WorldWideScience

Sample records for chromospheric activity rotation

  1. Chromospheric activity and rotational modulation of the RS Canum Venaticorum binary V711 Tauri during 1998-2004

    Science.gov (United States)

    Cao, Dongtao; Gu, Shenghong

    2015-05-01

    We present long-term high-resolution spectroscopic observations of the very active RS Canum Venaticorum-type star V711 Tau, obtained during several observing runs from 1998 to 2004, and study its chromospheric activity. Using the spectral subtraction technique, several optical chromospheric activity indicators [including the He I D3, Na I D1, D2, Hα and Ca II infrared triplet (IRT) lines] formed at different atmospheric heights are analysed. Strong chromospheric emission supports earlier results that indicate that V711 Tau is a very active system. Two large optical flares were detected during our observations. The results suggest that the main part of chromospheric emission is attributed to the primary star of the system. The secondary also presents weak emission but is less active. The ratios of EW8542/EW8498 indicate that Ca II IRT emission arises predominantly from plage-like regions. We have found rotational modulation of chromospheric activity in the Hα and Ca II IRT lines, which suggests the presence of the chromospheric active longitudes over the surface of V711 Tau. Two active longitudes separated by about 180° were observed to dominate the activity, and the so-called flip-flop phenomenon was seen during our observations. Moreover, the chromospheric activity level shows a long-term variation that gradually increases from a deep minimum near the year 2002. A close spatial connection of photospheric spots and chromospheric active regions in both short and long timescales was found for V711 Tau.

  2. Chromospheric activity among fast rotating M-dwarfs in the open cluster NGC 2516

    CERN Document Server

    Jackson, R J

    2010-01-01

    We report radial velocities (RVs), projected equatorial velocities (v sin i) and CaII triplet (CaT) chromospheric activity indices for 237 late-K to mid-M candidate members of the young open cluster NGC 2516. These stars have rotation periods between 0.1 and 15 days. Intermediate resolution spectra were obtained using the Giraffe spectrograph at the Very Large Telescope. Membership was confirmed on the basis of RVs for 210 targets. We see a marked increase in the fraction of rapidly rotators as we move to cooler spectral types. About 20 per cent of M0-M1 stars have v sin i >15km/s, increasing to 90 per cent of M4 stars. Activity indices derived from the first two lines of the CaT (8498A and 8542A) show differing dependencies on rotation period and mass for stars lying above and below the fully convective boundary. Higher mass stars, of spectral type K3-M2.5, show chromospheric activity which increases with decreasing Rossby number (the ratio of period to convective turnover time), saturating for Rossby number...

  3. Stellar Chromospheric Activity

    Directory of Open Access Journals (Sweden)

    Hall Jeffrey C.

    2008-03-01

    Full Text Available The Sun, stars similar to it, and many rather dissimilar to it, have chromospheres, regions classically viewed as lying above the brilliant photosphere and characterized by a positive temperature gradient and a marked departure from radiative equilibrium. Stellar chromospheres exhibit a wide range of phenomena collectively called activity, stemming largely from the time evolution of their magnetic fields and the mass flux and transfer of radiation through the complex magnetic topology and the increasingly optically thin plasma of the outer stellar atmosphere. In this review, I will (1 outline the development of our understanding of chromospheric structure from 1960 to the present, (2 discuss the major observational programs and theoretical lines of inquiry, (3 review the origin and nature of both solar and stellar chromospheric activity and its relationship to, and effect on, stellar parameters including total energy output, and (4 summarize the outstanding problems today.

  4. Chromospheric mass motions and intrinsic sunspot rotations for NOAA Active Regions 10484, 10486, and 10488 using ISOON data

    OpenAIRE

    Hardersen, Paul S.; Balasubramaniam, K. S.; Shkolyar, Svetlana

    2013-01-01

    This work utilizes Improved Solar Observing Optical Network (ISOON: Neidig et al. 2003) continuum (630.2 nm) and H{\\alpha} (656.2 nm) data to: 1) detect and measure intrinsic sunspot rotations occurring in the photosphere and chromosphere, 2) identify and measure chromospheric filament mass motions, and 3) assess any large-scale photospheric and chromospheric mass couplings. Significant results from October 27-29, 2003, using the techniques of Brown et al. (2003), indicate significant counter...

  5. CHROMOSPHERIC MASS MOTIONS AND INTRINSIC SUNSPOT ROTATIONS FOR NOAA ACTIVE REGIONS 10484, 10486, AND 10488 USING ISOON DATA

    International Nuclear Information System (INIS)

    This work utilizes Improved Solar Observing Optical Network continuum (630.2 nm) and Hα (656.2 nm) data to: (1) detect and measure intrinsic sunspot rotations occurring in the photosphere and chromosphere, (2) identify and measure chromospheric filament mass motions, and (3) assess any large-scale photospheric and chromospheric mass couplings. Significant results from 2003 October 27-29, using the techniques of Brown et al., indicate significant counter-rotation between the two large sunspots in NOAA AR 10486 on October 29, as well as discrete filament mass motions in NOAA AR 10484 on October 27 that appear to be associated with at least one C-class solar flare

  6. Detailed Chromospheric Activity Nature of KIC 9641031

    CERN Document Server

    Yoldaş, Ezgi

    2016-01-01

    This study depends on KIC 9641031 eclipsing binary system with a chromospherically active component. There are three type variations, such as geometrical variations due to eclipses, sinusoidal variations due to the rotational modulations and also flares, in the light curves obtained with the data taken from the Kepler Mission Database. Taking into account results obtained from KIC 9641031's observations in the Kepler Mission Database, we present and discuss the details of chromospheric activity. The sinusoidal light variations due to rotational modulation and the flare events were modelled separately. 92 different data subsets separated using the analytic models described in the literature were modelled separately to obtain the cool spot configuration. It is seen that just one component of the system is chromospherically active star. On this component, there are two active regions separated by about 180 deg longitudinally between the latitudes of +50 deg and +100 deg, whose locations and forms are rapidly cha...

  7. Chromospheric activity as age indicator

    CERN Document Server

    Pace, Giancarlo

    2013-01-01

    Chromospheric activity has been calibrated and widely used as age indicator. However, it has been suggested that the viability of such an age indicator is, in the best case, limited to stars younger than about 1.5 Gyr. I aim to define the age range for which chromospheric activity is a robust astrophysical clock. I collected literature measurements of the S-index in field stars, which is a measure of the strength of the H and K lines of the Ca II and a proxy for chromospheric activity, and exploited the homogeneous database of temperature and age determinations for field stars provided by the Geneva-Copenhagen survey of the Solar neighbourhood. Field data, inclusive data previously used to calibrate chromospheric ages, confirm the result found using open cluster data, i.e. there is no decay of chromospheric activity after about 2 Gyr. The only existing indication supporting the viability of chromospheric ages larger than 2 Gyr, is the similarity of chromospheric activity levels in the components of 35 dwarf b...

  8. Photospheric and chromospheric activity on EY Dra

    CERN Document Server

    Korhonen, H; Holhjem, K; Ramstedt, S; Rantala, J; Thoene, C C; Vida, K

    2007-01-01

    Magnetic activity in the photosphere and chromosphere of the M dwarf EY Dra is studied and possible correlations between the two are investigated using photometric observations in the V and R bands and optical and near infrared spectroscopy. The longitudinal spot configuration in the photosphere is obtained from the V band photometry, and the chromospheric structures are investigated using variations in the H alpha line profile and observations of the Paschen beta line. The shape of the V band light-curve indicates two active regions on the stellar surface, about 0.4 in phase apart. The spectroscopic observations show enhanced H alpha emission observed close to the phases of the photometrically detected starspots. This could indicate chromospheric plages associated with the photospheric starspots. Some indications of prominence structures are also seen. The chromospheric pressure is limited to logTR < -4 based on the non-detection of emission in the Paschen beta wavelength region.

  9. Photospheric and chromospheric activity on EY Dra

    OpenAIRE

    Korhonen, H.; Brogaard, K.; Holhjem, K.; Ramstedt, S.; Rantala, J.; Thoene, C. C.; Vida, K.

    2007-01-01

    Magnetic activity in the photosphere and chromosphere of the M dwarf EY Dra is studied and possible correlations between the two are investigated using photometric observations in the V and R bands and optical and near infrared spectroscopy. The longitudinal spot configuration in the photosphere is obtained from the V band photometry, and the chromospheric structures are investigated using variations in the H alpha line profile and observations of the Paschen beta line. The shape of the V ban...

  10. Starspot evolution, differential rotation, and magnetic cycles in the chromospherically active binaries lambda andromedae, sigma Geminorum, II Pegasi, and V711 Tauri

    Science.gov (United States)

    Henry, Gregory W.; Eaton, Joel A.; Hamer, Jamesia; Hall, Douglas S.

    1995-01-01

    We have analyzed 15-19 yr of photoelectric photometry, obtained manually and with automated telescopes, of the chromospherically active binaries lambda And, sigma Gem, II Peg, and V711 Tau. These observations let us identify individual dark starspots on the stellar surfaces from periodic dimming of the starlight, follow the evolution of these spots, and search for long-term cyclic changes in the properties of these starspots that might reveal magnetic cycles analogous to the Sun's 11 yr sunspot cycle. We developed a computer code to fit a simple two-spot model to our observed light curves that allows us to extract the most easily determinable and most reliable spot parameters from the light curves, i.e., spot longitudes and radii. We then used these measured properties to identify individual spots and to chart their life histories by constructing migration and amplitude curves. We identified and followed 11 spots in lambda And, 16 in sigma Gem, 12 in II Peg, and 15 in V711 Tau. Lifetimes of individual spots ranged from a few months to longer than 6 yr. Differential rotation coefficients, estimated from the observed range of spot rotation periods for each star and defined by equation (2), were 0.04 for lambda And, 0.038 for sigma Gem, 0.005 for II Peg, and 0.006 for V711 Tau, versus 0.19 for the Sun. We searched for cyclic changes in mean brightness, B-V color index, and spot rotation period as evidence for long-term cycles. Of these, long-term variability in mean brightness appears to offer the best evidence for such cycles in these four stars. Cycles of 11.1 yr for lambda And, 8.5 yr for sigma Gem, 11 yr for II Peg, and 16 yr V711 Tau are implied by these mean brightness changes. Cyclic changes in spot rotation period were found in lambda And and possibly II Peg. Errors in B-V were too large for any long-term changes to be detectable.

  11. The Solar Surface Differential Rotation from Disk-Integrated Chromospheric Fluxes

    Science.gov (United States)

    Donahue, Robert A.; Keil, Steven L.

    1995-06-01

    Disk-integrated solar chromospheric Ca ii K-line (3933.68 Å) fluxes have been measured almost daily at Sacramento Peak Observatory since 1977. Using observing windows selected to mimic seasonal windows for chromospheric measurements of lower Main-Sequence stars such as those observed by Mount Wilson Observatory's HK Project, we have measured the solar rotation from the modulation of the Ca ii K-line flux. We track the change of rotation period from the decline of cycle 21 through the maximum of cycle 22. This variation in rotation period is shown to behave as expected from the migration of active regions in latitude according to Maunder's ‘butterfly diagram’, including an abrupt change in rotation period at the transition from cycle 21 to cycle 22. These results indicate the successful detection of solar surface differential rotation from disk-integrated observations. We argue that the success of our study compared to previous investigations of the solar surface differential rotation from disk-integrated fluxes lies primarily with the choice of the length of the time-series window. Our selection of 200 days is shorter than in previous studies whose windows are typically on the order of one year. The 200-day window is long enough to permit an accurate determination of the rotation period, yet short enough to avoid complications arising from active region evolution. Thus, measurements of the variation of rotation period in lower Main-Sequence stars, especially those that appear to be correlated with long-term changes in chromospheric activity (i.e., cycles), are probably evidence for stellar surface differential rotation.

  12. The chromospherically active binary CFTuc revisited

    Science.gov (United States)

    Doǧru, D.; Erdem, A.; Doǧru, S. S.; Zola, S.

    2009-08-01

    This paper presents results derived from analysis of new spectroscopic and photometric observations of the chromospherically active binary system CFTuc. New high-resolution spectra, taken at the Mt. John University Observatory in 2007, were analysed using two methods: cross-correlation and Fourier-based disentangling. As a result, new radial velocity curves of both components were obtained. The resulting orbital elements of CFTuc are a1 sini = 0.0254 +/- 0.0001au, a2sini = 0.0228 +/- 0.0001au, M1sini = 0.902 +/- 0.005Msolar and M2sini = 1.008 +/- 0.006Msolar. The cooler component of the system shows Hα and CaII H&K emissions. Using simultaneous spectroscopic and photometric observations, an anticorrelation between the Hα emission and the BV light curve maculation effects was found. This behaviour indicates a close spatial association between photospheric and chromospheric active regions. Our spectroscopic data and recent BV light curves were solved simultaneously using the Wilson-Devinney code. A dark spot on the surface of the cooler component was assumed to explain large asymmetries observed in the light curves. The following absolute parameters of the components were determined: M1 = 1.11 +/- 0.01Msolar, M2 = 1.23 +/- 0.01Msolar, R1 = 1.63 +/- 0.02Rsolar, R2 = 3.60 +/- 0.02Rsolar, L1 = 3.32 +/- 0.51Lsolar and L2 = 3.91 +/- 0.84Lsolar. The primary component has an age of about 5Gyr and is approaching its main-sequence terminal age. The distance to CFTuc was calculated to be 89 +/- 6pc from the dynamic parallax, neglecting interstellar absorption, in agreement with the Hipparcos value. The orbital period of the system was studied using the O-C analysis. The O-C diagram could be interpreted in terms of either two abrupt changes or a quasi-sinusoidal form superimposed on a downward parabola. These variations are discussed by reference to the combined effect of mass transfer and mass loss, the Applegate mechanism and also a light-time effect due to the existence of

  13. Long-term chromospheric activity of non-eclipsing RS CVn-type stars

    Science.gov (United States)

    Buccino, A. P.; Mauas, P. J. D.

    2009-02-01

    Context: The IUE database provides several UV high and low-resolution spectra of RS CVn-type stars from 1978 to 1996. In particular, many of these stars were monitored continuously during several seasons by IUE. Aims: Our main purpose is to study the short and long-term chromospheric activity of the RS CVn systems most observed by IUE: HD 22 468 (V711 Tau, HR 1099, K1IV+G5V), HD 21 242 (UX Ari, K0IV+G5V), and HD 224 085 (II Peg, K2IV). Methods: We first obtained the Mount Wilson index S from the IUE high and low-resolution spectra. Secondly, we used the Lomb-Scargle periodogram to analyse the mean annual index and the amplitude of the rotational modulation of the index S. Results: For HD 22 468 (V711 Tau, HR 1099), we find a possible chromospheric cycle with a period of ~18 years and a shorter cycle with a period of ~3 years, which could be associated to a chromospheric “flip-flop” cycle. The data of HD 224 085 (II Peg) also suggest a chromospheric cycle of ~21 years and a flip-flop cycle of ~9 years. Finally, we obtained a possible chromospheric cycle of ~7 years for HD 21 242 (UX Ari).

  14. Evolution of Chromospheric Activity: M67 Red Giants

    Science.gov (United States)

    Dupree, A. K.; Whitney, B. A.; Pasquini, L.

    1999-08-01

    Echelle spectra of the Ca II H- and K-line region (λ3950) of 15 red giant stars in the open cluster M67 reveal atmospheric dynamics and determine chromospheric radiative losses in order to assess chromospheric heating requirements and to follow the evolution of chromospheric activity. M67 red giants in conjunction with giants in younger clusters create a continuous group of red giants in the color-magnitude diagram, with 0.1mass motions are well established at these luminosities. Radiative losses, as measured by emission strengths from Ca II, decrease smoothly with decreasing stellar effective temperature in M67 and connect well to a combined sample of warmer cluster giants (NGC 2477, IC 4756, and the Hyades) with Mrelated processes. The relative contribution of each heating mechanism changes with temperature in the stellar atmosphere, and these proportions may change during a star's evolution from the main sequence.

  15. Chromospheric Activity, Tio Strength and Spectral Types in M Giants

    Science.gov (United States)

    Steiman-Cameron, Thomas Y.

    1984-07-01

    In an continuation of a study begun during the 6th year of the IUE guest observer program the IUE satellite will be used to study the ultraviolet spectra of cool giant stars that have well-determined angular diameters and effective temperatures. The stars to be observed have spectral classes ranging from K3 through M6 and are of luminosity class III. Low resolution observations in the long wavelength region will be made in order to study the photospheric continuum radiation in the UV and to determine the level of chromospheric activity in these stars. The absolute flux, as well as the slope of the continuum in the wavelength region 2200-3000 A, should be a sensitive probe of the extent of nonradiative heating in the upper photosphere. Chromospheric activity will be examined for the range of spectral subclasses observed to determine if the degree of chromospheric activity differs for stars of the same effective temperature. The Possibility exists that such a differential level of chromospheric activity could lead to the inhibition of TiO formation in the upper photosphere. Preliminary results from IUE observations made during this past year appear to support this hypothesis. This possibility will be examined along with the resultant consequences for comparisons of observed TiO bandstrengths with model predictions.

  16. Long-term chromospheric activity of non-eclipsing RS CVn-type stars

    CERN Document Server

    Buccino, Andrea P

    2008-01-01

    Context. The IUE database provides a large number of UV high and low-resolution spectra of RS CVn-type stars from 1978 to 1996. In particular, many of these stars were monitored continuously during several seasons by IUE. Aims. Our main purpose is to study the short and long-term chromospheric activity of the RS CVn systems most observed by IUE: HD 22468 (V711 Tau, HR 1099, K1IV+G5V), HD 21242 (UX Ari, K0IV+G5V) and HD 224085 (II Peg, K2IV). Methods. We first obtain the Mount Wilson index S from the IUE high and low-resolution spectra. Secondly, we analyse with the Lomb-Scargle periodogram the mean annual index S and the amplitude of its rotational modulation. Results. For HD 22468 (V711 Tau, HR 1099), we found a possible chromospheric cycle with a period of 18 years and a shorter cycle with a period of 3 years, which could be associated to a chromospheric "flip-flop" cycle. The data of HD 224085 (II Peg) also suggest a chromospheric cycle of 21 years and a flip-flop cycle of 9 years. Finally, we obtained a p...

  17. Study of FK Comae Berenices: VII. Correlating photospheric and chromospheric activity

    CERN Document Server

    Vida, K; Ilyin, I V; Oláh, K; Andersen, M I; Hackman, T

    2015-01-01

    We study the connection between the chromospheric and photospheric behaviour of the active late-type star FK Comae. We use spot temperature modelling, light curve inversion based on narrow- and wide-band photometric measurements, Halpha observations from 1997-2010, and Doppler maps from 2004-2010 to compare the behaviour of chromospheric and photospheric features. Investigating low-resolution Halpha spectra we find that the changes in the chromosphere seem to happen mainly on a time scale longer than a few hours, but shorter variations were also observed. According to the Halpha measurements prominences are often found in the chromosphere that reach to more than a stellar radius and are stable for weeks, and which seem to be often, but not every time connected with dark photospheric spots. The rotational modulation of the Halpha emission seems to typically be anticorrelated with the light curve, but we did not find convincing evidence of a clear connection in the long-term trends of the Halpha emission and th...

  18. Study of FK Comae Berenices. VII. Correlating photospheric and chromospheric activity

    Science.gov (United States)

    Vida, K.; Korhonen, H.; Ilyin, I. V.; Oláh, K.; Andersen, M. I.; Hackman, T.

    2015-08-01

    Aims: We study the connection between the chromospheric and photospheric behaviour of the active late-type star FK Comae. Methods: We use spot temperature modelling, light curve inversion based on narrow- and wide-band photometric measurements, Hα observations from 1997-2010, and Doppler maps from 2004-2010 to compare the behaviour of chromospheric and photospheric features. Results: Investigating low-resolution Hα spectra, we find that the changes in the chromosphere seem to happen mainly on a time scale longer than a few hours, but shorter variations are also observed. According to the Hα measurements, prominences are often found in the chromosphere that reach to more than a stellar radius and are stable for weeks, and they seem to be often, but not always connected to dark photospheric spots. The rotational modulation of the Hα emission typically seems to be anticorrelated with the light curve, but we did not find convincing evidence of a clear connection in the long-term trends of the Hα emission and the brightness of the star. In addition, FK Com seems to be in an unusually quiet state in 2009-2010 with very little chromospheric activity and low spot contrast, which might indicate the long-term decrease in activity. Based on the observations obtained at the Nordic Optical Telescope, Observatorio Roque de los Muchachos, La Palma, Canary Islands, Spain; Kitt Peak National Observatory, USA.Figures 12, 13, and Appendix A are available in electronic form at http://www.aanda.orgNew data are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/580/A64

  19. The non-active stellar chromosphere: Ca II basal flux

    Science.gov (United States)

    Pérez Martínez, M. I.; Schröder, K.-P.; Hauschildt, P.

    2014-11-01

    We analyse high-resolution, high-s/n European Southern Observatories (ESO)-archive spectra (from UVES, the UV echelle spectrograph) of 76 inactive or modestly active stars of spectral type G to M, main sequence and giants. Using PHOENIX model photospheres with Ca II K lines that match the observed line profiles, we (i) revise the effective temperatures, (ii) obtain a precise surface flux scale for each star and (iii) directly determine the exact surface fluxes of each Ca II K chromospheric emission with respect to the photospheric line profile. We find that our stellar sample exhibits a lower boundary to its chromospheric surface flux distribution with an unprecedented definition. From a subsample of the 25 least active stars, we obtain a simple empirical formula for the basal Ca II flux as a function of effective temperature: log {F^basal_{Ca II(H+K)}} = 7.05(± 0.31) log {T_eff} - 20.86(± 1.15). This is in good agreement with the Mg II basal flux. In a direct comparison with the large body of Mt Wilson S-measurements of the chromospheric Ca II emission and its well-defined cut-off, excellent agreement is achieved as well. A new result, however, is the small scatter of the least active star's fluxes about the basal flux. It is about 25 per cent and equals the residual uncertainties of our approach. At the same time, we do not find any evidence for a gravity dependence within these limits. This strongly confirms the basal flux as a well-defined and universal phenomenon, which characterizes every inactive chromosphere.

  20. Chromospheric magnetic fields of an active region filament

    Science.gov (United States)

    Xu, Z.; Solanki, S.; Lagg, A.

    2012-06-01

    Vector magnetic fields of an active region filament are co-spatially and co-temporally mapped in photosphere and upper chromosphere, by using spectro-polarimetric observations made by Tenerife Infrared Polarimeter (TIP II) at the German Vacuum Tower Telescope (VTT). A Zeeman-based ME inversion is performed on the full Stokes vectors of both the photospheric Si I 1082.7 nm and the chromospheric He I 1083.0 nm lines. We found that the strong magnetic fields, with the field strength of 600 - 800 G in the He I line formation height, are not uncommon among AR filaments. But such strong magnetic field is not always found in AR filaments.

  1. Challenges to Understand Stellar Chromospheres and Stellar Activity: The Limit Case of Late-A and Early-F Stars

    Science.gov (United States)

    Freire Ferrero, R.; Gouttebroze, P.

    The onset of chromospheric activity appears at late-A and early-F stars where theories predict atmospheres in radiative equilibrium and shallow or non-existent convective zones. The detection of Ly-α emission cores in several A and F stars, first with the IUE satellite and then with the HST, gives evidence for the presence of chromospheric layers in these stars up to B - V = 0. ^m19 (Catalano et al. [CITE]). Semiempirical chromospheric models for Altair allowed us (Freire et al. [CITE]) to explain the observed emission profiles taking into account normal HI IS absorption. However, due to the very high rotational velocity we analyzed alternative hypotheses like the formation of Ly-α emissions into a corotating expanding wind, but we ruled out this alternative because we obtained inconsistent results. In addition, X-ray emission (originated surely in a corona) strengthen the presence of a chromosphere. Here we place the problem of chromospheric activity of late-A and early-F stars in the general context of the formation of over-photospheric stellar layers, comparing them with late-type star and solar cases.

  2. Study of FK Comae Berenices: VII. Correlating photospheric and chromospheric activity

    OpenAIRE

    Vida, K.; Korhonen, H.; Ilyin, I. V.; Oláh, K.; Andersen, M. I.; Hackman, T.

    2015-01-01

    We study the connection between the chromospheric and photospheric behaviour of the active late-type star FK Comae. We use spot temperature modelling, light curve inversion based on narrow- and wide-band photometric measurements, Halpha observations from 1997-2010, and Doppler maps from 2004-2010 to compare the behaviour of chromospheric and photospheric features. Investigating low-resolution Halpha spectra we find that the changes in the chromosphere seem to happen mainly on a time scale lon...

  3. The Impact of Chromospheric Activity on Observed Initial Mass Functions

    CERN Document Server

    Stassun, Keivan G; Dupuy, Trent; Kratter, Kaitlin

    2014-01-01

    Using recently established empirical calibrations for the impact of chromospheric activity on the radii, effective temperatures, and estimated masses of active low-mass stars and brown dwarfs, we reassess the shape of the initial mass function (IMF) across the stellar/substellar boundary in the Upper Sco star-forming region (age 5-10 Myr). We adjust the observed effective temperatures to warmer values using the observed strength of the chromospheric H$\\alpha$ emission, and redetermine the estimated masses of objects using pre--main-sequence evolutionary tracks in the H-R diagram. The effect of the activity-adjusted temperatures is to shift the objects to higher masses by 3-100%. While the slope of the resulting IMF at substellar masses is not strongly changed, the peak of the IMF does shift from ~0.06 to ~0.11 Msun. Moreover, for objects with masses ~0.2 Msun, the ratio of brown dwarfs to stars changes from ~80% to ~33%. These results suggest that activity corrections are essential for studies of the substell...

  4. Fine structure of the age-chromospheric activity relation in solar-type stars I: The Ca II infrared triplet: Absolute flux calibration

    CERN Document Server

    Lorenzo-Oliveira, Diego; Dutra-Ferreira, Letícia; Ribas, Ignasi

    2016-01-01

    Strong spectral lines are useful indicators of stellar chromospheric activity. They are physically linked to the convection efficiency, differential rotation, and angular momentum evolution and are a potential indicator of age. However, for ages > 2 Gyr, the age-activity relationship remains poorly constrained thus hampering its full application. The Ca II infrared triplet (IRT lines) has been poorly studied compared to classical chromospheric indicators. We report in this paper absolute chromospheric fluxes in the three Ca II IRT lines, based on a new calibration tied to up-to-date model atmospheres. We obtain the Ca II IRT absolute fluxes for 113 FGK stars from high signal-to-noise ratio and high-resolution spectra covering an extensive domain of chromospheric activity levels. We perform an absolute continuum flux calibration for the Ca II IRT lines anchored in atmospheric models calculated as an explicit function of effective temperatures, metallicity, and gravities avoiding the degeneracy present in photo...

  5. The Chromospheric Activity-Age Relation for M Dwarf Stars

    Science.gov (United States)

    Silvestri, N. M.; Oswalt, T. D.; Hawley, S. L.

    2000-12-01

    We present preliminary results from our study in which we use moderate resolution spectroscopy to determine the correlation between the chromospheric activity and age of M dwarf stars in wide binary systems. We have observed ~50 M dwarf stars from our sample with the Apache Point Observatory 3.5-m telescope. We measure the ratio of Hα luminosity to the bolometric luminosity (LHα /Lbol) of the M dwarf---a measure of activity that is proven to correlate well with age. This project is unique in that it will extend the chromospheric activity-age relation of low-mass main sequence stars beyond the ages provided by cluster methods. The ages so determined are also independent of the uncertainties in cluster age determinations. The technique has the potential to improve by at least a factor of two the precision and the range over which ages can currently be determined for main sequence stars. Work on this project is supported by the NASA Graduate Student Researchers Program grant NGT-50290 (N.M.S.).

  6. Chromospheric activity of ROSAT discovered weak-lined T Tauri stars

    OpenAIRE

    Montes, D.; Ramsey, L. W.

    1998-01-01

    We have started a high resolution optical observation program dedicated to the study of chromospheric activity in weak-lined T Tauri stars (WTTS) recently discovered by the ROSAT All-Sky Survey (RASS). It is our purpose to quantify the phenomenology of the chromospheric activity of each star determining stellar surface fluxes in the more important chromospheric activity indicators (Ca II H & K, H_beta, H_alpha, Ca II IRT) as well as obtain the Li I abundance, a better determination of the ste...

  7. Sounding stellar cycles with Kepler - preliminary results from ground-based chromospheric activity measurements

    CERN Document Server

    Karoff, C; Chaplin, W J; Frandsen, S; Grundahl, F; Kjeldsen, H; Buzasi, D; Arentoft, T; Christensen-Dalsgaard, J

    2009-01-01

    Due to its unique long-term coverage and high photometric precision, observations from the Kepler asteroseismic investigation will provide us with the possibility to sound stellar cycles in a number of solar-type stars with asteroseismology. By comparing these measurements with conventional ground-based chromospheric activity measurements we might be able to increase our understanding of the relation between the chromospheric changes and the changes in the eigenmodes. In parallel with the Kepler observations we have therefore started a programme at the Nordic Optical Telescope to observe and monitor chromospheric activity in the stars that are most likely to be selected for observations for the whole satellite mission. The ground-based observations presented here can be used both to guide the selection of the special Kepler targets and as the first step in a monitoring programme for stellar cycles. Also, the chromospheric activity measurements obtained from the ground-based observations can be compared with s...

  8. Multiwavelength optical observations of chromospherically active binary systems V. FF UMa (2RE J0933+624): a system with orbital period variation

    CERN Document Server

    Gálvez, M C; Fernández-Figueroa, M J; De Castro, E; Cornide, M

    2007-01-01

    This is the fifth paper in a series aimed at studying the chromospheres of active binary systems using several optical spectroscopic indicators to obtain or improve orbital solution and fundamental stellar parameters. We present here the study of FF UMa (2RE J0933+624), a recently discovered, X-ray/EUV selected, active binary with strong H_alpha emission. The objectives of this work are, to find orbital solutions and define stellar parameters from precise radial velocities and carry out an extensive study of the optical indicators of chromospheric activity. We obtained high resolution echelle spectroscopic observations during five observing runs from 1998 to 2004. We found radial velocities by cross correlation with radial velocity standard stars to achieve the best orbital solution. We also measured rotational velocity by cross-correlation techniques and have studied the kinematic by galactic space- velocity components (U, V, W) and Eggen criteria. Finally, we have determined the chromospheric contribution i...

  9. The chromospherically--active binary CF Tuc revisited

    CERN Document Server

    Dogru, D; Dogru, S S; Zola, S

    2009-01-01

    New high-resolution spectra, of the chromospherically active binary system CF Tuc, taken at the Mt. John University Observatory in 2007, were analyzed using two methods: cross-correlation and Fourier--based disentangling. As a result, new radial velocity curves of both components were obtained. The resulting orbital elements of CF Tuc are: $a_{1}{\\sin}i$=$0.0254\\pm0.0001$ AU, $a_{2}{\\sin}i$=$0.0228\\pm0.0001$ AU, $M_{1}{\\sin}i$=$0.902\\pm0.005$ $M_{\\odot}$, and $M_{2}{\\sin}i$=$1.008\\pm0.006$ $M_{\\odot}$. The cooler component of the system shows H$\\alpha$ and CaII H & K emissions. Our spectroscopic data and recent $BV$ light curves were solved simultaneously using the Wilson-Devinney code. A dark spot on the surface of the cooler component was assumed to explain large asymmetries observed in the light curves. The following absolute parameters of the components were determined: $M_{1}$=$1.11\\pm0.01$ $M_{\\odot}$, $M_{2}$=$1.23\\pm0.01$ $M_{\\odot}$, $R_{1}$=$1.63\\pm0.02$ $R_{\\odot}$, $R_{2}$=$3.60\\pm0.02$ $R_{\\o...

  10. Possible chromospheric activity cycles in II Peg, UX Ari and V711 Tau

    CERN Document Server

    Buccino, Andrea P

    2008-01-01

    We study the Mount Wilson indices we obtained indirectly from IUE high and low resolution spectra of the RS CVn-type systems II Peg (K2IV), UX Ari (K0IV+G5V) and V711 Tau (K1IV+G5V), extensively observed by IUE from 1978 to 1996. We analyze the activity signatures, which correspond to the primary star, with the Lomb-Scargle periodogram. From the analysis of V711 Tau data, we found a possible chromospheric cycle with a period of 18 years and a shorter near 3-year cycle, which could be associated to a chromospheric flip-flop cycle. The data of II Peg also suggest a chromospheric cycle of near 21 years and a flip-flop cycle of 9 years approximately. Finally, we obtained a possible chromospheric cycle of near 6 years for UX Ari.

  11. Possible chromospheric activity cycles in II Peg, UX Ari and V711 Tau

    Science.gov (United States)

    Buccino, Andrea P.; Mauas, Pablo J. D.

    2009-02-01

    We study the Mount Wilson indices we obtained indirectly from IUE high and low resolution spectra of the RS CVn-type systems II Peg (K2IV), UX Ari (K0IV+G5V) and V711 Tau (K1IV+G5V), extensively observed by IUE from 1978 to 1996. We analyze the activity signatures, which correspond to the primary star, with the Lomb-Scargle periodogram. From the analysis of V711 Tau data, we found a possible chromospheric cycle with a period of 18 years and a shorter ~3 year cycle, which could be associated to a chromospheric flip-flop cycle. The data of II Peg also suggest a chromospheric cycle of ~21 years and a flip-flop cycle of ~9 years. Finally, we obtained a possible chromospheric cycle of ~6 years for UX Ari.

  12. Fine structure of the age-chromospheric activity relation in solar-type stars. I. The Ca II infrared triplet: Absolute flux calibration

    Science.gov (United States)

    Lorenzo-Oliveira, D.; Porto de Mello, G. F.; Dutra-Ferreira, L.; Ribas, I.

    2016-10-01

    Context. Strong spectral lines are useful indicators of stellar chromospheric activity. They are physically linked to the convection efficiency, differential rotation, and angular momentum evolution and are a potential indicator of age. However, for ages > 2 Gyr, the age-activity relationship remains poorly constrained thus hampering its full application. Aims: The Ca II infrared triplet (IRT lines, λλ 8498, 8542, and 8662) has been poorly studied compared to classical chromospheric indicators. We report in this paper absolute chromospheric fluxes in the three Ca II IRT lines, based on a new calibration tied to up-to-date model atmospheres. Methods: We obtain the Ca II IRT absolute fluxes for 113 FGK stars from high signal-to-noise ratio (S/N) and high-resolution spectra covering an extensive domain of chromospheric activity levels. We perform an absolute continuum flux calibration for the Ca II IRT lines anchored in atmospheric models calculated as an explicit function of effective temperatures (Teff), metallicity ([Fe/H]), and gravities (log g) avoiding the degeneracy usually present in photometric continuum calibrations based solely on color indices. Results: The internal uncertainties achieved for continuum absolute flux calculations are ≈2% of the solar chromospheric flux, one order of magnitude lower than for photometric calibrations. Using Monte Carlo simulations, we gauge the impact of observational errors on the final chromospheric fluxes due to the absolute continuum flux calibration and find that Teffuncertainties are properly mitigated by the photospheric correction leaving [Fe/H] as the dominating factor in the chromospheric flux uncertainty. Conclusions: Across the FGK spectral types, the Ca II IRT lines are sensitive to chromospheric activity. The reduced internal uncertainties reported here enable us to build a new chromospheric absolute flux scale and explore the age-activity relation from the active regime down to very low activity levels and

  13. NONPOTENTIALITY OF CHROMOSPHERIC FIBRILS IN NOAA ACTIVE REGIONS 11092 AND 9661

    International Nuclear Information System (INIS)

    In this paper, we present a method to automatically segment chromospheric fibrils from Hα observations and further identify their orientation. We assume that chromospheric fibrils are aligned with the magnetic field. By comparing the orientation of the fibrils with the azimuth of the embedding chromospheric magnetic field extrapolated from a potential field model, the shear angle, a measure of nonpotentiality, along the fibrils is readily deduced. Following this approach, we make a quantitative assessment of the nonpotentiality of fibrils in two NOAA active regions (ARs): (1) the relatively simple AR 11092, observed with very high resolution by Interferometric Bidimensional Spectrometer, and (2) a β-γ-δ AR 9661, observed with median resolution by Big Bear Solar Observatory before and after an X1.6 flare.

  14. From CoRoT 102899501 to the Sun. A time evolution model of chromospheric activity on the main sequence

    CERN Document Server

    Gondoin, P; Fridlund, M; Frasca, A; Guenther, E W; Hatzes, A; Deeg, H J; Parviainen, H; Eigmueller, P; Deleuil, M

    2012-01-01

    Using a model based on the rotational modulation of the visibility of active regions, we analyse the high-accuracy CoRoT lightcurve of the active young star CoRoT102899501. Spectroscopic follow-up observations are used to derive its fundamental parameters. We compare its chromospheric activity level with a model of chrosmospheric activity evolution established by combining relationships between the R'HK index and the Rossby number with a recent model of stellar rotation evolution on the main sequence. We measure the spot coverage of the stellar surface as a function of time, and find evidence for a tentative increase from 5-14% at the beginning of the observing run to 13-29% 35 days later. A high level of magnetic activity on CoRoT102899501 is corroborated by a strong emission in the Balmer and Ca II HK lines (logR'HK ~ -4). The starspots used as tracers of the star rotation constrain the rotation period to 1.625+/-0.002 days and do not show evidence for differential rotation. The effective temperature (Teff=...

  15. Chromospheric Observations of a Kink Wave in an On-disk Active Region Fibril

    Science.gov (United States)

    Pietarila, A. M.; Aznar Cuadrado, R.; Hirzberger, J.; Solanki, S.

    2011-12-01

    Most observations of kink and Alfven waves in the chromosphere are made in off-limb spicules. Here we present observations of a kink wave in high spatial and temporal resolution Ca II 8542 data of an active region fibril on the solar disk. The properties of the observed wave are similar to kink waves in spicules. From the inferred wave phase and period we estimate the lower limit for the field strength in the chromospheric fibril to be a few hundred Gauss. The observations indicate that the event may have been triggered by a small-scale reconnection event higher up in the atmosphere.

  16. An active region filament studied simultaneously in the chromosphere and photosphere. II. Doppler velocities

    CERN Document Server

    Kuckein, C; Centeno, R

    2012-01-01

    Paper I presents the magnetic structure of a filament that developed in active region (AR) NOAA 10781. In this paper we complement those results with the velocities retrieved from Doppler shifts measured at the chromosphere and the photosphere in the AR filament area. Various inversion methods with different numbers of atmospheric components and different weighting schemes of the Stokes profiles were used. The velocities were calibrated on an absolute scale. A ubiquitous chromospheric downflow is found in the faculae surrounding the filament, with an average velocity of 1.6 km/s. The filament region, however, displays upflows in the photosphere on both days, when the linear polarization (which samples the transverse component of the fields) is given more weight in the inversions. The upflow speeds of the transverse fields in the filament region average -0.15 km/s. In the chromosphere, the situation is different for the two days of observation. On July 3, the chromospheric portion of the filament is moving upw...

  17. A coordinated optical and X-ray spectroscopic campaign on HD179949: searching for planet-induced chromospheric and coronal activity

    OpenAIRE

    Scandariato, G.; Maggio, A.; Lanza, A. F.; Pagano, I.; Fares, R.; Shkolnik, E. L.; Bohlender, D.; Cameron, A. C.; Dieters, S.; Donati, J.-F.; Martínez Fiorenzano, A. F.; Jardine, M.; Moutou, C.

    2013-01-01

    Context. HD 179949 is an F8V star, orbited by a close-in giant planet with a period of ~3 days. Previous studies suggested that the planet enhances the magnetic activity of the parent star, producing a chromospheric hot spot which rotates in phase with the planet orbit. However, this phenomenon is intermittent since it was observed in several but not all seasons. Aims. A long-term monitoring of the magnetic activity of HD 179949 is required to study the amplitude and time scales of star-plane...

  18. Photospheric and chromospheric activity on the young solar-type star HD 171488

    CERN Document Server

    Frasca, A; Kovari, Zs; Marilli, E; Cakirli, O

    2010-01-01

    We present the results of contemporaneous spectroscopic and photometric monitoring of the young solar-type star HD171488 (Prot~1.337 d) aimed at studying surface inhomogeneities at photospheric/chromospheric levels. Echelle FOCES spectra (R~40000) and Johnson photometry have been performed in 2006. Spectral type, rotational velocity, metallicity, and gravity were determined using a code developed by us. The metallicity was measured from the analysis of iron lines. The spectral subtraction technique was applied to the most relevant chromospheric diagnostics included in the FOCES spectral range (CaII IRT, Halpha, HeI-D3, Hbeta, CaII H&K). A model with two large high-latitude spots is sufficient to reproduce the B/V light curves and the radial velocity modulation, if a temperature difference between photosphere and spots of 1500 K is used. A Doppler imaging analysis of photospheric lines confirms a similar spot distribution. With the help of an analogous geometric two-spot model, we are able to reproduce the...

  19. Chromospheric, transition layer and X-ray emission for stars with different rotational velocities

    Science.gov (United States)

    Boehm-Vitense, E.

    1982-01-01

    In agreement with previous findings for the MgII k line emission in F stars an increase of Lya and transition layer emission with increasing V sub r sin i, if v sub r sin i greater than 30 km/sec. was not found. For V sub r sin i 30 km/sec., the measured line intensities are consistent with an increase in emission with increasing V sub r sin i. Such a relation between emission and rotation for single stars is also in agreement with X-ray observations. For the young F stars in the Hyades we find generally enhanced emission independently of rotational velocities. The enhancement is most pronounced for low excitation lines.

  20. An active region filament studied simultaneously in the chromosphere and photosphere: I - Magnetic structure

    CERN Document Server

    Kuckein, C; Pillet, V Martinez

    2011-01-01

    A thorough multiwavelength, multiheight study of the vector magnetic field in a compact active region (AR) filament (NOAA10781) is presented. We suggest an evolutionary scenario for this filament. Full Stokes vectors were acquired with TIP-II in a spectral range which comprises the chromospheric He I 10830 A multiplet and the photospheric Si I 10827 A line. An AR filament (that was formed before our observing run) was detected in the He I absorption images on 2005 July 3rd. The chromospheric vector magnetic field in this portion of the filament was strongly sheared whereas the photospheric field lines underneath had an inverse polarity configuration. From July 3rd to July 5th, an opening and closing of the polarities at either side of the polarity inversion line (PIL) was recorded, resembling the recently discovered process of the sliding door effect seen by Hinode. During this time, a newly created region that contained pores and orphan penumbrae at the PIL was observed.On July 5th, a normal polarity configu...

  1. CHROMOSPHERICALLY ACTIVE STARS IN THE RADIAL VELOCITY EXPERIMENT (RAVE) SURVEY. I. THE CATALOG

    Energy Technology Data Exchange (ETDEWEB)

    Žerjal, M.; Zwitter, T. [Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, 1000 Ljubljana (Slovenia); Matijevič, G. [Department of Astronomy and Astrophysics, Villanova University, 800 E Lancaster Avenue, Villanova, PA 19085 (United States); Strassmeier, K. G.; Siviero, A.; Steinmetz, M. [Leibniz-Institut für Astrophysik Potsdam (AIP), An der Sternwarte 16, D-14482 Potsdam (Germany); Bienaymé, O. [Observatoire astronomique de Strasbourg, Université de Strasbourg, CNRS, 11 rue de l' Université, F-67000 Strasbourg (France); Bland-Hawthorn, J. [Sydney Institute for Astronomy, School of Physics A28, Sydney, NSW 2006 (Australia); Boeche, C.; Grebel, E. K. [Astronomisches Rechen-Institut, Zentrum für Astronomie der Universität Heidelberg, Mönchhofstr. 12-14, D-69120 Heidelberg (Germany); Freeman, K. C. [Research School of Astronomy and Astrophysics, Australia National University, Weston Creek, Canberra, ACT 2611 (Australia); Kordopatis, G. [Institute of Astronomy, Cambridge University, Madingley Road, Cambridge CB3 0HA (United Kingdom); Munari, U. [INAF Osservatorio Astronomico di Padova, I-36012 Asiago (Italy); Navarro, J. F. [Department of Physics and Astronomy, University of Victoria, Victoria BC, V8P 5C2 (Canada); Parker, Q. A.; Reid, W. [Department of Physics and Astronomy, Macquarie University, Sydney, NSW 2109 (Australia); Seabroke, G. [Mullard Space Science Laboratory, University College London, Holmbury St Mary, Dorking, RH5 6NT (United Kingdom); Wyse, R. F. G., E-mail: marusa.zerjal@fmf.uni-lj.si [Johns Hopkins University, Homewood Campus, 3400 North Charles Street, Baltimore, MD 21218 (United States)

    2013-10-20

    RAVE, the unbiased magnitude limited survey of southern sky stars, contained 456,676 medium-resolution spectra at the time of our analysis. Spectra cover the Ca II infrared triplet (IRT) range, which is a known indicator of chromospheric activity. Our previous work classified all spectra using locally linear embedding. It identified 53,347 cases with a suggested emission component in calcium lines. Here, we use a spectral subtraction technique to measure the properties of this emission. Synthetic templates are replaced by the observed spectra of non-active stars to bypass the difficult computations of non-local thermal equilibrium profiles of the line cores and stellar parameter dependence. We derive both the equivalent width of the excess emission for each calcium line on a 5 Å wide interval and their sum EW{sub IRT} for ∼44,000 candidate active dwarf stars with signal-to-noise ratio >20, with no cuts on the basis of the source of their emission flux. From these, ∼14,000 show a detectable chromospheric flux with at least a 2σ confidence level. Our set of active stars vastly enlarges previously known samples. Atmospheric parameters and, in some cases, radial velocities of active stars derived from automatic pipelines suffer from systematic shifts due to their shallower calcium lines. We re-estimate the effective temperature, metallicity, and radial velocities for candidate active stars. The overall distribution of activity levels shows a bimodal shape, with the first peak coinciding with non-active stars and the second with the pre-main-sequence cases. The catalog will be made publicly available with the next RAVE public data releases.

  2. Parent Stars of Extrasolar Planets. XII. Additional evidence for trends with vsini, condensation temperature, and chromospheric activity

    CERN Document Server

    Gonzalez, Guillermo

    2011-01-01

    Several recent studies have reported differences in vsini, abundance-condensation temperature trends, and chromospheric activity between samples of stars with and without Doppler-detected planets. These findings have been disputed, and the status of these results remains uncertain. We evaluate these claims using additional published data and find support for all three.

  3. A Signature of Chromospheric Activity in Brown Dwarfs Revealed by 2.5-5.0 Micron AKARI Spectra

    CERN Document Server

    Sorahana, Satoko; Yamamura, Issei

    2014-01-01

    We propose that the 2.7 micron H_2O, 3.3 micron CH_4 and 4.6 micron CO absorption bands can be good tracers of chromospheric activity in brown dwarfs. In our previous study, we found that there are difficulties in explaining entire spectra between 1.0 and 5.0 microns with the Unified Cloudy Model (UCM), a brown dwarf atmosphere model. Based on simple radiative equilibrium, temperature in a model atmosphere usually decreases monotonically with height. However, if a brown dwarf has a chromosphere, as inferred by some observations, the temperature in the upper atmosphere is higher. We construct a simple model that takes into account heating due to chromospheric activity by setting a temperature floor in an upper atmosphere, and find that the model spectra of 3 brown dwarfs with moderate H-alpha emission, an indicator of chromospheric activity, are considerably improved to match the AKARI spectra. Because of the higher temperatures in the upper atmospheres, the amount of CH_4 molecules is reduced and the absorpti...

  4. Magnetic cycles of Sun-like stars with different levels of coronal and chromospheric activity — comparison with the Sun

    Science.gov (United States)

    Shimanovskaya, Elena; Bruevich, Vasiliy; Bruevich, Elena

    2016-09-01

    The atmospheric activity of the Sun and Sun-like stars is analyzed involving observations from the HK-project at the Mount Wilson Observatory, the California and Carnegie Planet Search Program at the Keck and Lick Observatories and the Magellan Planet Search Program at the Las Campanas Observatory. We show that for stars of F, G and K spectral classes, the cyclic activity, similar to the 11-yr solar cycle, is different: it becomes more prominent in K-stars. Comparative study of Sun-like stars with different levels of chromospheric and coronal activity confirms that the Sun belongs to stars with a low level of chromospheric activity and stands apart among these stars by its minimum level of coronal radiation and minimum level of variations in photospheric flux.

  5. Magnetic cycles of Sun-like stars with different levels of coronal and chromospheric activity -- comparison with the Sun

    CERN Document Server

    Bruevich, E A; Shimanovskaya, E V

    2016-01-01

    The atmospheric activity of the Sun and Sun-like stars is analyzed involving observations from HK-project at the Mount Wilson Observatory, the California and Carnegie Planet Search Program at the Keck and Lick Observatories and the Magellan Planet Search Program at the Las Campanas Observatory. We show that for stars of F, G and K spectral classes, the cyclic activity, similar to the 11-yr solar cycles, is different: it becomes more prominent in K-stars. Comparative study of Sun-like stars with different levels of the chromospheric and coronal activity confirms that the Sun belongs to stars with the low level of the chromospheric activity and stands apart among these stars by the minimum level of its coronal radiation and the minimum level of its variations of the photospheric flux.

  6. Chromospheric activity and evolutionary age of the Sun and four solar twins

    CERN Document Server

    Mittag, M; Hempelmann, A; González-Pérez, J N; Schmitt, J H M M

    2016-01-01

    The activity levels of the solar-twin candidates HD 101364 and HD 197027 are measured and compared with the Sun, the known solar twin 18 Sco, and the solar-like star 51 Peg. Furthermore, the absolute ages of these five objects are estimated from their positions in the HR diagram and the evolutionary (relative) age compared with their activity levels. To represent the activity level of these stars, the Mount Wilson S-indices were used. To obtain consistent ages and evolutionary advance on the main sequence, we used evolutionary tracks calculated with the Cambridge Stellar Evolution Code. From our spectroscopic observations of HD 101364 and HD 197027 and based on the established calibration procedures, the respective Mount Wilson S-indices are determined. We find that the chromospheric activity of both stars is comparable with the present activity level of the Sun and that of 18 Sco, at least for the period in consideration. Furthermore, the absolute age of HD 101364, HD 197027, 51 Peg, and 18 Sco are found to ...

  7. The Gaia-ESO Survey: Chromospheric Emission, Accretion Properties, and Rotation in $\\gamma$ Velorum and Chamaeleon I

    CERN Document Server

    Frasca, A; Lanzafame, A C; Alcalá, J M; Brugaletta, E; Klutsch, A; Stelzer, B; Sacco, G G; Spina, L; Jeffries, R D; Montes, D; Alfaro, E J; Barentsen, G; Bonito, R; Gameiro, J F; Lopez-Santiago, J; Pace, G; Pasquini, L; Prisinzano, L; Sousa, S G; Gilmore, G; Randich, S; Micela, G; Bragaglia, A; Flaccomio, E; Bayo, A; Costado, M T; Franciosini, E; Hill, V; Hourihane, A; Jofre', P; Lardo, C; Maiorca, E; Masseron, T; Morbidelli, L; Worley, C C

    2014-01-01

    We use the fundamental parameters delivered by the GES consortium in the first internal data release to select the members of $\\gamma$ Vel and Cha I among the UVES and GIRAFFE spectroscopic observations. A total of 140 $\\gamma$ Vel members and 74 Cha I members were studied. We calculated stellar luminosities through spectral energy distributions, while stellar masses were derived by comparison with evolutionary tracks. The spectral subtraction of low-activity and slowly rotating templates, which are rotationally broadened to match the $v\\sin i$ of the targets, enabled us to measure the equivalent widths (EWs) and the fluxes in the H$\\alpha$ and H$\\beta$ lines. The H$\\alpha$ line was also used for identifying accreting objects and for evaluating the mass accretion rate ($\\dot M_{\\rm acc}$). The distribution of $v\\sin i$ for the members of $\\gamma$ Vel displays a peak at about 10 km s$^{-1}$ with a tail toward faster rotators. There is also some indication of a different $v\\sin i$ distribution for the members o...

  8. Photospheric and chromospheric magnetic activity of seismic solar analogs. Observational inputs on the solar/stellar connection from Kepler and Hermes

    CERN Document Server

    Salabert, D; Beck, P G; Egeland, R; Palle, P L; Mathur, S; Metcalfe, T S; Nascimento, J -D do; Ceillier, T; Andersen, M F; Hage, A Trivino

    2016-01-01

    We identify a set of 18 solar analogs among the seismic sample of solar-like stars observed by the Kepler satellite rotating between 10 and 40 days. This set is constructed using the asteroseismic stellar properties derived using either the global oscillation properties or the individual acoustic frequencies. We measure the magnetic activity properties of these stars using observations collected by the photometric Kepler satellite and by the ground-based, high-resolution Hermes spectrograph mounted on the Mercator telescope. The photospheric (Sph) and chromospheric (S index) magnetic activity levels of these seismic solar analogs are estimated and compared in relation to the solar activity. We show that the activity of the Sun is comparable to the activity of the seismic solar analogs, within the maximum-to-minimum temporal variations of the 11-year solar activity cycle 23. In agreement with previous studies, the youngest stars and fastest rotators in our sample are actually the most active. The activity of s...

  9. Oscillatory behavior of chromospheric fine structures in a network and a semi-active regions

    CERN Document Server

    Bostanci, Z F; Al, N

    2014-01-01

    In the present work, we study the periodicities of oscillations in dark fine structures using observations of a network and a semi-active region close to the solar disk center. We simultaneously obtained spatially high resolution time series of white light images and narrow band images in the H$\\alpha$ line using the 2D G\\"ottingen spectrometer, which were based on two Fabry-Perot interferometers and mounted in the VTT/Observatorio del Teide/Tenerife. During the observations, the H$\\alpha$ line was scanned at 18 wavelength positions with steps of 125 m\\AA. We computed series of Doppler and intensity images by subtraction and addition of the H$\\alpha$ $\\pm$ 0.3 \\AA\\ and $\\pm$ 0.7 \\AA\\ pairs, sampling the upper chromosphere and the upper photosphere, respectively. Then we obtained power, coherence and phase difference spectra by performing a wavelet analysis to the Doppler fluctuations. Here, we present comparative results of oscillatory properties of dark fine structures seen in a network and a semi-active reg...

  10. The 3D structure of an active region filament as extrapolated from photospheric and chromospheric observations

    CERN Document Server

    Chaouche, L Yelles; Pillet, V Martínez; Moreno-Insertis, F

    2012-01-01

    The 3D structure of an active region (AR) filament is studied using nonlinear force-free field (NLFFF) extrapolations based on simultaneous observations at a photospheric and a chromospheric height. To that end, we used the Si I 10827 \\AA\\ line and the He I 10830 \\AA\\ triplet obtained with the Tenerife Infrared Polarimeter (TIP) at the VTT (Tenerife). The two extrapolations have been carried out independently from each other and their respective spatial domains overlap in a considerable height range. This opens up new possibilities for diagnostics in addition to the usual ones obtained through a single extrapolation from, typically, a photospheric layer. Among those possibilities, this method allows the determination of an average formation height of the He I 10830 \\AA\\ signal of \\approx 2 Mm above the surface of the sun. It allows, as well, to cross-check the obtained 3D magnetic structures in view of verifying a possible deviation from the force- free condition especially at the photosphere. The extrapolati...

  11. Chromospheric activity and evolutionary age of the Sun and four solar twins

    Science.gov (United States)

    Mittag, M.; Schröder, K.-P.; Hempelmann, A.; González-Pérez, J. N.; Schmitt, J. H. M. M.

    2016-06-01

    Aims: The activity levels of the solar-twin candidates HD 101364 and HD 197027 are measured and compared with the Sun, the known solar twin 18 Sco, and the solar-like star 51 Peg. Furthermore, the absolute ages of these five objects are estimated from their positions in the HR diagram and the evolutionary (relative) age compared with their activity levels. Methods: To represent the activity level of these stars, the Mount Wilson S-indices were used. To obtain consistent ages and evolutionary advance on the main sequence, we used evolutionary tracks calculated with the Cambridge Stellar Evolution Code. Results: From our spectroscopic observations of HD 101364 and HD 197027 and based on the established calibration procedures, the respective Mount Wilson S-indices are determined. We find that the chromospheric activity of both stars is comparable with the present activity level of the Sun and that of 18 Sco, at least for the period in consideration. Furthermore, the absolute age of HD 101364, HD 197027, 51 Peg, and 18 Sco are found to be 7.2, 7.1, 6.1, and 5.1 Gyr, respectively. Conclusions: With the exception of 51 Peg, which has a significantly higher metallicity and a mass higher by about 10% than the Sun, the present Sun and its twins compare relatively well in their activity levels, even though the other twins are somewhat older. Even though 51 Peg has a similar age of 6.1 Gyr, this star is significantly less active. Only when we compare it on a relative age scale (which is about 20% shorter for 51 Peg than for the Sun in absolute terms) and use the higher-than-present long-term SMWO average of 0.18 for the Sun, does the S-index show a good correlation with evolutionary (relative) age. This shows that in the search for a suitably similar solar twin, the relative main-sequence age matters for obtaining a comparable activity level.

  12. The behaviour of the excess CaII H & K and H$\\varepsilon$ emissions in chromospherically active binaries

    CERN Document Server

    Montes, D; Cornide, M; De Castro, E

    1995-01-01

    In this work we analyze the behaviour of the excess Ca~{\\sc ii} H \\& K and H\\epsilon emissions in a sample of 73 chromospherically active binary systems (RS~CVn and BY~Dra classes), of different activity levels and luminosity classes. This sample includes the 53 stars analyzed by Fern\\'andez-Figueroa et al. (1994) and the observations of 28 systems described by Montes et al. (1995c). By using the spectral subtraction technique (subtraction of a synthesized stellar spectrum constructed from reference stars of spectral type and luminosity class similar to those of the binary star components) we obtain the active-chromosphere contribution to the Ca~{\\sc ii} H \\& K lines in these 73 systems. We have determined the excess Ca~{\\sc ii} H \\& K emission equivalent widths and converted them into surface fluxes. The emissions arising from each component were obtained when it was possible to deblend both contributions. We have found that the components of active binaries are generally stronger emitters than s...

  13. The Stellar Activity - Rotation Relationship

    CERN Document Server

    Wright, Nicholas J; Mamajek, Eric E; Henry, Gregory W

    2012-01-01

    Using a new catalog of 824 solar and late-type stars with X-ray luminosities and rotation periods we have studied the relationship between rotation and stellar activity. From an unbiased subset of this sample the power law slope of the unsaturated regime, $L_X/L_{bol}\\propto Ro^\\beta$, is fit as $\\beta=-2.70\\pm0.13$. This is inconsistent with the canonical $\\beta=-2$ slope to a confidence of 5$\\sigma$ and argues for an interface-type dynamo. Super-saturation is observed for the fastest rotators in our sample and its parametric dependencies are explored. Significant correlations are found with both the corotation radius and the excess polar updraft, the latter theory being supported by other observations. We also present a new X-ray population synthesis model of the mature stellar component of our Galaxy and use it to reproduce deep observations of a high Galactic latitude field. The model, XStar, can be used to test models of stellar spin-down and dynamo decay, as well as for estimating stellar X-ray contamin...

  14. Localizing Plages on BO Mic, First steps towards chromospheric Doppler imaging

    CERN Document Server

    Wolter, U

    2005-01-01

    We have obtained a densely sampled time series of CaII H&K line profiles of the ultrafast rotating K-dwarf star BO Mic. Taken at high resolution, the spectra reveal pronounced variations of the emission core profiles. We interpret these variations as signs of concentrated chromospherically active regions, in analogy to solar plages. We further interpret the variations as partly due to the rapid growth and decay of plages, while other variations appear to be caused by plages moved over the visible stellar disk by rotation. The equivalent width of the Ca K core emission changes approximately in anti-phase to the photospheric brightness, suggesting an association of the chromospheric plage regions with pronounced dark photospheric spots. We believe that further analysis of the presented spectral time series will lead to a chromospheric Doppler image of BO mic.

  15. Differential rotation of cool active stars

    OpenAIRE

    Petit, P.; Donati, J.-F.; Cameron, A. Collier

    2004-01-01

    The surface differential rotation of active solar-type stars can be investigated by means of Doppler and Zeeman-Doppler Imaging, both techniques enabling one to estimate the short-term temporal evolution of photospheric structures (cools spots or magnetic regions). After describing the main modeling tools recently developed to guarantee a precise analysis of differential rotation in this framework, we detail the main results obtained for a small number of active G and K fast rotating stars. W...

  16. Spots, activity cycles, and differential rotation on cool stars

    Science.gov (United States)

    Alekseev, I. Yu.

    2005-01-01

    The first results are reported from a search for activity cycles in stars similar to the sun based on modelling their spotting with an algorithm developed at the Crimean Astrophysical Observatory. Of the more than thirty program stars, 10 manifested a cyclical variation in their central latitudes and total starspot area. The observed cycles have durations of 4-15 years, i.e., analogous to the 11 year Schwabe sunspot cycle. Most of the stars have a rough analog of the solar butterfly pattern, with a reduction in the average latitude of the spots as their area increases. A flip-flop effect during the epoch of the maximum average latitude is noted in a number of these objects (e.g., the analog LQ Hya of the young sun or the RS CVn-type variable V711 Tau), as well as a reduction in the photometric rotation period of a star as the spots drift toward the equator, an analog of the differential rotation effect in the sun. Unlike in the sun, the observed spot formation cycles do not correlate uniquely with other indicators of activity— chromospheric emission in the CaII HK lines (Be Cet, EK Dra, Dx Leo), H line emission (LQ Hya, VY Ari, EV Lac), or cyclical flare activity (EV Lac). In V833 Tau, BY Dra, EK Dra, and VY Ari short Schwabe cycles coexist with long cycles that are analogous to the Gleissberg solar cycle, in which the spotted area can approach half the entire area of the star.

  17. Chromospheric activity on the late-type star V1355 Ori using Lijiang 1.8-m and 2.4-m telescopes

    Science.gov (United States)

    Pi, Qing-Feng; Zhang, Li-Yun; Chang, Liang; Han, Xian-Ming; Lu, Hong-Peng; Zhang, Xi-Liang; Wang, Dai-Mei

    2016-10-01

    We obtained new high-resolution spectra using the Lijiang 1.8-m and 2.4-m telescopes to investigate the chromospheric activities of V1355 Ori as indicated in the behaviors of Ca ii H&K, Hδ, Hγ, Hβ, Na i D1, D2, Hα and Ca ii infrared triplet (IRT) lines. The observed spectra show obvious emissions above the continuum in Ca ii H&K lines, absorptions in the Hδ, Hγ, Hβ and Na i D1, D2 lines, variable behavior (filled-in absorption, partial emission with a core absorption component or emission above the continuum) in the Hα line, and weak self-reversal emissions in the strong filled-in absorptions of the Ca ii IRT lines. We used a spectral subtraction technique to analyze our data. The results show no excess emission in the Hδ and Hγ lines, very weak excess emissions in the Na i D1, D2 lines, excess emission in the Hβ line, clear excess emission in the Hα line, and excess emissions in the Ca ii IRT lines. The value of the ratio of EW8542/EW8498 is in the range 0.9 to 1.7, which implies that chromospheric activity might have been caused by plage events. The value of the ratio E Hα/E Hβ is above 3, indicating that the Balmer lines would arise from prominence-like material. We also found time variations in light curves associated with equivalent widths of chromospheric activity lines in the Na i D1, D2, Ca ii IRT and Hα lines in particular. These phenomena can be explained by plage events, which are consistent with the behavior of chromospheric activity indicators.

  18. Active media under rotational forcing.

    Science.gov (United States)

    Pérez-Villar, Vicente; Porteiro, Jose L F; Muñuzuri, Alberto P

    2006-10-01

    The bubble-free Belousov-Zhabotinsky reaction has been used to study the effects of centrifugal forces on autowave propagation. The reaction parameters were chosen such that the system oscillates naturally creating target waves. In the present study, the system was forced to rotate with a constant velocity around a central axis. In studying the effects of such a forcing on the system, we focused on target dynamics. The system reacts to this forcing in different ways, the most spectacular being a dramatic increase in the period of the target, the effect growing stronger as we move away from the center of rotation. A numerical study was carried out using the two-variable Oregonator model, modified to include convective effects through the diffusion coefficient. The numerical results showed a good qualitative agreement with those of the experiments. PMID:17155149

  19. Magnetic tornadoes and chromospheric swirls -- Definition and classification

    OpenAIRE

    Wedemeyer, Sven; Scullion, Eamon; Steiner, Oskar; Rodriguez, Jaime de la Cruz; van der Voort, Luc Rouppe

    2013-01-01

    Chromospheric swirls are the observational signatures of rotating magnetic field structures in the solar atmosphere, also known as magnetic tornadoes. Swirls appear as dark rotating features in the core of the spectral line of singly ionized calcium at a wavelength of 854.2 nm. This signature can be very subtle and difficult to detect given the dynamic changes in the solar chromosphere. Important steps towards a systematic and objective detection method are the compilation and characterizatio...

  20. VARIATIONS OF SOLAR ROTATION AND SUNSPOT ACTIVITY

    International Nuclear Information System (INIS)

    The continuous wavelet transformation is used to study the temporal variations of the rotational cycle length of daily sunspot numbers from 1849 January 1 to 2010 February 28, from a global point of view. The rotational cycle length of the Sun is found to have a secular trend, which statistically shows a linear decrease by about 0.47 days during the time interval considered. The empirical mode decomposition analysis of the temporal variations of the rotational cycle length shows an acceleration trend for the surface rotation rate from cycles 11 to 19, but a deceleration trend from the beginning of cycle 20 onward. We cannot determine whether the rotation rate around the maximum times of the Schwable cycles should be faster or slower than that around the minimum times, implying no Schwable cycle in the long-term variations of rotation. The results obtained are compared to those from the literature. It is inferred that the variation of the rotational cycle length may be related to the variation of sunspot activity in the long run.

  1. A chromospheric conundrum?

    CERN Document Server

    Judge, Philip; Schmidt, Wolgang; Steiner, Oskar

    2010-01-01

    We examine spectra of the Ca II H line, obtained under good seeing conditions with the VTT Echelle Spectrograph in June of 2007, and higher resolution data of the Ca II 8542 Angstrom line from Fabry-Perot instruments. The VTT targets were areas near disk center which included quiet Sun and some dispersed plage. The infrared data included quiet Sun and plage associated with small pores. Bright chromospheric network emission patches expand little with wavelength from line wing to line center, i.e. with increasing line opacity and height. We argue that this simple observation has implications for the force and energy balance of the chromosphere, since bright chromospheric network emission is traditionally associated with enhanced local mechanical heating which increases temperatures and pressures. Simple physical considerations then suggest that the network chromosphere may not be able to reach horizontal force balance with its surroundings, yet the network is a long-lived structure. We speculate on possible rea...

