WorldWideScience

Sample records for chronic ethanol administration

  1. Effects of six weeks of chronic ethanol administration on the behavioral outcome of rats after lateral fluid percussion brain injury.

    Science.gov (United States)

    Zhang, L; Maki, A; Dhillon, H S; Barron, S; Clerici, W J; Hicks, R; Kraemer, P J; Butcher, J; Prasad, R M

    1999-03-01

    This study examined the effects of 6 weeks of chronic ethanol administration on the behavioral outcome in rats after lateral fluid percussion (FP) brain injury. Rats were given either an ethanol liquid diet (ethanol diet-groups) or a pair-fed isocaloric sucrose control diet (control diet groups) for 6 weeks. After 6 weeks, the ethanol diet was discontinued for the ethanol diet rats and they were then given the control sucrose diet for 2 days. During those 2 days, the rats were trained to perform a beam-walking task and subjected to either lateral FP brain injury of low to moderate severity (1.8 atm) or to sham operation. In both the control diet and the ethanol diet groups, lateral FP brain injury caused beam-walking impairment on days 1 and 2 and spatial learning disability on days 7 and 8 after brain injury. There were no significant differences in beam-walking performance and spatial learning disability between brain injured animals from the control and ethanol diet groups. However, a trend towards greater behavioral deficits was observed in brain injured animals in the ethanol diet group. Histologic analysis of both diet groups after behavioral assessment revealed comparable ipsilateral cortical damage and observable CA3 neuronal loss in the ipsilateral hippocampus. These results only suggest that chronic ethanol administration, longer than six weeks of administration, may worsen behavioral outcome following lateral FP brain injury. For more significant behavioral and/or morphological change to occur, we would suggest that the duration of chronic ethanol administration must be increased.

  2. Ginger extract protects rat's kidneys against oxidative damage after chronic ethanol administration.

    Science.gov (United States)

    Shirpoor, Aireza; Rezaei, Farzaneh; Fard, Amin Abdollahzade; Afshari, Ali Taghizadeh; Gharalari, Farzaneh Hosseini; Rasmi, Yousef

    2016-12-01

    Chronic alcohol ingestion is associated with pronounced detrimental effects on the renal system. In the current study, the protective effect of ginger extract on ethanol-induced damage was evaluated through determining 8-OHdG, cystatin C, glomerular filtration rate, and pathological changes such as cell proliferation and fibrosis in rats' kidneys. Male wistar rats were randomly divided into three groups and were treated as follows: (1) control, (2) ethanol and (3) ginger extract treated ethanolic (GETE) groups. After a six weeks period of treatment, the results revealed proliferation of glomerular and tubular cells, fibrosis in glomerular and peritubular and a significant rise in the level of 8-OHdG, cystatin C, plasma urea and creatinine. Moreover, compared to the control group, the ethanol group showed a significant decrease in the urine creatinine and creatinine clearance. In addition, significant amelioration of changes in the structure of kidneys, along with restoration of the biochemical alterations were found in the ginger extract treated ethanolic group, compared to the ethanol group. These findings indicate that ethanol induces kidneys abnormality by oxidative DNA damage and oxidative stress, and that these effects can be alleviated using ginger as an antioxidant and anti-inflammatory agent.

  3. Reversing gastric mucosal alterations during ethanol-induced chronic gastritis in rats by oral administration of Opuntia ficus- indica mucilage

    Institute of Scientific and Technical Information of China (English)

    Ricardo Vázquez-Ramírez; Marisela Olguín-Martínez; Carlos Kubli-Garfias; Rolando Hernández-Mu(n)oz

    2006-01-01

    AIM: To study the effect of mucilage obtained from cladodes of Opuntia ficus-indica (Cactaceae) on the healing of ethanol-induced gastritis in rats.METHODS: Chronic gastric mucosa injury was treated with mucilage (5 mg/kg per day) after it was induced by ethanol. Lipid composition, activity of 5'-nucleotidase (a membrane-associated ectoenzyme) and cytosolic activities of lactate and alcohol dehydrogenases in the plasma membrane of gastric mucosa were determined.Histological studies of gastric samples from the experimental groups were included.RESULTS: Ethanol elicited the histological profile of gastritis characterized by loss of the surface epithelium and infiltration of polymorphonuclear leukocytes.Phosphatidylcholine (PC) decreased and cholesterol content increased in plasma membranes of the gastric mucosa. In addition, cytosolic activity increased while the activity of alcohol dehydrogenases decreased. The administration of mucilage promptly corrected these enzymatic changes. In fact, mucilage readily accelerated restoration of the ethanol-induced histological alterations and the disturbances in plasma membranes of gastric mucosa, showing a univocal anti-inflammatory effect.The activity of 5'-nucleotidase correlated with the changes in lipid composition and the fluidity of gastric mucosal plasma membranes.CONCLUSION: The beneficial action of mucilage seems correlated with stabilization of plasma membranes of damaged gastric mucosa. Molecular interactions between mucilage monosaccharides and membrane phospholipids,mainly PC and phosphatidylethanolamine (PE), may be the relevant features responsible for changing activities of membrane-attached proteins during the healing process after chronic gastric mucosal damage.

  4. Three months of chronic ethanol administration and the behavioral outcome of rats after lateral fluid percussion brain injury.

    Science.gov (United States)

    Masse, J; Billings, B; Dhillon, H S; Mace, D; Hicks, R; Barron, S; Kraemer, P J; Dendle, P; Prasad, R M

    2000-05-01

    This study examined the effects of 3 months of chronic ethanol administration (CEAn) on the behavioral outcome in rats after lateral fluid percussion (FP) brain injury. Rats were given either an ethanol liquid diet (ethanol diet groups) or a pair-fed isocaloric sucrose control diet (control diet groups) for 3 months. Then, rats from both diet groups were subjected to either lateral FP brain injury of moderate severity (1.8 atm) or to sham operation. Postinjury behavioral measurements revealed that brain injury caused significant spatial learning disability in both diet groups. There were no significant differences in spatial learning ability in the sham or brain-injured animals between the control and ethanol diets. However, a trend towards cognitive impairment in the sham animals and a trend towards reduced deficits in the brain-injured animals were observed in the ethanol diet group. Histologic analysis of injured animals from both diet groups revealed similar extents of ipsilateral cortical and hippocampal CA3 damage. These results, in general, suggest that 3 months of CEAn does not significantly alter the behavioral and morphologic outcome of experimental brain injury.

  5. Alternative Splicing of AMPA subunits in Prefrontal Cortical Fields of Cynomolgus Monkeys following Chronic Ethanol Self-Administration

    Directory of Open Access Journals (Sweden)

    Glen eAcosta

    2012-01-01

    Full Text Available Functional impairment of the orbital and medial prefrontal cortex underlies deficits in executive control that characterize addictive disorders, including alcohol addiction. Previous studies indicate that alcohol alters glutamate neurotransmission and one substrate of these effects may be through the reconfiguration of the subunits constituting ionotropic glutamate receptor (iGluR complexes. Glutamatergic transmission is integral to cortico-cortical and cortico-subcortical communication and alcohol-induced changes in the abundance of the receptor subunits and/or their splice variants may result in critical functional impairments of prefrontal cortex in alcohol dependence. To this end, the effects of chronic ethanol self-administration on glutamate receptor ionotropic AMPA (GRIA subunit variant and kainate (GRIK subunit mRNA expression were studied in the orbitofrontal cortex (OFC, dorsolateral prefrontal cortex (DLPFC and anterior cingulate cortex (ACC of male cynomolgus monkeys. In DLPFC, total AMPA splice variant expression and total kainate receptor subunit expression were significantly decreased in alcohol drinking monkeys. Expression levels of GRIA3 flip and flop and GRIA4 flop mRNAs in this region were positively correlated with daily ethanol intake and blood ethanol concentrations averaged over the six months prior to necropsy. In OFC, AMPA subunit splice variant expression was reduced in the alcohol treated group. GRIA2 flop mRNA levels in this region were positively correlated with daily ethanol intake and blood ethanol concentrations averaged over the six months prior to necropsy. Results from these studies provide further evidence of transcriptional regulation of iGluR subunits in the primate brain following chronic alcohol self-administration. Additional studies examining the cellular localization of such effects in the framework of primate prefrontal cortical circuitry are warranted.

  6. Effects of chronic ethanol administration on expression of BDNF and trkB mRNAs in rat hippocampus after experimental brain injury.

    Science.gov (United States)

    Zhang, L; Dhillon, H S; Barron, S; Hicks1, R R; Prasad, R M; Seroogy, K B

    2000-06-23

    Previous evidence indicates that both chronic alcohol treatment and traumatic brain injury modulate expression of certain neurotrophins and neurotrophin receptors in cortical tissue. However, the combined effects of chronic alcohol and brain trauma on expression of neurotrophins and their receptors have not been investigated. In the present study, we examined the effects of 6 weeks of chronic ethanol administration on lateral fluid percussion (FP) brain injury-induced alterations in expression of mRNAs for the neurotrophin brain-derived neurotrophic factor (BDNF) and its high affinity receptor, trkB, in rat hippocampus. In both the control- (pair-fed isocaloric sucrose) diet and the chronic ethanol-diet groups, unilateral FP brain injury induced a bilateral increase in levels of both BDNF and trkB mRNAs in the dentate gyrus granule cell layer, and of BDNF mRNA in hippocampal region CA3. However, no significant differences in expression were found between the control-diet and ethanol-diet groups, in either the sham-injured or FP-injured animals. These findings suggest that 6 weeks of chronic ethanol administration does not alter the plasticity of hippocampal BDNF/trkB expression in response to experimental brain injury.

  7. Antihyperglycemic Effect on Chronic Administration of Butanol Fraction of Ethanol Extract of Moringa Stenopetala Leaves in Alloxan Induced Diabetic Mice

    Institute of Scientific and Technical Information of China (English)

    Alemayehu Toma; Eyasu Makonnen; Asfaw Debella; Birhanu Tesfaye

    2012-01-01

    Objective: The present study was conducted to evaluate the antihyperglycemic activity on chronic administration of the butanol fraction of the ethanol extract of Moringa Stenopetala leaves in alloxan induced diabetic mice. Methods: The mice were grouped in four groups; Normal control, Diabetic control, Butanol fraction treated and standard drug treated groups. The Diabetic mice received the butanol fraction of Moringa stenopetala daily for 28 days. Results: The butanol fraction of Moringastenopetala treatment resulted in significant reduction of fasting blood glucose level, serum total cholesterol and triglycerides level. This fraction also showed a tendency to improve body weight gain in diabetic mice. Its oral LD50 was found to be greater than 5000mg/Kg indicating its safety in mice. Conclusions: Though the mechanism of action of Moringa stenopetala seems to be similar to that of sulfonylureas, further studies should be done to confirm its mechanism of antidiabetic action. Furthermore the active principle(s) responsible for the antidabetic effects should also be identified.

  8. Reversing gastric mucosal alterations during ethanol-induced chronic gastritis in rats by oral administration of Opuntia ficus-indica mucilage

    Science.gov (United States)

    Vázquez-Ramírez, Ricardo; Olguín-Martínez, Marisela; Kubli-Garfias, Carlos; Hernández-Muñoz, Rolando

    2006-01-01

    AIM: To study the effect of mucilage obtained from cladodes of Opuntia ficus-indica (Cactaceae) on the healing of ethanol-induced gastritis in rats. METHODS: Chronic gastric mucosa injury was treated with mucilage (5 mg/kg per day) after it was induced by ethanol. Lipid composition, activity of 5’-nucleotidase (a membrane-associated ectoenzyme) and cytosolic activities of lactate and alcohol dehydrogenases in the plasma membrane of gastric mucosa were determined. Histological studies of gastric samples from the experimental groups were included. RESULTS: Ethanol elicited the histological profile of gastritis characterized by loss of the surface epithelium and infiltration of polymorphonuclear leukocytes. Phosphatidylcholine (PC) decreased and cholesterol content increased in plasma membranes of the gastric mucosa. In addition, cytosolic activity increased while the activity of alcohol dehydrogenases decreased. The administration of mucilage promptly corrected these enzymatic changes. In fact, mucilage readily accelerated restoration of the ethanol-induced histological alterations and the disturbances in plasma membranes of gastric mucosa, showing a univocal anti-inflammatory effect. The activity of 5’-nucleotidase correlated with the changes in lipid composition and the fluidity of gastric mucosal plasma membranes. CONCLUSION: The beneficial action of mucilage seems correlated with stabilization of plasma membranes of damaged gastric mucosa. Molecular interactions between mucilage monosaccharides and membrane phospholipids, mainly PC and phosphatidylethanolamine (PE), may be the relevant features responsible for changing activities of membrane-attached proteins during the healing process after chronic gastric mucosal damage. PMID:16865772

  9. Repeated episodes of chronic intermittent ethanol promote insensitivity to devaluation of the reinforcing effect of ethanol.

    Science.gov (United States)

    Lopez, M F; Becker, H C; Chandler, L J

    2014-11-01

    Studies in animal models have shown that repeated episodes of alcohol dependence and withdrawal promote escalation of drinking that is presumably associated with alterations in the addiction neurocircuitry. Using a lithium chloride-ethanol pairing procedure to devalue the reinforcing properties of ethanol, the present study determined whether multiple cycles of chronic intermittent ethanol (CIE) exposure by vapor inhalation also alters the sensitivity of drinking behavior to the devaluation of ethanol's reinforcing effects. The effect of devaluation on operant ethanol self-administration and extinction was examined in mice prior to initiation of CIE (short drinking history) and after repeated cycles of CIE or air control exposure (long drinking history). Devaluation significantly attenuated the recovery of baseline ethanol self-administration when tested either prior to CIE or in the air-exposed controls that had experienced repeated bouts of drinking but no CIE. In contrast, in mice that had undergone repeated cycles of CIE exposure that promoted escalation of ethanol drinking, self-administration was completely resistant to the effect of devaluation. Devaluation had no effect on the time course of extinction training in either pre-CIE or post-CIE mice. Taken together, these results are consistent with the suggestion that repeated cycles of ethanol dependence and withdrawal produce escalation of ethanol self-administration that is associated with a change in sensitivity to devaluation of the reinforcing properties of ethanol.

  10. Adolescent rats are resistant to the development of ethanol-induced chronic tolerance and ethanol-induced conditioned aversion.

    Science.gov (United States)

    Pautassi, Ricardo Marcos; Godoy, Juan Carlos; Molina, Juan Carlos

    2015-11-01

    The analysis of chronic tolerance to ethanol in adult and adolescent rats has yielded mixed results. Tolerance to some effects of ethanol has been reported in adolescents, yet other studies found adults to exhibit greater tolerance than adolescents or comparable expression of the phenomena at both ages. Another unanswered question is how chronic ethanol exposure affects subsequent ethanol-mediated motivational learning at these ages. The present study examined the development of chronic tolerance to ethanol's hypothermic and motor stimulating effects, and subsequent acquisition of ethanol-mediated odor conditioning, in adolescent and adult male Wistar rats given every-other-day intragastric administrations of ethanol. Adolescent and adult rats exhibited lack of tolerance to the hypothermic effects of ethanol during an induction phase; whereas adults, but not adolescents, exhibited a trend towards a reduction in hypothermia at a challenge phase (Experiment 1). Adolescents, unlike adults, exhibited ethanol-induced motor activation after the first ethanol administration. Adults, but not adolescents, exhibited conditioned odor aversion by ethanol. Subsequent experiments conducted only in adolescents (Experiment 2, Experiment 3 and Experiment 4) manipulated the context, length and predictability of ethanol administration. These manipulations did not promote the expression of ethanol-induced tolerance. This study indicated that, when moderate ethanol doses are given every-other day for a relatively short period, adolescents are less likely than adults to develop chronic tolerance to ethanol-induced hypothermia. This resistance to tolerance development could limit long-term maintenance of ethanol intake. Adolescents, however, exhibited greater sensitivity than adults to the acute motor stimulating effects of ethanol and a blunted response to the aversive effects of ethanol. This pattern of response may put adolescents at risk for early initiation of ethanol intake.

  11. Concomitant stress potentiates the preference for, and consumption of, ethanol induced by chronic pre-exposure to ethanol

    Directory of Open Access Journals (Sweden)

    G. Morais-Silva

    2016-01-01

    Full Text Available Ethanol abuse is linked to several acute and chronic injuries that can lead to health problems. Ethanol addiction is one of the most severe diseases linked to the abuse of this drug. Symptoms of ethanol addiction include compulsive substance intake and withdrawal syndrome. Stress exposure has an important role in addictive behavior for many drugs of abuse (including ethanol, but the consequences of stress and ethanol in the organism when these factors are concomitant results in a complex interaction. We investigated the effects of concomitant, chronic administration of ethanol and stress exposure on the withdrawal and consumption of, as well as the preference for, ethanol in mice. Male Swiss mice (30–35 g, 8-10 per group were exposed to an ethanol liquid diet as the only source of food for 15 days. In the final 5 days, they were exposed to forced swimming stress. Twelve hours after removal of the ethanol liquid diet, animals were evaluated for ethanol withdrawal by measuring anxiety-related behaviors and locomotor activity. Twenty-four hours after evaluation of ethanol withdrawal, they were evaluated for voluntary consumption of ethanol in a “three-bottle choice” paradigm. Mice exposed to chronic consumption of ethanol had decreased locomotor activity during withdrawal. Contrary to our expectations, a concomitant forced swimming stress did not aggravate ethanol withdrawal. Nevertheless, simultaneous ethanol administration and stress exposure increased voluntary consumption of ethanol, mainly solutions containing high concentrations of ethanol. These results showed that stressful situations during ethanol intake may aggravate specific addiction-related behaviors.

  12. Concomitant stress potentiates the preference for, and consumption of, ethanol induced by chronic pre-exposure to ethanol.

    Science.gov (United States)

    Morais-Silva, G; Fernandes-Santos, J; Moreira-Silva, D; Marin, M T

    2016-01-01

    Ethanol abuse is linked to several acute and chronic injuries that can lead to health problems. Ethanol addiction is one of the most severe diseases linked to the abuse of this drug. Symptoms of ethanol addiction include compulsive substance intake and withdrawal syndrome. Stress exposure has an important role in addictive behavior for many drugs of abuse (including ethanol), but the consequences of stress and ethanol in the organism when these factors are concomitant results in a complex interaction. We investigated the effects of concomitant, chronic administration of ethanol and stress exposure on the withdrawal and consumption of, as well as the preference for, ethanol in mice. Male Swiss mice (30-35 g, 8-10 per group) were exposed to an ethanol liquid diet as the only source of food for 15 days. In the final 5 days, they were exposed to forced swimming stress. Twelve hours after removal of the ethanol liquid diet, animals were evaluated for ethanol withdrawal by measuring anxiety-related behaviors and locomotor activity. Twenty-four hours after evaluation of ethanol withdrawal, they were evaluated for voluntary consumption of ethanol in a "three-bottle choice" paradigm. Mice exposed to chronic consumption of ethanol had decreased locomotor activity during withdrawal. Contrary to our expectations, a concomitant forced swimming stress did not aggravate ethanol withdrawal. Nevertheless, simultaneous ethanol administration and stress exposure increased voluntary consumption of ethanol, mainly solutions containing high concentrations of ethanol. These results showed that stressful situations during ethanol intake may aggravate specific addiction-related behaviors.

  13. Simultaneous Determination of Four Tanshinones by UPLC-TQ/MS and Their Pharmacokinetic Application after Administration of Single Ethanol Extract of Danshen Combined with Water Extract in Normal and Adenine-Induced Chronic Renal Failure Rats

    Directory of Open Access Journals (Sweden)

    Hong-Die Cai

    2016-11-01

    Full Text Available Salvia miltiorrhiza, one of the major traditional Chinese medicines, is commonly used and the main active ingredients—tanshinones—possess the ability to improve renal function. In this paper, the UPLC-TQ/MS method of simultaneously determining four tanshinones—tanshinone IIA, dihydrotanshinone I, tanshinone I, and cryptotanshinone—was established and applied to assess the pharmacokinetics in normal and chronic renal failure (CRF rat plasma. The pharmacokinetics of tanshinones in rats were studied after separately intragastric administration of Salvia miltiorrhiza ethanol extract (SMEE (0.65 g/kg, SMEE (0.65 g/kg combined with Salvia miltiorrhiza water extract (SMWE (1.55 g/kg. The results showed Cmax and AUC0–t of tanshinone IIA, tanshinone I, cryptotanshinone reduced by 50%~80% and CLz/F increased by 2~4 times (p < 0.05 in model group after administrated with SMEE. Nevertheless, after intragastric administration of a combination of SMWE and SMEE, the Cmax and AUC0–t of four tanshinones were upregulated and CLz/F was downregulated, which undulated similarity from the model group to the normal group with compatibility of SMEE and SMWE. These results hinted that SMWE could improve the bioavailability of tanshinones in CRF rats, which provides scientific information for further exploration the mechanism of the combination of SMWE and SMEE and offers a reference for clinical administration of Salvia miltiorrhiza.

  14. Cytisine modulates chronic voluntary ethanol consumption and ethanol-induced striatal up-regulation of ΔFosB in mice.

    Science.gov (United States)

    Sajja, Ravi Kiran; Rahman, Shafiqur

    2013-06-01

    Chronic administration of ethanol induces persistent accumulation of ΔFosB, an important transcription factor, in the midbrain dopamine system. This process underlies the progression to addiction. Previously, we have shown that cytisine, a neuronal nicotinic acetylcholine receptor (nAChR) partial agonist, reduces various ethanol-drinking behaviors and ethanol-induced striatal dopamine function. However, the effects of cytisine on chronic ethanol drinking and ethanol-induced up-regulation of striatal ΔFosB are not known. Therefore, we examined the effects of cytisine on chronic voluntary ethanol consumption and associated striatal ΔFosB up-regulation in C57BL/6J mice using behavioral and biochemical methods. Following the chronic voluntary consumption of 15% (v/v) ethanol under a 24-h two-bottle choice intermittent access (IA; 3 sessions/week) or continuous access (CA; 24 h/d and 7 d/week) paradigm, mice received repeated intraperitoneal injections of saline or cytisine (0.5 or 3.0 mg/kg). Ethanol and water intake were monitored for 24 h post-treatment. Pretreatment with cytisine (0.5 or 1.5 mg/kg) significantly reduced ethanol consumption and preference in both paradigms at 2 h and 24 h post-treatment. The ΔFosB levels in the ventral and dorsal striatum were determined by Western blotting 18-24 h after the last point of ethanol access. In addition, cytisine (0.5 mg/kg) significantly attenuated up-regulation of ΔFosB in the ventral and dorsal striatum following chronic ethanol consumption in IA and CA paradigms. The results indicate that cytisine modulates chronic voluntary ethanol consumption and reduces ethanol-induced up-regulation of striatal ΔFosB. Further, the data suggest a critical role of nAChRs in chronic ethanol-induced neurochemical adaptations associated with ethanol addiction.

  15. Norepinephrine-induced diuresis in chronically ethanol-treated rats

    Energy Technology Data Exchange (ETDEWEB)

    Pohorecky, L.A. (Rutgers Univ., Piscataway, NJ (USA))

    1989-01-01

    Previous research from this laboratory indicated that noradrenergic mechanisms might mediate ethanol diuresis. Experiments described here examined changes in sensitivity of noradrenergic mechanisms in animals chronically treated with ethanol. Norepinephrine hydrochloride (0-12 ug intracerebroventricularly) produced dose-dependent diuresis in control and ethanol treated rats on the first day of treatment. Tolerance to ethanol diuresis was present after 10 day of ethanol treatment. Lack of responsiveness to norepinephrine-induced diuresis was evident only on the 20th day of treatment in both the ethanol and dextrin-maltose groups of rats. These results indicate a temporal dissociation between the tolerance to ethanol-induced and norepinephrine-induced diuresis and suggest that norepinephrine may not play a primary role in the development of tolerance to the diuretic action of ethanol.

  16. Orexin-1 and orexin-2 receptor antagonists reduce ethanol self-administration in high-drinking rodent models

    Directory of Open Access Journals (Sweden)

    Rachel Ivy Anderson

    2014-02-01

    Full Text Available To examine the role of orexin-1 and orexin-2 receptor activity on ethanol self-administration, compounds that differentially target orexin (OX receptor subtypes were assessed in various self-administration paradigms using high-drinking rodent models. Effects of the OX1 antagonist SB334867, the OX2 antagonist LSN2424100, and the mixed OX1/2 antagonist almorexant (ACT-078573 on home cage ethanol consumption were tested in ethanol-preferring (P rats using a 2-bottle choice procedure. In separate experiments, effects of SB334867, LSN2424100, and almorexant on operant ethanol self-administration were assessed in P rats maintained on a progressive ratio operant schedule of reinforcement. In a third series of experiments, SB334867, LSN2424100, and almorexant were administered to ethanol-preferring C57BL/6J mice to examine effects of OX receptor blockade on ethanol intake in a binge-like drinking (drinking-in-the-dark model. In P rats with chronic home cage free-choice ethanol access, SB334867 and almorexant significantly reduced ethanol intake, but almorexant also reduced water intake, suggesting nonspecific effects on consummatory behavior. In the progressive ratio operant experiments, LSN2424100 and almorexant reduced breakpoints and ethanol consumption in P rats, whereas the almorexant inactive enantiomer and SB334867 did not significantly affect the motivation to consume ethanol. As expected, vehicle-injected mice exhibited binge-like drinking patterns in the drinking-in-the-dark model. All three OX antagonists reduced both ethanol intake and resulting blood ethanol concentrations relative to vehicle-injected controls, but SB334867 and LSN2424100 also reduced sucrose consumption in a different cohort of mice, suggesting nonspecific effects. Collectively, these results contribute to a growing body of evidence indicating that OX1 and OX2 receptor activity influences ethanol self-administration, although the effects may not be selective for ethanol

  17. In Vivo Acute on Chronic Ethanol Effects in Liver: A Mouse Model Exhibiting Exacerbated Injury, Altered Metabolic and Epigenetic Responses.

    Science.gov (United States)

    Shukla, Shivendra D; Aroor, Annayya R; Restrepo, Ricardo; Kharbanda, Kusum K; Ibdah, Jamal A

    2015-11-20

    Chronic alcoholics who also binge drink (i.e., acute on chronic) are prone to an exacerbated liver injury but its mechanism is not understood. We therefore investigated the in vivo effects of chronic and binge ethanol ingestion and compared to chronic ethanol followed by three repeat binge ethanol on the liver of male C57/BL6 mice fed ethanol in liquid diet (4%) for four weeks followed by binge ethanol (intragastric administration, 3.5 g/kg body weight, three doses, 12h apart). Chronic followed by binge ethanol exacerbated fat accumulation, necrosis, decrease in hepatic SAM and SAM:SAH ratio, increase in adenosine levels, and elevated CYP2E1 levels. Histone H3 lysine acetylation (H3AcK9), dually modified phosphoacetylated histone H3 (H3AcK9/PS10), and phosphorylated H2AX increased after binge whereas phosphorylation of histone H3 ser 10 (H3S10) and H3 ser 28 (H3S28) increased after chronic ethanol-binge. Histone H3 lysine 4 and 9 dimethylation increased with a marked dimethylation in H3K9 in chronic ethanol binge group. Trimethylated histone H3 levels did not change. Nuclear levels of histone acetyl transferase GCN5 and histone deacetylase HDAC3 were elevated whereas phospho-CREB decreased in a distinctive manner. Taken together, acute on chronic ethanol ingestion caused amplification of liver injury and elicited characteristic profiles of histone modifications, metabolic alterations, and changes in nuclear protein levels. These findings demonstrate that chronic ethanol exposure renders liver more susceptible to repeat acute/binge ethanol induced acceleration of alcoholic liver disease.

  18. Serotonin-3 Receptors in the Posterior Ventral Tegmental Area Regulate Ethanol Self-Administration of Alcohol-Preferring (P) Rats

    Science.gov (United States)

    Rodd, Zachary A.; Bell, Richard L.; Oster, Scott M.; Toalston, Jamie E.; Pommer, Tylene J.; McBride, William J.; Murphy, James M.

    2015-01-01

    Several studies indicated the involvement of serotonin-3 (5-HT3) receptors in regulating alcohol-drinking behavior. The objective of this study was to determine the involvement of 5-HT3 receptors within the ventral tegmental area (VTA) in regulating ethanol self-administration by alcohol-preferring (P) rats. Standard two-lever operant chambers were used to examine the effects of 7 consecutive bilateral micro-infusions of ICS205-930 (ICS), a 5-HT3 receptor antagonist, directly into the posterior VTA on the acquisition and maintenance of 15% (v/v) ethanol self-administration. P rats readily acquired ethanol self-administration by the 4th session. The three highest doses (0.125, 0.25 and 1.25 ug) of ICS prevented acquisition of ethanol self-administration. During the acquisition post-injection period, all rats treated with ICS demonstrated higher responding on the ethanol lever, with the highest dose producing the greatest effect. In contrast, during the maintenance phase, the 3 highest doses (0.75, 1.0 and 1.25 ug) of ICS significantly increased responding on the ethanol lever; following the 7-day dosing regimen, responding on the ethanol lever returned to control levels. Micro-infusion of ICS into the posterior VTA did not alter the low responding on the water lever, and did not alter saccharin (0.0125% w/v) self-administration.. Micro-infusion of ICS into the anterior VTA did not alter ethanol self-administration. Overall, the results of this study suggest that 5-HT3 receptors in the posterior VTA of the P rat may be involved in regulating ethanol self-administration. In addition, chronic operant ethanol self-administration, and/or repeated treatments with a 5-HT3 receptor antagonist may alter neuronal circuitry within the posterior VTA. PMID:20682192

  19. Chronic Voluntary Ethanol Consumption Induces Favorable Ceramide Profiles in Selectively Bred Alcohol-Preferring (P Rats.

    Directory of Open Access Journals (Sweden)

    Jessica Godfrey

    Full Text Available Heavy alcohol consumption has detrimental neurologic effects, inducing widespread neuronal loss in both fetuses and adults. One proposed mechanism of ethanol-induced cell loss with sufficient exposure is an elevation in concentrations of bioactive lipids that mediate apoptosis, including the membrane sphingolipid metabolites ceramide and sphingosine. While these naturally-occurring lipids serve as important modulators of normal neuronal development, elevated levels resulting from various extracellular insults have been implicated in pathological apoptosis of neurons and oligodendrocytes in several neuroinflammatory and neurodegenerative disorders. Prior work has shown that acute administration of ethanol to developing mice increases levels of ceramide in multiple brain regions, hypothesized to be a mediator of fetal alcohol-induced neuronal loss. Elevated ceramide levels have also been implicated in ethanol-mediated neurodegeneration in adult animals and humans. Here, we determined the effect of chronic voluntary ethanol consumption on lipid profiles in brain and peripheral tissues from adult alcohol-preferring (P rats to further examine alterations in lipid composition as a potential contributor to ethanol-induced cellular damage. P rats were exposed for 13 weeks to a 20% ethanol intermittent-access drinking paradigm (45 ethanol sessions total or were given access only to water (control. Following the final session, tissues were collected for subsequent chromatographic analysis of lipid content and enzymatic gene expression. Contrary to expectations, ethanol-exposed rats displayed substantial reductions in concentrations of ceramides in forebrain and heart relative to non-exposed controls, and modest but significant decreases in liver cholesterol. qRT-PCR analysis showed a reduction in the expression of sphingolipid delta(4-desaturase (Degs2, an enzyme involved in de novo ceramide synthesis. These findings indicate that ethanol intake levels

  20. Chronic Voluntary Ethanol Consumption Induces Favorable Ceramide Profiles in Selectively Bred Alcohol-Preferring (P) Rats.

    Science.gov (United States)

    Godfrey, Jessica; Jeanguenin, Lisa; Castro, Norma; Olney, Jeffrey J; Dudley, Jason; Pipkin, Joseph; Walls, Stanley M; Wang, Wei; Herr, Deron R; Harris, Greg L; Brasser, Susan M

    2015-01-01

    Heavy alcohol consumption has detrimental neurologic effects, inducing widespread neuronal loss in both fetuses and adults. One proposed mechanism of ethanol-induced cell loss with sufficient exposure is an elevation in concentrations of bioactive lipids that mediate apoptosis, including the membrane sphingolipid metabolites ceramide and sphingosine. While these naturally-occurring lipids serve as important modulators of normal neuronal development, elevated levels resulting from various extracellular insults have been implicated in pathological apoptosis of neurons and oligodendrocytes in several neuroinflammatory and neurodegenerative disorders. Prior work has shown that acute administration of ethanol to developing mice increases levels of ceramide in multiple brain regions, hypothesized to be a mediator of fetal alcohol-induced neuronal loss. Elevated ceramide levels have also been implicated in ethanol-mediated neurodegeneration in adult animals and humans. Here, we determined the effect of chronic voluntary ethanol consumption on lipid profiles in brain and peripheral tissues from adult alcohol-preferring (P) rats to further examine alterations in lipid composition as a potential contributor to ethanol-induced cellular damage. P rats were exposed for 13 weeks to a 20% ethanol intermittent-access drinking paradigm (45 ethanol sessions total) or were given access only to water (control). Following the final session, tissues were collected for subsequent chromatographic analysis of lipid content and enzymatic gene expression. Contrary to expectations, ethanol-exposed rats displayed substantial reductions in concentrations of ceramides in forebrain and heart relative to non-exposed controls, and modest but significant decreases in liver cholesterol. qRT-PCR analysis showed a reduction in the expression of sphingolipid delta(4)-desaturase (Degs2), an enzyme involved in de novo ceramide synthesis. These findings indicate that ethanol intake levels achieved by

  1. The combination of atorvastatin and ethanol is not more hepatotoxic to rats than the administration of each drug alone

    Directory of Open Access Journals (Sweden)

    D.T. Ito

    2007-03-01

    Full Text Available Animal studies and premarketing clinical trials have revealed hepatotoxicity of statins, primarily minor elevations in serum alanine aminotransferase levels. The combined chronic use of medicines and eventual ethanol abuse are common and may present a synergistic action regarding liver injury. Our objective was to study the effect of the chronic use of atorvastatin associated with acute ethanol administration on the liver in a rat model. One group of rats was treated daily for 5 days a week for 2 months with 0.8 mg/kg atorvastatin by gavage. At the end of the treatment the livers were perfused with 72 mM ethanol for 60 min. Control groups (at least 4 animals in each group consisted of a group of 2-month-old male Wistar EPM-1 rats exposed to 10% ethanol (v/v ad libitum replacing water for 2 months, followed by perfusion of the liver with 61 nM atorvastatin for 60 min, and a group of animals without chronic ethanol treatment whose livers were perfused with atorvastatin and/or ethanol. The combination of atorvastatin with ethanol did not increase the release of injury marker enzymes (alanine aminotransferase, aspartate aminotransferase, and lactic dehydrogenase from the liver and no change in liver function markers (bromosulfophthalein clearance, and oxygen consumption was observed. Our results suggest that the combination of atorvastatin with ethanol is not more hepatotoxic than the separate use of each substance.

  2. Chronic plus binge ethanol exposure causes more severe pancreatic injury and inflammation.

    Science.gov (United States)

    Ren, Zhenhua; Yang, Fanmuyi; Wang, Xin; Wang, Yongchao; Xu, Mei; Frank, Jacqueline A; Ke, Zun-Ji; Zhang, Zhuo; Shi, Xianglin; Luo, Jia

    2016-10-01

    Alcohol abuse increases the risk for pancreatitis. The pattern of alcohol drinking may impact its effect. We tested a hypothesis that chronic ethanol consumption in combination with binge exposure imposes more severe damage to the pancreas. C57BL/6 mice were divided into four groups: control, chronic ethanol exposure, binge ethanol exposure and chronic plus binge ethanol exposure. For the control group, mice were fed with a liquid diet for two weeks. For the chronic ethanol exposure group, mice were fed with a liquid diet containing 5% ethanol for two weeks. In the binge ethanol exposure group, mice were treated with ethanol by gavage (5g/kg, 25% ethanol w/v) daily for 3days. For the chronic plus binge exposure group, mice were fed with a liquid diet containing 5% ethanol for two weeks and exposed to ethanol by gavage during the last 3days. Chronic and binge exposure alone caused minimal pancreatic injury. However, chronic plus binge ethanol exposure induced significant apoptotic cell death. Chronic plus binge ethanol exposure altered the levels of alpha-amylase, glucose and insulin. Chronic plus binge ethanol exposure caused pancreatic inflammation which was shown by the macrophages infiltration and the increase of cytokines and chemokines. Chronic plus binge ethanol exposure increased the expression of ADH1 and CYP2E1. It also induced endoplasmic reticulum stress which was demonstrated by the unfolded protein response. In addition, chronic plus binge ethanol exposure increased protein oxidation and lipid peroxidation, indicating oxidative stress. Therefore, chronic plus binge ethanol exposure is more detrimental to the pancreas.

  3. Effect of ethanol administration and withdrawal on GABA receptor binding in rat cerebral cortex

    Energy Technology Data Exchange (ETDEWEB)

    Volicer, L.; Biagioni, T.M.

    1982-01-01

    Sodium independent GABA receptor binding was measured in synaptosomes prepared from cerebral cortex of rats made ethanol dependent by three daily ethanol administrations. In rats sacrificed 1 hour after the last ethanol dose there was a lower number of low affinity binding sites and lower affinity of the high affinity binding than in controls. The decreased affinity was present only in rats who showed symptoms of ethanol withdrawal during the course of ethanol administration. In rats sacrificed during ethanol withdrawal the affinity of the high affinity binding was lower than in controls and other binding characteristics were unchanged. This decreased binding was normalized by repeated Triton X-100 incubations indicating involvement of an endogenous inhibitor in this ethanol effect. Acute ethanol administration did not change GABA receptor binding.

  4. Adaptations in Basal and Hypothalamic–Pituitary–Adrenal-Activated Deoxycorticosterone Responses Following Ethanol Self-administration in Cynomolgus Monkeys

    Science.gov (United States)

    Jimenez, Vanessa A.; Porcu, Patrizia; Morrow, A. Leslie; Grant, Kathleen A.

    2017-01-01

    Acute ethanol activates the hypothalamic–pituitary–adrenal (HPA) axis, while long-term exposure results in a blunted neuroendocrine state, particularly with regards to the primary endpoint, cortisol, the primary glucocorticoid produced in the adrenal cortex. However, it is unknown if this dampened neuroendocrine status also influences other adrenocortical steroids. Plasma concentration of the mineralocorticoid and neuroactive steroid precursor deoxycorticosterone (DOC) is altered by pharmacological challenges of the HPA axis in cynomolgus monkeys. The present study investigated HPA axis regulation of circulating DOC concentration over the course of ethanol (4% w/v) induction and self-administration in non-human primates (Macaca fasciculata, n = 10). Plasma DOC, measured by radioimmunoassay, was compared at baseline (ethanol naïve), during schedule-induced polydipsia, and following 6-months of 22 h/day access to ethanol and water. The schedule induction of ethanol drinking did not alter basal DOC levels but selectively dampened the DOC response to pharmacological challenges aimed at the anterior pituitary (ovine corticotrophin-releasing hormone) and adrenal gland (post-dexamethasone adrenocorticotropin hormone), while pharmacological inhibition of central opioid receptors with naloxone greatly enhanced the DOC response during induction. Following 6 months of ethanol self-administration, basal DOC levels were increased more than twofold, while responses to each of the challenges normalized somewhat but remained significantly different than baseline. These data show that HPA axis modulation of the neuroactive steroid precursor DOC is markedly altered by the schedule induction of ethanol drinking and long-term voluntary ethanol self-administration. The consequences of chronic ethanol consumption on HPA axis regulation of DOC point toward allostatic modification of hypothalamic and adrenal function. PMID:28220108

  5. Oxidative damage and histopathological changes in lung of rat chronically exposed to nicotine alone or associated to ethanol.

    Science.gov (United States)

    Dhouib, H; Jallouli, M; Draief, M; Bouraoui, S; El-Fazâa, S

    2015-12-01

    Smoking is the most important preventable risk factor of chronic obstructive pulmonary disease and lung cancer. This study was designed to investigate oxidative damage and histopathological changes in lung tissue of rats chronically exposed to nicotine alone or supplemented with ethanol. Twenty-four male Wistar rats divided into three groups were used for the study. The nicotine group received nicotine (2.5mg/kg/day); the nicotine-ethanol group was given simultaneously same dose of nicotine plus ethanol (0.2g/kg/day), while the control group was administered only normal saline (1 ml/kg/day). The treatment was administered by subcutaneous injection once daily for a period of 18 weeks. Chronic nicotine administration alone or combined to ethanol caused a significant increase in malondialdehyde (MDA) level, superoxide dismutase (SOD) activity and catalase (CAT) activity in lung tissue compared to control rats suggesting an oxidative damage. However, these increases were mostly prominent in nicotine group. The histopathological examination of lung tissue of rats in both treated groups revealed many alterations in the pulmonary structures such as emphysema change (disappearance of the alveolar septa, increased irregularity and size of air sacs) and marked lymphocytic infiltration in perivascular and interstitial areas. However, the changes characterized in the nicotine group (pulmonary congestion, hemorrhage into alveoli and interstitial areas, edema) were more drastic than those observed in the nicotine-ethanol group, and they can be attributed to a significant degree of capillary endothelial permeability and microvascular leak. Conversely, the ethanol supplementation caused an appearance of fatty change and fibrosis in pulmonary tissue essentially due to a metabolism of ethanol. Finally, the lung damage illustrated in nicotine group was more severe than that observed in the nicotine-ethanol group. We conclude that the combined administration of nicotine and ethanol

  6. Ganoderma Lucidum Pharmacopuncture for Teating Ethanol-induced Chronic Gastric Ulcers in Rats

    Directory of Open Access Journals (Sweden)

    Jae-Heung Park

    2015-03-01

    Full Text Available Objectives: The stomach is a sensitive digestive organ that is susceptible to exogenous pathogens from the diet. In response to such pathogens, the stomach induces oxidative stress, which might be related to the development of both gastric organic disorders such as gastritis, gastric ulcers, and gastric cancer, and functional disorders such as functional dyspepsia. This study was accomplished to investigate the effect of Ganoderma lucidum pharmacopuncture (GLP on chronic gastric ulcers in rats. Methods: The rats were divided into 4 groups of 8 animals each: the normal, the control, the normal saline (NP and the GLP groups. In this study, the modified ethanol gastritis model was used. The rats were administrated 56% ethanol orally every other day. The dose of ethanol was 8 g/kg body weight. The normal group received the same amount of normal saline instead of ethanol. The NP and the GLP groups were treated with injection of saline and GLP respectively. The control group received no treatment. Two local acupoints CV12 (中脘 and ST36 (足三里 were used. All laboratory rats underwent treatment for 15 days. On last day, the rats were sacrificed and their stomachs were immediately excised. Results: Ulcers of the gastric mucosa appeared as elongated bands of hemorrhagic lesions parallel to the long axis of the stomach. In the NP and GLP groups, the injuries to the gastric mucosal injuries were not as severe as they were in the control group. Wound healings of the chronic gastric ulcers was promoted by using GLP and significant alterations of the indices in the gastric mucosa were observed. Such protection was demonstrated by gross appearance, histology and immunehistochemistry staining for Bcl-2-associated X (BAX, B-cell lymphoma 2 (Bcl-2 and Transforming growth factor-beta 1 (TGF-β1. Conclusion: These results suggest that GLP at CV12 and ST36 can provide significant protection to the gastric mucosa against an ethanol induced chronic gastric ulcer.

  7. Increased brain dopamine D4-like binding after chronic ethanol is not associated with behavioral sensitization in mice.

    Science.gov (United States)

    Quadros, Isabel Marian Hartmann; Nobrega, Jose Nascimento; Hipolide, Debora Cristina; Souza-Formigoni, Maria Lucia Oliveira

    2005-10-01

    Dopaminergic D4 receptors have been hypothesized to be involved in neuropsychiatric disorders and substance abuse. In mice, repeated ethanol administration may induce behavioral sensitization, a phenomenon of increased sensitivity to the drug's stimulant properties. This study aimed to analyze brain D4 receptors binding in mice with different levels of behavioral sensitization to ethanol. Male Swiss mice received 2.2 g/kg ethanol (n = 64) or saline (n = 16) intraperitoneally daily for 21 days and were weekly tested for locomotor activity and for blood ethanol levels. According to the locomotor scores presented across test days, ethanol-treated mice were classified as "sensitized" or "nonsensitized." Twenty-four hours after the last administration, mice were sacrificed and brains were processed for autoradiography. Brain D4 binding was assessed by quantitative autoradiography using [3H]nemonapride + raclopride in three groups: saline-treated controls (n = 10), ethanol-sensitized (n = 11), and ethanol-nonsensitized (n = 9) mice. Both sensitized and nonsensitized mice showed higher D4 binding densities than saline-treated controls in the posterior caudate-putamen and the olfactory tubercle (p < .02), but only sensitized mice presented higher D4 binding than controls at the lateral septal nucleus (p < .02). However, there were no differences between sensitized and nonsensitized mice in any of the brain regions analyzed. Furthermore, sensitized and nonsensitized mice presented similar blood ethanol levels during the treatment. The higher D4 binding levels observed in both ethanol-treated subgroups (sensitized and nonsensitized) suggest that chronic ethanol treatment may induce upregulation of D4 receptors in specific brain regions. However, this mechanism does not seem to be associated with the differential ability to develop behavioral sensitization to ethanol in mice.

  8. Water-insoluble fractions of botanical foods lower blood ethanol levels in rats by physically maintaining the ethanol solution after ethanol administration

    Directory of Open Access Journals (Sweden)

    Shunji Oshima

    2015-11-01

    Full Text Available Background: Several studies have analyzed the functions of foods and dietary constituents in the dynamics of alcohol metabolism. However, few studies have reported the function of dietary fibers in the dynamics of alcohol metabolism. Objective: We assessed the effects of botanical foods that contain dietary fibers on alcohol metabolism. Methods: The ability of the water-insoluble fraction (WIF of 18 kinds of botanical foods to maintain 15% (v/v ethanol solution was examined using easily handled filtration. A simple linear regression analysis was performed to examine the correlation between the filtered volumes and blood ethanol concentration (BEC in F344 rats 4 h after the ingestion of 4.0 g/kg of ethanol following dosage of 2.5% (w/v WIF of the experimental botanical foods. Furthermore, the supernatant (6.3 Brix; water-soluble fraction and precipitate (WIF of tomato, with a strong ethanol-maintaining ability, were obtained and BEC and the residual gastric ethanol in rats were determined 2 h after the administration of 4.0 g/kg of ethanol and the individuals fractions. Results: The filtered volumes of dropped ethanol solutions containing all the botanical foods tested except green peas were decreased compared with the ethanol solution without WIF (control. There was a significant correlation between the filtered volumes and blood ethanol concentration (BEC. There was no significant difference in the residual gastric ethanol between controls and the supernatant group; however, it was increased significantly in the WIF group than in controls or the supernatant group. Consistent with this, BEC reached a similar level in controls and the supernatant group but significantly decreased in the WIF group compared with controls or the supernatant group. Conclusions: These findings suggest that WIFs of botanical foods, which are mostly water-insoluble dietary fibers, possess the ability to absorb ethanol-containing solutions, and this ability correlates

  9. Camellia sinensis (L. Kuntze Extract Ameliorates Chronic Ethanol-Induced Hepatotoxicity in Albino Rats

    Directory of Open Access Journals (Sweden)

    Poonam Lodhi

    2014-01-01

    Full Text Available The goal of this study was to investigate the hepatoprotective effects of aqueous extract of Camellia sinensis or green tea extract (AQGTE in chronic ethanol-induced albino rats. All animals were divided into 4 groups in the study for a 5-week duration. 50% ethanol was given orally to the rats with two doses (5 mg/kg bw and 10 mg/kg bw of AQGTE. Ethanol administration caused a significant increase in the levels of plasma and serum enzymatic markers, alanine aminotransferase (ALT, aspartate aminotransferase (AST, and alkaline phosphatase (ALP, and nonenzymatic markers (cholesterol and triglycerides, lipid peroxidation contents, malondialdehyde (MDA, and glutathione-S-transferase (GST, and decreased the activities of total proteins, albumin, and cellular antioxidant defense enzymes such as superoxide dismutase (SOD. The elevation and reduction in these biochemical enzymes caused the damage in hepatocytes histologically due to the high production of ROS, which retards the antioxidant defense capacity of cell. AQGTE was capable of recovering the level of these markers and the damaged hepatocytes to their normal structures. These results support the suggestion that AQGTE was able to enhance hepatoprotective and antioxidant effects in vivo against ethanol-induced toxicity.

  10. SIRT1 IS INVOLVED IN ENERGY METABOLISM: THE ROLE OF CHRONIC ETHANOL FEEDING AND RESVERATROL

    Science.gov (United States)

    Oliva, Joan; French, Barbara A.; Li, Jun; Bardag-Gorce, Fawzia; Fu, Paul; French, Samuel W.

    2010-01-01

    Sirt1, a deacetylase involved in regulating energy metabolism in response to calorie restriction, is up regulated after chronic ethanol feeding using the intragastric feeding model of alcohol liver disease. PGC1α is also up regulated in response to ethanol. These changes are consistent with activation of the Sirt1/PGC1α pathway of metabolism and aging, involved in alcohol liver disease including steatosis, necrosis and fibrosis of the liver. To test this hypothesis, male rats fed ethanol intragastrically for 1 month were compared with rats fed ethanol plus resveratrol or naringin. Liver histology showed macrovesicular steatosis caused by ethanol and this change was unchanged by resveratrol or naringin treatment. Necrosis occurred with ethanol alone but was accentuated by resveratrol treatment, as was fibrosis. The expression of Sirt1 and PGC1α was increased by ethanol but not when naringin or resveratrol was fed with ethanol. Sirt3 was also up regulated by ethanol but not when resveratrol was fed with ethanol. These results support the concept that ethanol induces the Sirt1/PGC1α pathway of gene regulation and both naringin and resveratrol prevent the activation of this pathway by ethanol. However, resveratrol did not reduce the liver pathology caused by chronic ethanol feeding. PMID:18793633

  11. Chronic methylphenidate exposure during adolescence reduces striatal synaptic responses to ethanol.

    Science.gov (United States)

    Crowley, Nicole A; Cody, Patrick A; Davis, Margaret I; Lovinger, David M; Mateo, Yolanda

    2014-02-01

    Dopamine (DA) plays an important role in integrative functions contributing to adaptive behaviors. In support of this essential function, DA modulates synaptic plasticity in different brain areas, including the striatum. Many drugs used for cognitive enhancement are psychostimulants, such as methylphenidate (MPH), which enhance DA levels. MPH treatment is of interest during adolescence, a period of enhanced neurodevelopment during which the DA system is in a state of flux. Recent epidemiological studies report the co-abuse of MPH and ethanol in adolescents and young adults. Although repeated MPH treatment produces enduring changes that affect subsequent behavioral responses to other psychostimulants, few studies have investigated the interactions between MPH and ethanol. Here we addressed whether chronic therapeutic exposure to MPH during adolescence predisposed mice to an altered response to ethanol and whether this was accompanied by altered DA release and striatal plasticity. C57BL/6J mice were administered MPH (3-6 mg/kg/day) via the drinking water between post-natal days 30 and 60. Voltammetry experiments showed that sufficient brain MPH concentrations were achieved during adolescence in mice to increase the DA clearance in adulthood. The treatment also increased long-term depression and reduced the effects of ethanol on striatal synaptic responses. Although the injection of 0.4 or 2 g/kg ethanol dose-dependently decreased locomotion in control mice, only the higher dose decreased locomotion in MPH-treated mice. These results suggested that the administration of MPH during development promoted long-term effects on synaptic plasticity in forebrain regions targeted by DA. These changes in plasticity might, in turn, underlie alterations in behaviors controlled by these brain regions into adulthood.

  12. Chronic ethanol exposure increases the non-dominant glucocorticoid, corticosterone, in the near-term pregnant guinea pig.

    Science.gov (United States)

    Hewitt, Amy J; Dobson, Christine C; Brien, James F; Wynne-Edwards, Katherine E; Reynolds, James N

    2014-08-01

    Maternal-fetal signaling is critical for optimal fetal development and postnatal outcomes. Chronic ethanol exposure alters programming of the fetal hypothalamic-pituitary-adrenal (HPA) axis, resulting in a myriad of neurochemical and behavioral alterations in postnatal life. Based on a recent study which showed that human intra-partum fetal stress increased fetal secretion of corticosterone, the non-dominant glucocorticoid, this investigation tested the hypothesis that an established model of HPA axis programming, chronic maternal ethanol administration to the pregnant guinea pig, would result in preferential elevation of corticosterone, which is also the non-dominant glucocorticoid. Starting on gestational day (GD) 2, guinea pigs received oral administration of ethanol (4 g/kg maternal body weight/day) or isocaloric-sucrose/pair-feeding. Each treatment was administered daily and continued until GD 45, 55, or 65 (approximately 3 days pre-term), when pregnant animals were euthanized and fetuses delivered by Caesarean section. Maternal and fetal plasma samples were collected. After sample preparation (protein precipitation and C-18 solid phase extraction), plasma cortisol and corticosterone concentrations were determined simultaneously by liquid chromatography coupled to tandem mass spectrometry. As predicted, chronic ethanol exposure increased both fetal and maternal plasma corticosterone concentration in late gestation. In contrast, plasma cortisol did not differ across maternal treatments in maternal or fetal samples. The plasma concentration of both maternal glucocorticoids increased with gestational age. Thus, corticosterone, the non-dominant glucocorticoid, but not cortisol, was elevated by chronic ethanol exposure, which may have effects on HPA function in later life.

  13. Effects of Withania somnifera on oral ethanol self-administration in rats.

    Science.gov (United States)

    Peana, Alessandra T; Muggironi, Giulia; Spina, Liliana; Rosas, Michela; Kasture, Sanjay B; Cotti, Elisabetta; Acquas, Elio

    2014-10-01

    Recent evidence has shown that Withania somnifera Dunal (Ashwagandha or Indian ginseng), a herbal remedy used in traditional medicine, impairs morphine-elicited place conditioning. Here, we investigated the effect of W. somnifera roots extract (WSE) on motivation for drinking ethanol using operant self-administration paradigms. Wistar rats were trained to self-administer ethanol (10%) by nose-poking. The effects of WSE (25-75 mg/kg) were evaluated on acquisition and maintenance, on ethanol breakpoint under a progressive-ratio schedule of reinforcement and on the deprivation effect and reinstatement of seeking behaviours. Moreover, on the basis of the recent suggestion of an involvement of GABAB receptors in WSE central effects, we studied the interaction between WSE and GABAB ligands. The effect of WSE on saccharin (0.05%) oral self-administration was also tested. The results show that WSE reduced the acquisition, maintenance and breakpoint of ethanol self-administration. WSE also reduced the deprivation effect, reinstatement of ethanol-seeking behaviours and saccharin reinforcement. Furthermore, the GABAB receptor antagonist, phaclofen, counteracted the ability of WSE to impair the maintenance of ethanol self-administration. These findings show that WSE, by an action that may involve GABAB receptors, impairs motivation for drinking ethanol and suggest that further investigations should be performed to determine whether W. somnifera may represent a new approach for the management of alcohol abuse.

  14. Lactobacillus rhamnosus GG Effect on Behavior of Zebrafish During Chronic Ethanol Exposure.

    Science.gov (United States)

    Schneider, Ana Claudia Reis; Rico, Eduardo Pacheco; de Oliveira, Diogo Losch; Rosemberg, Denis Broock; Guizzo, Ranieli; Meurer, Fábio; da Silveira, Themis Reverbel

    2016-01-01

    Ethanol is a widely consumed drug, which acts on the central nervous system to induce behavioral alterations ranging from disinhibition to sedation. Recent studies have produced accumulating evidence for the therapeutic role of probiotic bacteria in behavior. We aimed to investigate the effect of Lactobacillus rhamnosus GG (LGG) on the behavior of adult zebrafish chronically exposed to ethanol. Adult wild-type zebrafish were randomly divided into four groups, each containing 15 fish. The following groups were formed: Control (C), received unsupplemented feed during the trial period; Probiotic (P), fed with feed supplemented with LGG; Ethanol (E), received unsupplemented feed and 0.5% of ethanol directly added to the tank water; and Probiotic+Ethanol (P+E), group under ethanol exposure (0.5%) and fed with LGG supplemented feed. After 2 weeks of exposure, the novel tank test was used to evaluate fish behavior, which was analyzed using computer-aided video tracking. LGG alone did not alter swimming behavior of the fish. Ethanol exposure led to robust behavioral effects in the form of reduced anxiety levels, as indicated by increased vertical exploration and more time spent in the upper region of the novel tank. The group exposed to ethanol and treated with LGG behaved similarly to animals exposed to ethanol alone. Taken together, these results show that zebrafish behavior was not altered by LGG per se, as seen in murine models. This was the first study to investigate the effects of a probiotic diet on behavior after a chronic ethanol exposure.

  15. Chronic ethanol consumption in rats produces opioid antinociceptive tolerance through inhibition of mu opioid receptor endocytosis.

    Directory of Open Access Journals (Sweden)

    Li He

    Full Text Available It is well known that the mu-opioid receptor (MOR plays an important role in the rewarding properties of ethanol. However, it is less clear how chronic ethanol consumption affects MOR signaling. Here, we demonstrate that rats with prolonged voluntary ethanol consumption develop antinociceptive tolerance to opioids. Signaling through the MOR is controlled at many levels, including via the process of endocytosis. Importantly, agonists at the MOR that promote receptor endocytosis, such as the endogenous peptides enkephalin and β-endorphin, show a reduced propensity to promote antinociceptive tolerance than do agonists, like morphine, which do not promote receptor endocytosis. These observations led us to examine whether chronic ethanol consumption produced opioid tolerance by interfering with MOR endocytosis. Indeed, here we show that chronic ethanol consumption inhibits the endocytosis of MOR in response to opioid peptide. This loss of endocytosis was accompanied by a dramatic decrease in G protein coupled receptor kinase 2 (GRK2 protein levels after chronic drinking, suggesting that loss of this component of the trafficking machinery could be a mechanism by which endocytosis is lost. We also found that MOR coupling to G-protein was decreased in ethanol-drinking rats, providing a functional explanation for loss of opioid antinociception. Together, these results suggest that chronic ethanol drinking alters the ability of MOR to endocytose in response to opioid peptides, and consequently, promotes tolerance to the effects of opioids.

  16. Ethanol co-administration moderates 3,4-methylenedioxymethamphetamine effects on human physiology.

    Science.gov (United States)

    Dumont, G J H; Kramers, C; Sweep, F C G J; Willemsen, J J; Touw, D J; Schoemaker, R C; van Gerven, J M A; Buitelaar, J K; Verkes, R J

    2010-02-01

    Alcohol is frequently used in combination with 3,4-methylenedioxymethamphetamine (MDMA). Both drugs affect cardiovascular function, hydration and temperature regulation, but may have partly opposing effects. The present study aims to assess the acute physiologic effects of (co-) administration of MDMA and ethanol over time. A four-way, double blind, randomized, crossover, placebo-controlled study in 16 healthy volunteers (9 male and 7 female) between the ages of 18 and 29. MDMA (100 mg) was given orally and blood ethanol concentration was maintained at pseudo-steady state levels of 0.6 per thousand by a three-hour 10% intravenous ethanol clamp. Cardiovascular function, temperature and hydration measures were recorded throughout the study days. Ethanol did not significantly affect physiologic function, with the exception of a short lasting increase in heart rate. MDMA potently increased heart rate and blood pressure and induced fluid retention as well as an increase in temperature. Co-administration of ethanol with MDMA did not affect cardiovascular function compared to the MDMA alone condition, but attenuated the effects of MDMA on fluid retention and showed a trend for attenuation of MDMA-induced temperature increase. In conclusion, co-administration of ethanol and MDMA did not exacerbate physiologic effects compared to all other drug conditions, and moderated some effects of MDMA alone.

  17. Biliopancreatic duct injection of ethanol as an experimental model of acute and chronic pancreatitis in rats.

    Science.gov (United States)

    Unal, Ethem; Atalay, Suleyman; Tolan, Huseyin Kerem; Yuksekdag, Sema; Yucel, Metin; Acar, Aylin; Basak, Fatih; Gunes, Pembegul; Bas, Gurhan

    2015-01-01

    In the present study, we described an easily reproducable experimental pancreatits model induced by biliopancreatic duct injection of ethyl alcohol. Seventy Wistar albino rats were divided equally into seven groups randomly: the control group (group 1), acute pancreatitis groups; induced by 20% ethanol (group 2), 48% ethanol (group 3), 80% ethanol (group 4), chronic pancreatitis groups; induced by 20% ethanol (group 5), 48% ethanol (group 6) and by 80% ethanol (group 7). Acute pancreatitis groups were sacrified on postoperative day 3, while the control group and chronic pancreatitis groups were killed on postoperative day 7. Histopathologic evaluation was done, and P acute pancreatitis (100%). Inflammatory infiltration of neutrophils and mononuclear cells, interstitial edema, and focal necrotic areas were seen in the pancreatic tissues. Similarly, all rats in group 6 developed chronic pancreatitis (100%). Interstitial fibrosis, lymphotic infiltration, ductal dilatation, acinar cell atrophy, periductal hyperplasia were seen in the pancreatic tissues. Mortality was seen only in group 7. The biliopancreatic ductal injection of 48% ethanol induced acute and chronic pancreatitis has 100% success rate.

  18. Disruptions in Serotonergic Regulation of Cortical Glutamate Release in Primate Insular Cortex in Response to Chronic Ethanol and Nursery Rearing

    Science.gov (United States)

    Alexander, Georgia M.; Graef, John D.; Hammarback, James A.; Nordskog, Brian K.; Burnett, Elizabeth J.; Daunais, James B.; Bennett, Allyson J.; Friedman, David P.; Suomi, Stephen J.; Godwin, Dwayne W.

    2015-01-01

    Early-life stress has been shown to increase susceptibility to anxiety and substance abuse. Disrupted activity within the anterior insular cortex (AIC) has been shown to play a role in both of these disorders. Altered serotonergic processing is implicated in controlling the activity levels of the associated cognitive networks. We therefore investigated changes in both serotonin receptor expression and glutamatergic synaptic activity in the AIC of alcohol-drinking rhesus monkeys. We studied tissues from male rhesus monkeys raised under two conditions: Male rhesus monkeys 1) “Mother reared” (MR) by adult females (n=9), or; 2) “Nursery reared” (NR), i.e., separated from their mothers and reared as a separate group under surrogate/peer-reared conditions (n=9). The NR condition represents a long-standing and well-validated nonhuman primate model of early life stress. All monkeys were trained to self-administer ethanol (4% w/v) or an isocaloric maltose-dextrin control solution. Subsets from each rearing condition were then given daily access to either ethanol, water or maltose dextrin for 12 months. Tissues were collected at necropsy and were further analyzed. Using real time RT-PCR we found that ethanol-naïve, NR monkeys had lower AIC levels of 5-HT1A and 5-HT2A receptor mRNA compared to ethanol-naïve, MR animals. While NR monkeys consumed more ethanol over the 12-month period compared to MR animals, both MR and NR animals expressed greater 5-HT1A and 5-HT2A receptor mRNA levels following chronic alcohol self-administration. The interaction between nursery-rearing conditions and alcohol consumption resulted in a significant enhancement of both 5-HT1A and 5-HT2A receptor mRNA levels such that lower expression levels observed in nursery rearing conditions were not found in the alcohol self-administration group. Using voltage clamp recordings in the whole cell configuration we recorded excitatory postsynaptic currents in both ethanol-naïve and chronic self

  19. Liver necrosis induced by acute intraperitoneal ethanol administration in aged rats.

    Science.gov (United States)

    Giavarotti, Leandro; D'Almeida, Vania; Giavarotti, Karin A S; Azzalis, Ligia A; Rodrigues, Luciano; Cravero, Amerys A M; Videla, Luis A; Koch, Osvaldo R; Junqueira, Virginia B C

    2002-03-01

    It is generally agreed that the deleterious pathophysiological effects of ethanol are caused, at least partially by an increase in free radical production. However, little attention has been directed to the effects of ethanol upon elderly organisms. Male Wistar rats at ages 3, 6, 12, 18 and 24 months were treated either with a single i.p. dose of 35% ethanol (v/v) at 3 g ethanol/kg body weight or an isovolumetric amount of 0.9% saline solution. We then assessed the plasma levels of transaminases and hepatic levels of oxidative stress-related parameters, followed by liver histological evaluation. The younger rats (3 months old) were not affected by the treatment with ethanol with respect to any of the studied parameters except for a lowering of total hepatic GSH and an increase in hepatic thiobarbituric acid reactants (TBARS) formation, while animals older than 3 months were increasingly more affected by the treatment. Acute ethanol treatment elicited the similar responses to those in the 3 months-old group, plus a decrease in the hepatic and plasma levels of beta-carotene and the plasma level of alpha-tocopherol, as well as an increase in the activity of plasma transaminases. In the 12,18 and 24 months old groups, there was increasing liver necrosis. These findings suggest that liver damage induced by acute ethanol administration in elderly rats may involve a lack of antioxidants.

  20. Effect of acute ethanol administration on zebrafish tail-beat motion.

    Science.gov (United States)

    Bartolini, Tiziana; Mwaffo, Violet; Butail, Sachit; Porfiri, Maurizio

    2015-11-01

    Zebrafish is becoming a species of choice in neurobiological and behavioral studies of alcohol-related disorders. In these efforts, the activity of adult zebrafish is typically quantified using indirect activity measures that are either scored manually or identified automatically from the fish trajectory. The analysis of such activity measures has produced important insight into the effect of acute ethanol exposure on individual and social behavior of this vertebrate species. Here, we leverage a recently developed tracking algorithm that reconstructs fish body shape to investigate the effect of acute ethanol administration on zebrafish tail-beat motion in terms of amplitude and frequency. Our results demonstrate a significant effect of ethanol on the tail-beat amplitude as well as the tail-beat frequency, both of which were found to robustly decrease for high ethanol concentrations. Such a direct measurement of zebrafish motor functions is in agreement with evidence based on indirect activity measures, offering a complementary perspective in behavioral screening.

  1. Quercetin Attenuates Chronic Ethanol-Induced Hepatic Mitochondrial Damage through Enhanced Mitophagy.

    Science.gov (United States)

    Yu, Xiao; Xu, Yanyan; Zhang, Shanshan; Sun, Jian; Liu, Peiyi; Xiao, Lin; Tang, Yuhan; Liu, Liegang; Yao, Ping

    2016-01-05

    Emerging evidence suggested mitophagy activation mitigates ethanol-induced liver injury. However, the effect of ethanol on mitophagy is inconsistent. Importantly, the understanding of mitophagy status after chronic ethanol consumption is limited. This study evaluated the effect of quercetin, a naturally-occurring flavonoid, on chronic ethanol-induced mitochondrial damage focused on mitophagy. An ethanol regime to mice for 15 weeks (accounting for 30% of total calories) led to significant mitochondrial damage as evidenced by changes of the mitochondrial ultrastructure, loss of mitochondrial membrane potential and remodeling of membrane lipid composition, which was greatly attenuated by quercetin (100 mg/kg.bw). Moreover, quercetin blocked chronic ethanol-induced mitophagy suppression as denoted by mitophagosomes-lysosome fusion and mitophagy-related regulator elements, including LC3II, Parkin, p62 and voltage-dependent anion channel 1 (VDAC1), paralleling with increased FoxO3a nuclear translocation. AMP-activated protein kinase (AMPK) and extracellular signal regulated kinase 2 (ERK2), instead of AKT and Sirtuin 1, were involved in quercetin-mediated mitophagy activation. Quercetin alleviated ethanol-elicited mitochondrial damage through enhancing mitophagy, highlighting a promising preventive strategy for alcoholic liver disease.

  2. Self-administration of ethanol, cocaine, or nicotine does not decrease the soma size of ventral tegmental area dopamine neurons.

    Directory of Open Access Journals (Sweden)

    Michelle S Mazei-Robison

    Full Text Available Our previous observations show that chronic opiate administration, including self-administration, decrease the soma size of dopamine (DA neurons in the ventral tegmental area (VTA of rodents and humans, a morphological change correlated with increased firing rate and reward tolerance. Given that a general hallmark of drugs of abuse is to increase activity of the mesolimbic DA circuit, we sought to determine whether additional drug classes produced a similar morphological change. Sections containing VTA were obtained from rats that self-administered cocaine or ethanol and from mice that consumed nicotine. In contrast to opiates, we found no change in VTA DA soma size induced by any of these other drugs. These data suggest that VTA morphological changes are induced in a drug-specific manner and reinforce recent findings that some changes in mesolimbic signaling and neuroplasticity are drug-class dependent.

  3. Lesions of the lateral habenula increase voluntary ethanol consumption and operant self-administration, block yohimbine-induced reinstatement of ethanol seeking, and attenuate ethanol-induced conditioned taste aversion.

    Directory of Open Access Journals (Sweden)

    Andrew K Haack

    Full Text Available The lateral habenula (LHb plays an important role in learning driven by negative outcomes. Many drugs of abuse, including ethanol, have dose-dependent aversive effects that act to limit intake of the drug. However, the role of the LHb in regulating ethanol intake is unknown. In the present study, we compared voluntary ethanol consumption and self-administration, yohimbine-induced reinstatement of ethanol seeking, and ethanol-induced conditioned taste aversion in rats with sham or LHb lesions. In rats given home cage access to 20% ethanol in an intermittent access two bottle choice paradigm, lesioned animals escalated their voluntary ethanol consumption more rapidly than sham-lesioned control animals and maintained higher stable rates of voluntary ethanol intake. Similarly, lesioned animals exhibited higher rates of responding for ethanol in operant self-administration sessions. In addition, LHb lesion blocked yohimbine-induced reinstatement of ethanol seeking after extinction. Finally, LHb lesion significantly attenuated an ethanol-induced conditioned taste aversion. Our results demonstrate an important role for the LHb in multiple facets of ethanol-directed behavior, and further suggest that the LHb may contribute to ethanol-directed behaviors by mediating learning driven by the aversive effects of the drug.

  4. Systemic administration of D-penicillamine prevents the locomotor activation after intra-VTA ethanol administration in rats.

    Science.gov (United States)

    Martí-Prats, Lucía; Sánchez-Catalán, María José; Hipólito, Lucía; Orrico, Alejandro; Zornoza, Teodoro; Polache, Ana; Granero, Luis

    2010-10-11

    Although recently published studies seem to confirm the important role displayed by acetaldehyde (ACH), the main metabolite of ethanol, in the behavioral effects of ethanol, the origin of ACH is still a matter of debate. While some authors confer more importance to the central (brain metabolism) origin of ACH, others indicate that the hepatic origin could be more relevant. In this study we have addressed this topic using an experimental approach that combines local microinjections of ethanol into the ventral tegmental area (VTA) (which guarantees the brain origin of the ACH) to induce motor activation in rats together with systemic administration (i.p.) of several doses (0, 12.5, 25 and 50 mg/kg) of D-penicillamine (DP), a sequestering agent of ACH with contrasted efficiency to abolish the behavioral effects of the drug. Our results clearly show that DP prevented in a dose-dependent manner the motor activation induced by intra-VTA ethanol, being the 50 mg/kg dose the most efficient. DP per se did not affect the basal activity of the rats. In order to determine the specificity of the DP action, we also studied the effects of DP 50 mg/kg on the DAMGO-induced motor activation after the intra-VTA administration of this mu-opioid receptors agonist. DP did not significantly modify the motor activation induced by DAMGO thus confirming the specificity of the DP effects. Our results clearly suggest that the brain-derived ACH is necessary to manifest the activating effects resulting from ethanol administration.

  5. Chronic ethanol consumption disrupts diurnal rhythms of hepatic glycogen metabolism in mice

    Science.gov (United States)

    Udoh, Uduak S.; Swain, Telisha M.; Filiano, Ashley N.; Gamble, Karen L.; Young, Martin E.

    2015-01-01

    Chronic ethanol consumption has been shown to significantly decrease hepatic glycogen content; however, the mechanisms responsible for this adverse metabolic effect are unknown. In this study, we examined the impact chronic ethanol consumption has on time-of-day-dependent oscillations (rhythms) in glycogen metabolism processes in the liver. For this, male C57BL/6J mice were fed either a control or ethanol-containing liquid diet for 5 wk, and livers were collected every 4 h for 24 h and analyzed for changes in various genes and proteins involved in hepatic glycogen metabolism. Glycogen displayed a robust diurnal rhythm in the livers of mice fed the control diet, with the peak occurring during the active (dark) period of the day. The diurnal glycogen rhythm was significantly altered in livers of ethanol-fed mice, with the glycogen peak shifted into the inactive (light) period and the overall content of glycogen decreased compared with controls. Chronic ethanol consumption further disrupted diurnal rhythms in gene expression (glycogen synthase 1 and 2, glycogenin, glucokinase, protein targeting to glycogen, and pyruvate kinase), total and phosphorylated glycogen synthase protein, and enzyme activities of glycogen synthase and glycogen phosphorylase, the rate-limiting enzymes of glycogen metabolism. In summary, these results show for the first time that chronic ethanol consumption disrupts diurnal rhythms in hepatic glycogen metabolism at the gene and protein level. Chronic ethanol-induced disruption in these daily rhythms likely contributes to glycogen depletion and disruption of hepatic energy homeostasis, a recognized risk factor in the etiology of alcoholic liver disease. PMID:25857999

  6. Ethanol metabolism, oxidative stress, and endoplasmic reticulum stress responses in the lungs of hepatic alcohol dehydrogenase deficient deer mice after chronic ethanol feeding

    Energy Technology Data Exchange (ETDEWEB)

    Kaphalia, Lata [Department of Internal Medicine, The University of Texas Medical Branch, Galveston, TX 775555 (United States); Boroumand, Nahal [Department of Pathology, The University of Texas Medical Branch, Galveston, TX 775555 (United States); Hyunsu, Ju [Department of Preventive Medicine and Community Health, The University of Texas Medical Branch, Galveston, TX 775555 (United States); Kaphalia, Bhupendra S., E-mail: bkaphali@utmb.edu [Department of Pathology, The University of Texas Medical Branch, Galveston, TX 775555 (United States); Calhoun, William J. [Department of Internal Medicine, The University of Texas Medical Branch, Galveston, TX 775555 (United States)

    2014-06-01

    Consumption and over-consumption of alcoholic beverages are well-recognized contributors to a variety of pulmonary disorders, even in the absence of intoxication. The mechanisms by which alcohol (ethanol) may produce disease include oxidative stress and prolonged endoplasmic reticulum (ER) stress. Many aspects of these processes remain incompletely understood due to a lack of a suitable animal model. Chronic alcohol over-consumption reduces hepatic alcohol dehydrogenase (ADH), the principal canonical metabolic pathway of ethanol oxidation. We therefore modeled this situation using hepatic ADH-deficient deer mice fed 3.5% ethanol daily for 3 months. Blood ethanol concentration was 180 mg% in ethanol fed mice, compared to < 1.0% in the controls. Acetaldehyde (oxidative metabolite of ethanol) was minimally, but significantly increased in ethanol-fed vs. pair-fed control mice. Total fatty acid ethyl esters (FAEEs, nonoxidative metabolites of ethanol) were 47.6 μg/g in the lungs of ethanol-fed mice as compared to 1.5 μg/g in pair-fed controls. Histological and immunohistological evaluation showed perivascular and peribronchiolar lymphocytic infiltration, and significant oxidative injury, in the lungs of ethanol-fed mice compared to pair-fed controls. Several fold increases for cytochrome P450 2E1, caspase 8 and caspase 3 found in the lungs of ethanol-fed mice as compared to pair-fed controls suggest role of oxidative stress in ethanol-induced lung injury. ER stress and unfolded protein response signaling were also significantly increased in the lungs of ethanol-fed mice. Surprisingly, no significant activation of inositol-requiring enzyme-1α and spliced XBP1 was observed indicating a lack of activation of corrective mechanisms to reinstate ER homeostasis. The data suggest that oxidative stress and prolonged ER stress, coupled with formation and accumulation of cytotoxic FAEEs may contribute to the pathogenesis of alcoholic lung disease. - Highlights: • Chronic

  7. Brain impairment in well-nourished chronic alcoholics is related to ethanol intake.

    Science.gov (United States)

    Nicolás, J M; Estruch, R; Salamero, M; Orteu, N; Fernandez-Solà, J; Sacanella, E; Urbano-Márquez, A

    1997-05-01

    To determine the influence of chronic ethanol intake on the central nervous system, we studied 40 asymptomatic, well-nourished, chronic alcoholics (mean age, 42.6 +/- 9.1 years) and 20 age-, sex-, and education-matched control subjects. Studies included neuropsychological testing, visual and short-latency auditory evoked potentials, and morphometric analysis of computed tomography scans. The mean daily ethanol consumption of the alcoholics was 204 gm over an average of 26.4 years. Compared to control subjects, chronic alcoholics exhibited a significant prolongation of the P100 latency of visual evoked potentials, and a prolongation and reduction in the amplitude of the latency of the V wave of short-latency auditory evoked potentials. These abnormalities were related to the lifetime dose of ethanol consumed. Brain morphometric analysis showed that alcoholics had a significantly greater degree of brain shrinkage with age, compared to control subjects. The cortical atrophy index correlated significantly with the lifetime ethanol consumption. Neuropsychological testing in alcoholics compared to controls revealed a significant impairment of frontal skills that was related to age, degree of scholarship, and the presence of frontal atrophy. In conclusion, well-nourished chronic alcoholics exhibited significant brain impairment, as demonstrated by neuropsychological testing, evoked potentials, and brain morphometric analysis, which was correlated with the lifetime dose of ethanol consumed.

  8. Effects of chronic ethanol exposure on neuronal function in the prefrontal cortex and extended amygdala.

    Science.gov (United States)

    Pleil, Kristen E; Lowery-Gionta, Emily G; Crowley, Nicole A; Li, Chia; Marcinkiewcz, Catherine A; Rose, Jamie H; McCall, Nora M; Maldonado-Devincci, Antoniette M; Morrow, A Leslie; Jones, Sara R; Kash, Thomas L

    2015-12-01

    Chronic alcohol consumption and withdrawal leads to anxiety, escalated alcohol drinking behavior, and alcohol dependence. Alterations in the function of key structures within the cortico-limbic neural circuit have been implicated in underlying the negative behavioral consequences of chronic alcohol exposure in both humans and rodents. Here, we used chronic intermittent ethanol vapor exposure (CIE) in male C57BL/6J mice to evaluate the effects of chronic alcohol exposure and withdrawal on anxiety-like behavior and basal synaptic function and neuronal excitability in prefrontal cortical and extended amygdala brain regions. Forty-eight hours after four cycles of CIE, mice were either assayed in the marble burying test (MBT) or their brains were harvested and whole-cell electrophysiological recordings were performed in the prelimbic and infralimbic medial prefrontal cortex (PLC and ILC), the lateral and medial central nucleus of the amygdala (lCeA and mCeA), and the dorsal and ventral bed nucleus of the stria terminalis (dBNST and vBNST). Ethanol-exposed mice displayed increased anxiety in the MBT compared to air-exposed controls, and alterations in neuronal function were observed in all brain structures examined, including several distinct differences between subregions within each structure. Chronic ethanol exposure induced hyperexcitability of the ILC, as well as a shift toward excitation in synaptic drive and hyperexcitability of vBNST neurons; in contrast, there was a net inhibition of the CeA. This study reveals extensive effects of chronic ethanol exposure on the basal function of cortico-limbic brain regions, suggests that there may be complex interactions between these regions in the regulation of ethanol-dependent alterations in anxiety state, and highlights the need for future examination of projection-specific effects of ethanol in cortico-limbic circuitry.

  9. Differential Effects of Chronic and Chronic-Intermittent Ethanol Treatment and Its Withdrawal on the Expression of miRNAs

    Directory of Open Access Journals (Sweden)

    Joanne M. Lewohl

    2013-05-01

    Full Text Available Chronic and excessive alcohol misuse results in changes in the expression of selected miRNAs and their mRNA targets in specific regions of the human brain. These expression changes likely underlie the cellular adaptations to long term alcohol misuse. In order to delineate the mechanism by which these expression changes occur, we have measured the expression of six miRNAs including miR-7, miR-153, miR-152, miR-15B, miR-203 and miR-144 in HEK293T, SH SY5Y and 1321 N1 cells following exposure to ethanol. These miRNAs are predicted to target key genes involved in the pathophysiology of alcoholism. Chronic and chronic-intermittent exposure to ethanol, and its removal, resulted in specific changes in miRNA expression in each cell line suggesting that different expression patterns can be elicited with different exposure paradigms and that the mechanism of ethanol’s effects is dependent on cell type. Specifically, chronic exposure to ethanol for five days followed by a five day withdrawal period resulted in up-regulation of several miRNAs in each of these cell lines similar to expression changes identified in post mortem human brain. Thus, this model can be used to elucidate the role of miRNAs in regulating gene expression changes that occur in response to ethanol exposure.

