the atmosphere and measured hydroxyl concentrations in the atmosphere (by methyl chloroform titration, to make two independent estimates related to the rate of cycling of ethanol through the atmosphere. In the first estimate, simple calculations give the emission rate of ethanol from living plants as 26 (range, 10–38 Tg yr−1. This contributes significantly to the total global ethanol source of 42 (range, 25–56 Tg yr−1. In the second estimate, the total losses of ethanol from the global atmosphere are 70 (range, 50–90 Tg yr−1, with about three-quarters of the ethanol removed by reaction with hydroxyl radicals in the gaseous and aqueous phases of the atmosphere, and the remainder lost through wet and dry deposition to land. These values of both the source of ethanol from living plants and the removal of atmospheric ethanol via oxidation by hydroxyl radicals (derived entirely from observations are significantly larger than those in recent literature. We suggest that a revision of the estimate of global ethanol emissions from plants to the atmosphere to a value comparable with this analysis is warranted.

  10. Mechanisms of ethanol tolerance in Saccharomyces cerevisiae.

    Science.gov (United States)

    Ma, Menggen; Liu, Z Lewis

    2010-07-01

    Saccharomyces cerevisiae is a superb ethanol producer, yet is also sensitive to higher ethanol concentrations especially under high gravity or very high gravity fermentation conditions. Ethanol tolerance is associated with interplay of complex networks at the genome level. Although significant efforts have been made to study ethanol stress response in past decades, mechanisms of ethanol tolerance are not well known. With developments of genome sequencing and genomic technologies, our understanding of yeast biology has been revolutionarily advanced. More evidence of mechanisms of ethanol tolerance have been discovered involving multiple loci, multi-stress, and complex interactions as well as signal transduction pathways and regulatory networks. Transcription dynamics and profiling studies of key gene sets including heat shock proteins provided insight into tolerance mechanisms. A transient gene expression response or a stress response to ethanol does not necessarily lead to ethanol tolerance in yeast. Reprogrammed pathways and interactions of cofactor regeneration and redox balance observed from studies of tolerant yeast demonstrated the significant importance of a time-course study for ethanol tolerance. In this review, we focus on current advances of our understanding for ethanol-tolerance mechanisms of S. cerevisiae including gene expression responses, pathway-based analysis, signal transduction and regulatory networks. A prototype of global system model for mechanisms of ethanol tolerance is presented.

  11. Feasibility of ethanol production from coffee husks.

    Science.gov (United States)

    Gouvea, B M; Torres, C; Franca, A S; Oliveira, L S; Oliveira, E S

    2009-09-01

    The objective of this work was to evaluate the feasibility of ethanol production by fermentation of coffee husks by Saccharomyces cerevisiae. Batch fermentation studies were performed employing whole and ground coffee husks, and aqueous extract from ground coffee husks. It was observed that fermentation yield decreased with an increase in yeast concentration. The best results were obtained for the following conditions: whole coffee husks, 3 g yeast/l substrate, temperature of 30 degrees C. Under these conditions ethanol production was 8.49 +/- 0.29 g/100 g dry basis (13.6 +/- 0.5 g ethanol/l), a satisfactory value in comparison to literature data for other residues such as corn stalks, barley straw and hydrolyzed wheat stillage (5-11 g ethanol/l). Such results indicate that coffee husks present excellent potential for residue-based ethanol production.

  12. Daidzin decreases ethanol consumption in rats.

    Science.gov (United States)

    Heyman, G M; Keung, W M; Vallee, B L

    1996-09-01

    In a previous study, daidzin, a constituent of an ancient Chinese herbal treatment for alcoholism, decreased home-cage ethanol consumption in laboratory Syrian golden hamsters. The present study tested the generality of daidzin's antidipsotropic effects. Rats served as subjects in a two-lever choice procedure. At one lever, responses earned 10% ethanol, flavored with saccharin. At the other lever, responses earned an isocaloric starch solution. Daidzin decreased both ethanol and starch consumption, but the decreases in ethanol intake were larger. Changes in consumption were dose dependent, and differences in ethanol and food consumption increased slightly (but significantly) as dose increased. Daidzin produced a similar pattern of decreases in lever pressing. In baseline, there was an approximately equal distribution of responses between the two levers; at the highest daidzin dose, the relative number of responses at the ethanol lever decreased to 30%. These results replicate and extend earlier findings, and they encourage further research on daidzin's capacity to decrease ethanol consumption.

  13. High ethanol tolerance of the thermophilic anaerobic ethanol producer Thermoanaerobacter BG1L1

    DEFF Research Database (Denmark)

    Georgieva, Tania I.; Mikkelsen, Marie Just; Ahring, Birgitte Kiær

    2007-01-01

    The low ethanol tolerance of thermophilic anaerobic bacteria, generally less than 2% (v/v) ethanol, is one of the main limiting factors for their potential use for second generation fuel ethanol production. In this work, the tolerance of thermophilic anaerobic bacterium Thermoanaerobacter BG 1L1...... to exogenously added ethanol was studied in a continuous immobilized reactor system at a growth temperature of 70 degrees C. Ethanol tolerance was evaluated based on inhibition of fermentative performance e.g.. inhibition of substrate conversion. At the highest ethanol concentration tested (8.3% v/v), the strain...... was able to convert 42% of the xylose initially present, indicating that this ethanol concentration is not the upper limit tolerated by the strain. Long-term strain adaptation to high ethanol concentrations (6 - 8.3%) resulted in an improvement of xylose conversion by 25% at an ethanol concentration of 5...

  14. Nuclear effects of ethanol-induced proteasome inhibition in liver cells

    Institute of Scientific and Technical Information of China (English)

    Fawzia Bardag-Gorce

    2009-01-01

    Alcohol ingestion causes alteration in several cellular mechanisms, and leads to inflammation, apoptosis,immunological response defects, and fibrosis. These phenomena are associated with significant changes in the epigenetic mechanisms, and subsequently,to liver cell memory. The ubiquitin-proteasome pathway is one of the vital pathways in the cell that becomes dysfunctionial as a result of chronic ethanol consumption. Inhibition of the proteasome activity in the nucleus causes changes in the turnover of transcriptional factors, histone modifying enzymes,and therefore, affects epigenetic mechanisms.Alcohol consumption has been associated with an increase in histone acetylation and a decrease in histone methylation, which leads to gene expression changes. DNA and histone modifications that result from ethanol-induced proteasome inhibition are key players in regulating gene expression, especially genes involved in the cell cycle, immunological responses,and metabolism of ethanol. The present review highlights the consequences of ethanol-induced proteasome inhibition in the nucleus of liver cells that are chronically exposed to ethanol.

  15. Synthesis of nanoparticles using ethanol

    Science.gov (United States)

    Wang, Jia Xu

    2017-01-24

    The present disclosure relates to methods for producing nanoparticles. The nanoparticles may be made using ethanol as the solvent and the reductant to fabricate noble-metal nanoparticles with a narrow particle size distributions, and to coat a thin metal shell on other metal cores. With or without carbon supports, particle size is controlled by fine-tuning the reduction power of ethanol, by adjusting the temperature, and by adding an alkaline solution during syntheses. The thickness of the added or coated metal shell can be varied easily from sub-monolayer to multiple layers in a seed-mediated growth process. The entire synthesis of designed core-shell catalysts can be completed using metal salts as the precursors with more than 98% yield; and, substantially no cleaning processes are necessary apart from simple rinsing. Accordingly, this method is considered to be a "green" chemistry method.

  16. Synthesis of nanoparticles using ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jia Xu

    2017-01-24

    The present disclosure relates to methods for producing nanoparticles. The nanoparticles may be made using ethanol as the solvent and the reductant to fabricate noble-metal nanoparticles with a narrow particle size distributions, and to coat a thin metal shell on other metal cores. With or without carbon supports, particle size is controlled by fine-tuning the reduction power of ethanol, by adjusting the temperature, and by adding an alkaline solution during syntheses. The thickness of the added or coated metal shell can be varied easily from sub-monolayer to multiple layers in a seed-mediated growth process. The entire synthesis of designed core-shell catalysts can be completed using metal salts as the precursors with more than 98% yield; and, substantially no cleaning processes are necessary apart from simple rinsing. Accordingly, this method is considered to be a "green" chemistry method.

  17. Unilateral whisker clipping exacerbates ethanol-induced social and somatosensory behavioral deficits in a sex- and age-dependent manner.

    Science.gov (United States)

    Wellmann, Kristen A; Mooney, Sandra M

    2015-09-01

    Prenatal exposure to ethanol results in sensory deficits and altered social interactions in animal and clinical populations. Sensory stimuli serve as important cues and shape sensory development; developmental exposure to ethanol or sensory impoverishment can impair somatosensory development, but their combined effects on behavioral outcomes are unknown. We hypothesized 1) that chronic prenatal ethanol exposure would disrupt social interaction and somatosensory performance during adolescence, 2) that a mild sensory impoverishment (neonatal unilateral whisker clipping; WC) would have a mildly impairing to sub-threshold effect on these behavioral outcomes, and 3) that the effect of ethanol would be exacerbated by WC. Long-Evans dams were fed a liquid diet containing ethanol or pair-fed with a non-ethanol diet on gestational days (G) 6-G21. Chow-fed control animals were also included. One male and female pup per litter underwent WC on postnatal day (P)1, P3, and P5. Controls were unclipped. Offspring underwent social interaction on P28 or P42, and gap-crossing (GC) on P31 or P42. Ethanol-exposed pups played less and crossed shorter gaps than control pups regardless of age or sex. WC further exacerbated ethanol-induced play fighting and GC deficits in all males but only in 28-day-old females. WC alone reduced sniffing in all males and in younger females. Thus, prenatal ethanol exposure induced deficits in social interaction and somatosensory performance during adolescence. Sensory impoverishment exacerbates ethanol's effect in 28-day-old male and female animals and in 42-day-old males, suggesting sex- and age-dependent changes in outcomes in ethanol-exposed offspring. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Ethanol annual report FY 1990

    Energy Technology Data Exchange (ETDEWEB)

    Texeira, R.H.; Goodman, B.J. (eds.)

    1991-01-01

    This report summarizes the research progress and accomplishments of the US Department of Energy (DOE) Ethanol from Biomass Program, field managed by the Solar Energy Research Institute, during FY 1990. The report includes an overview of the entire program and summaries of individual research projects. These projects are grouped into the following subject areas: technoeconomic analysis; pretreatment; cellulose conversion; xylose fermentation; and lignin conversion. Individual papers have been indexed separately for inclusion on the data base.

  19. EFFECTS OF ETHANOL DURING GIARDIASIS IN SHEEP INTESTINE

    Directory of Open Access Journals (Sweden)

    Muzaiyan Ahmed Khan

    2012-01-01

    Full Text Available Infections with Giardia lamblia are one of the most common intestinal maladies in the world. These infections can lead to acute diarrhea, cramps, and nausea, although asymptomatic infections are the most common. Although most infections are controlled by an effective immune response, some individuals develop chronic disease. The effects of Giardia lamblia infection on D-glucose uptake and brush border enzymes was studied in ethanol fed sheep. Giardia lamblia trophozoite counts were significantly lower in the intestine of ethanol fed sheep than in the controls. Also sodium dependant uptake of D-glucose and brush border enzymes was significantly reduced in the Giardia lamblia infected sheep intestine. There was no change in sodium dependent D-glucose transporter (SGLT-1 and brush border lactase was reduced in Giardia lamblia infected sheep compared with those of controls. However, the mRNA levels encoding these proteins in ethanol fed animals and control animals were in the sheep intestine. The D-glucose malabsorption was observed and probably it causes a significant decrease in activity of disaccharidases in Giardia lamblia infection.

  20. The HPA axis and ethanol: a synthesis of mathematical modelling and experimental observations.

    Science.gov (United States)

    Čupić, Željko; Stanojević, Ana; Marković, Vladimir M; Kolar-Anić, Ljiljana; Terenius, Lars; Vukojević, Vladana

    2016-05-18

    Stress and alcohol use are interrelated-stress contributes to the initiation and upholding of alcohol use and alcohol use alters the way we perceive and respond to stress. Intricate mechanisms through which ethanol alters the organism's response to stress remain elusive. We have developed a stoichiometric network model to succinctly describe neurochemical transformations underlying the stress response axis and use numerical simulations to model ethanol effects on complex daily changes of blood levels of cholesterol, 6 peptide and 8 steroid hormones. Modelling suggests that ethanol alters the dynamical regulation of hypothalamic-pituitary-adrenal (HPA) axis activity by affecting the amplitude of ultradian oscillations of HPA axis hormones, which defines the threshold with respect to which the response to stress is being set. These effects are complex-low/moderate acute ethanol challenge (8 mM) increases instantaneous CORT levels and the amplitude of ultradian CORT oscillations in a dose-dependent manner, affecting the HPA axis activity also during the following day(s). Chronic exposure to ethanol qualitatively changes the HPA axis dynamics, whereas ethanol at intoxicating levels shuts down this dynamic regulation mechanism. Mathematical modelling gives a quantitative biology-based framework that can be used for predicting how the integral HPA axis response is perturbed by alcohol.

  1. Chronobiology of ethanol: animal models.

    Science.gov (United States)

    Rosenwasser, Alan M

    2015-06-01

    Clinical and epidemiological observations have revealed that alcohol abuse and alcoholism are associated with widespread disruptions in sleep and other circadian biological rhythms. As with other psychiatric disorders, animal models have been very useful in efforts to better understand the cause and effect relationships underlying the largely correlative human data. This review summarizes the experimental findings indicating bidirectional interactions between alcohol (ethanol) consumption and the circadian timing system, emphasizing behavioral studies conducted in the author's laboratory. Together with convergent evidence from multiple laboratories, the work summarized here establishes that ethanol intake (or administration) alters fundamental properties of the underlying circadian pacemaker. In turn, circadian disruption induced by either environmental or genetic manipulations can alter voluntary ethanol intake. These reciprocal interactions may create a vicious cycle that contributes to the downward spiral of alcohol and drug addiction. In the future, such studies may lead to the development of chronobiologically based interventions to prevent relapse and effectively mitigate some of the societal burden associated with such disorders.

  2. Ginger extract mitigates ethanol-induced changes of alpha and beta - myosin heavy chain isoforms gene expression and oxidative stress in the heart of male wistar rats.

    Science.gov (United States)

    Shirpoor, Alireza; Zerehpoosh, Mitra; Ansari, Mohammad Hasan Khadem; Kheradmand, Fatemeh; Rasmi, Yousef

    2017-09-01

    The association between ethanol consumption and heart abnormalities, such as chamber dilation, myocyte damage, ventricular hypertrophy, and hypertension is well known. However, underlying molecular mediators involved in ethanol-induced heart abnormalities remain elusive. The aim of this study was to investigate the effect of chronic ethanol exposure on alpha and beta - myosin heavy chain (MHC) isoforms gene expression transition and oxidative stress in rats' heart. It was also planned to find out whether ginger extract mitigated the abnormalities induced by ethanol in rats' heart. Male wistar rats were divided into three groups of eight animals as follows: Control, ethanol, and ginger extract treated ethanolic (GETE) groups. After six weeks of treatment, the results revealed a significant increase in the β-MHC gene expression, 8- OHdG amount, and NADPH oxidase level. Furthermore, a significant decrease in the ratio of α-MHC/β-MHC gene expression to the amount of paraoxonase enzyme in the ethanol group compared to the control group was found. The consumption of Ginger extract along with ethanol ameliorated the changes in MHC isoforms gene expression and reduced the elevated amount of 8-OHdG and NADPH oxidase. Moreover, compared to the consumption of ethanol alone, it increased the paraoxonase level significantly. These findings indicate that ethanol-induced heart abnormalities may in part be associated with MHC isoforms changes mediated by oxidative stress, and that these effects can be alleviated by using ginger extract as an antioxidant molecule. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Chronic myelogenous leukemia (CML)

    Science.gov (United States)

    CML; Chronic myeloid leukemia; Chronic granulocytic leukemia; Leukemia - chronic granulocytic ... Chronic myelogenous leukemia is grouped into phases: Chronic Accelerated Blast crisis The chronic phase can last for ...

  4. Genetic and Pharmacologic Manipulation of TLR4 Has Minimal Impact on Ethanol Consumption in Rodents.

    Science.gov (United States)

    Harris, R Adron; Bajo, Michal; Bell, Richard L; Blednov, Yuri A; Varodayan, Florence P; Truitt, Jay M; de Guglielmo, Giordano; Lasek, Amy W; Logrip, Marian L; Vendruscolo, Leandro F; Roberts, Amanda J; Roberts, Edward; George, Olivier; Mayfield, Jody; Billiar, Timothy R; Hackam, David J; Mayfield, R Dayne; Koob, George F; Roberto, Marisa; Homanics, Gregg E

    2017-02-01

    Toll-like receptor 4 (TLR4) is a critical component of innate immune signaling and has been implicated in alcohol responses in preclinical and clinical models. Members of the Integrative Neuroscience Initiative on Alcoholism (INIA-Neuroimmune) consortium tested the hypothesis that TLR4 mediates excessive ethanol drinking using the following models: (1) Tlr4 knock-out (KO) rats, (2) selective knockdown of Tlr4 mRNA in mouse nucleus accumbens (NAc), and (3) injection of the TLR4 antagonist (+)-naloxone in mice. Lipopolysaccharide (LPS) decreased food/water intake and body weight in ethanol-naive and ethanol-trained wild-type (WT), but not Tlr4 KO rats. There were no consistent genotypic differences in two-bottle choice chronic ethanol intake or operant self-administration in rats before or after dependence. In mice, (+)-naloxone did not decrease drinking-in-the-dark and only modestly inhibited dependence-driven consumption at the highest dose. Tlr4 knockdown in mouse NAc did not decrease drinking in the two-bottle choice continuous or intermittent access tests. However, the latency to ethanol-induced loss of righting reflex increased and the duration decreased in KO versus WT rats. In rat central amygdala neurons, deletion of Tlr4 altered GABAA receptor function, but not GABA release. Although there were no genotype differences in acute ethanol effects before or after chronic intermittent ethanol exposure, genotype differences were observed after LPS exposure. Using different species and sexes, different methods to inhibit TLR4 signaling, and different ethanol consumption tests, our comprehensive studies indicate that TLR4 may play a role in ethanol-induced sedation and GABAA receptor function, but does not regulate excessive drinking directly and would not be an effective therapeutic target. Toll-like receptor 4 (TLR4) is a key mediator of innate immune signaling and has been implicated in alcohol responses in animal models and human alcoholics. Members of the

  5. Ameliorative effect of Opuntia ficus indica juice on ethanol-induced oxidative stress in rat erythrocytes.

    Science.gov (United States)

    Alimi, Hichem; Hfaeidh, Najla; Bouoni, Zouhour; Sakly, Mohsen; Rhouma, Khémais Ben

    2013-05-01

    The aim of the present study was to investigate the efficacy of Opuntia ficus indica f. inermis fruit juice (OFIj) on reversing oxidative damages induced by chronic ethanol intake in rat erythrocytes. OFIj was firstly analyzed with HPLC for phenolic and flavonoids content. Secondly, 40 adult male Wistar rats were equally divided into five groups and treated for 90 days as follows: control (C), ethanol-only 3 g/kg body weight (b.w) (E), low dose of OFIj 2 ml/100 g b.w+ethanol (Ldj+E), high dose of OFIj 4 ml/100 g b.w+ethanol (Hdj+E), and only a high dose of OFIj 4 ml/100g b.w (Hdj). HPLC analysis indicated high concentrations of phenolic acids and flavonoids in OFIj. Ethanol treatment markedly decreased the activities of erythrocyte superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px), and the level of reduced glutathione (GSH). Changes in the erythrocyte's antioxidant ability were accompanied by enhanced oxidative modification of lipids (increase of malondialdeyde level) and proteins (increase in carbonyl groups). Interestingly, pre-administration of either 2 ml/100 g b.w or 4 ml/100 g b.w of OFIj to ethanol-intoxicated rats significantly reversed decreases in enzymatic as well as non enzymatic antioxidants parameters in erythrocytes. Also, the administration of OFIj significantly protected lipids and proteins against ethanol-induced oxidative modifications in rat erythrocytes. The beneficial effect of OFIj can result from the inhibition of ethanol-induced free radicals chain reactions in rat erythrocytes or from the enhancement of the endogenous antioxidants activities.

  6. Effects of Ethanol Extract of Scorpion on the mRNA Expression of Hippocampus GFAP in Rats with Chronic Epilepsia%全蝎醇提物对慢性癫痫模型大鼠海马GFAPmRNA表达的影响

    Institute of Scientific and Technical Information of China (English)

    梁益; 孙红斌; 喻良; 何保明; 谢彦; 杨艳萍

    2012-01-01

    OBJECTIVE: To study the effects of ethanol extract of Scorpion (EES) on mRNA expression of hippocampus GFAP in rats with chronic epilepsia. METHODS: Rats were injected with lithium chloride (Licl) 127 mg-kg-1(3 mmol-kg-1) and atropine sulfate 1 mg-kg-1 for 18-24 h intraperitoneally on the first day. 30 min later, they were given pilocarpine (Pilo) 30 mg-kg-1 intraperitoneally to induce chronic epilepsia model. Model rats were randomly divided into normal control group(isovolumic saline), model group (isovolumic saline), valproic acid group(120 mg-kg-1), EES low-dose(290 mg-kg-1),medium-dose(580 mg-kg-1)and high-dose (1 160 mg-kg-1) groups. The degree of chronic epilepsia attack in rats was observed, and the mRNA expression of hippocampus GFAP was observed by RT-PCR at 6 hour and 1 day, 3 day, 7 day, 14 day and 30 day after status epilepti-cus. RESULTS: Compared with model group, epileptic seizures grading was significantly changed in EES high-dose group and EES medium dose group.3 days after modeling, mRNA expression of hippocampus GFAP in rats was up-regulated significantly, reached to the peak 7 days later, and then declined gradually, which was still higher than normal control group. Compared with model group, GFAP mRNA contents had declined significantly in EES high-dose and medium-dose groups after 7 days of treatment(P< 0.05). CONCLUSION: High-dose and medium-dose of EES can reduce the mRNA expression of hippocampus GFAP in rats with chronic epilepsia, which is an important anti-epileptic mechanism.%目的:研究全蝎醇提物(EES)对慢性癫痫模型大鼠海马胶质纤维酸性蛋白(GFAP)mRNA表达的影响.方法:大鼠首日腹腔注射氯化锂(Licl)127 mg·kg-1(3 mmol·kg-1),18~24 h后腹腔注射硫酸阿托品1 mg·kg-1,30 min后腹腔注射毛果芸香碱(Pilo)30 mg·kg-1,以复制慢性癫痫模型.实验分为正常对照(等容生理盐水)、模型(等容生理盐水)、丙戊酸(120 mg·kg-1)和EES高、中、低剂量(1160、580、290mg

  7. Prospects for Corn Ethanol in Argentina

    OpenAIRE

    Bruce A. Babcock; Miguel Carriquiry

    2012-01-01

    Countries that export biofuel feedstocks such as grain or sugar and that are also importers of motor fuels will have a natural competitive advantage over other countries in the production of biofuels. Argentina is one of a very few countries that both export potential feedstocks and import gasoline and diesel. This combination means that an Argentine ethanol plant will pay less for feedstock and receive a higher price for ethanol than an ethanol plant located in a country that imports feedsto...

  8. Biological production of ethanol fom coal

    Energy Technology Data Exchange (ETDEWEB)

    1992-05-01

    Research is continuing in an attempt to increase both the ethanol concentration and product ratio using C. ljungdahlii. The purpose of this report is to present data (acetate to ethanol) utilizing a medium prepared especially for C. ljungdahlii. Medium development studies are presented, as well as reactor studies with the new medium in batch reactors. Continuous stirred tank reactor (CSTR) with cell recycle. The use of this new medium has resulted in significant improvements in cell concentration, ethanol concentration and product ratio.

  9. Catching a conserved mechanism of ethanol teratogenicity

    OpenAIRE

    Lovely, Charles Ben; Eberhart, Johann Karl

    2014-01-01

    Due to its profound impact on human development, ethanol teratogenicity is a field of intense study. The complexity of variables that influence the outcomes of embryonic or prenatal ethanol exposure compels the use of animal models in which these variables can be isolated. Numerous model systems have been used in these studies. The zebrafish is a powerful model system, which has seen a recent increase in usage for ethanol studies. Those using zebrafish for alcohol studies often face two quest...

  10. Hydrogen Generation from Plasmatron Reforming Ethanol

    Institute of Scientific and Technical Information of China (English)

    YOU Fu-bing; HU You-ping; LI Ge-sheng; GAO Xiao-hong

    2006-01-01

    Hydrogen generation through plasmatron reforming of ethanol has been carried out in a dielectric barrier discharge (DBD) reactor. The reforming of pure ethanol and mixtures of ethanol-water have been studied. The gas chromatography (GC) analysis has shown that in all conditions the reforming yield was H2, CO, CH4 and CO2 as the main products, and with little C2* . The hydrogen-rich gas can be used as fuel for gasoline engine and other applications.

  11. Pervaporation of ethanol produced from banana waste.

    Science.gov (United States)

    Bello, Roger Hoel; Linzmeyer, Poliana; Franco, Cláudia Maria Bueno; Souza, Ozair; Sellin, Noeli; Medeiros, Sandra Helena Westrupp; Marangoni, Cintia

    2014-08-01

    Banana waste has the potential to produce ethanol with a low-cost and sustainable production method. The present work seeks to evaluate the separation of ethanol produced from banana waste (rejected fruit) using pervaporation with different operating conditions. Tests were carried out with model solutions and broth with commercial hollow hydrophobic polydimethylsiloxane membranes. It was observed that pervaporation performance for ethanol/water binary mixtures was strongly dependent on the feed concentration and operating temperature with ethanol concentrations of 1-10%; that an increase of feed flow rate can enhance the permeation rate of ethanol with the water remaining at almost the same value; that water and ethanol fluxes was increased with the temperature increase; and that the higher effect in flux increase was observed when the vapor pressure in the permeate stream was close to the ethanol vapor pressure. Better results were obtained with fermentation broth than with model solutions, indicated by the permeance and membrane selectivity. This could be attributed to by-products present in the multicomponent mixtures, facilitating the ethanol permeability. By-products analyses show that the presence of lactic acid increased the hydrophilicity of the membrane. Based on this, we believe that pervaporation with hollow membrane of ethanol produced from banana waste is indeed a technology with the potential to be applied.

  12. High ethanol producing derivatives of Thermoanaerobacter ethanolicus

    Science.gov (United States)

    Ljungdahl, Lars G.; Carriera, Laura H.

    1983-01-01

    Derivatives of the newly discovered microorganism Thermoanaerobacter ethanolicus which under anaerobic and thermophilic conditions continuously ferment substrates such as starch, cellobiose, glucose, xylose and other sugars to produce recoverable amounts of ethanol solving the problem of fermentations yielding low concentrations of ethanol using the parent strain of the microorganism Thermoanaerobacter ethanolicus are disclosed. These new derivatives are ethanol tolerant up to 10% (v/v) ethanol during fermentation. The process includes the use of an aqueous fermentation medium, containing the substrate at a substrate concentration greater than 1% (w/v).

  13. Changes in Chinese Standard for Ethanol Gasoline

    Institute of Scientific and Technical Information of China (English)

    Zhang Xin; Zhang Yongguang

    2006-01-01

    At the beginning of the tests on application of ethanol gasoline in 2001, Chinese government promulgated a national standard, GB 18351-2001 "Ethanol Gasoline for Motor Vehicles". The standard specifies three kinds of ethanol gasoline, namely E10 (90 RON), E 10 (93 RON) and E10(95RON). There were ethanol gasoline grades (90 RON and 93 RON) and conventional unleaded gasoline(97 RON) available in the areas where tests were carried out. Vehicle owners were worried about the harmful action of ethanol to their vehicles because of lack of knowledge regarding ethanol fuel,and they only refueled their cars with conventional 97 RON unleaded gasoline. This idea might cause unnecessary costs to customers and could bring about difficulty to the tests as well. Besides, some other technical questions emerged during the experimental application of ethanol gasoline, such as water content, ethanol content in gasoline, etc. Based on the experiences accumulated during the application tests, the national standard GB 18351-2001 "Ethanol Gasoline for Motor Vehicles" was revised. The revised edition is designated as GB 18351-2004.

  14. Mixed waste paper to ethanol fuel

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-01

    The objectives of this study were to evaluate the use of mixed waste paper for the production of ethanol fuels and to review the available conversion technologies, and assess developmental status, current and future cost of production and economics, and the market potential. This report is based on the results of literature reviews, telephone conversations, and interviews. Mixed waste paper samples from residential and commercial recycling programs and pulp mill sludge provided by Weyerhauser were analyzed to determine the potential ethanol yields. The markets for ethanol fuel and the economics of converting paper into ethanol were investigated.

  15. Gestational Exposure to Inhaled Vapors of Ethanol and Gasoline-Ethanol Blends in Rats

    Science.gov (United States)

    The US automotive fleet is powered primarily by gasoline-ethanol fuel blends containing up to 10% ethanol (ElO). Uncertainties regarding the health risks associated with exposure to ElO prompted assessment of the effects of prenatal exposure to inhaled vapors of gasoline-ethanol ...

  16. Serotonin-3 Receptors in the Posterior Ventral Tegmental Area Regulate Ethanol Self-Administration of Alcohol-Preferring (P) Rats

    Science.gov (United States)

    Rodd, Zachary A.; Bell, Richard L.; Oster, Scott M.; Toalston, Jamie E.; Pommer, Tylene J.; McBride, William J.; Murphy, James M.

    2015-01-01

    Several studies indicated the involvement of serotonin-3 (5-HT3) receptors in regulating alcohol-drinking behavior. The objective of this study was to determine the involvement of 5-HT3 receptors within the ventral tegmental area (VTA) in regulating ethanol self-administration by alcohol-preferring (P) rats. Standard two-lever operant chambers were used to examine the effects of 7 consecutive bilateral micro-infusions of ICS205-930 (ICS), a 5-HT3 receptor antagonist, directly into the posterior VTA on the acquisition and maintenance of 15% (v/v) ethanol self-administration. P rats readily acquired ethanol self-administration by the 4th session. The three highest doses (0.125, 0.25 and 1.25 ug) of ICS prevented acquisition of ethanol self-administration. During the acquisition post-injection period, all rats treated with ICS demonstrated higher responding on the ethanol lever, with the highest dose producing the greatest effect. In contrast, during the maintenance phase, the 3 highest doses (0.75, 1.0 and 1.25 ug) of ICS significantly increased responding on the ethanol lever; following the 7-day dosing regimen, responding on the ethanol lever returned to control levels. Micro-infusion of ICS into the posterior VTA did not alter the low responding on the water lever, and did not alter saccharin (0.0125% w/v) self-administration.. Micro-infusion of ICS into the anterior VTA did not alter ethanol self-administration. Overall, the results of this study suggest that 5-HT3 receptors in the posterior VTA of the P rat may be involved in regulating ethanol self-administration. In addition, chronic operant ethanol self-administration, and/or repeated treatments with a 5-HT3 receptor antagonist may alter neuronal circuitry within the posterior VTA. PMID:20682192

  17. Candida albicans ethanol stimulates Pseudomonas aeruginosa WspR-controlled biofilm formation as part of a cyclic relationship involving phenazines.

    Directory of Open Access Journals (Sweden)

    Annie I Chen

    2014-10-01

    Full Text Available In chronic infections, pathogens are often in the presence of other microbial species. For example, Pseudomonas aeruginosa is a common and detrimental lung pathogen in individuals with cystic fibrosis (CF and co-infections with Candida albicans are common. Here, we show that P. aeruginosa biofilm formation and phenazine production were strongly influenced by ethanol produced by the fungus C. albicans. Ethanol stimulated phenotypes that are indicative of increased levels of cyclic-di-GMP (c-di-GMP, and levels of c-di-GMP were 2-fold higher in the presence of ethanol. Through a genetic screen, we found that the diguanylate cyclase WspR was required for ethanol stimulation of c-di-GMP. Multiple lines of evidence indicate that ethanol stimulates WspR signaling through its cognate sensor WspA, and promotes WspR-dependent activation of Pel exopolysaccharide production, which contributes to biofilm maturation. We also found that ethanol stimulation of WspR promoted P. aeruginosa colonization of CF airway epithelial cells. P. aeruginosa production of phenazines occurs both in the CF lung and in culture, and phenazines enhance ethanol production by C. albicans. Using a C. albicans adh1/adh1 mutant with decreased ethanol production, we found that fungal ethanol strongly altered the spectrum of P. aeruginosa phenazines in favor of those that are most effective against fungi. Thus, a feedback cycle comprised of ethanol and phenazines drives this polymicrobial interaction, and these relationships may provide insight into why co-infection with both P. aeruginosa and C. albicans has been associated with worse outcomes in cystic fibrosis.

  18. Effects of (R)-(-)-5-methyl-1-nicotinoyl-2-pyrazoline on glutamate transporter 1 and cysteine/glutamate exchanger as well as ethanol drinking behavior in male, alcohol-preferring rats.