  2. Observing the Solar Chromosphere

    CERN Document Server

    Rutten, R J

    2007-01-01

    This review is split into two parts: one on chromospheric line formation in answer to the frequent question "where is my line formed", and one presenting state-of-the-art imagery of the chromosphere. In the first part I specifically treat the formation of the Na D lines, Ca II H & K, and Halpha. In the second I show DOT, IBIS, VAULT, and TRACE images as evidence that the chromosphere consists of fibrils of intrinsically different types. The straight-up ones are hottest. The slanted ones are filled by shocks and likely possess thin transition sheaths to coronal plasma. The ones hovering horizontally over "clapotispheric" cell interiors outline magnetic canopies and are buffeted by shocks, most violently in the quietest regions. In the absence of integral-field ultraviolet spectrometry, H$\\alpha$ remains the principal chromosphere diagnostic. The required fast-cadence profile-sampling imaging is an important quest for new telescope technology.

  3. Magnetic activity and differential rotation in the very young star KIC 8429280

    CERN Document Server

    Frasca, A; Bonanno, A; Catanzaro, G; Biazzo, K; Molenda-Zakowicz, J

    2011-01-01

    We present a spectroscopic/photometric analysis of the rapid rotator KIC8429280, discovered by ourselves as a very young star and observed by the Kepler mission. We use spectroscopic/photometric ground-based data to derive stellar parameters, and we adopt a spectral subtraction technique to highlight the chromospheric emission in the cores of Halpha, CaII H&K and IRT lines. We fit a robust spot model to the high-precision Kepler photometry spanning 138 days. Model selection and parameter estimation is performed in a Bayesian manner using a Markov chain Monte Carlo method. We find that KIC8429280 is a cool (K2V) star with an age of ~50 Myr, based on its Li content, that has passed its T Tau phase and is spinning up approaching the ZAMS. Its high level of chromospheric activity is indicated by the radiative losses in CaII H&K and IRT, Halpha, and Hbeta lines. Furthermore, its Balmer decrement and the flux ratio of CaII IRT lines imply that these lines are mainly formed in optically-thick sources analogu...

  4. Chromospheres in Metal-Poor Stars Evidenced from the He I 10830A Line

    CERN Document Server

    Takeda, Yoichi

    2011-01-01

    Based on the near-IR spectra of 33 late-type stars in the wide metallicity range (mainly dwarfs and partly giants) obtained with IRCS+AO188 of the Subaru Telescope, we confirmed that He I 10830A line is seen in absorption in almost all moderately to extremely metal-poor stars of thick disk and halo population (from [Fe/H]~ -0.5 down to [Fe/H]~ -3.7), the strength of which is almost constant irrespective of the metallicity. This is an evidence that chromospheric activity at a basal level persists even for such old stars, despite that their rotations are considered to be slowed down and incapable of sustaining a dynamo, suggesting that some kind of chromospheric heating mechanism independent of rotation/magnetism (e.g., acoustic heating) may take place.

  5. Photospheric, Chromospheric and Helioseismic Signatures of a Large Flare in Super-active Region NOAA 10486

    Indian Academy of Sciences (India)

    Ashok Ambastha

    2006-06-01

    NOAA 10486 produced several powerful flares, including the 4B/X17.2 superflare of October 28, 2003/11:10 UT. This flare was extensively covered by the H and GONG instruments operated at the Udaipur Solar Observatory (USO). The central location of the active region on October 28, 2003was well-suited for the ring diagram analysis to obtain the 3-D power spectra and search for helioseismic response of this large flare on the amplitude, frequency and width of the p-modes. Further, using USO observations, we have identified the sites of new flux emergences, large proper motions and line-of-sight velocity flows in the active region and their relationship with the flare.

  6. The Factory and The Beehive II. Activity and Rotation in Praesepe and the Hyades

    CERN Document Server

    Douglas, S T; Covey, K R; Bowsher, E C; Bochanski, J J; Cargile, P A; Kraus, A; Law, N M; Lemonias, J J; Arce, H G; Fierroz, D F; Kundert, A

    2014-01-01

    Open clusters are collections of stars with a single, well-determined age, and can be used to investigate the connections between angular-momentum evolution and magnetic activity over a star's lifetime. We present the results of a comparative study of the relationship between stellar rotation and activity in two benchmark open clusters: Praesepe and the Hyades. As they have the same age and roughly solar metallicity, these clusters serve as an ideal laboratory for testing the agreement between theoretical and empirical rotation-activity relations at $\\approx$600 Myr. We have compiled a sample of 720 spectra --- more than half of which are new observations --- for 516 high-confidence members of Praesepe; we have also obtained 139 new spectra for 130 high-confidence Hyads. We have collected rotation periods ($P_{rot}$) for 135 Praesepe members and 87 Hyads. To compare $H\\alpha$ emission, an indicator of chromospheric activity, as a function of color, mass, and Rossby number $R_o$, we first calculate an expanded...

  7. Optical Alignment of the Chromospheric Lyman-Alpha SpectroPolarimeter using Sophisticated Methods to Minimize Activities under Vacuum

    Science.gov (United States)

    Giono, G.; Katsukawa, Y.; Ishikawa, R.; Narukage, N.; Kano, R.; Kubo, M.; Ishikawa, S.; Bando, T.; Hara, H.; Suematsu, Y.; Winebarger, A.; Kobayashi, K.

    2016-01-01

    The Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP) is a sounding-rocket instrument developed at the National Astronomical Observatory of Japan (NAOJ) as a part of an international collaboration. The in- strument main scientific goal is to achieve polarization measurement of the Lyman-alpha line at 121.56 nm emitted from the solar upper-chromosphere and transition region with an unprecedented 0.1% accuracy. For this purpose, the optics are composed of a Cassegrain telescope coated with a "cold mirror" coating optimized for UV reflection and a dual-channel spectrograph allowing for simultaneous observation of the two orthogonal states of polarization. Although the polarization sensitivity is the most important aspect of the instrument, the spatial and spectral resolutions of the instrument are also crucial to observe the chromospheric features and resolve the Ly- pro les. A precise alignment of the optics is required to ensure the resolutions, but experiments under vacuum conditions are needed since Ly-alpha is absorbed by air, making the alignment experiments difficult. To bypass this issue, we developed methods to align the telescope and the spectrograph separately in visible light. We will explain these methods and present the results for the optical alignment of the CLASP telescope and spectrograph. We will then discuss the combined performances of both parts to derive the expected resolutions of the instrument, and compare them with the flight observations performed on September 3rd 2015.

  8. Magnetic tornadoes and chromospheric swirls – Definition and classification

    International Nuclear Information System (INIS)

    Chromospheric swirls are the observational signatures of rotating magnetic field structures in the solar atmosphere, also known as magnetic tornadoes. Swirls appear as dark rotating features in the core of the spectral line of singly ionized calcium at a wavelength of 854.2 nm. This signature can be very subtle and difficult to detect given the dynamic changes in the solar chromosphere. Important steps towards a systematic and objective detection method are the compilation and characterization of a statistically significant sample of observed and simulated chromospheric swirls. Here, we provide a more exact definition of the chromospheric swirl phenomenon and also present a first morphological classification of swirls with three types: (I) Ring, (II) Split, (III) Spiral. We also discuss the nature of the magnetic field structures connected to tornadoes and the influence of limited spatial resolution on the appearance of their photospheric footpoints.

  9. Chromospheric models for Altair (A7 IV-V)

    Science.gov (United States)

    Ferrero, R. Freire; Gouttebroze, P.; Catalano, S.; Marilli, E.; Bruhweiler, F.; Kondo, Y.; Van Der Hucht, K.; Talavera, A.

    1995-01-01

    The star, Altair (A7 IV-V), is clearly shown to have Lyman-alpha emission of chromospheric origin, while no evidence is found for the Mg II emission reported in previous investigations. We present non-Local Thermodymanic Equilibrium (non-LTE) semiempirical models incorporating partial redistribution of the chromosphere of Altair that reproduce the observed Lyman-alpha emission and the Mg II resonance absorption at 2800 A. We unambiguously establihed that chromospheres exist at spectral types as early as A7 on the main sequence, and we also demonstrate that it very unlikely that the observed emission originates in a corotating expanding wind. This result represents a new challenge for chromospheric heating theories. It may indicate that both differential rotation and convection layers, at least near the equator, exist in this fast rotating (v sin i = 220 km/s) star.

  10. Magnetic tornadoes and chromospheric swirls -- Definition and classification

    CERN Document Server

    Wedemeyer, Sven; Steiner, Oskar; Rodriguez, Jaime de la Cruz; van der Voort, Luc Rouppe

    2013-01-01

    Chromospheric swirls are the observational signatures of rotating magnetic field structures in the solar atmosphere, also known as magnetic tornadoes. Swirls appear as dark rotating features in the core of the spectral line of singly ionized calcium at a wavelength of 854.2 nm. This signature can be very subtle and difficult to detect given the dynamic changes in the solar chromosphere. Important steps towards a systematic and objective detection method are the compilation and characterization of a statistically significant sample of observed and simulated chromospheric swirls. Here, we provide a more exact definition of the chromospheric swirl phenomenon and also present a first morphological classification of swirls with three types: (I) Ring, (II) Split, (III) Spiral. We also discuss the nature of the magnetic field structures connected to tornadoes and the influence of limited spatial resolution on the appearance of their photospheric footpoints.

  11. The chromosphere during solar flares

    OpenAIRE

    Fletcher, Lyndsay

    2010-01-01

    The emphasis of observational and theoretical flare studies in the last decade or two has been on the flare corona, and attention has shifted substantially away from the flare's chromospheric aspects. However, although the pre-flare energy is stored in the corona, the radiative flare is primarily a chromospheric phenomenon, and its chromospheric emission presents a wealth of diagnostics for the thermal and non-thermal components of the flare. I will here review the chromospheric signatures of...

  12. The chromosphere and prominence magnetometer

    OpenAIRE

    de Wijn, Alfred G.; Bethge, Christian; Tomczyk, Steven; McIntosh, Scott

    2012-01-01

    The Chromosphere and Prominence Magnetometer (ChroMag) is conceived with the goal of quantifying the intertwined dynamics and magnetism of the solar chromosphere and in prominences through imaging spectro-polarimetry of the full solar disk. The picture of chromospheric magnetism and dynamics is rapidly developing, and a pressing need exists for breakthrough observations of chromospheric vector magnetic field measurements at the true lower boundary of the heliospheric system. ChroMag will prov...

  13. Magnetic activity and differential rotation in the young Sun-like stars KIC 7985370 and KIC 7765135

    CERN Document Server

    Fröhlich, H -E; Catanzaro, G; Bonanno, A; Corsaro, E; Molenda-Żakowicz, J; Klutsch, A; Montes, D

    2012-01-01

    We present a detailed study of the two Sun-like stars KIC 7985370 and KIC 7765135, aimed at determining their activity level, spot distribution, and differential rotation. Both stars were discovered by us to be young stars and were observed by the NASA Kepler mission. The stellar parameters (vsini, spectral type, Teff, log g, and [Fe/H]) were derived from optical spectroscopy which allowed us also to study the chromospheric activity from the emission in the core of H\\alpha\\ and CaII IRT lines. The high-precision Kepler photometric data spanning over 229 days were then fitted with a robust spot model. Model selection and parameter estimation are performed in a Bayesian manner, using a Markov chain Monte Carlo method. Both stars came out to be Sun-like with an age of about 100-200 Myr, based on their lithium content and kinematics. Their youth is confirmed by the high level of chromospheric activity, comparable to that displayed by the early G-type stars in the Pleiades cluster. The flux ratio of the CaII-IRT l...

  14. A chromospheric conundrum?

    OpenAIRE

    Judge, Philip; Knoelker, Michael; Schmidt, Wolgang; Steiner, Oskar

    2010-01-01

    We examine spectra of the Ca II H line, obtained under good seeing conditions with the VTT Echelle Spectrograph in June of 2007, and higher resolution data of the Ca II 8542 Angstrom line from Fabry-Perot instruments. The VTT targets were areas near disk center which included quiet Sun and some dispersed plage. The infrared data included quiet Sun and plage associated with small pores. Bright chromospheric network emission patches expand little with wavelength from line wing to line center, i...

  15. Optimal rotation sequences for active perception

    Science.gov (United States)

    Nakath, David; Rachuy, Carsten; Clemens, Joachim; Schill, Kerstin

    2016-05-01

    One major objective of autonomous systems navigating in dynamic environments is gathering information needed for self localization, decision making, and path planning. To account for this, such systems are usually equipped with multiple types of sensors. As these sensors often have a limited field of view and a fixed orientation, the task of active perception breaks down to the problem of calculating alignment sequences which maximize the information gain regarding expected measurements. Action sequences that rotate the system according to the calculated optimal patterns then have to be generated. In this paper we present an approach for calculating these sequences for an autonomous system equipped with multiple sensors. We use a particle filter for multi- sensor fusion and state estimation. The planning task is modeled as a Markov decision process (MDP), where the system decides in each step, what actions to perform next. The optimal control policy, which provides the best action depending on the current estimated state, maximizes the expected cumulative reward. The latter is computed from the expected information gain of all sensors over time using value iteration. The algorithm is applied to a manifold representation of the joint space of rotation and time. We show the performance of the approach in a spacecraft navigation scenario where the information gain is changing over time, caused by the dynamic environment and the continuous movement of the spacecraft

  16. Magnetic activity in the HARPS M-dwarf sample. The rotation-activity relationship for very low-mass stars through R'HK

    CERN Document Server

    Astudillo-Defru, Nicola; Bonfils, Xavier; Forveille, Thierry; Lovis, Christophe; Rameau, Julien

    2016-01-01

    Atmospheric magnetic fields in stars with convective envelopes heat stellar chromospheres. Starting with the historical Mount Wilson monitoring program, CaH&K lines have been widely used to trace stellar magnetic activity, and as a proxy for rotation period and consequently for stellar age. Monitoring stellar activity has also become essential in filtering out false-positives due to magnetic activity in extra-solar planet surveys. The Ca H&Kemission is traditionally quantified through the R'HK-index, which compares the chromospheric flux in the doublet to the overall bolometric flux of the star. Much work has been done to characterize this index for FGK-dwarfs, but M-dwarfs were left out of these analyses and no calibration of their Ca ii H&K emission to an R'HK exists to date. We set out to characterize the magnetic activity of the low and very low-mass stars by providing a calibration of the R'HK-index that extends to the realm of M-dwarfs, and by evaluating the relation between R'HK and the rot...

  17. Centrifugally activated bearing for high-speed rotating machinery

    Science.gov (United States)

    Post, Richard F.

    1994-01-01

    A centrifugally activated bearing is disclosed. The bearing includes an annular member that extends laterally and radially from a central axis. A rotating member that rotates about the central axis relative to the annular member is also included. The rotating member has an interior chamber that surrounds the central axis and in which the annular member is suspended. Furthermore, the interior chamber has a concave shape for retaining a lubricant therein while the rotating member is at rest and for retaining a lubricant therein while the rotating member is rotating. The concave shape is such that while the rotating member is rotating a centrifugal force causes a lubricant to be forced away from the central axis to form a cylindrical surface having an axis collinear with the central axis. This centrifugally displaced lubricant provides restoring forces to counteract lateral displacement during operation.

  18. The boundary line in the H-R diagram for stellar chromospheres and the theory of convection

    Science.gov (United States)

    Boehm-Vitense, E.; Dettmann, T.

    1980-01-01

    Ultraviolet emission-line spectra of A, F, and early G stars have been observed with the International Ultraviolet Explorer. For supergiants, classical chromospheric and transition-layer emission is seen only on the red side of the Cepheid instability strip. For luminosity classes III-V, chromospheric emission can be detected for spectral types F2 and later. For none of the A stars was normal chromospheric emission detected, regardless of their rotational velocities or peculiarities (i.e., Am or Ap).

  19. Chromospheric magnetic field of an active region filament using the He I triplet and the primary observation of filaments (prominences) using New Vacuum Solar Tower of China

    Science.gov (United States)

    Xu, Zhi; Lagg, A.; Solanki, S.; Liu, Z.; New Vacuum Solar Telescope Observers

    2013-07-01

    There are two parts in my presentation. In the first part I present the magnetic field measurement of an active region filament using the full Stokes profiles of He I 10830 and Si I 10827 band when the filament in its stable phase. This observation was fulfilled using German Vacuum Tower Telescope (VTT). The vector magnetic field and Doppler velocity map both in the photosphere and chromosphere were observed and analyzed co-temporally and co-spatially. The observation findings reveal that we were observing the emergence of a flux rope with a subsequent formation of a filament. In the second part, I would like to exhibit another ground-based observation facility, 1m New Vacuum Solar Telescope (NVST) located in Fu-Xian Lake Solar Observatory of China. After the basic introduction including the location and instrumentations, I give some high lights including granulation, faculae, micro-flares, jets, and filaments or prominence since the first running in 2010, showing our potential ability to do high-resolution solar observation from the ground. Observation proposals from the international solar community are well appreciated in future.

  20. Stable umbral chromospheric structures

    Science.gov (United States)

    Henriques, V. M. J.; Scullion, E.; Mathioudakis, M.; Kiselman, D.; Gallagher, P. T.; Keenan, F. P.

    2015-02-01

    Aims: We seek to understand the morphology of the chromosphere in sunspot umbra. We investigate if the horizontal structures observed in the spectral core of the Ca II H line are ephemeral visuals caused by the shock dynamics of more stable structures, and examine their relationship with observables in the H-alpha line. Methods: Filtergrams in the core of the Ca II H and H-alpha lines as observed with the Swedish 1-m Solar Telescope are employed. We utilise a technique that creates composite images and tracks the flash propagation horizontally. Results: We find 0.̋15 wide horizontal structures, in all of the three target sunspots, for every flash where the seeing is moderate to good. Discrete dark structures are identified that are stable for at least two umbral flashes, as well as systems of structures that live for up to 24 min. We find cases of extremely extended structures with similar stability, with one such structure showing an extent of 5''. Some of these structures have a correspondence in H-alpha, but we were unable to find a one-to-one correspondence for every occurrence. If the dark streaks are formed at the same heights as umbral flashes, there are systems of structures with strong departures from the vertical for all three analysed sunspots. Conclusions: Long-lived Ca II H filamentary horizontal structures are a common and likely ever-present feature in the umbra of sunspots. If the magnetic field in the chromosphere of the umbra is indeed aligned with the structures, then the present theoretical understanding of the typical umbra needs to be revisited. Movies associated to Figs. 3 and 4 are available in electronic form at http://www.aanda.org

  1. Coarsening dynamics of binary liquids with active rotation.

    Science.gov (United States)

    Sabrina, Syeda; Spellings, Matthew; Glotzer, Sharon C; Bishop, Kyle J M

    2015-11-21

    Active matter comprised of many self-driven units can exhibit emergent collective behaviors such as pattern formation and phase separation in both biological (e.g., mussel beds) and synthetic (e.g., colloidal swimmers) systems. While these behaviors are increasingly well understood for ensembles of linearly self-propelled "particles", less is known about the collective behaviors of active rotating particles where energy input at the particle level gives rise to rotational particle motion. A recent simulation study revealed that active rotation can induce phase separation in mixtures of counter-rotating particles in 2D. In contrast to that of linearly self-propelled particles, the phase separation of counter-rotating fluids is accompanied by steady convective flows that originate at the fluid-fluid interface. Here, we investigate the influence of these flows on the coarsening dynamics of actively rotating binary liquids using a phenomenological, hydrodynamic model that combines a Cahn-Hilliard equation for the fluid composition with a Navier-Stokes equation for the fluid velocity. The effect of active rotation is introduced though an additional force within the Navier-Stokes equations that arises due to gradients in the concentrations of clockwise and counter-clockwise rotating particles. Depending on the strength of active rotation and that of frictional interactions with the stationary surroundings, we observe and explain new dynamical behaviors such as "active coarsening" via self-generated flows as well as the emergence of self-propelled "vortex doublets". We confirm that many of the qualitative behaviors identified by the continuum model can also be found in discrete, particle-based simulations of actively rotating liquids. Our results highlight further opportunities for achieving complex dissipative structures in active materials subject to distributed actuation. PMID:26345231

  2. Rotated alphanumeric characters do not automatically activate frontoparietal areas subserving mental rotation

    DEFF Research Database (Denmark)

    Weiss, Michael M; Wolbers, Thomas; Peller, Martin;

    2008-01-01

    Functional neuroimaging studies have identified a set of areas in the intraparietal sulcus and dorsal precentral cortex which show a linear increase in activity with the angle of rotation across a variety of mental rotation tasks. This linear increase in activity with angular disparity suggests...... task was associated with a linear increase in neuronal activity with angular disparity in a bilateral set of frontoparietal areas, comprising the rostral dorsal premotor cortex, frontal eye field, ventral and medial intraparietal sulcus. Neuronal activity in these regions was neither increased nor...

  3. Stable Umbral Chromospheric Structures

    CERN Document Server

    Henriques, V M J; Mathioudakis, M; Kiselman, D; Gallagher, P T; Keenan, F P

    2014-01-01

    Aims. To understand the morphology of the chromosphere in sunspot umbra. We investigate if the horizontal structures observed in the spectral core of the Ca II H line are ephemeral visuals caused by the shock dynamics of more stable structures, and examine their relationship with observables in the H-alpha line. Methods. Filtergrams in the core of the Ca II H and H-alpha lines as observed with the Swedish 1-m Solar Telescope are employed. We utilise a technique that creates composite images and tracks the flash propagation horizontally. Results. We find 0"15 wide horizontal structures, in all of the three target sunspots, for every flash where the seeing was moderate to good. Discrete dark structures are identified that are stable for at least two umbral flashes, as well as systems of structures that live for up to 24 minutes. We find cases of extremely extended structures with similar stability, with one such structure showing an extent of 5". Some of these structures have a correspondence in H-alpha but we ...

  4. Rotation and magnetic activity of the Hertzsprung-gap giant 31 Comae

    Science.gov (United States)

    Strassmeier, K. G.; Granzer, T.; Kopf, M.; Weber, M.; Küker, M.; Reegen, P.; Rice, J. B.; Matthews, J. M.; Kuschnig, R.; Rowe, J. F.; Guenther, D. B.; Moffat, A. F. J.; Rucinski, S. M.; Sasselov, D.; Weiss, W. W.

    2010-09-01

    Context. The single rapidly-rotating G0 giant 31 Comae has been a puzzle because of the absence of photometric variability despite its strong chromospheric and coronal emissions. As a Hertzsprung-gap giant, it is expected to be at the stage of rearranging its moment of inertia, hence likely also its dynamo action, which could possibly be linked with its missing photospheric activity. Aims: Our aim is to detect photospheric activity, obtain the rotation period, and use it for a first Doppler image of the star's surface. Its morphology could be related to the evolutionary status. Methods: We carried out high-precision, white-light photometry with the MOST satellite, ground-based Strömgren photometry with automated telescopes, and high-resolution optical echelle spectroscopy with the new STELLA robotic facility. Results: The MOST data reveal, for the first time, light variations with a full amplitude of 5 mmag and an average photometric period of 6.80 ± 0.06 days. Radial-velocity variations with a full amplitude of 270 m s-1 and a period of 6.76 ± 0.02 days were detected from our STELLA spectra, which we also interpret as due to stellar rotation. The two-year constancy of the average radial velocity of +0.10 ± 0.33 km s-1 confirms the star's single status, as well as the membership in the cluster Melotte 111. A spectrum synthesis gives Teff = 5660 ± 42 K, log g = 3.51 ± 0.09, and [Fe/H] = -0.15 ± 0.03, which together with the revised Hipparcos distance, suggests a mass of 2.6 ± 0.1 M_⊙ and an age of ≈540 Myr. The surface lithium abundance is measured to be nearly primordial. A detection of a strong He i absorption line indicates nonradiative heating processes in the atmosphere. Our Doppler images show a large, asymmetric polar spot, cooler than Teff by ≈1600 K, and several small low-to-mid latitude features that are warmer by ≈300-400 K and are possibly of chromospheric origin. We computed the convective turnover time for 31 Com as a function of depth

  5. X-ray activity cycle on the active ultra-fast rotator AB Dor A? Implication of correlated coronal and photometric variability

    CERN Document Server

    Lalitha, S

    2013-01-01

    Although chromospheric activity cycles have been studied in a larger number of late-type stars for quite some time, very little is known about coronal activity-cycles in other stars and their similarities or dissimilarities with the solar activity cycle. While it is usually assumed that cyclic activity is present only in stars of low to moderate activity, we investigate whether the ultra-fast rotator AB Dor, a K dwarf exhibiting signs of substantial magnetic activity in essentially all wavelength bands, exhibits a X-ray activity cycle in analogy to its photospheric activity cycle of about 17 years and possible correlations between these bands. We analysed the combined optical photometric data of AB Dor A, which span ~35 years. Additionally, we used ROSAT and XMM-Newton X-ray observations of AB Dor A to study the long-term evolution of magnetic activity in this active K dwarf over nearly three decades and searched for X-ray activity cycles and related photometric brightness changes. AB Dor A exhibits photometr...

  6. Waves in the chromosphere: observations

    CERN Document Server

    Rutten, R J

    2010-01-01

    I review the literature on observational aspects of waves in the solar chromosphere in the first part of this contribution. High-frequency waves are invoked to build elaborate cool-star chromosphere heating theories but have not been detected decisively so far, neither as magnetic modes in network elements nor as acoustic modes in below-the-canopy internetwork regions. Three-minute upward-propagating acoustic shocks are thoroughly established through numerical simulation as the cause of intermittent bright internetwork grains, but their pistoning and their role in the low-chromosphere energy budget remain in debate. Three-minute wave interaction with magnetic canopies is a newer interest, presently progressing through numerical simulation. Three-minute umbral flashes and running penumbral waves seem a similar acoustic-shock phenomenon awaiting numerical simulation. The low-frequency network Doppler modulation remains enigmatic. In the second part, I address low-frequency ultraviolet brightness variations of t...

  7. Diagnosis of solar chromospheric magnetic field

    Institute of Scientific and Technical Information of China (English)

    ZHANG; Hongqi(张洪起)

    2002-01-01

    This paper discusses the measurements of the chromospheric magnetic field and the spatial configuration of the field at the lower solar atmosphere inferred by the distribution of the solar photospheric and chromospheric magnetic fields. Some questions in the study of the chromospheric magnetic field are also presented.

  8. Movement of earth rotation and activities of atmosphere and ocean

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The rotation of the earth, including the variation of the rotational rate and polar motion, represents the statement of the earth's overall movement and interactions among the solid earth, atmosphere and ocean on a variety of space-time scales. They make the earth's complex dynamical system under the conservation of angular momentum. The application and development of recent space geodetic tech-niques greatly promote the researches on the interactions between the earth rotation and the activities of atmosphere and ocean. This review will mainly report the progress in researches on the earth rotation and the activities of atmos-phere and ocean as well as the air-sea interaction in the tropics, and prospect the direction for future theoretical investigations.

  9. Polarization rotator-splitters in standard active silicon photonics platforms.

    Science.gov (United States)

    Sacher, Wesley D; Barwicz, Tymon; Taylor, Benjamin J F; Poon, Joyce K S

    2014-02-24

    We demonstrate various silicon-on-insulator polarization management structures based on a polarization rotator-splitter that uses a bi-level taper TM0-TE1 mode converter. The designs are fully compatible with standard active silicon photonics platforms with no new levels required and were implemented in the IME baseline and IME-OpSIS silicon photonics processes. We demonstrate a polarization rotator-splitter with polarization crosstalk PIN diode phase shifters. PMID:24663698

  10. Measurements of Photospheric and Chromospheric Magnetic Fields

    Science.gov (United States)

    Lagg, Andreas; Lites, Bruce; Harvey, Jack; Gosain, Sanjay; Centeno, Rebecca

    2015-12-01

    The Sun is replete with magnetic fields, with sunspots, pores and plage regions being their most prominent representatives on the solar surface. But even far away from these active regions, magnetic fields are ubiquitous. To a large extent, their importance for the thermodynamics in the solar photosphere is determined by the total magnetic flux. Whereas in low-flux quiet Sun regions, magnetic structures are shuffled around by the motion of granules, the high-flux areas like sunspots or pores effectively suppress convection, leading to a temperature decrease of up to 3000 K. The importance of magnetic fields to the conditions in higher atmospheric layers, the chromosphere and corona, is indisputable. Magnetic fields in both active and quiet regions are the main coupling agent between the outer layers of the solar atmosphere, and are therefore not only involved in the structuring of these layers, but also for the transport of energy from the solar surface through the corona to the interplanetary space. Consequently, inference of magnetic fields in the photosphere, and especially in the chromosphere, is crucial to deepen our understanding not only for solar phenomena such as chromospheric and coronal heating, flares or coronal mass ejections, but also for fundamental physical topics like dynamo theory or atomic physics. In this review, we present an overview of significant advances during the last decades in measurement techniques, analysis methods, and the availability of observatories, together with some selected results. We discuss the problems of determining magnetic fields at smallest spatial scales, connected with increasing demands on polarimetric sensitivity and temporal resolution, and highlight some promising future developments for their solution.

  11. Solar chromospheric fine scale structures: dynamics and energetics

    Science.gov (United States)

    Tziotziou, K.

    2012-01-01

    The solar chromosphere is a very inhomogeneous and dynamic layer of the solar atmosphere that exhibits several phenomena on a wide range of spatial and temporal scales. High-resolution and long-duration observations, employing mostly lines, such as Halpha, the Ca II infrared lines and the Ca II H and K lines, obtained both from ground-based telescope facilities (e.g. DST, VTT, THEMIS, SST, DOT), as well as state-of-the-art satellites (e.g. SOHO, TRACE, HINODE) reveal an incredibly rich, dynamic and highly structured chromospheric environment. What is known in literature as the chromospheric fine-scale structure mainly consists of small fibrilar-like features that connect various parts of quiet/active regions or span across the chromospheric network cell interiors, showing a large diversity of both physical and dynamic characteristics. The highly dynamic, fine-scale chromospheric structures are mostly governed by flows which reflect the complex geometry and dynamics of the local magnetic field and play an important role in the propagation and dissipation of waves. A comprehensive study of these structures requires deep understanding of the physical processes involved and investigation of their intricate link with structures/processes at lower photospheric levels. Furthermore, due to their large number present on the solar surface, it is essential to investigate their impact on the mass and energy transport to higher atmospheric layers through processes such as magnetic reconnection and propagation of waves. The in-depth study of all aforementioned characteristics and processes, with the further addition of non-LTE physics, as well as the use of three-dimensional numerical simulations poses a fascinating challenge for both theory and numerical modeling of chromospheric fine-scale structures.

  12. Solar Rotation Rate During the Cycle 24 Minimum in Activity

    OpenAIRE

    Antia, H. M.; Basu, Sarbani

    2010-01-01

    The minimum of solar cycle 24 is significantly different from most other minima in terms of its duration as well as its abnormally low levels of activity. Using available helioseismic data that cover epochs from the minimum of cycle 23 to now, we study the differences in the nature of the solar rotation between the minima of cycles 23 and 24. We find that there are significant differences between the rotation rates during the two minima. There are differences in the zonal-flow pattern too. We...

  13. Photospheric and chromospheric activity in V405 And: An M dwarf binary with components on the two sides of the full convection limit

    OpenAIRE

    Vida, K.; Oláh, K.; Kővári, Zs.; Korhonen, H.; Bartus, J.; Hurta, Zs.; Posztobányi, K.

    2009-01-01

    We investigate the fast-rotating (P_orb=P_rot=0.465d), active dwarf binary V405 And (M0V+M5V) using photometric BV(RI)_C and optical spectroscopic data. The light variation is caused by the combined effect of spottedness and binarity with a small eclipse. We estimate the system parameters from the available light and radial velocity curves. Three flare events occurred during the observations: two were found in the spectroscopic data and one was observed photometrically in BV(RI)_C colours. An...

  14. Chromospheric seismology above sunspot umbrae

    CERN Document Server

    Snow, B; Regnier, S

    2015-01-01

    The acoustic resonator is an important model for explaining the three-minute oscillations in the chromosphere above sunspot umbrae. The steep temperature gradients at the photosphere and transition region provide the cavity for the acoustic resonator, which allows waves to be both partially transmitted and partially reflected. In this paper, a new method of estimating the size and temperature profile of the chromospheric cavity above a sunspot umbra is developed. The magnetic field above umbrae is modelled numerically in 1.5D with slow magnetoacoustic wave trains travelling along magnetic fieldlines. Resonances are driven by applying the random noise of three different colours---white, pink and brown---as small velocity perturbations to the upper convection zone. Energy escapes the resonating cavity and generates wave trains moving into the corona. Line of sight (LOS) integration is also performed to determine the observable spectra through SDO/AIA. The numerical results show that the gradient of the coronal ...

  15. Rotation, activity, and lithium abundance in cool binary stars

    Science.gov (United States)

    Strassmeier, K. G.; Weber, M.; Granzer, T.; Järvinen, S.

    2012-10-01

    We have used two robotic telescopes to obtain time-series high-resolution optical echelle spectroscopy and V I and/or by photometry for a sample of 60 active stars, mostly binaries. Orbital solutions are presented for 26 double-lined systems and for 19 single-lined systems, seven of them for the first time but all of them with unprecedented phase coverage and accuracy. Eighteen systems turned out to be single stars. The total of 6609 {R=55 000} échelle spectra are also used to systematically determine effective temperatures, gravities, metallicities, rotational velocities, lithium abundances and absolute Hα-core fluxes as a function of time. The photometry is used to infer unspotted brightness, {V-I} and/or b-y colors, spot-induced brightness amplitudes and precise rotation periods. An extra 22 radial-velocity standard stars were monitored throughout the science observations and yield a new barycentric zero point for our STELLA/SES robotic system. Our data are complemented by literature data and are used to determine rotation-temperature-activity relations for active binary components. We also relate lithium abundance to rotation and surface temperature. We find that 74 % of all known rapidly-rotating active binary stars are synchronized and in circular orbits but 26 % (61 systems) are rotating asynchronously of which half have {P_rot>P_orb} and {e>0}. Because rotational synchronization is predicted to occur before orbital circularization active binaries should undergo an extra spin-down besides tidal dissipation. We suspect this to be due to a magnetically channeled wind with its subsequent braking torque. We find a steep increase of rotation period with decreasing effective temperature for active stars, P_rot ∝ T_eff-7, for both single and binaries, main sequence and evolved. For inactive, single giants with {P_rot>100} d, the relation is much weaker, {P_rot ∝ T_eff-1.12}. Our data also indicate a period-activity relation for Hα of the form {R_Hα ∝ P

  16. Deriving stellar inclination of slow rotators using stellar activity

    Energy Technology Data Exchange (ETDEWEB)

    Dumusque, X., E-mail: xdumusque@cfa.harvard.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2014-12-01

    Stellar inclination is an important parameter for many astrophysical studies. Although different techniques allow us to estimate stellar inclination for fast rotators, it becomes much more difficult when stars are rotating slower than ∼2-2.5 km s{sup –1}. By using the new activity simulation SOAP 2.0 which can reproduce the photometric and spectroscopic variations induced by stellar activity, we are able to fit observations of solar-type stars and derive their inclination. For HD 189733, we estimate the stellar inclination to be i=84{sub −20}{sup +6} deg, which implies a star-planet obliquity of ψ=4{sub −4}{sup +18} considering previous measurements of the spin-orbit angle. For α Cen B, we derive an inclination of i=45{sub −19}{sup +9}, which implies that the rotational spin of the star is not aligned with the orbital spin of the α Cen binary system. In addition, assuming that α Cen Bb is aligned with its host star, no transit would occur. The inclination of α Cen B can be measured using 40 radial-velocity measurements, which is remarkable given that the projected rotational velocity of the star is smaller than 1.15 km s{sup –1}.

  17. Towards age/rotation/magnetic activity relation with seismology

    Directory of Open Access Journals (Sweden)

    Mathur Savita

    2015-01-01

    Full Text Available The knowledge of stellar ages directly impacts the characterization of a planetary system as it puts strong constraints on the moment when the system was born. Unfortunately, the determination of precise stellar ages is a very difficult task. Different methods can be used to do so (based on isochrones or chemical element abundances but they usually provide large uncertainties. During its evolution a star goes through processes leading to loss of angular momentum but also changes in its magnetic activity. Building rotation, magnetic, age relations would be an asset to infer stellar ages model independently. Several attempts to build empirical relations between rotation and age (namely gyrochronology were made with a focus on cluster stars where the age determination is easier and for young stars on the main sequence. For field stars, we can now take advantage of high-precision photometric observations where we can perform asteroseismic analyses to improve the accuracy of stellar ages. Furthermore, the variability in the light curves allow us to put strong constraints on the stellar rotation and magnetic activity. By combining these precise measurements, we are on the way of understanding and improving relations between magnetic activity, rotation, and age, in particular at different stages of stellar evolution. I will review the status on gyrochronology relationships based on observations of young cluster stars. Then I will focus on solar-like stars and describe the inferences on stellar ages, rotation, and magnetism that can be provided by high-quality photometric observations such as the ones of the Kepler mission, in particular through asteroseismic analyses.

  18. Photospheric and chromospheric activity in V405 And: An M dwarf binary with components on the two sides of the full convection limit

    CERN Document Server

    Vida, K; Kővári, Zs; Korhonen, H; Bartus, J; Hurta, Zs; Posztobányi, K

    2009-01-01

    We investigate the fast rotating (P_orb=P_rot=0.465d) active dwarf binary V405 And (M0V+M5V) using photometric BV(RI)_C and optical spectroscopic data. The light variation is caused by the combined effect of spottedness and binarity with a small eclipse. From the available light and radial velocity curves we estimate the system parameters. Three flare events happened during the observations: two were found in the spectroscopic data and one was observed photometrically in BV(RI)_C colours. An interesting eruptive phenomenon emerged from the photometric measurements which can be interpreted as a series of post-flare eruptions lasting for at least 3 orbits (rotations) of the system, originating from trans-equatorial magnetic loops, which connect the active regions in the two hemispheres. The two components of V405 And have masses well over and below the theoretical limit of full convection. This rare property makes the binary an ideal target for observing and testing models for stellar dynamo action.

  19. Deriving stellar inclination of slow rotators using stellar activity

    CERN Document Server

    Dumusque, X

    2014-01-01

    Stellar inclination is an important parameter for many astrophysical studies. Although different techniques allow us to estimate stellar inclinationt for fast rotators, it becomes much more difficult when stars are rotating slower than $\\sim2$-2.5 \\kms. By using the new activity simulation SOAP 2.0 that can reproduce the photometric and spectroscopic variations induced by stellar activity, we are able to fit observations of solar-type stars and derive their inclination. For HD189733, we estimate the stellar inclination to be $i=84^{+6}_{-20}$ degrees, which implies a star-planet obliquity of $\\psi=4^{+18}_{-4}$ considering previous measurements of the spin-orbit angle. For $\\alpha$ Cen B, we derive an inclination of $i=45^{+9}_{-19}$, which implies that the rotational spin of the star is not aligned with the orbital spin of the $\\alpha$ Cen binary system. In addition, assuming that $\\alpha$ Cen Bb is aligned with its host star, no transit would occur. The inclination of $\\alpha$ Cen B can be measured using 40...

  20. Towards age/rotation/magnetic activity relation with seismology

    CERN Document Server

    Mathur, Savita

    2015-01-01

    The knowledge of stellar ages directly impacts the characterization of a planetary system as it puts strong constraints on the moment when the system was born. Unfortunately, the determination of precise stellar ages is a very difficult task. Different methods can be used to do so (based on isochrones or chemical element abundances) but they usually provide large uncertainties. During its evolution a star goes through processes leading to loss of angular momentum but also changes in its magnetic activity. Building rotation, magnetic, age relations would be an asset to infer stellar ages model independently. Several attempts to build empirical relations between rotation and age (namely gyrochronology) were made with a focus on cluster stars where the age determination is easier and for young stars on the main sequence. For field stars, we can now take advantage of high-precision photometric observations where we can perform asteroseismic analyses to improve the accuracy of stellar ages. Furthermore, the variab...

  1. Effect of coronal temperature on the scale of solar chromospheric jets

    CERN Document Server

    Iijima, H

    2015-01-01

    We investigate the effect of coronal temperature on the formation process of solar chromospheric jets using two-dimensional magnetohydrodynamic simulations of the region from the upper convection zone to the lower corona. We develop a new radiative magnetohydrodynamic code for the dynamic modeling of the solar atmosphere, employing a LTE equation of state, optically thick radiative loss in the photosphere, optically thin radiative loss in the chromosphere and the corona, and thermal conduction along the magnetic field lines. Many chromospheric jets are produced in the simulations by shock waves passing through the transition region. We find that these jets are projected farther outward when the coronal temperature is lower (similar to that in coronal holes) and shorter when the coronal temperature is higher (similar to that in active regions). When the coronal temperature is high, the deceleration of the chromospheric jets is consistent with the model in which deceleration is determined by the periodic chromo...

  2. Rapidly Rotating, X-ray Bright Stars in the Kepler Field

    CERN Document Server

    Howell, Steve B; Boyd, Padi; Smith, Krista Lynne; Gelino, Dawn

    2016-01-01

    We present Kepler light curves and optical spectroscopy of twenty X-ray bright stars located in the Kepler field of view. The stars, spectral type FK, show evidence for rapid rotation including chromospheric activity 100 times or more above the Sun at maximum and flaring behavior in their light curves. Eighteen of our objects appear to be (sub)giants and may belong to the class of FK Com variables, that is evolved rapidly spinning single stars with no excretion disk and high levels of chromospheric activity. Such stars are rare and are likely the result of W UMa binary mergers, a process believed to produce the FK Com class of variable and their descendants. The FK Com stage, including the presence of an excretion disk, is short-lived but leads to longer-lived stages consisting of single, rapidly rotating evolved (sub)giants with high levels of stellar activity.

  3. The galloping chromosphere. [H alpha observation of oscillating velocity fields

    Science.gov (United States)

    Sawyer, C.

    1974-01-01

    Oscillating velocity fields can be observed on H-alpha filtergrams as a shifting pattern of intensity fluctuations known as 'the galloping chromosphere'. The characteristics of this activity are those of horizontal running waves of typical period of about 300 sec and long wavelength (about 20,000 km) that can be interpreted as acoustic-gravity waves propagating in the acoustic domain. Periods are longer in dark, structured regions, and in fibrils, and the change is quantitatively consistent with the reduction of resonance frequency in a magnetic field of 1 to 10 gauss. These easily observed fluctuations thus offer a means of estimating magnetic-field strength at specific locations in the chromosphere. Phase velocities are high, ranging upward from typical values between 50 and 100 km per sec, and tending to be lower in active regions and toward the limb.

  4. The HADES RV Programme with HARPS-N@TNG. III. Flux-flux and activity-rotation relationships of early-M dwarfs

    CERN Document Server

    Maldonado, J; Stelzer, B; Biazzo, K; Lanza, A F; Maggio, A; Micela, G; González-Álvarez, E; Affer, L; Claudi, R U; Cosentino, R; Damasso, M; Desidera, S; Hernández, J I González; Gratton, R; Leto, G; Messina, S; Molinari, E; Pagano, I; Perger, M; Piotto, G; Rebolo, R; Ribas, I; Sozzetti, A; Mascareño, A Suárez; Sanchez, R Zanmar

    2016-01-01

    (Abridged) Understanding stellar activity in M dwarfs is crucial for the physics of stellar atmospheres as well as for ongoing radial velocity exoplanet programmes. Despite the increasing interest in M dwarfs, our knowledge of the chromospheres of these stars is far from being complete. We aim to test whether the relations between activity, rotation, and stellar parameters and flux-flux relationships also hold for early-M dwarfs on the main-sequence. We analyse in an homogeneous and coherent way a well defined sample of 71 late-K/early-M dwarfs that are currently being observed in the framework of the HArps-n red Dwarf Exoplanet Survey (HADES). Rotational velocities are derived using the cross-correlation technique while emission flux excesses in the Ca II H & K and Balmer lines from Halpha up to Hepsilon are obtained by using the spectral subtraction technique. The relationships between the emission excesses and the stellar parameters are studied. Relations between pairs of fluxes of different chromosphe...

  5. Chromospheric Velocities of a C-class Flare

    OpenAIRE

    Keys, Peter H.; Jess, David B.; Mathioudakis, Mihalis; Keenan, Francis P

    2011-01-01

    We use high spatial and temporal resolution observations from the Swedish Solar Telescope to study the chromospheric velocities of a C-class flare originating from active region NOAA 10969. A time-distance analysis is employed to estimate directional velocity components in H-alpha and Ca II K image sequences. Also, imaging spectroscopy has allowed us to determine flare-induced line-of-sight velocities. A wavelet analysis is used to analyse the periodic nature of associated flare bursts. Time-...

  6. Two step chromospheric Moreton wave excitation in a blast-wave scenario. A case study: Simulation of the December $06$, $2006$ event

    CERN Document Server

    Krause, G; Francile, C; Costa, A; Elaskar, S; Schneiter, M

    2015-01-01

    We examine the capability of a coronal flare ignited blast wave scenario to reproduce the chromospheric phenomenon. We numerically simulate the Moreton event of December 06, 2006 considering both the corona and the chromosphere. To obtain a sufficiently strong coronal shock -able to generate a detectable chromospheric Moreton wave- a relatively low magnetic field intensity is required, in comparison with the active region values. Employing reasonable coronal constraints, we show that the flare ignited blast wave scenario is capable to reproduce the observations.

  7. Solar Physics at Evergreen: Solar Dynamo and Chromospheric MHD

    Science.gov (United States)

    Zita, E. J.; Maxwell, J.; Song, N.; Dikpati, M.

    2006-12-01

    We describe our five year old solar physics research program at The Evergreen State College. Famed for its cloudy skies, the Pacific Northwest is an ideal location for theoretical and remote solar physics research activities. Why does the Sun's magnetic field flip polarity every 11 years or so? How does this contribute to the magnetic storms Earth experiences when the Sun's field reverses? Why is the temperature in the Sun's upper atmosphere millions of degrees higher than the Sun's surface temperature? How do magnetic waves transport energy in the Sun’s chromosphere and the Earth’s atmosphere? How does solar variability affect climate change? Faculty and undergraduates investigate questions such as these in collaboration with the High Altitude Observatory (HAO) at the National Center for Atmospheric Research (NCAR) in Boulder. We will describe successful student research projects, logistics of remote computing, and our current physics investigations into (1) the solar dynamo and (2) chromospheric magnetohydrodynamics.

  8. EFFECT OF CORONAL TEMPERATURE ON THE SCALE OF SOLAR CHROMOSPHERIC JETS

    Energy Technology Data Exchange (ETDEWEB)

    Iijima; Yokoyama, T.H., E-mail: h.iijima@eps.s.u-tokyo.ac.jp [Department of Earth and Planetary Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan)

    2015-10-20

    We investigate the effect of coronal temperature on the formation process of solar chromospheric jets using two-dimensional magnetohydrodynamic simulations of the region from the upper convection zone to the lower corona. We develop a new radiative magnetohydrodynamic code for the dynamic modeling of the solar atmosphere, employing an LTE equation of state, optically thick radiative loss in the photosphere, optically thin radiative loss in the chromosphere and the corona, and thermal conduction along the magnetic field lines. Many chromospheric jets are produced in the simulations by shock waves passing through the transition region. We find that these jets are projected farther outward when the coronal temperature is lower (similar to that in coronal holes) and shorter when the coronal temperature is higher (similar to that in active regions). When the coronal temperature is high, the deceleration of the chromospheric jets is consistent with the model in which deceleration is determined by the periodic chromospheric shock waves. However, when the coronal temperature is low, the gravitational deceleration becomes more important and the chromospheric jets approach ballistic motion.

  9. Magnetic structure of an activated filament in a flaring active region

    CERN Document Server

    Sasso, C; Solanki, S K

    2013-01-01

    While the magnetic field in quiescent prominences has been widely investigated, less is known about the field in activated prominences. We introduce observational results on the magnetic field structure of an activated filament in a flaring active region. We study, in particular, its magnetic structure and line-of-sight flows during its early activated phase, shortly before it displays signs of rotation. We invert the Stokes profiles of the chromospheric He I 10830 A triplet and the photospheric Si I 10827 A line observed in this filament by the VTT on Tenerife. Using these inversion results we present and interpret the first maps of velocity and magnetic field obtained in an activated filament, both in the photosphere and the chromosphere. Up to 5 different magnetic components are found in the chromospheric layers of the filament, while outside the filament a single component is sufficient to reproduce the observations. Magnetic components displaying an upflow are preferentially located towards the centre of...

  10. Wave Heating of the Solar Chromosphere

    Indian Academy of Sciences (India)

    Wolfgang Kalkofen

    2008-03-01

    The nonmagnetic interior of supergranulation cells has been thought since the 1940s to be heated by the dissipation of acoustic waves. But all attempts to measure the acoustic flux have failed to show sufficient energy for chromospheric heating. Recent space observations with TRACE, for example, have found 10% or less of the necessary flux. To explain the missing energy it has been speculated that the nonmagnetic chromosphere is heated mainly by waves related to the magnetic field. If that were correct, the whole chromosphere, magnetic as well as nonmagnetic, would be heated mainly by waves related to the magnetic field. But contrary to expectation, the radiation emerging from the nonmagnetic chromosphere shows none of the signatures of magnetic waves, only those of acoustic waves. Nearly all the heating of the nonmagnetic chromosphere must therefore be due to acoustic waves. In the magnetic network on the boundary of supergranulation cells, on the other hand, the small filling factor of the magnetic field in the photosphere implies that only a small fraction of the wave flux that travels upward to heat the chromosphere can be channeled by the magnetic field. Hence, while some of the energy that is dissipated in the magnetic network is in the form of magnetic waves, most of it must be in the form of acoustic waves. Thus, the quiet solar chromosphere, instead of being heated mainly by magneticwaves throughout, must be heated mainly by acoustic waves throughout. The full wave flux heating the quiet chromosphere must travel through the photosphere. In the nonmagnetic medium, this flux is essentially all in the form of acoustic waves; TRACE registers at most 10% of it, perhaps because of limited spatial resolution.

  11. The HADES RV Programme with HARPS-N@TNG IV. Time resolved analysis of the Ca ii H&K and H{\\alpha} chromospheric emission of low-activity early-type M dwarfs

    CERN Document Server

    Scandariato, G; Biazzo, K; Leto, G; Stelzer, B; Sanchez, R Zanmar; Claudi, R; Cosentino, R; Damasso, M; Desidera, S; Álvarez, E González; Hernández, J I González; Gratton, R; Lanza, A F; Maggio, A; Messina, S; Micela, G; Pagano, I; Perger, M; Piotto, G; Rebolo, R; Ribas, I; Rosich, A; Sozzetti, A; Mascareño, A Suárez

    2016-01-01

    M dwarfs are prime targets for planet search programs, particularly of those focused on the detection and characterization of rocky planets in the habitable zone. Understanding their magnetic activity is important because it affects our ability to detect small planets, and it plays a key role in the characterization of the stellar environment. We analyze observations of the Ca II H&K and H{\\alpha} lines as diagnostics of chromospheric activity for low-activity early-type M dwarfs. We analyze the time series of spectra of 71 early-type M dwarfs collected for the HADES project for planet search purposes. The HARPS-N spectra provide simultaneously the H&K doublet and the H{\\alpha} line. We develop a reduction scheme able to correct the HARPS-N spectra for instrumental and atmospheric effects, and to provide flux-calibrated spectra in units of flux at the stellar surface. The H&K and H{\\alpha} fluxes are compared with each other, and their variability is analyzed. We find that the H and K flux excesse...

  12. Numerical studies of solar chromospheric jets

    Science.gov (United States)

    Iijima, Haruhisa

    2016-03-01

    The solar chromospheric jet is one of the most characteristic structures near the solar surface. The quantitative understanding of chromospheric jets is of substantial importance for not only the partially ionized phenomena in the chromosphere but also the energy input and dissipation processes in the corona. In this dissertation, the formation and dynamics of chromospheric jets are investigated using the radiation magnetohydrodynamic simulations. We newly develop a numerical code for the radiation magnetohydrodynamic simulations of the comprehensive modeling of solar atmosphere. Because the solar chromosphere is highly nonlinear, magnetic pressure dominated, and turbulent, a robust and high-resolution numerical scheme is required. In Chapter 2, we propose a new algorithm for the simulation of magnetohydrodynamics. Through the test problems and accuracy analyses, the proposed scheme is proved to satisfy the requirements. In Chapter 3, the effect of the non-local radiation energy transport, Spitzer-type thermal conduction, latent heat of partial ionization and molecule formation, and gravity are implemented to the magnetohydrodynamic code. The numerical schemes for the radiation transport and thermal conduction is carefully chosen in a view of the efficiency and compatibility with the parallel computation. Based on the developed radiation magnetohydrodynamic code, the formation and dynamics of chromospheric jets are investigated. In Chapter 4, we investigate the dependence of chromospheric jets on the coronal temperature in the two-dimensional simulations. Various scale of chromospheric jets with the parabolic trajectory are found with the maximum height of 2–8 Mm, lifetime of 2–7 min, maximum upward velocity of 10– 50 km/s, and deceleration of 100–350 m/s2. We find that chromospheric jets are more elongated under the cool corona and shorter under the hot corona. We also find that the pressure gradient force caused by the periodic shock waves accelerates

  13. Stellar magnetic activity

    International Nuclear Information System (INIS)

    The stellar emission in the chromospheric Ca II H+K lines is compared with the coronal soft X-ray emission, measuring the effects of non-radiative heating in the outer atmosphere at temperatures differing two orders of magnitude. The comparison of stellar flux densities in Ca II H+K and X-rays is extended to fluxes from the transition-region and the high-temperature chromosphere. The stellar magnetic field is probably generated in the differentially rotating convective envelope. The relation between rotation rate and the stellar level of activity measured in chromospheric, transition-region, and coronal radiative diagnostics is discovered. X-ray observations of the binary λ Andromedae are discussed. The departure of M-type dwarfs from the main relations, and the implications for the structure of the chromospheres of these stars are discussed. Variations of the average surface flux densities of the Sun during the 11-year activity cycle agree with flux-flux relations derived for other cool stars, suggesting that the interpretation of the stellar relations may be furthered by studying the solar analogue in more detail. (Auth.)

  14. Measurements of Photospheric and Chromospheric Magnetic Fields

    CERN Document Server

    Lagg, Andreas; Harvey, Jack; Gosain, Sanjay; Centeno, Rebecca

    2015-01-01

    The Sun is replete with magnetic fields, with sunspots, pores and plage regions being their most prominent representatives on the solar surface. But even far away from these active regions, magnetic fields are ubiquitous. To a large extent, their importance for the thermodynamics in the solar photosphere is determined by the total magnetic flux. Whereas in low-flux quiet Sun regions, magnetic structures are shuffled around by the motion of granules, the high-flux areas like sunspots or pores effectively suppress convection, leading to a temperature decrease of up to 3000 K. The importance of magnetic fields to the conditions in higher atmospheric layers, the chromosphere and corona, is indisputable. Magnetic fields in both active and quiet regions are the main coupling agent between the outer layers of the solar atmosphere, and are therefore not only involved in the structuring of these layers, but also for the transport of energy from the solar surface through the corona to the interplanetary space. Conseque...

  15. Misalignment between chromospheric features and magnetic field

    CERN Document Server

    Martínez-Sykora, Juan; Carlsson, Mats; Hansteen, Viggo

    2016-01-01

    Observations of the upper chromosphere shows an enormous amount of intricate fine structure. Much of this comes in the form of linear features which are most often assumed to be well aligned with the direction of the magnetic field in the low plasma beta regime thought to dominate the upper chromosphere. We use advanced radiative MHD simulations including the effects of ion-neutral interactions (using the generalized Ohm's law) in the partially ionized chromosphere to show that the magnetic field is often not well aligned with chromospheric features. This occurs where the ambipolar diffusion is large, i.e., ions and neutral populations decouple as the ion-neutral collision frequency drops allowing the field to slip through the neutral population, currents perpendicular to the field are strong, and thermodynamic timescales are longer than or similar to the those of ambipolar diffusion. We find this often happens in dynamic spicule or fibril-like features at the top of the chromosphere. This has important conse...

  16. Patterns of photometric and chromospheric variation among Sun-like stars: A 20-year perspective

    CERN Document Server

    Lockwood, G W; Henry, G W; Henry, S; Radick, R R; Baliunas, S L; Donahue, R A; Soon, W; Henry, Gregory W.; Henry, Stephen

    2007-01-01

    We examine patterns of variation of 32 primarily main sequence stars, extending our previous 7-12 year time series to 13-20 years by combining b, y data from Lowell Observatory with similar data from Fairborn Observatory. Parallel chromospheric Ca II H and K emission data from the Mount Wilson Observatory span the entire interval. The extended data strengthen the relationship between chromospheric and photometric variation derived previously. Twenty-seven stars are deemed variable. On a year-to-year timescale young active stars become fainter when their Ca II emission increases while older less active stars such as the Sun become brighter when their Ca II emission increases. The Sun's total irradiance variation, scaled to the b and y filter photometry, still appears to be somewhat smaller than stars in our limited sample with similar mean chromospheric activity, but we now regard this discrepancy as probably due mainly to our limited stellar sample

  17. On the Role of Rotating Sunspots in the Activity of Solar Active Region NOAA 11158

    CERN Document Server

    Vemareddy, P; Maurya, R A

    2012-01-01

    We study the role of rotating sunspots in relation to the evolution of various physical parameters characterizing the non-potentiality of the active region NOAA 11158 and its eruptive events using the magnetic field data from the Helioseismic and Magnetic Imager (HMI) and multi-wavelength observations from the Atmospheric Imaging Assembly (AIA) on board Solar Dynamics Observatory (SDO). From the evolutionary study of HMI intensity and AIA channels, it is observed that the AR consists of two major rotating sunspots one connected to flare-prone region and another with CME. The constructed space-time intensity maps reveal that the sunspots exhibited peak rotation rates coinciding with the occurrence of the major eruptive events. Further, temporal profiles of twist parameters, viz., average shear angle, $\\alpha_{\\rm av}$, $\\alpha_{\\rm best}$, derived from HMI vector magnetograms and the rate of helicity injection, obtained from the horizontal flux motions of HMI line-of-sight magnetograms, corresponded well with ...

  18. Simulations of chromospheric heating by ambipolar diffusion

    CERN Document Server

    Khomenko, Elena

    2012-01-01

    We propose a mechanism for efficient heating of the solar chromosphere, based on non-ideal plasma effects. Three ingredients are needed for the work of this mechanism: (1) presence of neutral atoms; (2) presence of a non-potential magnetic field; (3) decrease of the collisional coupling of the plasma. Due to decrease of collisional coupling, a net relative motion appears between the neutral and ionized components, usually referred to as "ambipolar diffusion". This results in a significant enhancement of current dissipation as compared to the classical MHD case. We propose that the current dissipation in this situation is able to provide enough energy to heat the chromosphere by several kK on the time scale of minutes, or even seconds. In this paper, we show that this energy supply might be sufficient to balance the radiative energy losses of the chromosphere.

  19. ON THE ROLE OF ROTATING SUNSPOTS IN THE ACTIVITY OF SOLAR ACTIVE REGION NOAA 11158

    International Nuclear Information System (INIS)

    We study the role of rotating sunspots in relation to the evolution of various physical parameters characterizing the non-potentiality of the active region (AR) NOAA 11158 and its eruptive events using the magnetic field data from the Helioseismic and Magnetic Imager (HMI) and multi-wavelength observations from the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory. From the evolutionary study of HMI intensity and AIA channels, it is observed that the AR consists of two major rotating sunspots, one connected to a flare-prone region and another with coronal mass ejection (CME). The constructed space-time intensity maps reveal that the sunspots exhibited peak rotation rates coinciding with the occurrence of major eruptive events. Further, temporal profiles of twist parameters, namely, average shear angle, αav, αbest, derived from HMI vector magnetograms, and the rate of helicity injection, obtained from the horizontal flux motions of HMI line-of-sight magnetograms, correspond well with the rotational profile of the sunspot in the CME-prone region, giving predominant evidence of rotational motion causing magnetic non-potentiality. Moreover, the mean value of free energy from the virial theorem calculated at the photospheric level shows a clear step-down decrease at the onset time of the flares revealing unambiguous evidence of energy release intermittently that is stored by flux emergence and/or motions in pre-flare phases. Additionally, distribution of helicity injection is homogeneous in the CME-prone region while in the flare-prone region it is not and often changes sign. This study provides a clear picture that both proper and rotational motions of the observed fluxes played significant roles in enhancing the magnetic non-potentiality of the AR by injecting helicity, twisting the magnetic fields and thereby increasing the free energy, leading to favorable conditions for the observed transient activity.

  20. ON THE ROLE OF ROTATING SUNSPOTS IN THE ACTIVITY OF SOLAR ACTIVE REGION NOAA 11158

    Energy Technology Data Exchange (ETDEWEB)

    Vemareddy, P.; Ambastha, A. [Udaipur Solar Observatory, Physical Research Laboratory, Udaipur-313001 (India); Maurya, R. A., E-mail: vema@prl.res.in, E-mail: ambastha@prl.res.in, E-mail: ramajor@astro.snu.ac.kr [Astronomy Program, Department of Physics and Astronomy, Seoul National University, Seoul 151-747 (Korea, Republic of)

    2012-12-10

    We study the role of rotating sunspots in relation to the evolution of various physical parameters characterizing the non-potentiality of the active region (AR) NOAA 11158 and its eruptive events using the magnetic field data from the Helioseismic and Magnetic Imager (HMI) and multi-wavelength observations from the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory. From the evolutionary study of HMI intensity and AIA channels, it is observed that the AR consists of two major rotating sunspots, one connected to a flare-prone region and another with coronal mass ejection (CME). The constructed space-time intensity maps reveal that the sunspots exhibited peak rotation rates coinciding with the occurrence of major eruptive events. Further, temporal profiles of twist parameters, namely, average shear angle, {alpha}{sub av}, {alpha}{sub best}, derived from HMI vector magnetograms, and the rate of helicity injection, obtained from the horizontal flux motions of HMI line-of-sight magnetograms, correspond well with the rotational profile of the sunspot in the CME-prone region, giving predominant evidence of rotational motion causing magnetic non-potentiality. Moreover, the mean value of free energy from the virial theorem calculated at the photospheric level shows a clear step-down decrease at the onset time of the flares revealing unambiguous evidence of energy release intermittently that is stored by flux emergence and/or motions in pre-flare phases. Additionally, distribution of helicity injection is homogeneous in the CME-prone region while in the flare-prone region it is not and often changes sign. This study provides a clear picture that both proper and rotational motions of the observed fluxes played significant roles in enhancing the magnetic non-potentiality of the AR by injecting helicity, twisting the magnetic fields and thereby increasing the free energy, leading to favorable conditions for the observed transient activity.

  1. Chromospheric diagnosis with forward scattering polarization

    CERN Document Server

    Carlin, E S

    2016-01-01

    Is it physically feasible to perform chromospheric diagnosis using spatial maps of scattering polarization at the solar disk center? To investigate it we synthesized polarization maps (in 8542 Angstroms) resulting from MHD solar models and NLTE radiative transfer calculations that consider Hanle effect and vertical macroscopic motions. After explaining the physical con- text of forward scattering and presenting our results, we arrive at the definition of Hanle polarity inversion lines. We show how such features can give support for a clearer chromospheric diagnosis in which the magnetic and dynamic effects in the scattering polarization could be disentangled.

  2. Contribution to the study of velocity fields of chromosphere and solar transition zone

    International Nuclear Information System (INIS)

    The LPSP (Laboratoire de Physique Stellaire et Planetaire) experiment on board 0508 is described. The properties of the instrument are discussed together with their evolution with time. The chromospheric oscillations and transients were studied (sunspost and active regions, prominences, oscillations in the chromosphere, chromosphere-corona transition lines). Simultaneous time-resolved observations of the H Lα, Mg k 2795A, and Ca, K solar lines were made. They indicate that the temporal variations of wavelength of the reversal of the solar H Lα and Mg k lines are correlated. A narrow absorption on the red part of the solar H Lα profile was observed and attributed to atomic hydrogen of the nearby interplanetary gas

  3. Design Concepts for a Continuously Rotating Active Magnetic Regenerator

    DEFF Research Database (Denmark)

    Bahl, Christian Robert Haffenden; Engelbrecht, Kurt; Bjørk, Rasmus;

    2010-01-01

    Design considerations for a prototype magnetic refrigeration device with a continuously rotating AMR are presented. Building the AMR from stacks of elongated plates of the perovskite oxide material La0.67Ca0.33-xSrxMn1.05O3, gives both a low pressure drop and allows grading of the Curie temperatu...

  4. The chromospheric structure of cool carbon stars

    International Nuclear Information System (INIS)

    The temperature-density structure of the outer atmospheres of the N-type carbon stars are investigated through computer generated synthetic spectra from model atmospheres. The synthetic spectra are compared to spectra obtained with the International Ultraviolet Explorer (IUE) spacecraft and ground-based photometry. The nature of the severe violet flux falloff seen in cool carbon stars is investigated through photospheric synthetic flux calculations with the assumption of local thermodynamic equilibrium (LTE). A new candidate for the unknown opacity source that causes this flux falloff is proposed-a preponderance of neutral metal bound-bound and bound-free transitions from low energy states. The chromospheric structure of these stars is also investigated through a semi-empirical modeling technique. Such a technique involves attaching a chromospheric temperature rise to a radiative equilibrium model photosphere and generating a synthetic spectrum of chromospheric spectral lines using non-LTE radiative transfer. The chromospheric temperature-density structure is then altered until the synthetic spectrum matches the IUE observations of the singly ionized magnesium resonance lines and the intercombination lines of singly ionized carbon. Through the above mentioned non-LTE analysis of the atmospheric structure of these stars, the excitation and ionization equilibria are investigated. The excited levels of H I, C I, Na I, Mg I, and Ca I are over-populated with respect to LTE in the middle and upper photosphere of these stars, and all are over-ionized with respect to LTE. Photons from the chromosphere greatly influence the excitation and ionization of H I, C I, and Mg I

  5. Doppler tomography of XTE J1118+480 revealing chromospheric emission from the secondary star

    Science.gov (United States)

    Zurita, C.; González Hernández, J. I.; Escorza, A.; Casares, J.

    2016-08-01

    Doppler tomography of emission lines in low-mass X-ray binaries allows us to investigate the structure and variability of the accretion discs as well as possible activity arising from the secondary stars. We present Doppler maps of the black hole binary XTE J1118+480 from spectra obtained using OSIRIS@GTC during quiescence on four different nights in 2011 and 2012. Doppler imaging of the Hα line shows, for the first time, a narrow component from the secondary star with observed equivalent widths varying in the range 1.2-2.9 Å but not correlated with the veiling of the accretion disc. The Hα flux of the secondary star is too large to be powered by X-ray irradiation, supporting chromospheric activity, possibly induced by rapid rotation, as the most likely origin of this feature in the black hole X-ray binary XTE J1118+480. In addition, we detect variations in the centroid of the Hα line on nightly basis. These are likely caused by a precessing accretion disc, although with a much lower amplitude (˜50 km s-1) than previously observed.