  10. Plasma proteomic alterations in non-human primates and humans after chronic alcohol self-administration.

    Science.gov (United States)

    Freeman, Willard M; Vanguilder, Heather D; Guidone, Elizabeth; Krystal, John H; Grant, Kathleen A; Vrana, Kent E

    2011-08-01

    Objective diagnostics of excessive alcohol use are valuable tools in the identification and monitoring of subjects with alcohol use disorders. A number of potential biomarkers of alcohol intake have been proposed, but none have reached widespread clinical usage, often due to limited diagnostic sensitivity and specificity. In order to identify novel potential biomarkers, we performed proteomic biomarker target discovery in plasma samples from non-human primates that chronically self-administer high levels of ethanol. Two-dimensional difference in-gel electrophoresis (2D-DIGE) was used to quantify plasma proteins from within-subject samples collected before exposure to ethanol and after 3 months of excessive ethanol self-administration. Highly abundant plasma proteins were depleted from plasma samples to increase proteomic coverage. Altered plasma levels of serum amyloid A4 (SAA4), retinol-binding protein, inter-alpha inhibitor H4, clusterin, and fibronectin, identified by 2D-DIGE analysis, were confirmed in unmanipulated, whole plasma from these animals by immunoblotting. Examination of these target plasma proteins in human subjects with excessive alcohol consumption (and control subjects) revealed increased levels of SAA4 and clusterin and decreased levels of fibronectin compared to controls. These proteins not only serve as targets for further development as biomarker candidates or components of biomarker panels, but also add to the growing understanding of dysregulated immune function and lipoprotein metabolism with chronic, excessive alcohol consumption.

  11. Redox state and energy metabolism during liver regeneration: alterations produced by acute ethanol administration.

    Science.gov (United States)

    Gutiérrez-Salinas, J; Miranda-Garduño, L; Trejo-Izquierdo, E; Díaz-Muñoz, M; Vidrio, S; Morales-González, J A; Hernández-Muñoz, R

    1999-12-01

    Ethanol metabolism can induce modifications in liver metabolic pathways that are tightly regulated through the availability of cellular energy and through the redox state. Since partial hepatectomy (PH)-induced liver proliferation requires an oversupply of energy for enhanced syntheses of DNA and proteins, the present study was aimed at evaluating the effect of acute ethanol administration on the PH-induced changes in cellular redox and energy potentials. Ethanol (5 g/kg body weight) was administered to control rats and to two-thirds hepatectomized rats. Quantitation of the liver content of lactate, pyruvate, beta-hydroxybutyrate, acetoacetate, and adenine nucleotides led us to estimate the cytosolic and mitochondrial redox potentials and energy parameters. Specific activities in the liver of alcohol-metabolizing enzymes also were measured in these animals. Liver regeneration had no effect on cellular energy availability, but induced a more reduced cytosolic redox state accompanied by an oxidized mitochondrial redox state during the first 48 hr of treatment; the redox state normalized thereafter. Administration of ethanol did not modify energy parameters in PH rats, but this hepatotoxin readily blocked the PH-induced changes in the cellular redox state. In addition, proliferating liver promoted decreases in the activity of alcohol dehydrogenase (ADH) and of cytochrome P4502E1 (CYP2E1); ethanol treatment prevented the PH-induced diminution of ADH activity. In summary, our data suggest that ethanol could minimize the PH-promoted metabolic adjustments mediated by redox reactions, probably leading to an ineffective preparatory event that culminates in compensatory liver growth after PH in the rat.

  12. Chronic ethanol exposure decreases CB1 receptor function at GABAergic synapses in the rat central amygdala.

    Science.gov (United States)

    Varodayan, Florence P; Soni, Neeraj; Bajo, Michal; Luu, George; Madamba, Samuel G; Schweitzer, Paul; Parsons, Loren H; Roberto, Marisa

    2016-07-01

    The endogenous cannabinoids (eCBs) influence the acute response to ethanol and the development of tolerance, dependence and relapse. Chronic alcohol exposure alters eCB levels and Type 1 cannabinoid receptor (CB1 ) expression and function in brain regions associated with addiction. CB1 inhibits GABA release, and GABAergic dysregulation in the central nucleus of the amygdala (CeA) is critical in the transition to alcohol dependence. We investigated possible disruptions in CB1 signaling of rat CeA GABAergic transmission following intermittent ethanol exposure. In the CeA of alcohol-naive rats, CB1 agonist WIN 55,212-2 (WIN) decreased the frequency of spontaneous and miniature GABAA receptor-mediated inhibitory postsynaptic currents (s/mIPSCs). This effect was prevented by CB1 antagonism, but not Type 2 cannabinoid receptor (CB2 ) antagonism. After 2-3 weeks of intermittent ethanol exposure, these WIN inhibitory effects were attenuated, suggesting ethanol-induced impairments in CB1 function. The CB1 antagonist AM251 revealed a tonic eCB/CB1 control of GABAergic transmission in the alcohol-naive CeA that was occluded by calcium chelation in the postsynaptic cell. Chronic ethanol exposure abolished this tonic CB1 influence on mIPSC, but not sIPSC, frequency. Finally, acute ethanol increased CeA GABA release in both naive and ethanol-exposed rats. Although CB1 activation prevented this effect, the AM251- and ethanol-induced GABA release were additive, ruling out a direct participation of CB1 signaling in the ethanol effect. Collectively, these observations demonstrate an important CB1 influence on CeA GABAergic transmission and indicate that the CeA is particularly sensitive to alcohol-induced disruptions of CB1 signaling.

  13. Chronic exposure to ethanol causes steatosis and inflammation in zebrafish liver

    Science.gov (United States)

    Schneider, Ana Claudia Reis; Gregório, Cleandra; Uribe-Cruz, Carolina; Guizzo, Ranieli; Malysz, Tais; Faccioni-Heuser, Maria Cristina; Longo, Larisse; da Silveira, Themis Reverbel

    2017-01-01

    AIM To evaluate the effects of chronic exposure to ethanol in the liver and the expression of inflammatory genes in zebrafish. METHODS Zebrafish (n = 104), wild type, adult, male and female, were divided into two groups: Control and ethanol (0.05 v/v). The ethanol was directly added into water; tanks water were changed every two days and the ethanol replaced. The animals were fed twice a day with fish food until satiety. After two and four weeks of trial, livers were dissected, histological analysis (hematoxilin-eosin and Oil Red staining) and gene expression assessment of adiponectin, adiponectin receptor 2 (adipor2), sirtuin-1 (sirt-1), tumor necrosis factor-alpha (tnf-a), interleukin-1b (il-1b) and interleukin-10 (il-10) were performed. Ultrastructural evaluations were conducted at fourth week. RESULTS Exposing zebrafish to 0.5% ethanol developed intense liver steatosis after four weeks, as demonstrated by oil red staining. In ethanol-treated animals, the main ultrastructural changes were related to cytoplasmic lipid particles and droplets, increased number of rough endoplasmic reticulum cisterns and glycogen particles. Between two and four weeks, hepatic mRNA expression of il-1b, sirt-1 and adipor2 were upregulated, indicating that ethanol triggered signaling molecules which are key elements in both hepatic inflammatory and protective responses. Adiponectin was not detected in the liver of animals exposed and not exposed to ethanol, and il-10 did not show significant difference. CONCLUSION Data suggest that inflammatory signaling and ultrastructural alterations play a significant role during hepatic steatosis in zebrafish chronically exposed to ethanol. PMID:28357029

  14. The Effect of Acute Ethanol and Gabapentin Administration on Spatial Learning and Memory

    Directory of Open Access Journals (Sweden)

    Fahimeh Yeganeh

    2011-09-01

    Full Text Available  Introduction: Patients with epilepsy can have impaired cognitive abilities. Many factors contribute to this impairment, including the adverse effects of antiepileptic drugs like Gabapentin (GBP. Apart from anti-epilectic action, Gabapentin is used to relieve ethanol withdrawal syndrome. Because both GBP and ethanol act on GABA ergic system, the purpose of this study was to evaluate their effect and interaction on spatial learning and memory. Material and Methods: Male Sprague-Dawley rats were trained in the Morris water maze for 5 consecutive days. On the sixth day, a probe test was performed to assess the retention phase or spatial rats’ memory ability. Ethanol (1.5 g/kg i.p. and GBP (30 mg/kg i.p. was administered each day 30 and 40 minutes before testing respectively. Results: Acute ethanol administration selectively impaired spatial memory (p<0.05, yet it failed to impair the acquisition phase (learning. Contradictorily GBP selectively impaired learning on second and forth days. Conclusion: These findings demonstrate that GBP and acute ethanol impair different phases of learning probably by modifying different neuronal pathways in cognitive areas of the brain.

  15. Phosphorylation Regulates Removal of Synaptic N-Methyl-d-Aspartate Receptors after Withdrawal from Chronic Ethanol Exposure

    OpenAIRE

    Clapp, Peter; Gibson, Emily S.; Dell'Acqua, Mark L.; Hoffman, Paula L.

    2010-01-01

    Alterations in N-methyl-d-aspartate receptor (NMDAR) protein levels or subcellular localization in brain after chronic ethanol exposure may contribute to withdrawal-associated seizures and neurotoxicity. We have investigated synaptic localization of NMDARs in cultured hippocampal pyramidal neurons after prolonged (7 days) exposure to, and acute withdrawal from, 80 mM ethanol using fluorescence immunocytochemistry techniques. After chronic ethanol exposure, there was a significant increase in ...

  16. Gene expression changes in the nucleus accumbens of alcohol-preferring rats following chronic ethanol consumption.

    Science.gov (United States)

    Bell, Richard L; Kimpel, Mark W; McClintick, Jeanette N; Strother, Wendy N; Carr, Lucinda G; Liang, Tiebing; Rodd, Zachary A; Mayfield, R Dayne; Edenberg, Howard J; McBride, William J

    2009-11-01

    The objective of this study was to determine the effects of binge-like alcohol drinking on gene expression changes in the nucleus accumbens (ACB) of alcohol-preferring (P) rats. Adult male P rats were given ethanol under multiple scheduled access (MSA; three 1-h dark cycle sessions/day) conditions for 8 weeks. For comparison purposes, a second ethanol drinking group was given continuous/daily alcohol access (CA; 24h/day). A third group was ethanol-naïve (W group). Average ethanol intakes for the CA and MSA groups were approximately 9.5 and 6.5 g/kg/day, respectively. Fifteen hours after the last drinking episode, rats were euthanized, the brains extracted, and the ACB dissected. RNA was extracted and purified for microarray analysis. The only significant differences were between the CA and W groups (palcohol consumption and preference; 4 of these genes (Tgfa, Hspa5, Mtus1 and Creb3l2) are involved in anti-apoptosis and increased transcription, suggesting that they may be contributing to cellular protection and maintaining high alcohol intakes. Overall, these findings suggest that chronic CA drinking results in genomic changes that can be observed during the early acute phase of ethanol withdrawal. Conversely, chronic MSA drinking, with its associated protracted withdrawal periods, results in genomic changes that may be masked by tight regulation of these genes following repeated experiences of ethanol withdrawal.

  17. RAB GTPASES ASSOCIATE WITH ISOLATED LIPID DROPLETS (LDS) AND SHOW ALTERED CONTENT AFTER ETHANOL ADMINISTRATION: POTENTIAL ROLE IN ALCOHOL-IMPAIRED LD METABOLISM

    Science.gov (United States)

    Rasineni, Karuna; McVicker, Benita L.; Tuma, Dean J.; McNiven, Mark A.; Casey, Carol A.

    2013-01-01

    Background Alcoholic liver disease is manifested by the presence of fatty liver, primarily due to accumulation of hepatocellular lipid droplets (LDs). The presence of membrane-trafficking proteins (e.g. Rab GTPases) with LDs indicates that LDs may be involved in trafficking pathways known to be altered in ethanol damaged hepatocytes. Since these Rab GTPases are crucial regulators of protein trafficking, we examined the effect ethanol administration has on hepatic Rab protein content and association with LDs. Methods Male Wistar rats were pair-fed Lieber-DeCarli diets for 5 to 8 weeks. Whole liver and isolated LD fractions were analyzed. Identification of LDs and associated Rab proteins was performed in frozen liver or paraffin-embedded sections followed by immunohistochemical analysis. Results Lipid accumulation was characterized by larger LD vacuoles and increased total triglyceride content in ethanol-fed rats. Rabs 1, 2, 3d, 5, 7 and 18 were analyzed in post-nuclear supernatant (PNS) as well as LDs. All of the Rabs were found in the PNS, and Rabs 1, 2, 5 and 7 did not show alcohol-altered content, while Rab 3d content was reduced by over 80%, and Rab 18 also showed ethanol-induced reduction in content. Rab 3d was not found to associate with LDs, while all other Rabs were found in the LD fractions, and several showed an ethanol-related decrease (Rabs 2, 5, 7, 18). Immunohistochemical analysis revealed the enhanced content of a LD-associated protein, perilipin 2 (PLIN2) that was paralleled with an associated decrease of Rab 18 in ethanol-fed rat sections. Conclusion Chronic ethanol feeding was associated with increased PLIN2 and altered Rab GTPase content in enriched LD fractions. Although mechanisms driving these changes are not established, further studies on intracellular protein trafficking and LD biology after alcohol administration will likely contribute to our understanding of fatty liver disease. PMID:24117505

  18. Chronic ethanol exposure inhibits distraction osteogenesis in a mouse model: role of the TNF signaling axis

    Science.gov (United States)

    Tumor necrosis factor-alpha (TNF-alpha) is an inflammatory cytokine that modulates osteoblastogenesis. In addition, the demonstrated inhibitory effects of chronic ethanol exposure on direct bone formation in rats are hypothetically mediated by TNF-alpha signaling. The effects in mice are unreported....

  19. Epigenetics of proteasome inhibition in the liver of rats fed ethanol chronically

    Institute of Scientific and Technical Information of China (English)

    Joan Oliva; Jennifer Dedes; Jun Li; Samuel W French; Fawzia Bardag-Gorce

    2009-01-01

    AIM: To examine the effects of ethanol-induced proteasome inhibition, and the effects of proteasome inhibition in the regulation of epigenetic mechanisms. METHODS: Rats were fed ethanol for 1 mo using the Tsukamoto-French model and were compared to rats given the proteasome inhibitor PS-341 (Bortezomib, Velcade.) by intraperitoneal injection. Microarray analysis and real time PCR were performed and proteasome activity assays and Western blot analysis were performed using isolated nuclei. RESULTS: Chronic ethanol feeding caused a significant inhibition of the ubiquitin proteasome pathway in the nucleus, which led to changes in the turnover of transcriptional factors, histone-modifying enzymes, and, therefore, affected epigenetic mechanisms. Chronic ethanol feeding was related to an increase in histone acetylation, and it is hypothesized that the proteasome proteolytic activity regulated histone modifications by controlling the stability of histone modifying enzymes, and, therefore, regulated the chromatin structure, allowing easy access to chromatin by RNA polymerase, and, thus, proper gene expression. Proteasome inhibition by PS-341 increased histone acetylation similar to chronic ethanol feeding. In addition, proteasome inhibition caused dramatic changes in hepatic remethylation reactions as there was a significant decrease in the enzymes responsible for the regeneration of S-adenosylmethionine, and, in particular, a significant decrease in the betainehomocysteine methyltransferase enzyme. This suggested that hypomethylation was associated with proteasome inhibition, as indicated by the decrease in histone methylation. CONCLUSION: The role of proteasome inhibition in regulating epigenetic mechanisms, and its link to liver injury in alcoholic liver disease, is thus a promising approach to study liver injury due to chronic ethanol consumption.

  20. Chronic ethanol consumption in mice alters hepatocyte lipid droplet properties

    Science.gov (United States)

    Background: Hepatosteatosis is a common pathological feature of impaired hepatic metabolism following chronic alcohol consumption. Although often benign and reversible, it is widely believed that steatosis is a risk factor for development of advanced liver pathologies, including steatohepatitis and ...

  1. Alteration of bile acid metabolism in the rat induced by chronic ethanol consumption

    Science.gov (United States)

    Xie, Guoxiang; Zhong, Wei; Li, Houkai; Li, Qiong; Qiu, Yunping; Zheng, Xiaojiao; Chen, Huiyuan; Zhao, Xueqing; Zhang, Shucha; Zhou, Zhanxiang; Zeisel, Steven H.; Jia, Wei

    2013-01-01

    Our understanding of the bile acid metabolism is limited by the fact that previous analyses have primarily focused on a selected few circulating bile acids; the bile acid profiles of the liver and gastrointestinal tract pools are rarely investigated. Here, we determined how chronic ethanol consumption altered the bile acids in multiple body compartments (liver, gastrointestinal tract, and serum) of rats. Rats were fed a modified Lieber-DeCarli liquid diet with 38% of calories as ethanol (the amount equivalent of 4–5 drinks in humans). While conjugated bile acids predominated in the liver (98.3%), duodenum (97.8%), and ileum (89.7%), unconjugated bile acids comprised the largest proportion of measured bile acids in serum (81.2%), the cecum (97.7%), and the rectum (97.5%). In particular, taurine-conjugated bile acids were significantly decreased in the liver and gastrointestinal tract of ethanol-treated rats, while unconjugated and glycine-conjugated species increased. Ethanol consumption caused increased expression of genes involved in bile acid biosynthesis, efflux transport, and reduced expression of genes regulating bile acid influx transport in the liver. These results provide an improved understanding of the systemic modulations of bile acid metabolism in mammals through the gut-liver axis.—Xie, G., Zhong, W., Li, H., Li, Q., Qiu, Y., Zheng, X., Chen, H., Zhao, X., Zhang, S., Zhou, Z., Zeisel, S. H., Jia, W. Alteration of bile acid metabolism in the rat induced by chronic ethanol consumption. PMID:23709616

  2. Stress-induced enhancement of ethanol intake in C57BL/6J mice with a history of chronic ethanol exposure: Involvement of kappa opioid receptors

    Directory of Open Access Journals (Sweden)

    Rachel Ivy Anderson

    2016-02-01

    Full Text Available Our laboratory has previously demonstrated that daily forced swim stress (FSS prior to ethanol drinking sessions facilitates enhanced ethanol consumption in mice with a history of chronic intermittent ethanol (CIE vapor exposure without altering ethanol intake in air-exposed controls. Because both stress and chronic ethanol exposure have been shown to activate the dynorphin/kappa opioid receptor (KOR system, the present study was designed to explore a potential role for KORs in modulating stress effects on ethanol consumption in the CIE model of dependence and relapse drinking. After stable baseline ethanol intake was established in adult male C57BL/6J mice, subjects received chronic intermittent exposure (16 hr/day x 4 days/week to ethanol vapor (CIE group or air (CTL group. Weekly cycles of inhalation exposure were alternated with 5-day limited access drinking tests (1 hour access to 15% ethanol. Experiment 1 compared effects of daily FSS and KOR activation on ethanol consumption. CIE and CTL mice were either exposed to FSS (10 min, the KOR agonist U50,488 (5 mg/kg, or a vehicle injection (non-stressed condition prior to each daily drinking session during test weeks. FSS selectively increased drinking in CIE mice. U50,488 mimicked this effect in CIE mice, but also increased drinking in CTL mice. Experiment 2 assessed effects of KOR blockade on stress-induced drinking in CIE and CTL mice. Stressed and non-stressed mice were administered the short-acting KOR antagonist LY2444296 (0 or 5 mg/kg 30 min prior to each drinking session during test weeks. FSS selectively increased ethanol consumption in CIE mice, an effect that was abolished by LY2444296 pretreatment. In Experiment 3, CIE and CTL mice were administered one of four doses of U50,488 (0,1.25, 2.5, 5.0 mg/kg one hour prior to each daily drinking test (in lieu of FSS. All doses of U50,488 increased ethanol consumption in both CIE and CTL mice. The U50,488-induced increase in drinking was

  3. Ethanol metabolism, oxidative stress, and endoplasmic reticulum stress responses in the lungs of hepatic alcohol dehydrogenase deficient deer mice after chronic ethanol feeding.

    Science.gov (United States)

    Kaphalia, Lata; Boroumand, Nahal; Hyunsu, Ju; Kaphalia, Bhupendra S; Calhoun, William J

    2014-06-01

    Consumption and over-consumption of alcoholic beverages are well-recognized contributors to a variety of pulmonary disorders, even in the absence of intoxication. The mechanisms by which alcohol (ethanol) may produce disease include oxidative stress and prolonged endoplasmic reticulum (ER) stress. Many aspects of these processes remain incompletely understood due to a lack of a suitable animal model. Chronic alcohol over-consumption reduces hepatic alcohol dehydrogenase (ADH), the principal canonical metabolic pathway of ethanol oxidation. We therefore modeled this situation using hepatic ADH-deficient deer mice fed 3.5% ethanol daily for 3 months. Blood ethanol concentration was 180 mg% in ethanol fed mice, compared to <1.0% in the controls. Acetaldehyde (oxidative metabolite of ethanol) was minimally, but significantly increased in ethanol-fed vs. pair-fed control mice. Total fatty acid ethyl esters (FAEEs, nonoxidative metabolites of ethanol) were 47.6 μg/g in the lungs of ethanol-fed mice as compared to 1.5 μg/g in pair-fed controls. Histological and immunohistological evaluation showed perivascular and peribronchiolar lymphocytic infiltration, and significant oxidative injury, in the lungs of ethanol-fed mice compared to pair-fed controls. Several fold increases for cytochrome P450 2E1, caspase 8 and caspase 3 found in the lungs of ethanol-fed mice as compared to pair-fed controls suggest role of oxidative stress in ethanol-induced lung injury. ER stress and unfolded protein response signaling were also significantly increased in the lungs of ethanol-fed mice. Surprisingly, no significant activation of inositol-requiring enzyme-1α and spliced XBP1 was observed indicating a lack of activation of corrective mechanisms to reinstate ER homeostasis. The data suggest that oxidative stress and prolonged ER stress, coupled with formation and accumulation of cytotoxic FAEEs may contribute to the pathogenesis of alcoholic lung disease.

  4. Ethanol metabolism, oxidative stress, and endoplasmic reticulum stress responses in the lungs of hepatic alcohol dehydrogenase deficient deer mice after chronic ethanol feeding

    Science.gov (United States)

    Kaphalia, Lata; Boroumand, Nahal; Ju, Hyunsu; Kaphalia, Bhupendra S.; Calhoun, William J.

    2014-01-01

    Consumption and over-consumption of alcoholic beverages are well-recognized contributors to a variety of pulmonary disorders, even in the absence of intoxication. The mechanisms by which alcohol (ethanol) may produce disease include oxidative stress and prolonged endoplasmic reticulum (ER) stress. Many aspects of these processes remain incompletely understood due to a lack of a suitable animal model. Chronic alcohol over-consumption reduces hepatic alcohol dehydrogenase (ADH), the principal canonical metabolic pathway of ethanol oxidation. We therefore modeled this situation using hepatic ADH-deficient deer mice fed 3.5% ethanol daily for 3 months. Blood ethanol concentration was 180 mg% in ethanol fed mice, compared to <0.2% in the controls. Acetaldehyde (oxidative metabolite of ethanol) was minimally, but significantly increased in ethanol-fed vs. pair-fed control mice. Total fatty acid ethyl esters (FAEEs, nonoxidative metabolites of ethanol) were 47.6 μg/g in the lungs of ethanol-fed mice as compared to 1.5 μg/g in pair-fed controls. Histological and immunohistological evaluation showed perivascular and peribronchiolar lymphocytic infiltration, and significant oxidative injury, in the lungs of ethanol-fed mice compared to pair-fed controls. Several fold increases for cytochrome P450 2E1, caspase 8 and caspase 3 found in the lungs of ethanol-fed mice as compared to pair-fed controls suggest role of oxidative stress in ethanol-induced lung injury. ER stress and unfolded protein response signaling were also significantly increased in the lungs of ethanol-fed mice. Surprisingly, no significant activation of inositol-requiring enzyme-1α and spliced XBP1 were observed indicating a lack of activation of corrective mechanisms to reinstate ER homeostasis. The data suggest that oxidative stress and prolonged ER stress, coupled with formation and accumulation of cytotoxic FAEEs may contribute to the pathogenesis of alcoholic lung disease. PMID:24625836

  5. Periodontal inflammation induced by chronic ethanol consumption in ovariectomized rats

    OpenAIRE

    2016-01-01

    The immune system plays an important role in the pathogenesis of periodontal diseases. The host may modulate periodontal inflammatory reactions and it determines variances in the individual susceptibility and in the periodontal disease progression speed. Osteoporosis and alcoholism are described as risk indicators of periodontal disease among the systemic acquired factors. Objective: The current study aims to analyze chronic alcohol consumption influence on induced periodontitis in rats prese...

  6. Chronic ethanol exposure produces time- and brain region-dependent changes in gene coexpression networks.

    Directory of Open Access Journals (Sweden)

    Elizabeth A Osterndorff-Kahanek

    Full Text Available Repeated ethanol exposure and withdrawal in mice increases voluntary drinking and represents an animal model of physical dependence. We examined time- and brain region-dependent changes in gene coexpression networks in amygdala (AMY, nucleus accumbens (NAC, prefrontal cortex (PFC, and liver after four weekly cycles of chronic intermittent ethanol (CIE vapor exposure in C57BL/6J mice. Microarrays were used to compare gene expression profiles at 0-, 8-, and 120-hours following the last ethanol exposure. Each brain region exhibited a large number of differentially expressed genes (2,000-3,000 at the 0- and 8-hour time points, but fewer changes were detected at the 120-hour time point (400-600. Within each region, there was little gene overlap across time (~20%. All brain regions were significantly enriched with differentially expressed immune-related genes at the 8-hour time point. Weighted gene correlation network analysis identified modules that were highly enriched with differentially expressed genes at the 0- and 8-hour time points with virtually no enrichment at 120 hours. Modules enriched for both ethanol-responsive and cell-specific genes were identified in each brain region. These results indicate that chronic alcohol exposure causes global 'rewiring' of coexpression systems involving glial and immune signaling as well as neuronal genes.

  7. Effects of binge ethanol administration on the behavioral outcome of rats after lateral fluid percussion brain injury.

    Science.gov (United States)

    Prasad, R M; Doubinskaia, I; Singh, D K; Campbell, G; Mace, D; Fletcher, A; Dendle, P; Yurek, D M; Scheff, S W; Kraemer, P J

    2001-10-01

    This study examined the effects of 4 weeks of binge ethanol administration (BEAn) on the behavioral outcome in rats after lateral fluid percussion (FP) brain injury. Rats were intragastrically given 7.5 mL/kg of either 40% ethanol in 5% glucose solution (3 g ethanol/kg; binge ethanol group), or 5% glucose solution (vehicle group), twice on Thursday and Friday of 3 consecutive weeks. Then rats from both groups were subjected to either lateral FP brain injury of moderate severity (1.8 atm) or to sham operation. Postinjury behavioral measurements revealed that brain injury caused significant spatial learning disability in both groups. There were no significant differences in mean search latencies in the sham animals between the vehicle and binge ethanol groups. On the other hand, the mean search latency of the binge ethanol group was significantly higher than that of the vehicle group in trial blocks 2 and 4. There were no significant differences in the target visits (expressed as mean zone difference [MZD]) during the probe trial between the injured animals of binge ethanol and vehicle groups. However, there was only a minor trend towards worsened MZD score in the binge-injured animals. Histologic analysis of injured animals from both injured ethanol and vehicle groups revealed similar extents of ipsilateral cortical and observable hippocampal damage. These results suggest that 4 weeks of binge ethanol treatment followed by ethanol intoxication at the time of injury worsens some aspects of the spatial learning ability of rats. This worsening is probably caused by subtle, undetectable morphologic damage by binge ethanol administration.

  8. Increased anxiety, voluntary alcohol consumption and ethanol-induced place preference in mice following chronic psychosocial stress.

    Science.gov (United States)

    Bahi, Amine

    2013-07-01

    Stress exposure is known to be a risk factor for alcohol use and anxiety disorders. Comorbid chronic stress and alcohol dependence may lead to a complicated and potentially severe treatment profile. To gain an understanding of the interaction between chronic psychosocial stress and drug exposure, we studied the effects of concomitant chronic stress exposure on alcohol reward using two-bottle choice and ethanol-conditioned place preference (CPP). The study consisted of exposure of the chronic subordinate colony (CSC) mice "intruders" to an aggressive "resident" mouse for 19 consecutive days. Control mice were single housed (SHC). Ethanol consumption using two-bottle choice paradigm and ethanol CPP acquisition was assessed at the end of this time period. As expected, CSC exposure increased anxiety-like behavior and reduced weight gain as compared to SHC controls. Importantly, in the two-bottle choice procedure, CSC mice showed higher alcohol intake than SHC. When testing their response to ethanol-induced CPP, CSC mice achieved higher preference for the ethanol-paired chamber. In fact, CSC exposure increased ethanol-CPP acquisition. Taken together, these data demonstrate the long-term consequences of chronic psychosocial stress on alcohol intake in male mice, suggesting chronic stress as a risk factor for developing alcohol consumption and/or anxiety disorders.

  9. Comparative studies of oral administration of marine collagen peptides from Chum Salmon (Oncorhynchus keta) pre- and post-acute ethanol intoxication in female Sprague-Dawley rats.

    Science.gov (United States)

    Liang, Jiang; Li, Qiong; Lin, Bing; Yu, Yongchao; Ding, Ye; Dai, Xiaoqian; Li, Yong

    2014-09-01

    The present study aimed to evaluate the effect of an oral administration of marine collagen peptides (MCPs) pre- and post-acute ethanol intoxication in female Sprague-Dawley (SD) rats. MCPs were orally administered to rats at doses of 0 g per kg bw, 2.25 g per kg bw, 4.5 g per kg bw and 9.0 g per kg bw, prior to or after the oral administration of ethanol. Thirty minutes after ethanol treatment, the effect of MCPs on motor incoordination and hypnosis induced by ethanol were investigated using a screen test, fixed speed rotarod test (5 g per kg bw ethanol) and loss of righting reflex (7 g per kg bw ethanol). In addition, the blood ethanol concentrations at 30, 60, 90, and 120 minutes after ethanol administration (5 g per kg bw ethanol) were measured. The results of the screen test and fixed speed rotarod test suggested that treatment with MCPs at 4.5 g per kg bw and 9.0 g per kg bw prior to ethanol could attenuate ethanol-induced loss of motor coordination. Moreover, MCP administered both pre- and post-ethanol treatment had significant potency to alleviate the acute ethanol induced hypnotic states in the loss of righting reflex test. At 30, 60, 90 and 120 minutes after ethanol ingestion at 5 g per kg bw, the blood ethanol concentration (BEC) of control rats significantly increased compared with that in the 4.5 g per kg bw and 9.0 g per kg bw MCP pre-treated groups. However, post-treatment with MCPs did not exert a significant inhibitory effect on the BEC of the post-treated groups until 120 minutes after ethanol administration. Therefore, the anti-inebriation effect of MCPs was verified in SD rats with the possible mechanisms related to inhibiting ethanol absorption and facilitating ethanol metabolism. Moreover, the efficiency was better when MCPs were administered prior to ethanol.

  10. Chronic psychosocial stress causes delayed extinction and exacerbates reinstatement of ethanol-induced conditioned place preference in mice

    OpenAIRE

    Bahi, Amine; Dreyer, Jean-Luc

    2014-01-01

    Objective: Here, we examined the impact of chronic subordinate colony (CSC) exposure on EtOH-CPP extinction, as well as ethanol-induced reinstatement of CPP.Methods: Mice were conditioned with saline or 1.5 g/kg ethanol and were tested in the EtOH-CPP model. In the first experiment, the mice were subjected to 19 days of chronic stress, and EtOH-CPP extinction was assessed during seven daily trials without ethanol injection. In the second experiment and after the EtOH-CPP test, the mice were s...

  11. Acute but not chronic ethanol exposure impairs retinol oxidation in the small and large intestine of the rat

    DEFF Research Database (Denmark)

    Parlesak, Alexandr; Ellendt, K.; Lindros, K.;

    2005-01-01

    BACKGROUND AND AIM: Ethanol has been shown to inhibit retinol oxidation at the level of alcohol dehydrogenase in liver and colon but not previously in the small intestine. In the present study we investigated how chronic alcohol feeding and acute ethanol exposure affects retinol dehydrogenase...... activity in the colon and small intestine of the rat. METHODS: Rats were fed ethanol in a liquid diet for six weeks. Control rats received a similar diet but with ethanol isocalorically replaced by carbohydrates. Retinol dehydrogenase was analyzed from cell cytosol samples from the small and the large...... higher, respectively). While chronic alcohol feeding did not affect these parameters, acute ethanol exposure reduced V(max) and V(max)/K(m) dose-dependently (p retinol...

  12. Effects of ethanol on social avoidance induced by chronic social defeat stress in mice.

    Science.gov (United States)

    Favoretto, Cristiane A; Macedo, Giovana C; Quadros, Isabel M H

    2017-01-01

    In rodents, chronic social defeat stress promotes deficits in social interest and social interaction. We further explored these antisocial effects by comparing the consequences of two different defeat stress protocols (episodic vs. continuous stress) in a social investigation test. We expected that continuous, but not episodic, stress would induce social deficits in this model. Furthermore, we tested whether a potentially anxiolytic dose of ethanol reverses social deficits induced by defeat stress. Male Swiss mice were exposed to a 10-day social defeat protocol, using daily confrontations with an aggressive resident mouse. Episodic stress consisted of brief defeat episodes, after which the defeated mouse was returned to its home cage, until the next defeat 24 h later (n = 7-11/group). For continuous stress, similar defeat episodes were followed by cohabitation with the aggressive resident for 24 h, separated by a perforated divider, until the following defeat (n = 8-14/group). Eight days after stress termination, defeated and control mice were assessed in a social investigation test, after treatment with ethanol (1.0 g/kg, i.p.) or 0.9% saline. Considering the time spent investigating a social target, mice exposed to episodic or continuous social stress showed less social investigation than controls (p stress or ethanol. Thus, a history of social defeat stress, whether episodic or continuous, promotes deficits in social investigation that were not reversed by acute treatment with ethanol.

  13. Time-Course Analysis of Brain Regional Expression Network Responses to Chronic Intermittent Ethanol and Withdrawal: Implications for Mechanisms Underlying Excessive Ethanol Consumption.

    Science.gov (United States)

    Smith, Maren L; Lopez, Marcelo F; Archer, Kellie J; Wolen, Aaron R; Becker, Howard C; Miles, Michael F

    2016-01-01

    Long lasting abusive consumption, dependence, and withdrawal are characteristic features of alcohol use disorders (AUD). Mechanistically, persistent changes in gene expression are hypothesized to contribute to brain adaptations leading to ethanol toxicity and AUD. We employed repeated chronic intermittent ethanol (CIE) exposure by vapor chamber as a mouse model to simulate the cycles of ethanol exposure and withdrawal commonly seen with AUD. This model has been shown to induce progressive ethanol consumption in rodents. Brain CIE-responsive expression networks were identified by microarray analysis across five regions of the mesolimbic dopamine system and extended amygdala with tissue harvested from 0-hours to 7-days following CIE. Weighted Gene Correlated Network Analysis (WGCNA) was used to identify gene networks over-represented for CIE-induced temporal expression changes across brain regions. Differential gene expression analysis showed that long-lasting gene regulation occurred 7-days after the final cycle of ethanol exposure only in prefrontal cortex (PFC) and hippocampus. Across all brain regions, however, ethanol-responsive expression changes occurred mainly within the first 8-hours after removal from ethanol. Bioinformatics analysis showed that neuroinflammatory responses were seen across multiple brain regions at early time-points, whereas co-expression modules related to neuroplasticity, chromatin remodeling, and neurodevelopment were seen at later time-points and in specific brain regions (PFC or HPC). In PFC a module containing Bdnf was identified as highly CIE responsive in a biphasic manner, with peak changes at 0 hours and 5 days following CIE, suggesting a possible role in mechanisms underlying long-term molecular and behavioral response to CIE. Bioinformatics analysis of this network and several other modules identified Let-7 family microRNAs as potential regulators of gene expression changes induced by CIE. Our results suggest a complex temporal

  14. Time-Course Analysis of Brain Regional Expression Network Responses to Chronic Intermittent Ethanol and Withdrawal: Implications for Mechanisms Underlying Excessive Ethanol Consumption.

    Directory of Open Access Journals (Sweden)

    Maren L Smith

    Full Text Available Long lasting abusive consumption, dependence, and withdrawal are characteristic features of alcohol use disorders (AUD. Mechanistically, persistent changes in gene expression are hypothesized to contribute to brain adaptations leading to ethanol toxicity and AUD. We employed repeated chronic intermittent ethanol (CIE exposure by vapor chamber as a mouse model to simulate the cycles of ethanol exposure and withdrawal commonly seen with AUD. This model has been shown to induce progressive ethanol consumption in rodents. Brain CIE-responsive expression networks were identified by microarray analysis across five regions of the mesolimbic dopamine system and extended amygdala with tissue harvested from 0-hours to 7-days following CIE. Weighted Gene Correlated Network Analysis (WGCNA was used to identify gene networks over-represented for CIE-induced temporal expression changes across brain regions. Differential gene expression analysis showed that long-lasting gene regulation occurred 7-days after the final cycle of ethanol exposure only in prefrontal cortex (PFC and hippocampus. Across all brain regions, however, ethanol-responsive expression changes occurred mainly within the first 8-hours after removal from ethanol. Bioinformatics analysis showed that neuroinflammatory responses were seen across multiple brain regions at early time-points, whereas co-expression modules related to neuroplasticity, chromatin remodeling, and neurodevelopment were seen at later time-points and in specific brain regions (PFC or HPC. In PFC a module containing Bdnf was identified as highly CIE responsive in a biphasic manner, with peak changes at 0 hours and 5 days following CIE, suggesting a possible role in mechanisms underlying long-term molecular and behavioral response to CIE. Bioinformatics analysis of this network and several other modules identified Let-7 family microRNAs as potential regulators of gene expression changes induced by CIE. Our results suggest a

  15. The role of glycerol-3-phosphate dehydrogenase 1 in the progression of fatty liver after acute ethanol administration in mice

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Tomoki, E-mail: s13220@u-shizuoka-ken.ac.jp [Laboratory of Nutritional Biochemistry, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526 (Japan); Morita, Akihito, E-mail: moritaa@u-shizuoka-ken.ac.jp [Laboratory of Nutritional Biochemistry, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526 (Japan); Mori, Nobuko, E-mail: morin@b.s.osakafu-u.ac.jp [Department of Biological Science, Graduate School of Science, Osaka Prefecture University, 1-2 Gakuen-cho, Naka-ku, Sakai 599-8570 (Japan); Miura, Shinji, E-mail: miura@u-shizuoka-ken.ac.jp [Laboratory of Nutritional Biochemistry, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526 (Japan)

    2014-02-21

    Highlights: • Ethanol administration increased GPD1 mRNA expression. • Ethanol administration increased glucose incorporation into TG glycerol moieties. • No increase in hepatic TG levels was observed in ethanol-injected GPD1 null mice. • We propose that GPD1 is required for ethanol-induced TG accumulation in the liver. - Abstract: Acute ethanol consumption leads to the accumulation of triglycerides (TGs) in hepatocytes. The increase in lipogenesis and reduction of fatty acid oxidation are implicated as the mechanisms underlying ethanol-induced hepatic TG accumulation. Although glycerol-3-phosphate (Gro3P), formed by glycerol kinase (GYK) or glycerol-3-phosphate dehydrogenase 1 (GPD1), is also required for TG synthesis, the roles of GYK and GPD1 have been the subject of some debate. In this study, we examine (1) the expression of genes involved in Gro3P production in the liver of C57BL/6J mice in the context of hepatic TG accumulation after acute ethanol intake, and (2) the role of GPD1 in the progression of ethanol-induced fatty liver using GPD1 null mice. As a result, in C57BL/6J mice, ethanol-induced hepatic TG accumulation began within 2 h and was 1.7-fold greater than that observed in the control group after 6 h. The up-regulation of GPD1 began 2 h after administering ethanol, and significantly increased 6 h later with the concomitant escalation in the glycolytic gene expression. The incorporation of {sup 14}C-labelled glucose into TG glycerol moieties increased during the same period. On the other hand, in GPD1 null mice carrying normal GYK activity, no significant increase in hepatic TG level was observed after acute ethanol intake. In conclusion, GPD1 and glycolytic gene expression is up-regulated by ethanol, and GPD1-mediated incorporation of glucose into TG glycerol moieties together with increased lipogenesis, is suggested to play an important role in ethanol-induced hepatic TG accumulation.

  16. Upregulation of Cannabinoid Type 1 Receptors in Dopamine D2 Receptor Knockout Mice Is Reversed by Chronic Forced Ethanol Consumption

    Energy Technology Data Exchange (ETDEWEB)

    Thanos, P.K.; Wang, G.; Thanos, P.K.; Gopez, V.; Delis, F.; Michaelides, M.; Grand, D.K.; Wang, G.-J.; Kunos, G.; Volkow, N.D.

    2011-01-01

    The anatomical proximity of the cannabinoid type 1 (CNR1/CB1R) and the dopamine D2 receptors (DRD2), their ability to form CB1R-DRD2 heteromers, their opposing roles in locomotion, and their involvement in ethanol's reinforcing and addictive properties prompted us to study the levels and distribution of CB1R after chronic ethanol intake, in the presence and absence of DRD2. We monitored the drinking patterns and locomotor activity of Drd2+/+ and Drd2-/- mice consuming either water or a 20% (v/v) ethanol solution (forced ethanol intake) for 6 months and used the selective CB1 receptor antagonist [{sup 3}H]SR141716A to quantify CB1R levels in different brain regions with in vitro receptor autoradiography. We found that the lack of DRD2 leads to a marked upregulation (approximately 2-fold increase) of CB1R in the cerebral cortex, the caudate-putamen, and the nucleus accumbens, which was reversed by chronic ethanol intake. The results suggest that DRD2-mediated dopaminergic neurotransmission and chronic ethanol intake exert an inhibitory effect on cannabinoid receptor expression in cortical and striatal regions implicated in the reinforcing and addictive properties of ethanol.

  17. Postnatal Administration of Allopregnanolone Modifies Glutamate Release but Not BDNF Content in Striatum Samples of Rats Prenatally Exposed to Ethanol

    Directory of Open Access Journals (Sweden)

    Roberto Yunes

    2015-01-01

    Full Text Available Ethanol consumption during pregnancy may induce profound changes in fetal CNS development. We postulate that some of the effects of ethanol on striatal glutamatergic transmission and neurotrophin expression could be modulated by allopregnanolone, a neurosteroid modulator of GABAA receptor activity. We describe the acute pharmacological effect of allopregnanolone (65 μg/kg, s.c. administered to juvenile male rats (day 21 of age on the corticostriatal glutamatergic pathway, in both control and prenatally ethanol-exposed rats (two ip injections of 2.9 g/kg in 24% v/v saline solution on gestational day 8. Prenatal ethanol administration decreased the K+-induced release of glutamate regarding the control group. Interestingly, this effect was reverted by allopregnanolone. Regarding BDNF, allopregnanolone decreases the content of this neurotrophic factor in the striatum of control groups. However, both ethanol alone and ethanol plus allopregnanolone treated animals did not show any change regarding control values. We suggest that prenatal ethanol exposure may produce an alteration of GABAA receptors which blocks the GABA agonist-like effect of allopregnanolone on rapid glutamate release, thus disturbing normal neural transmission. Furthermore, the reciprocal interactions found between GABAergic neurosteroids and BDNF could underlie mechanisms operating during the neuronal plasticity of fetal development.

  18. Acute and chronic tramadol administration impair spatial memory in rat

    Science.gov (United States)

    Hosseini-Sharifabad, Ali; Rabbani, Mohammad; Sharifzadeh, Mohammad; Bagheri, Narges

    2016-01-01

    Tramadol hydrochloride, a synthetic opioid, acts via a multiple mechanism of action. Tramadol can potentially change the behavioral phenomena. The present study evaluates the effect of tramadol after single or multiple dose/s on the spatial memory of rat using object recognition task (ORT). Tramadol, 20 mg/kg, was injected intraperitoneally (i.p) as a single dose or once a day for 21 successive days considered as acute or chronic treatment respectively. After treatment, animals underwent two trials in the ORT. In the first trial (T1), animals encountered with two identical objects for exploration in a five-minute period. After 1 h, in the T2 trial, the animals were exposed to a familiar and a nonfamiliar object. The exploration times and frequency of the exploration for any objects were recorded. The results showed that tramadol decreased the exploration times for the nonfamiliar object in the T2 trial when administered either as a single dose (P<0.001) or as the multiple dose (P<0.05) compared to the respective control groups. Both acute and chronic tramadol administration eliminated the different frequency of exploration between the familiar and nonfamiliar objects. Our findings revealed that tramadol impaired memory when administered acutely or chronically. Single dose administration of tramadol showed more destructive effect than multiple doses of tramadol on the memory. The observed data can be explained by the inhibitory effects of tramadol on the wide range of neurotransmitters and receptors including muscarinic, N-methyl D-aspartate, AMPA as well as some second messenger like cAMP and cGMP or its stimulatory effect on the opioid, gama amino butyric acid, dopamine or serotonin in the brain. PMID:27051432

  19. Ethanol withdrawal is required to produce persisting N-methyl-D-aspartate receptor-dependent hippocampal cytotoxicity during chronic intermittent ethanol exposure

    Science.gov (United States)

    Reynolds, Anna R.; Berry, B. Jennifer N.; Sharrett-Field, Lynda; Prendergast, Mark A.

    2015-01-01

    Chronic intermittent ethanol consumption is associated with neurodegeneration and cognitive deficits in preclinical laboratory animals and in the clinical population. While previous work suggests a role for neuroadaptations in the N-methyl-D-aspartate (NMDA) receptor in the development of ethanol dependence and manifestation of withdrawal, the relative roles of ethanol exposure and ethanol withdrawal in producing these effects have not been fully characterized. To examine underlying cytotoxic mechanisms associated with CIE exposure, organotypic hippocampal slices were exposed to 1–3 cycles of ethanol (50 mM) in cell culture medium for 5 days, followed by 24-hours of ethanol withdrawal in which a portion of slices were exposed to competitive NMDA receptor antagonist (2R)-amino-5-phosphonovaleric acid (APV; 40 µM). Cytotoxicity was assessed using immunohistochemical labeling of neuron specific nuclear protein (NeuN; Fox-3), a marker of mature neurons, and thionine (2%) staining of Nissl bodies. Multiple cycles of CIE produced neurotoxicity, as reflected in persisting losses of neuron NeuN immunoreactivity and thionine staining in each of the primary cell layers of the hippocampal formation. Hippocampi aged in vitro were significantly more sensitive to the toxic effects of multiple CIEs than were non-aged hippocampi. This effect was not demonstrated in slices exposed to continuous ethanol, in the absence of withdrawal, or to a single exposure/withdrawal regimen. Exposure to APV significantly attenuated the cytotoxicity observed in the primary cell layers of the hippocampus. The present findings suggest that ethanol withdrawal is required to produce NMDA receptor-dependent hippocampal cytotoxicity, particularly in the aging hippocampus in vitro. PMID:25746220

  20. Projection neurons in the cortex and hippocampus: differential effects of chronic khat and ethanol exposure in adult male rats

    Science.gov (United States)

    Alele, Paul E; Matovu, Daniel; Imanirampa, Lawrence; Ajayi, Abayomi M; Kasule, Gyaviira T

    2016-01-01

    Background Recent evidence suggests that many individuals who chew khat recreationally also drink ethanol to offset the stimulating effect of khat. The objective of this study was to describe the separate and interactive effects of chronic ethanol and khat exposure on key projection neurons in the cortex and hippocampus of young adult male rats. Methods Young adult male Sprague Dawley rats were divided into six treatment groups: 2 g/kg khat, 4 g/kg khat, 4 g/kg ethanol, combined khat and ethanol (4 g/kg each), a normal saline control, and an untreated group. Treatments were administered orally for 28 continuous days; brains were then harvested, sectioned, and routine hematoxylin–eosin staining was done. Following photomicrography, ImageJ® software captured data regarding neuron number and size. Results No differences occurred in counts of both granular and pyramidal projection neurons in the motor cortex and all four subfields of the hippocampal formation. Khat dose-dependently increased pyramidal neuron size in the motor cortex and the CA3 region, but had different effects on granular neuron size in the dentate gyrus and the motor cortex. Mean pyramidal neuron size for the ethanol-only treatment was larger than that for the 2 g/kg khat group, and the saline control group, in CA3 and in the motor cortex. Concomitant khat and ethanol increased granular neuron size in the motor cortex, compared to the 2 g/kg khat group, the 4 g/kg khat group, and the 4 g/kg ethanol group. In the CA3 region, the 4 g/kg ethanol group showed a larger mean pyramidal neuron size than the combined khat and ethanol group. Conclusion These results suggest that concomitant khat and ethanol exposure changes granular and pyramidal projection neuron sizes differentially in the motor cortex and hippocampus, compared to the effects of chronic exposure to these two drugs separately.

  1. Interactions between chronic ethanol consumption and thiamine deficiency on neural plasticity, spatial memory and cognitive flexibility

    Science.gov (United States)

    Vedder, Lindsey C.; Hall, Joseph M.; Jabrouin, Kimberly R.; Savage, Lisa M.

    2015-01-01

    Background Many alcoholics display moderate to severe cognitive dysfunction accompanied by brain pathology. A factor confounded with prolonged heavy alcohol consumption is poor nutrition and many alcoholics are thiamine deficient. Thus, thiamine deficiency (TD) has emerged as a key factor underlying alcohol–related brain damage (ARBD). TD in humans can lead to Wernicke Encephalitis that can progress into Wernicke–Korsakoff Syndrome and these disorders have a high prevalence among alcoholics. Animal models are critical for determining the exact contributions of ethanol- and TD-induced neurotoxicity, as well as the interactions of those factors to brain and cognitive dysfunction. Methods Adult rats were randomly assigned to one of six treatment conditions: Chronic ethanol treatment (CET) where rats consumed a 20% v/v solution of ethanol over 6 months; Severe pyrithiamine-induced TD (PTD-MAS); Moderate PTD (PTD-EAS); Moderate PTD followed by CET (PTD-CET); Moderate PTD during CET (CET-PTD); Pair-fed control (PF). After recovery from treatment, all rats were tested on spontaneous alternation and attentional set-shifting. After behavioral testing, brains were harvested for determination of mature brain-derived neurotrophic factor (BDNF) and thalamic pathology. Results Moderate TD combined with CET, regardless of treatment order, produced significant impairments in spatial memory, cognitive flexibility and reductions in brain plasticity as measured by BDNF levels in the frontal cortex and hippocampus. These alterations are greater than those seen in moderate TD alone and the synergistic effects of moderate TD with CET leads to a unique cognitive profile. However, CET did not exacerbate thalamic pathology seen after moderate TD. Conclusions These data support the emerging theory that subclinical TD during chronic heavy alcohol consumption is critical for the development of significant cognitive impairment associated with ARBD. PMID:26419807

  2. Chronic ethanol exposure increases voluntary home cage intake in adult male, but not female, Long-Evans rats.

    Science.gov (United States)

    Morales, Melissa; McGinnis, Molly M; McCool, Brian A

    2015-12-01

    The current experiment examined the effects of 10 days of chronic intermittent ethanol (CIE) exposure on anxiety-like behavior and home cage ethanol intake using a 20% intermittent access (M, W, F) paradigm in male and female Long-Evans rats. Withdrawal from alcohol dependence contributes to relapse in humans and increases in anxiety-like behavior and voluntary ethanol consumption in preclinical models. Our laboratory has shown that 10 days of CIE exposure produces both behavioral and neurophysiological alterations associated with withdrawal in male rats; however, we have yet to examine the effects of this exposure regime on ethanol intake in females. During baseline, females consumed more ethanol than males but, unlike males, did not show escalations in intake. Rats were then exposed to CIE and were again given intermittent access to 20% ethanol. CIE males increased their intake compared to baseline, whereas air-exposed males did not. Ethanol intake in females was unaffected by CIE exposure. Notably, both sexes expressed significantly elevated withdrawal-associated anxiety-like behavior in the plus maze. Finally, rats were injected with the cannabinoid CB1 receptor antagonist, SR141716A (0, 1, 3, 10mg/kg, i.p.) which reduced ethanol intake in both sexes. However, females appear to be more sensitive to lower doses of this CB1 receptor antagonist. Our results show that females consume more ethanol than males; however, they did not escalate their intake using the intermittent access paradigm. Unlike males, CIE exposure had no effect on drinking in females. It is possible that females may be less sensitive than males to ethanol-induced increases in drinking after a short CIE exposure. Lastly, our results demonstrate that males and females may have different pharmacological sensitivities to CB1 receptor blockade on ethanol intake, at least under the current conditions.

  3. Ethanol metabolism, oxidative stress, and endoplasmic reticulum stress responses in the lungs of hepatic alcohol dehydrogenase deficient deer mice after chronic ethanol feeding

    OpenAIRE

    Kaphalia, Lata; Boroumand, Nahal; Ju, Hyunsu; Kaphalia, Bhupendra S.; Calhoun, William J

    2014-01-01

    Consumption and over-consumption of alcoholic beverages are well-recognized contributors to a variety of pulmonary disorders, even in the absence of intoxication. The mechanisms by which alcohol (ethanol) may produce disease include oxidative stress and prolonged endoplasmic reticulum (ER) stress. Many aspects of these processes remain incompletely understood due to a lack of a suitable animal model. Chronic alcohol over-consumption reduces hepatic alcohol dehydrogenase (ADH), the principal c...

  4. Chronic ethanol consumption increases the levels of chemerin in the serum and adipose tissue of humans and rats

    Institute of Scientific and Technical Information of China (English)

    Rui-zhen REN; Xu ZHANG; Jin XU; Hai-qing ZHANG; Chun-xiao YU; Ming-feng CAO; Ling GAO; Qing-bo GUAN; Jia-jun ZHAO

    2012-01-01

    Chemerin is a new adipokine involved in adipogenesis and insulin resistance.Since ethanol affects the insulin sensitivity that is closely associated with adipokines.The aim of this study was to investigate the effects of ethanol on chemerin in humans and rats.Methods:In the human study,148 men who consumed alcohol for more than 3 years and 55 men who abstained from alcohol were included.Based on ethanol consumption per day,the drinkers were classified into 3 groups:low-dose (<15 g/d),middle-dose (15-47.9 g/d) and high-dose (≥48 g/d).Anthropometric measurementsand serum parameters were collected.In the rat study,27 male Wistar rats were randomly divided into 4 groups administered water or ethanol (0.5,2.5,or 5 g·kg-1·d-1) for 22 weeks.The chemerin levels in the sera,visceral adipose tissue (VAT) and liver were measured using ELISA.Results:In the high-dose group of humans and middle- and high-dose groups of rats,chronic ethanol consumption significantly increased the serum chemerin level.Both the middle- and high-dose ethanol significantly increased the chemerin level in the VAT of rats.In humans,triglyceride,fasting glucose,insulin and HOMA-IR were independently associated with chemerin.In rats,the serum chemerin level was positively correlated with chemerin in the VAT after adjustments for the liver chemerin (r=+0.768).High-dose ethanol significantly increased the body fat in humans and the VAT in rats.Conclusion:Chronic ethanol consumption dose-dependently increases the chemerin levels in the serum and VAT.The serum chemerin level is associated with metabolic parameters in humans.The increased serum chemerin level is mainly attributed to an elevation of chemerin in the VAT after the ethanol treatment.

  5. Chronic ethanol ingestion, type 2 diabetes mellitus, and brain-derived neurotrophic factor (BDNF) in rats.

    Science.gov (United States)

    Jung, Kyu-In; Ju, Anes; Lee, Hee-Mi; Lee, Seong-Su; Song, Chan-Hee; Won, Wang-Youn; Jeong, Jae-Seung; Hong, Oak-Kee; Kim, Jae-Hwa; Kim, Dai-Jin

    2011-01-07

    Chronic alcohol consumption contributes to the development of type 2 diabetes mellitus (T2DM) while decreasing the level of brain-derived neurotrophic factor (BDNF). BDNF may be an important regulator of glucose metabolism, so it may be associated with an increased risk for T2DM in alcoholism. We evaluated the association of chronic heavy alcohol exposure, T2DM and BDNF level. Ten week-old type 2 diabetic OLETF rats and non-diabetic LETO rats of similar weight were used. The rats were randomized by weight into four treatment groups: (1) OLETF-Ethanol (O-E, n=13), (2) OLETF-Control (O-C, n=15), (3) LETO-Ethanol (L-E, n=11), and (4) LETO-Control (L-C, n=14). The ethanol groups were fed an isocaloric liquid diet containing ethanol while the control groups were fed with the same diet containing maltose-dextran over a 6-week period using a pair-feeding control model in order to regulate different caloric ingestion. After 6 weeks of feeding, an Intraperitoneal Glucose Tolerance Test (IP-GTT) was performed and BDNF levels were analyzed. Prior to IP-GTT, the mean glucose levels in the O-E, O-C, L-E, and L-C groups were 90.38±12.84, 102.13±5.04, 95.18±6.43, and 102.36±4.43mg/dL, respectively. Thirty minutes after intraperitoneal injection, the mean glucose levels were 262.62±63.77, 229.07±51.30, 163.45±26.63, and 156.64±34.42mg/dL, respectively; the increased amount of the mean glucose level in the O-E group was significantly higher than that in the O-C group (palcohol ingestion may aggravate T2DM and may possibly lower BDNF level.

  6. Using monosodium glutamate to initiate ethanol self-administration in inbred mouse strains.

    Science.gov (United States)

    McCool, Brian A; Chappell, Ann M

    2012-01-01

    Voluntary oral ethanol consumption in rodents is generally limited by strong taste-aversion in these species. Historically, this has been overcome by combining ethanol with a sweetener, typically sucrose or saccharine, and then slowly 'fading' away the sweetener. While useful in most instances, this approach has not proven as successful for some inbred strains of mice (e.g. DBA/2J) despite consistent evidence in the literature that these same strains express strong conditioned place preference for intraperitoneal- or intragastric-administered ethanol. Importantly, DBA/2J mice express a polymorphism in a 'sweet' taste receptor subunit gene that reduces the potency of sweet substances in these mice. We hypothesized that the presence of this polymorphism might help explain the contrasting behavioral findings of weak voluntary oral ethanol consumption following sucrose-fade yet robust conditioned place preference for ethanol in this strain. To test this, we compared ethanol consumption initiated by either a 'traditional' sucrose-fade or a fade from an alternative tastant, monosodium glutamate (MSG). We found that in both C57BL/6J and DBA/2J mice, the MSG-fade produced robust increases in home cage ethanol consumption relative to the traditional sucrose-fade. This increased ethanol intake following MSG-fade was evident across a range of ethanol concentrations. Our findings suggest the potential utility of the MSG-fade to establish stable voluntary oral ethanol consumption in mice, particularly ethanol 'non-preferring' strains such as DBA/2J and lend additional support to the notion that ethanol consumption in DBA/2J mice is limited by pronounced taste aversion.

  7. Tolerance to Ethanol or Nicotine Results in Increased Ethanol Self-Administration and Long-Term Depression in the Dorsolateral Striatum

    OpenAIRE

    Abburi, Chandrika; Wolfman, Shannon L.; Metz, Ryan A. E.; Kamber, Rinya; McGehee, Daniel S.; McDaid, John

    2016-01-01

    Abstract Ethanol (EtOH) and nicotine are the most widely coabused drugs. Tolerance to EtOH intoxication, including motor impairment, results in greater EtOH consumption and may result in a greater likelihood of addiction. Previous studies suggest that cross-tolerance between EtOH and nicotine may contribute to the abuse potential of these drugs. Here we demonstrate that repeated intermittent administration of either EtOH or nicotine in adult male Sprague Dawley rats results in tolerance to Et...

  8. Endogenous ethanol production in a patient with chronic intestinal pseudo-obstruction and small intestinal bacterial overgrowth.

    Science.gov (United States)

    Spinucci, Giulio; Guidetti, Mariacristina; Lanzoni, Elisabetta; Pironi, Loris

    2006-07-01

    The case of the gastrointestinal production of ethanol from Candida albicans and Saccharomyces cerevisiae in a Caucasian man with chronic intestinal pseudo-obstruction is reported. The patient, who declared to have always abstained from alcohol, was hospitalized for abdominal pain, belching and mental confusion. The laboratory findings showed the presence of ethanol in the blood. Gastric juice and faecal microbiological cultures were positive for C. albicans and S. cerevisiae. At home, he was on oral antibiotic therapy with amoxicillin plus clavulanic acid for a small bowel bacterial overgrowth, associated with a simple sugar-rich diet. Twenty-four hours after stopping both the antibiotic therapy and the simple sugar-rich diet, the blood ethanol disappeared. A provocative test, performed by giving amoxicillin plus clavulanic acid associated with the simple sugar-rich diet was followed by the reappearance of ethanol in the blood. A review of the literature is reported.

  9. CYP2E1-dependent hepatotoxicity and oxidative damage after ethanol administration in human primary hepatocytes

    Institute of Scientific and Technical Information of China (English)

    Lie-Gang Liu; Hong Yan; Ping Yao; Wen Zhang; Li-Jun Zou; Fang-Fang Song; Ke Li; Xiu-Fa Sun

    2005-01-01

    AIM: To observe the relationship between ethanol-induced oxidative damage in human primary cultured hepatocytes and cytochrome P450 2E1 (CYP2E1) activity, in order to address if inhibition of CYP2E1 could attenuate ethanol-induced cellular damage.METHODS: The dose-dependent (25-100 mmol/L) and time-dependent (0-24 h) exposures of primary human cultured hepatocytes to ethanol were carried out. CYP2E1 activity and protein expression were detected by spectrophotometer and Western blot analysis respectively.Hepatotoxicity was investigated by determination of lactate dehydrogenase (LDH) and aspartate transaminase (AST) level in hepatocyte culture supernatants, as well as the intracellular formation of malondialdehyde (MDA).RESULTS: A dose-and time-dependent response between ethanol exposure and CYP2E1 activity in human hepatocytes was demonstrated. Moreover, there was a time-dependent increase of CYP2E1 protein after 100 mmol/L ethanol exposure. Meanwhile, ethanol exposure of hepatocytes caused a time-dependent increase of ceilular MDA level, LDH, and AST activities in supernatants.Furthermore, the inhibitor of CYP2E1, diallyl sulfide (DAS) could partly attenuate the increases of MDA, LDH, and AST in human hepatocytes.CONCLUSION: A positive relationship between ethanol-induced oxidative aamage in human primary cultured hepatocytes and CYP2E1 activity was exhibited, and the inhibition of CYP2E1 could partly attenuate ethanol-induced oxidative damage.

  10. Proteomic analysis of 4-hydroxynonenal (4-HNE modified proteins in liver mitochondria from chronic ethanol-fed rats

    Directory of Open Access Journals (Sweden)

    Kelly K. Andringa

    2014-01-01

    Full Text Available Chronic ethanol-mediated oxidative stress and lipid peroxidation increases the levels of various reactive lipid species including 4-hydroxynonenal (4-HNE, which can subsequently modify proteins in the liver. It has been proposed that 4-HNE modification adversely affects the structure and/or function of mitochondrial proteins, thereby impairing mitochondrial metabolism. To determine whether chronic ethanol consumption increases levels of 4-HNE modified proteins in mitochondria, male rats were fed control and ethanol-containing diets for 5 weeks and mitochondrial samples were analyzed using complementary proteomic methods. Five protein bands (approx. 35, 45, 50, 70, and 90 kDa showed strong immunoreactivity for 4-HNE modified proteins in liver mitochondria from control and ethanol-fed rats when proteins were separated by standard 1D SDS-PAGE. Using high-resolution proteomic methods (2D IEF/SDS-PAGE and BN-PAGE we identified several mitochondrial proteins immunoreactive for 4-HNE, which included mitofilin, dimethylglycine dehydrogenase, choline dehydrogenase, electron transfer flavoprotein α, cytochrome c1, enoyl CoA hydratase, and cytochrome c. The electron transfer flavoprotein α consistently showed increased 4-HNE immunoreactivity in mitochondria from ethanol-fed rats as compared to mitochondria from the control group. Increased 4-HNE reactivity was also detected for dimethylglycine dehydrogenase, enoyl CoA hydratase, and cytochrome c in ethanol samples when mitochondria were analyzed by BN-PAGE. In summary, this work identifies new targets of 4-HNE modification in mitochondria and provides useful information needed to better understand the molecular mechanisms underpinning chronic ethanol-induced mitochondrial dysfunction and liver injury.

  11. Sub-chronic safety evaluation of the ethanol extract of Aralia elata leaves in Beagle dogs.

    Science.gov (United States)

    Li, Fengjin; He, Xiaoli; Niu, Wenying; Feng, Yuenan; Bian, Jingqi; Kuang, Haixue; Xiao, Hongbin

    2016-08-01

    Aralia elata Seem. (A. elata) is a traditional Chinese medicine to treat some diseases. This investigation aims to evaluate the pharmaceutical safety of the ethanol extract of A. elata leaves, namely ethanol leaves extract (ELE), in Beagle dogs. In sub-chronic oral toxicity study, dogs were treated with the ELE at doses of 50, 100 and 200 mg/kg for 12 weeks and followed by 4 weeks recovery period. During experimental period, clinical signs, mortality, body temperature, food consumption and body weight were recorded. Analysis of electrocardiogram, urinalysis, ophthalmoscopy, hematology, serum biochemistry, organ weights and histopathology were performed. The results showed that both food consumption and body weight significantly decreased in high-dose group. Treatment-related side effects and mortality were observed in high-dose female dogs. Some parameters showed significant alterations in electrocardiogram, urinalysis, serum biochemistry and relative organ weights. These alterations were not related to dose or consistent across gender, which were ascribed to incidental and biological variability. The findings in this study indicated that the no-observed adverse effect level (NOAEL) of the ELE was 100 mg/kg in dogs and provided a vital reference for selecting a safe application dosage for human consumption.

  12. A novel mouse model for the study of the inhibitory effects of chronic ethanol exposure on direct bone formation

    Science.gov (United States)

    Excessive alcohol consumption has been reported to interfere with human bone homeostasis and repair in multiple ways. Previous studies have demonstrated that chronic ethanol exposure in the rat via an intragastric dietary delivery system inhibits direct bone formation during distraction osteogenesis...

  13. Xanthohumol, a prenylated flavonoid from hops (Humulus lupulus L., protects rat tissues against oxidative damage after acute ethanol administration

    Directory of Open Access Journals (Sweden)

    Carmen Pinto

    2014-01-01

    Full Text Available Ethanol-mediated free radical generation is directly involved in alcoholic liver disease. In addition, chronic alcohol bingeing also induces pathological changes and dysfunction in multi-organs. In the present study, the protective effect of xanthohumol (XN on ethanol-induced damage was evaluated by determining antioxidative parameters and stress oxidative markers in liver, kidney, lung, heart and brain of rats. An acute treatment (4 g/kg b.w. of ethanol resulted in the depletion of superoxide dismutase, catalase and glutathione S-transferase activities and reduced glutathione content. This effect was accompanied by the increased activity of tissue damage marker enzymes (glutamate oxaloacetate transaminase, glutamate pyruvate transaminase and lactate dehydrogenase and a significant increase in lipid peroxidation and hydrogen peroxide concentrations. Pre-treatment with XN protected rat tissues from ethanol-induced oxidative imbalance and partially mitigated the levels to nearly normal levels in all tissues checked. This effect was dose dependent, suggesting that XN reduces stress oxidative and protects rat tissues from alcohol-induced injury.

  14. Post-weaning environmental enrichment, but not chronic maternal isolation, enhanced ethanol intake during periadolescence and early adulthood

    Directory of Open Access Journals (Sweden)

    Luciana Rocio Berardo

    2016-10-01

    Full Text Available This study analyzed ethanol intake in male and female Wistar rats exposed to maternal separation (MS during infancy (postnatal days 1-21, PD1-21 and environmental enrichment (EE during adolescence (PD 21-42. Previous work revealed that MS enhances ethanol consumption during adulthood. It is still unknown if a similar effect is found during adolescence. Several studies, in turn, have revealed that EE reverses stress experiences, and reduces ethanol consumption and reinforcement; although others reported greater ethanol intake after EE. The interactive effects between these treatments upon ethanol’s effects and intake have yet to be explored. We assessed chronic ethanol intake and preference (twelve two-bottle daily sessions, spread across 30 days, 1st session on PD46 in rats exposed to MS and EE. The main finding was that male – but not female – rats that had been exposed to EE consumed more ethanol than controls given standard housing, an effect that was not affected by MS. Subsequent experiments assessed several factors associated with heightened ethanol consumption in males exposed to MS and EE; namely taste aversive conditioning and hypnotic-sedative consequences of ethanol. We also measured anxiety response in the light-dark box and in the elevated plus maze tests; and exploratory patterns of novel stimuli and behaviors indicative of risk assessment and risk-taking, via a modified version of the concentric square field (CSF test. Aversive conditioning, hypnosis and sleep time were similar in males exposed or not to environmental enrichment. EE males, however, exhibited heightened exploration of novel stimuli and greater risk taking behaviors in the CSF test. It is likely that the promoting effect of EE upon ethanol intake was due to these effects upon exploratory and risk-taking behaviors.

  15. Repeated Cycles of Chronic Intermittent Ethanol Exposure Increases Basal Glutamate in the Nucleus Accumbens of Mice without affecting glutamate transport

    Directory of Open Access Journals (Sweden)

    William C. Griffin

    2015-02-01

    Full Text Available Repeated cycles of chronic intermittent ethanol (CIE exposure increase voluntary consumption of ethanol in mice. Previous work has shown that extracellular glutamate in the nucleus accumbens (NAc is significantly elevated in ethanol dependent mice and that pharmacologically manipulating glutamate concentrations in the NAc will alter ethanol drinking, indicating that glutamate homeostasis plays a crucial role in ethanol drinking in this model. The present studies were designed to measure extracellular glutamate at a time point in which mice would ordinarily be allowed voluntary access to ethanol in the CIE model and, additionally, to measure glutamate transport capacity in the NAc at the same time point. Extracellular glutamate was measured using quantitative microdialysis procedures. Glutamate transport capacity was measured under Na+ dependent and Na+ independent conditions to determine whether the function of excitatory amino acid transporters (EAATs; also known as system XAG or of system Xc- (Glial cysteine-glutamate exchanger was influenced by CIE exposure. The results of the quantitative microdialysis experiment confirm increased extracellular glutamate (~2 –fold in the NAc of CIE exposed mice (i.e. ethanol-dependent compared to non-dependent mice in the NAc, consistent with earlier work. However, the increase in extracellular glutamate was not due to altered transporter function in the NAc of ethanol-dependent mice, because neither Na+ dependent nor Na+ independent glutamate transport was significantly altered by CIE exposure. These findings point to the possibility that hyperexcitability of cortical-striatal pathways underlies the increases in extracellular glutamate found in the nucleus accumbens of ethanol-dependent mice.

  16. Short-term and long-term ethanol administration inhibits the placental uptake and transport of valine in rats

    Energy Technology Data Exchange (ETDEWEB)

    Patwardhan, R.V.; Schenker, S.; Henderson, G.I.; Abou-Mourad, N.N.; Hoyumpa, A.M. Jr.

    1981-08-01

    Ethanol ingestion during pregnancy causes a pattern of fetal/neonatal dysfunction called the FAS. The effects of short- and long-term ethanol ingestion on the placental uptake and maternal-fetal transfer of valine were studied in rats. The in vivo placental uptake and fetal uptake were estimated after injection of 0.04 micromol of /sub 14/C-valine intravenously on day 20 of gestation in Sprague-Dawley rats. Short-term ethanol ingestion (4 gm/kg) caused a significant reduction in the placental uptake of /sub 14/C-valine by 33%, 60%, and 30%, and 31% at 2.5, 5, 10, and 15 min after valine administration, respectively (p less than 0.01), and a similar significant reduction occurred in the fetal uptake of /sub 14/C-valine (p less than 0.01). Long-term ethanol ingestion prior to and throughout gestation resulted in a 47% reduction in placental valine uptake (p less than 0.01) and a 46% reduction in fetal valine uptake (p less than 0.01). Long-term ethanol feeding from day 4 to day 20 of gestation caused a 32% reduction in placental valine uptake (p less than 0.01) and a 26% reduction in fetal valine uptake (p less than 0.01). We conclude that both short- and long-term ingestion of ethanol inhibit the placental uptake and maternal-fetal transfer of an essential amino acid--valine. An alteration of placental function may contribute to the pathogenesis of the FAS.

  17. Induction of experimental acute ulcerative colitis in rats by administration of dextran sulfate sodium at low concentration followed by intracolonic administration of 30% ethanol

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Several models of experimental ulcerative colitis have been reported previously. However, none of these models showed the optimum characteristics. Although dextran sulfate sodium-induced colitis results in inflammation resembling ulcerative colitis, an obvious obstacle is that dextran sulfate sodium is very expensive. The aim of this study was to develop an inexpensive model of colitis in rats. Sprague-Dawley rats were treated with 2% dextran sulfate sodium in drinking water for 3 d followed by an intracolonic administration of 30% ethanol. The administration of 2% dextran sulfate sodium followed by 30% ethanol induced significant weight loss, diarrhea and hematochezia in rats. Severe ulceration and inflammation of the distal part of rat colon were developed rapidly. Histological examination showed increased infiltration of polymorphonuclear leukocytes,lymphocytes and existence of cryptic abscesses and dysplasia. The model induced by dextran sulfate sodium at lower concentration followed by 30% ethanol is characterized by a clinical course, localization of the lesions and histopathological features similar to human ulcerative colitis and fulfills the criteria set out at the beginning of this study.

  18. Acute ethanol administration reduces the antidote effect of N-acetylcysteine after acetaminophen overdose in mice

    DEFF Research Database (Denmark)

    Dalhoff, K; Hansen, P B; Ott, P;

    1991-01-01

    1. The combined antidote effect of N-acetylcysteine and ethanol on the toxicity of acetaminophen was investigated. 2. Fed male mice were given acetaminophen i.p. (600 mg kg-1) and after 5 min in addition ethanol i.p. (0.2 ml, 19% v/v), N-acetylcysteine i.p. (1.2 g kg-1, 0.2 ml), N-acetylcysteine ......1. The combined antidote effect of N-acetylcysteine and ethanol on the toxicity of acetaminophen was investigated. 2. Fed male mice were given acetaminophen i.p. (600 mg kg-1) and after 5 min in addition ethanol i.p. (0.2 ml, 19% v/v), N-acetylcysteine i.p. (1.2 g kg-1, 0.2 ml), N...

  19. Chronic Social Stress and Ethanol Increase Expression of KLF11, a Cell Death Mediator, in Rat Brain.

    Science.gov (United States)

    Duncan, Jeremy; Wang, Niping; Zhang, Xiao; Johnson, Shakevia; Harris, Sharonda; Zheng, Baoying; Zhang, Qinli; Rajkowska, Grazyna; Miguel-Hidalgo, Jose Javier; Sittman, Donald; Ou, Xiao-Ming; Stockmeier, Craig A; Wang, Jun Ming

    2015-07-01

    Major depressive disorder and alcoholism are significant health burdens that can affect executive functioning, cognitive ability, job responsibilities, and personal relationships. Studies in animal models related to depression or alcoholism reveal that the expression of Krüppel-like factor 11 (KLF11, also called TIEG2) is elevated in frontal cortex, which suggests that KLF11 may play a role in stress- or ethanol-induced psychiatric conditions. KLF11 is a transcriptional activator of monoamine oxidase A and B, but also serves other functions in cell cycle regulation and apoptotic cell death. In the present study, immunohistochemistry was used to quantify intensity of nuclear KLF11, combined with an unbiased stereological approach to assess nuclei in fronto-limbic, limbic, and other brain regions of rats exposed chronically to social defeat or ethanol. KLF11 immunoreactivity was increased significantly in the medial prefrontal cortex, frontal cortex, and hippocampus of both stressed rats and rats fed ethanol. However, expression of KLF11 protein was not significantly affected in the thalamus, hypothalamus, or amygdala in either treatment group compared to respective control rats. Triple-label immunofluorescence revealed that KLF11 protein was localized in nuclei of neurons and astrocytes. KLF11 was also co-localized with the immunoreactivity of cleaved caspase-3. In addition, Western blot analysis revealed a significant reduction in anti-apoptotic protein, Bcl-xL, but an increase of caspase-3 expression in the frontal cortex of ethanol-treated rats compared to ethanol-preferring controls. Thus, KLF11 protein is up-regulated following chronic exposure to stress or ethanol in a region-specific manner and may contribute to pro-apoptotic signaling in ethanol-treated rats. Further investigation into the KLF11 signaling cascade as a mechanism for neurotoxicity and cell death in depression and alcoholism may provide novel pharmacological targets to lessen brain damage and

  20. Chronic intermittent ethanol induced axon and myelin degeneration is attenuated by calpain inhibition.

    Science.gov (United States)

    Samantaray, Supriti; Knaryan, Varduhi H; Patel, Kaushal S; Mulholland, Patrick J; Becker, Howard C; Banik, Naren L

    2015-10-01

    Chronic alcohol consumption causes multifaceted damage to the central nervous system (CNS), underlying mechanisms of which are gradually being unraveled. In our previous studies, activation of calpain, a calcium-activated neutral protease has been found to cause detrimental alterations in spinal motor neurons following ethanol (EtOH) exposure in vitro. However, it is not known whether calpain plays a pivotal role in chronic EtOH exposure-induced structural damage to CNS in vivo. To test the possible involvement of calpain in EtOH-associated neurodegenerative mechanisms the present investigation was conducted in a well-established mouse model of alcohol dependence - chronic intermittent EtOH (CIE) exposure and withdrawal. Our studies indicated significant loss of axonal proteins (neurofilament light and heavy, 50-60%), myelin proteins (myelin basic protein, 20-40% proteolipid protein, 25%) and enzyme (2', 3'-cyclic-nucleotide 3'-phosphodiesterase, 21-55%) following CIE in multiple regions of brain including hippocampus, corpus callosum, cerebellum, and importantly in spinal cord. These CIE-induced deleterious effects escalated after withdrawal in each CNS region tested. Increased expression and activity of calpain along with enhanced ratio of active calpain to calpastatin (sole endogenous inhibitor) was observed after withdrawal compared to EtOH exposure. Pharmacological inhibition of calpain with calpeptin (25 μg/kg) prior to each EtOH vapor inhalation significantly attenuated damage to axons and myelin as demonstrated by immuno-profiles of axonal and myelin proteins, and Luxol Fast Blue staining. Calpain inhibition significantly protected the ultrastructural integrity of axons and myelin compared to control as confirmed by electron microscopy. Together, these findings confirm CIE exposure and withdrawal induced structural alterations in axons and myelin, predominantly after withdrawal and corroborate calpain inhibition as a potential protective strategy against

  1. Mode of ethanol administration influences the severity of hemorrhage-induced lactic acidemia in conscious guinea pigs.

    Science.gov (United States)

    McDonough, Kathleen H; Swafford, Albert N; Giaimo, Mary E; Adamson, Trinka W; Miller, Harvey I

    2010-09-01

    Mechanisms that limit metabolic acidemia during shock are limited by ethanol (EtOH). This may be due to (1) loss of respiratory compensation, (2) a greater fall in cardiac output, (3) altered removal of plasma lactate by the liver, and (4) alterations in central nervous system orchestration of compensatory responses. We have previously shown that loss of metabolic compensation during hemorrhage is correlated with plasma EtOH concentrations. The present study determines if the mode of ethanol administration influences compensation during hemorrhage. Male guinea pigs were administered EtOH (1 g/kg, 30% wt/vol) via intraperitoneal (IP) or intragastric (IG) routes. After 30 minutes, 60% of the estimated blood volume was removed. Animals remained in shock for 30 minutes were resuscitated with lactated Ringer solution and monitored for 3 hours. Plasma EtOH levels were similar in the 2 groups at the initiation of, and during, hemorrhage and resuscitation. Animals given EtOH IP exhibited more severe acidemia. The mode of EtOH administration may affect hepatic ethanol and lactate metabolism, thus exacerbating acidemia. An altered central nervous system response may impact compensatory responses during shock. Our results indicate that the "history" of the EtOH episode may be an important determinant in the compensation for hemorrhage and resuscitation.

  2. Water metabolism in rats subjected to chronic alcohol administration

    DEFF Research Database (Denmark)

    Parlesak, Alexandr; Pohl, C.; Bode, J.C.;

    2004-01-01

    AIM: While the diuretic action of acute ingestion of alcohol has been studied extensively, the effect of chronic alcohol consumption has received less attention. The aim of the present study was to investigate the effect of chronic alcohol consumption on the balance of water intake and excretion ...