    Science.gov (United States)

    Aal-Aaboda, Munaf; Alhaddad, Hasan; Osowik, Francis; Nauli, Surya M; Sari, Youssef

    2015-06-01

    Alcohol consumption is largely associated with alterations in the extracellular glutamate concentrations in several brain reward regions. We recently showed that glutamate transporter 1 (GLT-1) is downregulated following chronic exposure to ethanol for 5 weeks in alcohol-preferring (P) rats and that upregulation of the GLT-1 levels in nucleus accumbens and prefrontal cortex results, in part, in attenuating ethanol consumption. Cystine glutamate antiporter (xCT) is also downregulated after chronic ethanol exposure in P rats, and its upregulation could be valuable in attenuating ethanol drinking. This study examines the effect of a synthetic compound, (R)-(-)-5-methyl-1-nicotinoyl-2-pyrazoline (MS-153), on ethanol drinking and expressions of GLT-1 and xCT in the amygdala and the hippocampus of P rats. P rats were exposed to continuous free-choice access to water, 15% and 30% ethanol, and food for 5 weeks, after which they received treatments of MS-153 or vehicle for 5 days. The results show that MS-153 treatment significantly reduces ethanol consumption. It was revealed that GLT-1 and xCT expressions were downregulated in both the amygdala and the hippocampus of ethanol-vehicle-treated rats (ethanol-vehicle group) compared with water-control animals. MS-153 treatment upregulated GLT-1 and xCT expressions in these brain regions. These findings demonstrate an important role for MS-153 in these glutamate transporters for the attenuation of ethanol-drinking behavior.

  19. Consequences of amygdala kindling and repeated withdrawal from ethanol on amphetamine-induced behaviours.

    Science.gov (United States)

    Ripley, Tamzin L; Dunworth, Sarah J; Stephens, David N

    2002-09-01

    It has been shown previously that chronic ethanol treatment in mice leads to accelerated behavioural sensitization to psychomotor stimulants [Manley & Little (1997) J. Pharmacol. Exp. Ther., 281, 1330-1339], whilst repeated experience of ethanol withdrawal sensitizes pathways underlying seizure activity (Becker & Hale (1993) Alcohol Clin. Exp. Res., 17, 94-98]. The aim of the current experiment was to investigate the consequences of repeated withdrawal from ethanol on amphetamine-induced behaviours in the rat and compare this with animals with electrical kindling of the amygdala, a procedure that has been shown to enhance alcohol withdrawal seizures [Pinel et al. (1975) Can. J. Neurol. Sci., 2, 467-475]. For the kindling experiments, electrodes were surgically implanted in the left basolateral amygdala and were stimulated daily at the afterdischarge threshold until a criterion of three consecutive stage 5 seizures was reached. Fully kindled rats showed a marginally significant reduction in sensitivity to the locomotor stimulant effects of acute amphetamine compared with sham and partially kindled rats which had experienced subthreshold stimulation of the amygdala. Sham and partially kindled rats sensitized readily to the locomotor activating effects of amphetamine (0.125 mg/kg) following repeated treatments, but the fully kindled rats did not. Fully kindled rats also failed to show place preference conditioning to amphetamine (0.5 mg/kg). Rats, withdrawn three times from chronic ethanol (liquid-diet), kindled more quickly to PTZ (30 mg/kg, i.p.) than rats with the same overall exposure to ethanol (24 days) followed by a single withdrawal or control animals. However, there was no difference in the locomotor stimulating effects of acute amphetamine (0.25-1 mg/kg, i.p.), the rate of sensitization to amphetamine (0.125 mg/kg, i.p.) or amphetamine induced conditioned place preference (1 mg/kg, i.p.). These observations suggest that, in rats, repeated withdrawal from a

  20. Ethanol production from bread residues

    Energy Technology Data Exchange (ETDEWEB)

    Ebrahimi, Fatemeh; Roodpeyma, Shapoor [Chemical Engineering Department, Isfahan University of Technology, Isfahan (Iran); Khanahmadi, Morteza [Agricultural Engineering Research Department, Isfahan Center for the Research of Agricultural Science and Natural Resources, Isfahan (Iran); Taherzadeh, Mohammad J. [School of Engineering, University of Boraas, SE-50190 Boraas (Sweden)

    2008-04-15

    Bread residues were converted into a suitable fermentation feed via a two-step starch hydrolysis using amylolytic enzymes. Wheat flour hydrolysis was also carried out at the same conditions for comparison. For the first stage, namely liquefaction, effects of temperature (50-85{sup o}C) and substrate concentration (20% and 35%) were investigated. The 3-h liquefaction of the 20% bread suspension made 70% of initial dry matter soluble regardless of the temperature. The liquefaction of the 35% bread suspension had to be carried out by a fed-batch method due to the pasty behavior of the suspension. It resulted in a 65% dissolution of the suspended bread at 85{sup o}C. Saccharification of the latter product led to a fermentation feedstock having a dextrose equivalent (DE) of more than 95 and almost 80% dissolution of the initial dry matter. The prepared feedstock was then cultivated using Saccharomyces cerevisiae, which resulted in an overall yield of 350 g ethanol per kg of initial bread dry matter. Staling of the bread for a week had no effect on liquefaction, saccharification and ethanol yield. (author)

  1. The Impact of Ethanol and Ethanol Subsidies on Corn Prices: Revisiting History

    OpenAIRE

    Bruce A. Babcock

    2011-01-01

    The rapid rise in corn prices that began in the fall of 2006 coincided with exponential growth in U.S. corn ethanol production. At about the same time, new ethanol consumption mandates were added to existing ethanol import tariffs and price subsidies. This troika of subsidies leads critics to view the ethanol industry as being beholden to subsidies, which then leads to the conclusion that ethanol subsidies lead to high corn prices. But droughts, floods, a severe U.S. recession, and two genera...

  2. Daidzin, an antioxidant isoflavonoid, decreases blood alcohol levels and shortens sleep time induced by ethanol intoxication.

    Science.gov (United States)

    Xie, C I; Lin, R C; Antony, V; Lumeng, L; Li, T K; Mai, K; Liu, C; Wang, Q D; Zhao, Z H; Wang, G F

    1994-12-01

    The extract from an edible vine, Pueraria lebata, has been reported to be efficacious in lessening alcohol intoxication. In this study, we have tested the efficacy of one of the major components, daidzin, from this plant extract. When ethanol (40% solution, 3 g/kg body weight) was given to fasted rats intragastrically, blood alcohol concentration (BAC) peaked at 30 min after alcohol ingestion and reached 1.77 +/- 0.14 mg/ml (mean values +/- SD, n = 6). If daidzin (30 mg/kg) was mixed with the ethanol solution and given to animals intragastrically, BAC was found to peak at 90 min after alcohol ingestion and reached only 1.20 +/- 0.30 mg/ml (n = 6) (p daidzin to delay and decrease peak BAC level after ethanol ingestion was also observed in fed animals. In both fasted and fed rats given alcohol without daidzin, BAC quickly declined after reaching its peak at 30 min. By contrast, BAC levels receded more slowly if daidzin was also fed to the animals. Daidzin showed a chronic effect. Rats fed daidzin for 7 days before ethanol challenge, but not on the day of challenge, also produced lower and later peak BAC levels. Interestingly, daidzin, whether fed to rats only once or chronically for 7 days, did not significantly alter activities of either alcohol dehydrogenase or mitochondrial aldehyde dehydrogenase in the liver. Further experiments demonstrated that daidzin shortened sleep time for rats receiving ethanol intragastrically (7 g/kg) but not intraperitoneally (2 g/kg). To test whether daidzin delayed stomach-emptying, [14C]polyethylene glycol was mixed with ethanol and fed to rats.(ABSTRACT TRUNCATED AT 250 WORDS)

  3. Sub-toxic Ethanol Exposure Modulates Gene Expression and Enzyme Activity of Antioxidant Systems to Provide Neuroprotection in Hippocampal HT22 Cells

    Science.gov (United States)

    Casañas-Sánchez, Verónica; Pérez, José A.; Quinto-Alemany, David; Díaz, Mario

    2016-01-01

    Ethanol is known to cause severe systemic damage often explained as secondary to oxidative stress. Brain is particularly vulnerable to ethanol-induced reactive oxygen species (ROS) because the high amounts of lipids, and because nerve cell membranes contain high amounts of peroxidable fatty acids. Usually these effects of ethanol are associated to high and/or chronic exposure to ethanol. However, as we show in this manuscript, a low and acute dose of ethanol trigger a completely different response in hippocampal cells. Thus, we have observed that 0.1% ethanol exposure to HT22 cells, a murine hippocampal-derived cell line, increases the transcriptional expression of different genes belonging to the classical, glutathione/glutaredoxin and thioredoxin/peroxiredoxin antioxidant systems, these including Sod1, Sod2, Gpx1, Gclc, and Txnrd1. Paralleling these changes, enzyme activities of total superoxide dismutase (tSOD), catalase, total glutathione peroxidase (tGPx), glutathione-S-reductase (GSR), and total thioredoxin reductase (tTXNRD), were all increased, while the generation of thiobarbituric acid reactive substances (TBARS), as indicators of lipid peroxidation, and glutathione levels remained unaltered. Ethanol exposure did not affect cell viability or cell growing as assessed by real-time cell culture monitoring, indicating that low ethanol doses are not deleterious for hippocampal cells, but rather prevented glutamate-induced excitotoxicity. In summary, we conclude that sub-toxic exposure to ethanol may well be neuroprotective against oxidative insults in hippocampal cells. PMID:27512374

  4. Data on the effects of losartan on protein expression, vascular reactivity and antioxidant capacity in the aorta of ethanol-treated rats

    Directory of Open Access Journals (Sweden)

    Carla S. Ceron

    2017-04-01

    Full Text Available We describe the effects of losartan, a selective AT1 receptor antagonist on the alterations induced by treatment with ethanol in the rat aorta. The data shown here are related to the article entitled “Angiotensin type 1 receptor mediates chronic ethanol consumption-induced hypertension and vascular oxidative stress” (P. Passaglia, C.S. Ceron, A.S. Mecawi, J. Antunes-Rodrigues, E.B. Coelho, C.R. Tirapelli, 2015 [1]. Here we include new data on the protective effect of losartan against ethanol-induced oxidative stress. Male Wistar rats treated for 2 weeks with ethanol (20%, vol./vol. exhibited increased aortic production of reactive oxygen species (ROS and losartan (10 mg/kg/day; p.o. gavage prevented this response. Ethanol did not alter the expression of eNOS in the rat aorta. Losartan prevented ethanol-induced increase in the aortic expression of nNOS. Neither ethanol nor losartan affected superoxide dismutase (SOD or catalase (CAT activities in the rat aorta. Treatment with ethanol increased the contraction induced by phenylephrine in both endothelium-intact and endothelium-denuded aortas and these responses were prevented by losartan. Conversely, neither ethanol nor losartan affected the endothelium-dependent relaxation induced by acetylcholine.

  5. Ethanol enhances arsenic-induced cyclooxygenase-2 expression via both NFAT and NF-κB signalings in colorectal cancer cells.

    Science.gov (United States)

    Wang, Lei; Hitron, John Andrew; Wise, James T F; Son, Young-Ok; Roy, Ram Vinod; Kim, Donghern; Dai, Jin; Pratheeshkumar, Poyil; Zhang, Zhuo; Xu, Mei; Luo, Jia; Shi, Xianglin

    2015-10-15

    Arsenic is a known carcinogen to humans, and chronic exposure to environmental arsenic is a worldwide health concern. As a dietary factor, ethanol carries a well-established risk for malignancies, but the effects of co-exposure to arsenic and ethanol on tumor development are not well understood. In the present study, we hypothesized that ethanol would enhance the function of an environmental carcinogen such as arsenic through increase in COX-2 expression. Our in vitro results show that ethanol enhanced arsenic-induced COX-2 expression. We also show that the increased COX-2 expression associates with intracellular ROS generation, up-regulated AKT signaling, with activation of both NFAT and NF-κB pathways. We demonstrate that antioxidant enzymes have an inhibitory effect on arsenic/ethanol-induced COX-2 expression, indicating that the responsive signaling pathways from co-exposure to arsenic and ethanol relate to ROS generation. In vivo results also show that co-exposure to arsenic and ethanol increased COX-2 expression in mice. We conclude that ethanol enhances arsenic-induced COX-2 expression in colorectal cancer cells via both the NFAT and NF-κB pathways. These results imply that, as a common dietary factor, ethanol ingestion may be a compounding risk factor for arsenic-induced carcinogenesis/cancer development.

  6. Ethanol precipitation analysis of thymus histone

    NARCIS (Netherlands)

    Bijvoet, P.

    1957-01-01

    An analytical ethanol precipitation technique, similar to 's salting-out procedure, was used for the characterisation of whole thymus histone and the products obtained by preparative ethanol fractionation. The analysis was carried out at —5° C and pH 6.5. Whole histone prepared according to et al.,

  7. SEPARATION AND CONCENTRATION OF ETHANOL BY PERVAPORATION

    Science.gov (United States)

    A significant issue affecting widespread acceptance of bioethanol as a sustainable fuel is the energy used to grow the feedstock, ferment the feedstock to ethanol, and separate dry ethanol from the fermentation broth. For the latter, the best current technology is two-step disti...

  8. Manufacturing Ethyl Acetate From Fermentation Ethanol

    Science.gov (United States)

    Rohatgi, Naresh K.; Ingham, John D.

    1991-01-01

    Conceptual process uses dilute product of fermentation instead of concentrated ethanol. Low-concentration ethanol, extracted by vacuum from fermentation tank, and acetic acid constitutes feedstock for catalytic reaction. Product of reaction goes through steps that increases ethyl acetate content to 93 percent by weight. To conserve energy, heat exchangers recycle waste heat to preheat process streams at various points.

  9. Antidepressant Effect of Aminophylline After Ethanol Exposure

    Science.gov (United States)

    Escudeiro, Sarah Souza; Soares, Paula Matias; Almeida, Anália Barbosa; de Freitas Guimarães Lobato, Rodrigo; de Araujo, Dayane Pessoa; Macedo, Danielle Silveira; Sousa, Francisca Cléa Florenço; Patrocínio, Manoel Cláudio Azevedo; Vasconcelos, Silvânia Maria Mendes

    2013-01-01

    This work investigated the association of acute ethanol and aminophylline administration on behavioral models of depression and prefrontal monoamine levels (i.e. norepinephrine and dopamine) in mice. The animals received a single dose of ethanol (2 g/kg) or aminophylline (5 or 10 mg/kg) alone or in association. Thirty minutes after the last drug administration, the animals were assessed in behavioral models by the forced swimming and tail suspension tests. After these tests, the animals were sacrificed and the prefrontal cortices dissected to measure monoamine content. Results showed that ethanol presented depression-like activity in the forced swimming and tail suspension tests. These effects were reversed by the association with aminophylline in all tests. Norepinephrine and dopamine levels decreased, while an increase in the dopamine metabolite, (4-hydroxy-3-methoxyphenyl)acetic acid (DOPAC), after ethanol administration was observed. On the contrary, the association of ethanol and aminophylline increased the norepinephrine and dopamine content, while it decreased DOPAC when compared to the ethanol group, confirming the alterations observed in the behavioral tests. These data reinforce the involvement of the adenosinergic system on ethanol effects, highlighting the importance of the norepinephrine and dopamine pathways in the prefrontal cortex to the effects of ethanol. PMID:23641339

  10. INACTIVATION OF THE LATERAL ORBITOFRONTAL CORTEX INCREASES DRINKING IN ETHANOL-DEPENDENT BUT NOT NON-DEPENDENT MICE

    Science.gov (United States)

    den Hartog, Carolina; Zamudio-Bulcock, Paula; Nimitvilai, Sudarat; Gilstrap, Meghin; Fedarovich, Hleb; Motts, Andrew; Woodward, John J.

    2016-01-01

    Long-term consumption of ethanol affects cortical areas that are important for learning and memory, cognition, and decision-making. Deficits in cortical function may contribute to alcohol-abuse disorders by impeding an individual’s ability to control drinking. Previous studies from this laboratory show that acute ethanol reduces activity of lateral orbitofrontal cortex (LOFC) neurons while chronic exposure impairs LOFC-dependent reversal learning and induces changes in LOFC excitability. Despite these findings, the role of LOFC neurons in ethanol consumption is unknown. To address this issue, we examined ethanol drinking in adult C57Bl/6J mice that received an excitotoxic lesion or viral injection of the inhibitory DREADD (designer receptor exclusively activated by designer drug) into the LOFC. No differences in ethanol consumption were observed between sham and lesioned mice during access to increasing concentrations of ethanol (3–40%) every other day for 7 weeks. Adulterating the ethanol solution with saccharin (0.2%) or quinine (0.06 mM) enhanced or inhibited, respectively, consumption of the 40% ethanol solution similarly in both groups. Using a chronic intermittent ethanol (CIE) vapor exposure model that produces dependence, we found no difference in baseline drinking between sham and lesioned mice prior to vapor treatments. CIE enhanced drinking in both groups as compared to air-treated animals and CIE treated lesioned mice showed an additional increase in ethanol drinking as compared to CIE sham controls. This effect persisted during the first week when quinine was added to the ethanol solution but consumption decreased to control levels in CIE lesioned mice in the following 2 weeks. In viral injected mice, baseline drinking was not altered by expression of the inhibitory DREADD receptor and repeated cycles of CIE exposure enhanced drinking in DREADD and virus control groups. Consistent with the lesion study, treatment with clozapine-N-oxide (CNO

  11. An integrative analysis of transcriptomic response of ethanol tolerant strains to ethanol in Saccharomyces cerevisiae.

    Science.gov (United States)

    Kasavi, Ceyda; Eraslan, Serpil; Oner, Ebru Toksoy; Kirdar, Betul

    2016-02-01

    The accumulation of ethanol is one of the main environmental stresses that Saccharomyces cerevisiae cells are exposed to in industrial alcoholic beverage and bioethanol production processes. Despite the known impacts of ethanol, the molecular mechanisms underlying ethanol tolerance are still not fully understood. Novel gene targets leading to ethanol tolerance were previously identified via a network approach and the investigations of the deletions of these genes resulted in the improved ethanol tolerance of pmt7Δ/pmt7Δ and yhl042wΔ/yhl042wΔ strains. In the present study, an integrative system based approach was used to investigate the global transcriptional changes in these two ethanol tolerant strains in response to ethanol and hence to elucidate the mechanisms leading to the observed tolerant phenotypes. In addition to strain specific biological processes, a number of common and already reported biological processes were found to be affected in the reference and both ethanol tolerant strains. However, the integrative analysis of the transcriptome with the transcriptional regulatory network and the ethanol tolerance network revealed that each ethanol tolerant strain had a specific organization of the transcriptomic response. Transcription factors around which most important changes occur were determined and active subnetworks in response to ethanol and functional clusters were identified in all strains.

  12. Bidirectional enantioselective effects of the GABAB receptor agonist baclofen in two mouse models of excessive ethanol consumption.

    Science.gov (United States)

    Kasten, Chelsea R; Blasingame, Shelby N; Boehm, Stephen L

    2015-02-01

    The GABAB receptor agonist baclofen has been studied extensively in preclinical models of alcohol-use disorders, yet results on its efficacy have been uncertain. Racemic baclofen, which is used clinically, can be broken down into separate enantiomers of the drug. Baclofen has been shown to produce enantioselective effects in behavioral assays, including those modeling reflexive and sexual behavior. The current studies sought to characterize the enantioselective effects of baclofen in two separate models of ethanol consumption. The first was a Drinking-in-the-Dark procedure that provides "binge-like" ethanol access to mice by restricting access to a 2-h period, 3 h into the dark cycle. The second was a two-bottle choice procedure that utilized selectively bred High Alcohol Preferring 1 (HAP1) mice to model chronic ethanol access. HAP1 mice are selectively bred to consume pharmacologically relevant amounts of ethanol in a 24-h two-bottle choice paradigm. The results showed that baclofen yields enantioselective effects on ethanol intake in both models, and that these effects are bidirectional. Total ethanol intake was decreased by R(+)-baclofen, while total intake was increased by S(-)-baclofen in the binge-like and chronic drinking models. Whereas overall binge-like saccharin intake was significantly reduced by R(+)-baclofen, chronic intake was not significantly altered. S(-)-baclofen did not significantly alter saccharin intake. Neither enantiomer significantly affected locomotion during binge-like reinforcer consumption. Collectively, these results demonstrate that baclofen produces enantioselective effects on ethanol consumption. More importantly, the modulation of consumption is bidirectional. The opposing enantioselective effects may explain some of the variance seen in published baclofen literature.

  13. Genetic correlations with ethanol withdrawal severity.

    Science.gov (United States)

    Crabbe, J C; Young, E R; Kosobud, A

    1983-01-01

    A major goal of pharmacogenetic research on alcoholism remains the identification of some "marker" that could predict the liability of a particular individual for a genetic susceptibility to develop alcoholism. The present paper presents evidence that the severity of withdrawal from physical dependence on ethanol varies widely among inbred strains of mice, and that withdrawal severity is negatively genetically correlated with initial sensitivity and magnitude of tolerance to ethanol hypothermia. These correlations are supported by differences in hypothermic response between replicate lines of mice genetically selected for susceptibility and resistance to ethanol withdrawal seizures. The genetic relationships reported suggest that the effects of ethanol on thermoregulation in mice may offer a predictive marker for susceptibility to ethanol physical dependence.

  14. Production of ethanol from wheat straw

    Directory of Open Access Journals (Sweden)

    Smuga-Kogut Małgorzata

    2015-09-01

    Full Text Available This study proposes a method for the production of ethanol from wheat straw lignocellulose where the raw material is chemically processed before hydrolysis and fermentation. The usefulness of wheat straw delignification was evaluated with the use of a 4:1 mixture of 95% ethanol and 65% HNO3 (V. Chemically processed lignocellulose was subjected to enzymatic hydrolysis to produce reducing sugars, which were converted to ethanol in the process of alcoholic fermentation. Chemical processing damages the molecular structure of wheat straw, thus improving ethanol yield. The removal of lignin from straw improves fermentation by eliminating lignin’s negative influence on the growth and viability of yeast cells. Straw pretreatment facilitates enzymatic hydrolysis by increasing the content of reducing sugars and ethanol per g in comparison with untreated wheat straw.

  15. African perspective on cellulosic ethanol production

    DEFF Research Database (Denmark)

    Bensah, Edem Cudjoe; Kemausuor, Francis; Miezah, Kodwo

    2015-01-01

    A major challenge to commercial production of cellulosic ethanol pertains to the cost-effective breakdown of the complex and recalcitrant structure of lignocellulose into its components via pretreatment, the cost of enzymes for hydrolysis and fermentation, and the conversion rate of C5 sugars...... to ethanol, among others. While the industrialized and some emerging countries are gradually breaking grounds in cellulosic ethanol, most African countries have made little effort in research and development even though the continent is rich in lignocellulosic biomass. The paper estimates residues from...... widely available crops and municipal waste and determines their respective theoretical ethanol potential (around 22 billion litres annually). It further reviews stages involved in the production of cellulosic ethanol, focussing on processing methods that can be adapted to current situation in most...

  16. Infrastructure Requirements for an Expanded Fuel Ethanol Industry

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, Robert E. [Downstream Alternatives, Inc., South Bend, IN (United States)

    2002-01-15

    This report provides technical information specifically related to ethanol transportation, distribution, and marketing issues. This report required analysis of the infrastructure requirements for an expanded ethanol industry.

  17. Chronic Bronchitis

    Science.gov (United States)

    Bronchitis is an inflammation of the bronchial tubes, the airways that carry air to your lungs. It ... chest tightness. There are two main types of bronchitis: acute and chronic. Chronic bronchitis is one type ...

  18. Chronic Pain

    Science.gov (United States)

    ... a problem you need to take care of. Chronic pain is different. The pain signals go on ... there is no clear cause. Problems that cause chronic pain include Headache Low back strain Cancer Arthritis ...

  19. Chronic Pain

    Science.gov (United States)

    ... pain. Psychotherapy, relaxation and medication therapies, biofeedback, and behavior modification may also be employed to treat chronic pain. × ... pain. Psychotherapy, relaxation and medication therapies, biofeedback, and behavior modification may also be employed to treat chronic pain. ...

  20. Inflammatory PAF Receptor Signaling Initiates Hedgehog Signaling and Kidney Fibrogenesis During Ethanol Consumption.

    Directory of Open Access Journals (Sweden)

    Calivarathan Latchoumycandane

    Full Text Available Acute inflammation either resolves or proceeds to fibrotic repair that replaces functional tissue. Pro-fibrotic hedgehog signaling and induction of its Gli transcription factor in pericytes induces fibrosis in kidney, but molecular instructions connecting inflammation to fibrosis are opaque. We show acute kidney inflammation resulting from chronic ingestion of the common xenobiotic ethanol initiates Gli1 transcription and hedgehog synthesis in kidney pericytes, and promotes renal fibrosis. Ethanol ingestion stimulated transcription of TGF-ß, collagens I and IV, and alpha-smooth muscle actin with accumulation of these proteins. This was accompanied by deposition of extracellular fibrils. Ethanol catabolism by CYP2E1 in kidney generates local reactive oxygen species that oxidize cellular phospholipids to phospholipid products that activate the Platelet-activating Factor receptor (PTAFR for inflammatory phospholipids. Genetically deleting this ptafr locus abolished accumulation of mRNA for TGF-ß, collagen IV, and α-smooth muscle actin. Loss of PTAFR also abolished ethanol-stimulated Sonic (Shh and Indian hedgehog (Ihh expression, and abolished transcription and accumulation of Gli1. Shh induced in pericytes and Ihh in tubules escaped to urine of ethanol-fed mice. Neutrophil myeloperoxidase (MPO is required for ethanol-induced kidney inflammation, and Shh was not present in kidney or urine of mpo-/- mice. Shh also was present in urine of patients with acute kidney injury, but not in normal individuals or those with fibrotic liver cirrhosis We conclude neither endogenous PTAFR signaling nor CYP2E1-generated radicals alone are sufficient to initiate hedgehog signaling, but instead PTAFR-dependent neutrophil infiltration with myeloperoxidase activation is necessary to initiate ethanol-induced fibrosis in kidney. We also show fibrogenic mediators escape to urine, defining a new class of urinary mechanistic biomarkers of fibrogenesis for an organ not

  1. HIGH ETHANOL DOSE DURING EARLY ADOLESCENCE INDUCES LOCOMOTOR ACTIVATION AND INCREASES SUBSEQUENT ETHANOL INTAKE DURING LATE ADOLESCENCE

    OpenAIRE

    Acevedo, María Belén; Molina, Juan Carlos; Nizhnikov, Michael E.; Spear, Norman E.; Pautassi, Ricardo Marcos

    2010-01-01

    Adolescent initiation of ethanol consumption is associated with subsequent heightened probability of ethanol-use disorders. The present study examined the relationship between motivational sensitivity to ethanol initiation in adolescent rats and later ethanol intake. Experiment 1 determined that ethanol induces locomotor activation shortly after administration but not if tested at a later post-administration interval. In Experiment 2, adolescents were assessed for ethanol-induced locomotor ac...

  2. Models of acute and chronic pancreatitis.

    Science.gov (United States)

    Lerch, Markus M; Gorelick, Fred S

    2013-06-01

    Animal models of acute and chronic pancreatitis have been created to examine mechanisms of pathogenesis, test therapeutic interventions, and study the influence of inflammation on the development of pancreatic cancer. In vitro models can be used to study early stage, short-term processes that involve acinar cell responses. Rodent models reproducibly develop mild or severe disease. One of the most commonly used pancreatitis models is created by administration of supraphysiologic concentrations of caerulein, an ortholog of cholecystokinin. Induction of chronic pancreatitis with factors thought to have a role in human disease, such as combinations of lipopolysaccharide and chronic ethanol feeding, might be relevant to human disease. Models of autoimmune chronic pancreatitis have also been developed. Most models, particularly of chronic pancreatitis, require further characterization to determine which features of human disease they include.

  3. Chronic prostatitis

    OpenAIRE

    Le, Brian; Schaeffer, Anthony J.

    2011-01-01

    Chronic prostatitis can cause pain and urinary symptoms, and usually occurs without positive bacterial cultures from prostatic secretions (known as chronic abacterial prostatitis or chronic pelvic pain syndrome [CP/CPPS]). Bacterial infection can result from urinary tract instrumentation, but the cause and natural history of CP/CPPS are unknown.

  4. Chronic prostatitis

    OpenAIRE

    Erickson, Bradley A.; Schaeffer, Anthony J.; Le, Brian

    2008-01-01

    Chronic prostatitis can cause pain and urinary symptoms, and usually occurs without positive bacterial cultures from prostatic secretions (known as chronic abacterial prostatitis or chronic pelvic pain syndrome, CP/CPPS). Bacterial infection can result from urinary tract instrumentation, but the cause and natural history of CP/CPPS are unknown.

  5. A novel RNA binding protein that interacts with NMDA R1 mRNA: regulation by ethanol.

    Science.gov (United States)

    Anji, Antje; Kumari, Meena

    2006-05-01

    Excitatory NMDA receptors are an important target of ethanol. Chronic ethanol exposure, in vivo and in vitro, increases polypeptide levels of NR1 subunit, the key subunit of functional NMDA receptors. In vitro, chronic ethanol treatment increases the half-life of NR1 mRNA and this observation is dependent on new protein synthesis. The present study was undertaken to locate cis-acting region(s) within the NR1 3'-untranslated region (UTR) and identify NR1 3'-UTR binding trans-acting proteins expressed in mouse fetal cortical neurons. Utilizing RNA gel shift assays we identified a 156-nt cis-acting region that binds to polysomal trans-acting proteins. This binding was highly specific as inclusion of cyclophilin RNA or tRNA did not interfere with cis-trans interactions. Importantly, the 3'-UTR binding activity was significantly up-regulated in the presence of ethanol. UV cross-link analysis detected three NR1 3'-UTR binding proteins and their molecular mass calculated by Northwestern analysis was approximately 88, 60 and 47 kDa, respectively. Northwestern analysis showed a significant up-regulation of the 88-kDa protein after chronic ethanol treatment. The 88-kDa protein was purified and identified by tandem mass spectrometry as the beta subunit of alpha glucosidase II (GIIbeta). That GIIbeta is indeed a trans-acting protein and binds specifically to 3'-UTR of NR1 mRNA was confirmed by RNA gel mobility supershift assays and immuno RT-PCR. Western blotting data established a significant increase of GIIbeta polypeptide in chronic ethanol-exposed fetal cortical neurons. We hypothesize that the identified cis-acting region and the associated RNA-binding proteins are important regulators of NR1 subunit gene expression.

  6. FAT10 suppression stabilizes oxidized proteins in liver cells: Effects of HCV and ethanol.

    Science.gov (United States)

    Ganesan, Murali; Hindman, Joseph; Tillman, Brittany; Jaramillo, Lee; Poluektova, Larisa I; French, Barbara A; Kharbanda, Kusum K; French, Samuel W; Osna, Natalia A

    2015-12-01

    FAT10 belongs to the ubiquitin-like modifier (ULM) family that targets proteins for degradation and is recognized by 26S proteasome. FAT10 is presented on immune cells and under the inflammatory conditions, is synergistically induced by IFNγ and TNFα in the non-immune (liver parenchymal) cells. It is not clear how viral proteins and alcohol regulate FAT10 expression on liver cells. In this study, we aimed to investigate whether FAT10 expression on liver cells is activated by the innate immunity factor, IFNα and how HCV protein expression in hepatocytes and ethanol-induced oxidative stress affect the level of FAT10 in liver cells. For this study, we used HCV(+) transgenic mice that express structural HCV proteins and their HCV(-) littermates. Mice were fed Lieber De Carli diet (control and ethanol) as specified in the NIH protocol for chronic-acute ethanol feeding. Alcohol exposure enhanced steatosis, induced oxidative stress and decreased proteasome activity in the liversof these mice, with more robust response to ethanol in HCV(+) mice. IFNα induced transcriptional activation of FAT10 in liver cells, which was dysregulated by ethanol feeding. Accordingly, IFNα-activated expression of FAT10 in hepatocytes (measured by indirect immunofluorescent of liver tissue) was also suppressed by ethanol exposure in both HCV(+) and HCV(-) mice. This suppression was accompanied with ethanol-mediated induction of lipid peroxidation marker, 4-HNE. All aforementioned effects of ethanol were attenuated by in vivo feeding of mice with the pro-methylating agent, betaine, which exhibits strong anti-oxidant properties. Based on this study, we hypothesize that FAT10 targets oxidatively modified proteins for proteasomal degradation, and that the reduction in FAT10 levels along with decreased proteasome activity may contribute to stabilization of these altered proteins in hepatocytes. In conclusion, IFNα induced FAT10 expression, which is suppressed by ethanol feeding in both HCV

  7. Chronic-Alcohol-Abuse-Induced Oxidative Stress in the Development of Acute Respiratory Distress Syndrome

    Directory of Open Access Journals (Sweden)

    Yan Liang

    2012-01-01

    Full Text Available Chronic alcohol ingestion increases the risk of developing acute respiratory distress syndrome (ARDS, a severe form of acute lung injury, characterized by alveolar epithelial and endothelial barrier disruption and intense inflammation. Alcohol abuse is also associated with a higher incidence of sepsis or pneumonia resulting in a higher rate of admittance to intensive care, longer inpatient stays, higher healthcare costs, and a 2–4 times greater mortality rate. Chronic alcohol ingestion induced severe oxidative stress associated with increased ROS generation, depletion of the critical antioxidant glutathione (GSH, and oxidation of the thiol/disulfide redox potential in the alveolar epithelial lining fluid and exhaled breath condensate. Across intracellular and extracellular GSH pools in alveolar type II cells and alveolar macrophages, chronic alcohol ingestion consistently induced a 40–60 mV oxidation of GSH/GSSG suggesting that the redox potentials of different alveolar GSH pools are in equilibrium. Alcohol-induced GSH depletion or oxidation was associated with impaired functions of alveolar type II cells and alveolar macrophages but could be reversed by restoring GSH pools in the alveolar lining fluid. The aims of this paper are to address the mechanisms for alcohol-induced GSH depletion and oxidation and the subsequent effects in alveolar barrier integrity, modulation of the immune response, and apoptosis.