  6. Cat vestibular neurons that exhibit different responses to active and passive yaw head rotations

    Science.gov (United States)

    Robinson, F. R.; Tomko, D. L.

    1987-01-01

    Neurons in the vestibular nuclei were recorded in alert cats during voluntary yaw rotations of the head and during the same rotations delivered with a turntable driven from a record of previous voluntary movements. During both voluntary and passive rotations, 35 percent (6/17) of neurons tested responded at higher rates or for a larger part of the movement during voluntary movements than during the same rotations delivered with the turntable. Neck sensory input was evaluated separately in many of these cells and can account qualitatively for the extra firing present during active movement.

  7. Sex Differences in Mental Rotation and Cortical Activation Patterns: Can Training Change Them?

    Science.gov (United States)

    Jausovec, Norbert; Jausovec, Ksenija

    2012-01-01

    In two experiments the neuronal mechanisms of sex differences in mental rotation were investigated. In Experiment 1 cortical activation was studied in women and men with similar levels of mental rotation ability (high, and average to low), who were equalized with respect to general intelligence. Sex difference in neuroelectric patterns of brain…

  8. The observed relationships between some solar rotation parameters and the activity cycle

    Science.gov (United States)

    Howard, R.; Labonte, B. J.

    1983-01-01

    Several parameters of the solar rotation show variations which appear to relate to the phase of the solar-activity cycle. The latitude gradient of the differential rotation, as seen in the coefficients of the sin2 and sin4 terms in the latitude expansion, shows marked variations with the cycle. One of these variations may be described as a one-cycle-per-hemisphere torsional oscillation with a period of 11 years, where the high latitudes rotate faster at solar-activity maximum and slower at minimum, and the low latitudes rotate faster at solar-activity minimum and slower at maximum. Another variation is a periodic oscillation of the fractional difference in the low-latitude rotation between north and south hemispheres. The possibility of a variation in the absolute rotational velocity of the sun in phase with the solar cycle remains an open question. The two-cycle-per-hemisphere torsional waves in the solar rotation also represent an aspect of the rotation which varies with the cycle. It is shown that the amplitude of the fast flowing zone rises a year before the rise to activity maximum. The fast zone seems to be physically the more significant of the two zones.

  9. Active Control and Energy Cost Assessment of a Rotating Machine

    OpenAIRE

    Jarir Mahfoud; Yan Skladanek; Johan Der Hagopian

    2011-01-01

    The performances for controlling a rotating machine by using either an Electromagnetic Actuator or a Piezoelectric Actuator are compared in this work. The aim is to establish selection criteria based on environmental impact. Life Cycle Analysis shows that the operating stage has a considerable impact. In this study, only the operating stage is considered. The energy consumed by the actuators seems to be the appropriate indicator for the same "mechanical" performances. Numerical studies are ca...

  10. Tracing the Chromospheric and Coronal Magnetic Field with AIA, IRIS, IBIS, and ROSA Data

    Science.gov (United States)

    Aschwanden, Markus J.; Reardon, Kevin; Jess, Dave B.

    2016-07-01

    The aim of this study is to explore the suitability of chromospheric images for magnetic modeling of active regions. We use high-resolution images (≈ 0\\buildrel{\\prime\\prime}\\over{.} 2{--}0\\buildrel{\\prime\\prime}\\over{.} 3), from the Interferometric Bidimensional Spectrometer in the Ca ii 8542 Å line, the Rapid Oscillations in the Solar Atmosphere instrument in the Hα 6563 Å line, the Interface Region Imaging Spectrograph in the 2796 Å line, and compare non-potential magnetic field models obtained from those chromospheric images with those obtained from images of the Atmospheric Imaging Assembly in coronal (171 Å, etc.) and in chromospheric (304 Å) wavelengths. Curvi-linear structures are automatically traced in those images with the OCCULT-2 code, to which we forward-fitted magnetic field lines computed with the Vertical-current Approximation Nonlinear Force Free Field code. We find that the chromospheric images: (1) reveal crisp curvi-linear structures (fibrils, loop segments, spicules) that are extremely well-suited for constraining magnetic modeling; (2) that these curvi-linear structures are field-aligned with the best-fit solution by a median misalignment angle of {μ }2≈ 4^\\circ –7° (3) the free energy computed from coronal data may underestimate that obtained from cromospheric data by a factor of ≈ 2–4, (4) the height range of chromospheric features is confined to h≲ 4000 km, while coronal features are detected up to h = 35,000 km; and (5) the plasma-β parameter is β ≈ {10}-5{--}{10}-1 for all traced features. We conclude that chromospheric images reveal important magnetic structures that are complementary to coronal images and need to be included in comprehensive magnetic field models, something that is currently not accomodated in standard NLFFF codes.

  11. Basal Chromospheric Flux and Maunder Minimum-type Stars: The quiet-Sun Chromosphere as a Universal Phenomenon

    CERN Document Server

    Schroeder, K -P; Martinez, M I Perez; Cuntz, M; Schmitt, J H M M

    2012-01-01

    Aims: We demonstrate the universal character of the quiet-Sun chromosphere among inactive stars (solar-type and giants). By assessing the main physical processes, we shed new light on some common observational phenomena. Methods: We discuss measurements of the solar Mt. Wilson S-index, obtained by the Hamburg Robotic Telescope around the extreme minimum year 2009, and compare the established chromospheric basal Ca II K line flux to the Mt. Wilson S-index data of inactive ("flat activity") stars, including giants. Results: During the unusually deep and extended activity minimum of 2009, the Sun reached S-index values considerably deeper than in any of its previously observed minima. In several brief periods, the Sun coincided exactly with the S-indices of inactive ("flat", presumed Maunder Minimum-type) solar analogues of the Mt. Wilson sample; at the same time, the solar visible surface was also free of any plages or remaining weak activity regions. The corresponding minimum Ca II K flux of the quiet Sun and ...

  12. New Insights on Late-A and Early-F Star Activity

    Science.gov (United States)

    Freire Ferrero, R.; Catalano, S.; Marilli, E.; Gouttebroze, P.; Talavera, A.; Bruhweiler, F.

    The onset of chromospheric activity in late-A and early-F stars is here discussed. The detection of Ly- emission core in several A and F atars with the IUE satellite, gives evidence for the presence of chromospheric layers in these stars up to B - V = 0m.19 (Marilli et al., 1996). Semiempirical chromospheric models for Altair allowed us (Freire Ferrero et al., 1995) to explain the observed emission profiles taking into account normal H I interstellar (IS) absorption. However, due to the very high rotational velocity, we analysed alternative hypotheses to explain the observed emissions: (1) circumstellar or shell matter; (2) co-rotating expanding optically thin wind. We ruled out these hypotheses because their effects are negligible and as a consequence, this result reinforces the chromospheric origin of the observed Ly- core in Altair. The stars of our sample, having observed Ly- profilies similar to Altair's and similar stellar and IS properties, should reproduce similar chromospheric behaviour. Here we discuss several important questions that are raised by these results.

  13. Are plasma satellites present among chromospheric lines?

    Science.gov (United States)

    Ohman, Y.

    1983-05-01

    Published literature is examined for evidence of the presence of plasma satellites among the solar chromospheric lines. Indications are found that first-order plasma satellites sometimes appear as a pair of faint chromospheric emission lines in places where forbidden lines, mainly of metals, should be located. Evidence is seen that second-order plasma satellites are present among lines for which emission wings show asymmetry with respect to the distances from the line center and with respect to intensity. Indications are found that fourth-order plasma satellites are present as unidentified diffuse lines situated near parent lines of food strength either in emission or in absorption. All three types of satellites show electron densities on the order of a trillion/cu cm. Indications that plasma satellites may sometimes appear as faint absorption lines in the solar spectrum are discussed.

  14. Heating of the magnetized solar chromosphere by partial ionization effects

    CERN Document Server

    Khomenko, Elena

    2011-01-01

    In this paper, we study the heating of the magnetized solar chromosphere induced by the large fraction of neutral atoms present in this layer. The presence of neutrals, together with the decrease with height of the collisional coupling, leads to deviations from the classical MHD behavior of the chromospheric plasma. A relative net motion appears between the neutral and ionized components, usually referred to as ambipolar diffusion. The dissipation of currents in the chromosphere is enhanced orders of magnitude due to the action of ambipolar diffusion, as compared to the standard ohmic diffusion. We propose that a significant amount of magnetic energy can be released to the chromosphere just by existing force-free 10--40 G magnetic fields there. As a consequence, we conclude that ambipolar diffusion is an important process that should be included in chromospheric heating models, as it has the potential to rapidly heat the chromosphere. We perform analytical estimations and numerical simulations to prove this i...

  15. Chromospheric Dynamics and the FIP Flip

    OpenAIRE

    Rutten, R. J.

    2001-01-01

    This paper consists of two parts. The first, resembling many other SOHO contributions in this volume, reports on a recent campaign in which SUMER was employed simultaneously with groundbased tele- scopes. The campaign is described but results are not yet in hand. The second part differs by proposing SUMER measurements and analysis to be contributed by you. It calls attention to the FIP effect, a puzzling outer-atmosphere element segregation that may have to do with quiet-sun chromospheric dyn...

  16. Linear Polarization Measurements of Chromospheric Emission Lines

    Science.gov (United States)

    Sheeley, N. R., Jr.; Keller, C. U.

    2003-01-01

    We have used the Zurich Imaging Stokes Polarimeter (ZIMPOL I) with the McMath-Pierce 1.5 m main telescope on Kitt Peak to obtain linear polarization measurements of the off-limb chromosphere with a sensitivity better than 1 x 10(exp -5). We found that the off-disk observations require a combination of good seeing (to show the emission lines) and a clean heliostat (to avoid contamination by scattered light from the Sun's disk). When these conditions were met, we obtained the following principal results: 1. Sometimes self-reversed emission lines of neutral and singly ionized metals showed linear polarization caused by the transverse Zeeman effect or by instrumental cross talk from the longitudinal Zeeman effect in chromospheric magnetic fields. Otherwise, these lines tended to depolarize the scattered continuum radiation by amounts that ranged up to 0.2%. 2. Lines previously known to show scattering polarization just inside the limb (such as the Na I lambda5889 D2 and the He I lambda5876 D3 lines) showed even more polarization above the Sun's limb, with values approaching 0.7%. 3. The O I triplet at lambda7772, lambda7774, and lambda7775 showed a range of polarizations. The lambda7775 line, whose maximum intrinsic polarizability, P(sub max), is less than 1%, revealed mainly Zeeman contributions from chromospheric magnetic fields. However, the more sensitive lambda7772 (P(sub max) = 19%) and lambda7774 (P(sub max) = 29%) lines had relatively strong scattering polarizations of approximately 0.3% in addition to their Zeeman polarizations. At times of good seeing, the polarization spectra resolve into fine structures that seem to be chromospheric spicules.

  17. Chromospheric heating by acoustic waves compared to radiative cooling

    CERN Document Server

    Sobotka, M; Švanda, M; Jurčák, J; del Moro, D; Berrilli, F

    2016-01-01

    Acoustic and magnetoacoustic waves are among the possible candidate mechanisms that heat the upper layers of solar atmosphere. A weak chromospheric plage near a large solar pore NOAA 11005 was observed on October 15, 2008 in the lines Fe I 617.3 nm and Ca II 853.2 nm with the Interferometric Bidimemsional Spectrometer (IBIS) attached to the Dunn Solar Telescope. Analyzing the Ca II observations with spatial and temporal resolutions of 0.4" and 52 s, the energy deposited by acoustic waves is compared with that released by radiative losses. The deposited acoustic flux is estimated from power spectra of Doppler oscillations measured in the Ca II line core. The radiative losses are calculated using a grid of seven 1D hydrostatic semi-empirical model atmospheres. The comparison shows that the spatial correlation of maps of radiative losses and acoustic flux is 72 %. In quiet chromosphere, the contribution of acoustic energy flux to radiative losses is small, only of about 15 %. In active areas with photospheric ma...

  18. Gyrochronology of Low-mass Stars - Age-Rotation-Activity Relations for Young M Dwarfs

    Science.gov (United States)

    Kidder, Benjamin; Shkolnik, E.; Skiff, B.

    2014-01-01

    New rotation periods for 34 young intention of strengthening age-rotation-activity relations and assessing the possible use of gyrochronology in young, low-mass stars. We compared ages and rotation periods of our target stars to cluster members spanning 1-600 Myr. Rotation periods at every age exhibit a large scatter, with values typically ranging from 0.2 to 15 days. This suggests that gyrochronology for individual field stars will not be possible without a better understanding of the underlying mechanisms that govern angular momentum evolution. Yet, on average, the data still support the predicted trends for spin-up during contraction and spin-down on the main sequence, with the turnover occurring at around 150 Myr for early Ms. This suggests that rotation period distributions can be helpful in evaluating the ages of coeval groups of stars. Many thanks to the National Science Foundation for their support through the Research Experience for Undergraduates Grant AST- 1004107.

  19. Angular Velocity Affects Trunk Muscle Strength and EMG Activation during Isokinetic Axial Rotation

    OpenAIRE

    Jian-Zhong Fan; Xia Liu; Guo-Xin Ni

    2014-01-01

    Objective. To evaluate trunk muscle strength and EMG activation during isokinetic axial rotation at different angular velocities. Method. Twenty-four healthy young men performed isokinetic axial rotation in right and left directions at 30, 60, and 120 degrees per second angular velocity. Simultaneously, surface EMG was recorded on external oblique (EO), internal oblique (IO), and latissimus dorsi (LD) bilaterally. Results. In each direction, with the increase of angular velocity, peak torque ...

  20. Tracing the Chromospheric and Coronal Magnetic Field with AIA, IRIS, IBIS, and ROSA Data

    CERN Document Server

    Aschwanden, M J; Jess, D

    2016-01-01

    The aim of this study is to explore the suitability of chromospheric images for magnetic modeling of active regions. We use high-resolution images (0.1") from the Interferometric Bidimensional Spectrometer (IBIS) in the Ca II 8542 A line, the Rapid Oscillations in the Solar Atmosphere (ROSA) instrument in the H-alpha 6563 A line, the Interface Region Imaging Spectrograph (IRIS) in the 2796 A line, and compare non-potential magnetic field models obtained from those chromospheric images with those obtained from images of the Atmospheric Imaging Assembly (AIA) in coronal (171 A, etc.) and in chromospheric (304 A) wavelengths. Curvi-linear structures are automatically traced in those images with the OCCULT-2 code, to which we forward-fitted magnetic field lines computed with the Vertical-Current Approximation Non-Linear Force Free Field (VCA-NLFFF) code. We find that the chromospheric images: (1) reveal crisp curvi-linear structures (fibrils, loop segments, spicules) that are extremely well-suited for constrainin...

  1. Photometric and spectroscopic observations of three rapidly rotating late-type stars: EY Dra, V374 Peg and GSC 02038-00293

    CERN Document Server

    Korhonen, H; Husarik, M; Mahajan, S; Szczygiel, D; Olah, K

    2010-01-01

    Here, BV(RI)c broad band photometry and intermediate resolution spectroscopy in Halpha region are presented for two rapidly rotating late-type stars: EY Dra and V374 Peg. For a third rapid rotator, GSC 02038-00293, intermediate resolution Halpha spectroscopy and low resolution spectroscopy are used for spectral classification and stellar parameter investigation of this poorly known object. The low resolution spectrum of GSC 02038-00293 clearly indicates that it is a K-type star. Its intermediate resolution spectrum can be best fitted with a model with Teff=4750K and vsini=90km/s, indicating a very rapidly rotating mid-K star. The Halpha line strength is variable, indicating changing chromospheric emission on GSC 02038-00293. In the case of EY Dra and V374 Peg, the stellar activity in the photosphere is investigated from the photometric observations, and in the chromosphere from the Halpha line. The enhanced chromospheric emission in EY Dra correlates well with the location of the photospheric active regions, ...

  2. Evidence for Fine Structure in the Chromospheric Umbral Oscillation

    CERN Document Server

    Centeno, R; Collados, M; Bueno, J T

    2005-01-01

    Novel spectro-polarimetric observations of the \\ion{He}{1} multiplet are used to explore the dynamics of the chromospheric oscillation above sunspot umbrae. The results presented here provide strong evidence in support of the two-component model proposed by Socas-Navarro and co-authors. According to this model, the waves propagate only inside channels of sub-arcsecond width (the ``active'' component), whereas the rest of the umbra remains nearly at rest (the ``quiet'' component). Although the observations support the fundamental elements of that model, there is one particular aspect that is not compatible with our data. We find that, contrary to the scenario as originally proposed, the active component remains through the entire oscillation cycle and harbors both the upflowing and the downflowing phase of the oscillation.

  3. Fast Rotation and Trailing Fragments of the Active Asteroid P/2012 F5 (Gibbs)

    Science.gov (United States)

    Drahus, Michał; Waniak, Wacław; Tendulkar, Shriharsh; Agarwal, Jessica; Jewitt, David; Sheppard, Scott S.

    2015-03-01

    While having a comet-like appearance, P/2012 F5 (Gibbs) has an orbit native to the Main Asteroid Belt, and physically is a km-sized asteroid which recently (mid 2011) experienced an impulsive mass ejection event. Here we report new observations of this object obtained with the Keck II telescope on UT 2014 August 26. The data show previously undetected 200 m scale fragments of the main nucleus, and reveal a rapid nucleus spin with a rotation period of 3.24 ± 0.01 hr. The existence of large fragments and the fast nucleus spin are both consistent with rotational instability and partial disruption of the object. To date, many fast rotators have been identified among the minor bodies, which, however, do not eject detectable fragments at the present-day epoch, and also fragmentation events have been observed, but with no rotation period measured. P/2012 F5 is unique in that for the first time we detected fragments and quantified the rotation rate of one and the same object. The rapid spin rate of P/2012 F5 is very close to the spin rates of two other active asteroids in the Main Belt, 133P/Elst-Pizarro and (62412), confirming the existence of a population of fast rotators among these objects. But while P/2012 F5 shows impulsive ejection of dust and fragments, the mass loss from 133P is prolonged and recurrent. We believe that these two types of activity observed in the rapidly rotating active asteroids have a common origin in the rotational instability of the nucleus. The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  4. Comparison of humeral rotation co-activation of breast cancer population and healthy shoulders.

    Science.gov (United States)

    Brookham, Rebecca L; Dickerson, Clark R

    2016-08-01

    Upper limb morbidities are common amongst the breast cancer population (BCP) and have a direct impact on independence. Comparing muscle co-activation strategies between BCP and healthy populations may assist in identifying muscle dysfunction and promote clinical interpretation of dysfunction, which could direct preventative and therapeutic interventions. The purposes of this study were to define humeral rotation muscle co-activation of a BCP and to compare it with a previously defined co-activation relationship of a healthy population. Fifty BCP survivors performed 18 isometric internal and external rotation exertions at various postures and intensities. Surface and intramuscular electrodes recorded shoulder muscle activity. BCP co-activation was predicted at r(2)=0.77 during both exertion types. Humeral abduction angle and task intensity were important factors in the prediction of co-activation in both populations. Comparisons made between populations identified differing muscle strategies used by BCP to maintain postural control. Compared to healthy co-activation, the BCP demonstrated greater activation of internal (IR) and external rotator (ER) type muscles during their respective rotation type. The BCP demonstrated increased (⩾8.7%) activation of pectoralis major. This study has provided insight into how BCP muscles compensate during dysfunction. Continued advancement of this knowledge can provide more understanding of dysfunction, promote generation of evidence-based therapies, and can be useful in biomechanical modeling. PMID:26296634

  5. Activity of an enzyme immobilized on superparamagnetic particles in a rotational magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Mizuki, Toru; Watanabe, Noriyuki; Nagaoka, Yutaka [Bio-Nano Electronics Research Centre, Toyo University, Saitama 350-8585 (Japan); Fukushima, Tadamasa [Shimadzu GLC Ltd., Phenomenex Support Centre, Tokyo 110-0016 (Japan); Morimoto, Hisao; Usami, Ron [Bio-Nano Electronics Research Centre, Toyo University, Saitama 350-8585 (Japan); Maekawa, Toru, E-mail: maekawa@toyonet.toyo.ac.jp [Bio-Nano Electronics Research Centre, Toyo University, Saitama 350-8585 (Japan)

    2010-03-19

    We immobilize {alpha}-amylase extracted from Bacillus Iicheniformis on the surfaces of superparamagnetic particles and investigate the effect of a rotational magnetic field on the enzyme's activity. We find that the activity of the enzyme molecules immobilized on superparamagnetic particles increases in the rotational magnetic field and reaches maximum at a certain frequency. We clarify the effect of the cluster structures formed by the superparamagnetic particles on the activity. Enzyme reactions are enhanced even in a tiny volume of solution using the present method, which is very important for the development of efficient micro reactors and micro total analysis systems ({mu}-TAS).

  6. The quiet chromosphere. Old wisdom, new insights, future needs

    CERN Document Server

    Rutten, Robert J

    2010-01-01

    The introduction to this review summarizes chromosphere observation in two figures. The first part showcases the historical emphasis on the eclipse chromosphere in the development of NLTE line formation theory and criticizes 1D modeling. The second part advertises recent breakthroughs after many decades of standstill. The third part discusses what may or should come next.

  7. Spatial Rotation and Recognizing Emotions: Gender Related Differences in Brain Activity

    Science.gov (United States)

    Jausovec, Norbert; Jausovec, Ksenija

    2008-01-01

    In three experiments, gender and ability (performance and emotional intelligence) related differences in brain activity--assessed with EEG methodology--while respondents were solving a spatial rotation tasks and identifying emotions in faces were investigated. The most robust gender related difference in brain activity was observed in the lower-2…

  8. Angular Velocity Affects Trunk Muscle Strength and EMG Activation during Isokinetic Axial Rotation

    Directory of Open Access Journals (Sweden)

    Jian-Zhong Fan

    2014-01-01

    Full Text Available Objective. To evaluate trunk muscle strength and EMG activation during isokinetic axial rotation at different angular velocities. Method. Twenty-four healthy young men performed isokinetic axial rotation in right and left directions at 30, 60, and 120 degrees per second angular velocity. Simultaneously, surface EMG was recorded on external oblique (EO, internal oblique (IO, and latissimus dorsi (LD bilaterally. Results. In each direction, with the increase of angular velocity, peak torque decreased, whereas peak power increased. During isokinetic axial rotation, contralateral EO as well as ipsilateral IO and LD acted as primary agonists, whereas, ipsilateral EO as well as contralateral IO and LD acted as primary antagonistic muscles. For each primary agonist, the root mean square values decreased with the increase of angular velocity. Antagonist coactiviation was observed at each velocity; however, it appears to be higher with the increase of angular velocity. Conclusion. Our results suggest that velocity of rotation has great impact on the axial rotation torque and EMG activity. An inverse relationship of angular velocity was suggested with the axial rotation torque as well as root mean square value of individual trunk muscle. In addition, higher velocity is associated with higher coactivation of antagonist, leading to a decrease in torque with the increase of velocity.

  9. Rotation in a reversed field pinch with active feedback stabilization of resistive wall modes

    Science.gov (United States)

    Cecconello, M.; Menmuir, S.; Brunsell, P. R.; Kuldkepp, M.

    2006-09-01

    Active feedback stabilization of multiple resistive wall modes (RWMs) has been successfully proven in the EXTRAP T2R reversed field pinch. One of the features of plasma discharges operated with active feedback stabilization, in addition to the prolongation of the plasma discharge, is the sustainment of the plasma rotation. Sustained rotation is observed both for the internally resonant tearing modes (TMs) and the intrinsic impurity oxygen ions. Good quantitative agreement between the toroidal rotation velocities of both is found: the toroidal rotation is characterized by an acceleration phase followed, after one wall time, by a deceleration phase that is slower than in standard discharges. The TMs and the impurity ions rotate in the same poloidal direction with also similar velocities. Poloidal and toroidal velocities have comparable amplitudes and a simple model of their radial profile reproduces the main features of the helical angular phase velocity. RWMs feedback does not qualitatively change the TMs behaviour and typical phenomena such as the dynamo and the 'slinky' are still observed. The improved sustainment of the plasma and TMs rotation occurs also when feedback only acts on internally non-resonant RWMs. This may be due to an indirect positive effect, through non-linear coupling between TMs and RWMs, of feedback on the TMs or to a reduced plasma-wall interaction affecting the plasma flow rotation. Electromagnetic torque calculations show that with active feedback stabilization the TMs amplitude remains well below the locking threshold condition for a thick shell. Finally, it is suggested that active feedback stabilization of RWMs and current profile control techniques can be employed simultaneously thus improving both the plasma duration and its confinement properties.

  10. Gemini and Keck Observations of Slowly Rotating, Bilobate Active Asteroid (300163)

    Science.gov (United States)

    Waniak, Waclaw; Drahus, Michal

    2016-10-01

    One of the most puzzling questions regarding Active Asteroids is the mechanism of their activation. While some Active Asteroids show protracted and often recurrent mass loss, consistent with seasonal ice sublimation, some other eject dust impulsively as a result of a catastrophic disruption (e.g. Jewitt et al. 2015, Asteroids IV, 221). It has been suggested that ice can be excavated from the cold near-surface interior by an impact (Hsieh & Jewitt 2006, Science 312, 561) or, for small objects susceptible to YORP torques, by near-critical spin rate (Sheppard & Trujillo 2014, AJ 149, 44). But impact and rapid spin can also cause a catastrophic disruption (e.g. Jewitt et al. 2015, Asteroids IV, 221). It therefore becomes apparent that the different types of mass loss observed in Active Asteroids can be best classified and understood based on the nucleus spin rates (Drahus et al. 2015, ApJL 802, L8), but unfortunately the rotation periods have been measured for a very limited number of these objects. With this in mind we have initiated a survey of light curves of small Active Asteroids on the largest ground-based optical telescopes. Here we present the results for (300163), also known as 288P and 2006 VW139, which is a small 2.6-km sized asteroid that exhibited a comet-like activity over 100 days in the second half of 2011 (Hsieh et al. 2012, ApJL 748, L15; Licandro et al. 2013, A&A 550, A17; Agarwal et al. 2016, AJ 151, 12). Using Keck/DEIMOS and Gemini/GMOS-S working in tandem on UT 2015 May 21–22 we have detected an inactive nucleus and measured a complete, dense, high-S/N rotational light curve. The light curve has a double-peaked period of 16 hours, an amplitude of 0.4 mag, and moderately narrow minima suggesting a bilobate or contact-binary shape. The long rotation period clearly demonstrates a non-rotational origin of activity of this object, consistent with an impact. Furthermore, among the five small Active Asteroids with known rotation periods (300163) is

  11. The Origin of Sequential Chromospheric Brightening

    Science.gov (United States)

    Kirk, Michael S.; Balasubramaniam, K. S.; Jackiewicz, Jason; Gilbert, Holly

    2016-05-01

    Sequential Chromospheric Brightenings (SCBs) are often observed in the immediate vicinity of erupting flares and are associated with coronal mass ejections. When SCBs are observed, they routinely appear before the peak emission of the flare and several hours before the first detection of a coupled CME. Since their initial discovery in 2005, there have been several subsequent investigations of SCBs. In each case, these sudden, small-scale brightenings provide vital clues regarding the mechanisms of large-scale energy release in the solar atmosphere. We make use of an automated detection algorithm developed by Kirk et al. (2013) to extract the physical qualities of SCBs in 11 flares of varying size and intensity. Using complementary magnetic field measurements, we also model the potential field beneath these brightenings. We conclude that SCBs originate in the lower corona around 0.1 R⊙ above the photosphere, propagate away from the flare center at speeds 35 ‑ 85 km s‑1, and have typical photosphere magnetic intensities 257± 37 G. In light of these measurements, we conclude that SCBs are distinctive chromospheric signatures of erupting coronal mass ejections.

  12. Radiating Current Sheets in the Solar Chromosphere

    CERN Document Server

    Goodman, Michael L

    2014-01-01

    An MHD model of a Hydrogen plasma with flow, an energy equation, NLTE ionization and radiative cooling, and an Ohm's law with anisotropic electrical conduction and thermoelectric effects is used to self-consistently generate atmospheric layers over a $50$ km height range. A subset of these solutions contain current sheets, and have properties similar to those of the lower and middle chromosphere. The magnetic field profiles are found to be close to Harris sheet profiles, with maximum field strengths $\\sim 25-150$ G. The radiative flux $F_R$ emitted by individual sheets is $\\sim 4.9 \\times 10^5 - 4.5 \\times 10^6$ ergs-cm$^{-2}$-s$^{-1}$, to be compared with the observed chromospheric emission rate of $\\sim 10^7$ ergs-cm$^{-2}$-s$^{-1}$. Essentially all emission is from regions with thicknesses $\\sim 0.5 - 13$ km containing the neutral sheet. About half of $F_R$ comes from sub-regions with thicknesses 10 times smaller. A resolution $\\lesssim 5-130$ m is needed to resolve the properties of the sheets. The sheets...

  13. Controlled Activation of Protein Rotational Dynamics Using Smart Hydrogel Tethering

    Energy Technology Data Exchange (ETDEWEB)

    Beech, Brenda M.; Xiong, Yijia; Boschek, Curt B.; Baird, Cheryl L.; Bigelow, Diana J.; Mcateer, Kathleen; Squier, Thomas C.

    2014-09-05

    Stimulus-responsive hydrogel materials that stabilize and control protein dynamics have the potential to enable a range of applications to take advantage of the inherent specificity and catalytic efficiencies of proteins. Here we describe the modular construction of a hydrogel using an engineered calmodulin (CaM) within a polyethylene glycol (PEG) matrix that involves the reversible tethering of proteins through an engineered CaM-binding sequence. For these measurements, maltose binding protein (MBP) was isotopically labeled with [13C] and [15N], permitting dynamic structural measurements using TROSY-HSQC NMR spectroscopy. Upon initial formation of hydrogels protein dynamics are suppressed, with concomitant increases in protein stability. Relaxation of the hydrogel matrix following transient heating results in the activation of protein dynamics and restoration of substrate-induced large-amplitude domain motions necessary for substrate binding.

  14. Active control of counter-rotating open rotor interior noise in a Dornier 728 experimental aircraft

    Science.gov (United States)

    Haase, Thomas; Unruh, Oliver; Algermissen, Stephan; Pohl, Martin

    2016-08-01

    The fuel consumption of future civil aircraft needs to be reduced because of the CO2 restrictions declared by the European Union. A consequent lightweight design and a new engine concept called counter-rotating open rotor are seen as key technologies in the attempt to reach this ambitious goals. Bearing in mind that counter-rotating open rotor engines emit very high sound pressures at low frequencies and that lightweight structures have a poor transmission loss in the lower frequency range, these key technologies raise new questions in regard to acoustic passenger comfort. One of the promising solutions for the reduction of sound pressure levels inside the aircraft cabin are active sound and vibration systems. So far, active concepts have rarely been investigated for a counter-rotating open rotor pressure excitation on complex airframe structures. Hence, the state of the art is augmented by the preliminary study presented in this paper. The study shows how an active vibration control system can influence the sound transmission of counter-rotating open rotor noise through a complex airframe structure into the cabin. Furthermore, open questions on the way towards the realisation of an active control system are addressed. In this phase, an active feedforward control system is investigated in a fully equipped Dornier 728 experimental prototype aircraft. In particular, the sound transmission through the airframe, the coupling of classical actuators (inertial and piezoelectric patch actuators) into the structure and the performance of the active vibration control system with different error sensors are investigated. It can be shown that the active control system achieves a reduction up to 5 dB at several counter-rotating open rotor frequencies but also that a better performance could be achieved through further optimisations.

  15. Rotation of the Earth, solar activity and cosmic ray intensity

    Energy Technology Data Exchange (ETDEWEB)

    Barlyaeva, T.; Bard, E. [Aix-Marseille Univ., CNRS, IRD, Aix-en-Provence (France). CEREGE, College de France; Abarca-del-Rio, R. [Universidad de Concepcion (UDEC) (Chile). Dept. de Geofisica (DGEO)

    2014-10-01

    We analyse phase lags between the 11-year variations of three records: the semi-annual oscillation of the length of day (LOD), the solar activity (SA) and the cosmic ray intensity (CRI). The analysis was done for solar cycles 20-23. Observed relationships between LOD, CRI and SA are discussed separately for even and odd solar cycles. Phase lags were calculated using different methods (comparison of maximal points of cycles, maximal correlation coefficient, line of synchronization of cross-recurrence plots). We have found different phase lags between SA and CRI for even and odd solar cycles, confirming previous studies. The evolution of phase lags between SA and LOD as well as between CRI and LOD shows a positive trend with additional variations of phase lag values. For solar cycle 20, phase lags between SA and CRI, between SA and LOD, and between CRI and LOD were found to be negative. Overall, our study suggests that, if anything, the length of day could be influenced by solar irradiance rather than by cosmic rays.

  16. Supersaturation and activity-rotation relation in PMS stars: the young cluster h Persei

    Science.gov (United States)

    Argiroffi, C.; Caramazza, M.; Micela, G.; Sciortino, S.; Moraux, E.; Bouvier, J.; Flaccomio, E.

    2016-05-01

    Context. Several studies showed that the magnetic activity of late-type main-sequence (MS) stars is characterized by different regimes and that their activity levels are well described by the Rossby number, Ro, defined as the ratio between the rotational period Prot and the convective turnover time. Very young pre-main-sequence (PMS) stars show, similarly to MS stars, intense magnetic activity. However, they do not show clear activity-rotation trends, and it still debated which stellar parameters determine their magnetic activity levels. Aims: To bridge the gap between MS and PMS stars, we studied the activity-rotation relation in the young cluster h Persei, a ~13 Myr old cluster, that contains both fast and slow rotators. The cluster members have ended their accretion phase and have developed a radiative core. It therefore offers us the opportunity of studying the activity level of intermediate-age PMS stars with different rotational velocities, excluding any interactions with the circumstellar environment. Methods: We constrained the magnetic activity levels of h Per members by measuring their X-ray emission from a Chandra observation, while rotational periods were obtained previously in the framework of the MONITOR project. By cross-correlating these data, we collected a final catalog of 414 h Per members with known rotational period, effective temperature, and mass. In 169 of these, X-ray emission has also been detected. Results: We found that h Per members with 1.0 M⊙type dynamo. Moreover, we observed that supersaturation is better described by Prot than Ro, and that the observed patterns are compatible with the hypothesis of centrifugal stripping. In this scenario we inferred that coronae can produce structures as large as ~2 R⋆ above the stellar surface. Tables 1 and 2 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/589/A113

  17. Model for growth hormone receptor activation based on subunit rotation within a receptor dimer

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Richard J.; Adams, Julian J.; Pelekanos, Rebecca A.; Wan, Yu; McKinstry, William J.; Palethorpe, Kathryn; Seeber, Ruth M.; Monks, Thea A.; Eidne, Karin A.; Parker, Michael W.; Waters, Michael J. (UWA); (St. Vincent); (Queensland)

    2010-07-13

    Growth hormone is believed to activate the growth hormone receptor (GHR) by dimerizing two identical receptor subunits, leading to activation of JAK2 kinase associated with the cytoplasmic domain. However, we have reported previously that dimerization alone is insufficient to activate full-length GHR. By comparing the crystal structure of the liganded and unliganded human GHR extracellular domain, we show here that there is no substantial change in its conformation on ligand binding. However, the receptor can be activated by rotation without ligand by inserting a defined number of alanine residues within the transmembrane domain. Fluorescence resonance energy transfer (FRET), bioluminescence resonance energy transfer (BRET) and coimmunoprecipitation studies suggest that receptor subunits undergo specific transmembrane interactions independent of hormone binding. We propose an activation mechanism involving a relative rotation of subunits within a dimeric receptor as a result of asymmetric placement of the receptor-binding sites on the ligand.

  18. Acceleration of Type 2 Spicules in the Solar Chromosphere - 2: Viscous Braking and Upper Bounds on Coronal Energy Input

    CERN Document Server

    Goodman, Michael L

    2014-01-01

    A magnetohydrodynamic model is used to determine conditions under which the Lorentz force accelerates plasma to type 2 spicule speeds in the chromosphere. The model generalizes a previous model to include a more realistic pre-spicule state, and the vertical viscous force. Two cases of acceleration under upper chromospheric conditions are considered. The magnetic field strength for these cases is ~ this energy. Compressive heating dominates during the early phase of acceleration. The maximum energy injected into the corona by type 2 spicules, defined as the energy flux in the upper chromosphere, may largely balance total coronal energy losses in quiet regions, possibly also in coronal holes, but not in active regions. It is proposed that magnetic flux emergence in inter-granular regions drives type 2 spicules.

  19. Physics of the Solar Chromosphere: Beyond the Ideal MHD Description

    Science.gov (United States)

    Leake, James

    2015-08-01

    The solar chromosphere is the dynamic, physically complex, layer that lies between the visible solar surface and the magnetically dominated corona. Despite being a moderator of the amount of mass, magnetic field, and energy, that is transferred into the solar corona and the heliosphere and beyond, there are still important open questions regarding the chromosphere. Recent advancements in both observation and theoretical descriptions of the chromosphere have created new ideas about how the chromosphere controls the transfer of the above quantities from the Sun's interior into the heliosphere. Open questions still remain, such as, how is the chromosphere heated, and how do chromospheric events such as spicules, jets, reconnection, and wave propagation and dissipation contribute to the mass and energy balance in the solar atmosphere. Central to these questions are extensions to the standard magneto-hydro-dynamic (MHD) model of the Sun, such as non-local-thermodynamic-equilibrium radiation, and multi-fluid physics. In this talk, we summarize the importance of these extensions and look for the necessary developments to answer open questions about the chromosphere.

  20. Experimental and numerical results of a high frequency rotating active magnetic refrigerator

    DEFF Research Database (Denmark)

    Lozano, Jaime; Engelbrecht, Kurt; Bahl, Christian R.H.;

    2014-01-01

    Experimental results for a recently developed prototype magnetic refrigeration device at the Technical University of Denmark (DTU) were obtained and compared with numerical simulation results. A continuously rotating active magnetic regenerator (AMR) using 2.8 kg packed sphere regenerators of gad...

  1. Active Lubrication: Feasibility and Limitations on Reducing Vibration in Rotating Machinery

    DEFF Research Database (Denmark)

    Nicoletti, Rodrigo; Santos, Ilmar

    2003-01-01

    In the present work, experimental results show the feasibility of reducing the amplitude of resonance peaks in rotor-bearing test rig, in the frequency domain, by using active lubricated bearings. The most important consequence of this vibration reduction in rotating machines is the feasibility o...

  2. Active Lubrication: Feasibility and Limitations on Reducing Vibration in Rotating Machinery

    DEFF Research Database (Denmark)

    Nicoletti, Rodrigo; Santos, Ilmar

    2004-01-01

    In the present work, experimental results show the feasibility of reducing the amplitude of resonance peaks in rotor-bearing test rig, in the frequency domain, by using active lubricated bearings. The most important consequence of this vibration reduction in rotating machines is the feasibility o...

  3. The Evolution of Cyclic Activity of the Sun in the Context of Physical Processes on Late-Type Stars

    Science.gov (United States)

    Katsova, Maria M.

    Features of the solar cycle in the context of stellar activity are investigated. We discovered reliably differential rotation in chromospheres of some stars and presented the first stellar butterfly diagrams. These stars possess less regular variability and do not demonstrate excellent cycles. This is the first evidence for differences of the solar activity from processes on stars with Excellent cycles. We compare indices of the chromospheric activity of the Sun with that for above 1,300 northern and southern stars whose activity revealed during planet search programs. We argue the matter pro and con for two possible ways of an evolution of activity from a contraction phase to 10Gyrs. When a young star brakes down, the chromospheric and the coronal activity weaken synchronously. The solar-like activity of the most main sequence F and early G stars does evolve by this path. The activity of the later stars from G5 to K7 after a definite level evolves by another way: the chromospheric activity diminishes up to the solar level, while coronae stay stronger than the solar one. Two possible paths of the evolution of activity are associated with the different depth of the convective zone of these stars. Physically this means that the relative input of small- and large-scale of magnetic fields differs for F-G and K stars.

  4. Sunspot Rotation as a Driver of Major Solar Eruptions in NOAA Active Region 12158

    CERN Document Server

    Vemareddy, P; Ravindra, B

    2016-01-01

    We studied the developing conditions of sigmoid structure under the influence of magnetic non-potential characteristics of a rotating sunspot in the active region (AR) 12158. Vector magnetic field measurements from Helioseismic Magnetic Imager and coronal EUV observations from Atmospheric Imaging Assembly reveal that the erupting inverse-S sigmoid had roots in the location of the rotating sunspot. Sunspot rotates at a rate of 0-5deg/h with increasing trend in the first half followed by a decrease. Time evolution of many non-potential parameters had a well correspondence with the sunspot rotation. The evolution of the AR magnetic structure is approximated by a time series of force free equilibria. The NLFFF magnetic structure around the sunspot manifests the observed sigmoid structure. Field lines from the sunspot periphery constitute the body of the sigmoid and those from interior overly the sigmoid similar to a fluxrope structure. While the sunspot is being rotating, two major CME eruptions occurred in the A...

  5. Characteristics of transverse waves in chromospheric mottles

    Energy Technology Data Exchange (ETDEWEB)

    Kuridze, D.; Mathioudakis, M.; Jess, D. B.; Keenan, F. P. [Astrophysics Research Center, School of Mathematics and Physics, Queen' s University, Belfast BT7 1NN (United Kingdom); Verth, G.; Erdélyi, R. [Solar Physics and Space Plasma Research Center (SP2RC), University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH (United Kingdom); Morton, R. J. [Mathematics and Information Science, Northumbria University, Camden Street, Newcastle Upon Tyne NE1 8ST (United Kingdom); Christian, D. J., E-mail: dkuridze01@qub.ac.uk [Department of Physics and Astronomy, California State University, Northridge, CA 91330 (United States)

    2013-12-10

    Using data obtained by the high temporal and spatial resolution Rapid Oscillations in the Solar Atmosphere instrument on the Dunn Solar Telescope, we investigate at an unprecedented level of detail transverse oscillations in chromospheric fine structures near the solar disk center. The oscillations are interpreted in terms of propagating and standing magnetohydrodynamic kink waves. Wave characteristics including the maximum transverse velocity amplitude and the phase speed are measured as a function of distance along the structure's length. Solar magnetoseismology is applied to these measured parameters to obtain diagnostic information on key plasma parameters (e.g., magnetic field, density, temperature, flow speed) of these localized waveguides. The magnetic field strength of the mottle along the ∼2 Mm length is found to decrease by a factor of 12, while the local plasma density scale height is ∼280 ± 80 km.

  6. Magnetic activity of six young solar analogues II. Surface Differential Rotation from long-term photometry

    Science.gov (United States)

    Messina, S.; Guinan, E. F.

    2003-10-01

    The present paper is the second of a series dedicated to the study of the magnetic activity in a selected sample of young solar analogues. The sample includes five single G0-G5V stars with ages between =~ 130 Myr and 700 Myr: EK Dra, pi 1 UMa, HN Peg, k1 Cet and BE Cet. In this study we also include the Pleiades-age ( =~ 130 Myr) K0V star DX Leo. Our analysis is based on high precision photometric observations carried out as part of The Sun in Time project, aimed at a multiwavelength study of stars with solar-like global properties, but with different ages and thus at different stages of evolution. In the first paper of this series we presented the photometric observations and determined the existence of starspot cycles and their correlation with the global stellar properties. In the present paper we investigate the surface differential rotation (SDR). The periodogram analysis of the photometric data time series has allowed us to determine the rotational periods and to derive the following results: i) all the selected stars show variations of the rotational period. Such variations are definitely periodic and in phase with the starspot cycle for BE Cet and DX Leo. They are likely periodic and in phase also for pi 1 UMa, EK Dra and HN Peg, but still need confirmation. By analogy with the solar butterfly diagram, the rotational period variations are interpretable in terms of surface differential rotation, that is, they are attributable to the existence of active latitude belts migrating during the activity cycle on a differentially rotating star; ii) BE Cet, pi 1 UMa and EK Dra show a solar-like pattern of SDR, that is the rotational period steadily decreases along the activity cycle, jumping back to higher values at the beginning of the next cycle; on the contrary, DX Leo, k1 Cet and HN Peg show an antisolar pattern; iii) the amplitude of the rotational period variations shows a power law dependence on the rotational period similar to that found in previous studies

  7. Chromospheric Sunspot Oscillations in H-alpha and Ca II 8542A

    CERN Document Server

    Maurya, Ram Ajor; Park, Hyungmin; Yang, Heesu; Song, Donguk; Cho, Kyuhyoun

    2013-01-01

    We study chromospheric oscillations including umbral flashes and running penumbral waves in a sunspot of active region (AR) using scanning spectroscopy in H-alpha and Ca II 8542A, with the Fast Imaging Solar Spectrograph (FISS) at the 1.6 meter New Solar Telescope at Big Bear Solar Observatory. A bisector method is applied to spectral observations to construct chromospheric Doppler velocity maps. Temporal sequence analysis of these shows enhanced high-frequency oscillations inside the sunspot umbra in both lines. Their peak frequency gradually decreases outward from the umbra. The oscillation power is found to be associated with magnetic-field strength and inclination, with different relationships in different frequency bands.

  8. Physical activity recognition based on rotated acceleration data using quaternion in sedentary behavior: a preliminary study.

    Science.gov (United States)

    Shin, Y E; Choi, W H; Shin, T M

    2014-01-01

    This paper suggests a physical activity assessment method based on quaternion. To reduce user inconvenience, we measured the activity using a mobile device which is not put on fixed position. Recognized results were verified with various machine learning algorithms, such as neural network (multilayer perceptron), decision tree (J48), SVM (support vector machine) and naive bayes classifier. All algorithms have shown over 97% accuracy including decision tree (J48), which recognized the activity with 98.35% accuracy. As a result, physical activity assessment method based on rotated acceleration using quaternion can classify sedentary behavior with more accuracy without considering devices' position and orientation. PMID:25571109

  9. Minimalist coupled evolution model for stellar x-ray activity, rotation, mass loss, and magnetic field

    CERN Document Server

    Blackman, Eric G

    2015-01-01

    Late-type main sequence stars exhibit an x-ray to bolometric flux that depends on the Corolis number $Co$ (product of convective turnover time and angular rotation speed) as $Co^{\\zeta}$ with $2\\le \\zeta \\le 3$ for $Co > 1$. Stars in the unsaturated regime also obey the Skumanich law--- their rotation speeds scale inversely with square root of their age. The associated stellar magnetic field strengths follow a similar decrease with age. While the connection between faster rotators, stronger fields, and higher activity has been well established observationally, a basic theory for the time evolution of x-ray luminosity, rotation, magnetic field and mass loss been lacking. Here we offer a minimalist model for the time evolution of these quantities built from combining a Parker wind with several new ingredients: (1) explicit sourcing of both the thermal energy launching the wind and the x-ray luminosity via dynamo produced magnetic fields; (2) explicit coupling of x-ray activity and mass loss saturation to dynamo...

  10. A common model for cytokine receptor activation: combined scissor-like rotation and self-rotation of receptor dimer induced by class I cytokine.

    Directory of Open Access Journals (Sweden)

    Xiaodong Pang

    Full Text Available The precise mechanism by which the binding of a class I cytokine to the extracellular domain of its corresponding receptor transmits a signal through the cell membrane remains unclear. Receptor activation involves a cytokine-receptor complex with a 1∶2 stoichiometry. Previously we used our transient-complex theory to calculate the rate constant of the initial cytokine-receptor binding to form a 1∶1 complex. Here we computed the binding pathway leading to the 1∶2 activation complex. Three cytokine systems (growth hormone, erythropoietin, and prolactin were studied, and the focus was on the binding of the extracellular domain of the second receptor molecule after forming the 1∶1 complex. According to the transient-complex theory, translational and rotation diffusion of the binding entities bring them together to form a transient complex, which has near-native relative separation and orientation but not the short-range specific native interactions. Subsequently conformational rearrangement leads to the formation of the native complex. We found that the changes in relative orientations between the two receptor molecules from the transient complex to the 1∶2 native complex are similar for the three cytokine-receptor systems. We thus propose a common model for receptor activation by class I cytokines, involving combined scissor-like rotation and self-rotation of the two receptor molecules. Both types of rotations seem essential: the scissor-like rotation separates the intracellular domains of the two receptor molecules to make room for the associated Janus kinase molecules, while the self-rotation allows them to orient properly for transphosphorylation. This activation model explains a host of experimental observations. The transient-complex based approach presented here may provide a strategy for designing antagonists and prove useful for elucidating activation mechanisms of other receptors.

  11. Sunspot Rotation as a Driver of Major Solar Eruptions in the NOAA Active Region 12158

    Science.gov (United States)

    Vemareddy, P.; Cheng, X.; Ravindra, B.

    2016-09-01

    We studied the development conditions of sigmoid structure under the influence of the magnetic non-potential characteristics of a rotating sunspot in the active region (AR) 12158. Vector magnetic field measurements from the Helioseismic Magnetic Imager and coronal EUV observations from the Atmospheric Imaging Assembly reveal that the erupting inverse-S sigmoid had roots at the location of the rotating sunspot. The sunspot rotates at a rate of 0°–5° h‑1 with increasing trend in the first half followed by a decrease. The time evolution of many non-potential parameters had a good correspondence with the sunspot rotation. The evolution of the AR magnetic structure is approximated by a time series of force-free equilibria. The non-linear force-free field magnetic structure around the sunspot manifests the observed sigmoid structure. Field lines from the sunspot periphery constitute the body of the sigmoid and those from the interior overlie the sigmoid, similar to a flux rope structure. While the sunspot was rotating, two major coronal mass ejection eruptions occurred in the AR. During the first (second) event, the coronal current concentrations were enhanced (degraded), consistent with the photospheric net vertical current; however, magnetic energy was released during both cases. The analysis results suggest that the magnetic connections of the sigmoid are driven by the slow motion of sunspot rotation, which transforms to a highly twisted flux rope structure in a dynamical scenario. Exceeding the critical twist in the flux rope probably leads to the loss of equilibrium, thus triggering the onset of the two eruptions.

  12. A bimodal correlation between host star chromospheric emission and the surface gravity of hot Jupiters

    CERN Document Server

    Fossati, L; Lanza, A F

    2015-01-01

    The chromospheric activity index logR'HK of stars hosting transiting hot Jupiters appears to be correlated with the planets' surface gravity. One of the possible explanations is based on the presence of condensations of planetary evaporated material located in a circumstellar cloud that absorbs the CaII H&K and MgII h&k resonance line emission flux, used to measure chromospheric activity. A larger column density in the condensations, or equivalently a stronger absorption in the chromospheric lines, is obtained when the evaporation rate of the planet is larger, which occurs for a lower gravity of the planet. We analyze here a sample of stars hosting transiting hot Jupiters tuned in order to minimize systematic effects (e.g., interstellar medium absorption). Using a mixture model, we find that the data are best fit by a two-linear-regression model. We interpret this result in terms of the Vaughan-Preston gap. We use a Monte Carlo approach to best take into account the uncertainties, finding that the two...

  13. The Mg II resonance line emission at 2800 A in stars with different rotational velocities and different metal abundances

    Science.gov (United States)

    Boehm-Vitense, E.

    1982-01-01

    In many investigations, a study of the Mg II 2800 A emission was conducted in order to derive more information about the correlation of chromospheric emission with the properties of the convection zone. It has been suggested by Ayres and Linsky (1980) that there is a positive correlation between rotation and chromospheric emission at least for binary stars. The present investigation is concerned with such a correlation between rotation and chromospheric emission. Since large differences in rotational velocities are observed for F stars for which also strong chromospheric emission is observable, this particular study deals mainly with F stars. On the basis of observations of the Mg II emission in F and G stars, it is found that the emission is abnormally strong in close binary F stars. This may be explained by the generation of a large differential rotation due to tidal effects which may give very efficient dynamo generation of a surface magnetic field.

  14. Properties of Sequential Chromospheric Brightenings and Associated Flare Ribbons

    OpenAIRE

    Kirk, Michael S.; Balasubramaniam, K. S.; Jackiewicz, Jason; McAteer, R. T. James; Milligan, Ryan O.

    2012-01-01

    We report on the physical properties of solar sequential chromospheric brightenings (SCBs) observed in conjunction with moderate-sized chromospheric flares with associated CMEs. To characterize these ephemeral events, we developed automated procedures to identify and track subsections (kernels) of solar flares and associated SCBs using high resolution H-alpha images. Following the algorithmic identification and a statistical analysis, we compare and find the following: SCBs are distinctly dif...

  15. Simultaneous Observations of the Chromosphere with TRACE and SUMER

    Science.gov (United States)

    Pasachoff, Jay M.; Tingle, Evan D.; Dammasch, Ingolf E.; Sterling, Alphonse C.

    2011-01-01

    Using mainly the 1600 Å continuum channel and also the 1216 Å Lyman- α channel (which includes some UV continuum and C iv emission) aboard the TRACE satellite, we observed the complete lifetime of a transient, bright chromospheric loop. Simultaneous observations with the SUMER instrument aboard the SOHO spacecraft revealed interesting material velocities through the Doppler effect existing above the chromospheric loop imaged with TRACE, possibly corresponding to extended nonvisible loops, or the base of an X-ray jet.

  16. Simultaneous Observations of the Chromosphere with TRACE and SUMER

    OpenAIRE

    Pasachoff, J.M.; Tingle, E. D.; Dammasch, I. E.; Sterling, A. C.

    2011-01-01

    Using mainly the 1600 angstrom continuum channel, and also the 1216 angstrom Lyman-alpha channel (which includes some UV continuum and C IV emission), aboard the TRACE satellite, we observed the complete lifetime of a transient, bright chromospheric loop. Simultaneous observations with the SUMER instrument aboard the SOHO spacecraft revealed interesting material velocities through the Doppler effect existing above the chromospheric loop imaged with TRACE, possibly corresponding to extended no...

  17. Simultaneous Observations of the Chromosphere with TRACE and SUMER

    CERN Document Server

    Pasachoff, J M; Dammasch, I E; Sterling, A C

    2010-01-01

    Using mainly the 1600 angstrom continuum channel, and also the 1216 angstrom Lyman-alpha channel (which includes some UV continuum and C IV emission), aboard the TRACE satellite, we observed the complete lifetime of a transient, bright chromospheric loop. Simultaneous observations with the SUMER instrument aboard the SOHO spacecraft revealed interesting material velocities through the Doppler effect existing above the chromospheric loop imaged with TRACE, possibly corresponding to extended non-visible loops, or the base of an X-ray jet.

  18. Particle Acceleration and Plasma Heating in the Chromosphere

    Science.gov (United States)

    Zaitsev, V. V.; Stepanov, A. V.

    2015-12-01

    We propose a new mechanism of electron acceleration and plasma heating in the solar chromosphere, based on the magnetic Rayleigh-Taylor instability. The instability develops at the chromospheric footpoints of a flare loop and deforms the local magnetic field. As a result, the electric current in the loop varies, and a resulting inductive electric field appears. A pulse of the induced electric field, together with the pulse of the electric current, propagates along the loop with the Alfvén velocity and begins to accelerate electrons up to an energy of about 1 MeV. Accelerated particles are thermalized in the dense layers of the chromosphere with the plasma density n ≈10^{14} - 10^{15} cm^{-3}, heating them to a temperature of about several million degrees. Joule dissipation of the electric current pulse heats the chromosphere at heights that correspond to densities n ≤10^{11} - 10^{13} cm^{-3}. Observations with the New Solar Telescope at Big Bear Solar Observatory indicate that chromospheric footpoints of coronal loops might be heated to coronal temperatures and that hot plasma might be injected upwards, which brightens ultra-fine loops from the photosphere to the base of the corona. Thereby, recent observations of the Sun and the model we propose stimulate a déjà vu - they are reminiscent of the concept of the chromospheric flare.

  19. AN ACTIVITY–ROTATION RELATIONSHIP AND KINEMATIC ANALYSIS OF NEARBY MID-TO-LATE-TYPE M DWARFS

    Energy Technology Data Exchange (ETDEWEB)

    West, Andrew A.; Weisenburger, Kolby L. [Department of Astronomy, Boston University, 725 Commonwealth Ave, Boston, MA 02215 (United States); Irwin, Jonathan; Charbonneau, David; Dittmann, Jason [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States); Berta-Thompson, Zachory K. [MIT, Kavli Institute for Astrophysics and Space Research, 77 Massachusetts Ave., Bldg. 37, Cambridge, MA 02139 (United States); Pineda, J. Sebastian, E-mail: aawest@bu.edu [California Institute of Technology, Department of Astronomy, 1200 E. California Ave, Pasadena, CA 91125 (United States)

    2015-10-10

    Using spectroscopic observations and photometric light curves of 238 nearby M dwarfs from the MEarth exoplanet transit survey, we examine the relationships between magnetic activity (quantified by Hα emission), rotation period, and stellar age. Previous attempts to investigate the relationship between magnetic activity and rotation in these stars were hampered by the limited number of M dwarfs with measured rotation periods (and the fact that v sin i measurements probe only rapid rotation). However, the photometric data from MEarth allows us to probe a wide range of rotation periods for hundreds of M dwarf stars (from shorter than one to longer than 100 days). Over all M spectral types that we probe, we find that the presence of magnetic activity is tied to rotation, including for late-type, fully convective M dwarfs. We also find evidence that the fraction of late-type M dwarfs that are active may be higher at longer rotation periods compared to their early-type counterparts, with several active, late-type, slowly rotating stars present in our sample. Additionally, we find that all M dwarfs with rotation periods shorter than 26 days (early-type; M1–M4) and 86 days (late-type; M5–M8) are magnetically active. This potential mismatch suggests that the physical mechanisms that connect stellar rotation to chromospheric heating may be different in fully convective stars. A kinematic analysis suggests that the magnetically active, rapidly rotating stars are consistent with a kinematically young population, while slow-rotators are less active or inactive and appear to belong to an older, dynamically heated stellar population.

  20. The solar chromosphere at high resolution with IBIS. IV. Dual-line evidence of heating in chromospheric network

    CERN Document Server

    Cauzzi, G; Rutten, R J; Tritschler, A; Uitenbroek, H

    2009-01-01

    The structure and energy balance of the solar chromosphere remain poorly known. We have used the imaging spectrometer IBIS at the Dunn Solar Telescope to obtain fast-cadence, multi-wavelength profile sampling of Halpha and Ca II 854.2 nm over a sizable two-dimensional field of view encompassing quiet-Sun network. We provide a first inventory of how the quiet chromosphere appears in these two lines by comparing basic profile measurements in the form of image displays, temporal-average displays, time slices, and pixel-by-pixel correlations. We find that the two lines can be markedly dissimilar in their rendering of the chromosphere, but that, nevertheless, both show evidence of chromospheric heating, particularly in and around network: Halpha in its core width, Ca II 854.2 in its brightness. We discuss venues for improved modeling.

  1. Effect of the Push-up Plus (PUP) Exercise at Different Shoulder Rotation Angles on Shoulder Muscle Activities

    OpenAIRE

    Cho, Sung-Hak; Baek, Il-hun; Cheon, Ju Young; Cho, Min Jung; Choi, Mi Young; JUNG, DA HYE

    2014-01-01

    [Purpose] Although the Push-Up Plus is a useful exercise method for shoulder stabilization, few studies have examined its effects at different angles of shoulder rotation. Therefore, the present study investigated the most effective exercise method for shoulder stabilization by analyzing muscle activities of the rotator cuff muscles at different angles of shoulder rotation. [Subjects] Fifteen healthy university students in their 20s were the subjects of this study. [Methods] Changes in muscle...

  2. Spectral characterization and differential rotation study of active CoRoT stars

    CERN Document Server

    Nagel, Evangelos; Schmitt, Jürgen H M M

    2016-01-01

    The CoRoT space telescope observed nearly 160 000 light curves. Among the most outstanding is that of the young, active planet host star CoRoT-2A. In addition to deep planetary transits, the light curve of CoRoT-2A shows strong rotational variability and a superimposed beating pattern. To study the stars that produce such an intriguing pattern of photometric variability, we identified a sample of eight stars with rotation periods between 0.8 and 11 days and photometric variability amplitudes of up to 7.5 %, showing a similar CoRoT light curve. We also obtained high-resolution follow-up spectroscopy with TNG/SARG and carried out a spectral analysis with SME and MOOG. We find that the color dependence of the light curves is consistent with rotational modulation due to starspots and that latitudinal differential rotation provides a viable explanation for the light curves, although starspot evolution is also expected to play an important role. Our MOOG and SME spectral analyses provide consistent results, showing...

  3. The stellar activity-rotation relationship and the evolution of stellar dynamos

    CERN Document Server

    Wright, Nicholas J; Mamajek, Eric E; Henry, Gregory W

    2011-01-01

    We present a sample of 824 solar and late-type stars with X-ray luminosities and rotation periods. This is used to study the relationship between rotation and stellar activity and derive a new estimate of the convective turnover time. From an unbiased subset of this sample the power law slope of the unsaturated regime, L_X / L_bol = Ro^\\beta, is fit as \\beta = -2.70 +/- 0.13. This is inconsistent with the canonical \\beta=-2 slope to a confidence of 5 sigma, and argues for an additional term in the dynamo number equation. From a simple scaling analysis this implies \\Delta\\Omega / \\Omega = \\Omega^0.7, i.e. the differential rotation of solar-type stars gradually declines as they spin down. Super-saturation is observed for the fastest rotators in our sample and its parametric dependencies are explored. Significant correlations are found with both the corotation radius and the excess polar updraft, the latter theory providing a stronger dependence and being supported by other observations. We estimate mass-depende...

  4. Experimental and numerical results of a high frequency rotating active magnetic refrigerator

    OpenAIRE

    Lozano, Jaime; Engelbrecht, Kurt; Bahl, Christian; Nielsen, Kaspar Kirstein; Barbosa Jr., J.R.; Prata, A. T.; Pryds, Nini

    2012-01-01

    Experimental results for a recently developed prototype magnetic refrigeration device at The Technical University of Denmark (DTU) were obtained and compared with numerical simulation results. A continuously rotating active magnetic regenerator (AMR) using 2.8 kg packed sphere regenerators of commercial grade gadolinium (Gd) was employed. With operating frequencies up to 10 Hz and volumetric flow rates up to 600 L/h, the prototype has shown high performance and the results are consistent with...

  5. Experimental and numerical results of a high frequency rotating active magnetic refrigerator

    DEFF Research Database (Denmark)

    Lozano, Jaime; Engelbrecht, Kurt; Bahl, Christian;

    2012-01-01

    Experimental results for a recently developed prototype magnetic refrigeration device at The Technical University of Denmark (DTU) were obtained and compared with numerical simulation results. A continuously rotating active magnetic regenerator (AMR) using 2.8 kg packed sphere regenerators of...... function of cycle frequency was determined. It was found that thermal losses increase as the frequency increases. Therefore, a detailed study of these parasitic losses was carried out experimentally and numerically....

  6. THE STELLAR-ACTIVITY-ROTATION RELATIONSHIP AND THE EVOLUTION OF STELLAR DYNAMOS

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Nicholas J.; Drake, Jeremy J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Mamajek, Eric E. [Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627 (United States); Henry, Gregory W., E-mail: nwright@cfa.harvard.edu [Center of Excellence in Information Systems, Tennessee State University, 3500 John A. Merritt Blvd., Box 9501, Nashville, TN 37209 (United States)

    2011-12-10

    We present a sample of 824 solar and late-type stars with X-ray luminosities and rotation periods. This is used to study the relationship between rotation and stellar activity and derive a new estimate of the convective turnover time. From an unbiased subset of this sample the power-law slope of the unsaturated regime, L{sub X} /L{sub bol}{proportional_to}Ro{sup {beta}}, is fit as {beta} = -2.70 {+-} 0.13. This is inconsistent with the canonical {beta} = -2 slope to a confidence of 5{sigma}, and argues for an additional term in the dynamo number equation. From a simple scaling analysis this implies {Delta}{Omega}/{Omega}{proportional_to}{Omega}{sup 0.7}, i.e., the differential rotation of solar-type stars gradually declines as they spin down. Supersaturation is observed for the fastest rotators in our sample and its parametric dependencies are explored. Significant correlations are found with both the corotation radius and the excess polar updraft, the latter theory providing a stronger dependence and being supported by other observations. We estimate mass-dependent empirical thresholds for saturation and supersaturation and map out three regimes of coronal emission. Late F-type stars are shown never to pass through the saturated regime, passing straight from supersaturated to unsaturated X-ray emission. The theoretical threshold for coronal stripping is shown to be significantly different from the empirical saturation threshold (Ro < 0.13), suggesting it is not responsible. Instead we suggest that a different dynamo configuration is at work in stars with saturated coronal emission. This is supported by a correlation between the empirical saturation threshold and the time when stars transition between convective and interface sequences in rotational spin-down models.

  7. Age-rotation relationship for late-type main-sequence stars

    Science.gov (United States)

    Rengarajan, T. N.

    1984-01-01

    With advancing spectral type and increasing age, late main-sequence stars exhibit monotonic decrease in rotational velocity. It is of great interest to extend the rotation-age relationship to stars of later spectral type. In recent times it has become possible to measure directly the rotational periods from the photometric modulation by Ca II H and K line emission. There have also been successful attempts to relate the chromospheric activity as manifested through Ca II H and K lines to the rotation period, and it was shown that the fraction of total stellar luminosity in Ca II H and K lines, corrected for photospheric contribution, is a function of a single parameter related to P and B-V. In the present investigation, this rotation-activity relation is utilized to infer the rotation periods as a function of spectral type. The period versus B-V plot is employed as a basis to infer that the rotational period of main-sequence stars is a single-valued function of mass (B-V color) and age.

  8. Minimalist coupled evolution model for stellar X-ray activity, rotation, mass loss, and magnetic field

    Science.gov (United States)

    Blackman, Eric G.; Owen, James E.

    2016-05-01

    Late-type main-sequence stars exhibit an X-ray to bolometric flux ratio that depends on {tilde{R}o}, the ratio of rotation period to convective turnover time, as {tilde{R}o}^{-ζ } with 2 ≤ ζ ≤ 3 for {tilde{R}o} > 0.13, but saturates with |ζ| rates and X-ray activity. The unsaturated stars have magnetic fields and rotation speeds that scale roughly with the square root of their age, though possibly flattening for stars older than the Sun. The connection between faster rotators, stronger fields, and higher activity has been established observationally, but a theory for the unified time-evolution of X-ray luminosity, rotation, magnetic field and mass loss that captures the above trends has been lacking. Here we derive a minimalist holistic framework for the time evolution of these quantities built from combining a Parker wind with new ingredients: (1) explicit sourcing of both the thermal energy launching the wind and the X-ray luminosity via dynamo produced magnetic fields; (2) explicit coupling of X-ray activity and mass-loss saturation to dynamo saturation (via magnetic helicity build-up and convection eddy shredding); (3) use of coronal equilibrium to determine how magnetic energy is divided into wind and X-ray contributions. For solar-type stars younger than the Sun, we infer conduction to be a subdominant power loss compared to X-rays and wind. For older stars, conduction is more important, possibly quenching the wind and reducing angular momentum loss. We focus on the time evolution for stars younger than the Sun, highlighting what is possible for further generalizations. Overall, the approach shows promise towards a unified explanation of all of the aforementioned observational trends.