  3. Acute ethanol administration inhibits Toll-like receptor 4 signaling pathway in rat intestinal epithelia.

    Science.gov (United States)

    Zhou, Chao; Zhao, Ji; Li, Jing; Wang, Haiying; Tang, Chengwei

    2013-05-01

    Excess alcohol intake, as in binge drinking, increases susceptibility to microbial pathogens. Alcohol impairs macrophage function by suppression of the Toll-like receptor 4 (TLR4) pathway. This study investigated the effects of acute ethanol intake on the TLR4 pathway in rat intestinal epithelia, which usually encounters luminal antigens at first and participates in the development of intestinal immunity. Twenty Wistar rats were randomly assigned to an ethanol group given ethanol as a 25% (v/v) solution in water at 7.5 g/kg, or a control group given saline, by oral gavage daily for 3 days. The epithelial histology and ultrastructure, the intestinal microflora, peripheral and portal venous plasma lipopolysaccharide (LPS) levels, and somatostatin (SST) levels in the peripheral plasma and small intestine were evaluated. Somatostatin receptor 2 (SSTR2), TLR4, TANK binding kinase-1 (TBK1), activated nuclear factor-κB (NF-κB), interferon-γ (IFN-γ) and tumor necrosis factor-α (TNF-α) in the intestinal mucosa were assayed. LPS responsiveness with or without SST pretreatment was assayed in vitro by quantification of TLR4, TBK1, activated NF-κB, IFN-γ and TNF-α in isolated intestinal epithelia. Mucosal damage was observed in the ethanol group by light and electron microscopy. Escherichia coli cultures were unchanged in rat intestine of the ethanol group compared with controls, but lactobacilli cultures were reduced (p TNF-α were unchanged in the ethanol group. LPS treatment in vitro up-regulated the level of TLR4, TBK1 and nuclear NF-κB as well as the production of IFN-γ and TNF-α in isolated intestinal epithelia in the control (p inhibited by SST pretreatment (p < 0.05). The peripheral plasma and intestinal levels of SST and the mucosal expression of SSTR2 in the ethanol group were significantly higher than in the control group (p < 0.05). These findings suggest the hyposensitivity of intestinal epithelial TLR4 to LPS induced by acute alcohol abuse

  4. Ethylphenidate formation in human subjects after the administration of a single dose of methylphenidate and ethanol.

    Science.gov (United States)

    Markowitz, J S; DeVane, C L; Boulton, D W; Nahas, Z; Risch, S C; Diamond, F; Patrick, K S

    2000-06-01

    Ethylphenidate was recently reported as a novel drug metabolite in two overdose fatalities where there was evidence of methylphenidate and ethanol coingestion. This study explores the pharmacokinetics of ethylphenidate relative to methylphenidate and the major metabolite ritalinic acid, in six healthy subjects who received methylphenidate and ethanol under controlled conditions. Subjects (three males, three females) received a single oral dose of methylphenidate (20 mg; two 10-mg tablets) followed by consumption of ethanol (0.6 g/kg) 30 min later. Methylphenidate, ritalinic acid, and ethylphenidate were quantified using liquid chromatography-tandem mass spectrometry. Ethylphenidate was detectable in the plasma and urine of all subjects after ethanol ingestion. The mean (+/-S.D.) area under the concentration versus time curve for ethylphenidate was 1.2 +/- 0.7 ng/ml/h, representing 2.3 +/- 1.3% that of methylphenidate (48 +/- 12 ng/ml/h). A significant correlation was observed between the area under the concentration versus time curve of methylphenidate and that of ethylphenidate. In view of the known dopaminergic activity of racemic ethylphenidate, it remains possible that under certain circumstances of higher level dosing, e.g., in the abuse of methylphenidate and ethanol, the metabolite ethylphenidate may contribute to drug effects.

  5. Betaine Treatment Attenuates Chronic Ethanol-Induced Hepatic Steatosis and Alterations to the Mitochondrial Respiratory Chain Proteome

    Directory of Open Access Journals (Sweden)

    Kusum K. Kharbanda

    2012-01-01

    Full Text Available Introduction. Mitochondrial damage and disruption in oxidative phosphorylation contributes to the pathogenesis of alcoholic liver injury. Herein, we tested the hypothesis that the hepatoprotective actions of betaine against alcoholic liver injury occur at the level of the mitochondrial proteome. Methods. Male Wister rats were pair-fed control or ethanol-containing liquid diets supplemented with or without betaine (10 mg/mL for 4-5 wks. Liver was examined for triglyceride accumulation, levels of methionine cycle metabolites, and alterations in mitochondrial proteins. Results. Chronic ethanol ingestion resulted in triglyceride accumulation which was attenuated in the ethanol plus betaine group. Blue native gel electrophoresis (BN-PAGE revealed significant decreases in the content of the intact oxidative phosphorylation complexes in mitochondria from ethanol-fed animals. The alcohol-dependent loss in many of the low molecular weight oxidative phosphorylation proteins was prevented by betaine supplementation. This protection by betaine was associated with normalization of SAM : S-adenosylhomocysteine (SAH ratios and the attenuation of the ethanol-induced increase in inducible nitric oxide synthase and nitric oxide generation in the liver. Discussion/Conclusion. In summary, betaine attenuates alcoholic steatosis and alterations to the oxidative phosphorylation system. Therefore, preservation of mitochondrial function may be another key molecular mechanism responsible for betaine hepatoprotection.

  6. Acute psychomotor effects of MDMA and ethanol (co-) administration over time in healthy volunteers

    NARCIS (Netherlands)

    Dumont, G J H; Schoemaker, R C; Touw, D J; Sweep, F C G J; Buitelaar, J K; van Gerven, J M A; Verkes, R J

    2010-01-01

    In Western societies, a considerable percentage of young people use 3,4-methylenedioxymethamphetamine (MDMA or 'ecstasy'). The use of alcohol (ethanol) in combination with ecstasy is common. The aim of the present study was to assess the acute psychomotor and subjective effects of (co-) administrati

  7. Changes of phosphorylation of cAMP response element binding protein in rat nucleus accumbens after chronic ethanol intake: naloxone reversal

    Institute of Scientific and Technical Information of China (English)

    LIJing; LIYue-Hua; YUANXiao-Ru

    2003-01-01

    AIM: To study the changes in the expression and phosphorylation of cAMP response element binding protein(CREB) in the rat nucleus accumbens after chronic ethanol intake and its withdrawal. METHODS: Ethanol wasgiven in drinking water at the concentration of 6 % (v/v), for one month. Changes in the levels of CREB andphospho-CREB (p-CREB) protein in the nucleus accumbens were measured by immunohistochemistry methods.RESULTS: Ethanol given to rats in drinking water decreased the level of p-CREB protein in the nucleus accumbens(-75 %) at the time of exposure to ethanol. The decrement of p-CREB protein in the nucleus accumbens remainedat 24 h (-35 %) and 72 h (-28 %) of ethanol withdrawal, which recovered toward control level after 7 d of ethanolwithdrawal. However, chronic ethanol, as well as ethanol withdrawal failed to produce any significant alteration inthe level of CREB protein in the nucleus accumbens. Naloxone (alone) treatment of rats had no effect on the levelsof CREB and p-CREB protein in the nucleus accumbens. However, when naloxone was administered concurrentlywith ethanol treatment, it antagonized the down-regulation of p-CREB protein in the nucleus accumbens (142 %) ofrats exposed to ethanol. CONCLUSION: A long-term intake of ethanol solution down-regulates the phosphoryla-tion of CREB in the nucleus accumbens, and those changes can be reversed by naloxone, which may be one kindof the molecular mechanisms associated with ethano1 dependence.

  8. Chronic ethanol intake-induced changes in open-field behavior and calcium/calmodulin-dependent protein kinase Ⅳ expression in nucleus accumbens of rats: naloxone reversal

    Institute of Scientific and Technical Information of China (English)

    Jing LI; Wei-liang BIAN; Gui-qin XIE; Sheng-zhong CUI; Mei-ling WU; Yue-hua LI; Ling-li QUE; Xiao-ru YUAN

    2008-01-01

    Aim: To investigate the effects of chronic ethanol intake on the locomotor activity and the levels of calcium/calmodulin-dependent protein kinase Ⅳ (CaM kinase Ⅳ) in the nucleus accumbens (NAc) of rats. Simultaneously, the effects of non-selective opioid antagonist (naloxone) on the CaM kinase Ⅳ expression in the NAc and ethanol consumption of rats were also observed. Methods: Ethanol was administered in drinking water at the concentrations of 6% (v/v), for 28 d. The locomotor activity of rats was investigated in the open-field apparatus. CaM kinase Ⅳ levels in the NAc were analyzed using Western blotting. Results: Rats consuming ethanol solution exhibited a significant decrease of ambulation activity, accompanied by a reduced frequency of explorative rearing in an open-field task on d 7 and d 14 of chronic ethanol ingestion, whereas presumed adaptation to the neurological effects of ethanol was observed on d 28. Chronic ethanol intake elicited a significant decrease of the CaM kinase Ⅳ expression in the nuclei, but not in the cytoplasm of the NAc on d 28. Naloxone treatment significantly attenu-ated ethanol intake of rats and antagonized the decrease of CaM kinase Ⅳ in the nuclei of NAc neurons. The cytosolic CaM kinase Ⅳ protein levels of the NAc also increased in rats exposed to ethanol plus naloxone. Conclusion: Chronic ethanol intake-induced changes in explorative behavior is mediated at least partly by changes in CaM kinase Ⅳ signaling in the nuclei of the NAc, and naloxone attenuates ethanol consumption through antagonizing the downregulation of CaM kinase Ⅳ in the NAc.

  9. Roux-en-Y gastric bypass increases intravenous ethanol self-administration in dietary obese rats.

    Directory of Open Access Journals (Sweden)

    James E Polston

    Full Text Available Roux-en-Y gastric bypass surgery (RYGB is an effective treatment for severe obesity. Clinical studies however have reported susceptibility to increased alcohol use after RYGB, and preclinical studies have shown increased alcohol intake in obese rats after RYGB. This could reflect a direct enhancement of alcohol's rewarding effects in the brain or an indirect effect due to increased alcohol absorption after RGYB. To rule out the contribution that changes in alcohol absorption have on its rewarding effects, here we assessed the effects of RYGB on intravenously (IV administered ethanol (1%. For this purpose, high fat (60% kcal from fat diet-induced obese male Sprague Dawley rats were tested ~2 months after RYGB or sham surgery (SHAM using both fixed and progressive ratio schedules of reinforcement to evaluate if RGYB modified the reinforcing effects of IV ethanol. Compared to SHAM, RYGB rats made significantly more active spout responses to earn IV ethanol during the fixed ratio schedule, and achieved higher breakpoints during the progressive ratio schedule. Although additional studies are needed, our results provide preliminary evidence that RYGB increases the rewarding effects of alcohol independent of its effects on alcohol absorption.

  10. Chronic ethanol exposure during adolescence through early adulthood in female rats induces emotional and memory deficits associated with morphological and molecular alterations in hippocampus.

    Science.gov (United States)

    Oliveira, Ana Ca; Pereira, Maria Cs; Santana, Luana N da Silva; Fernandes, Rafael M; Teixeira, Francisco B; Oliveira, Gedeão B; Fernandes, Luanna Mp; Fontes-Júnior, Enéas A; Prediger, Rui D; Crespo-López, Maria E; Gomes-Leal, Walace; Lima, Rafael R; Maia, Cristiane do Socorro Ferraz

    2015-06-01

    There is increasing evidence that heavy ethanol exposure in early life may produce long-lasting neurobehavioral consequences, since brain structural maturation continues until adolescence. It is well established that females are more susceptible to alcohol-induced neurotoxicity and that ethanol consumption is increasing among women, especially during adolescence. In the present study, we investigated whether chronic ethanol exposure during adolescence through early adulthood in female rats may induce hippocampal histological damage and neurobehavioral impairments. Female rats were treated with distilled water or ethanol (6.5 g/kg/day, 22.5% w/v) by gavage from the 35(th)-90(th) day of life. Ethanol-exposed animals displayed reduced exploration of the central area and increased number of fecal boluses in the open field test indicative of anxiogenic responses. Moreover, chronic high ethanol exposure during adolescence induced marked impairments on short-term memory of female rats addressed on social recognition and step-down inhibitory avoidance tasks. These neurobehavioral deficits induced by ethanol exposure during adolescence through early adulthood were accompanied by the reduction of hippocampal formation volume as well as the loss of neurons, astrocytes and microglia cells in the hippocampus. These results indicate that chronic high ethanol exposure during adolescence through early adulthood in female rats induces long-lasting emotional and memory deficits associated with morphological and molecular alterations in the hippocampus.

  11. Action of metadoxine on isolated human and rat alcohol and aldehyde dehydrogenases. Effect on enzymes in chronic ethanol-fed rats.

    Science.gov (United States)

    Parés, X; Moreno, A; Peralba, J M; Font, M; Bruseghini, L; Esteras, A

    1991-01-01

    Metadoxine (pyridoxine-pyrrolidone carboxylate) has been reported to accelerate ethanol metabolism. In the present work we have investigated the effect of metadoxine on the activities of isolated alcohol and aldehyde dehydrogenases from rat and man, and on the activity of these enzymes in chronic ethanol-fed rats. Our results indicate that in vitro metadoxine does not activate any of the enzymatic forms of alcohol dehydrogenase (classes I and II) or aldehyde dehydrogenase (low-Km and high-Km, cytosolic and mitochondrial). At concentrations higher than 0.1 mM, metadoxine inhibits rat class II alcohol dehydrogenase, although this would probably not affect the physiological ethanol metabolism. Chronic ethanol intake for 5 weeks results in a 25% decrease of rat hepatic alcohol dehydrogenase (class I) activity as compared with the pair-fed controls. The simultaneous treatment with metadoxine prevents activity loss, suggesting that the positive effect of metadoxine on ethanol metabolism can be explained by the maintenance of normal levels of alcohol dehydrogenase during chronic ethanol intake. No specific effect of chronic exposure to ethanol or to metadoxine was detected on rat aldehyde dehydrogenase activity.

  12. Adaptive response to chronic mild ethanol stress involves ROS, sirtuins and changes in chromosome dosage in wine yeasts.

    Science.gov (United States)

    Adamczyk, Jagoda; Deregowska, Anna; Skoneczny, Marek; Skoneczna, Adrianna; Kwiatkowska, Aleksandra; Potocki, Leszek; Rawska, Ewa; Pabian, Sylwia; Kaplan, Jakub; Lewinska, Anna; Wnuk, Maciej

    2016-05-24

    Industrial yeast strains of economic importance used in winemaking and beer production are genomically diverse and subjected to harsh environmental conditions during fermentation. In the present study, we investigated wine yeast adaptation to chronic mild alcohol stress when cells were cultured for 100 generations in the presence of non-cytotoxic ethanol concentration. Ethanol-induced reactive oxygen species (ROS) and superoxide signals promoted growth rate during passages that was accompanied by increased expression of sirtuin proteins, Sir1, Sir2 and Sir3, and DNA-binding transcription regulator Rap1. Genome-wide array-CGH analysis revealed that yeast genome was shaped during passages. The gains of chromosomes I, III and VI and significant changes in the gene copy number in nine functional gene categories involved in metabolic processes and stress responses were observed. Ethanol-mediated gains of YRF1 and CUP1 genes were the most accented. Ethanol also induced nucleolus fragmentation that confirms that nucleolus is a stress sensor in yeasts. Taken together, we postulate that wine yeasts of different origin may adapt to mild alcohol stress by shifts in intracellular redox state promoting growth capacity, upregulation of key regulators of longevity, namely sirtuins and changes in the dosage of genes involved in the telomere maintenance and ion detoxification.

  13. Effect of chronic pain on fentanyl self-administration in mice.

    Directory of Open Access Journals (Sweden)

    Carrie L Wade

    Full Text Available The development of opioid addiction in subjects with established chronic pain is an area that is poorly understood. It is critically important to clearly understand the neurobiology associated with propensity toward conversion to addiction under conditions of chronic pain. To pose the question whether the presence of chronic pain influences motivation to self-administer opioids for reward, we applied a combination of rodent models of chronic mechanical hyperalgesia and opioid self-administration. We studied fentanyl self-administration in mice under three conditions that induce chronic mechanical hyperalgesia: inflammation, peripheral nerve injury, and repeated chemotherapeutic injections. Responding for fentanyl was compared among these conditions and their respective standard controls (naïve condition, vehicle injection or sham surgery. Acquisition of fentanyl self-administration behavior was reduced or absent in all three conditions of chronic hyperalgesia relative to control mice with normal sensory thresholds. To control for potential impairment in ability to learn the lever-pressing behavior or perform the associated motor tasks, all three groups were evaluated for acquisition of food-maintained responding. In contrast to the opioid, chronic hyperalgesia did not interfere with the reinforcing effect of food. These studies indicate that the establishment of chronic hyperalgesia is associated with reduced or ablated motivation to seek opioid reward in mice.

  14. Chronic Cannabinoid Administration in Vivo Compromises Extinction of Fear Memory

    Science.gov (United States)

    Lin, Hui-Ching; Mao, Sheng-Chun; Chen, Po-See; Gean, Po-Wu

    2008-01-01

    Endocannabinoids are critically involved in the extinction of fear memory. Here we examined the effects of repeated cannabinoid administration on the extinction of fear memory in rats and on inhibitory synaptic transmission in medial prefrontal cortex (mPFC) slices. Rats were treated with the CB1 receptor agonist WIN55212-2 (WIN 10 mg/kg, i.p.)…

  15. 5-lipoxygenase expression in a brain damage model induced by chronic oral administration of aluminum

    Institute of Scientific and Technical Information of China (English)

    Yongquan Pan; Peng Zhang; Junqing Yang; Qiang Su

    2010-01-01

    A preliminary study has found that the 5-lipoxygenase inhibitor, caffeic acid, has a marked protective effect on acute brain injury induced by intracerebroventricular microinjection of aluminum.In this experiment, chronic brain injury and neuronal degeneration model was established in rats by chronic oral administration of aluminum, and then intervened using caffeic acid. Results showed that caffeic acid can downregulate chronic aluminum overload-induced 5-lipoxygenase mRNA and protein expression, and repair the aluminum overload-induced hippocampal neuronal damage andspatial orientation impairment. It is suggested that direct intervention of 5-lipoxygenase expression has a neuroprotective role in the degeneration induced by chronic aluminum overload brain injury model.

  16. Amelioration of alcohol-induced hepatotoxicity by the administration of ethanolic extract of Sida cordifolia Linn.

    Science.gov (United States)

    Rejitha, S; Prathibha, P; Indira, M

    2012-10-01

    Sida cordifolia Linn. (Malvaceae) is a plant used in folk medicine for the treatment of the inflammation of oral mucosa, asthmatic bronchitis, nasal congestion and rheumatism. We studied the hepatoprotective activity of 50 % ethanolic extract of S. cordifolia Linn. against alcohol intoxication. The duration of the experiment was 90 d. The substantially elevated levels of toxicity markers such as alanine aminotransferase, aspartate aminotransferase and γ-glutamyl transferase due to the alcohol treatment were significantly lowered in the extract-treated groups. The activity of antioxidant enzymes and glutathione content, which was lowered due to alcohol toxicity, was increased to a near-normal level in the co-administered group. Lipid peroxidation products, protein carbonyls, total collagen and hydroxyproline, which were increased in the alcohol-treated group, were reduced in the co-administered group. The mRNA levels of cytochrome P450 2E1, NF-κB, TNF-α and transforming growth factor-β1 were found to be increased in the alcohol-treated rats, and their expressions were found to be decreased in the co-administered group. These observations were reinforced by histopathological analysis. Thus, the present study clearly indicates that 50 % ethanolic extract of the roots of S. cordifolia Linn. has a potent hepatoprotective action against alcohol-induced toxicity, which was mediated by lowering oxidative stress and by down-regulating the transcription factors.

  17. Effects of quercetin on hyper-proliferation of gastric mucosal cells in rats treated with chronic oral ethanol through the reactive oxygen species-nitric oxide pathway

    Institute of Scientific and Technical Information of China (English)

    Jing-Li Liu; Jun Du; Ling-Ling Fan; Xiao-Yan Liu; Luo Gu; Ying-Bin Ge

    2008-01-01

    AIM:To investigate the effect of quercetin (3,3,4',5,7-pentahydroxy flavone),a major flavonoid in human diet,on hyper-proliferation of gastric mucosal cells in rats treated with chronic oral ethanol.METHODS:Forty male Sprague-Dawley rats,weighing 200-250 g,were randomly divided into control group (tap water ad//b/tum),ethanol treatment group (6 mL/L ethanol),quercetin treatment group (intragastric garage with 100 mg/kg of quercetin per day),and ethanol plus quercetin treatment group (quercetin and 6 mL/L ethanol).Expression levels of proliferating cell nuclear antigen (PCNA) and Cyclin D1 were detected by Western blot to assay gastric mucosal cell proliferation in rats.To demonstrate the influence of quercetin on the production of extra-cellular reactive oxygen species/nitrogen species (ROS/RNS) in rats,changes in levels of thiobarbituric acid reactive substance (TBAR5),protein carbonyl,nitrite and nitrate (NOx) and nitrotyrosine (NT) were determined.The activity of inducible nitric oxide synthase (NOS) including iNOS and nNOS was also detected by Western blot,RESULTS:Compared to control animals,cell proliferation in the gastric mucosa of animals subjected to ethanol treatment for 7 days was significant increased (increased to 290% for PCNA density P < 0.05,increased to150 for Cyclin D1 density P < 0.05 and 21.6 + 0.8 vs 42.3 + 0.7 for PCNA positive cells per view field),accompanied by an increase in ROS generation (1.298 ± 0.135 μmol vs 1.772 ± 0.078 μmol for TBARS P < 0.05;4.36 + 0.39 mmol vs 7.48 4- 0.40 mmol for carbonyl contents P < 0.05) and decrease in NO generation (11.334 + 0.467 μmol vs 7.978 ± 0.334 μmol P < 0.01 for NOx;8.986 ± 1.351 μmol vs 6.854 ± 0.460 μmol for nitrotyrosine P < 0.01) and nNOS activity (decreased to 43% P < 0.05).This function was abolished by the co-administration of quercetin.CONCLUSION:The antioxidant action of quercetin relies,in part,on its ability to stimulate nNOS and enhance production of NO that

  18. Chronic administration of Abarema cochliacarpos attenuates colonic inflammation in rats

    Directory of Open Access Journals (Sweden)

    Maria Silene da Silva

    Full Text Available Inflammatory bowel diseases are characterized by a chronic clinical course of relapse and remission associated with self-destructive inflammation of the gastrointestinal tract. Active extracts from plants have emerged as natural potential candidates for its treatment. Abarema cochliacarpos (Gomes Barneby & Grimes, Fabaceae (Barbatimão, is a native medicinal plant in to Brazil. Previously we have demonstrated in an acute colitis model a marked protective effect of a butanolic extract, so we decided to assess its anti-inflammatory effect in a chronic ulcerative colitis model induced by trinitrobenzensulfonic acid (TNBS. Abarema cochliacarpos (150 mg/day, v.o. was administered for fourteen consecutive days. This treatment decreased significantly macroscopic damage as compared with TNBS. Histological analysis showed that the extract improved the microscopic structure. Myeloperoxidase activity (MPO was significantly decreased. Study of cytokines showed that TNF-α was diminished and IL-10 level was increased after Abarema cochliacarpos treatment. In order to elucidate inflammatory mechanisms, expression of cyclooxygenase (COX-2 and nitric oxide synthase (iNOS were studied showing a significant downregulation. In addition, there was reduction in the JNK and p-38 activation. Finally, IκB degradation was blocked by Abarema cochliacarpos treatment being consistent with an up-regulation of the NF-kappaB-binding activity. These results reinforce the anti-inflammatory effects described previously suggesting that Abarema cochliacarpos could provide a source for the search for new anti-inflammatory compounds useful in ulcerative colitis treatment.

  19. Mathematical modelling of ethanol metabolism in normal subjects and chronic alcohol misusers

    OpenAIRE

    Smith, G.D.; Shaw, L. J.; Maini, P. K.; Ward, R J; Peters, T. J.; Murray, J D

    1993-01-01

    The time course of ethanol disappearance from the blood has been examined in normal males and females and in alcohol misusers. Blood alcohol estimations were made over a period of 3 hr, following an oral dose of ethanol (0.8 g/kg body weight) administered in the form of whisky. Attempts were made to fit the data to zero order, first order and mixed zero + first order kinetics. In the majority (75%) of normal females the blood ethanol concentration was still increasing at 30 min. This was only...

  20. The novelty-seeking phenotype modulates the long-lasting effects of intermittent ethanol administration during adolescence.

    Directory of Open Access Journals (Sweden)

    Sandra Montagud-Romero

    Full Text Available The aim of the present study was to investigate if a novelty-seeking phenotype mediates the long-lasting consequences of intermittent EtOH intoxication during adolescence. The hole board test was employed to classify adolescent mice as High- or Low-Novelty Seekers. Subsequently, animals were administered ethanol (1.25 or 2.5 g/kg on two consecutive days at 48-h intervals over a 14-day period. Anxiety levels--measured using the elevated plus maze- spontaneous motor activity and social interaction test were studied 3 weeks later. A different set of mice underwent the same procedure, but received only the 2.5 g/kg dose of ethanol. Three weeks later, in order to induce CPP, the same animals were administered 1 or 6 mg/kg of cocaine or 1 or 2.5 mg/kg MDMA. The results revealed a decrease in aggressive behaviors and an anxiolytic profile in HNS mice and longer latency to explore the novel object by LNS mice. Ethanol exposure enhanced the reinforcing effects of cocaine and MDMA in both groups when CPP was induced with a sub-threshold dose of the drugs. The extinguished cocaine-induced CPP (1 and 6 mg/kg was reinstated after a priming dose in HNS animals only. Our results confirm that intermittent EtOH administration during adolescence induces long-lasting effects that are manifested in adult life, and that there is an association between these effects and the novelty-seeking phenotype.

  1. Protective Effects of Garlic Oil against Liver Damage Induced by Combined Administration of Ethanol and Carbon Tetrachloride in Rats

    Directory of Open Access Journals (Sweden)

    Ashraf B. Abdel-Naim a, Amani E. Khalifaa, Sherif H. Ahmed b

    2002-03-01

    Full Text Available Herbs are known to play a vital role in the management of various liver diseases. Garlic oil (GO contains numerous organosulfur compounds with potential hepatoprotective effects. The present work was planned to evaluate the possible preventive role of GO on biochemical and histopathological alterations induced by combined administration of ethanol (EOH and carbon tetrachloride (CCl4 in rat liver. Two dose levels of GO (5 or 10 mg/kg/day were administered orally to rats for 7 consecutive days with EOH + CCl4-induced liver damage. Activity of GO against liver damage was compared with that of silymarin (25 mg/kg/day, p.o. for 7 consecutive days. Biochemical parameters including serum aspartate aminotransferase (AST, alanine aminotransferase (ALT, gamma glutamyl transpeptidase (­GT, alkaline phophatase (ALP and bilirubin were estimated to assess the liver function. In addition, the level of total proteins, triglycerides, total cholesterol, glutathione (GSH, and thiobarbituric acid reactive substances (TBARS, in liver tissues were estimated. Liver damage was evidenced by an increase in the activity/level of AST, ALT, -GT, ALP and bilirubin in sera of rats after the combined administration of EOH and CCl4 compared to normal animals. Pretreatment of rats with GO reduced the EOH + CCl4-induced elevated levels of the above indices. Similarly, GO significantly prevented the decline in total proteins and the increase in triglycerides and total cholesterol resulted after EOH + CCl4 administration in rat liver homogenates. In addition, GO pretreatment restored liver GSH levels decreased due to EOH + CCl4 administration. The elevation in liver TBARS level due to EOH + CCl4 administration was also prevented by pretreatment with both low and high doses of GO. Histopathological examination indicated that GO exhibited an obvious preventive effect against the centrilobular necrosis and nodule formation induced by EOH + CCl4 administration. In conclusion, GO

  2. Neuropeptide Y Administration into the Amygdala Suppresses Ethanol Drinking in Alcohol-Preferring (P) Rats Following Multiple Deprivations

    Science.gov (United States)

    Gilpin, Nicholas W.; Stewart, Robert B.; Badia-Elder, Nancy E.

    2008-01-01

    The present experiment examines the effects of NPY administered into the amygdala on ethanol drinking by alcohol-preferring P rats following long-term continuous ethanol access, with and without multiple periods of imposed ethanol abstinence. P rats had access to 15% (v/v) ethanol and water for 11 weeks followed by 2 weeks of ethanol abstinence, re-exposure to ethanol for 2 weeks, 2 more weeks of ethanol abstinence, and a final ethanol re-exposure. Immediately prior to the second ethanol re-exposure, 4 groups of rats received bilateral infusions NPY (0.25, 0.5, 1.0 μg) or artificial cerebrospinal fluid (aCSF) into the amygdala. Two additional groups were given uninterrupted ethanol access and were infused with a single NPY dose (1.0 μg) or aCSF. The highest NPY dose (1.0 μg) suppressed ethanol intake for 24 hrs in rats with a history of ethanol abstinence (i.e. deprivation) periods, but had no effect in rats with a history of continuous ethanol access. Water and food intakes were not altered. These results suggest that the amygdala mediates the suppressive effects of centrally administered NPY on ethanol drinking, and that NPY may block relapse-like drinking by opposing the anxiogenic effects of ethanol abstinence. PMID:18499241

  3. Neurochemical Effects of Chronic Administration of Calcitriol in Rats

    Directory of Open Access Journals (Sweden)

    Pei Jiang

    2014-12-01

    Full Text Available Despite accumulating data showing the various neurological actions of vitamin D (VD, its effects on brain neurochemistry are still far from fully understood. To further investigate the neurochemical influence of VD, we assessed neurotransmitter systems in the brain of rats following 6-week calcitriol (1,25-dihydroxyvitamin D administration (50 ng/kg/day or 100 ng/kg/day. Both the two doses of calcitriol enhanced VDR protein level without affecting serum calcium and phosphate status. Rats treated with calcitriol, especially with the higher dose, exhibited elevated γ-aminobutyric acid (GABA status. Correspondingly, the mRNA expression of glutamate decarboxylase (GAD 67 was increased. 100 ng/kg of calcitriol administration also increased glutamate and glutamine levels in the prefrontal cortex, but did not alter glutamine synthetase (GS expression. Additionally, calcitriol treatment promoted tyrosine hydroxylase (TH and tryptophan hydroxylase 2 (TPH2 expression without changing dopamine and serotonin status. However, the concentrations of the metabolites of dopamine and serotonin were increased and the drug use also resulted in a significant rise of monoamine oxidase A (MAOA expression, which might be responsible to maintain the homeostasis of dopaminergic and serotonergic neurotransmission. Collectively, the present study firstly showed the effects of calcitriol in the major neurotransmitter systems, providing new evidence for the role of VD in brain function.

  4. Effect of chronic ethanol consumption in female rats subjected to experimental sepsis

    Energy Technology Data Exchange (ETDEWEB)

    Castro, C.L. [Programa de Pós-Graduação em Patologia, Universidade Federal Fluminense, Niterói, RJ (Brazil); Aguiar-Nemer, A.S. [Departamento de Nutrição, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, MG (Brazil); Castro-Faria-Neto, H.C. [Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, RJ (Brazil); Barros, F.R. [Programa de Pós-Graduação em Patologia, Universidade Federal Fluminense, Niterói, RJ (Brazil); Rocha, E.M.S. [Departamento de Microbiologia e Parasitologia, Universidade Federal Fluminense, Niterói, RJ (Brazil); Silva-Fonseca, V.A. [Departamento de Fisiologia e Farmacologia, Universidade Federal Fluminense, Niterói, RJ (Brazil)

    2013-12-10

    The objective of this research was to evaluate the interference of ethanol consumption by female rats with cytokines involved in the sepsis process and its correlation with mortality, the main outcome of sepsis. Female Wistar rats in estrus phase were evaluated in three experiments. Experiment 1 (n=40) was performed to determine survival rates. Experiment 2 (n=69) was designed for biochemical analysis, measurement of cytokine and estrogen levels before and after sepsis, and experiment 3 (n=10) was performed to evaluate bacterial growth by colony counts of peritoneal fluid. In all experiments, treated animals were exposed to a 10% ethanol/water solution (v/v) as the single drinking source, while untreated animals were given tap water. After 4 weeks, sepsis was induced in the rats by ip injection of feces. In experiment 1, mortality in ethanol-exposed animals was delayed compared with those that drank water (48 h; P=0.0001). Experiment 2 showed increased tumor necrosis factor alpha (TNF-α) and decreased interleukin-6 (IL-6) and macrophage migration inhibitory factor in septic animals exposed to ethanol compared to septic animals not exposed. Sepsis also increased TNF-α and IL-6 levels in both ethanol- and water-exposed groups. Biochemical analysis showed higher creatinine, alanine aminotransferase and aspartate aminotransferase and decreased glucose levels in septic animals that were exposed to ethanol. In experiment 3, septic animals exposed to ethanol showed decreased numbers of colony-forming units than septic animals exposed to water. These results suggest that ethanol consumption delays the mortality of female rats in estrus phase after sepsis induction. Female characteristics, most probably sex hormones, may be involved in cytokine expression.

  5. Vaccine administration in children with chronic kidney disease.

    Science.gov (United States)

    Esposito, Susanna; Mastrolia, Maria Vincenza; Prada, Elisabetta; Pietrasanta, Carlo; Principi, Nicola

    2014-11-20

    Pediatric patients with severe chronic kidney disease (CKD) on conservative treatment, on dialysis, and those with renal transplantation are at a higher risk for infectious diseases as the result of impaired immune responses against infectious agents. Infections in these patients can have drastic consequences for disease morbidity and mortality. Immunization is a crucial preventive strategy for disease management in this pediatric population. However, vaccination coverage among children with CKD remains low due to safety concerns and doubts about vaccine immunogenicity and efficacy. In this study, we reviewed why children with CKD are at higher risk of infections, the importance of vaccinations among these children, barriers to vaccinations, and recommend the best vaccination schedules. Overall, vaccines have acceptable immunogenicity, efficacy, and safety profiles in children with CKD. However, in some cases, the protective antibody levels induced by vaccines and the benefits and risks of booster vaccine doses must be individually managed. Furthermore, close contacts and household members of these children should complete age-appropriate vaccination schedules to increase the child's indirect protection.

  6. EFFECTS OF ADMINISTRATION OF ETHANOLIC ROOT EXTRACT OF JATROPHA GOSSYPIFOLIA AND PREDNISOLONE ON THE KIDNEYS OF WISTAR RATS

    Directory of Open Access Journals (Sweden)

    Medubi L.J

    2010-01-01

    Full Text Available The effect of oral administration of ethanolic root extract of Jatropha gossypifolia and prednisolone on the kidney histology and renal function of albino rats was studied to assess the safety and toxicity of the plant as an herbal remedy.The rats were divided into four groups I, II, III and IV. Group I served as control and was given feed and water only. Group II, III, and IV were subdivided into Group IIa, IIb, IIIa, IIIb, IVa and IVb. Groups IIa, IIIa, and IVa received 10 mg, 20 mg and 30 mg/kg b.w of the extract while Group IIb, IIIb and IVb received 10 mg ,20 mg and 30 mg/kg b.w of the extract respectively plus 10 mg/kg b.w of prednisolone per day. The animals were sacrificed on day 7, 10 and 14 and their kidneys harvested and processed for histological studies. Their blood was also collected for serum urea measurement.Photomicrographs of the histological sections of Groups II, III and IV rats revealed changes compared to the control group and serum urea levels were significantly higher in these groups. Histological changes observed are consistent with glomerulonephritis and include increased urinary (Bowman's space, shrinkage and distortion of the glomerular tuft as well as scarring of the glomeruli. Changes appear to be both dosage and time dependent and the administration of prednisolone as an adjunct did not exert any ameliorative effect.We conclude that ethanolic root extract of Jatropha gossypifolia is toxic to the kidney and causes increased urea retention in the blood.

  7. Ethanol co-administration moderates 3,4-methylenedioxymethamphetamine effects on human physiology

    NARCIS (Netherlands)

    Dumont, G.J.H.; Kramers, C.; Sweep, F.C.G.J.; Willemsen, J.J.; Touw, D.J.; Schoemaker, R.C.; Van Gerven, J.M.A.; Buitelaar, J.K.; Verkes, R.J.

    2010-01-01

    Alcohol is frequently used in combination with 3,4- methylenedioxymethamphetamine (MDMA). Both drugs affect cardiovascular function, hydration and temperature regulation, but may have partly opposing effects. The present study aims to assess the acute physiologic effects of (co-) administration of M

  8. Optogenetic stimulation of VTA dopamine neurons reveals that tonic but not phasic patterns of dopamine transmission reduce ethanol self-administration

    Directory of Open Access Journals (Sweden)

    Caroline E Bass

    2013-11-01

    Full Text Available There is compelling evidence that acute ethanol exposure stimulates ventral tegmental area (VTA dopamine cell activity and that VTA-dependent dopamine release in terminal fields within the nucleus accumbens plays an integral role in the regulation of ethanol drinking behaviors. Unfortunately, due to technical limitations, the specific temporal dynamics linking VTA dopamine cell activation and ethanol self-administration are not known. In fact, establishing a causal link between specific patterns of dopamine transmission and ethanol drinking behaviors has proven elusive. Here, we sought to address these gaps in our knowledge using a newly developed viral-mediated gene delivery strategy to selectively express Channelrhodopsin-2 (ChR2 on dopamine cells in the VTA of wild-type rats. We then used this approach to precisely control VTA dopamine transmission during voluntary ethanol drinking sessions. The results confirmed that ChR2 was selectively expressed on VTA dopamine cells and delivery of blue light pulses to the VTA induced dopamine release in accumbal terminal fields with very high temporal and spatial precision. Brief high frequency VTA stimulation induced phasic patterns of dopamine release in the nucleus accumbens. Lower frequency stimulation, applied for longer periods mimicked tonic increases in accumbal dopamine. Notably, using this optogenetic approach in rats engaged in an intermittent ethanol drinking procedure, we found that tonic, but not phasic, stimulation of VTA dopamine cells selectively attenuated ethanol drinking behaviors. Collectively, these data demonstrate the effectiveness of a novel viral targeting strategy that can be used to restrict opsin expression to dopamine cells in standard outbred animals and provide the first causal evidence demonstrating that tonic activation of VTA dopamine neurons selectively decreases ethanol self-administration behaviors.

  9. Optogenetic stimulation of VTA dopamine neurons reveals that tonic but not phasic patterns of dopamine transmission reduce ethanol self-administration.

    Science.gov (United States)

    Bass, Caroline E; Grinevich, Valentina P; Gioia, Dominic; Day-Brown, Jonathan D; Bonin, Keith D; Stuber, Garret D; Weiner, Jeff L; Budygin, Evgeny A

    2013-01-01

    There is compelling evidence that acute ethanol exposure stimulates ventral tegmental area (VTA) dopamine cell activity and that VTA-dependent dopamine release in terminal fields within the nucleus accumbens plays an integral role in the regulation of ethanol drinking behaviors. Unfortunately, due to technical limitations, the specific temporal dynamics linking VTA dopamine cell activation and ethanol self-administration are not known. In fact, establishing a causal link between specific patterns of dopamine transmission and ethanol drinking behaviors has proven elusive. Here, we sought to address these gaps in our knowledge using a newly developed viral-mediated gene delivery strategy to selectively express Channelrhodopsin-2 (ChR2) on dopamine cells in the VTA of wild-type rats. We then used this approach to precisely control VTA dopamine transmission during voluntary ethanol drinking sessions. The results confirmed that ChR2 was selectively expressed on VTA dopamine cells and delivery of blue light pulses to the VTA induced dopamine release in accumbal terminal fields with very high temporal and spatial precision. Brief high frequency VTA stimulation induced phasic patterns of dopamine release in the nucleus accumbens. Lower frequency stimulation, applied for longer periods mimicked tonic increases in accumbal dopamine. Notably, using this optogenetic approach in rats engaged in an intermittent ethanol drinking procedure, we found that tonic, but not phasic, stimulation of VTA dopamine cells selectively attenuated ethanol drinking behaviors. Collectively, these data demonstrate the effectiveness of a novel viral targeting strategy that can be used to restrict opsin expression to dopamine cells in standard outbred animals and provide the first causal evidence demonstrating that tonic activation of VTA dopamine neurons selectively decreases ethanol self-administration behaviors.

  10. Chronic administration of quercetin prevent spatial learning and memory deficits provoked by chronic stress in rats.

    Science.gov (United States)

    Mohammadi, Hadis Said; Goudarzi, Iran; Lashkarbolouki, Taghi; Abrari, Kataneh; Elahdadi Salmani, Mahmoud

    2014-08-15

    There are several reports that cognitive impairment is observed in stress related disorders and chronic stress impairs learning and memory. However, very few studies have looked into the possible ways of preventing this stress-induced deficit. This research study was conducted to evaluate the effects of quercetin, a natural flavonoid, with strong antioxidant and free radical scavenger properties, on chronic stress induced learning and memory deficits and oxidative stress in hippocampus. For chronic stress, rats were restrained daily for 6h/day (from 9:00 to 15:00) for 21 days in well-ventilated plexiglass tubes without access to food and water. The animals were injected with quercetin or vehicle 60 min before restraint stress over a period of 21 days. Then, rats trained with six trials per day for 6 consecutive days in the water maze. On day 28, a probe test was done to measure memory retention. In addition, oxidative stress markers in the hippocampus were evaluated. Results of this study demonstrated that chronic stress exposure rats exhibited higher escape latency during training trials and reduced time spent in target quadrant, higher escape location latency and average proximity in probe trial test. Quercetin (50mg/kg) treatment during restraint stress (21 days) markedly decreased escape latency and increased time spent in target quadrant during Morris water maze task. In comparison to vehicle treated group, chronic-stress group had significantly higher malondialdehyde (MDA) levels, significantly higher superoxide dismutase (SOD) activity and significantly lower glutathione peroxidase (GPx) activity in the hippocampus. Quercetin treatment caused a significant decrease in the hippocampus MDA levels and improves SOD and GPx activities in stressed animals. Finally, quercetin significantly decreased plasma corticosterone levels in stressed animals. Based on results of this study, chronic stress has detrimental effects on learning and memory and quercetin treatment

  11. Chronic administration of fluoxetine or clozapine induces oxidative stress in rat liver: a histopathological study.

    Science.gov (United States)

    Zlatković, Jelena; Todorović, Nevena; Tomanović, Nada; Bošković, Maja; Djordjević, Snežana; Lazarević-Pašti, Tamara; Bernardi, Rick E; Djurdjević, Aleksandra; Filipović, Dragana

    2014-08-01

    Chronic exposure to stress contributes to the etiology of mood disorders, and the liver as a target organ of antidepressant and antipsychotic drug metabolism is vulnerable to drug-induced toxicity. We investigated the effects of chronic administration of fluoxetine (15mg/kg/day) or clozapine (20mg/kg/day) on liver injury via the measurement of liver enzymes, oxidative stress and histopathology in rats exposed to chronic social isolation (21days), an animal model of depression, and controls. The activity of serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST), the liver content of carbonyl groups, malonyldialdehyde (MDA), reduced glutathione (GSH), cytosolic glutathione S-transferase (GST) and nitric oxide (NO) metabolites were determined. We also characterized nuclear factor-κB (NF-κB), cyclooxygenase-2 (COX-2) and CuZn-superoxide dismutase (CuZnSOD) protein expression as well as histopathological changes. Increased serum ALT activity in chronically-isolated and control animals treated with both drugs was found while increased AST activity was observed only in fluoxetine-treated rats (chronically-isolated and controls). Increased carbonyl content, MDA, GST activity and decreased GSH levels in drug-treated controls/chronically-isolated animals suggest a link between drugs and hepatic oxidative stress. Increased NO levels associated with NF-κB activation and the concomitant increased COX-2 expression together with compromised CuZnSOD expression in clozapine-treated chronically-isolated rats likely reinforce oxidative stress, observed by increased lipid peroxidation and GSH depletion. In contrast, fluoxetine reduced NO levels in chronically-isolated rats. Isolation induced oxidative stress but histological changes were similar to those observed in vehicle-treated controls. Chronic administration of fluoxetine in both chronically-isolated and control animals resulted in more or less normal hepatic architecture, while clozapine in both groups

  12. Pathogenesis of nephrogenic diabetes insipidus due to chronic administration of lithium in rats.

    OpenAIRE

    S. Christensen; Kusano, E; Yusufi, A N; Murayama, N; Dousa, T P

    1985-01-01

    A polyuric syndrome with nephrogenic diabetes insipidus (NDI) is a frequent consequence of prolonged administration of lithium (Li) salts. Studies in the past, mainly the acute and in vitro experiments, indicated that Li ions can inhibit hydroosmotic effect of [8-arginine]vasopressin (AVP) at the step of cAMP generation in vitro. However, the pathogenesis of the NDI due to chronic oral administration of low therapeutic doses of Li salts is not yet clarified. We conducted a comprehensive study...

  13. Effects of ethanol on voltage-sensitive Na-channels in cultured skeletal muscle: Up-regulation as a result of chronic treatment

    Energy Technology Data Exchange (ETDEWEB)

    Brodie, C.; Sampson, S.R. (Bar-Ilan Univ., Ramat-Gan (Israel))

    1990-12-01

    The effects of acute and chronic treatment with ethanol were studied on the number and activity of tetrodotoxin-sensitive Na-channels in cultured rat skeletal muscle. The number of channels was determined by measurements of specific binding of (3H) saxitoxin (STX) in whole cell preparations. Measurements were also made of the frequency and rate of rise of spontaneously occurring action potentials, which are the physiologic expression of Na-channel density. Acute ethanol (37.5-150 mM), while causing depolarization of membrane potential and blockade of electrical activity, was without effect on specific STX binding. Neither methanol, acetaldehyde nor ethylene glycol had significant effects on these properties when given acutely in the same concentrations as ethanol. Chronic ethanol caused dose-related increases in STX binding and action potential properties with maximal levels being attained after 3 days of treatment at a concentration of 150 mM. On removal of ethanol from the culture medium all properties returned to control levels after 48 hr. Both increased external K+ and tetrodotoxin, which up-regulate Na-channels by reducing cytosolic Ca++, potentiated the ethanol-induced increase in Na-channel density. The increase in STX binding was not associated with changes in affinity of the binding sites for the ligand but was completely prevented by treatment with cycloheximide and actinomycin D. The results demonstrate that ethanol interacts with the cell membrane to induce synthesis of STX-binding sites.

  14. Influence of chronic ethanol intake on mouse synaptosomal aspartyl aminopeptidase and aminopeptidase A: relationship with oxidative stress indicators.

    Science.gov (United States)

    Mayas, María Dolores; Ramírez-Expósito, María Jesús; García, María Jesús; Carrera, María Pilar; Martínez-Martos, José Manuel

    2012-08-01

    Aminopeptidase A (APA) and aspartyl aminopeptidase (ASAP) not only act as neuromodulators in the regional brain renin-angiotensin system, but also release N-terminal acidic amino acids (glutamate and aspartate). The hyperexcitability of amino acid neurotransmitters is responsible for several neurodegenerative processes affecting the central nervous system. The purpose of the present work was to study the influence of chronic ethanol intake, a well known neurotoxic compound, on APA and ASAP activity under resting and K(+)-stimulated conditions at the synapse level. APA and ASAP activity were determined against glutamate- and aspartate-β-naphthylamide respectively in mouse frontal cortex synaptosomes and in their incubation supernatant in a Ca(2+)-containing or Ca(2+)-free artificial cerebrospinal fluid. The neurotoxic effects were analyzed by determining free radical generation, peroxidation of membrane lipids and the oxidation of synaptosomal proteins. In addition, the bioenergetic behavior of synaptosomes was analyzed under different experimental protocols. We obtained several modifications in oxidative stress parameters and a preferential inhibitor effect of chronic ethanol intake on APA and ASAP activities. Although previous in vitro studies failed to show signs of neurodegeneration, these in vivo modifications in oxidative stress parameters do not seem to be related to changes in APA and ASAP, invalidating the idea that an excess of free acidic amino acids released by APA and ASAP induces neurodegeneration.

  15. Evaluation of Krebs cycle enzymes in the brain of rats after chronic administration of antidepressants.

    Science.gov (United States)

    Scaini, Giselli; Santos, Patricia M; Benedet, Joana; Rochi, Natália; Gomes, Lara M; Borges, Lislaine S; Rezin, Gislaine T; Pezente, Daiana P; Quevedo, João; Streck, Emilio L

    2010-05-31

    Several works report brain impairment of metabolism as a mechanism underlying depression. Citrate synthase and succinate dehydrogenase are enzymes localized within cells in the mitochondrial matrix and are important steps of Krebs cycle. In addition, citrate synthase has been used as a quantitative enzyme marker for the presence of intact mitochondria. Thus, we investigated citrate synthase and succinate dehydrogenase activities from rat brain after chronic administration of paroxetine, nortriptiline and venlafaxine. Adult male Wistar rats received daily injections of paroxetine (10mg/kg), nortriptiline (15mg/kg), venlafaxine (10mg/kg) or saline in 1.0mL/kg volume for 15 days. Twelve hours after the last administration, the rats were killed by decapitation, the hippocampus, striatum and prefrontal cortex were immediately removed, and activities of citrate synthase and succinate dehydrogenase were measured. We verified that chronic administration of paroxetine increased citrate synthase activity in the prefrontal cortex, hippocampus, striatum and cerebral cortex of adult rats; cerebellum was not affected. Chronic administration of nortriptiline and venlafaxine did not affect the enzyme activity in these brain areas. Succinate dehydrogenase activity was increased by chronic administration of paroxetine and nortriptiline in the prefrontal cortex, hippocampus, striatum and cerebral cortex of adult rats; cerebellum was not affected either. Chronic administration of venlafaxine increased succinate dehydrogenase activity in prefrontal cortex, but did not affect the enzyme activity in cerebellum, hippocampus, striatum and cerebral cortex. Considering that metabolism impairment is probably involved in the pathophysiology of depressive disorders, an increase in these enzymes by antidepressants may be an important mechanism of action of these drugs.

  16. Effects of chronic corticosterone and imipramine administration on panic and anxiety-related responses.

    Science.gov (United States)

    Diniz, L; Dos Reis, B B; de Castro, G M; Medalha, C C; Viana, M B

    2011-10-01

    It is known that chronic high levels of corticosterone (CORT) enhance aversive responses such as avoidance and contextual freezing. In contrast, chronic CORT does not alter defensive behavior induced by the exposure to a predator odor. Since different defense-related responses have been associated with specific anxiety disorders found in clinical settings, the observation that chronic CORT alters some defensive behaviors but not others might be relevant to the understanding of the neurobiology of anxiety. In the present study, we investigated the effects of chronic CORT administration (through surgical implantation of a 21-day release 200 mg pellet) on avoidance acquisition and escape expression by male Wistar rats (200 g in weight at the beginning of the experiments, N = 6-10/group) tested in the elevated T-maze (ETM). These defensive behaviors have been associated with generalized anxiety and panic disorder, respectively. Since the tricyclic antidepressant imipramine is successfully used to treat both conditions, the effects of combined treatment with chronic imipramine (15 mg, ip) and CORT were also investigated. Results showed that chronic CORT facilitated avoidance performance, an anxiogenic-like effect (P Imipramine significantly reversed the anxiogenic effect of CORT (P imipramine inhibited escape responses, a panicolytic-like effect. Unlike chronic CORT, imipramine also decreased locomotor activity in an open field. These data suggest that chronic CORT specifically altered ETM avoidance, a fact that should be relevant to a better understanding of the physiopathology of generalized anxiety and panic disorder.

  17. Evaluation of direct and indirect ethanol biomarkers using a likelihood ratio approach to identify chronic alcohol abusers for forensic purposes.

    Science.gov (United States)

    Alladio, Eugenio; Martyna, Agnieszka; Salomone, Alberto; Pirro, Valentina; Vincenti, Marco; Zadora, Grzegorz

    2017-02-01

    The detection of direct ethanol metabolites, such as ethyl glucuronide (EtG) and fatty acid ethyl esters (FAEEs), in scalp hair is considered the optimal strategy to effectively recognize chronic alcohol misuses by means of specific cut-offs suggested by the Society of Hair Testing. However, several factors (e.g. hair treatments) may alter the correlation between alcohol intake and biomarkers concentrations, possibly introducing bias in the interpretative process and conclusions. 125 subjects with various drinking habits were subjected to blood and hair sampling to determine indirect (e.g. CDT) and direct alcohol biomarkers. The overall data were investigated using several multivariate statistical methods. A likelihood ratio (LR) approach was used for the first time to provide predictive models for the diagnosis of alcohol abuse, based on different combinations of direct and indirect alcohol biomarkers. LR strategies provide a more robust outcome than the plain comparison with cut-off values, where tiny changes in the analytical results can lead to dramatic divergence in the way they are interpreted. An LR model combining EtG and FAEEs hair concentrations proved to discriminate non-chronic from chronic consumers with ideal correct classification rates, whereas the contribution of indirect biomarkers proved to be negligible. Optimal results were observed using a novel approach that associates LR methods with multivariate statistics. In particular, the combination of LR approach with either Principal Component Analysis (PCA) or Linear Discriminant Analysis (LDA) proved successful in discriminating chronic from non-chronic alcohol drinkers. These LR models were subsequently tested on an independent dataset of 43 individuals, which confirmed their high efficiency. These models proved to be less prone to bias than EtG and FAEEs independently considered. In conclusion, LR models may represent an efficient strategy to sustain the diagnosis of chronic alcohol consumption

  18. Chronic ethanol consumption disrupts the core molecular clock and diurnal rhythms of metabolic genes in the liver without affecting the suprachiasmatic nucleus.

    Directory of Open Access Journals (Sweden)

    Ashley N Filiano

    Full Text Available Chronic ethanol consumption disrupts several metabolic pathways including β-oxidation and lipid biosynthesis, facilitating the development of alcoholic fatty liver disease. Many of these same metabolic pathways are directly regulated by cell autonomous circadian clocks, and recent studies suggest that disruption of daily rhythms in metabolism contributes to multiple common cardiometabolic diseases (including non-alcoholic fatty liver disease. However, it is not known whether ethanol disrupts the core molecular clock in the liver, nor whether this, in turn, alters rhythms in lipid metabolism. Herein, we tested the hypothesis that chronic ethanol consumption disrupts the molecular circadian clock in the liver and potentially changes the diurnal expression patterns of lipid metabolism genes. Consistent with previous studies, male C57BL/6J mice fed an ethanol-containing diet exhibited higher levels of liver triglycerides compared to control mice, indicating hepatic steatosis. Further, the diurnal oscillations of core clock genes (Bmal1, Clock, Cry1, Cry2, Per1, and Per2 and clock-controlled genes (Dbp, Hlf, Nocturnin, Npas2, Rev-erbα, and Tef were altered in livers from ethanol-fed mice. In contrast, ethanol had only minor effects on the expression of core clock genes in the suprachiasmatic nucleus (SCN. These results were confirmed in Per2(Luciferase knock-in mice, in which ethanol induced a phase advance in PER2::LUC bioluminescence oscillations in liver, but not SCN. Further, there was greater variability in the phase of PER2::LUC oscillations in livers from ethanol-fed mice. Ethanol consumption also affected the diurnal oscillations of metabolic genes, including Adh1, Cpt1a, Cyp2e1, Pck1, Pdk4, Ppargc1a, Ppargc1b and Srebp1c, in the livers of C57BL/6J mice. In summary, chronic ethanol consumption alters the function of the circadian clock in liver. Importantly, these results suggest that chronic ethanol consumption, at levels sufficient to

  19. Chronic ethanol consumption disrupts the core molecular clock and diurnal rhythms of metabolic genes in the liver without affecting the suprachiasmatic nucleus.

    Science.gov (United States)

    Filiano, Ashley N; Millender-Swain, Telisha; Johnson, Russell; Young, Martin E; Gamble, Karen L; Bailey, Shannon M

    2013-01-01

    Chronic ethanol consumption disrupts several metabolic pathways including β-oxidation and lipid biosynthesis, facilitating the development of alcoholic fatty liver disease. Many of these same metabolic pathways are directly regulated by cell autonomous circadian clocks, and recent studies suggest that disruption of daily rhythms in metabolism contributes to multiple common cardiometabolic diseases (including non-alcoholic fatty liver disease). However, it is not known whether ethanol disrupts the core molecular clock in the liver, nor whether this, in turn, alters rhythms in lipid metabolism. Herein, we tested the hypothesis that chronic ethanol consumption disrupts the molecular circadian clock in the liver and potentially changes the diurnal expression patterns of lipid metabolism genes. Consistent with previous studies, male C57BL/6J mice fed an ethanol-containing diet exhibited higher levels of liver triglycerides compared to control mice, indicating hepatic steatosis. Further, the diurnal oscillations of core clock genes (Bmal1, Clock, Cry1, Cry2, Per1, and Per2) and clock-controlled genes (Dbp, Hlf, Nocturnin, Npas2, Rev-erbα, and Tef) were altered in livers from ethanol-fed mice. In contrast, ethanol had only minor effects on the expression of core clock genes in the suprachiasmatic nucleus (SCN). These results were confirmed in Per2(Luciferase) knock-in mice, in which ethanol induced a phase advance in PER2::LUC bioluminescence oscillations in liver, but not SCN. Further, there was greater variability in the phase of PER2::LUC oscillations in livers from ethanol-fed mice. Ethanol consumption also affected the diurnal oscillations of metabolic genes, including Adh1, Cpt1a, Cyp2e1, Pck1, Pdk4, Ppargc1a, Ppargc1b and Srebp1c, in the livers of C57BL/6J mice. In summary, chronic ethanol consumption alters the function of the circadian clock in liver. Importantly, these results suggest that chronic ethanol consumption, at levels sufficient to cause steatosis

  20. An optimised mouse model of chronic pancreatitis with a combination of ethanol and cerulein

    OpenAIRE

    Ahmadi, Abbas; Nikkhoo, Bahram; Mokarizadeh, Aram; Rahmani, Mohammad-Reza; Fakhari, Shohreh; Mohammadi, Mehdi; Jalili, Ali

    2016-01-01

    Introduction Chronic pancreatitis (CP) is an intractable and multi-factorial disorder. Developing appropriate animal models is an essential step in pancreatitis research, and the best ones are those which mimic the human disorder both aetiologically and pathophysiologically. The current study presents an optimised protocol for creating a murine model of CP, which mimics the initial steps of chronic pancreatitis in alcohol chronic pancreatitis and compares it with two other mouse models treate...

  1. Chronic Binge Alcohol Administration Dysregulates Hippocampal Genes Involved in Immunity and Neurogenesis in Simian Immunodeficiency Virus-Infected Macaques

    Directory of Open Access Journals (Sweden)

    John K. Maxi

    2016-11-01

    Full Text Available Alcohol use disorders (AUD exacerbate neurocognitive dysfunction in Human Immunodeficiency Virus (HIV+ patients. We have shown that chronic binge alcohol (CBA administration (13–14 g EtOH/kg/wk prior to and during simian immunodeficiency virus (SIV infection in rhesus macaques unmasks learning deficits in operant learning and memory tasks. The underlying mechanisms of neurocognitive alterations due to alcohol and SIV are not known. This exploratory study examined the CBA-induced differential expression of hippocampal genes in SIV-infected (CBA/SIV+; n = 2 macaques in contrast to those of sucrose administered, SIV-infected (SUC/SIV+; n = 2 macaques. Transcriptomes of hippocampal samples dissected from brains obtained at necropsy (16 months post-SIV inoculation were analyzed to determine differentially expressed genes. MetaCore from Thomson Reuters revealed enrichment of genes involved in inflammation, immune responses, and neurodevelopment. Functional relevance of these alterations was examined in vitro by exposing murine neural progenitor cells (NPCs to ethanol (EtOH and HIV trans-activator of transcription (Tat protein. EtOH impaired NPC differentiation as indicated by decreased βIII tubulin expression. These findings suggest a role for neuroinflammation and neurogenesis in CBA/SIV neuropathogenesis and warrant further investigation of their potential contribution to CBA-mediated neurobehavioral deficits.

  2. Estradiol increases expression of the brain-derived neurotrophic factor after acute administration of ethanol in the neonatal rat cerebellum.

    Science.gov (United States)

    Firozan, Bita; Goudarzi, Iran; Elahdadi Salmani, Mahmoud; Lashkarbolouki, Taghi; Rezaei, Arezou; Abrari, Kataneh

    2014-06-05

    Recently it has been shown that estradiol prevents the toxicity of ethanol in developing cerebellum. The neuroprotective effect of estradiol is not due to a single phenomenon but rather encompasses a spectrum of independent proccesses. According to the specific timing of Purkinje cell vulnerability to ethanol and several protective mechanisms of estradiol, we considered the neurotrophin system, as a regulator of differentiation, maturation and survival of neurons during CNS development. Interactions between estrogen and Brain derived neurotrophic factor (BDNF, an essential factor in neuronal survival) lead us to investigate involvement of BDNF pathway in neuroprotective effects of estrogen against ethanol toxicity. In this study, 17β-estradiol (300-900μg/kg) was injected subcutaneously in postnatal day (PD) 4, 30min prior to intraperitoneal injection of ethanol (6g/kg) in rat pups. Eight hours after injection of ethanol, BDNF mRNA and protein levels were assayed. Behavioral studies, including rotarod and locomotor activity tests were performed in PD 21-23 and histological study was performed after completion of behavioral tests in PD 23. Our results indicated that estradiol increased BDNF mRNA and protein levels in the presence of ethanol. We also observed that pretreatment with estradiol significantly attenuated ethanol-induced motoric impairment. Histological analysis also demonstrated that estradiol prevented Purkinje cell loss following ethanol treatment. These results provide evidence on the possible mechanisms of estradiol neuroprotection against ethanol toxicity.

  3. Prepubertal chronic stress and ketamine administration to rats as a neurodevelopmental model of schizophrenia symptomatology.

    Science.gov (United States)

    Ram, Edward; Raphaeli, Shani; Avital, Avi

    2013-11-01

    Increased vulnerability to psychiatric disorders, such as schizophrenia, has been associated with higher levels of stress. In the early development of the central nervous system, changes in function of glutamatergic N-Methyl-D-aspartate (NMDA) receptors can possibly result in the development of psychosis, cognitive impairment and emotional dysfunction in adulthood. Thus, in this study we examined the behavioural consequences of the exposure of male rats to chronic stress (postnatal days 30-60) and ketamine administration (postnatal days 41-45); both during a sensitive developmental time window. We found that the locomotor activity of both ketamine and ketamine+chronic stress groups was significantly higher compared with that of the control rats. In contrast, the locomotor activity of the chronic stress group was significantly lower compared with all other groups. Examining anhedonia in the sucrose preference test we found a significantly decreased sucrose intake in both ketamine+chronic stress and the chronic stress groups compared with the control rats. No significant differences were observed in sucrose intake between the control and the ketamine group. The object recognition test revealed that the attention to the novel object was significantly impaired in the ketamine+chronic stress group. Similarly, the ketamine+chronic stress group showed the poorest learning ability in the eight-arm radial maze, starting on the 8th day. Finally, throughout the different pre-pulse intensities, the ketamine+chronic stress group showed impaired PPI compared with all other groups. The results indicate that the combination of prepubertal onset of chronic stress and ketamine may serve as a valid novel animal model for schizophrenia-like symptoms.

  4. A case of chronic progressive radiation myelopathy treated with long-time corticosteroid administration

    Energy Technology Data Exchange (ETDEWEB)

    Hirota, Saeko; Soejima, Toshinori; Higashino, Takanori; Obayashi, Kayoko; Takada, Yoshiki [Hyogo Medical Center for Adults, Akashi (Japan); Hishikawa, Yoshio

    1998-05-01

    This is a report of one patient who developed chronic progressive radiation myelopathy at a gap of two portals 31 months after 40 Gy irradiation. He presented an unusual clinical course with over 5 years and 6 months administration of oral corticosteroid, very slow progression and long-lasting presentation of Gd-DTPA enhanced area in the suffered cord by MRI. It is suggested that corticosteroid administration from initial onset for a long period may change the natural course of radiation myelopathy, that is, may delay progress of it. (author)

  5. Oral administration of synthetic human urogastrone promotes healing of chronic duodenal ulcers in rats

    DEFF Research Database (Denmark)

    Poulsen, Steen Seier; Nexø, Ebba

    1986-01-01

    The effect of oral administration of synthetic human epidermal growth factor/urogastrone (EGF/URO) on healing of chronic duodenal ulcers induced by cysteamine in rats was investigated and compared with that of cimetidine, a H2-receptor antagonist. After 25 and 50 days of treatment, synthetic human...... EGF/URO significantly increased healing of chronic duodenal ulcers to the same extent as cimetidine. Combined treatment with synthetic human EGF/URO and cimetidine for 25 days was more effective than synthetic human EGF/URO given alone, whereas combined treatment for 50 days was significantly more...... effective than cimetidine alone. These results show that a combination of an agent inhibiting gastric acid secretion and the cytoprotective and growth-stimulating peptide EGF/URO seems to be more effective with regard to duodenal ulcer healing than individual administration of the two substances. Synthetic...

  6. Effects of chronic corticosterone and imipramine administration on panic and anxiety-related responses

    Directory of Open Access Journals (Sweden)

    L. Diniz

    2011-10-01

    Full Text Available It is known that chronic high levels of corticosterone (CORT enhance aversive responses such as avoidance and contextual freezing. In contrast, chronic CORT does not alter defensive behavior induced by the exposure to a predator odor. Since different defense-related responses have been associated with specific anxiety disorders found in clinical settings, the observation that chronic CORT alters some defensive behaviors but not others might be relevant to the understanding of the neurobiology of anxiety. In the present study, we investigated the effects of chronic CORT administration (through surgical implantation of a 21-day release 200 mg pellet on avoidance acquisition and escape expression by male Wistar rats (200 g in weight at the beginning of the experiments, N = 6-10/group tested in the elevated T-maze (ETM. These defensive behaviors have been associated with generalized anxiety and panic disorder, respectively. Since the tricyclic antidepressant imipramine is successfully used to treat both conditions, the effects of combined treatment with chronic imipramine (15 mg, ip and CORT were also investigated. Results showed that chronic CORT facilitated avoidance performance, an anxiogenic-like effect (P < 0.05, without changing escape responses. Imipramine significantly reversed the anxiogenic effect of CORT (P < 0.05, although the drug did not exhibit anxiolytic effects by itself. Confirming previous observations, imipramine inhibited escape responses, a panicolytic-like effect. Unlike chronic CORT, imipramine also decreased locomotor activity in an open field. These data suggest that chronic CORT specifically altered ETM avoidance, a fact that should be relevant to a better understanding of the physiopathology of generalized anxiety and panic disorder.

  7. [The role of chronic gastritis in past medical history with NSAID administration in patients with osteoarthrosis].

    Science.gov (United States)

    Zak, M Iu

    2014-11-01

    122 patients with osteoarthrosis, who have in the past medical history verified chronic gastritis (50 males and 72 females) at the age from 42 to 64 have been examined. Control group was comprised of 40 patients with osteoarthrosis without gastroduodenal zone pathology in the past medical history. For arthralgia relief patients were prescribed meloxicam (average dose--12.5 - 1.39 mg daily) or nimesulide (average dose--150 ± 14.91 mg daily). As a result of this research it was determined that administration of selective NSAID (meloxicam and nimesulide) in patients with chronic gastritis in the past medical history raised the risk of NSAID gastropathy/dyspepsia 2.9 times (P 0.05) of erosive gastropathy. Patients with chronic gastritis in the past medical history when taking NSAID with the purpose of gastropathy prevention are recommended to undergo gastroprotective therapy.

  8. Oral administration of aflatoxin G₁ induces chronic alveolar inflammation associated with lung tumorigenesis.

    Science.gov (United States)

    Liu, Chunping; Shen, Haitao; Yi, Li; Shao, Peilu; Soulika, Athena M; Meng, Xinxing; Xing, Lingxiao; Yan, Xia; Zhang, Xianghong

    2015-02-03

    Our previous studies showed oral gavage of aflatoxin G₁ (AFG₁) induced lung adenocarcinoma in NIH mice. We recently found that a single intratracheal administration of AFG₁ caused chronic inflammatory changes in rat alveolar septum. Here, we examine whether oral gavage of AFG₁ induces chronic lung inflammation and how it contributes to carcinogenesis. We evaluated chronic lung inflammatory responses in Balb/c mice after oral gavage of AFG₁ for 1, 3 and 6 months. Inflammatory responses were heightened in the lung alveolar septum, 3 and 6 months after AFG₁ treatment, evidenced by increased macrophages and lymphocytes infiltration, up-regulation of NF-κB and p-STAT3, and cytokines production. High expression levels of superoxide dismutase (SOD-2) and hemoxygenase-1 (HO-1), two established markers of oxidative stress, were detected in alveolar epithelium of AFG₁-treated mice. Promoted alveolar type II cell (AT-II) proliferation in alveolar epithelium and angiogenesis, as well as increased COX-2 expression were also observed in lung tissues of AFG₁-treated mice. Furthermore, we prolonged survival of the mice in the above model for another 6 months to examine the contribution of AFG₁-induced chronic inflammation to lung tumorigenesis. Twelve months later, we observed that AFG₁ induced alveolar epithelial hyperplasia and adenocarcinoma in Balb/c mice. Up-regulation of NF-κB, p-STAT3, and COX-2 was also induced in lung adenocarcinoma, thus establishing a link between AFG₁-induced chronic inflammation and lung tumorigenesis. This is the first study to show that oral administration of AFG₁ could induce chronic lung inflammation, which may provide a pro-tumor microenvironment to contribute to lung tumorigenesis.

  9. Chronic central administration of Ghrelin increases bone mass through a mechanism independent of appetite regulation.

    Directory of Open Access Journals (Sweden)

    Hyung Jin Choi

    Full Text Available Leptin plays a critical role in the central regulation of bone mass. Ghrelin counteracts leptin. In this study, we investigated the effect of chronic intracerebroventricular administration of ghrelin on bone mass in Sprague-Dawley rats (1.5 μg/day for 21 days. Rats were divided into control, ghrelin ad libitum-fed (ghrelin ad lib-fed, and ghrelin pair-fed groups. Ghrelin intracerebroventricular infusion significantly increased body weight in ghrelin ad lib-fed rats but not in ghrelin pair-fed rats, as compared with control rats. Chronic intracerebroventricular ghrelin infusion significantly increased bone mass in the ghrelin pair-fed group compared with control as indicated by increased bone volume percentage, trabecular thickness, trabecular number and volumetric bone mineral density in tibia trabecular bone. There was no significant difference in trabecular bone mass between the control group and the ghrelin ad-lib fed group. Chronic intracerebroventricular ghrelin infusion significantly increased the mineral apposition rate in the ghrelin pair-fed group as compared with control. In conclusion, chronic central administration of ghrelin increases bone mass through a mechanism that is independent of body weight, suggesting that ghrelin may have a bone anabolic effect through the central nervous system.

  10. Action of a chronic administration of mescaline in dynamic behavioural situations.

    Science.gov (United States)

    Fundaro', A; Molinengo, L; Cassone, M C; Orsetti, M

    1986-01-01

    The modifications of the rat behaviour caused by a chronic administration of mescaline were studied in two schedules of operant conditioning. In the "periodic conditioning" test, the schedule of reinforcement was changed from a fixed ratio to a fixed interval schedule. Mescaline (4 mg/kg/day and 10 mg/kg/day) caused no modification of the ability of the rat to adapt its behaviour to the new experimental situation. In the "reversal test" the contingency for food delivery was switched from one lever, where responses were previously reinforced to the other lever where responses had no programmed consequences. A chronic administration of mescaline (4 mg/kg/day) caused a total incapacity of the rat to switch to the lever which became reinforced in the reversal trial. A chronic administration of 9 mg/kg/day of mescaline had an excitatory effect and the number of reinforced responses in the II and III reversals exceeded the unreinforced responses in a measure greater than in the controls.

  11. The role of oestradiol in sexually dimorphic hypothalamic-pituitary-adrena axis responses to intracerebroventricular ethanol administration in the rat.

    Science.gov (United States)

    Larkin, J W; Binks, S L; Li, Y; Selvage, D

    2010-01-01

    Systemic ethanol (EtOH) administration activates the hypothalamic-pituitary-adrenal (HPA) axis of rats in a sexually dimorphic manner. The present studies tested the role played by the central nervous system (CNS) in this phenomenon. To localise the effects of the drug to the brain, we utilised an experimental paradigm whereby a small, nontoxic amount of the drug was delivered via intracerebroventricular (i.c.v.) injection. EtoH administered i.c.v. rapidly diffuses throughout the cerebrospinal fluid and brain, and does not cause neuronal damage or have any long-term physiological or behavioural effects. Experimental groups included intact males, intact cycling females, and ovariectomised (OVX) animals with or without replacement oestradiol (E(2)). Intracerebroventricular EtOH-induced HPA hormonal activation was determined by measuring plasma adrenocorticotrophin (ACTH) levels. Activation of brain areas that both regulate HPA function and are responsive to gonadal hormones was determined using expression of the transcription factor c-fos (Fos) as a marker of neuronal activity. We observed sex- and oestrous cycle- dependent differences in HPA activation by EtOH as measured by both these parameters. ACTH secretion was highest in females in pro-oestrus or oestrus, just prior to or after the endogenous peak of E(2), as was Fos expression in the paraventricular nucleus of the hypothalamus (PVN) and the locus coreuleus (LC) of the brainstem. In OVX animals, E(2) replacement caused an increase in PVN and LC Fos expression in response to i.c.v. EtOH compared to OVX controls, but a decrease in ACTH secretion. Taken together, these results indicate that at the level of the CNS, EtOH stimulates HPA activity more robustly at times when the effects of E(2) are high, but that E(2) alone is not responsible for this effect. The data further suggest that the LC plays an important role in the circuitry, which appears to be different from that activated following the systemic

  12. An animal model of schizophrenia based on chronic LSD administration: old idea, new results.

    Science.gov (United States)

    Marona-Lewicka, Danuta; Nichols, Charles D; Nichols, David E

    2011-09-01

    Many people who take LSD experience a second temporal phase of LSD intoxication that is qualitatively different, and was described by Daniel Freedman as "clearly a paranoid state." We have previously shown that the discriminative stimulus effects of LSD in rats also occur in two temporal phases, with initial effects mediated by activation of 5-HT(2A) receptors (LSD30), and the later temporal phase mediated by dopamine D2-like receptors (LSD90). Surprisingly, we have now found that non-competitive NMDA antagonists produced full substitution in LSD90 rats, but only in older animals, whereas in LSD30, or in younger animals, these drugs did not mimic LSD. Chronic administration of low doses of LSD (>3 months, 0.16 mg/kg every other day) induces a behavioral state characterized by hyperactivity and hyperirritability, increased locomotor activity, anhedonia, and impairment in social interaction that persists at the same magnitude for at least three months after cessation of LSD treatment. These behaviors, which closely resemble those associated with psychosis in humans, are not induced by withdrawal from LSD; rather, they are the result of neuroadaptive changes occurring in the brain during the chronic administration of LSD. These persistent behaviors are transiently reversed by haloperidol and olanzapine, but are insensitive to MDL-100907. Gene expression analysis data show that chronic LSD treatment produced significant changes in multiple neurotransmitter system-related genes, including those for serotonin and dopamine. Thus, we propose that chronic treatment of rats with low doses of LSD can serve as a new animal model of psychosis that may mimic the development and progression of schizophrenia, as well as model the established disease better than current acute drug administration models utilizing amphetamine or NMDA antagonists such as PCP.

  13. Maternal ethanol administration inhibits 5-hydroxytryptamine synthesis and tryptophan hydroxylase expression in the dorsal raphe of rat offspring.

    Science.gov (United States)

    Kim, Eun-Kyung; Lee, Myoung-Hwa; Kim, Hong; Sim, Young-Je; Shin, Mal-Soon; Lee, Sam-Jun; Yang, Hye-Young; Chang, Hyun-Kyung; Lee, Taeck-Hyun; Jang, Mi-Hyeon; Shin, Min-Chul; Lee, Hee-Hyuk; Kim, Chang-Ju

    2005-10-01

    Maternal ethanol consumption during pregnancy has a detrimental effect on the central nervous system (CNS) development of fetus. 5-Hydroxytryptamine (5-HT) is an important neurotransmitter and/or neuromodulator in the mammalian CNS. Tryptophan hydroxylase (TPH) is the rate limiting enzyme of 5-HT synthesis. Ethanol is known to induce neuropsychiatric disorders by alteration of the central serotonergic system. In the present study, the effects of maternal ethanol intake on the 5-HT synthesis and the TPH expression in the dorsal raphe of rat offspring were investigated. The present results show that the synthesis of 5-HT and the expression of TPH in the dorsal raphe of rat offspring were suppressed by maternal ethanol intake and that the suppressive effect of alcohol was more potent in the 5 weeks old rat pups compared to the 3 weeks old rat pups. Based on the present study, it can be suggested that the pathogenesis of ethanol-induced neuropsychological disorders involves ethanol-induced suppression on the 5-HT synthesis and the TPH expression in the dorsal raphe of offspring.

  14. Ethanol regulation of serum glucocorticoid kinase 1 expression in DBA2/J mouse prefrontal cortex.

    Directory of Open Access Journals (Sweden)

    Blair N Costin

    Full Text Available BACKGROUND: We previously identified a group of glucocorticoid-responsive genes, including Serum Glucocorticoid kinase 1 (Sgk1, regulated by acute ethanol in prefrontal cortex of DBA2/J mice. Acute ethanol activates the hypothalamic pituitary adrenal axis (HPA causing release of glucocorticoids. Chronic ethanol dysregulates the HPA response in both humans and rodents, possibly contributing to important interactions between stress and alcoholism. Because Sgk1 regulates ion channels and learning and memory, we hypothesized that Sgk1 contributes to HPA-dependent acute and adaptive neuronal responses to ethanol. These studies characterized acute and chronic ethanol regulation of Sgk1 mRNA and protein and their relationship with ethanol actions on the HPA axis. RESULTS: Acute ethanol increased Sgk1 mRNA expression in a dose and time dependent manner. Three separate results suggested that ethanol regulated Sgk1 via circulating glucocorticoids: acute ethanol increased glucocorticoid receptor binding to the Sgk1 promoter; adrenalectomy blocked ethanol induction of Sgk1 mRNA; and chronic ethanol exposure during locomotor sensitization down-regulated HPA axis activation and Sgk1 induction by acute ethanol. SGK1 protein had complex temporal responses to acute ethanol with rapid and transient increases in Ser422 phosphorylation at 15 min. following ethanol administration. This activating phosphorylation had functional consequences, as suggested by increased phosphorylation of the known SGK1 target, N-myc downstream-regulated gene 1 (NDRG1. After repeated ethanol administration during locomotor sensitization, basal SGK1 protein phosphorylation increased despite blunting of Sgk1 mRNA induction by ethanol. CONCLUSIONS: These results suggest that HPA axis and glucocorticoid receptor signaling mediate acute ethanol induction of Sgk1 transcription in mouse prefrontal cortex. However, acute ethanol also causes complex changes in SGK1 protein expression and

  15. Prophylactic Chronic Zinc Administration Increases Neuroinflammation in a Hypoxia-Ischemia Model

    Directory of Open Access Journals (Sweden)

    Constantino Tomas-Sanchez

    2016-01-01

    Full Text Available Acute and subacute administration of zinc exert neuroprotective effects in hypoxia-ischemia animal models; yet the effect of chronic administration of zinc still remains unknown. We addressed this issue by injecting zinc at a tolerable dose (0.5 mg/kg weight, i.p. for 14 days before common carotid artery occlusion (CCAO in a rat. After CCAO, the level of zinc was measured by atomic absorption spectrophotometry, nitrites were determined by Griess method, lipoperoxidation was measured by Gerard-Monnier assay, and mRNA expression of 84 genes coding for cytokines, chemokines, and their receptors was measured by qRT-PCR, whereas nitrotyrosine, chemokines, and their receptors were assessed by ELISA and histopathological changes in the temporoparietal cortex-hippocampus at different time points. Long-term memory was evaluated using Morris water maze. Following CCAO, a significant increase in nitrosative stress, inflammatory chemokines/receptors, and cell death was observed after 8 h, and a 2.5-fold increase in zinc levels was detected after 7 days. Although CXCL12 and FGF2 protein levels were significantly increased, the long-term memory was impaired 12 days after reperfusion in the Zn+CCAO group. Our data suggest that the chronic administration of zinc at tolerable doses causes nitrosative stress, toxic zinc accumulation, and neuroinflammation, which might account for the neuronal death and cerebral dysfunction after CCAO.

  16. Prophylactic Chronic Zinc Administration Increases Neuroinflammation in a Hypoxia-Ischemia Model

    Science.gov (United States)

    Tomas-Sanchez, Constantino; Blanco-Alvarez, Victor Manuel; Gonzalez-Barrios, Juan Antonio; Martinez-Fong, Daniel; Garcia-Robles, Guadalupe; Soto-Rodriguez, Guadalupe; Torres-Soto, Maricela; Gonzalez-Vazquez, Alejandro; Aguilar-Peralta, Ana Karina; Garate-Morales, José-Luis; Aguilar-Carrasco, Luis-Angel; Limón, Daniel I.; Cebada, Jorge

    2016-01-01

    Acute and subacute administration of zinc exert neuroprotective effects in hypoxia-ischemia animal models; yet the effect of chronic administration of zinc still remains unknown. We addressed this issue by injecting zinc at a tolerable dose (0.5 mg/kg weight, i.p.) for 14 days before common carotid artery occlusion (CCAO) in a rat. After CCAO, the level of zinc was measured by atomic absorption spectrophotometry, nitrites were determined by Griess method, lipoperoxidation was measured by Gerard-Monnier assay, and mRNA expression of 84 genes coding for cytokines, chemokines, and their receptors was measured by qRT-PCR, whereas nitrotyrosine, chemokines, and their receptors were assessed by ELISA and histopathological changes in the temporoparietal cortex-hippocampus at different time points. Long-term memory was evaluated using Morris water maze. Following CCAO, a significant increase in nitrosative stress, inflammatory chemokines/receptors, and cell death was observed after 8 h, and a 2.5-fold increase in zinc levels was detected after 7 days. Although CXCL12 and FGF2 protein levels were significantly increased, the long-term memory was impaired 12 days after reperfusion in the Zn+CCAO group. Our data suggest that the chronic administration of zinc at tolerable doses causes nitrosative stress, toxic zinc accumulation, and neuroinflammation, which might account for the neuronal death and cerebral dysfunction after CCAO. PMID:27635404

  17. Ascertainment of chronic diseases using population health data: a comparison of health administrative data and patient self-report

    OpenAIRE

    Muggah Elizabeth; Graves Erin; Bennett Carol; Manuel Douglas G

    2013-01-01

    Abstract Background Health administrative data is increasingly being used for chronic disease surveillance. This study explored agreement between administrative and survey data for ascertainment of seven key chronic diseases, using individually linked data from a large population of individuals in Ontario, Canada. Methods All adults who completed any one of three cycles of the Canadian Community Health Survey (2001, 2003 or 2005) and agreed to have their responses linked to provincial health ...