  8. Adolescent binge-like ethanol exposure reduces basal α-MSH expression in the hypothalamus and the amygdala of adult rats

    Science.gov (United States)

    Lerma-Cabrera, Jose Manuel; Carvajal, Francisca; Alcaraz-Iborra, Manuel; de la Fuente, Leticia; Navarro, Montserrat; Thiele, Todd E.; Cubero, Inmaculada

    2013-01-01

    Melanocortins (MC) are central peptides that have been implicated in the modulation of ethanol consumption. There is experimental evidence that chronic ethanol exposure reduces α-MSH expression in limbic and hypothalamic brain regions and alters central pro-opiomelanocortin (POMC) mRNA activity in adult rats. Adolescence is a critical developmental period of high vulnerability in which ethanol exposure alters corticotropin releasing factor, neuropeptide Y, substance P and neurokinin neuropeptide activities, all of which have key roles in ethanol consumption. Given the involvement of MC and the endogenous inverse agonist AgRP in ethanol drinking, here we evaluate whether a binge-like pattern of ethanol treatment during adolescence has a relevant impact on basal and/or ethanol-stimulated α-MSH and AgRP activities during adulthood. To this end, adolescent Sprague-Dawley rats (beginning at PND25) were pre-treated with either saline (SP group) or binge-like ethanol exposure (BEP group; 3.0 g/kg given in intraperitoneal (i.p.) injections) of one injection per day over two consecutive days, followed by 2 days without injections, repeated for a total of 8 injections. Following 25 ethanol-free days, we evaluated α-MSH and AgRP immunoreactivity (IR) in the limbic and hypothalamic nuclei of adult rats (PND63) in response to ethanol (1.5 or 3.0 g/kg i.p.) and saline. We found that binge-like ethanol exposure during adolescence significantly reduced basal α-MSH IR in the central nucleus of the amygdala (CeA), the arcuate nucleus (Arc) and the paraventricular nucleus of the hypothalamus (PVN) during adulthood. Additionally, acute ethanol elicited AgRP IR in the Arc. Rats given the adolescent ethanol treatment required higher doses of ethanol than saline-treated rats to express AgRP. In light of previous evidence that endogenous MC and AgRP regulate ethanol intake through MC-receptor signaling, we speculate that the α-MSH and AgRP disturbances induced by binge-like ethanol

  9. Adolescent binge-like ethanol exposure reduces basal α-MSH expression in the hypothalamus and the amygdala of adult rats.

    Science.gov (United States)

    Lerma-Cabrera, Jose Manuel; Carvajal, Francisca; Alcaraz-Iborra, Manuel; de la Fuente, Leticia; Navarro, Montserrat; Thiele, Todd E; Cubero, Inmaculada

    2013-09-01

    Melanocortins (MC) are central peptides that have been implicated in the modulation of ethanol consumption. There is experimental evidence that chronic ethanol exposure reduces α-MSH expression in the limbic and hypothalamic brain regions and alters central pro-opiomelanocortin (POMC) mRNA activity in adult rats. Adolescence is a critical developmental period of high vulnerability in which ethanol exposure alters corticotropin releasing factor, neuropeptide Y, substance P and neurokinin neuropeptide activities, all of which have key roles in ethanol consumption. Given the involvement of MC and the endogenous inverse agonist AgRP in ethanol drinking, here we evaluate whether a binge-like pattern of ethanol treatment during adolescence has a relevant impact on basal and/or ethanol-stimulated α-MSH and AgRP activities during adulthood. To this end, adolescent Sprague-Dawley rats (beginning at PND25) were pre-treated with either saline (SP group) or binge-like ethanol exposure (BEP group; 3.0 g/kg given in intraperitoneal (i.p.) injections) of one injection per day over two consecutive days, followed by 2 days without injections, repeated for a total of 8 injections. Following 25 ethanol-free days, we evaluated α-MSH and AgRP immunoreactivity (IR) in the limbic and hypothalamic nuclei of adult rats (PND63) in response to ethanol (1.5 or 3.0 g/kgi.p.) and saline. We found that binge-like ethanol exposure during adolescence significantly reduced basal α-MSH IR in the central nucleus of the amygdala (CeA), the arcuate nucleus (Arc) and the paraventricular nucleus of the hypothalamus (PVN) during adulthood. Additionally, acute ethanol elicited AgRP IR in the Arc. Rats given the adolescent ethanol treatment required higher doses of ethanol than saline-treated rats to express AgRP. In light of previous evidence that endogenous MC and AgRP regulate ethanol intake through MC-receptor signaling, we speculate that the α-MSH and AgRP disturbances induced by binge

  10. Cellulosic ethanol: status and innovation

    Energy Technology Data Exchange (ETDEWEB)

    Lynd, L; Liang, Xiaoyu; Biddy, Mary; Allee, Andrew; Cai, Hao; Foust, Thomas; Himmel, Michael E.; Laser, Mark; Wang, Michael; Wyman, Charles

    2017-01-01

    Although the purchase price of cellulosic feedstocks is competitive with petroleum on an energy basis, the cost of lignocellulose conversion to ethanol using today’s technology is high. Cost reductions can be pursued via either in-paradigm or new-paradigm innovation. As an example of new-paradigm innovation, consolidated bioprocessing using thermophilic bacteria combined with milling during fermentation (cotreatment) is analyzed. Acknowledging the nascent state of this approach, our analysis indicates potential for radically improved cost competitiveness and feasibility at smaller scale compared to current technology, arising from (a) R&D-driven advances (consolidated bioprocessing with cotreatment in lieu of thermochemical pretreatment and added fungal cellulase), and (b) configurational changes (fuel pellet coproduction instead of electricity, gas boiler(s) in lieu of a solid fuel boiler).

  11. Modulation of Ethanol-Metabolizing Enzymes by Developmental Lead Exposure: Effects in Voluntary Ethanol Consumption

    Directory of Open Access Journals (Sweden)

    Miriam B. Virgolini

    2017-05-01

    Full Text Available This review article provides evidence of the impact of the environmental contaminant lead (Pb on the pattern of the motivational effects of ethanol (EtOH. To find a mechanism that explains this interaction, the focus of this review article is on central EtOH metabolism and the participating enzymes, as key factors in the modulation of brain acetaldehyde (ACD accumulation and resulting effect on EtOH intake. Catalase (CAT seems a good candidate for the shared mechanism between Pb and EtOH due to both its antioxidant and its brain EtOH-metabolizing properties. CAT overactivation was reported to increase EtOH consumption, while CAT blockade reduced it, and both scenarios were modified by Pb exposure, probably as the result of elevated brain and blood CAT activity. Likewise, the motivational effects of EtOH were enhanced when brain ACD metabolism was prevented by ALDH2 inhibition, even in the Pb animals that evidenced reduced brain ALDH2 activity after chronic EtOH intake. Overall, these results suggest that brain EtOH metabolizing enzymes are modulated by Pb exposure with resultant central ACD accumulation and a prevalence of the reinforcing effects of the metabolite in brain against the aversive peripheral ACD accumulation. They also support the idea that early exposure to an environmental contaminant, even at low doses, predisposes at a later age to differential reactivity to challenging events, increasing, in this case, vulnerability to acquiring addictive behaviors, including excessive EtOH intake.

  12. Adaptations in Basal and Hypothalamic–Pituitary–Adrenal-Activated Deoxycorticosterone Responses Following Ethanol Self-administration in Cynomolgus Monkeys

    Science.gov (United States)

    Jimenez, Vanessa A.; Porcu, Patrizia; Morrow, A. Leslie; Grant, Kathleen A.

    2017-01-01

    Acute ethanol activates the hypothalamic–pituitary–adrenal (HPA) axis, while long-term exposure results in a blunted neuroendocrine state, particularly with regards to the primary endpoint, cortisol, the primary glucocorticoid produced in the adrenal cortex. However, it is unknown if this dampened neuroendocrine status also influences other adrenocortical steroids. Plasma concentration of the mineralocorticoid and neuroactive steroid precursor deoxycorticosterone (DOC) is altered by pharmacological challenges of the HPA axis in cynomolgus monkeys. The present study investigated HPA axis regulation of circulating DOC concentration over the course of ethanol (4% w/v) induction and self-administration in non-human primates (Macaca fasciculata, n = 10). Plasma DOC, measured by radioimmunoassay, was compared at baseline (ethanol naïve), during schedule-induced polydipsia, and following 6-months of 22 h/day access to ethanol and water. The schedule induction of ethanol drinking did not alter basal DOC levels but selectively dampened the DOC response to pharmacological challenges aimed at the anterior pituitary (ovine corticotrophin-releasing hormone) and adrenal gland (post-dexamethasone adrenocorticotropin hormone), while pharmacological inhibition of central opioid receptors with naloxone greatly enhanced the DOC response during induction. Following 6 months of ethanol self-administration, basal DOC levels were increased more than twofold, while responses to each of the challenges normalized somewhat but remained significantly different than baseline. These data show that HPA axis modulation of the neuroactive steroid precursor DOC is markedly altered by the schedule induction of ethanol drinking and long-term voluntary ethanol self-administration. The consequences of chronic ethanol consumption on HPA axis regulation of DOC point toward allostatic modification of hypothalamic and adrenal function. PMID:28220108

  13. The Role of Acetaldehyde in the Increased Acceptance of Ethanol after Prenatal Ethanol Exposure

    Science.gov (United States)

    Gaztañaga, Mirari; Angulo-Alcalde, Asier; Spear, Norman E.; Chotro, M. Gabriela

    2017-01-01

    Recent studies show that acetaldehyde, the first metabolite in the oxidation of ethanol, can be responsible for both, the appetitive and the aversive effects produced by ethanol intoxication. More specifically, it has been hypothesized that acetaldehyde produced in the periphery by the liver is responsible for the aversive effects of ethanol, while the appetitive effects relate to the acetaldehyde produced centrally through the catalase system. On the other hand, from studies in our and other laboratories, it is known that ethanol exposure during the last gestational days (GD) consistently enhances the postnatal acceptance of ethanol when measured during early ontogeny in the rat. This increased liking of ethanol is a conditioned appetitive response acquired by the fetus by the association of ethanol’s flavor and an appetitive reinforcer. Although this reinforcer has not yet been fully identified, one possibility points to acetaldehyde produced centrally in the fetus as a likely candidate. This hypothesis is supported by data showing that very early in the rat’s ontogeny brain catalases are functional, while the liver’s enzymatic system is still immature. In this study, rat dams were administered on GD 17–20 with water or ethanol, together with an acetaldehyde-sequestering agent (D-penicillamine). The offspring’s responses to ethanol was then assessed at different postnatal stages with procedures adequate for each developmental stage: on day 1, using the “odor crawling locomotion test” to measure ethanol’s odor attractiveness; on day 5, in an operant conditioning procedure with ethanol as the reinforcer; and on day 14 in an ethanol intake test. Results show that the absence of acetaldehyde during prenatal ethanol exposure impeded the observation of the increased acceptance of ethanol at any age. This seems to confirm the crucial role of acetaldehyde as a reinforcer in the appetitive learning occurring during prenatal ethanol exposure. PMID:28197082

  14. Prenatal ethanol increases sucrose reinforcement, an effect strengthened by postnatal association of ethanol and sucrose.

    Science.gov (United States)

    Culleré, Marcela Elena; Spear, Norman E; Molina, Juan Carlos

    2014-02-01

    Late prenatal exposure to ethanol recruits sensory processing of the drug and of its motivational properties, an experience that leads to heightened ethanol affinity. Recent studies indicate common sensory and neurobiological substrates between this drug and sweet tastants. Using a recently developed operant conditioning technique for infant rats, we examined the effects of prenatal ethanol history upon sucrose self-administration (postnatal days, PDs 14-17). Prior to the last conditioning session, a low (0.5 g/kg) or a high (2.5 g/kg) ethanol dose were paired with sucrose. The intention was to determine if ethanol would inflate or devalue the reinforcing capability of the tastant and if these effects are dependent upon prenatal ethanol history. Male and female pups prenatally exposed to ethanol (2.0 g/kg) responded more when reinforced with sucrose than pups lacking this antenatal experience. Independently of prenatal status, a low ethanol dose (0.5 g/kg) enhanced the reinforcing capability of sucrose while the highest dose (2.5 g/kg) seemed to ameliorate the motivational properties of the tastant. During extinction (PD 18), two factors were critical in determining persistence of responding despite reinforcement omission. Pups prenatally exposed to ethanol that subsequently experienced the low ethanol dose paired with sucrose, showed higher resistance to extinction. The effects here reported were not associated with differential blood alcohol levels across prenatal treatments. These results indicate that fetal ethanol experience promotes affinity for a natural sweet reinforcer and that low doses of ethanol are also capable of enhancing the positive motivational consequences of sucrose when ethanol and sucrose are paired during infancy.

  15. Ethanol tolerance of immobilized brewers' yeast cells.

    Science.gov (United States)

    Norton, S; Watson, K; D'Amore, T

    1995-04-01

    A method based on the survival of yeast cells subjected to an ethanol or heat shock was utilized to compare the stress resistance of free and carrageenan-immobilized yeast cells. Results demonstrated a significant increase of yeast survival against ethanol for immobilized cells as compared to free cells, while no marked difference in heat resistance was observed. When entrapped cells were released by mechanical disruption of the gel beads and submitted to the same ethanol stress, they exhibited a lower survival rate than entrapped cells, but a similar or slightly higher survival rate than free cells. The incidence of ethanol- or heat-induced respiratory-deficient mutants of entrapped cells was equivalent to that of control or non-stressed cells (1.3 +/- 0.5%) whereas ethanol- and heat-shocked free and released cells exhibited between 4.4% and 10.9% average incidence of respiration-deficient mutants. It was concluded that the carrageenan gel matrix provided a protection against ethanol, and that entrapped cells returned to normal physiological behaviour as soon as they were released. The cell growth rate was a significant factor in the resistance of yeast to high ethanol concentrations. The optimum conditions to obtain reliable and reproducible results involved the use of slow-growing cells after exhaustion of the sugar substrate.

  16. Molecular pathways underpinning ethanol-induced neurodegeneration

    Directory of Open Access Journals (Sweden)

    Dan eGoldowitz*

    2014-07-01

    Full Text Available While genetics impacts the type and severity of damage following developmental ethanol exposure, little is currently known about the molecular pathways that mediate these effects. Traditionally, research in this area has used a candidate gene approach and evaluated effects on a gene-by-gene basis. Recent studies, however, have begun to use unbiased approaches and genetic reference populations to evaluate the roles of genotype and epigenetic modifications in phenotypic changes following developmental ethanol exposure, similar to studies that evaluated numerous alcohol-related phenotypes in adults. Here, we present work assessing the role of genetics and chromatin-based alterations in mediating ethanol-induced apoptosis in the developing nervous system. Utilizing the expanded family of BXD recombinant inbred mice, animals were exposed to ethanol at postnatal day 7 via subcutaneous injection (5.0 g/kg in 2 doses. Tissue was collected 7 hours after the initial ethanol treatment and analyzed by activated caspase-3 immunostaining to visualize dying cells in the cerebral cortex and hippocampus. In parallel, the levels of two histone modifications relevant to apoptosis, γH2AX and H3K14 acetylation, were examined in the cerebral cortex using protein blot analysis. Activated caspase-3 staining identified marked differences in cell death across brain regions between different mouse strains. Genetic analysis of ethanol susceptibility in the hippocampus led to the identification of a quantitative trait locus on chromosome 12, which mediates, at least in part, strain-specific differential vulnerability to ethanol-induced apoptosis. Furthermore, analysis of chromatin modifications in the cerebral cortex revealed a global increase in γH2AX levels following ethanol exposure, but did not show any change in H3K14 acetylation levels. Together, these findings provide new insights into the molecular mechanisms and genetic contributions underlying ethanol

  17. Endoplasmic Reticulum Stress and Ethanol Neurotoxicity

    Directory of Open Access Journals (Sweden)

    Fanmuyi Yang

    2015-10-01

    Full Text Available Ethanol abuse affects virtually all organ systems and the central nervous system (CNS is particularly vulnerable to excessive ethanol exposure. Ethanol exposure causes profound damages to both the adult and developing brain. Prenatal ethanol exposure induces fetal alcohol spectrum disorders (FASD which is associated with mental retardation and other behavioral deficits. A number of potential mechanisms have been proposed for ethanol-induced brain damage; these include the promotion of neuroinflammation, interference with signaling by neurotrophic factors, induction of oxidative stress, modulation of retinoid acid signaling, and thiamine deficiency. The endoplasmic reticulum (ER regulates posttranslational protein processing and transport. The accumulation of unfolded or misfolded proteins in the ER lumen triggers ER stress and induces unfolded protein response (UPR which are mediated by three transmembrane ER signaling proteins: pancreatic endoplasmic reticulum kinase (PERK, inositol-requiring enzyme 1 (IRE1, and activating transcription factor 6 (ATF6. UPR is initiated to protect cells from overwhelming ER protein loading. However, sustained ER stress may result in cell death. ER stress has been implied in various CNS injuries, including brain ischemia, traumatic brain injury, and aging-associated neurodegeneration, such as Alzheimer’s disease (AD, Huntington’s disease (HD, Amyotrophic lateral sclerosis (ALS, and Parkinson’s disease (PD. However, effects of ethanol on ER stress in the CNS receive less attention. In this review, we discuss recent progress in the study of ER stress in ethanol-induced neurotoxicity. We also examine the potential mechanisms underlying ethanol-mediated ER stress and the interaction among ER stress, oxidative stress and autophagy in the context of ethanol neurotoxicity.

  18. Ethanol production using nuclear petite yeast mutants

    Energy Technology Data Exchange (ETDEWEB)

    Hutter, A.; Oliver, S.G. [Department of Biomolecular Sciences, UMIST, Manchester (United Kingdom)

    1998-12-31

    Two respiratory-deficient nuclear petites, FY23{Delta}pet191 and FY23{Delta}cox5a, of the yeast Saccharomyces cerevisiae were generated using polymerase-chain-reaction-mediated gene disruption, and their respective ethanol tolerance and productivity assessed and compared to those of the parental grande, FY23WT, and a mitochondrial petite, FY23{rho}{sup 0}. Batch culture studies demonstrated that the parental strain was the most tolerant to exogenously added ethanol with an inhibition constant. K{sub i}, of 2.3% (w/v) and a specific rate of ethanol production, q{sub p}, of 0.90 g ethanol g dry cells{sup -1} h{sup -1}. FY23{rho}{sup 0} was the most sensitive to ethanol, exhibiting a K{sub i} of 1.71% (w/v) and q{sub p} of 0.87 g ethanol g dry cells{sup -1} h{sup -1}. Analyses of the ethanol tolerance of the nuclear petites demonstrate that functional mitochondria are essential for maintaining tolerance to the toxin with the 100% respiratory-deficient nuclear petite, FY23{Delta}pet191, having a K{sub i} of 2.14% (w/v) and the 85% respiratory-deficient FY23{Delta}cox5a, having a K{sub i} of 1.94% (w/v). The retention of ethanol tolerance in the nuclear petites as compared to that of FY23{rho}{sup 0} is mirrored by the ethanol productivities of these nuclear mutants, being respectively 43% and 30% higher than that of the respiratory-sufficient parent strain. This demonstrates that, because of their respiratory deficiency, the nuclear petites are not subject of the Pasteur effect and so exhibit higher rates of fermentation. (orig.)

  19. Use of clinoptilolite in ethanol dehydration

    Energy Technology Data Exchange (ETDEWEB)

    Tihmillioglu, F. [Ege Univ., Izmir (Turkey); Ulku, S. [Izmir Institute of Technology (Turkey)

    1996-12-01

    Clinoptilolite-type natural zeolite, which exists in various regions of Turkey, has been experimentally studied. For the ethanol-water-local clinoptilolite system, uptake and breakthrough curves were determined under a nitrogen gas atmosphere. In adsorption kinetics and adsorption equilibrium studies, the effects of particle size, temperature and, amount of zeolite on the uptake rate have been investigated. The breakthrough curves for four different flow rates of ethanol and three different bed heights were determined in dynamic column studies. The results of the experiments show that intraparticle diffusion is the main resistance. The local clinoptilolite is a promising adsorbent for water adsorption from aqueous ethanol.

  20. Wastepaper as a feedstock for ethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Bergeron, P.W.; Riley, C.J.

    1991-11-01

    The possibility of using wastepaper as a cheap feedstock for production of ethanol is discussed. As the single largest material category in the municipal solid waste (MSW) stream, wastepaper is the main target of efforts to reduce the volume of MSW. And in the process for producing ethanol from lignocellulosics, the feedstock represents the highest cost. If wastepaper could be obtained cheaply in large enough quantities and if conversion process cost and efficiency prove to be similar to those for wood, the cost of ethanol could be significantly reduced. At the same time, the volume of wastepaper that must be disposed of in landfills could be lessened. 13 refs., 3 figs., 7 tabs.

  1. Environmental analysis of biomass-ethanol facilities

    Energy Technology Data Exchange (ETDEWEB)

    Corbus, D.; Putsche, V.

    1995-12-01

    This report analyzes the environmental regulatory requirements for several process configurations of a biomass-to-ethanol facility. It also evaluates the impact of two feedstocks (municipal solid waste [MSW] and agricultural residues) and three facility sizes (1000, 2000, and 3000 dry tons per day [dtpd]) on the environmental requirements. The basic biomass ethanol process has five major steps: (1) Milling, (2) Pretreatment, (3) Cofermentation, (4) Enzyme production, (5) Product recovery. Each step could have environmental impacts and thus be subject to regulation. Facilities that process 2000 dtpd of MSW or agricultural residues would produce 69 and 79 million gallons of ethanol, respectively.

  2. Assessment of Ethanol Trends on the ISS

    Science.gov (United States)

    Perry, Jay; Carter, Layne; Kayatin, Matthew; Gazda, Daniel; McCoy, Torin; Limero, Thomas

    2016-01-01

    The International Space Station (ISS) Environmental Control and Life Support System (ECLSS) provides a working environment for six crewmembers through atmosphere revitalization and water recovery systems. In the last year, elevated ethanol levels have presented a unique challenge for the ISS ECLSS. Ethanol is monitored on the ISS by the Air Quality Monitor (AQM). The source of this increase is currently unknown. This paper documents the credible sources for the increased ethanol concentration, the monitoring provided by the AQM, and the impact on the atmosphere revitalization and water recovery systems.

  3. Survey of U.S. fuel ethanol plants

    Science.gov (United States)

    The ethanol industry is progressively growing in response to increased consumer demands for fuel as well as the renewable fuel standard. Corn ethanol processing creates the following products: 1/3 ethanol, 1/3 distillers grains, and 1/3 carbon dioxide. As the production of ethanol increases so too ...

  4. TEMPERATURE INFLUENCE ON PHASE STABILITY OF ETHANOL-GASOLINE MIXTURES

    Directory of Open Access Journals (Sweden)

    Valerian Cerempei

    2011-06-01

    Full Text Available The article investigates phase stability of ethanol-gasoline mixtures depending on their composition, water concentration in ethanol and ethanol-gasoline mixture and temperature. There have been determined the perfect functioning conditions of spark ignition engines fueled with ethanol-gasoline mixtures.

  5. Developing Biofuel in the Teaching Laboratory: Ethanol from Various Sources

    Science.gov (United States)

    Epstein, Jessica L.; Vieira, Matthew; Aryal, Binod; Vera, Nicolas; Solis, Melissa

    2010-01-01

    In this series of experiments, we mimic a small-scale ethanol plant. Students discover that the practical aspects of ethanol production are determined by the quantity of biomass produced per unit land, rather than the volume of ethanol produced per unit of biomass. These experiments explore the production of ethanol from different sources: fruits,…

  6. Developing Biofuel in the Teaching Laboratory: Ethanol from Various Sources

    Science.gov (United States)

    Epstein, Jessica L.; Vieira, Matthew; Aryal, Binod; Vera, Nicolas; Solis, Melissa

    2010-01-01

    In this series of experiments, we mimic a small-scale ethanol plant. Students discover that the practical aspects of ethanol production are determined by the quantity of biomass produced per unit land, rather than the volume of ethanol produced per unit of biomass. These experiments explore the production of ethanol from different sources: fruits,…

  7. Membrane fluidity adjustments in ethanol-stressed Oenococcus oeni cells

    NARCIS (Netherlands)

    Silveira, da M.G.; Golovina, E.A.; Hoekstra, F.A.; Rombouts, F.M.; Abee, T.

    2003-01-01

    The effect of ethanol on the cytoplasmic membrane of Oenococcus oeni cells and the role of membrane changes in the acquired tolerance to ethanol were investigated. Membrane tolerance to ethanol was defined as the resistance to ethanol-induced leakage of preloaded carboxyfluorescein (cF) from cells.

  8. Report of the PRI biofuel-ethanol; Rapport du PRI biocarburant-ethanol

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This evaluation report presents three research programs in the framework of the physiological behavior of the yeast ''Saccharomyces cerevisiae'', with high ethanol content. These studies should allowed to select an efficient yeast for the ethanol production. The first study concerns the development of an enzymatic process for the hydrolysis and the fermentation. The second study deals with the molecular and dynamical bases for the yeast metabolic engineering for the ethanol fuel production. The third research concerns the optimization of performance of microbial production processes of ethanol. (A.L.B.)

  9. Application of quantitative ethanol detector (QED) test kit to measure ethanol concentration in blood samples.

    Science.gov (United States)

    Biwasaka, H; Tokuta, T; Sasaki, Y; Niitsu, H; Kumagai, R; Aoki, Y

    2001-12-27

    In this paper, the applicability of the quantitative ethanol detector (QED) test kit for screening of ethanol concentrations in blood samples was investigated. The pretreatment of blood using the sulfosalicylic acid solution and the three-way stopcock followed by membrane filtration gave satisfactory results. The ethanol concentrations in whole blood samples (n=61) determined by QED correlated well with those determined by gas chromatography; the correlation coefficient indicated 0.990. Because a high correlation coefficient (0.928) was also confirmed in trial by investigators, QED test should be highly considered for ethanol screening in forensic praxis.

  10. Ethanol enrichment from ethanol-water mixtures using high frequency ultrasonic atomization.

    Science.gov (United States)

    Kirpalani, D M; Suzuki, K

    2011-09-01

    The influence of high frequency ultrasound on the enrichment of ethanol from ethanol-water mixtures was investigated. Experiments performed in a continuous enrichment system showed that the generated atomized mist was at a higher ethanol concentration than the feed and the enrichment ratio was higher than the vapor liquid equilibrium curve for ethanol-water above 40 mol%. Well-controlled experiments were performed to analyze the effect of physical parameters; temperature, carrier gas flow and collection height on the enrichment. Droplet size measurements of the atomized mist and visualization of the oscillating fountain jet formed during sonication were made to understand the separation mechanism.

  11. Ethanol production using hemicellulosic hydrolyzate and sugarcane ...

    African Journals Online (AJOL)

    Juliana

    2015-02-11

    Feb 11, 2015 ... Fermentation was performed in a laboratory scale using the J10 and FT858 yeast strains using 500 ml ... provides recovery of up to 90% of fermentable sugars ..... ethanol production in the clarified broth of sugarcane juice.

  12. Treatment of biomass to obtain ethanol

    Science.gov (United States)

    Dunson, Jr., James B.; Elander, Richard T.; Tucker, III, Melvin P.; Hennessey, Susan Marie

    2011-08-16

    Ethanol was produced using biocatalysts that are able to ferment sugars derived from treated biomass. Sugars were obtained by pretreating biomass under conditions of high solids and low ammonia concentration, followed by saccharification.

  13. Ethanol production using hemicellulosic hydrolyzate and sugarcane ...

    African Journals Online (AJOL)

    Ethanol production using hemicellulosic hydrolyzate and sugarcane juice with yeasts that ... yeast strains using 500 ml Erlenmeyer flasks with 180 ml of must prepared ... Key words: Hydrolysis of sugarcane straw and pointers, sugarcane juice, ...

  14. Rewiring Lactococcus lactis for Ethanol Production

    DEFF Research Database (Denmark)

    Solem, Christian; Dehli, Tore Ibsen; Jensen, Peter Ruhdal

    2013-01-01

    small amounts of ethanol were obtained after introducing PDC, probably due to a low native alcohol dehydrogenase activity. When the same strains were grown on maltose, ethanol was the major product and lesser amounts of lactate, formate, and acetate were formed. Inactivating the lactate dehydrogenase...... genes ldhX, ldhB, and ldh and introducing codon-optimized Z. mobilis alcohol dehydrogenase (ADHB) in addition to PDC resulted in high-yield ethanol formation when strains were grown on glucose, with only minor amounts of by-products formed. Finally, a strain with ethanol as the sole observed...... fermentation product was obtained by further inactivating the phosphotransacetylase (PTA) and the native alcohol dehydrogenase (ADHE)....

  15. Early exposure to ethanol but not red wine at the same alcohol concentration induces behavioral and brain neurotrophin alterations in young and adult mice.

    Science.gov (United States)

    Fiore, Marco; Laviola, Giovanni; Aloe, Luigi; di Fausto, Veronica; Mancinelli, Rosanna; Ceccanti, Mauro

    2009-01-01

    Ethanol exposure during pregnancy is one of the major causes of mental retardation in western countries by inducing fetal-alcohol-like-syndromes. Red wine is known to contain ethanol but also compounds with putative antioxidant properties. It has also been shown that nerve growth factor (NGF) and brain derived neurotrophic factor (BDNF) are severely affected by ethanol during prenatal and postnatal life. The aim of the current study was to investigate in male CD1 mice brain alterations in NGF and BDNF due to chronic early exposure to ethanol solution (11 vol%) or to red wine at the same alcohol concentration starting from 60 days before pregnancy up to pups weaning. Data revealed no differences between groups of dams in pregnancy duration, neither in pups delivery, pups mortality and sex ratio. Data also showed that adult animals exposed to only ethanol had disrupted levels of both NGF and BDNF in the hippocampus and other brain areas. This profile was associated with impaired ChAT immunopositivity in the septum and Nuclei Basalis and with altered cognition and emotional behavior. Quite interestingly mice exposed to red wine had no change in the behavior or in ChAT immunopositivity but a decrease in hippocampal BDNF and a mild NGF decrease in the cortex. Also NGF-induced neuritic outgrowth in PC-12 cells was still present when exposed to red wine but not when exposed to ethanol solution only. Data suggest differences in ethanol-induced neurotoxicity between red wine and ethanol solution only.

  16. Effects of Vigabatrin, an Irreversible GABA Transaminase Inhibitor, on Ethanol Reinforcement and Ethanol Discriminative Stimuli in Mice

    Science.gov (United States)

    Griffin, William C.; Nguyen, Shaun A.; Deleon, Christopher P.; Middaugh, Lawrence D.

    2012-01-01

    We tested the hypothesis that the irreversible gamma-amino butyric acid (GABA) transaminase inhibitor, γ-vinyl GABA (Vigabatrin; VGB) would reduce ethanol reinforcement and enhance the discriminative stimulus effect of ethanol, effectively reducing ethanol intake. The present studies used adult C57BL/6J (B6) mice in well-established operant, two-bottle choice consumption, locomotor activity and ethanol discrimination procedures, to examine comprehensively the effects of VGB on ethanol-supported behaviors. VGB dose-dependently reduced operant responding for ethanol as well as ethanol consumption for long periods of time. Importantly, a low dose (200 mg/kg) of VGB was selective for reducing ethanol responding without altering intake of food or water reinforcement. Higher VGB doses (>200 mg/kg) still reduced ethanol intake, but also significantly increased water consumption and, more modestly, increased food consumption. While not affecting locomotor activity on its own, VGB interacted with ethanol to reduce the stimulatory effects of ethanol on locomotion. Finally, VGB (200 mg/kg) significantly enhanced the discriminative stimulus effects of ethanol as evidenced by significant left-ward and up-ward shifts in ethanol generalization curves. Interestingly, VGB treatment was associated with slight increases in blood ethanol concentrations. The reduction in ethanol intake by VGB appears to be related to the ability of VGB to potentiate the pharmacological effects of ethanol. PMID:22336593

  17. Use of clinoptilolite in ethanol dehydration

    OpenAIRE

    Tıhmınlıoğlu, Funda; Ülkü, Semra

    1996-01-01

    Clinoptilolite-type natural zeolite, which exists in various regions of Turkey, has been experimentally studied. For the ethanol-water-local clinoptilolite system, uptake and breakthrough curves were determined under a nitrogen gas atmosphere. In adsorption kinetics and adsorption equilibrium studies, the effects of particle size, temperature and, amount of zeolite on the uptake rate have been investigated. The breakthrough curves for four different flow rates of ethanol and three different b...