  9. Linking Stellar Coronal Activity and Rotation at 500 Myr: A Deep Chandra Observation of M37

    Science.gov (United States)

    Núñez, Alejandro; Agüeros, Marcel A.; Covey, Kevin R.; Hartman, Joel D.; Kraus, Adam L.; Bowsher, Emily C.; Douglas, Stephanie T.; López-Morales, Mercedes; Pooley, David A.; Posselt, Bettina; Saar, Steven H.; West, Andrew A.

    2015-08-01

    Empirical calibrations of the stellar age-rotation-activity relation (ARAR) rely on observations of the co-eval populations of stars in open clusters. We used the Chandra X-ray Observatory to study M37, a 500-Myr-old open cluster that has been extensively surveyed for rotation periods ({P}{rot}). M37 was observed almost continuously for five days, for a total of 440.5 ks, to measure stellar X-ray luminosities ({L}{{X}}), a proxy for coronal activity, across a wide range of masses. The cluster’s membership catalog was revisited to calculate updated membership probabilities from photometric data and each star’s distance to the cluster center. The result is a comprehensive sample of 1699 M37 members: 426 with {P}{rot}, 278 with X-ray detections, and 76 with both. We calculate Rossby numbers, {R}o= {P}{rot}/τ , where τ is the convective turnover time, and ratios of the X-ray-to-bolometric luminosity, {L}{{X}}/{L}{bol}, to minimize mass dependencies in our characterization of the rotation-coronal activity relation at 500 Myr. We find that fast rotators, for which {R}o\\lt 0.09+/- 0.01, show saturated levels of activity, with log({L}{{X}}/{L}{bol})=\\-3.06+/- 0.04. For {R}o≥slant 0.09+/- 0.01, activity is unsaturated and follows a power law of the form {R}oβ , where β = -{2.03}-0.14+0.17. This is the largest sample available for analyzing the dependence of coronal emission on rotation for a single-aged population, covering stellar masses in the range 0.4-1.3 {M}⊙ , {P}{rot} in the range 0.4-12.8 days, and {L}{{X}} in the range {10}28.4-30.5 {erg} {{{s}}}-1. Our results make M37 a new benchmark open cluster for calibrating the ARAR at ages of ≈ 500 Myr.

  10. Chromospheric oscillations observed with BBSO and TRACE

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    We examine chromospheric oscillations in both a coronal hole (CH) and a quiet Sun (QS) region, by employing Transition Region and Coronal Explorer (TRACE) and Big Bear Solar Observatory (BBSO) data on September 14 and 16, 2004. For the CH, the average oscillation periods of network magnetic field and non-magnetic field (NMF) regions are 257 and 222 s, respectively, and the average period of network field is longer than that of NMF region by 15.8%. In the QS, the average oscillation period is the 225 s for network field and 212 s for the NMF region. The average period of the network field is also longer than that of the NMF region by 6.1%. For the network region, we find that the average period in the CH is longer than that in the QS by 14.2%. This difference between CH and QS is possibly caused by different magnetic configurations i.e. the open magnetic field in the CH and the close field in the QS.

  11. The rotation of sunspots in the solar active region NOAA 10930

    Science.gov (United States)

    Gopasyuk, O. S.

    2014-06-01

    The rotation of sunspots in the solar active region NOAA 10930 was investigated on the basis of the data on the longitudinal magnetic field and the Doppler velocities using magnetograms and dopplergrams taken with the Solar Optical Telescope installed aboard the HINODE mission. Under the assumption of axial symmetry, areally-mean vertical, radial, and azimuthal components of the magnetic field and velocity vectors were calculated in both sunspots. The plasma in the sunspots rotated in opposite directions: in the leading sunspot, clockwise, and in the following sunspot, counterclockwise. The magnetic flux tubes that formed sunspots of the active region on the solar surface were twisted in one direction, clockwise. Electric currents generated as a result of the rotation and twisting of magnetic flux tubes were also flowing in one direction. Azimuthal components of magnetic and velocity fields of both sunspot umbrae reached their maximum on December 11, 2006. By the start of the X3.4 flare (December 13, 2006), their values became practically equal to zero.

  12. Timing Behavior of the Magnetically Active Rotation-Powered Pulsar in the Supernova Remnant Kesteven 75

    Science.gov (United States)

    Livingstone, Margaret A.; Gavriil, Fotis P.; Kaspi, Victoria M.

    2009-01-01

    We report a large spin-up glitch in PSR J1846-0258 which coincided with the onset of magnetar-like behavior on 2006 May 31. We show that the pulsar experienced an unusually large glitch recovery, with a recovery fraction of Q = 5.9+/-0.3, resulting in a net decrease of the pulse frequency. Such a glitch recovery has never before been observed in a rotation-powered pulsar, however, similar but smaller glitch over-recovery has been recently reported in the magnetar AXP 4U 0142+61 and may have occurred in the SGR 1900+14. We discuss the implications of the unusual timing behavior in PSR J1846-0258 on its status as the first identified magnetically active rotation-powered pulsar.

  13. Dependence of Stellar Magnetic Activity Cycles on Rotational Period in a Nonlinear Solar-type Dynamo

    Science.gov (United States)

    Pipin, V. V.; Kosovichev, A. G.

    2016-06-01

    We study the turbulent generation of large-scale magnetic fields using nonlinear dynamo models for solar-type stars in the range of rotational periods from 14 to 30 days. Our models take into account nonlinear effects of dynamical quenching of magnetic helicity, and escape of magnetic field from the dynamo region due to magnetic buoyancy. The results show that the observed correlation between the period of rotation and the duration of activity cycles can be explained in the framework of a distributed dynamo model with a dynamical magnetic feedback acting on the turbulent generation from either magnetic buoyancy or magnetic helicity. We discuss implications of our findings for the understanding of dynamo processes operating in solar-like stars.

  14. Dependence of stellar magnetic activity cycles on rotational period in nonlinear solar-type dynamo

    CERN Document Server

    Pipin, Valery

    2016-01-01

    We study turbulent generation of large-scale magnetic fields using nonlinear dynamo models for solar-type stars in the range of rotational periods from 14 to 30 days. Our models take into account non-linear effects of dynamical quenching of magnetic helicity, and escape of magnetic field from the dynamo region due to magnetic buoyancy. The results show that the observed correlation between the period of rotation and the duration of activity cycles can be explained in the framework of a distributed dynamo model with a dynamical magnetic feedback acting on the turbulent generation either from magnetic buoyancy or magnetic helicity. We discuss implications of our findings for the understanding of dynamo processes operating in solar-like stars.

  15. Timing behavior of the Magnetically Active Rotation-Powered Pulsar in the Supernova Remnant Kestevan 75

    CERN Document Server

    Livingstone, Margaret A; Gavriil, Fotis P

    2009-01-01

    We report a large spin-up glitch in PSR J1846-0258 which coincided with the onset of magnetar-like behavior on 2006 May 31. We show that the pulsar experienced an unusually large glitch recovery, with a recovery fraction of Q=5.9+/-0.3, resulting in a net decrease of the pulse frequency. Such a glitch recovery has never before been observed in a rotation-powered pulsar, however, similar but smaller glitch over-recovery has been recently reported in the magnetar AXP 4U 0142+61 and may have occurred in the SGR 1900+14. We discuss the implications of the unusual timing behavior in PSR J1846-0258 on its status as the first identified magnetically active rotation-powered pulsar.

  16. The connection between stellar activity cycles and magnetic field topology

    Science.gov (United States)

    See, V.; Jardine, M.; Vidotto, A. A.; Donati, J.-F.; Boro Saikia, S.; Bouvier, J.; Fares, R.; Folsom, C. P.; Gregory, S. G.; Hussain, G.; Jeffers, S. V.; Marsden, S. C.; Morin, J.; Moutou, C.; do Nascimento, J. D.; Petit, P.; Waite, I. A.

    2016-08-01

    Zeeman Doppler imaging has successfully mapped the large-scale magnetic fields of stars over a large range of spectral types, rotation periods and ages. When observed over multiple epochs, some stars show polarity reversals in their global magnetic fields. On the Sun, polarity reversals are a feature of its activity cycle. In this paper, we examine the magnetic properties of stars with existing chromospherically determined cycle periods. Previous authors have suggested that cycle periods lie on multiple branches, either in the cycle period-Rossby number plane or the cycle period-rotation period plane. We find some evidence that stars along the active branch show significant average toroidal fields that exhibit large temporal variations while stars exclusively on the inactive branch remain dominantly poloidal throughout their entire cycle. This lends credence to the idea that different shear layers are in operation along each branch. There is also evidence that the short magnetic polarity switches observed on some stars are characteristic of the inactive branch while the longer chromospherically determined periods are characteristic of the active branch. This may explain the discrepancy between the magnetic and chromospheric cycle periods found on some stars. These results represent a first attempt at linking global magnetic field properties obtained form ZDI and activity cycles.

  17. Anti-solar differential rotation on the active sub-giant HU Virginis

    Science.gov (United States)

    Harutyunyan, G.; Strassmeier, K. G.; Künstler, A.; Carroll, T. A.; Weber, M.

    2016-08-01

    Context. Measuring surface differential rotation (DR) on different types of stars is important when characterizing the underlying stellar dynamo. It has been suggested that anti-solar DR laws can occur when strong meridional flows exist. Aims: We aim to investigate the differential surface rotation on the primary star of the RS CVn binary, HU Vir, by tracking its starspot distribution as a function of time. We also aim to recompute and update the values for several system parameters of the triple system HU Vir (close and wide orbits). Methods: Time-series high-resolution spectroscopy for four continuous months was obtained with the 1.2-m robotic STELLA telescope. Nine consecutive Doppler images were reconstructed from these data, using our line-profile inversion code iMap. An image cross-correlation method was applied to derive the surface differential-rotation law for HU Vir. New orbital elements for the close and the wide orbits were computed using our new STELLA radial velocities (RVs) combined with the RV data available in the literature. Photometric observations were performed with the Amadeus Automatic Photoelectric Telescope (APT), providing contemporaneous Johnson-Cousins V and I data for approximately 20 yrs. This data was used to determine the stellar rotation period and the active longitudes. Results: We confirm anti-solar DR with a surface shear parameter α of -0.029 ± 0.005 and -0.026 ± 0.009, using single-term and double-term differential rotation laws, respectively. These values are in good agreement with previously claimed results. The best fit is achieved assuming a solar-like double-term law with a lap time of ≈400 d. Our orbital solutions result in a period of 10.387678 ± 0.000003 days for the close orbit and 2726 ± 7 d (≈7.5 yr) for the wide orbit. A Lomb-Scarge (L-S) periodogram of the pre-whitened V-band data reveals a strong single peak providing a rotation period of 10.391 ± 0.008 d, well synchronized to the short orbit. Based on

  18. Modeling the Chromosphere of a Sunspot and the Quiet Sun

    Science.gov (United States)

    Avrett, E.; Tian, H.; Landi, E.; Curdt, W.; Wülser, J.-P.

    2015-10-01

    Semiempirical atmospheric modeling attempts to match an observed spectrum by finding the temperature distribution and other physical parameters along the line of sight through the emitting region such that the calculated spectrum agrees with the observed one. In this paper we take the observed spectrum of a sunspot and the quiet Sun in the EUV wavelength range 668–1475 Å from the 2001 SUMER atlas of Curdt et al. to determine models of the two atmospheric regions, extending from the photosphere through the overlying chromosphere into the transition region. We solve the coupled statistical equilibrium and optically thick radiative transfer equations for a set of 32 atoms and ions. The atoms that are part of molecules are treated separately, and are excluded from the atomic abundances and atomic opacities. We compare the Mg ii k line profile observations from the Interface Region Imaging Spectrograph with the profiles calculated from the two models. The calculated profiles for the sunspot are substantially lower than the observed ones, based on the SUMER models. The only way we have found to raise the calculated Mg ii lines to agree with the observations is to introduce illumination of the sunspot from the surrounding active region.

  19. Estimating the Chromospheric Absorption of Transition Region Moss Emission

    CERN Document Server

    De Pontieu, Bart; McIntosh, Scott W; Patsourakos, Spiros

    2009-01-01

    Many models for coronal loops have difficulty explaining the observed EUV brightness of the transition region, which is often significantly less than theoretical models predict. This discrepancy has been addressed by a variety of approaches including filling factors and time-dependent heating. Here we focus on an effect that has been ignored so far: the absorption of EUV light with wavelengths below 912 {\\AA} by the resonance continua of neutral hydrogen and helium. Such absorption is expected to occur in the low-lying transition region of hot, active region loops, that is co-located with cool chromospheric features and called ``moss'' as a result of the reticulated appearance resulting from the absorption. We use co-temporal and co-spatial spectroheliograms obtained with SOHO/SUMER and Hinode/EIS of Fe XII 1242 {\\AA}, 195 {\\AA} and 186.88 {\\AA}, and compare the density determination from the 186/195 {\\AA} line ratio to that resulting from the 195/1242 {\\AA} line ratio. We find significant absorption of 195 {...

  20. X-Shooter spectroscopy of young stellar objects III. Photospheric and chromospheric properties of Class III objects

    CERN Document Server

    Stelzer, B; Alcala, J M; Manara, C F; Biazzo, K; Covino, E; Rigliaco, E; Testi, L; Covino, S; D'Elia, V

    2013-01-01

    We analyzed X-Shooter/VLT spectra of 24 ClassIII sources from three nearby star-forming regions (sigmaOrionis, LupusIII, and TWHya). We determined the effective temperature, surface gravity, rotational velocity, and radial velocity by comparing the observed spectra with synthetic BT-Settl model spectra. We investigated in detail the emission lines emerging from the stellar chromospheres and combined these data with archival X-ray data to allow for a comparison between chromospheric and coronal emissions. Both X-ray and Halpha luminosity as measured in terms of the bolometric luminosity are independent of the effective temperature for early-M stars but decline toward the end of the spectral M sequence. For the saturated early-M stars the average emission level is almost one dex higher for X-rays than for Halpha: log(L_x/L_bol) = -2.85 +- 0.36 vs. log(L_Halpha/L_bol) = -3.72 +- 0.21. When all chromospheric emission lines (including the Balmer series up to H11, CaII HK, the CaII infrared triplet, and several HeI...

  1. Rotationally Induced Surface Slope-Instabilities and the Activation of CO2 Activity on Comet 103P/Hartley 2

    CERN Document Server

    Steckloff, Jordan K; Hirabayashi, Toshi; Melosh, H Jay; Richardson, James

    2016-01-01

    Comet 103P/Hartley 2 has diurnally controlled, CO2-driven activity on the tip of the small lobe of its bilobate nucleus. Such activity is unique among the comet nuclei visited by spacecraft, and suggests that CO2 ice is very near the surface, which is inconsistent with our expectations of an object that thermophysically evolved for ~45 million years prior to entering the Jupiter Family of comets. Here we explain this pattern of activity by showing that a very plausible recent episode of rapid rotation (rotation period of ~11 [10-13] hours) would have induced avalanches in Hartley 2's currently active regions that excavated down to CO2-rich ices and activated the small lobe of the nucleus. At Hartley 2's current rate of spindown about its principal axis, the nucleus would have been spinning fast enough to induce avalanches ~3-4 orbits prior to the DIXI flyby (~1984-1991). This coincides with Hartley 2's discovery in 1986, and implies that the initiation of CO2 activity facilitated the comet's discovery. During...

  2. Multi-wavelength analysis from tomography study on solar chromosphere

    Energy Technology Data Exchange (ETDEWEB)

    Mumpuni, Emanuel Sungging; Herdiwijaya, Dhani; Djamal, Mitra [Program Studi Astronomi, Jl. Ganesha No. 10, Labtek III, Lantai IV, Bandung, Jawa Barat, Indonesia 40135 nggieng@students.itb.ac.id (Indonesia)

    2015-04-16

    The Sun as the most important star for scientific laboratory in astrophysics as well as encompassing all living aspect on Earth, still holds scientific mystery. As the established model that the Sun’s energy fueled by the nuclear reaction, along with transport process to the typical Solar surface on around 6000-K temperature, many aspects still left as an open questions, such as how the chromosphere responded to the photospheric dynamics. In this preliminary work, we try to analyze the Solar chromosphere respond to the Photospheric dynamics using tomography study implementing multi-wavelength analysis observation obtained from Dutch Open Telescope. Using the Hydrogen-alpha Doppler signal as the primary diagnostic tool, we try to investigate the inter-relation between the magnetic and gas pressure dynamics that occur in the chromosphere.

  3. Chromospheric, transition layer and coronal emission of metal deficient stars

    Science.gov (United States)

    Boehm-Vitense, E.

    1982-01-01

    It is shown that while MgII k line emission decreases for metal deficient stars, the Ly alpha emission increases. The sum of chromospheric hydrogen and metallic emission appears to be independent of metal abundances. The total chromospheric energy loss is estimated to be 0.0004 F sub bol. The chromospheric energy input does not seem to decrease for increasing age. The transition layer emission is reduced for metal deficient stars, but it is not known whether the reduction is larger than can be explained by curve of growth effects only. Coronal X-ray emission was measured for 4 metal deficient stars. Within a 12 limit it could still be consistent with the emission of solar abundance stars.

  4. Solar Atmospheric Oscillations and the Chromospheric Magnetic Topology

    CERN Document Server

    Vecchio, A; Reardon, K P; Janssen, K; Rimmele, T

    2006-01-01

    We investigate the oscillatory properties of the quiet solar chromosphere in relation to the underlying photosphere, with particular regard to the effects of the magnetic topology. We perform a Fourier analysis on a sequence of line-of-sight velocities measured simultaneously in a photospheric (Fe I 709.0 nm) and a chromospheric line (Ca II 854.2 nm). The velocities were obtained from full spectroscopic data acquired at high spatial resolution with the Interferometric BIdimensional Spectrometer (IBIS). The field of view encompasses a full supergranular cell, allowing us to discriminate between areas with different magnetic characteristics. We show that waves with frequencies above the acoustic cut-off propagate from the photosphere to upper layers only in restricted areas of the quiet Sun. A large fraction of the quiet chromosphere is in fact occupied by ``magnetic shadows'', surrounding network regions, that we identify as originating from fibril-like structures observed in the core intensity of the Ca II li...

  5. Heat and mass transfer in unsteady rotating fluid flow with binary chemical reaction and activation energy.

    Directory of Open Access Journals (Sweden)

    Faiz G Awad

    Full Text Available In this study, the Spectral Relaxation Method (SRM is used to solve the coupled highly nonlinear system of partial differential equations due to an unsteady flow over a stretching surface in an incompressible rotating viscous fluid in presence of binary chemical reaction and Arrhenius activation energy. The velocity, temperature and concentration distributions as well as the skin-friction, heat and mass transfer coefficients have been obtained and discussed for various physical parametric values. The numerical results obtained by (SRM are then presented graphically and discussed to highlight the physical implications of the simulations.

  6. Heat and mass transfer in unsteady rotating fluid flow with binary chemical reaction and activation energy.

    Science.gov (United States)

    Awad, Faiz G; Motsa, Sandile; Khumalo, Melusi

    2014-01-01

    In this study, the Spectral Relaxation Method (SRM) is used to solve the coupled highly nonlinear system of partial differential equations due to an unsteady flow over a stretching surface in an incompressible rotating viscous fluid in presence of binary chemical reaction and Arrhenius activation energy. The velocity, temperature and concentration distributions as well as the skin-friction, heat and mass transfer coefficients have been obtained and discussed for various physical parametric values. The numerical results obtained by (SRM) are then presented graphically and discussed to highlight the physical implications of the simulations. PMID:25250830

  7. A new gravitational-wave signature of SASI activities in non-rotating supernova cores

    OpenAIRE

    Kuroda, Takami; Kotake, Kei; Takiwaki, Tomoya

    2016-01-01

    We present results from fully relativistic three-dimensional core-collapse supernova (CCSN) simulations of a non-rotating 15 M_sun star using three different nuclear equations of state (EoSs). From our simulations covering up to ~350 ms after bounce, we show that the development of the standing accretion shock instability (SASI) differs significantly depending on the stiffness of nuclear EoS. Generally, the SASI activity occurs more vigorously in models with softer EoS. By evaluating the grav...

  8. RoboPol: optical polarization-plane rotations and flaring activity in blazars

    CERN Document Server

    Blinov, D; Papadakis, I E; Hovatta, T; Pearson, T J; Liodakis, I; Panopoulou, G V; Angelakis, E; Baloković, M; Das, H; Khodade, P; Kiehlmann, S; King, O G; Kus, A; Kylafis, N; Mahabal, A; Marecki, A; Modi, D; Myserlis, I; Paleologou, E; Papamastorakis, I; Pazderska, B; Pazderski, E; Rajarshi, C; Ramaprakash, A; Readhead, A C S; Reig, P; Tassis, K; Zensus, J A

    2016-01-01

    We present measurements of rotations of the optical polarization of blazars during the second year of operation of RoboPol, a monitoring programme of an unbiased sample of gamma-ray bright blazars specially designed for effective detection of such events, and we analyse the large set of rotation events discovered in two years of observation. We investigate patterns of variability in the polarization parameters and total flux density during the rotation events and compare them to the behaviour in a non-rotating state. We have searched for possible correlations between average parameters of the polarization-plane rotations and average parameters of polarization, with the following results: (1) there is no statistical association of the rotations with contemporaneous optical flares; (2) the average fractional polarization during the rotations tends to be lower than that in a non-rotating state; (3) the average fractional polarization during rotations is correlated with the rotation rate of the polarization plane...

  9. Rotational velocities of low-mass stars in the Pleiades and Hyades

    CERN Document Server

    Terndrup, D M; Pinsonneault, M H; Sills, A; Yuan, Y; Jones, B F; Fischer, D; Krishnamurthi, A; Terndrup, Donald M.; Stauffer, John R.; Pinsonneault, Marc H.; Sills, Alison; Yuan, Yongquan; Jones, Burton F.; Fischer, Debra; Krishnamurthi, Anita

    1999-01-01

    We have obtained high-resolution spectra of 89 M dwarf members of the Pleiades and Hyades and have derived radial velocities, H-alpha equivalent widths, and spectroscopic rotational velocities for these stars. Typical masses of the newly-observed Pleiades and Hyades stars are ~ 0.4 M_{\\sun} and ~ 0.2 M_{\\sun}, respectively. We combine our new observations with previously published data to explore the rotational evolution of young stars with M < 0.4 M_\\sun. The average rotation rate in the Hyades (age 600 Myr) is about 0.4 that of the Pleiades (110 Myr), and the mean equivalent widths of H-alpha are also lower. As found in previous studies, the correlation between rotation and chromospheric activity is identical in both clusters, implying that the lower activity in the Hyades is a result of the lower rotation rates. We show that a simple scaling of the Pleiades rotational distribution for M \\leq 0.4 M_{\\sun}, corrected for the effects of structural evolution, matches that of the Hyades if the average angula...

  10. CHROMOSPHERIC POLARIZATION IN THE PHOTOSPHERIC SOLAR OXYGEN INFRARED TRIPLET

    Energy Technology Data Exchange (ETDEWEB)

    Del Pino Alemán, Tanausú; Trujillo Bueno, Javier [Instituto de Astrofísica de Canarias, E-38205 La Laguna, Tenerife (Spain)

    2015-07-20

    We present multilevel radiative transfer modeling of the scattering polarization observed in the solar O i infrared triplet around 777 nm. We demonstrate that the scattering polarization pattern observed on the solar disk forms in the chromosphere, far above the photospheric region where the bulk of the emergent intensity profiles originate. We investigate the sensitivity of the polarization pattern to the thermal structure of the solar atmosphere and to the presence of weak magnetic fields (10{sup −2}–100 G) through the Hanle effect, showing that the scattering polarization signals of the oxygen infrared triplet encode information on the magnetism of the solar chromosphere.

  11. Chromospheric Polarization in the Photospheric Solar Oxygen Infrared Triplet

    CERN Document Server

    Alemán, T del Pino

    2015-01-01

    We present multilevel radiative transfer modeling of the scattering polarization observed in the solar O I infrared triplet around 777 nm. We demonstrate that the scattering polarization pattern observed on the solar disk forms in the chromosphere, far above the photospheric region where the bulk of the emergent intensity profiles originates. We study the sensitivity of the polarization pattern to the thermal structure of the solar atmosphere and to the presence of weak magnetic fields (0.01 - 100 G) through the Hanle effect, showing that the scattering polarization signals of the oxygen infrared triplet encode information on the magnetism of the solar chromosphere.

  12. Chromospheric Polarization in the Photospheric Solar Oxygen Infrared Triplet

    Science.gov (United States)

    Del Pino Alemán, Tanausú; Trujillo Bueno, Javier

    2015-07-01

    We present multilevel radiative transfer modeling of the scattering polarization observed in the solar O i infrared triplet around 777 nm. We demonstrate that the scattering polarization pattern observed on the solar disk forms in the chromosphere, far above the photospheric region where the bulk of the emergent intensity profiles originate. We investigate the sensitivity of the polarization pattern to the thermal structure of the solar atmosphere and to the presence of weak magnetic fields (10-2-100 G) through the Hanle effect, showing that the scattering polarization signals of the oxygen infrared triplet encode information on the magnetism of the solar chromosphere.

  13. Linking Stellar Coronal Activity and Rotation at 500 Myr: A Deep Chandra Observation of M37

    CERN Document Server

    Núñez, Alejandro; Covey, Kevin R; Hartman, Joel D; Kraus, Adam L; Bowsher, Emily C; Douglas, Stephanie T; López-Morales, Mercedes; Pooley, David A; Posselt, Bettina; Saar, Steven H; West, Andrew A

    2015-01-01

    Empirical calibrations of the stellar age-rotation-activity relation (ARAR) rely on observations of the co-eval populations of stars in open clusters. We used the Chandra X-ray Observatory to study M37, a 500-Myr-old open cluster that has been extensively surveyed for rotation periods ($P_{\\rm rot}$). M37 was observed almost continuously for five days, for a total of 440.5 ksec, to measure stellar X-ray luminosities ($L_{\\mathrm{X}}$), a proxy for coronal activity, across a wide range of masses. The cluster's membership catalog was revisited to calculate updated membership probabilities from photometric data and each star's distance to the cluster center. The result is a comprehensive sample of 1699 M37 members: 426 with $P_{\\rm rot}$, 278 with X-ray detections, and 76 with both. We calculate Rossby numbers, $R_o = P_{\\rm rot}/\\tau$, where $\\tau$ is the convective turnover time, and ratios of the X-ray-to-bolometric luminosity, $L_{\\rm X}/L_{\\rm bol}$, to minimize mass dependencies in our characterization of ...

  14. Dynamics of an active magnetic particle in a rotating magnetic field.

    Science.gov (United States)

    Cēbers, A; Ozols, M

    2006-02-01

    The motion of an active (self-propelling) particle with a permanent magnetic moment under the action of a rotating magnetic field is considered. We show that below a critical frequency of the external field the trajectory of a particle is a circle. For frequencies slightly above the critical point the particle moves on an approximately circular trajectory and from time to time jumps to another region of space. Symmetry of the particle trajectory depends on the commensurability of the field period and the period of the orientational motion of the particle. We also show how our results can be used to study the properties of naturally occurring active magnetic particles, so-called magnetotactic bacteria. PMID:16605340

  15. Irregular rotation of the main sunspot in active region Hale 17 570 of 5-13 April 1981

    International Nuclear Information System (INIS)

    The irregular rotation of the main sunspot in the active region Hale 17 570 was investigated on 5 to 13 April 1981. The characteristics of this motion indicate that damped oscillations were involved. The maximum amplitude of the rotation of the sunspot was 111.4deg. The angular velocity of the rotational motion reached its maximum (ω=3.5deg h-1) on 9 April 1981 at 6.7 h UT. The largest angular acceleration (Δω/Δt=0.22deg h-2) was observed at 04.9 h UT on 8 April 1981. Coefficients A and b for the exponential damping function y=+-A exp(-bt) were estimated: A=123deg, b=0.02047, time t0 being 06.8 h UT on 8 April 1981 and the time t being given in hours. No correlation was found between the characteristics of the irregular rotation and flare activity. (author)

  16. A larger critical shoulder angle requires more rotator cuff activity to preserve joint stability.

    Science.gov (United States)

    Viehöfer, Arnd F; Gerber, Christian; Favre, Philippe; Bachmann, Elias; Snedeker, Jess G

    2016-06-01

    Shoulders with rotator cuff tears (RCT) tears are associated with significantly larger critical shoulder angles (CSA) (RCT CSA = 38.2°) than shoulders without RCT (CSA = 32.9°). We hypothesized that larger CSAs increase the ratio of glenohumeral joint shear to joint compression forces, requiring substantially increased compensatory supraspinatus loads to stabilize the arm in abduction. A previously established three dimensional (3D) finite element (FE) model was used. Two acromion shapes mimicked the mean CSA of 38.2° found in patients with RCT and that of a normal CSA (32.9°). In a first step, the moment arms for each muscle segment were obtained for 21 different thoracohumeral abduction angles to simulate a quasi-static abduction in the scapular plane. In a second step, the muscle forces were calculated by minimizing the range of muscle stresses able to compensate an external joint moment caused by the arm weight. If the joint became unstable, additional force was applied by the rotator cuff muscles to restore joint stability. The model showed a higher joint shear to joint compressive force for the RCT CSA (38.2°) for thoracohumeral abduction angles between 40° and 90° with a peak difference of 23% at 50° of abduction. To achieve stability in this case additional rotator cuff forces exceeding physiological values were required. Our results document that a higher CSA tends to destabilize the glenohumeral joint such that higher than normal supraspinatus forces are required to maintain modeled stability during active abduction. This lends strong support to the concept that a high CSA can induce supraspinatus (SSP) overload. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:961-968, 2016. PMID:26572231

  17. Indications for an influence of Hot Jupiters on the rotation and activity of their host stars

    CERN Document Server

    Poppenhaeger, K

    2014-01-01

    The magnetic activity of planet-hosting stars is an important factor to estimate the atmospheric stability of close-in exoplanets and the age of their host stars. It has long been speculated that close-in exoplanets can influence the stellar activity level. However, testing for tidal or magnetic interaction effects in samples of planet-hosting stars is difficult because stellar activity hinders exoplanet detection, so that stellar samples with detected exoplanets show a bias towards low activity for small exoplanets. We aim to test if exoplanets in close orbits influence the stellar rotation and magnetic activity of their host stars, and have developed a novel approach to test for such systematic activity enhancements. We use wide (several 100 AU) binary systems in which one of the stellar components is known to have an exoplanet, while the second stellar component does not have a detected planet and therefore acts as a negative control. We use the stellar coronal X-ray emission as an observational proxy for ...

  18. Rotationally induced surface slope-instabilities and the activation of CO2 activity on comet 103P/Hartley 2

    Science.gov (United States)

    Steckloff, Jordan K.; Graves, Kevin; Hirabayashi, Masatoshi; Melosh, H. Jay; Richardson, James E.

    2016-07-01

    Comet 103P/Hartley 2 has diurnally controlled, CO2-driven activity on the tip of the small lobe of its bilobate nucleus. Such activity is unique among the comet nuclei visited by spacecraft, and suggests that CO2 ice is very near the surface, which is inconsistent with our expectations of an object that thermophysically evolved for ∼45 million years prior to entering the Jupiter Family of comets. Here we explain this pattern of activity by showing that a very plausible recent episode of rapid rotation (rotation period of ∼11 [10-13] h) would have induced avalanches in Hartley 2's currently active regions that excavated down to CO2-rich ices and activated the small lobe of the nucleus. At Hartley 2's current rate of spindown about its principal axis, the nucleus would have been spinning fast enough to induce avalanches ∼3-4 orbits prior to the DIXI flyby (∼1984-1991). This coincides with Hartley 2's discovery in 1986, and implies that the initiation of CO2 activity facilitated the comet's discovery. During the avalanches, the sliding material would either be lofted off the surface by gas activity, or possibly gained enough momentum moving downhill (toward the tip of the small lobe) to slide off the tip of the small lobe. Much of this material would have failed to reach escape velocity, and would reimpact the nucleus, forming debris deposits. The similar size frequency distribution of the mounds observed on the surface of Hartley 2 and chunks of material in its inner coma suggest that the 20-40 m mounds observed by the DIXI mission on the surface of Hartley 2 are potentially these fallback debris deposits. As the nucleus spun down (rotation period increased) from a period of ∼11-18.34 h at the time of the DIXI flyby, the location of potential minima, where materials preferentially settle, migrated about the surface, allowing us to place relative ages on most of the terrains on the imaged portion of the nucleus.

  19. Spectral analysis and modeling of solar flares chromospheric condensation

    Science.gov (United States)

    Cauzzi, Gianna; Graham, David; Kowalski, Adam; Zangrilli, Luca; Simoes, Paulo; Allred, Joel C.

    2016-05-01

    We follow up on our recent analysis of the X1.1 flare SOL2014-09-10T17:45, where we studied the impulsive phase dynamics of tens of individual flaring "kernels", in both coronal (Fe XXI) and chromospheric (MgII) lines observed at high cadence with IRIS.We concentrate here on the chromospheric aspect of the phenomenon, extending the analysis to multiple spectral lines of Mg II, Fe II, Si I, C II. We show that many flaring kernels display high velocity downflows in the spectra of all these chromospheric lines, exhibiting distinct, transient and strongly redshifted spectral components.From modeling using RADYN with the thick-target interpretation, the presence of two spectral components appears to be consistent with a high flux beam of accelerated electrons, characterized by a hard spectrum. In particular the highest energy electrons heat the denser, lower layers of the atmosphere, while the bulk of the beam energy, deposited higher in the atmosphere, is sufficient to produce chromospheric evaporation with a corresponding condensation.

  20. On the minimum temperature of the quiet solar chromospheres

    NARCIS (Netherlands)

    Leenaarts, J.; Carlsson, M.; Hansteen, V.; Gudiksen, B.V.

    2011-01-01

    Aims. We aim to provide an estimate of the minimum temperature of the quiet solar chromosphere. Methods. We perform a 2D radiation-MHD simulation spanning the upper convection zone to the lower corona. The simulation includes non-LTE radiative transfer and an equation-of-state that includes non-equi

  1. The Role of Partial Ionization Effects in the Chromosphere

    CERN Document Server

    Martinez-Sykora, Juan; Hansteen, Viggo H; Carlsson, Mats

    2015-01-01

    The energy for the coronal heating must be provided from the convection zone. The amount and the method by which this energy is transferred into the corona depends on the properties of the lower atmosphere and the corona itself. We review: 1) how the energy could be built in the lower solar atmosphere; 2) how this energy is transferred through the solar atmosphere; and 3) how the energy is finally dissipated in the chromosphere and/or corona. Any mechanism of energy transport has to deal with the various physical processes in the lower atmosphere. We will focus on a physical process that seems to be highly important in the chromosphere and not deeply studied until recently: the ion-neutral interaction effects (INIE) in the chromosphere. We review the relevance and the role of the partial ionization in the chromosphere and show that this process actually impacts considerably the outer solar atmosphere. We include analysis of our 2.5D radiative MHD simulations with the Bifrost code (Gudiksen et al. 2011) includ...

  2. Chromospheric and Coronal Wave Generation in a Magnetic Flux Sheath

    Science.gov (United States)

    Kato, Yoshiaki; Steiner, Oskar; Hansteen, Viggo; Gudiksen, Boris; Wedemeyer, Sven; Carlsson, Mats

    2016-08-01

    Using radiation magnetohydrodynamic simulations of the solar atmospheric layers from the upper convection zone to the lower corona, we investigate the self-consistent excitation of slow magneto-acoustic body waves (slow modes) in a magnetic flux concentration. We find that the convective downdrafts in the close surroundings of a two-dimensional flux slab “pump” the plasma inside it in the downward direction. This action produces a downflow inside the flux slab, which encompasses ever higher layers, causing an upwardly propagating rarefaction wave. The slow mode, excited by the adiabatic compression of the downflow near the optical surface, travels along the magnetic field in the upward direction at the tube speed. It develops into a shock wave at chromospheric heights, where it dissipates, lifts the transition region, and produces an offspring in the form of a compressive wave that propagates further into the corona. In the wake of downflows and propagating shock waves, the atmosphere inside the flux slab in the chromosphere and higher tends to oscillate with a period of ν ≈ 4 mHz. We conclude that this process of “magnetic pumping” is a most plausible mechanism for the direct generation of longitudinal chromospheric and coronal compressive waves within magnetic flux concentrations, and it may provide an important heat source in the chromosphere. It may also be responsible for certain types of dynamic fibrils.

  3. Relating Changes in Cometary Rotation to Activity: Current Status and Applications to Comet C/2012 S1 (ISON)

    CERN Document Server

    Samarasinha, Nalin

    2013-01-01

    We introduce a parameter, X, to predict the changes in the rotational period of a comet in terms of the rotational period itself, the nuclear radius, and the orbital characteristics. We show that X should be a constant if the bulk densities and shapes of nuclei are nearly identical and the activity patterns are similar for all comets. For four nuclei for which rotational changes are well documented, despite the nearly factor 30 variation observed among the effective active fractions of these comets, X is constant to within a factor two. We present an analysis for the sungrazing comet C/2012 S1 (ISON) to explore what rotational changes it could undergo during the upcoming perihelion passage where its perihelion distance will be ~2.7 solar radii. When close to the sun, barring a catastrophic disruption of the nucleus, the activity of ISON will be sufficiently strong to put the nucleus into a non-principal-axis rotational state and observable changes to the rotational period should also occur. Additional causes ...

  4. Control of seismic and operational vibrations of rotating machines using semi-active mounts

    Institute of Scientific and Technical Information of China (English)

    R.Rana; T.T.Soong

    2004-01-01

    A dual isolation problem for rotating machines consists of isolation of housing structures from the machine vibrations and protection of machines during an earthquake to maintain their functionality. Desirable characteristics of machine mounts for the above two purposes can differ significantly due to difference in nature of the excitation and performance criteria in the two situations. In this paper, relevant response quantities are identified that may be used to quantify performancc and simplified models of rotating machines are presented using which these relevant response quantities may be calculated. Using random vibration approach with a stationary excitation, it is shown that significant improvement in seismic performance is achievable by proper mount design. Results of shaking table experiments performed with a realistic setup using a centrifugal pump are presented. It is concluded that a solution to this dual isolation problem lies in a semi-active.mount capable of switching its properties from‘operation-optimum'to‘seismic-optimum'at the omset of a seismic event.

  5. The Counter-kink Rotation of a Non-Hale Active Region

    CERN Document Server

    Fuentes, M C López; Mandrini, C H; van Driel-Gesztelyi, L

    2014-01-01

    We describe the long-term evolution of a bipolar non-Hale active region which was observed from October, 1995, to January, 1996. Along these four solar rotations the sunspots and subsequent flux concentrations, during the decay phase of the region, were observed to move in such a way that by December their orientation conformed to the Hale-Nicholson polarity law. The sigmoidal shape of the observed soft X-ray coronal loops allows us to determine the sense of the twist in the magnetic configuration. This sense is confirmed by extrapolating the observed photospheric magnetic field, using a linear force-free approach, and comparing the shape of computed field lines to the observed coronal loops. This sense of twist agrees with that of the dominant helicity in the solar hemisphere where the region lies, as well as with the evolution observed in the longitudinal magnetogram during the first rotation. At first sight the relative motions of the spots may be miss-interpreted as the rising of an $\\Omega$-loop deformed...

  6. RoboPol: optical polarization-plane rotations and flaring activity in blazars

    Science.gov (United States)

    Blinov, D.; Pavlidou, V.; Papadakis, I. E.; Hovatta, T.; Pearson, T. J.; Liodakis, I.; Panopoulou, G. V.; Angelakis, E.; Baloković, M.; Das, H.; Khodade, P.; Kiehlmann, S.; King, O. G.; Kus, A.; Kylafis, N.; Mahabal, A.; Marecki, A.; Modi, D.; Myserlis, I.; Paleologou, E.; Papamastorakis, I.; Pazderska, B.; Pazderski, E.; Rajarshi, C.; Ramaprakash, A.; Readhead, A. C. S.; Reig, P.; Tassis, K.; Zensus, J. A.

    2016-04-01

    We present measurements of rotations of the optical polarization of blazars during the second year of operation of RoboPol, a monitoring programme of an unbiased sample of gamma-ray bright blazars specially designed for effective detection of such events, and we analyse the large set of rotation events discovered in two years of observation. We investigate patterns of variability in the polarization parameters and total flux density during the rotation events and compare them to the behaviour in a non-rotating state. We have searched for possible correlations between average parameters of the polarization-plane rotations and average parameters of polarization, with the following results: (1) there is no statistical association of the rotations with contemporaneous optical flares; (2) the average fractional polarization during the rotations tends to be lower than that in a non-rotating state; (3) the average fractional polarization during rotations is correlated with the rotation rate of the polarization plane in the jet rest frame; (4) it is likely that distributions of amplitudes and durations of the rotations have physical upper bounds, so arbitrarily long rotations are not realized in nature.

  7. Arylsulphatase activity and sulphate content in relation to crop rotation and fertilization of soil

    Science.gov (United States)

    Siwik-Ziomek, Anetta; Lemanowicz, Joanna; Koper, Jan

    2016-07-01

    The aim of the study was to investigate the effect of varying rates of FYM (0, 20, 40, 60 Mg ha-1) and nitrogen N0, N1, N2, and N3 on the content of sulphate sulphur (VI) and the activity of arylsulphatase, which participates in the transformations of this element in Haplic Luvisol. The study report is based on a long-term field experiment with two different crop rotations: A - recognized as exhausting the humus from soil and B - recognized as enriching the soil with humus. During the cultivation of the plants, the soil was sampled four times from corn and a red clover cultivar and grass. The FYM fertilization rate for which the highest arylsulphatase activity and the content of sulphates were identified was 60 Mg ha-1. An inhibitory effect of high rates (90 and 135 kg N ha-1) of ammonium nitrate on the arylsulphatase activity was also observed. A significant correlation between the content of carbon, nitrogen, and sulphates and the arylsulphatase activity was recorded. The investigation on the effect of combined application of farmyard manure and mineral nitrogen fertilization on the activity of arylsulphatase participating in the sulphur cycling was launched to examine the problem in detail.

  8. Early rehabilitation affects functional outcomes and activities of daily living after arthroscopic rotator cuff repair: a case report.

    Science.gov (United States)

    Shimo, Satoshi; Sakamoto, Yuta; Tokiyoshi, Akinari; Yamamoto, Yasuhiro

    2016-01-01

    [Purpose] The effect of early rehabilitation protocols after arthroscopic rotator cuff repair is currently unknown. We examined short-term effects of early rehabilitation on functional outcomes and activities of daily living after arthroscopic rotator cuff repair. [Subject and Methods] An 82-year-old male fell during a walk, resulting in a supraspinatus tear. Arthroscopic rotator cuff repair was performed using a single-row technique. He wore an abduction brace for 6 weeks after surgery. [Results] From day 1 after surgery, passive range of motion exercises, including forward flexion and internal and external rotation were performed twice per day. Starting at 6 weeks after surgery, active range of motion exercises and muscle strengthening exercises were introduced gradually. At 6 weeks after surgery, his active forward flexion was 150°, UCLA shoulder rating scale score was 34 points, and Quick Disabilities of the Arm, Shoulder, and Hand questionnaire disability/symptom score was 36 points. At 20 weeks after surgery, his active forward flexion was 120°, UCLA shoulder rating scale score was 34 points, and Quick Disabilities of the Arm, Shoulder, and Hand questionnaire disability/symptom score was 0 points. [Conclusion] These protocols are recommended to physical therapists during rehabilitation for arthroscopic rotator cuff repair to support rapid reintegration into activities of daily living. PMID:27064886

  9. The solar chromosphere at high resolution with IBIS. IV. Dual-line evidence of heating in chromospheric network

    NARCIS (Netherlands)

    Cauzzi, G.; Reardon, K.; Rutten, R.J.; Tritschler, A.; Uitenbroek, H.

    2009-01-01

    The structure and energy balance of the solar chromosphere remain poorly known.We used the imaging spectrometer IBIS at the Dunn Solar Telescope to obtain fast-cadence, multi-wavelength profile sampling of Hα and Ca II 854.2 nm over a sizable two-dimensional field of view encompassing quiet-Sun netw

  10. Parsec-scale Faraday Rotation Measures from General Relativistic MHD Simulations of Active Galactic Nuclei Jets

    CERN Document Server

    Broderick, Avery E

    2010-01-01

    For the first time it has become possible to compare global 3D general relativistic magnetohydrodynamic (GRMHD) jet formation simulations directly to very-long baseline interferometric multi-frequency polarization observations of the pc-scale structure of active galactic nucleus (AGN) jets. Unlike the jet emission, which requires post hoc modeling of the non-thermal electrons, the Faraday rotation measures (RMs) depend primarily upon simulated quantities and thus provide a robust way in which to confront simulations with observations. We compute RM distributions of 3D global GRMHD jet formation simulations, with which we explore the dependence upon model and observational parameters, emphasizing the signatures of structures generic to the theory of MHD jets. With typical parameters, we find that it is possible to reproduce the observed magnitudes and many of the structures found in AGN jet RMs, including the presence of transverse RM gradients. In our simulations the RMs are generated within a smooth extensio...

  11. The Host Stars of Keplers Habitable Exoplanets: Superflares, Rotation and Activity

    CERN Document Server

    Armstrong, D J; Broomhall, A -M; Brown, D J A; Lund, M N; Osborn, H P; Pollacco, D L

    2015-01-01

    We embark on a detailed study of the lightcurves of Keplers most Earth-like exoplanet host stars using the full length of Kepler data. We derive rotation periods, photometric activity indices, flaring energies, mass loss rates, gyrochronological ages, X-ray luminosities and consider implications for the planetary magnetospheres and habitability. Furthermore, we present the detection of superflares in the lightcurve of Kepler-438, the exoplanet with the highest Earth Similarity Index to date. Kepler-438b orbits at a distance of 0.166AU to its host star, and hence may be susceptible to atmospheric stripping. Our sample is taken from the Habitable Exoplanet Catalogue, and consists of the stars Kepler-22, Kepler-61, Kepler-62, Kepler-174, Kepler-186, Kepler-283, Kepler-296, Kepler-298, Kepler-438, Kepler-440, Kepler-442, Kepler-443 and KOI-4427, between them hosting 15 of the most habitable transiting planets known to date from Kepler.

  12. Supersaturation and Activity-Rotation Relation in PMS stars: the case of the Young Cluster h Per

    CERN Document Server

    Argiroffi, C; Micela, G; Sciortino, S; Moraux, E; Bouvier, J; Flaccomio, E

    2016-01-01

    The magnetic activity of late-type MS stars is characterized by different regimes, and their activity levels are well described by Ro, the ratio between P_rot and the convective turnover time. Very young PMS stars show, similarly to MS stars, intense magnetic activity. However they do not show clear activity-rotation trends, and it still debated which stellar parameters determine their magnetic activity levels. To bridge the gap between MS and PMS stars, we studied the activity-rotation relation in the young cluster h Per, a ~13 Myr old cluster, that contains both fast and slow rotators, whose members have ended their accretion phase and have already developed a radiative core. It offers us the opportunity to study the activity level of intermediate-age PMS stars with different rotational velocities, excluding any interactions with the circumstellar environment. We constrained the magnetic activity levels of h Per members measuring their X-ray emission from a Chandra observation, while P_rot were obtained by ...

  13. Lithium enrichment on the single active K1-giant DI Piscium -- Possible joint origin of differential rotation and Li enrichment

    CERN Document Server

    Kriskovics, L; Vida, K; Granzer, T; Oláh, K

    2014-01-01

    We investigate the surface spot activity of the rapidly rotating, lithium-rich active single K-giant DI Psc to measure the surface differential rotation and understand the mechanisms behind the Li-enrichment. Doppler imaging was applied to recover the surface temperature distribution of DI Psc in two subsequent rotational cycles using the individual mapping lines Ca I 6439, Fe I 6430, Fe I 6421 and Li I 6708. Surface differential rotation was derived by cross-correlation of the subsequent maps. Difference maps are produced to study the uniformity of Li-enrichment on the surface. These maps are compared with the rotational modulation of the Li I 6708 line equivalent width. Doppler images obtained for the Ca and Fe mapping lines agree well and reveal strong polar spottedness, as well as cool features at lower latitudes. Cross-correlating the consecutive maps yields antisolar differential rotation with shear coefficient -0.083 +- 0.021. The difference of the average and the Li maps indicates that the lithium abu...

  14. Time-series Doppler imaging of the red giant HD 208472. Active longitudes and differential rotation

    Science.gov (United States)

    Özdarcan, O.; Carroll, T. A.; Künstler, A.; Strassmeier, K. G.; Evren, S.; Weber, M.; Granzer, T.

    2016-10-01

    Context. HD 208472 is among the most active RS CVn binaries with cool starspots. Decade-long photometry has shown that the spots seem to change their longitudinal appearance with a period of about six years, coherent with brightness variations. Aims: Our aim is to spatially resolve the stellar surface of HD 208472 and relate the photometric results to the true longitudinal and latitudinal spot appearance. Furthermore, we investigate the surface differential rotation pattern of the star. Methods: We employed three years of high-resolution spectroscopic data with a high signal-to-noise ratio (S/N) from the STELLA robotic observatory and determined new and more precise stellar physical parameters. Precalculated synthetic spectra were fit to each of these spectra, and we provide new spot-corrected orbital elements. A sample of 34 absorption lines per spectrum was used to calculate mean line profiles with a S/N of several hundred. A total of 13 temperature Doppler images were reconstructed from these line profiles with the inversion code iMap. Differential rotation was investigated by cross-correlating successive Doppler images in each observing season. Results: Spots on HD 208472 are distributed preferably at high latitudes and less frequently around mid-to-low latitudes. No polar-cap like structure is seen at any epoch. We observed a flip-flop event between 2009 and 2010, manifested as a flip of the spot activity from phase 0.0 to phase 0.5, while the overall brightness of the star continued to increase and reached an all-time maximum in 2014. Cross-correlation of successive Doppler images suggests a solar-like differential rotation that is ≈15 times weaker than that of the Sun. Based on data obtained with the STELLA robotic telescope in Tenerife, an AIP facility jointly operated by AIP and IAC, and the Potsdam Automatic Photoelectric Telescopes (APT) in Arizona, jointly operated by AIP and Fairborn Observatory.Radial velocity measurements are only available at the

  15. Sub-soil microbial activity under rotational cotton crops in Australia

    Science.gov (United States)

    Polain, Katherine; Knox, Oliver; Wilson, Brian; Pereg, Lily

    2016-04-01

    Soil microbial communities contribute significantly to soil organic matter formation, stabilisation and destabilisation, through nutrient cycling and biodegradation. The majority of soil microbial research examines the processes occurring in the top 0 cm to 30 cm of the soil, where organic nutrients are easily accessible. In soils such as Vertosols, the high clay content causes swelling and cracking. When soil cracking is coupled with rain or an irrigation event, a flush of organic nutrients can move down the soil profile, becoming available for subsoil microbial community use and potentially making a significant contribution to nutrient cycling and biodegradation in soils. At present, the mechanisms and rates of soil nutrient turnover (such as carbon and nitrogen) at depth under cotton rotations are mostly speculative and the process-response relationships remain unclear, although they are undoubtedly underpinned by microbial activity. Our research aims to determine the contribution and role of soil microbiota to the accumulation, cycling and mineralisation of carbon and nitrogen through the whole root profile under continuous cotton (Gossypium hirsutum) and cotton-maize rotations in regional New South Wales, Australia. Through seasonal work, we have established both baseline and potential microbial activity rates from 0 cm to 100 cm down the Vertosol profile, using respiration and colourimetric methods. Further whole soil profile analyses will include determination of microbial biomass and isotopic carbon signatures using phospholipid fatty acid (PLFA) methodology, identification of microbial communities (sequencing) and novel experiments to investigate potential rates of nitrogen mineralisation and quantification of associated genes. Our preliminary observations and the hypotheses tested in this three-year study will be presented.

  16. First Direct Detection of Magnetic Fields in Starspots and Stellar Chromospheres

    CERN Document Server

    Berdyugina, S V; Afram, N; Suwald, F; Petit, P; Arnaud, J; Harrington, D M; Kuhn, J R

    2007-01-01

    Here we report on the first detection of circular polarization in molecular lines formed in cool magnetic regions (starspots) and in chromospheric emission lines formed in hot plages on the surfaces of active stars. Our survey of G-K-M stars included young main-sequence dwarfs and RS CVn-type giants and subgiants. All stars were found to possess surface magnetic fields producing Stokes V LSD signals in atomic lines of 0.05 to 0.5%. Several stars clearly showed circular polarization in molecular lines of 0.1 to 1%. The molecular Stokes V signal is reminiscent of that observed in sunspots. Chromospheric magnetic fields were detected on most active targets in Stokes V profiles of emission lines with peak polarization up to 2%. The observed molecular circular polarization on M dwarfs indicates single-polarity magnetic fields covering at least 10% of the stellar disk. Smaller signals on K stars imply that their magnetic fields are apparently weaker, more entangled than on M dwarfs, or more diluted by the bright ph...

  17. The energy input mechanism into the lower transition regions between stellar chromospheres and coronae

    Science.gov (United States)

    Boehm-Vitense, Erika

    1988-01-01

    The ratio of the emission line fluxes for the C II and C IV lines in the lower transition regions (T = 30,000 to 100,000 K) between stellar chromospheres and transition layers is shown to depend mainly on the temperature gradient in the line emitting regions which can therefore be determined from this line ratio. From the observed constant (within the limits of observational error) ratio of the emission line fluxes of the C II (1335 A) and C IV (1550 A) lines it is concluded that the temperature gradients in the lower transition layers are similar for the large majority of stars independently of T sub eff, L, and degree of activity. This means that the temperature dependence of the damping length for the mechanical flux must be the same for all these stars. Since for different kinds of mechanical fluxes the dependence of the damping length on gas pressure and temperature is quite different, it is concluded that the same heating mechanism must be responsible for the heating of all the lower transition layers of these stars, regardless of their chromospheric activity. Only the amount of mechanical flux changes. The T Tauri stars are exceptions: their emission lines are probably mainly due to circumstellar material.

  18. Optimal Electron Energies for Driving Chromospheric Evaporation in Solar Flares

    CERN Document Server

    Reep, Jeffrey; Alexander, David

    2015-01-01

    In the standard model of solar flares, energy deposition by a beam of electrons drives strong chromospheric evaporation leading to a significantly denser corona and much brighter emission across the spectrum. Chromospheric evaporation was examined in great detail by Fisher, Canfield, & McClymont (1985a,b,c), who described a distinction between two different regimes, termed explosive and gentle evaporation. In this work, we examine the importance of electron energy and stopping depths on the two regimes and on the atmospheric response. We find that with explosive evaporation, the atmospheric response does not depend strongly on electron energy. In the case of gentle evaporation, lower energy electrons are significantly more efficient at heating the atmosphere and driving up-flows sooner than higher energy electrons. We also find that the threshold between explosive and gentle evaporation is not fixed at a given beam energy flux, but also depends strongly on the electron energy and duration of heating. Furt...

  19. The effects of transients on photospheric and chromospheric power distributions

    CERN Document Server

    Samanta, T; Banerjee, D; Prasad, S Krishna; Mathioudakis, M; Jess, D; Pant, V

    2016-01-01

    We have observed a quiet Sun region with the Swedish 1-meter Solar Telescope (SST) equipped with CRISP Imaging SpectroPolarimeter. High-resolution, high-cadence, H$\\alpha$ line scanning images were taken to observe different layers of the solar atmosphere from the photosphere to upper chromosphere. We study the distribution of power in different period-bands at different heights. Power maps of the upper photosphere and the lower chromosphere show suppressed power surrounding the magnetic-network elements, known as "magnetic shadows". These also show enhanced power close to the photosphere, traditionally referred to as "power halos". The interaction between acoustic waves and inclined magnetic fields is generally believed to be responsible for these two effects. In this study we explore if small-scale transients can influence the distribution of power at different heights. We show that the presence of transients, like mottles, Rapid Blueshifted Excursions (RBEs) and Rapid Redshifted Excursions (RREs), can stro...

  20. Rotation of individual background magnetic field components during the formation of the white-light flare region of April 1984 (NOAA 4474)

    International Nuclear Information System (INIS)

    Comprehensive investigation is reported of circumstances leading to the formation of the white-light flare region of April 1984 (L∼340deg, φ∼-10deg). From the distribution of chromospheric filaments the diference was seen in the activity and in the rotation rates of strong and weak magnetic fields. The wavy form was also observed of the magnetic boundary surface dividing, during the time of the maximum evolutionary stage of the region, the negative northern hemisphere fields from the positive polarity southern fields in the interplanetary space. The rigid body rotation was observed of ''pivot points'' and of the strongest magnetic fields in the studied time interval, summarizing the results into the requirement of yet another study of the global and local activity development in this last part of the 21st solar activity cycle. (author). 5 figs., 1 tab., 10 refs

  1. Line Profile Variations of Solar Analog Stars: Chromospheric Indexes vs. Li Abundance. The Host Star Search.

    Science.gov (United States)

    Amazo-Gómez, E. M.; Harutyunyan, G.; Alvarado-Gómez, J. D.; Strassmeier, K. G.; Weber, M.; Carroll, T. A.

    2015-10-01

    PolarBase contains stellar spectropolarimetric data collected with the NARVAL & ESPaDOnS instruments (Petit et al. 2014). Their respective spectral resolutions are 65 000 and 68 000, in spectropolarimetric mode. As the first part of this work, we use the NARVAL spectropolarimetric repositories. We selected spectra from a sample of cool stars with effective Temperature (T eff) ranging between 4900 to 6000 K. This sample contains stellar systems with and without reported exoplanets. We exploit the full wavelength range from 380 to 900 nm in order to obtain chromospheric indexes such as the Ca ii H&K S-Index, and a Ca ii IRT and Hα index. We calibrated our measurements using the Mount Wilson S-Index values. Furthermore, we employ lithium (Li) abundance measurements from the literature (Gonzalez et al. 2010; Delgado Mena et al. 2014; Israelian et al. 2004), investigating in this way a possible correlation between the chromospheric activity measurements and the Li abundance in 32 selected cool stars.

  2. Chromospheric Signatures of the Subdued Cycle 23/24 Solar Minimum in Microwaves

    Science.gov (United States)

    Yashiro, S.; Makela, P.; Shibasaki, K.; Hathaway, D.

    2011-01-01

    Coronal holes appear brighter than the quiet Sun in microwave images, with a brightness enhancement of 500 to 2000 K. The brightness enhancement corresponds to the upper chromosphere, where the plasma temperature is about 10000 K. We constructed a microwave butterfly diagram using the synoptic images obtained by the Nobeyama radio-heliograph (NoRH) showing the evolution of the polar and low latitude brightness temperature. While the polar brightness reveals the chromospheric conditions, the low latitude brightness is attributed to active regions in the corona. When we compared the microwave butterfly diagram with the magnetic butterfly diagram, we found a good correlation between the microwave brightness enhancement and the polar field strength. The microwave butterfly diagram covers part of solar cycle 22, whole of cycle 23, and part of cycle 24, thus enabling comparison between the cycle 23/24 and cycle 22/23 minima. The microwave brightness during the cycle 23/24 minimum was found to be lower than that during the cycle 22/23 minimum by approx.250 K. The reduced brightness temperature is consistent with the reduced polar field strength during the cycle 23/24 minimum seen in the magnetic butterfly diagram. We suggest that the microwave brightness at the solar poles is a good indicator of the speed of the solar wind sampled by Ulysses at high latitudes.

  3. Polar Chromospheric Signatures of the Subdued Cycle 23/24 Solar Minimum

    Science.gov (United States)

    Gopalswamy, N.; Yashiro, S.; Makela, P.; Shibasaki, K.; Hathaway, D.

    2010-01-01

    Coronal holes appear brighter than the quiet Sun in microwave images, with a brightness enhancement of 500 to 2000 K. The brightness enhancement corresponds to the upper chromosphere, where the plasma temperature is about 10000 K. We constructed a microwave butterfly diagram using the synoptic images obtained by the Nobeyama radioheliograph (NoRH) showing the evolution of the polar and low latitude brightness temperature. While the polar brightness reveals the chromospheric conditions, the low latitude brightness is attributed to active regions in the corona. When we compared the microwave butterfly diagram with the magnetic butterfly diagram, we found a good correlation between the microwave brightness enhancement and the polar field strength. The microwave butterfly diagram covers part of solar cycle 22, whole of cycle 23, and part of cycle 24, thus enabling comparison between the cycle 23/24 and cycle 22/23 minima. The microwave brightness during the cycle 23/24 minimum was found to be lower than that during the cycle 22/23 minimum by approximately 250 K. The reduced brightness temperature is consistent with the reduced polar field strength during the cycle 23/24 minimum seen in the magnetic butterfly diagram. We suggest that the microwave brightness at the solar poles is a good indicator of the speed of the solar wind sampled by Ulysses at high latitudes.

  4. The solar chromosphere observed at 1 Hz and 0.''2 resolution

    Energy Technology Data Exchange (ETDEWEB)

    Lipartito, Isabel [Smith College, 99 Paradise Road, Northampton, MA 01063 (United States); Judge, Philip G. [High Altitude Observatory, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307-3000 (United States); Reardon, Kevin [National Solar Observatory/Sacramento Peak, P.O. Box 62, Sunspot, NM 88349 (United States); Cauzzi, Gianna, E-mail: iliparti@smith.edu, E-mail: judge@ucar.edu, E-mail: kreardon@arcetri.astro.it, E-mail: gcauzzi@arcetri.astro.it [INAF-Ossevatorio Astrofisico di Arcetri, I-50125 Firenze (Italy)

    2014-04-20

    We recently reported extremely rapid changes in chromospheric fine structure observed using the IBIS instrument in the red wing of Hα. Here, we examine data obtained during the same observing run (2010 August 7), of a mature active region NOAA 11094. We analyze more IBIS data including wavelength scans and data from the Solar Dynamics Observatory, all from within a 30 minute interval. Using a slab radiative transfer model, we investigate the physical nature of fibrils in terms of tube-like versus sheet-like structures. Principal Component Analysis shows that the very rapid Hα variations in the line wings depend mostly on changes of line width and line shift, but for Ca II 854.2 the variations are dominated by changes in column densities. The tube model must be rejected for a small but significant class of fibrils undergoing very rapid changes. If our wing data arise from the same structures leading to 'type II spicules', our analysis calls into question much recent work. Instead, the data do not reject the hypothesis that some fibrils are optical superpositions of plasma collected into sheets. We review how Parker's theory of tangential discontinuities naturally leads to plasma collecting into sheets, and show that the sheet picture is falsifiable. Chromospheric fine structures seem to be populated by both tubes and sheets. We assess the merits of spectral imaging versus slit spectroscopy for future studies.

  5. RESOLVING THE FAN-SPINE RECONNECTION GEOMETRY OF A SMALL-SCALE CHROMOSPHERIC JET EVENT WITH THE NEW SOLAR TELESCOPE

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Zhicheng; Chen, Bin; Goode, Philip R.; Cao, Wenda [Center for Solar-Terrestrial Research, New Jersey Institute of Technology, 323 Martin Luther King Boulevard, Newark, NJ 07102 (United States); Ji, Haisheng [Big Bear Solar Observatory, 40386 North Shore Lane, Big Bear City, CA 92314 (United States)

    2016-03-01

    Jets are ubiquitously present in both quiet and active regions on the Sun. They are widely believed to be driven by magnetic reconnection. A fan-spine structure has been frequently reported in some coronal jets and flares, and has been regarded as a signature of ongoing magnetic reconnection in a topology consisting of a magnetic null connected by a fan-like separatrix surface and a spine. However, for small-scale chromospheric jets, clear evidence of such structures is rather rare, although it has been implied in earlier works that showed an inverted-Y-shaped feature. Here we report high-resolution (0.″16) observations of a small-scale chromospheric jet obtained by the New Solar Telescope (NST) using 10830 Å filtergrams. Bi-directional flows were observed across the separatrix regions in the 10830 Å images, suggesting that the jet was produced due to magnetic reconnection. At the base of the jet, a fan-spine structure was clearly resolved by the NST, including the spine and the fan-like surface, as well as the loops before and after the reconnection. A major part of this fan-spine structure, with the exception of its bright footpoints and part of the base arc, was invisible in the extreme ultraviolet and soft X-ray images (observed by the Atmosphere Imaging Assembly and the X-Ray Telescope, respectively), indicating that the reconnection occurred in the upper chromosphere. Our observations suggest that the evolution of this chromospheric jet is consistent with a two-step reconnection scenario proposed by Török et al.

  6. On the solar chromosphere observed at the limb with Hinode

    CERN Document Server

    Judge, Philip G

    2010-01-01

    Broad-band images in the Ca II H line, from the BFI instrument on the Hinode spacecraft, show emission from spicules emerging from and visible right down to the observed limb. Surprisingly, little absorption of spicule light is seen along their lengths. We present formal solutions to the transfer equation for given (ad-hoc) source functions, including a stratified chromosphere from which spicules emanate. The model parameters are broadly compatible with earlier studies of spicules. The visibility of Ca II spicules down to the limb in Hinode data seems to require that spicule emission be Doppler shifted relative to the stratified atmosphere, either by supersonic turbulent or organized spicular motion. The non-spicule component of the chromosphere is almost invisible in the broad band BFI data, but we predict that it will be clearly visible in high spectral resolution data. Broad band Ca II H limb images give the false impression that the chromosphere is dominated by spicules. Our analysis serves as a reminder ...

  7. Acceleration of type 2 spicules in the solar chromosphere. II. Viscous braking and upper bounds on coronal energy input

    Energy Technology Data Exchange (ETDEWEB)

    Goodman, Michael L., E-mail: mgoodman@wvhtf.org [Advanced Technologies Group, West Virginia High Technology Consortium Foundation, 1000 Galliher Drive, Fairmont, WV 26554 (United States)

    2014-04-20

    A magnetohydrodynamic model is used to determine conditions under which the Lorentz force accelerates plasma to type 2 spicule speeds in the chromosphere. The model generalizes a previous model to include a more realistic pre-spicule state, and the vertical viscous force. Two cases of acceleration under upper chromospheric conditions are considered. The magnetic field strength for these cases is ≤12.5 and 25 G. Plasma is accelerated to terminal vertical speeds of 66 and 78 km s{sup –1} in 100 s, compared with 124 and 397 km s{sup –1} for the case of zero viscosity. The flows are localized within horizontal diameters ∼80 and 50 km. The total thermal energy generated by viscous dissipation is ∼10 times larger than that due to Joule dissipation, but the magnitude of the total cooling due to rarefaction is ≳ this energy. Compressive heating dominates during the early phase of acceleration. The maximum energy injected into the corona by type 2 spicules, defined as the energy flux in the upper chromosphere, may largely balance total coronal energy losses in quiet regions, possibly also in coronal holes, but not in active regions. It is proposed that magnetic flux emergence in intergranular regions drives type 2 spicules.