  18. Chronic Ethanol Exposure Effects on Vitamin D Levels Among Subjects with Alcohol Use Disorder

    Science.gov (United States)

    Ogunsakin, Olalekan; Hottor, Tete; Mehta, Ashish; Lichtveld, Maureen; McCaskill, Michael

    2016-01-01

    Vitamin D has been previously recognized to play important roles in human immune system and function. In the pulmonary system, vitamin D regulates the function of antimicrobial peptides, especially cathelicidin/LL-37. Human cathelicidin/LL-37 is a bactericidal, bacteriostatic, and antiviral endogenous peptide with protective immune functions. Chronic exposure to excessive alcohol has the potential to reduce levels of vitamin D (inactive vitamin D [25(OH)D3] and active vitamin D [1, 25(OH)2D3]) and leads to downregulation of cathelicidin/LL-37. Alcohol-mediated reduction of LL-37 may be partly responsible for increased incidence of more frequent and severe respiratory infections among subjects with alcohol use disorder (AUD). The objective of this study was to investigate the mechanisms by which alcohol exerts its influence on vitamin D metabolism. In addition, the aim was to establish associations between chronic alcohol exposures, levels of pulmonary vitamin D, and cathelicidin/LL-37 using broncho-alveolar lavage fluid samples of subjects with AUD and healthy controls. Findings from the experiment showed that levels of inactive vitamin D (25(OH)D3), active vitamin D (1, 25(OH)2D3), cathelicidin/LL-37, and CYP27B1 proteins were significantly reduced (P < 0.05) when compared with the matched healthy control group. However, CYP2E1 was elevated in all the samples examined. Chronic exposure to alcohol has the potential to reduce the levels of pulmonary vitamin D and results in subsequent downregulation of the antimicrobial peptide, LL-37, in the human pulmonary system. PMID:27795667

  19. Fish Oil Reduces Hepatic Injury by Maintaining Normal Intestinal Permeability and Microbiota in Chronic Ethanol-Fed Rats

    OpenAIRE

    Jiun-Rong Chen; Ya-Ling Chen; Hsiang-Chi Peng; Yu-An Lu; Hsiao-Li Chuang; Hsiao-Yun Chang; Hsiao-Yun Wang; Yu-Ju Su; Suh-Ching Yang

    2016-01-01

    The aim of this study was to investigate the ameliorative effects of fish oil on hepatic injury in ethanol-fed rats based on the intestinal permeability and microbiota. Rats were assigned to 6 groups and fed either a control diet or an ethanol diet such as C (control), CF25 (control with 25% fish oil), CF57 (control with 57% fish oil), E (ethanol), EF25 (ethanol with 25% fish oil), and EF57 (ethanol with 57% fish oil) groups. Rats were sacrificed at the end of 8 weeks. Plasma aspartate aminot...

  20. Chronic morphine administration enhances nociceptive sensitivity and local cytokine production after incision

    Directory of Open Access Journals (Sweden)

    Angst Martin S

    2008-02-01

    Full Text Available Abstract Background - The chronic use of opioids prior to surgery leads to lowered pain thresholds and exaggerated pain levels after these procedures. Several mechanisms have been proposed to explain this heightened sensitivity commonly termed opioid-induced hyperalgesia (OIH. Most of these proposed mechanisms involve plastic events in the central or peripheral nervous systems. Alterations in the abundance of peripheral mediators of nociception have not previously been explored. Results - In these experiments mice were treated with saline (control or ascending daily doses of morphine to generate a state of OIH followed by hind paw incision. In other experiments morphine treatment was initiated at the time of incision. Both mechanical allodynia and peri-incisional skin cytokine levels were measured. Myeloperoxidase (MPO assays were used to determine neutrophil activity near the wounds. The cytokine production inhibitor pentoxifylline was used to determine the functional significance of the excess cytokines in previously morphine treated animals. Mice treated chronically treated with morphine prior to incision were found to have enhanced skin levels of IL-1β, IL-6, G-CSF, KC and TNFα after incision at one or more time points compared to saline pretreated controls. The time courses of individual cytokines followed different patterns. There was no discernable effect of chronic morphine treatment on wound area neutrophil infiltration. Pentoxifylline reduced cytokine levels and reversed the excess mechanical sensitization caused by chronic morphine administration prior to incision. Morphine treatment initiated at the time of incision did not lead to a generalized enhancement of cytokine production or nociceptive sensitization in excess of the levels observed after incision alone. Conclusion - The enhanced level of nociceptive sensitization seen after incision in animals chronically exposed to morphine is associated with elevated levels of several

  1. Short- and long-term cognitive effects of chronic cannabinoids administration in late-adolescence rats.

    Directory of Open Access Journals (Sweden)

    Hila Abush

    Full Text Available The use of cannabis can impair cognitive function, especially short-term memory. A controversial question is whether long-term cannabis use during the late-adolescence period can cause irreversible deficits in higher brain function that persist after drug use stops. In order to examine the short- and long-term effects of chronic exposure to cannabinoids, rats were administered chronic i.p. treatment with the CB1/CB2 receptor agonist WIN55,212-2 (WIN; 1.2 mg/kg for two weeks during the late adolescence period (post-natal days 45-60 and tested for behavioral and electrophysiological measures of cognitive performance 24 hrs, 10 and 30 days after the last drug injection. The impairing effects of chronic WIN on short-term memory in the water maze and the object recognition tasks as well as long-term potentiation (LTP in the ventral subiculum (vSub-nucleus accumbens (NAc pathway were temporary as they lasted only 24 h or 10 d after withdrawal. However, chronic WIN significantly impaired hippocampal dependent short-term memory measured in the object location task 24 hrs, 10, 30, and 75 days after the last drug injection. Our findings suggest that some forms of hippocampal-dependent short-term memory are sensitive to chronic cannabinoid administration but other cognitive impairments are temporary and probably result from a residue of cannabinoids in the brain or acute withdrawal effects from cannabinoids. Understanding the effects of cannabinoids on cognitive function may provide us with tools to overcome these impairments and for cannabinoids to be more favorably considered for clinical use.

  2. Chronic prenatal ethanol exposure increases glucocorticoid-induced glutamate release in the hippocampus of the near-term foetal guinea pig.

    Science.gov (United States)

    Iqbal, U; Brien, J F; Kapoor, A; Matthews, S G; Reynolds, J N

    2006-11-01

    Exposure to high cortisol concentration can injure the developing brain, possibly via an excitotoxic mechanism involving glutamate (Glu). The present study tested the hypothesis that chronic prenatal ethanol exposure (CPEE) activates the foetal hypothalamic-pituitary-adrenal axis to produce high cortisol exposure in the foetal compartment and alters sensitivity to glucocorticoid-induced Glu release in the foetal hippocampus. Pregnant guinea pigs received daily oral administration of ethanol (4 g/kg maternal body weight/day) or isocaloric-sucrose/pair-feeding from gestational day (GD) 2 until GD 63 (term, approximately GD 68) at which time they were euthanised, 1 h after their final treatment. Adrenocorticotrophic hormone (ACTH) and cortisol concentrations were determined in foetal plasma. Basal and electrically stimulated Glu and gamma-aminobutyric acid (GABA) efflux in the presence or absence of dexamethasone (DEX), a selective glucocorticoid-receptor agonist, were determined ex vivo in foetal hippocampal slices. Glucocorticoid receptor (GR), mineralocorticoid receptor (MR) and N-methyl-D-aspartate (NMDA) receptor NR1 subunit mRNA expression were determined in situ in the hippocampus and dentate gyrus. In the near-term foetus, CPEE increased foetal plasma ACTH and cortisol concentrations. Electrically stimulated glutamate, but not GABA, release was increased in CPEE foetal hippocampal slices. Low DEX concentration (0.3 microM) decreased stimulated glutamate, but not GABA, release in both CPEE and control foetal hippocampal slices. High DEX concentration (3.0 microM) increased basal release of Glu, but not GABA, in CPEE foetal hippocampal slices. GR, but not MR, mRNA expression was elevated in the hippocampus and dentate gyrus, whereas NR1 mRNA expression was increased in the CA1 and CA3 fields of the foetal hippocampus. These data demonstrate that CPEE increases high glucocorticoid concentration-induced Glu release in the foetal hippocampus, presumably as a

  3. Life-threatening haematological complication occurring in a cat after chronic carbimazole administration

    Directory of Open Access Journals (Sweden)

    Andrea Mosca

    2016-09-01

    Full Text Available Case summary An 11-year-old spayed female domestic shorthair cat with a history of hyperthyroidism treated with carbimazole for 7 months was presented for a check-up after a few episodes of vomiting. The cat had been receiving prednisolone at 0.5 mg/kg PO q12h for recent pancreatitis and concurrent inflammation of liver and small intestines confirmed by biopsies. Clinical examination revealed pale mucous membranes with a capillary refill time of 120 s and fibrinogen serum concentration (3.5 g/l. Morphological changes of thrombocytes in the absence of thrombocytopenia were also noted. In-saline agglutination test was positive. Abdominal radiographic and ultrasonographic examinations excluded the presence of organ abnormalities and peritoneal effusion. Blood biochemistry was unremarkable. Feline leukaemia virus and feline immunodeficiency virus tests were negative. On the basis of these findings, immune-mediated anaemia secondary to chronic carbimazole administration was suspected. Prednisolone was increased to 2 mg/kg PO q24h and carbimazole tablets were stopped. Despite close monitoring and intensive care, the cat died the same evening of admission to the hospital. Relevance and novel information This report suggests that severe haemotoxicity may occur as a sequel of chronic carbimazole administration in cats. Routine bloodwork and accurate follow-up of cats under treatment with thyrotoxic therapy may be advisable, in order to detect haematological changes before lethal complications occur.

  4. Lateral/Basolateral Amygdala Serotonin Type-2 Receptors Modulate Operant Self-administration of a Sweetened Ethanol Solution via Inhibition of Principal Neuron Activity

    Directory of Open Access Journals (Sweden)

    Brian eMccool

    2014-01-01

    Full Text Available The lateral/basolateral amygdala (BLA forms an integral part of the neural circuitry controlling innate anxiety and learned fear. More recently, BLA dependent modulation of self-administration behaviors suggests a much broader role in the regulation of reward evaluation. To test this, we employed a self-administration paradigm that procedurally segregates ‘seeking’ (exemplified as lever-press behaviors from consumption (drinking directed at a sweetened ethanol solution. Microinjection of the nonselective serotonin type-2 receptor agonist, alpha-methyl-5-hydroxytryptamine (-m5HT into the BLA reduced lever pressing behaviors in a dose-dependent fashion. This was associated with a significant reduction in the number of response-bouts expressed during non-reinforced sessions without altering the size of a bout or the rate of responding. Conversely, intra-BLA -m5HT only modestly effected consumption-related behaviors; the highest dose reduced the total time spent consuming a sweetened ethanol solution but did not inhibit the total number of licks, number of lick bouts, or amount of solution consumed during a session. In vitro neurophysiological characterization of BLA synaptic responses showed that -m5HT significantly reduced extracellular field potentials. This was blocked by the 5-HT2A/C antagonist ketanserin suggesting that 5-HT2-like receptors mediate the behavioral effect of -m5HT. During whole-cell patch current-clamp recordings, we subsequently found that -m5HT increased action potential threshold and hyperpolarized the resting membrane potential of BLA pyramidal neurons. Together, our findings show that the activation of BLA 5-HT2A/C receptors inhibits behaviors related to reward-seeking by suppressing BLA principal neuron activity. These data are consistent with the hypothesis that the BLA modulates reward-related behaviors and provides specific insight into BLA contributions during operant self-administration of a

  5. Therapeutic serum phenobarbital concentrations obtained using chronic transdermal administration of phenobarbital in healthy cats.

    Science.gov (United States)

    Delamaide Gasper, Joy A; Barnes Heller, Heidi L; Robertson, Michelle; Trepanier, Lauren A

    2015-04-01

    Seizures are a common cause of neurologic disease, and phenobarbital (PB) is the most commonly used antiepileptic drug. Chronic oral dosing can be challenging for cat owners, leading to poor compliance. The purpose of this study was to determine if the transdermal administration of PB could achieve serum PB concentrations of between 15 and 45 μg/ml in healthy cats. Nineteen healthy cats were enrolled in three groups. Transdermal PB in pluronic lecithin organogel (PLO) was applied to the pinnae for 14 days at a dosage of 3 mg/kg q12h in group 1 (n = 6 cats) and 9 mg/kg q12h in group 2 (n = 7 cats). Transdermal PB in Lipoderm Activemax was similarly applied at 9 mg/kg q12h for 14 days in group 3 (n = 6 cats). Steady-state serum PB concentrations were measured at trough, and at 2, 4 and 6 h after the morning dose on day 15. In group 1, median concentrations ranged from 6.0-7.5 μg/ml throughout the day (observed range 0-11 μg/ml). Group 2 median concentrations were 26.0 μg/ml (observed range 18.0-37.0 μg/ml). For group 3, median concentrations ranged from 15.0-17.0 μg/ml throughout the day (range 5-29 μg/ml). Side effects were mild. One cat was withdrawn from group 2 owing to ataxia and sedation. These results show therapeutic serum PB concentrations can be achieved in cats following chronic transdermal administration of PB in PLO at a dosage of 9 mg/kg q12h. More individual variation was noted using Lipoderm Activemax. Transdermal administration may be an alternative for cats that are difficult to medicate orally.

  6. Chronic ethanol feeding increases the severity of Staphylococcus aureus skin infections by altering local host defenses

    Science.gov (United States)

    Parlet, Corey P.; Kavanaugh, Jeffrey S.; Horswill, Alexander R.; Schlueter, Annette J.

    2015-01-01

    Alcoholics are at increased risk of Staphylococcus aureus skin infection and serious sequelae, such as bacteremia and death. Despite the association between alcoholism and severe S. aureus skin infection, the impact of EtOH on anti-S. aureus cutaneous immunity has not been investigated in a model of chronic EtOH exposure. To test the hypothesis that EtOH enhances the severity of S. aureus skin infection, mice were fed EtOH for ≥12 weeks via the Meadows-Cook model of alcoholism and inoculated with S. aureus following epidermal abrasion. Evidence of exacerbated staphylococcal disease in EtOH-fed mice included: skin lesions that were larger and contained more organisms, greater weight loss, and increased bacterial dissemination. Infected EtOH-fed mice demonstrated poor maintenance and induction of PMN responses in skin and draining LNs, respectively. Additionally, altered PMN dynamics in the skin of these mice corresponded with reduced production of IL-23 and IL-1β by CD11b+ myeloid cells and IL-17 production by γδ T cells, with the latter defect occurring in the draining LNs as well. In addition, IL-17 restoration attenuated S. aureus-induced dermatopathology and improved bacterial clearance defects in EtOH-fed mice. Taken together, the findings show, in a novel model system, that the EtOH-induced increase in S. aureus-related injury/illness corresponds with defects in the IL-23/IL-17 inflammatory axis and poor PMN accumulation at the site of infection and draining LNs. These findings offer new information about the impact of EtOH on cutaneous host-defense pathways and provide a potential mechanism explaining why alcoholics are predisposed to S. aureus skin infection. PMID:25605871

  7. Proinflammatory cytokines differentially influence adult hippocampal cell proliferation depending upon the route and chronicity of administration

    Directory of Open Access Journals (Sweden)

    Julie Anne Seguin

    2008-12-01

    Full Text Available Julie Anne Seguin, Jordan Brennan, Emily Mangano, Shawn HayleyInstitute of Neuroscience, Carleton University, Ottawa, Ontario, CanadaAbstract: Disturbances of hippocampal plasticity, including impaired dendritic branching and reductions of neurogenesis, are provoked by stressful insults and may occur in depression. Although corticoids likely contribute to stressor-induced reductions of neurogenesis, other signaling messengers, including pro-inflammatory cytokines might also be involved. Accordingly, the present investigation assessed whether three proinflammatory cytokines, namely interleukin-1β (IL-1β, IL-6, and tumor necrosis factor-α (TNF-α (associated with depression influenced cellular proliferation within the hippocampus. In this regard, systemic administration of TNF-α reduced 5-bromo-2-deoxyuridine (BrdU labeling within the hippocampus, whereas IL-1β and IL-6 had no such effect. However, repeated but not a single intra-hippocampal infusion of IL-6 and IL-1β actually increased cellular proliferation and IL-6 infusion also enhanced microglial staining within the hippocampus. Yet, no changes in doublecortin expression were apparent, suggesting that the cytokine did not influence the birth of cells destined to become neurons. Essentially, the route of administration and chronicity of cytokine administration had a marked influence upon the nature of hippocampal alterations provoked, suggesting that cytokines may differentially regulate hippocampal plasticity in neuropsychiatric conditions.Keywords: cytokine, depression, neuroplasticity, hippocampus, stressor

  8. Proinflammatory cytokines differentially influence adult hippocampal cell proliferation depending upon the route and chronicity of administration.

    Science.gov (United States)

    Seguin, Julie Anne; Brennan, Jordan; Mangano, Emily; Hayley, Shawn

    2009-01-01

    Disturbances of hippocampal plasticity, including impaired dendritic branching and reductions of neurogenesis, are provoked by stressful insults and may occur in depression. Although corticoids likely contribute to stressor-induced reductions of neurogenesis, other signaling messengers, including pro-inflammatory cytokines might also be involved. Accordingly, the present investigation assessed whether three proinflammatory cytokines, namely interleukin-1beta (IL-1beta), IL-6, and tumor necrosis factor-alpha (TNF-alpha) (associated with depression) influenced cellular proliferation within the hippocampus. In this regard, systemic administration of TNF-alpha reduced 5-bromo-2-deoxyuridine (BrdU) labeling within the hippocampus, whereas IL-1beta and IL-6 had no such effect. However, repeated but not a single intra-hippocampal infusion of IL-6 and IL-1beta actually increased cellular proliferation and IL-6 infusion also enhanced microglial staining within the hippocampus. Yet, no changes in doublecortin expression were apparent, suggesting that the cytokine did not influence the birth of cells destined to become neurons. Essentially, the route of administration and chronicity of cytokine administration had a marked influence upon the nature of hippocampal alterations provoked, suggesting that cytokines may differentially regulate hippocampal plasticity in neuropsychiatric conditions.

  9. Antihypertensive effect of auraptene, a monoterpene coumarin from the genus Citrus, upon chronic administration

    Directory of Open Access Journals (Sweden)

    Bibi Marjan Razavi

    2015-02-01

    Full Text Available Objective(s: Auraptene, a monoterpene coumarin from Citrus species, exhibits cardioprotective effects.In this study, the effects of auraptene administration were investigated on blood pressure of normotensive and desoxycorticosterone acetate (DOCA salt induced hypertensive rats. Materials and Methods: Five weeks administration of auraptene (2, 4, 8 and 16 mg/kg/day and nifedipine (0.25, 0.5, 1, 2 and 4 mg/kg/day in different groups of normotensive and hypertensive rats (at the end of 3 weeks treatment by DOCA salt was carried out and their effects on mean systolic blood pressure (MSBP and mean heart rate (MHR were evaluated using tail cuff method. Results: Our results indicated that chronic administration of auraptene (2, 4, 8 and 16 mg/kg/day significantly reduced the MSBP in DOCA salt treated rats in a dose and time dependent manner. The percent of decreases in MSBP levels by the highest dose of auraptene (16 mg/kg at the end of 4 th to 8 th weeks, were 7.00%, 10.78%, 16.07%, 21.28% and 27.54% respectively(P

  10. Chronic cladribine administration increases amyloid beta peptide generation and plaque burden in mice.

    Directory of Open Access Journals (Sweden)

    Crystal D Hayes

    Full Text Available BACKGROUND: The clinical uses of 2-chloro-2'-deoxyadenosine (2-CDA or cladribine which was initially prescribed to patients with hematological and lymphoid cancers is now extended to treat patients with multiple sclerosis (MS. Previous data has shown that 2-CDA has high affinity to the brain and readily passes through the blood brain barrier reaching CSF concentrations 25% of that found in plasma. However, whether long-term administration of 2-CDA can lead to any adverse effects in patients or animal models is not yet clearly known. METHODOLOGY: Here we show that exposure of 2-CDA to CHO cells stably expressing wild-type APP751 increased generation and secretion of amyloid β peptide (Aβ in to the conditioned medium. Interestingly, increased Aβ levels were noticed even at non-toxic concentrations of 2-CDA. Remarkably, chronic treatment of APdE9 mice, a model of Alzheimer's disease with 2-CDA for 60 days increased amyloid plaque burden by more than 1-fold. Increased Aβ generation appears to result from increased turnover of APP as revealed by cycloheximide-chase experiments. Additionally, surface labeling of APP with biotin and immunoprecipitation of surface labeled proteins with anti-biotin antibody also indicated increased APP at the cell surface in 2-CDA treated cells compared to controls. Increased turnover of APP by 2-CDA in turn might be a consequence of decreased protein levels of PIN 1, which is known to regulate cis-trans isomerization and phosphorylation of APP. Most importantly, like many other oncology drugs, 2-CDA administration led to significant delay in acquiring a reward-based learning task in a T maze paradigm. CONCLUSIONS: Taken together, these data provide compelling evidence for the first time that chronic 2-CDA administration can increase amyloidogenic processing of APP leading to robustly increased plaque burden which may be responsible for the observed deficits in learning skills. Thus chronic treatment of mice with 2

  11. Effect of chronic ethanol (EtOH) and aging on drug metabolism in F-344 male rats

    Energy Technology Data Exchange (ETDEWEB)

    Galinsky, R.E.; Johnson, D.H.; Kimura, R.E.; Franklin, M.R. (Univ. of Utah, Salt Lake City (USA))

    1989-02-09

    The effects of chronic ethanol on in vitro and in vivo drug metabolism were examined in 6 and 25 month old male Fischer 344 rats. Animals were divided into three diet groups: (1) Diet containing EtOH, (2) pair-fed controls and (3) rat chow ad lib. Rats in groups 1 and 2 were fed 3 times daily for six weeks via permanent gastrostomy and received EtOH at doses of 5-8 g/kg/day in the first 3 weeks and 12 g/kg/day for the last 3 weeks. Total caloric intake was 90-120 kcal/kg/day. After 6 weeks, the pharmacokinetics of i.v. acetaminophen (A), 30 mg/kg, were examined to probe in vivo drug conjugation. There was no effects of EtOH on the total CL of A in young or old rats. The fraction of the dose recovered in the urine as A-glucuronide and the partial clearance to A-glucuronide was increased by EtOH. There was no effect on the rate of A-sulfate formation. EtOH increased the renal clearance of A but not of A-sulfate or A-glucuronide. In vitro, EtOH increased hepatic cytochrome P-450 concentration and p-nitroanisole demethylase activity, especially in old rats where values returned to those seen in untreated young males. Erythromycin and ethylmorphine demethylase and p-nitrophenol hydroxylase activities were not increased by the EtOH treatment. EtOH increased UDP-glucuronosyltransferase activity towards 1-naphthol, but not towards morphine, estrone, or testosterone. EtOH had no effect on the cytosolic glutathione S-transferase (1-chloro-2,4-dinitrobenzene) and phenol sulfotransferase (p-nitrophenol) activities.

  12. Roles for the endocannabinoid system in ethanol-motivated behavior.

    Science.gov (United States)

    Henderson-Redmond, Angela N; Guindon, Josée; Morgan, Daniel J

    2016-02-04

    Alcohol use disorder represents a significant human health problem that leads to substantial loss of human life and financial cost to society. Currently available treatment options do not adequately address this human health problem, and thus, additional therapies are desperately needed. The endocannabinoid system has been shown, using animal models, to modulate ethanol-motivated behavior, and it has also been demonstrated that chronic ethanol exposure can have potentially long-lasting effects on the endocannabinoid system. For example, chronic exposure to ethanol, in either cell culture or preclinical rodent models, causes an increase in endocannabinoid levels that results in down-regulation of the cannabinoid receptor 1 (CB1) and uncoupling of this receptor from downstream G protein signaling pathways. Using positron emission tomography (PET), similar down-regulation of CB1 has been noted in multiple regions of the brain in human alcoholic patients. In rodents, treatment with the CB1 inverse agonist SR141716A (Rimonabant), or genetic deletion of CB1 leads to a reduction in voluntary ethanol drinking, ethanol-stimulated dopamine release in the nucleus accumbens, operant self-administration of ethanol, sensitization to the locomotor effects of ethanol, and reinstatement/relapse of ethanol-motivated behavior. Although the clinical utility of Rimonabant or other antagonists/inverse agonists for CB1 is limited due to negative neuropsychiatric side effects, negative allosteric modulators of CB1 and inhibitors of endocannabinoid catabolism represent therapeutic targets worthy of additional examination.

  13. Effect of bicuculline and angiotensin II fragment 3-7 on learning and memory processes in rats chronically treated with ethanol.

    Science.gov (United States)

    Kuziemka-Leska, M; Car, H; Wiśniewski, K

    1998-01-01

    The aim of this study was to determine the possible influence of bicuculline, the antagonist of GABA-A receptor on behavioral activity (recall, acquisition of conditioned reflexes) of angiotension II fragment 3-7 (A II 3-7) in rats chronically treated with ethanol. Long term (9 weeks) ethanol intoxication profoundly impaired learning and memory processes in all testes used. The GABA-A receptor antagonist bicuculline (0.5 mg/kg ip) did not influence exploratory and motor activity in the control rats, but we observed tendency (without significance) to decrease the locomotor activity, in the alcohol-intoxicated groups of animals, when the drug was injected together with A II 3-7 (2 microgram icv). Bicuculline did not influence retrieval process in passive avoidance recall in both investigated groups, and when the drug was given together with AII 3-7 significantly enhanced its action in the control group and in rats chronically treated with ethanol. Bicuculline significantly improved acquisition in the active avoidance test in the control and alcohol-intoxicated groups. Bicuculline injected together with A II 3-7 significantly decreased its action in the control group. Coadministration of bicuculline with A II 3-7 did not significantly change the activity of A II 3-7 in the acquisition of active avoidance test in the alcohol-intoxicated groups of rats.

  14. Bidirectional Synaptic Structural Plasticity after Chronic Cocaine Administration Occurs through Rap1 Small GTPase Signaling.

    Science.gov (United States)

    Cahill, Michael E; Bagot, Rosemary C; Gancarz, Amy M; Walker, Deena M; Sun, HaoSheng; Wang, Zi-Jun; Heller, Elizabeth A; Feng, Jian; Kennedy, Pamela J; Koo, Ja Wook; Cates, Hannah M; Neve, Rachael L; Shen, Li; Dietz, David M; Nestler, Eric J

    2016-02-03

    Dendritic spines are the sites of most excitatory synapses in the CNS, and opposing alterations in the synaptic structure of medium spiny neurons (MSNs) of the nucleus accumbens (NAc), a primary brain reward region, are seen at early versus late time points after cocaine administration. Here we investigate the time-dependent molecular and biochemical processes that regulate this bidirectional synaptic structural plasticity of NAc MSNs and associated changes in cocaine reward in response to chronic cocaine exposure. Our findings reveal key roles for the bidirectional synaptic expression of the Rap1b small GTPase and an associated local synaptic protein translation network in this process. The transcriptional mechanisms and pathway-specific inputs to NAc that regulate Rap1b expression are also characterized. Collectively, these findings provide a precise mechanism by which nuclear to synaptic interactions induce "metaplasticity" in NAc MSNs, and we reveal the specific effects of this plasticity on reward behavior in a brain circuit-specific manner.

  15. Peningkatan Produktivitas Ayam Petelur Melalui Pemberian Ekstrak Etanol Daun Kemangi (INCREASED LAYING HENS PRODUCTIVITY THROUGH THE ADMINISTRATION OF ETHANOL EXTRACT OF KEMANGI LEAVES

    Directory of Open Access Journals (Sweden)

    Andriyanto .

    2014-08-01

    Full Text Available Empirically, kemangi leaves reported to increase health quality in human and livestock. Thepreliminary study was designed to explore the potency of ethanol extract of kemangi leaves to increaselaying hens performance. Sixteen laying hens (pullet were divided into 4 groups and repeated 4 times.Control group was laying hen administered aquadest orally, treated group was laying hen administeredextract of kemangi leaves orally at a dose of 1, 2, and 3 mg/kg BW, respectively. Every day, the experimentallaying hens were fed for 3 times and drinking water was provided ad libitum. Variables observed were thenumber of eggs, egg weight, time of first laying, egg laying intervals, egg quality ( water content, crudeprotein, and crude fat, and liver function (SGPT and SGOT values . Results of this research showed thatadministration of kemangi leaves extract at a dose of 3 mg/kg BW significantly increased the number ofegg production and egg weight (p<0.05. Time of first laying and laying interval did not show any significantdifference among treatments. Examination of moisture, crude protein, and crude fat content of the eggindicated that the administration of kemangi leaves extract did not affect egg quality. Extract of kemangileaves decreased SGPT and SGOT values that indicated improvement of liver function. It was concludedthat administration of ethanol extract of kemangi leaves could increase laying hens productivity byimprovement of liver function that is critical in vitellogenesis.

  16. Ascertainment of chronic diseases using population health data: a comparison of health administrative data and patient self-report

    Directory of Open Access Journals (Sweden)

    Muggah Elizabeth

    2013-01-01

    Full Text Available Abstract Background Health administrative data is increasingly being used for chronic disease surveillance. This study explored agreement between administrative and survey data for ascertainment of seven key chronic diseases, using individually linked data from a large population of individuals in Ontario, Canada. Methods All adults who completed any one of three cycles of the Canadian Community Health Survey (2001, 2003 or 2005 and agreed to have their responses linked to provincial health administrative data were included. The sample population included 85,549 persons. Previously validated case definitions for myocardial infarction, asthma, diabetes, chronic lung disease, stroke, hypertension and congestive heart failure based on hospital and physician billing codes were used to identify cases in health administrative data and these were compared with self-report of each disease from the survey. Concordance was measured using the Kappa statistic, percent positive and negative agreement and prevalence estimates. Results Agreement using the Kappa statistic was good or very good (kappa range: 0.66-0.80 for diabetes and hypertension, moderate for myocardial infarction and asthma and poor or fair (kappa range: 0.29-0.36 for stroke, congestive heart failure and COPD. Prevalence was higher in health administrative data for all diseases except stroke and myocardial infarction. Health Utilities Index scores were higher for cases identified by health administrative data compared with self-reported data for some chronic diseases (acute myocardial infarction, stroke, heart failure, suggesting that administrative data may pick up less severe cases. Conclusions In the general population, discordance between self-report and administrative data was large for many chronic diseases, particularly disease with low prevalence, and differences were not easily explained by individual and disease characteristics.

  17. Administration

    DEFF Research Database (Denmark)

    Bogen handler om den praksis, vi kalder administration. Vi er i den offentlige sektor i Danmark hos kontorfolkene med deres sagsmapper, computere, telefoner,, lovsamlinger,, retningslinier og regneark. I bogen udfoldes en mangfoldighed af konkrete historier om det administrative arbejde fra...... forskellige områder i den offentlige sektor. Hensigten er at forstå den praksis og faglighed der knytter sig til det administrative arbejde...

  18. Administration of simvastatin after kainic acid-induced status epilepticus restrains chronic temporal lobe epilepsy.

    Directory of Open Access Journals (Sweden)

    Chuncheng Xie

    Full Text Available In this study, we examined the effect of chronic administration of simvastatin immediately after status epilepticus (SE on rat brain with temporal lobe epilepsy (TLE. First, we evaluated cytokines expression at 3 days post KA-lesion in hippocampus and found that simvastatin-treatment suppressed lesion-induced expression of interleukin (IL-1β and tumor necrosis factor-α (TNF-α. Further, we quantified reactive astrocytosis using glial fibrillary acidic protein (GFAP staining and neuron loss using Nissl staining in hippocampus at 4-6 months after KA-lesion. We found that simvastatin suppressed reactive astrocytosis demonstrated by a significant decrease in GFAP-positive cells, and attenuated loss of pyramidal neurons in CA3 and interneurons in dentate hilar (DH. We next assessed aberrant mossy fiber sprouting (MFS that is known to contribute to recurrence of spontaneous seizure in epileptic brain. In contrast to the robust MFS observed in saline-treated animals, the extent of MFS was restrained by simvastatin in epileptic rats. Attenuated MFS was related to decreased neuronal loss in CA3 and DH, which is possibly a mechanism underlying decreased hippocampal susceptibility in animal treated with simvastatin. Electronic encephalography (EEG was recorded during 4 to 6 months after KA-lesion. The frequency of abnormal spikes in rats with simvastatin-treatment decreased significantly compared to the saline group. In summary, simvastatin treatment suppressed cytokines expression and reactive astrocytosis and decreased the frequency of discharges of epileptic brain, which might be due to the inhibition of MFS in DH. Our study suggests that simvastatin administration might be a possible intervention and promising strategy for preventing SE exacerbating to chronic epilepsy.

  19. Effects of acute or chronic administration of substituted benzamides in experimental models of depression in rats.

    Science.gov (United States)

    Drago, F; Arezzi, A; Virzì, A

    2000-12-01

    The effects of substituted benzamides, sulpiride and raclopride on experimental models of depression were studied in male rats after acute or chronic administration in comparison to those of the classical antidepressant, clomipramine. In contrast to clomipramine (50 mg/kg), acute doses of sulpiride or raclopride (1 or 5 mg/kg) failed to change the behavioral response of animals tested in the despair (constrained swim) test or in the model of reserpine-induced changes in the open field behavior. These doses also did not modify the grooming response of rats exposed to a novel environment. Sulpiride or raclopride 10 mg/kg increased the immobility time in the despair test and reduced novelty-induced grooming. The repeated injection for 21 days of sulpiride or raclopride (1 or 5 mg/kg, but not 10 mg/kg) induced a reduction of the immobility period during the constrained swim test similar to that following the chronic treatment with clomipramine 50 mg/kg. This appeared to be a clear-cut reversed dose-response relationship for both substituted benzamides, being the dose potency 1 mg/kg>5 mg/kg>10 mg/kg. Raclopride was more potent than sulpiride in this respect. Furthermore, like clomipramine, sulpiride (1 or 5 mg/kg) and raclopride (1 mg/kg) antagonized reserpine-induced changes in the open field behavior and enhanced novelty-induced grooming. These results indicate that, in contrast to acute injection, repeated administration of small doses of the substituted benzamides, sulpiride or raclopride induce an effect similar to that of the classical antidepressant, clomipramine. The reverse dose-response relationship suggests that these drugs in small doses act on presynaptic dopamine D(2) receptors. This may be consistent with a postsynaptic action of greater doses that exert sedative effects and increase immobility time in the despair test.

  20. Increase in phorbol ester binding in liver microsomes after chronic administration of phenobarbital

    Energy Technology Data Exchange (ETDEWEB)

    Menez, J.F.; Deitrich, R.A. (Univ. of Colorado, Denver (United States))

    1991-03-15

    The effect of chronic administration of phenobarbital on the binding of phorbol-12,13-dibutyrate (({sup 3}H)PDBu), an activator of protein kinase C (PKC), was examined in rat liver microsomes. A significant increase in the number of binding sites was observed in microsomes of Fisher 344 rats. However, no change appeared in liver cytosol binding of PDBu. Consequently, a translocation process of PKC is unlikely. The increase in ({sup 3}H)PDBu binding in liver microsomes is significant 24 h. after one injection of phenobarbital and reaches its maximum in 2 days. In other strains of rats (ACI and lean Zucker), significant differences were found in the increase of ({sup 3}H)PDBu binding in microsomes. Fisher 344 were the most sensitive, lean Zucker rats, the least sensitive. Those results parallel the pentoxy-resorufin O demethylase activity in the microsomes of the same animals. EC{sub 50} values for inhibition of ({sup 3}H)PDBu binding by pentobarbital were determined in control microsomes from Fisher and Zucker rats. In Fisher rats, ({sup 3}H)PDBu binding in microsomes was found to be more sensitive to the inhibitory effect of pentobarbital than in lean Zucker rats, which suggests that the more microsomes are inhibited in vitro the greater the increase in PKC in microsomes following chronic barbiturate treatment.

  1. Effects of acute and chronic administration of venlafaxine and desipramine on extracellular monoamine levels in the mouse prefrontal cortex and striatum.

    Science.gov (United States)

    Higashino, Kosuke; Ago, Yukio; Umehara, Masato; Kita, Yuki; Fujita, Kazumi; Takuma, Kazuhiro; Matsuda, Toshio

    2014-04-15

    Prefrontal catecholamine neurotransmission plays a key role in the therapeutic actions of drugs for attention-deficit/hyperactivity disorder (ADHD). We have recently shown that serotonin/noradrenaline reuptake inhibitors and the noradrenaline reuptake inhibitor desipramine attenuated horizontal hyperactivity in spontaneously hypertensive rats, an animal model of ADHD, and that these drugs are potential pharmacotherapeutics for ADHD. In this study, we used in vivo microdialysis to study the effects of acute and chronic (once daily for 3 weeks) administration of the serotonin/noradrenaline reuptake inhibitor venlafaxine and the noradrenaline reuptake inhibitor desipramine on noradrenaline, dopamine, and serotonin levels, and the expression of the neuronal activity marker c-Fos in the mouse prefrontal cortex and striatum. Both acute and chronic venlafaxine administration increased prefrontal noradrenaline, dopamine, and serotonin levels and striatal noradrenaline and serotonin levels. Both acute and chronic desipramine administration increased prefrontal noradrenaline and dopamine levels and striatal noradrenaline levels, with chronic administration yielding stronger increase. Chronic desipramine did not affect striatal dopamine and serotonin levels. Both acute and chronic venlafaxine administration increased the expression of c-Fos in the prefrontal cortex, whereas chronic, but not acute, desipramine administration increased the expression of c-Fos in the prefrontal cortex. Both acute and chronic venlafaxine administration increased the striatal c-Fos expression to some degree, whereas desipramine administration did not. These results suggest that acute and chronic venlafaxine and chronic desipramine administration maximally activate the prefrontal adrenergic and dopaminergic systems without affecting striatal dopaminergic systems in mice.

  2. Antihypertensive effect of auraptene, a monoterpene coumarin from the genus Citrus, upon chronic administration

    Science.gov (United States)

    Razavi, Bibi Marjan; Arasteh, Ebrahim; Imenshahidi, Mohsen; Iranshahi, Mehrdad

    2015-01-01

    Objective(s): Auraptene, a monoterpene coumarin from Citrus species, exhibits cardioprotective effects. In this study, the effects of auraptene administration were investigated on blood pressure of normotensive and desoxycorticosterone acetate (DOCA) salt induced hypertensive rats. Materials and Methods: Five weeks administration of auraptene (2, 4, 8 and 16 mg/kg/day) and nifedipine (0.25, 0.5, 1, 2 and 4 mg/kg/day) in different groups of normotensive and hypertensive rats (at the end of 3 weeks treatment by DOCA salt) was carried out and their effects on mean systolic blood pressure (MSBP) and mean heart rate (MHR) were evaluated using tail cuff method. Results: Our results indicated that chronic administration of auraptene (2, 4, 8 and 16 mg/kg/day) significantly reduced the MSBP in DOCA salt treated rats in a dose and time dependent manner. The percent of decreases in MSBP levels by the highest dose of auraptene (16 mg/kg) at the end of 4 th to 8 th weeks, were 7.00%, 10.78%, 16.07%, 21.28% and 27.54% respectively (P<0.001). Moreover the antihypertensive effect of auraptene was less than nifedipine (ED50 value of nifedipine = 0.7 mg/kg at 8th week and ED50 value of auraptene = 5.64 mg/kg at 8 week). Conclusion: Auraptene considerably reduced MSBP in hypertensive rats, but not in normotensive (normal saline treated) rats. The results of MHR measurement showed that the increase in MHR was not significant in comparison with DOCA treated rats. PMID:25810889

  3. NEUROPEPTIDE Y (NPY) SUPPRESSES ETHANOL DRINKING IN ETHANOL-ABSTINENT, BUT NOT NON-ETHANOL-ABSTINENT, WISTAR RATS

    OpenAIRE

    Gilpin, N.W.; Stewart, R B; Badia-Elder, N.E.

    2008-01-01

    In outbred rats, increases in brain neuropeptide Y (NPY) activity suppress ethanol consumption in a variety of access conditions, but only following a history of ethanol dependence. NPY reliably suppresses ethanol drinking in alcohol-preferring (P) rats and this effect is augmented following a period of ethanol abstinence. The purpose of this experiment was to examine the effects of NPY on 2-bottle choice ethanol drinking and feeding in Wistar rats that had undergone chronic ethanol vapor exp...

  4. Hepatoprotective effects of Arctium lappa Linne on liver injuries induced by chronic ethanol consumption and potentiated by carbon tetrachloride.

    Science.gov (United States)

    Lin, Song-Chow; Lin, Chia-Hsien; Lin, Chun-Ching; Lin, Yun-Ho; Chen, Chin-Fa; Chen, I-Cheng; Wang, Li-Ya

    2002-01-01

    Arctium lappa Linne (burdock) is a perennial herb which is popularly cultivated as a vegetable. In order to evaluate its hepatoprotective effects, a group of rats (n = 10) was fed a liquid ethanol diet (4 g of absolute ethanol/ 80 ml of liquid basal diet) for 28 days and another group (n = 10) received a single intraperitoneal injection of 0.5 ml/kg carbon tetrachloride (CCl(4)) in order to potentiate the liver damage on the 21st day (1 day before the beginning of A. lappa treatment). Control group rats were given a liquid basal diet which did not contain absolute ethanol. When 300 mg/kg A. lappa was administered orally 3 times per day in both the 1-day and 7-day treatment groups, some biochemical and histopathological parameters were significantly altered, both in the ethanol group and the groups receiving ethanol supplemented with CCl(4). A. lappa significantly improved various pathological and biochemical parameters which were worsened by ethanol plus CCl(4)-induced liver damage, such as the ethanol plus CCl(4)-induced decreases in total cytochrome P-450 content and NADPH-cytochrome c reductase activity, increases in serum triglyceride levels and lipid peroxidation (the deleterious peroxidative and toxic malondialdehyde metabolite may be produced in quantity) and elevation of serum transaminase levels. It could even restore the glutathione content and affect the histopathological lesions. These results tended to imply that the hepatotoxicity induced by ethanol and potentiated by CCl(4) could be alleviated with 1 and 7 days of A. lappa treatment. The hepatoprotective mechanism of A. lappa could be attributed, at least in part, to its antioxidative activity, which decreases the oxidative stress of hepatocytes, or to other unknown protective mechanism(s).

  5. Acute and chronic administration of gold nanoparticles cause DNA damage in the cerebral cortex of adult rats.

    Science.gov (United States)

    Cardoso, Eria; Rezin, Gislaine Tezza; Zanoni, Elton Torres; de Souza Notoya, Frederico; Leffa, Daniela Dimer; Damiani, Adriani Paganini; Daumann, Francine; Rodriguez, Juan Carlos Ortiz; Benavides, Roberto; da Silva, Luciano; Andrade, Vanessa M; da Silva Paula, Marcos Marques

    2014-01-01

    The use of gold nanoparticles is increasing in medicine; however, their toxic effects remain to be elucidated. Studies show that gold nanoparticles can cross the blood-brain barrier, as well as accumulate in the brain. Therefore, this study was undertaken to better understand the effects of gold nanoparticles on rat brains. DNA damage parameters were evaluated in the cerebral cortex of adult rats submitted to acute and chronic administration of gold nanoparticles of two different diameters: 10 and 30nm. During acute administration, adult rats received a single intraperitoneal injection of either gold nanoparticles or saline solution. During chronic administration, adult rats received a daily single injection for 28 days of the same gold nanoparticles or saline solution. Twenty-four hours after either single (acute) or last injection (chronic), the rats were euthanized by decapitation, their brains removed, and the cerebral cortices isolated for evaluation of DNA damage parameters. Our study showed that acute administration of gold nanoparticles in adult rats presented higher levels of damage frequency and damage index in their DNA compared to the control group. It was also observed that gold nanoparticles of 30nm presented higher levels of damage frequency and damage index in the DNA compared to the 10nm ones. When comparing the effects of chronic administration of gold nanoparticles of 10 and 30nm, we observed that occurred significant different index and frequency damage, comparing with control group. However, there is no difference between the 10 and 30nm groups in the levels of DNA damage for both parameters of the Comet assay. Results suggest that gold nanoparticles for both sizes cause DNA damage for chronic as well as acute treatments, although a higher damage was observed for the chronic one.

  6. Adolescent alcohol exposure reduces behavioral flexibility, promotes disinhibition, and increases resistance to extinction of ethanol self-administration in adulthood.

    Science.gov (United States)

    Gass, Justin T; Glen, William Bailey; McGonigal, Justin T; Trantham-Davidson, Heather; Lopez, Marcelo F; Randall, Patrick K; Yaxley, Richard; Floresco, Stan B; Chandler, L Judson

    2014-10-01

    The prefrontal cortex (PFC) is a brain region that is critically involved in cognitive function and inhibitory control of behavior, and adolescence represents an important period of continued PFC development that parallels the maturation of these functions. Evidence suggests that this period of continued development of the PFC may render it especially vulnerable to environmental insults that impact PFC function in adulthood. Experimentation with alcohol typically begins during adolescence when binge-like consumption of large quantities is common. In the present study, we investigated the effects of repeated cycles of adolescent intermittent ethanol (AIE) exposure (postnatal days 28-42) by vapor inhalation on different aspects of executive functioning in the adult rat. In an operant set-shifting task, AIE-exposed rats exhibited deficits in their ability to shift their response strategy when the rules of the task changed, indicating reduced behavioral flexibility. There were no differences in progressive ratio response for the reinforcer suggesting that AIE did not alter reinforcer motivation. Examination of performance on the elevated plus maze under conditions designed to minimize stress revealed that AIE exposure enhanced the number of entries into the open arms, which may reflect either reduced anxiety and/or disinhibition of exploratory-like behavior. In rats that trained to self-administer ethanol in an operant paradigm, AIE increased resistance to extinction of ethanol-seeking behavior. This resistance to extinction was reversed by positive allosteric modulation of mGluR5 during extinction training, an effect that is thought to reflect promotion of extinction learning mechanisms within the medial PFC. Consistent with this, CDPPB was also observed to reverse the deficits in behavioral flexibility. Finally, diffusion tensor imaging with multivariate analysis of 32 brain areas revealed that while there were no differences in the total brain volume, the volume of

  7. Bioavailability of ethanol is reduced in several commonly used liquid diets.

    Science.gov (United States)

    de Fiebre, N C; de Fiebre, C M; Booker, T K; Nelson, S; Collins, A C

    1994-01-01

    Liquid diets are often used as a vehicle for chronically treating laboratory animals with ethanol. However, a recent report suggested that one or more components of these diets may bind ethanol which could result in a decrease in the bioavailability of ethanol. Consequently, we compared the blood ethanol concentration vs. time curves obtained following the intragastric (i.g.) administration of ethanol dissolved in water or in one of three liquid diets (Bioserv AIN-76, Sustacal, or Carnation Slender) using the long-sleep (LS) and short-sleep (SS) mouse lines. The initial rates of absorption were generally the same for the water-ethanol and diet-ethanol groups, but the diets generally produced lower peak levels and the areas under the ethanol concentration-time curves were less for all of the liquid diets than for the control, ethanol-water solution. In vitro dialysis experiments indicated that the Bioserv diet binds ethanol in a saturable manner. Therefore, it may be that the slower release of ethanol, which should occur as a result of binding, serves to increase the role of first pass metabolism in regulating ethanol concentrations following oral administration. Because the effects of the diets were seen even after pyrazole treatment, it may be that the lower blood ethanol levels arise because metabolism by gastric ADH, rather than hepatic ADH, is responsible for a major portion of ethanol metabolism as ethanol is slowly released by the diets. If so, the observation that the diet/water differences were uniformly greater in the LS mice may indicate that LS-SS differences in gastric ADH exist.(ABSTRACT TRUNCATED AT 250 WORDS)

  8. Pathogenesis of nephrogenic diabetes insipidus due to chronic administration of lithium in rats.

    Science.gov (United States)

    Christensen, S; Kusano, E; Yusufi, A N; Murayama, N; Dousa, T P

    1985-06-01

    A polyuric syndrome with nephrogenic diabetes insipidus (NDI) is a frequent consequence of prolonged administration of lithium (Li) salts. Studies in the past, mainly the acute and in vitro experiments, indicated that Li ions can inhibit hydroosmotic effect of [8-arginine]vasopressin (AVP) at the step of cAMP generation in vitro. However, the pathogenesis of the NDI due to chronic oral administration of low therapeutic doses of Li salts is not yet clarified. We conducted a comprehensive study to clarify the mechanism by which Li administered orally for several weeks induces polyuria and NDI in rats. Albino rats consuming a diet which contained Li (60 mmol/kg) for 4 wk developed marked polyuria and polydipsia; at the end of 4 wk the plasma Li was 0.7 +/- 0.09 mM (mean +/- SEM; n = 36). Li-treated rats had a significantly decreased (-33%) tissue osmolality in papilla and greatly reduced cortico-papillary gradient of urea (cortex--43%; medulla--64%; papilla--74%). Plasma urea was significantly (P less than 0.001) lower in Li-treated rats (5.4 +/- 0.2 mM) compared with controls (6.8 +/- 0.3 mM). Medullary collecting tubules (MCT) and papillary collecting ducts (PCD) microdissected from Li-treated animals had higher content of protein than MCT and PCD from the control rats. The cAMP accumulation in response to AVP added in vitro was significantly (delta = -60%) reduced. Also, the cAMP accumulation in MCT and PCD after incubation with forskolin was markedly lower in Li-treated rats. Addition of 0.5 mM 1-methyl,3-isobutyl-xanthine did not restore the cAMP accumulation in response to AVP and forskolin in MCT from Li-treated animals. In collecting tubule segments from polyuric rats with hypothalamic diabetes insipidus (Brattleboro homozygotes) the AVP-dependent cAMP accumulation was not diminished. The activity of adenylate cyclase (AdC) in MCT of Li-treated rats, both the basal and the activity stimulated by AVP, forskolin, or fluoride, was significantly (delta

  9. Behavioural and neurochemical comparison of chronic intermittent cathinone, mephedrone and MDMA administration to the rat.

    Science.gov (United States)

    Shortall, Sinead E; Macerola, Alice E; Swaby, Rabbi T R; Jayson, Rebecca; Korsah, Chantal; Pillidge, Katharine E; Wigmore, Peter M; Ebling, Francis J P; Richard Green, A; Fone, Kevin C F; King, Madeleine V

    2013-09-01

    The synthetic cathinone derivative, mephedrone, is a controlled substance across Europe. Its effects have been compared by users to 3,4-methylenedioxymethamphetamine (MDMA), but little data exist on its pharmacological properties. This study compared the behavioural and neurochemical effects of mephedrone with cathinone and MDMA in rats. Young-adult male Lister hooded rats received i.p. cathinone (1 or 4 mg/kg), mephedrone (1, 4 or 10mg/kg) or MDMA (10mg/kg) on two consecutive days weekly for 3 weeks or as a single acute injection (for neurochemical analysis). Locomotor activity (LMA), novel object discrimination (NOD), conditioned emotional response (CER) and prepulse inhibition of the acoustic startle response (PPI) were measured following intermittent drug administration. Dopamine, 5-hydroxytryptamine (5-HT) and their major metabolites were measured in striatum, frontal cortex and hippocampus by high performance liquid chromatography 7 days after intermittent dosing and 2h after acute injection. Cathinone (1, 4 mg/kg), mephedrone (10mg/kg) and MDMA (10mg/kg) induced hyperactivity following the first and sixth injections and sensitization to cathinone and mephedrone occurred with chronic dosing. All drugs impaired NOD and mephedrone (10mg/kg) reduced freezing in response to contextual re-exposure during the CER retention trial. Acute MDMA reduced hippocampal 5-HT and 5-HIAA but the only significant effect on dopamine, 5-HT and their metabolites following chronic dosing was altered hippocampal 3,4-dihydroxyphenylacetic acid (DOPAC), following mephedrone (4, 10mg/kg) and MDMA. At the doses examined, mephedrone, cathinone, and MDMA induced similar effects on behaviour and failed to induce neurotoxic damage when administered intermittently over 3 weeks.

  10. Ameliorating Adriamycin-Induced Chronic Kidney Disease in Rats by Orally Administrated Cardiotoxin from Naja naja atra Venom

    Directory of Open Access Journals (Sweden)

    Zhi-Hui Ding

    2014-01-01

    Full Text Available Previous studies reported the oral administration of Naja naja atra venom (NNAV reduced adriamycin-induced chronic kidney damage. This study investigated the effects of intragastric administrated cardiotoxin from Naja naja atra venom on chronic kidney disease in rats. Wistar rats were injected with adriamycin (ADR; 6 mg/kg body weight via the tail vein to induce chronic kidney disease. The cardiotoxin was administrated daily by intragastric injection at doses of 45, 90, and 180 μg/kg body weight until the end of the protocol. The rats were placed in metabolic cages for 24 hours to collect urine, for determination of proteinuria, once a week. After 6 weeks, the rats were sacrificed to determine serum profiles relevant to chronic kidney disease, including albumin, total cholesterol, phosphorus, blood urea nitrogen, and serum creatinine. Kidney histology was examined with hematoxylin and eosin, periodic acid-Schiff, and Masson’s trichrome staining. The levels of kidney podocin were analyzed by Western blot analysis and immunofluorescence. We found that cardiotoxin reduced proteinuria and can improve biological parameters in the adriamycin-induced kidney disease model. Cardiotoxin also reduced adriamycin-induced kidney pathology, suggesting that cardiotoxin is an active component of NNAV for ameliorating adriamycin-induced kidney damage and may have a potential therapeutic value on chronic kidney disease.

  11. Ameliorating Adriamycin-Induced Chronic Kidney Disease in Rats by Orally Administrated Cardiotoxin from Naja naja atra Venom.

    Science.gov (United States)

    Ding, Zhi-Hui; Xu, Li-Min; Wang, Shu-Zhi; Kou, Jian-Qun; Xu, Yin-Li; Chen, Cao-Xin; Yu, Hong-Pei; Qin, Zheng-Hong; Xie, Yan

    2014-01-01

    Previous studies reported the oral administration of Naja naja atra venom (NNAV) reduced adriamycin-induced chronic kidney damage. This study investigated the effects of intragastric administrated cardiotoxin from Naja naja atra venom on chronic kidney disease in rats. Wistar rats were injected with adriamycin (ADR; 6 mg/kg body weight) via the tail vein to induce chronic kidney disease. The cardiotoxin was administrated daily by intragastric injection at doses of 45, 90, and 180  μ g/kg body weight until the end of the protocol. The rats were placed in metabolic cages for 24 hours to collect urine, for determination of proteinuria, once a week. After 6 weeks, the rats were sacrificed to determine serum profiles relevant to chronic kidney disease, including albumin, total cholesterol, phosphorus, blood urea nitrogen, and serum creatinine. Kidney histology was examined with hematoxylin and eosin, periodic acid-Schiff, and Masson's trichrome staining. The levels of kidney podocin were analyzed by Western blot analysis and immunofluorescence. We found that cardiotoxin reduced proteinuria and can improve biological parameters in the adriamycin-induced kidney disease model. Cardiotoxin also reduced adriamycin-induced kidney pathology, suggesting that cardiotoxin is an active component of NNAV for ameliorating adriamycin-induced kidney damage and may have a potential therapeutic value on chronic kidney disease.

  12. Elimination of alfentanil delivered by infusion is not altered by the chronic administration of atorvastatin.

    LENUS (Irish Health Repository)

    McDonnell, C G

    2012-02-03

    BACKGROUND AND OBJECTIVE: Statins are prescribed for patients with hypercholesterolemia. Atorvastatin is metabolized by cytochrome P4503A4 and inhibits P4503A4 activity in vitro. Alfentanil is a potent opioid used in clinical anaesthetic practice and is also metabolized by P4503A4. This study tested the hypothesis that chronic atorvastatin administration inhibits the metabolism of alfentanil. METHODS: Sixteen patients undergoing elective surgery were studied as matched pairs. One member of each pair was maintained on standard doses of atorvastatin for at least 4 months. Each patient received an alfentanil bolus (80 microg kg(-1)) intravenously (i.v.), followed by an alfentanil infusion (0.67 microg kg(-1) min(-1)) for 90 min. Serial plasma alfentanil concentrations were measured using gas chromatography-nitrogen phosphorous detection. Pharmacokinetic parameters were calculated using two-compartment linear modelling. RESULTS: One patient and the corresponding match were excluded from the analysis. The elimination half-life of alfentanil was similar in the control and atorvastatin groups (98.8 +\\/- 12.4 versus 98.3 +\\/- 11.3 min, respectively). The clearance (Cl), volume of distribution at steady-state (Vdss) and area under the curve (AUC) were similar in the two groups (Cl = 0.20 (+\\/- 0.06) and 0.22 (+\\/- 0.04) L min(-1), Vdss = 0.38 (+\\/- 0.07) and 0.39 (+\\/- 0.07) L kg(-1), AUC = 0.05 (+\\/- 0.02) and 0.04 (+\\/- 0.01) mg min mL(-1)). CONCLUSIONS: Concurrent atorvastatin administration does not alter the pharmacokinetics of alfentanil in patients undergoing elective surgery.

  13. Acute effect of hydralazine administration on pulmonary artery hemodynamics in dogs with chronic heartworm disease.

    Science.gov (United States)

    Atkins, C E; Keene, B W; McGuirk, S M; Sato, T

    1994-02-01

    In an effort to better understand the role of vasodilators in the management of pulmonary hypertension associated with chronic heartworm disease (HWD), pulmonary hemodynamic measurements were obtained from 7 experimentally infected, anesthetized dogs before and after hydralazine administration (mean dose, 1.96 mg/kg of body weight). Five dogs were maintained on room air, while 2 were maintained on 100% oxygen during the hydralazine study. The hemodynamic effect of hydralazine in dogs with HWD was evaluated, using heart rate, cardiac index, mean pulmonary artery pressure, mean arterial pressure, total pulmonary resistance, total systemic resistance, total systemic resistance/total pulmonary resistance, left ventricular dP/dtmax, left ventricular end diastolic pressure, and left and right ventricular double products ([mean arterial pressure x heart rate] and [mean pulmonary artery pressure x heart rate], respectively). Responders were defined as those in which total pulmonary resistance decreased > or = 20% without an increase in mean pulmonary arterial pressure and in which heart rate increase was < or = 10%. Comparison was also made between maximal hemodynamic effect of hydralazine with that after 100% oxygen administration for 15 minutes to previously normoxemic dogs (n = 5). Significance was determined if P < 0.05, using the paired t-test. Hydralazine induced significant reductions in mean pulmonary and systemic arterial pressures and total pulmonary resistance, with no significant change in heart rate, cardiac index, total systemic resistance, left ventricular dP/dtmax, left ventricular end diastolic pressure, or right and left ventricular double products. Four (57%) of the 7 dogs studied were considered responders. Pretreatment cardiac index, mean pulmonary artery pressure, and total pulmonary resistance did not allow differentiation of responders from nonresponders.(ABSTRACT TRUNCATED AT 250 WORDS)

  14. Distinct Effects of Nalmefene on Dopamine Uptake Rates and Kappa Opioid Receptor Activity in the Nucleus Accumbens Following Chronic Intermittent Ethanol Exposure

    Directory of Open Access Journals (Sweden)

    Jamie H. Rose

    2016-07-01

    Full Text Available The development of pharmacotherapeutics that reduce relapse to alcohol drinking in patients with alcohol dependence is of considerable research interest. Preclinical data support a role for nucleus accumbens (NAc κ opioid receptors (KOR in chronic intermittent ethanol (CIE exposure-induced increases in ethanol intake. Nalmefene, a high-affinity KOR partial agonist, reduces drinking in at-risk patients and relapse drinking in rodents, potentially due to its effects on NAc KORs. However, the effects of nalmefene on accumbal dopamine transmission and KOR function are poorly understood. We investigated the effects of nalmefene on dopamine transmission and KORs using fast scan cyclic voltammetry in NAc brain slices from male C57BL/6J mice following five weeks of CIE or air exposure. Nalmefene concentration-dependently reduced dopamine release similarly in air and CIE groups, suggesting that dynorphin tone may not be present in brain slices. Further, nalmefene attenuated dopamine uptake rates to a greater extent in brain slices from CIE-exposed mice, suggesting that dopamine transporter-KOR interactions may be fundamentally altered following CIE. Additionally, nalmefene reversed the dopamine-decreasing effects of a maximal concentration of a KOR agonist selectively in brain slices of CIE-exposed mice. It is possible that nalmefene may attenuate withdrawal-induced increases in ethanol consumption by modulation of dopamine transmission through KORs.

  15. Effects of six months losartan administration on liver fibrosis in chronic hepatitis C patients: A pilot study

    Institute of Scientific and Technical Information of China (English)

    Silvia Sookoian; Maria Alejandra Fernández; Gustavo Casta(n)o

    2005-01-01

    AIM: To evaluate the safety and efficacy of chronic administration of losartan on hepatic fibrosis in chronic hepatitis C patients.METHODS: Fourteen patients with chronic hepatitis C non-responders (n = 10), with contraindications (n = 2)or lack of compliance (n = 2) to interferon plus ribavirin therapy and liver fibrosis were enrolled. Liver and renal function test, clinical evaluation, and liver biopsies were performed at baseline and after losartan administration at a dose of 50 mg/d during the 6 mo. The control group composed of nine patients with the same inclusion criteria and paired liver biopsies (interval 6-14 mo).Histological activity index (HAI) with fibrosis stage was assessed under blind conditions by means of Ishak's score. Subendothelial fibrosis was evaluated by digital image analyses.RESULTS: The changes in the fibrosis stage were significantly different between losartan group (decrease of 0.5±1.3) and controls (increase of 0.89±1.27;P<0.03). In the treated patients, a decrease in fibrosis stage was observed in 7/14 patients vs 1/9 control patients (P<0.04). A decrease in sub-endothelial fibrosis was observed in the losartan group. No differences were found in HAI after losartan administration. Acute and chronic decreases in systolic arterial pressures (P<0.05)were observed after the losartan administration, without changes in mean arterial pressure or renal function.CONCLUSION: Chronic AT-Ⅱ type 1 receptor (AT1R)blockade may reduce liver fibrosis in patients with chronic hepatitis C.

  16. Chronic antidepressant administration increases the expression of cAMP response element binding protein (CREB) in rat hippocampus.

    Science.gov (United States)

    Nibuya, M; Nestler, E J; Duman, R S

    1996-04-01

    The present study demonstrates that chronic, but not acute, adminstration of several different classes of antidepressants, including serotonin- and norepinephrine-selective reuptake inhibitors, increases the expression of cAMP response element binding protein (CREB) mRNA in rat hippocampus. In contrast, chronic administration of several nonantidepressant psychotropic drugs did not influence expression of CREB mRNA, demonstrating the pharmacological specificity of this effect. In situ hybridization analysis demonstrates that antidepressant administration increases expression of CREB mRNA in CA1 and CA3 pyramidal and dentate gyrus granule cell layers of the hippocampus. In addition, levels of CRE immunoreactivity and of CRE binding activity were increased by chronic antidepressant administration, which indicates that expression and function of CREB protein are increased along with its mRNA. Chronic administration of the phosphodiesterase (PDE) inhibitors rolipram or papaverine also increased expression of CREB mRNA in hippocampus, demonstrating a role for the cAMP cascade. Moreover, coadministration of rolipram with imipramine resulted in a more rapid induction of CREB than with either treatment alone. Increased expression and function of CREB suggest that specific target genes may be regulated by these treatments. We have found that levels of brain-derived neurotrophic factor (BDNF) and trkB mRNA are also increased by administration of antidepressants or PDE inhibitors. These findings indicate that upregulation of CREB is a common action of chronic antidepressant treatments that may lead to regulation of specific target genes, such as BDNF and trkB, and to the long-term effects of these treatments on brain function.

  17. Chronic administration of the methylxanthine propentofylline impairs reinstatement to cocaine by a GLT-1-dependent mechanism.

    Science.gov (United States)

    Reissner, Kathryn J; Brown, Robyn M; Spencer, Sade; Tran, Phuong K; Thomas, Charles A; Kalivas, Peter W

    2014-01-01

    In recent years, interactions between neurons and glia have been evaluated as mediators of neuropsychiatric diseases, including drug addiction. In particular, compounds that increase expression of the astroglial glutamate transporter GLT-1 (N-acetylcysteine and ceftriaxone) can decrease measures of drug seeking. However, it is unknown whether the compounds that influence broad measures of glial physiology can influence behavioral measures of drug relapse, nor is it clear whether the upregulated GLT-1 is functionally important for suppressing of drug seeking. To address these questions, we sought to determine whether the glial modulator and neuroprotective agent propentofylline (PPF) modifies drug seeking in rats using a reinstatement model of cocaine relapse. We found that 7 days of chronic (but not acute) administration of PPF significantly decreased both cue- and cocaine-induced reinstatement of cocaine seeking. We next determined whether the effect of systemic PPF on reinstatement depended upon its ability to restore expression of GLT-1 in the nucleus accumbens. PPF restored the cocaine-induced decrease in GLT-1 in the accumbens core; then, using an antisense strategy against glutamate transporter GLT-1, we found that restored transporter expression was necessary for PPF to inhibit cue-primed cocaine seeking. These findings indicate that modulating glial physiology with atypical xanthine derivatives like PPF is a potential avenue for developing new medications for cocaine abuse, and support the hypothesis that neuron-glial interactions contribute to mechanisms of psychostimulant addiction, particularly via expression and function of astroglial glutamate transporters.

  18. Cadmium chronic administration to lactating ewes. Reproductive performance, cadmium tissue accumulation and placental transfer

    Energy Technology Data Exchange (ETDEWEB)

    Floris, B.; Bomboi, G.; Sechi, P.; Marongiu, M. L. [Sassari Univ., Sassari (Italy). Dipt. di Biologia Animale; Pirino, S. [Sassari Univ., Sassari (Italy). Ist. di Patologia Generale, Anatomia Patologica e Clinica Ostetrico-chirurgica Veterinaria

    2000-12-01

    20 lactating ewes were allotted to two groups: 10 subjects received orally 100 mg/day of CdCl{sub 2} for 108 consecutive days, and the remaining 10 acted as control. Reproductive performance in ewes and cadmium tissue accumulation, both in ewes and their lambs, were investigated. The results showed that in ewes: 1) the regular cadmium intestinal intake negatively influences all reproductive parameters; 2) cadmium is particularly accumulated in kidney and liver, bur also in mammary gland, although at distinctly lower level; 3) chronic administration does not increase cadmium placental transfer in lactating pregnant subjects. [Italian] 20 pecore in lattazione sono state suddivise in 2 gruppi: 10 soggetti ricevettero per os 100 mg/giorno di CdCl{sub 2} per 108 giorni consecutivi, e i restanti 10 funsero da controllo. Sono stati studiati i parametri riproduttivi delle pecore e l'accumulo di cadmio nei tessuti, sia delle pecore che dei loro agnelli. I risultati hanno mostrato che negli ovini: 1) il regolare assorbimento intestinale di cadmio influenza negativamente tutti i parametri riproduttivi; 2) il cadmio viene accumulato principalmente nei reni e nel fegato, ma anche dalla ghiandola mammaria, sebbene in misura nettamente inferiore; 3) la somministrazione cronica di cadmio nei soggetti gravidi non incrementa il suo passaggio transplacentare.

  19. Chronic food administration of Salvia sclarea oil reduces animals' anxious and dominant behavior.

    Science.gov (United States)

    Gross, Moshe; Nesher, Elimelech; Tikhonov, Tatiana; Raz, Olga; Pinhasov, Albert

    2013-03-01

    Recent studies indicate that an oil extract from Salvia sclarea may provide clinical benefits in various pathological conditions. In comparison to extracts from other Salvia species, S. sclarea oil contains twice as much omega-3 fatty acids, which are involved in eicosanoid synthesis pathways, and has been found to contain significant levels of the psychoactive monoterpane linalool. In the present study, we examined the mood stabilizing and anxiolytic-like effects of chronic food administration of S. sclarea oil extract on behavioral and physiological parameters of mice with prominent dominant and submissive features in behavioral assays used to test mood stabilizing and antidepressant drugs. Experimental animals received oil supplemented food from the age of 4 weeks or from conception via their pregnant dams. Each age group received either S. sclarea oil- or sunflower oil-enriched feed. Dominant animals, whose pregnant mothers received S. sclarea oil-enriched feed from the date of conception, showed a significant reduction of dominant and anxiety-like behavior, in comparison to their sunflower oil-treated counterparts. S. sclarea oil-treated submissive animals exhibited a similar tendency, and showed a significant reduction in blood corticosterone levels. These findings enforce the hypothesis that S. sclarea oil possesses anxiolytic properties.

  20. Chronic arsenic poisoning in the rat: treatment with combined administration of succimers and an antioxidant.

    Science.gov (United States)

    Kannan, Gurusamy M; Flora, Swaran J S

    2004-05-01

    The influence of the coadministration of vitamin C or vitamin E on the efficacy of two thiol chelators, meso-2,3-dimercaptosuccinic acid (DMSA) or monoisoamyl DMSA, in counteracting chronic arsenic toxicity was investigated in rats. Vitamin C and vitamin E were only mildly effective when given alone or in combination with the above chelators in mobilizing arsenic from the target tissues. However, combined administration of vitamin C plus DMSA and vitamin E plus MiADMSA led to a more pronounced depletion of brain arsenic. The supplementation of vitamins was significantly effective in restoring inhibition of blood delta-aminolevulinic acid dehydratase (ALAD) oxidative stress in liver, kidneys, and brain as reflected by reduced levels of thiobarbituric acid reactive substance and oxidized and reduced glutathione levels. The results thus lead us to suggest that coadministration of vitamin E or vitamin C may be useful in the restoration of altered biochemical variables (particularly the effects on heme biosynthesis and oxidative injury) although it has only a limited role in depleting arsenic burden.

  1. Superiority of pulmonary administration of mepenzolate bromide over other routes as treatment for chronic obstructive pulmonary disease.

    Science.gov (United States)

    Tanaka, Ken-Ichiro; Kurotsu, Shota; Asano, Teita; Yamakawa, Naoki; Kobayashi, Daisuke; Yamashita, Yasunobu; Yamazaki, Hiroshi; Ishihara, Tomoaki; Watanabe, Hiroshi; Maruyama, Toru; Suzuki, Hidekazu; Mizushima, Tohru

    2014-03-28

    We recently proposed that mepenzolate bromide (mepenzolate) would be therapeutically effective against chronic obstructive pulmonary disease (COPD) due to its both anti-inflammatory and bronchodilatory activities. In this study, we examined the benefits and adverse effects associated with different routes of mepenzolate administration in mice. Oral administration of mepenzolate caused not only bronchodilation but also decreased the severity of elastase-induced pulmonary emphysema; however, compared with the intratracheal route of administration, about 5000 times higher dose was required to achieve this effect. Intravenously or intrarectally administered mepenzolate also showed these pharmacological effects. The intratracheal route of mepenzolate administration, but not other routes, resulted in protective effects against elastase-induced pulmonary damage and bronchodilation at a much lower dose than that which affected defecation and heart rate. These results suggest that the pulmonary route of mepenzolate administration may be superior to other routes (oral, intravenous or intrarectal) to treat COPD patients.

  2. Chronic ethanol intake modifies pyrrolidon carboxypeptidase activity in mouse frontal cortex synaptosomes under resting and K+ -stimulated conditions: role of calcium.

    Science.gov (United States)

    Mayas, María Dolores; Ramírez-Expósito, María Jesús; García-López, María Jesús; Carrera, María Pilar; Martínez-Martos, José Manuel

    2008-07-04

    Pyrrolidon carboxypeptidase (Pcp) is an omega peptidase that removes pyroglutamyl N-terminal residues of peptides such as thyrotrophin-releasing hormone (TRH), which is one of the neuropeptides that has been localized into many areas of the brain and acts as an endogenous neuromodulator of several parameters related to ethanol (EtOH) consumption. In this study, we analysed the effects of chronic EtOH intake on Pcp activity on mouse frontal cortex synaptosomes and their corresponding supernatant under basal and K+ -stimulated conditions, in presence and absence of calcium (Ca2+) to know the regulation of Pcp on TRH. In basal conditions, chronic EtOH intake significantly decreased synaptosomes Pcp activity but only in absence of Ca2+. However, supernatant Pcp activity is also decreased in presence and absence of calcium. Under K+-stimulated conditions, chronic EtOH intake decreased synaptosomes Pcp activity but only in absence of Ca2+, whereas supernatant Pcp activity was significantly decreased only in presence of Ca2+. The general inhibitory effect of chronic EtOH intake on Pcp activity suggests an inhibition of TRH metabolism and an enhancement of TRH neurotransmitter/neuromodulator functions, which could be related to putative processes of tolerance to EtOH in which TRH has been involved. Our data may also indicate that active peptides and their degrading peptidases are released together to the synaptic cleft to regulate the neurotransmitter/neuromodulator functions of these peptides, through a Ca2+ -dependent mechanism.

  3. Readmission patterns in patients with chronic obstructive pulmonary disease, chronic heart failure and diabetes mellitus: an administrative dataset analysis.

    Science.gov (United States)

    Brand, C; Sundararajan, V; Jones, C; Hutchinson, A; Campbell, D

    2005-05-01

    Comprehensive disease management programmes for chronic disease aim to improve patient outcomes and reduce health-care utilization. Readmission rates are often used as an outcome measure of effectiveness. This study aimed to document readmission rates, and risk for early and late readmission, for patients discharged from the Royal Melbourne Hospital with a disease diagnosis of chronic heart failure (CHF), chronic obstructive pulmonary disease (COPD) or diabetes mellitus compared to those with other general medical conditions. Eighty five (8.6%) of patients were readmitted within 28 days and 183 (20.8%) were readmitted between 29 and 180 days. No risk factors for early readmission were identified. Patients with a primary disease diagnosis of CHF and COPD are at increased risk of late readmissions (29-180 days).

  4. Chronic administration of R-flurbiprofen attenuates learning impairments in transgenic amyloid precursor protein mice

    Directory of Open Access Journals (Sweden)

    Koo Edward H

    2007-07-01

    Full Text Available Abstract Background Long-term use of non-steroidal anti-inflammatory drugs (NSAIDs is associated with a reduced incidence of Alzheimer's disease (AD. We and others have shown that certain NSAIDs reduce secretion of Aβ42 in cell culture and animal models, and that the effect of NSAIDs on Aβ42 is independent of the inhibition of cyclooxygenase by these compounds. Since Aβ42 is hypothesized to be the initiating pathologic molecule in AD, the ability of these compounds to lower Aβ42 selectively may be associated with their protective effect. We have previously identified R-flurbiprofen (tarenflurbil as a selective Aβ42 lowering agent with greatly reduced cyclooxygenase activity that shows promise for testing this hypothesis. In this study we report the effect of chronic R-flurbiprofen treatment on cognition and Aβ loads in Tg2576 APP mice. Results A four-month preventative treatment regimen with R-flurbiprofen (10 mg/kg/day was administered to young Tg2576 mice prior to robust plaque or Aβ pathology. This treatment regimen improved spatial learning as assessed by the Morris water maze, indicated by an increased spatial bias during the third probe trial and an increased utilization of a place strategy to solve the water maze. These results are consistent with an improvement in hippocampal- and medial temporal lobe-dependent memory function. A modest, though not statistically significant, reduction in formic acid-soluble levels of Aβ was also observed. To determine if R-flurbiprofen could reverse cognitive deficits in Tg2576 mice where plaque pathology was already robust, a two-week therapeutic treatment was given to older Tg2576 mice with the same dose of R-flurbiprofen. This approach resulted in a significant decrease in Aβ plaque burden but no significant improvement in spatial learning. Conclusion We have found that chronic administration of R-flurbiprofen is able to attenuate spatial learning deficits if given prior to plaque deposition

  5. Chronic administration of R-flurbiprofen attenuates learning impairments in transgenic amyloid precursor protein mice

    Science.gov (United States)

    Kukar, Thomas; Prescott, Sonya; Eriksen, Jason L; Holloway, Vallie; Murphy, M Paul; Koo, Edward H; Golde, Todd E; Nicolle, Michelle M

    2007-01-01

    Background Long-term use of non-steroidal anti-inflammatory drugs (NSAIDs) is associated with a reduced incidence of Alzheimer's disease (AD). We and others have shown that certain NSAIDs reduce secretion of Aβ42 in cell culture and animal models, and that the effect of NSAIDs on Aβ42 is independent of the inhibition of cyclooxygenase by these compounds. Since Aβ42 is hypothesized to be the initiating pathologic molecule in AD, the ability of these compounds to lower Aβ42 selectively may be associated with their protective effect. We have previously identified R-flurbiprofen (tarenflurbil) as a selective Aβ42 lowering agent with greatly reduced cyclooxygenase activity that shows promise for testing this hypothesis. In this study we report the effect of chronic R-flurbiprofen treatment on cognition and Aβ loads in Tg2576 APP mice. Results A four-month preventative treatment regimen with R-flurbiprofen (10 mg/kg/day) was administered to young Tg2576 mice prior to robust plaque or Aβ pathology. This treatment regimen improved spatial learning as assessed by the Morris water maze, indicated by an increased spatial bias during the third probe trial and an increased utilization of a place strategy to solve the water maze. These results are consistent with an improvement in hippocampal- and medial temporal lobe-dependent memory function. A modest, though not statistically significant, reduction in formic acid-soluble levels of Aβ was also observed. To determine if R-flurbiprofen could reverse cognitive deficits in Tg2576 mice where plaque pathology was already robust, a two-week therapeutic treatment was given to older Tg2576 mice with the same dose of R-flurbiprofen. This approach resulted in a significant decrease in Aβ plaque burden but no significant improvement in spatial learning. Conclusion We have found that chronic administration of R-flurbiprofen is able to attenuate spatial learning deficits if given prior to plaque deposition in Tg2576 mice. Given its

  6. Anxiolytic profile of fluoxetine as monitored following repeated administration in animal rat model of chronic mild stress

    Directory of Open Access Journals (Sweden)

    Muhammad Farhan

    2016-09-01

    Full Text Available Background: Fluoxetine, a selective serotonin re-uptake inhibitor (SSRI, has been proposed to be more effective as an antidepressive drug as compared to other SSRIs. After chronic SSRI administration, the increase in synaptic levels of 5-HT leads to desensitization of somatodentritic 5-HT autoreceptors in the raphe nuclei. Chronic stress may alter behavioral, neurochemical and physiological responses to drug challenges and novel stressors. Methods: Twenty four male rats were used in this study. Animals of CMS group were exposed to CMS. Animals of stressed and unstressed group were administrated with fluoxetine at dose of 1.0 mg/kg s well as 5.0 mg/kg repeatedly for 07 days 1 h before exposed to CMS. The objective of the present study was to evaluate that repeated treatment with fluoxetine could attenuate CMS-induced behavioral deficits. Results: Treatment with fluoxetine attenuated CMS-induced behavioral deficits. Fluoxetine administration induced hypophagia in unstressed as well as CMS rats. Acute and repeated administration of fluoxetine increased motor activity in familiar environment but only repeated administration increased exploratory activity in open field. Anxiolytic effects of fluoxetine were greater in unstressed rats. These anxiolytic effects were produced as result of repeated administration not on acute administration of fluoxetine at 1.0 mg/kg as well as 5.0 mg/kg. Conclusion: The present study demonstrated that CMS exposure resulted into behavioral deficits and produced depressive-like symptoms. Fluoxetine, an SSRI, administration attenuated behavioral deficits induced by CMS. Anxiolytic effects of repeated fluoxetine administration were greater in unstressed than CMS animals.

  7. Protective effect of quercetin in the regression of ethanol-induced hepatotoxicity

    Directory of Open Access Journals (Sweden)

    Vidhya A

    2009-01-01

    Full Text Available This study examined the protective effects of quercetin on chronic ethanol-induced liver injury. Rats were treated with ethanol at a dose of 4 g/100 g/day for 90 days. After ethanol intoxication, levels of serum amino transferases were significantly elevated. Decreased activity of superoxide dismutase, catalase, glutathione peroxidase and glutathione reductase was also observed on ethanol administration. Increased amounts of lipid peroxidation products viz. hydroperoxides, conjugated dienes and malodialdehyde were observed on ethanol intoxication. Ethanol administration resulted in significant decrease in liver glutathione content. After 90 days, the control animals were divided into two groups, the control group and the control+quercetin group. Ethanol-treated group was divided into two groups, abstention group and quercetin-supplemented group. After 30 days, the animals were sacrificed and various biochemical parameters were analyzed. The changes in enzyme activities as well as levels of lipid peroxidation products were reversed to a certain extent by quercetin. Quercetin supplementation resulted in increase of glutathione content to a significant level compared to normal abstention group. Quercetin supplemented group showed a faster recovery than abstention group. This shows the protective effect of quercetin against chronic ethanol induced hepatotoxicity. Histopathological study is also in line with these results.