  18. High Speed/ Low Effluent Process for Ethanol

    Energy Technology Data Exchange (ETDEWEB)

    M. Clark Dale

    2006-10-30

    n this project, BPI demonstrated a new ethanol fermentation technology, termed the High Speed/ Low Effluent (HS/LE) process on both lab and large pilot scale as it would apply to wet mill and/or dry mill corn ethanol production. The HS/LE process allows very rapid fermentations, with 18 to 22% sugar syrups converted to 9 to 11% ethanol ‘beers’ in 6 to 12 hours using either a ‘consecutive batch’ or ‘continuous cascade’ implementation. This represents a 5 to 8X increase in fermentation speeds over conventional 72 hour batch fermentations which are the norm in the fuel ethanol industry today. The ‘consecutive batch’ technology was demonstrated on a large pilot scale (4,800 L) in a dry mill corn ethanol plant near Cedar Rapids, IA (Xethanol Biofuels). The pilot demonstrated that 12 hour fermentations can be accomplished on an industrial scale in a non-sterile industrial environment. Other objectives met in this project included development of a Low Energy (LE) Distillation process which reduces the energy requirements for distillation from about 14,000 BTU/gal steam ($0.126/gal with natural gas @ $9.00 MCF) to as low as 0.40 KW/gal electrical requirements ($0.022/gal with electricity @ $0.055/KWH). BPI also worked on the development of processes that would allow application of the HS/LE fermentation process to dry mill ethanol plants. A High-Value Corn ethanol plant concept was developed to produce 1) corn germ/oil, 2) corn bran, 3) ethanol, 4) zein protein, and 5) nutritional protein, giving multiple higher value products from the incoming corn stream.

  19. Tris(3-aminophenylphosphine oxide ethanol solvate

    Directory of Open Access Journals (Sweden)

    Jun Han

    2009-04-01

    Full Text Available The title compound crystallized as an ethanol solvate, C18H18N3OP·C2H6O. It is the reduction product of tris(3-nitrophenylphosphine oxide. In the crystal, there are intermolecular N—H...O hydrogen bonds between neighbouring tris(3-aminophenylphosphine oxide molecules and O—H...O hydrogen bonds involving the ethanol solvent molecule.

  20. Sustainability of grape-ethanol energy chain

    Directory of Open Access Journals (Sweden)

    Ester Foppa Pedretti

    2014-11-01

    Full Text Available The aim of this work is to evaluate the sustainability, in terms of greenhouse gases emission saving, of a new potential bio-ethanol production chain in comparison with the most common ones. The innovation consists of producing bio-ethanol from different types of no-food grapes, while usually bio-ethanol is obtained from matrices taken away from crop for food destination: sugar cane, corn, wheat, sugar beet. In the past, breeding programs were conducted with the aim of improving grapevine characteristics, a large number of hybrid vine varieties were produced and are nowadays present in the Viticulture Research Centre (CRA-VIT Germplasm Collection. Some of them are potentially interesting for bio-energy production because of their high production of sugar, good resistance to diseases, and ability to grow in marginal lands. Life cycle assessment (LCA of grape ethanol energy chain was performed following two different methods: i using the spreadsheet BioGrace, developed within the Intelligent Energy Europe program to support and to ease the Renewable Energy Directive 2009/28/EC implementation; ii using a dedicated LCA software. Emissions were expressed in CO2 equivalent (CO2eq. These two tools gave very similar results. The overall emissions impact of ethanol production from grapes on average is about 33 g CO2eq MJ–1 of ethanol if prunings are used for steam production and 53 g CO2eq MJ–1 of ethanol if methane is used. The comparison with other bio-energy chains points out that the production of ethanol using grapes represents an intermediate situation in terms of general emissions among the different production chains. The results showed that the sustainability limits provided by the normative are respected to this day. On the contrary, from 2017 this production will be sustainable only if the transformation processes will be performed using renewable sources of energy.

  1. Low temperature hydrolysis for ethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, A.; Fischer, J.R.; Iannotti, E.L.

    1982-12-01

    Hydrolysis of corn was compared at two temperatures of 100/sup 0/C and 75/sup 0/C. Starch conversion to dextrose and then ethanol were determined. Yields were 10.69% ethanol in the fermented beer for 100/sup 0/C and 9.89% for 75/sup 0/C. The 75/sup 0/C hydrolysis required about 100 MJ less thermal energy than the 100/sup 0/C hydrolysis. The effects of contamination and respiration were also assessed.

  2. Cellulose ethanol is ready to go

    Energy Technology Data Exchange (ETDEWEB)

    Hladik, M. [Iogen Corp., Ottawa, ON (Canada)

    2006-07-01

    Ottawa-based Iogen Corporation is a leader in industrial biotechnology with a focus on cellulose-based enzyme technology. The company designed and operates the world's first and largest cellulose ethanol demonstration facility making ethanol from biomass. This presentation described Iogen's cellulose ethanol demonstration facility and outlined the innovative process in which enzymes prepare the plant fibres for fermentation, distillation and finally conversion to cellulose ethanol fuel. Hydrolysis and fermentation are achieved using a multi-stage hydrolysis process. It is anticipated that biorefineries will use the residues from locally grown agriculture to produce the ethanol, but stakeholder alliances will have to be built in order to form the elements of commercialization. Feedstocks, government policy, infrastructure issues, investment climate and ethanol sales all contribute to the success of a commercial plant. An assessment of preliminary global feedstock availability was presented with reference to total wheat, coarse grains, barley, oats, rye, sorghum, rice straw and sugar cane production. To date, the use of cellulose ethanol fuel has been demonstrated in vehicle trials in Bonn, Germany, as well as fleet vehicles operated by Natural Resources Canada and Agriculture Canada. Sample feedstock basins in Germany, Canada and the United States were highlighted. The supply of cellulose feedstock is large enough to contribute significantly to reductions in fossil fuel consumption. The United States Department of Energy claims that cellulose ethanol could displace over 30 per cent of the current petroleum consumption in the United States, and that land resources in the United States are capable of producing a sustainable supply of biomass. However, technology, financing and government policies are the factors which currently affect the commercialization of emerging technologies. tabs., figs.

  3. Supercritical CO2 Extraction of Ethanol

    OpenAIRE

    GÜVENÇ, A.; MEHMETOĞLU, Ü.; ÇALIMLI, A.

    1999-01-01

    Extraction of ethanol was studied from both synthetic ethanol solution and fermentation broth using supercritical CO2 in an extraction apparatus in ranges of 313 to 333 K and 80 to 160 atmospheres, for varying extraction times. The experimental system consists mainly of four parts: a CO2 storage system, a high-pressure liquid pump, an extractor and a product collection unit. Samples were analyzed by gas chromatography. Effects of temperature, pressure, extraction time, initial ethan...

  4. Protective effect of berberine, an isoquinoline alkaloid ameliorates ethanol-induced oxidative stress and memory dysfunction in rats.

    Science.gov (United States)

    Patil, Shaktipal; Tawari, Santosh; Mundhada, Dharmendra; Nadeem, Sayyed

    2015-09-01

    Memory impairment induced by ethanol in rats is a consequence of changes in the CNS that are secondary to impaired oxidative stress and cholinergic dysfunction. Treatment with antioxidants and cholinergic agonists are reported to produce beneficial effects in this model. Berberine, an isoquinoline alkaloid is reported to exhibit antioxidant effect and cholinesterase (ChE) inhibitor activity. However, no report is available on the influence of berberine on ethanol-induced memory impairment. Therefore, we tested its influence against cognitive dysfunction in ethanol-induced rats using Morris water maze paradigm. Lipid peroxidation and glutathione levels as parameter of oxidative stress and cholinesterase (ChE) activity as a marker of cholinergic function were assessed in the cerebral cortex and hippocampus. Forty five days after ethanol treated rats showed a severe deficit in learning and memory associated with increased lipid peroxidation, decreased glutathione, and elevated ChE activity. In contrast, chronic treatment with berberine (25-100mg/kg, p.o., once a day for 45days) improved cognitive performance, and lowered oxidative stress and ChE activity in ethanol treated rats. In another set of experiments, berberine (100mg/kg) treatment during training trials also improved learning and memory, and lowered oxidative stress and ChE activity. Chronic treatment (45days) with vitamin C, and donepezil during training trials also improved ethanol-induced memory impairment and reduced oxidative stress and/or cholinesterase activity. In conclusion, the present study demonstrates that treatment with berberine prevents the changes in oxidative stress and ChE activity, and consequently memory impairment in ethanol treated rats.

  5. Proanthocyanidins prevent ethanol-induced cognitive impairment by suppressing oxidative and inflammatory stress in adult rat brain.

    Science.gov (United States)

    Chen, Qian; Hu, Pingping

    2017-10-18

    Excessive chronic alcohol consumption enhances brain oxidative and inflammatory stress, resulting in cognitive deficit. This study investigated the potential alleviating effects of proanthocyanidins (PACs) on ethanol-induced cognitive impairment and stress in brain regions including the prefrontal cortex, hippocampus, and amygdala. Adult male rats were administered saline, PACs, ethanol, or combinations of ethanol with different doses of PACs for 8 weeks. Then, the Morris water-maze test was performed. Thiobarbituric acid-reactive substances, superoxide dismutase activity, total antioxidant capacity, and nitric oxide were chosen as parameters of oxidative stress, whereas tumor necrosis factor-α and interleukin-1β chosen as parameters of inflammatory stress. The results indicated that ethanol led to cognitive impairment along with enhanced oxidative and inflammatory stress in brain regions, whereas PACs per se had no significant effects. Moreover, coadministration with PACs in ethanol-treated rats dose dependently rescued cognitive impairment accompanied by suppressed oxidative and inflammatory stress in brain regions. Thus, the protective effects of PACs on ethanol-induced cognitive impairments may be because of their antioxidant and anti-inflammatory activities.

  6. Expression and activity of inducible nitric oxide synthase and endothelial nitric oxide synthase correlate with ethanol-induced liver injury

    Institute of Scientific and Technical Information of China (English)

    Guang-Jin Yuan; Xiao-Rong Zhou; Zuo-Jiong Gong; Pin Zhang; Xiao-Mei Sun; Shi-Hua Zheng

    2006-01-01

    AIM: To study the expression and activity of inducible nitric oxide synthase (iNOS) and endothelial nitric oxide synthase (eNOS) in rats with ethanol-induced liver injury and their relation with liver damage, activation of nuclear factor-KB (NF-кB) and tumor necrosis factor-α (TNF-α)expression in the liver.METHODS: Female Sprague-Dawley rats were given fish oil (0.5 mL) along with ethanol or isocaloric dextrose daily via gastrogavage for 4 or 6 wk. Liver injury was assessed using serum alanine aminotransferase (ALT)activity and pathological analysis. Liver malondialdehyde (MDA), nitric oxide contents, iNOS and eNOS activity were determined. NF-KB p65, iNOS, eNOS and TNF-αprotein or mRNA expression in the liver were detected by immunohistochemistry or reverse transcriptase-polymerase chain reaction (RT-PCR).RESULTS: Chronic ethanol gavage for 4 wk caused steatosis, inflammation and necrosis in the liver, and elevated serum ALT activity. Prolonged ethanol administration (6 wk) enhanced the liver damage. These responses were accompanied with increased lipid peroxidation, NO contents, iNOS activity and reduced eNOS activity. NF-кB p65, iNOS and TNF-α protein or mRNA expression were markedly induced after chronic ethanol gavage, whereas eNOS mRNA expression remained unchanged. The enhanced iNOS activity and expression were positively correlated with the liver damage, especially the necro-inflammation, activation of NF-кB, and TNF-α mRNA expression.CONCLUSION: iNOS expression and activity are induced in the liver after chronic ethanol exposure in rats, which are correlated with the liver damage, especially the necro-inflammation, activation of NF-KB and TNF-αexpression. eNOS activity is reduced, but its mRNA expression is not affected.

  7. Sorption equilibria of ethanol on cork.

    Science.gov (United States)

    Lequin, Sonia; Chassagne, David; Karbowiak, Thomas; Bellat, Jean-Pierre

    2013-06-01

    We report here for the first time a thermodynamic study of gaseous ethanol sorption on raw cork powder and plate. Our study aims at a better understanding of the reactivity of this material when used as a stopper under enological conditions, thus in close contact with a hydroethanolic solution, wine. Sorption−desorption isotherms were accurately measured by thermogravimetry at 298 K in a large range of relative pressures. Sorption enthalpies were determined by calorimetry as a function of loading. Sorption−desorption isotherms exhibit a hysteresis loop probably due to the swelling of the material and the absorption of ethanol. Surprisingly, the sorption enthalpy of ethanol becomes lower than the liquefaction enthalpy as the filling increases. This result could be attributed to the swelling of the material, which would generate endothermic effects. Sorption of SO₂ on cork containing ethanol was also studied. When the ethanol content in cork is 2 wt %, the amount of SO₂ sorbed is divided by 2. Thus, ethanol does not enhance the sorption rate for SO₂ but, on the contrary, decreases the SO₂ sorption activity onto cork, probably because of competitive sorption mechanisms.

  8. The expanding U. S. ethanol industry

    Energy Technology Data Exchange (ETDEWEB)

    Fecht, B.

    1991-01-01

    American experience in the ethanol industry is discussed. Archer Daniel Midlands Co. (ADM) is a large agri-processing company that is the largest processor of grains and oilseeds, and processes ca 400,000 bushels of corn per day at its Decateur facility. Waste water and heat from the plant is used to grow vegetables hydroponically, with carbon dioxide from distillation used to speed growing at night. About 40,000 heads of lettuce per day are harvested, with cucumbers and tomatoes grown as premium crops. The plant includes a state-of-the-art fluidized bed power plant that burns high sulfur coal without sulfur emission. Approval has recently been granted by the Environmental Protection Agency to burn used tires, and payback for the process is expected to take 3-4 years. Ethanol is produced by steeping corn and separating germ and starch, with the starch used to make corn sweeteners. As well as ethanol, byproducts include animal feed, hydroponics, oils and margarines. ADM is the largest barging company in the U.S., with 14,000 rail cars, 1,200 dedicated to fuel ethanol. The Clean Air Act will mandate a 2.7% oxygen gasoline, and 10% ethanol additive gives 3.3% oxygen. The high octane rating of ethanol-blend gasoline is a strong selling point, and is a good deal for refiners, especially at octane-poor refineries.

  9. Production of 16% ethanol from 35% sucrose

    Energy Technology Data Exchange (ETDEWEB)

    Breisha, Gaber Z. [Department of Agricultural Microbiology, Faculty of Agriculture, Minia University, Minia (Egypt)

    2010-08-15

    A strain of Saccharomyces cerevisiae, which showed marked fermentation activity, ethanol and temperature tolerance and good flocculation ability, was selected for ethanol production. A stuck fermentation occurred at sucrose concentration of 25%. Increasing the yeast inoculum volume from 3% to 6% showed positive effects on fermentation from 25% sucrose. The ratio of added nitrogen to sucrose, which gave the best results (for the selected yeast strain), was determined. It was concluded that this ratio (nitrogen as ammonium sulphate at a rate of 5 mg g{sup -1} of consumed sucrose) is constant at various sugar concentrations. Addition of nitrogen at this ratio produced 11.55% ethanol with complete consumption of 25% sucrose after 48 h of fermentation. However fermentation of 30% sucrose at the above optimum conditions was not complete. Addition of yeast extract at a level of 6 g l{sup -1} together with thiamine at a level of 0.2 g l{sup -1} led to complete utilization of 30% sucrose with resultant 14% ethanol production. However the selected yeast strain was not able to ferment 35% sucrose at the same optimum conditions. Addition of air at a rate of 150 dm{sup 3} min{sup -1} m{sup 3} of reactor volume during the first 12 h of fermentation led to complete consumption of 35% sucrose and 16% ethanol was produced. This was approximately the theoretical maximum for ethanol production. (author)

  10. Pancreatic injury in hepatic alcohol dehydrogenase-deficient deer mice after subchronic exposure to ethanol.

    Science.gov (United States)

    Kaphalia, Bhupendra S; Bhopale, Kamlesh K; Kondraganti, Shakuntala; Wu, Hai; Boor, Paul J; Ansari, G A Shakeel

    2010-08-01

    Pancreatitis caused by activation of digestive zymogens in the exocrine pancreas is a serious chronic health problem in alcoholic patients. However, mechanism of alcoholic pancreatitis remains obscure due to lack of a suitable animal model. Earlier, we reported pancreatic injury and substantial increases in endogenous formation of fatty acid ethyl esters (FAEEs) in the pancreas of hepatic alcohol dehydrogenase (ADH)-deficient (ADH(-)) deer mice fed 4% ethanol. To understand the mechanism of alcoholic pancreatitis, we evaluated dose-dependent metabolism of ethanol and related pancreatic injury in ADH(-) and hepatic ADH-normal (ADH(+)) deer mice fed 1%, 2% or 3.5% ethanol via Lieber-DeCarli liquid diet daily for 2months. Blood alcohol concentration (BAC) was remarkably increased and the concentration was ∼1.5-fold greater in ADH(-) vs. ADH(+) deer mice fed 3.5% ethanol. At the end of the experiment, remarkable increases in pancreatic FAEEs and significant pancreatic injury indicated by the presence of prominent perinuclear space, pyknotic nuclei, apoptotic bodies and dilation of glandular ER were found only in ADH(-) deer mice fed 3.5% ethanol. This pancreatic injury was further supported by increased plasma lipase and pancreatic cathepsin B (a lysosomal hydrolase capable of activating trypsinogen), trypsinogen activation peptide (by-product of trypsinogen activation process) and glucose-regulated protein 78 (endoplasmic reticulum stress marker). These findings suggest that ADH-deficiency and high alcohol levels in the body are the key factors in ethanol-induced pancreatic injury. Therefore, determining how this early stage of pancreatic injury advances to inflammation stage could be important for understanding the mechanism(s) of alcoholic pancreatitis. Copyright © 2010 Elsevier Inc. All rights reserved.

  11. Beneficial effect of low ethanol intake on the cardiovascular system: possible biochemical mechanisms

    Directory of Open Access Journals (Sweden)

    Sudesh Vasdev

    2006-09-01

    Full Text Available Sudesh Vasdev1, Vicki Gill1, Pawan K Singal21Discipline of Medicine, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador, Canada; 2Institute of Cardiovascular Sciences, University of Manitoba, Faculty of Medicine, Winnipeg, Manitoba, CanadaAbstract: Low ethanol intake is known to have a beneficial effect on cardiovascular disease. In cardiovascular disease, insulin resistance leads to altered glucose and lipid metabolism resulting in an increased production of aldehydes, including methylglyoxal. Aldehydes react non-enzymatically with sulfhydryl and amino groups of proteins forming advanced glycation end products (AGEs, altering protein structure and function. These alterations cause endothelial dysfunction with increased cytosolic free calcium, peripheral vascular resistance, and blood pressure. AGEs produce atherogenic effects including oxidative stress, platelet adhesion, inflammation, smooth muscle cell proliferation and modification of lipoproteins. Low ethanol intake attenuates hypertension and atherosclerosis but the mechanism of this effect is not clear. Ethanol at low concentrations is metabolized by low Km alcohol dehydrogenase and aldehyde dehydrogenase, both reactions resulting in the production of reduced nicotinamide adenine dinucleotide (NADH. This creates a reductive environment, decreasing oxidative stress and secondary production of aldehydes through lipid peroxidation. NADH may also increase the tissue levels of the antioxidants cysteine and glutathione, which bind aldehydes and stimulate methylglyoxal catabolism. Low ethanol improves insulin resistance, increases high-density lipoprotein and stimulates activity of the antioxidant enzyme, paraoxonase. In conclusion, we suggest that chronic low ethanol intake confers its beneficial effect mainly through its ability to increase antioxidant capacity and lower AGEs.Keywords: low ethanol, hypertension, cardiovascular disease, biochemical

  12. Loss of control over the ethanol consumption: differential transcriptional regulation in prefrontal cortex.

    Science.gov (United States)

    de Paiva Lima, Carolina; da Silva E Silva, Daniel Almeida; Damasceno, Samara; Ribeiro, Andrea Frozino; Rocha, Cristiane S; Berenguer de Matos, Alexandre H; Correia, Diego; Boerngen-Lacerda, Roseli; Brunialti Godard, Ana Lúcia

    2017-09-01

    Alcohol use disorder (AUD) is a complex multifactorial disease with heritability of ∼50% and corresponds to the state in which the body triggers a reinforcement or reward compulsive behavior due to ethanol consumption, even when faced with negative consequences. Although several studies have shown the impact of high ethanol intake on the prefrontal cortex (PFC) gene expression, few have addressed the relationship between the patterns of gene expression underlying the compulsive behaviour associated with relapsing. In this study, we used a chronic three-bottle free-choice mouse model to investigate the PFC transcriptome in three different groups of mice drinkers: 'Light drinkers' (preference for water throughout the experiment); 'Heavy drinkers' (preference for ethanol with a non-compulsive intake), and 'Inflexible drinkers' (preference for ethanol with a compulsive drinking component). Our aim was to correlate the intake patterns observed in this model with gene expression changes in the PFC, a brain region critical for the development and maintenance of alcohol addiction. We found that the Camk2a gene showed a downregulated profile only in the Inflexible when compared to the Light drinkers group, the Camk2n1 and Pkp2 genes showed an upregulated profile only in the Inflexible drinkers when compared to the Control group, and the Gja1 gene showed an upregulated profile in the Light and Inflexible drinkers when compared to the Control group. These different transcription patterns have been associated to the presence of alcohol, in the Camk2n1 and Gja1 genes; to the amount of ethanol consumed, in the Camk2a gene; and to the loss of control in the alcohol consumption, in the Pkp2 gene. Here, we provide, for the first time, the potential involvement of the Pkp2 gene in the compulsivity and loss of control over the voluntary ethanol consumption.

  13. Characterization Of Chemically Induced Ovarian Carcinomas In An Ethanol-preferring Rat Model: Influence Of Long-term Melatonin Treatment

    OpenAIRE

    Luiz Gustavo A Chuffa; Fioruci-Fontanelli, Beatriz A; Mendes, Leonardo O; Fávaro, Wagner J; Pinheiro, Patricia Fernanda F.; Marcelo Martinez; Francisco Eduardo Martinez

    2013-01-01

    Ovarian cancer is the fourth most common cause of cancer deaths among women, and chronic alcoholism may exert cocarcinogenic effects. Because melatonin (mel) has oncostatic properties, we aimed to investigate and characterize the chemical induction of ovarian tumors in a model of ethanol-preferring rats and to verify the influence of mel treatment on the overall features of these tumors. After rats were selected to receive ethanol (EtOH), they were surgically injected with 100 μg of 7,12-dime...

  14. [Chronicity, chronicization, systematization of delusions].

    Science.gov (United States)

    Trapet, P; Fernandez, C; Galtier, M C; Gisselmann, A

    1984-05-01

    Chronicity in psychopathology is indicative of a term, a decay. Chronicization only leads the way to this term. Here, chronicization is taken literally as an inscription in the time course of delusions. The mechanism of systematization seems to be a central mark in the approach to chronic delusions. It is not an alienation or an irreversible closing but an attempted accommodation with reality in the life of psychotic subjects, irrespective of the delusional structure. The role of therapy and drug treatment as a follow-up may in that case assume another meaning.

  15. Chronic pancreatitis

    OpenAIRE

    Kocher, Hemant M.; Froeling, Fieke EM

    2008-01-01

    Chronic pancreatitis is characterised by long-standing inflammation of the pancreas owing to a wide variety of causes, including recurrent acute attacks of pancreatitis. Chronic pancreatitis affects 3–9 people in 100,000; 70% of cases are alcohol-induced.

  16. Chronic pancreatitis

    OpenAIRE

    Kocher, Hemant M.; Kadaba, Raghu

    2011-01-01

    Chronic pancreatitis is characterised by long-standing inflammation of the pancreas due to a wide variety of causes, including recurrent acute attacks of pancreatitis. Chronic pancreatitis affects between 3 and 9 people in 100,000; 70% of cases are alcohol-induced.

  17. Transesterification of waste vegetable oil under pulse sonication using ethanol, methanol and ethanol-methanol mixtures.

    Science.gov (United States)

    Martinez-Guerra, Edith; Gude, Veera Gnaneswar

    2014-12-01

    This study reports on the effects of direct pulse sonication and the type of alcohol (methanol and ethanol) on the transesterification reaction of waste vegetable oil without any external heating or mechanical mixing. Biodiesel yields and optimum process conditions for the transesterification reaction involving ethanol, methanol, and ethanol-methanol mixtures were evaluated. The effects of ultrasonic power densities (by varying sample volumes), power output rates (in W), and ultrasonic intensities (by varying the reactor size) were studied for transesterification reaction with ethanol, methanol and ethanol-methanol (50%-50%) mixtures. The optimum process conditions for ethanol or methanol based transesterification reaction of waste vegetable oil were determined as: 9:1 alcohol to oil ratio, 1% wt. catalyst amount, 1-2 min reaction time at a power output rate between 75 and 150 W. It was shown that the transesterification reactions using ethanol-methanol mixtures resulted in biodiesel yields as high as >99% at lower power density and ultrasound intensity when compared to ethanol or methanol based transesterification reactions.

  18. Development of an ethanol model using social insects: III. Preferences for ethanol solutions.

    Science.gov (United States)

    Abramson, Charles I; Kandolf, Andreja; Sheridan, Audrey; Donohue, Darius; Bozic, Janko; Meyers, Julia E; Benbassat, Danny

    2004-02-01

    Experiments are designed to assess whether free-flying honey bees have an aversion to an ethanol solution when given a choice between targets containing an ethanol solution in sucrose or sucrose only. Animals given a choice between a 1% ethanol solution and sucrose only show no aversion to the ethanol solution either in acquisition or extinction. Honey bees given a choice between a 5% ethanol solution and sucrose only show no differences in the initial choice of targets but some ees do switch over to the sucrose-only target. Performance during extinction indicates that bees landed on the previously reinforced sucrose-only target more than the target previously containing the 5% ethanol solution. An experiment in which bees were given a single 5%, ethanol target showed that of 20 bees, 11 returned for the entire 12 trials of the experiment. All bees returned at least 6 times to the 5% ethanol target. Additional experiments were run on harnessed foragers in a palatability study of alcoholic beverages consumed by humans. The results of the palatability experiment indicate that in general, bees prefer more sweet drinks with less alcohol.

  19. Maximizing cellulosic ethanol potentials by minimizing wastewater generation and energy consumption: Competing with corn ethanol.

    Science.gov (United States)

    Liu, Gang; Bao, Jie

    2017-08-21

    Energy consumption and wastewater generation in cellulosic ethanol production are among the determinant factors on overall cost and technology penetration into fuel ethanol industry. This study analyzed the energy consumption and wastewater generation by the new biorefining process technology, dry acid pretreatment and biodetoxification (DryPB), as well as by the current mainstream technologies. DryPB minimizes the steam consumption to 8.63GJ and wastewater generation to 7.71tons in the core steps of biorefining process for production of one metric ton of ethanol, close to 7.83GJ and 8.33tons in corn ethanol production, respectively. The relatively higher electricity consumption is compensated by large electricity surplus from lignin residue combustion. The minimum ethanol selling price (MESP) by DryPB is below $2/gal and falls into the range of corn ethanol production cost. The work indicates that the technical and economical gap between cellulosic ethanol and corn ethanol has been almost filled up. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Changes in the Adult GluN2B Associated Proteome following Adolescent Intermittent Ethanol Exposure.

    Directory of Open Access Journals (Sweden)

    H Scott Swartzwelder

    Full Text Available Adolescent alcohol use is the strongest predictor for alcohol use disorders. In rodents, adolescents have distinct responses to acute ethanol, and prolonged alcohol exposure during adolescence can maintain these phenotypes into adulthood. One brain region that is particularly sensitive to the effects of both acute and chronic ethanol exposure is the hippocampus. Adolescent intermittent ethanol exposure (AIE produces long lasting changes in hippocampal synaptic plasticity and dendritic morphology, as well as in the susceptibility to acute ethanol-induced spatial memory impairment. Given the pattern of changes in hippocampal structure and function, one potential target for these effects is the ethanol sensitive GluN2B subunit of the NMDA receptor, which is known to be involved in synaptic plasticity and dendritic morphology. Thus we sought to determine if there were persistent changes in hippocampal GluN2B signaling cascades following AIE. We employed a previously validated GluN2B-targeted proteomic strategy that was used to identify novel signaling mechanisms altered by chronic ethanol exposure in the adult hippocampus. We collected adult hippocampal tissue (P70 from rats that had been given 2 weeks of AIE from P30-45. Tissue extracts were fractionated into synaptic and non-synaptic pools, immuno-precipitated for GluN2B, and then analyzed using proteomic methods. We detected a large number of proteins associated with GluN2B. AIE produced significant changes in the association of many proteins with GluN2B in both synaptic and non-synaptic fractions. Intriguingly the number of proteins changed in the non-synaptic fraction was double that found in the synaptic fraction. Some of these proteins include those involved in glutamate signaling cytoskeleton rearrangement, calcium signaling, and plasticity. Disruptions in these pathways may contribute to the persistent cellular and behavioral changes found in the adult hippocampus following AIE. Further

  1. Market penetration of biodiesel and ethanol

    Science.gov (United States)

    Szulczyk, Kenneth Ray

    This dissertation examines the influence that economic and technological factors have on the penetration of biodiesel and ethanol into the transportation fuels market. This dissertation focuses on four aspects. The first involves the influence of fossil fuel prices, because biofuels are substitutes and have to compete in price. The second involves biofuel manufacturing technology, principally the feedstock-to-biofuel conversion rates, and the biofuel manufacturing costs. The third involves prices for greenhouse gas offsets. The fourth involves the agricultural commodity markets for feedstocks, and biofuel byproducts. This dissertation uses the Forest and Agricultural Sector Optimization Model-Greenhouse Gas (FASOM-GHG) to quantitatively examine these issues and calculates equilibrium prices and quantities, given market interactions, fossil fuel prices, carbon dioxide equivalent prices, government biofuel subsidies, technological improvement, and crop yield gains. The results indicate that for the ranges studied, gasoline prices have a major impact on aggregate ethanol production but only at low prices. At higher prices, one runs into a capacity constraint that limits expansion on the capacity of ethanol production. Aggregate biodiesel production is highly responsive to gasoline prices and increases over time. (Diesel fuel price is proportional to the gasoline price). Carbon dioxide equivalent prices expand the biodiesel industry, but have no impact on ethanol aggregate production when gasoline prices are high again because of refinery capacity expansion. Improvement of crop yields shows a similar pattern, expanding ethanol production when the gasoline price is low and expanding biodiesel. Technological improvement, where biorefinery production costs decrease over time, had minimal impact on aggregate ethanol and biodiesel production. Finally, U.S. government subsidies have a large expansionary impact on aggregate biodiesel production. Finally, U.S. government

  2. Cytoprotective Effect of American Ginseng in a Rat Ethanol Gastric Ulcer Model

    Directory of Open Access Journals (Sweden)

    Chi-Chang Huang

    2013-12-01

    Full Text Available Panax quinquefolium L. (American Ginseng, AG is one of the most popular herbal medicines in the World. We aimed to investigate whether chronic (28-day supplementation with AG could protect against ethanol-induced ulcer in gastric tissue. Furthermore, we investigated the possible molecular mechanisms leading to AG-mediated gastric mucosal protection. We randomized 32 male Wistar rats into four groups for treatment (n = 8 per group: supplementation with water (vehicle and low-dose (AG-1X, medium-dose (AG-2X and high-dose (AG-5X AG at 0, 250, 500, and 1250 mg/kg, respectively. In the first experiment, animals were fed vehicle or AG treatments for 4 weeks. At day 29, 75% ethanol was given orally to each animal at 10 mL/kg to induce gastric ulceration for 2 h. In a second experiment, animals were pretreated orally with each treatment for 1 hr before a single oral administration of ethanol (70%, 10 mL/kg. Trend analysis revealed that AG treatments inhibited ethanol-induced gastric mucosal damage. AG supplementation dose-dependently decreased the pro-inflammatory levels of interleukin 1β and cyclooxygenase 2 and the expression of pro-apoptotic proteins tBid, cytochrome C, and caspases-9 and -3 and increased the levels of anti-apoptotic proteins Bcl-2, Bcl-xL and p-Bad. AG could have pharmacological potential for treating gastric ulcer.

  3. Cytoprotective effect of American ginseng in a rat ethanol gastric ulcer model.

    Science.gov (United States)

    Huang, Chi-Chang; Chen, Yi-Ming; Wang, Dean-Chuan; Chiu, Chien-Chao; Lin, Wan-Teng; Huang, Chih-Yang; Hsu, Mei-Chich

    2013-12-27

    Panax quinquefolium L. (American Ginseng, AG) is one of the most popular herbal medicines in the World. We aimed to investigate whether chronic (28-day) supplementation with AG could protect against ethanol-induced ulcer in gastric tissue. Furthermore, we investigated the possible molecular mechanisms leading to AG-mediated gastric mucosal protection. We randomized 32 male Wistar rats into four groups for treatment (n=8 per group): supplementation with water (vehicle) and low-dose (AG-1X), medium-dose (AG-2X) and high-dose (AG-5X) AG at 0, 250, 500, and 1250 mg/kg, respectively. In the first experiment, animals were fed vehicle or AG treatments for 4 weeks. At day 29, 75% ethanol was given orally to each animal at 10 mL/kg to induce gastric ulceration for 2 h. In a second experiment, animals were pretreated orally with each treatment for 1 hr before a single oral administration of ethanol (70%, 10 mL/kg). Trend analysis revealed that AG treatments inhibited ethanol-induced gastric mucosal damage. AG supplementation dose-dependently decreased the pro-inflammatory levels of interleukin 1β and cyclooxygenase 2 and the expression of pro-apoptotic proteins tBid, cytochrome C, and caspases-9 and -3 and increased the levels of anti-apoptotic proteins Bcl-2, Bcl-xL and p-Bad. AG could have pharmacological potential for treating gastric ulcer.