  8. Effect of Modeling-Based Activities Developed Using Virtual Environments and Concrete Objects on Spatial Thinking and Mental Rotation Skills

    Science.gov (United States)

    Yurt, Eyup; Sunbul, Ali Murat

    2012-01-01

    In this study, the effect of modeling based activities using virtual environments and concrete objects on spatial thinking and mental rotation skills was investigated. The study was designed as a pretest-posttest model with a control group, which is one of the experimental research models. The study was carried out on sixth grade students…

  9. Tracing Ca K grains through the chromosphere into the transition region

    Science.gov (United States)

    Steffens, S.; Deubner, F.-L.; Fleck, B.; Wilhelm, K.

    1997-01-01

    The propagation of Ca K grains from the lower chromosphere into the transition region is studied. Data from the solar ultraviolet measurement of emitted radiation (SUMER) and the VTT at Inzana (Tenerife) instruments were used. The purpose of the study was to investigate the formation of shock waves in the chromosphere. The most dynamical features in the chromosphere defined by the bright Ca II K emission in the filtergrams and spectrograms were analyzed.

  10. Tracers of Chromospheric Structure. I. Observations of Ca II K and Hα in M Dwarfs

    Science.gov (United States)

    Walkowicz, Lucianne M.; Hawley, Suzanne L.

    2009-02-01

    We report on our observing program4This paper is based on observations obtained with the Apache Point Observatory 3.5 m telescope, which is owned and operated by the Astrophysical Research Consortium. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation. to capture simultaneous spectra of Ca II and Balmer lines in a sample of nearby M3 dwarfs. Our goal is to investigate the chromospheric temperature structure required to produce these lines at the observed levels. We find a strong positive correlation between instantaneous measurements of Ca II K and the Balmer lines in active stars, although these lines may not be positively correlated in time-resolved measurements. The relationship between Hα and Ca II K remains ambiguous for weak and intermediate activity stars, with Hα absorption corresponding to a range of Ca II K emission. A similar relationship is also observed between Ca II K and the higher-order Balmer lines. As our sample consists of a single spectral type, correlations between these important chromospheric tracers cannot be ascribed to continuum effects, as suggested by other authors. These data confirm prior nonsimultaneous observations of the Hα line behavior with increasing activity, showing an initial increase in the Hα absorption with increasing Ca II K emission, prior to Hα filling in and eventually becoming a pure emission line in the most active stars. We also compare our optical measurements with archival UV and X-ray measurements, finding a positive correlation between the chromospheric and coronal emission for both high and intermediate activity stars. We compare our results with previous determinations of the active fraction of low-mass stars

  11. Time-series Doppler imaging of the red giant HD 208472. Active longitudes and differential rotation

    CERN Document Server

    Özdarcan, O; Künstler, A; Strassmeier, K G; Evren, S; Weber, M; Granzer, T

    2016-01-01

    HD 208472 is among the most active RS~CVn binaries with cool starspots. Decade-long photometry has shown that the spots seem to change their longitudinal appearance with a period of about six years, coherent with brightness variations. Our aim is to spatially resolve the stellar surface of HD 208472 and relate the photometric results to the true longitudinal and latitudinal spot appearance. Furthermore, we investigate the surface differential rotation pattern of the star. We employed three years of high-resolution spectroscopic data with a high signal-to-noise ratio (S/N) from the STELLA robotic observatory and determined new and more precise stellar physical parameters. Precalculated synthetic spectra were fit to each of these spectra, and we provide new spot-corrected orbital elements. A sample of 34 absorption lines per spectrum was used to calculate mean line profiles with a S/N of several hundred. A total of 13 temperature Doppler images were reconstructed from these line profiles with the inversion code...

  12. Study on transport of powdered activated carbon using a rotating circular flume

    Institute of Scientific and Technical Information of China (English)

    尹海龙; 邱敏燕; 徐祖信

    2013-01-01

    This study employed a rotating flume to examine the Powdered Activated Carbon (PAC) transport with water flow. The initial PAC concentration was 10 mg/L-30 mg/L, and PAC concentration versus time under a specified cross-sectional averaging fluid shear was observed. Results show that compared with PAC deposition in still water, PAC is depleted to zero faster under a fluid shear of 0.02 Pa, due to PAC agglomeration with the fluid shear. However, since PAC floc size only ranges from a single particle (2mm) to approximate 6mm, an increasing of instantaneous turbulent fluctuations could counteract the force of PAC floc settling downward, and as a result the steady PAC concentration increases with the increase of shear stress. It is found that the critical shear stress for PAC deposition is about 0.60 Pa, and further the PAC deposition probability is presented according to the experimental scenarios between 0.02 Pa and 0.60 Pa. Combining the PAC transport and deposition formula with PAC-pollutant removal model provides an insight into PAC deployment in raw water aqueduct for sudden open water source pollution.

  13. A new gravitational-wave signature of SASI activities in non-rotating supernova cores

    CERN Document Server

    Kuroda, Takami; Takiwaki, Tomoya

    2016-01-01

    We present results from fully relativistic three-dimensional core-collapse supernova (CCSN) simulations of a non-rotating 15 M_sun star using three different nuclear equations of state (EoSs). From our simulations covering up to ~350 ms after bounce, we show that the development of the standing accretion shock instability (SASI) differs significantly depending on the stiffness of nuclear EoS. Generally, the SASI activity occurs more vigorously in models with softer EoS. By evaluating the gravitational-wave (GW) emission, we find a new GW signature on top of the previously identified one, in which the typical GW frequency increases with time due to an accumulating accretion to the proto-neutron star (PNS). The newly observed quasi-periodic signal appears in the frequency range from ~100 to 200 Hz and persists for ~150 ms before neutrino-driven convection dominates over the SASI. By analyzing the cycle frequency of the SASI sloshing and spiral modes as well as the mass accretion rate to the emission region, we ...

  14. Estimating the angle of inclination of the Earth's rotational axis: a potentially meaningful practical activity for astronomy education

    Directory of Open Access Journals (Sweden)

    Elisa Danda de Oliveira

    2015-03-01

    Full Text Available This article describes a practical activity to estimate the angle of inclination of the Earth's rotation axis as a teaching resource with potential to promote the meaningful learning on topics related to astronomy and Earth science. Some topics of interest for carrying out the activity as the apparent movement of the sun, the angle of incidence of sunlight throughout the year and the seasons are discussed. The procedures and materials used in measuring the length of the shadow of a gnomon, the collected data, and the estimating of the angle of inclination of the rotation axis are presented. The article ends with a reflection on the implementation of this activity in elementary and high school level.

  15. Solar-stellar connection : A solar analogous behaviour by an active ultra fast rotator

    Science.gov (United States)

    Sairam, Lalitha; Schmitt, Juergen; Pal Singh, Kulinder

    2015-08-01

    AB Dor is an ultra-fast rotating (Prot ~ 0.51 d) active young K dwarf with an age of ~40-50 Myr. Located as a foreground star towards large magellanic cloud (LMC), AB Dor has the advantage of being observed at all times by most of the X-ray satellites making it a favourite calibration target. AB Dor has been repeatedly observed for calibration by reflection grating spectrometer (RGS) on board XMM- Newton over last decade. This gives an ideal opportunity to perform a detailed analysis of the coronal emission, and to compare the flare characteristics with the Sun, since the Sun is usually considered as a prototype of low mass stars. Flares are frequent in low mass active stars across the electromagnetic spectrum similar to the Sun. We will for the first time, present an analysis of 30 intense X-ray flares observed from AB Dor. These flares detected in XMM-Newton data show a rapid rise (500-3000 s) and a slow decay (1000-6000 s). The derived X-ray luminosity during the flares ranges between 30.20 ≤ log(Lx) ≤ 30.83 erg/s; the flare peak temperature lies between 30-80 MK and the emission measures for these flares are in the range of 52.3 ≤ log(EM) ≤ 53.5 cm^-3. Our studies suggest that the scaling law between the flare peak emission measure and the flare peak temperature for all the flares observed on AB Dor is very similar to the relationship followed by solar flares, despite the fact that the AB Dor flare emission is ~250 times higher than the solar flare emission. We also carried out a homogenous study of flare frequencies, energetics and its occurrence in AB Dor. The frequency distribution of flare energies is a crucial diagnostic to calculate the overall energy residing in a flare. Our results of this study indicate that the large flare (33 ≤ log(E) ≤ 34 erg) may not contribute to the heating of the corona. We will show the presence of a possible long-term cycle in AB Dor both from a photospheric and coronal point of view, similar to the 11-year

  16. A dynamo model of magnetic activity in solar-like stars with different rotational velocities

    CERN Document Server

    Karak, Bidya Binay; Choudhuri, Arnab Rai

    2014-01-01

    We attempt to provide a quantitative theoretical explanation for the observations that Ca II H/K emission and X-ray emission from solar-like stars increase with decreasing Rossby number (i.e., with faster rotation). Assuming that these emissions are caused by magnetic cycles similar to the sunspot cycle, we construct flux transport dynamo models of $1M_{\\odot}$ stars rotating with different rotation periods. We first compute the differential rotation and the meridional circulation inside these stars from a mean-field hydrodynamics model. Then these are substituted in our dynamo code to produce periodic solutions. We find that the dimensionless amplitude $f_m$ of the toroidal flux through the star increases with decreasing Rossby number. The observational data can be matched if we assume the emissions to go as the power 3-4 of $f_m$. Assuming that the Babcock-Leighton mechanism saturates with increasing rotation, we can provide an explanation for the observed saturation of emission at low Rossby numbers. The m...

  17. DOT tomography of the solar atmosphere VII. Chromospheric response to acoustic events

    NARCIS (Netherlands)

    Rutten, R.J.; van Veelen, B.; Sütterlin, P.

    2008-01-01

    We use synchronous movies from the Dutch Open Telescope sampling the G band, Ca ii H, and Hα with five-wavelength profile sampling to study the response of the chromosphere to acoustic events in the underlying photosphere. We first compare the visibility of the chromosphere in Ca ii H and Hα, demons

  18. Numerical Simulation of Active Suppression of Rotating Stall in Axial Compression Systems

    Institute of Scientific and Technical Information of China (English)

    JunHu; LeonhardFottner

    1996-01-01

    In the present paper,a theoretical model is proposed to analyze the transient behavior of suppression of rotating stall in axial compression systems through the use of an additional distubance,The governing equations of the model are a set of simultaneous nonlinear first order partial differential equations,and for numerical calculations,a simple explicit time marching method can be used.The influence of system parameters on the suppression effectiveness and the interaction between rotating stall and surge have been discussed initially.The anslysis of the influence of system parameters presents that both the B parameter and axisymmetric comprssor characteristic have significant effect on the stabilization effectiveness of a control strategy.The effectiveness decreases as the value of B and the number of stages or stage loading of the compressor increase,It has been found that the onset flow rate of rotating stall and surge in a compression system may be different,and there is a strong interaction between these two kinds of instabilities.The onset flow rate of pure one dimensional surge depends on the value of B and axisymmetric compressor characteristic,besides the slope of the compressor characteristic.In some cases,when rotating stall which is the natural mode of instability in a compression system is suppressed one dimensional surge can occur,It often limits the effectiveness of a control strategy to suppress rotating stall.But when surge is intiated by ratating stall,it is also possible to inhibit the occurrence of surge by suppressing rotating stall in a compression system.

  19. The comparative analysis of the Earth seismic activity and the variation of the Earth rotation angular velocity.

    Science.gov (United States)

    Sasorova, Elena; Levin, Boris

    2013-04-01

    It was shown [Levin, Sasorova 2012], that a cyclic increase and decrease of the seismic activity in different time intervals was observed in spatial-temporal distributions of the earthquakes (EQ) (1900-2012) with magnitude M≥7 in northwest part of the Pacific region. The spatial-temporal analysis revealed the periodic changing of the seismic activity and the depth distributions of the strong events in different time intervals. The Earth rotation angular velocity varies with time. Increasing of the angular velocity of a celestial body rotation leads to growth of oblateness of planet, and vice versa, the oblateness is decreasing with reducing of velocity of rotation. So, well-known effect of instability leads to small pulsations of the Earth surface. The Earth crust in polar areas is compressing with increasing of angular velocity of rotating planet, and it is extensible in the equator zone. The decreasing of rotation velocity leads to opposite result. The objectives of this work is the comparative spatial-temporal analysis of the seismicity regime variation (events with M>=7.0) on the whole Earth and in the Pacific region from 1900 up to date and the Earth rotation instability. The two subsets of the worldwide NEIC (USGS) catalog were used (USGS/NEIC from 1973 up to 2012 and Significant Worldwide Earthquakes (2150 B.C. - 1994 A.D.)). The preliminary standardization of magnitudes and removal of aftershocks was fulfilled for the first mentioned above subset of events. In both cases the entire range of observations was subdivided into several 5-year intervals. The temporal EQ distributions were calculated separately for six latitudinal intervals (belts): 45°-30°N, 30°-15°N, 15°-0°N, 0°-15°S, 15°-30°S, 30°-45°S. The high latitudes do not take in consideration because of very low seismic activity in these latitudes. Separately were analyzed: the EQs with M>=8 for time interval 1900-2012, and the EQs with M>=6 for time interval 1700-1900. The data base (http

  20. Differential coronal rotation using radio images at 17 GHz

    CERN Document Server

    Chandra, Satish; Iyer, K N

    2009-01-01

    In the present work, we perform time-series analysis on the latitude bins of the solar full disk (SFD) images of Nobeyama Radioheliograph (NoRH) at 17 GHz. The flux modulation method traces the passage of radio features over the solar disc and the autocorrelation analysis of the time-series data of SFD images (one per day) for the period 1999-2001 gives the rotation period as a function of latitude extending from 60 degree S to 60 degree N. The results show that the solar corona rotates less differentially than the photosphere and chromosphere, i.e., it has smaller gradient in the rotation rate.

  1. Numerical RHD simulations of flaring chromosphere with Flarix

    CERN Document Server

    Heinzel, P; Varady, M; Karlicky, M; Moravec, Z

    2016-01-01

    Flarix is a radiation-hydrodynamical (RHD) code for modeling of the response of the chromosphere to a beam bombardment during solar flares. It solves the set of hydrodynamic conservation equations coupled with non-LTE equations of radiative transfer. The simulations are driven by high energy electron beams. We present results of the Flarix simulations of a flaring loop relevant to the problem of continuum radiation during flares. In particular we focus on properties of the hydrogen Balmer continuum which was recently detected by IRIS.

  2. Analysis of the chromospheric spectrum of O I in Arcturus

    Science.gov (United States)

    Haisch, B. M.; Linsky, J. L.; Weinstein, A.; Shine, R. A.

    1977-01-01

    The ultraviolet and near-infrared spectra of O I in Arcturus are analyzed by a 15-level 14-transition model for O I and the Ayres-Linsky (1975) model chromosphere. It is found that the anomalously bright O I resonance lines at 1302, 1305, and 1306 A can be readily explained by a Ly-beta-pumped fluorescence mechanism as originally proposed by Bowen (1974). Observed equivalent widths of the near-infrared triplet and singlet lines are also consistent with the model predictions, but the intercombination lines at 1355 and 1359 A and near-infrared quintet lines may pose a problem.

  3. Radiative diagnostics in the solar photosphere and chromosphere

    CERN Document Server

    Rodríguez, Jaime de la Cruz

    2016-01-01

    Magnetic fields on the surface of the Sun and stars in general imprint or modify the polarization state of the electromagnetic radiation that is leaving from the star. The inference of solar/stellar magnetic fields is performed by detecting, studying and modeling polarized light from the target star. In this review we present an overview of techniques that are used to study the atmosphere of the Sun, and particularly those that allow to infer magnetic fields. We have combined a small selection of theory on polarized radiative transfer, inversion techniques and we discuss a number of results from chromospheric inversions.

  4. Active correction of the tilt angle of the surface plane with respect to the rotation axis during azimuthal scan

    CERN Document Server

    Sereno, M; Debiossac, M; Kalashnyk, N; Roncin, P

    2016-01-01

    A procedure to measure the residual tilt angle $\\tau$ between a flat surface and the azimuthal rotation axis of the sample holder is described. When the incidence angle $\\theta$ and readout of the azimuthal angle $\\phi$ are controlled by motors, an active compensation mechanism can be implemented to reduce the effect of the tilt angle during azimuthal motion. After this correction, the effective angle of incidence is kept fixed, and only the small residual oscillation of the scattering plane remains.

  5. ALFVÉNIC WAVE HEATING OF THE UPPER CHROMOSPHERE IN FLARES

    Energy Technology Data Exchange (ETDEWEB)

    Reep, J. W. [National Research Council Post-Doc Program, Naval Research Laboratory, Washington, DC 20375 (United States); Russell, A. J. B., E-mail: jeffrey.reep.ctr@nrl.navy.mil, E-mail: arussell@maths.dundee.ac.uk [Division of Mathematics, University of Dundee, Nethergate, Dundee, DD1 4HN (United Kingdom)

    2016-02-10

    We have developed a numerical model of flare heating due to the dissipation of Alfvénic waves propagating from the corona to the chromosphere. With this model, we present an investigation of the key parameters of these waves on the energy transport, heating, and subsequent dynamics. For sufficiently high frequencies and perpendicular wave numbers, the waves dissipate significantly in the upper chromosphere, strongly heating it to flare temperatures. This heating can then drive strong chromospheric evaporation, bringing hot and dense plasma to the corona. We therefore find three important conclusions: (1) Alfvénic waves, propagating from the corona to the chromosphere, are capable of heating the upper chromosphere and the corona, (2) the atmospheric response to heating due to the dissipation of Alfvénic waves can be strikingly similar to heating by an electron beam, and (3) this heating can produce explosive evaporation.

  6. Electrostatic plasma instabilities driven by neutral gas flows in the solar chromosphere

    CERN Document Server

    Gogoberidze, G; Poedts, S; De Keyser, J

    2013-01-01

    We investigate electrostatic plasma instabilities of Farley-Buneman (FB) type driven by quasi-stationary neutral gas flows in the solar chromosphere. The role of these instabilities in the chromosphere is clarified. We find that the destabilizing ion thermal effect is highly reduced by the Coulomb collisions and can be ignored for the chromospheric FB-type instabilities. On the contrary, the destabilizing electron thermal effect is important and causes a significant reduction of the neutral drag velocity triggering the instability. The resulting threshold velocity is found as function of chromospheric height. Our results indicate that the FB type instabilities are still less efficient in the global chromospheric heating than the Joule dissipation of the currents driving these instabilities. This conclusion does not exclude the possibility that the FB type instabilities develop in the places where the cross-field currents overcome the threshold value and contribute to the heating locally. Typical length-scales...

  7. Chromospheric emission of planet candidate systems - a way to identify false positives

    CERN Document Server

    Karoff, Christoffer; Boxano, Alfio; Knudsen, Mads Faurschou

    2016-01-01

    It has been hypothesized that the presence of closely orbiting giant planets is associated with enhanced chromospheric emission of their host stars. The main cause for such a relation would likely be enhanced dynamo action induced by the planet. We present measurements of chromospheric emission in 234 planet candidate systems from the Kepler mission. This ensemble includes 37 systems with giant planet candidates, which show a clear emission enhancement. The enhancement, however, disappears when systems which are also identified as eclipsing binary candidates are removed from the ensemble. This suggests that a large fraction of the giant planet candidate systems with chromospheric emission stronger than the Sun are not giant planet system, but false positives. Such false-positive systems could be tidally interacting binaries with strong chromospheric emission. This hypotesis is supported by an analysis of 188 eclipsing binary candidates that show increasing chromospheric emission as function of decreasing orbi...

  8. Slender Ca II H fibrils mapping magnetic fields in the low solar chromosphere

    CERN Document Server

    Jafarzadeh, Shahin; Solanki, S K; Wiegelmann, T; Riethmueller, T; van Noort, M; Szydlarski, M; Rodriguez, J Blanco; Barthol, P; Iniesta, J C del Toro; Gandorfer, A; Gizon, L; Hirzberger, J; Knoelker, M; Pillet, V Martinez; Suarez, D Orozco; Schmidt, W

    2016-01-01

    A dense forest of slender bright fibrils near a small solar active region is seen in high-quality narrow-band Ca II H images from the SuFI instrument onboard the Sunrise balloon-borne solar observatory. The orientation of these slender Ca II H fibrils (SCF) overlaps with the magnetic field configuration in the low solar chromosphere derived by magnetostatic extrapolation of the photospheric field observed with Sunrise/IMaX and SDO/HMI. In addition, many observed SCFs are qualitatively aligned with small-scale loops computed from a novel inversion approach based on best-fit numerical MHD simulation. Such loops are organized in canopy-like arches over quiet areas that differ in height depending on the field strength near their roots.

  9. The solar chromosphere as induction disk and the inverse Joule-Thomson effect

    CERN Document Server

    Vita-Finzi, Claudio

    2016-01-01

    The connection between nuclear fusion in the Sun's core and solar irradiance is obscured among other things by uncertainty over the mechanism of coronal heating. Data for solar wind density and velocity, sunspot number, and EUV flux suggest that electromagnetic energy from the Sun's convection zone is converted by induction through the chromosphere into thermal energy. The helium and hydrogen mixture exhaled by the Sun is then heated by the inverse Joule-Thomson effect when it expands via the corona into space. The almost complete shutdown of the solar wind on 10-11 May 1999 demonstrated that its velocity is a more faithful indicator of solar activity than are sunspots as it reflects short-term variations in coronal heating rather than quasicyclical fluctuations in the Sun's magnetism. Its reconstruction from the cosmic ray flux using isotopes spanning over 800,000 yr should therefore benefit the analysis and long-term forecasting of Earth and space weather.

  10. Neural Activation During Mental Rotation in Complete Androgen Insensitivity Syndrome: The Influence of Sex Hormones and Sex Chromosomes.

    Science.gov (United States)

    van Hemmen, Judy; Veltman, Dick J; Hoekzema, Elseline; Cohen-Kettenis, Peggy T; Dessens, Arianne B; Bakker, Julie

    2016-03-01

    Sex hormones, androgens in particular, are hypothesized to play a key role in the sexual differentiation of the human brain. However, possible direct effects of the sex chromosomes, that is, XX or XY, have not been well studied in humans. Individuals with complete androgen insensitivity syndrome (CAIS), who have a 46,XY karyotype but a female phenotype due to a complete androgen resistance, enable us to study the separate effects of gonadal hormones versus sex chromosomes on neural sex differences. Therefore, in the present study, we compared 46,XY men (n = 30) and 46,XX women (n = 29) to 46,XY individuals with CAIS (n = 21) on a mental rotation task using functional magnetic resonance imaging. Previously reported sex differences in neural activation during mental rotation were replicated in the control groups, with control men showing more activation in the inferior parietal lobe than control women. Individuals with CAIS showed a female-like neural activation pattern in the parietal lobe, indicating feminization of the brain in CAIS. Furthermore, this first neuroimaging study in individuals with CAIS provides evidence that sex differences in regional brain function during mental rotation are most likely not directly driven by genetic sex, but rather reflect gonadal hormone exposure.

  11. The seven sisters DANCe.II. Proper motions and the lithium-rotation-activity connection for G and K Pleiads

    CERN Document Server

    Barrado, D; Bouvier, J; Moraux, E; Sarro, L M; Bertin, E; Cuillandre, J C; Stauffer, J R; Lillo-Box, J; Pollock, A

    2016-01-01

    Stellar clusters are open windows to understand stellar evolution. Specifically, the change with time and the dependence on mass of different stellar properties. As such, they are our laboratories where different theories can be tested. We try to understand the origin of the connection between lithium depletion in F, G and K stars, rotation and activity, in particular in the Pleiades open cluster. We have collected all the relevant data in the literature, including information regarding rotation period, binarity and activity, and cross-matched with proper motions, multi-wavelength photometry and membership probability from the DANCe database. In order to avoid biases, only Pleiades single members with probabilities larger than p=0.75 have been included in the discussion. Results. The analysis confirms that there is a strong link between activity, rotation and the lithium equivalent width excess, specially for the range Lum(bol) = 0.5-0.2 Lsun (about K2-K7 spectral types or 0.75-0.95 Msun). It is not possible ...

  12. Coarse-grained modeling of vesicle responses to active rotational nanoparticles

    Science.gov (United States)

    Zhang, Liuyang; Wang, Xianqiao

    2015-08-01

    In recent years, magnetically-driven-rotating superparamagnetic nanoparticles have been emerging as a valuable component in designing targeted drug delivery carriers and cellular killers via membranes' physical rupture. The lack of an in-depth understanding of how to control the interaction of rotational nanoparticles (RNPs) with vesicles has hindered progress in the development of their relevant biomedical applications. Here we perform dissipative particle dynamics simulations to analyze the rotation frequencies, size, and coating patterns of the RNPs as they interact with the vesicle so as to provide novel designs of drug delivery applications. Results have revealed that the RNPs are capable of triggering local disturbance around the vesicle and therefore promoting the vesicle translocation toward the RNPs. By investigating the translocation time and driving forces required for RNPs to enter inside the vesicle at various rotation frequencies as well as the interaction energy between coated RNPs and the vesicle, we have tuned the coating pattern of the ligands on the surface of RNPs to open a specified channel in the vesicle for promoting drug delivery. Our findings can provide useful guidelines for the molecular design of patterned RNPs for controllable bio/inorganic interfaces and help establish qualitative rules for the organization and optimization of ligands on the surface of the desired drug delivery carriers.

  13. Context compensation in the vestibulo-ocular reflex during active head rotations

    NARCIS (Netherlands)

    Medendorp, W.P.; Gisbergen, J.A.M. van; Pelt, S. van; Gielen, C.C.A.M.

    2000-01-01

    The vestibuloocular reflex (VOR) needs to modulate its gain depending on target distance to prevent retinal slip during head movements. We investigated gain modulation (context compensation) for binocular gaze stabilization in human subjects during voluntary yaw and pitch head rotations. Movements o

  14. Photospheric activity, rotation, and star-planet interaction of the planet-hosting star CoRoT-6

    CERN Document Server

    Lanza, A F; Pagano, I; Leto, G; Messina, S; Cutispoto, G; Moutou, C; Aigrain, S; Alonso, R; Barge, P; Deleuil, M; Fridlund, M; Silva-Valio, A; Auvergne, M; Baglin, A; Cameron, A Collier

    2010-01-01

    The CoRoT satellite has recently discovered a hot Jupiter that transits across the disc of a F9V star called CoRoT-6 with a period of 8.886 days. We model the photospheric activity of the star and use the maps of the active regions to study stellar differential rotation and the star-planet interaction. We apply a maximum entropy spot model to fit the optical modulation as observed by CoRoT during a uninterrupted interval of about 140 days. Photospheric active regions are assumed to consist of spots and faculae in a fixed proportion with solar-like contrasts. Individual active regions have lifetimes up to 30-40 days. Most of them form and decay within five active longitudes whose different migration rates are attributed to the stellar differential rotation for which a lower limit of \\Delta \\Omega / \\Omega = 0.12 \\pm 0.02 is obtained. Several active regions show a maximum of activity at a longitude lagging the subplanetary point by about 200 degrees with the probability of a chance occurrence being smaller than...

  15. The Hβ Chromospheric Magnetic Field in a Quiescent Filament

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    We observed the line-of-sight magnetic field in the chromosphereandphotosphere of a large quiescent filament on the solar disk on September 6, 2001using the Solar Magnetic Field Telescope in Huairou Solar Observing Station. Thechromospheric and photospheric magnetograms together with Hβ filtergrams of thefilament were examined. The filament was located on the neutral line of the largescale longitudinal magnetic field in the photosphere and the chromosphere. Thelateral feet of the filament .were found to be related to magnetic structures with op-posite polarities. Two small lateral feet are linked to weak parasitic polarity. Thereis a negative magnetic structure in the photosphere under a break of the filament.At the location corresponding to the filament in the chromospheric magnetograms,the magnetic strength is found to be about 40-70 Gauss (measuring error about 39Gauss). The magnetic signal indicates the amplitude and orientation of the internalmagnetic field in the filament. We discuss several possible causes which may pro-duce such a measured signal. A twisted magnetic configuration inside the filamentis suggested .

  16. CHROMOSPHERIC MODELS AND THE OXYGEN ABUNDANCE IN GIANT STARS

    Energy Technology Data Exchange (ETDEWEB)

    Dupree, A. K.; Avrett, E. H.; Kurucz, R. L., E-mail: dupree@cfa.harvard.edu [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States)

    2016-04-10

    Realistic stellar atmospheric models of two typical metal-poor giant stars in Omega Centauri, which include a chromosphere (CHR), influence the formation of optical lines of O i: the forbidden lines (λ6300, λ6363) and the infrared triplet (λλ7771−7775). One-dimensional semi-empirical non-local thermodynamic equilibrium (LTE) models are constructed based on observed Balmer lines. A full non-LTE formulation is applied for evaluating the line strengths of O i, including photoionization by the Lyman continuum and photoexcitation by Lyα and Lyβ. Chromospheric models (CHR) yield forbidden oxygen transitions that are stronger than those in radiative/convective equilibrium (RCE) models. The triplet oxygen lines from high levels also appear stronger than those produced in an RCE model. The inferred oxygen abundance from realistic CHR models for these two stars is decreased by factors of ∼3 as compared to values derived from RCE models. A lower oxygen abundance suggests that intermediate-mass AGB stars contribute to the observed abundance pattern in globular clusters. A change in the oxygen abundance of metal-poor field giants could affect models of deep mixing episodes on the red giant branch. Changes in the oxygen abundance can impact other abundance determinations that are critical to astrophysics, including chemical tagging techniques and galactic chemical evolution.

  17. Chromospheric Internetwork Oscillations at Various Locations of the Quiet Sun

    Institute of Scientific and Technical Information of China (English)

    Zong-Jun Ning; Ming-De Ding

    2005-01-01

    We analyze oscillation behaviours in chromospheric internetwork regions using spectral observations of the CⅡ1334A line obtained with the Solar Ultraviolet Measurements of Emitted Radiation spectrograph (SUMER) aboard Solar and Heliospheric Obse rvatory (SOHO). Three areas, 26 × 120arcsec2 each,at the various latitudes from the disk center to the north polar coronal hole, were rastered with a cadence of about 40-60 s in the solar minimum year. We obtained the time evolution of two-dimensional (2D) line intensity, continuum and line core shift. The continuum and the line shift show ~3 min chromospheric oscillations in the internetwork regions underlying the coronal hole as well as at the disk center. We find that the CⅡ1334A line shift oscillates with an average speed of ~1.7 km s-1, independent of the latitude, while its coherent scale decreases with latitude. On the other hand, the oscillation amplitude of the continuum around the 1334A and the phase delay between the Doppler shift and continuum slightly increase with latitude.

  18. Chromospheric Models and the Oxygen Abundance in Giant Stars

    CERN Document Server

    Dupree, A K; Kurucz, R L

    2016-01-01

    Realistic stellar atmospheric models of two typical metal-poor giant stars in Omega Centauri that include a chromosphere influence the formation of optical lines of Oxygen I: the forbidden lines (630nm, 636nm) and the infrared triplet (777.1-777.5 nm). One-dimensional semi-empirical non-LTE models are constructed based on observed Balmer lines. A full non-LTE formulation is applied in evaluating line strengths of O I including photoionization by the Lyman continuum and photoexcitation by Ly-alpha and Ly-beta. Chromospheric models (CHR) yield forbidden oxygen transitions that are stronger than in radiative/convective equilibrium (RCE) models. The triplet oxygen lines from high levels also appear stronger than produced in an RCE model. The inferred oxygen abundance from realistic CHR models for these two stars is decreased by factors ~3 as compared to values derived from RCE models. A lower oxygen abundance suggests that intermediate mass AGB stars contribute to the observed abundance pattern in globular cluste...

  19. Chromospheric Models and the Oxygen Abundance in Giant Stars

    Science.gov (United States)

    Dupree, A. K.; Avrett, E. H.; Kurucz, R. L.

    2016-04-01

    Realistic stellar atmospheric models of two typical metal-poor giant stars in Omega Centauri, which include a chromosphere (CHR), influence the formation of optical lines of O i: the forbidden lines (λ6300, λ6363) and the infrared triplet (λλ7771-7775). One-dimensional semi-empirical non-local thermodynamic equilibrium (LTE) models are constructed based on observed Balmer lines. A full non-LTE formulation is applied for evaluating the line strengths of O i, including photoionization by the Lyman continuum and photoexcitation by Lyα and Lyβ. Chromospheric models (CHR) yield forbidden oxygen transitions that are stronger than those in radiative/convective equilibrium (RCE) models. The triplet oxygen lines from high levels also appear stronger than those produced in an RCE model. The inferred oxygen abundance from realistic CHR models for these two stars is decreased by factors of ˜3 as compared to values derived from RCE models. A lower oxygen abundance suggests that intermediate-mass AGB stars contribute to the observed abundance pattern in globular clusters. A change in the oxygen abundance of metal-poor field giants could affect models of deep mixing episodes on the red giant branch. Changes in the oxygen abundance can impact other abundance determinations that are critical to astrophysics, including chemical tagging techniques and galactic chemical evolution.

  20. Formation of Solar Filaments by Steady and Nonsteady Chromospheric Heating

    CERN Document Server

    Xia, C; Keppens, R; van Marle, A J

    2011-01-01

    It has been established that cold plasma condensations can form in a magnetic loop subject to localized heating of the footpoints. In this paper, we use grid-adaptive numerical simulations of the radiative hydrodynamic equations to parametrically investigate the filament formation process in a pre-shaped loop with both steady and finite-time chromospheric heating. Compared to previous works, we consider low-lying loops with shallow dips, and use a more realistic description for the radiative losses. We demonstrate for the first time that the onset of thermal instability satisfies the linear instability criterion. The onset time of the condensation is roughly \\sim 2 hr or more after the localized heating at the footpoint is effective, and the growth rate of the thread length varies from 800 km hr-1 to 4000 km hr-1, depending on the amplitude and the decay length scale characterizing this localized chromospheric heating. We show how single or multiple condensation segments may form in the coronal portion. In th...

  1. M Dwarf Activity in the Pan-STARRS 1 Medium-Deep Survey: First Catalog and Rotation Periods

    CERN Document Server

    Kado-Fong, Erin; Mann, Andrew W; Berger, Edo; Burgett, William S; Chambers, Kenneth C; Huber, Mark E; Kaiser, Nicholas; Kudritzki, Rolf-Peter; Magnier, Eugene A; Wainscoat, Richard J; Waters, Christopher

    2016-01-01

    We report on an ongoing project to investigate activity in the M dwarf stellar population observed by the Pan-STARRS 1 Medium Deep Survey (PS1-MDS). Using a custom-built pipeline, we refine an initial sample of $\\approx$ 4 million sources in PS1-MDS to a sample of 184,148 candidate cool stars using color cuts. Motivated by the well-known relationship between rotation and stellar activity, we use a multi-band periodogram analysis and visual vetting to identify 271 sources that are likely rotating M dwarfs. We derive a new set of polynomials relating M dwarf PS1 colors to fundamental stellar parameters and use them to estimate the masses, distances, effective temperatures, and bolometric luminosities of our sample. We present a catalog containing these values, our measured rotation periods, and cross-matches to other surveys. Our final sample spans periods of $\\lesssim$1-130 days in stars with estimated effective temperatures of $\\approx$ 2700-4000 K. Twenty-two of our sources have X-ray cross-matches, and they...

  2. Discovery and characteristics of the rapidly rotating active asteroid (62412) 2000 SY178 in the main belt

    Energy Technology Data Exchange (ETDEWEB)

    Sheppard, Scott S. [Department of Terrestrial Magnetism, Carnegie Institution for Science, 5241 Broad Branch Road. NW, Washington, DC 20015 (United States); Trujillo, Chadwick, E-mail: ssheppard@carnegiescience.edu [Gemini Observatory, 670 North A‘ohoku Place, Hilo, HI 96720 (United States)

    2015-02-01

    We report a new active asteroid in the main belt of asteroids between Mars and Jupiter. Object (62412) 2000 SY178 exhibited a tail in images collected during our survey for objects beyond the Kuiper Belt using the Dark Energy Camera on the CTIO 4 m telescope. We obtained broadband colors of 62412 at the Magellan Telescope, which, along with 62412's low albedo, suggests it is a C-type asteroid. 62412's orbital dynamics and color strongly correlate with the Hygiea family in the outer main belt, making it the first active asteroid known in this heavily populated family. We also find 62412 to have a very short rotation period of 3.33 ± 0.01 hours from a double-peaked light curve with a maximum peak-to-peak amplitude of 0.45 ± 0.01 mag. We identify 62412 as the fastest known rotator of the Hygiea family and the nearby Themis family of similar composition, which contains several known main belt comets. The activity on 62412 was seen over one year after perihelion passage in its 5.6 year orbit. 62412 has the highest perihelion and one of the most circular orbits known for any active asteroid. The observed activity is probably linked to 62412's rapid rotation, which is near the critical period for break-up. The fast spin rate may also change the shape and shift material around 62412's surface, possibly exposing buried ice. Assuming 62412 is a strengthless rubble pile, we find the density of 62412 to be around 1500 kg m{sup −3}.

  3. Anti-solar differential rotation on the active sub-giant HU Virginis

    CERN Document Server

    Harutyunyan, G; Künstler, A; Carroll, T A; Weber, M

    2016-01-01

    Measuring surface differential rotation (DR) on different types of stars is important when characterizing the underlying stellar dynamo. It has been suggested that anti-solar DR laws can occur when strong meridional flows exist. We aim to investigate the differential surface rotation on the primary star of the RS CVn binary HU Vir by tracking its starspot distribution as a function of time. We also aim to recompute and update the values for several system parameters of the triple system HU Vir (close and wide orbits). Time-series high-resolution spectroscopy for four continuous months was obtained with the 1.2-m robotic STELLA telescope. Nine consecutive Doppler images were reconstructed from these data, using our line-profile inversion code iMap. An image cross-correlation method was applied to derive the surface differential-rotation law for HU Vir. New orbital elements for the close and the wide orbits were computed using our new STELLA radial velocities (RVs) combined with the RV data available in the lit...

  4. Simulations of Alfven wave driving of the solar chromosphere - efficient heating and spicule launching

    CERN Document Server

    Brady, C S

    2016-01-01

    Two of the central problems in our understanding of the solar chromosphere are how the upper chromosphere is heated and what drives spicules. Estmates of the required chromospheric heating, based on radiative and conductive losses suggest a rate of $\\sim 0.1 \\mathrm{\\:erg\\:cm^{-3}\\:s^{-1}}$ in the lower chromosphere dropping to $\\sim 10^{-3} \\mathrm{\\:erg\\:cm^{-3}\\:s^{-1}}$ in the upper chromosphere (\\citet{Avrett1981}). The chromosphere is also permeated by spicules, higher density plasma from the lower atmosphere propelled upwards at speeds of $\\sim 10-20 \\mathrm{\\:km\\:s^{-1}}$, for so called Type-I spicules (\\citet{Pereira2012,Zhang2012}, reaching heights of $\\sim 3000-5000 \\mathrm{\\:km}$ above the photosphere. A clearer understanding of chromospheric dynamics, its heating and the formation of spicules, is thus of central importance to solar atmospheric science. For over thirty years it has been proposed that photospheric driving of MHD waves may be responsible for both heating and spicule formation. This ...

  5. Impact of the Ion-Neutral Interaction Effects in the Solar Chromosphere

    Science.gov (United States)

    Martínez-Sykora, J.; De Pontieu, B.; Hansteen, V. H.; Carlsson, M.

    2015-12-01

    The complexity of the chromosphere is due to various regime changes that take place across it. Consequently, the interpretation of chromospheric observations is a challenging task. It is thus crucial to combine these observations with advanced radiative-MHD numerical modeling. Because the photosphere, chromosphere and transition region are partially ionized, the interaction between ionized and neutral particles has important consequences on the magneto-thermodynamics of these regions. We implemented the effects of partial ionization using generalized Ohm's law in the Bifrost code (Gudiksen et al. 2011) which solves the full MHD equations with non-grey and non-LTE radiative transfer and thermal conduction along magnetic field lines. We perform 2.5D simulations which combines large and small scales structures. This leads to a highly dynamic chromosphere with large variety of physical processes which have not been reproduced with smaller simulations. The implementation of partial ionization effects impact our modeled radiative-MHD atmosphere, such as producing chromospheric heating and diffusion of photospheric magnetic field into the upper-chromosphere. We will also focus on which observables of these processes can be revealed with chromospheric observations.

  6. Spatiotemporal differences of brain activation between internal and external strategies in mental rotation: A behavioral and ERD/ERS study.

    Science.gov (United States)

    Wang, Zhuo; Guo, Xiaoli; Lyu, Yuanyuan; Chen, Hongzhou; Tong, Shanbao

    2016-06-01

    Subjects may voluntarily implement an internal or external strategy during mental rotation (MR) task. However, few studies have reported the spatiotemporal differences of brain activation between the two MR strategies. This study aims to compare the two strategies from the perspective of behavioral performance and spatiotemporal brain activations in each cognitive sub-stage using EEG measurements. Both the internal (IN) and external (EX) groups showed a significant 'angle effect' on reaction time (RT) and accuracy (ACC). However, a smaller increase of RT with rotation angle was observed in the EX group. Event-related (de)synchronization in the beta band revealed similar temporal patterns of brain activation in the two groups, but with a stronger activation in the MR sub-stage in the EX group. We speculate that MR of 3D abstract objects is easier when an external strategy is used, and would be promoted by an additional visual-spatial process involving the parietal-occipital areas. Our results suggested that the differences between the two strategies were mainly induced by main MR rather than other cognitive processes. PMID:27132083

  7. Range of motion and leg rotation affect electromyography activation levels of the superficial quadriceps muscles during leg extension.

    Science.gov (United States)

    Signorile, Joseph F; Lew, Karen M; Stoutenberg, Mark; Pluchino, Alessandra; Lewis, John E; Gao, Jinrun

    2014-09-01

    Leg extension (LE) is commonly used to strengthen the quadriceps muscles during training and rehabilitation. This study examined the effects of limb position (POS) and range of motion (ROM) on quadriceps electromyography (EMG) during 8 repetitions (REP) of LE. Twenty-four participants performed 8 LE REP at their 8 repetition maximum with lower limbs medially rotated (TI), laterally rotated (TO), and neutral (NEU). Each REP EMG was averaged over the first, middle, and final 0.524 rad ROM. For vastus medialis oblique (VMO), a REP × ROM interaction was detected (p EMG than the initial 0.524 rad for REP 6-8 and the final 0.524 rad produced higher EMG than the initial 0.524 rad for REP 1, 2, 3, 4, 6, and 8 (p ≤ 0.05). For rectus femoris (RF), EMG activity increased across REP with TO generating the greatest activity (p EMG increased across REP (p EMG increasing linearly throughout ROM and TI activity greatest during the middle 0.524 rad. We conclude that to target the VMO, the optimal ROM is the final 1.047 rad regardless of POS, while maximum EMG for the RF is generated using TO regardless of ROM. In contrast, the VL is maximally activated using TI over the first 1.047 rad ROM or in NEU over the final 0.524 rad ROM.

  8. The Chromospheric Solar Millimeter-wave Cavity; a Common Property in the Semi-empirical Models

    CERN Document Server

    Victor, De la Luz; Emanuele, Bertone

    2014-01-01

    The semi-empirical models of the solar chromosphere are useful in the study of the solar radio emission at millimeter - infrared wavelengths. However, current models do not reproduce the observations of the quiet sun. In this work we present a theoretical study of the radiative transfer equation for four semi- empirical models at these wavelengths. We found that the Chromospheric Solar Milimeter-wave Cavity (CSMC), a region where the atmosphere becomes locally optically thin at millimeter wavelengths, is present in the semi-empirical models under study. We conclude that the CSMC is a general property of the solar chromosphere where the semi-empirical models shows temperature minimum.

  9. Rotating wheels as active components in the enhancing of air handling in road vehicles

    OpenAIRE

    Pérez Márquez, Florencio

    2008-01-01

    Automotive engineering is a very competitive field and find new ways of innovation is difficult. Use an existing element for a new use, far from his normal use can give more chances for this innovation. With a new design, it is possible to take profit of the existing rotating movement of the wheels, and make them work as turbomachines. The objective of this new use is to reduce the air pressure beneath the car, increasing then the downforce. This extra downforce achieved with t...

  10. Chromospheric and Coronal Wave Generation in a Magnetic Flux Sheath

    CERN Document Server

    Kato, Yoshiaki; Hansteen, Viggo; Gudiksen, Boris; Wedemeyer, Sven; Carlsson, Mats

    2016-01-01

    Using radiation magnetohydrodynamic simulations of the solar atmospheric layers from the upper convection zone to the lower corona, we investigate the self-consistent excitation of slow magneto-acoustic body waves (slow modes) in a magnetic flux concentration. We find that the convective downdrafts in the close surroundings of a two-dimensional flux slab "pump" the plasma inside it in the downward direction. This action produces a downflow inside the flux slab, which encompasses ever higher layers, causing an upwardly propagating rarefaction wave. The slow mode, excited by the adiabatic compression of the downflow near the optical surface, travels along the magnetic field in the upward direction at the tube speed. It develops into a shock wave at chromospheric heights, where it dissipates, lifts the transition region, and produces an offspring in the form of a compressive wave that propagates further into the corona. In the wake of downflows and propagating shock waves, the atmosphere inside the flux slab in ...

  11. Dynamics of Chromospheric Upflows and Underlying Magnetic Fields

    CERN Document Server

    Yurchyshyn, Vasyl; Goode, Phil

    2013-01-01

    We used \\ha-0.1 nm and magnetic field (at 1.56$\\mu$) data obtained with the New Solar Telescope to study the origin of the disk counterparts to type II spicules, so-called rapid blueshifted excursions (RBEs). The high time cadence of our chromospheric (10 s) and magnetic field (45 s) data allowed us to generate x-t plots using slits parallel to the spines of the RBEs. These plots, along with potential field extrapolation, led us to suggest that the occurrence of RBEs is generally correlated with the appearance of new, mixed or unipolar fields in close proximity to network fields. RBEs show a tendency to occur at the interface between large-scale fields and small-scale dynamic magnetic loops and thus are likely to be associated with existence of a magnetic canopy. Detection of kinked and/or inverse "Y" shaped RBEs further confirm this conclusion.

  12. Influence of hip external rotation on hip adductor and rectus femoris myoelectric activity during a dynamic parallel squat.

    Science.gov (United States)

    Pereira, Glauber Ribeiro; Leporace, Gustavo; Chagas, Daniel das Virgens; Furtado, Luis F L; Praxedes, Jomilto; Batista, Luiz A

    2010-10-01

    This study sought to compare the myoelectric activity of the hip adductors (HAs) and rectus femoris (RF) when the hip was in a neutral position or externally rotated by 30° or 50° (H0, H30, and H50, respectively) during a parallel squat. Ten healthy subjects performed 10 repetitions of squats in each of the 3 hip positions and the myoelectric activities of the HAs and RF were recorded. The signal was then divided into categories representing concentric (C) and eccentric (E) contractions in the following ranges of motion: 0-30° (C1 and E1), 30-60° (C2 and E2), and 60-90° (C3 and E3) of knee flexion. From those signals, an root mean square (RMS) value for each range of motion in each hip position was obtained. All values were normalized to those obtained during maximum voluntary isometric contraction. We found that HAs showed a significant increase in myoelectric activity during C3 and E3 in the H30 and H50 positions, as compared with H0. Meanwhile, RF activity did not significantly differ between hip positions. Both muscles showed higher activation during 60-90° (C3 and E3) of knee flexion, as compared with 0-30° (C1 and E1) and 30-60° (C2 and E2). The results suggest that if the aim is to increase HA activity despite the low percentage of muscle activation, squats should be performed with 30° of external rotation and at least 90° of knee flexion. PMID:20651607

  13. Post-Transition State Dynamics in Gas Phase Reactivity: Importance of Bifurcations and Rotational Activation.

    Science.gov (United States)

    Martín-Sómer, Ana; Yáñez, Manuel; Hase, William L; Gaigeot, Marie-Pierre; Spezia, Riccardo

    2016-03-01

    Beyond the established use of thermodynamic vs kinetic control to explain chemical reaction selectivity, the concept of bifurcations on a potential energy surface (PES) is proving to be of pivotal importance with regard to selectivity. In this article, we studied by means of post-transition state (TS) direct dynamics simulations the effect that vibrational and rotational excitation at the TS may have on selectivity on a bifurcating PES. With this aim, we studied the post-TS unimolecular reactivity of the [Ca(formamide)](2+) ion, for which Coulomb explosion and neutral loss reactions compete. The PES exhibits different kinds of nonintrinsic reaction coordinate (IRC) dynamics, among them PES bifurcations, which direct the trajectories to multiple reaction paths after passing the TS. Direct dynamics simulations were used to distinguish between the bifurcation non-IRC dynamics and non-IRC dynamics arising from atomistic motions directing the trajectories away from the IRC. Overall, we corroborated the idea that kinetic selectivity often does not reduce to a simple choice between paths with different barrier heights and instead dynamical behavior after passing the TS may be crucial. Importantly, rotational excitation may play a pivotal role on the reaction selectivity favoring nonthermodynamic products.

  14. Impacts of stellar evolution and dynamics on the habitable zone: The role of rotation and magnetic activity

    CERN Document Server

    Florian, Gallet; Louis, Amard; Sacha, Brun; Ana, Palacios; Stephane, Mathis

    2016-01-01

    In this article, we aim to provide the community with the dependence of the habitable zone upon the stellar mass, metallicity, rotation, and for various prescriptions of the limits of the habitable zone. We use the STAREVOL code to study the evolution of the habitable zone and of the continuously habitable zone limits. Mass and metallicity are the stellar parameters that have the most dramatic effects on the habitable zone limits. Conversely, for a given stellar mass and metallicity, stellar rotation has only a marginal effect on these limits and does not modify the width of the habitable zone. The evolution of the habitable zone limits is also correlated to the evolution of the stellar activity (through the Rossby number) that depends on the stellar mass considered. While the magnetic activity has negligible consequence in the case of more massive stars, these effects may have a strong impact on the habitability of a planet around M dwarf stars. Thus, stellar activity cannot be neglected and may have strong ...

  15. ACCELERATION OF TYPE II SPICULES IN THE SOLAR CHROMOSPHERE

    Energy Technology Data Exchange (ETDEWEB)

    Goodman, Michael L., E-mail: mgoodman@wvhtf.org [Advanced Technologies Group, West Virginia High Technology Consortium Foundation, 1000 Galliher Drive, Fairmont, WV 26554 (United States)

    2012-10-01

    A 2.5D, time-dependent magnetohydrodynamic model is used to test the proposition that observed type II spicule velocities can be generated by a Lorentz force under chromospheric conditions. It is found that current densities localized on observed space and time scales of type II spicules and that generate maximum magnetic field strengths {<=}50 G can generate a Lorentz force that accelerates plasma to terminal velocities similar to those of type II spicules. Maximum vertical flow speeds are {approx}150-460 km s{sup -1}, horizontally localized within {approx}2.5-10 km from the vertical axis of the spicule, and comparable to slow solar wind speeds, suggesting that significant solar wind acceleration occurs in type II spicules. Horizontal speeds are {approx}20 times smaller than vertical speeds. Terminal velocity is reached {approx}100 s after acceleration begins. The increase in the mechanical and thermal energy of the plasma during acceleration is (2-3) Multiplication-Sign 10{sup 22} ergs. The radial component of the Lorentz force compresses the plasma during the acceleration process by factors as large as {approx}100. The Joule heating flux generated during this process is essentially due to proton Pedersen current dissipation and can be {approx}0.1-3.7 times the heating flux of {approx}10{sup 6} ergs cm{sup -2} s{sup -1} associated with middle-upper chromospheric emission. About 84%-94% of the magnetic energy that accelerates and heats the spicules is converted into bulk flow kinetic energy.

  16. The Effects of Transients on Photospheric and Chromospheric Power Distributions

    Science.gov (United States)

    Samanta, T.; Henriques, V. M. J.; Banerjee, D.; Krishna Prasad, S.; Mathioudakis, M.; Jess, D.; Pant, V.

    2016-09-01

    We have observed a quiet-Sun region with the Swedish 1 m Solar Telescope equipped with the CRISP Imaging SpectroPolarimeter. High-resolution, high-cadence, Hα line scanning images were taken to observe different layers of the solar atmosphere from the photosphere to upper chromosphere. We study the distribution of power in different period bands at different heights. Power maps of the upper photosphere and the lower chromosphere show suppressed power surrounding the magnetic-network elements, known as “magnetic shadows.” These also show enhanced power close to the photosphere, traditionally referred to as “power halos.” The interaction between acoustic waves and inclined magnetic fields is generally believed to be responsible for these two effects. In this study we explore whether small-scale transients can influence the distribution of power at different heights. We show that the presence of transients, like mottles, Rapid Blueshifted Excursions (RBEs), and Rapid Redshifted Excursions (RREs), can strongly influence the power maps. The short and finite lifetime of these events strongly affects all power maps, potentially influencing the observed power distribution. We show that Doppler-shifted transients like RBEs and RREs that occur ubiquitously can have a dominant effect on the formation of the power halos in the quiet Sun. For magnetic shadows, transients like mottles do not seem to have a significant effect on the power suppression around 3 minutes, and wave interaction may play a key role here. Our high-cadence observations reveal that flows, waves, and shocks manifest in the presence of magnetic fields to form a nonlinear magnetohydrodynamic system.

  17. Self-heating and its possible relationship to chromospheric heating in slowly rotating stars

    OpenAIRE

    Rogava, A; Poedts, Stefaan; Osmanov, Zaza

    2010-01-01

    The efficiency of nonmodal self-heating by acoustic wave perturbations is examined. Considering different kinds of kinematically complex velocity patterns we show that nonmodal instabilities arising in these inhomogeneous flows may lead to significant amplification of acoustic waves. Subsequently, the presence of viscous dissipation damps these amplified waves and causes the energy transfer back to the background flow in the form of heat; viz. closes the "self-heating" cycle and contributes t...

  18. Simulations of Alfvén and Kink Wave Driving of the Solar Chromosphere: Efficient Heating and Spicule Launching

    Science.gov (United States)

    Brady, C. S.; Arber, T. D.

    2016-10-01

    Two of the central problems in our understanding of the solar chromosphere are how the upper chromosphere is heated and what drives spicules. Estimates of the required chromospheric heating, based on radiative and conductive losses, suggest a rate of ˜0.1 erg cm-3 s-1 in the lower chromosphere and drops to ˜10-3 erg cm-3 s-1 in the upper chromosphere. The chromosphere is also permeated by spicules, higher density plasma from the lower atmosphere propelled upwards at speeds of ˜10-20 km s-1, for so-called Type I spicules, which reach heights of ˜3000-5000 km above the photosphere. A clearer understanding of chromospheric dynamics, its heating, and the formation of spicules is thus of central importance to solar atmospheric science. For over 30 years it has been proposed that photospheric driving of MHD waves may be responsible for both heating and spicule formation. This paper presents results from a high-resolution MHD treatment of photospheric driven Alfvén and kink waves propagating upwards into an expanding flux tube embedded in a model chromospheric atmosphere. We show that the ponderomotive coupling from Alfvén and kink waves into slow modes generates shocks, which both heat the upper chromosphere and drive spicules. These simulations show that wave driving of the solar chromosphere can give a local heating rate that matches observations and drive spicules consistent with Type I observations all within a single coherent model.

  19. DOT Tomography of the Solar Atmosphere VII. Chromospheric Response to Acoustic Events

    CERN Document Server

    Rutten, Robert J; Suetterlin, Peter

    2008-01-01

    We use synchronous movies from the Dutch Open Telescope sampling the G band, Ca II and Halpha with five-wavelength profile sampling to study the response of the chromosphere to acoustic events in the underlying photosphere. We first compare the visibility of the chromosphere in Ca II H and Halpha, demonstrate that studying the chromosphere requires Halpha data, and summarize recent developments in understanding why this is so. We construct divergence and vorticity maps of the photospheric flow field from the G-band images and locate specific events through the appearance of bright Ca II H grains. The reaction of the Halpha chromosphere is diagnosed in terms of brightness and Doppler shift. We show and discuss three particular cases in detail: a regular acoustic grain marking shock excitation by granular dynamics, a persistent flasher which probably marks magnetic-field concentration, and an exploding granule. All three appear to buffet overlying fibrils, most clearly in Dopplergrams. Although our diagnostic d...

  20. Three-Dimensional Propagation of Magnetohydrodynamic Waves in the Solar Chromosphere and Corona

    Institute of Scientific and Technical Information of China (English)

    李波; 郑惠南; 王水

    2002-01-01

    We study the three-dimensional magnetohydrodynamic (MHD) wave propagation in the solar atmosphere consisting of the chromosphere and corona. Pressure enhancement and velocity shear are implemented simultaneously at the bottom of the chromosphere. The global propagation of the incurred MHD waves, including fast-mode and slow-mode magnetoacoustic waves as well as Alfvén wave, can be identified. Wave front positions obtained numerically with respect to specific waves fit well with those calculated with local MHD wave speeds.

  1. The chromospheric and transition layer emission of stars with different metal abundances

    Science.gov (United States)

    Boehm-Vitense, E.

    1981-01-01

    Preliminary results on observations of chromospheric and transition layer emission of stars with different metal abundances are reported. Metal deficient stars generally show reduced emission in the Mg II resonance lines and also in the other chromospheric and transition layer emission lines. This is interpreted as showing that energy fluxes other than acoustic fluxes must at least be coresponsible for the coronal and transition layer heating.

  2. The Magnetic Coupling of Chromospheres and Winds From Late Type Evolved Stars: Role of MHD Waves

    Science.gov (United States)

    Airapetian, Vladimir; Leake, James; Carpenter, Kenneth

    2015-08-01

    Stellar chromospheres and winds represent universal attributes of stars on the cool portion of H-R diagram. In this paper we derive observational constrains for the chromospheric heating and wind acceleration from cool evolved stars and examine the role of Alfven waves as a viable source of energy dissipation and momentum deposition. We use a 1.5D magnetohydrodynamic code with a generalized Ohm's law to study propagation of Alfven waves generated along a diverging magnetic field in a stellar photosphere at a single frequency. We demonstrate that due to inclusion of the effects of ion-neutral collisions in magnetized weakly ionized chromospheric plasma on resistivity and the appropriate grid resolution, the numerical resistivity becomes 1-2 orders of magnitude smaller than the physical resistivity. The motions introduced by non-linear transverse Alfven waves can explain non-thermally broadened and non-Gaussian profiles of optically thin UV lines forming in the stellar chromosphere of α Tau and other late-type giant and supergiant stars. The calculated heating rates in the stellar chromosphere model due to resistive (Joule) dissipation of electric currents on Pedersen resistivity are consistent with observational constraints on the net radiative losses in UV lines and the continuum from α Tau. At the top of the chromosphere, Alfven waves experience significant reflection, producing downward propagating transverse waves that interact with upward propagating waves and produce velocity shear in the chromosphere. Our simulations also suggest that momentum deposition by non-linear Alfven waves becomes significant in the outer chromosphere within 1 stellar radius from the photosphere that initiates a slow and massive winds from red giants and supergiants.

  3. Propagation of Alfv\\'enic Waves From Corona to Chromosphere and Consequences for Solar Flares

    CERN Document Server

    Russell, Alexander J B

    2013-01-01

    How do magnetohydrodynamic waves travel from the fully ionized corona, into and through the underlying partially ionized chromosphere, and what are the consequences for solar flares? To address these questions, we have developed a 2-fluid model (of plasma and neutrals) and used it to perform 1D simulations of Alfv\\'en waves in a solar atmosphere with realistic density and temperature structure. Studies of a range of solar features (faculae, plage, penumbra and umbra) show that energy transmission from corona to chromosphere can exceed 20% of incident energy for wave periods of one second or less. Damping of waves in the chromosphere depends strongly on wave frequency: waves with periods 10 seconds or longer pass through the chromosphere with relatively little damping, however, for periods of 1 second or less, a substantial fraction (37%-100%) of wave energy entering the chromosphere is damped by ion-neutral friction in the mid and upper chromosphere, with electron resistivity playing some role in the lower ch...

  4. Diagnostics of solar chromosphere plasma based on observations of millimeter radiation

    International Nuclear Information System (INIS)

    Graphical abstract: Observations of the solar chromosphere, the least understood layer of the Sun, at millimeter wavelengths provide new and perspective tests for atmospheric modeling. Comparison of the quiet Sun brightness temperatures observed at millimeter wavelengths with the model spectra calculated from the classical atmospheric models is presented as one of the results. Highlights: ► Classical solar atmospheric models are too warm for observations at mm wavelengths. ► Dynamic models are in agreement with the spatially averaged mm observational data. ► Mm interferometric observations confirm the complex structure of the chromosphere. ► Mm interferometric observations confirm the presence of chromospheric dynamics. - Abstract: In this paper we review the current knowledge of the solar chromosphere from its observations at millimeter wavelengths. We present the observational spectrum of the quiet Sun millimeter wave brightness temperature and its comparison with brightness temperatures computed from the standard static models and the dynamic simulations. Reporting on the findings regarding the structure and dynamics of the solar chromosphere from the best available interferometric data obtained at 3.5 mm we demonstrate a great potential of the mm observations for the study of the solar chromosphere.

  5. Indications for an influence of Hot Jupiters on the rotation and activity of their host stars

    OpenAIRE

    Poppenhaeger, K.; Wolk, S. J.

    2014-01-01

    The magnetic activity of planet-hosting stars is an important factor to estimate the atmospheric stability of close-in exoplanets and the age of their host stars. It has long been speculated that close-in exoplanets can influence the stellar activity level. However, testing for tidal or magnetic interaction effects in samples of planet-hosting stars is difficult because stellar activity hinders exoplanet detection, so that stellar samples with detected exoplanets show a bias towards low activ...

  6. Investigation of the oxygen reduction activity on Silver – a rotating disk electrode study

    OpenAIRE

    Wiberg, Gustav K. H.; Mayrhofer, Karl J.J.; Arenz, Matthias

    2010-01-01

    Abstract In this study the oxygen reduction reaction (ORR) is investigated on a nanoparticulate Silver electrocatalyst in alkaline solution. The catalytic activity of the catalyst is determined both in terms of mass activity as well as specific activity and turn over frequency, respectively. It is demonstrated that the established mass activities are independent of the applied catalyst loading, an essential requirement for a reasonable analysis. The determination of the electrochem...

  7. Subsidence, stress regime and rotation(s) of a tectonically active sedimentary basin within the western Alpine Orogen: the Tertiary Piedmont Basin (Alpine domain, NW Italy)

    OpenAIRE

    Carrapa, B.; Bertotti, G.; Krijgsman, W.

    2003-01-01

    The Oligocene to Miocene Tertiary Piedmont Basin (TPB) is located in the NW part of Italy at the junction between the Apennine and the Alpine thrust belts. The position of the TPB on top of the Alpine/Apennine Orogen poses fundamental questions as to the tectonics of the basin subsidence. Having undergone little deformation, the TPB sediments provide an insight into the stress regime and rotations in the kinematically very complex area surrounding the basin itself. In this study we integrate ...

  8. The connection between stellar activity cycles and magnetic field topology

    CERN Document Server

    See, V; Vidotto, A A; Donati, J -F; Saikia, S Boro; Bouvier, J; Fares, R; Folsom, C P; Gregory, S G; Hussain, G; Jeffers, S V; Marsden, S C; Morin, J; Moutou, C; Nascimento, J D do; Petit, P; Waite, I A

    2016-01-01

    Zeeman Doppler imaging has successfully mapped the large-scale magnetic fields of stars over a large range of spectral types, rotation periods and ages. When observed over multiple epochs, some stars show polarity reversals in their global magnetic fields. On the Sun, polarity reversals are a feature of its activity cycle. In this paper, we examine the magnetic properties of stars with existing chromospherically determined cycle periods. Previous authors have suggested that cycle periods lie on multiple branches, either in the cycle period-Rossby number plane or the cycle period-rotation period plane. We find some evidence that stars along the active branch show significant average toroidal fields that exhibit large temporal variations while stars exclusively on the inactive branch remain dominantly poloidal throughout their entire cycle. This lends credence to the idea that different shear layers are in operation along each branch. There is also evidence that the short magnetic polarity switches observed on ...

  9. Differences in Muscle Activities of the Infraspinatus and Posterior Deltoid during Shoulder External Rotation in Open Kinetic Chain and Closed Kinetic Chain Exercises.

    Science.gov (United States)

    Kang, Min-Hyeok; Oh, Jae-Seop; Jang, Jun-Hyeok

    2014-06-01

    [Purpose] This study investigated the changes in electromyographic (EMG) activities of the infraspinatus and posterior deltoid muscles during shoulder external rotation under open kinetic chain (OKC) and closed kinetic chain (CKC) exercise conditions. [Subjects] In total, 15 healthy males participated in this study. [Methods] Subjects performed shoulder external rotations under CKC and OKC conditions while standing with and without weight support provided by a height-adjustable table. Pressure biofeedback was used to ensure a constant amount of weight support. The activities of the infraspinatus and posterior deltoid muscles during shoulder external rotation were measured using a wireless surface EMG system. The paired t-test was used to compare the EMG activities of the infraspinatus and the posterior deltoid muscles and the ratio of the infraspinatus to the posterior deltoid during shoulder external rotation under OKC and CKC conditions. [Results] The EMG activity of the infraspinatus and the ratio of the infraspinatus to the posterior deltoid activities were significantly increased, whereas the posterior deltoid activity was significantly decreased under the CKC condition compared to the OKC condition. [Conclusion] Clinicians should consider the CKC shoulder external rotation exercise when they wish to selectively strengthen the infraspinatus. PMID:25013291

  10. A path towards understanding the rotation-activity relation of M dwarfs with K2 mission, X-ray and UV data

    CERN Document Server

    Stelzer, B; Scholz, A; Matt, S P; --,

    2016-01-01

    We study the relation between stellar rotation and magnetic activity for a sample of 134 bright, nearby M dwarfs observed in the Kepler Two-Wheel (K2) mission during campaigns C0 to C4. The K2 lightcurves yield photometrically derived rotation periods for 97 stars (79 of which without previous period measurement), as well as various measures for activity related to cool spots and flares. We find a clear difference between fast and slow rotators with a dividing line at a period of ~10d at which the activity level changes abruptly. All photometric diagnostics of activity (spot cycle amplitude, flare peak amplitude and residual variability after subtraction of spot and flare variations) display the same dichotomy, pointing to a quick transition between a high-activity mode for fast rotators and a low-activity mode for slow rotators. This unexplained behavior is reminiscent of a dynamo mode-change seen in numerical simulations that separates a dipolar from a multipolar regime. A substantial number of the fast rot...