  8. Noribogaine, but not 18-MC, exhibits similar actions as ibogaine on GDNF expression and ethanol self-administration.

    OpenAIRE

    2010-01-01

    Carnicella S present adress: Grenoble Institut des Neurosciences, Inserm U836; International audience; Ibogaine is a naturally occurring alkaloid that has been reported to decrease various adverse phenotypes associated with exposure to drugs of abuse and alcohol in human and rodent models. Unfortunately, ibogaine cannot be used as a medication to treat addiction because of severe side effects. Previously, we reported that the desirable actions of ibogaine to reduce self-administration of, and...

  9. Chronic administration of atorvastatin could partially ameliorate erectile function in streptozotocin-induced diabetic rats

    Science.gov (United States)

    Park, Juhyun; Kwon, Oh Seong; Cho, Sung Yong; Paick, Jae-Seung; Kim, Soo Woong

    2017-01-01

    The efficacy of statins is related to the ‘common soil’ hypothesis, which proposes oxidative stress and inflammation as main pathophysiologic processes in the disease group of diabetes and endothelial dysfunction. This study evaluated the recovery of erectile function after administration of chronic statin alone in streptozotocin (STZ)-induced diabetes mellitus (DM) rats, focusing on the anti-oxidative effects and consequentially recuperated endothelial function. A total of 45 male Sprague-Dawley rats (8 weeks old) were divided into three groups (n = 15 each): an age-matched normal control group (Control group), an uncontrolled DM group (DM group), and a statin-treated group (Statin group). The rats in the DM and Statin group received an injection of STZ (60 mg/kg). Beginning 10 weeks after the establishment of DM, the Statin group received daily treatment with atorvastatin (10 mg/kg) via oral gavage for four weeks. After 14 weeks, the results of the experiment were evaluated. The ratios of intracavernosal pressure (ICP) to mean arterial pressure (MAP) were recorded with cavernosometry (20 Hz, 3 V, 0.2 msec for 30 seconds) before and after the intravenous administration of udenafil (1 mg/kg). Expression of alpha-smooth muscle actin (α-SMA) was evaluated using cavernosal tissue. In addition, changes in RhoA translocation ratio and myosin phosphatase target subunit 1 (MYPT1) phosphorylation were evaluated with western blot. Superoxide dismutase (SOD) and malondialdehyde (MDA) levels were also analyzed as measurements of oxidative stress levels. The ICP/MAP and area under the curve (AUC)/MAP ratios of the Statin group were obviously superior to the DM group, but were not comparable to the Control group (PStatin group than in the DM group (P = 0.015), and was comparable to the Control group. In contrast, MDA levels were not considerably different among the groups (P = 0.217). The RhoA translocation ratio was not significantly different among the groups (P = 0

  10. Deletion of GSTA4-4 results in increased mitochondrial post-translational modification of proteins by reactive aldehydes following chronic ethanol consumption in mice

    Directory of Open Access Journals (Sweden)

    Colin T. Shearn

    2016-04-01

    Full Text Available Chronic alcohol consumption induces hepatic oxidative stress resulting in production of highly reactive electrophilic α/β-unsaturated aldehydes that have the potential to modify proteins. A primary mechanism of reactive aldehyde detoxification by hepatocytes is through GSTA4-driven enzymatic conjugation with GSH. Given reports that oxidative stress initiates GSTA4 translocation to the mitochondria, we hypothesized that increased hepatocellular damage in ethanol (EtOH-fed GSTA4−/− mice is due to enhanced mitochondrial protein modification by reactive aldehydes. Chronic ingestion of EtOH increased hepatic protein carbonylation in GSTA4−/− mice as evidenced by increased 4-HNE and MDA immunostaining in the hepatic periportal region. Using mass spectrometric analysis of biotin hydrazide conjugated carbonylated proteins, a total of 829 proteins were identified in microsomal, cytosolic and mitochondrial fractions. Of these, 417 were novel to EtOH models. Focusing on mitochondrial fractions, 1.61-fold more carbonylated proteins were identified in EtOH-fed GSTA4−/− mice compared to their respective WT mice ingesting EtOH. Bioinformatic KEGG pathway analysis of carbonylated proteins from the mitochondrial fractions revealed an increased propensity for modification of proteins regulating oxidative phosphorylation, glucose, fatty acid, glutathione and amino acid metabolic processes in GSTA4−/− mice. Additional analysis revealed sites of reactive aldehyde protein modification on 26 novel peptides/proteins isolated from either SV/GSTA4−/− PF or EtOH fed mice. Among the peptides/proteins identified, ACSL, ACOX2, MTP, and THIKB contribute to regulation of fatty acid metabolism and ARG1, ARLY, and OAT, which regulate nitrogen and ammonia metabolism having direct relevance to ethanol-induced liver injury. These data define a role for GSTA4-4 in buffering hepatic oxidative stress associated with chronic alcohol consumption and that this GST

  11. Brain plasticity and cognitive functions after ethanol consumption in C57BL/6J mice

    Science.gov (United States)

    Stragier, E; Martin, V; Davenas, E; Poilbout, C; Mongeau, R; Corradetti, R; Lanfumey, L

    2015-01-01

    Acute or chronic administrations of high doses of ethanol in mice are known to produce severe cognitive deficits linked to hippocampal damage. However, we recently reported that chronic and moderate ethanol intake in C57BL/6J mice induced chromatin remodeling within the Bdnf promoters, leading to both enhanced brain-derived neurotrophic factor (BDNF) expression and hippocampal neurogenesis under free-choice protocol. We performed here a series of cellular and behavioral studies to analyze the consequences of these modifications. We showed that a 3-week chronic free-choice ethanol consumption in C57BL/6J mice led to a decrease in DNA methylation of the Bdnf gene within the CA1 and CA3 subfields of the hippocampus, and upregulated hippocampal BDNF signaling pathways mediated by ERK, AKT and CREB. However, this activation did not affect long-term potentiation in the CA1. Conversely, ethanol intake impaired learning and memory capacities analyzed in the contextual fear conditioning test and the novel object recognition task. In addition, ethanol increased behavioral perseveration in the Barnes maze test but did not alter the mouse overall spatial capacities. These data suggested that in conditions of chronic and moderate ethanol intake, the chromatin remodeling leading to BDNF signaling upregulation is probably an adaptive process, engaged via epigenetic regulations, to counteract the cognitive deficits induced by ethanol. PMID:26670281

  12. Chronic nandrolone administration induces dysfunction of the reward pathway in rats.

    Science.gov (United States)

    Zotti, Margherita; Tucci, Paolo; Colaianna, Marilena; Morgese, Maria Grazia; Mhillaj, Emanuela; Schiavone, Stefania; Scaccianoce, Sergio; Cuomo, Vincenzo; Trabace, Luigia

    2014-01-01

    Data in animal models and surveys in humans have revealed psychiatric complications of long-term anabolic androgenic steroid abuse. However, the neurobiochemical mechanisms behind the observed behavioral changes are poorly understood. The aim of the present study was to investigate the effects of nandrolone decanoate on emotional behavior and neurochemical brain alterations in gonadally intact male rats. The behavioral reactivity to the elevated plus maze and the social interaction test was used to assess anxiety-related symptoms, and the sucrose preference test was used to evaluate anhedonia. Dopaminergic, serotonergic and noradrenergic transmissions were also evaluated in selected brain areas. The chronic administration of nandrolone, at 5 mg kg(-1) injected daily for 4 weeks, induced the loss of sweet taste preference, a sign of anhedonia and dysfunction of the reward pathway. The behavioral outcomes were accompanied by reductions in the dopamine, serotonin and noradrenaline contents in the nucleus accumbens. Alterations in the time spent in the open arms and in the social interaction test were not found, suggesting that nandrolone did not induce an anxiogenic profile. No differences were revealed between the experimental groups in the amygdala in terms of the neurotransmitters measured. Our data suggest that nandrolone-treated rats have a depressive, but not anxiogenic-like, profile, accompanied by brain region-dependent changes in dopaminergic, serotonergic and noradrenergic neurotransmission. As anabolic androgenic steroid dependence is plausibly the major form of worldwide substance dependence that remains largely unexplored, it should be highlighted that our data could contribute to a better understanding of the altered rewards induced by nandrolone treatment and to the development of appropriate treatments.

  13. Olanzapine induced biochemical and histopathological changes after its chronic administration in rats

    Directory of Open Access Journals (Sweden)

    Rehmat Shah

    2016-11-01

    Full Text Available Objective: Olanzapine is a second generation antipsychotic acting mainly as a dopamine D2 and serotonine 5-HT2 receptors antagonist prescribed in the treatment of schizophrenia and various other psychiatric illnesses. Even though olanzapine is widely used in psychiatry, its effects on the architecture of pancreas, liver and kidneys are little known. The histology of pancreas especially has never been studied. For these reasons, the current study was designed to elucidate the toxic effects of chronic administration of olanzapine on pancreas, liver and kidneys and the enzymes released by these tissues in an escalating dose manner. Methods: Fourteen male rats were divided into two groups equally, the olanzapine group and the controls. Olanzapine was administered in a dose of 5 mg/kg/d for the first eight weeks, 10 mg/kg/d for next four weeks and 15 mg/kg/d through the last two week period of 14 weeks experiment. The controls received acidified saline only. Both the groups received restricted diet (20 g/12 h. The body weight and level of random blood sugar (RBS were measured on a weekly basis. The levels of lipase, amylase, alanine transaminase (ALT and aspartate transaminase (AST were determined terminally. At the end of the experiment, the tissues were dissected out for histopathological evaluation. Results: Significant loss in body weight, change in the level of random blood sugar (∗∗P  0.05. The pancreas has shown derangement of beta cells and fibrotic growth. A mild to moderate focal increase in glomerular cellularity, cellular proliferation and glomerular capsules with negligible basement membranes were observed in the kidneys. No changes were observed in the architecture of the liver. Conclusion: The findings of this study indicated that the incidence of adverse effects associated with olanzapine could be prevented/alleviated/delayed by allowing restricted diet.

  14. The effect of ethanol on sup 35 -S-TBPS binding to mouse brain membranes in the presence of chloride

    Energy Technology Data Exchange (ETDEWEB)

    Liljequist, S.; Culp, S.; Tabakoff, B. (Laboratory for Studies of Neuroadaptive Processes, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda (USA))

    1989-01-01

    The effect of in vitro and in vivo administration of ethanol on the binding of {sup 35}S-t-butyl-bicyclophosphorothionate ({sup 35}S-TBPS) to cortical brain membranes of C57B1 mice was investigated using KCl containing assay media. The in vitro addition of ethanol produced a dose-dependent inhibition of basal {sup 35}S-TBPS binding. In the presence of chloride ions, GABA and pentobarbital had a biphasic action on {sup 35}S-TBPS binding, whereas diazepam only stimulated the binding. Ethanol reduced the stimulatory effects of GABA and pentobarbital in a dose-dependent manner, but had no effect on the enhancement of {sup 35}S-TBPS binding produced by diazepam. {sup 35}S-TBPS binding to cortical brain membranes was inhibited by the putative Cl{sup -} channel blocking agent DIDS. This inhibitory action of DIDS was significantly, and dose-dependently reduced by ethanol. Chronic ethanol ingestion in vivo, which produced tolerance to and physical dependence on ethanol in the animals, did not alter the stimulatory and inhibitory effects of GABA and pentobarbital on {sup 35}S-TBPS binding. The enhancement of {sup 35}S-TBPS binding produced by diazepam was slightly, but significantly, enhanced in brain membranes from animals which had undergone 24 hours of ethanol withdrawal. Chronic ethanol treatment did not change the potency of picrotoxin and of the peripheral BDZ-receptor ligand RO 5-4864 to competitively inhibit {sup 35}S-TBPS binding. Our results suggest that in vitro addition of ethanol alters the activity of the activity of the GABA benzodiazepine (BDZ) receptor complex. Although there was no change in basal {sup 35}S-TBPS binding following chronic in vivo ethanol administration, our curent data suggest that chronic ethanol ingestion may cause specific changes of the GABA BDZ receptor proteins, in this study revealed as an altered modulation of {sup 35}S-TBPS binding by diazepam.

  15. Noribogaine, but not 18-MC, exhibits similar actions as ibogaine on GDNF expression and ethanol self-administration.

    Science.gov (United States)

    Carnicella, Sebastien; He, Dao-Yao; Yowell, Quinn V; Glick, Stanley D; Ron, Dorit

    2010-10-01

    Ibogaine is a naturally occurring alkaloid that has been reported to decrease various adverse phenotypes associated with exposure to drugs of abuse and alcohol in human and rodent models. Unfortunately, ibogaine cannot be used as a medication to treat addiction because of severe side effects. Previously, we reported that the desirable actions of ibogaine to reduce self-administration of, and relapse to, alcohol consumption are mediated via the upregulation of the expression of the glial cell line-derived neurotrophic factor (GDNF) in the midbrain ventral tegmental area (VTA), and the consequent activation of the GDNF pathway. The ibogaine metabolite, noribogaine, and a synthetic derivative of ibogaine, 18-Methoxycoronaridine (18-MC), possess a similar anti-addictive profile as ibogaine in rodent models, but without some of its adverse side effects. Here, we determined whether noribogaine and/or 18-MC, like ibogaine, increase GDNF expression, and whether their site of action to reduce alcohol consumption is the VTA. We used SH-SY5Y cells as a cell culture model and found that noribogaine, like ibogaine, but not 18-MC, induces a robust increase in GDNF mRNA levels. Next, we tested the effect of intra-VTA infusion of noribogaine and 18-MC on rat operant alcohol self-administration and found that noribogaine, but not 18-MC, in the VTA decreases responding for alcohol. Together, our results suggest that noribogaine and 18-MC have different mechanisms and sites of action.

  16. Role of Ginkgo Biloba Extract Supplement in Regulation of Rat Hepatic Tissue Antioxidant System after Chronic Ethanol Administration

    Institute of Scientific and Technical Information of China (English)

    姚平; 宋方方; 周绍良; 李柯; 孙秀发; 刘烈刚

    2004-01-01

    THE FORMATION OF REACTIVE oxygen spe-cies (ROS) is a naturally occurring intracellular meta-bolic process. These harmful species are known tocause oxidative damage to a number of moleculesin cells, including membrane lipids, proteins, andnucleic acids.1 The potential harmful effects of thesespecies are controlled by the cellular antioxidant de-fense system.2 In addition, antioxidant enzymes, suchas superoxide dismutase (SOD), catalase (CAT), glu-tathione peroxidase (GPX), and glutathionereductase, are essen...

  17. Antilipogenic and Anti-Inflammatory Activities of Codonopsis lanceolata in Mice Hepatic Tissues after Chronic Ethanol Feeding

    Directory of Open Access Journals (Sweden)

    Areum Cha

    2012-01-01

    Full Text Available This study evaluated the antilipogenic and anti-inflammatory effects of Codonopsis lanceolata (C. lanceolata root extract in mice with alcohol-induced fatty liver and elucidated its underlying molecular mechanisms. Ethanol was introduced into the liquid diet by mixing it with distilled water at 5% (wt/v, providing 36% of the energy, for nine weeks. Among the three different fractions prepared from the C. lanceolata root, the C. lanceolata methanol extract (CME exhibited the most remarkable attenuation of alcohol-induced fatty liver with respect to various parameters such as hepatic free fatty acid concentration, body weight loss, and hepatic accumulations of triglyceride and cholesterol. The hepatic gene and protein expression levels were analysed via RT-PCR and Western blotting, respectively. CME feeding significantly restored the ethanol-induced downregulation of the adiponectin receptor (adipoR 1 and of adipoR2, along with their downstream molecules. Furthermore, the study data showed that CME feeding dramatically reversed ethanol-induced hepatic upregulation of toll-like receptor- (TLR- mediated signaling cascade molecules. These results indicate that the beneficial effects of CME against alcoholic fatty livers of mice appear to be with adenosine- and adiponectin-mediated regulation of hepatic steatosis and TLR-mediated modulation of hepatic proinflammatory responses.

  18. Attenuation of oxidative stress, inflammation and apoptosis by ethanolic and aqueous extracts of Crocus sativus L. stigma after chronic constriction injury of rats

    Directory of Open Access Journals (Sweden)

    BAHAREH AMIN

    2014-12-01

    Full Text Available In our previous study, the ethanolic and aqueous extracts of Crocus sativus elicited antinociceptive effects in the chronic constriction injury (CCI model of neuropathic pain. In this study, we explored anti-inflammatory, anti-oxidant and anti-apoptotic effects of such extracts in CCI animals. A total of 72 animals were divided as vehicle-treated CCI rats, sham group, CCI animals treated with the effective dose of aqueous and ethanolic extracts (200 mg/kg, i.p.. The lumbar spinal cord levels of proinflammatory cytokines including tumor necrosis factor α (TNF-α, interleukin-1β (IL-1β and interleukin 6 (IL-6, were evaluated at days 3 and 7 after CCI (n=3, for each group. The apoptotic protein changes were evaluated at days 3 and 7 by western blotting. Oxidative stress markers including malondialdehyde (MDA and glutathione reduced (GSH, were measured on day 7 after CCI. Inflammatory cytokines levels increased in CCI animals on days 3 and 7, which were suppressed by both extracts. The ratio of Bax/ Bcl2 was elevated on day 3 but not on day 7, in CCI animals as compared to sham operated animals and decreased following treatment with both extracts at this time. Both extracts attenuated MDA and increased GSH levels in CCI animals. It may be concluded that saffron alleviates neuropathic pain, at least in part, through attenuation of proinflammatory cytokines, antioxidant activity and apoptotic pathways.

  19. Attenuation of oxidative stress, inflammation and apoptosis by ethanolic and aqueous extracts of Crocus sativus L. stigma after chronic constriction injury of rats.

    Science.gov (United States)

    Amin, Bahareh; Abnous, Khalil; Motamedshariaty, Vahideh; Hosseinzadeh, Hossein

    2014-12-01

    In our previous study, the ethanolic and aqueous extracts of Crocus sativus elicited antinociceptive effects in the chronic constriction injury (CCI) model of neuropathic pain. In this study, we explored anti-inflammatory, anti-oxidant and anti-apoptotic effects of such extracts in CCI animals. A total of 72 animals were divided as vehicle-treated CCI rats, sham group, CCI animals treated with the effective dose of aqueous and ethanolic extracts (200 mg/kg, i.p.). The lumbar spinal cord levels of proinflammatory cytokines including tumor necrosis factor α (TNF-α), interleukin-1β (IL-1β) and interleukin 6 (IL-6), were evaluated at days 3 and 7 after CCI (n=3, for each group). The apoptotic protein changes were evaluated at days 3 and 7 by western blotting. Oxidative stress markers including malondialdehyde (MDA) and glutathione reduced (GSH), were measured on day 7 after CCI. Inflammatory cytokines levels increased in CCI animals on days 3 and 7, which were suppressed by both extracts. The ratio of Bax/ Bcl2 was elevated on day 3 but not on day 7, in CCI animals as compared to sham operated animals and decreased following treatment with both extracts at this time. Both extracts attenuated MDA and increased GSH levels in CCI animals. It may be concluded that saffron alleviates neuropathic pain, at least in part, through attenuation of proinflammatory cytokines, antioxidant activity and apoptotic pathways.

  20. Mitochondrial dysfunction and lipid peroxidation in rat frontal cortex by chronic NMDA administration can be partially prevented by lithium treatment.

    Science.gov (United States)

    Kim, Helena K; Isaacs-Trepanier, Cameron; Elmi, Nika; Rapoport, Stanley I; Andreazza, Ana C

    2016-05-01

    Chronic N-methyl-d-aspartate (NMDA) administration to rats may be a model to investigate excitotoxicity mediated by glutamatergic hyperactivity, and lithium has been reported to be neuroprotective. We hypothesized that glutamatergic hyperactivity in chronic NMDA injected rats would cause mitochondrial dysfunction and lipid peroxidation in the brain, and that chronic lithium treatment would ameliorate some of these NMDA-induced alterations. Rats treated with lithium for 6 weeks were injected i.p. 25 mg/kg NMDA on a daily basis for the last 21 days of lithium treatment. Brain was removed and frontal cortex was analyzed. Chronic NMDA decreased brain levels of mitochondrial complex I and III, and increased levels of the lipid oxidation products, 8-isoprostane and 4-hydroxynonenal, compared with non-NMDA injected rats. Lithium treatment prevented the NMDA-induced increments in 8-isoprostane and 4-hydroxynonenal. Our findings suggest that increased chronic activation of NMDA receptors can induce alterations in electron transport chain complexes I and III and in lipid peroxidation in brain. The NMDA-induced changes may contribute to glutamate-mediated excitotoxicity, which plays a role in brain diseases such as bipolar disorder. Lithium treatment prevented changes in 8-isoprostane and 4-hydroxynonenal, which may contribute to lithium's reported neuroprotective effect and efficacy in bipolar disorder.

  1. The characterization of neuroenergetic effects of chronic L-tyrosine administration in young rats: evidence for striatal susceptibility.

    Science.gov (United States)

    Ferreira, Gabriela K; Carvalho-Silva, Milena; Gomes, Lara M; Scaini, Giselli; Teixeira, Leticia J; Mota, Isabella T; Schuck, Patrícia F; Ferreira, Gustavo C; Streck, Emilio L

    2015-02-01

    Tyrosinemia type II is an inborn error of metabolism caused by a deficiency in hepatic cytosolic aminotransferase. Affected patients usually present a variable degree of mental retardation, which may be related to the level of plasma tyrosine. In the present study we evaluated effect of chronic administration of L-tyrosine on the activities of citrate synthase, malate dehydrogenase, succinate dehydrogenase and complexes I, II, II-III and IV in cerebral cortex, hippocampus and striatum of rats in development. Chronic administration consisted of L-tyrosine (500 mg/kg) or saline injections 12 h apart for 24 days in Wistar rats (7 days old); rats were killed 12 h after last injection. Our results demonstrated that L-tyrosine inhibited the activity of citrate synthase in the hippocampus and striatum, malate dehydrogenase activity was increased in striatum and succinate dehydrogenase, complexes I and II-III activities were inhibited in striatum. However, complex IV activity was increased in hippocampus and inhibited in striatum. By these findings, we suggest that repeated administrations of L-tyrosine cause alterations in energy metabolism, which may be similar to the acute administration in brain of infant rats. Taking together the present findings and evidence from the literature, we hypothesize that energy metabolism impairment could be considered an important pathophysiological mechanism underlying the brain damage observed in patients with tyrosinemia type II.

  2. Effects of chronic lithium administration on renal acid excretion in humans and rats

    OpenAIRE

    Weiner, I. David; Leader, John P.; Bedford, Jennifer J.; Verlander, Jill W.; Ellis, Gaye; Kalita, Priyakshi; Vos, Frederiek; de Jong, Sylvia; Walker, Robert J.

    2014-01-01

    Abstract Lithium therapy's most common side effects affecting the kidney are nephrogenic diabetes insipidus (NDI) and chronic kidney disease. Lithium may also induce a distal renal tubular acidosis. This study investigated the effect of chronic lithium exposure on renal acid–base homeostasis, with emphasis on ammonia and citrate excretion. We compared 11 individuals on long‐term lithium therapy with six healthy individuals. Under basal conditions, lithium‐treated individuals excreted signific...

  3. Changes in ensemble activity of hippocampus CA1 neurons induced by chronic morphine administration in freely behaving mice.

    Science.gov (United States)

    Liu, F; Jiang, H; Zhong, W; Wu, X; Luo, J

    2010-12-15

    The hippocampus plays an important role in the formation of new memories and spatial navigation. Recently, growing evidence supports the view that it is also involved in addiction to opiates and other drugs. Theoretical and experimental studies suggest that hippocampal neural-network oscillations at specific frequencies and unit firing patterns reflect information of learning and memory encoding. Here, using multichannel recordings from the hippocampal CA1 area in behaving mice, we investigated the phase correlations between the theta (4-10 Hz) and gamma (40-100 Hz) oscillations, and the timing of spikes modulated by these oscillations. Local field potentials and single unit recordings in the CA1 area of mice receiving chronic morphine treatment revealed that the power of the theta rhythm was strongly increased; at the same time, the theta frequency during different behavioral states shifted markedly, and the characteristic coupling of theta and gamma oscillations was altered. Surprisingly, though the gamma oscillation frequency changed, the power of gamma lacking theta did not. Moreover, the timing of pyramidal cell spikes relative to the theta rhythm and the timing of interneuron spikes relative to the gamma rhythm changed during chronic morphine administration. Furthermore, these responses were impaired by a selective D1/D5 receptor antagonist intra-hippocampus injection. These results indicate that chronic morphine administration induced the changes of ensemble activity in the CA1 area, and these changes were dependent on local dopamine receptor activation.

  4. Inhibitory Effect of the Hexane Fraction of the Ethanolic Extract of the Fruits of Pterodon pubescens Benth in Acute and Chronic Inflammation

    Directory of Open Access Journals (Sweden)

    Jaqueline Hoscheid

    2013-01-01

    Full Text Available Fruits of Pterodon pubescens Benth have been used traditionally for the treatment of rheumatism, sore throat, and respiratory disorders, and also as anti-inflammatory, analgesic, depurative, tonic, and hypoglycemic agent. The study was aimed at evaluating the anti-inflammatory activity of the hexane fraction of an ethanolic extract of P. pubescens fruits. The oil from P. pubescens fruits was extracted with ethanol and partitioned with hexane. The anti-inflammatory activity was measured with increasing doses of the hexane fraction (FHPp by using a carrageenan-induced rat model of pleurisy and a rat model of complete Freund's adjuvant-induced arthritis by using an FHPp dose of 250 mg/kg for 21 days. Treatment with an FHPp resulted in anti-inflammatory activity in both models. The results of biochemical, hematological, and histological analyses indicated a significant decrease in glucose, cholesterol, and triglycerides levels (18.32%, 34.20%, and 41.70%, resp. and reduction in the numbers of total leukocytes and mononuclear cells. The FHPp dose of 1000 mg/kg induced no changes in behavioral parameters, and no animal died. The results of this study extend the findings of previous reports that have shown that administration of extracts and fractions obtained from species of the genus Pterodon exhibits anti-inflammatory activity and lacks toxicity.

  5. Administration of Lactobacillus helveticus NS8 improves behavioral, cognitive, and biochemical aberrations caused by chronic restraint stress.

    Science.gov (United States)

    Liang, S; Wang, T; Hu, X; Luo, J; Li, W; Wu, X; Duan, Y; Jin, F

    2015-12-03

    Increasing numbers of studies have suggested that the gut microbiota is involved in the pathophysiology of stress-related disorders. Chronic stress can cause behavioral, cognitive, biochemical, and gut microbiota aberrations. Gut bacteria can communicate with the host through the microbiota-gut-brain axis (which mainly includes the immune, neuroendocrine, and neural pathways) to influence brain and behavior. It is hypothesized that administration of probiotics can improve chronic-stress-induced depression. In order to examine this hypothesis, the chronic restraint stress depression model was established in this study. Adult specific pathogen free (SPF) Sprague-Dawley rats were subjected to 21 days of restraint stress followed by behavioral testing (including the sucrose preference test (SPT), elevated-plus maze test, open-field test (OFT), object recognition test (ORT), and object placement test (OPT)) and biochemical analysis. Supplemental Lactobacillus helveticus NS8 was provided every day during stress until the end of experiment, and selective serotonin reuptake inhibitor (SSRI) citalopram (CIT) served as a positive control. Results showed that L. helveticus NS8 improved chronic restraint stress-induced behavioral (anxiety and depression) and cognitive dysfunction, showing an effect similar to and better than that of CIT. L. helveticus NS8 also resulted in lower plasma corticosterone (CORT) and adrenocorticotropic hormone (ACTH) levels, higher plasma interleukin-10 (IL-10) levels, restored hippocampal serotonin (5-HT) and norepinephrine (NE) levels, and more hippocampal brain-derived neurotrophic factor (BDNF) mRNA expression than in chronic stress rats. Taken together, these results indicate an anti-depressant effect of L. helveticus NS8 in rats subjected to chronic restraint stress depression and that this effect could be due to the microbiota-gut-brain axis. They also suggest the therapeutic potential of L. helveticus NS8 in stress-related and possibly other

  6. Evaluation of Acute and Sub-chronic Toxicities of Aqueous Ethanol Root Extract of Raphia hookeri Palmaceae on Swiss Albino Rats

    Directory of Open Access Journals (Sweden)

    G.O. Mbaka

    2014-08-01

    Full Text Available This study evaluated the acute and sub-chronic toxicities of treatment with aqueous ethanol root extract of Raphia hookri (Palmaceae on rats. In acute toxicity study, the root extract in a graded doses of 125-2000 mg/kg bwt administered Intra-Peritoneal (IP produced dose dependent mortality with median acute toxicity (LD50 of approximately 562.3 mg/kg bwt. The animals fed with the extract by gavages tolerated up to 4000 mg/kg body weight (bwt with no sign of physical/behavioural changes hence 1/20th of the dose (200 mg/kg was used as the highest therapeutic dose. In sub-chronic toxicity study, significant increase (p0.05 decrease in Red Blood Cell (RBC count and haemoglobin (Hb level while White Blood Cell (WBC showed increase. In tissue analysis, the extract caused marked deleterious effect on the testes leading to drastic reduction in sperm cells whereas tissues of liver, kidney and heart however showed normal appearance.

  7. SERUM PROTEIN CHANGES IN RABBITS AFTER CHRONIC ADMINISTRATION OF LEAD AND CADMIUM

    Directory of Open Access Journals (Sweden)

    Hristo HRISTEV

    2008-07-01

    Full Text Available The infl uence of lead (5mg/kg b.w and cadmium (2mg/kg b.w after chronic treatment of the rabbits on serum protein is investigated. Signifi cantly raised content of the cholesterol, ASAT and ALAT; hypo-albuminemia and hyperbetaglobulinemia of the background of one hypoproteinemia and low A/G coeffi cient are established. On basis of obtained result can to show degree of liver parenchyma damage and as trial for used the hyperbeta-globulinemia (at chronic treatment with cadmium is stronger markedly as indicator for delimitation of enteral from parenteral toxication, at that is noted hypergamma-globulinemia.

  8. COMPARATIVE EVALUATION OF BARBERIS ARISTATA EXTRACT AS SYSTEMIC ADMINISTRATION AND LOCAL APPLICATION IN MANAGEMENT OF CHRONIC PHARYNGITIS

    Directory of Open Access Journals (Sweden)

    Bhardwaj Atul

    2013-02-01

    Full Text Available Pharynx is a cross road between respiratory tract and alimentary canal and is a frequent site of inflammatory pathologies. Chronic pharyngitis is not a life threatening disorder but surely an incapacitating malady by virtue of its recalcitrant behaviour, frequent antibiotic consumption and compromised social output and quality of life and hence can not be nominated as innocuous disease by any stretch of imagination per se. Berberis aristata DC. (Family - Berberidaceae or Daru Haridra in Ayurveda is historically and time tested drug used primarily in inflammatory disorders. The usage of Berberis aristata is well documented in non healing wounds, infective disorders of the eye, hepatobiliary stimulation, chronic inflammatory mucosal disorders and skin diseases. Berberine which is chief phytochemical active constituent of Barberis aristata as has got proven action as an anti inflammatory, anti hyperplastic, immunomodulation, enhancement of delayed T cell mediated activity, anti oxidant, anti pyretic, analgesic and cytoprotective actions. Present randomized, single blind, prospective, unicenteral experimental clinical trial intends to compare to effectiveness of Barberis aristata extract as systemic administration and local application (oral rinse by ramifying clinically diagnosed 120 chronic pharyngitis patients into two trial groups. Paired ‘t’ test was used to evaluate the individual effectiveness of the trial drugs and also to compare the outcome of the two trial drugs administration as an inter group comparison. Statistical analysis conspicuously reflected the superior outcome in favour of systemic usage of Barberis aristata extract than that of oral rinse and the difference may be attributed to the fact that constant salivation had restricted the contact time of the drug on inflamed mucosa to a few minutes only and flushing is the end result of the locally applied drug invariably, but this incapacitation is bypassed by making the drug

  9. Effects of chronic delta-9-tetrahydrocannabinol (THC) administration on neurotransmitter concentrations and receptor binding in the rat brain.

    Science.gov (United States)

    Ali, S F; Newport, G D; Scallet, A C; Gee, K W; Paule, M G; Brown, R M; Slikker, W

    1989-01-01

    THC is the major psychoactive constituent of marijuana and is also known as an hallucinogenic compound. Numerous reports have shown that large doses of THC produce significant alterations in various neurotransmitter systems. The present study was designed to determine whether chronic exposure to THC produces significant alterations in selected neurotransmitter systems (dopamine, serotonin, acetylcholine, GABAergic, benzodiazepine, and opiate) in the rat brain. In Experiment 1, male Sprague-Dawley rats were gavaged with vehicle, 10 or 20 mg THC/kg body weight daily, 5 days/week for 90 days. Animals were killed either 24 hours or two months after the last dose. Brains were dissected into different regions for neurochemical analyses. Two months after the cessation of chronic administration, there was a significant decrease in GABA receptor binding in the hippocampus of animals in the high dose group. However, no other significant changes were found in neurotransmitter receptor binding characteristics in the hippocampus or in neurotransmitter concentrations in the caudate nucleus, hypothalamus or septum after chronic THC administration. In an attempt to replicate the GABA receptor binding changes and also to determine the [35S]TBPS binding in hippocampus, we designed Experiment 2. In this experiment, we dosed the animals by gavage with 0, 5, 10 or 20 mg THC/kg daily, 5 days/week or with 20 mg THC/kg Monday through Thursday and 60 mg/kg on Friday for 90 days. Results from this experiment failed to replicate the dose-dependent effect of THC on GABA receptor binding in hippocampus. Modulation of [35S]TBPS binding by GABA or 3 alpha-OH-DHP or inhibition by cold TBPS in frontal cortex did not show any significant dose-related effects. Results from these experiments suggest that chronic exposure to THC does not produce significant alterations in catecholamine or indoleamine neurotransmitter systems or in opiate or GABA receptor systems in the rat brain.

  10. Increased late sodium current contributes to the electrophysiological effects of chronic, but not acute, dofetilide administration

    NARCIS (Netherlands)

    Qiu, Xiaoliang S.; Chauveau, Samuel; Anyukhovsky, Evgeny P.; Rahim, Tania; Jiang, Ya Ping; Harleton, Erin; Feinmark, Steven J.; Lin, Richard Z.; Coronel, Ruben; Janse, Michiel J.; Opthof, Tobias; Rosen, Tove S.; Cohen, Ira S.; Rosen, Michael R.

    2016-01-01

    Background - Drugs are screened for delayed rectifier potassium current (I Kr) blockade to predict long QT syndrome prolongation and arrhythmogenesis. However, single-cell studies have shown that chronic (hours) exposure to some I Kr blockers (eg, dofetilide) prolongs repolarization additionally by

  11. HIGH ETHANOL DOSE DURING EARLY ADOLESCENCE INDUCES LOCOMOTOR ACTIVATION AND INCREASES SUBSEQUENT ETHANOL INTAKE DURING LATE ADOLESCENCE

    OpenAIRE

    Acevedo, María Belén; Molina, Juan Carlos; Nizhnikov, Michael E.; Spear, Norman E.; Pautassi, Ricardo Marcos

    2010-01-01

    Adolescent initiation of ethanol consumption is associated with subsequent heightened probability of ethanol-use disorders. The present study examined the relationship between motivational sensitivity to ethanol initiation in adolescent rats and later ethanol intake. Experiment 1 determined that ethanol induces locomotor activation shortly after administration but not if tested at a later post-administration interval. In Experiment 2, adolescents were assessed for ethanol-induced locomotor ac...

  12. Protracted abstinence from chronic ethanol exposure alters the structure of neurons and expression of oligodendrocytes and myelin in the medial prefrontal cortex.

    Science.gov (United States)

    Navarro, A I; Mandyam, C D

    2015-05-01

    In rodents, chronic intermittent ethanol vapor exposure (CIE) produces alcohol dependence, alters the structure and activity of pyramidal neurons and decreases the number of oligodendroglial progenitors in the medial prefrontal cortex (mPFC). In this study, adult Wistar rats were exposed to seven weeks of CIE and were withdrawn from CIE for 21 days (protracted abstinence; PA). Tissue enriched in the mPFC was processed for Western blot analysis and Golgi-Cox staining to investigate the long-lasting effects of CIE on the structure of mPFC neurons and the levels of myelin-associated proteins. PA increased dendritic arborization within apical dendrites of pyramidal neurons. These changes occurred concurrently with hypophosphorylation of the N-methyl-d-aspartate (NMDA) receptor 2B (NR2B) at Tyr-1472. PA increased myelin basic protein (MBP) levels which occurred concurrently with hypophosphorylation of the premyelinating oligodendrocyte bHLH transcription factor Olig2 in the mPFC. Given that PA is associated with increased sensitivity to stress and hypothalamic-pituitary-adrenal (HPA) axis dysregulation, and stress alters oligodendrocyte expression as a function of glucocorticoid receptor (GR) activation, the levels of total GR and phosphorylated GR were also evaluated. PA produced hypophosphorylation of the GR at Ser-232 without affecting expression of total protein. These findings demonstrate persistent and compensatory effects of ethanol in the mPFC long after cessation of CIE, including enhanced myelin production and impaired GR function. Collectively, these results suggest a novel relationship between oligodendrocytes and GR in the mPFC, in which stress may alter frontal cortex function in alcohol dependent subjects by promoting hypermyelination, thereby altering the cellular composition and white matter structure in the mPFC.

  13. N-Methyl-3,4-methylenedioxyamphetamine-induced hepatotoxicity in rats: Oxidative stress after acute and chronic administration

    Directory of Open Access Journals (Sweden)

    Ninković Milica

    2004-01-01

    Full Text Available Background. The underlying mechanisms of N-Methyl-3,4-methylenedioxyamphetamine-MDMA-induced hepatotoxicity are still unknown. The aim of this study was to evaluate hepatic oxido-reductive status in the rats liver after the single and repeated administration of MDMA. Methods. MDMA was dissolved in distilled water and administered in the doses of 5 mg, 10 mg, 20 mg, and 40 mg/kg. The animals from the acute experiment were treated per os with the single dose of the appropriate solution, through the orogastric tube. The animals from the chronic experiment were treated per os, with the doses of 5, 10, or 20 mg/kg of MDMA every day during 14 days. The control groups were treated with water only. Eight hours after the last dose, the animals were sacrificed, dissected their livers were rapidly removed, frozen and stored at -70°C until the moment of analysis. The parameters of oxidative stress in the crude mitochondrial fractions of the livers were analyzed. Results. Superoxide dismutase (SOD activity increased in the livers of the animals that were treated with single doses of MDMA. Chronically treated animals showed the increased SOD activity only after the highest dose (20 mg/kg. The content of reduced glutathione decreased in both groups, but the depletion was much more expressed after the single administration. Lipid peroxidation index increased in dose-dependent manner in both groups, being much higher after the single administration. Conclusion. The increased index of lipid peroxidation and the decreased reduced glutathione levels suggested that MDMA application induced the state of oxidative stress in the liver. These changes were much more expressed after the single administration of MDMA.

  14. Long-term L-Carnitine Administration reduces Erythropoietin Resistance in Chronic Hemodialysis Patients with Thalassemia Minor

    Directory of Open Access Journals (Sweden)

    Biagio R. Di Iorio

    2007-01-01

    Full Text Available Background and Aim: Both thalassemia and carnitine deficiency represent independent causes of erythropoietin resistance, and thus anemia, in uremic patients. We evaluated the unknown long-term effects of L-carnitine administration in β-thalassemic on chronic hemodialysis.Methods: We studied twelve subjects (M = 8; F = 4 affected by β-thalassemia minor (β-thal; HbA2 level = 6.6 ± 0.6% and forty non-thalassemic subjects (M = 24; F = 16 as controls (C, on chronic hemodialysis treatment. Patients and controls were at target hemoglobin levels (11–12g/dl prior to the study and underwent to i.v. L-carnitine administration for a one year period-time.Results: Groups were comparable for age, gender, serum levels of hemoglobin (Hb, iron, ferritine, PTH and aluminum, transferrin saturation, and dialysis modalities. During the study both groups showed signifi cant Hb increase and erythropoietin (EPO decrease; as a difference, such changes emerged at the 3rd month in C but at the 8th month in β-thal. At start, during the dialysis session the erythrocyte MCV reduced in C but not in β-thal (65.3 ± 3.2 to 65.5 ± 3.2 fl ; NS; along carnitine administration period, however, MCV during dialysis decreased also in β-thal, starting since the 9th month of treatment.Conclusion: This study provides evidence of the lowering of EPO resistance in β-thalassemia patients on hemodialysis due to long-term carnitine administration. Thus, prolonged carnitine supplementation should be suggested to patients on dialysis affected by β-thalassemia with poorly responsive anemia, or requiring large doses of erythropoietin.

  15. Ethanol-Induced Neurodegeneration and Glial Activation in the Developing Brain

    Directory of Open Access Journals (Sweden)

    Mariko Saito

    2016-08-01

    Full Text Available Ethanol induces neurodegeneration in the developing brain, which may partially explain the long-lasting adverse effects of prenatal ethanol exposure in fetal alcohol spectrum disorders (FASD. While animal models of FASD show that ethanol-induced neurodegeneration is associated with glial activation, the relationship between glial activation and neurodegeneration has not been clarified. This review focuses on the roles of activated microglia and astrocytes in neurodegeneration triggered by ethanol in rodents during the early postnatal period (equivalent to the third trimester of human pregnancy. Previous literature indicates that acute binge-like ethanol exposure in postnatal day 7 (P7 mice induces apoptotic neurodegeneration, transient activation of microglia resulting in phagocytosis of degenerating neurons, and a prolonged increase in glial fibrillary acidic protein-positive astrocytes. In our present study, systemic administration of a moderate dose of lipopolysaccharides, which causes glial activation, attenuates ethanol-induced neurodegeneration. These studies suggest that activation of microglia and astrocytes by acute ethanol in the neonatal brain may provide neuroprotection. However, repeated or chronic ethanol can induce significant proinflammatory glial reaction and neurotoxicity. Further studies are necessary to elucidate whether acute or sustained glial activation caused by ethanol exposure in the developing brain can affect long-lasting cellular and behavioral abnormalities observed in the adult brain.

  16. Chronic administration of a microencapsulated probiotic enhances the bioavailability of orange juice flavanones in humans.

    Science.gov (United States)

    Pereira-Caro, Gema; Oliver, Christine M; Weerakkody, Rangika; Singh, Tanoj; Conlon, Michael; Borges, Gina; Sanguansri, Luz; Lockett, Trevor; Roberts, Susan A; Crozier, Alan; Augustin, Mary Ann

    2015-07-01

    Orange juice (OJ) flavanones are bioactive polyphenols that are absorbed principally in the large intestine. Ingestion of probiotics has been associated with favorable changes in the colonic microflora. The present study examined the acute and chronic effects of orally administered Bifidobacterium longum R0175 on the colonic microflora and bioavailability of OJ flavanones in healthy volunteers. In an acute study volunteers drank OJ with and without the microencapsulated probiotic, whereas the chronic effects were examined when OJ was consumed after daily supplementation with the probiotic over 4 weeks. Bioavailability, assessed by 0-24h urinary excretion, was similar when OJ was consumed with and without acute probiotic intake. Hesperetin-O-glucuronides, naringenin-O-glucuronides, and hesperetin-3'-O-sulfate were the main urinary flavanone metabolites. The overall urinary excretion of these metabolites after OJ ingestion and acute probiotic intake corresponded to 22% of intake, whereas excretion of key colon-derived phenolic and aromatic acids was equivalent to 21% of the ingested OJ (poly)phenols. Acute OJ consumption after chronic probiotic intake over 4 weeks resulted in the excretion of 27% of flavanone intake, and excretion of selected phenolic acids also increased significantly to 43% of (poly)phenol intake, corresponding to an overall bioavailability of 70%. Neither the probiotic bacterial profiles of stools nor the stool moisture, weight, pH, or levels of short-chain fatty acids and phenols differed significantly between treatments. These findings highlight the positive effect of chronic, but not acute, intake of microencapsulated B. longum R0175 on the bioavailability of OJ flavanones.

  17. Topical Administration of Pirfenidone Increases Healing of Chronic Diabetic Foot Ulcers: A Randomized Crossover Study

    Directory of Open Access Journals (Sweden)

    Marcela Janka-Zires

    2016-01-01

    Full Text Available Only 30 percent of chronic diabetic foot ulcers heal after 20 weeks of standard treatment. Pirfenidone is a drug with biological, anti-inflammatory, and antifibrotic effects. The aim of this study was to evaluate the effect of topical pirfenidone added to conventional treatment in noninfected chronic diabetic foot ulcers. This was a randomized crossover study. Group 1 received topical pirfenidone plus conventional treatment for 8 weeks; after this period, they were switched to receive conventional treatment only for 8 more weeks. In group 2, the order of the treatments was the opposite. The end points were complete ulcer healing and size reduction. Final data were obtained from 35 ulcers in 24 patients. Fifty-two percent of ulcers treated with pirfenidone healed before 8 weeks versus 14.3% treated with conventional treatment only (P=0.025. Between 8 and 16 weeks, 30.8% ulcers that received pirfenidone healed versus 0% with conventional treatment (P=0.081. By week 8, the reduction in ulcer size was 100% [73–100] with pirfenidone versus 57.5% with conventional treatment [28.9–74] (P=0.011. By week 16, the reduction was 93% [42.7–100] with pirfenidone and 21.8% [8–77.5] with conventional treatment (P=0.050. The addition of topical pirfenidone to conventional treatment significantly improves the healing of chronic diabetic noninfected foot ulcers.

  18. Topical Administration of Pirfenidone Increases Healing of Chronic Diabetic Foot Ulcers: A Randomized Crossover Study

    Science.gov (United States)

    Janka-Zires, Marcela; Uribe-Wiechers, Ana Cecilia; Juárez-Comboni, Sonia Citlali; López-Gutiérrez, Joel; Escobar-Jiménez, Jarod Jazek; Gómez-Pérez, Francisco J.

    2016-01-01

    Only 30 percent of chronic diabetic foot ulcers heal after 20 weeks of standard treatment. Pirfenidone is a drug with biological, anti-inflammatory, and antifibrotic effects. The aim of this study was to evaluate the effect of topical pirfenidone added to conventional treatment in noninfected chronic diabetic foot ulcers. This was a randomized crossover study. Group 1 received topical pirfenidone plus conventional treatment for 8 weeks; after this period, they were switched to receive conventional treatment only for 8 more weeks. In group 2, the order of the treatments was the opposite. The end points were complete ulcer healing and size reduction. Final data were obtained from 35 ulcers in 24 patients. Fifty-two percent of ulcers treated with pirfenidone healed before 8 weeks versus 14.3% treated with conventional treatment only (P = 0.025). Between 8 and 16 weeks, 30.8% ulcers that received pirfenidone healed versus 0% with conventional treatment (P = 0.081). By week 8, the reduction in ulcer size was 100% [73–100] with pirfenidone versus 57.5% with conventional treatment [28.9–74] (P = 0.011). By week 16, the reduction was 93% [42.7–100] with pirfenidone and 21.8% [8–77.5] with conventional treatment (P = 0.050). The addition of topical pirfenidone to conventional treatment significantly improves the healing of chronic diabetic noninfected foot ulcers. PMID:27478849

  19. Effects of chronic lithium administration on renal acid excretion in humans and rats.

    Science.gov (United States)

    Weiner, I David; Leader, John P; Bedford, Jennifer J; Verlander, Jill W; Ellis, Gaye; Kalita, Priyakshi; Vos, Frederiek; de Jong, Sylvia; Walker, Robert J

    2014-12-01

    Lithium therapy's most common side effects affecting the kidney are nephrogenic diabetes insipidus (NDI) and chronic kidney disease. Lithium may also induce a distal renal tubular acidosis. This study investigated the effect of chronic lithium exposure on renal acid-base homeostasis, with emphasis on ammonia and citrate excretion. We compared 11 individuals on long-term lithium therapy with six healthy individuals. Under basal conditions, lithium-treated individuals excreted significantly more urinary ammonia than did control subjects. Following an acute acid load, urinary ammonia excretion increased approximately twofold above basal rates in both lithium-treated and control humans. There were no significant differences between lithium-treated and control subjects in urinary pH or urinary citrate excretion. To elucidate possible mechanisms, rats were randomized to diets containing lithium or regular diet for 6 months. Similar to humans, basal ammonia excretion was significantly higher in lithium-treated rats; in addition, urinary citrate excretion was also significantly greater. There were no differences in urinary pH. Expression of the critical ammonia transporter, Rhesus C Glycoprotein (Rhcg), was substantially greater in lithium-treated rats than in control rats. We conclude that chronic lithium exposure increases renal ammonia excretion through mechanisms independent of urinary pH and likely to involve increased collecting duct ammonia secretion via the ammonia transporter, Rhcg.

  20. Effect of chronic administration of forskolin on glycemia and oxidative stress in rats with and without experimental diabetes.

    Science.gov (United States)

    Ríos-Silva, Mónica; Trujillo, Xóchitl; Trujillo-Hernández, Benjamín; Sánchez-Pastor, Enrique; Urzúa, Zorayda; Mancilla, Evelyn; Huerta, Miguel

    2014-01-01

    Forskolin is a diterpene derived from the plant Coleus forskohlii. Forskolin activates adenylate cyclase, which increases intracellular cAMP levels. The antioxidant and antiinflammatory action of forskolin is due to inhibition of macrophage activation with a subsequent reduction in thromboxane B2 and superoxide levels. These characteristics have made forskolin an effective medication for heart disease, hypertension, diabetes, and asthma. Here, we evaluated the effects of chronic forskolin administration on blood glucose and oxidative stress in 19 male Wistar rats with streptozotocin-induced diabetes compared to 8 healthy male Wistar rats. Rats were treated with forskolin, delivered daily for 8 weeks. Glucose was assessed by measuring fasting blood glucose in diabetic rats and with an oral glucose tolerance test (OGTT) in healthy rats. Oxidative stress was assessed by measuring 8-hydroxydeoxyguanosine (8‑OHdG) in 24-h urine samples. In diabetic rats, without forskolin, fasting blood glucose was significantly higher at the end than at the beginning of the experiment (8 weeks). In both healthy and diabetic rats, forskolin treatment lowered the fasting glucose at the end of the experiment but no effect was found on oral glucose tolerance. The 8-OHdG levels tended to be less elevated in forskolin-treated than in untreated group. Our results showed that chronic administration of forskolin decreased fasting blood glucose levels; however, the reductions of 8-OHdG were not statistically significant.

  1. Chronic dietary administration of valproic acid protects neurons of the rat nucleus basalis magnocellularis from ibotenic acid neurotoxicity.

    Science.gov (United States)

    Eleuteri, Simona; Monti, Barbara; Brignani, Sara; Contestabile, Antonio

    2009-02-01

    Valproic acid (VPA) has been used for many years as a drug of choice for epilepsy and mood disorders. Recently, evidence has been proposed for a wide spectrum of actions of this drug, including antitumoral and neuroprotective properties. Valproic acid-mediated neuroprotection in vivo has been so far demonstrated in a limited number of experimental models. In this study, we have tested the neuroprotective potential of chronic (4 + 1 weeks) dietary administration of VPA on degeneration of cholinergic and GABAergic neurons of the rat nucleus basalis magnocellularis (NBM), injected with the excitotoxin, ibotenic acid (IBO), an animal models that is relevant for Alzheimer's disease-like neurodegeneration. We show that VPA treatment significantly protects both cholinergic and GABAergic neurons present in the injected area from the excitotoxic insult. A significant level of neuroprotection, in particular, is exerted towards the cholinergic neurons of the NBM projecting to the cortex, as demonstrated by the substantially higher levels of cholinergic markers maintained in the target cortical area of VPA-treated rats after IBO injection in the NBM. We further show that chronic VPA administration results in increased acetylation of histone H3 in brain, consistent with the histone deacetylase inhibitory action of VPA and putatively linked to a neuroprotective action of the drug mediated at the epigenetic level.

  2. Chronic Administration of High Doses of Nandrolone Decanoate on the Pituitary-Gonadal Axis in Male Rats

    Directory of Open Access Journals (Sweden)

    Shahraki

    2015-09-01

    Full Text Available Background Anabolic-androgenic steroids (AAS are abused by athletes. Objectives The present study was designed to evaluate chronic administration of high doses of nandrolone decanoate (ND on the pituitary-gonadal axis and hematological parameters in normal male rats. Materials and Methods Thirty Wistar-Albino male rats were divided assigned to control (C, placebo (P and test (T groups (n = 10. Group T received 15 mg/kg intramuscular (IM ND for eight weeks. Group P received the same volume of peanut oil, but group C did not receive any agent during the trial period. At the end, animals were anesthetized, killed and blood samples collected from cervical vessels. Serum follicle stimulating hormone (FSH and luteinizing hormone (LH levels were determined by sensitive rat gonadotropins kit, using ELISA methods. Serum testosterone and hematological parameters were measured by ordinary laboratory methods. Obtained data was analyzed using SPSS 17 by ANOVA and Tukey statistical tests. Results were expressed as Mean ± SD. Statistical difference considered significantly by P < 0.05. Results Serum testosterone, LH, FSH, weight gain, food and water intake in group T were significantly decreased compared to other groups (P < 0.05. In addition erythrocyte, leucocytes, hemoglobin and hematocrit in group T were significantly increased compared to those of other groups (P < 0.05. Conclusions Chronic administration of high doses of ND can alter serum FSH, LH and testosterone and hematological parameters in male rats.

  3. Chronic morphine administration induces over-expression of aldolase C with reduction of CREB phosphorylation in the mouse hippocampus.

    Science.gov (United States)

    Yang, Hai-Yu; Pu, Xiao-Ping

    2009-05-01

    In recent studies, alterations in the activity and expression of metabolic enzymes, such as those involved in glycolysis, have been detected in morphine-dependent patients and animals. Increasing evidence demonstrates that the hippocampus is an important brain region associated with morphine dependence, but the molecular events occurring in the hippocampus following chronic exposure to morphine are poorly understood. Aldolase C is the brain-specific isoform of fructose-1, 6-bisphosphate aldolase which is a glycolytic enzyme catalyzing reactions in the glycolytic, gluconeogenic, and fructose metabolic pathways. Using Western blot and immunofluorescence assays, we found the expression of aldolase C was markedly increased in the mouse hippocampus following chronic morphine treatment. Naloxone pretreatment before morphine administration suppressed withdrawal jumping, weight loss, and overexpression of aldolase C. CREB is a transcription factor regulated through phosphorylation on Ser133, which is known to play a key role in the mechanism of morphine dependence. When detecting the expression of phosphorylated CREB (p-CREB) in the mouse hippocampus using Western blot and immunohistochemistry, we found CREB phosphorylation was clearly decreased following chronic morphine treatment. Interestingly, laser-confocal microscopy showed that overexpression of aldolase C in mouse hippocampal neurons was concomitant with the decreased immunoreactivity of p-CREB. The results suggest potential links between the morphine-induced alteration of aldolase C and the regulation of CREB phosphorylation, a possible mechanism of morphine dependence.

  4. Chronic administration of U50,488H fails to produce hypothalamo-pituitary-adrenal axis tolerance in neonatal rats.

    Science.gov (United States)

    Ignar, D M; Windh, R T; Kuhn, C M

    1992-02-01

    The present study investigated the effect of chronic administration of a kappa opioid receptor agonist on the function of kappa and mu opioid, serotonergic and cholinergic regulation of secretion from the hypothalamo-pituitary-adrenal axis in neonatal rats. After chronic treatment with saline or U50,488H (trans-(+/-)-3,4-dichloro-N-methyl-N-[2-(1-pyrrolidinyl)cyclohexyl]- benzeneacetamide methane sulfonate), a kappa opioid receptor agonist and subsequent pharmacological challenge, corticosterone (CS) in serum was determined. Kappa tolerance did not develop in pups treated on postnatal days 5-9 with increasing doses of U50,488H (0.5-2.5 mg/kg). When the rats were treated with the same chronic regimen of U50,488H at different stages of development from birth through weaning, only weanling rats became tolerant to U50,488H. In the absence of measurable kappa tolerance, the responses of corticosterone in serum to morphine, quipazine, a serotonin receptor agonist and physostigmine, an inhibitor of acetylcholinesterase, were attenuated in neonatal rats, treated with U50,488H. These studies suggest that kappa tolerance is more difficult to induce in developing rats than in adults and that regulation of the function of the hypothalamo-pituitary-adrenal axis by other neurotransmitter systems is altered by treatment with kappa opioid receptor agonists, even in the apparent absence of tolerance.

  5. Effects of chronic delta-9-tetrahydrocannabinol (THC) administration on neurotransmitter concentrations and receptor binding in the rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Ali, S.F.; Newport, G.D.; Scallet, A.C.; Gee, K.W.; Paule, M.G.; Brown, R.M.; Slikker, W. Jr. (National Center for Toxicological Research, Jefferson, Arkansas (USA))

    THC is the major psychoactive constituent of marijuana and is also known as an hallucinogenic compound. Numerous reports have shown that large doses of THC produce significant alterations in various neurotransmitter systems. The present study was designed to determine whether chronic exposure to THC produces significant alterations in selected neurotransmitter systems (dopamine, serotonin, acetylcholine, GABAergic, benzodiazepine, and opiate) in the rat brain. In Experiment 1, male Sprague-Dawley rats were gavaged with vehicle, 10 or 20 mg THC/kg body weight daily, 5 days/week for 90 days. Animals were killed either 24 hours or two months after the last dose. Brains were dissected into different regions for neurochemical analyses. Two months after the cessation of chronic administration, there was a significant decrease in GABA receptor binding in the hippocampus of animals in the high dose group. However, no other significant changes were found in neurotransmitter receptor binding characteristics in the hippocampus or in neurotransmitter concentrations in the caudate nucleus, hypothalamus or septum after chronic THC administration. In an attempt to replicate the GABA receptor binding changes and also to determine the (35S)TBPS binding in hippocampus, we designed Experiment 2. In this experiment, we dosed the animals by gavage with 0, 5, 10 or 20 mg THC/kg daily, 5 days/week or with 20 mg THC/kg Monday through Thursday and 60 mg/kg on Friday for 90 days. Results from this experiment failed to replicate the dose-dependent effect of THC on GABA receptor binding in hippocampus. Modulation of (35S)TBPS binding by GABA or 3 alpha-OH-DHP or inhibition by cold TBPS in frontal cortex did not show any significant dose-related effects.

  6. Long-term experience with implanted intrathecal drug administration systems for failed back syndrome and chronic mechanical low back pain

    Directory of Open Access Journals (Sweden)

    Treharne GJ

    2002-06-01

    Full Text Available Abstract Background Continuous intrathecal drug delivery has been shown in open studies to improve pain and quality of life in those with intractable back pain who have had spinal surgery. There is limited data on long term effects and and even less for patients with mechanical back pain without prior spinal surgery. Methods We have investigated spinal drug administration systems for patients with failed back syndrome and chronic mechanical low back pain by patient questionnaire study of the efficacy of this therapy and a case notes review. Results 36 patients (97% of 37 approached completed questionnaires, 24 with failed back syndrome and 12 with chronic mechanical low back pain. Recalled pre-treatment levels with current post-treatment levels of pain and a range of quality of life measures (recorded on 11-point numerical rating scales were compared. Pain improved significantly in both groups (Wilcoxan signed ranks test, p 0.005, Wilcoxan signed ranks test with Bonferroni correction. Diamorphine was used in all 37 patients, bupivacaine in 32, clonidine in 27 and baclofen in 3. The mean dose of diamorphine increased for the first 2 years but did not change 2–6 years post implant, averaging 4.5 mg/day. Revision surgery was required in 24% of cases, but reduced to 12% in the later years of our experience. Conclusions We conclude that spinal drug administration systems appear to be of benefit in alleviating pain in the failed back syndrome and chronic mechanical low back pain but need to be examined prospectively.

  7. Chronic intermittent ethanol exposure alters stress effects on (3α,5α-3-hydroxy-pregnan-20-one (3α,5α-THP immunolabeling of amygdala neurons in C57BL/6J mice

    Directory of Open Access Journals (Sweden)

    Antoniette M Maldonado-Devincci

    2016-03-01

    Full Text Available The GABAergic neuroactive steroid (3α,5α-3-hydroxy-pregnan-20-one (3α,5α-THP, allopregnanolone is decreased in various brain regions of C57BL/6J mice following exposure to an acute stressor or chronic intermittent ethanol (CIE exposure and withdrawal. It is well established that there are complex interactions between stress and ethanol drinking, with mixed literature regarding the effects of stress on ethanol intake. However, there is little research examining how chronic ethanol exposure alters stress responses. The present work examined the impact of CIE exposure and withdrawal on changes in brain levels of 3α,5α-THP, hormonal, and behavioral responses to forced swim stress (FSS. Adult male C57BL/6J mice were exposed to four cycles of CIE to induce ethanol dependence. Following 8 or 72 hr withdrawal, mice were subjected to FSS for 10 min, and 50 min later brains were collected for immunohistochemical analysis of cellular 3α,5α-THP. Behavioral and circulating corticosterone responses to the FSS were quantified. Following 8 hr withdrawal, ethanol exposure potentiated the corticosterone response to FSS. Following 72 hr withdrawal, this difference was no longer observed. Following 8 hr withdrawal, stress-exposed mice showed no differences in immobility, swimming or struggling behavior. However, following 72 hr withdrawal, ethanol-exposed mice showed less immobility and greater swimming behavior compared to air-exposed mice. Interestingly, cellular 3α,5α-THP levels were increased in the lateral amygdala 8 hr and 72 hr post-withdrawal in stressed ethanol-exposed mice compared to ethanol-exposed/non-stressed mice. In the paraventricular nucleus of the hypothalamus, stress exposure decreased 3α,5α-THP levels compared to controls following 72 hr withdrawal, but no differences were observed 8 hr post-withdrawal. There were no differences in cellular 3α,5α-THP levels in the nucleus accumbens shell at either withdrawal time point. These data

  8. Ethanol Basics

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-01-30

    Ethanol is a widely-used, domestically-produced renewable fuel made from corn and other plant materials. More than 96% of gasoline sold in the United States contains ethanol. Learn more about this alternative fuel in the Ethanol Basics Fact Sheet, produced by the U.S. Department of Energy's Clean Cities program.

  9. Effects of chronic administration of tamsulosin and tadalafil, alone or in combination, in rats with bladder outlet obstruction induced by chronic nitric oxide deficiency

    Directory of Open Access Journals (Sweden)

    Rommel Prata Regadas

    2014-08-01

    Full Text Available Purpose The aim of this study was to define if tadalafil causes detrusor muscle impairment and to observe the effect of combination of tadalafil with tamsulosin on the lower urinary tract of rats with bladder outlet obstruction (BOO induced by chronic nitric oxide deficiency. Materials and Methods Thirty-one male rats were randomized to following groups: 1 - control; 2 - L-Nitroarginine methyl ester (L-NAME; 3 - Tamsulosin + L-NAME, 4 Tadalafil+L-NAME; and 5 - Tamsulosin + Tadalafil + L-NAME. At the end of the treatment period (30 days, all animals were submitted to urodynamic study. Results The administration of L-NAME increased the number of non-voiding contractions (NVC (1.04 ± 0.22, volume threshold (VT (1.86 ± 0.35, and micturition cycle (MC (1.34 ± 0.11 compared with control (0.52 ± 0.06, 0.62 ± 0.06, and 0.67 ± 0.30, respectively. The administration of tamsulosin reduced the number of NVC (0.57 ± 0.42 and VT (0.76 ± 0.24 compared with L-NAME group. Co-treatment with tadalafil decreased the number of VT (0.85 ± 0.53 and MC (0.76 ± 0.22 compared with L-NAME group. The combination of tamsulosin with tadalafil improved the number of NVC (0.56 ± 0.18, VT (0.97 ± 0.52 and MC (0.68 ± 0.30 compared with L-NAME group. Conclusion In rats with BOO induced by chronic nitric oxide deficiency, tadalafil did not cause impairment in detrusor muscle and seems to have an addictive effect to tamsulosin because the combination decreased non voiding contractions as well the number of micturition cycles.

  10. Development of a novel algorithm to determine adherence to chronic pain treatment guidelines using administrative claims

    Science.gov (United States)

    Margolis, Jay M; Princic, Nicole; Smith, David M; Abraham, Lucy; Cappelleri, Joseph C; Shah, Sonali N; Park, Peter W

    2017-01-01

    Objective To develop a claims-based algorithm for identifying patients who are adherent versus nonadherent to published guidelines for chronic pain management. Methods Using medical and pharmacy health care claims from the MarketScan® Commercial and Medicare Supplemental Databases, patients were selected during July 1, 2010, to June 30, 2012, with the following chronic pain conditions: osteoarthritis (OA), gout (GT), painful diabetic peripheral neuropathy (pDPN), post-herpetic neuralgia (PHN), and fibromyalgia (FM). Patients newly diagnosed with 12 months of continuous medical and pharmacy benefits both before and after initial diagnosis (index date) were categorized as adherent, nonadherent, or unsure according to the guidelines-based algorithm using disease-specific pain medication classes grouped as first-line, later-line, or not recommended. Descriptive and multivariate analyses compared patient outcomes with algorithm-derived categorization endpoints. Results A total of 441,465 OA patients, 76,361 GT patients, 10,645 pDPN, 4,010 PHN patients, and 150,321 FM patients were included in the development of the algorithm. Patients found adherent to guidelines included 51.1% for OA, 25% for GT, 59.5% for pDPN, 54.9% for PHN, and 33.5% for FM. The majority (~90%) of patients adherent to the guidelines initiated therapy with prescriptions for first-line pain medications written for a minimum of 30 days. Patients found nonadherent to guidelines included 30.7% for OA, 6.8% for GT, 34.9% for pDPN, 23.1% for PHN, and 34.7% for FM. Conclusion This novel algorithm used real-world pharmacotherapy treatment patterns to evaluate adherence to pain management guidelines in five chronic pain conditions. Findings suggest that one-third to one-half of patients are managed according to guidelines. This method may have valuable applications for health care payers and providers analyzing treatment guideline adherence. PMID:28223842

  11. Development of a novel algorithm to determine adherence to chronic pain treatment guidelines using administrative claims

    Directory of Open Access Journals (Sweden)

    Margolis JM

    2017-02-01

    Full Text Available Jay M Margolis,1 Nicole Princic,2 David M Smith,2 Lucy Abraham,3 Joseph C Cappelleri,4 Sonali N Shah,5 Peter W Park5 1Truven Health Analytics, Bethesda, MD, 2Truven Health Analytics, Cambridge, MA, USA; 3Pfizer Ltd, Tadworth, UK; 4Pfizer Inc, Groton, CT, 5Pfizer Inc, New York, NY, USA Objective: To develop a claims-based algorithm for identifying patients who are adherent versus nonadherent to published guidelines for chronic pain management. Methods: Using medical and pharmacy health care claims from the MarketScan® Commercial and Medicare Supplemental Databases, patients were selected during July 1, 2010, to June 30, 2012, with the following chronic pain conditions: osteoarthritis (OA, gout (GT, painful diabetic peripheral neuropathy (pDPN, post-herpetic neuralgia (PHN, and fibromyalgia (FM. Patients newly diagnosed with 12 months of continuous medical and pharmacy benefits both before and after initial diagnosis (index date were categorized as adherent, nonadherent, or unsure according to the guidelines-based algorithm using disease-specific pain medication classes grouped as first-line, later-line, or not recommended. Descriptive and multivariate analyses compared patient outcomes with algorithm-derived categorization endpoints. Results: A total of 441,465 OA patients, 76,361 GT patients, 10,645 pDPN, 4,010 PHN patients, and 150,321 FM patients were included in the development of the algorithm. Patients found adherent to guidelines included 51.1% for OA, 25% for GT, 59.5% for pDPN, 54.9% for PHN, and 33.5% for FM. The majority (~90% of patients adherent to the guidelines initiated therapy with prescriptions for first-line pain medications written for a minimum of 30 days. Patients found nonadherent to guidelines included 30.7% for OA, 6.8% for GT, 34.9% for pDPN, 23.1% for PHN, and 34.7% for FM. Conclusion: This novel algorithm used real-world pharmacotherapy treatment patterns to evaluate adherence to pain management guidelines in five

  12. The neurogenic phase of angiotensin II-salt hypertension is prevented by chronic intracerebroventricular administration of benzamil.

    Science.gov (United States)

    Osborn, John W; Olson, Dalay M; Guzman, Pilar; Toney, Glenn M; Fink, Gregory D

    2014-02-01

    Hypertension induced by chronic administration of angiotensin II (AngII) is exacerbated by high-salt intake. Previous studies have demonstrated that this salt-sensitive component is due to increased activity of the sympathetic nervous system, suggesting an interaction of plasma AngII with sodium-sensitive regions of the brain. This study tested the hypothesis that the salt-sensitive component of AngII-induced hypertension would be prevented by intracerebroventricular (ICV) administration of the sodium channel/transporter blocker benzamil. Male Sprague Dawley rats were instrumented to measure mean arterial pressure (MAP) by radio telemetry and for ICV administration of benzamil or vehicle and placed in metabolic cages for measurement of sodium and water intake and excretion. In rats consuming a high-salt diet (2.0% NaCl) and treated with ICV vehicle, administration of AngII (150 ng/kg/min, sc) for 13 days increased MAP by ~30 mmHg. ICV administration of benzamil (16 nmol/day) had no effect during the first 5 days of AngII, but returned MAP to control levels by Day 13. There were minimal or no differences between ICV vehicle or benzamil groups in regards to sodium and water balance. A lower dose of ICV benzamil administered ICV at 8 nmol/day had no effect on the MAP response to AngII in rats on a high-salt diet. Finally, in contrast to rats on a high-salt diet, AngII had negligible effects on MAP in rats consuming a low-salt diet (0.1% NaCl) and there were no differences in any variable between ICV benzamil (16 nmol/day) and ICV vehicle-treated groups. We conclude that the salt-sensitive component of AngII-induced hypertension is dependent on benzamil blockable sodium channels or transporters in the brain.

  13. Chronic cocaine administration causes extensive white matter damage in brain: diffusion tensor imaging and immunohistochemistry studies.

    Science.gov (United States)

    Narayana, Ponnada A; Herrera, Juan J; Bockhorst, Kurt H; Esparza-Coss, Emilio; Xia, Ying; Steinberg, Joel L; Moeller, F Gerard

    2014-03-30

    The effect of chronic cocaine exposure on multiple white matter structures in rodent brain was examined using diffusion tensor imaging (DTI), locomotor behavior, and end point histology. The animals received either cocaine at a dose of 100mg/kg (N=19), or saline (N=17) for 28 days through an implanted osmotic minipump. The animals underwent serial DTI scans, locomotor assessment, and end point histology for determining the expressions of myelin basic protein (MBP), neurofilament-heavy protein (NF-H), proteolipid protein (PLP), Nogo-A, aquaporin-4 (AQP-4), and growth associated protein-43 (GAP-43). Differences in the DTI measures were observed in the splenium (scc) and genu (gcc) of the corpus callosum (cc), fimbria (fi), and the internal capsule (ic). A significant increase in the activity in the fine motor movements and a significant decrease in the number of rearing events were observed in the cocaine-treated animals. Reduced MBP and Nogo-A and increased GAP-43 expressions were most consistently observed in these structures. A decrease in the NF-H expression was observed in fi and ic. The reduced expression of Nogo-A and the increased expression of GAP-43 may suggest destabilization of axonal connectivity and increased neurite growth with aberrant connections. Increased GAP-43 suggests drug-induced plasticity or a possible repair mechanism response. The findings indicated that multiple white matter tracts are affected following chronic cocaine exposure.

  14. Chronic administration of anticonvulsants but not antidepressants impairs bone strength: clinical implications.

    Science.gov (United States)

    Gold, P W; Pavlatou, M G; Michelson, D; Mouro, C M; Kling, M A; Wong, M-L; Licinio, J; Goldstein, S A

    2015-06-02

    Major depression and bipolar disorder are associated with decreased bone mineral density (BMD). Antidepressants such as imipramine (IMIP) and specific serotonin reuptake inhibitors (SSRIs) have been implicated in reduced BMD and/or fracture in older depressed patients. Moreover, anticonvulsants such as valproate (VAL) and carbamazepine (CBZ) are also known to increase fracture rates. Although BMD is a predictor of susceptibility to fracture, bone strength is a more sensitive predictor. We measured mechanical and geometrical properties of bone in 68 male Sprague Dawley rats on IMIP, fluoxetine (FLX), VAL, CBZ, CBZ vehicle and saline (SAL), given intraperitoneally daily for 8 weeks. Distinct regions were tested to failure by four-point bending, whereas load displacement was used to determine stiffness. The left femurs were scanned in a MicroCT system to calculate mid-diaphyseal moments of inertia. None of these parameters were affected by antidepressants. However, VAL resulted in a significant decrease in stiffness and a reduction in yield, and CBZ induced a decrease in stiffness. Only CBZ induced alterations in mechanical properties that were accompanied by significant geometrical changes. These data reveal that chronic antidepressant treatment does not reduce bone strength, in contrast to chronic anticonvulsant treatment. Thus, decreased BMD and increased fracture rates in older patients on antidepressants are more likely to represent factors intrinsic to depression that weaken bone rather than antidepressants per se. Patients with affective illness on anticonvulsants may be at particularly high risk for fracture, especially as they grow older, as bone strength falls progressively with age.

  15. Chronic antidepressant administration alleviates frontal and hippocampal BDNF deficits in CUMS rat.

    Science.gov (United States)

    Zhang, Yang; Gu, Fenghua; Chen, Jia; Dong, Wenxin

    2010-12-17

    Stress activates the hypothalamo-pituitary-adrenal (HPA) axis, regulates the expression of brain-derived neurotrophic factor (BDNF) in the brain, and mediates mood. Antidepressants alleviate stress and up-regulate BDNF gene expression. In this study, we investigated the effect of chronic unpredictable mild stress (CUMS) and the different kinds of antidepressant treatments on the HPA axis and the BDNF expression in the rat brain. Adult Wistar male rats were exposed to a six-week CUMS procedure and received different antidepressant treatments including venlafaxine, mirtazapine, and fluoxetine. Immunohistochemistry and real-time PCR were used to measure BDNF expression levels in the rat brain, and ELISAs were used to investigate the plasma corticosterone (CORT) and adrenocorticotropic hormone (ACTH) levels. CUMS significantly decreased the BDNF protein level in the DG, CA1, and CA3 of the hippocampus and increased plasma CORT level. Chronic antidepressant treatments all significantly increased BDNF protein levels in the hippocampus and the pre-frontal cortex. In addition, venlafaxine and mirtazapine inhibited the increase of plasma CORT level. These results suggested that an increase in the BDNF level in the brain could be a pivotal mechanism of various antidepressants to exert their therapeutic effects.

  16. The Administration and Effect of Sodium Nitroprusside in the Treatment of Chronic Congestive Heart Failure

    Institute of Scientific and Technical Information of China (English)

    Sun Ming; Wang Wenmeng; Wu Qiong

    2000-01-01

    To prove the effectiveness and safety of sodium nitroprusside (SNP) in the treatment of chronic congestive heart failure, 58 patients with heart failure and normal renal and hepatic function were selected and divided into 3 groups and treated differently. Group A was treated with routine vasodilators; Group B was treaeted intermittently with SNP (12.5 -75mg/24hrs);Group C was treated continuously with SNP (continuous infusion of 100-300mg/24hrs) Positively inotropie agents and diuretic agents were used in each group.The results showed that the highly effective rates of the three groups were 46.9% (15/32), 90.5% (19/21)and 100% (12/12) respectively. The effective rates were 81.3% (26/32), 100% (21/21), 100%(12/12) respectively. The highly effective rates of group B and C were much higher than that of group A (P<0.005, P< 0.005) . The reduction of blood pressure of group B and C was greater than that of group A ( P < 0. 025) . Among the patients we studied, no body had severe side effects. We concluded that the use of SNP in the treatment of chronic congestive heart failure is safe, with better effect than routine treatment,and continous infusion of SNP is the best choice.

  17. Mesenchymal Stem Cell Administration in Patients with Chronic Obstructive Pulmonary Disease: State of the Science

    Science.gov (United States)

    Cheng, Shih-Lung

    2017-01-01

    Patients with chronic obstructive pulmonary disease (COPD) have chronic, irreversible airway inflammation; currently, there is no effective or curative treatment and the main goals of COPD management are to mitigate symptoms and improve patients' quality of life. Stem cell based therapy offers a promising therapeutic approach that has shown potential in diverse degenerative lung diseases. Preclinical studies have demonstrated encouraging outcomes of mesenchymal stem/stromal cells (MSCs) therapy for lung disorders including emphysema, bronchopulmonary dysplasia, fibrosis, and acute respiratory distress syndrome. This review summarizes available data on 15 studies currently registered by the ClinicalTrials.gov repository, which used different stem cell therapy protocols for COPD; these included bone marrow mononuclear cells (BMMCs), bone marrow-derived MSCs, adipose-derived stem/stromal cells (ADSCs), and adipose-derived MSCs. Published results of three trials indicate that administering BMMCs or MSCs in the setting of degenerative lung disease is safe and may improve patients' condition and quality of life; however, larger-scale studies are needed to evaluate efficacy. Results of another completed trial (NCT01872624) are not yet published, and eleven other studies are ongoing; these include MSCs therapy in emphysema, several studies of ADSCs in COPD, another in idiopathic pulmonary fibrosis, and plerixafor mobilization of CD117 stem cells to peripheral blood.

  18. Orexin administration to mice that underwent chronic stress produces bimodal effects on emotion-related behaviors.

    Science.gov (United States)

    Chung, Hye-Seung; Kim, Jae-Gon; Kim, Jae-Won; Kim, Hyung-Wook; Yoon, Bong-June

    2014-11-01

    Orexin plays diverse roles in regulating behaviors, such as sleep and wake, reward processing, arousal, and stress and anxiety. The orexin system may accomplish these multiple tasks through its complex innervations throughout the brain. The emerging evidence indicates a role of orexin in emotional behaviors; however, most of the previous studies have investigated the function of orexin in naïve animals. Here, we examined a functional role of orexin in mice that had been exposed to repeated stress. Chronic social defeat stress produced differential social interaction behaviors in mice (susceptible versus resilient) and these two groups of mice displayed different levels of prepro-orexin in the hypothalamus. Exogenously added orexin A to the brain induced an antidepressant-like effect in only the susceptible mice but not in the resilient mice. In contrast, orexin A and orexin B infused together produced an anxiogenic effect in only the resilient mice and not in the susceptible mice. Furthermore, we found that the antidepressant-like effect of orexin A is mediated by the bed nucleus of the stria terminalis (BNST) after exposure to chronic restraint stress. These findings reveal a bimodal effect of the orexin system in regulating emotional behavior that depends on stress susceptibility.

  19. Combined administration of iron and monoisoamyl-DMSA in the treatment of chronic arsenic intoxication in mice.

    Science.gov (United States)

    Modi, M; Flora, S J S

    2007-11-01

    Co-administration of iron in combination with monoisoamyl dimercaptosuccinic acid (MiADMSA) against chronic arsenic poisoning in mice was studied. Mice preexposed to arsenic (25 ppm in drinking water for 6 months) mice were treated with MiADMSA (50 mg/kg, intraperitoneally) either alone or in combination with iron (75 or 150 mg/kg, orally) once daily for 5 days. Arsenic exposure led to a significant depletion of blood delta-aminolevulinic acid dehydratase (ALAD) activity, hematocrit, and white blood cell (WBC) counts accompanied by small decline in blood hemoglobin level. Hepatic reduced glutathione (GSH) level, catalase and superoxide dismutase (SOD) activities showed a significant decrease while, oxidized glutathione (GSSG) and thiobarbituric acid-reactive substances (TBARS) levels increased on arsenic exposure, indicating arsenic-induced hepatic oxidative stress. Liver aspartate and alanine transaminases (AST and ALT) activities also decreased significantly on arsenic exposure. Kidney GSH, GSSG, catalase level and SOD activities remained unchanged, while, TBARS level increased significantly following arsenic exposure. Brain GSH, glutathione peroxidase (GPx), and SOD activities decreased, accompanied by a significant elevation of TBARS level after chronic arsenic exposure. Treatment with MiADMSA was marginally effective in reducing ALAD activity, while administration of iron was ineffective when given alone. Iron when co-administered with MiADMSA restored blood ALAD activity. Administration of iron alone had no beneficial effects on hepatic oxidative stress, while in combination with MiADMSA it produced significant decline in hepatic TBARS level compared to the individual effect of MiADMSA. Renal biochemical variables were insensitive to any of the treatments. Combined administration of iron with MiADMSA also had no additional beneficial effect over the individual protective effect of MiADMSA on brain oxidative stress. Interestingly, combined administration of

  20. Delayed nootropic effects of arginine vasopressin after early postnatal chronic administration to albino rat pups.

    Science.gov (United States)

    Kim, P A; Voskresenskaya, O G; Kamensky, A A

    2009-06-01

    Intranasal administration of arginine vasopressin (10 microg/kg) to albino rat pups had a strong nootropic effect during training with positive and negative reinforcement. This effect was different in animals of various age groups: training with positive reinforcement was improved in "adolescent" rats and pubertal animals, while during training with negative reinforcement, the nootropic effect of the peptide was more prolonged and persisted also in adult animals.