  4. The Health Impacts of Ethanol Blend Petrol

    Directory of Open Access Journals (Sweden)

    Rosemary Wood

    2011-02-01

    Full Text Available A measurement program designed to evaluate health impacts or benefits of using ethanol blend petrol examined exhaust and evaporative emissions from 21 vehicles representative of the current Australian light duty petrol (gasoline vehicle fleet using a composite urban emissions drive cycle. The fuels used were unleaded petrol (ULP, ULP blended with either 5% ethanol (E5 or 10% ethanol (E10. The resulting data were combined with inventory data for Sydney to determine the expected fleet emissions for different uptakes of ethanol blended fuel. Fleet ethanol compatibility was estimated to be 60% for 2006, and for the air quality modelling it was assumed that in 2011 over 95% of the fleet would be ethanol compatible. Secondary organic aerosol (SOA formation from ULP, E5 and E10 emissions was studied under controlled conditions by the use of a smog chamber. This was combined with meteorological data from Sydney for February 2004 and the emission data (both measured and inventory data to model pollutant concentrations in Sydney’s airshed for 2006 and 2011. These concentrations were combined with the population distribution to evaluate population exposure to the pollutant. There is a health benefit to the Sydney population arising from a move from ULP to ethanol blends in spark-ignition vehicles. Potential health cost savings for Urban Australia (Sydney, Melbourne, Brisbane and Perth are estimated to be A$39 million (in 2007 dollars for a 50% uptake (by ethanol compatible vehicles of E10 in 2006 and $42 million per annum for a 100% take up of E10 in 2011. Over 97% of the estimated health savings are due to reduced emissions of PM2.5 and consequent reduced impacts on mortality and morbidity (e.g., asthma, cardiovascular disease. Despite more petrol-driven vehicles predicted for 2011, the quantified health impact differential between ULP and ethanol fuelled vehicles drops from 2006 to 2011. This is because modern petrol vehicles, with lower emissions than

  5. Voluntary Ingestion of Natural Cocoa Extenuated Hepatic Damage in Rats with Experimentally Induced Chronic Alcoholic Toxicity

    Directory of Open Access Journals (Sweden)

    Godwin Sokpor

    2012-05-01

    Full Text Available Background: Chronic ethanol ingestion causes hepatic damage imputable to an increasedoxidative stress engendered by alcoholic toxicity. Polyphenols in cocoa have antioxidant properties, and natural cocoa powder (NCP contains the highest levels of total antioxidant capacity when compared to all other kinds of edible cocoa products. This study tested the hypothesis that dietary supplementation with NCP mitigates hepatic injury resulting from chronic ethanol consumption. Three groups of eight randomized Sprague-Dawley rats were fed standardrat food and treated daily for 12 weeks as follows: (i the Ethanol-water group was given unrestricted access to 40% (v/v ethanol for 12 hours (at night followed by water for the remaining 12 hours (daytime, (ii the Ethanol-cocoa group had similarly unrestricted access to 40% ethanol for 12 hours followed by 2% (w/v NCP for 12 hours, and (iii the control group was not given alcohol and had unrestricted access to only water which was synchronously replenished every 12 hours as it was for the ethanol treated animals.Results: Qualitative structural liver damage evidenced by hepatocyte cytoplasmic fatty accumulation, nuclear alterations, and disruption of general liver micro-architecture, was severe in the ethanol-water group when compared with the ethanol-cocoa group of rats. Design-based stereologic assessment yielded a significantly greater volume (Tukey’s HSD, p = 0.0005 ofundamaged hepatocytes (9.61 ml, SD 2.18 ml in the ethanol-cocoa group as opposed to theethanol-water group of rats (2.34 ml, SD 1.21 ml. Control rats had 10.34 ml (SD 1.47 ml of undamaged hepatocytes, and that was not significantly greater (Tukey’s HSD, p=0.659 than the value for the ethanol-cocoa group of rats. Relative to controls, therefore, histomorphometryFunctional Foods in Health and Disease 2012, 2(5:166- 187 showed 93% hepatocyte preservation from alcoholic injury in rats that voluntarily imbibed NCP suspension compared with 23% in

  6. The novel anticonvulsant, gabapentin, protects against both convulsant and anxiogenic aspects of the ethanol withdrawal syndrome.

    Science.gov (United States)

    Watson, W P; Robinson, E; Little, H J

    1997-10-01

    The effects of the anticonvulsant, gabapentin, were investigated, in mice, on the withdrawal convulsive behaviour and anxiety-related behaviour that are produced by cessation of prolonged intake of ethanol. When given at 50 or 100 mg/kg, this compound decreased the rise in handling-induced hyperexcitability which occurs during the withdrawal period; the effects were most pronounced for the first 4 hr after administration. Gabapentin also decreased the convulsive response to an audiogenic stimulus during the withdrawal period. The elevated plus-maze, with both traditional and ethological indices of activity was used as a test of anxiety-related behaviour after cessation of chronic ethanol treatment. Gabapentin, at 50 and 100 mg/kg, was found to decrease some, although not all, of the signs of withdrawal-induced anxiety. At doses up to and including 200 mg/kg, gabapentin had no effect on motor co-ordination or spontaneous locomotor activity in control animals. The results demonstrated that gabapentin has a selective action in decreasing both convulsive and anxiety-related aspects of withdrawal behaviour after chronic ethanol treatment. It is possible that further studies with this compound may shed further light on the mechanisms involved in the withdrawal syndrome.

  7. Biological production of ethanol from coal

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-01

    Due to the abundant supply of coal in the United States, significant research efforts have occurred over the past 15 years concerning the conversion of coal to liquid fuels. Researchers at the University of Arkansas have concentrated on a biological approach to coal liquefaction, starting with coal-derived synthesis gas as the raw material. Synthesis gas, a mixture of CO, H[sub 2], CO[sub 2], CH[sub 4] and sulfur gases, is first produced using traditional gasification techniques. The CO, CO[sub 2] and H[sub 2] are then converted to ethanol using a bacterial culture of Clostridium 1jungdahlii. Ethanol is the desired product if the resultant product stream is to be used as a liquid fuel. However, under normal operating conditions, the wild strain'' produces acetate in favor of ethanol in conjunction with growth in a 20:1 molar ratio. Research was performed to determine the conditions necessary to maximize not only the ratio of ethanol to acetate, but also to maximize the concentration of ethanol resulting in the product stream.

  8. Autophagy and ethanol-induced liver injury

    Institute of Scientific and Technical Information of China (English)

    Terrence M Donohue Jr

    2009-01-01

    The majority of ethanol metabolism occurs in the liver. Consequently, this organ sustains the greatest damage from ethanol abuse. Ethanol consumption disturbs the delicate balance of protein homeostasis in the liver, causing intracellular protein accumulation due to a disruption of hepatic protein catabolism.Evidence indicates that ethanol or its metabolism impairs trafficking events in the liver, including the process of macroautophagy, which is the engulfment and degradation of cytoplasmic constituents by the lysosomal system. Autophagy is an essential, ongoing cellular process that is highly regulated by nutrients,endocrine factors and signaling pathways. A great number of the genes and gene products that govern the autophagic response have been characterized and the major metabolic and signaling pathways that activate or suppress autophagy have been identified. This review describes the process of autophagy, its regulation and the possible mechanisms by which ethanol disrupts the process of autophagic degradation. The implications of autophagic suppression are discussed in relation to the pathogenesis of alcohol-induced liver injury.

  9. Survey of US fuel ethanol plants.

    Science.gov (United States)

    Saunders, J A; Rosentrater, K A

    2009-07-01

    The ethanol industry is growing in response to increased consumer demands for fuel as well as the renewable fuel standard. Corn ethanol processing creates the following products: 1/3 ethanol, 1/3 distillers grains, and 1/3 carbon dioxide. As the production of ethanol increases so does the generation of its coproducts, and viable uses continually need to be developed. A survey was mailed to operational US ethanol plants to determine current practices. It inquired about processes, equipment used, end products, and desired future directions for coproducts. Results indicated that approximately one-third of plant managers surveyed expressed a willingness to alter current drying time and temperature if it could result in a higher quality coproduct. Other managers indicated hesitation, based on lack of economic incentives, potential cost and return, and capital required. Respondents also reported the desire to use their coproducts in some of the following products: fuels, extrusion, pellets, plastics, and human food applications. These results provide a snapshot of the industry, and indicate that operational changes to the current production of DDGS must be based upon the potential for positive economic returns.

  10. An Indirect Route for Ethanol Production

    Energy Technology Data Exchange (ETDEWEB)

    Eggeman, T.; Verser, D.; Weber, E.

    2005-04-29

    The ZeaChem indirect method is a radically new approach to producing fuel ethanol from renewable resources. Sugar and syngas processing platforms are combined in a novel way that allows all fractions of biomass feedstocks (e.g. carbohydrates, lignins, etc.) to contribute their energy directly into the ethanol product via fermentation and hydrogen based chemical process technologies. The goals of this project were: (1) Collect engineering data necessary for scale-up of the indirect route for ethanol production, and (2) Produce process and economic models to guide the development effort. Both goals were successfully accomplished. The projected economics of the Base Case developed in this work are comparable to today's corn based ethanol technology. Sensitivity analysis shows that significant improvements in economics for the indirect route would result if a biomass feedstock rather that starch hydrolyzate were used as the carbohydrate source. The energy ratio, defined as the ratio of green energy produced divided by the amount of fossil energy consumed, is projected to be 3.11 to 12.32 for the indirect route depending upon the details of implementation. Conventional technology has an energy ratio of 1.34, thus the indirect route will have a significant environmental advantage over today's technology. Energy savings of 7.48 trillion Btu/yr will result when 100 MMgal/yr (neat) of ethanol capacity via the indirect route is placed on-line by the year 2010.

  11. Batchwise ethanol fermentation with shochu distillery waste

    Energy Technology Data Exchange (ETDEWEB)

    Ueda, S.; Teramoto, Y.; Oba, R.; Ueki, T.; Kimura, K. (Kumamoto Institute of Technology, Kumamoto (Japan)); Shiota, S. (Tohi Jozo Co. Ltd., Kumamoto (Japan))

    1991-10-25

    In order to produce a shochu with a mild aroma, a new vacuum distillation precedure at low temperature of 35 to 40 centigrade was applied to shochu distillation. The resulting rice shochu distillery waste contained a large amount of viable yeast glucoamylase activity, acid protease activity, and neutral protease activity. About 10% of ethanol was produced in the fermented mash at 30 centigrade within three days. In contrast, distillery waste discharged by conventional distillation at high temperature of 55 to 60 centigrade could not be used for secondary ethanol fermentation at all. It was provided that the filtrate of secondarily-fermented distillery waste, which is containing ethanol and possessing a fine aroma fortified with higher alcohols and volatile esters during ethanol fermentation, can be useful for the production of a mirin-like liquor for cooking, Akazake,'' a characteristic red-colored, sweet alcoholic beverage produced in Kumamoto prefecture only, and a bath additive containing ethanol, a fine aroma, and enzymes. 15 refs, 2 figs., 3 tabs.

  12. Baclofen blocks yohimbine-induced increases in ethanol-reinforced responding in rats.

    Science.gov (United States)

    Williams, Keith L; Nickel, Melissa M; Bielak, Justin T

    2016-05-01

    Chronic or repeated stress increases alcohol consumption. The GABA-B agonist baclofen decreases alcohol consumption and may be most effective for individuals with comorbid anxiety/stress disorders. The present study sought to determine if baclofen blocks stress-induced increases in ethanol self-administration as modeled by repeated yohimbine injections in rats. Rats were trained to respond for 15% w/v ethanol in operant chambers using a method that applies neither water deprivation nor saccharin/sucrose fading. Following training, the rats received 6 injections of 1.25mg/kg yohimbine were given immediately prior to the operant sessions during a 2-week time period. Subsequently, some rats were pair-matched to receive either 1.25mg/kg yohimbine or saline in the presence of 0.3, 1, and 3mg/kg baclofen prior to sessions. Acquisition of ethanol self-administration was poor. Pretreatment with yohimbine consistently increased responding across repeated injections. Yohimbine's effect on ethanol intake unexpectedly diverged from the effect on responding as the rats failed to consume all reinforcers earned. Smaller doses of baclofen paired with saline injections had no effect on ethanol responding; only 3mg/kg baclofen reduced ethanol self-administration. The smallest baclofen dose of 0.3mg/kg failed to block the yohimbine-induced increase in self-administration. The large baclofen dose of 3mg/kg continued to suppress ethanol self-administration when given with yohimbine. Baclofen 1mg/kg blocked the effect of yohimbine even though it had no effect when given in the absence of yohimbine. Exposure to high ethanol concentrations may induce self-administration only in certain conditions. The dissociation between responding and intake suggests that repeated yohimbine injections may initiate other behavioral or physiological mechanisms that confound its effects as a pharmacological stressor. Furthermore, an optimal baclofen dose range may specifically protect against stress

  13. Ethanol-related changes in benzodiazepine receptor ligand modulation of GABA[sub A] receptor-operated chloride channels: Relevance to ethanol tolerance and dependence

    Energy Technology Data Exchange (ETDEWEB)

    Buck, K.J.

    1990-01-01

    This study focuses on how ethanol exposure affects biochemical processes associated with the GABA[sub A] complex in the mammalian CNS, and examines the role of these changes in the development of alcohol tolerance and withdrawal. In vitro studies of control mice and those acutely or chronically exposed to alcohol were conducted. Radioligand binding using the low-affinity GABA[sub A] receptor-selective antagonist [[sup 3]H]SR95531 showed no changes in saturation binding analysis of receptor affinity or density. Muscimol-activated [sup 36]Cl[sup [minus

  14. Epigenetic effects of ethanol on liver and gastrointestinal injury

    Institute of Scientific and Technical Information of China (English)

    Shivendra D Shukla; Annayya R Aroor

    2006-01-01

    Alcohol consumption causes cellular injury. Recent developments indicate that ethanol induces epigenetic alterations, particularly acetylation, methylation of histones, and hypo- and hypermethylation of DNA. This has opened up a new area of interest in ethanol research and is providing novel insight into actions of ethanol at the nucleosomal level in relation to gene expression and patho-physiological consequences. The epigenetic effects are mainly attributable to ethanol metabolic stress (Emess), generated by the oxidative and non-oxidative metabolism of ethanol, and dysregulation of methionine metabolism. Epigenetic changes are important in ethanol-induced hepatic steatosis, fibrosis, carcinoma and gastrointestinal injury. This editorial highlights these new advances and its future potential.

  15. Effect of ethanol on enkephalinergic opioid system of rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Belyayev, N.A.; Balakireva, N.N.; Brusov, O.S.; Panchenko, L.F.

    1983-10-13

    Specific binding of /sup 3/H-morphine and /sup 3/H-(D-Ala/sup 2/, D-Leu/sup 5/)-enkephalin (H-EN) with opiatic receptors was studied on white rats along with the content of Met- and Leu-enkephalin and the activity of enkephalinase in various brain segments after single dose (20% solution in 0.9% NaCl, IP; 1.5-4.5 g/kg body weight) and chronic injection (20% EtOH substituted for drinking water) of ethanol. The single injection of EtOH (1.5-4.5 g/kg) resulted in a depression of the specific binding of H-EN with opiate receptors. Doses of 1.5 and 2.5 g/kg led to a lower content of Leu-enkephalin in mid-brain but to an increase of Met-enkephalin; the 4.5 g/kg dose had no effect on the striatum. With chronic administration of EtOH, most of the values obtained on the experimental animals were similar to the control data. 23 references.

  16. Gut region-dependent alterations of nitrergic myenteric neurons after chronic alcohol consumption

    Institute of Scientific and Technical Information of China (English)

    Mária; Bagyánszki; Nikolett; Bódi

    2015-01-01

    Chronic alcohol abuse damages nearly every organ in the body. The harmful effects of ethanol on thebrain, the liver and the pancreas are well documented. Although chronic alcohol consumption causes serious impairments also in the gastrointestinal tract like altered motility, mucosal damage, impaired absorption of nu-trients and inflammation, the effects of chronically consumed ethanol on the enteric nervous system are less detailed. While the nitrergic myenteric neurons play an essential role in the regulation of gastrointestinal peristalsis, it was hypothesised, that these neurons are the first targets of consumed ethanol or its metabolites generated in the different gastrointestinal segments. To reinforce this hypothesis the effects of ethanol on the gastrointestinal tract was investigated in different rodent models with quantitative immunohistochemistry, in vivo and in vitro motility measurements, western blot analysis, evaluation of nitric oxide synthase enzyme activity and bio-imaging of nitric oxide synthesis. These results suggest that chronic alcohol consumption did not result significant neural loss, but primarily impaired the nitrergic pathways in gut region-dependent way leading to disturbed gastrointestinal motility. The gut segment-specific differences in the effects of chronic alcohol consumption highlight the significance the ethanol-induced neuronal microenvironment involving oxidative stress and intestinal microbiota.

  17. Effects of ampicillin, cefazolin and cefoperazone treatments on GLT-1 expressions in the mesocorticolimbic system and ethanol intake in alcohol-preferring rats.

    Science.gov (United States)

    Rao, P S S; Goodwani, S; Bell, R L; Wei, Y; Boddu, S H S; Sari, Y

    2015-06-01

    Chronic ethanol consumption is known to downregulate expression of the major glutamate transporter 1 (GLT-1), which increases extracellular glutamate concentrations in subregions of the mesocorticolimbic reward pathway. While β-lactam antibiotics were initially identified as potent upregulators of GLT-1 expression, only ceftriaxone has been extensively studied in various drug addiction models. Therefore, in this study, adult male alcohol-preferring (P) rats exposed chronically to ethanol were treated with other β-lactam antibiotics, ampicillin, cefazolin or cefoperazone (100mg/kg) once daily for five consecutive days to assess their effects on ethanol consumption. The results demonstrated that each compound significantly reduced ethanol intake compared to the saline-treated control group. Importantly, each compound significantly upregulated both GLT-1 and pAKT expressions in the nucleus accumbens and prefrontal cortex compared to saline-treated control group. In addition, only cefoperazone significantly inhibited hepatic aldehyde dehydrogenase-2 enzyme activity. Moreover, these β-lactams exerted only a transient effect on sucrose drinking, suggesting specificity for chronically inhibiting ethanol reward in adult male P rats. Cerebrospinal fluid concentrations of ampicillin, cefazolin or cefoperazone have been confirmed using high-performance liquid chromatography. These findings demonstrate that multiple β-lactam antibiotics demonstrate efficacy in reducing alcohol consumption and appear to be potential therapeutic compounds for treating alcohol abuse and/or dependence. In addition, these results suggest that pAKT may be an important player in this effect, possibly through increased transcription of GLT-1.

  18. Ethanol is a strategic raw material

    Directory of Open Access Journals (Sweden)

    Baras Josip K.

    2002-01-01

    Full Text Available The first part of this review article considers general data about ethanol as an industrial product, its qualities and uses. It is emphasized that, if produced from biomass as a renewable raw material, its perspectives as a chemical raw material and energent are brilliant. Starchy grains, such as corn, must be used as the main raw materials for ethanol production. The production of bioethanol by the enzyme-catalyzed conversion of starch followed by (yeast fermentation, distillation is the process of choice. If used as a motor fuel, anhydrous ethanol can be directly blended with gasoline or converted into an oxygenator such as ETBE. Finally, bioethanol production in Yugoslavia and the possibilities for its further development are discussed.

  19. Prospects for Irradiation in Cellulosic Ethanol Production

    Directory of Open Access Journals (Sweden)

    Anita Saini

    2015-01-01

    Full Text Available Second generation bioethanol production technology relies on lignocellulosic biomass composed of hemicelluloses, celluloses, and lignin components. Cellulose and hemicellulose are sources of fermentable sugars. But the structural characteristics of lignocelluloses pose hindrance to the conversion of these sugar polysaccharides into ethanol. The process of ethanol production, therefore, involves an expensive and energy intensive step of pretreatment, which reduces the recalcitrance of lignocellulose and makes feedstock more susceptible to saccharification. Various physical, chemical, biological, or combined methods are employed to pretreat lignocelluloses. Irradiation is one of the common and promising physical methods of pretreatment, which involves ultrasonic waves, microwaves, γ-rays, and electron beam. Irradiation is also known to enhance the effect of saccharification. This review explains the role of different radiations in the production of cellulosic ethanol.

  20. Ethanol from biomass: A status report

    Energy Technology Data Exchange (ETDEWEB)

    Walker, R. [SWAN Biomass Co., Downers Grove, IL (United States)

    1996-12-31

    Programmatic and technical activities of SWAN Biomass, a company formed by Amoco Corporation and Stone & Webster, to convert non-grain biomass material to ethanol, are highlighted in this presentation. The potential ethanol markets identified are: (1) fuel oxygenate and octane additive, and (2) waste reduction in the agricultural and forestry industries and in municipal waste streams. Differences in the SWAN process from that used in corn-based ethanol facilities include more intense pretreatment of lignocellulosic biomass, different enzymes, hydrolysis and fermentation of sugar polymers is performed in the same vessel, and a typical solid residue of lignin. The major market and technical risks have been assessed as being manageable. 8 figs., 8 tabs.

  1. Permeability of cork for water and ethanol.

    Science.gov (United States)

    Fonseca, Ana Luisa; Brazinha, Carla; Pereira, Helena; Crespo, Joao G; Teodoro, Orlando M N D

    2013-10-01

    Transport properties of natural (noncompressed) cork were evaluated for water and ethanol in both vapor and liquid phases. The permeability for these permeants has been measured, as well as the sorption and diffusion coefficients. This paper focuses on the differences between the transport of gases' relevant vapors and their liquids (water and ethanol) through cork. A transport mechanism of vapors and liquids is proposed. Experimental evidence shows that both vapors and liquids permeate not only through the small channels across the cells (plasmodesmata), as in the permeation of gases, but also through the walls of cork cells by sorption and diffusion as in dense membranes. The present study also shows that cork permeability for gases was irreversibly and drastically decreased after cork samples were exposed to ethanol or water in liquid phase.

  2. Formation mechanism of ethanol-water excimer

    Institute of Scientific and Technical Information of China (English)

    Ying Liu; Hua Shao; Xiaowu Ni; Jian Lu

    2008-01-01

    The fluorescent spectrum and the excitation spectrum were used to present the cluster molecular structure feature in ethanol-water solutions.Through analyzing the fluorescent characteristics of an excimer,it is proposed that the excimers are formed between the ethanol-water cluster molecules in the excited state and in the ground state.The fluorescent lifetime and the fluorescent intensity decay process give information about the photo-physical and photo-chemical processes of the formation and the dissociation of an excimer.The theoretical calculation and physical analysis coincide with the experimental results.The preliminary conclusion about the structure feature of ethanol-water cluster molecule is that it has a planar one like a sandwich.

  3. Pervaporation of ethanol from lignocellulosic fermentation broth.

    Science.gov (United States)

    Gaykawad, Sushil S; Zha, Ying; Punt, Peter J; van Groenestijn, Johan W; van der Wielen, Luuk A M; Straathof, Adrie J J

    2013-02-01

    Pervaporation can be applied in ethanol production from lignocellulosic biomass. Hydrophobic pervaporation, using a commercial PDMS membrane, was employed to concentrate the ethanol produced by fermentation of lignocellulosic hydrolysate. To our knowledge, this is the first report describing this. Pervaporation carried out with three different lignocellulosic fermentation broths reduced the membrane performance by 17-20% as compared to a base case containing only 3 wt.% ethanol in water. The membrane fouling caused by these fermentation broths was irreversible. Solutions containing model lignocellulosic components were tested during pervaporation at the same conditions. A total flux decrease of 12-15%, as compared to the base case, was observed for each component except for furfural. Catechol was found to be most fouling component whereas furfural permeated through the membrane and increased the total flux. The membrane selectivity increased in the presence of fermentation broth but remained unchanged for all selected components. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Intravenous pyridoxine in acute ethanol intoxication.

    Science.gov (United States)

    Mardel, S; Phair, I; O'Dwyer, F; Henry, J A

    1994-05-01

    Intravenous pyridoxine was evaluated as an agent for the reversal of ethanol-induced central nervous depression in a randomised double blind controlled study of 108 patients presenting with a clinical diagnosis of acute ethanol intoxication to two accident and emergency departments. Level of consciousness, measured by a modified Glasgow coma scale, showed no significant change after a single 1 g dose of intravenous pyridoxine when compared to controls given saline. The mean fall in blood alcohol concentration after one hour was 33 mg dl-1 (7.2 mmol l-1) in both groups suggesting that pyridoxine has no antidotal action and no short term effect on the rate of metabolism of ethanol.

  5. Genome shuffling to improve thermotolerance, ethanol tolerance and ethanol productivity of Saccharomyces cerevisiae.

    Science.gov (United States)

    Shi, Dong-jian; Wang, Chang-lu; Wang, Kui-ming

    2009-01-01

    Genome shuffling is a powerful strategy for rapid engineering of microbial strains for desirable industrial phenotypes. Here we improved the thermotolerance and ethanol tolerance of an industrial yeast strain SM-3 by genome shuffling while simultaneously enhancing the ethanol productivity. The starting population was generated by protoplast ultraviolet irradiation and then subjected for the recursive protoplast fusion. The positive colonies from the library, created by fusing the inactivated protoplasts were screened for growth at 35, 40, 45, 50 and 55 degrees C on YPD-agar plates containing different concentrations of ethanol. Characterization of all mutants and wild-type strain in the shake-flask indicated the compatibility of three phenotypes of thermotolerance, ethanol tolerance and ethanol yields enhancement. After three rounds of genome shuffling, the best performing strain, F34, which could grow on plate cultures up to 55 degrees C, was obtained. It was found capable of completely utilizing 20% (w/v) glucose at 45-48 degrees C, producing 9.95% (w/v) ethanol, and tolerating 25% (v/v) ethanol stress.

  6. DARPP-32 and Akt regulation in ethanol-preferring AA and ethanol-avoiding ANA rats.

    Science.gov (United States)

    Nuutinen, Saara; Kiianmaa, Kalervo; Panula, Pertti

    2011-09-26

    Ethanol and other addictive drugs affect many intracellular phosphorylation and dephosphorylation cascades. These cascades are thought to be highly important in the regulation of neuronal activity. The present experiments characterized the regulation of three key signaling molecules, DARPP-32 (dopamine and cAMP regulated phosphoprotein, 32kDa), Akt kinase and ERK1/2 (extracellular signal-regulated kinase 1 and 2) in ethanol-preferring AA (Alko, alcohol) and ethanol-avoiding ANA (Alko, non-alcohol) rat lines. Radioactive in situ hybridization was used in drug naïve animals and Western blotting after acute ethanol administration in striatum, hippocampus and prefrontal cortex. The mRNA levels of DARPP-32 in striatal areas were higher in ANA rats than in AA rats. There was no difference in the striatal enriched phosphatase (STEP61), the downstream target of DARPP-32 expression between the rat lines. Ethanol (1.5g/kg) increased phosphorylation of DARPP-32 at threonine 34 in both AA and in ANA rats indicating that acute ethanol activates DARPP-32 similarly in these rat lines. The expression of Akt kinase was higher in the CA1 of hippocampus in ANA than in AA rats and acute ethanol activated Akt in hippocampus in ANA but not in AA rats. No significant alterations in the regulation of ERK1/2 were found in either rat line. Our findings suggest that DARPP-32 and Akt are regulated by ethanol and differences in the regulation of these molecules might contribute to the dramatically different ethanol drinking patterns seen in AA and ANA rats.

  7. Influences of housing conditions and ethanol intake on binding characteristics of D2, 5-HT1A, and benzodiazepine receptors of rats.

    Science.gov (United States)

    Rilke, O; May, T; Oehler, J; Wolffgramm, J

    1995-09-01

    The effects of different housing conditions and ethanol treatment (6 vol % in the drinking water) on the in vitro binding characteristics of striatal dopaminergic D2 ([3H]spiperone), hippocampal serotonergic 5-HT1A ([3H]8-OH-DPAT), and cortical benzodiazepine ([3H]flunitrazepam) receptors have been examined. Social deprivation due to contact caging, short- (1 day) and long-term isolation (5 weeks) yielded a significant decrease of striatal D2 receptor density with the greatest decrease after long-term isolation (-21% Bmax) without changes of Kd in comparison to group animals. The effect of ethanol on striatal D2 receptor density depended on the housing conditions. Whereas ethanol treatment reduced receptor density of group animals (down to 88%), chronic exposure to ethanol under long-term isolation elicited no significant alteration of D2 receptor density compared with group animals. Different housing and ethanol treatment had no effect on 5-HT1A receptor affinity and density. Alterations of benzodiazepine receptor density were not found, but social deprivation as well as ethanol treatment of group animals caused an increased affinity of [3H]flunitrazepam (reduced Kd value). These results indicate that different housing conditions of adult rats evoked significant alterations in D2 and benzodiazepine receptor binding assays, which were modified by ethanol treatment in the case of striatal D2 receptor density.

  8. Biochemical Disincentives to Fertilizing Cellulosic Ethanol Crops

    Science.gov (United States)

    Gallagher, M. E.; Hockaday, W. C.; Snapp, S.; McSwiney, C.; Baldock, J.

    2010-12-01

    Corn grain biofuel crops produce the highest yields when the cropping ecosystem is not nitrogen (N)-limited, achieved by application of fertilizer. There are environmental consequences for excessive fertilizer application to crops, including greenhouse gas emissions, hypoxic “dead zones,” and health problems from N runoff into groundwater. The increase in corn acreage in response to demand for alternative fuels (i.e. ethanol) could exacerbate these problems, and divert food supplies to fuel production. A potential substitute for grain ethanol that could reduce some of these impacts is cellulosic ethanol. Cellulosic ethanol feedstocks include grasses (switchgrass), hardwoods, and crop residues (e.g. corn stover, wheat straw). It has been assumed that these feedstocks will require similar N fertilization rates to grain biofuel crops to maximize yields, but carbohydrate yield versus N application has not previously been monitored. We report the biochemical stocks (carbohydrate, protein, and lignin in Mg ha-1) of a corn ecosystem grown under varying N levels. We measured biochemical yield in Mg ha-1 within the grain, leaf and stem, and reproductive parts of corn plants grown at seven N fertilization rates (0-202 kg N ha-1), to evaluate the quantity and quality of these feedstocks across a N fertilization gradient. The N fertilization rate study was performed at the Kellogg Biological Station-Long Term Ecological Research Site (KBS-LTER) in Michigan. Biochemical stocks were measured using 13C nuclear magnetic resonance spectroscopy (NMR), combined with a molecular mixing model (Baldock et al. 2004). Carbohydrate and lignin are the main biochemicals of interest in ethanol production since carbohydrate is the ethanol feedstock, and lignin hinders the carbohydrate to ethanol conversion process. We show that corn residue carbohydrate yields respond only weakly to N fertilization compared to grain. Grain carbohydrate yields plateau in response to fertilization at

  9. Ear infection - chronic

    Science.gov (United States)

    Middle ear infection - chronic; Otitis media - chronic; Chronic otitis media; Chronic ear infection ... up. When this happens, infection can occur. A chronic ear infection develops when fluid or an infection ...

  10. Chronic Pelvic Pain

    Science.gov (United States)

    ... Management Education & Events Advocacy For Patients About ACOG Chronic Pelvic Pain Home For Patients Search FAQs Chronic Pelvic Pain ... Chronic Pelvic Pain FAQ099, August 2011 PDF Format Chronic Pelvic Pain Gynecologic Problems What is chronic pelvic pain? What ...

  11. Employees with Chronic Pain

    Science.gov (United States)

    ... one in five Americans suffer from chronic pain (Sternberg, 2005). What is chronic pain? While acute pain ... nih.gov/disorders/chronic_pain/chronic_pain.htm Sternberg, S. (2005). Chronic pain: The enemy within. Retrieved December ...

  12. Inhibition of retinol oxidation by ethanol in the rat liver and colon

    DEFF Research Database (Denmark)

    Parlesak, Alexandr; Menzl, Ina; Feuchter, Anette

    2000-01-01

    BACKGROUND: Epidemiological evidence has been presented for an increased risk of development of colon cancer after chronic alcohol abuse. Alcohol is degraded by cytosolic alcohol dehydrogenases that also are capable of retinol oxidation. Inhibition of retinol oxidation to retinoic acid has been...... shown to occur in parallel with profound impairment of intracellular retinoid signal transduction and loss of cell differentiation control. AIMS: In the present study, the change in cytosolic retinol oxidation and retinoic acid formation by ethanol concentrations that occur in body tissues in humans...... the efficiency in the small intestine was negligible (0.20). In the presence of increasing ethanol concentrations (9, 17, and 34 mM), V(max)/K(m) for retinol oxidation decreased in a dose dependent manner to 7.8% of the initial value in the large intestine and to 12% in the liver. The V(max)/K(m) of retinoic...

  13. The fairy tale of bio-ethanol. Het sprookje van de bio-ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Beverloo, W.A. (Vakgroep Levensmiddelentechnologie, Landbouwuniversiteit Wageningen (Netherlands))

    1992-03-01

    Agricultural products can be converted into bio-ethanol. Proponents of the bio-ethanol production however use inaccurate arguments with regard to the comparison of the prices per liter for bio-ethanol and petrol instead of using the net heating value of the fuels. Also their basic assumptions concerning the energy efficiency or the energy balances or the carbon dioxide emissions are incorrect. The production of biomass for energy does not serve any other societal interest than subsidized employment for agricultural farmers. 4 tabs., 9 refs.

  14. Life-Stage PBPK Models for Multiple Routes of Ethanol Exposure in the Rat

    Science.gov (United States)

    Ethanol is commonly blended with gasoline (10% ethanol) in the US, and higher ethanol concentrations are being considered. While the pharmacokinetics and toxicity of orally-ingested ethanol are widely reported, comparable work is limited for inhalation exposure (IE), particularly...