  11. Rotational moulding.

    Science.gov (United States)

    Crawford, R J; Kearns, M P

    2003-10-01

    Rotational moulding promises designers attractive economics and a low-pressure process. The benefits of rotational moulding are compared here with other manufacturing methods such as injection and blow moulding. PMID:14603714

  12. On the use of sensor fusion to reduce the impact of rotational and additive noise in human activity recognition.

    Science.gov (United States)

    Banos, Oresti; Damas, Miguel; Pomares, Hector; Rojas, Ignacio

    2012-01-01

    The main objective of fusion mechanisms is to increase the individual reliability of the systems through the use of the collectivity knowledge. Moreover, fusion models are also intended to guarantee a certain level of robustness. This is particularly required for problems such as human activity recognition where runtime changes in the sensor setup seriously disturb the reliability of the initial deployed systems. For commonly used recognition systems based on inertial sensors, these changes are primarily characterized as sensor rotations, displacements or faults related to the batteries or calibration. In this work we show the robustness capabilities of a sensor-weighted fusion model when dealing with such disturbances under different circumstances. Using the proposed method, up to 60% outperformance is obtained when a minority of the sensors are artificially rotated or degraded, independent of the level of disturbance (noise) imposed. These robustness capabilities also apply for any number of sensors affected by a low to moderate noise level. The presented fusion mechanism compensates the poor performance that otherwise would be obtained when just a single sensor is considered.

  13. On the Use of Sensor Fusion to Reduce the Impact of Rotational and Additive Noise in Human Activity Recognition

    Directory of Open Access Journals (Sweden)

    Ignacio Rojas

    2012-06-01

    Full Text Available The main objective of fusion mechanisms is to increase the individual reliability of the systems through the use of the collectivity knowledge. Moreover, fusion models are also intended to guarantee a certain level of robustness. This is particularly required for problems such as human activity recognition where runtime changes in the sensor setup seriously disturb the reliability of the initial deployed systems. For commonly used recognition systems based on inertial sensors, these changes are primarily characterized as sensor rotations, displacements or faults related to the batteries or calibration. In this work we show the robustness capabilities of a sensor-weighted fusion model when dealing with such disturbances under different circumstances. Using the proposed method, up to 60% outperformance is obtained when a minority of the sensors are artificially rotated or degraded, independent of the level of disturbance (noise imposed. These robustness capabilities also apply for any number of sensors affected by a low to moderate noise level. The presented fusion mechanism compensates the poor performance that otherwise would be obtained when just a single sensor is considered.

  14. The rotator

    DEFF Research Database (Denmark)

    Jensen, Eva B. Vedel; Gundersen, Hans Jørgen Gottlieb

    1993-01-01

    The mean particle volume can be stereologically estimated using the nucleator principle. In the present paper, we discuss another principle for estimating mean particle volume, namely the rotator. The vertical rotator has already been previously described and is supplemented in the present paper by...... the isotropic rotator. For a collection of particle profiles, simulations show that the variance of the rotator is smaller than that of the nucleator....

  15. Discovery of an activity cycle in the solar analog HD 45184. Exploring Balmer and metallic lines as activity proxy candidates

    Science.gov (United States)

    Flores, M.; González, J. F.; Jaque Arancibia, M.; Buccino, A.; Saffe, C.

    2016-05-01

    could be considered as marginal variations. From short-term modulation of the S index we calculate a rotational period of 19.98 days, which agrees with its mean chromospheric activity level. We also clearly show that the activity cycles of HD 45184 can be detected in both Fe ii and Balmer lines. Based on data products from observations made with ESO Telescopes at the La Silla Paranal Observatory under programs 072.C-0488 and 183.C-0972.

  16. Living with a Red Dwarf: Rotation and X-ray and Ultraviolet Properties of the Halo Population Kapteyn's Star

    CERN Document Server

    Guinan, Edward F; Durbin, Allyn

    2016-01-01

    As part of Villanova's Living with a Red Dwarf program, we have obtained UV, X-ray and optical data of the Population II red dwarf -- Kapteyn's Star. Kapteyn's Star is noteworthy for its large proper motions and high RV of ~+245 km s^-1. As the nearest Pop II red dwarf, it serves as an old age anchor for calibrating Activity/Irradiance-Rotation-Age relations, and an important test bed for stellar dynamos and the resulting X-ray -- UV emissions of slowly rotating, near-fully convective red dwarf stars. Adding to the notoriety, Kapteyn's Star has recently been reported to host two super-Earth candidates, one of which (Kapteyn b) is orbiting within the habitable zone (Anglada-Escude et al. 2014a, 2015). However, Robertson et al. (2015) questioned the planet's existence since its orbital period may be an artifact of activity, related to the star's rotation period. Because of its large Doppler-shift, measures of the important, chromospheric H I Lyman-alpha 1215.67A emission line can be reliably made, because it is...

  17. Rotational modulation and flares on RS CVn and BY Dra stars. III - IUE observations of V711 Tau (= HR 1099), II Peg, and AR Lac

    Science.gov (United States)

    Rodono, M.; Byrne, P. B.; Neff, J. E.; Linsky, J. L.; Simon, T.

    1987-01-01

    Observations of three RS CVn stars, which were obtained over the stellar rotation cycles with the IUE satellite, are presented. Emission lines from high-temperature transition regions and chromospheres analogous to those observed in the solar spectrum were observed. The only visible component of II Peg and both components of V711 Tau and AR Lac appear to be chromospherically active. For the latter systems, the Mg II line surface flux from the G-type star is higher than that from the K subgiant, which dominates the observed UV line flux. Moreover, evidence of long-term ultraviolet variability is presented for AR Lac. The emission line fluxes for II Peg and, marginally, for the other two systems were observed to vary in antiphase with the optical variations at the time of the IUE observations. By comparing the results of Rodono et al. (1986) for two-spot models with the variation of UV line flux, evidence of a close spatial correlation between spot and plagelike features is found.

  18. New evidence for possible impact of solar activity on long-term fluctuation of the earth rotation

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The long-term fluctuation of the Schwabe period (LSP) of sunspots number (SSN) has been found to have high correlation with the variation of the length-of-day (LOD) in low frequency by using the data of smoothed monthly mean SSN during 1818-1999 and the method of wavelet transform. Analyses indicate that the maximum correlation coefficient between the series of LSP and LOD during 1892-1997 is about 0.9, with a time lag of about 5 years for the LOD related to the LSP. Though the maximum correlation coefficients between the LSP and the other two LOD series (1818-1997) reduce to about 0.4, they remain over the thresholds of 95% confidence level. This suggests new evidence for possible impact of solar activity on the long-term fluctuation of the earth rotation.

  19. Toward A Self Consistent MHD Model of Chromospheres and Winds From Late Type Evolved Stars

    Science.gov (United States)

    Airapetian, V. S.; Leake, J. E.; Carpenter, Kenneth G.

    2015-01-01

    We present the first magnetohydrodynamic model of the stellar chromospheric heating and acceleration of the outer atmospheres of cool evolved stars, using α Tau as a case study. We used a 1.5D MHD code with a generalized Ohm's law that accounts for the effects of partial ionization in the stellar atmosphere to study Alfvén wave dissipation and wave reflection. We have demonstrated that due to inclusion of the effects of ion-neutral collisions in magnetized weakly ionized chromospheric plasma on resistivity and the appropriate grid resolution, the numerical resistivity becomes 1-2 orders of magnitude smaller than the physical resistivity. The motions introduced by non-linear transverse Alfvé waves can explain non-thermally broadened and non-Gaussian profiles of optically thin UV lines forming in the stellar chromosphere of α Tau and other late-type giant and supergiant stars. The calculated heating rates in the stellar chromosphere due to resistive (Joule) dissipation of electric currents, induced by upward propagating non-linear Alfvé waves, are consistent with observational constraints on the net radiative losses in UV lines and the continuum from α Tau. At the top of the chromosphere, Alfvé waves experience significant reflection, producing downward propagating transverse waves that interact with upward propagating waves and produce velocity shear in the chromosphere. Our simulations also suggest that momentum deposition by non-linear Alfvé waves becomes significant in the outer chromosphere at 1 stellar radius from the photosphere. The calculated terminal velocity and the mass loss rate are consistent with the observationally derived wind properties in α Tau.

  20. Three-dimensional magnetohydrodynamic simulations of M-dwarf chromospheres

    CERN Document Server

    Wedemeyer, S; Steiner, O

    2012-01-01

    We present first results from three-dimensional radiation magnetohydrodynamic simulations of M-type dwarf stars with CO5BOLD. The local models include the top of the convection zone, the photosphere, and the chromosphere. The results are illustrated for models with an effective temperature of 3240 K and a gravitational acceleration of log g = 4.5, which represent analogues of AD Leo. The models have different initial magnetic field strengths and field topologies. This first generation of models demonstrates that the atmospheres of M-dwarfs are highly dynamic and intermittent. Magnetic fields and propagating shock waves produce a complicated fine-structure, which is clearly visible in synthetic intensity maps in the core of the Ca II K spectral line and also at millimeter wavelengths. The dynamic small-scale pattern cannot be described by means of one-dimensional models, which has important implications for the construction of semi-empirical model atmospheres and thus for the interpretation of observations in ...

  1. Flocculent flows in the chromospheric canopy of a sunspot

    CERN Document Server

    Vissers, Gregal

    2012-01-01

    High-quality imaging spectroscopy in the H{\\alpha} line, obtained with the CRisp Imaging SpectroPolarimeter (CRISP) at the Swedish 1-m Solar Telescope (SST) at La Palma and covering a small sunspot and its surroundings, are studied. They exhibit ubiquitous flows both along fibrils making up the chromospheric canopy away from the spot and in the superpenumbra. We term these flows "flocculent" to describe their intermittent character, that is morphologically reminiscent of coronal rain. The flocculent flows are investigated further in order to determine their dynamic and morphological properties. For the measurement of their characteristic velocities, accelerations and sizes, we employ a new versatile analysis tool, the CRisp SPectral EXplorer (CRISPEX), which we describe in detail. Absolute velocities on the order of 7.2-82.4 km/s are found, with an average value of 36.5\\pm5.9 km/s and slightly higher typical velocities for features moving towards the sunspot than away. These velocities are much higher than th...

  2. Numerical simulations of wave propagation in the solar chromosphere

    CERN Document Server

    Nutto, C; Roth, M

    2010-01-01

    We present two-dimensional simulations of wave propagation in a realistic, non-stationary model of the solar atmosphere. This model shows a granular velocity field and magnetic flux concentrations in the intergranular lanes similar to observed velocity and magnetic structures on the Sun and takes radiative transfer into account. We present three cases of magneto-acoustic wave propagation through the model atmosphere, where we focus on the interaction of different magneto-acoustic wave at the layer of similar sound and Alfv\\'en speeds, which we call the equipartition layer. At this layer the acoustic and magnetic mode can exchange energy depending on the angle between the wave vector and the magnetic field vector. Our results show that above the equipartition layer and in all three cases the fast magnetic mode is refracted back into the solar atmosphere. Thus, the magnetic wave shows an evanescent behavior in the chromosphere. The acoustic mode, which travels along the magnetic field in the low plasma-$\\beta$ ...

  3. Relation between photospheric magnetic field and chromospheric emission

    CERN Document Server

    Rezaei, R; Beck, C A R; Bruls, J H M J; Schmidt, W

    2007-01-01

    We simultaneously observed the Stokes parameters of the photospheric iron line pair at 630.2 nm and the intensity profile of the chromospheric Ca II H line at 396.8 nm in a quiet Sun region at a heliocentric angle of 53 deg. We perform a statistical analysis of network and inter-network properties.The H-index is the integrated emission in a 0.1 nm band around the Ca core. We separate a non-magnetically, H_non, and a magnetically, H_mag, heated component from a non-heated component, H_co in the H-index. The average network and inter-network H-indices are equal to 12 and 10 pm, respectively. The emission in the network is correlated with the magnetic flux density, approaching a value of H 10 pm for vanishing flux. The inter-network magnetic field distribution peaks around 200 G and its mean absolute flux density is 11 Mx cm$^{-2}$. We find that a dominant fraction of the calcium emission caused by the heated atmosphere in the magnetic network, has non-magnetic origin (H_mag 2pm, H_non 3pm). Considering the effe...

  4. Footpoint detection and mass-motion in chromospheric filaments

    Science.gov (United States)

    V, Aparna; Hardersen, P. S.; Martin, S. F.

    2013-07-01

    A quiescent region on the Sun containing three filaments is used to study the properties of mass motion. This study determines if the footpoints or end-points of the filaments are the locations from where mass gets injected into the filaments. Several hypotheses have been put forth in the past to determine how a filament acquires mass. Trapping of coronal mass in the filament channel due to condensation (Martin, 1996) and injection of mass into the filaments during magnetic reconnection (Priest, et al., 1995) are some of the speculations. This study looks for indications for injection of mass via chromospheric footpoints. The data consists of blue (Hα-0.5 Å) and red (Hα+0.5 Å) wing high resolution Hα images of the W29N37 region of the Sun taken on Oct 30, 2010, from 1200 - 1600 UT. The Dutch Open Telescope was used to obtain the data. The images are aligned and animated to see Doppler motion in the fibrils. Smaller fibrils merge to form longer ones; barbs appear and disappear in one of the long filaments and is seen moving along the length of the filament. A region with no typical filament-like absorption feature is observed to be continuously receiving mass. Fibrils appear to be converging from opposite sides along what appears to be a neutral line; mass motion is seen in these fibrils as well. An eruption occurs in a region of fibrils lumped together at the end of the first hour (1300 UT) followed by plage brightening at 1430 UT near one of the filament regions. Helioviewer (Panasenco, et al., 2011) is used for aligning the images; GIMP is used for precision alignment and animation. Each frame in the sequence is studied carefully to note changes in the filament regions. The footpoints of the filaments are determined by the changes observed in the position of the filament ‘legs’ in each frame. Variations in the magnetic polarity corresponding to changes observed in the chromosphere are analyzed using HMI magnetograms. Bright and dark points on the

  5. A minimal model for spontaneous cell polarization and edge activity in oscillating, rotating and migrating cells

    CERN Document Server

    Raynaud, Franck; Gabella, Chiara; Bornert, Alicia; Sbalzarini, Ivo F; Meister, Jean-Jacques; Verkhovsky, Alexander B

    2016-01-01

    How the cells break symmetry and organize their edge activity to move directionally is a fun- damental question in cell biology. Physical models of cell motility commonly rely on gradients of regulatory factors and/or feedback from the motion itself to describe polarization of edge activity. Theses approaches, however, fail to explain cell behavior prior to the onset of polarization. Our analysis using the model system of polarizing and moving fish epidermal keratocytes suggests a novel and simple principle of self-organization of cell activity in which local cell-edge dynamics depends on the distance from the cell center, but not on the orientation with respect to the front-back axis. We validate this principle with a stochastic model that faithfully reproduces a range of cell-migration behaviors. Our findings indicate that spontaneous polarization, persistent motion, and cell shape are emergent properties of the local cell-edge dynamics controlled by the distance from the cell center.

  6. Influence of crop rotation, intermediate crops, and organic fertilizers on the soil enzymatic activity and humus content in organic farming systems

    Science.gov (United States)

    Marcinkeviciene, A.; Boguzas, V.; Balnyte, S.; Pupaliene, R.; Velicka, R.

    2013-02-01

    The influence of crop rotation systems with different portions of nitrogen-fixing crops, intermediate crops, and organic fertilizers on the enzymatic activity and humus content of soils in organic farming was studied. The highest activity of the urease and invertase enzymes was determined in the soil under the crop rotation with 43% nitrogen-fixing crops and with perennial grasses applied twice per rotation. The application of manure and the growing of intermediate crops for green fertilizers did not provide any significant increase in the content of humus. The activity of urease slightly correlated with the humus content ( r = 0.30 at the significance level of 0.05 and r = 0.39 at the significance level of 0.01).

  7. Rotational testing.

    Science.gov (United States)

    Furman, J M

    2016-01-01

    The natural stimulus for the semicircular canals is rotation of the head, which also might stimulate the otolith organs. Vestibular stimulation usually induces eye movements via the vestibulo-ocular reflex (VOR). The orientation of the subject with respect to the axis of rotation and the orientation of the axis of rotation with respect to gravity together determine which labyrinthine receptors are stimulated for particular motion trajectories. Rotational testing usually includes the measurement of eye movements via a video system but might use a subject's perception of motion. The most common types of rotational testing are whole-body computer-controlled sinusoidal or trapezoidal stimuli during earth-vertical axis rotation (EVAR), which stimulates primarily the horizontal semicircular canals bilaterally. Recently, manual impulsive rotations, known as head impulse testing (HIT), have been developed to assess individual horizontal semicircular canals. Most types of rotational stimuli are not used routinely in the clinical setting but may be used in selected research environments. This chapter will discuss clinically relevant rotational stimuli and several types of rotational testing that are used primarily in research settings. PMID:27638070

  8. Management with willow short rotation coppice increase the functional gene diversity and functional activity of a heavy metal polluted soil.

    Science.gov (United States)

    Xue, K; van Nostrand, J D; Vangronsveld, J; Witters, N; Janssen, J O; Kumpiene, J; Siebielec, G; Galazka, R; Giagnoni, L; Arenella, M; Zhou, J-Z; Renella, G

    2015-11-01

    We studied the microbial functional diversity, biochemical activity, heavy metals (HM) availability and soil toxicity of Cd, Pb and Zn contaminated soils, kept under grassland or short rotation coppice (SRC) to attenuate the risks associated with HM contamination and restore the soil ecological functions. Soil microbial functional diversity was analyzed by the GeoChip, a functional gene microarray containing probes for genes involved in nutrient cycling, metal resistance and stress response. Soil under SRC showed a higher abundance of microbial genes involved in C, N, P and S cycles and resistance to various HM, higher microbial biomass, respiration and enzyme activity rates, and lower HM availability than the grassland soil. The linkages between functional genes of soil microbial communities and soil chemical properties, HM availability and biochemical activity were also investigated. Soil toxicity and N, P and Pb availability were important factors in shaping the microbial functional diversity, as determined by CCA. We concluded that in HM contaminated soils the microbial functional diversity was positively influenced by SRC management through the reduction of HM availability and soil toxicity increase of nutrient cycling. The presented results can be important in predicting the long term environmental sustainability of plant-based soil remediation.

  9. On the similarity of 239Pu α-activity histograms when the angular velocities of the Earth diurnal rotation, orbital movement and rotation of collimators are equalized

    Science.gov (United States)

    Shnoll, S. E.; Rubinstein, I. A.; Shapovalov, S. N.; Tolokonnikova, A. A.; Shlektaryov, V. A.; Kolombet, V. A.; Kondrashova, M. N.

    2016-01-01

    It was shown earlier that the persistent "scatter" of results of measurements of any nature is determined by the diurnal and orbital movement of the Earth. The movement is accompanied by "macroscopic fluctuations" (MF)—regular, periodic changes in the shape of histograms, spectra of fluctuation amplitudes of the measured parameters. There are two near-daily periods ("sidereal", 1436 min; and "solar", 1440 min) and three yearly ones ("calendar", 365 average solar days; "tropical", 365 days 5 h and 48 min; and "sidereal", 365 days 6 h and 9 min). This periodicity was explained by the objects whose parameters are measured passing through the same spatial-temporal heterogeneities as the Earth rotates and shifts along its orbit.

  10. Pathogenic and ice-nucleation active (INA) bacteria causing dieback of willows in short rotation forestry

    OpenAIRE

    Nejad, Pajand

    2005-01-01

    To find out whether bacteria isolated from diseased plant parts can be the main causal agent for the dieback appearing in Salix energy forestry plantations in Sweden during the last few years, and if the joint effects of bacteria and frost injury are synergistic, extensive sampling of shoots from diseased Salix plants was performed. We performed several laboratory and greenhouse investigations and used evaluation techniques on the functions of the Ice-Nucleation Active (INA) bacteria. We carr...

  11. Four-colour photometry of EY Dra: a study of an ultra-fast rotating active dM1-2e star

    OpenAIRE

    Vida, K.; Oláh, K.; Kővári, Zs.; Jurcsik, J.; Sódor, Á.; Váradi, M.; Belucz, B.; Dékány, I.; Hurta, Zs.; Nagy, I; Posztobányi, K.

    2010-01-01

    We present more than 1000-day long photometry of EY Draconis in BV(RI)C passbands. The changes in the light curve are caused by the spottedness of the rotating surface. Modelling of the spotted surface shows that there are two large active regions present on the star on the opposite hemispheres. The evolution of the surface patterns suggests a flip-flop phenomenon. Using Fourier analysis, we detect a rotation period of P_rot=0.45875d, and an activity cycle with P~350d, similar to the 11-year ...

  12. Minimal model for spontaneous cell polarization and edge activity in oscillating, rotating and migrating cells

    Science.gov (United States)

    Raynaud, Franck; Ambühl, Mark E.; Gabella, Chiara; Bornert, Alicia; Sbalzarini, Ivo F.; Meister, Jean-Jacques; Verkhovsky, Alexander B.

    2016-04-01

    How cells break symmetry and organize activity at their edges to move directionally is a fundamental question in cell biology. Physical models of cell motility commonly incorporate gradients of regulatory proteins and/or feedback from the motion itself to describe the polarization of this edge activity. These approaches, however, fail to explain cell behaviour before the onset of polarization. We use polarizing and moving fish epidermal cells as a model system to bridge the gap between cell behaviours before and after polarization. Our analysis suggests a novel and simple principle of self-organizing cell activity, in which local cell-edge dynamics depends on the distance from the cell centre, but not on the orientation with respect to the front-back axis. We validate this principle with a stochastic model that faithfully reproduces a range of cell-migration behaviours. Our findings indicate that spontaneous polarization, persistent motion and cell shape are emergent properties of the local cell-edge dynamics controlled by the distance from the cell centre.

  13. Upper Chromospheric Magnetic Field of a Sunspot Penumbra: Observations of Fine Structure

    CERN Document Server

    Joshi, J; Solanki, S K; Feller, A; Collados, M; Suárez, D Orozco; Schlichenmaier, R; Franz, M; Balthasar, H; Denker, C; Berkefeld, T; Hofmann, A; Kiess, C; Nicklas, H; Yabar, A Pastor; Rezaei, R; Schmidt, D; Schmidt, W; Sobotka, M; Soltau, D; Staude, J; Strassmeier, K G; Volkmer, R; von der Lühe, O; Waldmann, T

    2016-01-01

    The fine-structure of magnetic field of a sunspot penumbra in the upper chromosphere is to be explored and compared to that in the photosphere. High spatial resolution spectropolarimetric observations were recorded with the 1.5-meter GREGOR telescope using the GREGOR Infrared Spectrograph (GRIS). The observed spectral domain includes the upper chromospheric He I triplet at 1083.0 nm and the photospheric Si I 1082.7 nm and Ca I 1083.3 nm spectral lines. The upper chromospheric magnetic field is obtained by inverting the He I triplet assuming a Milne-Eddington type model atmosphere. A height dependent inversion was applied to the Si I 1082.7 nm and Ca I 1083.3 nm lines to obtain the photospheric magnetic field. We find that the inclination of the magnetic field shows variations in the azimuthal direction both in the photosphere, but also in the upper chromosphere. The chromospheric variations remarkably well coincide with the variations in the inclination of the photospheric field and resemble the well-known sp...

  14. Supercritical CO2 desorption of activated carbon loaded with 2,2,3,3-tetrafluoro-1-propanol in a rotating packed bed.

    Science.gov (United States)

    Tan, Chung-Sung; Lee, Pei-Lun

    2008-03-15

    Desorption of activated carbon loaded with 2,2,3,3-tetrafluoro-1-propanol (TFP) by supercritical carbon dioxide in a rotating packed bed was investigated in this study. The experimental data show that the time required to achieve complete desorption of TFP from activated carbon in a rotating packed bed was much lower than that in a static packed bed. The reduction of desorption time is attributed to the presence of centrifugal force. The supercritical CO2 desorption efficiency in a rotating packed bed was observed to increase with increasing rotation speed, pressure, and C02 flow rate. To enhance desorption efficiency, a smaller activated carbon particle size was suggested. At low operating pressures such as 8.96 and 11.72 MPa, a better desorption efficiency was found to occur at lower temperatures in a temperature range of 305-335 K. However, at high operating pressures such as 15.86 MPa, a temperature of 315 K was found to be more appropriate for desorption, as compared to other temperatures. Due to a reduction of packed bed volume and an increase in desorption efficiency, supercritical CO2 desorption in a rotating packed bed is suggested for recovering TFP from the exhaust gases. PMID:18409651

  15. Mass motions and chromospheres of RGB stars in the globular cluster NGC 2808

    CERN Document Server

    Cacciari, C; Rossetti, E; Pecci, F F; Mulas, G; Carretta, E; Gratton, R G; Momany, Y; Pasquini, L

    2004-01-01

    We present the results of the first observations, taken with FLAMES during Science Verification, of red giant branch (RGB) stars in the globular cluster NGC 2808. A total of 137 stars was observed, of which 20 at high resolution (R=47,000) with UVES and the others at lower resolution (R=19,000-29,000) with GIRAFFE in MEDUSA mode, monitoring ~ 3 mag down from the RGB tip. Spectra were taken of the Halpha, Na I D and Ca II H and K lines. This is by far the largest and most complete collection of such data in globular cluster giants, both for the number of stars observed within one cluster, and for monitoring all the most important optical diagnostics of chromospheric activity/mass motions.Evidence of mass motions in the atmospheres was searched from asymmetry in the profiles and coreshifts of the Halpha, Na I D and Ca II K lines, as well as from Halpha emission wings. We have set the detection thresholds for the onset of Halpha emission, negative Na D_2 coreshifts and negative K_3 coreshifts at log L/Lsun ~ 2.5...

  16. Diagnosis of Magnetic and Electric Fields of Chromospheric Jets through Spectropolarimetric Observations of HI Paschen Lines

    CERN Document Server

    Anan, Tetsu; Ichimoto, Kiyoshi

    2014-01-01

    Magnetic fields govern the plasma dynamics in the outer layers of the solar atmosphere, and electric fields acting on neutral atoms that move across the magnetic field enable us to study the dynamical coupling between neutrals and ions in the plasma. In order to measure the magnetic and electric fields of chromospheric jets, the full Stokes spectra of the Paschen series of neutral hydrogen in a surge and in some active region jets that took place at the solar limb were observed on May 5, 2012, using the spectropolarimeter of the Domeless Solar Telescope at Hida observatory, Japan. First, we inverted the Stokes spectra taking into account only the effect of magnetic fields on the energy structure and polarization of the hydrogen levels. Having found no definitive evidence of the effects of electric fields in the observed Stokes profiles, we then estimated an upper bound for these fields by calculating the polarization degree under the magnetic field configuration derived in the first step, with the additional ...

  17. The solar chromosphere observed at 1 Hz and 0."2 resolution

    CERN Document Server

    Lipartito, Isabel; Reardon, Kevin; Cauzzi, Gianna

    2014-01-01

    We recently reported extremely rapid changes in chromospheric fine structure observed using the IBIS instrument in the red wing of H alpha. Here, we examine data obtained during the same observing run (August 7 2010), of a mature active region NOAA 11094. We analyze more IBIS data including wavelength scans and data from the Solar Dynamics Observatory, all from within a 30 minute interval. Using a slab radiative transfer model, we investigate the physical nature of fibrils in terms of tube-like vs. sheet-like structures. Principal Component Analysis shows that the very rapid H alpha variations in the line wings depend mostly on changes of line width and line shift, but for Ca II 854.2 the variations are dominated by changes in column densities. The tube model must be rejected for a small but significant class of fibrils undergoing very rapid changes. If our wing data arise from the same structures leading to "type II spicules", our analysis calls into question much recent work. Instead the data do not reject ...

  18. Temporal Evolution of Chromospheric Oscillations in Flaring Regions: A Pilot Study

    Science.gov (United States)

    Monsue, T.; Hill, F.; Stassun, K. G.

    2016-10-01

    We have analyzed Hα intensity images obtained at a 1 minute cadence with the Global Oscillation Network Group (GONG) system to investigate the properties of oscillations in the 0-8 mHz frequency band at the location and time of strong M- and X-class flares. For each of three subregions within two flaring active regions, we extracted time series from multiple distinct positions, including the flare core and quieter surrounding areas. The time series were analyzed with a moving power-map analysis to examine power as a function of frequency and time. We find that, in the flare core of all three subregions, the low-frequency power (˜1-2 mHz) is substantially enhanced immediately prior to and after the flare, and that power at all frequencies up to 8 mHz is depleted at flare maximum. This depletion is both frequency- and time-dependent, which probably reflects the changing depths visible during the flare in the bandpass of the filter. These variations are not observed outside the flare cores. The depletion may indicate that acoustic energy is being converted into thermal energy at flare maximum, while the low-frequency enhancement may arise from an instability in the chromosphere and provide an early warning of the flare onset. Dark lanes of reduced wave power are also visible in the power maps, which may arise from the interaction of the acoustic waves and the magnetic field.

  19. HiRISE/NEOCE: an ESA M5 formation flying proposed mission combining high resolution and coronagraphy for ultimate observations of the chromosphere, corona and interface

    Science.gov (United States)

    Damé, Luc; Von Fay-Siebenburgen (Erdélyi), Robert

    2016-07-01

    The global understanding of the solar environment through the magnetic field emergence and dissipation, and its influence on Earth, is at the centre of the four major thematics addressed by HiRISE/NEOCE (High Resolution Imaging and Spectroscopy Explorer/New Externally Occulted Coronagraph Experiment). They are interlinked and also complementary: the internal structure of the Sun determines the surface activity and dynamics that trigger magnetic field structuring which evolution, variation and dissipation will, in turn, explain the coronal heating onset and the major energy releases that feed the influence of the Sun on Earth. The 4 major themes of HiRISE/NEOCE are: - fine structure of the chromosphere-corona interface by 2D spectroscopy in FUV at very high resolution; - coronal heating roots in inner corona by ultimate externally-occulted coronagraphy; - resolved and global helioseismology thanks to continuity and stability of observing at L1 Lagrange point; - solar variability and space climate with a global comprehensive view of UV variability as well. Recent missions have shown the definite role of waves and of the magnetic field deep in the inner corona, at the chromosphere-corona interface, where dramatic changes occur. The dynamics of the chromosphere and corona is controlled by the emerging magnetic field, guided by the coronal magnetic field. Accordingly, the direct measurement of the chromospheric and coronal magnetic fields is of prime importance. This is implemented in HiRISE/NEOCE, to be proposed for ESA M5 ideally placed at the L1 Lagrangian point, providing FUV imaging and spectro-imaging, EUV and XUV imaging and spectroscopy, and ultimate coronagraphy by a remote external occulter (two satellites in formation flying 375 m apart minimizing scattered light) allowing to characterize temperature, densities and velocities up to the solar upper chromosphere, transition zone and inner corona with, in particular, 2D very high resolution multi

  20. Rotating flow

    CERN Document Server

    Childs, Peter R N

    2010-01-01

    Rotating flow is critically important across a wide range of scientific, engineering and product applications, providing design and modeling capability for diverse products such as jet engines, pumps and vacuum cleaners, as well as geophysical flows. Developed over the course of 20 years' research into rotating fluids and associated heat transfer at the University of Sussex Thermo-Fluid Mechanics Research Centre (TFMRC), Rotating Flow is an indispensable reference and resource for all those working within the gas turbine and rotating machinery industries. Traditional fluid and flow dynamics

  1. Key Properties of Solar Chromospheric Line Formation Process

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The distribution or wavelength-dependence of the formation regions of frequently used solar lines, Hα, Hβ, CaIIH and CaII8542, in quiet Sun, faint and bright flares is explored in the unpolarized case. We stress four aspects characterising the property of line formation process: 1) width of line formation core; 2) lineformation region; 3) influence of the temperature minimum region; and 4) wavelength ranges within which one can obtain pure chromospheric and photospheric filtergrams. It is shown that the above four aspects depend strongly on the atmo spheric physical condition and the lines used. The formation regions of all the wave length points within a line may be continuously distributed over one depth domain or discretely distributed because of no contribution coming from the temperature minimum reg:on, an important domain in the solar atmosphere that determines the distribution pattern of escape photons. On the other hand, the formation region of one wavelength point may cover only one height range or spread over two domains which are separated again by the temperature minimum region. Different lines may form in different regions in the quiet Sun. However, these line formation regions be come closer ir. solar flaring regions. Finally, though the stratification of line-of-sight velocity can alter the position of the line formation core within the line band and result in the asymmetry of the line formation core about the shifted line center, it can only lead to negligible changes in the line formation region or the line formation core width. All these results can be instructive to solar filtering observations.

  2. Active retroreflector with in situ beam analysis to measure the rotational orientation in conjunction with a laser tracker

    Science.gov (United States)

    Hofherr, O.; Wachten, C.; Müller, C.; Reinecke, H.

    2013-04-01

    High precision optical non-contact position measurement is a key technology in modern engineering. Laser trackers (LT) can determine accurately x-y-z coordinates of passive retroreflectors. Next-generation systems answer the additional need to measure an object`s rotational orientation (pitch, yaw, roll). These devices are based either on photogrammetry or on enhanced retroreflectors. However, photogrammetry relies on costly camera systems and time-consuming image processing. Enhanced retroreflectors analyze the LT`s beam but are restricted in roll angle measurements. In the past we have presented a new method [1][2] to measure all six degrees of freedom in conjunction with a LT. Now we dramatically optimized the method and designed a new prototype, e.g. taking into consideration optical alignment, reduced power loss, highly optimized measuring signals and higher resolution. A method is described that allows compensating the influence of the LT's beam offset during tracking the active retroreflector. We prove the functionality of the active retroreflector with the LT and, furthermore, demonstrate the capability of the system to characterize the tracking behavior of a LT. The measurement range for the incident laser beam is +/-12° with a resolution of 0.6".

  3. MHD wave modes resolved in fine-scale chromospheric magnetic structures

    CERN Document Server

    Verth, G

    2015-01-01

    Within the last decade, due to significant improvements in the spatial and temporal resolution of chromospheric data, magnetohydrodynamic (MHD) wave studies in this fascinating region of the Sun's atmosphere have risen to the forefront of solar physics research. In this review we begin by reviewing the challenges and debates that have manifested in relation to MHD wave mode identification in fine-scale chromospheric magnetic structures, including spicules, fibrils and mottles. Next we go on to discuss how the process of accurately identifying MHD wave modes also has a crucial role to play in estimating their wave energy flux. This is of cardinal importance for estimating what the possible contribution of MHD waves is to solar atmospheric heating. Finally, we detail how such advances in chromospheric MHD wave studies have also allowed us, for the first time, to implement cutting-edge magnetoseismological techniques that provide new insight into the sub-resolution plasma structuring of the lower solar atmospher...

  4. Solar atmospheric dynamics. II - Nonlinear models of the photospheric and chromospheric oscillations

    Science.gov (United States)

    Leibacher, J.; Gouttebroze, P.; Stein, R. F.

    1982-01-01

    The one-dimensional, nonlinear dynamics of the solar atmosphere is investigated, and models of the observed photospheric (300 s) and chromospheric (200 s) oscillations are described. These are resonances of acoustic wave cavities formed by the variation of the temperature and ionization between the subphotospheric, hydrogen convection zone and the chromosphere-corona transition region. The dependence of the oscillations upon the excitation and boundary conditions leads to the conclusion that for the observed amplitudes, the modes are independently excited and, as trapped modes, transport little if any mechanical flux. In the upper photosphere and lower chromosphere, where the two modes have comparable energy density, interference between them leads to apparent vertical phase delays which might be interpreted as evidence of an energy flux.

  5. Conditions for Photospherically Driven Alfvenic Oscillations to Heat the Solar Chromosphere by Pedersen Current Dissipation

    CERN Document Server

    Goodman, Michael L

    2014-01-01

    A magnetohydrodynamic model that includes a complete electrical conductivity tensor is used to estimate conditions for photospherically driven, linear, non-plane Alfvenic oscillations extending from the photosphere to the lower corona to drive a chromospheric heating rate due to Pedersen current dissipation that is comparable to the net chromospheric net radiative loss of $\\sim 10^7$ ergs-cm$^{-2}$-sec$^{-1}$. The heating rates due to electron current dissipation in the photosphere and corona are also computed. The wave amplitudes are computed self-consistently as functions of an inhomogeneous background (BG) atmosphere. The effects of the conductivity tensor are resolved numerically using a resolution of 3.33 m. The oscillations drive a chromospheric heating flux $F_{Ch} \\sim 10^7 - 10^8$ ergs-cm$^{-2}$-sec$^{-1}$ at frequencies $\

  6. On the spatial scales of wave heating in the solar chromosphere

    CERN Document Server

    Soler, Roberto; Ballester, Jose Luis

    2015-01-01

    Dissipation of magnetohydrodynamic (MHD) wave energy has been proposed as a viable heating mechanism in the solar chromospheric plasma. Here, we use a simplified one-dimensional model of the chromosphere to theoretically investigate the physical processes and the spatial scales that are required for the efficient dissipation of Alfv\\'en waves and slow magnetoacoustic waves. We consider the governing equations for a partially ionized hydrogen-helium plasma in the single-fluid MHD approximation and include realistic wave damping mechanisms that may operate in the chromosphere, namely Ohmic and ambipolar magnetic diffusion, viscosity, thermal conduction, and radiative losses. We perform an analytic local study in the limit of small amplitudes to approximately derive the lengthscales for critical damping and efficient dissipation of MHD wave energy. We find that the critical dissipation lengthscale for Alfv\\'en waves depends strongly on the magnetic field strength and ranges from 10~m to 1~km for realistic field ...

  7. A new approach for modelling chromospheric evaporation in response to enhanced coronal heating: 1 the method

    CERN Document Server

    Johnston, C D; Cargill, P J; De Moortel, I

    2016-01-01

    We present a new computational approach that addresses the difficulty of obtaining the correct interaction between the solar corona and the transition region in response to rapid heating events. In the coupled corona, transition region and chromosphere system, an enhanced downward conductive flux results in an upflow (chromospheric evaporation). However, obtaining the correct upflow generally requires high spatial resolution in order to resolve the transition region. With an unresolved transition region, artificially low coronal densities are obtained because the downward heat flux jumps across the unresolved region to the chromosphere, underestimating the upflows. Here, we treat the lower transition region as a discontinuity that responds to changing coronal conditions through the imposition of a jump condition that is derived from an integrated form of energy conservation. To illustrate and benchmark this approach against a fully resolved one-dimensional model, we present field-aligned simulations of corona...

  8. Observation and numerical modeling of chromospheric evaporation during the impulsive phase of a solar flare

    CERN Document Server

    Imada, Shinsuke; Watanabe, Tetsuya

    2015-01-01

    We have studied the chromospheric evaporation flow during the impulsive phase of the flare by using the Hinode/EIS observation and 1D hydrodynamic numerical simulation coupled to the time-dependent ionization. The observation clearly shows that the strong redshift can be observed at the base of the flaring loop only during the impulsive phase. We performed two different numerical simulations to reproduce the strong downflows in FeXII and FeXV during the impulsive phase. By changing the thermal conduction coefficient, we carried out the numerical calculation of chromospheric evaporation in the thermal conduction dominant regime (conductivity coefficient kappa0 = classical value) and the enthalpy flux dominant regime (kappa0 = 0.1 x classical value). The chromospheric evaporation calculation in the enthalpy flux dominant regime could reproduce the strong redshift at the base of the flare during the impulsive phase. This result might indicate that the thermal conduction can be strongly suppressed in some cases o...

  9. LIVING WITH A RED DWARF: ROTATION AND X-RAY AND ULTRAVIOLET PROPERTIES OF THE HALO POPULATION KAPTEYN’S STAR

    Energy Technology Data Exchange (ETDEWEB)

    Guinan, Edward F.; Engle, Scott G.; Durbin, Allyn, E-mail: scott.engle@villanova.edu [Department of Astrophysics and Planetary Science, Villanova University, Villanova, PA 19085 (United States)

    2016-04-20

    As part of Villanova’s Living with a Red Dwarf program, we have obtained UV, X-ray, and optical data of the Population II red dwarf—Kapteyn’s Star. Kapteyn’s Star is noteworthy for its large proper motions and high radial velocity of ∼+245 km s{sup −1}. As the nearest Pop II red dwarf, it serves as an old age anchor for calibrating activity/irradiance–rotation–age relations, and an important test bed for stellar dynamos and the resulting X-ray–UV emissions of slowly rotating, near-fully convective red dwarf stars. Adding to the notoriety, Kapteyn’s Star has recently been reported to host two super-Earth candidates, one of which (Kapteyn b) is orbiting within the habitable zone. However, Robertson et al. questioned the planet’s existence since its orbital period may be an artifact of activity, related to the star’s rotation period. Because of its large Doppler-shift, measures of the important, chromospheric H i Lyα 1215.67 Å emission line can be reliably made, because it is mostly displaced from ISM and geo-coronal sources. Lyα emission dominates the FUV region of cool stars. Our measures can help determine the X-ray–UV effects on planets hosted by Kapteyn’s Star, and planets hosted by other old red dwarfs. Stellar X-ray and Lyα emissions have strong influences on the heating and ionization of upper planetary atmospheres and can (with stellar winds and flares) erode or even eliminate planetary atmospheres. Using our program stars, we have reconstructed the past exposures of Kapteyn’s Star's planets to coronal—chromospheric XUV emissions over time.

  10. Testing Wave Propagation Properties in the Solar Chromosphere with ALMA and IRIS

    Science.gov (United States)

    Fleck, Bernard; Straus, Thomas; Wedemeyer, Sven

    2016-05-01

    Waves and oscillations are interesting not only from the point of view that they can propagate energy into the chromosphere and dissipate that energy to produce non-radiative heating, they also carry information about the structure of the atmosphere in which they propagate. Since the late 80s there is substantial evidence that the chromospheric wave field is dominated by a non-propagating component, presumably resulting from wave reflection at the transition region. Observations of Doppler oscillations measured in the Ca II infrared tripet lines, Ca II K, and He 10830 all show vanishing phase lags (i.e. vanishing travel time differences) between the various lines, in particular also for frequencies above the cut-off frequency. Why is the apparent phase speed of high frequency acoustic waves in the chromosphere so high? Are these results misleading because of complex radiation transfer effects in these optically thick lines? ALMA, which acts as a linear thermometer of the solar chromosphere, will provide measurements of the local plasma conditions that should be, at least in principle, much easier to interpret. Multi-wavelength time series of ALMA observations of the temperature fluctuations of inter-network oscillations should allow travel time measurements between different heights as these disturbances propagate through the chromosphere and thus should finally settle the long-standing question about the propagation characteristics of high frequency acoustic waves in the chromosphere. We plan to combine ALMA mm-observations with high resolution IRIS observations in the Mg II h and k lines, and until ALMA observations are available, will study the expected signals using time series of mm-maps from 3D radiation hydrodynamics simulations that are being prepared within the framework of the Solar Simulations for the Atacama Large Millimeter Observatory Network (SSALMON).

  11. Rotating Wavepackets

    Science.gov (United States)

    Lekner, John

    2008-01-01

    Any free-particle wavepacket solution of Schrodinger's equation can be converted by differentiations to wavepackets rotating about the original direction of motion. The angular momentum component along the motion associated with this rotation is an integral multiple of [h-bar]. It is an "intrinsic" angular momentum: independent of origin and…

  12. Pathogenic and Ice-Nucleation Active (INA) Bacteria causing Dieback of Willows in Short Rotation Forestry

    Energy Technology Data Exchange (ETDEWEB)

    Nejad, Pajand

    2005-03-01

    To find out whether bacteria isolated from diseased plant parts can be the main causal agent for the dieback appearing in Salix energy forestry plantations in Sweden during the last few years, and if the joint effects of bacteria and frost injury are synergistic, extensive sampling of shoots from diseased Salix plants was performed. We performed several laboratory and greenhouse investigations and used evaluation techniques on the functions of the Ice-Nucleation Active (INA) bacteria. We carried out a comparison between spring and autumn bacterial communities isolated from within (endophytically) and surface (epiphytically) plant tissues of Salix viminalis. Seasonal variation of bacteria in willow clones with different levels of frost sensitivity and symptoms of bacterial damage was also investigated. We further focussed on possible effect of fertilisation and nutrient availability on the bacterial community in relation to plant dieback in Estonian willow plantations. The identification and detection of INA bacteria which cause damage in combination with frost to willow (Salix spp) plants in late fall, winter and spring was performed using BIOLOG MicroPlate, biochemical tests, selective INA primers and 16S rDNA analysis. To distinguish the character for differentiation between these bacteria morphologically and with respect to growing ability different culture media were used. We studied the temperature, at which ice nucleation occurred for individual bacteria, estimated the population of INA bacteria, effect of growth limiting factors, and evaluated the effect of chemical and physical agents for disruption and possible inhibition of INA among individual bacterial strains. The concentration of carbon, nitrogen and phosphorus on INA is discussed. We demonstrate that among the bacterial isolates recovered from the willow plantations, there were many that were capable of ice nucleation at temperatures between -2 and -10 deg C, many that were capable of inducing a

  13. Changes in the biological activity of chestnut soils upon the long-term application of fertilizers in a rotation with oil-bearing crops

    Science.gov (United States)

    Eleshev, R. E.; Bakenova, Z. B.

    2012-11-01

    Experimental studies showed that irrigated chestnut soils on the piedmont of the Zailiiskiy Alatau Range are characterized by the moderate activity of the hydrolytic and redox enzymes. The use of these soils in the crop rotation system increases the hydrolytic activity of the enzymes (invertase, urease, and ATP synthase) by 30% in comparison with the monoculture; at the same time, it does not have a significant impact on the changes in the biological activity of the redox enzymes (catalase and dehydrogenase). The hydrolytic activity of the soils is activated to a greater extent in the crop rotation and in the monoculture against the background application of organic fertilizers. In this case, the recommended rates of mineral fertilizers do not inhibit the activity of the hydrolytic and redox enzymes. An increase in the hydrolytic activity of the enzymes directly affects the yield of oilseed flax. Therefore, indices of the hydrolytic activity of soils can be used as a test for the diagnostics of the efficiency of fertilizers both in crop rotation and monoculture systems.

  14. Fast-light Enhanced Brillouin Laser Based Active Fiber Optics Sensor for Simultaneous Measurement of Rotation and Acceleration

    CERN Document Server

    Zhou, Minchuan; Fouda, Mohamed; Condon, Nicholas; Scheuer, Jacob; Shahriar, Selim M

    2016-01-01

    We have developed a conceptual design for an Active Fast Light Fiber Optic Sensor (AFLIFOS) that can perform simultaneously or separately as a gyroscope (differential mode effect) and a sensor for acceleration, strain, and other common mode effects. Two Brillouin lasers in opposite directions and separated in frequency by several free spectral ranges are used for this sensor. By coupling two auxiliary resonators to the primary fiber resonator, we produce superluminal effects for two laser modes. We develop a detailed theoretical model for optimizing the design of the AFLIFOS, and show that the enhancement factor of the sensitivity is $\\sim{187}$ and $\\sim{-187}$, respectively for the two Brillouin lasers under the optimized condition, when the effective change in perimeter of the primary fiber resonator is 0.1nm, corresponding to a rotation rate of 0.4 deg/sec for a ring resonator with radius 1m. It may be possible to get much higher enhancement by adjusting the parameters such as the perimeters and the coupl...

  15. Rayleigh-Taylor Instability and Excitation of Super-Dreicer Electric Fields in the Solar Chromosphere

    Science.gov (United States)

    Zaitsev, V. V.; Kronshtadtov, P. V.; Stepanov, A. V.

    2016-09-01

    Within the framework of the long-standing so-called "number problem" in the physics of solar flares, we consider the excitation of a super-Dreicer electric field at the leading edge of the electric current pulse that occurs at the chromospheric legs of a coronal magnetic loop as a result of the magnetic Rayleigh-Taylor instability. It is shown that for a sufficiently strong electric current, I0 ≥ 10^{10} A, the current pulse propagates in the non-linear mode and generates a strong longitudinal electric field Ez, which strongly depends on the current ( Ez ∝ I03) and can exceed the Dreicer field ( Ez > ED). In this case, the bulk of electrons in the site of the current pulse is in a runaway mode, and the energy release rate in the chromosphere increases significantly. Super-Dreicer electric fields also provide injection of protons into the regime of acceleration by Langmuir turbulence generated by fast electrons at the leading edge of the electric current pulse. The electric field at the pulse edge can exceed the Dreicer field starting from the chromosphere level with the number density n ≈ 10^{13} cm^{-3}. At a lower current I0 < 10^{10} A, a super-Dreicer mode at the higher levels of the chromosphere with n < 10^{12} cm^{-3} occurs.

  16. On the correlation between stellar chromospheric flux and the surface gravity of close-in planets

    CERN Document Server

    Lanza, A F

    2014-01-01

    The chromospheric emission of stars with close-by transiting planets has been found to correlate with the surface gravity of their planets. Stars with low-gravity planets have an average lower chromospheric flux. We propose that such a correlation is due to the absorption by circumstellar matter that comes from the evaporation of the planets. Planets with a lower gravity have a greater mass loss rate that leads to a higher column density of circumstellar absorption thus explaining the lower level of chromospheric emission observed in their host stars. We estimate the required column density and find that planetary evaporation can account for it. A theoretical relationship between the chromospheric emission as measured in the core of the Ca II H&K lines and the planet gravity is derived. We apply our relationship to a sample of transiting systems for which both the stellar Ca II H&K emission and the planetary surface gravity are known and find a good agreement, given the various sources of uncertaintie...

  17. What do iris observations of Mg II k tell us about the solar plage chromosphere?

    CERN Document Server

    Carlsson, Mats; De Pontieu, Bart

    2015-01-01

    We analyze observations from the Interface Region Imaging Spectrograph of the Mg II k line, the Mg II UV subordinate lines, and the O I 135.6 nm line to better understand the solar plage chromosphere. We also make comparisons with observations from the Swedish 1 m Solar Telescope of the H{\\alpha} line, the Ca II 8542 line, and Solar Dynamics Observatory/Atmospheric Imaging Assembly observations of the coronal 19.3 nm line. To understand the observed Mg II profiles, we compare these observations to the results of numerical experiments. The single-peaked or flat-topped Mg II k profiles found in plage imply a transition region at a high column mass and a hot and dense chromosphere of about 6500 K. This scenario is supported by the observed large-scale correlation between moss brightness and filled-in profiles with very little or absent self-reversal. The large wing width found in plage also implies a hot and dense chromosphere with a steep chromospheric temperature rise. The absence of emission in the Mg II subo...

  18. Chromospheric polarimetry through multi-line observations of the 850 nm spectral region

    CERN Document Server

    Noda, C Quintero; Katsukawa, Y; Rodriguez, J de la Cruz; Carlsson, M; Anan, T; Oba, T; Ichimoto, K; Suematsu, Y

    2016-01-01

    Future solar missions and ground-based telescopes aim to understand the magnetism of the solar chromosphere. We performed a supporting study in Quintero Noda et al. (2016) focused on the infrared Ca II 8542 A line and we concluded that is one of the best candidates because it is sensitive to a large range of atmospheric heights, from the photosphere to the middle chromosphere. However, we believe that it is worth to try improving the results produced by this line observing additional spectral lines. In that regard, we examined the neighbour solar spectrum looking for spectral lines that could increase the sensitivity to the atmospheric parameters. Interestingly, we discovered several photospheric lines that greatly improve the photospheric sensitivity to the magnetic field vector. Moreover, they are located close to a second chromospheric line that also belongs to the Ca II infrared triplet, i.e. the Ca II 8498 A line, and enhances the sensitivity to the atmospheric parameters at chromospheric layers. We conc...

  19. Chromospheric Nanoflares as a Source of Coronal Plasma: II. Repeating Nanoflares

    CERN Document Server

    Bradshaw, Stephen J

    2016-01-01

    The million degree plasma of the solar corona must be supplied by the underlying layers of the atmosphere. The mechanism and location of energy release, and the precise source of coronal plasma, remain unresolved. In earlier work we pursued the idea that warm plasma is supplied to the corona via direct heating of the chromosphere by nanoflares, contrary to the prevailing belief that the corona is heated in-situ and the chromosphere is subsequently energized and ablated by thermal conduction. We found that single (low-frequency) chromospheric nanoflares could not explain the observed intensities, Doppler-shifts, and red/blue asymmetries in Fe XII and XIV emission lines. In the present work we follow up on another suggestion that the corona could be powered by chromospheric nanoflares that repeat on a timescale substantially shorter than the cooling/draining timescale. That is, a single magnetic strand is re-supplied with coronal plasma before the existing plasma has time to cool and drain. We perform a series ...

  20. Spectro-polarimetric observation in UV with CLASP to probe the chromosphere and transition region

    Science.gov (United States)

    Kano, Ryouhei; Ishikawa, Ryohko; Winebarger, Amy R.; Auchère, Frédéric; Trujillo Bueno, Javier; Narukage, Noriyuki; Kobayashi, Ken; Bando, Takamasa; Katsukawa, Yukio; Kubo, Masahito; Ishikawa, Shin-Nosuke; Giono, Gabriel; Hara, Hirohisa; Suematsu, Yoshinori; Shimizu, Toshifumi; Sakao, Taro; Tsuneta, Saku; Ichimoto, Kiyoshi; Goto, Motoshi; Cirtain, Jonathan W.; De Pontieu, Bart; Casini, Roberto; Manso Sainz, Rafael; Asensio Ramos, Andres; Stepan, Jiri; Belluzzi, Luca; Carlsson, Mats

    2016-05-01

    The Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP) is a NASA sounding-rocket experiment that was performed in White Sands in the US on September 3, 2015. During its 5-minute ballistic flight, CLASP successfully made the first spectro-polarimetric observation in the Lyman-alpha line (121.57 nm) originating in the chromosphere and transition region. Since the Lyman-alpha polarization is sensitive to magnetic field of 10-100 G by the Hanle effect, we aim to infer the magnetic field information in such upper solar atmosphere with this experiment.The obtained CLASP data showed that the Lyman-alpha scattering polarization is about a few percent in the wings and the order of 0.1% in the core near the solar limb, as it had been theoretically predicted, and that both polarization signals have a conspicuous spatio-temporal variability. CLASP also observed another upper-chromospheric line, Si III (120.65 nm), whose critical field strength for the Hanle effect is 290 G, and showed a measurable scattering polarization of a few % in this line. The polarization properties of the Si III line could facilitate the interpretation of the scattering polarization observed in the Lyman-alpha line.In this presentation, we would like to show how the upper chromosphere and transition region are seen in the polarization of these UV lines and discuss the possible source of these complicated polarization signals.

  1. Dynamic Models of the Sun from the Convection Zone to the Chromosphere

    CERN Document Server

    Wedemeyer-B"ohm, S

    2006-01-01

    The chromosphere in internetwork regions of the quiet Sun was regarded as a static and homogeneous layer for a long time. Thanks to advances in observations and numerical modelling, the wave nature of these atmospheric regions received increasing attention during the last decade. Recent three-dimensional radiation magnetohydrodynamic simulations with CO5BOLD feature the chromosphere of internetwork regions as a dynamic and intermittent phenomenon. It is a direct product of interacting waves that form a mesh-like pattern of hot shock fronts and cool post-shock regions. The waves are excited self-consistently at the top of the convection zone. In the middle chromosphere above an average height of 1000 km, plasma beta gets larger than one and magnetic fields become more important. The model chromosphere exhibits a magnetic field that is much more homogeneous than in the layers below and evolves much faster. That includes fast propagating (MHD) waves. Further improvements of the simulations like time-dependent hy...

  2. Toward A Self Consistent MHD Model of Chromospheres and Winds From Late Type Evolved Stars

    CERN Document Server

    Airapetian, V S; Carpenter, K G

    2014-01-01

    We present the first magnetohydrodynamic model of the stellar chromospheric heating and acceleration of the outer atmospheres of cool evolved stars, using alpha Tau as a case study. We used a 1.5D MHD code with a generalized Ohm's law that accounts for the effects of partial ionization in the stellar atmosphere to study Alfven wave dissipation and wave reflection. We have demonstrated that due to inclusion of the effects of ion-neutral collisions in magnetized weakly ionized chromospheric plasma on resistivity and the appropriate grid resolution, the numerical resistivity becomes 1-2 orders of magnitude smaller than the physical resistivity. The motions introduced by non-linear transverse Alfven waves can explain non-thermally broadened and non-Gaussian profiles of optically thin UV lines forming in the stellar chromosphere of alpha Tau and other late-type giant and supergiant stars. The calculated heating rates in the stellar chromosphere due to resistive (Joule) dissipation of electric currents, induced by ...

  3. The multi-species Farley-Buneman instability in the solar chromosphere

    Energy Technology Data Exchange (ETDEWEB)

    Madsen, Chad A.; Dimant, Yakov S.; Oppenheim, Meers M. [Center for Space Physics, Boston University, 725 Commonwealth Avenue, Boston, MA 02215 (United States); Fontenla, Juan M., E-mail: cmadsen@bu.edu [Laboratory for Atmospheric and Space Physics, University of Colorado Boulder, 1234 Innovation Drive, Boulder, CO 80303 (United States)

    2014-03-10

    Empirical models of the solar chromosphere show intense electron heating immediately above its temperature minimum. Mechanisms such as resistive dissipation and shock waves appear insufficient to account for the persistence and uniformity of this heating as inferred from both UV lines and continuum measurements. This paper further develops the theory of the Farley-Buneman instability (FBI) which could contribute substantially to this heating. It expands upon the single-ion theory presented by Fontenla by developing a multiple-ion-species approach that better models the diverse, metal-dominated ion plasma of the solar chromosphere. This analysis generates a linear dispersion relationship that predicts the critical electron drift velocity needed to trigger the instability. Using careful estimates of collision frequencies and a one-dimensional, semi-empirical model of the chromosphere, this new theory predicts that the instability may be triggered by velocities as low as 4 km s{sup -1}, well below the neutral acoustic speed. In the Earth's ionosphere, the FBI occurs frequently in situations where the instability trigger speed significantly exceeds the neutral acoustic speed. From this, we expect neutral flows rising from the photosphere to have enough energy to easily create electric fields and electron Hall drifts with sufficient amplitude to make the FBI common in the chromosphere. If so, this process will provide a mechanism to convert neutral flow and turbulence energy into electron thermal energy in the quiet Sun.

  4. Single- vs. double-bundle anterior cruciate ligament reconstruction: a new aspect of knee assessment during activities involving dynamic knee rotation.

    Science.gov (United States)

    Czamara, Andrzej; Królikowska, Aleksandra; Szuba, Łukasz; Widuchowski, Wojciech; Kentel, Maciej

    2015-02-01

    Few studies have compared single-bundle (SB) and double-bundle (DB) anterior cruciate ligament reconstruction (ACLR) in the knee joint during activities involving change-of-direction maneuvers and knee rotation. This study examined whether the type of ACLR contributes to postphysiotherapy outcomes, with an emphasis on knee function assessment during activities involving dynamic knee rotation. Fifteen male patients after SB ACLR and 15 male patients after DB ACLR took part in the same physiotherapy program. Twenty-four weeks after ACLR, both groups underwent anterior laxity measurement, pivot shift tests, range of movement and joint circumference measurements, subjective assessment of pain and stability levels in the knee joint, peak torque measurement of the muscles rotating the tibia toward the femur, and a run test with maximal speed and change-of-direction maneuvers. Comparative analysis did not show any differences between the results of anterior tibial translation, pivot shift test, range of movement and joint circumference, and subjective assessment of pain and knee joint stability levels. No differences were noted between the groups in peak torque values obtained from the muscles responsible for internal and external tibial rotation or results of the run test. The data obtained from this study can be used by research teams to monitor and compare the effectiveness of various study protocols involving surgical and physiotherapy treatment. The data are especially useful when combined with the clinical assessment of patients who would like to return to sport.

  5. MHD Modelling of Coronal Loops: Injection of High-Speed Chromospheric Flows

    Science.gov (United States)

    Petralia, A.; Reale, F.; Orlando, S.; Klimchuk, J. A.

    2014-01-01

    Context. Observations reveal a correspondence between chromospheric type II spicules and bright upward-moving fronts in the corona observed in the extreme-ultraviolet (EUV) band. However, theoretical considerations suggest that these flows are probably not the main source of heating in coronal magnetic loops. Aims. We investigate the propagation of high-speed chromospheric flows into coronal magnetic flux tubes and the possible production of emission in the EUV band. Methods. We simulated the propagation of a dense 104 K chromospheric jet upward along a coronal loop by means of a 2D cylindrical MHD model that includes gravity, radiative losses, thermal conduction, and magnetic induction. The jet propagates in a complete atmosphere including the chromosphere and a tenuous cool (approximately 0.8 MK) corona, linked through a steep transition region. In our reference model, the jet initial speed is 70 km per second, its initial density is 10(exp 11) per cubic centimeter, and the ambient uniform magnetic field is 10 G. We also explored other values of jet speed and density in 1D and different magnetic field values in 2D, as well as the jet propagation in a hotter (approximately 1.5 MK) background loop. Results. While the initial speed of the jet does not allow it to reach the loop apex, a hot shock-front develops ahead of it and travels to the other extreme of the loop. The shock front compresses the coronal plasma and heats it to about 10(exp 6) K. As a result, a bright moving front becomes visible in the 171 Angstrom channel of the SDO/AIA mission. This result generally applies to all the other explored cases, except for the propagation in the hotter loop. Conclusions. For a cool, low-density initial coronal loop, the post-shock plasma ahead of upward chromospheric flows might explain at least part of the observed correspondence between type II spicules and EUV emission excess.

  6. Ca II 854.2 nm Spectromagnetograms: A Powerful Chromospheric Diagnostic

    Science.gov (United States)

    Harvey, J. W.; Bertello, Luca; Branston, D.; Britanik, J.; Bulau, S.; Cole, L.; Gosain, Sanjay; Harker, Brian; Jones, Harrison P.; Marble, A.; Martinez Pillet, V.; Pevtsov, A.; Schramm, K.; Streander, Kim; Villegas, H.

    2016-05-01

    The transition from physical dominance by plasma flows in the photosphere to magnetic pressure in the solar chromosphere motivates as many diagnostic observations as possible across this important region. Among the few ground-accessible spectral lines formed within the chromosphere, the Ca II 854.2 nm line has the desirable properties of presence everywhere on the solar disk, Zeeman sensitivity, and narrow line width. Mapped observations of circular polarization within this line (spectromagnetograms) have been made at NSO infrequently since 1974, with regular daily full-disk observations starting in August 1996. Full-disk spectral observations of the complete Stokes polarization vector are now being made regularly since November 2015. It is not easy to estimate chromospheric magnetic field properties from the 854.2 nm line profile polarization. To provide rough quick-look vector field maps we found that the weak-field approximation provides a fair first estimate of the line-of-sight component but appears to be too simple to interpret the transverse magnetic field from frequently asymmetric, linearly-polarized line profiles. More realistic estimates of the chromospheric vector field, short of extremely lengthy, full 3D, non-local radiative transfer inversions, are being investigated. We briefly introduce recent instrumental modifications and observational characteristics, sample observations, and results concerning the expansion of the chromospheric field with increasing height, the presence of large areas of weak, nearly horizontal fields, and field estimates in plages, sunspots, flares, filaments, and filament channels. The Stokes spectra will be freely available to the community.This work utilizes SOLIS data obtained by the NSO Integrated Synoptic Program (NISP), managed by the National Solar Observatory, which is operated by the Association of Universities for Research in Astronomy (AURA), Inc. under a cooperative agreement with the National Science Foundation.

  7. The young active star SAO 51891 (V383 Lac)

    CERN Document Server

    Biazzo, Katia; Marilli, Ettore; Covino, Elvira; Alcala', Juan M; Cakirli, Omur; Klutsch, Alexis; Meyer, Michael R

    2009-01-01

    Our aim is investigating surface inhomogeneities of the young late-type star SAO51891, from photosphere to upper chromosphere, analyzing contemporaneous high-resolution spectra and broad-band photometry. The FOCES@CAHA spectral range is used to determine spectral classification and derive vsini and Vrad. The Li abundance is measured to estimate the age. The BVRIJHKs bands are used to construct the SED. The variations of our BV fluxes and Teff are used to infer the presence of photospheric spots and observe their behavior over time. The chromospheric activity is studied applying the spectral subtraction technique to Halpha, CaII H&K, Heps, and CaII IRT lines. We find SAO51891 to be a young K0-1V star with Li abundance close to the Pleiades upper envelope, confirming its youth (~100 Myr), also inferred from its kinematical membership to the Local Association. We detect no IR excess from SED analysis, and rotational modulation of luminosity, Teff, CaII, and Heps total fluxes. A spot model with two active reg...

  8. The Liquid Metallic Hydrogen Model of the Sun and the Solar Atmosphere VI. Helium in the Chromosphere

    OpenAIRE

    Robitaille P.-M.

    2013-01-01

    Molecular hydrogen and hydrides have recently been advanced as vital agents in the generation of emission spectra in the chromosphere. This is a result of the role they play in the formation of condensed hydrogen structures (CHS) within the chromosphere (P.M. Robitaille. The Liquid Metallic Hydrogen Model of the Sun and the Solar Atmosphere IV. On the Nature of the Chromosphere. Progr. Phys., 2013, v. 3, 15–21). Next to hydrogen, helium is perhaps the most intriguing component in this region ...

  9. Living with a Red Dwarf: Rotation and X-Ray and Ultraviolet Properties of the Halo Population Kapteyn's Star

    Science.gov (United States)

    Guinan, Edward F.; Engle, Scott G.; Durbin, Allyn

    2016-04-01

    As part of Villanova's Living with a Red Dwarf program, we have obtained UV, X-ray, and optical data of the Population II red dwarf -- Kapteyn's Star. Kapteyn's Star is noteworthy for its large proper motions and high radial velocity of ∼+245 km s-1. As the nearest Pop II red dwarf, it serves as an old age anchor for calibrating activity/irradiance-rotation-age relations, and an important test bed for stellar dynamos and the resulting X-ray-UV emissions of slowly rotating, near-fully convective red dwarf stars. Adding to the notoriety, Kapteyn's Star has recently been reported to host two super-Earth candidates, one of which (Kapteyn b) is orbiting within the habitable zone. However, Robertson et al. questioned the planet's existence since its orbital period may be an artifact of activity, related to the star's rotation period. Because of its large Doppler-shift, measures of the important, chromospheric H i Lyα 1215.67 Å emission line can be reliably made, because it is mostly displaced from ISM and geo-coronal sources. Lyα emission dominates the FUV region of cool stars. Our measures can help determine the X-ray-UV effects on planets hosted by Kapteyn's Star, and planets hosted by other old red dwarfs. Stellar X-ray and Lyα emissions have strong influences on the heating and ionization of upper planetary atmospheres and can (with stellar winds and flares) erode or even eliminate planetary atmospheres. Using our program stars, we have reconstructed the past exposures of Kapteyn's Star's planets to coronal - chromospheric XUV emissions over time. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program #13020. This work is also based on observations obtained with the Chandra X-ray Observatory, a NASA science mission, program #13200633.