  1. Short term administration of glucocorticoids in patients with protracted and chronic gout arthritis. Part III – frequency of adverse events

    Directory of Open Access Journals (Sweden)

    A A Fedorova

    2009-01-01

    Full Text Available Objective. To assess frequency of adverse events during short term administration of gluco- corticoid (GC in protracted and chronic gout arthritis. Material and methods. 59 pts with tophaceous gout (crystal-verified diagnosis and arthritis of three and more joints lasting more than a months in spite of treatment with sufficient doses of nonsteroidal anti-inflammatory drugs were included. Median age of pts was 56 [48;63], median disease duration – 15,2 years [7,4;20], median swollen joint count at the examination – 8 [5;11]. The patients were randomized into 2 groups. Methylprednisolone (MP 500 mg/day iv during 2 days and placebo im once was administered in one of them, betamethasone (BM 7 mg im once and placebo iv twice – in the other. Clinical evaluation of inflamed joints was performed every day. Standard laboratory examination and ECG were done before drug administration, at 3rd, 7th, and 14th day of follow up. Immunoreactive insulin level was evaluated before drug administration and at day 14. Blood pressure (BP was measured every day. Results. After first GC administration BP elevated in 28 (47% pts. In pts not having appropriate BP values BP elevated in 73% of cases. Pts with appropriate BP values showed less frequent BP elevation – 38% (p=0,02. In 8 (13% pts at day 3 after GC administration ECG signs of myocardial blood supply deterioration were revealed. Glucose level elevated in 10 (17% pts and after the second BM administration – in 5 (8% pts. Cholesterol level did not significantly change after 14 days of follow up but in 28 (47% pts it increased in comparison with baseline. Trigliceride level significantly decreased at day 14 from 149 [106; 187] to 108 [66,5; 172] mg/dl (p=0,02. 26 (44% pts had face hyperemia, 4 (7% –42 palpitation and 2 (3,4% – bitter taste. Conclusion. Administration of short course of GC in pts with gout requires monitoring of possible adverse events. Antihypertensive therapy providing appropriate BP

  2. Effects of acute and chronic administration of MK-801 on c-Fos protein expression in mice brain regions implicated in schizophrenia and antagonistic action of clozapine

    Institute of Scientific and Technical Information of China (English)

    ZUO Dai-ying; CAO Yue; ZHANG Lan; WANG Hai-feng; WU Ying-liang

    2008-01-01

    Objective To investigate the effects of acute and chronic administration of the non-competitive NMDA receptor antagonists MK-801 on c-Fos protein expression in different brain regions of mice and antagonistic action of clozapine. Methods Immunohistochemistry was used to detect the expression of c-Fos protein. Results MK-801 (0.6 mg·kg-1) acute administration produced a significant increase in the expression of c-Fos protein in the layers Ⅲ-Ⅳ of posterior cingulate and retrosplenial (PC/RS) cortex, which was consistent with the previous reports. Moreover, we presented a new finding that MK-801 (0.6 mg·kg-1) chronic administration for 8 days produced a significant increase of c-Fos protein expression in the PC/RS cortex, prefrontal cortex (PFC) and hypothalamus of mice. Among that, c-Fos protein expression in the PC/ RS cortex of mice was most significant. Compared acute administration with chronic administration, we found that MK-801 chronic administration significantly increased the expression of c-Fos protein in the PC/ RS cortex, PFC and hypothalamus. Furthermore, pretreatment of mice with clozapine significantly decreased the expression of c-Fos protein induced by MK-801 acute and chronic administration. Conclusions Marked expression of c-Fos protein induced by MK-801 is associated with neurotransmitters' change noted in our previous studies, and c-Fos protein, the marker of neuronal activation, might play an important role in the chronic pathophysiological process of schizophrenic model induced by NMDA receptor antagonist.

  3. Long-term Administration of Angiotension-Converting Enzyme Inhibitor Improves the Outcome of Chronic Heart Failure in Senile Patients

    Institute of Scientific and Technical Information of China (English)

    陈学林; 张劲农; 柯琴梅; 张银环; 刘承云

    2002-01-01

    Summary: One hundred and sixteen senile patients (older than 65 years) with chronic heart failure (CHF) were analyzed retrospectively in order to verify if old patients with CHF would benefit from long-term (one year) angiotension-converting enzyme inhibitor (ACEI) treatment. The frequency of drugs (including ACEI, digitalis and diuretic) used was stratified into four degrees accordingly. Development of the CHF was scored with regard to relapse rate and severity of this disease. Stepwise regression analysis was applied to explore the relationship between the scored outcome of CHF and the frequency of individual drug administra tion. A significant relationship of the scored outcome of CHF to the frequency of ACEI usage but not to digitalis nor to diuretics was found (partial coefficient of the correlation r=0. 42, P=0. 002). It was concluded that the longterm administration of ACEI improves the outcome of CHF in senile patients.

  4. Self-administration and interviewer-administration of the German Chronic Respiratory Questionnaire: instrument development and assessment of validity and reliability in two randomised studies

    Directory of Open Access Journals (Sweden)

    Lichtenschopf Alfred

    2004-01-01

    Full Text Available Abstract Background Assessment of health-related quality of life (HRQL is important in patients with chronic obstructive pulmonary disease (COPD. Despite the high prevalence of COPD in Germany, Switzerland and Austria there is no validated disease-specific instrument available. The objective of this study was to translate the Chronic Respiratory Questionnaire (CRQ, one of the most widely used respiratory HRQL questionnaires, into German, develop an interviewer- and self-administered version including both standardised and individualised dyspnoea questions, and validate these versions in two randomised studies. Methods We recruited three groups of patients with COPD in Switzerland, Germany and Austria. The 44 patients of the first group completed the CRQ during pilot testing to adapt the CRQ to German-speaking patients. We then recruited 80 patients participating in pulmonary rehabilitation programs to assess internal consistency reliability and cross-sectional validity of the CRQ. The third group consisted of 38 patients with stable COPD without an intervention to assess test-retest reliability. To compare the interviewer- and self-administered versions, we randomised patients in groups 2 and 3 to the interviewer- or self-administered CRQ. Patients completed both the standardised and individualised dyspnoea questions. Results For both administration formats and all domains, we found good internal consistency reliability (Crohnbach's alpha between 0.73 and 0.89. Cross-sectional validity tended to be better for the standardised compared to the individualised dyspnoea questions and cross-sectional validity was slightly better for the self-administered format. Test-retest reliability was good for both the interviewer-administered CRQ (intraclass correlation coefficients for different domains between 0.81 and 0.95 and the self-administered format (intraclass correlation coefficients between 0.78 and 0.86. Lower within-person variability was

  5. Evaluation of skeletal and cardiac muscle function after chronic administration of thymosin beta-4 in the dystrophin deficient mouse.

    Directory of Open Access Journals (Sweden)

    Christopher F Spurney

    Full Text Available Thymosin beta-4 (Tbeta4 is a ubiquitous protein with many properties relating to cell proliferation and differentiation that promotes wound healing and modulates inflammatory mediators. We studied the effects of chronic administration of Tbeta4 on the skeletal and cardiac muscle of dystrophin deficient mdx mice, the mouse model of Duchenne muscular dystrophy. Female wild type (C57BL10/ScSnJ and mdx mice, 8-10 weeks old, were treated with 150 microg of Tbeta4 twice a week for 6 months. To promote muscle pathology, mice were exercised for 30 minutes twice a week. Skeletal and cardiac muscle function were assessed via grip strength and high frequency echocardiography. Localization of Tbeta4 and amount of fibrosis were quantified using immunohistochemistry and Gomori's tri-chrome staining, respectively. Mdx mice treated with Tbeta4 showed a significant increase in skeletal muscle regenerating fibers compared to untreated mdx mice. Tbeta4 stained exclusively in the regenerating fibers of mdx mice. Although untreated mdx mice had significantly decreased skeletal muscle strength compared to untreated wild type, there were no significant improvements in mdx mice after treatment. Systolic cardiac function, measured as percent shortening fraction, was decreased in untreated mdx mice compared to untreated wild type and there was no significant difference after treatment in mdx mice. Skeletal and cardiac muscle fibrosis were also significantly increased in untreated mdx mice compared to wild type, but there was no significant improvement in treated mdx mice. In exercised dystrophin deficient mice, chronic administration of Tbeta4 increased the number of regenerating fibers in skeletal muscle and could have a potential role in treatment of skeletal muscle disease in Duchenne muscular dystrophy.

  6. Effects of Chronic Oral Administration of Natural Honey on Ischemia/Reperfusion-induced Arrhythmias in Isolated Rat Heart

    Directory of Open Access Journals (Sweden)

    Moslem Najafi

    2011-01-01

    Full Text Available Objective(sIn this study, effects of chronic administration of oral natural honey against ischemia/reperfusion (I/R-induced cardiac arrhythmias were investigated in isolated rat heart. Materials and MethodsMale Wistar rats were divided into four groups (n= 10-14 rats in each group and fed with natural honey (1%, 2% and 4% dissolved in the drinking water for 45 days except for the control group. After anesthesia, the rats’ hearts were isolated quickly, mounted on a Langendorff apparatus and perfused with a modified Krebs-Henseleit solution during stabilization, 30 min regional ischemia followed by 30 min reperfusion. The ECGs were recorded throughout the experiments to analyze cardiac arrhythmias based on the Lambeth conventions. ResultsIn the ischemic phase, honey (1% significantly reduced (P<0.05 the number and duration of ventricular tachycardia (VT. Honey (1% and 2% also significantly decreased number of ventricular ectopic beats (VEBs. In addition, incidence and duration of reversible ventricular fibrillation (Rev VF were lowered by honey 2% (P<0.05. During reperfusion time, VT incidence was 73% in the control group, however natural honey (1% decreased it to 22% (P<0.05. Honey also produced significant reduction in the incidences of total VF, Rev VF, duration and number of VT. ConclusionFor the first time, the results of present study demonstrated protective effects of chronic oral honey administration against I/R-induced arrhythmias in isolated rat heart. Antioxidant activity, the existence of energy sources such as glucose and fructose and improvement of some hemodynamic functions might be responsible for these effects.

  7. Effects of chronic doxepin and amitriptyline administration in naïve mice and in neuropathic pain mice model.

    Science.gov (United States)

    Mika, J; Jurga, A M; Starnowska, J; Wasylewski, M; Rojewska, E; Makuch, W; Kwiatkowski, K; Malek, N; Przewlocka, B

    2015-05-21

    Neuropathic pain is a severe clinical problem, often appearing as a co-symptom of many diseases or manifesting as a result of damage to the nervous system. Many drugs and agents are currently used for the treatment of neuropathic pain, such as tricyclic antidepressants (TCAs). The aims of this paper were to test the effects of two classic TCAs, doxepin and amitriptyline, in naïve animals and in a model of neuropathic pain and to determine the role of cytokine activation in the effects of these drugs. All experiments were carried out with Albino-Swiss mice using behavioral tests (von Frey test and the cold plate test) and biochemical analyses (qRT-PCR and Western blot). In the mice subjected to chronic constriction injury (CCI), doxepin and amitriptyline attenuated the symptoms of neuropathic pain and diminished the CCI-induced increase in the levels of spinal interleukin (IL)-6 and -1β mRNA, but not the protein levels of these cytokines, measured on day 12. Unexpectedly, chronic administration of doxepin or amitriptyline for 12 days produced allodynia and hyperalgesia in naïve mice. The treatment with these drugs did not influence the spinal levels of IL-1β and IL-6 mRNA, however, the protein levels of these pronociceptive factors were increased. The administration of ondansetron (5-HT3 receptor antagonist) significantly weakened the allodynia and hyperalgesia induced by both antidepressants in naïve mice; in contrast, yohimbine (α2-adrenergic receptors antagonist) did not influence these effects. Allodynia and hyperalgesia induced in naïve animals by amitriptyline and doxepin may be associated with an increase in the levels of pronociceptive cytokines resulting from 5-HT3-induced hypersensitivity. Our results provide new and important information about the possible side effects of antidepressants. Further investigation of these mechanisms may help to guide decisions about the use of classic TCAs for therapy.

  8. Voluntary exercise does not ameliorate spatial learning and memory deficits induced by chronic administration of nandrolone decanoate in rats.

    Science.gov (United States)

    Tanehkar, Fatemeh; Rashidy-Pour, Ali; Vafaei, Abbas Ali; Sameni, Hamid Reza; Haghighi, Saeed; Miladi-Gorji, Hossien; Motamedi, Fereshteh; Akhavan, Maziar Mohammad; Bavarsad, Kowsar

    2013-01-01

    Chronic exposure to the anabolic androgenic steroids (AAS) nandrolone decanoate (ND) in supra-physiological doses is associated with learning and memory impairments. Given the well-known beneficial effects of voluntary exercise on cognitive functions, we examined whether voluntary exercise would improve the cognitive deficits induced by chronic administration of ND. We also investigated the effects of ND and voluntary exercise on hippocampal BDNF levels. The rats were randomly distributed into 4 experimental groups: the vehicle-sedentary group, the ND-sedentary group, the vehicle-exercise group, and the ND-exercise group. The vehicle-exercise and the ND-exercise groups were allowed to freely exercise in a running wheel for 15 days. The vehicle-sedentary and the ND-sedentary groups were kept sedentary for the same period. Vehicle or ND injections were started 14 days prior to the voluntary exercise and continued throughout the 15 days of voluntary exercise. After the 15-day period, the rats were trained and tested on a water maze spatial task using four trials per day for 5 consecutive days followed by a probe trial two days later. Exercise significantly improved performance during both the training and retention of the water maze task, and enhanced hippocampal BDNF. ND impaired spatial learning and memory, and this effect was not rescued by exercise. ND also potentiated the exercise-induced increase in hippocampal BDNF levels. These results seem to indicate that voluntary exercise is unable to improve the disruption of cognitive functions by chronic ND. Moreover, increased levels of BDNF may play a role in ND-induced impairments in learning and memory. The harmful effects of ND and other AAS on learning and memory should be taken into account when athletes decide to use AAS for performance or body image improvement.

  9. Cerebral metabolic responses to meta-chlorophenylpiperazine are reduced during its chronic administration to young and aged rats.

    Science.gov (United States)

    Freo, U; Larson, D M; Soncrant, T T

    1993-01-01

    The effects of the 5-HT agonist meta-chlorophenylpiperazine (MCPP) on regional cerebral metabolic rates for glucose (rCMRglc) were measured in 3- and 24-month-old rats that were not pretreated or were pretreated for 2 weeks with continuous infusion of saline or MCPP. rCMRglc were measured using the quantitative autoradiographic [14C]2-deoxy-D-glucose technique in 71 brain regions at 15 min after acute administration of MCPP 2.5 mg/kg. In the absence of chronic pretreatment, intraperitoneal MCPP 2.5 mg/kg produced widespread rCMRglc reductions (41 brain areas) in 3-month-old rats and more limited rCMRglc decreases (8 brain areas) in 24-month-old rats. After chronic treatment, MCPP failed to reduce rCMRglc in any region of either group of rats. These findings indicate that mechanisms of downregulation of response to MCPP are functional in young and aged rats and suggest that the age-related reduction in rCMRglc responses to acute MCPP in non-pretreated animals may be due to compensation for age-related losses of 5-HT terminals.

  10. Thymoquinone ameliorates testicular tissue inflammation induced by chronic administration of oral sodium nitrite.

    Science.gov (United States)

    Alyoussef, A; Al-Gayyar, M M H

    2016-06-01

    Although sodium nitrite has been widely used as food preservative, building bases of scientific evidence about nitrite continues to oppose the general safety in human health. Moreover, thymoquinone (TQ) has therapeutic potential as antioxidant, anti-inflammatory, antibacterial and anticancer. Therefore, we investigated the effects of both sodium nitrite and TQ on testicular tissues of rats. Forty adult male Sprague Dawley rats were used. They received either 80 mg kg(-1) sodium nitrite or 50 mg kg(-1) TQ daily for twelve weeks. Serum testosterone was measured. Testis were weighed and the testicular tissue homogenates were used for measurements of tumour necrosis factor (TNF)-α, interleukin (IL)-1β, IL-4, IL-6, IL10, caspase-3, caspase-8 and caspase-9. Sodium nitrite resulted in significant reduction in serum testosterone concentration and elevation in testis weight and Gonado-Somatic Index. We found significant reduction in testicular tissues levels of IL-4 and IL-10 associated with elevated levels of TNF-α, IL-1β, IL-6, caspase-3, caspase-8 and caspase-9. In conclusion, chronic oral sodium nitrite induced changes in the weight of rat testis accompanied by elevation in the testicular tissue level of oxidative stress markers and inflammatory cytokines. TQ attenuated sodium nitrite-induced testicular tissue damage through blocking oxidative stress, restoration of normal inflammatory cytokines balance and blocking of apoptosis.

  11. Food consumption and weight gain after cessation of chronic amphetamine administration.

    Science.gov (United States)

    Orsini, Caitlin A; Ginton, Guy; Shimp, Kristy G; Avena, Nicole M; Gold, Mark S; Setlow, Barry

    2014-07-01

    Cessation of drug use often coincides with increased food consumption and weight gain in recovering addicts. However, it is not known whether this phenomenon (particularly the weight gain) is uniquely human, or whether it represents a consequence of drug cessation common across species. To address this issue, rats (n = 10/group) were given systemic injections of D-amphetamine (3 mg/kg) or an equal volume of saline vehicle for 9 consecutive days. Beginning 2 days after the final injection, rats were given free access to a highly palatable food mixture (consisting of sugar and butter) along with their standard chow diet, and food consumption and body weight were measured every 48 h for 30 days. Consistent with clinical observations, amphetamine-treated rats showed a greater increase in body weight over the course of the 30 days relative to vehicle-treated rats. Surprisingly, there was no difference in highly palatable food consumption between amphetamine- and vehicle-treated groups, but the amphetamine-treated group consumed significantly more standard chow than the control group. The finding that a history of chronic amphetamine exposure increases food consumption is consistent with previous work in humans showing that withdrawal from drugs of abuse is associated with overeating and weight gain. The current findings may reflect amphetamine-induced sensitization of mechanisms involved in reward motivation, suggesting that weight gain following drug cessation in humans could be due to similar mechanisms.

  12. Effects of chronic administration of valproic acid to epileptic patients on coagulation tests and primary hemostasis.

    Science.gov (United States)

    Zighetti, Maddalena L; Fontana, Gessica; Lussana, Federico; Chiesa, Valentina; Vignoli, Aglaia; Canevini, Maria Paola; Cattaneo, Marco

    2015-05-01

    Valproic acid (VPA) is an antiepileptic drug that has been associated with impaired hemostasis and increased risk for postsurgical bleeding. However, the published reports provide controversial results. We measured parameters of primary hemostasis in VPA-treated patients with epilepsy, focusing on adenosine nucleotide-dependent platelet responses, which play a central role in primary hemostasis. We enrolled 20 cases (epileptic patients receiving treatment with VPA) and 20 controls (12 epileptic patients receiving treatment with drugs different from VPA and 8 healthy subjects). Measurements included prothrombin time (PT), activated partial thromboplastin time (APTT), platelet count, platelet function analyzer (PFA)-100 closure times, plasma von Willebrand factor levels, platelet content of ADP, ATP, and serotonin (all stored in platelet dense granules), and platelet shape change and aggregation induced by ADP and other platelet agonists, including the ATP analog α,β-methylene-ATP. The plasma concentration of VPA was in the therapeutic range in 17 patients and slightly above the upper limit in 3 patients. There were no statistically significant differences in any of the studied parameters in cases versus controls. Our thorough controlled study failed to show that chronic treatment with VPA induces significant abnormalities of coagulation and primary hemostasis. Therefore, VPA, when present in the circulation in the therapeutic range, does not impair hemostasis.

  13. Acute and chronic administration of immunomodulators induces anorexia in Zucker rats.

    Science.gov (United States)

    Lugarini, F; Hrupka, B J; Schwartz, G J; Plata-Salaman, C R; Langhans, W

    2005-01-31

    To investigate the possible involvement of leptin signaling in lipopolysaccharide (LPS) anorexia, we compared the anorectic effect of LPS in genetically obese (fa/fa) Zucker rats and in their lean (Fa/?) counterparts. The effects of interleukin-1beta (IL-1beta) and muramyl dipeptide (MDP) were also tested. LPS [100 microg/kg body weight (BW)], IL-1beta (2 microg/kg BW) and MDP (2.2 mg/kg BW) injected intraperitoneally (i.p.) at lights out reduced food intake similarly in obese and lean rats. LPS injection at 500 or 1000 microg/kg BW (i.p.) also reduced food intake and BW similarly in obese and lean rats, but obese regained BW faster than lean rats. LPS (2.45 microg or 9.8 microg/h/rat) administered chronically with i.p. implanted osmotic pumps reduced food intake similarly on experimental day 1, regardless of the genotype. After day 3, the lean rats' anorectic response and recovery were dose-dependent, whereas the anorectic response in obese rats was minimally affected by dose (significant dose effect only on day 3). Again, obese rats regained lost BW faster than lean rats. These results do not support a role for leptin as the sole mediator of anorexia induced by bacterial products (LPS and MDP) and IL-1beta.

  14. Effect of simulated weightlessness and chronic 1,25-dihydroxyvitamin D administration on bone metabolism

    Science.gov (United States)

    Halloran, B. P.; Bikle, D. D.; Globus, R. K.; Levens, M. J.; Wronski, T. J.; Morey-Holton, E.

    1985-01-01

    Weightlessness, as experienced during space flight, and simulated weightlessness induce osteopenia. Using the suspended rat model to simulate weightlessness, a reduction in total tibia Ca and bone formation rate at the tibiofibular junction as well as an inhibition of Ca-45 and H-3-proline uptake by bone within 5-7 days of skeletal unloading was observed. Between days 7 and 15 of unloading, uptake of Ca-45 and H-3-proline, and bone formation rate return to normal, although total bone Ca remains abnormally low. To examine the relationship between these characteristic changes in bone metabolism induced by skeletal unloading and vitamin D metabolism, the serum concentrations of 25-hydroxyvitamin D (25-OH-D), 24, 25-dihydroxyvitamin D (24,25(OH)2D) and 1,25-dihydroxyvitamin D (1,25(OH)2D) at various times after skeletal unloading were measured. The effect of chronic infusion of 1,25(OH)2D3 on the bone changes associated with unloading was also determined.

  15. Effect of melatonin administration on subjective sleep quality in chronic obstructive pulmonary disease

    Directory of Open Access Journals (Sweden)

    D.M. Nunes

    2008-10-01

    Full Text Available Disturbed sleep is common in chronic obstructive pulmonary disease (COPD. Conventional hypnotics worsen nocturnal hypoxemia and, in severe cases, can lead to respiratory failure. Exogenous melatonin has somnogenic properties in normal subjects and can improve sleep in several clinical conditions. This randomized, double-blind, placebo-controlled study was carried out to determine the effects of melatonin on sleep in COPD. Thirty consecutive patients with moderate to very severe COPD were initially recruited for the study. None of the participants had a history of disease exacerbation 4 weeks prior to the study, obstructive sleep apnea, mental disorders, current use of oral steroids, methylxanthines or hypnotic-sedative medication, nocturnal oxygen therapy, and shift work. Patients received 3 mg melatonin (N = 12 or placebo (N = 13, orally in a single dose, 1 h before bedtime for 21 consecutive days. Sleep quality was assessed by the Pittsburgh Sleep Quality Index (PSQI and daytime sleepiness was measured by the Epworth Sleepiness Scale. Pulmonary function and functional exercise level were assessed by spirometry and the 6-min walk test, respectively. Twenty-five patients completed the study protocol and were included in the final analysis. Melatonin treatment significantly improved global PSQI scores (P = 0.012, particularly sleep latency (P = 0.008 and sleep duration (P = 0.046. No differences in daytime sleepiness, lung function and functional exercise level were observed. We conclude that melatonin can improve sleep in COPD. Further long-term studies involving larger number of patients are needed before melatonin can be safely recommended for the management of sleep disturbances in these patients.

  16. Variable effects of chronic subcutaneous administration of rotenone on striatal histology.

    Science.gov (United States)

    Zhu, Chunni; Vourc'h, Patrick; Fernagut, Pierre-Olivier; Fleming, Sheila M; Lacan, Sanja; Dicarlo, Cheryl D; Seaman, Ronald L; Chesselet, Marie-Françoise

    2004-10-25

    When infused in rats, rotenone, a mitochondrial complex I inhibitor, induces alterations that resemble the histological changes of Parkinson's disease, particularly degeneration of the nigrostriatal dopaminergic system. However, the specificity of rotenone effects has been challenged recently. We have re-examined the alterations caused by rotenone in the substantia nigra and the striatum of rats after infusion of rotenone (2 mg/kg per day s.c.) for 21 days. Three patterns of striatal tyrosine-hydroxylase immunoreactivity (TH-IR) were observed: 46% of animals showed no reduction, and 46% of animals showed diffuse reduction in TH-IR, whereas one animal presented a focal loss of TH-IR in the striatum. Confocal microscopy analysis showed that the vesicular monoamine transporter (VMAT2) was decreased in parallel with TH-IR, strongly suggesting a loss of striatal DA nerve terminals in animals with diffuse or central TH-IR loss. However, no significant loss of TH-IR neurons was observed in the substantia nigra. Analysis of NeuN and DARPP-32 immunoreactivity, and Nissl staining, in the striatum showed no striatal neuronal loss in animals with either preserved TH-IR or diffuse TH-IR reduction. However, in the animal with focal TH-IR loss, severe neuronal loss was evident in the center and the periphery of the striatum, together with microglial activation detected by OX-6 and OX-42 staining. Thus, in most cases, chronic subcutaneous infusion of low doses of rotenone does not induce significant striatal neuronal loss, despite TH-IR and VMAT-IR reduction in a subset of animals, supporting the use of rotenone as a model of Parkinson's disease under carefully controlled experimental conditions.

  17. Chronic administration of resveratrol prevents morphological changes in prefrontal cortex and hippocampus of aged rats.

    Science.gov (United States)

    Monserrat Hernández-Hernández, Elizabeth; Serrano-García, Carolina; Antonio Vázquez-Roque, Rubén; Díaz, Alfonso; Monroy, Elibeth; Rodríguez-Moreno, Antonio; Florán, Benjamin; Flores, Gonzalo

    2016-05-01

    Resveratrol may induce its neuroprotective effects by reducing oxidative damage and chronic inflammation apart from improving vascular function and activating longevity genes, it also has the ability to promote the activity of neurotrophic factors. Morphological changes in dendrites of the pyramidal neurons of the prefrontal cortex (PFC) and hippocampus have been reported in the brain of aging humans, or in humans with neurodegenerative diseases such as Alzheimer's disease. These changes are reflected particularly in the decrement of both the dendritic tree and spine density. Here we evaluated the effect of resveratrol on the dendrites of pyramidal neurons of the PFC (Layers 3 and 5), CA1- and CA3-dorsal hippocampus (DH) as well as CA1-ventral hippocampus, dentate gyrus (DG), and medium spiny neurons of the nucleus accumbens of aged rats. 18-month-old rats were administered resveratrol (20 mg/kg, orally) daily for 60 days. Dendritic morphology was studied by the Golgi-Cox stain procedure, followed by Sholl analysis on 20-month-old rats. In all resveratrol-treated rats, a significant increase in dendritic length and spine density in pyramidal neurons of the PFC, CA1, and CA3 of DH was observed. Interestingly, the enhancement in dendritic length was close to the soma in pyramidal neurons of the PFC, whereas in neurons of the DH and DG, the increase in dendritic length was further from the soma. Our results suggest that resveratrol induces modifications of dendritic morphology in the PFC, DH, and DG. These changes may explain the therapeutic effect of resveratrol in aging and in Alzheimer's disease.

  18. Distribution of cadmium in gravid CF-1 mice following chronic administration

    Energy Technology Data Exchange (ETDEWEB)

    Reihart, M.J.; Mahalik, M.P.; Hitner, H.W.; Prozialeck, W.C. (PCOM, Philadelphia, PA (United States))

    1991-03-11

    Previous studies, in which cadmium (Cd{sup 2+}) was administered via osmotic minipumps to gravid CF-1 mice showed that Cd{sup 2+} produces dose-dependent teratogenic effects. The present studies examined the patterns of distribution when Cd{sup 2+} is given by this route to gravid and non-gravid mice. A total dose of 5.6 umoles CdCl{sub 2} containing 1 uCi {sup 109}Cd{sup 2+} was administered via 14 day Alzet osmotic minipumps implanted subcutaneously on day 5 of gestation. On day 12 and day 18 of gestation, the animals were sacrificed. Samples of various tissues were removed, solubilized and counted for radioactivity in a liquid scintillation counter. The results showed that the highest levels of Cd were present in the maternal liver and kidney. The levels of Cd{sup 2+} in the kidney on day 18 were much higher than those on day 12 suggesting a gradual redistribution of Cd{sup 2+} accumulated in the placenta, little was present in the amnionic fluid or fetuses. These patterns of distribution for Cd{sup 2+} administered by osmotic minipumps are similar to those previously reported for other parenteral routes of administration. The authors finding that Cd{sup 2+} accumulates in the placenta but does not readily cross into the amniotic fluid or fetus is consistent with the hypothesis that Cd{sup 2+} may produce some of its teratogenic effects by selectively damaging the placenta.

  19. Regulation of rat MOR-1 gene expression after chronic intracerebroventricular administration of morphine.

    Science.gov (United States)

    Zhu, Zhi-Ping; Badisa, Ramesh B; Palm, Donald E; Goodman, Carl B

    2012-02-01

    The µ-opioid receptor is the primary site for the action of morphine. In the present study, we investigated the regulation of the µ-opioid receptor mRNA levels in the locus ceruleus, ventral tegmental area, nucleus accumbens and hypothalamus of the rat brain following intracerebroventricular administration of morphine for 7 days. The isolated mRNA from these regions was subjected to real-time quantitative RT-PCR to determine the regulation of µ-opioid receptor gene expression. It was observed that 7 days of treatment with morphine significantly down-regulated the µ-opioid receptor mRNA levels in the hypothalamus of the brain in comparison to the control group. However, the µ-opioid receptor levels in the locus ceruleus, ventral tegmental area and nucleus accumbens regions remained the same as the control levels. Down-regulation of µ-opioid receptor mRNA levels in the hypothalamus region of the brain indicates the probable role of opioids to influence neuroendocrine function. The results further indicate that cellular adaptation for morphine tolerance is tissue-specific. These findings help us to understand the mechanism of morphine tolerance in various regions of the brain.

  20. Ethanol Metabolism and Osmolarity Modify Behavioral Responses to Ethanol in C. elegans

    Science.gov (United States)

    Alaimo, Joseph T.; Davis, Scott J.; Song, Sam S.; Burnette, Christopher R.; Grotewiel, Mike; Shelton, Keith L.; Pierce-Shimomura, Jonathan T.; Davies, Andrew G.; Bettinger, Jill C.

    2012-01-01

    Background Ethanol is metabolized by a two-step process in which alcohol dehydrogenase (ADH) oxidizes ethanol to acetaldehyde, which is further oxidized to acetate by aldehyde dehydrogenase (ALDH). Although variation in ethanol metabolism in humans strongly influences the propensity to chronically abuse alcohol, few data exist on the behavioral effects of altered ethanol metabolism. Here, we used the nematode C. elegans to directly examine how changes in ethanol metabolism alter behavioral responses to alcohol during an acute exposure. Additionally, we investigated ethanol solution osmolarity as a potential explanation for contrasting published data on C. elegans ethanol sensitivity. Methods We developed a gas chromatography assay and validated a spectrophotometric method to measure internal ethanol in ethanol-exposed worms. Further, we tested the effects of mutations in ADH and ALDH genes on ethanol tissue accumulation and behavioral sensitivity to the drug. Finally, we tested the effects of ethanol solution osmolarity on behavioral responses and tissue ethanol accumulation. Results Only a small amount of exogenously applied ethanol accumulated in the tissues of C. elegans and consequently their tissue concentrations were similar to those that intoxicate humans. Independent inactivation of an ADH-encoding gene (sodh-1) or an ALDH-encoding gene (alh-6 or alh-13) increased the ethanol concentration in worms and caused hypersensitivity to the acute sedative effects of ethanol on locomotion. We also found that the sensitivity to the depressive effects of ethanol on locomotion is strongly influenced by the osmolarity of the exogenous ethanol solution. Conclusions Our results indicate that ethanol metabolism via ADH and ALDH has a statistically discernable but surprisingly minor influence on ethanol sedation and internal ethanol accumulation in worms. In contrast, the osmolarity of the medium in which ethanol is delivered to the animals has a more substantial effect on

  1. International Conference on Harmonisation; guidance on the duration of chronic toxicity testing in animals (rodent and nonrodent toxicity testing); availability. Notice. Food and Drug Administration, HHS.

    Science.gov (United States)

    1999-06-25

    The Food and Drug Administration (FDA) is publishing a guidance entitled "S4A Duration of Chronic Toxicity Testing in Animals (Rodent and Nonrodent Toxicity Testing)." The guidance was prepared under the auspices of the International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH) and is intended to provide guidance on the duration of chronic toxicity testing in rodents and nonrodents as part of the safety evaluation of a drug product. FDA is also noting circumstances in which it may accept durations of chronic toxicity testing in nonrodents that differ from the duration generally recommended by ICH.

  2. [INDICES OF THE OXIDATIVE STATUS IN CHRONIC ADMINISTRATION OF COLLOID CARBONATE CALCIUM PRAPARATION WITH FAUCET AND LOW-MINERALIZED DRINKING WATER IN RATS].

    Science.gov (United States)

    Khripach, L V; Mikhaylova, R I; Koganova, Z I; Knyazeva, T D; Alekseeva, A V; Savostikova, O N; Ryzhova, I N; Kruglova, E V; Revzova, T L

    2015-01-01

    There are discussed the changes of an array of indices of the oxidative status in chronic administration of colloidal calcium carbonate preparation with faucet and low-mineralized drinking water to rats. Slight differences between significant effects of administration of 3 and 30 mg/L of preparation permit to suggest that the process of its incoming delivery into organism of rats has a bottleneck in the nature of total capacity of macrophages of intestinal lymphoid tissue to absorption of particles.

  3. Effects of ethanol, acetaldehyde and cholesteryl esters on pancreatic lysosomes.

    OpenAIRE

    Wilson, J S; Apte, M V; Thomas, M. C.; Haber, P S; Pirola, R C

    1992-01-01

    Recent studies indicate that altered lysosomal function may be involved in the early stages of pancreatic injury. Chronic consumption of ethanol increases rat pancreatic lysosomal fragility. The aim of this study is to determine whether the lysosomal fragility observed after chronic ethanol consumption is mediated by ethanol per se, its oxidative metabolite acetaldehyde or cholesteryl esters (substances which accumulate in the pancreas after ethanol consumption). Pancreatic lysosomes from cho...

  4. Chronic administration of imipramine but not agomelatine and moclobemide affects the nitrergic relaxation of rabbit corpus cavernosum smooth muscle.

    Science.gov (United States)

    Gocmez, Semil Selcen; Utkan, Tijen; Gacar, Nejat

    2013-08-15

    Sexual dysfunction is a common and underestimated effect of antidepressants. However, the mechanism by which these drugs cause erectile dysfunction is unclear. We investigated the reactivity of the corpus cavernosum of rabbits that were treated with either chronic imipramine, which is a tricyclic agent; agomelatine, which is a melatonergic agonist and serotonin 5HT(2c) antagonist; or moclobemide, which is a reversible inhibitor of monoamine-oxidase A. Twenty rabbits were randomly divided into four groups: the control group (n=5), the imipramine-treated group (n=5), which received i.p. injections of 10 mg/kg/day of imipramine, the moclobemide-treated group (n=5), which received i.p. injections of 20 mg/kg/day of moclobemide, and the agomelatine-treated group (n=5), which was orally administered 10 mg/kg/day of agomelatine. The reactivities of corpus cavernosum tissue obtained from the antidepressant-treated and the control groups were studied in organ chambers after the animals were subjected to 21 days of drug administration. The acetylcholine-induced endothelium-dependent and the electrical field stimulation (EFS)-induced neurogenic relaxation of the corpus cavernosum of the imipramine-treated group was significantly decreased compared with the control group. However, neither the acetylcholine- nor EFS-induced relaxation was changed in the moclobemide- or agomelatine-treated groups. There were no change in the relaxant response to the nitric oxide (NO) donor sodium nitroprusside and contractile response to KCl between the groups. This study suggests that chronic imipramine treatment but not agomelatine and moclobemide treatments causes significant functional changes in the penile erectile tissue of rabbits and that these changes may contribute to the development of impotence.

  5. Pulmonary administration of phosphoinositide 3-kinase inhibitor is a curative treatment for chronic obstructive pulmonary disease by alveolar regeneration.

    Science.gov (United States)

    Horiguchi, Michiko; Oiso, Yuki; Sakai, Hitomi; Motomura, Tomoki; Yamashita, Chikamasa

    2015-09-10

    Chronic obstructive pulmonary disease (COPD) is an intractable pulmonary disease, causing widespread and irreversible alveoli collapse. The discovery of a low-molecular-weight compound that induces regeneration of pulmonary alveoli is of utmost urgency to cure intractable pulmonary diseases such as COPD. However, a practically useful compound for regenerating pulmonary alveoli is yet to be reported. Previously, we have elucidated that Akt phosphorylation is involved in a differentiation-inducing molecular mechanism of human alveolar epithelial stem cells, which play a role in regenerating pulmonary alveoli. In the present study, we directed our attention to phosphoinositide 3-kinase (PI3K)-Akt signaling and examined whether PI3K inhibitors display the pulmonary alveolus regeneration. Three PI3K inhibitors with different PI3K subtype specificities (Wortmannin, AS605240, PIK-75 hydrochloride) were tested for the differentiation-inducing effect on human alveolar epithelial stem cells, and Wortmannin demonstrated the most potent differentiation-inducing activity. We evaluated Akt phosphorylation in pulmonary tissues of an elastase-induced murine COPD model and found that Akt phosphorylation in the pulmonary tissue was enhanced in the murine COPD model compared with normal mice. Then, the alveolus-repairing effect of pulmonary administration of Wortmannin to murine COPD model was evaluated using X-ray CT analysis and hematoxylin-eosin staining. As a result, alveolar damages were repaired in the Wortmannin-administered group to a similar level of normal mice. Furthermore, pulmonary administration of Wortmannin induced a significant recovery of the respiratory function, compared to the control group. These results indicate that Wortmannin is capable of inducing differentiation of human alveolar epithelial stem cells and represents a promising drug candidate for curative treatment of pulmonary alveolar destruction in COPD.

  6. The differential effects of chronic imipramine or citalopram administration on physiological and behavioral outcomes in naïve mice.

    Science.gov (United States)

    Strekalova, Tatyana; Anthony, Daniel C; Dolgov, Oleg; Anokhin, Konstantin; Kubatiev, Aslan; Steinbusch, Harry M W; Schroeter, Careen

    2013-05-15

    Tricyclics and selective serotonin reuptake inhibitors (SSRIs) are probably the most widely employed reference antidepressants in animal studies on depression. Using imipramine and citalopram, we sought to assess which drug would be more appropriate as pharmacological reference in paradigms of depression in C57BL6N mice by measuring their effect on liquid consumption, home cage activity, body weight and long-term memory in naïve animals treated with each compound at generally used dose of 15 mg/kg/day. Continuous logging of home cage movement, weekly monitoring of vertical activity in a novel cage, and body weight was recorded during four-week treatment period and for four weeks after discontinuation of the antidepressant; sucrose preference was evaluated at weekly intervals during drug administration. A novel object recognition memory test was performed in mice treated the antidepressants for two weeks. Compared to control, imipramine-treated mice displayed increased sucrose and water intake, as well as enhanced home-cage and novelty exploration activities, and reduced body weight. Imipramine also impaired learning in the object recognition task, but citalopram diminished object exploration sufficiently to invalidate the test. Citalopram-treated animals demonstrated no changes in a sucrose test and had elevated body mass. Thus basic physiological and behavioral outcomes in naïve mice were significantly altered by the chronic administration of imipramine and, to a lesser extent, citalopram. As altered variables are crucial for the evaluation of antidepressant-like effects in mice, our data suggest that, at commonly used doses, both drugs must be applied in mouse models of depression with caution.

  7. Intravenous fluid administration may improve post-operative course of patients with chronic subdural hematoma: a retrospective study.

    Directory of Open Access Journals (Sweden)

    Miroslaw Janowski

    Full Text Available BACKGROUND: The treatment of chronic subdural hematoma (cSDH is still charged of significant risk of hematoma recurrence. Patient-related predictors and the surgical procedures themselves have been addressed in many studies. In contrast, postoperative management has infrequently been subjected to detailed analysis. Moreover variable intravenous fluid administration (IFA was not reported in literature till now in the context of cSDH treatment. METHODOLOGY/PRINCIPAL FINDINGS: A total of 45 patients with cSDH were operated in our department via two burr hole craniostomy within one calendar year. Downward drainage was routinely left in hematoma cavity for a one day. Independent variables selected for the analysis were related to various aspects of patient management, including IFA. Two dependent variables were chosen as measure of clinical course: the rate of hematoma recurrence (RHR and neurological status at discharge from hospital expressed in points of Glasgow Outcome Scale (GOS. Univariate and multivariate regression analyses were performed. Hematoma recurrence with subsequent evacuation occurred in 7 (15% patients. Univariate regression analysis revealed that length of IFA after surgery influenced both dependent variables: RHR (p = 0.045 and GOS (p = 0.023. Multivariate regression performed by backward elimination method confirmed that IFA is a sole independent factor influencing RHR. Post hoc dichotomous division of patients revealed that those receiving at least 2000 ml/day over 3 day period revealed lower RHR than the group with less intensive IFA. (p = 0.031. CONCLUSIONS/SIGNIFICANCE: IFA has been found to be a sole factor influencing both: RHR and GOS. Based on those results we may recommend administration of at least 2000 ml per 3 days post-operatively to decrease the risk of hematoma recurrence.

  8. Ghrelin Administration Increases the Bax/Bcl-2 Gene Expression Ratio in the Heart of Chronic Hypoxic Rats

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Aliparasti

    2015-06-01

    Full Text Available Purpose: Programmed cell death or apoptosis, is a biochemical procedure that initiates due to some conditions, including hypoxia. Bax and Bcl-2 are among the agents that regulate apoptosis. The amplification of the first one triggers the initiation of apoptosis, and the second one prevents it. Ghrelin is an endogenous peptide that antiapoptosis is its new effect. The aim of this study is to examine the effect of ghrelin on the Bax/Bcl-2 ratio. Methods: Twenty four wistar rats were divided randomly in three groups; control, hypoxic + saline and hypoxic + ghrelin. Hypoxic animals lived in O2 11% for 2 weeks and received either saline or ghrelin subcutaneously daily. The bax and Bcl-2 gene expression were measured by Real-Time RT-PCR. Results: Chronic hypoxia increased the Bax gene expression significantly compared with normal animals (P = 0.008, but the Bcl-2 was not affected by hypoxia. The Bax/Bcl-2 ratio also amplified significantly (P=0.005. Ghrelin administration significantly increased the Bax/Bcl-2 ratio in the hypoxic animals compared to the hypoxic + saline and normal groups (p=0.042 and P= 0.001, respectively. Conclusion: In the present study, animals’ treatment with ghrelin leads to an increment of Bax/Bcl-2 ratio, which indicates a controversy related to cardioprotection of ghrelin.

  9. Ghrelin Administration Increases the Bax/Bcl-2 Gene Expression Ratio in the Heart of Chronic Hypoxic Rats

    Science.gov (United States)

    Aliparasti, Mohammad Reza; Alipour, Mohammad Reza; Almasi, Shohreh; Feizi, Hadi

    2015-01-01

    Purpose: Programmed cell death or apoptosis, is a biochemical procedure that initiates due to some conditions, including hypoxia. Bax and Bcl-2 are among the agents that regulate apoptosis. The amplification of the first one triggers the initiation of apoptosis, and the second one prevents it. Ghrelin is an endogenous peptide that antiapoptosis is its new effect. The aim of this study is to examine the effect of ghrelin on the Bax/Bcl-2 ratio. Methods: Twenty four wistar rats were divided randomly in three groups; control, hypoxic + saline and hypoxic + ghrelin. Hypoxic animals lived in O2 11% for 2 weeks and received either saline or ghrelin subcutaneously daily. The bax and Bcl-2 gene expression were measured by Real-Time RT-PCR. Results: Chronic hypoxia increased the Bax gene expression significantly compared with normal animals (P = 0.008), but the Bcl-2 was not affected by hypoxia. The Bax/Bcl-2 ratio also amplified significantly (P=0.005). Ghrelin administration significantly increased the Bax/Bcl-2 ratio in the hypoxic animals compared to the hypoxic + saline and normal groups (p=0.042 and P= 0.001, respectively). Conclusion: In the present study, animals’ treatment with ghrelin leads to an increment of Bax/Bcl-2 ratio, which indicates a controversy related to cardioprotection of ghrelin. PMID:26236657

  10. Subcutaneous vs intravenous administration of immunoglobulin in chronic inflammatory demyelinating polyneuropathy: an Italian cost-minimization analysis.

    Science.gov (United States)

    Lazzaro, Carlo; Lopiano, Leonardo; Cocito, Dario

    2014-07-01

    Prior researches have suggested that home-based subcutaneous immunoglobulin (SCIG) is equally effective and can be less expensive than hospital-based intravenous immunoglobulin (IVIG) in treating chronic inflammatory demyelinating polyneuropathy (CIDP) patients. This economic evaluation aims at comparing costs of SCIG vs IVIG for CIDP patients in Italy. A 1-year model-based cost-minimization analysis basically populated via neurologists' opinion was undertaken from a societal perspective. Health care resources included immunoglobulin; drugs for premedication and complications (rash, headache, and hypertension) management; time of various health care professionals; pump for SCIG self-administration; infusion disposables. Non-health care resources encompassed transport and parking; losses of working and leisure time for patients and caregivers. Unit or yearly costs for resources valuation were mainly obtained from published sources. Costs were expressed in Euro () 2013. An extensive one-way sensitivity analysis (OWSA) and a scenario SA tested the robustness of the base case findings. Overall costs per patient amount to 49,534.75 (SCIG) and 50,895.73 (IVIG); saving in favour of SCIG reaches 1360.98. For both SCIG and IVIG, the cost driver was immunoglobulin (94.06 vs 86.06 % of the overall costs, respectively). Sensitivity analyses confirmed the consistency of the baseline results. SCIG may be a cost-saving therapy for Italian CIDP patients.

  11. Prenatal ethanol exposure leads to greater ethanol-induced appetitive reinforcement.

    Science.gov (United States)

    Pautassi, Ricardo M; Nizhnikov, Michael E; Spear, Norman E; Molina, Juan C

    2012-09-01

    Prenatal ethanol significantly heightens later alcohol consumption, but the mechanisms that underlie this phenomenon are poorly understood. Little is known about the basis of 'this effect of prenatal ethanol on the sensitivity to ethanol's reinforcing effects. One possibility is that prenatal ethanol exposure makes subjects more sensitive to the appetitive effects of ethanol or less sensitive to ethanol's aversive consequences. The present study assessed ethanol-induced second-order conditioned place preference (CPP) and aversion and ethanol-induced conditioned taste aversion (CTA) in infant rats prenatally exposed to ethanol (2.0 g/kg) or vehicle (water) or left untreated. The involvement of the κ opioid receptor system in ethanol-induced CTA was also explored. When place conditioning occurred during the ascending limb of the blood-ethanol curve (Experiment 1), the pups exposed to ethanol in utero exhibited greater CPP than untreated controls, with a shift to the right of the dose-response curve. Conditioning during a later phase of intoxication (30-45 min post-administration; Experiment 2) resulted in place aversion in control pups exposed to vehicle during late gestation but not in pups that were exposed to ethanol in utero. Ethanol induced a reliable and similar CTA (Experiment 3) in the pups treated with vehicle or ethanol during gestation, and CTA was insensitive to κ antagonism. These results suggest that brief exposure to a moderate ethanol dose during late gestation promotes ethanol-mediated reinforcement and alters the expression of conditioned aversion by ethanol. This shift in the motivational reactivity to ethanol may be an underlying basis of the effect of prenatal ethanol on later ethanol acceptance.

  12. Chronic NMDA administration to rats increases brain pro-apoptotic factors while decreasing anti-Apoptotic factors and causes cell death

    Directory of Open Access Journals (Sweden)

    Rapoport Stanley I

    2009-09-01

    Full Text Available Abstract Background Chronic N-Methyl-d-aspartate (NMDA administration to rats is reported to increase arachidonic acid signaling and upregulate neuroinflammatory markers in rat brain. These changes may damage brain cells. In this study, we determined if chronic NMDA administration (25 mg/kg i.p., 21 days to rats would alter expression of pro- and anti-apoptotic factors in frontal cortex, compared with vehicle control. Results Using real time RT-PCR and Western blotting, chronic NMDA administration was shown to decrease mRNA and protein levels of anti-apoptotic markers Bcl-2 and BDNF, and of their transcription factor phospho-CREB in the cortex. Expression of pro-apoptotic Bax, Bad, and 14-3-3ζ was increased, as well as Fluoro-Jade B (FJB staining, a marker of neuronal loss. Conclusion This alteration in the balance between pro- and anti-apoptotic factors by chronic NMDA receptor activation in this animal model may contribute to neuronal loss, and further suggests that the model can be used to examine multiple processes involved in excitotoxicity.

  13. Evaluation of aqueous and ethanolic extracts of saffron, Crocus sativus L., and its constituents, safranal and crocin in allodynia and hyperalgesia induced by chronic constriction injury model of neuropathic pain in rats.

    Science.gov (United States)

    Amin, Bahareh; Hosseinzadeh, Hossein

    2012-07-01

    The current study was designed to evaluate therapeutic potential of systemically administered ethanolic and aqueous extracts of saffron as well as its bioactive ingredients, safranal and crocin, in chronic constriction injury (CCI)-induced neuropathic pain in rats. The von Frey filaments, acetone drop, and radiant heat test were performed to assess the degree of mechanical allodynia, thermal allodynia and thermal hyperalgesia respectively, at different time intervals, i.e., one day before surgery and 3, 5, 7 and 10 days post surgery. The ambulatory behavior was evaluated using the open field test. A 7-day treatment with the ethanolic and aqueous extracts (50,100 and 200 mg/kg, i.p.) and safranal (0.025, 0.05 and 0.1 mg/kg, i.p.), attenuated the behavioral symptoms of neuropathic pain in a dose dependent manner. Crocin even at the high dose (50 mg/kg) failed to produce any protective role. However, gabapentine (100 mg/kg) as a reference drug significantly alleviated all behavioral manifestations of neuropathic pain compared to control group. In conclusion, the results of this study suggest that ethanolic and aqueous extracts of saffron as well as safranal could be useful in treatment of different kinds of neuropathic pains and as an adjuvant to conventional medicines.

  14. [Ethanol metabolism and pathobiochemistry of organ damage--1992. IV. Ethanol in relation to the cardiovascular system. Hematologic, immunologic, endocrine disorders and muscle and bone damage caused by ethanol. Fetal alcohol syndrome].

    Science.gov (United States)

    Zima, T

    1993-01-01

    Peripheral vasodilatation with increased cardiac output, tachycardia and increased blood pressure are described after alcohol administration. An increased HDL-cholesterol is found in moderate drinkers (both HDL-2 and HDL-3 fractions), with diminishing risk of coronary heart diseases. Acute ethanol intake causes an increased the level of triglycerides without changes in HDL-cholesterol level. This may be put into correlation with higher incidence of cardiovascular diseases in so-called "week-end" drinkers. Alcohol abuse may result in central diabetes insipidus. An increased elimination of lactate diminishes tubular secretion of uric acid with subsequent secondary hyperuricemia. Ethanol reduced the number of lymphocytes, reduces phagocytosis by macrophages and diminishes the activity of NK-cells. Bone marrow cellulity diminishes with the subsequent reduction in erythropoiesis, trombopoiesis and leukopoiesis. Alcohol may cause sideropenic and megaloblastic anemia. There are two forms of alcohol muscle injury: the acute one, with myonecrosis and inflammatory reaction, and chronic one, with muscle weakness and atrophy. Alcohol is one of etiologic factors of osteoporosis. An acute intoxication result in transitory hypoparatthyreoidism, while chronic ethanol intake make grow the PTH level and decreases the level of D vitamin metabolises. Stimulation of cortisol secretion, decrease of testosterone level and a reversible decrease of T3 and T4 levels have been described following ethanol administration. Hypothalamic-pituitary-adrenal axis suffers alteration in alcoholics, and secondary amenorrhea is observed in female alcoholics. Ethanol behaves as an agonist on GABA receptor. Fetal alcohol syndrome together with Down's syndrome and spina bifida are the most frequent reasons of mental retardation in developed countries. Toxicity of ethanol affects the whole pregnancy period.(ABSTRACT TRUNCATED AT 250 WORDS)

  15. Impact of chronic nicotine administration on bone mineral content in young and adult rats: a comparative study.

    Science.gov (United States)

    Farag, Mahmoud M; Selima, Eman A; Salama, Mona A

    2013-11-15

    The aim of this study was to evaluate the effects of chronic nicotine administration on bone mineral homeostasis in rapidly growing young rats in comparison to effects in adult male rats. Two doses of nicotine (3 and 4.5mg/kg/day, as nicotine hydrogen tartrate) were used and rat treatment was continued for 6 months. In this study, all nicotine-treated rats weighed less than control rats and the effect was dose-dependent. Also, rats treated with nicotine had lower femoral wet weight and showed a significant reduction in femoral mid-shaft cortical width and femoral and lumbar vertebral ash weights. These effects were associated with a significant reduction of ash calcium and phosphorus contents of the femora and lumbar vertebrae. The bone mineral-lowering effects of nicotine were more severe in the lumbar vertebral spongy bone than in the femoral compact bone and these changes were more marked in adult rats than in young rats. An additional interesting observation was that the femora of young rats treated with nicotine were significantly shorter than those of control young rats. Also, the values of the femoral ash weight per unit length were significantly decreased in nicotine-treated adult rats but not in nicotine-treated young rats. Thus, these results show that nicotine-induced changes in bone vary with age. The clinical relevance of this study is that it may provide justification to insist that all people in general and the risky young group in particular should be warned against the hazards of the negative effects of nicotine on bone.

  16. EFFECTS OF CHRONIC ADMINISTRATION OF EFAVIRENZ ON THE BRAIN AND INFERIOR COLLICULUS WEIGHTS OF ADULT WISTAR RATS

    Directory of Open Access Journals (Sweden)

    J. O. Adjene

    2009-01-01

    Full Text Available The effects of chronic administration of Efavirenz commonly used as part of highly active antiretroviral therapy (HAART for the treatment of Human Immunodeficiency Virus (HIV type-1 on the weight of the brain and inferior colliculus of adult wistar rats was carefully studied. The rats of both sexes (n=16, with an average weight of 200g were randomly assigned into treatment (n=8 and control (n=8 groups. The rats in the treatment group received 600 mg/70 kg body weight of Efavirenz dissolved in distilled water daily for 30 days (thirty days through the orogastric tube. The control group received equal volume of distilled water daily for 30 days through the same route. The rats were fed with grower's mash obtained from Edo Feeds and Flour Mill Limited, Ewu, Edo state, Nigeria and given water liberally. The rats were sacrificed by cervical dislocation method on the thirty-first day of the experiment and the brains were carefully dissected out, dried, weighed and recorded using the Mettler Toledo weighing balance. The findings indicate that there was a significant decrease (P < 0.05 in the dry brain weight and an increase in the relative dry brain weight of the treatment group as compared with the control group in this experiment. There was also a significant increase (P < 0.05 in the weight of the dry inferior colliculus per total dry brain weight in the treatment group when compared with the control group. However, the relative dry inferior colliculus weight was significantly higher (P < 0.05 in the treatment group also than that of the control group in this experiment

  17. Models of acute and chronic pancreatitis.

    Science.gov (United States)

    Lerch, Markus M; Gorelick, Fred S

    2013-06-01

    Animal models of acute and chronic pancreatitis have been created to examine mechanisms of pathogenesis, test therapeutic interventions, and study the influence of inflammation on the development of pancreatic cancer. In vitro models can be used to study early stage, short-term processes that involve acinar cell responses. Rodent models reproducibly develop mild or severe disease. One of the most commonly used pancreatitis models is created by administration of supraphysiologic concentrations of caerulein, an ortholog of cholecystokinin. Induction of chronic pancreatitis with factors thought to have a role in human disease, such as combinations of lipopolysaccharide and chronic ethanol feeding, might be relevant to human disease. Models of autoimmune chronic pancreatitis have also been developed. Most models, particularly of chronic pancreatitis, require further characterization to determine which features of human disease they include.

  18. Antihypertensive effect of nuatigenin-3-O-β-chacotriose from Solanum sisymbriifolium Lam. (Solanaceae) (ñuatî pytâ) in experimentally hypertensive (ARH+DOCA) rats under chronic administration.

    Science.gov (United States)

    Ibarrola, D A; Hellión-Ibarrola, M C; Montalbetti, Y; Heinichen, O; Campuzano, M A; Kennedy, M L; Alvarenga, N; Ferro, E A; Dölz-Vargas, J H; Momose, Y

    2011-06-15

    The aim of the study is to assess the hypotensive properties of the hydro-ethanolic crude root extract (CRE), the n-butanol fraction (F(BtOH)) and nuatigenin-3-O-β-chacotriose, from Solanum sisymbriifolium Lam., in adrenal regeneration hypertension+deoxycorticosterone acetate (ARH+DOCA) rats, following a chronic administration. The roots of S. sisymbriifolium Lam. (Solanaceae) were extracted by reflux with ethanol-water 7:3 and the active extract was fractionated by bioassay-guided liquid-liquid separation. Nuatigenin-3-O-β-chacotriose (B(3-1)) was identified as the main hypotensive compound from the crude drug by spectroscopic methods. Immature Wistar rats of both sexes were submitted to both surgery and deoxycorticosterone acetate treatment to obtain adrenal regeneration hypertensive rats (ARH+DOCA). Different groups of experimentally induced hypertensive rats were randomly allotted and received during 16 weeks a daily oral administration of 1% saline solution (0.1 mL/100g body weigh), 100.0 mg/kg of CRE, 10.0, 30.0 and 50.0 mg/kg of F(BtOH), and 1.0 mg/kg of B(3-1), respectively. In addition, two groups of ARH+DOCA rats were randomly assigned to receive either B(3-1) (1.0 mg/kg/day) or 1% of saline solution (0.1 mL/100g body weight/day) for 7 weeks and then a cross over procedure was performed in order to complete the 16th-week treatment. After 16 weeks of oral administration of crude root extract (CRE), butanolic fraction (F(BtOH)) and nuatigenin-3-O-β-chacotriose (B(3-1)) a significant reduction of blood pressure value was induced in hypertensive animals (ARH+DOCA) in comparison to the control group receiving 1% saline solution, at the end of experiment. Administration of B(3-1) (1.0 mg/kg/day p.o.) to ARH+DOCA rats provoked a significant reduction of blood pressure, observed gradually from 5th week (p<0.05) to the end of the 16th week period of treatment (p<0.01). Moreover, in a cross over design it was observed that the reduction of blood pressure to

  19. Effects of acute and chronic aripiprazole treatment on choice between cocaine self-administration and food under a concurrent schedule of reinforcement in rats

    DEFF Research Database (Denmark)

    Thomsen, Morgane; Fink-Jensen, Anders; Woldbye, David

    2008-01-01

    the hypothesis that aripiprazole, both as acute and as chronic treatment, would preferentially decrease cocaine self-administration while sparing behavior maintained by a natural reinforcer, resulting in a shift in the allocation of behavior from cocaine-taking towards the alternative reinforcer. MATERIALS...... AND METHODS: Rats were trained to self-administer intravenous cocaine in a concurrent choice procedure, with a palatable food as the competing reinforcer, under a fixed ratio (FR) 1 FR 5 chain schedule. Aripiprazole was then administered as continuous infusion by osmotic minipumps for 5 days, during which...... performance in the choice procedure was assessed daily. RESULTS: An intermediate dose of aripiprazole decreased cocaine self-administration and shifted the cocaine choice curve to the right as an acute treatment. However, as a chronic treatment, aripiprazole failed to decrease cocaine self...

  20. Ameliorative effect of Opuntia ficus indica juice on ethanol-induced oxidative stress in rat erythrocytes.

    Science.gov (United States)

    Alimi, Hichem; Hfaeidh, Najla; Bouoni, Zouhour; Sakly, Mohsen; Rhouma, Khémais Ben

    2013-05-01

    The aim of the present study was to investigate the efficacy of Opuntia ficus indica f. inermis fruit juice (OFIj) on reversing oxidative damages induced by chronic ethanol intake in rat erythrocytes. OFIj was firstly analyzed with HPLC for phenolic and flavonoids content. Secondly, 40 adult male Wistar rats were equally divided into five groups and treated for 90 days as follows: control (C), ethanol-only 3 g/kg body weight (b.w) (E), low dose of OFIj 2 ml/100 g b.w+ethanol (Ldj+E), high dose of OFIj 4 ml/100 g b.w+ethanol (Hdj+E), and only a high dose of OFIj 4 ml/100g b.w (Hdj). HPLC analysis indicated high concentrations of phenolic acids and flavonoids in OFIj. Ethanol treatment markedly decreased the activities of erythrocyte superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px), and the level of reduced glutathione (GSH). Changes in the erythrocyte's antioxidant ability were accompanied by enhanced oxidative modification of lipids (increase of malondialdeyde level) and proteins (increase in carbonyl groups). Interestingly, pre-administration of either 2 ml/100 g b.w or 4 ml/100 g b.w of OFIj to ethanol-intoxicated rats significantly reversed decreases in enzymatic as well as non enzymatic antioxidants parameters in erythrocytes. Also, the administration of OFIj significantly protected lipids and proteins against ethanol-induced oxidative modifications in rat erythrocytes. The beneficial effect of OFIj can result from the inhibition of ethanol-induced free radicals chain reactions in rat erythrocytes or from the enhancement of the endogenous antioxidants activities.

  1. Membrane Tolerance to Ethanol is Rapidly Lost after Withdrawal: A Model for Studies of Membrane Adaptation

    Science.gov (United States)

    Taraschi, Theodore F.; Ellingson, John S.; Wu, Alice; Zimmerman, Robert; Rubin, Emanuel

    1986-06-01

    The structural properties of liver microsomes and erythrocytes obtained from rats that had been chronically administered ethanol were examined by electron spin resonance (ESR) following ethanol withdrawal for 1-10 days. Membranes obtained from control animals exhibited considerable molecular disordering upon the addition of ethanol in vitro (50-100 mM). Conversely, microsomal and erythrocyte membranes from alcoholic animals were resistant to this disordering by ethanol (membrane tolerance). These membrane properties were also apparent in lipid bilayers comprised of either total lipids or phospholipids isolated from the control and alcoholic animals. While several weeks of ethanol administration were required for both erythrocytes and microsomes to develop membrane tolerance, erythrocytes from alcoholic animals were disordered by ethanol in vitro after the animals had been withdrawn from ethanol for only 1 day. The same rapid loss of tolerance was observed in microsomes after 2 days of withdrawal. The same time course for the loss of tolerance was observed in lipid bilayers prepared from the total lipid and phospholipid extracts. No significant differences in the cholesterol/phospholipid ratio were observed between the microsomal or erythrocyte membranes isolated before and after withdrawal. Thus, alterations in the microsomal and erythrocyte phospholipids, and not cholesterol content, were responsible for conveying membrane tolerance. Membrane structural properties can be rapidly adjusted in a mammalian system in response to the withdrawal of the external membrane perturbant ethanol. The withdrawal model, which begins with established membrane tolerance and leads to rapid and complete loss of tolerance, provides a model to analyze the compositional changes responsible for this tolerance to disordering by ethanol.

  2. 长期饮酒减少大鼠睾丸间质细胞PBR和 StAR蛋白表达%Decreased protein expressions of PBR and StAR of Leydig cells in rats with chronic ethanol feeding

    Institute of Scientific and Technical Information of China (English)

    汪海东; 郑冬梅; 冯丽; 侯晓磊; 高聆; 赵家军

    2008-01-01

    目的 研究慢性饮酒对雄性大鼠睾丸外周型苯二氮类受体(PBR)和类固醇生成快速调节蛋白(StAR)表达的影响.方法 以不同浓度的乙醇饲养40只Wistar大鼠 20 周,检测睾丸组织PBR和StAR蛋白的表达.结果 慢性饮酒Wistar大鼠的睾丸曲精小管生精细胞层明显减少,管腔中可见断裂的精子鞭毛,少见完整的精子;免疫沉淀显示PBR和StAR蛋白表达下降,与对照组相比较,小、中、大剂量饮酒组PBR和StAR表达分别下降13.8%、20.9%、50.4%和34.5%、37.7%、95.2%;免疫组化显示小、中、大剂量饮酒组睾丸间质组织中的PBR和StAR表达面积分别减少33.27 %、37.71 %、63.59 %和27.12 %、51.84 %、58.41 %.结论 慢性饮酒能降低睾丸间质PBR和StAR蛋白表达,且其与乙醇浓度呈正相关.%Objective To investigate the expressions of peripheral type benzodiazepine receptor (PBR) and steroidogenic acute regulatory protein (StAR) of testis in rats with chronic ethanol feeding.Methods Forty rats were treated with different ethanol dosages for twenty weeks, the morphology of testis and protein expressions of PBR and StAR were observed.Results In the ethanol-feeding rats, seminiferous tubular wall of testes became thin and the layer of germ cells was significantly reduced, moreover, the broken spermatozoon′s flagella were frequently observed and few integrated spermatozoa were produced.Compared with control group, the protein expressions of PBR and StAR protein were reduced by 13.8%, 20.9%, 50.4% and 34.5%, 37.7%, 95.2% in low-, middle- and high-dose ethanol feeding group respectively by immunoprecipitation.Similarly, both locating at interstitial cells in testes were also decreased by 33.27 %, 37.71 %, 63.59 % and 27.12 %, 51.84 %, 58.41% in the same ethanol feeding groups respectively by immunohistochemistry.Conclusion Both PBR and StAR protein expressions are decreased in interstitial cells of testes in chronic ethanol-feeding rats, which shows

  3. Baclofen blocks yohimbine-induced increases in ethanol-reinforced responding in rats.

    Science.gov (United States)

    Williams, Keith L; Nickel, Melissa M; Bielak, Justin T

    2016-05-01

    Chronic or repeated stress increases alcohol consumption. The GABA-B agonist baclofen decreases alcohol consumption and may be most effective for individuals with comorbid anxiety/stress disorders. The present study sought to determine if baclofen blocks stress-induced increases in ethanol self-administration as modeled by repeated yohimbine injections in rats. Rats were trained to respond for 15% w/v ethanol in operant chambers using a method that applies neither water deprivation nor saccharin/sucrose fading. Following training, the rats received 6 injections of 1.25mg/kg yohimbine were given immediately prior to the operant sessions during a 2-week time period. Subsequently, some rats were pair-matched to receive either 1.25mg/kg yohimbine or saline in the presence of 0.3, 1, and 3mg/kg baclofen prior to sessions. Acquisition of ethanol self-administration was poor. Pretreatment with yohimbine consistently increased responding across repeated injections. Yohimbine's effect on ethanol intake unexpectedly diverged from the effect on responding as the rats failed to consume all reinforcers earned. Smaller doses of baclofen paired with saline injections had no effect on ethanol responding; only 3mg/kg baclofen reduced ethanol self-administration. The smallest baclofen dose of 0.3mg/kg failed to block the yohimbine-induced increase in self-administration. The large baclofen dose of 3mg/kg continued to suppress ethanol self-administration when given with yohimbine. Baclofen 1mg/kg blocked the effect of yohimbine even though it had no effect when given in the absence of yohimbine. Exposure to high ethanol concentrations may induce self-administration only in certain conditions. The dissociation between responding and intake suggests that repeated yohimbine injections may initiate other behavioral or physiological mechanisms that confound its effects as a pharmacological stressor. Furthermore, an optimal baclofen dose range may specifically protect against stress

  4. Cellulosic ethanol

    DEFF Research Database (Denmark)

    Lindedam, Jane; Bruun, Sander; Jørgensen, Henning;

    2010-01-01

    Background Variations in sugar yield due to genotypic qualities of feedstock are largely undescribed for pilot-scale ethanol processing. Our objectives were to compare glucose and xylose yield (conversion and total sugar yield) from straw of five winter wheat cultivars at three enzyme loadings (2...

  5. Effect of Beta-Asarone on Impairment of Spatial Working Memory and Apoptosis in the Hippocampus of Rats Exposed to Chronic Corticosterone Administration

    Science.gov (United States)

    Lee, Bombi; Sur, Bongjun; Cho, Seong-Guk; Yeom, Mijung; Shim, Insop; Lee, Hyejung; Hahm, Dae-Hyun

    2015-01-01

    β-asarone (BAS) is an active component of Acori graminei rhizoma, a traditional medicine used clinically in treating dementia and chronic stress in Korea. However, the cognitive effects of BAS and its mechanism of action have remained elusive. The purpose of this study was to examine whether BAS improved spatial cognitive impairment induced in rats following chronic corticosterone (CORT) administration. CORT administration (40 mg/kg, i.p., 21 days) resulted in cognitive impairment in the avoidance conditioning test (AAT) and the Morris water maze (MWM) test that was reversed by BAS (200 mg/kg, i.p). Additionally, as assessed by immunohistochemistry and RT-PCR analysis, the administration of BAS significantly alleviated memory-associated decreases in the expression levels of brain-derived neurotrophic factor (BDNF) and cAMP-response element-binding protein (CREB) proteins and mRNAs in the hippocampus. Also, BAS administration significantly restored the expression of Bax and Bcl-2 mRNAs in the hippocampus. Thus, BAS may be an effective therapeutic for learning and memory disturbances, and its neuroprotective effect was mediated, in part, by normalizing the CORT response, resulting in regulation of BDNF and CREB functions and anti-apoptosis in rats. PMID:26535083

  6. Chronic administration of l-sulpiride at non-neuroleptic doses reduces the duration of immobility in experimental models of "depression-like" behavior.

    Science.gov (United States)

    Vergoni, A V; Forgione, A; Bertolini, A

    1995-09-01

    It has been shown that long-term administration of l-sulpiride induces a down-regulation of beta receptor-associated adenylate cyclase activity in the frontal cortex of rats, and adaptive response that is typically associated with the chronic administration of antidepressants. Here we show that in two animal models of "depression-like" behavior (forced swim in rats and tail suspension in mice), the long-term (21 days) administration of l-sulpiride at a non-neuroleptic dose (2 mg/kg IP twice a day) significantly decreases the duration of immobility, the effect being similar to that of desipramine (20 mg/kg IP). The same dose (2 mg/kg) of l-sulpiride, acutely administered, has no effect at all. On the other hand, either chronic (21 days) or acute administration of neuroleptic doses of l-sulpiride have an opposite effect, and indeed increase the duration of immobility. These results are an in vivo support to the in vitro findings suggesting that low doses of l-sulpiride may have antidepressant-like activity.

  7. ETHANOL-INDUCED LOCOMOTOR ACTIVITY IN ADOLESCENT RATS AND THE RELATIONSHIP WITH ETHANOL-INDUCED CONDITIONED PLACE PREFERENCE AND CONDITIONED TASTE AVERSION

    OpenAIRE

    Acevedo, María Belén; Nizhnikov, Michael E.; Spear, Norman E.; Molina, Juan C.; Pautassi, Ricardo Marcos

    2012-01-01

    Adolescent rats exhibit ethanol-induced locomotor activity (LMA), which is considered an index of ethanol’s motivational properties likely to predict ethanol self-administration, but few studies have reported or correlated ethanol-induced LMA with conditioned place preference by ethanol at this age. The present study assessed age-related differences in ethanol’s motor stimulating effects and analysed the association between ethanol-induced LMA and conventional measures of ethanol-induced rein...

  8. Effects of Ketamine on Levels of Inflammatory Cytokines IL-6, IL-1β, and TNF-α in the Hippocampus of Mice Following Acute or Chronic Administration.

    Science.gov (United States)

    Li, Yanning; Shen, Ruipeng; Wen, Gehua; Ding, Runtao; Du, Ao; Zhou, Jichuan; Dong, Zhibin; Ren, Xinghua; Yao, Hui; Zhao, Rui; Zhang, Guohua; Lu, Yan; Wu, Xu

    2017-01-01

    Ketamine is an injectable anesthetic and recreational drug of abuse commonly used worldwide. Many experimental studies have shown that ketamine can impair cognitive function and induce psychotic states. Neuroinflammation has been suggested to play an important role in neurodegeneration. Meanwhile, ketamine has been shown to modulate the levels of inflammatory cytokines. We hypothesized that the effects of ketamine on the central nervous system are associated with inflammatory cytokines. Therefore, we set out to establish acute and chronic ketamine administration models in C57BL/6 mice, to evaluate spatial recognition memory and emotional response, to analyze the changes in the levels of the inflammatory cytokines interleukin-6 (IL-6), interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α) in the mouse hippocampus, employing behavioral tests, Western blot, quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) and immunohistochemistry. Our results showed that ketamine at the dose of 60 mg/kg induced spatial recognition memory deficit and reduced anxiety-like behaviors in mice after chronic administration. Moreover, we found that ketamine increased the hippocampal levels of IL-6 and IL-1β after single, multiple and long-term administration in a dose-dependent manner. However, the expression level of TNF-α differed in the mouse hippocampus under different conditions. Single administration of ketamine increased the level of TNF-α, whereas multiple and long-term administration decreased it significantly. We considered that TNF-α expression could be controlled by a bi-directional regulatory pathway, which was associated with the dose and duration of ketamine administration. Our results suggest that the alterations in the levels of inflammatory cytokines IL-6, IL-1β, and TNF-α may be involved in the neurotoxicity of ketamine.

  9. Long-Term Effects of Chronic Oral Ritalin Administration on Cognitive and Neural Development in Adolescent Wistar Kyoto Rats

    Directory of Open Access Journals (Sweden)

    Jennifer L. Cornish

    2012-09-01

    Full Text Available The diagnosis of Attention Deficit Hyperactivity Disorder (ADHD often results in chronic treatment with psychostimulants such as methylphenidate (MPH, Ritalin®. With increases in misdiagnosis of ADHD, children may be inappropriately exposed to chronic psychostimulant treatment during development. The aim of this study was to assess the effect of chronic Ritalin treatment on cognitive and neural development in misdiagnosed “normal” (Wistar Kyoto, WKY rats and in Spontaneously Hypertensive Rats (SHR, a model of ADHD. Adolescent male animals were treated for four weeks with oral Ritalin® (2 × 2 mg/kg/day or distilled water (dH2O. The effect of chronic treatment on delayed reinforcement tasks (DRT and tyrosine hydroxylase immunoreactivity (TH-ir in the prefrontal cortex was assessed. Two weeks following chronic treatment, WKY rats previously exposed to MPH chose the delayed reinforcer significantly less than the dH2O treated controls in both the DRT and extinction task. MPH treatment did not significantly alter cognitive performance in the SHR. TH-ir in the infralimbic cortex was significantly altered by age and behavioural experience in WKY and SHR, however this effect was not evident in WKY rats treated with MPH. These results suggest that chronic treatment with MPH throughout adolescence in “normal” WKY rats increased impulsive choice and altered catecholamine development when compared to vehicle controls.

  10. Behavioral and monoamine perturbations in adult male mice with chronic inflammation induced by repeated peripheral lipopolysaccharide administration.

    Science.gov (United States)

    Krishna, Saritha; Dodd, Celia A; Filipov, Nikolay M

    2016-04-01

    Considering the limited information on the ability of chronic peripheral inflammation to induce behavioral alterations, including on their persistence after inflammatory stimuli termination and on associated neurochemical perturbations, this study assessed the effects of chronic (0.25 mg/kg; i.p.; twice weekly) lipopolysaccharide (LPS) treatment on selected behavioral, neurochemical and molecular measures at different time points in adult male C57BL/6 mice. Behaviorally, LPS-treated mice were hypoactive after 6 weeks, whereas significant hyperactivity was observed after 12 weeks of LPS and 11 weeks after 13 week LPS treatment termination. Similar biphasic responses, i.e., early decrease followed by a delayed increase were observed in the open field test center time, suggestive of, respectively, increased and decreased anxiety. In a forced swim test, mice exhibited increased immobility (depressive behavior) at all times they were tested. Chronic LPS also produced persistent increase in splenic serotonin (5-HT) and time-dependent, brain region-specific alterations in striatal and prefrontocortical dopamine and 5-HT homeostasis. Microglia, but not astrocytes, were activated by LPS early and late, but their activation did not persist after LPS treatment termination. Above findings demonstrate that chronic peripheral inflammation initially causes hypoactivity and increased anxiety, followed by persistent hyperactivity and decreased anxiety. Notably, chronic LPS-induced depressive behavior appears early, persists long after LPS termination, and is associated with increased splenic 5-HT. Collectively, our data highlight the need for a greater focus on the peripheral/central monoamine alterations and lasting behavioral deficits induced by chronic peripheral inflammation as there are many pathological conditions where inflammation of a chronic nature is a hallmark feature.

  11. Chronic administration of recombinant IL-6 upregulates lipogenic enzyme expression and aggravates high-fat-diet-induced steatosis in IL-6-deficient mice

    Directory of Open Access Journals (Sweden)

    Margarita Vida

    2015-07-01

    Full Text Available Interleukin-6 (IL-6 has emerged as an important mediator of fatty acid metabolism with paradoxical effects in the liver. Administration of IL-6 has been reported to confer protection against steatosis, but plasma and tissue IL-6 concentrations are elevated in chronic liver diseases, including fatty liver diseases associated with obesity and alcoholic ingestion. In this study, we further investigated the role of IL-6 on steatosis induced through a high-fat diet (HFD in wild-type (WT and IL-6-deficient (IL-6−/− mice. Additionally, HFD-fed IL-6−/− mice were also chronically treated with recombinant IL-6 (rIL-6. Obesity in WT mice fed a HFD associated with elevated serum IL-6 levels, fatty liver, upregulation of carnitine palmitoyltransferase 1 (CPT1 and signal transducer and activator of transcription-3 (STAT3, increased AMP kinase phosphorylation (p-AMPK, and downregulation of the hepatic lipogenic enzymes fatty acid synthase (FAS and stearoyl-CoA desaturase 1 (SCD1. The HFD-fed IL-6−/− mice showed severe steatosis, no changes in CPT1 levels or AMPK activity, no increase in STAT3 amounts, inactivated STAT3, and marked downregulation of the expression of acetyl-CoA carboxylase (ACCα/β, FAS and SCD1. The IL-6 chronic replacement in HFD-fed IL-6−/− mice restored hepatic STAT3 and AMPK activation but also increased the expression of the lipogenic enzymes ACCα/β, FAS and SCD1. Furthermore, rIL-6 administration was associated with aggravated steatosis and elevated fat content in the liver. We conclude that, in the context of HFD-induced obesity, the administration of rIL-6 might contribute to the aggravation of fatty liver disease through increasing lipogenesis.

  12. Intraperitoneal Injection of Ethanol Results in Drastic Changes in Bone Metabolism Not Observed When Ethanol is Administered by Oral Gavage

    Science.gov (United States)

    Iwaniec, Urszula T.; Turner, Russell T.

    2013-01-01

    Background Chronic alcohol abuse is associated with increased risk for osteoporosis while light to moderate alcohol intake correlates with reduced osteoporosis risk. Addition of alcohol to a liquid diet is often used to model chronic alcohol abuse. Methods to model intermittent drinking (including bindge drinking and light to moderate consumption) include 1) intragastric administration of alcohol by oral gavage or 2) intraperitoneal (ip) administration of alcohol by injection. However, it is unclear whether the latter two methods produce comparable results. The purpose of this investigation was to determine the skeletal response to alcohol delivered daily by oral gavage or ip injection. Materials and Methods Ethanol or vehicle was administered to 4-month-old female Sprague Dawley rats once daily at 1.2 g/kg body weight for 7 days. Following necropsy, bone formation and bone architecture were evaluated in tibial diaphysis (cortical bone) and proximal tibial metaphysis (cancellous bone) by histomorphometry. mRNA was measured for bone matrix proteins in distal femur metaphysis. Results Administration of alcohol by gavage had no significant effect on body weight gain or bone measurements. In contrast, administration of the same dose of alcohol by ip injection resulted in reduced body weight, total suppression of periosteal bone formation in tibial diaphysis, decreased cancellous bone formation in proximal tibial metaphysis, and decreased mRNA levels for bone matrix proteins in distal femur. Conclusions Our findings raise concerns regarding the use of ip injection of ethanol in rodents as a method for modeling the skeletal effects of intermittent exposure to alcohol in humans. This concern is based on a failure of the ip route to replicate the oral route of alcohol administration. PMID:23550821

  13. Metabolic effects of chronic T3 administration in the hypothalamic paraventricular and ventromedial nucleus in male rats

    NARCIS (Netherlands)

    Zhang, Z; Foppen, E; Su, Y; Bisschop, P H; Kalsbeek, A; Fliers, E; Boelen, A

    2016-01-01

    Thyroid hormone is a key regulator of energy metabolism. Apart from its direct effects on peripheral metabolism, thyroid hormone exerts acute metabolic effects via distinct nuclei within the hypothalamus. Recently, we developed a method for chronic and local intra-hypothalamic triiodothyronine (T3)

  14. Extreme Response Style in Recurrent and Chronically Depressed Patients: Change with Antidepressant Administration and Stability during Continuation Treatment

    Science.gov (United States)

    Peterson, Timothy J.; Feldman, Greg; Harley, Rebecca; Fresco, David M.; Graves, Lesley; Holmes, Avram; Bogdan, Ryan; Papakostas, George I.; Bohn, Laurie; Lury, R. Alana; Fava, Maurizio; Segal, Zindel V.