  15. Fuel ethanol production: process design trends and integration opportunities.

    Science.gov (United States)

    Cardona, Carlos A; Sánchez, Oscar J

    2007-09-01

    Current fuel ethanol research and development deals with process engineering trends for improving biotechnological production of ethanol. In this work, the key role that process design plays during the development of cost-effective technologies is recognized through the analysis of major trends in process synthesis, modeling, simulation and optimization related to ethanol production. Main directions in techno-economical evaluation of fuel ethanol processes are described as well as some prospecting configurations. The most promising alternatives for compensating ethanol production costs by the generation of valuable co-products are analyzed. Opportunities for integration of fuel ethanol production processes and their implications are underlined. Main ways of process intensification through reaction-reaction, reaction-separation and separation-separation processes are analyzed in the case of bioethanol production. Some examples of energy integration during ethanol production are also highlighted. Finally, some concluding considerations on current and future research tendencies in fuel ethanol production regarding process design and integration are presented.

  16. Enhanced ethanol production from stalk juice of sweet sorghum by ...

    African Journals Online (AJOL)

    user

    2012-03-15

    Mar 15, 2012 ... ethanol production by a Saccharomyces cerevisiae strain because of the high content of sugar. ... Key words: Ethanol, sweet sorghum, stalk juice, medium ..... production from Kinnow mandarin (Citrus reticulata) waste via a.

  17. State-level workshops on ethanol for transportaton

    Energy Technology Data Exchange (ETDEWEB)

    Graf, Angela [BBI International, Cotopaxi, CO (United States)

    2004-01-01

    The Ethanol Workshop Series (EWS) was intended to provide a forum for interest groups to gather and discuss what needs to be accomplished to facilitate ethanol production in-state using local biomass resources.

  18. Pervaporation : membranes and models for the dehydration of ethanol

    NARCIS (Netherlands)

    Spitzen, Johannes Wilhelmus Franciscus

    1988-01-01

    In this thesis the dehydration of ethanol/water mixtures by pervaporation using homogeneous membranes is studied. Both the general transport mechanism as well as the development of highly selective membranes for ethanol/water separation are investigated.

  19. Granular starch hydrolysis for fuel ethanol production

    Science.gov (United States)

    Wang, Ping

    Granular starch hydrolyzing enzymes (GSHE) convert starch into fermentable sugars at low temperatures (≤48°C). Use of GSHE in dry grind process can eliminate high temperature requirements during cooking and liquefaction (≥90°C). In this study, GSHE was compared with two combinations of commercial alpha-amylase and glucoamylase (DG1 and DG2, respectively). All three enzyme treatments resulted in comparable ethanol concentrations (between 14.1 to 14.2% v/v at 72 hr), ethanol conversion efficiencies and ethanol and DDGS yields. Sugar profiles for the GSHE treatment were different from DG1 and DG2 treatments, especially for glucose. During simultaneous saccharification and fermentation (SSF), the highest glucose concentration for the GSHE treatment was 7% (w/v); for DG1 and DG2 treatments, maximum glucose concentration was 19% (w/v). GSHE was used in one of the fractionation technologies (enzymatic dry grind) to improve recovery of germ and pericarp fiber prior to fermentation. The enzymatic dry grind process with GSHE was compared with the conventional dry grind process using GSHE with the same process parameters of dry solids content, pH, temperature, time, enzyme and yeast usages. Ethanol concentration (at 72 hr) of the enzymatic process was 15.5% (v/v), which was 9.2% higher than the conventional process (14.2% v/v). Distillers dried grains with solubles (DDGS) generated from the enzymatic process (9.8% db) was 66% less than conventional process (28.3% db). Three additional coproducts, germ 8.0% (db), pericarp fiber 7.7% (db) and endosperm fiber 5.2% (db) were produced. Costs and amounts of GSHE used is an important factor affecting dry grind process economics. Proteases can weaken protein matrix to aid starch release and may reduce GSHE doses. Proteases also can hydrolyze protein into free amino nitrogen (FAN), which can be used as a yeast nutrient during fermentation. Two types of proteases, exoprotease and endoprotease, were studied; protease and urea

  20. Intracellular ethanol accumulation in Saccharomyces cerevisiae during fermentation.

    OpenAIRE

    D'Amore, T; C.J. Panchal; Stewart, G G

    1988-01-01

    An intracellular accumulation of ethanol in Saccharomyces cerevisiae was observed during the early stages of fermentation (3 h). However, after 12 h of fermentation, the intracellular and extracellular ethanol concentrations were similar. Increasing the osmotic pressure of the medium caused an increase in the ratio of intracellular to extracellular ethanol concentrations at 3 h of fermentation. As in the previous case, the intracellular and extracellular ethanol concentrations were similar af...

  1. Hepatitis C virus and ethanol alter antigen presentation in liver cells

    Institute of Scientific and Technical Information of China (English)

    Natalia A Osna

    2009-01-01

    Alcoholic patients have a high incidence of hepatitis Cvirus (HCV) infection. Alcohol consumption enhances the severity of the HCV disease course and worsens the outcome of chronic hepatitis C. The accumulation of virally infected cells in the liver is related to the HCVinduced inability of the immune system to recognizeinfected cells and to develop the immune responses. This review covers the effects of HCV proteins and ethanol on major histocompatibility complex (MHC) classⅠ- and class Ⅱ-restricted antigen presentation. Here, we discuss the liver which functions as an immune privilege organ; factors, which affect cleavage and loading of antigenic peptides onto MHC classⅠand class Ⅱ in hepatocytes and dendritic cells, and the modulating effects of ethanol and HCV on antigen presentation by liver cells. Altered antigen presentation in the liver limits the ability of the immune system to clear HCV and infected cells and contributes to disease progression. HCV by itself affects dendritic cell function, switching their cytokine profile to the suppressive phenotype of interleukin-10 (IL-10) and transforming growth factor beta (TGFβ) predominance,preventing cell maturation and allostimulation capacity.The synergistic action of ethanol with HCV results in the suppression of MHC class Ⅱ-restricted antigen presentation. In addition, ethanol metabolism and HCV proteins reduce proteasome function and interferon signaling, thereby suppressing the generation of peptides for MHC classⅠ-restricted antigen presentation.Collectively, ethanol exposure further impairs antigen presentation in HCV-infected liver cells, which may provide a partial explanation for exacerbations and the poor outcome of HCV infection in alcoholics.

  2. Methanolic Extract of Morinda citrifolia L. (Noni) Unripe Fruit Attenuates Ethanol-Induced Conditioned Place Preferences in Mice.

    Science.gov (United States)

    Khan, Yasmin; Pandy, Vijayapandi

    2016-01-01

    Phytotherapy is an emerging field successfully utilized to treat various chronic diseases including alcohol dependence. In the present study, we examined the effect of the standardized methanolic extract of Morinda citrifolia Linn. unripe fruit (MMC), on compulsive ethanol-seeking behavior using the mouse conditioned place preference (CPP) test. CPP was established by injections of ethanol (2 g/kg, i.p.) in a 12-day conditioning schedule in mice. The effect of MMC and the reference drug, acamprosate (ACAM), on the reinforcing properties of ethanol in mice was studied by the oral administration of MMC (1, 3, and 5 g/kg) and ACAM (300 mg/kg) 60 min prior to the final CPP test postconditioning. Furthermore, CPPs weakened with repeated testing in the absence of ethanol over the next 12 days (extinction), during which the treatment groups received MMC (1, 3, and 5 g/kg, p.o.) or ACAM (300 mg/kg, p.o.). Finally, a priming injection of a low dose of ethanol (0.4 g/kg, i.p.) in the home cage (Reinstatement) was sufficient to reinstate CPPs, an effect that was challenged by the administration of MMC or ACAM. MMC (3 and 5 g/kg, p.o.) and ACAM (300 mg/kg, p.o.) significantly reversed the establishment of ethanol-induced CPPs and effectively facilitated the extinction of ethanol CPP. In light of these findings, it has been suggested that M. citrifolia unripe fruit could be utilized for novel drug development to combat alcohol dependence.

  3. Methanolic extract of Morinda citrifolia L. (noni unripe fruit attenuates ethanol-induced conditioned place preferences in mice

    Directory of Open Access Journals (Sweden)

    Yasmin Khan

    2016-09-01

    Full Text Available Phytotherapy is an emerging field successfully utilized to treat various chronic diseases including alcohol dependence. In the present study, we examined the effect of the standardized methanolic extract of Morinda citrifolia Linn. unripe fruit (MMC, on compulsive ethanol-seeking behaviour using the mouse conditioned place preference (CPP test. CPP was established by injections of ethanol (2g/kg, i.p. in a 12-day conditioning schedule in mice. The effect of MMC and the reference drug, acamprosate (ACAM, on the reinforcing properties of ethanol in mice was studied by the oral administration of MMC (1, 3 and 5g/kg and ACAM (300 mg/kg 60 min prior to the final CPP test postconditioning. Furthermore, CPPs weakened with repeated testing in the absence of ethanol over the next 12 days (extinction, during which the treatment groups received MMC (1, 3 and 5g/kg, p.o. or ACAM (300 mg/kg, p.o.. Finally, a priming injection of a low dose of ethanol (0.4g/kg, i.p. in the home cage (Reinstatement was sufficient to reinstate CPPs, an effect that was challenged by the administration of MMC or ACAM. MMC (3 and 5g/kg, p.o and ACAM (300 mg/kg, p.o. significantly reversed the establishment of ethanol-induced CPPs and effectively facilitated the extinction of ethanol CPP. In light of these findings, it has been suggested that M. citrifolia unripe fruit could be utilized for novel drug development to combat alcohol dependence.

  4. Developmental exposure to ethanol increases the neuronal vulnerability to oxygen-glucose deprivation in cerebellar granule cell cultures.

    Science.gov (United States)

    Le Duc, Diana; Spataru, Ana; Ceanga, Mihai; Zagrean, Leon; Schöneberg, Torsten; Toescu, Emil C; Zagrean, Ana-Maria

    2015-07-21

    Prenatal alcohol exposure is associated with microencephaly, cognitive and behavioral deficits, and growth retardation. Some of the mechanisms of ethanol-induced injury, such as high level oxidative stress and overexpression of pro-apoptotic genes, can increase the sensitivity of fetal neurons towards hypoxic/ischemic stress associated with normal labor. Thus, alcohol-induced sequelae may be the cumulative result of direct ethanol toxicity and increased neuronal vulnerability towards metabolic stressors, including hypoxia. We examined the effects of ethanol exposure on the fetal cerebellar granular neurons' susceptibility to hypoxic/hypoglycemic damage. A chronic ethanol exposure covered the entire prenatal period and 5 days postpartum through breastfeeding, a time interval partially extending into the third-trimester equivalent in humans. After a binge-like alcohol exposure at postnatal day 5, glutamatergic cerebellar granule neurons were cultured and grown for 7 days in vitro, then exposed to a 3-h oxygen-glucose deprivation to mimic a hypoxic/ischemic condition. Cellular viability was monitored by dynamic recording of propidium iodide fluorescence over 20 h reoxygenation. We explored differentially expressed genes on microarray data from a mouse embryonic ethanol-exposure model and validated these by real-time PCR on the present model. In the ethanol-treated cerebellar granule neurons we find an increased expression of genes related to apoptosis (Mapk8 and Bax), but also of genes previously described as neuroprotective (Dhcr24 and Bdnf), which might suggest an actively maintained viability. Our data suggest that neurons exposed to ethanol during development are more vulnerable to in vitro hypoxia/hypoglycemia and have higher intrinsic death susceptibility than unexposed neurons.

  5. Determination of Ethanol in Gasoline by FT-IR Spectroscopy

    Science.gov (United States)

    Conklin, Alfred, Jr.; Goldcamp, Michael J.; Barrett, Jacob

    2014-01-01

    Ethanol is the primary oxygenate in gasoline in the United States. Gasoline containing various percentages of ethanol is readily available in the market place. A laboratory experiment has been developed in which the percentage of ethanol in hexanes can easily be determined using the O-H and alkane C-H absorptions in an infrared spectrum. Standard…

  6. Modeling tools to Account for Ethanol Impacts on BTEX Plumes

    Science.gov (United States)

    Widespread usage of ethanol in gasoline leads to impacts at leak sites which differ from those of non-ethanol gasolines. The presentation reviews current research results on the distribution of gasoline and ethanol, biodegradation, phase separation and cosolvancy. Model results f...

  7. Thermophilic, lignocellulolytic bacteria for ethanol production: current state and perspectives

    DEFF Research Database (Denmark)

    Chang, Tinghong; Yao, Shuo

    2011-01-01

    , in particular with emphasis on improving ethanol yield, and this facilitates their employment for ethanol production. Finally, different processes for second-generation ethanol production based on thermophilic bacteria have been proposed with the aim to achieve cost-competitive processes. However, thermophilic...

  8. Enhancing ethanol production from cellulosic sugars using Scheffersomyces (Pichia) stipitis

    Science.gov (United States)

    Studies were performed on the effect of CaCO3 and CaCl2 supplementation to fermentation medium for ethanol production from xylose, glucose, or their mixtures using Scheffersomyces (Pichia) stipitis. Both of these chemicals were found to improve maximum ethanol concentration and ethanol productivity....

  9. Effect of Propanoic Acid on Ethanol Fermentation by Saccharomyces cerevisiae in an Ethanol-Methane Coupled Fermentation Process

    Institute of Scientific and Technical Information of China (English)

    张成明; 杜风光; 王欣; 毛忠贵; 孙沛勇; 唐蕾; 张建军

    2012-01-01

    Propanoic acid accumulated in an ethanol-methane coupled fermentation process affects the ethanol fermentation by Saccharomyces cerevisiae. The effects of propanoic acid on ethanol production were examined in cassava mash under different pH conditions. Final ethanol concentrations increased when undissociated propanoic acid was 〈30.0 mmol·L-1 . Propanoic acid, however, stimulated ethanol production, as much as 7.6% under proper conditions, but ethanol fermentation was completely inhibited when undissociated acid was 〉53.2 mmol·L-1 . Therefore, the potential inhibitory effect of propanoic acid on ethanol fermentation may be avoided by controlling the undissociated acid concentrations through elevated medium pH. Biomass and glycerol production decreased with propanoic acid in the medium, partly contributing to increased ethanol concentration.

  10. [Chronic hepatitis].

    Science.gov (United States)

    Figueroa Barrios, R

    1995-01-01

    Medical literature about chronic hepatitis is reviewed. This unresolving disease caused by viruses, drugs or unknown factors may progress to in cirrhosis and hepatocarcinoma. A classification based on liver biopsy histology into chronic persistent and chronic active types has been largely abandoned and emphasis is placed on recognizing the etiology of the various types. One is associated with continuing hepatitis B virus infection; another is related to chronic hepatitis C virus infection and the third is termed autoinmune, because of the association with positive serum autoantibodies. A fourth type with similar clinical functional and morphologic features is found with some drug reactions. Long term corticoesteroid therapy is usually successful in autoinmune type. Associations between antibodies to liver-kidney microsomes and the hepatitis C virus can cause diagnostic difficulties. Antiviral treatment of chronic hepatitis B and C with interpheron alfa is employed, controlling symptoms and abnormal biochemistry and the progression to cirrhosis and liver cancer in 30 to 40% patients. Alternative therapies or combinations with interpheron are being evaluated waiting for final results.

  11. Role of mitochondria ROS generation in ethanol-induced NLRP3 inflammasome activation and cell death in astroglial cells

    Directory of Open Access Journals (Sweden)

    Silvia eAlfonso-Loeches

    2014-08-01

    Full Text Available Toll-like receptors (TLRs and Nod-like receptors (NLRs are innate immunity sensors that provide an early/effective response to pathogenic or injury conditions. We have reported that ethanol-induced TLR4 activation triggers signaling inflammatory responses in glial cells, causing neuroinflammation and brain damage. However, it is uncertain if ethanol is able to activate NLRs /inflammasome in astroglial cells, which is the mechanism of activation, and whether there is crosstalk between both immune sensors in glial cells. Here we show that chronic ethanol treatment increases the co-localization of caspase-1 with GFAP+ cells, and up-regulates IL-1β and IL-18 in the frontal medial cortex in WT, but not in TLR4 knock-out mice. We further show that cultured cortical astrocytes expressed several inflammasomes (NLRP3, AIM2, NLRP1 and IPAF, although NLRP3 mRNA is the predominant form. Ethanol, as ATP and LPS treatments, up-regulates NLRP3 expression, and causes caspase-1 cleavage and the release of IL-1β and IL-18 in astrocytes supernatant. Ethanol-induced NLRP3/caspase-1 activation is mediated by mitochondrial (m ROS generation because when using a specific mitochondria ROS scavenger, the mito-TEMPO (500 M or NLRP3 blocking peptide (4g/ml or a specific caspase-1 inhibitor, Z-YVAD-FMK (10 M, abrogates mROS release and reduces the up-regulation of IL-1β and IL-18 induced by ethanol or LPS or ATP. Confocal microscopy studies further confirm that ethanol, ATP or LPS promotes NLRP3/caspase-1 complex recruitment within the mitochondria to promote cell death by caspase-1-mediated pyroptosis, which accounts for ≈ 73 % of total cell death (≈22% and the remaining (≈25% die by caspase-3-dependent apoptosis. Suppression of the TLR4 function abrogates most ethanol effects on NLRP3 activation and reduces cell death. These findings suggest that NLRP3 participates, in ethanol-induced neuroinflammation and highlight the NLRP3/TLR4 crosstalk in ethanol

  12. Effects of binge-like ethanol exposure during adolescence on the hyperalgesia observed during sickness syndrome in rats.

    Science.gov (United States)

    de Oliveira, Bruna M T; Telles, Tatiane M B B; Lomba, Luiz A; Correia, Diego; Zampronio, Aleksander R

    2017-09-01

    Acute and chronic ethanol exposure increases the risk of infection by altering the innate host's defense system. Adolescence is a critical period for brain development. Insults during this period may have long-lasting consequences. The present study investigated the effects of binge-like ethanol exposure in adolescent rats on mechanical hyperalgesia during sickness syndrome that was induced by a systemic injection of lipopolysaccharide (LPS) or an intracerebroventricular (i.c.v.) injection of interleukin-1β (IL-1β) after the cessation of ethanol exposure. Male Wistar rats were exposed to ethanol from postnatal day (PND) 25 to PND 38 in a binge-like pattern. Hyperalgesia was assessed on the right hindpaw after an intraperitoneal injection of LPS (5 and 50μg/kg, intraperitoneally) on PND 51 and PND 63 or an i.c.v. or intraplantar (i.pl.) injection of IL-β (3 and 1ng, respectively) on PND 51. Ethanol exposure during adolescence did not alter mechanical thresholds which increased normally with age. The systemic injection of LPS (0.5-50μg/kg) in adult rats induced dose-related mechanical hyperalgesia. Binge-like ethanol exposure significantly increased mechanical hyperalgesia that was induced by 50μg/kg LPS on PND 51 and 63, which lasted until 24h after the injection. This change was not observed at a lower dose of LPS (5μg/kg). Acute oral treatment with ethanol 24h prior to LPS administration did not alter mechanical hyperalgesia. The i.c.v. injection of IL-1β (1-10ng) also induced dose-related mechanical hyperalgesia in the right hindpaw in non-exposed animals. In animals that were exposed to binge-like ethanol, the i.c.v. or i.pl. injection of IL-1β also increased hyperalgesia on PND 51. These results suggest that binge-like ethanol exposure during adolescence causes alterations in the central nervous system that can increase mechanical hyperalgesia that is observed during sickness syndrome, and this effect can be observed until adulthood after the cessation

  13. Winter barley ethanol - a new advanced biofuel

    Science.gov (United States)

    The Energy Independence and Security Act (EISA) of 2007 set an ambitious goal for the United States to annually produce and use 36 billion gallons of renewable fuels by 2022. Of this quantity, only 15 billion gallons may come from conventional sources, such as corn ethanol, and the remainder must b...

  14. Metabolic engineering of bacteria for ethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Ingram, L.O.; Gomez, P.F.; Lai, X.; Moniruzzaman, M.; Wood, B.E.; Yomano, L.P.; York, S.W. [Univ. of Florida, Gainesville, FL (United States). Dept. of Microbiology and Cell Science

    1998-04-20

    Technologies are available which will allow the conversion of lignocellulose into fuel ethanol using genetically engineered bacteria. Assembling these into a cost-effective process remains a challenge. The authors` work has focused primarily on the genetic engineering of enteric bacteria using a portable ethanol production pathway. Genes encoding Zymomonas mobilis pyruvate decarboxylase and alcohol dehydrogenase have been integrated into the chromosome of Escherichia coli B to produce strain KO11 for the fermentation of hemicellulose-derived syrups. This organism can efficiently ferment all hexose and pentose sugars present in the polymers of hemicellulose. Klebsiella oxytoca M5A1 has been genetically engineered in a similar manner to produce strain P2 for ethanol production from cellulose. This organism has the native ability to ferment cellobiose and cellotriose, eliminating the need for one class of cellulase enzymes. The optimal pH for cellulose fermentation with this organism is near that of fungal cellulases. The general approach for the genetic engineering of new biocatalysts has been most successful with enteric bacteria thus far. However, this approach may also prove useful with gram-positive bacteria which have other important traits for lignocellulose conversion. Many opportunities remain for further improvements in the biomass to ethanol processes.

  15. Enteric bacterial catalysts for fuel ethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Ingram, L.O.; Aldrich, H.C.; Borges, A.C.C. [and others

    1999-10-01

    The technology is available to produce fuel ethanol from renewable lignocellulosic biomass. The current challenge is to assemble the various process options into a commercial venture and begin the task of incremental improvement. Current process designs for lignocellulose are far more complex than grain to ethanol processes. This complexity results in part from the complexity of the substrate and the biological limitations of the catalyst. Their work at the University of Florida has focused primarily on the genetic engineering of Enteric bacteria using genes encoding Zymomonas mobilis pyruvate decarboxylase and alcohol dehydrogenase. These two genes have been assembled into a portable ethanol production cassette, the PET operon, and integrated into the chromosome of Escherichia coli B for use with hemicellulose-derived syrups. The resulting strain, KO11, produces ethanol efficiently from all hexose and pentose sugars present in the polymers of hemicellulose. By using the same approach, the authors integrated the PET operon into the chromosome of Klebsiella oxytoca to produce strain P2 for use in the simultaneous saccharification and fermentation (SSF) process for cellulose. Strain P2 has the native ability to ferment cellobiose and cellotriose, eliminating the need for one class of cellulase enzymes.

  16. Softening and elution of monomers in ethanol

    DEFF Research Database (Denmark)

    Benetti, Ana Raquel; Asmussen, Erik; Munksgaard, E Christian;

    2009-01-01

    The purpose of this study was to investigate the effect of light-curing protocol on softening and elution of monomers in ethanol as measured on a model polymer. It was a further aim to correlate the measured values with previously reported data on degree of conversion and glass transition tempera...

  17. Production of Biocellulosic Ethanol from Wheat Straw

    Directory of Open Access Journals (Sweden)

    Ismail

    2012-01-01

    Full Text Available Wheat straw is an abundant lignocellulosic feedstock in many parts of the world, and has been selected for producing ethanol in an economically feasible manner. It contains a mixture of sugars (hexoses and pentoses.Two-stage acid hydrolysis was carried out with concentrates of perchloric acid, using wheat straw. The hydrolysate was concentrated by vacuum evaporation to increase the concentration of fermentable sugars, and was detoxified by over-liming to decrease the concentration of fermentation inhibitors. After two-stage acid hydrolysis, the sugars and the inhibitors were measured. The ethanol yields obtained from by converting hexoses and pentoses in the hydrolysate with the co-culture of Saccharomyces cerevisiae and Pichia stipites were higher than the ethanol yields produced with a monoculture of S. cerevisiae. Various conditions for hysdrolysis and fermentation were investigated. The ethanol concentration was 11.42 g/l in 42 h of incubation, with a yield of 0.475 g/g, productivity of 0.272 gl ·h, and fermentation efficiency of 92.955 %, using a co-culture of Saccharomyces cerevisiae and Pichia stipites

  18. PROPERTIES OF PARAFFIN/ETHANOL MIXTURES:

    African Journals Online (AJOL)

    gas law, since the observed absorbances for saturated ethanol/paraffin vapours ... (3) The values of PE were used to plot graphs of log PE vs l/T(K), and the ... on the assumption that the curves fit rectangular hyperbolas of the form PT - 4.3 =.

  19. Catalytic dehydration of ethanol to ethylene

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Ying; Jin, Zhaosheng; Shen, Wei [SINOPEC Shanghai Research Institute of Petrochemical Technology, Shanghai (China)

    2011-07-01

    The different routes of ethylene production were briefly introduced and the advantage of ethanol to ethylene (ETE) route was explained. Followed by that, the upgraded catalyst applied in this route developed by SINOPEC Shanghai Research Institute of Petrochemical Technology (SRIPT) was introduced together with the development of the ethanol to ethylene process. The core technologies involved in this process development were discussed, such as isothermal fixed-bed reactor, water scrubber and alkaline wash column, two columns of low-temperature separation as well as process heat integration. Furthermore, the performance of one of ethanol industrial plants licensed by SRIPT was reviewed. It is as follows, conversion of ethanol reaches 99% while selectivity of ethylene is over 96% at the reaction temperature of 350{approx}450 C, the liquid hourly space velocity (LHSV)of 0.5{approx}1.0 h{sup -1} and atmosphere pressure. Meanwhile, the catalyst shows its life time of one year. This route is considered not only as an economical and practical process but also as an environmentfriendly path to ethylene production. (orig.)

  20. Urine ethanol concentration and alcohol hangover severity

    NARCIS (Netherlands)

    Brookhuis, Karel; Van De Loo, Aurora; Mackus, M.; Verster, Joris

    2017-01-01

    Background The aim of this study was to examine the relationship between urine ethanol concentration and alcohol hangover severity. Methods N = 36 healthy social drinkers participated in a naturalistic study, comprising a hangover day and a control day. N = 18 of them have regular hangovers (the

  1. Impact on Ethanol, Corn, and Livestock from Imminent U.S. Ethanol Policy Decisions

    OpenAIRE

    Bruce A. Babcock

    2010-01-01

    The next few weeks should bring some clarity to the future of the 45-cent-per-gallon ethanol tax credit and the 54-cent-per-gallon import tariff because both are scheduled to expire on December 31. Although the arguments in support of and against their extension have changed little since the summer, the economic situation in the corn, livestock, and ethanol industries has changed dramatically.

  2. Nucleic acid molecules conferring enhanced ethanol tolerance and microorganisms having enhanced tolerance to ethanol

    Science.gov (United States)

    Brown, Steven; Guss, Adam; Yang, Shihui; Karpinets, Tatiana; Lynd, Lee; Shao, Xiongjun

    2014-01-14

    The present invention provides isolated nucleic acid molecules which encode a mutant acetaldehyde-CoA/alcohol dehydrogenase or mutant alcohol dehydrogenase and confer enhanced tolerance to ethanol. The invention also provides related expression vectors, genetically engineered microorganisms having enhanced tolerance to ethanol, as well as methods of making and using such genetically modified microorganisms for production of biofuels based on fermentation of biomass materials.

  3. Chronic voluntary alcohol consumption results in tolerance to sedative/hypnotic and hypothermic effects of alcohol in hybrid mice.

    Science.gov (United States)

    Ozburn, Angela Renee; Harris, R Adron; Blednov, Yuri A

    2013-03-01

    The continuous two-bottle choice test is the most common measure of alcohol consumption but there is remarkably little information about the development of tolerance or dependence with this procedure. We showed that C57BL/6J × FVB/NJ and FVB/NJ×C57BL/6JF1 hybrid mice demonstrate greater preference for and consumption of alcohol than either parental strain. In order to test the ability of this genetic model of high alcohol consumption to produce neuroadaptation, we examined development of alcohol tolerance and dependence after chronic self-administration using a continuous access two-bottle choice paradigm. Ethanol-experienced mice stably consumed about 16-18 g/kg/day of ethanol. Ethanol-induced withdrawal severity was assessed (after 59 days of drinking) by scoring handling-induced convulsions; withdrawal severity was minimal and did not differ between ethanol-experienced and -naïve mice. After 71 days of drinking, the rate of ethanol clearance was similar for ethanol-experienced and -naïve mice. After 77 days of drinking, ethanol-induced loss of righting reflex (LORR) was tested daily for 5 days. Ethanol-experienced mice had a shorter duration of LORR. For both ethanol-experienced and -naïve mice, blood ethanol concentrations taken at gain of righting reflex were greater on day 5 than on day 1, indicative of tolerance. After 98 days of drinking, ethanol-induced hypothermia was assessed daily for 3 days. Both ethanol-experienced and -naïve mice developed rapid and chronic tolerance to ethanol-induced hypothermia, with significant group differences on the first day of testing. In summary, chronic, high levels of alcohol consumption in F1 hybrid mice produced rapid and chronic tolerance to both the sedative/hypnotic and hypothermic effects of ethanol; additionally, a small degree of metabolic tolerance developed. The development of tolerance supports the validity of using this model of high alcohol consumption in genetic studies of alcoholism.

  4. Ethanol from wood. Cellulase enzyme production

    Energy Technology Data Exchange (ETDEWEB)

    Szengyel, Zsolt

    2000-03-01

    Conversion of biomass to liquid fuels, such as ethanol, has been investigated during the past decades. First due to the oil crisis of the 1970s and lately because of concerns about greenhouse effect, ethanol has been found to be a suitable substitute for gasoline in transportation. Although ethanol is produced in large quantities from corn starch, the conversion of lignocellulosic biomass to ethanol is rather problematic. However, cellulosic raw materials are important as they are available in large quantities from agriculture and forestry. One of the most extensively investigated processes is the enzymatic process, in which fungal cellulolytic enzymes are used to convert the cellulose content of the biomass to glucose, which is then fermented to ethanol. In order to make the raw material accessible to biological attack, it has to be pretreated first. The most successful method, which has been evaluated for various lignocellulosic materials, is the steam pretreatment. In this thesis the utilization of steam pretreated willow (hardwood) and spruce (softwood) was examined for enzyme production using a filamentous fungus T. reesei RUT C30. Various carbon sources originating from the steam pretreated materials have been investigated. The replacement of the solid carbon source with a liquid carbon source, as well as the effect of pH, was studied. The effect of toxic compounds generated during pretreatment was also examined. Comparative study of softwood and hardwood showed that steam pretreated hardwood is a better carbon source than softwood. The hydrolytic potential of enzyme solutions produced on wood derived carbon sources was better compared to commercial cellulases. Also enzyme solutions produced on steam pretreated spruce showed less sensitivity towards toxic compounds formed during steam pretreatment.

  5. Sustainability of grape-ethanol energy chain

    Directory of Open Access Journals (Sweden)

    G. Riva

    2013-09-01

    Full Text Available The aim of this work is to evaluate the sustainability, in terms of greenhouse gases emission saving, of a new potential bio-ethanol production chain in comparison with the most common ones. The innovation consists of producing bio-ethanol from different types of no-food grapes, while usually bio-ethanol is obtained from matrices taken away from crop for food destination: sugar cane, corn, wheat, sugar beet. In the past, breeding programs were conducted with the aim of improving grapevine characteristics, a large number of hybrid vine varieties were produced and are nowadays present in the CRA-VIT (Viticulture Research Centre Germplasm Collection. Some of them are potentially interesting for bio-energy production because of their high production of sugar, good resistance to diseases, and ability to grow in marginal lands. LCA (Life Cycle Assessment of grape ethanol energy chain was performed following two different methods: (i using the spreadsheet “BioGrace, developed within the “Intelligent Energy Europe” program to support and to ease the RED (Directive 2009/28/EC implementation; (ii using a dedicated LCA software. Emissions were expressed in CO2 equivalent (CO2eq. The results showed that the sustainability limits provided by the normative are respected to this day. On the contrary, from 2017 this production will be sustainable only if the transformation processes will be performed using renewable sources of energy. The comparison with other bioenergy chains points out that the production of ethanol using grapes represents an intermediate situation in terms of general emissions among the different production chains.

  6. KCNQ channels show conserved ethanol block and function in ethanol behaviour.

    Directory of Open Access Journals (Sweden)

    Sonia Cavaliere

    Full Text Available In humans, KCNQ2/3 channels form an M-current that regulates neuronal excitability, with mutations in these channels causing benign neonatal familial convulsions. The M-current is important in mechanisms of neural plasticity underlying associative memory and in the response to ethanol, with KCNQ controlling the release of dopamine after ethanol exposure. We show that dKCNQ is broadly expressed in the nervous system, with targeted reduction in neuronal KCNQ increasing neural excitability and KCNQ overexpression decreasing excitability and calcium signalling, consistent with KCNQ regulating the resting membrane potential and neural release as in mammalian neurons. We show that the single KCNQ channel in Drosophila (dKCNQ has similar electrophysiological properties to neuronal KCNQ2/3, including conserved acute sensitivity to ethanol block, with the fly channel (IC(50 = 19.8 mM being more sensitive than its mammalian ortholog (IC(50 = 42.1 mM. This suggests that the role of KCNQ in alcohol behaviour can be determined for the first time by using Drosophila. We present evidence that loss of KCNQ function in Drosophila increased sensitivity and tolerance to the sedative effects of ethanol. Acute activation of dopaminergic neurons by heat-activated TRP channel or KCNQ-RNAi expression produced ethanol hypersensitivity, suggesting that both act via a common mechanism involving membrane depolarisation and increased dopamine signalling leading to ethanol sedation.