  10. Semi-empirical Modeling of the Photosphere, Chromosphere, Transition Region, and Corona of the M-dwarf Host Star GJ 832

    CERN Document Server

    Fontenla, J M; Witbrod, Jesse; France, Kevin; Buccino, A; Mauas, Pablo; Vietes, Mariela; Walkowicz, Lucianne M

    2016-01-01

    Stellar radiation from X-rays to the visible provides the energy that controls the photochemistry and mass loss from exoplanet atmospheres. The important extreme ultraviolet (EUV) region (10--91.2~nm) is inaccessible and should be computed from a reliable stellar model. It is essential to understand the formation regions and physical processes responsible for the various stellar emission features in order to predict how the spectral energy distribution varies with age and activity levels. We compute a state-of-the-art semi-empirical atmospheric model and the emergent high-resolution synthetic spectrum of the moderately active M2~V star GJ~832 as the first of a series of models for stars with different activity levels. Using non-LTE radiative transfer techniques and including many molecular lines, we construct a one-dimensional simple model for the physical structure of the star's chromosphere, chromosphere-corona transition region, and corona. The synthesized spectrum for this model fits the continuum and lin...

  11. Surface velocity network with anti-solar differential rotation on the active K-giant $\\sigma$ Geminorum

    CERN Document Server

    Kõvári, Zs; Švanda, M; Vida, K; Strassmeier, K G; Oláh, K; Forgács-Dajka, E

    2007-01-01

    We demonstrate the power of the local correlation tracking technique on stellar data for the first time. We recover the spot migration pattern of the long-period RS CVn-type binary $\\sigma$ Gem from a set of six Doppler images from 3.6 consecutive rotation cycles. The resulting surface flow map suggests a weak anti-solar differential rotation with $\\alpha\\approx-0.0022\\pm0.0016$, and a coherent poleward spot migration with an average velocity of $220\\pm10$ m s$^{-1}$. This result agrees with our recent findings from another study and could also be confirmed theoretically.

  12. Rotation Curves of Spiral Galaxies

    OpenAIRE

    Sofue, Yoshiaki; Rubin, Vera

    2000-01-01

    Rotation curves of spiral galaxies are the major tool for determining the distribution of mass in spiral galaxies. They provide fundamental information for understanding the dynamics, evolution and formation of spiral galaxies. We describe various methods to derive rotation curves, and review the results obtained. We discuss the basic characteristics of observed rotation curves in relation to various galaxy properties, such as Hubble type, structure, activity, and environment.

  13. Full-Disk Chromospheric Vector Magnetograms with Ca II 854.2 nm line: Some Promising Applications

    Science.gov (United States)

    Gosain, Sanjay; Harvey, J. W.; Harker, Brian; Pillet, V. M.; Pevtsov, Alexei A.; Marble, Andrew R.; Bertello, Luca; + SOLIS-Team

    2016-05-01

    Over the last decade, the focus of solar magnetometry has shifted outward from the photosphere to the chromospheric layers. The reasons for this are many. With regards to instrumentation faster detectors with more sensitivity have become available, as have fast electro-optic modulators. Also, there are several potential benefits of observing vector fields in the chromospheric layer as the magnetic field is more force-free in this layer as compared to the photosphere. Coronal force-free field extrapolations are more reliable using chromospheric fields as the lower boundary condition and free magnetic energy is readily computed using the magnetic virial theorem. Recently, a full Stokes polarimeter for the chromospheric Ca II 854.2 nm spectral line was developed and installed in the Vector Spectromagnetograph (VSM) instrument on the Synoptic Optical Long-term Investigations of the Sun (SOLIS) telescope. We present details of this new polarimeter, full disk spectropolarimetric observations and vector magnetograms of the chromosphere, and examples of some promising applications (e.g., maps of normal component of electric current density in the chromosphere, free magnetic energy estimated using virial theorem, and non-potentiality parameter magnetic shear angle).This work utilizes SOLIS data obtained by the NSO Integrated Synoptic Program (NISP), managed by the National Solar Observatory, which is operated by the Association of Universities for Research in Astronomy (AURA), Inc. under a cooperative agreement with the National Science Foundation

  14. Constraining stellar physics from red-giant stars in binaries - stellar rotation, mixing processes and stellar activity

    CERN Document Server

    Beck, P G; Pavlovski, K; Palacios, A; Tkachenko, A; García, R A; Mathis, S; Corsaro, E; Johnston, C; Mosser, B; Ceillier, T; Nascimento, J -D do; Raskin, G

    2016-01-01

    The unparalleled photometric data obtained by NASA's Kepler Space Telescope has led to an improved understanding of stellar structure and evolution - in particular for solar-like oscillators in this context. Binary stars are fascinating objects. Because they were formed together, binary systems provide a set of two stars with very well constrained parameters. Those can be used to study properties and physical processes, such as the stellar rotation, dynamics and rotational mixing of elements and allows us to learn from the differences we find between the two components. In this work, we discussed a detailed study of the binary system KIC9163796, discovered through Kepler photometry. The ground-based follow-up spectroscopy showed that this system is a double-lined spectroscopic binary, with a mass ratio close to unity. However, the fundamental parameters of the components of this system as well as their lithium abundances differ substantially. Kepler photometry of this system allows to perform a detailed seism...

  15. HEATING OF THE PARTIALLY IONIZED SOLAR CHROMOSPHERE BY WAVES IN MAGNETIC STRUCTURES

    Energy Technology Data Exchange (ETDEWEB)

    Shelyag, S.; Przybylski, D. [Department of Mathematics and Information Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST (United Kingdom); Khomenko, E.; Vicente, A. de, E-mail: shelyag@gmail.com [Instituto de Astrofísica de Canarias, E-38205, C/Vía Láctea, s/n, La Laguna, Tenerife (Spain)

    2016-03-01

    In this paper, we show a “proof of concept” of the heating mechanism of the solar chromosphere due to wave dissipation caused by the effects of partial ionization. Numerical modeling of non-linear wave propagation in a magnetic flux tube, embedded in the solar atmosphere, is performed by solving a system of single-fluid quasi-MHD equations, which take into account the ambipolar term from the generalized Ohm’s law. It is shown that perturbations caused by magnetic waves can be effectively dissipated due to ambipolar diffusion. The energy input by this mechanism is continuous and shown to be more efficient than dissipation of static currents, ultimately leading to chromospheric temperature increase in magnetic structures.

  16. Heating of the partially ionized solar chromosphere by waves in magnetic structures

    CERN Document Server

    Shelyag, S; de Vicente, A; Przybylski, D

    2016-01-01

    In this paper, we show a "proof of concept" of the heating mechanism of the solar chromosphere due to wave dissipation caused by the effects of partial ionization. Numerical modeling of non-linear wave propagation in a magnetic flux tube, embedded in the solar atmosphere, is performed by solving a system of single-fluid quasi-MHD equations, which take into account the ambipolar term from the generalized Ohm's law. It is shown that perturbations caused by magnetic waves can be effectively dissipated due to ambipolar diffusion. The energy input by this mechanism is continuous and shown to be more efficient than dissipation of static currents, ultimately leading to chromospheric temperature increase in magnetic structures.

  17. Chromospheric and transition region structure of the Herbig emission stars HR 5999 and BN Ori

    Science.gov (United States)

    Brown, A.; Tjinadjie, H. R. E.; The, P. S.

    1986-01-01

    The IUE spectra of HR 5999 and BN Ori were analyzed, showing strong emission lines of C II, C IV, O I, and Si IV (also Mg II in HR 5999), indicating the presence of chromospheres and transition regions around these high mass premain sequence (PMS) stars. Infrared, optical, and ultraviolet observations show that BN Ori has a spectral type of FO-2 IIIe, a bolometric luminosity of 36 L, age 1.5 million yr, and mass 2 to 2.5 solar mass. As HR 5999 fades, the ratio of total to selective absorption increases indicating the appearance of larger grains or changes in grain alignment. Emission measure distributions are used to investigate the atmospheric structure of the stars. As HR 5999 fades the emission measure distribution rises systematically and the inferred transition region pressures increase. The transition region and chromospheric radiative losses are large and imply input mechanical energy fluxes similar to those of lower mass PMS stars.

  18. IUE observations of HR 6902 - Effect of luminosity on supergiant chromospheres

    Science.gov (United States)

    Ahmad, Imad A.

    1990-01-01

    IUE observations of the most recently discovered Zeta Aurigae system, HR 6902, are reported to reveal profound differences in the spectrum of the chromosphere of the cool primary from those of all other Zeta Aurigae systems. Unlike its sister systems, HR 6902 shows evidence of neither strong wind nor an extended chromosphere for the cool primary. Instead, the spectrum is like that of a single blue dwarf. The most likely reason for this contrast to all other Zeta Aur systems observed with IUE is the lower luminosity of the HR 6902 primary: a type-II 'bright giant' as opposed to the type I (or Ib-II in the case of 22 Vul) 'supergiants' in the other Zeta Aur systems.

  19. Chromospheric diagnosis with Ca II lines: forward modeling in forward scattering (I)

    CERN Document Server

    Carlin, E S

    2014-01-01

    This paper shows the first synthetic tomography of the quiet solar chromosphere formed by spatial maps of scattering polarization. It has been calculated for the CaII 8498, 8542 and 3934 A lines by solving the NLTE (non-local thermodynamical equilibrium) RT (radiative transfer) problem of the second kind in a 3D atmosphere model obtained from realistic MHD (magneto-hydrodynamical) simulations. Maps of circular polarization were calculated neglecting atomic polarization. Our investigation focuses on the linear polarization signals induced by kinematics, radiation field anisotropy and Hanle effect in forward-scattering geometry. Thus, instead of considering slit profiles at the limb as normally done in the study of the second solar spectrum, we synthetize and analyze spatial maps of polarization at disk center. It allows us to understand the spatial signatures of dynamics and magnetic field in the linear polarization for discriminating them observationally. Our results suggest new ideas for chromospheric diagno...

  20. Kelvin-Helmholtz instability in solar chromospheric jets: theory and observation

    CERN Document Server

    Kuridze, D; Henriques, V; Mathioudakis, M; Keenan, F P; Hanslmeier, A

    2016-01-01

    Using data obtained by the high resolution CRisp Imaging SpectroPolarimeter instrument on the Swedish 1-m Solar Telescope, we investigate the dynamics and stability of quiet-Sun chromospheric jets observed at disk center. Small-scale features, such as Rapid Redshifted and Blueshifted Excursions, appearing as high speed jets in the wings of the H$\\alpha$ line, are characterized by short lifetimes and rapid fading without any descending behavior. To study the theoretical aspects of their stability without considering their formation mechanism, we model chromospheric jets as twisted magnetic flux tubes moving along their axis, and use the ideal linear incompressible magnetohydrodynamic approximation to derive the governing dispersion equation. Analytical solutions of the dispersion equation indicate that this type of jet is unstable to Kelvin-Helmholtz instability (KHI), with a very short (few seconds) instability growth time at high upflow speeds. The generated vortices and unresolved turbulent flows associated...

  1. Spicules and their on-disk counterparts, the main driver for solar chromospheric heating?

    CERN Document Server

    Puschmann, Klaus Gerhard

    2016-01-01

    The question how the outer solar atmosphere is heated from solar photospheric temperatures of about 5800K up to solar chromospheric and coronal temperatures of about 20 000K and millions of degrees respectively, remained without any satisfying answer for centuries. On 4 May 2005, I recorded several time series of Halpha line scans with the GREGOR Fabry-Perot Interferometer, still deployed at the German Vacuum Tower Telescope (VTT), for different solar limb and on-disc positions as well for quiet sun at solar disk center. The spatially and temporally highly resolved time series of Halpha line parameters reveal the entire and detailed complexity as well as the overwhelming dynamics of spicules covering the entire solar disk, thus apparently confirming spicules as the potential driver for chromospheric heating of both the Sun and sun-like stars.

  2. The Hanle and Zeeman Effects in Solar Spicules: A Novel Diagnostic Window on Chromospheric Magnetism

    CERN Document Server

    Bueno, J T; Centeno, R; Collados, M; Landi degl'Innocenti, E

    2005-01-01

    An attractive diagnostic tool for investigating the magnetism of the solar chromosphere is the observation and theoretical modeling of the Hanle and Zeeman effects in spicules, as shown in this letter for the first time. Here we report on spectropolarimetric observations of solar chromospheric spicules in the He I 10830 \\AA multiplet and on their theoretical modeling accounting for radiative transfer effects. We find that the magnetic field in the observed (quiet Sun) spicular material at a height of about 2000 km above the visible solar surface has a strength of the order of 10 G and is inclined by approximately $35^{\\circ}$ with respect to the local vertical direction. Our empirical finding based on full Stokes-vector spectropolarimetry should be taken into account in future magnetohydrodynamical simulations of spicules.

  3. Solar Hard X-ray Source Sizes in a Beam-Heated and Ionised Chromosphere

    CERN Document Server

    O'Flannagain, A; Gallagher, P T

    2014-01-01

    Solar flare hard X-rays (HXRs) are produced as bremsstrahlung when an accelerated population of electrons interacts with the dense chromospheric plasma. HXR observations presented by using the Ramaty High-Energy Solar Spectroscopic Imager (RHESSI) have shown that HXR source sizes are 3-6 times more extended in height than those predicted by the standard collisional thick target model (CTTM). Several possible explanations have been put forward including the multi-threaded nature of flare loops, pitch-angle scattering, and magnetic mirroring. However, the nonuniform ionisation (NUI) structure along the path of the electron beam has not been fully explored as a solution to this problem. Ionised plasma is known to be less effective at producing nonthermal bremsstrahlung HXRs when compared to neutral plasma. If the peak HXR emission was produced in a locally ionised region within the chromosphere, the intensity of emission will be preferentially reduced around this peak, resulting in a more extended source. Due to...

  4. Coronal heating in coupled photosphere-chromosphere-coronal systems: turbulence and leakage

    CERN Document Server

    Verdini, Andrea; Velli, Marco

    2011-01-01

    Coronal loops act as resonant cavities for low frequency fluctuations that are transmitted from the deeper layers of the solar atmosphere and are amplified in the corona, triggering nonlinear interactions. However trapping is not perfect, some energy leaks down to the chromosphere, thus limiting the turbulence development and the associated heating. We consider the combined effects of turbulence and leakage in determining the energy level and associated heating rate in models of coronal loops which include the chromosphere and transition region. We use a piece-wise constant model for the Alfven speed and a Reduced MHD - Shell model to describe the interplay between turbulent dynamics in the direction perpendicular to the mean field and propagation along the field. Turbulence is sustained by incoming fluctuations which are equivalent, in the line-tied case, to forcing by the photospheric shear flows. While varying the turbulence strength, we compare systematically the average coronal energy level (E) and dissi...

  5. Nonlinear Instability and Intermittent Nature of Magnetic Reconnection in Solar Chromosphere

    CERN Document Server

    Singh, K A P; Isobe, H; Shibata, K

    2016-01-01

    The recent observations of Singh et al. (2012) have shown multiple plasma ejections and the intermittent nature of magnetic reconnection in the solar chromosphere, highlighting the need for fast reconnection to occur in highly collisional plasma. However, the physical process through which fast magnetic reconnection occurs in partially ionized plasma, like the solar chromosphere, is still poorly understood. It has been shown that for sufficiently high magnetic Reynolds numbers, Sweet-Parker current sheets can become unstable leading to tearing mode instability and plasmoid formation, but when dealing with a partially ionized plasma the strength of coupling between the ions and neutrals plays a fundamental role in determining the dynamics of the system. We propose that as the reconnecting current sheet thins and the tearing instability develops, plasmoid formation passes through strongly, intermediately, and weakly coupled (or decoupled) regimes, with the time scale for the tearing mode instability depending o...

  6. 2D Radiative MHD Simulations of the Importance of Partial Ionization in the Chromosphere

    CERN Document Server

    Martinez-Sykora, Juan; Hansteen, Viggo

    2012-01-01

    The solar chromosphere is weakly ionized and interactions between ionized particles and neutral particles likely have significant consequences for the thermodynamics of the plasma. We investigate the importance of introducing neutral particles using numerical 2.5D radiative MHD simulations obtained with the Bifrost code. The models span from the upper layers of the convection zone to the low corona, and solve the full MHD equations with non-grey and NLTE radiative transfer, and thermal conduction. The effects of partial ionization are implemented using the generalized Ohm's law. The approximations required in going from three fluids to the generalized Ohm's law are tested in our simulations. The Ohmic diffusion, the Hall term, and ambipolar diffusion show strong variations in the chromosphere. These strong variations of the various magnetic diffusivities are absent or significantly underestimated when, as has been common for these types of studies, using the VAL-C model as a basis for estimates. In addition, ...

  7. Heating of the Partially Ionized Solar Chromosphere by Waves in Magnetic Structures

    Science.gov (United States)

    Shelyag, S.; Khomenko, E.; de Vicente, A.; Przybylski, D.

    2016-03-01

    In this paper, we show a “proof of concept” of the heating mechanism of the solar chromosphere due to wave dissipation caused by the effects of partial ionization. Numerical modeling of non-linear wave propagation in a magnetic flux tube, embedded in the solar atmosphere, is performed by solving a system of single-fluid quasi-MHD equations, which take into account the ambipolar term from the generalized Ohm’s law. It is shown that perturbations caused by magnetic waves can be effectively dissipated due to ambipolar diffusion. The energy input by this mechanism is continuous and shown to be more efficient than dissipation of static currents, ultimately leading to chromospheric temperature increase in magnetic structures.

  8. An Automated Algorithm to Distinguish and Characterize Solar Flares and Associated Sequential Chromospheric Brightenings

    CERN Document Server

    Kirk, M S; Jackiewicz, J; McNamara, B J; McAteer, R T J

    2011-01-01

    We present a new automated algorithm to identify, track, and characterize small-scale brightening associated with solar eruptive phenomena observed in H{\\alpha}. The temporal spatially-localized changes in chromospheric intensities can be separated into two categories: flare ribbons and sequential chromospheric brightenings (SCBs). Within each category of brightening we determine the smallest resolvable locus of pixels, a kernel, and track the temporal evolution of the position and intensity of each kernel. This tracking is accomplished by isolating the eruptive features, identifying kernels, and linking detections between frames into trajectories of kernels. We fully characterize the evolving intensity and morphology of the flare ribbons by observing the tracked flare kernels in aggregate. With the location of SCB and flare kernels identified, they can easily be overlaid on top of complementary data sets to extract Doppler velocities and magnetic field intensities underlying the kernels. This algorithm is ad...

  9. Modeling properties of chromospheric evaporation driven by thermal conduction fronts from reconnection shocks

    CERN Document Server

    Brannon, Sean

    2014-01-01

    Magnetic reconnection in the corona results in contracting flare loops, releasing energy into plasma heating and shocks. The hydrodynamic shocks so produced drive thermal conduction fronts (TCFs) which transport energy into the chromosphere and drive upflows (evaporation) and downflows (condensation) in the cooler, denser footpoint plasma. Observations have revealed that certain properties of the transition point between evaporation and condensation (the "flow reversal point" or FRP), such as temperature and velocity-temperature derivative at the FRP, vary between different flares. These properties may provide a diagnostic tool to determine parameters of the coronal energy release mechanism and the loop atmosphere. In this study, we develop a 1-D hydrodynamical flare loop model with a simplified three-region atmosphere (chromosphere/transition region/corona), with TCFs initiated by shocks introduced in the corona. We investigate the effect of two different flare loop parameters (post-shock temperature and tra...

  10. Simulations of the Mg II k and Ca II 8542 lines from an Alfv\\'en Wave-heated flare chromosphere

    CERN Document Server

    Kerr, Graham S; Russell, Alexander J B; Allred, Joel C

    2016-01-01

    We use radiation hydrodynamic simulations to examine two models of solar flare chromospheric heating: Alfv\\'en wave dissipation and electron beam collisional losses. Both mechanisms are capable of strong chromospheric heating, and we show that the distinctive atmospheric evolution in the mid-to-upper chromosphere results in Mg II k-line emission that should be observably different between wave-heated and beam-heated simulations. We also present Ca II 8542A profiles which are formed slightly deeper in the chromosphere. The Mg II k-line profiles from our wave-heated simulation are quite different from those from a beam-heated model and are more consistent with IRIS observations. The predicted differences between the Ca II 8542A in the two models are small. We conclude that careful observational and theoretical study of lines formed in the mid-to-upper chromosphere holds genuine promise for distinguishing between competing models for chromospheric heating in flares.

  11. SOLAR HARD X-RAY SOURCE SIZES IN A BEAM-HEATED AND IONIZED CHROMOSPHERE

    International Nuclear Information System (INIS)

    Solar flare hard X-rays (HXRs) are produced as bremsstrahlung when an accelerated population of electrons interacts with the dense chromospheric plasma. HXR observations presented by Kontar et al. using the Ramaty High-Energy Solar Spectroscopic Imager have shown that HXR source sizes are three to six times more extended in height than those predicted by the standard collisional thick target model (CTTM). Several possible explanations have been put forward including the multi-threaded nature of flare loops, pitch-angle scattering, and magnetic mirroring. However, the nonuniform ionization (NUI) structure along the path of the electron beam has not been fully explored as a solution to this problem. Ionized plasma is known to be less effective at producing nonthermal bremsstrahlung HXRs when compared to neutral plasma. If the peak HXR emission was produced in a locally ionized region within the chromosphere, the intensity of emission will be preferentially reduced around this peak, resulting in a more extended source. Due to this effect, along with the associated density enhancement in the upper chromosphere, injection of a beam of electrons into a partially ionized plasma should result in an HXR source that is substantially more vertically extended relative to that for a neutral target. Here we present the results of a modification to the CTTM, which takes into account both a localized form of chromospheric NUI and an increased target density. We find 50 keV HXR source widths, with and without the inclusion of a locally ionized region, of ∼3 Mm and ∼0.7 Mm, respectively. This helps to provide a theoretical solution to the currently open question of overly extended HXR sources

  12. The influence of the magnetic field on running penumbral waves in the solar chromosphere

    International Nuclear Information System (INIS)

    We use images of high spatial and temporal resolution, obtained using both ground- and space-based instrumentation, to investigate the role magnetic field inclination angles play in the propagation characteristics of running penumbral waves in the solar chromosphere. Analysis of a near-circular sunspot, close to the center of the solar disk, reveals a smooth rise in oscillatory period as a function of distance from the umbral barycenter. However, in one directional quadrant, corresponding to the north direction, a pronounced kink in the period-distance diagram is found. Utilizing a combination of the inversion of magnetic Stokes vectors and force-free field extrapolations, we attribute this behavior to the cut-off frequency imposed by the magnetic field geometry in this location. A rapid, localized inclination of the magnetic field lines in the north direction results in a faster increase in the dominant periodicity due to an accelerated reduction in the cut-off frequency. For the first time, we reveal how the spatial distribution of dominant wave periods, obtained with one of the highest resolution solar instruments currently available, directly reflects the magnetic geometry of the underlying sunspot, thus opening up a wealth of possibilities in future magnetohydrodynamic seismology studies. In addition, the intrinsic relationships we find between the underlying magnetic field geometries connecting the photosphere to the chromosphere, and the characteristics of running penumbral waves observed in the upper chromosphere, directly supports the interpretation that running penumbral wave phenomena are the chromospheric signature of upwardly propagating magneto-acoustic waves generated in the photosphere.

  13. SOLAR HARD X-RAY SOURCE SIZES IN A BEAM-HEATED AND IONIZED CHROMOSPHERE

    Energy Technology Data Exchange (ETDEWEB)

    O' Flannagain, Aidan M.; Gallagher, Peter T. [Astrophysics Research Group, School of Physics, Trinity College Dublin, Dublin 2 (Ireland); Brown, John C. [Astronomy and Astrophysics Group, School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ (United Kingdom)

    2015-02-01

    Solar flare hard X-rays (HXRs) are produced as bremsstrahlung when an accelerated population of electrons interacts with the dense chromospheric plasma. HXR observations presented by Kontar et al. using the Ramaty High-Energy Solar Spectroscopic Imager have shown that HXR source sizes are three to six times more extended in height than those predicted by the standard collisional thick target model (CTTM). Several possible explanations have been put forward including the multi-threaded nature of flare loops, pitch-angle scattering, and magnetic mirroring. However, the nonuniform ionization (NUI) structure along the path of the electron beam has not been fully explored as a solution to this problem. Ionized plasma is known to be less effective at producing nonthermal bremsstrahlung HXRs when compared to neutral plasma. If the peak HXR emission was produced in a locally ionized region within the chromosphere, the intensity of emission will be preferentially reduced around this peak, resulting in a more extended source. Due to this effect, along with the associated density enhancement in the upper chromosphere, injection of a beam of electrons into a partially ionized plasma should result in an HXR source that is substantially more vertically extended relative to that for a neutral target. Here we present the results of a modification to the CTTM, which takes into account both a localized form of chromospheric NUI and an increased target density. We find 50 keV HXR source widths, with and without the inclusion of a locally ionized region, of ∼3 Mm and ∼0.7 Mm, respectively. This helps to provide a theoretical solution to the currently open question of overly extended HXR sources.

  14. Rotator Cuff Repair

    Medline Plus

    Full Text Available ... JOHN URIBE, M.D.: I think certainly a physical exam is key. I think symptoms, you can almost diagnose a rotator cuff tear just from the symptoms of the patient. Pain at night, pain with overhead activities, when there are very large errors, there is ...

  15. Observation and numerical modeling of chromospheric evaporation during the impulsive phase of a solar flare

    Science.gov (United States)

    Imada, Shinsuke; Murakami, Izumi; Watanabe, Tetsuya

    2015-10-01

    We have studied the chromospheric evaporation flow during the impulsive phase of the flare by using the Hinode/EUV Imaging Spectrometer observation and 1D hydrodynamic numerical simulation coupled to the time-dependent ionization. The observation clearly shows that the strong redshift can be observed at the base of the flaring loop only during the impulsive phase. We performed two different numerical simulations to reproduce the strong downflows in FeXII and FeXV during the impulsive phase. By changing the thermal conduction coefficient, we carried out the numerical calculation of chromospheric evaporation in the thermal conduction dominant regime (conductivity coefficient κ0 = classical value) and the enthalpy flux dominant regime (κ0 = 0.1 × classical value). The chromospheric evaporation calculation in the enthalpy flux dominant regime could reproduce the strong redshift at the base of the flare during the impulsive phase. This result might indicate that the thermal conduction can be strongly suppressed in some cases of flare. We also find that time-dependent ionization effect is important to reproduce the strong downflows in Fe XII and Fe XV.

  16. Relationship between chromospheric evaporation and magnetic field topology in M-class solar flare

    CERN Document Server

    Sadykov, V M; Sharykin, I N; Zimovets, I V; Dominguez, S Vargas

    2016-01-01

    Chromospheric evaporation is observed as Doppler blueshift during solar flares. It plays one of key roles in dynamics and energetics of solar flares, however, its mechanism is still unknown. In this paper we present a detailed analysis of spatially-resolved multi-wavelength observations of chromospheric evaporation during an M 1.0 class solar flare (SOL2014-06-12T21:12) using data from the NASA's IRIS (Interface Region Imaging Spectrograph) and HMI/SDO (Helioseismic and Magnetic Imager onboard Solar Dynamics Observatory) telescopes, and VIS/NST (Visible Imaging Spectrometer at New Solar Telescope) high-resolution observations, covering the temperature range from 10^4 K to 10^7 K. The results show that the averaged over the region Fe XXI blueshift of the hot evaporating plasma is delayed relative to the C II redshift of the relatively cold chromospheric plasma by about 1 min. The spatial distribution of the delays is not uniform across the region and can be as long as 2 min in several zones. Using vector magne...

  17. First Detection of Chromospheric Magnetic Field Changes During an X1-Flare

    CERN Document Server

    Kleint, Lucia

    2016-01-01

    Stepwise changes of the photospheric magnetic field, which often becomes more horizontal, have been observed during many flares. Previous interpretations include coronal loops that contract and it has been speculated that such jerks could be responsible for sunquakes. Here we report the detection of stepwise chromospheric line-of-sight magnetic field (B$_{\\rm LOS}$) changes obtained through spectropolarimetry of Ca II 8542 \\AA\\ with DST/IBIS during the X1-flare SOL20140329T17:48. They are stronger ($<$640 Mx cm$^{-2}$) and appear in larger areas than their photospheric counterparts ($<$320 Mx cm$^{-2}$). The absolute value of B$_{\\rm LOS}$ more often decreases than increases. Photospheric changes are predominantly located near a polarity inversion line, chromospheric changes near footpoints of loops. The locations of changes are near, but not exactly co-spatial to hard X-ray (HXR) emission and neither to enhanced continuum emission, nor a small sunquake. Enhanced chromospheric and coronal emission is ob...

  18. Observation and numerical modeling of chromospheric evaporation during the impulsive phase of a solar flare

    Energy Technology Data Exchange (ETDEWEB)

    Imada, Shinsuke, E-mail: shinimada@stelab.nagoya-u.ac.jp [Institute for Space-Earth Environmental Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601 (Japan); Murakami, Izumi, E-mail: murakami.izumi@nifs.ac.jp [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki, Gifu 509-5292 (Japan); Department of Fusion Science, SOKENDAI (The Graduate University of Advanced Studies), Toki, Gifu 509-5292 (Japan); Watanabe, Tetsuya, E-mail: watanabe.tetsuya@nao.ac.jp [National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588 (Japan); Department of Astronomical Science, SOKENDAI (The Graduate University of Advanced Studies), Mitaka, Tokyo 181-8588 (Japan)

    2015-10-15

    We have studied the chromospheric evaporation flow during the impulsive phase of the flare by using the Hinode/EUV Imaging Spectrometer observation and 1D hydrodynamic numerical simulation coupled to the time-dependent ionization. The observation clearly shows that the strong redshift can be observed at the base of the flaring loop only during the impulsive phase. We performed two different numerical simulations to reproduce the strong downflows in FeXII and FeXV during the impulsive phase. By changing the thermal conduction coefficient, we carried out the numerical calculation of chromospheric evaporation in the thermal conduction dominant regime (conductivity coefficient κ{sub 0} = classical value) and the enthalpy flux dominant regime (κ{sub 0} = 0.1 × classical value). The chromospheric evaporation calculation in the enthalpy flux dominant regime could reproduce the strong redshift at the base of the flare during the impulsive phase. This result might indicate that the thermal conduction can be strongly suppressed in some cases of flare. We also find that time-dependent ionization effect is important to reproduce the strong downflows in Fe XII and Fe XV.

  19. Mass motion in upper solar chromosphere detected from solar eclipse observation

    Science.gov (United States)

    Li, Zhi; Qu, Zhongquan; Yan, Xiaoli; Dun, Guangtao; Chang, Liang

    2016-05-01

    The eclipse-observed emission lines formed in the upper solar atmosphere can be used to diagnose the atmosphere dynamics which provides an insight to the energy balance of the outer atmosphere. In this paper, we analyze the spectra formed in the upper chromospheric region by a new instrument called Fiber Arrayed Solar Optic Telescope (FASOT) around the Gabon total solar eclipse on November 3, 2013. The double Gaussian fits of the observed profiles are adopted to show enhanced emission in line wings, while red-blue (RB) asymmetry analysis informs that the cool line (about 104 K) profiles can be decomposed into two components and the secondary component is revealed to have a relative velocity of about 16-45 km s^{-1}. The other profiles can be reproduced approximately with single Gaussian fits. From these fittings, it is found that the matter in the upper solar chromosphere is highly dynamic. The motion component along the line-of-sight has a pattern asymmetric about the local solar radius. Most materials undergo significant red shift motions while a little matter show blue shift. Despite the discrepancy of the motion in different lines, we find that the width and the Doppler shifts both are function of the wavelength. These results may help us to understand the complex mass cycle between chromosphere and corona.

  20. What does C II lambda 2325 A emission tell us about chromospheres of red supergiants? - A critical test using Zeta Aurigae-type K supergiants

    Science.gov (United States)

    Schroeder, K.-P.; Reimers, D.; Carpenter, K. G.; Brown, A.

    1988-01-01

    The limitations of the Carpenter et al. (1985) C II intercombination multiplet method of determining the density and geometric extent of red giant chromospheres are presently tested through observation of the C II 2325 A emission of two K-type supergiants whose empirical model chromospheres have been derived by high-resolution IUE observations at eclipse phases. While the observed C II emission fluxes are well reproduced, much of this emission originates in the high-density lower chromosphere.

  1. Chiral Rotational Spectroscopy

    CERN Document Server

    Cameron, Robert P; Barnett, Stephen M

    2015-01-01

    We introduce chiral rotational spectroscopy: a new technique that enables the determination of the individual optical activity polarisability components $G_{XX}'$, $G_{YY}'$, $G_{ZZ}'$, $A_{X,YZ}$, $A_{Y,ZX}$ and $A_{Z,XY}$ of chiral molecules, in a manner that reveals the enantiomeric constitution of a sample whilst yielding an incisive signal even for a racemate. Chiral rotational spectroscopy could find particular use in the analysis of molecules that are chiral by virtue of their isotopic constitution and molecules with multiple chiral centres. The principles that underpin chiral rotational spectroscopy can also be exploited in the search for molecular chirality in space, which, if found, may add weight to hypotheses that biological homochirality and indeed life itself are of cosmic origin.

  2. MUSCLE ACTIVITY RESPONSE TO EXTERNAL MOMENT DURING SINGLE-LEG DROP LANDING IN YOUNG BASKETBALL PLAYERS: THE IMPORTANCE OF BICEPS FEMORIS IN REDUCING INTERNAL ROTATION OF KNEE DURING LANDING

    Directory of Open Access Journals (Sweden)

    Meguru Fujii

    2012-06-01

    Full Text Available Internal tibial rotation with the knee close to full extension combined with valgus collapse during drop landing generally results in non-contact anterior cruciate ligament (ACL injury. The purpose of this study was to investigate the relationship between internal rotation of the knee and muscle activity from internal and external rotator muscles, and between the internal rotation of knee and externally applied loads on the knee during landing in collegiate basketball players. Our hypothesis was that the activity of biceps femoris muscle would be an important factor reducing internal knee rotation during landing. The subjects were 10 collegiate basketball students: 5 females and 5 males. The subjects performed a single-leg drop landing from a 25-cm height. Femoral and tibial kinematics were measured using a 3D optoelectronic tracking system during the drop landings, and then the knee angular motions were determined. Ground reaction forces and muscle activation patterns (lateral hamstring and medial hamstring were simultaneously measured and computed. Results indicated that lower peak internal tibial rotation angle at the time of landing was associated with greater lateral hamstring activity (r = -0.623, p < 0.001. When gender was considered, the statistically significant correlation remained only in females. There was no association between the peak internal tibial rotation angle and the knee internal rotation moment. Control of muscle activity in the lateral to medial hamstring would be an important factor in generating sufficient force to inhibit excessive internal rotation during landing. Strengthening the biceps femoris might mitigate the higher incidence of non-contact ACL injury in female athletes

  3. Rotator Cuff Tears

    Science.gov (United States)

    .org Rotator Cuff Tears Page ( 1 ) A rotator cuff tear is a common cause of pain and disability among adults. In ... went to their doctors because of a rotator cuff problem. A torn rotator cuff will weaken your ...

  4. Coupling convectively driven atmospheric circulation to surface rotation: Evidence for active methane weather in the observed spin rate drift of Titan

    OpenAIRE

    Mitchell, Jonathan L.

    2008-01-01

    A large drift in the rotation rate of Titan observed by Cassini provided the first evidence of a subsurface ocean isolating the massive core from the icy crust. Seasonal exchange of angular momentum between the surface and atmosphere accounts for the magnitude of the effect, but observations lag the expected signal by a few years. We argue that this time lag is due to the presence of an active methane weather cycle in the atmosphere. An analytic model of the seasonal cycle of atmospheric angu...

  5. Active head rotation in benign positional paroxysmal vertigo Da rotação cefálica ativa na vertigem posicional paroxística benigna

    Directory of Open Access Journals (Sweden)

    Fernando Freitas Ganança

    2009-08-01

    Full Text Available Benign Positional Paroxysmal Vertigo (BPPV is one of the most common vestibular diseases and the active head rotation test one of the most modern methods of vestibular function assessment. AIM: this study aims to verify if the active head rotation test may reveal signs of horizontal and/or vertical vestibulo-ocular reflex dysfunction in vertigo patients suspected for BPPV. STUDY DESIGN: retrospective series study. MATERIALS AND METHOD: Neurotological evaluation including computerized electronystagmography and active head rotation on the horizontal and vertical axes were conducted in 100 patients suspected for BPPV patients. Results: Isolated or associated abnormalities of the horizontal and/or vertical vestibulo-ocular reflex gain, phase and symmetry were indicative of vestibular involvement and found in 77.0% of the BPPV patients. CONCLUSION: the active head rotation test revealed horizontal and/or vertical vestibulo-ocular reflex dysfunctions in a relevant number of BPPV patients.A vertigem posicional paroxística benigna (VPPB corresponde a uma das vestibulopatias mais comuns e a rotação cefálica ativa um dos métodos mais modernos de avaliação da função vestibular. OBJETIVO: O objetivo desta pesquisa foi verificar se a prova de rotação cefálica ativa pode revelar sinais de disfunção do reflexo vestíbulo-ocular horizontal e/ou vertical em pacientes vertiginosos com hipótese diagnóstica de VPPB. DESENHO DO ESTUDO: Estudo de série retrospectivo. MATERIAL E MÉTODO: Uma avaliação otoneurológica incluindo a eletronistagmografia computadorizada e a prova de rotação cefálica ativa, no plano horizontal e vertical foi conduzida em 100 pacientes com hipótese diagnóstica de VPPB. Resultados: Alterações isoladas ou associadas de ganho, fase e assimetria do reflexo vestíbulo-ocular horizontal e/ou vertical, foram os achados indicativos de comprometimento vestibular em 77,0% dos casos de VPPB. CONCLUSÃO: A prova de rota

  6. CO rotational line emission from a dense knot in Cas A Evidence for active post-reverse-shock chemistry

    CERN Document Server

    Wallström, Sofia H J; Salgado, Francisco; Black, John H; Cherchneff, Isabelle; Muller, Sébastien; Berné, Olivier; Rho, Jeonghee; Tielens, Alexander G G M

    2013-01-01

    We report a Herschel detection of high-J rotational CO lines from a dense knot in the supernova remnant Cas A. Based on a combined analysis of these rotational lines, and previously observed ro-vibrational CO lines, we find the gas to be warm (two components at 400 and 2000 K) and dense (1e6-7 cm-3), with a CO column density of 5e17 cm-2. This, along with the broad line widths (400 kms-1), suggests that the CO emission originates in the post-shock region of the reverse shock. As the passage of the reverse shock dissociates any existing molecules, the CO has most likely reformed in the last few years, in the post-shock gas. The CO cooling time is comparable to the CO formation time, so possible heating sources (UV photons from the shock front, X-rays, electron conduction) to maintain the large column density of warm CO are discussed.

  7. Numerical simulation of the three-dimensional structure and dynamics of the non-magnetic solar chromosphere

    CERN Document Server

    Wedemeyer, S; Steffen, M; Ludwig, H G; Holweger, H; Wedemeyer, Sven; Freytag, Bernd; Steffen, Matthias; Ludwig, Hans-G\\"unter; Holweger, Hartmut

    2004-01-01

    Three-dimensional numerical simulations with CO5BOLD, a new radiation hydrodynamics code, result in a dynamic, thermally bifurcated model of the non-magnetic chromosphere of the quiet Sun. The 3-D model includes the middle and low chromosphere, the photosphere, and the top of the convection zone, where acoustic waves are excited by convective motions. While the waves propagate upwards, they steepen into shocks, dissipate, and deposit their mechanical energy as heat in the chromosphere. Our numerical simulations show for the first time a complex 3-D structure of the chromospheric layers, formed by the interaction of shock waves. Horizontal temperature cross-sections of the model chromosphere exhibit a network of hot filaments and enclosed cool regions. The horizontal pattern evolves on short time-scales of the order of typically 20 - 25 seconds, and has spatial scales comparable to those of the underlying granulation. The resulting thermal bifurcation, i.e., the co-existence of cold and hot regions, provides t...

  8. Rotation, inflation, and lithium in the Pleiades

    CERN Document Server

    Somers, Garrett

    2014-01-01

    The rapidly rotating cool dwarfs of the Pleiades are rich in lithium relative to their slowly rotating counterparts. Motivated by observations of inflated radii in young, active stars, and by calculations showing that radius inflation inhibits pre-main sequence (pre-MS) Li destruction, we test whether this pattern could arise from a connection between stellar rotation rate and radius inflation on the pre-MS. We demonstrate that pre-MS radius inflation can efficiently suppress lithium destruction by rotationally induced mixing, and that the net effect of inflation and rotational mixing is a pattern where rotation correlates with lithium abundance for $M_{*} {\\rm M}_{\\odot}$, similar to the empirical trend in the Pleiades. Next, we adopt different prescriptions for the dependence of inflation on rotation, and compare their predictions to the Pleiades lithium/rotation pattern. A connection between rotation and radius inflation naturally and generically reproduces the important qualitative features of this patte...

  9. Solar calibration of stellar rotation tracers

    Science.gov (United States)

    Labonte, B. J.

    1982-01-01

    A study of the time variability of the disk-integrated solar magnetic flux, with a view to the behavior of emission-line intensity variations observed in lower main sequence stars, has determined that solar rotation modulation of the integrated flux is present in 75% of all rotations. For observing intervals of more than twice the lifetime of the features causing rotational modulation, the correct rotation period is identified in more than 90% of all cases. The optimum time for measuring rotational modulation is the decay phase of the activity cycle, and the solar rotation period is measured with an accuracy of a few percent. The lifetime of a rotational modulation period is approximately five rotations, and a sensitivity limit of Delta S= 0.005 is found for the Vaughan et al (1981) stellar rotation measures.

  10. The Connection between the Corona and Chromosphere during a Multiple Event Observation

    Science.gov (United States)

    Cirtain, Jonathan

    2008-01-01

    NOAA AR 10940 (Jan 25 2007 - Feb 09 2007) rotated into view producing a CME and EIT wave, and followed by at least 27 B and C class flares as rotated across the disk. As it reached the west limb it proceeded to produce a sequence of jets and filament eruptions that were observed in unprecedented detail. I present observations from TRACE, EIT, HINODE XRT / SOT / EIS, RHESSI, GOES 12 and STEREO-A COR 1 to investigate part of the sequence of events that lead to a filament eruption and sympathetic jet at 02:30 - 03:00 02/09/07. I concentrate on the topology changes and infer that external breakout reconnection was the mechanism that lead to the removal of overlying field and subsequent filament eruption I will also discuss the instrument development activities at MSFC.

  11. Differential rotation measurement of soft X-Ray corona

    CERN Document Server

    Chandra, Satish; Iyer, K N

    2010-01-01

    The aim of this paper is to study the latitudinal variation in the solar rotation in soft X-ray corona. The time series bins are formed on different latitude regions of the solar full disk (SFD) images that extend from 80 degree South to 80 degree North. These SFD images are obtained with the soft X-ray telescope (SXT) on board the Yohkoh solar observatory. The autocorrelation analyses are performed with the time series that track the SXR flux modulations in the solar corona. Then for each year, extending from 1992 to 2001, we obtain the coronal sidereal rotation rate as a function of the latitude. The present analysis from SXR radiation reveals that; (i) the equatorial rotation rate of the corona is comparable to the rotation rate of the photosphere and the chromosphere, (ii) the differential profile with respect to the latitude varies throughout the period of the study; it is more in the year 1999 and least in 1994 and (iii) the equatorial rotation period varies systematically with sunspot numbers and indic...

  12. FAST MAGNETIC RECONNECTION IN THE SOLAR CHROMOSPHERE MEDIATED BY THE PLASMOID INSTABILITY

    Energy Technology Data Exchange (ETDEWEB)

    Ni, Lei; Kliem, Bernhard; Lin, Jun [Yunnan Observatories, Chinese Academy of Sciences, Kunming 650011 (China); Wu, Ning, E-mail: leini@ynao.ac.cn [School of Tourism and Geography, Yunnan Normal University, Kunming 650031 (China)

    2015-01-20

    Magnetic reconnection in the partially ionized solar chromosphere is studied in 2.5 dimensional magnetohydrodynamic simulations including radiative cooling and ambipolar diffusion. A Harris current sheet with and without a guide field is considered. Characteristic values of the parameters in the middle chromosphere imply a high magnetic Reynolds number of ∼10{sup 6}-10{sup 7} in the present simulations. Fast magnetic reconnection then develops as a consequence of the plasmoid instability without the need to invoke anomalous resistivity enhancements. Multiple levels of the instability are followed as it cascades to smaller scales, which approach the ion inertial length. The reconnection rate, normalized to the asymptotic values of magnetic field and Alfvén velocity in the inflow region, reaches values in the range ∼0.01-0.03 throughout the cascading plasmoid formation and for zero as well as for strong guide field. The outflow velocity reaches ≈40 km s{sup –1}. Slow-mode shocks extend from the X-points, heating the plasmoids up to ∼8 × 10{sup 4} K. In the case of zero guide field, the inclusion of both ambipolar diffusion and radiative cooling causes a rapid thinning of the current sheet (down to ∼30 m) and early formation of secondary islands. Both of these processes have very little effect on the plasmoid instability for a strong guide field. The reconnection rates, temperature enhancements, and upward outflow velocities from the vertical current sheet correspond well to their characteristic values in chromospheric jets.

  13. A Comparative Study of Magnetic Fields in the Solar Photosphere and Chromosphere at Equatorial and Polar Latitudes

    CERN Document Server

    Petrie, Gordon J D; 10.1088/0004-637X/699/1/871

    2010-01-01

    Besides their own intrinsic interest, correct interpretation of solar surface magnetic field observations is crucial to our ability to describe the global magnetic structure of the solar atmosphere. Photospheric magnetograms are often used as lower boundary conditions in models of the corona, but not data from the nearly force-free chromosphere. National Solar Observatory's (NSO) Synoptic Optical Long-term Investigations of the Sun VSM (Vector Spectromagnetograph) produces full-disk line-of-sight magnetic flux images deriving from both photospheric and chromospheric layers on a daily basis. In this paper, we investigate key properties of the magnetic field in these two layers using more than five years of VSM data. We find from near-equatorial measurements that the east-west inclination angle of most photospheric fields is less than about 12{\\deg}, while chromospheric fields expand in all directions to a significant degree. Using a simple stereoscopic inversion, we find evidence that photospheric polar fields...

  14. Solar-Type Activity: Epochs of Cycle Formation

    CERN Document Server

    Katsova, M M; Livshits, M A

    2015-01-01

    The diagram of indices of coronal and chromospheric activity allowed us to reveal stars where solar-type activity appears and regular cycles are forming. Using new consideration of a relation between coronal activity and the rotation rate, together with new data on the ages of open clusters, we estimate the age of the young Sun corresponding to the epoch of formation of its cycle. The properties of the activity of this young Sun, with an age slightly older than one billion years, are briefly discussed. An analysis of available data on the long-term regular variability of late-type stars leads to the conclusion that duration of a cycle associated with solar-type activity increases with the deceleration of the stellar rotation; i.e., with age. New data on the magnetic fields of comparatively young G stars and changes in the role of the large-scale and the local magnetic fields in the formation of the activity of the young Sun are discussed. Studies in this area aim to provide observational tests aimed at identi...

  15. Activity indicators and stellar parameters of the Kepler targets. An application of the ROTFIT pipeline to LAMOST-Kepler stellar spectra

    Science.gov (United States)

    Frasca, A.; Molenda-Żakowicz, J.; De Cat, P.; Catanzaro, G.; Fu, J. N.; Ren, A. B.; Luo, A. L.; Shi, J. R.; Wu, Y.; Zhang, H. T.

    2016-10-01

    Aims: A comprehensive and homogeneous determination of stellar parameters for the stars observed by the Kepler space telescope is necessary for statistical studies of their properties. As a result of the large number of stars monitored by Kepler, the largest and more complete databases of stellar parameters published to date are multiband photometric surveys. The LAMOST-Kepler survey, whose spectra are analyzed in the present paper, was the first large spectroscopic project, which started in 2011 and aimed at filling that gap. In this work we present the results of our analysis, which is focused on selecting spectra with emission lines and chromospherically active stars by means of the spectral subtraction of inactive templates. The spectroscopic determination of the atmospheric parameters for a large number of stars is a by-product of our analysis. Methods: We have used a purposely developed version of the code ROTFIT for the determination of the stellar parameters by exploiting a wide and homogeneous collection of real star spectra, namely the Indo US library. We provide a catalog with the atmospheric parameters (Teff, log g, and [Fe/H]), radial velocity (RV), and an estimate of the projected rotation velocity (vsini). For cool stars (Teff≤ 6000 K), we also calculated the Hα and Ca ii-IRT fluxes, which are important proxies of chromospheric activity. Results: We have derived the RV and atmospheric parameters for 61 753 spectra of 51 385 stars. The average uncertainties, which we estimate from the stars observed more than once, are about 12 km s-1, 1.3%, 0.05 dex, and 0.06 dex for RV, Teff, log g, and [Fe/H], respectively, although they are larger for the spectra with a very low signal-to-noise ratio. Literature data for a few hundred stars (mainly from high-resolution spectroscopy) were used to peform quality control of our results. The final accuracy of the RV is about 14 km s-1. The accuracy of the Teff, log g, and [Fe/H] measurements is about 3.5%, 0.3 dex

  16. Formation of the O I resonance triplet and intercombination doublet in the solar chromosphere

    Science.gov (United States)

    Skelton, D. L.; Shine, R. A.

    1982-01-01

    Spectrum synthesis calculations are presented for the O I resonance triplet at 1304 A and the intercombination doublet at 1358 A for the solar atmosphere and several variants, allowing for triplet fluorescence by the Ly-beta emission of H I. Profiles, synthesized from a seven-level plus continuum O I atom are compared to observations taken with the high-resolution spectrometer on OSO 8. It is found that the O I triplet emission is dominated by the Ly-beta fluorescence and that the agreement between observations and profiles computed with current chromospheric models is much improved over earlier studies.

  17. MHS sunspot model from deep sub-photospheric to chromospheric layers

    CERN Document Server

    Khomenko, E

    2008-01-01

    In order to understand the influence of magnetic fields on the propagation properties of waves, as derived from different local helioseismology techniques, forward modeling of waves is required. Such calculations need a model in magnetohydrostatic equilibrium as initial atmosphere to propagate oscillations through it. We provide a method to construct such a model in equilibrium for a wide range of parameters to be used for simulations of artificial helioseismologic data. The method combine the advantages of self-similar solutions and current-distributed models. A set of models is developed by numerical integration of magnetohydrostatic equations from the sub-photospheric to chromospheric layers.

  18. Observation and numerical modeling of chromospheric evaporation during the impulsive phase of a solar flare

    OpenAIRE

    Imada, Shinsuke; MURAKAMI, Izumi; Watanabe, Tetsuya

    2015-01-01

    We have studied the chromospheric evaporation flow during the impulsive phase of the flare by using the Hinode/EIS observation and 1D hydrodynamic numerical simulation coupled to the time-dependent ionization. The observation clearly shows that the strong redshift can be observed at the base of the flaring loop only during the impulsive phase. We performed two different numerical simulations to reproduce the strong downflows in FeXII and FeXV during the impulsive phase. By changing the therma...

  19. Continued activity in P/2013 P5 PANSTARRS. Unexpected comet, rotational break-up, or rubbing binary asteroid?

    Science.gov (United States)

    Hainaut, O. R.; Boehnhardt, H.; Snodgrass, C.; Meech, K. J.; Deller, J.; Gillon, M.; Jehin, E.; Kuehrt, E.; Lowry, S. C.; Manfroid, J.; Micheli, M.; Mottola, S.; Opitom, C.; Vincent, J.-B.; Wainscoat, R.

    2014-03-01

    The object P/2013 P5 PANSTARRS was discovered in August 2013, displaying a cometary tail, but its orbital elements indicated that it was a typical member of the inner asteroid main belt. We monitored the object from 2013 August 30 until 2013 October 05 using the CFHT 3.6 m telescope (Mauna Kea, HI), the NTT (ESO, La Silla), the CA 1.23 m telescope (Calar Alto), the Perkins 1.8m (Lowell) and the 0.6 m TRAPPIST telescope (La Silla). We measured its nuclear radius to be r ≲ 0.25-0.29 km, and its colours g' - r' = 0.58 ± 0.05 and r' - i' = 0.23 ± 0.06, typical for an S-class asteroid, as expected for an object in the inner asteroid belt and in the vicinity of the Flora collisional family. We failed to detect any rotational light curve with an amplitude France Hawaii Telescope, Mauna Kea, Hawaii, and the 1.2 m telescope on Calar Alto, Spain.

  20. Rotating attractors

    International Nuclear Information System (INIS)

    We prove that, in a general higher derivative theory of gravity coupled to abelian gauge fields and neutral scalar fields, the entropy and the near horizon background of a rotating extremal black hole is obtained by extremizing an entropy function which depends only on the parameters labeling the near horizon background and the electric and magnetic charges and angular momentum carried by the black hole. If the entropy function has a unique extremum then this extremum must be independent of the asymptotic values of the moduli scalar fields and the solution exhibits attractor behaviour. If the entropy function has flat directions then the near horizon background is not uniquely determined by the extremization equations and could depend on the asymptotic data on the moduli fields, but the value of the entropy is still independent of this asymptotic data. We illustrate these results in the context of two derivative theories of gravity in several examples. These include Kerr black hole, Kerr-Newman black hole, black holes in Kaluza-Klein theory, and black holes in toroidally compactified heterotic string theory

  1. Explosive Chromospheric Evaporation in a Circular-ribbon Flare

    CERN Document Server

    Zhang, Q M; Ning, Z J; Su, Y N; Ji, H S; Guo, Y

    2016-01-01

    In this paper, we report our multiwavelength observations of the C4.2 circular-ribbon flare in active region (AR) 12434 on 2015 October 16. The short-lived flare was associated with positive magnetic polarities and a negative polarity inside, as revealed by the photospheric line-of-sight magnetograms. Such magnetic pattern is strongly indicative of a magnetic null point and spine-fan configuration in the corona. The flare was triggered by the eruption of a mini-filament residing in the AR, which produced the inner flare ribbon (IFR) and the southern part of a closed circular flare ribbon (CFR). When the eruptive filament reached the null point, it triggered null point magnetic reconnection with the ambient open field and generated the bright CFR and a blowout jet. Raster observations of the \\textit{Interface Region Imaging Spectrograph} (\\textit{IRIS}) show plasma upflow at speed of 35$-$120 km s$^{-1}$ in the Fe {\\sc xxi} 1354.09 {\\AA} line ($\\log T\\approx7.05$) and downflow at speed of 10$-$60 km s$^{-1}$ i...

  2. Limits of shock heating for the chromospheres of low-gravity stars

    Science.gov (United States)

    Gadelmavla, Diaa

    2016-07-01

    This work discusses theoretical limits of chromospheric heating by shock waves in stars with low surface gravity. The computations are self consistent, and based on waves generated in stellar convection zones. We employ the new finding of the mixing length parameter α = 1.8. The Ca~II~H+K and Mg~II~h+k fluxes are computed assuming partial redistribution (PRD). The results show the strong dependence of the number of formed shocks and their transmission through the atmosphere on the value of the surface gravity. For stars with solar gravity, heating by shock waves is very efficient, this efficiency decreases with decreasing the value of G. For fixed effective temperature and solar metallicity, the temperature of the chromosphere increase with increasing the stellar surface gravity. A linear correlation is found between the surface gravity and the number of transmitted shocks. The emitted Mg~II and Ca~II fluxes show also a linear dependance on G. It has been found that there is a clear threshold value of G where no shocks are formed. The theoretically computed basal Ca~II and Mg~II fluxes follow simple formulae as a function of stellar surface gravity.

  3. THE CHROMOSPHERIC SOLAR MILLIMETER-WAVE CAVITY ORIGINATES IN THE TEMPERATURE MINIMUM REGION

    Energy Technology Data Exchange (ETDEWEB)

    De la Luz, Victor [Instituto Nacional de Astrofisica, Optica y Electronica, Tonantzintla, Puebla, Mexico, Apdo. Postal 51 y 216, 72000 (Mexico); Raulin, Jean-Pierre [CRAAM, Universidade Presbiteriana Mackenzie, Sao Paulo, SP 01302-907 (Brazil); Lara, Alejandro [Instituto de Geofisica, Universidad Nacional Autonoma de Mexico, Mexico 04510 (Mexico)

    2013-01-10

    We present a detailed theoretical analysis of the local radio emission at the lower part of the solar atmosphere. To accomplish this, we have used a numerical code to simulate the emission and transport of high-frequency electromagnetic waves from 2 GHz up to 10 THz. As initial conditions, we used VALC, SEL05, and C7 solar chromospheric models. In this way, the generated synthetic spectra allow us to study the local emission and absorption processes with high resolution in both altitude and frequency. Associated with the temperature minimum predicted by these models, we found that the local optical depth at millimeter wavelengths remains constant, producing an optically thin layer that is surrounded by two layers of high local emission. We call this structure the Chromospheric Solar Millimeter-wave Cavity (CSMC). The temperature profile, which features temperature minimum layers and a subsequent temperature rise, produces the CSMC phenomenon. The CSMC shows the complexity of the relation between the theoretical temperature profile and the observed brightness temperature and may help us to understand the dispersion of the observed brightness temperature in the millimeter wavelength range.

  4. Qualities of Sequential Chromospheric Brightenings Observed in Optical and UV Images

    CERN Document Server

    Kirk, Michael S; Jackiewicz, Jason; McAteer, R T James

    2014-01-01

    Chromospheric flare ribbons observed in H-alpha appear well-organized when first examined: ribbons impulsively brighten, morphologically evolve, and exponentially decay back to pre-flare levels. Upon closer inspection of H-alpha flares, there is often a significant number of compact areas brightening in concert with the flare eruption but are spatially separated from the evolving flare ribbon. One class of these brightenings is known as sequential chromospheric brightenings (SCBs). SCBs are often observed in the intimidate vicinity of erupting flares and are associated with coronal mass ejections. In the past decade there have been several previous investigations of SCBs. These studies have exclusively relied upon H-alphaimages to discover and analyze these ephemeral brightenings. This work employs the automated detection algorithm of Kirk et al. (2011) to extract the physical qualities of SCBs in observations of ground-based H-alpha images and complementary AIA images in HeII, Civ, and 1700 \\AA. The meta-dat...

  5. Oscillation of Newly Formed Loops After Magnetic Reconnection in the Solar Chromosphere

    CERN Document Server

    Yang, Shuhong

    2016-01-01

    With the high spatial and temporal resolution H$\\alpha$ images from the New Vacuum Solar Telescope, we focus on two groups of loops with a X-shaped configuration in the dynamic chromosphere. We find that the anti-directed loops approach each other and reconnect continually. The connectivity of the loops is changed and new loops are formed and stack together. The stacked loops are sharply bent, implying that they are greatly impacted by the magnetic tension force. When another more reconnection process takes place, one new loop is formed and stacks with the previously formed ones. Meanwhile, the stacked loops retract suddenly and move toward the balance position, performing an overshoot movement, which led to an oscillation with an average period of about 45 s. The oscillation of newly formed loops after magnetic reconnection in the chromosphere is observed for the first time. We suggest that the stability of the stacked loops is destroyed due to the join of the last new loop and then suddenly retract under th...

  6. Overdamped Alfven waves due to ion-neutral collisions in the solar chromosphere

    CERN Document Server

    Soler, R; Zaqarashvili, T V

    2014-01-01

    Alfvenic waves are ubiquitous in the solar atmosphere and their dissipation may play an important role in atmospheric heating. In the partially ionized solar chromosphere, collisions between ions and neutrals are an efficient dissipative mechanism for Alfven waves with frequencies near the ion-neutral collision frequency. The collision frequency is proportional to the ion-neutral collision cross section for momentum transfer. Here, we investigate Alfven wave damping as a function of height in a simplified chromospheric model and compare the results for two sets of collision cross sections, namely those of the classic hard-sphere model and those based on recent quantum-mechanical computations. We find important differences between the results for the two sets of cross sections. There is a critical interval of wavelengths for which impulsively excited Alfven waves are overdamped as a result of the strong ion-neutral dissipation. The critical wavelengths are in the range from 1 km to 50 km for the hard-sphere cr...

  7. Fast magnetic reconnection in the solar chromosphere mediated by the plasmoid instability

    CERN Document Server

    Ni, Lei; Lin, Jun; Wu, Ning

    2015-01-01

    Magnetic reconnection in the partially ionized solar chromosphere is studied in 2.5-dimensional magnetohydrodynamic simulations including radiative cooling and ambipolar diffusion. A Harris current sheet with and without a guide field is considered. Characteristic values of the parameters in the middle chromosphere imply a high magnetic Reynolds number of $\\sim10^{6}\\mbox{--}10^7$ in the present simulations. Fast magnetic reconnection then develops as a consequence of the plasmoid instability without the need to invoke anomalous resistivity enhancements. Multiple levels of the instability are followed as it cascades to smaller scales, which approach the ion inertial length. The reconnection rate, normalized to the asymptotic values of magnetic field and Alfv\\'en velocity in the inflow region, reaches values in the range $\\sim0.01\\mbox{--}0.03$ throughout the cascading plasmoid formation and for zero as well as for strong guide field. The out-flow velocity reaches $\\approx40$~km\\,s$^{-1}$. Slow-mode shocks ext...

  8. On fibrils and field lines: The nature of H$\\alpha$ fibrils in the solar chromosphere

    CERN Document Server

    Leenaarts, Jorrit; van der Voort, Luc Rouppe

    2015-01-01

    Observations of the solar chromosphere in the line-core of the \\Halpha\\ line show dark elongated structures called fibrils that show swaying motion. We performed a 3D radiation-MHD simulation of a network region, and computed synthetic \\Halpha\\ images from this simulation to investigate the relation between fibrils and the magnetic field lines in the chromosphere. The periods, amplitudes and phase-speeds of the synthetic fibrils are consistent with those observed. We analyse the relation between the synthetic fibrils and the field lines threading through them, and find that some fibrils trace out the same field line along the fibril's length, but there are also fibrils that sample different field lines at different locations along their length. Fibrils sample the same field lines on a time scale of $\\sim200$~s. This is shorter than their own lifetime. We analysed the evolution of the atmosphere along a number of field lines that thread through fibrils and find that they carry slow-mode waves that load mass in...

  9. The Chromospheric Structure and Wind of the K-Supergiant Lambda Velorum

    Science.gov (United States)

    Carpenter, Kenneth G.; Ayres, T. R.; Brown, A.; Harper, G. M.; Wahlgren, G. M.

    2011-01-01

    Recently, the 1326-1466 Å region of the FUV spectrum of the K4 Ib-II supergiant Lambda Vel was observed with the Cosmic Origins Spectrograph (COS) on HST, as part of the Ayres and Redfield Cycle 17 SNAP program "SNAPing Coronal Iron.” This spectrum covers a region not previously recorded in Lambda Vel at high resolution and, in a mere 20 minutes of exposure, reveals an amazing treasure trove of information. It shows a wide variety of strong atomic and molecular emission lines formed in the chromosphere and multiple atomic absorption lines formed in the stellar wind, both superposed on a bright chromospheric continuum. Further evidence of the stellar wind is seen in the P Cygni profiles presented by the C II (UV 1) lines near 1335 Å. We combine this COS data with archival GHRS spectra of other selected FUV and NUV regions to better characterize the outer atmospheric structure of the star and its massive, outflowing wind.

  10. A Tale Of Two Spicules: The Impact of Spicules on the Magnetic Chromosphere

    CERN Document Server

    De Pontieu, Bart; Hansteen, Viggo H; Carlsson, Mats; Schrijver, C J; Tarbell, T D; Title, A M; Shine, R A; Suematsu, Y; Tsuneta, S; Katsukawa, Y; Ichimoto, K; Shimizu, T; Nagata, S

    2007-01-01

    We use high-resolution observations of the Sun in Ca II H 3968 A from the Solar Optical Telescope on Hinode to show that there are at least two types of spicules that dominate the structure of the magnetic solar chromosphere. Both types are tied to the relentless magnetoconvective driving in the photosphere, but have very different dynamic properties. ``Type-I'' spicules are driven by shock waves that form when global oscillations and convective flows leak into the upper atmosphere along magnetic field lines on 3-7 minute timescales. ``Type-II'' spicules are much more dynamic: they form rapidly (in ~10s), are very thin (<200km wide), have lifetimes of 10-150s (at any one height) and seem to be rapidly heated to (at least) transition region temperatures, sending material through the chromosphere at speeds of order 50-150 km/s. The properties of Type II spicules suggest a formation process that is a consequence of magnetic reconnection, typically in the vicinity of magnetic flux concentrations in plage and n...

  11. Ca II H and K Chromospheric Emission Lines in Late K and M Dwarfs

    CERN Document Server

    Rauscher, E; Marcy, Geoffrey W.; Rauscher, Emily

    2006-01-01

    We have measured the profiles of the Ca II H and K chromospheric emission lines in 147 main sequence stars of spectral type M5-K7 (0.30-0.55 solar masses) using multiple high resolution spectra obtained during six years with the HIRES spectrometer on the Keck 1 telescope. Remarkably, the average FWHM, equivalent widths, and line luminosities of Ca II H and K increase by a factor of 3 with increasing stellar mass over this small range of stellar masses. We fit the H and K lines with a double Gaussian model to represent both the chromospheric emission and the non-LTE central absorption. Most of the sample stars display a central absorption that is typically redshifted by ~0.1 km/s relative to the emission, but the nature of this velocity gradient remains unknown. The FWHM of the H and K lines increase with stellar luminosity, reminiscent of the Wilson-Bappu effect in FGK-type stars. Both the equivalent widths and FWHM exhibit modest temporal variability in individual stars. At a given value of M_v, stars exhibi...