    2007-01-01

    The authors examined extreme response style in recurrently and chronically depressed patients, assessing its role in therapeutic outcome. During the acute phase, outpatients with major depressive disorder (N = 384) were treated with fluoxetine for 8 weeks. Remitted patients (n = 132) entered a continuation phase during which their fluoxetine dose…

  15. Antidepressant Effect of Aminophylline After Ethanol Exposure

    Science.gov (United States)

    Escudeiro, Sarah Souza; Soares, Paula Matias; Almeida, Anália Barbosa; de Freitas Guimarães Lobato, Rodrigo; de Araujo, Dayane Pessoa; Macedo, Danielle Silveira; Sousa, Francisca Cléa Florenço; Patrocínio, Manoel Cláudio Azevedo; Vasconcelos, Silvânia Maria Mendes

    2013-01-01

    This work investigated the association of acute ethanol and aminophylline administration on behavioral models of depression and prefrontal monoamine levels (i.e. norepinephrine and dopamine) in mice. The animals received a single dose of ethanol (2 g/kg) or aminophylline (5 or 10 mg/kg) alone or in association. Thirty minutes after the last drug administration, the animals were assessed in behavioral models by the forced swimming and tail suspension tests. After these tests, the animals were sacrificed and the prefrontal cortices dissected to measure monoamine content. Results showed that ethanol presented depression-like activity in the forced swimming and tail suspension tests. These effects were reversed by the association with aminophylline in all tests. Norepinephrine and dopamine levels decreased, while an increase in the dopamine metabolite, (4-hydroxy-3-methoxyphenyl)acetic acid (DOPAC), after ethanol administration was observed. On the contrary, the association of ethanol and aminophylline increased the norepinephrine and dopamine content, while it decreased DOPAC when compared to the ethanol group, confirming the alterations observed in the behavioral tests. These data reinforce the involvement of the adenosinergic system on ethanol effects, highlighting the importance of the norepinephrine and dopamine pathways in the prefrontal cortex to the effects of ethanol. PMID:23641339

  16. Cytologic alterations in the oral mucosa after chronic exposure to ethanol Alterações citológicas na mucosa bucal após exposição crônica ao etanol

    Directory of Open Access Journals (Sweden)

    Sílvia Regina de Almeida Reis

    2006-04-01

    Full Text Available The effects of ethanol alone on the oral mucosa are still poorly understood, especially because there are few non-smoking chronic consumers of alcoholic beverages. The aim of this study was to evaluate the frequency of micronucleus, abnormal nucleus/cytoplasm ratio, pyknosis, karyorrhexis and karyolysis in exfoliated cells from the buccal mucosa and from the lateral border of the tongue in 36 non-smoker alcoholics (ethanol group and 18 non-smokers and non-drinkers (control group. The Papanicolaou method was used. Since alcoholics generally have hepatobiliary involvement, the association between serum gamma-glutamyl transpeptidase (GGT and some of the analyzed oral mucosa alterations was also investigated. The ethanol group showed a significant increase in the frequency of all alterations analyzed in the tongue cells when compared with the control group (p 0.05; Mann-Whitney. In the ethanol group, the correlation between serum GGT and the frequency of micronucleus and abnormal nucleus/cytoplasm ratio in oral mucosa cells was not significant (p > 0.05; Spearman. In conclusion, chronic exposure to ethanol may be associated with carcinogenic cytologic changes in the oral mucosa, even in the absence of tobacco smoking. These alterations were not correlated with hepatobiliary injury.Os efeitos do etanol isoladamente sobre a mucosa bucal permanecem pouco esclarecidos, sobretudo devido ao baixo número de não-fumantes consumidores crônicos de bebidas alcoólicas. O objetivo deste estudo foi avaliar as freqüências de micronúcleo, relação núcleo/citoplasma anormal, picnose, cariorrexe e cariólise em células esfoliadas da mucosa jugal e do bordo lateral da língua de 36 alcoólatras não-fumantes (grupo etanol e 18 abstêmios de álcool e fumo (grupo controle. O método de Papanicolaou foi utilizado. Uma vez que indivíduos alcoólatras geralmente apresentam comprometimento hepatobiliar, a associação entre gama-glutamil transpeptidase (GGT s

  17. Mobilisation of endothelial progenitor cells: one of the possible mechanisms involved in the chronic administration of melatonin preventing erectile dysfunction in diabetic rats

    Institute of Scientific and Technical Information of China (English)

    Xue-Feng Qiu; Xiao-Xin Li; Yun Chen; Hao-Cheng Lin; Wen Yu; Run Wang; Yu-Tian Dai

    2012-01-01

    Diabetes-induced oxidative stress plays a critical role in the mobilisation of endothelial progenitor cells (EPCs) from the bone marrow to the circulation.This study was designed to explore the effects of chronic melatonin administration on the promotion of the mobilisation of EPCs and on the preservation of erectile function in type Ⅰ diabetic rats.Melatonin was administered to streptozotocin-induced type Ⅰdiabetic rats.EPCs levels were determined using flow cytometry,Oxidative stress in the bone marrow was indicated by the levels of superoxide dismutase and malondialdehyde.Erectile function was evaluated by measuring the intracavemous pressure during an electrostimulation of the cavernous nerve.The density of the endothelium and the proportions of smooth muscle and collagen in the corpus cavernosum were determined by immunohistochemistry.The administration of melatonin increased the superoxide dismutase level and decreased the malondiaidehyde level in the bone marrow,This effect was accompanied by an increased level of circulating EPCs in the diabetic rats.The intracavernous pressure to mean arterial pressure ratio of the rats in the treatment group was significantly greater,compared with diabetic control rats.The histological analysis demonstrated an increase in the endothelial density of the corpus cavernosum after the administration of melatonin.However,melatonin treatment did not change the proportions of smooth muscle and collagen in the corpus cavernosum of diabetic rats.Chronic administration of melatonin has a beneficial effect on preventing erectile dysfunction (ED) in type Ⅰ diabetic rats.Promoting the mobilisation of EPCs is one of the possible mechanisms involved in the improvement of ED.

  18. Antiulcer Activity after Oral Administration of the Wormwood Ethanol Extract on Lesions due to Leishmania major Parasites in BALB/C Mice

    Directory of Open Access Journals (Sweden)

    Kourosh Azizi, Fatemeh Shahidi-Hakak Mohammad Djaefar Moemenbellah-Fard,\tQasem Asgari,\tSoliman Mohammadi-Samani

    2016-04-01

    Full Text Available Herbal extracts were used to investigate the in vivo efficacy of Artemisia absinthium on the treatment of cutaneous leishmaniasis in susceptible mice. A total of 40 BALB/c mice were subjected to assays. In each, 3-5×103 amastigotes of standard Leishmania major strain were inoculated subcutaneously into the tail base of mice. Groups of mice were assigned as: I-negative control, II-positive control, III-Glucantime®, IV-ointment twice a day, V-ointment with oral medicine, VI-oral medicine on parasite injection, VII-oral medicine once ulcer develops, and VIII-ointment-based crème on ulcer. The gold standard of clinical infection control was based on ulcer size measurement using a Vernier scale weekly during 4 weeks Post-Ulcer Development (PUD. The mean ulcer sizes in different groups were compared using the post hoc Dunnett's 3 statistical analyses. There was a significant difference between the two groups of ointment with medicine (V and medicine on parasite inoculation (VI (P ≤ 0.027. Antiulcer activity and healing was noted after oral treatment with aqueous extract on parasite injection. There was a significant difference between data from positive control group and local ointment with oral medicine (P ≤ 0.045 indicating that ointment use facilitated ulcer growth. There was also a significant difference between data from Glucantime® use and ointment with medicine group (P ≤ 0.039 which showed the deteriorating effect of oil-based ointment use. The oral administration of extract had an effect similar to Glucantime® use and led to the repair of ulcer. A. absinthium extract as oral feeder appeared to cause modulation of host responses, ulcer size reduction and tissue repair.

  19. Effects of Alcohol and Saccharin Deprivations on Concurrent Ethanol and Saccharin Operant Self-Administration by Alcohol-Preferring (P) Rats

    Science.gov (United States)

    Toalston, Jamie E.; Oster, Scott M.; Kuc, Kelly A.; Pommer, Tylene J.; Murphy, James M.; Lumeng, Lawrence; Bell, Richard L.; McBride, William J.; Rodd, Zachary A.

    2008-01-01

    Consumption of sweet solutions has been associated with a reduction in withdrawal symptoms and alcohol craving in humans. The objective of the present study was to determine the effects of EtOH and saccharin (SACC) deprivations on operant oral self-administration. P rats were allowed to lever press concurrently self-administer EtOH (15% v/v) and SACC (0.0125% g/v) for 8 weeks. Rats were then maintained on daily operant access (non-deprived), deprived of both fluids (2 weeks), deprived of SACC and given 2 ml of EtOH daily, or deprived of EtOH and given 2 ml of SACC daily. All groups were then given two weeks of daily operant access to EtOH and SACC, followed by an identical second deprivation period. P rats responded more for EtOH than SACC. All deprived groups increased responding on the EtOH lever, but not on the SACC lever. Daily consumption of 2 ml EtOH decreased the duration of the ADE. Home cage access to 2 ml SACC also decreased the ADE but to a lesser extent than access to EtOH. A second deprivation period further increased and prolonged the expression of an ADE. These results show EtOH is a more salient reinforcer than SACC. With concurrent access to EtOH and SACC, P rats do not display a saccharin deprivation effect. Depriving P rats of both EtOH and SACC had the most pronounced effect on the magnitude and duration of the ADE, suggesting that there may be some interactions between EtOH and SACC in their CNS reinforcing effects. PMID:18400451

  20. Acute and chronic administration of cannabidiol increases mitochondrial complex and creatine kinase activity in the rat brain

    Directory of Open Access Journals (Sweden)

    Samira S. Valvassori

    2013-12-01

    Full Text Available Objective: To investigate the effects of cannabidiol (CBD on mitochondrial complex and creatine kinase (CK activity in the rat brain using spectrophotometry. Method: Male adult Wistar rats were given intraperitoneal injections of vehicle or CBD (15, 30, or 60 mg/kg in an acute (single dose or chronic (once daily for 14 consecutive days regimen. The activities of mitochondrial complexes and CK were measured in the hippocampus, striatum, and prefrontal cortex. Results: Both acute and chronic injection of CBD increased the activity of the mitochondrial complexes (I, II, II-III, and IV and CK in the rat brain. Conclusions: Considering that metabolism impairment is certainly involved in the pathophysiology of mood disorders, the modulation of energy metabolism (e.g., by increased mitochondrial complex and CK activity by CBD could be an important mechanism implicated in the action of CBD.

  1. Effects of chronic methylphenidate on cocaine self-administration under a progressive-ratio schedule of reinforcement in rhesus monkeys.

    Science.gov (United States)

    Czoty, Paul W; Martelle, Susan E; Gould, Robert W; Nader, Michael A

    2013-06-01

    It has been hypothesized that drugs that serve as substrates for dopamine (DA) and norepinephrine (NE) transporters may be more suitable medications for cocaine dependence than drugs that inhibit DA and NE uptake by binding to transporters. Previous studies have shown that the DA/NE releaser d-amphetamine can decrease cocaine self-administration in preclinical and clinical studies. The present study examined the effects of methylphenidate (MPD), a DA uptake inhibitor, for its ability to decrease cocaine self-administration under conditions designed to reflect clinically relevant regimens of cocaine exposure and pharmacotherapy. Each morning, rhesus monkeys pressed a lever to receive food pellets under a fixed-ratio 50 schedule of reinforcement; cocaine was self-administered under a progressive-ratio schedule of reinforcement in the evening. After cocaine (0.003-0.56 mg/kg per injection, i.v.) dose-response curves were determined, self-administration sessions were suspended and MPD (0.003-0.0056 mg/kg per hour, i.v.; or 1.0-9.0 mg/kg p.o., b.i.d.) was administered for several weeks. A cocaine self-administration session was conducted every 7 days. When a MPD dose was reached that either persistently decreased cocaine self-administration or produced disruptive effects, the cocaine dose-effect curve was re-determined. In most cases, MPD treatment either produced behaviorally disruptive effects or increased cocaine self-administration; it took several weeks for these effects to dissipate. These data are consistent with the largely negative results of clinical trials with MPD. In contrast to the positive effects with the monoamine releaser d-amphetamine under identical conditions, these results do not support use of monoamine uptake inhibitors like MPD as a medication for cocaine dependence.

  2. Ethanol consumption as inductor of pancreatitis

    Institute of Scientific and Technical Information of China (English)

    José; A; Tapia; Ginés; M; Salido; Antonio; González

    2010-01-01

    Alcohol abuse is a major cause of pancreatitis, a condition that can manifest as both acute necroinflammation and chronic damage (acinar atrophy and f ibrosis). Pancreatic acinar cells can metabolize ethanol via the oxidative pathway, which generates acetaldehyde and involves the enzymes alcohol dehydrogenase and possibly cytochrome P4502E1. Additionally, ethanol can be metabolized via a nonoxidative pathway involving fatty acid ethyl ester synthases. Metabolism of ethanol by acinar and other pancreatic cells and the consequent generation of toxic metabolites, are postulated to play an important role in the development of alcohol-related acute and chronic pancreatic injury. This current work will review some recent advances in the knowledge about ethanol actions on the exocrine pancreas and its relationship to inflammatory disease and cancer.

  3. An evaluation of the effects of acute and chronic L-tyrosine administration on BDNF levels and BDNF mRNA expression in the rat brain.

    Science.gov (United States)

    Ferreira, Gabriela K; Scaini, Giselli; Jeremias, Isabela C; Carvalho-Silva, Milena; Gonçalves, Cinara L; Pereira, Talita C B; Oliveira, Giovanna M T; Kist, Luiza W; Bogo, Maurício R; Schuck, Patrícia F; Ferreira, Gustavo C; Streck, Emilio L

    2014-04-01

    Tyrosinemia type II, which is also known as Richner-Hanhart syndrome, is an inborn error of metabolism that is due to a block in the transamination reaction that converts tyrosine to p-hydroxyphenylpyruvate. Because the mechanisms of neurological dysfunction in hypertyrosinemic patients are poorly known and the symptoms of these patients are related to the central nervous system, the present study evaluated brain-derived neurotrophic factor (BDNF) levels and bdnf mRNA expression in young rats and during growth. In our acute protocol, Wistar rats (10 and 30 days old) were killed 1 h after a single intraperitoneal L-tyrosine injection (500 mg/kg) or saline. Chronic administration consisted of L-tyrosine (500 mg/kg) or saline injections 12 h apart for 24 days in Wistar rats (7 days old), and the rats were killed 12 h after the last injection. The brains were rapidly removed, and we evaluated the BDNF levels and bdnf mRNA expression. The present results showed that the acute administration of L-tyrosine decreased both BDNF and bdnf mRNA levels in the striatum of 10-day-old rats. In the 30-day-old rats, we observed decreased BDNF levels without modifications in bdnf transcript level in the hippocampus and striatum. Chronic administration of L-tyrosine increased the BDNF levels in the striatum of rats during their growth, whereas bdnf mRNA expression was not altered. We hypothesize that oxidative stress can interact with the BDNF system to modulate synaptic plasticity and cognitive function. The present results enhance our knowledge of the pathophysiology of hypertyrosinemia.

  4. Chronic voluntary alcohol consumption results in tolerance to sedative/hypnotic and hypothermic effects of alcohol in hybrid mice.

    Science.gov (United States)

    Ozburn, Angela Renee; Harris, R Adron; Blednov, Yuri A

    2013-03-01

    The continuous two-bottle choice test is the most common measure of alcohol consumption but there is remarkably little information about the development of tolerance or dependence with this procedure. We showed that C57BL/6J × FVB/NJ and FVB/NJ×C57BL/6JF1 hybrid mice demonstrate greater preference for and consumption of alcohol than either parental strain. In order to test the ability of this genetic model of high alcohol consumption to produce neuroadaptation, we examined development of alcohol tolerance and dependence after chronic self-administration using a continuous access two-bottle choice paradigm. Ethanol-experienced mice stably consumed about 16-18 g/kg/day of ethanol. Ethanol-induced withdrawal severity was assessed (after 59 days of drinking) by scoring handling-induced convulsions; withdrawal severity was minimal and did not differ between ethanol-experienced and -naïve mice. After 71 days of drinking, the rate of ethanol clearance was similar for ethanol-experienced and -naïve mice. After 77 days of drinking, ethanol-induced loss of righting reflex (LORR) was tested daily for 5 days. Ethanol-experienced mice had a shorter duration of LORR. For both ethanol-experienced and -naïve mice, blood ethanol concentrations taken at gain of righting reflex were greater on day 5 than on day 1, indicative of tolerance. After 98 days of drinking, ethanol-induced hypothermia was assessed daily for 3 days. Both ethanol-experienced and -naïve mice developed rapid and chronic tolerance to ethanol-induced hypothermia, with significant group differences on the first day of testing. In summary, chronic, high levels of alcohol consumption in F1 hybrid mice produced rapid and chronic tolerance to both the sedative/hypnotic and hypothermic effects of ethanol; additionally, a small degree of metabolic tolerance developed. The development of tolerance supports the validity of using this model of high alcohol consumption in genetic studies of alcoholism.

  5. Acute and Chronic Administrations of Rheum palmatum Reduced the Bioavailability of Phenytoin in Rats: A New Herb-Drug Interaction

    Directory of Open Access Journals (Sweden)

    Ying-Chang Chi

    2012-01-01

    Full Text Available The rhizome of Rheum palmatum (RP is a commonly used herb in clinical Chinese medicine. Phenytoin (PHT is an antiepileptic with narrow therapeutic window. This study investigated the acute and chronic effects of RP on the pharmacokinetics of PHT in rat. Rats were orally administered with PHT (200 mg/kg with and without RP decoction (single dose and seven doses of 2 g/kg in a crossover design. The serum concentrations of PHT, PHT glucuronide (PHT-G, 4-hydroxyphenytoin (HPPH, and HPPH glucuronide (HPPH-G were determined by HPLC method. Cell line models were used to identify the underlying mechanisms. The results showed that coadministration of single dose or multiple doses of RP significantly decreased the Cmax and AUC0-t as well as the K10 of PHT, PHT-G, HPPH, and HPPH-G. Cell line studies revealed that RP significantly induced the P-gp-mediated efflux of PHT and inhibited the MRP-2-medicated transport of PHT and HPPH. In conclusion, acute and chronic coadministrations of RP markedly decreased the oral bioavailability of PHT via activation of P-gp, although the MRP-2-mediated excretion of PHT was inhibited. It is recommended that caution should be exercised during concurrent use of RP and PHT.

  6. Acute and Chronic Administrations of Rheum palmatum Reduced the Bioavailability of Phenytoin in Rats: A New Herb-Drug Interaction

    Science.gov (United States)

    Chi, Ying-Chang; Juang, Shin-Hun; Chui, Wai Keung; Hou, Yu-Chi; Chao, Pei-Dawn Lee

    2012-01-01

    The rhizome of Rheum palmatum (RP) is a commonly used herb in clinical Chinese medicine. Phenytoin (PHT) is an antiepileptic with narrow therapeutic window. This study investigated the acute and chronic effects of RP on the pharmacokinetics of PHT in rat. Rats were orally administered with PHT (200 mg/kg) with and without RP decoction (single dose and seven doses of 2 g/kg) in a crossover design. The serum concentrations of PHT, PHT glucuronide (PHT-G), 4-hydroxyphenytoin (HPPH), and HPPH glucuronide (HPPH-G) were determined by HPLC method. Cell line models were used to identify the underlying mechanisms. The results showed that coadministration of single dose or multiple doses of RP significantly decreased the Cmax and AUC0-t as well as the K10 of PHT, PHT-G, HPPH, and HPPH-G. Cell line studies revealed that RP significantly induced the P-gp-mediated efflux of PHT and inhibited the MRP-2-medicated transport of PHT and HPPH. In conclusion, acute and chronic coadministrations of RP markedly decreased the oral bioavailability of PHT via activation of P-gp, although the MRP-2-mediated excretion of PHT was inhibited. It is recommended that caution should be exercised during concurrent use of RP and PHT. PMID:22829856

  7. Improvement in Long-Term Memory following Chronic Administration of Eryngium planum Root Extract in Scopolamine Model: Behavioral and Molecular Study

    Directory of Open Access Journals (Sweden)

    Marcin Ozarowski

    2015-01-01

    Full Text Available Eryngium planum L. (EP is as a rare medicinal plant with a lot of potentials as pharmaceutical crops. The aim of our study was to assess the effect of subchronic (28-fold administration of a 70% ethanol extract of EP roots (200 mg/kg, p.o. on behavioral and cognitive responses in Wistar rats linked with acetylcholinesterase (AChE, butyrylcholinesterase (BuChE, and beta-secretase (BACE-1 mRNA levels and AChE and BuChE activities in the hippocampus and frontal cortex. On the last day of experiment, 30 min after the last dose of EP or Huperzine A (HU, scopolamine (SC was given at a dose of 0.5 mg/kg b.w. intraperitoneally. The results of a passive avoidance test showed an improvement in long-term memory produced by the EP extract in both scopolamine-induced rats and control group. EP caused an insignificant inhibition of AChE and BuChE activities in the frontal cortex and the hippocampus. EP decreased mRNA AChE, BuChE, and BACE-1 levels, especially in the cortex. Our results suggest that the EP extract led to the improvement of the long-term memory in rats coupled with total saponin content. The mechanism of EP action is probably complicated, since HPLC-MS analysis showed 64 chemical compounds (phenolics, saponins in the extract of EP roots.

  8. Time-course of changes in the social interaction test of anxiety following acute and chronic administration of nicotine.

    Science.gov (United States)

    Irvine, E E; Cheeta, S; File, S E

    1999-11-01

    The purpose of these experiments was to explore the hypothesis that the effects of nicotine on anxiety depend on the time since administration and the duration of treatment. In the social interaction test of anxiety, acute nicotine administration (0.1 mg/kg, subcutaneously) decreased social interaction when rats were tested 5 min after injection, but increased it when they were tested 30 min after injection. Social interaction was also decreased 1 h post-injection, but levels returned to baseline between 3 and 30 h. As these changes were independent of any changes in locomotor activity, nicotine seemed to be having both anxiogenic and anxiolytic effects at different times after injection. An anxiolytic effect was also observed 30 min after the second nicotine injection, and the anxiogenic effect observed 5 min after injection remained after 4 days of nicotine administration. However, after 7 days of nicotine treatment, tolerance was observed to both these effects. When rats were tested 72 h after the last of 7 or 14 days of nicotine treatment, an anxiogenic withdrawal response was observed. Thus, an oppositional mechanism may underlie tolerance to the anxiolytic effects, whereas there is as yet no evidence for this type of mechanism mediating tolerance to the anxiogenic effects.

  9. Short-term glucocorticoid administration in patients with protracted and chronic gout arthritis. Part 2 — comparison of different medication forms efficacy

    Directory of Open Access Journals (Sweden)

    A A Fedorova

    2008-01-01

    Full Text Available Objective. To compare efficacy of different glucocorticoid (GC medication forms in protracted and chronic gout arthritis. Material and methods. 59 pts with tophaceous gout (crystal-verified diagnosis and arthritis of three and more joints lasting more than a months in spite of treatment with sufficient doses of nonsteroidal anti-inflammatory drugs were included. Median age of pts was 56 [48;63], median disease duration — 15,2 years [7,4;20], median swollen joint count at the examination — 8 [5; 11]. The patients were randomized into 2 groups. Methylprednisolone (MP 500 mg/day iv during 2 days and placebo im once was administered in one of them, betamethasone (BM 7 mg im once and placebo iv twice — in the other. Results. Number of pts with full resolution of arthritis, recurrent exacerbation, insufficient arthritis resolution or clinically insignificant response was comparable in both groups. More rapid decrease of pain at moving was achieved during the first 2-3 days after GC administration in pts with full resolution of arthritis (p=0,03 in group receiving MP in comparison with BM. At day 14 joint damage measures did not differ between groups. Conclusion. Efficacy of short-term glucocorticoid administration does not depend on mode of administration and GC medication form (methylprednisolone 500 mg/day iv during 2 days or betamethasone 7 mg im once.

  10. Consequences of amygdala kindling and repeated withdrawal from ethanol on amphetamine-induced behaviours.

    Science.gov (United States)

    Ripley, Tamzin L; Dunworth, Sarah J; Stephens, David N

    2002-09-01

    relatively mild chronic ethanol treatment modulates neuronal systems that may also be involved in PTZ-induced kindling but not those involved in either the acute stimulant effects of amphetamine or behavioural sensitization or appetitive conditioning following repeated amphetamine administration. Behavioural changes following amygdala kindling differed from those following repeated ethanol withdrawal, suggesting that withdrawal kindling from a mild ethanol treatment differs in its effects from amygdala kindling.

  11. Response of arsenic-induced oxidative stress, DNA damage, and metal imbalance to combined administration of DMSA and monoisoamyl-DMSA during chronic arsenic poisoning in rats.

    Science.gov (United States)

    Bhadauria, S; Flora, S J S

    2007-03-01

    Arsenic and its compounds cause adverse health effects in humans. Current treatment employs administration of thiol chelators, such as meso-2,3-dimercaptosuccinic acid (DMSA) and sodium 2,3-dimercaptopropane 1-sulfonate (DMPS), which facilitate its excretion from the body. However, these chelating agents are compromised by number of limitations due to their lipophobic nature, particularly in case of chronic poisoning. Combination therapy is a new approach to ensure enhanced removal of metal from the body, reduced doses of potentially toxic chelators, and no redistribution of metal from one organ to another, following chronic metal exposure. The present study attempts to investigate dose-related effects of two thiol chelators, DMSA and one of its new analogues, monoisoamyl dimercaptosuccinic acid (MiADMSA), when administered in combination with the aim of achieving normalization of altered biochemical parameters suggestive of oxidative stress and depletion of inorganic arsenic following chronic arsenic exposure. Twenty-five adult male Wistar rats were given 25 ppm arsenic for 10 weeks followed by chelation therapy with the above chelating agents at a dose of 0.3 mmol/kg (orally) when administered individually or 0.15 mmol/kg and 0.3 mmol/kg (once daily for 5 consecutive days), respectively, when administered in combination. Arsenic exposure led to the inhibition of blood delta-aminolevulinic acid dehydratase (ALAD) activity and depletion of glutathione (GSH) level. These changes were accompanied by significant depletion of hemoglobin, RBC and Hct as well as blood superoxide dismutase (SOD) acitivity. There was an increase in hepatic and renal levels of thiobarbituric acid-reactive substances, while GSH:GSSG ratio decreased significantly, accompanied by a significant increase in metallothionein (MT) in hepatocytes. DNA damage based on denaturing polyacrylamide gel electrophoresis revealed significant loss in the integrity of DNA extracted from the liver of arsenic

  12. [Biochemical effects of chronic peroral administration of carbon nanotubes and activated charcoal in drinking water in rats].

    Science.gov (United States)

    Khripach, L V; Rakhmanin, Iu A; Mikhajlova, R I; Knyazeva, T D; Koganova, Z I; Zhelezniak, E V; Savostikova, O N; Alekseeva, A V; Kameneckaya, D V; Ryzhova, I N; Kruglova, E V; Revazova, T L

    2014-01-01

    Chronic 6-month experiment was carried out in rats, which received drinking water with multi-walled carbon nanotubes (MWCNTs), diameter of 15-40 nm, length ≥ 2 mkm) or activated charcoal (AC, diameter of 10-100 mkm), blood samples of the animals were used for assessment of biochemical markers. Both coal compounds induced the appearance of signs of oxidative stress 2 weeks after the beginning of the experiment and alteration of serum markers of liver and renal damage, as well as changes of cortisol and protein serum concentrations later Thus, despite of known high (asbest-like) inhalation toxicity of carbon nanotubes in comparison with other carbon allotrops (fullerenes and black carbon), we have found similar effects of MWCNTs and carbon microparticles in orally treated rats.

  13. Expression and activity of inducible nitric oxide synthase and endothelial nitric oxide synthase correlate with ethanol-induced liver injury

    Institute of Scientific and Technical Information of China (English)

    Guang-Jin Yuan; Xiao-Rong Zhou; Zuo-Jiong Gong; Pin Zhang; Xiao-Mei Sun; Shi-Hua Zheng

    2006-01-01

    AIM: To study the expression and activity of inducible nitric oxide synthase (iNOS) and endothelial nitric oxide synthase (eNOS) in rats with ethanol-induced liver injury and their relation with liver damage, activation of nuclear factor-KB (NF-кB) and tumor necrosis factor-α (TNF-α)expression in the liver.METHODS: Female Sprague-Dawley rats were given fish oil (0.5 mL) along with ethanol or isocaloric dextrose daily via gastrogavage for 4 or 6 wk. Liver injury was assessed using serum alanine aminotransferase (ALT)activity and pathological analysis. Liver malondialdehyde (MDA), nitric oxide contents, iNOS and eNOS activity were determined. NF-KB p65, iNOS, eNOS and TNF-αprotein or mRNA expression in the liver were detected by immunohistochemistry or reverse transcriptase-polymerase chain reaction (RT-PCR).RESULTS: Chronic ethanol gavage for 4 wk caused steatosis, inflammation and necrosis in the liver, and elevated serum ALT activity. Prolonged ethanol administration (6 wk) enhanced the liver damage. These responses were accompanied with increased lipid peroxidation, NO contents, iNOS activity and reduced eNOS activity. NF-кB p65, iNOS and TNF-α protein or mRNA expression were markedly induced after chronic ethanol gavage, whereas eNOS mRNA expression remained unchanged. The enhanced iNOS activity and expression were positively correlated with the liver damage, especially the necro-inflammation, activation of NF-кB, and TNF-α mRNA expression.CONCLUSION: iNOS expression and activity are induced in the liver after chronic ethanol exposure in rats, which are correlated with the liver damage, especially the necro-inflammation, activation of NF-KB and TNF-αexpression. eNOS activity is reduced, but its mRNA expression is not affected.

  14. Histopathological effects of sub-chronic lamivudine-artesunate co-administration on the liver of diseased adult Wistar rats

    Directory of Open Access Journals (Sweden)

    Temidayo Olutoyin Olurishe

    2011-01-01

    Full Text Available Background: Lamivudine and artesunate are sometimes co administered in HIV-malaria co morbidity. Both drugs are used concurrently in presumptive malaria treatment and simultaneous HIV post exposure prophylaxis. Aim: The aim of this study was to investigate the effect of lamivudine-artesunate co administration on the histology of the liver of diseased adult Wistar rats. Materials and Methods: Five groups of rats of both sexes were used for the study and placed on feed and water ad libitum. Disease state consisted of immunosuppression with cyclophosphamide, and infection with Plasmodium berghei. Group 1 animals served as vehicle control, while group 2 were the diseased controls. Group 3 animals received 20 mg/kg lamivudine for three weeks, while group 4 similarly received 20 mg/kg Lamivudine but also received 10 mg/kg artesunate from day 12. Animals in group 5 received 10 mg/kg artesunate from day 12. All drugs were administered intraperitoneally. The animals were treated for twenty-one days, at the end of which they were sacrificed and their livers fixed in 10% formalin for histological studies. Result: Results from the study show the presence of regions of focal necrosis and perivascular cuffing with animals that received artesunate. Hemosiderosis was a common feature in all the parasitized groups, while fatty degeneration was observed in the group that received artesunate alone. Conclusion: Concurrent lamivudine-artesunate administration resulted in some histopathological changes in the liver. This study suggests there may be considerable histological changes with repeated occurrence of malaria and immunosuppression that may warrant intermittent lamivudine-artesunate administration, and may require evaluation as well as monitoring of liver function during such therapeutic interventions.

  15. Chronic administration of epidermal growth factor to pigs induces growth, especially of the urinary tract with accumulation of epithelial glycoconjugates

    DEFF Research Database (Denmark)

    Vinter-Jensen, Lars; Juhl, C O; Poulsen, Steen Seier;

    1995-01-01

    of developmental processes like incisor eruption, inhibition of gastric acid secretion, morphologic changes in the pancreas resembling pancreatitis, and malignancies in mammary glands and the liver. The present investigation was initiated to explore the effects of systemic EGF administration to the mature organism......Epidermal growth factor (EGF) receptor hyperstimulation induced by systemically administered EGF or by the development of transgenic mice overexpressing transforming growth factor alpha (TGF alpha) or other EGF-related ligands is known to induce various effects, such as acceleration...

  16. Chronic inflammatory demyelinating polyneuropathy due to the administration of pegylated interferon α-2b: a neuropathology case report.

    Science.gov (United States)

    Shiga, Kensuke; Tanaka, Eijiroh; Isayama, Reina; Mizuno, Toshiki; Itoh, Kyoko; Nakagawa, Masanori

    2012-01-01

    We report a 35-year-old man who developed weakness in his extremities five months after pegylated interferon α (IFNα)-2b was administered. The serum tumor necrosis factor-α (TNFα) was elevated and nerve conduction studies revealed demyelination both in the distal and intermediate segments. The sural nerve pathology showed mild demyelinating process. The cessation of IFNα and administration of intravenous immunoglobulin improved both his clinical symptoms and the temporal dispersion in motor nerve conduction study. IFNα-induced CIDP is presumably a transient immunological condition that requires immunomodulatory therapy. The elevated serum TNFα may implicate the degree of downstream autoimmunity induced by IFNα.

  17. Expressions of Neuregulin 1β and ErbB4 in Prefrontal Cortex and Hippocampus of a Rat Schizophrenia Model Induced by Chronic MK-801 Administration

    Directory of Open Access Journals (Sweden)

    Yu Feng

    2010-01-01

    Full Text Available Recent human genetic studies and postmortem brain examinations of schizophrenia patients strongly indicate that dysregulation of NRG1 and ErbB4 may be important pathogenic factors of schizophrenia. However, this hypothesis has not been validated and fully investigated in animal models of schizophrenia. In this study we quantitatively examined NRG1 and ErbB4 protein expressions by immunohistochemistry and Western blot in the brain of a rat schizophrenia model induced by chronic administration of MK-801 (a noncompetitive NMDA receptor antagonist. Our data showed that NRG1β and ErbB4 expressions were significantly increased in the rat prefrontal cortex and hippocampus but in different subregions. These findings suggest that altered expressions of NRG1 and ErbB4 might be attributed to the schizophrenia. Further study in the role and mechanism of NRG1 and ErbB4 may lead to better understanding of the pathophysiology for this disorder.

  18. Spectral confocal imaging of fluorescently tagged nicotinic receptors in knock-in mice with chronic nicotine administration.

    Science.gov (United States)

    Renda, Anthony; Nashmi, Raad

    2012-02-10

    Ligand-gated ion channels in the central nervous system (CNS) are implicated in numerous conditions with serious medical and social consequences. For instance, addiction to nicotine via tobacco smoking is a leading cause of premature death worldwide (World Health Organization) and is likely caused by an alteration of ion channel distribution in the brain. Chronic nicotine exposure in both rodents and humans results in increased numbers of nicotinic acetylcholine receptors (nAChRs) in brain tissue. Similarly, alterations in the glutamatergic GluN1 or GluA1 channels have been implicated in triggering sensitization to other addictive drugs such as cocaine, amphetamines and opiates. Consequently, the ability to map and quantify distribution and expression patterns of specific ion channels is critically important to understanding the mechanisms of addiction. The study of brain region-specific effects of individual drugs was advanced by the advent of techniques such as radioactive ligands. However, the low spatial resolution of radioactive ligand binding prevents the ability to quantify ligand-gated ion channels in specific subtypes of neurons. Genetically encoded fluorescent reporters, such as green fluorescent protein (GFP) and its many color variants, have revolutionized the field of biology. By genetically tagging a fluorescent reporter to an endogenous protein one can visualize proteins in vivo. One advantage of fluorescently tagging proteins with a probe is the elimination of antibody use, which have issues of nonspecificity and accessibility to the target protein. We have used this strategy to fluorescently label nAChRs, which enabled the study of receptor assembly using Förster Resonance Energy Transfer (FRET) in transfected cultured cells. More recently, we have used the knock-in approach to engineer mice with yellow fluorescent protein tagged α4 nAChR subunits (α4YFP), enabling precise quantification of the receptor ex vivo at submicrometer resolution in CNS

  19. Effect of delayed intrathecal administration of capsaicin on neuropathic pain induced by chronic constriction injury of the sciatic nerve in rats

    Directory of Open Access Journals (Sweden)

    Zhang K

    2014-09-01

    Full Text Available Kun Zhang,1 Somayaji Ramamurthy,1 Thomas J Prihoda,2 Maxim S Eckmann1 1Department of Anesthesiology, 2Department of Pathology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA Purpose: The current study was designed to examine the antinociceptive effect of intrathecally administered capsaicin, a transient receptor potential vanilloid 1 receptor agonist, in a rat model of neuropathic pain induced by unilateral sciatic nerve chronic constriction injury. Methods: Male adult Sprague Dawley rats were randomly assigned to six groups, and all rats underwent unilateral sciatic nerve chronic constriction injury. Two weeks after injury, five groups received intrathecal administration of either capsaicin in three different dosing regimens or equal volumes of vehicle. The other group received intrathecal capsaicin on the third day after nerve injury. The antinociceptive effect of capsaicin was assessed by measuring the capsaicin-induced change in thermal and mechanical response thresholds. Results: Capsaicin (150–300 µg/100–200 µL, when administered by fast infusion or chronic infusions at 8 µL/hour or 1 µL/hour, attenuated thermal hyperalgesia as indicated by significantly prolonging paw withdrawal latency to noxious thermal stimulation. The antinociceptive effect of capsaicin was more profound in the injured limb compared to that in the uninjured limb. When capsaicin was administered on the third day after nerve injury, it failed to attenuate thermal hyperalgesia. No significant effect on the mechanical response threshold was observed with intrathecally administered capsaicin. Conclusion: Our data suggest that intrathecal capsaicin could significantly attenuate thermal hyperalgesia, depending on the time when the drug is given after nerve injury, and that the antinociceptive efficacy of intrathecal capsaicin positively correlates with the previously reported dynamic profile of spinal transient receptor potential

  20. Chronic kisspeptin administration stimulated gonadal development in pre-pubertal male yellowtail kingfish (Seriola lalandi; Perciformes) during the breeding and non-breeding season.

    Science.gov (United States)

    Nocillado, Josephine N; Zohar, Yonathan; Biran, Jakob; Levavi-Sivan, Berta; Elizur, Abigail

    2013-09-15

    The kisspeptin system is now accepted as a key regulator of vertebrate reproductive function, particularly the onset of puberty. In teleosts, the stimulatory effect of exogenous kisspeptins has been demonstrated mainly at the hypothalamic and pituitary levels of the reproductive axis, with very limited information pertaining to gonadal response. We determined the effect of chronic peripheral administration of the conserved kisspeptin decapeptides (YNLNSFGLRY or Kiss1-10; and FNFNPFGLRF or Kiss2-10) on gonadal development of pre-pubertal yellowtail kingfish (Seriola lalandi), a Perciform teleost, during the breeding and non-breeding season. We utilized slow-release implants to chronically deliver the synthesized peptides, which were based on the yellowtail kingfish kiss1 and kiss2 cDNA sequences that we isolated. The expression level of kiss2r and gnrh1 in the brain or hypothalamus did not vary between treated and control groups. Pituitary expression of fshβ and lhβ was upregulated only with Kiss1-10 treatment regardless of the season. Based on histological evidence, gonadal development was stimulated in male fish with either Kiss1-10 or Kiss2-10, with Kiss2-10 being more effective during the non-breeding period. Overall, our results suggest that kisspeptins modulate the early gonadal development of male yellowtail kingfish, however that may vary with the breeding season.

  1. Chronic administration of the HNO donor Angeli's salt does not lead to tolerance, cross-tolerance, or endothelial dysfunction: comparison with GTN and DEA/NO.

    Science.gov (United States)

    Irvine, Jennifer C; Kemp-Harper, Barbara K; Widdop, Robert E

    2011-05-01

    Nitroxyl (HNO) displays distinct pharmacology to its redox congener nitric oxide (NO(•)) with therapeutic potential in the treatment of heart failure. It remains unknown if HNO donors are resistant to tolerance development following chronic in vivo administration. Wistar-Kyoto rats received a 3-day subcutaneous infusion of one of the NO(•) donors, glyceryl trinitrate (GTN) or diethylamine/NONOate (DEA/NO), or the HNO donor Angeli's salt (AS). GTN infusion (10 μg/kg/min) resulted in significantly blunted depressor responses to intravenous bolus doses of GTN, demonstrating tolerance development. By contrast, infusion with AS (20 μg/kg/min) or DEA/NO (2 μg/kg/min) did not alter their subsequent depressor responses. Similarly, ex vivo vasorelaxation responses in isolated aortae revealed that GTN infusion elicited a significant 6-fold decrease in the sensitivity to GTN and reduction in the maximum response to acetylcholine (ACh). Chronic infusion of AS or DEA/NO had no effect on subsequent vasorelaxation responses to themselves or to ACh. No functional cross-tolerance between nitrovasodilators was evident, either in vivo or ex vivo, although an impaired ability of a nitrovasodilator to increase tissue cGMP content was not necessarily indicative of a reduced functional response. In conclusion, HNO donors may represent novel therapies for cardiovascular disease with therapeutic potential over clinically used organic nitrates.

  2. Methanolic Extract of Morinda citrifolia L. (Noni) Unripe Fruit Attenuates Ethanol-Induced Conditioned Place Preferences in Mice.

    Science.gov (United States)

    Khan, Yasmin; Pandy, Vijayapandi

    2016-01-01

    Phytotherapy is an emerging field successfully utilized to treat various chronic diseases including alcohol dependence. In the present study, we examined the effect of the standardized methanolic extract of Morinda citrifolia Linn. unripe fruit (MMC), on compulsive ethanol-seeking behavior using the mouse conditioned place preference (CPP) test. CPP was established by injections of ethanol (2 g/kg, i.p.) in a 12-day conditioning schedule in mice. The effect of MMC and the reference drug, acamprosate (ACAM), on the reinforcing properties of ethanol in mice was studied by the oral administration of MMC (1, 3, and 5 g/kg) and ACAM (300 mg/kg) 60 min prior to the final CPP test postconditioning. Furthermore, CPPs weakened with repeated testing in the absence of ethanol over the next 12 days (extinction), during which the treatment groups received MMC (1, 3, and 5 g/kg, p.o.) or ACAM (300 mg/kg, p.o.). Finally, a priming injection of a low dose of ethanol (0.4 g/kg, i.p.) in the home cage (Reinstatement) was sufficient to reinstate CPPs, an effect that was challenged by the administration of MMC or ACAM. MMC (3 and 5 g/kg, p.o.) and ACAM (300 mg/kg, p.o.) significantly reversed the establishment of ethanol-induced CPPs and effectively facilitated the extinction of ethanol CPP. In light of these findings, it has been suggested that M. citrifolia unripe fruit could be utilized for novel drug development to combat alcohol dependence.

  3. Methanolic extract of Morinda citrifolia L. (noni unripe fruit attenuates ethanol-induced conditioned place preferences in mice

    Directory of Open Access Journals (Sweden)

    Yasmin Khan

    2016-09-01

    Full Text Available Phytotherapy is an emerging field successfully utilized to treat various chronic diseases including alcohol dependence. In the present study, we examined the effect of the standardized methanolic extract of Morinda citrifolia Linn. unripe fruit (MMC, on compulsive ethanol-seeking behaviour using the mouse conditioned place preference (CPP test. CPP was established by injections of ethanol (2g/kg, i.p. in a 12-day conditioning schedule in mice. The effect of MMC and the reference drug, acamprosate (ACAM, on the reinforcing properties of ethanol in mice was studied by the oral administration of MMC (1, 3 and 5g/kg and ACAM (300 mg/kg 60 min prior to the final CPP test postconditioning. Furthermore, CPPs weakened with repeated testing in the absence of ethanol over the next 12 days (extinction, during which the treatment groups received MMC (1, 3 and 5g/kg, p.o. or ACAM (300 mg/kg, p.o.. Finally, a priming injection of a low dose of ethanol (0.4g/kg, i.p. in the home cage (Reinstatement was sufficient to reinstate CPPs, an effect that was challenged by the administration of MMC or ACAM. MMC (3 and 5g/kg, p.o and ACAM (300 mg/kg, p.o. significantly reversed the establishment of ethanol-induced CPPs and effectively facilitated the extinction of ethanol CPP. In light of these findings, it has been suggested that M. citrifolia unripe fruit could be utilized for novel drug development to combat alcohol dependence.

  4. Oral administration of both tetrahydrobiopterin and L-arginine prevents endothelial dysfunction in rats with chronic renal failure.

    Science.gov (United States)

    Yamamizu, Kohei; Shinozaki, Kazuya; Ayajiki, Kazuhide; Gemba, Munekazu; Okamura, Tomio

    2007-03-01

    We examined the mechanism of endothelial dysfunction in chronic renal failure (CRF), with reference to NO synthase. CRF was induced by 5/6 nephrectomy in rats. Either L-arginine (1.25 g/L in drinking water), tetrahydrobiopterin (BH4, 10 mg/kg per day in food), or a combination of the 2 were orally administered to CRF rats for 9 weeks. CRF rats showed elevation of systolic blood pressure compared with sham-operated rats. Endothelium-dependent relaxation induced by acetylcholine or A23187 in the isolated aorta was significantly reduced, and in vitro treatment with L-arginine, BH4, or superoxide dismutase restored the relaxation. Aortic segments from CRF rats showed significantly higher superoxide production in response to A23187, which was inhibited by L-NAME. Plasma concentrations of asymmetric dimethylarginine and symmetric dimethylarginine were higher in CRF rats. These changes in CRF rats were totally or partially decreased by L-arginine or BH4 supplementation in vivo. Interestingly, the combined treatment showed additive effects in certain parameters. These results suggest that vascular disorders in CRF rats may be partly due to NOS uncoupling caused by a relative deficiency of BH4 and partially due to accumulation of endogenous inhibitors of NOS and L-arginine uptake, resulting in the decrease of NO production and the increase of reactive oxygen species.

  5. Disposition of d-penicillamine, a promising drug for preventing alcohol-relapse. Influence of dose, chronic alcohol consumption and age: studies in rats.

    Science.gov (United States)

    Orrico, Alejandro; Martí-Prats, Lucía; Cano-Cebrián, M José; Polache, Ana; Zornoza, Teodoro; Granero, Luis

    2014-07-01

    Pharmacokinetic studies concerning d-penicillamine (an acetaldehyde sequestering agent) are scarce and have not evaluated the influence of chronic ethanol consumption and age on its disposition. Since recent preclinical studies propose d-penicillamine as a promising treatment for alcohol relapse, the main aim of the present work was to evaluate the influence of these two factors on d-penicillamine disposition in order to guide future clinical studies on the anti-relapse efficacy of this drug in alcoholism. Additionally, the effect of the administered dose was also evaluated. To this end, three studies were carried out. Study 1 assessed the influence of dose on d-penicillamine disposition, whereas studies 2 and 3 evaluated, respectively, the influence of chronic alcohol consumption and age. Rapid intravenous administrations of 2, 10 and 30 mg/kg of d-penicillamine were performed using young or adult ethanol-naïve rats or adult ethanol-experienced (subjected to a long-term ethanol self-administration protocol) rats. Pharmacokinetic parameters were derived from the biexponential model. Statistical analysis of CL, normalized AUC0 (∞) , V1 and k10 revealed that disposition, in the range plasma concentrations assayed, is non-linear both in young ethanol-naïve and in adult ethanol-experienced rats. Notably, no significant changes in t1/2 were detected. Chronic ethanol consumption significantly reduced CL values by 35% without affecting t1/2 . d-Penicillamine disposition was equivalent in young and adult animals. In conclusion, although DP pharmacokinetics is non-linear, the lack of significant alterations of the t1/2 would potentially simplify the clinical use of this drug. Chronic consumption of ethanol also alters d-penicillamine disposition but, again, does not modify t1/2.

  6. 幽门螺杆菌感染者长期饮酒时PGE2与胃癌相关病变的关系%Relationship between Prostaglandin E2 and gastric cancer-related diseases in patients with Helicobacter pylori infection with chronic ethanol ingestion

    Institute of Scientific and Technical Information of China (English)

    曲宝戈; 潘锦敦; 王中东; 韩新海; 乔瑞玲; 葛慧; 张晓光

    2012-01-01

    目的 探讨长期饮酒合并幽门螺杆菌感染患者胃液及血液中PGE2与胃癌相关性病变的关系.方法 2007年1月-2010年12月符合条件的幽门螺杆菌感染同时长期饮酒56例和单纯长期饮酒64例患者,进行内镜下胃黏膜组织活检并进行病理学观察,同时抽静脉血及胃液用ELISA法检测PGE2浓度.结果 幽门螺杆菌感染同时长期饮酒组中胃黏膜轻度萎缩亚组和轻度肠化亚组患者血清PGE2浓度明显高于长期饮酒胃黏膜轻度萎缩亚组和轻度肠化亚组患者血清PGE2浓度(P=0.02或P=0.01).长期饮酒合并幽门螺杆菌阳性感染组中胃黏膜有不典型增生亚组患者血清PGE2浓度明显高于长期饮酒组中胃黏膜有不典型增生亚组患者(P=0.02).两组患者各亚组之间胃液PGE2浓度对比,差异无统计学意义(P均>0.05).结论 幽门螺杆菌感染同时长期饮酒患者血液PGE2浓度升高与胃黏膜轻度萎缩和肠化及不典型增生之间存在明显关系,但胃液中PGE2与胃黏膜萎缩、肠化和不典型增生之间无明显关系.%Objective To explore relationship between Prostaglandin E2(PGE2) and gastric cancer-related diseases in the patients with Helicobacter pylori infection with chronic ethanol ingestion. Methods Pathology examination of gastric mucosa acquired by gastroscope was conducted in 56 patients with Helicobacter pylori infection with chronic ethanol ingestion and 64 patients with chronic ethanol ingestion from January 2007 to December 2010. PGE2 in venous blood and gastric juice sample were taken and examined by enzymelinked immunosorbent assay. Results The concentration of PGE2 in serum was seen in slight atrophy or slight intestinal metaplasia in patients with Helicobacter pylori infection with the chronic ethanol ingestion was significant higher than that in patients with the chronic ethanol ingestion only(P =0.02 or P =0. 01 ). The serum concentration of PGE2 in the gastric mucosal dysplasia group of

  7. The reinforcing properties of ethanol are quantitatively enhanced in adulthood by peri-adolescent ethanol, but not saccharin, consumption in female alcohol-preferring (P) rats.

    Science.gov (United States)

    Toalston, Jamie E; Deehan, Gerald A; Hauser, Sheketha R; Engleman, Eric A; Bell, Richard L; Murphy, James M; McBride, William J; Rodd, Zachary A

    2015-08-01

    Alcohol drinking during adolescence is associated in adulthood with heavier alcohol drinking and an increased rate of alcohol dependence. Past research in our laboratory has indicated that peri-adolescent ethanol consumption can enhance the acquisition and reduce the rate of extinction of ethanol self-administration in adulthood. Caveats of the past research include reinforcer specificity, increased oral consumption during peri-adolescence, and a lack of quantitative assessment of the reinforcing properties of ethanol. The current experiments were designed to determine the effects of peri-adolescent ethanol or saccharin drinking on acquisition and extinction of oral ethanol self-administration and ethanol seeking, and to quantitatively assess the reinforcing properties of ethanol (progressive ratio). Ethanol or saccharin access by alcohol-preferring (P) rats occurred during postnatal day (PND) 30-60. Animals began operant self-administration of ethanol or saccharin after PND 85. After 10 weeks of daily operant self-administration, rats were tested in a progressive ratio paradigm. Two weeks later, self-administration was extinguished in all rats. Peri-adolescent ethanol consumption specifically enhanced the acquisition of ethanol self-administration, reduced the rate of extinction for ethanol self-administration, and quantitatively increased the reinforcing properties of ethanol during adulthood. Peri-adolescent saccharin consumption was without effect. The data indicate that ethanol consumption during peri-adolescence results in neuroadaptations that may specifically enhance the reinforcing properties of ethanol during adulthood. This increase in the reinforcing properties of ethanol could be a part of biological sequelae that are the basis for the effects of adolescent alcohol consumption on the increase in the rate of alcoholism during adulthood.

  8. N-乙酰半胱氨酸对慢性饮酒大鼠肺纤维化的干预作用%The Intervention of N-Acetylcysteine on the Pulmonary Fibrosis of Chronic Ethanol Ingestion in Rats

    Institute of Scientific and Technical Information of China (English)

    王静宜; 于洪志; 武俊萍; 杜钟珍; 吴琦

    2012-01-01

    Objective: To explore the influence of N -acetylcysteine (NAC) on the pulmonary fibrosis induced by chronic ethanol ingestion in rats, and observe the changes of pathogenesis of pulmonary fibrosis with detecting the content of superoxide dismutase (SOD) and malondialdehyde (MDA) of lung tissue. Methods: Thirty healthy male Sprague-Dawley rats were randomly divided into alcohol group (n=10), alcohol+NAC group (n=10), and control group (n=10). Ethanol liquid diet was given to rats in alcohol group and alcohol+NAC group. NAC 300 mg/(kg·d) was given to rats of alcohol+NAC group. The pathological changes of lung tissue were observed after 8-week treatment. The activity of SOD and content of MDA of lung tissue were detected. Results: there were varying degree of alveolar and alveolar septal infiltration of inflammatory cells, and more deposition of collagen fibers at intervals of alveolar in alcohol group. The similar pathological changes were found in alcohol+NAC group, but the degree was lower than that of alcohol group. The degree of alveolitis and the degree of pulmonary fibrosis were lower in alcohol+NAC group than those in alcohol group (P < 0.05 or P < 0.01, respectively). The SOD activity of lung tissue was higher in alcohol+NAC group than that of alcohol group. The MDA content of lung tissue was lower in alcohol+NAC group than that of alcohol group (P < 0.05). Conclusion: NAC can increase the SOD activity and decrease the content of MDA of lung tissue, and restrain the oxidative stress induced by alcohol, decrease the degree of pulmonary fibrosis induced by chronic ethanol ingestion in rats.%目的:探讨N-乙酰半胱氨酸(NAC)对慢性饮酒大鼠肺组织的病理形态及肺组织超氧化物歧化酶(SOD)、丙二醛(MDA)含量的影响.方法:30只健康雄性大鼠随机分成乙醇组、NAC组、对照组各10只,乙醇组和NAC组每日给予乙醇液体饲料,NAC组给予NAC 300 mg/(kg·d).8周后处死,观察肺组织病理改变,检测肺组织

  9. Prenatal ethanol increases sucrose reinforcement, an effect strengthened by postnatal association of ethanol and sucrose.

    Science.gov (United States)

    Culleré, Marcela Elena; Spear, Norman E; Molina, Juan Carlos

    2014-02-01

    Late prenatal exposure to ethanol recruits sensory processing of the drug and of its motivational properties, an experience that leads to heightened ethanol affinity. Recent studies indicate common sensory and neurobiological substrates between this drug and sweet tastants. Using a recently developed operant conditioning technique for infant rats, we examined the effects of prenatal ethanol history upon sucrose self-administration (postnatal days, PDs 14-17). Prior to the last conditioning session, a low (0.5 g/kg) or a high (2.5 g/kg) ethanol dose were paired with sucrose. The intention was to determine if ethanol would inflate or devalue the reinforcing capability of the tastant and if these effects are dependent upon prenatal ethanol history. Male and female pups prenatally exposed to ethanol (2.0 g/kg) responded more when reinforced with sucrose than pups lacking this antenatal experience. Independently of prenatal status, a low ethanol dose (0.5 g/kg) enhanced the reinforcing capability of sucrose while the highest dose (2.5 g/kg) seemed to ameliorate the motivational properties of the tastant. During extinction (PD 18), two factors were critical in determining persistence of responding despite reinforcement omission. Pups prenatally exposed to ethanol that subsequently experienced the low ethanol dose paired with sucrose, showed higher resistance to extinction. The effects here reported were not associated with differential blood alcohol levels across prenatal treatments. These results indicate that fetal ethanol experience promotes affinity for a natural sweet reinforcer and that low doses of ethanol are also capable of enhancing the positive motivational consequences of sucrose when ethanol and sucrose are paired during infancy.

  10. Effect of chronic administration of green tea extract on chemically induced electrocardiographic and biochemical changes in rat heart

    Directory of Open Access Journals (Sweden)

    Patil Leena

    2010-01-01

    Full Text Available Many chemicals induce cell-specific cytotoxicity. Chemicals like doxorubicin induce oxidative stress leading to cardiotoxicity causing abnormalities in ECG and increase in the biomarkers indicating toxicity. Green tea extract (GTE, Camellia sinensis (Theaceae, is reported to exert antioxidant activity mainly by means of its polyphenolic constituent, catechins. Our study was aimed to find out the effect of GTE (25, 50, 100 mg/kg/day p.o. for 30 days on doxorubicin-induced (3 mg/kg/week, i.p. for 5 weeks electrocardiographic and biochemical changes in rat heart. It is observed that GTE administered rats were less susceptible to doxorubicin-induced electrocardiographic changes and changes in biochemical markers like lactate dehydrogenase (LDH, creatine kinase (CK, and glutamic oxaloacetate transaminase (GOT in serum, and superoxide dismutase (SOD, catalase (CAT and reduced glutathione (GSH, membrane bound enzymes like Na + K + ATPase, Ca 2+ ATPase, Mg 2+ ATPase and decreased lipid peroxidation (LP in heart tissue, indicating the protection afforded by GTE administration.

  11. The Effect of Chronic Oral Administration of Withania Somnifera Root on Learning and Memory in Diabetic Rats Using Passive Avoidance Test

    Directory of Open Access Journals (Sweden)

    M. Roghani

    2006-07-01

    Full Text Available Introduction & Objective: Diabetes mellitus (especially type I is accompanied with disturbances in learning, memory, and cognitive skills in the human society and experimental animals. Considering the potential anti-diabetic effect of the medicinal plant Withania somnifera (ashwagandha and the augmenting effect of its consumption on the memory and mental health, this study was conducted to evaluate the effect of chronic oral administration of ashwagandha root on learning and memory in diabetic rats using passive avoidance test. Materials & Methods: For this purpose, male Wistar diabetic rats were randomly divided into control, ashwagandha-treated control, diabetic, and ashwagandha-treated diabetic groups. Ashwagandha treatment continued for 1 to 2 months. For induction of diabetes, streptozotocin was injected i.p. at a single dose of 60 mg/kg. Serum glucose level was determined before the study and at 4th and 8th weeks after the experiment. In addition, for evaluation of learning and memory, initial latency (IL and step-through latency (STL were determined after 1 and 2 months using passive avoidance test. Results: It was found that one- and two-month administration of ashwagandha root at a weight ratio of 1/15 has not any significant hypoglycemic effect in treated control and diabetic groups. Furthermore, there was a significant increase (p<0.05 in IL in diabetic and ashwagandha-treated diabetic groups after two months compared to control group. In this respect, there was no significant difference between diabetic and ashwagandha-treated diabetic groups. In addition, STL significantly increased in ashwagandha-treated control group after 1 (p<0.01 and 2 (p<0.05 month in comparison to control group. On the other hand, STL significantly decreased (p<0.05 in diabetic group and significantly increased (p<0.05 in ashwagandha-treated diabetic group as compared to control group after two months. Conclusion: In summary, chronic oral administration of

  12. Effect of ethanolic extract of Coriandrum sativum L. on tacrine induced orofacial dyskinesia.

    Science.gov (United States)

    Mohan, Mahalaxmi; Yarlagadda, Sanjyothi; Chintala, Saritha

    2015-05-01

    The effect of ethanolic extract of Coriandrum sativum L. seeds (100, 200 mg/kg) was studied on tacrine induced orofacial dyskinesia. Tacrine (2.5 mg/kg, i.p.) treated animals were observed for vacuous chewing movements (VCM), tongue protrusions (TP) and orofacial bursts (OB) for 1 h followed by observations for locomotor changes and cognitive dysfunction. Sub-chronic administration of Coriandrum sativum L. seed extract (E-CS) (100, 200 mg/kg, p.o., for 15 days significantly (P Coriandrum sativum. L against tacrine induced orofacial dyskinesia.

  13. Chronic administration of phosphodiesterase type 5 inhibitor suppresses renal production of endothelin-1 in dogs with congestive heart failure.

    Science.gov (United States)

    Yamamoto, Takashi; Wada, Atsuyuki; Ohnishi, Masato; Tsutamoto, Takayoshi; Fujii, Masanori; Matsumoto, Takehiro; Takayama, Tomoyuki; Wang, Xinwen; Kurokawa, Kiyoshi; Kinoshita, Masahiko

    2002-08-01

    Endothelin-1 (ET-1) and atrial natriuretic peptide (ANP) play important roles in the regulation of body fluid balance in congestive heart failure (CHF). Renal production of ET-1 increases in CHF and it is a significant independent predictor of sodium excretion. ANP inhibits the ET system through cGMP, a second messenger of ANP. However, in severe CHF, plasma cGMP levels reached a plateau despite the activation of ANP secretion. Thus, ANP does not seem to sufficiently oppose exaggerated ET-1 actions in severe CHF, partially due to the accelerated degradation of cGMP, through phosphodiesterase type 5 (PDE5). We examined the chronic effects of a PDE5 inhibitor, T-1032 (1 mg/kg per day, n=5), on renal function and renal production of ET-1 in dogs with CHF induced by rapid ventricular pacing (270 beats/min). Vehicle dogs were given a placebo (n=5) and normal dogs (n=5) served as normal controls without pacing. In this experimentally produced CHF, plasma levels of ET-1, ANP and cGMP were elevated and renal production of cGMP was increased compared with the normal group, associated with increases in renal expression of preproET-1 mRNA and the number of ET-1-positive cells in glomeruli. In the T-1032 group, systemic and renal production of cGMP were further increased compared with the vehicle group despite no significant difference in plasma ANP levels between the two groups. Subsequently, the agent significantly improved urine flow rate, sodium excretion rate and glomerular filtration rate (GFR) associated with reductions in renal expression of preproET-1 mRNA and the number of ET-1-positive cells compared with the vehicle group. Moreover, there was a significant negative correlation between the number of ET-1-positive cells and GFR (r=-0.802 and Prenal ANP and ET-1 through the cGMP pathway, subsequently preventing renal dysfunction during the progression of CHF.

  14. Effect of Levodopa Chronic Administration on Behavioral Changes and Fos Expression in Basal Ganglia in Rat Model of PD

    Institute of Scientific and Technical Information of China (English)

    徐岩; 孙圣刚; 曹学兵

    2003-01-01

    To study behavioral character and changes of neuronal activity in the basal ganglia of ratmodel of levodopa-induced dyskinesia, unilateral 6-hydroxydopamine lesioned rat model of Parkin-son disease (PD) was treated with levodopa/benserazide twice daily for 4 weeks and the behaviorobserved on the 1st, 3rd, 4th, 7th, 9th, 10th, 14th, 21st and 28th day. The animals were sacri-ficed and immunohistochemical technique was used to measure the changes of Fos expression in thecaudate putamen (CPU), globus pallidus (GP) and sensorimotor area of cerebral cortex 2 h afterthe last treatment. The results showed that pulsatile treatment with a subthreshold dose of levodo-pa gradually induced abnormal involuntary movement (AIM), including stereotypy (limb dyskine-sia, axial dystonia and masticatory dyskinesia) towards the side contralateral to the dopamine-den-ervated striatum and increased contraversive rotation. The motor pattern of each subtype was highlystereotypic across individual rats, and the proportion of each subtype was not consistent among in-dividual rats. Fos positive nuclei in the CPU and GP were increased by levodopa acute administra-tion, and more remarkably in the CPU, but not in the cerebral cortex. After repeated levodopatreatment, Fos positive nuclei were reduced remarkably in the CPU, but were increased in the GPand cerebral cortex. It was concluded that the neural mechanisms underlying levodopa induced AIMin rat model of PD was very similar to those seen in levodopa-induced dyskinesia (LID) in PD pa-tients and MPTP-lesioned monkeys, and increased striatopallidal neuronal activity might be involvedin occurrence of LID.

  15. Lithium-mediated protection against ethanol neurotoxicity

    Directory of Open Access Journals (Sweden)

    Jia Luo

    2010-06-01

    Full Text Available Lithium has long been used as a mood stabilizer in the treatment of manic-depressive (bipolar disorder. Recent studies suggest that lithium has neuroprotective properties and may be useful in the treatment of acute brain injuries such as ischemia and chronic neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease, Huntington’s disease and amyotrophic lateral sclerosis. One of the most important neuroprotective properties of lithium is its anti-apoptotic action. Ethanol is a neuroteratogen and fetal alcohol spectrum disorders (FASD are caused by maternal ethanol exposure during pregnancy. FASD is the leading cause of mental retardation. Ethanol exposure causes neuroapoptosis in the developing brain. Ethanol-induced loss of neurons in the central nervous system underlies many of the behavioral deficits observed in FASD. Excessive alcohol consumption is also associated with Wernicke–Korsakoff syndrome and neurodegeneration in the adult brain. Recent in vivo and in vitro studies indicate that lithium is able to ameliorate ethanol-induced neuroapoptosis. Lithium is an inhibitor of glycogen synthase kinase 3 (GSK3 which has recently been identified as a mediator of ethanol neurotoxicity. Lithium’s neuroprotection may be mediated by its inhibition of GSK3. In addition, lithium also affects many other signaling proteins and pathways that regulate neuronal survival and differentiation. This review discusses the recent evidence of lithium-mediated protection against ethanol neurotoxicity and potential underlying mechanisms.

  16. Encephalon Condition in Chronic Alcohol Intoxication and the Role of Amoebic Invasion of this Organ in the Development of Ethanol Attraction in Men

    Directory of Open Access Journals (Sweden)

    Sergey V. Shormanov

    2013-12-01

    Full Text Available This presentation reviews data from studies on the encephalon in 27 men ranging in age from 21 to 51 years, showing signs of chronic alcohol intoxication and who died from causes other than skull injury and 14 control subjects. The specimens were fixed in formalin or Karnua liquid, filled with paraffin and then examined, utilizing a variety of histological, histochemical and morphometric techniques. The data refers to the structural changes in the various tissue components of the brain (nervous, glia-cells, arteries, veins, as well as pertinent information concerning the presence of Protozoa in all the sections examined which according to their morphological signs and behavioral reactions indicate that amoeba had been present. The degree of cerebral tissue insemination by these parasites has been demonstrated. The condition of the membranes of these microorganisms, their cytoplasm, nucleus and nucleoli as well as the chromatoid corpuscles has been assessed and recorded. The ability of these microorganisms to split, migrate within the CNS limits, to trigger incitement and dystrophic changes and in the case of death – calcification or exulceration is shown. Further, the issue of species characteristics of amoeba occurring in the patients’ brains is discussed. The hypothesis of a possible link of amebic invasion with the development of alcohol dependence in humans is proposed.

  17. Pharmacokinetic and pharmacodynamic drug interactions with ethanol (alcohol).

    Science.gov (United States)

    Chan, Lingtak-Neander; Anderson, Gail D

    2014-12-01

    Ethanol (alcohol) is one of the most widely used legal drugs in the world. Ethanol is metabolized by alcohol dehydrogenase (ADH) and the cytochrome P450 (CYP) 2E1 drug-metabolizing enzyme that is also responsible for the biotransformation of xenobiotics and fatty acids. Drugs that inhibit ADH or CYP2E1 are the most likely theoretical compounds that would lead to a clinically significant pharmacokinetic interaction with ethanol, which include only a limited number of drugs. Acute ethanol primarily alters the pharmacokinetics of other drugs by changing the rate and extent of absorption, with more limited effects on clearance. Both acute and chronic ethanol use can cause transient changes to many physiologic responses in different organ systems such as hypotension and impairment of motor and cognitive functions, resulting in both pharmacokinetic and pharmacodynamic interactions. Evaluating drug interactions with long-term use of ethanol is uniquely challenging. Specifically, it is difficult to distinguish between the effects of long-term ethanol use on liver pathology and chronic malnutrition. Ethanol-induced liver disease results in decreased activity of hepatic metabolic enzymes and changes in protein binding. Clinical studies that include patients with chronic alcohol use may be evaluating the effects of mild cirrhosis on liver metabolism, and not just ethanol itself. The definition of chronic alcohol use is very inconsistent, which greatly affects the quality of the data and clinical application of the results. Our study of the literature has shown that a significantly higher volume of clinical studies have focused on the pharmacokinetic interactions of ethanol and other drugs. The data on pharmacodynamic interactions are more limited and future research addressing pharmacodynamic interactions with ethanol, especially regarding the non-central nervous system effects, is much needed.

  18. Postmortem degradation of administered ethanol-d6 and production of endogenous ethanol: experimental studies using rats and rabbits.

    Science.gov (United States)

    Takayasu, T; Ohshima, T; Tanaka, N; Maeda, H; Kondo, T; Nishigami, J; Nagano, T

    1995-12-18

    Deuterium-labeled ethanol-d6 was employed to study the metabolism and postmortem change of ethanol in putrefied organ tissues. First, 4 ml/kg body weight of 25% (w/v) solution of ethanol-d6 was administered orally to each of 15 rats. The heart blood and organs were collected 15-90 min after the administration and the ethanol-d6 was analyzed by head space gas chromatography/mass spectrometry. The ethanol-d6 concentration in the organ tissues reached its maximum at 15 min after the administration and then gradually declined, showing the same pattern as human ethanol metabolism. Ethanol-d6 (3 ml of the same solution/kg body weight) was injected into the vein of a rabbit's ear (total of 12 rabbits). The rabbit was killed with carbon monoxide 30 min after the administration and the carcass was allowed to stand for 1-4 days at 30 degrees C in a moist chamber. The concentration of ethanol-d6 decreased moderately. Postmortem ethanol and 1-propanol concentrations, in contrast, showed marked increases 2.5 days and more after sacrifice in line with the degree of putrefaction of each organ tissue including skeletal muscle. This suggests the postmortem activation of micro-organism activity. These results indicate that ethanol concentrations in cadaver tissues must be carefully assessed with due consideration of postmortem degradation and production.

  19. 不同剂量乙醇对地西泮及氯胺酮用药小鼠学习记忆的影响%The effects of different doses of ethanol on learning and memory in mice with diazepam and ketamine administration

    Institute of Scientific and Technical Information of China (English)

    陈慧娟; 虞黎黎; 曹兆成; 戴平; 庞步军; 张妤; 张咏梅

    2012-01-01

    Objective To observe the effects of different doses of ethanol on learning and memory in mice with dia-zepam and ketamine administation. Methods In a stratified and random block design, 80 mice were divided into 10 groups (n=S each): saline + diazepam (group A) ; 10% ethanol + diazepam (group B); 20% ethanol + diazepam (group C); 40% ethanol + diazepam (group D); saline + ketamine (group E); 10% ethanol + ketamine (group F) ; 20% ethanol + ketamine (group G); 40% ethanol + ketamine (group H); saline + diazepam + ketamine (group I); 10% ethanol + diazepam + ketamine (group J). The step-through test was performed to observe latency and error times in each group at 1 , 24 and 48 h after drug administration. Results Compared with group A , the error times in group D decreased , but the mice of group D was in a state of lethargy , indicating that ethanol inhibited the cen-tral nervous system highly. Compared with group B , the latency in group C decreased and error times increased (P<0.05) , indicating that with the increase of the concentration of ethanol , the inhibition effect of ethanol on learning and memory in mice with diazepam administration enhanced . Compared with group E , the latency in group F and group G de-creased (P<0.05) , indicating that ethanol could enhance the inhibition effect of learning and memory in mice with ket-amine administration. Compared with group C, the error times in group G decreased and the latency increased (P<0.05) , indicating that the inhibition eliect of ethanol on learning and memory in mice with diazepam administration was stronger than ketamine. Conclusion The inhibition effect of 20% ethanol on learning and memory in mice with diaze-pam administration is stronger than ketamine.%目的 研究不同剂量乙醇对地西泮和氯胺酮用药小鼠学习记忆的影响.方法 按分层随机区组设计将80只小鼠分为10组(每组n=8):生理盐水+地西泮(A组);10%乙醇+地西泮(B组);20%乙醇+地西泮(C组);40%乙醇+

  20. Cytoprotective effect of American ginseng in a rat ethanol gastric ulcer model.

    Science.gov (United States)

    Huang, Chi-Chang; Chen, Yi-Ming; Wang, Dean-Chuan; Chiu, Chien-Chao; Lin, Wan-Teng; Huang, Chih-Yang; Hsu, Mei-Chich

    2013-12-27

    Panax quinquefolium L. (American Ginseng, AG) is one of the most popular herbal medicines in the World. We aimed to investigate whether chronic (28-day) supplementation with AG could protect against ethanol-induced ulcer in gastric tissue. Furthermore, we investigated the possible molecular mechanisms leading to AG-mediated gastric mucosal protection. We randomized 32 male Wistar rats into four groups for treatment (n=8 per group): supplementation with water (vehicle) and low-dose (AG-1X), medium-dose (AG-2X) and high-dose (AG-5X) AG at 0, 250, 500, and 1250 mg/kg, respectively. In the first experiment, animals were fed vehicle or AG treatments for 4 weeks. At day 29, 75% ethanol was given orally to each animal at 10 mL/kg to induce gastric ulceration for 2 h. In a second experiment, animals were pretreated orally with each treatment for 1 hr before a single oral administration of ethanol (70%, 10 mL/kg). Trend analysis revealed that AG treatments inhibited ethanol-induced gastric mucosal damage. AG supplementation dose-dependently decreased the pro-inflammatory levels of interleukin 1β and cyclooxygenase 2 and the expression of pro-apoptotic proteins tBid, cytochrome C, and caspases-9 and -3 and increased the levels of anti-apoptotic proteins Bcl-2, Bcl-xL and p-Bad. AG could have pharmacological potential for treating gastric ulcer.

  1. Cytoprotective Effect of American Ginseng in a Rat Ethanol Gastric Ulcer Model

    Directory of Open Access Journals (Sweden)

    Chi-Chang Huang

    2013-12-01

    Full Text Available Panax quinquefolium L. (American Ginseng, AG is one of the most popular herbal medicines in the World. We aimed to investigate whether chronic (28-day supplementation with AG could protect against ethanol-induced ulcer in gastric tissue. Furthermore, we investigated the possible molecular mechanisms leading to AG-mediated gastric mucosal protection. We randomized 32 male Wistar rats into four groups for treatment (n = 8 per group: supplementation with water (vehicle and low-dose (AG-1X, medium-dose (AG-2X and high-dose (AG-5X AG at 0, 250, 500, and 1250 mg/kg, respectively. In the first experiment, animals were fed vehicle or AG treatments for 4 weeks. At day 29, 75% ethanol was given orally to each animal at 10 mL/kg to induce gastric ulceration for 2 h. In a second experiment, animals were pretreated orally with each treatment for 1 hr before a single oral administration of ethanol (70%, 10 mL/kg. Trend analysis revealed that AG treatments inhibited ethanol-induced gastric mucosal damage. AG supplementation dose-dependently decreased the pro-inflammatory levels of interleukin 1β and cyclooxygenase 2 and the expression of pro-apoptotic proteins tBid, cytochrome C, and caspases-9 and -3 and increased the levels of anti-apoptotic proteins Bcl-2, Bcl-xL and p-Bad. AG could have pharmacological potential for treating gastric ulcer.

  2. The novel anticonvulsant, gabapentin, protects against both convulsant and anxiogenic aspects of the ethanol withdrawal syndrome.

    Science.gov (United States)

    Watson, W P; Robinson, E; Little, H J

    1997-10-01

    The effects of the anticonvulsant, gabapentin, were investigated, in mice, on the withdrawal convulsive behaviour and anxiety-related behaviour that are produced by cessation of prolonged intake of ethanol. When given at 50 or 100 mg/kg, this compound decreased the rise in handling-induced hyperexcitability which occurs during the withdrawal period; the effects were most pronounced for the first 4 hr after administration. Gabapentin also decreased the convulsive response to an audiogenic stimulus during the withdrawal period. The elevated plus-maze, with both traditional and ethological indices of activity was used as a test of anxiety-related behaviour after cessation of chronic ethanol treatment. Gabapentin, at 50 and 100 mg/kg, was found to decrease some, although not all, of the signs of withdrawal-induced anxiety. At doses up to and including 200 mg/kg, gabapentin had no effect on motor co-ordination or spontaneous locomotor activity in control animals. The results demonstrated that gabapentin has a selective action in decreasing both convulsive and anxiety-related aspects of withdrawal behaviour after chronic ethanol treatment. It is possible that further studies with this compound may shed further light on the mechanisms involved in the withdrawal syndrome.

  3. Chronic IL-6 Administration Desensitizes IL-6 Response in Liver, Causes Hyperleptinemia and Aggravates Steatosis in Diet-Induced-Obese Mice

    Science.gov (United States)

    Gavito, Ana Luisa; Bautista, Dolores; Suarez, Juan; Badran, Samir; Arco, Rocío; Pavón, Francisco Javier; Serrano, Antonia; Rivera, Patricia; Decara, Juan; Cuesta, Antonio Luis; Rodríguez-de-Fonseca, Fernando

    2016-01-01

    High-fat diet-induced obesity (DIO) is associated with fatty liver and elevated IL-6 circulating levels. IL-6 administration in rodents has yielded contradictory results regarding its effects on steatosis progression. In some models of fatty liver disease, high doses of human IL-6 ameliorate the liver steatosis, whereas restoration of IL-6 in DIO IL-6-/- mice up-regulates hepatic lipogenic enzymes and aggravates steatosis. We further examined the effects of chronic low doses of murine IL-6 on hepatic lipid metabolism in WT mice in DIO. IL-6 was delivered twice daily in C57BL/6J DIO mice for 15 days. The status and expression of IL-6-signalling mediators and targets were investigated in relation to the steatosis and lipid content in blood and in liver. IL-6 administration in DIO mice markedly raised circulating levels of lipids, glucose and leptin, elevated fat liver content and aggravated steatosis. Under IL-6 treatment there was hepatic Stat3 activation and increased gene expression of Socs3 and Tnf-alpha whereas the gene expression of endogenous IL-6, IL-6-receptor, Stat3, Cpt1 and the enzymes involved in lipogenesis was suppressed. These data further implicate IL-6 in fatty liver disease modulation in the context of DIO, and indicate that continuous stimulation with IL-6 attenuates the IL-6-receptor response, which is associated with high serum levels of leptin, glucose and lipids, the lowering levels of lipogenic and Cpt1 hepatic enzymes and with increased Tnf-alpha hepatic expression, a scenario evoking that observed in IL-6-/- mice exposed to DIO and in obese Zucker rats. PMID:27333268

  4. Ethanol Basics (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2015-01-01

    Ethanol is a widely-used, domestically-produced renewable fuel made from corn and other plant materials. More than 96% of gasoline sold in the United States contains ethanol. Learn more about this alternative fuel in the Ethanol Basics Fact Sheet, produced by the U.S. Department of Energy's Clean Cities program.

  5. Protective effect of Opuntia ficus indica f. inermis prickly pear juice upon ethanol-induced damages in rat erythrocytes.

    Science.gov (United States)

    Alimi, Hichem; Hfaeidh, Najla; Bouoni, Zouhour; Sakly, Mohsen; Ben Rhouma, Khémais

    2012-05-01

    Juice from the fruit of the cactus Opuntia ficus indica is claimed to possess several health-beneficial properties. The present study was carried out to determine whether O. ficus indica f. inermis fruit extract might have a protective effect upon physiological and morphological damages inflicted to erythrocytes membrane by chronic ethanol poisoning, per os, in rat. Chemical analysis of the extract revealed the presence of polyphenols, flavonoids, ascorbic acid, carotenoids, and betalains. Ethanol administration (3 g/kg b.w, per day for 90 days) induced an increase of malondialdehyde (MDA) and carbonylated proteins levels and a decrease of glutathione (GSH) level in erythrocyte. Ethanol administration also reduced the scavenging activity in plasma and enhanced erythrocytes hemolysis, as compared to control rats. In addition, ethanol intake increased the erythrocyte shape index by +895.5% and decreased the erythrocyte diameter by -61.53% as compared to controls. In animals also given prickly pear juice during the same experimental period, the studied parameters were much less shifted. This protective effect was found to be dose-dependent. It is likely that the beneficial effect of the extract is due to the high content of antioxidant compounds.

  6. SILIBININ INHIBITS ETHANOL METABOLISM AND ETHANOL-DEPENDENT CELL PROLIFERATION IN AN IN VITRO MODEL OF HEPATOCELLULAR CARCINOMA

    Science.gov (United States)

    Brandon-Warner, Elizabeth; Sugg, James A.; Schrum, Laura W.; McKillop, Iain H.

    2009-01-01

    Chronic ethanol consumption is a known risk factor for developing hepatocellular carcinoma (HCC). The use of plant-derived antioxidants is gaining increasing clinical prominence as a potential therapy to ameliorate the effects of ethanol on hepatic disease development and progression. This study demonstrates silibinin, a biologically active flavanoid derived from milk thistle, inhibits cytochrome p4502E1 induction, ethanol metabolism and reactive oxygen species generation in HCC cells in vitro. These silibinin-mediated effects also inhibit ethanol-dependent increases in HCC cell proliferation in culture. PMID:19900758

  7. Effect of chronic administration of morphine on the gene expression level of sodium-dependent vitamin C transporters in rat hippocampus and lumbar spinal cord.