  7. Thermodynamic analysis of fuels in gas phase: ethanol, gasoline and ethanol - gasoline predicted by DFT method.

    Science.gov (United States)

    Neto, A F G; Lopes, F S; Carvalho, E V; Huda, M N; Neto, A M J C; Machado, N T

    2015-10-01

    This paper presents a theoretical study using density functional theory to calculate thermodynamics properties of major molecules compounds at gas phase of fuels like gasoline, ethanol, and gasoline-ethanol mixture in thermal equilibrium on temperature range up to 1500 K. We simulated a composition of gasoline mixture with ethanol for a thorough study of thermal energy, enthalpy, Gibbs free energy, entropy, heat capacity at constant pressure with respect to temperature in order to study the influence caused by ethanol as an additive to gasoline. We used semi-empirical computational methods as well in order to know the efficiency of other methods to simulate fuels through this methodology. In addition, the ethanol influence through the changes in percentage fractions of chemical energy released in combustion reaction and the variations on thermal properties for autoignition temperatures of fuels was analyzed. We verified how ethanol reduces the chemical energy released by gasoline combustion and how at low temperatures the gas phase fuels in thermal equilibrium have similar thermodynamic behavior. Theoretical results were compared with experimental data, when available, and showed agreement. Graphical Abstract Thermodynamic analysis of fuels in gas phase.

  8. Ethanol-induced leakage in Saccharomyces cerevisiae: kinetics and relationship to yeast ethanol tolerance and alcohol fermentation productivity

    Energy Technology Data Exchange (ETDEWEB)

    Salgueiro, S.P.; Sa-Correia, I.; Novais, J.M.

    1988-04-01

    Ethanol stimulated the leakage of amino acids and 260-nm-light-absorbing compounds from cells of Saccharomyces cerevisiae. The efflux followed first-order kinetics over an initial period. In the presence of lethal concentrations of ethanol, the efflux rates at 30 and 36/sup 0/C were an exponential function of ethanol concentration. At 36/sup 0/C, as compared with the corresponding values at 30/sup 0/C, the efflux rates were higher and the minimal concentration of ethanol was lower. The exponential constants for the enhancement of the rate of leakage had similar values at 30 or 36/sup 0/C and were of the same order of magnitude as the corresponding exponential constants for ethanol-induced death. Under isothermic conditions (30/sup 0/C) and up to 22% (vol/vol) ethanol, the resistance to ethanol-induced leakage of 260-nm-light-absorbing compounds was found to be closely related with the ethanol tolerance of three strains of yeasts, Kluyveromyces marxianus, Saccharomyces cerevisiae, and Saccharomyces bayanus. The resistance to ethanol-induced leakage indicates the possible adoption of the present method for the rapid screening of ethanol-tolerant strains. The addition to a fermentation medium of the intracellular material obtained by ethanol permeabilization of yeast cells led to improvements in alcohol fermentation by S. cerevisiae and S. bayanus. The action of the intracellular material, by improving yeast ethanol tolerance, and the advantages of partially recycling the fermented medium after distillation were discussed.

  9. Characteristics of ethanol-induced behavioral sensitization in rats: Molecular mediators and cross-sensitization between ethanol and cocaine.

    Science.gov (United States)

    Xu, Shijie; Kang, Ung Gu

    2017-09-01

    Repeated exposure to drugs of abuse can induce a progressive increase in locomotor activity, known as behavioral sensitization. However, little is known about behavioral sensitization to ethanol. We examined whether ethanol could induce behavioral sensitization and investigated several molecular changes accompanying sensitization. We also assessed whether "cross-sensitization" occurred between ethanol and cocaine, another abused drug. Ethanol-induced sensitization was examined in rats after ethanol treatment (0.5 or 2g/kg) for 15days. The biochemical effects of low- or high-dose ethanol were examined in terms of N-methyl-d-aspartate (NMDA) receptor subunit phosphorylation or expression. Neuronal activity after ethanol treatment was assessed by measuring the level of early growth response (Egr-1) expression. Ethanol-induced behavioral sensitization was observed at the low dose (0.5g/kg) but not the high dose (2g/kg). Although acute treatment with the sensitizing dose of ethanol robustly increased Egr-1 protein and mRNA levels, the expression and phosphorylation of NMDA receptor subunits were not affected. The biochemical responses to ethanol seemed to be enhanced in ethanol-sensitized animals. Cross-sensitization between ethanol and cocaine was observed, which supports the hypothesis that there are commonalities among substances in the pathophysiology of substance dependence. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Ethanol cellular defense induce unfolded protein response in yeast

    Directory of Open Access Journals (Sweden)

    Elisabet eNavarro-Tapia

    2016-02-01

    Full Text Available Ethanol is a valuable industrial product and a common metabolite used by many cell types. However, this molecule produces high levels of cytotoxicity affecting cellular performance at several levels. In the presence of ethanol, cells must adjust some of their components, such as the membrane lipids to maintain homeostasis. In the case of microorganism as Saccharomyces cerevisiae, ethanol is one of the principal products of their metabolism and is the main stress factor during fermentation. Although many efforts have been made, mechanisms of ethanol tolerance are not fully understood and very little evidence is available to date for specific signaling by ethanol in the cell. This work studied two Saccharomyces cerevisiae strains, CECT10094 and Temohaya-MI26, isolated from flor wine and agave fermentation (a traditional fermentation from Mexico respectively, which differ in ethanol tolerance, in order to understand the molecular mechanisms underlying the ethanol stress response and the reasons for different ethanol tolerance. The transcriptome was analyzed after ethanol stress and, among others, an increased activation of genes related with the unfolded protein response (UPR and its transcription factor, Hac1p, was observed in the tolerant strain CECT10094. We observed that this strain also resist more UPR agents than Temohaya-MI26 and the UPR-ethanol stress correlation was corroborated observing growth of 15 more strains and discarding UPR correlation with other stresses as thermal or oxidative stress. Furthermore, higher activation of UPR pathway in the tolerant strain CECT10094 was observed using a UPR mCherry reporter. Finally, we observed UPR activation in response to ethanol stress in other S. cerevisiae ethanol tolerant strains as the wine strains T73 and EC1118. This work demonstrates that the UPR pathway is activated under ethanol stress occurring in a standard fermentation and links this response to an enhanced ethanol tolerance. Thus

  11. Denatured ethanol release into gasoline residuals, Part 1: Source behaviour

    Science.gov (United States)

    Freitas, Juliana G.; Barker, James F.

    2013-05-01

    With the increasing use of ethanol in fuels, it is important to evaluate its fate when released into the environment. While ethanol is less toxic than other organic compounds present in fuels, one of the concerns is the impact ethanol might have on the fate of gasoline hydrocarbons in groundwater. One possible concern is the spill of denatured ethanol (E95: ethanol containing 5% denaturants, usually hydrocarbons) in sites with pre-existing gasoline contamination. In that scenario, ethanol is expected to increase the mobility of the NAPL phase by acting as a cosolvent and decreasing interfacial tension. To evaluate the E95 behaviour and its impacts on pre-existing gasoline, a field test was performed at the CFB-Borden aquifer. Initially gasoline contamination was created releasing 200 L of E10 (gasoline with 10% ethanol) into the unsaturated zone. One year later, 184 L of E95 was released on top of the gasoline contamination. The site was monitored using soil cores, multilevel wells and one glass access tube. At the end of the test, the source zone was excavated and the compounds remaining were quantified. E95 ethanol accumulated and remained within the capillary fringe and unsaturated zone for more than 200 days, despite ~ 1 m oscillations in the water table. The gasoline mobility increased and it was redistributed in the source zone. Gasoline NAPL saturations in the soil increased two fold in the source zone. However, water table oscillations caused a separation between the NAPL and ethanol: NAPL was smeared and remained in deeper positions while ethanol moved upwards following the water table rise. Similarly, the E95 denaturants that initially were within the ethanol-rich phase became separated from ethanol after the water table oscillation, remaining below the ethanol rich zone. The separation between ethanol and hydrocarbons in the source after water table oscillation indicates that ethanol's impact on hydrocarbon residuals is likely limited to early times.

  12. Transcriptome profiling of Zymomonas mobilis under ethanol stress

    Directory of Open Access Journals (Sweden)

    He Ming-xiong

    2012-10-01

    Full Text Available Abstract Background High tolerance to ethanol is a desirable characteristics for ethanologenic strains used in industrial ethanol fermentation. A deeper understanding of the molecular mechanisms underlying ethanologenic strains tolerance of ethanol stress may guide the design of rational strategies to increase process performance in industrial alcoholic production. Many extensive studies have been performed in Saccharomyces cerevisiae and Escherichia coli. However, the physiological basis and genetic mechanisms involved in ethanol tolerance for Zymomonas mobilis are poorly understood on genomic level. To identify the genes required for tolerance to ethanol, microarray technology was used to investigate the transcriptome profiling of the ethanologenic Z. mobilis in response to ethanol stress. Results We successfully identified 127 genes which were differentially expressed in response to ethanol. Ethanol up- or down-regulated genes related to cell wall/membrane biogenesis, metabolism, and transcription. These genes were classified as being involved in a wide range of cellular processes including carbohydrate metabolism, cell wall/membrane biogenesis, respiratory chain, terpenoid biosynthesis, DNA replication, DNA recombination, DNA repair, transport, transcriptional regulation, some universal stress response, etc. Conclusion In this study, genome-wide transcriptional responses to ethanol were investigated for the first time in Z. mobilis using microarray analysis.Our results revealed that ethanol had effects on multiple aspects of cellular metabolism at the transcriptional level and that membrane might play important roles in response to ethanol. Although the molecular mechanism involved in tolerance and adaptation of ethanologenic strains to ethanol is still unclear, this research has provided insights into molecular response to ethanol in Z. mobilis. These data will also be helpful to construct more ethanol resistant strains for cellulosic

  13. Potential Uses of Bagasse for Ethanol Production Versus Electricity Production

    Directory of Open Access Journals (Sweden)

    Zumalacárregui-De Cárdenas Lourdes Margarita

    2015-07-01

    Full Text Available The procedure to carry out the energy balance for ethanol production by bagasse’s hydrolysis is presented. The loss of potentialities for electric power generation when bagasse is used to produce ethanol instead of electricity directly is calculated. Potential losses are 45-64% according to the efficiency of the lignocellulosic ethanol production. The relationship that exists between the volume of ethanol and the efficiency of Otto and Rankine cycles is analyzed. Those cycles are used to produce electricity from ethanol and bagasse, respectively.

  14. Effects of Ethanol Pulping on the Length of Bamboo Cellulose

    Institute of Scientific and Technical Information of China (English)

    Tao Yang; Liao Junhe; Luo Xuegang

    2006-01-01

    On the conditions of different ethanol concentration, acids and catalyzers, the effects of ethanol pulping on the cellulose length of bamboo were studied. The results indicates that ethanol pulping has remarkable effects on the length of cellulose, which is clearly reduced with adding ethanol and acid. The margin of length of cellulose become smaller with the increase of the catalyzer. When the ethanol concentration was 70%, the concentration of acid was 0.3% and some NaOH was used as catalyzer, the length of cellulose was the longest.

  15. How do yeast cells become tolerant to high ethanol concentrations?

    DEFF Research Database (Denmark)

    Snoek, Tim; Verstrepen, Kevin J.; Voordeckers, Karin

    2016-01-01

    The brewer’s yeast Saccharomyces cerevisiae displays a much higher ethanol tolerance compared to most other organisms, and it is therefore commonly used for the industrial production of bioethanol and alcoholic beverages. However, the genetic determinants underlying this yeast’s exceptional ethanol...... tolerance have proven difficult to elucidate. In this perspective, we discuss how different types of experiments have contributed to our understanding of the toxic effects of ethanol and the mechanisms and complex genetics underlying ethanol tolerance. In a second part, we summarize the different routes...... and challenges involved in obtaining superior industrial yeasts with improved ethanol tolerance....

  16. Recent Advances in Catalytic Conversion of Ethanol to Chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Junming; Wang, Yong

    2014-04-30

    With increased availability and decreased cost, ethanol is potentially a promising platform molecule for the production of a variety of value-added chemicals. In this review, we provide a detailed summary of recent advances in catalytic conversion of ethanol to a wide range of chemicals and fuels. We particularly focus on catalyst advances and fundamental understanding of reaction mechanisms involved in ethanol steam reforming (ESR) to produce hydrogen, ethanol conversion to hydrocarbons ranging from light olefins to longer chain alkenes/alkanes and aromatics, and ethanol conversion to other oxygenates including 1-butanol, acetaldehyde, acetone, diethyl ether, and ethyl acetate.

  17. Effect of ethanolic extract of Coriandrum sativum L. on tacrine induced orofacial dyskinesia.

    Science.gov (United States)

    Mohan, Mahalaxmi; Yarlagadda, Sanjyothi; Chintala, Saritha

    2015-05-01

    The effect of ethanolic extract of Coriandrum sativum L. seeds (100, 200 mg/kg) was studied on tacrine induced orofacial dyskinesia. Tacrine (2.5 mg/kg, i.p.) treated animals were observed for vacuous chewing movements (VCM), tongue protrusions (TP) and orofacial bursts (OB) for 1 h followed by observations for locomotor changes and cognitive dysfunction. Sub-chronic administration of Coriandrum sativum L. seed extract (E-CS) (100, 200 mg/kg, p.o., for 15 days significantly (P Coriandrum sativum. L against tacrine induced orofacial dyskinesia.

  18. Chronic gastritis.

    Science.gov (United States)

    Sipponen, Pentti; Maaroos, Heidi-Ingrid

    2015-06-01

    Prevalence of chronic gastritis has markedly declined in developed populations during the past decades. However, chronic gastritis is still one of the most common serious pandemic infections with such severe killing sequelae as peptic ulcer or gastric cancer. Globally, on average, even more than half of people may have a chronic gastritis at present. Helicobacter pylori infection in childhood is the main cause of chronic gastritis, which microbial origin is the key for the understanding of the bizarre epidemiology and course of the disease. A life-long and aggressive inflammation in gastritis results in destruction (atrophic gastritis) of stomach mucosa with time (years and decades). The progressive worsening of atrophic gastritis results subsequently in dysfunctions of stomach mucosa. Atrophic gastritis will finally end up in a permanently acid-free stomach in the most extreme cases. Severe atrophic gastritis and acid-free stomach are the highest independent risk conditions for gastric cancer known so far. In addition to the risks of malignancy and peptic ulcer, acid-free stomach and severe forms of atrophic gastritis may associate with failures in absorption of essential vitamins, like vitamin B12, micronutrients (like iron, calcium, magnesium and zinc), diet and medicines.

  19. Metabolomic approach for improving ethanol stress tolerance in Saccharomyces cerevisiae.

    Science.gov (United States)

    Ohta, Erika; Nakayama, Yasumune; Mukai, Yukio; Bamba, Takeshi; Fukusaki, Eiichiro

    2016-04-01

    The budding yeast Saccharomyces cerevisiae is widely used for brewing and ethanol production. The ethanol sensitivity of yeast cells is still a serious problem during ethanol fermentation, and a variety of genetic approaches (e.g., random mutant screening under selective pressure of ethanol) have been developed to improve ethanol tolerance. In this study, we developed a strategy for improving ethanol tolerance of yeast cells based on metabolomics as a high-resolution quantitative phenotypic analysis. We performed gas chromatography-mass spectrometry analysis to identify and quantify 36 compounds on 14 mutant strains including knockout strains for transcription factor and metabolic enzyme genes. A strong relation between metabolome of these mutants and their ethanol tolerance was observed. Data mining of the metabolomic analysis showed that several compounds (such as trehalose, valine, inositol and proline) contributed highly to ethanol tolerance. Our approach successfully detected well-known ethanol stress related metabolites such as trehalose and proline thus, to further prove our strategy, we focused on valine and inositol as the most promising target metabolites in our study. Our results show that simultaneous deletion of LEU4 and LEU9 (leading to accumulation of valine) or INM1 and INM2 (leading to reduction of inositol) significantly enhanced ethanol tolerance. This study shows the potential of the metabolomic approach to identify target genes for strain improvement of S. cerevisiae with higher ethanol tolerance. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  20. Ethanol production and a case study of ethanol produced from sweet sorghum stalks via solid state fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Geng, X. [China Agricultural Univ., Beijing (China). Resource and Environmental Engineering College; Tsinghua Univ., Beijing (China). Inst. of Nuclear and New Energy Technology; Li, S.Z. [Tsinghua Univ., Beijing (China). Inst. of Nuclear and New Energy Technology

    2008-07-01

    Ethanol has excellent fuel properties, such as high octane, high heat of vaporization and low photochemical reactivity in the atmosphere. It is less volatile than gasoline and there is lower smog formation from evaporative emissions of pure ethanol compared to gasoline. As such, ethanol has emerged as an important alternative energy source that is sustainable, efficient, cost effective, convenient and safe. In 2006, global production of ethanol reached 13.5 billion gallons, up from 12.1 billion gallons in 2005. However, in light of the current debate of food versus fuel, the industry must shift to non-food feedstocks. This paper described an emerging technology to cost-effectively produce ethanol from sweet sorghum stalks, the most promising alternative feedstock to corn, via solid state fermentation (SSF). Experiments of advanced solid state fermentation (ASSF) for ethanol production from sweet sorghum by Saccharomyces cerevisiae were conducted in laboratory and pilot scales studies. The process parameters were monitored during the fermentation in three scales. The highest ethanol concentration was achieved in pilot fermentation after 44 hours of incubation when a high yield of ethanol of 94.48 per cent was obtained. In comparison, corn ethanol fermentation yielded 91.5 per cent ethanol after 55 hours of incubation. Ethanol concentration decreased slowly after 44 hours of incubation due to the consumption of sugars and the inhibitory effects of ethanol. Ethanol is a typical primary metabolite whose production closely couples with the growth of yeast cell, indicating yeast is produced as a co-product. Under the same fermentation conditions the fermentation in non-sterilized medium gave the similar ethanol concentration to that of a sterilized medium, which has the advantages of saving in equipment and energy costs for industrialization of ethanol production from sweet sorghum via SSF. 39 refs., 6 figs.

  1. Water-insoluble fractions of botanical foods lower blood ethanol levels in rats by physically maintaining the ethanol solution after ethanol administration

    Directory of Open Access Journals (Sweden)

    Shunji Oshima

    2015-11-01

    Full Text Available Background: Several studies have analyzed the functions of foods and dietary constituents in the dynamics of alcohol metabolism. However, few studies have reported the function of dietary fibers in the dynamics of alcohol metabolism. Objective: We assessed the effects of botanical foods that contain dietary fibers on alcohol metabolism. Methods: The ability of the water-insoluble fraction (WIF of 18 kinds of botanical foods to maintain 15% (v/v ethanol solution was examined using easily handled filtration. A simple linear regression analysis was performed to examine the correlation between the filtered volumes and blood ethanol concentration (BEC in F344 rats 4 h after the ingestion of 4.0 g/kg of ethanol following dosage of 2.5% (w/v WIF of the experimental botanical foods. Furthermore, the supernatant (6.3 Brix; water-soluble fraction and precipitate (WIF of tomato, with a strong ethanol-maintaining ability, were obtained and BEC and the residual gastric ethanol in rats were determined 2 h after the administration of 4.0 g/kg of ethanol and the individuals fractions. Results: The filtered volumes of dropped ethanol solutions containing all the botanical foods tested except green peas were decreased compared with the ethanol solution without WIF (control. There was a significant correlation between the filtered volumes and blood ethanol concentration (BEC. There was no significant difference in the residual gastric ethanol between controls and the supernatant group; however, it was increased significantly in the WIF group than in controls or the supernatant group. Consistent with this, BEC reached a similar level in controls and the supernatant group but significantly decreased in the WIF group compared with controls or the supernatant group. Conclusions: These findings suggest that WIFs of botanical foods, which are mostly water-insoluble dietary fibers, possess the ability to absorb ethanol-containing solutions, and this ability correlates

  2. Vacuum stripping of ethanol during high solids fermentation of corn.

    Science.gov (United States)

    Shihadeh, Jameel K; Huang, Haibo; Rausch, Kent D; Tumbleson, Mike E; Singh, Vijay

    2014-05-01

    In corn-ethanol industry, yeast stress inducing glucose concentrations produced during liquefaction and subsequent high ethanol concentrations produced during fermentation restrict slurry solids to 32 % w/w. These limits were circumvented by combining two novel technologies: (1) granular starch hydrolyzing enzyme (GSHE) to break down starch simultaneously with fermentation and (2) vacuum stripping to remove ethanol. A vacuum stripping system was constructed and applied to fermentations at 30, 40, and 45 % solids. As solids increased from 30 to 40 %, ethanol yield decreased from 0.35 to 0.29 L/kg. Ethanol yield from 45 % solids was only 0.18 L/kg. An improvement was conducted by increasing enzyme dose from 0.25 to 0.75 g/g corn and reducing yeast inoculum by half. After improvement, ethanol yield from 40 % solids vacuum treatment increased to 0.36 L/kg, comparable to ethanol yield from 30 % solids (control).

  3. Metabolic engineering to improve ethanol production in Thermoanaerobacter mathranii

    DEFF Research Database (Denmark)

    Yao, Shuo; Mikkelsen, Marie Just

    2010-01-01

    Thermoanaerobacter mathranii can produce ethanol from lignocellulosic biomass at high temperatures, but its biotechnological exploitation will require metabolic engineering to increase its ethanol yield. With a cofactor-dependent ethanol production pathway in T. mathranii, it may become crucial...... to regenerate cofactor to increase the ethanol yield. Feeding the cells with a more reduced carbon source, such as mannitol, was shown to increase ethanol yield beyond that obtained with glucose and xylose. The ldh gene coding for lactate dehydrogenase was previously deleted from T. mathranii to eliminate...... an NADH oxidation pathway. To further facilitate NADH regeneration used for ethanol formation, a heterologous gene gldA encoding an NAD+-dependent glycerol dehydrogenase was expressed in T. mathranii. One of the resulting recombinant strains, T. mathranii BG1G1 (Δldh, P xyl GldA), showed increased ethanol...

  4. A differential role for neuropeptides in acute and chronic adaptive responses to alcohol: behavioural and genetic analysis in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Philippa Mitchell

    Full Text Available Prolonged alcohol consumption in humans followed by abstinence precipitates a withdrawal syndrome consisting of anxiety, agitation and in severe cases, seizures. Withdrawal is relieved by a low dose of alcohol, a negative reinforcement that contributes to alcohol dependency. This phenomenon of 'withdrawal relief' provides evidence of an ethanol-induced adaptation which resets the balance of signalling in neural circuits. We have used this as a criterion to distinguish between direct and indirect ethanol-induced adaptive behavioural responses in C. elegans with the goal of investigating the genetic basis of ethanol-induced neural plasticity. The paradigm employs a 'food race assay' which tests sensorimotor performance of animals acutely and chronically treated with ethanol. We describe a multifaceted C. elegans 'withdrawal syndrome'. One feature, decrease reversal frequency is not relieved by a low dose of ethanol and most likely results from an indirect adaptation to ethanol caused by inhibition of feeding and a food-deprived behavioural state. However another aspect, an aberrant behaviour consisting of spontaneous deep body bends, did show withdrawal relief and therefore we suggest this is the expression of ethanol-induced plasticity. The potassium channel, slo-1, which is a candidate ethanol effector in C. elegans, is not required for the responses described here. However a mutant deficient in neuropeptides, egl-3, is resistant to withdrawal (although it still exhibits acute responses to ethanol. This dependence on neuropeptides does not involve the NPY-like receptor npr-1, previously implicated in C. elegans ethanol withdrawal. Therefore other neuropeptide pathways mediate this effect. These data resonate with mammalian studies which report involvement of a number of neuropeptides in chronic responses to alcohol including corticotrophin-releasing-factor (CRF, opioids, tachykinins as well as NPY. This suggests an evolutionarily conserved role

  5. Ethanol reassimilation and ethanol tolerance in Pitchia stipitis CBS 6054 as studied by [sup 13]C nuclear magnetic resonance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Skoog, K.; Hahn-Haegerdal, B. (Univ. of Lund (Sweden)); Degn, H.; Jacobsen, H.S.; Jacobsen, J.P. (Univ. of Odense (Denmark))

    1992-08-01

    Ethanol reassimilation in Pichia stipitis CBS 6054 was studied by using continuous cultures, and the oxidation of [1-[sup 13]C] ethanol was monitored by in vivo and in vitro [sup 13]C nuclear magnetic resonance spectroscopy. Acetate was formed when ethanol was reassimilated. The ATP/ADP ratio and the carbon dioxide production decreased, whereas the malate dehydrogenase activity increased, in ethanol-reassimilating cells. The results are discussed in terms of the low ethanol tolerance in P. stipitis compared with that in Saccharomyces cerevisiae.

  6. Effect of ethanol on innate antiviral pathways and HCV replication in human liver cells

    Directory of Open Access Journals (Sweden)

    Fausto Nelson

    2005-12-01

    Full Text Available Abstract Alcohol abuse reduces response rates to IFN therapy in patients with chronic hepatitis C. To model the molecular mechanisms behind this phenotype, we characterized the effects of ethanol on Jak-Stat and MAPK pathways in Huh7 human hepatoma cells, in HCV replicon cell lines, and in primary human hepatocytes. High physiological concentrations of acute ethanol activated the Jak-Stat and p38 MAPK pathways and inhibited HCV replication in several independent replicon cell lines. Moreover, acute ethanol induced Stat1 serine phosphorylation, which was partially mediated by the p38 MAPK pathway. In contrast, when combined with exogenously applied IFN-α, ethanol inhibited the antiviral actions of IFN against HCV replication, involving inhibition of IFN-induced Stat1 tyrosine phosphorylation. These effects of alcohol occurred independently of i alcohol metabolism via ADH and CYP2E1, and ii cytotoxic or cytostatic effects of ethanol. In this model system, ethanol directly perturbs the Jak-Stat pathway, and HCV replication. Infection with Hepatitis C virus is a significant cause of morbidity and mortality throughout the world. With a propensity to progress to chronic infection, approximately 70% of patients with chronic viremia develop histological evidence of chronic liver diseases including chronic hepatitis, cirrhosis, and hepatocellular carcinoma. The situation is even more dire for patients who abuse ethanol, where the risk of developing end stage liver disease is significantly higher as compared to HCV patients who do not drink 12. Recombinant interferon alpha (IFN-α therapy produces sustained responses (ie clearance of viremia in 8–12% of patients with chronic hepatitis C 3. Significant improvements in response rates can be achieved with IFN plus ribavirin combination 456 and pegylated IFN plus ribavirin 78 therapies. However, over 50% of chronically infected patients still do not clear viremia. Moreover, HCV-infected patients who abuse

  7. Optimization of the octane response of gasoline/ethanol blends

    KAUST Repository

    Badra, Jihad

    2017-07-04

    The octane responses of gasoline/ethanol mixtures are not well understood because of the unidentified intermolecular interactions in such blends. In general, when ethanol is blended with gasoline, the Research Octane Number (RON) and the Motor Octane Number (MON) non-linearly increase or decrease, and the non-linearity is determined by the composition of the base gasoline and the amount of added ethanol. The complexity of commercial gasolines, comprising of hundreds of different components, makes it challenging to understand ethanol-gasoline synergistic/antagonistic blending effects. Understanding ethanol blending effects with simpler gasoline surrogates is critical to acquire knowledge about ethanol blending with complex multi-component gasoline fuels. In this study, the octane numbers (ON) of ethanol blends with five relevant gasoline surrogate molecules were measured. The molecules investigated in this study include: n-pentane, iso-pentane, 1,2,4-trimethylbenzene, cyclopentane and 1-hexene. These new measurements along with the available data of n-heptane, iso-octane, toluene, various primary reference fuels (PRF) and toluene primary reference fuels (TPRF) with ethanol are used to develop a blending rule for the octane response (RON and MON) of multi-component blends with ethanol. In addition, new ON data are collected for six Fuels for Advanced Combustion Engine (FACE) with ethanol. The relatively simple volume based model successfully predicts the octane numbers (ON) of the various ethanol/PRF and ethanol/TPRF blends with the majority of predictions being within the ASTM D2699 (RON) and D2700 (MON) reproducibility limits. The model is also successfully validated against the ON of the FACE gasolines blended with ethanol with the majority of predictions being within the reproducibility limits. Finally, insights into the possible causes of the synergistic and antagonistic effects of different molecules with ethanol are provided.

  8. Chronic alcohol exposure disrupts CB1 regulation of GABAergic transmission in the rat basolateral amygdala.

    Science.gov (United States)

    Varodayan, Florence P; Bajo, Michal; Soni, Neeraj; Luu, George; Madamba, Samuel G; Schweitzer, Paul; Roberto, Marisa

    2017-05-01

    The basolateral nucleus of the amygdala (BLA) is critical to the pathophysiology of anxiety-driven alcohol drinking and relapse. The endogenous cannabinoid/type 1 cannabinoid receptor (eCB/CB1 ) system curbs BLA-driven anxiety and stress responses via a retrograde negative feedback system that inhibits neurotransmitter release, and BLA CB1 activation reduces GABA release and drives anxiogenesis. Additionally, decreased amygdala CB1 is observed in abstinent alcoholic patients and ethanol withdrawn rats. Here, we investigated the potential disruption of eCB/CB1 signaling on GABAergic transmission in BLA pyramidal neurons of rats exposed to 2-3 weeks intermittent ethanol. In the naïve rat BLA, the CB1 agonist WIN 55,212-2 (WIN) decreased GABA release, and this effect was prevented by the CB1 antagonist AM251. AM251 alone increased GABA release via a mechanism requiring postsynaptic calcium-dependent activity. This retrograde tonic eCB/CB1 signaling was diminished in chronic ethanol exposed rats, suggesting a functional impairment of the eCB/CB1 system. In contrast, acute ethanol increased GABAergic transmission similarly in naïve and chronic ethanol exposed rats, via both presynaptic and postsynaptic mechanisms. Notably, CB1 activation impaired ethanol's facilitation of GABAergic transmission across both groups, but the AM251-induced and ethanol-induced facilitation of GABA release was additive, suggesting independent presynaptic sites of action. Collectively, the present findings highlight a critical CB1 influence on BLA GABAergic transmission that is dysregulated by chronic ethanol exposure and, thus, may contribute to the alcohol-dependent state. © 2016 Society for the Study of Addiction.

  9. Ethanol from corn silage. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Mehlberg, R.L.

    1981-10-01

    The corn silage to ethanol process is described. The process feed is corn silage preserved with sulfuric acid. No anaerobic ensilement is necessary since H/sub 2/SO/sub 4/ completely prevents microbial growth. The acidified corn silage is heated by steam injection as it is loaded into a batch reactor. The polysaccharides are hydrolyzed to xylose and glucose over a 6 to 8 hour period. Then the sugars are washed from the residual fibers over a 6 to 12 hour period with thin stillage or water. The hot, acidic syrup is then neutralized and cooled for fermentation. After fermentation the ethanol is distilled. The residual fibers containing the thin stillage, corn germ, cellulose, and lignin are unloaded from the reactor and dried with flue gases for animal feed.

  10. Microtubular conductometric biosensor for ethanol detection.

    Science.gov (United States)

    Ajay, A K; Srivastava, Divesh N

    2007-09-30

    A conductometric sensor using microtubules of polyaniline as transducer cum immobilization matrix is reported, capable of detecting ethanol in liquid phase. Enzyme ADH (alcohol dehydrogenase) and its coenzyme NAD+ have been used to improve the selectivity of the sensor. The sensor concept is based on the protonation of the polyaniline by the hydrogen ion produced in the enzyme-catalyzed reaction, leading to changes in the electrical conductance of the polyaniline. The sensor works well on the physiological pH, can detect ethanol as low as 0.02% (v/v) (0.092 M) and has a linear trend at par healthcare guidelines. The sensor responses were measured in various permutation and combination of enzyme and coenzyme concentrations and site of immobilization. The sensor shows minor interference with other functional groups and alcohols. The possible causes for such interference have been discussed.

  11. Ethanolic fermentation of pentoses in lignocellulose hydrolysates

    Energy Technology Data Exchange (ETDEWEB)

    Hahn-Haegerdal, B.; Linden, T.; Senac, T.; Skoog, K. [Lund Univ. Chemical Center (Sweden)

    1991-12-31

    In the fermentation of lignocellulose hydrolysates to ethanol, two major problems are encountered: the fermentation of the pentose sugar xylose, and the presence of microbial inhibitors. Xylose can be directly fermented with yeasts; such as Pachysolen tannophilus, Candida shehatae, and Pichia stipis, or by isomerization of xylose to xylulose with the enzyme glucose (xylose) isomerase, and subsequent fermentation with bakers yeast, Saccharomyces cerevisiae. The direct fermentation requires low, carefully controlled oxygenation, as well as the removal of inhibitors. Also, the xylose-fermenting yeasts have a limited ethanol tolerance. The combined isomerization and fermentation with XI and S. cerevisiae gives yields and productivities comparable to those obtained in hexose fermentations without oxygenation and removal of inhibitors. However, the enzyme is not very stable in a lignocellulose hydrolysate, and S. cerevisiae has a poorly developed pentose phosphate shunt. Different strategies involving strain adaptation, and protein and genetic engineering adopted to overcome these different obstacles, are discussed.

  12. Microwaves and the industrial production of ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Senise, J.T.; Concone, B.R.V.; Moraes, V.L.V.; Doin, P.A.; Medugno, C.C.; Andrade, A.O.M.; Perri, E.B.; Perin, A.H.