    Science.gov (United States)

    Zarebkohan, Amir; Javan, Mohammad; Satarian, Leila; Ahmadiani, Abolhasan

    2009-07-01

    Chronic morphine leads to dependence, tolerance, and neural apoptosis. Vitamin C inhibits the withdrawal syndrome in morphine-dependent subjects and prevents apoptosis in experimental models. Sodium-dependent vitamin C transporter (SVCT) type-2 is the main transporter for carrying vitamin C into the brain and neural cells. The mechanism(s) by which vitamin C inhibits morphine dependence in not understood. SVCT activity determines the vitamin C availably within the nervous system. We have examined the alterations in the expression of SVCT1, SVCT2, and its splice variants in morphine-tolerant rats. Morphine (20 mg/kg) was injected twice/day to male rats for either 7 or 14 days. The development of analgesic tolerance was assessed using tail-flick test. Lumbar spinal cord and the hippocampus were isolated for RNA extraction. Semiquantitative reverse transcriptase-polymerase chain reaction method was used to assess the levels of gene expression. Administration of morphine for 7 or 14 days reduced the expression level of SVCT2 in both hippocampus and dorsal lumbar spinal cord of rats. SVCT2 expression was reduced in vitamin C-, and vitamin C combined with morphine-treated animals. Results did not show SVCT2 splice variation. SVCT1 did not express in control or morphine-treated rats. It seems that reduced expression level of SVCT2 might be involved in the development of morphine side effects such as tolerance and dependency.

  8. U.S. Food and drug administration approval: obinutuzumab in combination with chlorambucil for the treatment of previously untreated chronic lymphocytic leukemia.

    Science.gov (United States)

    Lee, Hyon-Zu; Miller, Barry W; Kwitkowski, Virginia E; Ricci, Stacey; DelValle, Pedro; Saber, Haleh; Grillo, Joseph; Bullock, Julie; Florian, Jeffry; Mehrotra, Nitin; Ko, Chia-Wen; Nie, Lei; Shapiro, Marjorie; Tolnay, Mate; Kane, Robert C; Kaminskas, Edvardas; Justice, Robert; Farrell, Ann T; Pazdur, Richard

    2014-08-01

    On November 1, 2013, the U.S. Food and Drug Administration (FDA) approved obinutuzumab (GAZYVA; Genentech, Inc.), a CD20-directed cytolytic antibody, for use in combination with chlorambucil for the treatment of patients with previously untreated chronic lymphocytic leukemia (CLL). In stage 1 of the trial supporting approval, patients with previously untreated CD20-positive CLL were randomly allocated (2:2:1) to obinutuzumab + chlorambucil (GClb, n = 238), rituximab + chlorambucil (RClb, n = 233), or chlorambucil alone (Clb, n = 118). The primary endpoint was progression-free survival (PFS), and secondary endpoints included overall response rate (ORR). Only the comparison of GClb to Clb was relevant to this approval and is described herein. A clinically meaningful and statistically significant improvement in PFS with medians of 23.0 and 11.1 months was observed in the GClb and Clb arms, respectively (HR, 0.16; 95% CI, 0.11-0.24; P Obinutuzumab was the first Breakthrough Therapy-designated drug to receive FDA approval.

  9. Hypolipidemic effects of acute and sub-chronic administration of an aqueous extract of Ajuga iva L. whole plant in normal and diabetic rats.

    Science.gov (United States)

    El-Hilaly, Jaouad; Tahraoui, Adil; Israili, Zafar H; Lyoussi, Badiâa

    2006-05-24

    Diabetes is often accompanied by lipid abnormalities, which contribute significantly to cardiovascular (CV) morbidity and mortality in diabetic patients. The plant Ajuga iva (L.) Schreiber (Labiatea) is used in the treatment of diabetes in Moroccan folk medicine. Previously, we have demonstrated potent hypoglycemic activity and relatively non-toxic nature of a lyophilized aqueous extract of the whole plant (AI-extract) in normal (normoglycemic) and streptozotocin (STZ)-diabetic rats. In this study, we examined the AI-extract for its possible lipid-lowering activity in normal and STZ-diabetic rats. Taurine (TR) and glibenclamide (GLB) were used as reference substances. As shown previously, the AI-extract (10 mg/kg; oral) reduced plasma glucose levels after acute (single) and sub-chronic (3 weeks) dosing both in normal and diabetic rats. In normal rats, single and repeated oral administration of the AI-extract, at a dose of 10 mg/kg produced a small but significant decrease in plasma CHL levels (PAjuga iva whole plant showed hypolipidemic activity, in addition to its hypoglycemic effect in normoglycemic and diabetic rats. In view of the hypoglycemic and hypolipidemic activity, and its relatively non-toxic nature (shown previously), Ajuga iva may be a candidate for development as an anti-diabetic agent in humans. Further studies are warranted to confirm our results and fractionate the AI-extract to isolate and identify the active principle(s), and to determine the exact mechanism(s) of action.

  10. Extinction-dependent alterations in corticostriatal mGluR2/3 and mGluR7 receptors following chronic methamphetamine self-administration in rats.

    Science.gov (United States)

    Schwendt, Marek; Reichel, Carmela M; See, Ronald E

    2012-01-01

    Methamphetamine (meth) is a highly addictive and widely abused psychostimulant. Repeated use of meth can quickly lead to dependence, and may be accompanied by a variety of persistent psychiatric symptoms and cognitive impairments. The neuroadaptations underlying motivational and cognitive deficits produced by chronic meth intake remain poorly understood. Altered glutamate neurotransmission within the prefrontal cortex (PFC) and striatum has been linked to both persistent drug-seeking and cognitive dysfunction. Therefore, the current study investigated changes in presynaptic mGluR receptors within corticostriatal circuitry after extended meth self-administration. Rats self-administered meth (or received yoked-saline) in 1 hr/day sessions for 7 days (short-access) followed by 14 days of 6 hrs/day (long-access). Rats displayed a progressive escalation of daily meth intake up to 6 mg/kg per day. After cessation of meth self-administration, rats underwent daily extinction or abstinence without extinction training for 14 days before being euthanized. Synaptosomes from the medial PFC, nucleus accumbens (NAc), and the dorsal striatum (dSTR) were isolated and labeled with membrane-impermeable biotin in order to measure surface mGluR2/3 and mGluR7 receptors. Extended access to meth self-administration followed by abstinence decreased surface and total levels of mGluR2/3 receptors in the NAc and dSTR, while in the PFC, only a loss of surface mGluR2/3 and mGluR7 receptors was detected. Daily extinction trials reversed the downregulation of mGluR2/3 receptors in the NAc and dSTR and mGluR7 in the PFC, but downregulation of surface mGluR2/3 receptors in the PFC was present regardless of post-meth experience. Thus, extinction learning can selectively restore some populations of downregulated mGluRs after prolonged exposure to meth. The present findings could have implications for our understanding of the persistence (or recovery) of meth-induced motivational and cognitive

  11. Extinction-dependent alterations in corticostriatal mGluR2/3 and mGluR7 receptors following chronic methamphetamine self-administration in rats.

    Directory of Open Access Journals (Sweden)

    Marek Schwendt

    Full Text Available Methamphetamine (meth is a highly addictive and widely abused psychostimulant. Repeated use of meth can quickly lead to dependence, and may be accompanied by a variety of persistent psychiatric symptoms and cognitive impairments. The neuroadaptations underlying motivational and cognitive deficits produced by chronic meth intake remain poorly understood. Altered glutamate neurotransmission within the prefrontal cortex (PFC and striatum has been linked to both persistent drug-seeking and cognitive dysfunction. Therefore, the current study investigated changes in presynaptic mGluR receptors within corticostriatal circuitry after extended meth self-administration. Rats self-administered meth (or received yoked-saline in 1 hr/day sessions for 7 days (short-access followed by 14 days of 6 hrs/day (long-access. Rats displayed a progressive escalation of daily meth intake up to 6 mg/kg per day. After cessation of meth self-administration, rats underwent daily extinction or abstinence without extinction training for 14 days before being euthanized. Synaptosomes from the medial PFC, nucleus accumbens (NAc, and the dorsal striatum (dSTR were isolated and labeled with membrane-impermeable biotin in order to measure surface mGluR2/3 and mGluR7 receptors. Extended access to meth self-administration followed by abstinence decreased surface and total levels of mGluR2/3 receptors in the NAc and dSTR, while in the PFC, only a loss of surface mGluR2/3 and mGluR7 receptors was detected. Daily extinction trials reversed the downregulation of mGluR2/3 receptors in the NAc and dSTR and mGluR7 in the PFC, but downregulation of surface mGluR2/3 receptors in the PFC was present regardless of post-meth experience. Thus, extinction learning can selectively restore some populations of downregulated mGluRs after prolonged exposure to meth. The present findings could have implications for our understanding of the persistence (or recovery of meth-induced motivational and

  12. Autophagy and ethanol neurotoxicity.

    Science.gov (United States)

    Luo, Jia

    2014-01-01

    Excessive ethanol exposure is detrimental to the brain. The developing brain is particularly vulnerable to ethanol such that prenatal ethanol exposure causes fetal alcohol spectrum disorders (FASD). Neuronal loss in the brain is the most devastating consequence and is associated with mental retardation and other behavioral deficits observed in FASD. Since alcohol consumption during pregnancy has not declined, it is imperative to elucidate the underlying mechanisms and develop effective therapeutic strategies. One cellular mechanism that acts as a protective response for the central nervous system (CNS) is autophagy. Autophagy regulates lysosomal turnover of organelles and proteins within cells, and is involved in cell differentiation, survival, metabolism, and immunity. We have recently shown that ethanol activates autophagy in the developing brain. The autophagic preconditioning alleviates ethanol-induced neuron apoptosis, whereas inhibition of autophagy potentiates ethanol-stimulated reactive oxygen species (ROS) and exacerbates ethanol-induced neuroapoptosis. The expression of genes encoding proteins required for autophagy in the CNS is developmentally regulated; their levels are much lower during an ethanol-sensitive period than during an ethanol-resistant period. Ethanol may stimulate autophagy through multiple mechanisms; these include induction of oxidative stress and endoplasmic reticulum stress, modulation of MTOR and AMPK signaling, alterations in BCL2 family proteins, and disruption of intracellular calcium (Ca2+) homeostasis. This review discusses the most recent evidence regarding the involvement of autophagy in ethanol-mediated neurotoxicity as well as the potential therapeutic approach of targeting autophagic pathways.

  13. Effects of ethanol feeding on hepatic lipid synthesis

    NARCIS (Netherlands)

    Tijburg, L.B.M.; MaQuedano, A.; Bijleveld, C.; Guzman, M.; Geelen, M.J.H.

    1988-01-01

    Rats were fed a high-fat, liquid diet containing either 36% of total calories as ethanol or an isocaloric amount of sucrose, for a period up to 35 days. At different time intervals we measured the effects of ethanol administration on the activities of a number of key enzymes involved in hepatic lipi

  14. TNF-α type 2 receptor mediates renal inflammatory response to chronic angiotensin II administration with high salt intake in mice.

    Science.gov (United States)

    Singh, Purnima; Bahrami, Laleh; Castillo, Alexander; Majid, Dewan S A

    2013-04-01

    Tumor necrosis factor-alpha (TNF-α) has been implicated in salt-sensitive hypertension and renal injury (RI) induced by angiotensin II (ANG II). To determine the receptor type of TNF-α involved in this mechanism, we evaluated the responses to chronic ANG II infusion (25 ng/min by implanted minipump) given with high-salt diet (HS; 4% NaCl) for 2 wk in gene knockout mice for TNF-α receptor type 1 (TNFR1KO; n = 6) and type 2 (TNFR2KO; n = 6) and compared the responses with those in wild-type (WT; C57BL/6; n = 6) mice. Blood pressure in these mice was measured by implanted radiotelemetry as well as by tail-cuff plethysmography. RI responses were assessed by measuring macrophage cell infiltration (CD68(+) immunohistochemistry), glomerulosclerosis (PAS staining), and interstitial fibrosis (Gomori's trichrome staining) in renal tissues at the end of the treatment period. The increase in mean arterial pressure induced by ANG II + HS treatment was not different in these three groups of mice (TNFR1KO, 114 ± 1 to 161 ± 7 mmHg; TNFR2KO, 113 ± 1 to 161 ± 3 mmHg; WT, 110 ± 3 to 154 ± 3 mmHg). ANG II + HS-induced RI changes were similar in TNFR1KO mice but significantly less in TNFR2KO mice (macrophage infiltration, 0.02 ± 0.01 vs. 1.65 ± 0.45 cells/mm(2); glomerulosclerosis, 26.3 ± 2.6 vs. 35.7 ± 2.2% area; and interstitial fibrosis, 5.2 ± 0.6 vs. 8.1 ± 1.1% area) compared with the RI changes in WT mice. The results suggest that a direct activation of TNF-α receptors may not be required in inducing hypertensive response to chronic ANG II administration with HS intake, but the induction of inflammatory responses leading to renal injury are mainly mediated by TNF-α receptor type 2.

  15. Assessing plasma lipid levels, body weight, and hepatic and renal toxicity following chronic oral administration of a water soluble phytostanol compound, FM-VP4, to gerbils.

    Science.gov (United States)

    Wasan, K M; Najafi, S; Wong, J; Kwong, M; Pritchard, P H

    2001-01-01

    The purpose of this project was to determine the effect of a FM-VP4 when incorporated into the diet or drinking water on plasma lipids, body weight, and hepatic and renal function following chronic oral administration to gerbils. Gerbils were administered water and food daily containing either no FM-VP4 (controls; n=6), 2% or 4% FM-VP4 incorporated into the gerbil diet (n=6 each treatment group) or 2% or 4% FM-VP4 dissolved in the drinking water (n=6 each treatment group). Body weight and food and water intake were monitored weekly. Following 8 weeks of this regiment blood was obtained via a cardiac puncture and all animals were sacrificed humanely. Plasma obtained from this blood was analyzed for total cholesterol, total triglyceride and high-density lipoprotein (HDL)-cholesterol levels by standard enzymatic and precipitation techniques. Low-density lipoprotein (LDL)-cholesterol levels were determined by the Friedewald equation. The plasma was also analyzed for changes in hepatic enzyme (aspartate aminotransferase [AST] and alanine aminotransferase [ALT]) and plasma creatinine (renal function) concentrations. 2% and 4% FM-VP4 administration incorporated both into the diet and in the drinking water resulted in a significant decrease in total plasma cholesterol and LDL cholesterol concentration compared to controls. Animals administered 4% FM-VP4 in either their diet or drinking water had significantly lower body weight following the 8 weeks of treatment compared to the other groups. Significant differences in daily water intake was observed in all treatment groups with the exception of the 2% FM-VP4 in diet group compared to controls. Significant differences in daily food intake were observed in gerbils administered 2% FM-VP4 in the drinking water and 4% FM-VP4 in the diet and drinking water groups compared to controls. A significant decrease in total plasma triglyceride concentration was observed in gerbils administered 4% FM-VP4 in their drinking water compared

  16. Pulmonary administration of 1,25-dihydroxyvitamin D3 to the lungs induces alveolar regeneration in a mouse model of chronic obstructive pulmonary disease.

    Science.gov (United States)

    Horiguchi, Michiko; Hirokawa, Mai; Abe, Kaori; Kumagai, Harumi; Yamashita, Chikamasa

    2016-07-10

    Chronic obstructive pulmonary disease (COPD) is a progressive respiratory disease with several causes, including smoking, and no curative therapeutic agent is available, particularly for destructive alveolar lesions. In this study, we investigated the differentiation-inducing effect on undifferentiated lung cells (Calu-6) and the alveolar regenerative effect of the active vitamin 1,25-dihydroxy vitamin D3 (VD3) with the ultimate goal of developing a novel curative drug for COPD. First, the differentiation-inducing effect of VD3 on Calu-6 cells was evaluated. Treatment with VD3 increased the proportions of type I alveolar epithelial (AT-I) and type II alveolar epithelial (AT-II) cells constituting alveoli in a concentration- and treatment time-dependent manner, demonstrating the potent differentiation-inducing activity of VD3 on Calu-6 cells. We thus administered VD3 topically to the mice lung using a previously developed intrapulmonary administration via self-inhalation method. To evaluate the alveolus-repairing effect of VD3, we administered VD3 intrapulmonarily to elastase-induced COPD model mice and computed the mean distance between the alveolar walls as an index of the extent of alveolar injury. Results showed significant decreases in the alveolar wall distance in groups of mice that received 0.01, 0.1, and 1μg/kg of intrapulmonary VD3, revealing excellent alveolus-regenerating effect of VD3. Furthermore, we evaluated the effect of VD3 on improving respiratory function using a respiratory function analyzer. Lung elasticity and respiratory competence [forced expiratory volume (FEV) 1 s %] are reduced in COPD, reflecting advanced emphysematous changes. In elastase-induced COPD model mice, although lung elasticity and respiratory competence were reduced, VD3 administered intrapulmonarily twice weekly for 2weeks recovered tissue elastance and forced expiratory volume in 0.05s to the forced vital capacity, which are indicators of lung elasticity and respiratory

  17. Participant experiences from chronic administration of a multivitamin versus placebo on subjective health and wellbeing: a double-blind qualitative analysis of a randomised controlled trial

    Directory of Open Access Journals (Sweden)

    Sarris Jerome

    2012-12-01

    group having minor digestive complaints. Conclusion This represents the first documented qualitative investigation of participants’ experience of chronic administration of a multivitamin. Results uncovered a range of subjective beneficial effects that are consistent with quantitative data from previously published randomised controlled trials examining the effects of multivitamins and B vitamin complexes on mood and well-being. Trial registration Prior to commencement this trial was registered with the Australian New Zealand Clinical Trials Registry (http://www.anzctr.org.au ACTRN12611000092998

  18. Effects of Chronic Vitamin D3 Hormone Administration on Anxiety-Like Behavior in Adult Female Rats after Long-Term Ovariectomy

    Directory of Open Access Journals (Sweden)

    Julia Fedotova

    2017-01-01

    Full Text Available The present preclinical study was created to determine the therapeutic effects of vitamin D hormone treatment as an adjunctive therapy alone or in a combination with low dose of 17β-estradiol (17β-E2 on anxiety-like behavior in female rats with long-term absence of estrogen. Accordingly, the aim of the current study was to examine the effects of chronic cholecalciferol administration (1.0, 2.5 or 5.0 mg/kg subcutaneously, SC, once daily, for 14 days on the anxiety-like state after long-term ovariectomy in female rats. Twelve weeks postovariectomy, cholecalciferol was administered to ovariectomized (OVX rats and OVX rats treated with 17β-E2 (0.5 µg/rat SC, once daily, for 14 days. Anxiety-like behavior was assessed in the elevated plus maze (EPM and the light/dark test (LDT, and locomotor and grooming activities were tested in the open field test (OFT. Cholecalciferol at two doses of 1.0 and 2.5 mg/kg alone or in combination with 17β-E2 produced anxiolytic-like effects in OVX rats as evidenced in the EPM and the LDT, as well as increased grooming activity in the OFT. Our results indicate that cholecalciferol, at two doses of 1.0 and 2.5 mg/kg, has a profound anxiolytic-like effects in the experimental rat model of long-term estrogen deficiency.

  19. Chronic benzylamine administration in the drinking water improves glucose tolerance, reduces body weight gain and circulating cholesterol in high-fat diet-fed mice.

    Science.gov (United States)

    Iffiú-Soltész, Zsuzsa; Wanecq, Estelle; Lomba, Almudena; Portillo, Maria P; Pellati, Federica; Szöko, Eva; Bour, Sandy; Woodley, John; Milagro, Fermin I; Alfredo Martinez, J; Valet, Philippe; Carpéné, Christian

    2010-04-01

    Benzylamine is found in Moringa oleifera, a plant used to treat diabetes in traditional medicine. In mammals, benzylamine is metabolized by semicarbazide-sensitive amine oxidase (SSAO) to benzaldehyde and hydrogen peroxide. This latter product has insulin-mimicking action, and is involved in the effects of benzylamine on human adipocytes: stimulation of glucose transport and inhibition of lipolysis. This study examined whether chronic, oral administration of benzylamine could improve glucose tolerance and the circulating lipid profile without increasing oxidative stress in overweight and pre-diabetic mice. The benzylamine diffusion across the intestine was verified using everted gut sacs. Then, glucose handling and metabolic markers were measured in mice rendered insulin-resistant when fed a high-fat diet (HFD) and receiving or not benzylamine in their drinking water (3600micromol/(kgday)) for 17 weeks. HFD-benzylamine mice showed lower body weight gain, fasting blood glucose, total plasma cholesterol and hyperglycaemic response to glucose load when compared to HFD control. In adipocytes, insulin-induced activation of glucose transport and inhibition of lipolysis remained unchanged. In aorta, benzylamine treatment partially restored the nitrite levels that were reduced by HFD. In liver, lipid peroxidation markers were reduced. Resistin and uric acid, surrogate plasma markers of metabolic syndrome, were decreased. In spite of the putative deleterious nature of the hydrogen peroxide generated during amine oxidation, and in agreement with its in vitro insulin-like actions found on adipocytes, the SSAO-substrate benzylamine could be considered as a potential oral agent to treat metabolic syndrome.

  20. Development of a new model for the induction of chronic kidney disease via intraperitoneal adenine administration, and the effect of treatment with gum acacia thereon.

    Science.gov (United States)

    Al Za'abi, Mohammed; Al Busaidi, Mahfouda; Yasin, Javid; Schupp, Nicole; Nemmar, Abderrahim; Ali, Badreldin H

    2015-01-01

    Oral adenine (0.75% w/w in feed), is an established model for human chronic kidney disease (CKD). Gum acacia (GA) has been shown to be a nephroprotective agent in this model. Here we aimed at developing a new adenine-induced CKD model in rats via a systemic route (intraperitoneal, i.p.) and to test it with GA to obviate the possibility of a physical interaction between GA and adenine in the gut. Adenine was injected i.p. (50 or 100 mg/Kg for four weeks), and GA was given concomitantly in drinking water at a concentration of 15%, w/v. Several plasma and urinary biomarkers of oxidative stress were measured and the renal damage was assessed histopathologically. Adenine, at the two given i.p. doses, significantly reduced body weight, and increased relative kidney weight, water intake and urine output. It dose-dependently increased plasma and urinary inflammatory and oxidative stress biomarkers, and caused morphological and histological damage resembling that which has been reported with oral adenine. Concomitant treatment with GA significantly mitigated almost all the above measured indices. Administration of adenine i.p. induced CKD signs very similar to those induced by oral adenine. Therefore, this new model is quicker, more practical and accurate than the original (oral) model. GA ameliorates the CKD effects caused by adenine given i.p. suggesting that the antioxidant and anti-inflammatory properties possessed by oral GA are the main mechanism for its salutary action in adenine-induced CKD, an action that is independent of its possible interaction with adenine in the gut.

  1. Chronic postnatal administration of methylmalonic acid provokes a decrease of myelin content and ganglioside N-acetylneuraminic acid concentration in cerebrum of young rats

    Directory of Open Access Journals (Sweden)

    Brusque A.M.

    2001-01-01

    Full Text Available Levels of methylmalonic acid (MMA comparable to those of human methylmalonic acidemia were achieved in blood (2-2.5 mmol/l and brain (1.35 µmol/g of rats by administering buffered MMA, pH 7.4, subcutaneously twice a day from the 5th to the 28th day of life. MMA doses ranged from 0.76 to 1.67 µmol/g as a function of animal age. Control rats were treated with saline in the same volumes. The animals were sacrificed by decapitation on the 28th day of age. Blood was taken and the brain was rapidly removed. Medulla, pons, the olfactory lobes and cerebellum were discarded and the rest of the brain ("cerebrum" was isolated. Body and "cerebrum" weight were measured, as well as the cholesterol and triglyceride concentrations in blood and the content of myelin, total lipids, and the concentrations of the lipid fractions (cholesterol, glycerolipids, phospholipids and ganglioside N-acetylneuraminic acid (ganglioside-NANA in the "cerebrum". Chronic MMA administration had no effect on body or "cerebrum" weight, suggesting that the metabolites per se neither affect the appetite of the rats nor cause malnutrition. In contrast, MMA caused a significant reduction of plasma triglycerides, but not of plasma cholesterol levels. A significant diminution of myelin content and of ganglioside-NANA concentration was also observed in the "cerebrum". We propose that the reduction of myelin content and ganglioside-NANA caused by MMA may be related to the delayed myelination/cerebral atrophy and neurological dysfunction found in methylmalonic acidemic children.

  2. Ethanol-induced hypothermia in rats is antagonized by dexamethasone

    Directory of Open Access Journals (Sweden)

    Carreño C.F.T.

    1997-01-01

    Full Text Available The effect of dexamethasone on ethanol-induced hypothermia was investigated in 3.5-month old male Wistar rats (N = 10 animals per group. The animals were pretreated with dexamethasone (2.0 mg/kg, ip; volume of injection = 1 ml/kg 15 min before ethanol administration (2.0, 3.0 and 4.0 g/kg, ip; 20% w/v and the colon temperature was monitored with a digital thermometer 30, 60 and 90 min after ethanol administration. Ethanol treatment produced dose-dependent hypothermia throughout the experiment (-1.84 ± 0.10, -2.79 ± 0.09 and -3.79 ± 0.15oC for 2.0, 3.0 and 4.0 g/kg ethanol, respectively, 30 min after ethanol but only the effects of 2.0 and 3.0 g/kg ethanol were significantly antagonized (-0.57 ± 0.09 and -1.25 ± 0.10, respectively, 30 min after ethanol by pretreatment with dexamethasone (ANOVA, P<0.05. These results are in agreement with data from the literature on the rapid antagonism by glucocorticoids of other effects of ethanol. The antagonism was obtained after a short period of time, suggesting that the effect of dexamethasone is different from the classical actions of corticosteroids

  3. Fermentation method producing ethanol

    Science.gov (United States)

    Wang, Daniel I. C.; Dalal, Rajen

    1986-01-01

    Ethanol is the major end product of an anaerobic, thermophilic fermentation process using a mutant strain of bacterium Clostridium thermosaccharolyticum. This organism is capable of converting hexose and pentose carbohydrates to ethanol, acetic and lactic acids. Mutants of Clostridium thermosaccharolyticum are capable of converting these substrates to ethanol in exceptionally high yield and with increased productivity. Both the mutant organism and the technique for its isolation are provided.

  4. Chronobiology of ethanol: animal models.

    Science.gov (United States)

    Rosenwasser, Alan M

    2015-06-01

    Clinical and epidemiological observations have revealed that alcohol abuse and alcoholism are associated with widespread disruptions in sleep and other circadian biological rhythms. As with other psychiatric disorders, animal models have been very useful in efforts to better understand the cause and effect relationships underlying the largely correlative human data. This review summarizes the experimental findings indicating bidirectional interactions between alcohol (ethanol) consumption and the circadian timing system, emphasizing behavioral studies conducted in the author's laboratory. Together with convergent evidence from multiple laboratories, the work summarized here establishes that ethanol intake (or administration) alters fundamental properties of the underlying circadian pacemaker. In turn, circadian disruption induced by either environmental or genetic manipulations can alter voluntary ethanol intake. These reciprocal interactions may create a vicious cycle that contributes to the downward spiral of alcohol and drug addiction. In the future, such studies may lead to the development of chronobiologically based interventions to prevent relapse and effectively mitigate some of the societal burden associated with such disorders.

  5. Effect of capsaicin and chilli on ethanol induced gastric mucosal injury in the rat.

    Science.gov (United States)

    Kang, J Y; Teng, C H; Wee, A; Chen, F C

    1995-05-01

    Capsaicin, the pungent ingredient of chilli, is gastroprotective against experimental gastric injury when given intragastrically. Epidemiological and clinical data suggest that chilli ingestion may have a beneficial effect on human peptic ulcer disease. This study showed a gastroprotective effect of intragastric capsaicin, in doses of 2 and 5 mg, on ethanol induced gastric mucosal injury using macroscopic, histological, scanning electron microscopic, and biochemical indices. Subcutaneous administration of 2 mg of capsaicin had the same gastroprotective effect as intragastric administration. Acute intragastric administration and chronic ingestion of chilli powder in doses comparable with that consumed in humans (up to 200 mg in single doses or 200 mg daily for four weeks) likewise protected the gastric mucosa. Both the mucosa and gastric juice had higher mucus contents when capsaicin or chilli rather than saline or solvent was used before ethanol challenge. In control animals capsaicin also increased gastric juice mucus content although the mucosal content was unaffected. Increased gastric mucus production may therefore be one mechanism by which capsaicin and chilli exert their gastroprotective effect although an alternative explanation is that the reduction in mucosal mucus depletion is secondary to the protective effect of capsaicin and chilli.

  6. Alcohol oxidizing enzymes and ethanol-induced cytotoxicity in rat pancreatic acinar AR42J cells.

    Science.gov (United States)

    Bhopale, Kamlesh K; Falzon, Miriam; Ansari, G A S; Kaphalia, Bhupendra S

    2014-04-01

    Alcoholic chronic pancreatitis (ACP) is a serious inflammatory disease causing significant morbidity and mortality. Due to lack of a suitable animal model, the underlying mechanism of ACP is poorly understood. Chronic alcohol abuse inhibits alcohol dehydrogenase (ADH) and facilitates nonoxidative metabolism of ethanol to fatty acid ethyl esters (FAEEs) in the pancreas frequently damaged during chronic ethanol abuse. Earlier, we reported a concentration-dependent formation of FAEEs and cytotoxicity in ethanol-treated rat pancreatic tumor (AR42J) cells, which express high FAEE synthase activity as compared to ADH and cytochrome P450 2E1. Therefore, the present study was undertaken to investigate the role of various ethanol oxidizing enzymes in ethanol-induced pancreatic acinar cell injury. Confluent AR42J cells were pre-treated with inhibitors of ADH class I and II [4-methylpyrazole (MP)] or class I, II, and III [1,10-phenanthroline (PT)], cytochrome P450 2E1 (trans-1,2-dichloroethylene) or catalase (sodium azide) followed by incubation with 800 mg% ethanol at 37°C for 6 h. Ethanol metabolism, cell viability, cytotoxicity (apoptosis and necrosis), cell proliferation status, and formation of FAEEs in AR42J cells were measured. The cell viability and cell proliferation rate were significantly reduced in cells pretreated with 1,10-PT + ethanol followed by those with 4-MP + ethanol. In situ formation of FAEEs was twofold greater in cells incubated with 1,10-PT + ethanol and ∼1.5-fold in those treated with 4-MP + ethanol vs. respective controls. However, cells treated with inhibitors of cytochrome P450 2E1 or catalase in combination of ethanol showed no significant changes either for FAEE formation, cell death or proliferation rate. Therefore, an impaired ADH class I-III catalyzed oxidation of ethanol appears to be a key contributing factor in ethanol-induced pancreatic injury via formation of nonoxidative metabolites of ethanol.

  7. Alcohol oxidizing enzymes and ethanol-induced cytotoxicity in rat pancreatic acinar AR42J cells

    Science.gov (United States)

    Bhopale, Kamlesh K.; Falzon, Miriam; Ansari, G. A. S.

    2016-01-01

    Alcoholic chronic pancreatitis (ACP) is a serious inflammatory disease causing significant morbidity and mortality. Due to lack of a suitable animal model, the underlying mechanism of ACP is poorly understood. Chronic alcohol abuse inhibits alcohol dehydrogenase (ADH) and facilitates nonoxidative metabolism of ethanol to fatty acid ethyl esters (FAEEs) in the pancreas frequently damaged during chronic ethanol abuse. Earlier, we reported a concentration-dependent formation of FAEEs and cytotoxicity in ethanol-treated rat pancreatic tumor (AR42J) cells, which express high FAEE synthase activity as compared to ADH and cytochrome P450 2E1. Therefore, the present study was undertaken to investigate the role of various ethanol oxidizing enzymes in ethanol-induced pancreatic acinar cell injury. Confluent AR42J cells were pre-treated with inhibitors of ADH class I and II [4-methylpyrazole (MP)] or class I, II, and III [1,10-phenanthroline (PT)], cytochrome P450 2E1 (trans-1,2-dichloroethylene) or catalase (sodium azide) followed by incubation with 800 mg% ethanol at 37°C for 6 h. Ethanol metabolism, cell viability, cytotoxicity (apoptosis and necrosis), cell proliferation status, and formation of FAEEs in AR42J cells were measured. The cell viability and cell proliferation rate were significantly reduced in cells pretreated with 1,10-PT + ethanol followed by those with 4-MP + ethanol. In situ formation of FAEEs was twofold greater in cells incubated with l,10-PT + ethanol and ~1.5-fold in those treated with 4-MP + ethanol vs. respective controls. However, cells treated with inhibitors of cytochrome P450 2E1 or catalase in combination of ethanol showed no significant changes either for FAEE formation, cell death or proliferation rate. Therefore, an impaired ADH class I—III catalyzed oxidation of ethanol appears to be a key contributing factor in ethanol-induced pancreatic injury via formation of nonoxidative metabolites of ethanol. PMID:24281792

  8. Neurosteroid effects on sensitivity to ethanol

    Directory of Open Access Journals (Sweden)

    Christa M Helms

    2012-01-01

    Full Text Available Harrison and Simmonds (1984 provided the first clear evidence that neuroactive steroids act at specific neurotransmitter receptors, investigating the potentiation of muscimol-induced GABAA responses by alphaxalone (3α-hydroxy 5α -pregnane l l,20-dione in cortical slices. Within 2 years, a progesterone metabolite (3α-hydroxy-5α-pregnan-20-one, 3α,5α-THP, allopregnanolone and a deoxycorticosterone metabolite (3α,21-dihydroxy-5α-pregnan-20-one, 3α,5α-THDOC, tetrahydrodeoxycorticosterone, THDOC were shown to be positive modulators of GABAA receptors (Majewska et al., 1986. That same year, publications showed that ethanol has direct action at GABAA receptors (Allan and Harris, 1986, Suzdak et al., 1986. Thus, the GABAA receptor complex was identified as a membrane-bound target providing a pharmacological basis for shared sensitivity between neurosteroids and ethanol. The common behavioral effects of ethanol and neuroactive steroids were compared directly using drug discrimination procedures (Ator et al., 1993. The N-methyl-D-aspartate (NMDA receptor complex, a membrane-bound ionophore important for excitatory glutamate neurotransmission, was shown to be antagonized by low concentrations of ethanol (Lovinger et al., 1989. Since data were emerging for neurosteroid activity at NMDA receptors (Wu et al., 1991, the stage was set for the suggestion that neurosteroids, and physiological states that alter circulating neuroactive steroids, could affect sensitivity to alcohol (Grant et al., 1997. The unique interface of ethanol and neurosteroids encompasses molecular, cellular, physiological and behavioral processes. This review will highlight a variety of mechanisms by which neurosteroids affect sensitivity to ethanol, including metabolic pathways, physiological states associated with activity of the hypothalamic-pituitary adrenal (HPA and hypothalamic-pituitary-gonadal (HPG axes, and the effects of chronic exposure to ethanol, in addition to

  9. Effects of Chronic Ethanol Intoxication on the Ultrastructures of Cerebellar Purkinje Cells in Adult Mice%慢性酒精中毒对成年小鼠小脑浦肯野细胞超微结构的影响

    Institute of Scientific and Technical Information of China (English)

    张长征; 朱庆丰

    2011-01-01

    目的 观察慢性酒精中毒所致的成年小鼠小脑皮质浦肯野细胞(Purkinje cell,PC)胞体的超微结构变化,探讨其对神经元超微结构的影响方式及生理意义.方法 用15%酒精饲喂3月龄小白鼠3个月,经行为学检测后,取小脑前叶做电镜包埋,切片,染色,透射电镜下观察并拍照.结果 酒精中毒组PC核周质中线粒体膨解,基质囊泡化;高尔基复合体扁平囊扩张;粗面内质网碎裂,核糖体颗粒减少;"空泡变性"出现;双层核膜界限不清;染色质边集等变化.结论 慢性酒精中毒可导致小脑浦肯野细胞多种细胞器出现异常改变,推测这些变化可引起胞内物质合成减少,空间构筑紊乱,神经元死亡,最终导致小脑功能损伤.%Objective We observed chronic ethanol-induced ultrastructural alterations of Purkinje cell (PC) somata in the mouse cerebellar cortex, in order to explore the manner of ethanol impacts on neuronal ultrastructures and the physiological influences underlying these alterations. Methods 3-month old mice were fed with 15% alcohol for 3 months. After the behavioral test to manifest the symptoms of ethanol intoxication, the anterior lobe from each mouse cerebellum was selected for embedding , sectioning, and staining. Undera transmission electron microscope, the organelles of PC somata were observed and photos were taken. Results The organelles in ethanol-intoxicated PCs exhibited the following changes: the mitochondria swelled and the matrix decomposed; the sacs of Golgi apparatus dilated; the rough endoplasmic reticulum (rER) collapsed, accompanied with a great loss of the ribosomes; the "vacuolation" emerged;the double nuclear membrane became illegible; and the chromatin marginally condensed in the nucleus.Conclusion Chronic ethanol intoxication induces degenerative alterations in the organelles of cerebellar PCs, which might result in the decrease in substance synthesis, the disorder in intraneuronal configuration, the

  10. Effect of ethanol on enkephalinergic opioid system of rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Belyayev, N.A.; Balakireva, N.N.; Brusov, O.S.; Panchenko, L.F.

    1983-10-13

    Specific binding of /sup 3/H-morphine and /sup 3/H-(D-Ala/sup 2/, D-Leu/sup 5/)-enkephalin (H-EN) with opiatic receptors was studied on white rats along with the content of Met- and Leu-enkephalin and the activity of enkephalinase in various brain segments after single dose (20% solution in 0.9% NaCl, IP; 1.5-4.5 g/kg body weight) and chronic injection (20% EtOH substituted for drinking water) of ethanol. The single injection of EtOH (1.5-4.5 g/kg) resulted in a depression of the specific binding of H-EN with opiate receptors. Doses of 1.5 and 2.5 g/kg led to a lower content of Leu-enkephalin in mid-brain but to an increase of Met-enkephalin; the 4.5 g/kg dose had no effect on the striatum. With chronic administration of EtOH, most of the values obtained on the experimental animals were similar to the control data. 23 references.

  11. [Concentration of endogenous ethanol and alcoholic motivation].

    Science.gov (United States)

    Burov, Iu V; Treskov, V G; Kampov-Polevoĭ, A B; Kovalenko, A E; Rodionov, A P

    1983-11-01

    Trials with patients suffering from stage II chronic alcoholism and normal test subjects as well as experiments made on male C57BL mice (with genetically determined alcoholic motivation) and CBA mice (with genetically determined alcoholic aversion) and random-bred male rats with different levels of initial alcoholic motivation have shown the presence of reverse proportional dependence between blood plasma endogenous ethanol and alcoholic motivation.

  12. Effects of ethanol on the proteasome interacting proteins

    Institute of Scientific and Technical Information of China (English)

    Fawzia; Bardag-Gorce

    2010-01-01

    Proteasome dysfunction has been repeatedly reported in alcoholic liver disease. Ethanol metabolism endproducts affect the structure of the proteasome, and, therefore, change the proteasome interaction with its regulatory complexes 19S and PA28, as well as its interacting proteins. Chronic ethanol feeding alters the ubiquitin-proteasome activity by altering the interaction between the 19S and the 20S proteasome interaction. The degradation of oxidized and damaged proteins is thus decreased and leads to accum...

  13. Biotransformation of ethanol to ethyl glucuronide in a rat model after a single high oral dosage.

    Science.gov (United States)

    Wright, Trista H; Ferslew, Kenneth E

    2012-03-01

    Ethyl glucuronide (EtG) is a minor ethanol metabolite that confirms the absorption and metabolism of ethanol after oral or dermal exposure. Human data suggest that maximum blood EtG (BEtG) concentrations are reached between 3.5 and 5.5h after ethanol administration. This study was undertaken to determine if the Sprague-Dawley (SD) rat biotransforms ethanol to EtG after a single high oral dose of ethanol. SD rats (male, n=6) were gavaged with a single ethanol dose (4 g/kg), and urine was collected for 3 h in metabolic cages, followed by euthanization and collection of heart blood. Blood and urine were analyzed for ethanol and EtG by gas chromatography and enzyme immunoassay. Blood and urine ethanol concentrations were 195±23 and 218±19 mg/dL, whereas BEtG and urine EtG (UEtG) concentrations were 1,363±98 ng equivalents/mL and 210±0.29 mg equivalents/dL (X ± standard error of the mean [S.E.M.]). Sixty-six male SD rats were gavaged ethanol (4 g/kg) and placed in metabolic cages to determine the extent and duration of ethanol to EtG biotransformation and urinary excretion. Blood and urine were collected up to 24 h after administration for ethanol and EtG analysis. Maximum blood ethanol, urine ethanol, and UEtG were reached within 4 h, whereas maximum BEtG was reached 6 h after administration. Maximum concentrations were blood ethanol, 213±20 mg/dL; urine ethanol, 308±34 mg/dL; BEtG, 2,683±145 ng equivalents/mL; UEtG, 1.2±0.06 mg equivalents/mL (X±S.E.M.). Areas under the concentration-time curve were blood ethanol, 1,578 h*mg/dL; urine ethanol, 3,096 h*mg/dL; BEtG, 18,284 h*ng equivalents/mL; and UEtG, 850 h*mg equivalents/dL. Blood ethanol and BEtG levels were reduced to below limits of detection (LODs) within 12 and 18 h after ethanol administration. Urine ethanols were below LOD at 18 h, but UEtG was still detectable at 24h after administration. Our data prove that the SD rat biotransforms ethanol to EtG and excretes both in the urine and suggest that it

  14. DARPP-32 and Akt regulation in ethanol-preferring AA and ethanol-avoiding ANA rats.

    Science.gov (United States)

    Nuutinen, Saara; Kiianmaa, Kalervo; Panula, Pertti

    2011-09-26

    Ethanol and other addictive drugs affect many intracellular phosphorylation and dephosphorylation cascades. These cascades are thought to be highly important in the regulation of neuronal activity. The present experiments characterized the regulation of three key signaling molecules, DARPP-32 (dopamine and cAMP regulated phosphoprotein, 32kDa), Akt kinase and ERK1/2 (extracellular signal-regulated kinase 1 and 2) in ethanol-preferring AA (Alko, alcohol) and ethanol-avoiding ANA (Alko, non-alcohol) rat lines. Radioactive in situ hybridization was used in drug naïve animals and Western blotting after acute ethanol administration in striatum, hippocampus and prefrontal cortex. The mRNA levels of DARPP-32 in striatal areas were higher in ANA rats than in AA rats. There was no difference in the striatal enriched phosphatase (STEP61), the downstream target of DARPP-32 expression between the rat lines. Ethanol (1.5g/kg) increased phosphorylation of DARPP-32 at threonine 34 in both AA and in ANA rats indicating that acute ethanol activates DARPP-32 similarly in these rat lines. The expression of Akt kinase was higher in the CA1 of hippocampus in ANA than in AA rats and acute ethanol activated Akt in hippocampus in ANA but not in AA rats. No significant alterations in the regulation of ERK1/2 were found in either rat line. Our findings suggest that DARPP-32 and Akt are regulated by ethanol and differences in the regulation of these molecules might contribute to the dramatically different ethanol drinking patterns seen in AA and ANA rats.

  15. Nonoxidative ethanol metabolism in humans-from biomarkers to bioactive lipids.

    Science.gov (United States)

    Heier, Christoph; Xie, Hao; Zimmermann, Robert

    2016-12-01

    Ethanol is a widely used psychoactive drug whose chronic abuse is associated with organ dysfunction and disease. Although the prevalent metabolic fate of ethanol in the human body is oxidation a smaller fraction undergoes nonoxidative metabolism yielding ethyl glucuronide, ethyl sulfate, phosphatidylethanol and fatty acid ethyl esters. Nonoxidative ethanol metabolites persist in tissues and body fluids for much longer than ethanol itself and represent biomarkers for the assessment of ethanol intake in clinical and forensic settings. Of note, the nonoxidative reaction of ethanol with phospholipids and fatty acids yields bioactive compounds that affect cellular signaling pathways and organelle function and may contribute to ethanol toxicity. Thus, despite low quantitative contributions of nonoxidative pathways to overall ethanol metabolism the resultant ethanol metabolites have important biological implications. In this review we summarize the current knowledge about the enzymatic formation of nonoxidative ethanol metabolites in humans and discuss the implications of nonoxidative ethanol metabolites as biomarkers of ethanol intake and mediators of ethanol toxicity. © 2016 IUBMB Life, 68(12):916-923, 2016.

  16. IL-6-deficient Mice Are Susceptible to Ethanol-induced Hepatic Steatosis: IL-6 Protects against Ethanol-induced Oxidative Stress and Mitochondrial Permeability Transition in the Liver

    Institute of Scientific and Technical Information of China (English)

    Osama El-Assal; Feng Hong; Won-Ho Kim; Svetlana Radaeva; Bin Gao

    2004-01-01

    Interleukin-6 (IL-6)-deficient mice are prone to ethanol-induced apoptosis and steatosis in the liver; however, the underlying mechanism is not fully understood. Mitochondrial dysfunction caused by oxidative stress is an early event that plays an important role in the pathogenesis of alcoholic liver disease. Therefore, we hypothesize that the protective role of IL-6 in ethanol-induced liver injury is mediated via suppression of ethanol-induced oxidative stress and mitochondrial dysfunction. To test this hypothesis, we examined the effects of IL-6 on ethanol-induced oxidative stress, mitochondrial injury, and energy depletion in the livers of IL-6 (-/-) mice and hepatocytes from ethanol-fed rats. Ethanol consumption leads to stronger induction of malondialdehyde (MDA) in IL-6 (-/-) mice compared to wild-type control mice, which can be corrected by administration of IL-6. In vitro,IL-6 treatment prevents ethanol-mediated induction of reactive oxygen species (ROS), MDA, mitochondrial permeability transition (MPT), and ethanol-mediated depletion of adenosine triphosphate (ATP) in hepatocytes from ethanol-fed rats. Administration of IL-6 in vivo also reverses ethanol-induced MDA and ATP depletion in hepatocytes. Finally, IL-6 treatment induces metallothionein protein expression, but not superoxide dismutase and glutathione peroxidase in cultured hepatocytes. In conclusion, IL-6 protects against ethanol-induced oxidative stress and mitochondrial dysfunction in hepatocytes via induction of metallothionein protein expression, which may account for the protective role of IL-6 in alcoholic liver disease.

  17. IL-6-deficient Mice Are Susceptible to Ethanol-induced Hepatic Steatosis: IL-6 Protects against Ethanol-induced Oxidative Stress and Mitochondrial Permeability Transition in the Liver

    Institute of Scientific and Technical Information of China (English)

    OsamaEl-Assal; FengHong; Won-HoKim; SvetlanaRadaeva; BinGao

    2004-01-01

    Interleukin-6 (IL-6)-deficient mice are prone to ethanol-induced apoptosis and steatosis in the liver; however,the underlying mechanism is not fully understood. Mitochondrial dysfunction caused by oxidative stress is an early event that plays an important role in the pathogenesis of alcoholic liver disease. Therefore, we hypothesize that the protective role of IL-6 in ethanol-induced liver injury is mediated via suppression of ethanol-induced oxidative stress and mitochondrial dysfunction. To test this hypothesis, we examined the effects of IL-6 on ethanol-induced oxidative stress, mitochondrial injury, and energy depletion in the livers of IL-6 (-/-) mice and hepatocytes from ethanol-fed rats. Ethanol consumption leads to stronger induction of malondialdehyde (MDA) in IL-6 (-/-) mice compared to wild-type control mice, which can be corrected by administration of IL-6. In vitro,IL-6 treatment prevents ethanol-mediated induction of reactive oxygen species (ROS), MDA, mitochondrial permeability transition (MPT), and ethanol-mediated depletion of adenosine triphosphate (ATP) in hepatocytes from ethanol-fed rats. Administration of IL-6 in vivo also reverses ethanol-induced MDA and ATP depletion in hepatocytes. Finally, IL-6 treatment induces metallothionein protein expression, but not superoxide dismutase and glutathione peroxidase in cultured hepatocytes. In conclusion, IL-6 protects against ethanol-induced oxidative stress and mitochondrial dysfunction in hepatocytes v/a induction of metallothionein protein expression, which mav account for the nrotective role of IL-6 in alcoholic liver disease.

  18. Competitiveness of Brazilian Sugarcane Ethanol Compared to US Corn Ethanol

    OpenAIRE

    Crago, Christine Lasco; Khanna, Madhu; Barton, Jason; Giuliani, Eduardo; Amaral, Weber

    2010-01-01

    Corn ethanol produced in the US and sugarcane ethanol produced in Brazil are the world’s leading sources of biofuel. Current US biofuel policies create both incentives and constraints for the import of ethanol from Brazil, and together with the competitiveness and greenhouse gas intensity of sugarcane ethanol compared to corn ethanol will determine the extent of these imports. This study analyzes the supply-side determinants of this competitiveness and compares the greenhouse gas intensity of...

  19. Scorpion ethanol extract and valproic acid effects on hippocampal glial fibrillary acidic protein expression in a rat model of chronic-kindling epilepsy induced by lithium chloride-pilocarpine

    Institute of Scientific and Technical Information of China (English)

    Yi Liang; Hongbin Sun; Liang Yu; Baoming He; Yan Xie

    2012-01-01

    The present study analyzed the effects of ethanol extracts of scorpion on epilepsy prevention and hippocampal expression of glial fibrillary acidic protein in a lithium chloride-pilocarpine epileptic rat model. Results were subsequently compared with valproic acid. Results showed gradually-increased hippocampal glial fibrillary acidic protein expression following model establishment; glial fibrillary acidic protein mRNA expression was significantly increased at 3 days, reached a peak at 7 days, and then gradually decreased thereafter. Ethanol extracts of scorpion doses of 580 and 1 160 mg/kg, as well as 120 mg/kg valproic acid, led to a decreased number of glial fibrillary acidic protein-positive cells and glial fibrillary acidic protein mRNA expression, as well as decreased seizure grades and frequency of spontaneously recurrent seizures. The effects of 1 160 mg/kg ethanol extracts of scorpion were equal to those of 120 mg/kg valproic acid. These results suggested that the anti-epileptic effect of ethanol extracts of scorpion were associated with decreased hippocampal glial fibrillary acidic protein expression in a rat model of lithium chloride-pilocarpine induced epilepsy.

  20. The sigma-receptor antagonist BD-1063 decreases ethanol intake and reinforcement in animal models of excessive drinking.

    Science.gov (United States)

    Sabino, Valentina; Cottone, Pietro; Zhao, Yu; Iyer, Malliga R; Steardo, Luca; Steardo, Luca; Rice, Kenner C; Conti, Bruno; Koob, George F; Zorrilla, Eric P

    2009-05-01

    Sigma-Receptors (SigRs) have been implicated in behavioral and appetitive effects of psychostimulants and may also modulate the motivating properties of ethanol. This study tested the hypothesis that SigRs modulate ethanol reinforcement and contribute to excessive ethanol intake. The effects of subcutaneous treatment with the potent, selective Sig-1R antagonist BD-1063 on operant ethanol self-administration were studied in two models of excessive drinking-Sardinian alcohol-preferring (sP) rats and acutely withdrawn ethanol-dependent Wistar rats-and compared to ethanol self-administration in nondependent Wistar controls. To assess the specificity of action, the effects of BD-1063 on self-administration of an equally reinforcing saccharin solution were determined in Wistar and sP rats. Gene expression of Sig-1R in reward-related brain areas implicated in ethanol reinforcement was compared between ethanol-naive sP and Wistar rats and withdrawn ethanol-dependent Wistar rats. BD-1063 dose dependently reduced ethanol self-administration in sP rats (3.3-11 mg/kg) and withdrawn, dependent Wistar rats (4-11 mg/kg) at doses that did not modify mean ethanol self-administration in nondependent Wistar controls. BD-1063 did not reduce concurrent water self-administration and did not comparably suppress saccharin self-administration, suggesting selectivity of action. BD-1063 also reduced the breakpoints of sP rats to work for ethanol under a progressive-ratio reinforcement schedule. Ethanol-naive sP rats and 24-h withdrawn, dependent Wistar rats showed reduced Sig-1R mRNA expression in the nucleus accumbens. The results suggest that SigR systems may contribute to innate or ethanol-induced increases in susceptibility to self-administer high ethanol levels, identifying a potential neuroadaptive mechanism contributing to excessive drinking and a therapeutic target for alcohol abuse and dependence.

  1. The effect of low concentrations of ethanol on gastric adenocarcinoma cell lines

    OpenAIRE

    Wu Lingjiao; Chen Shaohua; Zhang Yu; Pan Hongming

    2014-01-01

    Chronic alcohol consumption has been identified as a significant risk factor for cancer in humans. The aim of the study was to analyze the influence of low concentrations of ethanol on gastric adenocarcinoma cell viability, apoptosis, and changes in the expression of alcohol dehydrogenase with ethanol treatment. Gastric adenocarcinoma cell lines (MGC803, MGC823 and SGC7901) were treated with different concentrations of ethanol (0.03125%, 0.0625%, 0.125%, 0....

  2. Antimalarial properties of Artemisia vulgaris L. ethanolic leaf extract in a Plasmodium berghei murine malaria model

    Directory of Open Access Journals (Sweden)

    Gayan S. Bamunuarachchi

    2013-12-01

    Full Text Available Background & objectives: Artemisinin isolated from Artemisia annua is the most potent antimalarial drug against chloroquine-resistant Plasmodium falciparum malaria. Artemisia vulgaris, an invasive weed, is the only Artemisia species available in Sri Lanka. A pilot study was undertaken to investigate the antiparasitic activity of an A. vulgaris ethanolic leaf extract (AVELE in a P. berghei ANKA murine malaria model that elicits pathogenesis similar to falciparum malaria. Methods: A 4-day suppressive and the curative assays determined the antiparasitic activity of AVELE using four doses (250, 500, 750 and 1000 mg/kg, Coartem® as the positive control and 5% ethanol as the negative control in male ICR mice infected with P. berghei. Results: The 500, 750 and 1000 mg/kg doses of AVELE significantly (p ≤0.01 inhibited parasitaemia by 79.3, 79.6 and 87.3% respectively, in the 4-day suppressive assay, but not in the curative assay. Chronic administration of the high dose of AVELE ruled out overt signs of toxicity and stress as well as hepatotoxicity, renotoxicity and haematotoxicity. Interpretation & conclusion: The oral administration of a crude ethonolic leaf extract of A. vulgaris is non-toxic and possesses potent antimalarial properties in terms of antiparasitic activity.

  3. A novel strategy for the treatment of chronic wounds based on the topical administration of rhEGF-loaded lipid nanoparticles: In vitro bioactivity and in vivo effectiveness in healing-impaired db/db mice.

    Science.gov (United States)

    Gainza, Garazi; Pastor, Marta; Aguirre, José Javier; Villullas, Silvia; Pedraz, José Luis; Hernandez, Rosa Maria; Igartua, Manoli

    2014-07-10

    Lipid nanoparticles are currently receiving increasing interest because they permit the topical administration of proteins, such as recombinant human epidermal growth factor (rhEGF), in a sustained and effective manner. Because chronic wounds have become a major healthcare burden, the topical administration of rhEGF-loaded lipid nanoparticles, namely solid lipid nanoparticles (SLN) and nanostructured lipid carries (NLC), appears to be an interesting and suitable strategy for the treatment of chronic wounds. Both rhEGF-loaded lipid nanoparticles were prepared through the emulsification-ultrasonication method; however, the NLC-rhEGF preparation did not require the use of any organic solvents. The characterisation of the nanoparticles (NP) revealed that the encapsulation efficiency (EE) of NLC-rhEGF was significantly greater than obtained with SLN-rhEGF. The in vitro experiments demonstrated that gamma sterilisation is a suitable process for the final sterilisation because no loss in activity was observed after the sterilisation process. In addition, the proliferation assays revealed that the bioactivity of the nanoformulations was even higher than that of free rhEGF. Finally, the effectiveness of the rhEGF-loaded lipid nanoparticles was assayed in a full-thickness wound model in db/db mice. The data demonstrated that four topical administrations of SLN-rhEGF and NLC-rhEGF significantly improved healing in terms of wound closure, restoration of the inflammatory process, and re-epithelisation grade. In addition, the data did not reveal any differences in the in vivo effectiveness between the different rhEGF-loaded lipid nanoparticles. Overall, these findings demonstrate the promising potential of rhEGF-loaded lipid nanoparticles, particularly NLC-rhEGF, for the promotion of faster and more effective healing and suggest their future application for the treatment of chronic wounds.

  4. Chronic administration of the metastin/kisspeptin analog KISS1-305 or the investigational agent TAK-448 suppresses hypothalamic pituitary gonadal function and depletes plasma testosterone in adult male rats.

    Science.gov (United States)

    Matsui, Hisanori; Tanaka, Akira; Yokoyama, Kotaro; Takatsu, Yoshihiro; Ishikawa, Kaori; Asami, Taiji; Nishizawa, Naoki; Suzuki, Atsuko; Kumano, Satoshi; Terada, Michiko; Kusaka, Masami; Kitada, Chieko; Ohtaki, Tetsuya

    2012-11-01

    Metastin/kisspeptin, a hypothalamic peptide, plays a pivotal role in controlling GnRH neurons. Here we studied the effect of chronic sc administration of two kisspeptin analogs, KISS1-305 and TAK-448, on hypothalamic-pituitary-gonadal function in male rats in comparison with a GnRH analogue leuprolide or bilateral orchiectomy (ORX). The prototype polypeptide, KISS1-305 (1-4 nmol/h), caused substantial elevations of plasma LH and testosterone, followed by abrupt reductions of both hormone levels. Notably, testosterone levels were reduced to castrate levels within 3 d and remained depleted throughout the 4-wk dosing period, an effect that was faster and more pronounced than leuprolide (1 nmol/h) dosing. KISS1-305 also reduced genital organ weight more profoundly than leuprolide. In mechanistic studies, chronic KISS1-305 administration only transiently induced c-Fos expression in GnRH neurons, suggesting that GnRH-neural response was attenuated over time. Hypothalamic GnRH content was reduced to 10-20% of control at 3 wk without any changes in Gnrh mRNA expression. Dosing with the investigational peptide TAK-448 was also studied to extend our understanding of hypothalamic-pituitary functions. Similar to ORX, TAK-448 (0.1 nmol/h) depleted testosterone and decreased GnRH content by 4 wk. However, in contrast to ORX, TAK-448 decreased gonadotropin levels in pituitary and plasma samples, implying the suppression of GnRH pulses. These results suggest that chronic administration of kisspeptin analogs disrupts endogenous kisspeptin signals to suppress intrinsic GnRH pulses, perhaps by attenuating GnRH-neural response and inducing continuous GnRH leakage from the hypothalamus. The potential utility of kisspeptin analogs as novel agents to treat hormone-related diseases, including prostate cancer, is discussed.

  5. Role of phosphodiesterase-4 on ethanol elicited locomotion and narcosis.

    Science.gov (United States)

    Baliño, Pablo; Ledesma, Juan Carlos; Aragon, Carlos M G

    2016-02-01

    The cAMP signaling pathway has emerged as an important modulator of the pharmacological effects of ethanol. In this respect, the cAMP-dependent protein kinase has been shown to play an important role in the modulation of several ethanol-induced behavioral actions. Cellular levels of cAMP are maintained by the activity of adenylyl cyclases and phosphodiesterases. In the present work we have focused on ascertaining the role of PDE4 in mediating the neurobehavioral effects of ethanol. For this purpose, we have used the selective PDE4 inhibitor Ro 20-1724. This compound has been proven to enhance cellular cAMP response by PDE4 blockade and can be administered systemically. Swiss mice were injected intraperitoneally (i.p.) with Ro 20-1724 (0-5 mg/kg; i.p.) at different time intervals before ethanol (0-4 g/kg; i.p.) administration. Immediately after the ethanol injection, locomotor activity, loss of righting reflex, PKA footprint and enzymatic activity were assessed. Pretreatment with Ro 20-1724 increased ethanol-induced locomotor stimulation in a dose-dependent manner. Doses that increased locomotor stimulation did not modify basal locomotion or the suppression of motor activity produced by high doses of this alcohol. Ro 20-1724 did not alter the locomotor activation produced by amphetamine or cocaine. The time of loss of righting reflex evoked by ethanol was increased after pretreatment with Ro 20-1724. This effect was selective for the narcotic effects of ethanol since Ro 20-1724 did not affect pentobarbital-induced narcotic effects. Moreover, Ro 20-1724 administration increased the PKA footprint and enzymatic activity response elicited by ethanol. These data provide further evidence of the key role of the cAMP signaling pathway in the central effects of ethanol.

  6. Post-drug consequences of chronic atypical antipsychotic drug administration on the ability to adjust behavior based on feedback in young monkeys

    NARCIS (Netherlands)

    Mandell, D.J.; Unis, A.; Sackett, G.P.

    2011-01-01

    Rationale: Atypical antipsychotic drugs are characterized by their affinity for serotonin and dopamine receptors. The dopaminergic system undergoes developmental changes during childhood, making it vulnerable to external influences such as drug administration. Objective: The purpose of this study wa

  7. Prolonged Increase in the Sensitivity of the Posterior Ventral Tegmental Area to the Reinforcing Effects of Ethanol following Repeated Exposure to Cycles of Ethanol Access and Deprivation

    OpenAIRE

    Rodd, Zachary A.; Bell, Richard L.; McQueen, Victoria K.; Davids, Michelle R.; Hsu, Cathleen C.; Murphy, James M.; Li, Ting-Kai; Lumeng, Lawrence; McBride, William J.

    2005-01-01

    The posterior ventral tegmental area (VTA) is a neuroanatomical substrate mediating the reinforcing effects of ethanol in rats. Repeated alcohol deprivations produce robust ethanol intakes of alcohol-preferring (P) rats during relapse and increase the reinforcing effects of oral alcohol self-administration. The objective of this study was to test the hypothesis that alcohol drinking and repeated alcohol deprivations will increase the reinforcing effects of ethanol within the posterior VTA of ...

  8. Chronic ethanol exposure combined with high fat diet up-regulates P2X7 receptors that parallels neuroinflammation and neuronal loss in C57BL/6J mice.

    Science.gov (United States)

    Asatryan, Liana; Khoja, Sheraz; Rodgers, Kathleen E; Alkana, Ronald L; Tsukamoto, Hidekazu; Davies, Daryl L

    2015-08-15

    The present investigation tested the role of ATP-activated P2X7 receptors (P2X7Rs) in alcohol-induced brain damage using a model that combines intragastric (iG) ethanol feeding and high fat diet in C57BL/6J mice (Hybrid). The Hybrid paradigm caused increased levels of pro-inflammatory markers, changes in microglia and astrocytes, reduced levels of neuronal marker NeuN and increased P2X7R expression in ethanol-sensitive brain regions. Observed changes in P2X7R and NeuN expression were more pronounced in Hybrid paradigm with inclusion of additional weekly binges. In addition, high fat diet during Hybrid exposure aggravated the increase in P2X7R expression and activation of glial cells.

  9. Effects of Repeated Ethanol Exposures on NMDA Receptor Expression and Locomotor Sensitization in Mice Expressing Ethanol Resistant NMDA Receptors

    Science.gov (United States)

    den Hartog, Carolina R.; Gilstrap, Meghin; Eaton, Bethany; Lench, Daniel H.; Mulholland, Patrick J.; Homanics, Gregg. E.; Woodward, John J.

    2017-01-01

    Evidence from a large number of preclinical studies suggests that chronic exposure to drugs of abuse, such as psychostimulants or ethanol induces changes in glutamatergic transmission in key brain areas associated with reward and control of behavior. These changes include alterations in the expression of ionotropic glutamate receptors including N-methyl-D-aspartate receptors (NMDAR) that are important for regulating neuronal activity and synaptic plasticity. NMDA receptors are inhibited by ethanol and reductions in NMDA-mediated signaling are thought to trigger homestatic responses that limit ethanol's effects on glutamatergic transmission. Following repeated exposures to ethanol, these homeostatic responses may become unstable leading to an altered glutamatergic state that contributes to the escalations in drinking and cognitive deficits observed in alcohol-dependent subjects. An important unanswered question is whether ethanol-induced changes in NMDAR expression are modulated by the intrinsic sensitivity of the receptor to ethanol. In this study, we examined the effects of ethanol on NMDAR subunit expression in cortical (orbitofrontal, medial prefrontal), striatal (dorsal and ventral striatum) and limbic (dorsal hippocampus, basolateral amygdala) areas in mice genetically modified to express ethanol-resistant receptors (F639A mice). These mice have been previously shown to drink more ethanol than their wild-type counterparts and have altered behavioral responses to certain actions of ethanol. Following long-term voluntary drinking, F639A mice showed elevations in GluN2A but not GluN1 or GluN2B expression as compared to wild-type mice. Mice treated with repeated injections with ethanol (2–3.5 g/kg; i.p.) showed changes in NMDAR expression that varied in a complex manner with genotype, brain region, subunit type and exposure protocol all contributing to the observed response. F639A mice, but not wild-type mice, showed enhanced motor activity following repeated

  10. Drug interaction between ethanol and 3,4-methylenedioxymethamphetamine ("ecstasy").

    Science.gov (United States)

    Upreti, Vijay V; Eddington, Natalie D; Moon, Kwan-Hoon; Song, Byoung-Joon; Lee, Insong J

    2009-07-24

    Alcohol (ethanol) and 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) are frequently co-abused, but recent findings indicate a harmful drug interaction between these two agents. In our previous study, we showed that MDMA exposure inhibits the activity of the acetaldehyde (ACH) metabolizing enzyme, aldehyde dehydrogenase2 (ALDH2). Based on this finding, we hypothesized that the co-administration of MDMA and ethanol would reduce the metabolism of ACH and result in increased accumulation of ACH. Rats were treated with MDMA or vehicle and then administered a single dose of ethanol. Liver ALDH2 activity decreased by 35% in the MDMA-treated rats compared to control rats. The peak concentration and the area under the concentration versus time curve of plasma ACH were 31% and 59% higher, respectively, in the MDMA-ethanol group compared to the ethanol-only group. In addition, the MDMA-ethanol group had 80% higher plasma transaminase levels than the ethanol-only group, indicating greater hepatocellular damage. Our results not only support a drug interaction between MDMA and ethanol but a novel underlying mechanism for the interaction.

  11. Tolerância a agente curarizante provocada pela administração repetida da droga Tolerance to curarizing drug induced by chronic administration: an experimental study

    Directory of Open Access Journals (Sweden)

    Antonio Carlos Zanini

    1974-03-01

    effective dose of DMT was determined by a "third part blind" when a 80% block was attained. When only 10 high frequency stimuli were applied to the nerve, a significant difference (p<0.05 in response was observed: Group I, 46.50 ± 20.00 g+; Group II, 55.25 ± 11.33 g+; Group III, 37.25 ± 10.77 g+; Group IV, 37.00 ± 12.74 g+. Significant differences in muscular force were also observed with sustained tetanus: Group I, 79.00 ± 16.21 g+; Group II, 76.75 ± 15.23 g+; Group III, 59.12 ± 17.38 g+; Group IV, 61.62 ± 14.74 g. Significant higher doses of curare i.v. were necessary in the group injected daily with the highest dose of curare than in any other group (p < 0.01: Group I, 3.62 ± 1.17 mcg/kg; Group II, 3.69 ± 1.21 mcg/kg; Group III, 4.01 ± 0.80 mcg/kg; Group IV, 5.48 ± 1.40. These results show that chronic administration of curare leads to physical weakness and hyposensitivity to the drug, thus suggesting that although the existence of a curarizing drug in the human blood may in fact contribute for the muscular weakness of the myasthenic patient, the blood curare does not play a major role in the pathogenesis of the syndrome since the myasthenic patient is highly sensitive to the injection of any curare.

  12. Histone acetylation of the htr3a gene in the prefrontal cortex of Wistar rats regulates ethanol-seeking behavior

    Institute of Scientific and Technical Information of China (English)

    Yahui Xu; Xuebing Liu; Xiaojie Zhang; Guanbai Zhang; Ruiling Zhang; Tieqiao Liu; Wei Hao

    2012-01-01

    Previous reports showed that decreased histone deacetylase activity significantly potentiated the rewarding effects of psychostimulants, and that encoding of the 5-HT3 receptor by the htr3a gene was related to ethanol-seeking behavior. However, the effects of a histone deacetylase inhibitor on ethanol-seeking behavior and epigenetic regulation of htr3a mRNA expression after chronic ethanol exposure are not fully understood. Using quantitative reverse transcription-polymerase chain reaction and chromatin immunoprecipitation analysis, we investigated the effects of chronic ethanol exposure and its interaction with a histone deacetylase inhibitor on histone-acetylation-mediated changes in htr3a mRNA expression in the htr3a promoter region. The conditioned place preference procedure was used to evaluate ethanol-seeking behavior. Chronic exposure to ethanol effectively elicited place conditioning. In the prefrontal cortex, the acetylation of H3K9 and htr3a mRNA expression in the htr3a promoter region were significantly higher in the ethanol group than in the saline group. The histone deacetylase inhibitor sodium butyrate potentiated the effects of ethanol on htr3a mRNA expression and enhanced ethanol-induced conditioned place preferences. These results suggest that ethanol upregulates htr3a levels through mechanisms involving H3K9 acetylation, and that histone acetylation may be a therapeutic target for treating ethanol abuse.

  13. Influence of zinc sulfate intake on acute ethanol-induced liver injury in rats

    Institute of Scientific and Technical Information of China (English)

    Sema Bolkent; Pelin Arda-Pirincci; Sehnaz Bolkent; Refiye Yanardag; Sevim Tunali; Sukriye Yildirim

    2006-01-01

    AIM: To investigate the role of metallothionein and proliferating cell nuclear antigen (PCNA) on the morphological and biochemical effects of zinc sulfate in ethanol-induced liver injury.METHODS: Wistar albino rats were divided into four groups. Group I; intact rats, group Ⅱ; control rats given only zinc, group Ⅲ; animals given absolute ethanol, group Ⅳ; rats given zinc and absolute ethanol.Ethanol-induced injury was produced by the 1 mL of absolute ethanol, administrated by gavage technique to each rat. Animals received 100 mg/kg per day zinc sulfate for 3 d 2 h prior to the administration of absolute ethanol.RESULTS: Increases in metallothionein immunoreactivity in control rats given only zinc and rats given zinc and ethanol were observed. PCNA immunohistochemistry showed that the number of PCNA-positive hepatocytes was increased significantly in the livers of rats administered ethanol + zinc sulfate. Acute ethanol exposure caused degenerative morphological changes in the liver. Blood glutathione levels decreased, serum alkaline phosphatase and aspartate transaminase activities increased in the ethanol group when compared to the control group. Liver glutathione levels were reduced, but lipid peroxidation increased in the livers of the group administered ethanol as compared to the other groups. Administration of zinc sulfate in the ethanol group caused a significant decrease in degenerative changes, lipid peroxidation, and alkaline phosphatase and aspartate transaminase activities, but an increase in liver glutathione.CONCLUSION: Zinc sulfate has a protective effect on ethanol-induced liver injury. In addition, cell proliferation may be related to the increase in metallothionein immunoreactivity in the livers of rats administered ethanol + zinc sulfate.

  14. Is there a role for leukotrienes as mediators of ethanol-induced gastric mucosal damage

    Energy Technology Data Exchange (ETDEWEB)

    Wallace, J.L.; Beck, P.L.; Morris, G.P. (Queen' s Univ., Kingston, Ontario (Canada))

    1988-01-01

    The role of leukotriene (LT) C{sub 4} as a mediator of ethanol-induced gastric mucosal damage was investigated. Rats were pretreated with a number of compounds, including inhibitors of leukotriene biosynthesis and agents that have previously been shown to reduce ethanol-induced damage prior to oral administration of absolute ethanol. Ethanol administration resulted in a fourfold increase in LTC{sub 4} synthesis. LTC{sub 4} synthesis could be reduced significantly by pretreatment with L651,392 or dexamethosone without altering the susceptibility of the gastric mucosa to ethanol-induced damage. Furthermore, changes in LBT{sub 4} synthesis paralleled the changes in LTC{sub 4} synthesis observed after ethanol administration. The effects of ethanol on gastric eicosanoid synthesis were further examined using an ex vivo gastric chamber preparation that allowed for application of ethanol to only one side of the stomach. These studies confirm that ethanol can stimulate gastric leukotriene synthesis independent of the production of hemorrhagic damage. Inhibition of LTC{sub 4} synthesis does not confer protection to the mucosa, suggesting that LTC{sub 4} does not play an important role in the etiology of ethanol-induced gastric damage.

  15. Studies on psychomotoric effects and pharmacokinetic interactions of the new calcium sensitizing drug levosimendan and ethanol.

    Science.gov (United States)

    Antila, S; Järvinen, A; Akkila, J; Honkanen, T; Karlsson, M; Lehtonen, L

    1997-07-01

    Levosimendan (CAS 141505-33-1) is a calcium sensitizing drug intended for the treatment of congestive heart failure. In animal experiments levosimendan has potentiated the sedative effects of ethanol. Due to poor water solubility of the compound, ethanol is used as a diluent in the intravenous formulation. In this study the possible interactions between levosimendan and ethanol in human have been studied. Twelve healthy male volunteers were included in this double-blind, randomized, cross-over study. The study consisted of three treatment periods: levosimendan 1 mg intravenously, levosimendan combined with ethanol orally and ethanol 0.8 g/kg alone. Blood samples for determination of levosimendan and ethanol concentrations were collected for 8 h after the dosing. To observe possible pharmacodynamic interactions psychomotoric tests were made before drug administration and 1h, 2h, 3h and 6h thereafter. These tests included Digit symbol substitution test, Maddox wing, Critical Flicker fusion and VAS-test for subjective assessment of performance status. Plasma levosimendan concentrations were not changed by the concomitant ethanol administration. Ethanol did not alter the pharmacokinetics of levosimendan except the volume of distribution of central compartment which was decreased. Levosimendan did neither affect elimination of ethanol. Levosimendan did not potentiate the psychomotoric effects of ethanol neither did it have any psychomotoric effects itself. In conclusion, levosimendan is not likely to have any psychomotoric adverse effects or any clinically significant interactions with ethanol.

  16. S-adenosylmethionine Administration Attenuates Low Brain-Derived Neurotrophic Factor Expression Induced by Chronic Cerebrovascular Hypoperfusion or Beta Amyloid Treatment.

    Science.gov (United States)

    Li, Qian; Cui, Jing; Fang, Chen; Zhang, Xiaowen; Li, Liang

    2016-04-01

    Chronic cerebrovascular hypoperfusion is a high-risk factor for Alzheimer's disease (AD) as it is conducive to beta amyloid (Aβ) over-production. Brain-derived neurotrophic factor (BDNF) is a member of the neurotrophin family widely expressed in the central nervous system. The structure of the rat BDNF gene is complex, consisting of eight non-coding exons (I-VIII) and one coding exon (IX). The BDNF gene is transcribed from multiple promoters located upstream of different 5' non-coding exons to produce a heterogeneous population of BDNF mRNAs. S-adenosylmethionine (SAM) produced in the methionine cycle is the primary methyl donor and the precursor of glutathione. In this study, a cerebrovascular hypoperfusion rat model and an Aβ intrahippocampal injection rat model were used to explore the expression profiles of all BDNF transcripts in the hippocampus with chronic cerebrovascular hypoperfusion or Aβ injection as well as with SAM treatment. We found that the BDNF mRNAs and protein were down-regulated in the hippocampus undergoing chronic cerebrovascular hypoperfusion as well as Aβ treatment, and BDNF exons IV and VI played key roles. SAM improved the low BDNF expression following these insults mainly through exons IV and VI. These results suggest that SAM plays a neuroprotective role by increasing the expression of endogenous BDNF and could be a potential target for AD therapy.

  17. Comparative study of equimolar doses of gamma-hydroxybutyrate (GHB), 1,4-butanediol (1,4-BD) and gamma-butyrolactone (GBL) on catalepsy after acute and chronic administration.

    Science.gov (United States)

    Towiwat, Pasarapa; Phattanarudee, Siripan; Maher, Timothy J

    2013-01-01

    Gamma-hydroxybutyrate (GHB), and its precursors 1,4-butanediol (1,4-BD) and gamma-butyrolactone (GBL) are known drugs of abuse. The ability of acute and chronic administration of equimolar doses of GHB (200mg/kg), 1,4-BD (174mg/kg) and GBL (166mg/kg) to produce catalepsy in male Swiss Webster mice was examined. GHB, 1,4-BD, GBL produced catalepsy when injected acutely. Drug treatment was then continued for 14days. Tolerance development was determined on days 6, 14, and challenged with a higher dose on day 15 in those chronically pretreated mice, and compared with naïve mice. Chronic GHB produced tolerance to catalepsy, as evidenced from area under the curve (AUC) of catalepsy versus time (min-sec) on days 6 (678±254), 14 (272±247), which were less than those on day 1 (1923±269). However, less tolerance was seen from GBL or 1,4-BD, as AUCs on days 6 and 14 were not significantly lower than that of day 1. In conclusion, although equimolar doses were used, expecting similar levels of GHB in the body, 1,4-BD and GBL shared only some of the in vivo effects of GHB. The rate of metabolic conversion of 1,4-BD and GBL into GHB might be responsible for the differences in the tolerance development to these drugs.

  18. Species-specific inflammatory responses as a primary component for the development of glomerular lesions in mice and monkeys following chronic administration of a second-generation antisense oligonucleotide.

    Science.gov (United States)

    Frazier, Kendall S; Sobry, Cécile; Derr, Victoria; Adams, Mike J; Besten, Cathaline Den; De Kimpe, Sjef; Francis, Ian; Gales, Tracy L; Haworth, Richard; Maguire, Shaun R; Mirabile, Rosanna C; Mullins, David; Palate, Bernard; Doorten, Yolanda Ponstein-Simarro; Ridings, James E; Scicchitano, Marshall S; Silvano, Jérémy; Woodfine, Jennie

    2014-07-01

    Chronic administration of drisapersen, a 2'-OMe phosphorothioate antisense oligonucleotide (AON) to mice and monkeys resulted in renal tubular accumulation, with secondary tubular degeneration. Glomerulopathy occurred in both species with species-specific characteristics. Glomerular lesions in mice were characterized by progressive hyaline matrix accumulation, accompanied by the presence of renal amyloid and with subsequent papillary necrosis. Early changes involved glomerular endothelial hypertrophy and degeneration, but the chronic glomerular amyloid and hyaline alterations in mice appeared to be species specific. An immune-mediated mechanism for the glomerular lesions in mice was supported by early inflammatory changes including increased expression of inflammatory cytokines and other immunomodulatory genes within the renal cortex, increased stimulation of CD68 protein, and systemic elevation of monocyte chemotactic protein 1. In contrast, kidneys from monkeys given drisapersen chronically showed less severe glomerular changes characterized by increased mesangial and inflammatory cells, endothelial cell hypertrophy, and subepithelial and membranous electron-dense deposits, with ultrastructural and immunohistochemical characteristics of complement and complement-related fragments. Lesions in monkeys resembled typical features of C3 glomerulopathy, a condition described in man and experimental animals to be linked to dysregulation of the alternative complement pathway. Thus, inflammatory/immune mechanisms appear critical to glomerular injury with species-specific sensitivities for mouse and monkey. The lower observed proinflammatory activity in humans as compared to mice and monkeys may reflect a lower risk of glomerular injury in patients receiving AON therapy.

  19. Decrease of D2 receptor binding but increase in D2-stimulated G-protein activation, dopamine transporter binding and behavioural sensitization in brains of mice treated with a chronic escalating dose 'binge' cocaine administration paradigm.

    Science.gov (United States)

    Bailey, A; Metaxas, A; Yoo, J H; McGee, T; Kitchen, I

    2008-08-01

    Understanding the neurobiology of the transition from initial drug use to excessive drug use has been a challenge in drug addiction. We examined the effect of chronic 'binge' escalating dose cocaine administration, which mimics human compulsive drug use, on behavioural responses and the dopaminergic system of mice and compared it with a chronic steady dose (3 x 15 mg/kg/day) 'binge' cocaine administration paradigm. Male C57BL/6J mice were injected with saline or cocaine in an escalating dose paradigm for 14 days. Locomotor and stereotypy activity were measured and quantitative autoradiographic mapping of D(1) and D(2) receptors, dopamine transporters and D(2)-stimulated [(35)S]GTPgammaS binding was performed in the brains of mice treated with this escalating and steady dose paradigm. An initial sensitization to the locomotor effects of cocaine followed by a dose-dependent increase in the duration of the locomotor effect of cocaine was observed in the escalating but not the steady dose paradigm. Sensitization to the stereotypy effect of cocaine and an increase in cocaine-induced stereotypy score was observed from 3 x 20 to 3 x 25 mg/kg/day cocaine. There was a significant decrease in D(2) receptor density, but an increase in D(2)-stimulated G-protein activity and dopamine transporter density in the striatum of cocaine-treated mice, which was not observed in our steady dose paradigm. Our results document that chronic 'binge' escalating dose cocaine treatment triggers profound behavioural and neurochemical changes in the dopaminergic system, which might underlie the transition from drug use to compulsive drug use associated with addiction, which is a process of escalation.

  20. Inhibitors of biofilm formation by fuel ethanol contaminants

    Science.gov (United States)

    Industrial fuel ethanol production suffers from chronic and acute infections that reduce yields and cause “stuck fermentations” that result in costly shutdowns. Lactic acid bacteria, particularly Lactobacillus sp., are recognized as major contaminants. In previous studies, we observed that certain...