    1981-01-01

    Production of ethanol from starchy materials is now being investigated in Brazil as an alternative source for alcohol production apart from sugar cane. In the present work, with the objective of optimizing the energy balance of the process, substitution of conventional sources of energy by electricity at one stage of the process is sought. Cooking and dextrinization of cassava roots, previously treated by conventional pretreatments, by microwaves heating (at 2450 MHz) has been studied. Results of saccharification and fermentation of the mash thus obtained were used to evaluate the technical feasibility of the process. Specific energy consumption figures (for the cooking and dextrinization stage) of 600 kcal/l of ethanol produced and efficiencies of 90% (in terms of the theoretical maximum yield from the available starch) were easily and consistently obtained.

  13. Gabapentin for the treatment of ethanol withdrawal.

    Science.gov (United States)

    Voris, John; Smith, Nancy L; Rao, Subba M; Thorne, Diana L; Flowers, Queen J

    2003-06-01

    Benzodiazepines (BZDs) are the drug of choice for the suppression of alcohol withdrawal symptoms. Gabapentin, a drug approved for use as adjunctive therapy in the treatment of partial seizures, has none of the BZD-type difficulties (drug interactions, abuse potential). We retrospectively report on the use of gabapentin for ethanol withdrawal in 49 patients. Thirty-one patients were treated in the outpatient program and 18 in the general inpatient psychiatric unit. Positive outcomes as evidenced by completion of gabapentin therapy were achieved in 25 out of 31 outpatients and 17 out of 18 inpatients. Statistical significance was reached regarding the positive relationship between prior ethanol use and inpatient "as needed" benzodiazepine use. Both sets of data suggest that gabapentin works well for the mild to moderate alcohol withdrawal patient.

  14. ENZYME-BASED HYDROLYSIS PROCESSES FOR ETHANOL

    Directory of Open Access Journals (Sweden)

    Keikhosro Karimi

    2007-11-01

    Full Text Available This article reviews developments in the technology for ethanol produc-tion from lignocellulosic materials by “enzymatic” processes. Several methods of pretreatment of lignocelluloses are discussed, where the crystalline structure of lignocelluloses is opened up, making them more accessible to the cellulase enzymes. The characteristics of these enzymes and important factors in enzymatic hydrolysis of the cellulose and hemicellulose to cellobiose, glucose, and other sugars are discussed. Different strategies are then described for enzymatic hydrolysis and fermentation, including separate enzymatic hydrolysis and fermentation (SHF, simultaneous saccharification and fermentation (SSF, non-isothermal simultaneous saccharification and fermentation (NSSF, simultaneous saccharification and co-fermentation (SSCF, and consolidated bioprocessing (CBP. Furthermore, the by-products in ethanol from lignocellulosic materials, wastewater treatment, commercial status, and energy production and integration are reviewed.

  15. Cellulosic ethanol. Potential, technology and development status

    Energy Technology Data Exchange (ETDEWEB)

    Rarbach, M. [Sued-Chemie AG, Muenchen (Germany)

    2012-07-01

    In times of rising oil prices and a growing energy demand, sustainable alternative energy sources are needed. Cellulosic ethanol is a sustainable biofuel, made from lignocellulosic feedstock such as agricultural residues (corn stover, cereal straw, bagasse) or dedicated energy crops. Its production is almost carbon neutral, doesn't compete with food or feed production and induces no land use changes. It constitutes a new energy source using an already existing renewable feedstock without needing any further production capacity and can thus play a major role on the way to more sustainability in transport and the chemical industry and reducing the dependence on the import of fossil resources. The potential for cellulosic ethanol is huge: In the US, the annual production of agricultural residues (cereal straw and corn stover) reached almost 384 million tons in 2009 and Brazil alone produced more than 670 million tons of sugar cane in 2009 yielding more than 100 million tons of bagasse (dry basis). And alone in the European Union, almost 300 million tons of crop straw are produced annually. The last years have seen success in the development and deployment in the field of cellulosic ethanol production. The main challenge thereby remains to demonstrate that the technology is economically feasible for the up-scaling to industrial scale. Clariant has developed the sunliquid {sup registered} process, a proprietary cellulosic ethanol technology that reaches highest greenhouse gas (GHG) emission savings while cutting production costs to a minimum. The sunliquid {sup registered} process for cellulosic ethanol matches the ambitious targets for economically and ecologically sustainable production and greenhouse gas reduction. It was developed using an integrated design concept. Highly optimized, feedstock and process specific biocatalysts and microorganisms ensure a highly efficient process with improved yields and feedstock-driven production costs. Integrated, on

  16. Improvement of ethanol fermentation under hyperbaric conditions.

    Science.gov (United States)

    L'Italien, Y; Thibault, J; LeDuy, A

    1989-01-20

    Recently more and more interest is manifested in the utilization of high-pressure extraction using supercritical gases for the purification of products in biochemical processes. Some researchers have examined the possibility of circulating continuously a supercritical gas through the fermentor, under hyperbaric pressure, to recover the desired product while the fermentation is taking place. However, an earlier study has demonstrated that fermentation with baker's yeast was inhibited by a long exposure under hyperbaric pressure. This article is concerned with the improvement of ethanol production under hyperbaric pressure in view of the development of an integrated fermentation-extraction process where supercritical carbon dioxide would be used for the in situ recovery of ethanol. The selection of the best yeast strain and operation under cyclic pressures are considered.

  17. Ethanol extraction of phytosterols from corn fiber

    Science.gov (United States)

    Abbas, Charles; Beery, Kyle E.; Binder, Thomas P.; Rammelsberg, Anne M.

    2010-11-16

    The present invention provides a process for extracting sterols from a high solids, thermochemically hydrolyzed corn fiber using ethanol as the extractant. The process includes obtaining a corn fiber slurry having a moisture content from about 20 weight percent to about 50 weight percent solids (high solids content), thermochemically processing the corn fiber slurry having high solids content of 20 to 50% to produce a hydrolyzed corn fiber slurry, dewatering the hydrolyzed corn fiber slurry to achieve a residual corn fiber having a moisture content from about 30 to 80 weight percent solids, washing the residual corn fiber, dewatering the washed, hydrolyzed corn fiber slurry to achieve a residual corn fiber having a moisture content from about 30 to 80 weight percent solids, and extracting the residual corn fiber with ethanol and separating at least one sterol.

  18. The influence of ethanol on hepatic transmethylation.

    Science.gov (United States)

    Barak, A J; Beckenhauer, H C

    1988-01-01

    One of the most important biochemical pathways in the organism is the biosynthesis of methionine from the methylation of homocysteine. Two different reactions are responsible for this methylation, one utilizing N5-methyltetra-hydrofolate as a methylating agent and the other using betaine as the methyl donor. This paper reviews some recent findings in this laboratory, which demonstrate that ethanol-feeding to rats impairs the folate-induced reaction. Our findings also show that this impairment is compensated for through the adaptive increase in the enzyme using betaine in the biosynthesis of methionine. Further studies indicate that the mechanism of action in the impairment may occur through the formation of individual adducts between the folate-induced enzyme (methionine synthetase), its essential cofactors and acetaldehyde, a metabolic product of ethanol. These findings suggest a basis for why rats are more resistant to alcoholic liver injury than humans and may offer a means of protecting against alcoholic liver injury in man.

  19. Chronic Pelvic Pain

    Science.gov (United States)

    ... Education & Events Advocacy For Patients About ACOG Chronic Pelvic Pain Home For Patients Search FAQs Chronic Pelvic Pain ... Pelvic Pain FAQ099, August 2011 PDF Format Chronic Pelvic Pain Gynecologic Problems What is chronic pelvic pain? What ...

  20. Chronic Pancreatitis in Children

    Science.gov (United States)

    ... Information > Children/Pediatric > Chronic Pancreatitis in Children test Chronic Pancreatitis in Children What symptoms would my child ... pancreatitis will develop diabetes in adolescence. Who gets chronic pancreatitis? Those at risk for chronic pancreatitis are ...

  1. Chronic Beryllium Disease

    Science.gov (United States)

    ... Science Education & Training Home Conditions Chronic Beryllium Disease Chronic Beryllium Disease Make an Appointment Find a Doctor ... MD, MSPH, FCCP (February 01, 2016) What is chronic beryllium disease (CBD)? Chronic beryllium disease (CBD) is ...

  2. Low back pain - chronic

    Science.gov (United States)

    Nonspecific back pain; Backache - chronic; Lumbar pain - chronic; Pain - back - chronic; Chronic back pain - low ... Low back pain is common. Almost everyone has back pain at some time in their life. Often, the exact cause ...

  3. Chronic motor tic disorder

    Science.gov (United States)

    Chronic vocal tic disorder; Tic - chronic motor tic disorder ... Chronic motor tic disorder is more common than Tourette syndrome . Chronic tics may be forms of Tourette syndrome. Tics usually start ...

  4. Biofuel Food Disasters and Cellulosic Ethanol Problems

    Science.gov (United States)

    Pimentel, David

    2009-01-01

    As shortages of fossil energy, especially oil and natural gas, become evident, the United States has moved to convert corn grain into ethanol with the goal to make the nation oil independent. Using more than 20% of all U.S. corn on 15 million acres in 2007 was providing the nation with less than 1% of U.S. oil consumption. Because the corn ethanol…

  5. Intermediate Ethanol Blends Catalyst Durability Program

    Energy Technology Data Exchange (ETDEWEB)

    West, Brian H; Sluder, Scott; Knoll, Keith; Orban, John; Feng, Jingyu

    2012-02-01

    In the summer of 2007, the U.S. Department of Energy (DOE) initiated a test program to evaluate the potential impacts of intermediate ethanol blends (also known as mid-level blends) on legacy vehicles and other engines. The purpose of the test program was to develop information important to assessing the viability of using intermediate blends as a contributor to meeting national goals for the use of renewable fuels. Through a wide range of experimental activities, DOE is evaluating the effects of E15 and E20 - gasoline blended with 15% and 20% ethanol - on tailpipe and evaporative emissions, catalyst and engine durability, vehicle driveability, engine operability, and vehicle and engine materials. This report provides the results of the catalyst durability study, a substantial part of the overall test program. Results from additional projects will be reported separately. The principal purpose of the catalyst durability study was to investigate the effects of adding up to 20% ethanol to gasoline on the durability of catalysts and other aspects of the emissions control systems of vehicles. Section 1 provides further information about the purpose and context of the study. Section 2 describes the experimental approach for the test program, including vehicle selection, aging and emissions test cycle, fuel selection, and data handling and analysis. Section 3 summarizes the effects of the ethanol blends on emissions and fuel economy of the test vehicles. Section 4 summarizes notable unscheduled maintenance and testing issues experienced during the program. The appendixes provide additional detail about the statistical models used in the analysis, detailed statistical analyses, and detailed vehicle specifications.

  6. Innovative production technology ethanol from sweet sorghum

    Science.gov (United States)

    Kashapov, N. F.; Nafikov, M. M.; Gazetdinov, M. X.; Nafikova, M. M.; Nigmatzyanov, A. R.

    2016-06-01

    The paper considers the technological aspects of production of ethanol from nontraditional for Russian Federation crops - sweet sorghum. Presents the technological scheme of alcohol production and fuel pellets from sweet sorghum. Special attention is paid to assessing the efficiency of alcohol production from sweet sorghum. The described advantage of sugar content in stem juice of sweet sorghum compared with other raw materials. Allegedly, the use of the technology for producing alcohol from sweet sorghum allows to save resources.

  7. Biofuel Food Disasters and Cellulosic Ethanol Problems

    Science.gov (United States)

    Pimentel, David

    2009-01-01

    As shortages of fossil energy, especially oil and natural gas, become evident, the United States has moved to convert corn grain into ethanol with the goal to make the nation oil independent. Using more than 20% of all U.S. corn on 15 million acres in 2007 was providing the nation with less than 1% of U.S. oil consumption. Because the corn ethanol…

  8. Ethanol and corticotropin releasing factor receptor modulation of central amygdala neurocircuitry: An update and future directions.

    Science.gov (United States)

    Silberman, Yuval; Winder, Danny G

    2015-05-01

    The central amygdala is a critical brain region for many aspects of alcohol dependence. Much of the work examining the mechanisms by which the central amygdala mediates the development of alcohol dependence has focused on the interaction of acute and chronic ethanol with central amygdala corticotropin releasing factor signaling. This work has led to a great deal of success in furthering the general understanding of central amygdala neurocircuitry and its role in alcohol dependence. Much of this work has primarily focused on the hypothesis that ethanol utilizes endogenous corticotropin releasing factor signaling to upregulate inhibitory GABAergic transmission in the central amygdala. Work that is more recent suggests that corticotropin releasing factor also plays an important role in mediating anxiety-like behaviors via the enhancement of central amygdala glutamatergic transmission, implying that ethanol/corticotropin releasing factor interactions may modulate excitatory neurotransmission in this brain region. In addition, a number of studies utilizing optogenetic strategies or transgenic mouse lines have begun to examine specific central amygdala neurocircuit dynamics and neuronal subpopulations to better understand overall central amygdala neurocircuitry and the role of neuronal subtypes in mediating anxiety-like behaviors. This review will provide a brief update on this literature and describe some potential future directions that may be important for the development of better treatments for alcohol addiction.

  9. Prenatal exposure to ethanol causes partial diabetes insipidus in adult rats.

    Science.gov (United States)

    Knee, Daniel S; Sato, Aileen K; Uyehara, Catherine F T; Claybaugh, John R

    2004-08-01

    Chronic consumption of ethanol in adult rats and humans leads to reduced AVP-producing neurons, and prenatal ethanol (PE) exposure has been reported to cause changes in the morphology of AVP-producing cells in the suprachiasmatic nucleus of young rats. The present studies further characterize the effects of PE exposure on AVP in the young adult rat, its hypothalamic synthesis, pituitary storage, and osmotically stimulated release. Pregnant rats were fed a liquid diet with 35% of the calories from ethanol or a control liquid diet for days 7-22 of pregnancy. Water consumption and urine excretion rate were measured in the offspring at 60-68 days of age. Subsequently, the offspring were infused with 5% NaCl at 0.05 ml.kg(-1).min(-1) with plasma samples taken before and at three 40-min intervals during infusion for measurement of AVP and osmolality. Urine output and water intake were approximately 20% greater in PE-exposed rats than in rats with no PE exposure, and female rats had a greater water intake than males. The relationship between plasma osmolality and AVP in PE-exposed rats was parallel to, but shifted to the right of, the control rats, indicating an increase in osmotic threshold for AVP release. Pituitary AVP was reduced by 13% and hypothalamic AVP mRNA content was reduced by 35% in PE-exposed rats. Our data suggest that PE exposure can cause a permanent condition of a mild partial central diabetes insipidus.

  10. ETHANOL-INDUCED LOCOMOTOR ACTIVITY IN ADOLESCENT RATS AND THE RELATIONSHIP WITH ETHANOL-INDUCED CONDITIONED PLACE PREFERENCE AND CONDITIONED TASTE AVERSION

    OpenAIRE

    Acevedo, María Belén; Nizhnikov, Michael E.; Spear, Norman E.; Molina, Juan C.; Pautassi, Ricardo Marcos

    2012-01-01

    Adolescent rats exhibit ethanol-induced locomotor activity (LMA), which is considered an index of ethanol’s motivational properties likely to predict ethanol self-administration, but few studies have reported or correlated ethanol-induced LMA with conditioned place preference by ethanol at this age. The present study assessed age-related differences in ethanol’s motor stimulating effects and analysed the association between ethanol-induced LMA and conventional measures of ethanol-induced rein...

  11. Chronic thyroiditis (Hashimoto disease)

    Science.gov (United States)

    Hashimoto thyroiditis; Chronic lymphocytic thyroiditis; Autoimmune thyroiditis; Chronic autoimmune thyroiditis; Lymphadenoid goiter - Hashimoto; Hypothyroidism - Hashimoto; Type 2 polyglandular autoimmune ...

  12. Fact sheet: Ethanol co-products

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-05-31

    During the conversion of starch to sugars by enzymes, and by fermentation of these sugars to ethanol and carbon dioxide, the non-fermentable portion of the grain contains most of the non-starch nutritive elements of the kernel, which is the source of a variety of co-products. The wet milling process is used exclusively for corn, whereas the dry milling process is the one usually employed for wheat , corn and other grains. The carbon dioxide produced in both these processes is used as a refrigerant, in carbonated beverages and for flushing oil wells. Co-products produced from wet milling include (1) corn oil, used in producing food products for human consumption, and (2) amino acids, corn gluten meal and corn gluten feed used as animal feed additives. Dry milling gives rise to dry distiller`s grains which are also used as high protein and high energy animal feed. Fibrotein{sup T}M , is also a co-product of ethanol from wheat and is used as a high fibre and protein food additive. Ethanol, carbon dioxide and co-products each represent about one third of the products of the fermentation process.

  13. Ethanol Production for Automotive Fuel Usage

    Energy Technology Data Exchange (ETDEWEB)

    May, S.C.; Stenzel, R.A.; Weekes, M.C.; Yu, J.

    1979-10-01

    The production of ethanol from potatoes, sugar beet, and wheat using geothermal resources at the Raft River area of idaho is being evaluated. The south central section of Idaho produces approximately 18 million bushels of wheat, 1.3 million tons of sugar beet and 24 million cwt potatoes annually. Based on these production figures, a 20 million gallon/yr ethanol facility has been selected as the largest scale plant that can be supported with the current agricultural resources. The plant will operate on all three feedstocks nominally processing potatoes for five months, sugar beet for four months and wheat for three months of the year. The process facility will use conventional alcohol technology utilizing geothermal fluid at a maximum of 280 F as an energy source. The process flow diagrams for all three feedstocks are currently being prepared. There will be basically three feedstock preparation sections, although the liquefaction and saccharification steps for potatoes and wheat will involve common equipment. The fermentation, distillation and by-product handling sections will be common to all three feedstocks. Three geothermal energy extraction systems were considered to accommodate the energy requirements of the ethanol facility (flashed steam, pressurized fluid and secondary heat transfer). Pressured geothermal fluid with direct heat transfer has been selected as the usage mode to minimize scale deposition. Tentatively, the geothermal supply wells will be laid out in square grids with 1/4 mile spacing. The number of wells required will be determined after the process heat load is calculated.

  14. BIOCONVERSION OF WATER HYACINTH HYDROLYSATE INTO ETHANOL

    Directory of Open Access Journals (Sweden)

    Sunita Bandopadhyay Mukhopadhyay

    2010-04-01

    Full Text Available The fast growing aquatic weed water hyacinth, which is available almost year-round in the tropics and subtropics, was utilized as the chief source of cellulose for production of fuel ethanol via enzymatic hydrolysis and fermentation. Fungal cellulases produced on-site by utilizing acid-alkali pretreated water hyacinth as the substrate were used as the crude enzyme source for hydrolysis of identically pretreated biomass. Four different modes of enzymatic hydrolysis and fermentation were trialed in the present study for optimization of the yield of ethanol. Two common yeasts viz., Saccharomyces cerevisiae and Pachysolen tannophilus, were used for fermentation of hexose and pentose sugars in the hydrolysate. Significant enhancement of concentration (8.3 g/L and yield (0.21 g/g of ethanol was obtained through a prefermentation hydrolysis-simultaneous saccharification and fermentation (PH-SSF process, over the other three processes viz., separate hydrolysis and fermentation (SHF, simultaneous saccharification and fermentation (SSF, and single batch bioconversion (SBB by utilizing fungal culture broth with and without filtration as crude enzyme source.

  15. Ethanol sclerotherapy of peripheral venous malformations

    Energy Technology Data Exchange (ETDEWEB)

    Rimon, U. E-mail: rimonu@sheba.health.gov.il; Garniek, A.; Galili, Y.; Golan, G.; Bensaid, P.; Morag, B

    2004-12-01

    Background: venous malformations are congenital lesions that can cause pain, decreased range of movement, compression on adjacent structures, bleeding, consumptive coagulopathy and cosmetic deformity. Sclerotherapy alone or combined with surgical excision is the accepted treatment in symptomatic malformations after failed treatment attempts with tailored compression garments. Objectives: to report our experience with percutaneous sclerotherapy of peripheral venous malformations with ethanol 96%. Patients and methods: 41 sclerotherapy sessions were performed on 21 patients, aged 4-46 years, 15 females and 6 males. Fourteen patients were treated for painful extremity lesions, while five others with face and neck lesions and two with giant chest malformations had treatment for esthetic reasons. All patients had a pre-procedure magnetic resonance imaging (MRI) study. In all patients, 96% ethanol was used as the sclerosant by direct injection using general anesthesia. A minimum of 1-year clinical follow-up was performed. Follow-up imaging studies were performed if clinically indicated. Results: 17 patients showed complete or partial symptomatic improvement after one to nine therapeutic sessions. Four patients with lower extremity lesions continue to suffer from pain and they are considered as a treatment failure. Complications were encountered in five patients, including acute pulmonary hypertension with cardiovascular collapse, pulmonary embolus, skin ulcers (two) and skin blisters. All patients fully recovered. Conclusion: sclerotherapy with 96% ethanol for venous malformations was found to be effective for symptomatic improvement, but serious complications can occur.

  16. Carbon Nanotubes Blended Hydroxyapatite Ethanol Sensor

    Science.gov (United States)

    Anjum, S. R.; Khairnar, R. S.

    2016-12-01

    Nano crystals of Hydroxyapatite (HAp) were synthesized by a wet chemical precipitation method. The nano composite materials were developed by doping various weight concentrations of carbon nanotubes in HAp, followed by characterization using scanning electron microscopy, and X-ray diffraction. Thick films of these materials were prepared by using screen printing technique. The ethanol sensing properties of these nano crystals and nano composite films were investigated by two probe electrical method. The gas sensing features such as operating temperature, response and recovery time, maximum gas detection limit, etc. were studied, since these parameters are of prime importance for sensor. The results revealed that at room temperature, the composite materials exhibited improved sensing performance towards 100 ppm ethanol with fast response times. It also showed shorter recovery time with higher vapor uptake capacity. The ethanol adsorption processes on doped and undoped substrates can be explained by surface chemical reactions as well as providing the possible adsorption models. The novelty of this work lies in developing reusable sensor substrates for room temperature sensing.

  17. Production of bio ethanol from waste potatoes

    Science.gov (United States)

    Jaber Noufal, Mohamad; Li, Baizhan; Maalla, Zena Ali

    2017-03-01

    In this research, production of ethanol from waste potatoes fermentation was studied using Saccharomyces cerevisiae. Potato Flour prepared from potato tubers after cooking and drying at 85°C. A homogenous slurry of potato flour prepared in water at solid-liquid ratio 1:10. Liquefaction of potato starch slurry was done with α-amylase at 80°C for 40 min followed by saccharification process which was done with glucoamylase at 65°C for two hr. Fermentation of hydrolysate with Saccharomyces cerevisiae at 35°C for two days resulted in the production of 33 g/l ethanol. The following parameters have been analysed: temperature, time of fermentation and pH. It found that Saccharification process is affected by enzyme Amylase 300 concentration and concentration of 1000μl/100ml gives the efficient effect of the process. The best temperature for fermentation process was found to be about 35°C. Also, it noticed that ethanol production increased as a time of fermentation increased but after 48 hr further growth in fermentation time did not have an appreciable effect. Finally, the optimal value of pH for fermentation process was about 5 to 6.

  18. Xylose fermentation to ethanol. A review

    Energy Technology Data Exchange (ETDEWEB)

    McMillan, J D

    1993-01-01

    The past several years have seen tremendous progress in the understanding of xylose metabolism and in the identification, characterization, and development of strains with improved xylose fermentation characteristics. A survey of the numerous microorganisms capable of directly fermenting xylose to ethanol indicates that wild-type yeast and recombinant bacteria offer the best overall performance in terms of high yield, final ethanol concentration, and volumetric productivity. The best performing bacteria, yeast, and fungi can achieve yields greater than 0.4 g/g and final ethanol concentrations approaching 5%. Productivities remain low for most yeast and particularly for fungi, but volumetric productivities exceeding 1.0 g/L-h have been reported for xylose-fermenting bacteria. In terms of wild-type microorganisms, strains of the yeast Pichia stipitis show the most promise in the short term for direct high-yield fermentation of xylose without byproduct formation. Of the recombinant xylose-fermenting microorganisms developed, recombinant E. coli ATTC 11303 (pLOI297) exhibits the most favorable performance characteristics reported to date.

  19. Effects of ethanol exposure on nervous system development in zebrafish.

    Science.gov (United States)

    Cole, Gregory J; Zhang, Chengjin; Ojiaku, Princess; Bell, Vanessa; Devkota, Shailendra; Mukhopadhyay, Somnath

    2012-01-01

    Alcohol (ethanol) is a teratogen that adversely affects nervous system development in a wide range of animal species. In humans numerous congenital abnormalities arise as a result of fetal alcohol exposure, leading to a spectrum of disorders referred to as fetal alcohol spectrum disorder (FASD). These abnormalities include craniofacial defects as well as neurological defects that affect a variety of behaviors. These human FASD phenotypes are reproduced in the rodent central nervous system (CNS) following prenatal ethanol exposure. While the study of ethanol effects on zebrafish development has been more limited, several studies have shown that different strains of zebrafish exhibit differential susceptibility to ethanol-induced cyclopia, as well as behavioral deficits. Molecular mechanisms underlying the effects of ethanol on CNS development also appear to be shared between rodent and zebrafish. Thus, zebrafish appear to recapitulate the observed effects of ethanol on human and mouse CNS development, indicating that zebrafish can serve as a complimentary developmental model system to study the molecular basis of FASD. Recent studies examining the effect of ethanol exposure on zebrafish nervous system development are reviewed, with an emphasis on attempts to elucidate possible molecular pathways that may be impacted by developmental ethanol exposure. Recent work from our laboratories supports a role for perturbed extracellular matrix function in the pathology of ethanol exposure during zebrafish CNS development. The use of the zebrafish model to assess the effects of ethanol exposure on adult nervous system function as manifested by changes in zebrafish behavior is also discussed.

  20. Mechanisms of ethanol-induced death of cerebellar granule cells.

    Science.gov (United States)

    Luo, Jia

    2012-03-01

    Maternal ethanol exposure during pregnancy may cause fetal alcohol spectrum disorders (FASD). FASD is the leading cause of mental retardation. The most deleterious effect of fetal alcohol exposure is inducing neuroapoptosis in the developing brain. Ethanol-induced loss of neurons in the central nervous system underlies many of the behavioral deficits observed in FASD. The cerebellum is one of the brain areas that are most susceptible to ethanol during development. Ethanol exposure causes a loss of both cerebellar Purkinje cells and granule cells. This review focuses on the toxic effect of ethanol on cerebellar granule cells (CGC) and the underlying mechanisms. Both in vitro and in vivo studies indicate that ethanol induces apoptotic death of CGC. The vulnerability of CGC to ethanol-induced death diminishes over time as neurons mature. Several mechanisms for ethanol-induced apoptosis of CGC have been suggested. These include inhibition of N-methyl-D-aspartate receptors, interference with signaling by neurotrophic factors, induction of oxidative stress, modulation of retinoid acid signaling, disturbance of potassium channel currents, thiamine deficiency, and disruption of translational regulation. Cultures of CGC provide an excellent system to investigate cellular/molecular mechanisms of ethanol-induced neurodegeneration and to evaluate interventional strategies. This review will also discuss the approaches leading to neuroprotection against ethanol-induced neuroapoptosis.

  1. Metabolic adaption of ethanol-tolerant Clostridium thermocellum.

    Directory of Open Access Journals (Sweden)

    Xinshu Zhu

    Full Text Available Clostridium thermocellum is a major candidate for bioethanol production via consolidated bioprocessing. However, the low ethanol tolerance of the organism dramatically impedes its usage in industry. To explore the mechanism of ethanol tolerance in this microorganism, systematic metabolomics was adopted to analyse the metabolic phenotypes of a C. thermocellum wild-type (WT strain and an ethanol-tolerant strain cultivated without (ET0 or with (ET3 3% (v/v exogenous ethanol. Metabolomics analysis elucidated that the levels of numerous metabolites in different pathways were changed for the metabolic adaption of ethanol-tolerant C. thermocellum. The most interesting phenomenon was that cellodextrin was significantly more accumulated in the ethanol-tolerant strain compared with the WT strain, although cellobiose was completely consumed in both the ethanol-tolerant and wild-type strains. These results suggest that the cellodextrin synthesis was active, which might be a potential mechanism for stress resistance. Moreover, the overflow of many intermediate metabolites, which indicates the metabolic imbalance, in the ET0 cultivation was more significant than in the WT and ET3 cultivations. This indicates that the metabolic balance of the ethanol-tolerant strain was adapted better to the condition of ethanol stress. This study provides additional insight into the mechanism of ethanol tolerance and is valuable for further metabolic engineering aimed at higher bioethanol production.

  2. Intrinsic properties of larval zebrafish neurons in ethanol.

    Directory of Open Access Journals (Sweden)

    Hiromi Ikeda

    Full Text Available The behavioral effects of ethanol have been studied in multiple animal models including zebrafish. Locomotion of zebrafish larvae is resistant to high concentrations of ethanol in bath solution. This resistance has been attributed to a lower systemic concentration of ethanol in zebrafish when compared with bath solution, although the mechanism to maintain such a steep gradient is unclear. Here we examined whether the intrinsic properties of neurons play roles in this resistance. In order to minimize the contribution of metabolism and diffusional barriers, larvae were hemisected and the anterior half immersed in a range of ethanol concentrations thereby ensuring the free access of bath ethanol to the brain. The response to vibrational stimuli of three types of reticulospinal neurons: Mauthner neurons, vestibulospinal neurons, and MiD3 neurons were examined using an intracellular calcium indicator. The intracellular [Ca(2+] response in MiD3 neurons decreased in 100 mM ethanol, while Mauthner neurons and vestibulospinal neurons required >300 mM ethanol to elicit similar effects. The ethanol effect in Mauthner neurons was reversible following removal of ethanol. Interestingly, activities of MiD3 neurons displayed spontaneous recovery in 300 mM ethanol, suggestive of acute tolerance. Finally, we examined with mechanical vibration the startle response of free-swimming larvae in 300 mM ethanol. Ethanol treatment abolished long latency startle responses, suggesting a functional change in neural processing. These data support the hypothesis that individual neurons in larval zebrafish brains have distinct patterns of response to ethanol dictated by specific molecular targets.

  3. Effects of alcohol consumption on biomarkers of oxidative damage to DNA and lipids in ethanol-fed pigs.

    Science.gov (United States)

    Petitpas, F; Sichel, F; Hébert, B; Lagadu, S; Beljean, M; Pottier, D; Laurentie, M; Prevost, V

    2013-03-01

    Chronic alcohol consumption is known to result in tissue injury, particularly in the liver, and is considered a major risk factor for cancers of the upper respiratory tract. Here we assessed the oxidative effects of subchronic ethanol consumption on DNA and lipids by measuring biomarkers 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) and malondialdehyde (MDA), respectively. Physiological responses of pigs (n = 4) administered ethanol in drinking water for 39 days were compared with those of water-fed pigs (n = 4). Alcoholisation resulted in serum ethanol concentration of 1.90 g L(-1) and in a moderate but significant increase in alanine aminotransferase activity, an index of liver injury. However, between the alcoholised and control groups there were no significant differences in the levels of 8-oxodG (8-oxodG per 10(6) 2'deoxyguanosine) from leucocytes (2.52 ± 0.42 Vs 2.39 ± 0.34) or from target organs, liver, cardia and oesophagus. Serum MDA levels were also similar in ethanol-fed pigs (0.33 ± 0.04 μM) and controls (0.28 ± 0.03 μM). Interestingly, levels of 8-oxodG in cardia were positively correlated with those in oesophagus (Spearman correlation coefficient R = 1, P alcohol consumption may not cause oxidative damage to DNA and lipids as measured by 8-oxodG and MDA, respectively. The duration of alcoholisation and the potential alcohol-induced nutritional deficiency may be critical determinants of ethanol toxicity. Relevant biomarkers, such as factors involved in sensitization to ethanol-induced oxidative stress are required to better elucidate the relationship between alcohol consumption, oxidative stress and carcinogenesis.

  4. Protease increases fermentation rate and ethanol yield in dry-grind ethanol production.

    Science.gov (United States)

    Johnston, David B; McAloon, Andrew J

    2014-02-01

    The effects of acid protease and urea addition during the fermentation step were evaluated. The fermentations were also tested with and without the addition of urea to determine if protease altered the nitrogen requirements of the yeast. Results show that the addition of the protease had a statistically significant effect on the fermentation rate and yield. Fermentation rates and yields were improved with the addition of the protease over the corresponding controls without protease. Protease addition either with or with added urea resulted in a higher final ethanol yield than without the protease addition. Urea addition levels >1200 ppm of supplemental nitrogen inhibited ethanol production. The economic effects of the protease addition were evaluated by using process engineering and economic models developed at the Eastern Regional Research Center. The decrease in overall processing costs from protease addition was as high as $0.01/L (4 ¢/gal) of denatured ethanol produced.

  5. Ethanol: the promise and the peril : Should Manitoba expand ethanol subsidies?[A critical analysis of the case for subsidizing ethanol production in Manitoba

    Energy Technology Data Exchange (ETDEWEB)

    Sopuck, R.D. [Frontier Centre for Public Policy, Winnipeg, MB (Canada). Rural Renaissance Project

    2002-10-01

    Ethanol is produced through the fermentation of wheat. Blending ethanol with gasoline results in an ethanol-blended gasoline (EBG). Manitoba has already established an ethanol industry in the province and the government of the province is studying the feasibility of expansion. Every year in Manitoba, approximately 90 million litres of EBG are consumed, and the province's