  12. Magnetic and Velocity Field of Sunspots in the Photosphere and Upper Chromosphere

    Science.gov (United States)

    Joshi, Jayant

    2014-03-01

    Sunspots, the dark blemishes on the solar surface have been widely studied for the past 400 years. Sunspots are the most readily identifiable manifestation of magnetic field concentrations on the solar surface. Interaction of the sunspot magnetic field with the plasma makes them one of the most interesting objects for research in solar physics. This thesis presents a study of the photospheric and upper chromospheric velocity and magnetic field structure of sunspots by analyzing spectro-polarimetric observations. These observations comprise different spectral lines obtained with two ground based telescopes and a space borne telescope. The lower brightness of sunspots on the solar surface is due to the presence of strong magnetic fields (up to 4 kG in the umbra), which makes the overturning convection inefficient. Convection is the main heat transport mechanism in the quiet Sun. The Penumbra, the annular part around the umbra has a brightness of about 75% of that in the quiet Sun. At the same time it has an average magnetic field strength of around 1.5 kG. The brightness of penumbrae has been an enigma for solar physicists for a long time. Theoretical models like the gappy penumbra model and the convective roll model as well as magnetohydrodynamic (MHD) simulations suggest that the heat transport in penumbrae is based on the presence of overturning convection. Direct observational evidence for the presence of convective flows in penumbral filaments was missing so far. In Chapter 3 we present observations of a penumbra in the C i 5380 Å spectral line formed in the deep photosphere. These high spatial resolution observations (0. '' 14) are obtained with the Swedish 1-m Solar Telescope (SST). Doppler map clearly shows the presence of several dark downflow lanes at the edges of the penumbral filaments which surround the bright upflows at the center of the filaments, supporting overturning convection as a mechanism of heat transport in penumbrae. Chapter 4 analyses the

  13. A simple model of chromospheric evaporation and condensation driven conductively in a solar flare

    Energy Technology Data Exchange (ETDEWEB)

    Longcope, D. W. [Department of Physics, Montana State University, Bozeman, MT 59717 (United States)

    2014-11-01

    Magnetic energy released in the corona by solar flares reaches the chromosphere where it drives characteristic upflows and downflows known as evaporation and condensation. These flows are studied here for the case where energy is transported to the chromosphere by thermal conduction. An analytic model is used to develop relations by which the density and velocity of each flow can be predicted from coronal parameters including the flare's energy flux F. These relations are explored and refined using a series of numerical investigations in which the transition region (TR) is represented by a simplified density jump. The maximum evaporation velocity, for example, is well approximated by v{sub e} ≅ 0.38(F/ρ{sub co,} {sub 0}){sup 1/3}, where ρ{sub co,} {sub 0} is the mass density of the pre-flare corona. This and the other relations are found to fit simulations using more realistic models of the TR both performed in this work, and taken from a variety of previously published investigations. These relations offer a novel and efficient means of simulating coronal reconnection without neglecting entirely the effects of evaporation.

  14. Oscillatory Response of the Solar Chromosphere to a Strong Downflow above a Sunspot

    CERN Document Server

    Kwak, Hannah; Song, Donguk; Kim, Yeon-Han; Lim, Eun-Kyung; Madjarska, Maria S

    2016-01-01

    We report three-minute oscillations in the solar chromosphere driven by a strong downflow event in a sunspot. We used the Fast Imaging Solar Spectrograph of the 1.6 m New Solar Telescope and the Interface Region Imaging Spectrograph (IRIS). The strong downflow event is identified in the chromospheric and transition region lines above the sunspot umbra. After the event, oscillations occur at the same region. The amplitude of the Doppler velocity oscillations is 2 km/s, and gradually decreases with time. In addition, the period of the oscillations gradually increases from 2.7 minutes to 3.3 minutes. In the IRIS 1330 slit-jaw images, we identify a transient brightening near the footpoint of the downflow detected in the Ha+0.5A image. The characteristics of the downflowing material are consistent with those of sunspot plumes. Based on our findings, we suggest that the gravitationally stratified atmosphere came to oscillate with three minute period in response to the impulsive downflow event as was theoretically i...

  15. Supergranulation-driven Alfven waves in the solar chromosphere and related phenomena.

    Science.gov (United States)

    Hollweg, J. V.

    1972-01-01

    It has recently been recognized that Alfven waves frequently dominate the microstructure of the solar wind at the orbit of the earth. We seek a solar source for these waves, and consider here their excitation by the supergranular motions. The wave equation is solved in a horizontally stratified, bi-exponential solar atmosphere. The interaction of Alfven wave motions associated with adjacent supergranules is discussed qualitatively. The Alfven wave effectively conveys the supergranular motions to great heights in the chromosphere. These motions are oppositely directed above intersupergranule boundaries, and compress the magnetic field there. A naive calculation of the compression, based on balancing dynamic and magnetic pressures, leads to adequate agreement with observations of the chromospheric network. We find that the magnetic field is appreciably compressed only below about 1500 km, and on this basis we reject theories of spicule formation which require large vertical magnetic fields at the heights reached by spicules. We advance a theory for spicule formation, in which spicules form as a result of matter being squeezed upward, out of the compression region between adjacent supergranules.

  16. Oscillations of the Sun's chromosphere. VIII. Horizontal motions of CA II K bright points

    Science.gov (United States)

    Wellstein, S.; Kneer, F.; von Uexkuell, M.

    1998-07-01

    We present a re-analysis of a time series of solar disc centre Ca ii K2v filtergrams taken with the Vacuum Tower Telescope at the Observatorio del Teide/Tenerife. We concentrate on the measurements of proper motions of K grains in the internetwork regions and of bright points in the chromospheric network. For the K grains we find horizontal velocities of 2-15 km s(-1) , values much lower than those deduced by Steffens et al. (1996) from a smaller sample, analyzed differently. In accord with our earlier conclusion from k-omega diagrams (Kneer & von Uexkuell 1993) and with numerical simulations by Carlsson & Stein (1997) high-frequency (pseudo-) p-modes can viably explain the K grains. Yet, the rareness of the K grains may indicate a connection to magnetic fields. The proper motions of the network bright points are non-periodic, very impulsive, with velocities of 7-10 km s(-1) . Estimating the energy flux if these motions are magnetic kink waves (cf. Choudhuri et al. 1993, Muller et al. 1994), we find it sufficient to heat the solar corona, but too small to cover the radiative losses of the chromospheric network.

  17. Observational Searches for Chromospheric -Mode Oscillations from CaII H-Line Observations

    Indian Academy of Sciences (India)

    R. Kariyappa; L. Damé; K. M. Hiremath

    2006-06-01

    We have used a high spatial and temporal resolution of long time sequence of spectra in CaII H-line obtained at the Vacuum Tower Telescope (VTT) of the Sacramento Peak Observatory on a quiet region at the center of the solar disk over a large number of bright points and network elements to search for atmospheric (chromospheric) -mode oscillations. An important parameter of the H-line profile, intensity at H2V(IH2V), has been derived from a large number of line profiles. We derived the light curves of all the bright points and network elements. The light curves represent the main pulse with large intensity amplitude and followed by several follower pulses with lower intensity amplitudes. The light curves of these bright points would give an impression that one can as well draw curves towards and away from the highest peak (main pulse) showing an exponential growth and decay of the amplitudes. An exponential decaying function has been fitted for all the light curves of the bright points to determine the damping time of the modes that are more or less the same, and one value of the coefficient of exponent can represent reasonably well the decay for all the cases. The FFT analysis of temporal variation of both the bright points and the network elements indicates around 10-min periodicity. We speculate that this longer period of oscillation may be related to chromospheric -mode oscillations.

  18. Coupling convectively driven atmospheric circulation to surface rotation: Evidence for active methane weather in the observed spin rate drift of Titan

    CERN Document Server

    Mitchell, Jonathan L

    2008-01-01

    A large drift in the rotation rate of Titan observed by Cassini provided the first evidence of a subsurface ocean isolating the massive core from the icy crust. Seasonal exchange of angular momentum between the surface and atmosphere accounts for the magnitude of the effect, but observations lag the expected signal by a few years. We argue this time lag is due to the presence of an active methane weather cycle in the atmosphere. An analytic model of the seasonal cycle of atmospheric angular momentum is developed and compared to time-dependent simulations of Titan's atmosphere with and without methane thermodynamics. The disappearance of clouds at the summer pole suggests the drift rate has already switched direction, signaling the change in season from solstice to equinox.

  19. New weed control strategies in maize considering narrow crop rotations with maize, greater ALSresistance in common weeds and application restrictions with regard to active substance

    Directory of Open Access Journals (Sweden)

    Ewert, Katrin

    2014-02-01

    Full Text Available Many herbicides with different HRAC-groups are available for weed control in maize. Because of narrow maize crop rotation summer weeds and warmth loving weeds are encouraged. On the other hand the new confirmed cases of an ALS target site resistance in the weed species Echinochloa crus-galli and Amaranthus retroflexus in Brandenburg, Stellaria media in Saxony and Matricaria recutita and Tripleurospermum perforatum in Brandenburg and Thuringia, warn that in the future the sulfonylureas must be used only according to the management of herbicide resistance. In this way the selection of resistant weed biotypes will be prevented. Moreover in protected water areas it may be a requirement to reduce and to substitute the input of some active substances, for example terbuthylazine and bentazon. The control of E. crus-galli and P. convolvulus with non-sulfonylurea or/and non-terbuthylazine herbicides according to management of herbicide resistance will be discussed.

  20. Earth rotation and geodynamics

    Science.gov (United States)

    Bogusz, Janusz; Brzezinski, Aleksander; Kosek, Wieslaw; Nastula, Jolanta

    2015-12-01

    This paper presents the summary of research activities carried out in Poland in 2011-2014 in the field of Earth rotation and geodynamics by several Polish research institutions. It contains a summary of works on Earth rotation, including evaluation and prediction of its parameters and analysis of the related excitation data as well as research on associated geodynamic phenomena such as geocentre motion, global sea level change and hydrological processes. The second part of the paper deals with monitoring of geodynamic phenomena. It contains analysis of geodynamic networks of local, and regional scale using space (GNSS and SLR) techniques, Earth tides monitoring with gravimeters and water-tube hydrostatic clinometer, and the determination of secular variation of the Earth' magnetic field.

  1. Workshop Physics Activity Guide, Module 2: Mechanics II, Momentum, Energy, Rotational and Harmonic Motion, and Chaos (Units 8 - 15)

    Science.gov (United States)

    Laws, Priscilla W.

    2004-05-01

    The Workshop Physics Activity Guide is a set of student workbooks designed to serve as the foundation for a two-semester calculus-based introductory physics course. It consists of 28 units that interweave text materials with activities that include prediction, qualitative observation, explanation, equation derivation, mathematical modeling, quantitative experiments, and problem solving. Students use a powerful set of computer tools to record, display, and analyze data, as well as to develop mathematical models of physical phenomena. The design of many of the activities is based on the outcomes of physics education research. The Workshop Physics Activity Guide is supported by an Instructor's Website that: (1) describes the history and philosophy of the Workshop Physics Project; (2) provides advice on how to integrate the Guide into a variety of educational settings; (3) provides information on computer tools (hardware and software) and apparatus; and (4) includes suggested homework assignments for each unit. Log on to the Workshop Physics Project website at http://physics.dickinson.edu/ Workshop Physics is a component of the Physics Suite--a collection of materials created by a group of educational reformers known as the Activity Based Physics Group. The Physics Suite contains a broad array of curricular materials that are based on physics education research, including: Understanding Physics, by Cummings, Laws, Redish and Cooney (an introductory textbook based on the best-selling text by Halliday/Resnick/Walker) RealTime Physics Laboratory Modules Physics by Inquiry (intended for use in a workshop setting) Interactive Lecture Demonstration Tutorials in Introductory Physics Activity Based Tutorials (designed primarily for use in recitations)

  2. Rotating Cavitation Supression Project

    Data.gov (United States)

    National Aeronautics and Space Administration — FTT proposes development of a rotating cavitation (RC) suppressor for liquid rocket engine turbopump inducers. Cavitation instabilities, such as rotating...

  3. Solar Cycle Variability and Surface Differential Rotation from Ca II K-Line Time Series Data

    CERN Document Server

    Scargle, Jeffrey; Worden, Pete

    2013-01-01

    Analysis of over 36 years of time series data from the NSO/AFRL/Sac Peak K-line monitoring program elucidates five components of the variation of the seven measured chromospheric parameters: (a) the solar cycle (period ~ 11 years), (b) quasi-periodic variations (periods ~100 days), (c) a broad band stochastic process (wide range of periods), (d) rotational modulation, and (e) random observational errors, independent of (a)-(d). Correlation and power spectrum analyses elucidate periodic and aperiodic variation of these parameters. Time-frequency analysis illuminates periodic and quasi periodic signals, details of frequency modulation due to differential rotation, and in particular elucidates the rather complex harmonic structure (a) and (b) at time scales in the range ~0.1 - 10 years. These results using only full-disk data suggest that similar analyses will be useful at detecting and characterizing differential rotation in stars from stellar light-curves such as thosebeing produced by NASA's Kepler observator...

  4. Auto-rotação cefálica ativa em pacientes com tontura/ vertigem Active cephalic auto-rotation in patients with dizziness/ vertigo

    Directory of Open Access Journals (Sweden)

    Aída R.M. de Assunção

    Full Text Available Introdução: A auto-rotação cefálica ativa é um teste rápido, de simples realização, não invasivo, que não causa desconforto ao paciente, pode ser realizado com facilidade em crianças e avalia o reflexo vestíbulo-ocular nas freqüências fisiológicas de movimentação da cabeça, utilizadas na vida cotidiana (de 1 a 4 Hz. Forma de estudo: clínico retrospectivo não randomizado. Objetivo: Avaliar pacientes com queixas de tontura/vertigem através da auto-rotação cefálica ativa comparando os sintomas com as alterações encontradas. Material e método: Um grupo de 1281 pacientes com queixa de tontura/vertigem foi submetido ao teste de auto-rotação cefálica ativa horizontal com alvo fixo, como uma etapa da avaliação otoneurológica. Resultados: As idades variaram de três a 93 anos com média de 49,6 anos, sendo 946 (73,8% do sexo feminino e 335 (26,2% do sexo masculino. A queixa de vertigem foi relatada por 896 (69,9% dos pacientes e a tontura por 385 (30,1%. A faixa de freqüência de resposta à prova de auto-rotação cefálica variou de 1,5 a 7,5Hz com média de 3,5Hz. A prova de auto-rotação cefálica ativa foi normal em 937 (73,1% e alterada em 344 (26,9% dos pacientes. As alterações mais freqüentes foram as relacionadas ao ganho (aumento, redução isoladas ou associadas a alterações de fase e simetria, em 241 (19% pacientes. O aumento do ganho isolado foi verificado em 92 pacientes (7,2%. Conclusão: Não houve relação entre as alterações na prova de auto-rotação cefálica ativa horizontal e as queixas de tontura e vertigem.Introduction: Active cephalic auto-rotation is a rapid, easy, painless and comfort test, that can be done in children and evaluate the vestibulo-ocular reflex in the physiologic frequencies of head, used in the every day life (from one to four hertz. Study design: clinical retrospective not randomized. Aim: Evaluate patients with complaints of dizziness/vertigo through the active

  5. Time-dependent hydrogen ionisation in 3D simulations of the solar chromosphere. Methods and first results

    NARCIS (Netherlands)

    Leenaarts, J.; Wedemeyer-Bohm, S.

    2006-01-01

    Context. The hydrogen ionisation degree deviates substantially from statistical equilibrium under the conditions of the solar chromosphere. A realistic description of this atmospheric layer thus must account for time-dependent non-equilibrium effects. Aims. Advancing the realism of numerical simulat

  6. The relationship of the global seismic activity with variations in the angular velocity of the Earth's rotation for 1720 - 2014 years

    Science.gov (United States)

    Sasorova, Elena; Levin, Boris

    2016-04-01

    It is known that the seismic activity (SA) of the Earth is unstable both in time and in space. Periods of increase in seismic activity alternate with periods of its decrease. The objective of this work is to analyze the spatial-temporal the distributions of the density of seismic events and relationship between the global CA and variations in the angular velocity of the Earth's rotation (AVER). A density of the observed seismic events in the 1700-1895 years is several times less than in the period 1895-2014, so we carried out a separate analysis for both periods. To construct the spatial distributions of earthquake sources, we subdivided the Earth's surface into 18 latitudinal belts of 10° in extent. To analyze the temporal distribution, the entire observation period was subdivided into 5-year intervals and total number of events within each 5-year interval was calculated. To prepare the working catalog of strong earthquakes for the period of 1700-1895, we used the catalog of considerable earthquakes on Earth since 2150 B.C. compiled by NEIC from the NOAA database. We extracted events with M>=7.5. The total number of events is equal to 72 (38 in the Northern Hemisphere and 34 in the Southern one). Scatterplot for selected events (for latitude and time) and temporal distribution of events in five-year intervals were built. It is found that earthquakes to the north of latitude 60N and to the south of latitude 60S latitude were not observed. The Earth's SA has clearly expressed bimodal latitudinal distribution: two peaks in middle latitudes of the Northern Hemisphere (40°N-50°N) and the Southern Hemisphere (10°S-30°S), and the local minimum near the Equator. The same analysis was carried out for period 1890-2014 years (period of instrumental observations) and the similar bimodal distributions were obtained. The working catalog for the AVER for period 1720-2014 years was compiled on the basis of the world-known database IERS and data presented in the work [Mc

  7. The resonance lines of MG2 as diagnostics of the upper solar chromosphere

    Science.gov (United States)

    Avrett, Eugene H.

    1994-01-01

    The resonance lines of singly ionized magnesium, the MgII h&k lines at about 280 nm, are two of the small number of lines in the solar spectrum that are optically thick in the chromospheric part of the solar atmosphere. Potentially these lines contain information on the initial temperature rise that occurs at the top of the photosphere. Unfortunately, few good observations of the lines exist due to their wavelength near 280 nm the ultraviolet. However, a fair number of observations (on the order of 200) are available from the data base of the UltraViolet Polarimeter and Spectrometer (UVSP) instrument that flew on board of NASA's Solar Maximum Mission (SMM) satellite. In addition, this data base contains a number of spectra that include the Mg I resonance line at (lambda)285.2nm, just longward of the h&k lines. The neutral magnesium line is not as strong as its ionic counterparts and samples slightly lower parts of the atmosphere. Its width is a sensitive diagnostic of the ionization balance between neutral and singly ionized magnesium, which determines the opacity scale (and formation height) of other diagnostically important MgI lines like the 457.1 nm intercombination line, the magnesium b lines and the infrared MgI emission lines near 12 microns. Analysis of the observed line profiles shows that it is necessary to include the effects of partial frequency redistribution (PRD) in the formation of the line as in the case of the h&k lines. This implies that the core of the line is very sensitive to the way scattering is treated in the modeling of the line, and in turn this allows us to separate the uncertain effects in the atomic data (viz. the Van der Waals broadening) from the uncertainties in the underlying atmospheric model. The main objective of this research was to compare observed spectra of the magnesium resonance lines against theoretical line profiles calculated from recent models of the solar atmosphere by Fontenla et al., hereafter called FAL. These

  8. Rotational motion in nuclei

    International Nuclear Information System (INIS)

    Nuclear structure theories are reviewed concerned with nuclei rotational motion. The development of the deformed nucleus model facilitated a discovery of rotational spectra of nuclei. Comprehensive verification of the rotational scheme and a successful classification of corresponding spectra stimulated investigations of the rotational movement dynamics. Values of nuclear moments of inertia proved to fall between two marginal values corresponding to rotation of a solid and hydrodynamic pattern of an unrotating flow, respectively. The discovery of governing role of the deformation and a degree of a symmetry violence for determining rotational degrees of freedon is pointed out to pave the way for generalization of the rotational spectra

  9. Optical fiber rotation sensing

    CERN Document Server

    Burns, William K; Kelley, Paul

    1993-01-01

    Optical Fiber Rotation Sensing is the first book devoted to Interferometric Fiber Optic Gyros (IFOG). This book provides a complete overview of IFOGs, beginning with a historical review of IFOG development and including a fundamental exposition of basic principles, a discussion of devices and components, and concluding with industry reports on state-of-the-art activity. With several chapters contributed by principal developers of this solid-state device, the result is an authoritative work which will serve as the resource for researchers, students, and users of IFOGs.* * State-of-t

  10. Identical location transmission electron microscopy in combination with rotating disc electrode measurements. The activity of fuel cell catalysts and their degradation

    Energy Technology Data Exchange (ETDEWEB)

    Schloegl, Katrin G.

    2011-07-13

    As an alternative to conventional combustion engines, the Proton Exchange Membrane Fuel Cell (PEMFC) using hydrogen as a fuel is a promising concept owing to its potential independence from fossil fuels, high efficiency and zero emissions. Concerning its commercial viability, the fundamental problem of high system cost per power output and lifetime is closely related to finding more active and stable catalysts for the oxygen reduction reaction. In the presented work, several methods are combined to examine the parameters and processes responsible for both activity and degradation of platinum-based catalysts. Degradation mechanisms are scrutinized by means of electrochemical measurements with the rotating disc electrode in combination with a recently developed TEM technique, which allows for the comparison of identical locations before and after accelerated stress tests. (orig.) [German] Die mit Wasserstoff betriebene Proton Exchange Membrane Brennstoffzelle (PEMFC) stellt aufgrund ihrer potentiellen Unabhaengigkeit von fossilen Energietraegern, ihrem hohen Wirkungsgrad und fehlendem Schadstoffausstoss eine vielversprechende Alternative zum konventionellen Verbrennungsmotor dar. Das grundlegende Problem der zu hohen Systemkosten und zu geringen Lebensdauer fuer kommerzielle Anwendungen ist eng mit der Entwicklung aktiverer und stabiler Elektrokatalysatoren fuer die Sauerstoffreduktion verknuepft. In der vorliegenden Arbeit werden verschiedene Methoden kombiniert, um die Parameter und Prozesse zu untersuchen, welche fuer die Aktivitaet und Degradation platinbasierter Katalysatoren verantwortlich sind. Zur Aufklaerung vorliegender Degradationsmechanismen werden elektrochemische Messungen mit der rotierenden Scheibenelektrode in Kombination mit einer neu entwickelten TEM Methode eingesetzt, welche es ermoeglicht, identische Stellen vor und nach beschleunigten Degradationstests zu untersuchen.

  11. Differentially Rotating White Dwarfs I: Regimes of Internal Rotation

    CERN Document Server

    Ghosh, Pranab

    2016-01-01

    Most viable models of Type Ia supernovae (SN~Ia) require the thermonuclear explosion of a carbon/oxygen white dwarf that has evolved in a binary system. Rotation could be an important aspect of any model for SN~Ia, whether single or double degenerate, with the white dwarf mass at, below, or above the Chandrasekhar limit. {\\sl Differential rotation} is specifically invoked in attempts to account for the apparent excess mass in the super--Chandrasekhar events. Some earlier work has suggested that only uniform rotation is consistent with the expected mechanisms of angular momentum transport in white dwarfs, while others have found pronounced differential rotation. We show that if the baroclinic instability is active in degenerate matter and the effects of magnetic fields are neglected, both nearly-uniform and strongly-differential rotation are possible. We classify rotation regimes in terms of the Richardson number, Ri. At small values of Ri $\\leq$ 0.1, we find both the low-viscosity Zahn regime with a non-monot...

  12. Activity indicators and stellar parameters of the Kepler targets. An application of the ROTFIT pipeline to LAMOST-Kepler stellar spectra

    CERN Document Server

    Frasca, A; De Cat, P; Catanzaro, G; Fu, J N; Ren, A B; Luo, A L; Shi, J R; Wu, Y; Zhang, H T

    2016-01-01

    The LAMOST-Kepler survey, whose spectra are analyzed in the present paper, is the first large spectroscopic project aimed at characterizing these sources. Our work is focused at selecting emission-line objects and chromospherically active stars and on the evaluation of the atmospheric parameters. We have used a version of the code ROTFIT that exploits a wide and homogeneous collection of real star spectra, i.e. the Indo US library. We provide a catalog with the atmospheric parameters (Teff, logg, [Fe/H]), the radial velocity (RV) and an estimate of the projected rotation velocity (vsini). For cool stars (Teff<6000 K) we have also calculated the H-alpha and CaII-IRT chromospheric fluxes. We have derived the RV and the atmospheric parameters for 61,753 spectra of 51,385 stars. Literature data for a few hundred stars have been used to do a quality control of our results. The final accuracy of RV, Teff, logg, and [Fe/H] measurements is about 14 km/s, 3.5%, 0.3 dex, and 0.2 dex, respectively. However, while the...

  13. Prevalence of Small-scale Jets from the Networks of the Solar Transition Region and Chromosphere

    CERN Document Server

    Tian, H; Cranmer, S R; De Pontieu, B; Peter, H; Martínez-Sykora, J; Golub, L; McKillop, S; Reeves, K K; Miralles, M P; McCauley, P; Saar, S; Testa, P; Weber, M; Murphy, N; Lemen, J; Title, A; Boerner, P; Hurlburt, N; Tarbell, T D; Wuelser, J P; Kleint, L; Kankelborg, C; Jaeggli, S; Carlsson, M; Hansteen, V; McIntosh, S W

    2014-01-01

    As the interface between the Sun's photosphere and corona, the chromosphere and transition region play a key role in the formation and acceleration of the solar wind. Observations from the Interface Region Imaging Spectrograph reveal the prevalence of intermittent small-scale jets with speeds of 80-250 km/s from the narrow bright network lanes of this interface region. These jets have lifetimes of 20-80 seconds and widths of 300 km or less. They originate from small-scale bright regions, often preceded by footpoint brightenings and accompanied by transverse waves with ~20 km/s amplitudes. Many jets reach temperatures of at least ~100000 K and constitute an important element of the transition region structures. They are likely an intermittent but persistent source of mass and energy for the solar wind.

  14. The key role of solar dynamics in the chromospheric Hanle polarization

    CERN Document Server

    Carlin, E S

    2016-01-01

    The quantum theory of polarized light allows one to model scattering in the solar atmosphere for inferring its properties. This powerful approach has revealed two key long-standing problems in solar physics: the puzzling dilemmas between theory and observations in several anomalously polarized spectral lines and the need for inferring the ubiquitous weak chromospheric magnetic fields, which requires discriminating the Hanle effect in dynamic optically thick plasmas. However, the ever-present dynamics, i.e., the temporal evolution of heatings and macroscopic motions, has been widely disregarded when modeling and interpreting the scattering polarization. This has hindered a consistent theoretical solution to the puzzle while falsifying the Hanle diagnosis. Here, we show that the dynamical evolution is a keystone for solving both problems because its systematic impact allows an explanation of the observations from 'anomalous' instantaneous polarization signals. Evolution accounted for, we reproduce amplitudes an...

  15. Formation of the O I resonance triplet and intercombination doublet in the solar chromosphere

    International Nuclear Information System (INIS)

    Spectrum synthesis calculations are presented for the O I resonance triplet at 1304 A and the intercombination doublet at 1358 A for the solar atmosphere of Vernazza, Avrett, and Loeser and several variants, allowing for triplet fluorescence by the Lyβ emission of H I. Profiles, synthesized from a seven-level plus continuum O I atom are compared to observations taken with the high-resolution spectrometer on OSO 8, calibrated with the irradiance measurements of Heroux and Higgins. We find tha the O I triplet emission is dominated by the Lyβ fluorescence and that the agreement between observations and profiles computed with current chromospheric models is much improved over earlier studies

  16. Observation of Chromospheric Sunspot at Millimeter Range with the Nobeyama 45 m Telescope

    CERN Document Server

    Iwai, Kazumasa

    2015-01-01

    The brightness temperature of the radio free-free emission at millimeter range is an effective tool for characterizing the vertical structure of the solar chromosphere. In this paper, we report on the first single-dish observation of a sunspot at 85 and 115 GHz with sufficient spatial resolution for resolving the sunspot umbra using the Nobeyama 45 m telescope. We used radio attenuation material, i.e. a solar filter, to prevent the saturation of the receivers. Considering the contamination from the plage by the side-lobes, we found that the brightness temperature of the umbra should be lower than that of the quiet region. This result is inconsistent with the preexisting atmospheric models. We also found that the brightness temperature distribution at millimeter range strongly corresponds to the ultraviolet (UV) continuum emission at 1700 {\\AA}, especially at the quiet region.

  17. Forced Field Extrapolation of the Magnetic Structure of the Hα fibrils in the Solar Chromosphere

    Science.gov (United States)

    Xiaoshuai, Zhu; Huaning, Wang; Zhanle, Du; Han, He

    2016-07-01

    We present a careful assessment of forced field extrapolation using the Solar Dynamics Observatory/Helioseismic and Magnetic Imager magnetogram. We use several metrics to check the convergence property. The extrapolated field lines below 3600 km appear to be aligned with most of the Hα fibrils observed by the New Vacuum Solar Telescope. In the region where magnetic energy is far larger than potential energy, the field lines computed by forced field extrapolation are still consistent with the patterns of Hα fibrils while the nonlinear force-free field results show a large misalignment. The horizontal average of the lorentz force ratio shows that the forced region where the force-free assumption fails can reach heights of 1400–1800 km. The non-force-free state of the chromosphere is also confirmed based on recent radiation magnetohydrodynamics simulations.

  18. Forced field extrapolation of the magnetic structure of the Halpha fibrils in solar chromosphere

    CERN Document Server

    Zhu, Xiaoshuai; Du, Zhanle; He, Han

    2016-01-01

    We present a careful assess of the forced field extrapolation using Solar Dynamics Observatory/Helioseismic and Magnetic Imager (SDO/HMI) magnetogram. The convergence property is checked by several metrics. The extrapolated field lines below 3600km appear to be aligned with most Halpha fibrils observed by New Vacuum Solar Telescope (NVST). In the region where magnetic energy far larger than potential energy, field lines computed by forced field extrapolation still consistent with the patterns of Halpha fibrils while non-linear force free field (NLFFF) results show large misalignment. The horizontal average of lorentz force ratio shows the forced region where force-free assumption is failed can reach the height of $1400-1800km$. The non-force-free state of the chromosphere is also confirmed by recent radiation magnetohydrodynamics (MHD) simulation.

  19. Dynamical Processes in Flux Tubes and their Role in Chromospheric Heating

    Indian Academy of Sciences (India)

    S. S. Hasan

    2000-09-01

    We model the dynamical interaction between magnetic flux tubes and granules in the solar photosphere which leads to the excitation of transverse (kink) and longitudinal (sausage) tube waves. The investigation is motivated by the interpretation of network oscillations in terms of flux tube waves. The calculations show that for magnetic field strengths typical of the network, the energy flux in transverse waves is higher than in longitudinal waves by an order of magnitude. But for weaker fields, such as those that might be found in internetwork regions, the energy fluxes in the two modes are comparable. Using observations of footpoint motions, the energy flux in transverse waves is calculated and the implications for chromospheric heating are pointed out.

  20. Transition Region and Chromospheric Signatures of Impulsive Heating Events. II. Modeling

    CERN Document Server

    Reep, Jeffrey W; Crump, Nicholas A; Simoes, Paulo J A

    2016-01-01

    Results from the Solar Maximum Mission showed a close connection between the hard X-ray and transition region emission in solar flares. Analogously, the modern combination of RHESSI and IRIS data can inform the details of heating processes in ways never before possible. We study a small event that was observed with RHESSI, IRIS, SDO, and Hinode, allowing us to strongly constrain the heating and hydrodynamical properties of the flare, with detailed observations presented in a previous paper. Long duration red-shifts of transition region lines observed in this event, as well as many other events, are fundamentally incompatible with chromospheric condensation on a single loop. We combine RHESSI and IRIS data to measure the energy partition among the many magnetic strands that comprise the flare. Using that observationally determined energy partition, we show that a proper multi-threaded model can reproduce these red-shifts in magnitude, duration, and line intensity, while simultaneously being well constrained by...

  1. Controller Design and Validation of Radial Active Magnetic Bearing Systems Considering Dynamical Changes Due To Rotational Speeds

    International Nuclear Information System (INIS)

    If a rotor possesses a high gyroscopic coupling or the running speed is high, the dynamical changes in the rotor become prominent. When active magnetic bearings are used to support such rotors, it is necessary for the bearing controller to take these dynamical changes into consideration. Independent-axis controllers, which are the most commonly used, modulate the bearing force solely based on the sensor output of the same axis. However, this type of controller has difficulties in overcoming the dynamical changes. On the other hand, mixed-axis controllers transform the sensor output into components corresponding to the vibrational modes. A separate controller can then be designed for each vibrational mode. In this way, the controller can be designed based on the dynamics of the rotor. In this paper, we describe a design process for a mixed-axis controller that uses a detailed mathematical model of the system. The performance of the controller is evaluated based on the ISO sensitivity requirements and unbalance response, while considering the change in the system dynamics due to the running speed

  2. Two- vs. Three-Dimensional Presentation of Mental Rotation Tasks: Sex Differences and Effects of Training on Performance and Brain Activation

    Science.gov (United States)

    Neubauer, Aljoscha C.; Bergner, Sabine; Schatz, Martina

    2010-01-01

    The well-documented sex difference in mental rotation favoring males has been shown to emerge only for 2-dimensional presentations of 3-dimensional objects, but not with actual 3-dimensional objects or with virtual reality presentations of 3-dimensional objects. Training studies using computer games with mental rotation-related content have…

  3. The Key Role of Solar Dynamics in the Chromospheric Hanle Polarization

    Science.gov (United States)

    Carlin, E. S.; Bianda, M.

    2016-11-01

    The quantum theory of polarized light allows one to model scattering in the solar atmosphere for inferring its properties. This powerful approach has revealed two key long-standing problems in solar physics: the puzzling dilemmas between theory and observations in several anomalously polarized spectral lines and the need for inferring the ubiquitous weak chromospheric magnetic fields, which requires discriminating the Hanle effect in dynamic optically thick plasmas. However, the ever-present dynamics, i.e., the temporal evolution of heatings and macroscopic motions, has been widely disregarded when modeling and interpreting the scattering polarization. This has hindered a consistent theoretical solution to the puzzle while falsifying the Hanle diagnosis. Here, we show that the dynamical evolution is a keystone for solving both problems because its systematic impact allows an explanation of the observations from “anomalous” instantaneous polarization signals. Evolution accounted for, we reproduce amplitudes and (spectral and spatial) shapes of the Ca i 4227 Å polarization at solar disk center, identifying a restrictive arrangement of magnetic fields, kinematics, heatings, and spatio-temporal resolution. We find that the joint action of dynamics, Hanle effect, and low temporal resolutions mimics Zeeman linear polarization profiles, the true weak-field Zeeman signals being negligible. Our results allow reinterpretation of many polarization signals of the solar spectra and support time-dependent scattering polarization as a powerful tool for deciphering the spatio-temporal distribution of chromospheric heatings and fields. This approach may be a key aid in developing the Hanle diagnosis for the solar atmosphere.

  4. Rotation of cometary meteoroids

    Science.gov (United States)

    Čapek, D.

    2014-08-01

    Aims: The rotation of meteoroids caused by gas drag during the ejection from a cometary nucleus has not been studied yet. The aim of this study is to estimate the rotational characteristics of meteoroids after their release from a comet during normal activity. Methods: The basic dependence of spin rate on ejection velocity and meteoroid size is determined analytically. A sophisticated numerical model is then applied to meteoroids ejected from the 2P/Encke comet. The meteoroid shapes are approximated by polyhedrons, which have been determined by a 3D laser scanning method of 36 terrestrial rock samples. These samples come from three distinct sets with different origins and characteristics, such as surface roughness or angularity. Two types of gas-meteoroid interactions and three gas ejection models are assumed. The rotational characteristics of ejected meteoroid population are obtained by numerical integration of equations of motion with random initial conditions and random shape selection. Results: It is proved that the results do not depend on a specific set of shape models and that they are applicable to the (unknown) shapes of real meteoroids. A simple relationship between the median of meteoroid spin frequencies bar{f} (Hz), ejection velocities vej (m s-1), and sizes D (m) is determined. For diffuse reflection of gas molecules from meteoroid's surface it reads as bar{f≃ 2× 10-3 v_ej D-0.88}, and for specular reflection of gas molecules from meteoroid's surface it is bar{f≃ 5× 10-3 v_ej D-0.88}. The distribution of spin frequencies is roughly normal on log scale, and it is relatively wide: a 2σ-interval can be described as (0.1, 10)× bar{f}. Most of the meteoroids are non-principal axis rotators. The median angle between angular momentum vector and spin vector is 12°. About 60% of meteoroids rotate in long-axis mode. The distribution of angular momentum vectors is not random. They are concentrated in the perpendicular direction with respect to the gas

  5. Control of molecular rotation in the limit of extreme rotational excitation

    CERN Document Server

    Milner, V

    2015-01-01

    Laser control of molecular rotation is an area of active research. A number of recent studies has aimed at expanding the reach of rotational control to extreme, previously inaccessible rotational states, as well as controlling the directionality of molecular rotation. Dense ensembles of molecules undergoing ultrafast uni-directional rotation, known as molecular superrotors, are anticipated to exhibit unique properties, from spatially anisotropic diffusion and vortex formation to the creation of powerful acoustic waves and tuneable THz radiation. Here we describe our recent progress in controlling molecular rotation in the regime of high rotational excitation. We review two experimental techniques of producing uni-directional rotational wave packets with a "chiral train" of femtosecond pulses and an "optical centrifuge". Three complementary detection methods, enabling the direct observation, characterization and control of the superrotor states, are outlined: the one based on coherent Raman scattering, and two...

  6. Rotational preference in gymnastics.

    Science.gov (United States)

    Heinen, Thomas; Jeraj, Damian; Vinken, Pia M; Velentzas, Konstantinos

    2012-06-01

    In gymnastics, most skills incorporate rotations about one or more body axes. At present, the question remains open if factors such as lateral preference and/or vestibulo-spinal asymmetry are related to gymnast's rotational preference. Therefore, we sought to explore relationships in gymnast's rotation direction between different gymnastic skills. Furthermore, we sought to explore relationships between rotational preference, lateral preference, and vestibulo-spinal asymmetry. In the experiment n = 30 non-experts, n = 30 near-experts and n = 30 experts completed a rotational preference questionnaire, a lateral preference inventory, and the Unterberger-Fukuda Stepping Test. The results revealed, that near-experts and experts more often rotate rightward in the straight jump with a full turn when rotating leftward in the round-off and vice versa. The same relationship was found for experts when relating the rotation preference in the handstand with a full turn to the rotation preference in the straight jump with a full turn. Lateral preference was positively related to rotational preference in non-expert gymnasts, and vestibulo-spinal asymmetry was positively related to rotational preference in experts. We suggest, that gymnasts should explore their individual rotational preference by systematically practicing different skills with a different rotation direction, bearing in mind that a clearly developed structure in rotational preference between different skills may be appropriate to develop more complex skills in gymnastics. PMID:23486362

  7. The solar chromosphere at high resolution with IBIS. II. Acoustic shocks in the quiet internetwork and the role of magnetic fields

    CERN Document Server

    Vecchio, A; Reardon, K P

    2008-01-01

    (Abridged) Aims: We characterize the dynamics of the quiet inter-network chromosphere by studying the occurrence of acoustic shocks and their relation with the concomitant photospheric structure and dynamics. Methods: We analyze a comprehensive data set that includes high resolution chromospheric and photospheric spectra obtained with the IBIS imaging spectrometer in two quiet-Sun regions. This is complemented by high-resolution sequences of MDI magnetograms of the same targets. From the chromospheric spectra we identify the spatio-temporal occurrence of the acoustic shocks. We compare it with the photospheric dynamics by means of both Fourier and wavelet analysis, and study the influence of magnetic structures. Results: Mid-chromospheric shocks occur as a response to underlying powerful photospheric motions at periodicities nearing the acoustic cut-off, consistent with 1-D hydrodynamical modeling. However, their spatial distribution within the supergranular cells is highly dependent on the local magnetic top...

  8. The Liquid Metallic Hydrogen Model of the Sun and the Solar Atmosphere IV. On the Nature of the Chromosphere

    Directory of Open Access Journals (Sweden)

    Robitaille P.-M.

    2013-07-01

    Full Text Available The chromosphere is the site of weak emission lines characterizing the flash spectrum observed for a few seconds during a total eclipse. This layer of the solar atmosphere is known to possess an opaque Hα emission and a great number of spicules, which can extend well above the photosphere. A stunning variety of hydrogen emission lines have been observed in this region. The production of these lines has provided the seventeenth line of evidence that the Sun is comprised of condensed matter (Robitaille P.M. Liquid Metallic Hydrogen II: A critical assessment of current and primordial helium levels in Sun. Progr. Phys., 2013, v. 2, 35–47. Contrary to the gaseous solar models, the simplest mechanism for the production of emission lines is the evaporation of excited atoms from condensed surfaces existing within the chromosphere, as found in spicules. This is reminiscent of the chemiluminescence which occurs during the condensation of silver clusters (Konig L., Rabin I., Schultze W., and Ertl G. Chemiluminescence in the Agglomeration of Metal Clusters. Science, v. 274, no. 5291, 1353–1355. The process associated with spicule formation is an exothermic one, requiring the transport of energy away from the site of condensation. As atoms leave localized surfaces, their electrons can occupy any energy level and, hence, a wide variety of emission lines are produced. In this regard, it is hypothesized that the presence of hydrides on the Sun can also facilitate hydrogen condensation in the chromosphere. The associated line emission from main group and transition elements constitutes the thirtieth line of evidence that the Sun is condensed matter. Condensation processes also help to explain why spicules manifest an apparently constant temperature over their entire length. Since the corona supports magnetic field lines, the random orientations associated with spicule formation suggests that the hydrogen condensates in the chromosphere are not metallic in

  9. Semi-empirical Modeling of the Photosphere, Chromosphere, Transition Region, and Corona of the M-dwarf Host Star GJ 832

    Science.gov (United States)

    Fontenla, J. M.; Linsky, Jeffrey L.; Witbrod, Jesse; France, Kevin; Buccino, A.; Mauas, Pablo; Vieytes, Mariela; Walkowicz, Lucianne M.

    2016-10-01

    Stellar radiation from X-rays to the visible provides the energy that controls the photochemistry and mass loss from exoplanet atmospheres. The important extreme ultraviolet (EUV) region (10–91.2 nm) is inaccessible and should be computed from a reliable stellar model. It is essential to understand the formation regions and physical processes responsible for the various stellar emission features to predict how the spectral energy distribution varies with age and activity levels. We compute a state-of-the-art semi-empirical atmospheric model and the emergent high-resolution synthetic spectrum of the moderately active M2 V star GJ 832 as the first of a series of models for stars with different activity levels. We construct a one-dimensional simple model for the physical structure of the star’s chromosphere, chromosphere-corona transition region, and corona using non-LTE radiative transfer techniques and many molecular lines. The synthesized spectrum for this model fits the continuum and lines across the UV-to-optical spectrum. Particular emphasis is given to the emission lines at wavelengths that are shorter than 300 nm observed with the Hubble Space Telescope, which have important effects on the photochemistry of the exoplanet atmospheres. The FUV line ratios indicate that the transition region of GJ 832 is more biased to hotter material than that of the quiet Sun. The excellent agreement of our computed EUV luminosity with that obtained by two other techniques indicates that our model predicts reliable EUV emission from GJ 832. We find that the unobserved EUV flux of GJ 832, which heats the outer atmospheres of exoplanets and drives their mass loss, is comparable to the active Sun. Based on observations made with the NASA/ESA Hubble Space Telescope obtained from the Data Archive at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS AR-09525.01A. These observations

  10. Simulations of the Mg II k and Ca II 8542 lines from an AlfvÉn Wave-heated Flare Chromosphere

    Science.gov (United States)

    Kerr, Graham S.; Fletcher, Lyndsay.; Russell, Alexander J. B.; Allred, Joel C.

    2016-08-01

    We use radiation hydrodynamic simulations to examine two models of solar flare chromospheric heating: Alfvén wave dissipation and electron beam collisional losses. Both mechanisms are capable of strong chromospheric heating, and we show that the distinctive atmospheric evolution in the mid-to-upper chromosphere results in Mg ii k-line emission that should be observably different between wave-heated and beam-heated simulations. We also present Ca ii 8542 Å profiles that are formed slightly deeper in the chromosphere. The Mg ii k-line profiles from our wave-heated simulation are quite different from those from a beam-heated model and are more consistent with Interface Region Imaging Spectrograph observations. The predicted differences between the Ca ii 8542 Å in the two models are small. We conclude that careful observational and theoretical study of lines formed in the mid-to-upper chromosphere holds genuine promise for distinguishing between competing models for chromospheric heating in flares.

  11. Rotator cuff exercises

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/patientinstructions/000357.htm Rotator cuff exercises To use the sharing features on this page, please enable JavaScript. The rotator cuff is a group of muscles and tendons that ...

  12. Rotator cuff repair - slideshow

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/presentations/100229.htm Rotator cuff repair - series—Normal anatomy To use the sharing ... slide 4 out of 4 Overview The rotator cuff is a group of muscles and tendons that ...

  13. Power Harvesting from Rotation?

    Science.gov (United States)

    Chicone, Carmen; Feng, Z. C.

    2008-01-01

    We show the impossibility of harvesting power from rotational motions by devices attached to the rotating object. The presentation is suitable for students who have studied Lagrangian mechanics. (Contains 2 figures.)

  14. Temporal Evolution of the Scattering Polarization of the CaII IR Triplet in Hydrodynamical Models of the Solar Chromosphere

    CERN Document Server

    Carlin, E S; Bueno, J Trujillo

    2012-01-01

    Velocity gradients in a stellar atmospheric plasma have an impact on the anisotropy of the radiation field that illuminates each point within the medium, and this may in principle influence the scattering line polarization that results from the induced atomic level polarization. Here we analyze the emergent linear polarization profiles of the Ca II infrared triplet after solving the radiative transfer problem of scattering polarization in time-dependent hydrodynamical models of the solar chromosphere, taking into account the impact of the plasma macroscopic velocity on the atomic level polarization. We discuss the influence that the velocity and temperature shocks in the considered chromospheric models have on the temporal evolution of the scattering polarization signals of the Ca II infrared lines, as well as on the temporally averaged profiles. Our results indicate that the increase of the linear polarization amplitudes caused by macroscopic velocity gradients may be significant in realistic situations. We ...

  15. Evidence for collisional depolarization of the \\ion{Ba}{ii} ${\\lambda}4554$ line in the low chromosphere

    CERN Document Server

    Derouich, M

    2008-01-01

    Context. Rigorous modeling of the \\ion{Ba}{ii} ${\\lambda}4554$ formation is potentially interesting since this strongly polarized line forms in the solar chromosphere where the magnetic field is rather poorly known. Aims. To investigate the role of isotropic collisions with neutral hydrogen in the formation of the polarized \\ion{Ba}{ii} ${\\lambda}4554$ line and, thus, in the determination of the magnetic field. Methods. Multipole relaxation and transfer rates of the $d$ and p-states of \\ion{Ba}{ii} by isotropic collisions with neutral hydrogen are calculated. We consider a plane parallel layer of \\ion{Ba}{ii} situated at the low chromosphere and anisotropically illuminated from below which produces linear polarization in the ${\\lambda}4554$ line by scattering processes. To compute that polarization, we solve the statistical equilibrium equations for \\ion{Ba}{ii} levels including collisions, radiation and magnetic field effects. Results. Variation laws of the relaxation and transfer rates with hydrogen number ...

  16. Reflection and Conversion of Magneto-Gravity Waves in the Solar Chromosphere: Windows to the Upper Atmosphere

    CERN Document Server

    Newington, Marie

    2009-01-01

    The detection of upward propagating internal gravity waves in the Sun's chromosphere has recently been reported by Straus et al., who postulated that these may efficiently couple to Alfven waves in magnetic regions. This may be important in transporting energy to higher levels. Here we explore the propagation, reflection and mode conversion of linear gravity waves in a VAL C atmosphere, and find that even weak magnetic fields usually reflect gravity waves back downward as slow magnetoacoustic waves well before they reach the Alfven/acoustic equipartition height at which mode conversion might occur. However, for certain highly inclined magnetic field orientations in which the gravity waves manage to penetrate near or through the equipartition level, there can be substantial conversion to either or both upgoing Alfven and acoustic waves. Wave energy fluxes comparable to the chromospheric radiative losses are expected.

  17. Multi-wavelength high-resolution observations of a small-scale emerging magnetic flux event and the chromospheric and coronal response

    International Nuclear Information System (INIS)

    State-of-the-art solar instrumentation is now revealing magnetic activity of the Sun with unprecedented temporal and spatial resolutions. Observations with the 1.6 m aperture New Solar Telescope (NST) of the Big Bear Solar Observatory are making next steps in our understanding of the solar surface structure. Granular-scale magnetic flux emergence and the response of the solar atmosphere are among the key research topics of high-resolution solar physics. As part of a joint observing program with NASA's Interface Region Imaging Spectrograph (IRIS) mission on 2013 August 7, the NST observed active region NOAA 11,810 in the photospheric TiO 7057 Å band with a resolution of pixel size of 0.''034 and chromospheric He I 10830 Å and Hα 6563 Å wavelengths. Complementary data are provided by the Solar Dynamics Observatory (SDO) and Hinode space-based telescopes. The region displayed a group of solar pores, in the vicinity of which we detect a small-scale buoyant horizontal magnetic flux tube causing granular alignments and interacting with the preexisting ambient field in the upper atmospheric layers. Following the expansion of distorted granules at the emergence site, we observed a sudden appearance of an extended surge in the He I 10830 Å data (bandpass of 0.05 Å). The IRIS transition region imaging caught ejection of a hot plasma jet associated with the He I surge. The SDO/HMI data used to study the evolution of the magnetic and Doppler velocity fields reveal emerging magnetic loop-like structures. Hinode/Ca II H and IRIS filtergrams detail the connectivities of the newly emerged magnetic field in the lower solar chromosphere. From these data, we find that the orientation of the emerging magnetic field lines from a twisted flux tube formed an angle of ∼45° with the overlying ambient field. Nevertheless, the interaction of emerging magnetic field lines with the pre-existing overlying field generates high-temperature emission regions and boosts the

  18. On Averaging Rotations

    DEFF Research Database (Denmark)

    Gramkow, Claus

    1999-01-01

    In this article two common approaches to averaging rotations are compared to a more advanced approach based on a Riemannian metric. Very offten the barycenter of the quaternions or matrices that represent the rotations are used as an estimate of the mean. These methods neglect that rotations belong...... approximations to the Riemannian metric, and that the subsequent corrections are inherient in the least squares estimation. Keywords: averaging rotations, Riemannian metric, matrix, quaternion...

  19. MODIFIED ACTIVE STATE EARTH PRESSURE ROTATING AROUND WALL TOE%改进的绕墙趾转动主动状态土压力

    Institute of Scientific and Technical Information of China (English)

    王仕传; 张平均; 李云凤; 邵艳

    2015-01-01

    墙背土压力分布与挡土墙的位移大小、位移模式以及平衡状态密切相关. 针对绕墙底向外转动的刚性挡土墙,基于已有的土压力计算理论,结合由卸荷路径三轴试验所建立的填土内摩擦角与挡土墙位移间的关系,提出一种改进的考虑位移影响的主动状态土压力计算方法. 分析表明:随着挡土墙位移的发展,墙背土压力由静止土压力逐步减小,当挡土墙位移达到临界值后,相应的墙背土压力均收敛到库仑主动土压力. 填土内摩擦角发挥值的分布显著影响墙背土压力分布. 非极限平衡状态时,墙背土压力大于库仑主动土压力.%Distribution of earth pressure behind retaining wall is closely related with wall displacement value, movement mode, and equilibrium condition.For rigid retaining wall rotating outward around base, based on existing earth pressure theory and relationship between internal friction angle of backfill and wall displacement resulted from triaxial test of unloading path, a modified computational method of active state earth pressure considering wall displacement was set up.Analysis showed that earth pressure behind retaining wall decreased gradually from at-rest earth pressure as the development of wall displacement, and, when wall displacement reached critical value, all corresponding earth pressure values behind the wall converged to Coulomb active earth pressure values.Distribution of earth pressure behind retaining wall was significantly influenced by the distribution of expression internal friction angle of backfill.Active state earth pressure of non-limit equilibrium condition was larger than Coulomb active earth pressure.

  20. Near-UV Absorption, Chromospheric Activity, and Star-Planet Interactions in the WASP-12 system

    CERN Document Server

    Haswell, C A; Ayres, T; France, K; Froning, C S; Holmes, S; Kolb, U C; Busuttil, R; Street, R A; Hebb, L; Cameron, A Collier; Enoch, B; Burwitz, V; Rodriguez, J; West, R G; Pollacco, D; Wheatley, P J; Carter, A; 10.1088/0004-637X/760/1/79

    2013-01-01

    We observed the extreme close-in hot Jupiter system, WASP-12, with HST. Near-UV transits up to three times deeper than the optical transit of WASP-12b reveal extensive diffuse gas, extending well beyond the Roche lobe. The distribution of absorbing gas varies between visits. The deepest NUV transits are at wavelength ranges with strong photospheric absorption, implying the absorbing gas may have temperature and composition similar to the stellar photosphere. Our spectra reveal significantly enhanced absorption (greater than 3 \\sigma below the median) at ~200 wavelengths on each of two HST visits; 65 of these wavelengths are consistent between the two visits, using a strict criterion for velocity matching which excludes matches with velocity shifts exceeding ~20 km/s. Excess transit depths are robustly detected throughout the inner wings of the MgII resonance lines independently on both HST visits. We detected absorption in FeII 2586A, the heaviest species yet detected in an exoplanet transit. The MgII line co...

  1. NEAR-ULTRAVIOLET ABSORPTION, CHROMOSPHERIC ACTIVITY, AND STAR-PLANET INTERACTIONS IN THE WASP-12 SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Haswell, C. A.; Fossati, L.; Holmes, S.; Kolb, U. C.; Busuttil, R.; Carter, A. [Department of Physical Sciences, Open University, Walton Hall, Milton Keynes MK7 6AA (United Kingdom); Ayres, T.; France, K.; Froning, C. S. [Center for Astrophysics and Space Astronomy, University of Colorado, 593 UCB, Boulder, CO 80309-0593 (United States); Street, R. A. [Las Cumbres Observatory Global Telescope Network, Inc., 6740 Cortona Drive, Suite 102, Goleta, CA 93117 (United States); Hebb, L. [Department of Physics and Astronomy, Vanderbilt University, 6301 Stevenson Center Nashville, TN 37235 (United States); Cameron, A. Collier; Enoch, B. [School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, Fife KY16 9SS (United Kingdom); Burwitz, V. [Max Planck Institut fuer Extraterrestrische Physik, Giessenbachstrasse, D-85748 Garching (Germany); Rodriguez, J. [Observatori Astronomic de Mallorca, Cami de l' Observatori, E-07144 Costitx, Mallorca (Spain); West, R. G. [Department of Physics and Astronomy, University of Leicester, Leicester LE1 7RH (United Kingdom); Pollacco, D.; Wheatley, P. J., E-mail: C.A.Haswell@open.ac.uk, E-mail: l.fossati@open.ac.uk, E-mail: cynthia.froning@colorado.edu, E-mail: leslie.hebb@vanderbilt.edu [Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom)

    2012-11-20

    Extended gas clouds have been previously detected surrounding the brightest known close-in transiting hot Jupiter exoplanets, HD 209458 b and HD 189733 b; we observed the distant but more extreme close-in hot Jupiter system, WASP-12, with Hubble Space Telescope (HST). Near-UV (NUV) transits up to three times deeper than the optical transit of WASP-12 b reveal extensive diffuse gas, extending well beyond the Roche lobe. The distribution of absorbing gas varies between visits. The deepest NUV transits are at wavelength ranges with strong stellar photospheric absorption, implying that the absorbing gas may have temperature and composition similar to those of the stellar photosphere. Our spectra reveal significantly enhanced absorption (greater than 3{sigma} below the median) at {approx}200 individual wavelengths on each of two HST visits; 65 of these wavelengths are consistent between the two visits, using a strict criterion for velocity matching that excludes matches with velocity shifts exceeding {approx}20 km s{sup -1}. Excess transit depths are robustly detected throughout the inner wings of the Mg II resonance lines independently on both HST visits. We detected absorption in Fe II {lambda}2586, the heaviest species yet detected in an exoplanet transit. The Mg II line cores have zero flux, emission cores exhibited by every other observed star of similar age and spectral type are conspicuously absent. WASP-12 probably produces normal Mg II profiles, but the inner portions of these strong resonance lines are likely affected by extrinsic absorption. The required Mg{sup +} column is an order of magnitude greater than expected from the interstellar medium, though we cannot completely dismiss that possibility. A more plausible source of absorption is gas lost by WASP-12 b. We show that planetary mass loss can produce the required column. Our Visit 2 NUV light curves show evidence for a stellar flare. We show that some of the possible transit detections in resonance lines of rare elements may be due instead to non-resonant transitions in common species. We present optical observations and update the transit ephemeris.

  2. Rotator Cuff Repair

    Medline Plus

    Full Text Available ... here. The other problem is that it extends down the front. Here's another part of the rotator cuff musculature. The rotator cuff is essentially four tendons, two that turn the arm to the outside, the external rotators, one on top, the superspinatus, which is the most commonly torn. ...

  3. Rotations with Rodrigues' Vector

    Science.gov (United States)

    Pina, E.

    2011-01-01

    The rotational dynamics was studied from the point of view of Rodrigues' vector. This vector is defined here by its connection with other forms of parametrization of the rotation matrix. The rotation matrix was expressed in terms of this vector. The angular velocity was computed using the components of Rodrigues' vector as coordinates. It appears…

  4. On Averaging Rotations

    DEFF Research Database (Denmark)

    Gramkow, Claus

    2001-01-01

    In this paper two common approaches to averaging rotations are compared to a more advanced approach based on a Riemannian metric. Very often the barycenter of the quaternions or matrices that represent the rotations are used as an estimate of the mean. These methods neglect that rotations belong...

  5. Intraplate rotational deformation induced by faults

    Science.gov (United States)

    Dembo, Neta; Hamiel, Yariv; Granot, Roi

    2015-11-01

    Vertical axis rotations provide important constraints on the tectonic history of plate boundaries. Geodetic measurements can be used to calculate interseismic rotations, whereas paleomagnetic remanence directions provide constraints on the long-term rotations accumulated over geological timescales. Here we present a new mechanical modeling approach that links between intraplate deformational patterns of these timescales. We construct mechanical models of active faults at their locked state to simulate the presumed to be elastic interseismic deformation rate observed by GPS measurements. We then apply a slip to the faults above the locking depth to simulate the long-term deformation of the crust from which we derive the accumulated rotations. We test this approach in northern Israel along the Dead Sea Fault and Carmel-Gilboa fault system. We use 12 years of interseismic GPS measurements to constrain a slip model of the major faults found in this region. Next, we compare the modeled rotations against long-term rotations determined based on new primary magnetic remanence directions from 29 sites with known age. The distributional pattern of site mean declinations is in general agreement with the vertical axis rotations predicted by the mechanical model, both showing anomalously high rotations near fault tips and bending points. Overall, the results from northern Israel validate the effectiveness of our approach and indicate that rotations induced by motion along faults may act in parallel (or alone) to rigid block rotations. Finally, the new suggested method unravels important insights on the evolution (timing, magnitude, and style) of deformation along major faults.

  6. Rotation, inflation, and lithium in the Pleiades

    Science.gov (United States)

    Somers, Garrett; Pinsonneault, Marc H.

    2015-06-01

    The rapidly rotating cool dwarfs of the Pleiades are rich in lithium relative to their slowly rotating counterparts. Motivated by observations of inflated radii in young, active stars, and by calculations showing that radius inflation inhibits pre-main-sequence (pre-MS) Li destruction, we test whether this pattern could arise from a connection between stellar rotation rate and radius inflation on the pre-MS. We demonstrate that pre-MS radius inflation can efficiently suppress lithium destruction by rotationally induced mixing in evolutionary models, and that the net effect of inflation and rotational mixing is a pattern where rotation correlates with lithium abundance for M* M⊙, similar to the empirical trend in the Pleiades. Next, we adopt different prescriptions for the dependence of inflation on rotation, and compare their predictions to the Pleiades lithium/rotation pattern. We find that if a connection between rotation and radius inflation exists, then the important qualitative features of this pattern naturally and generically emerge in our models. This is the first consistent physical model to date that explains the Li-rotation correlation in the Pleiades. We discuss plausible mechanisms for inducing this correlation and suggest an observational test using granulation.

  7. Measuring Stellar Rotation Periods with Kepler

    DEFF Research Database (Denmark)

    Nielsen, M. B.; Gizon, L.; Schunker, H.;

    2012-01-01

    We measure rotation periods for 12151 stars in the Kepler field, based on photometric variability caused by stellar activity. Our analysis returns stable rotation periods over at least six out of eight quarters of Kepler data. This large sample of stars enables us to study rotation periods as a...... function of spectral type. We find good agreement with previous studies and v sin i measurements for F, G, and K stars. Combining rotation periods, (B-V) color, and gyrochronology relations, we find that cool stars in our sample are predominantly younger than ˜ 1 Gyr....

  8. Formation and Eruption of a Small Flux Rope in the Chromosphere Observed by NST, IRIS, and SDO

    CERN Document Server

    Kumar, Pankaj; Wang, Haimin; Cho, Kyung-Suk

    2015-01-01

    Using high-resolution images from 1.6 m New Solar Telescope (NST) at Big Bear Solar Observatory (BBSO), we report the direct evidence of chromospheric reconnection at the polarity inversion line (PIL) between two small opposite polarity sunspots. Small jet-like structures (with velocities of ~20-55 km/s) were observed at the reconnection site before the onset of the first M1.0 flare. The slow rise of untwisting jets was followed by the onset of cool plasma inflow (~10 km/s) at the reconnection site, causing the onset of a two-ribbon flare. The reconnection between two sheared J-shaped cool H$\\alpha$ loops causes the formation of a small twisted flux rope (S shaped) in the chromosphere. In addition, Helioseismic and Magnetic Imager (HMI) magnetograms show the flux cancellation (both positive and negative) during the first M1.0 flare. The emergence of negative flux and cancellation of positive flux (with shear flows) continue until the successful eruption of the flux rope. The newly formed chromospheric flux ro...

  9. Scapular and rotator cuff muscle activity during arm elevation: a review of normal function and alterations with shoulder impingement Atividade dos músculos escapulares e do manguito rotator durante a elevação do braço: uma revisão da função normal e das alterações na síndrome do impacto

    OpenAIRE

    V Phadke; PR Camargo; PM Ludewig

    2009-01-01

    OBJECTIVE: The purpose of this manuscript is to review current knowledge of how muscle activation and force production contribute to shoulder kinematics in healthy subjects and persons with shoulder impingement. RESULTS: The middle and lower serratus anterior muscles produce scapular upward rotation, posterior tilting, and external rotation. Upper trapezius produces clavicular elevation and retraction. The middle trapezius is primarily a medial stabilizer of the scapula. The lower trapezius a...

  10. Rotating Stars in Relativity

    Directory of Open Access Journals (Sweden)

    Stergioulas Nikolaos

    2003-01-01

    Full Text Available Rotating relativistic stars have been studied extensively in recent years, both theoretically and observationally, because of the information they might yield about the equation of state of matter at extremely high densities and because they are considered to be promising sources of gravitational waves. The latest theoretical understanding of rotating stars in relativity is reviewed in this updated article. The sections on the equilibrium properties and on the nonaxisymmetric instabilities in f-modes and r-modes have been updated and several new sections have been added on analytic solutions for the exterior spacetime, rotating stars in LMXBs, rotating strange stars, and on rotating stars in numerical relativity.

  11. A Search for Coronal Emission at the Bottom of the Main-Sequence: Stars and Brown Dwarf Candidates with Spectral Types Later than M7 and the Rotation-Activity Relation

    Science.gov (United States)

    Stringfellow, Guy

    2004-01-01

    This program intended to test whether the lowest mass stars at the bottom end of the main sequence and the lower mass brown dwarfs have coronae. If they have coronae, what are the coronal characteristics and what drives them? In the classical dynamo picture, the closed magnetic loop structure is generated near the boundary of the convective envelope and the radiative core. Stars with mass below 0.30 Msun however are fully convective, and the nature of the dynamo responsible for the generation of the coronae in this regime is poorly understood. Previous results from the ROSAT mission (e.g., Fleming et al. 1993, 1995; Schmitt et al. 1995) had confirmed three very important characteristics of M-star coronae: (1) a very high percentage of all M dwarfs have coronae (of order 85% in the local 7 pc sample), (2) those M dwarfs showing high chromospheric activity, such as having the Balmer series in emission or large/numerous optical flaring, indeed exhibit the highest coronal activity, and (3) that the maximum saturation boundary in X-ray luminosity, which amounts to 0.0001-0.001 for Lx/Lbol for the dMe stars, extends down to the current detection limit, through spectral types M7. It was likely that the incompleteness noted for result (1) above was simply a detection limit problem; for more distant sources, the X-ray fainter dM stars will drop below detection thresholds before the more X-ray luminous dMe stars. The latest stars for which direct detection of the corona had been successful were of spectral type dM7 (e.g., VB8, LHS 3003). This program proposed to obtain ROSAT HRI observations for a large number of the coolest known (at that time) stars at the bottom of the main-sequence, which had spectral types of M9 or later. Three stars were approved for observations with ROSAT-HRI totaling 180 ksec. The goal was to obtain X-ray detections or low upper limits for the three approved stars.

  12. Predictors of human rotation.

    Science.gov (United States)

    Stochl, Jan; Croudace, Tim

    2013-01-01

    Why some humans prefer to rotate clockwise rather than anticlockwise is not well understood. This study aims to identify the predictors of the preferred rotation direction in humans. The variables hypothesised to influence rotation preference include handedness, footedness, sex, brain hemisphere lateralisation, and the Coriolis effect (which results from geospatial location on the Earth). An online questionnaire allowed us to analyse data from 1526 respondents in 97 countries. Factor analysis showed that the direction of rotation should be studied separately for local and global movements. Handedness, footedness, and the item hypothesised to measure brain hemisphere lateralisation are predictors of rotation direction for both global and local movements. Sex is a predictor of the direction of global rotation movements but not local ones, and both sexes tend to rotate clockwise. Geospatial location does not predict the preferred direction of rotation. Our study confirms previous findings concerning the influence of handedness, footedness, and sex on human rotation; our study also provides new insight into the underlying structure of human rotation movements and excludes the Coriolis effect as a predictor of rotation.

  13. The spatial rotator

    DEFF Research Database (Denmark)

    Rasmusson, Allan; Hahn, Ute; Larsen, Jytte Overgaard;

    2013-01-01

    This paper presents a new local volume estimator, the spatial rotator, which is based on measurements on a virtual 3D probe, using computer assisted microscopy. The basic design of the probe builds upon the rotator principle which requires only a few manual intersection markings, thus making the...... spatial rotator fast to use. Since a 3D probe is involved, it is expected that the spatial rotator will be more efficient than the the nucleator and the planar rotator, which are based on measurements in a single plane. An extensive simulation study shows that the spatial rotator may be more efficient...... than the traditional local volume estimators. Furthermore, the spatial rotator can be seen as a further development of the Cavalieri estimator, which does not require randomization of sectioning or viewing direction. The tissue may thus be sectioned in any arbitrary direction, making it easy to...

  14. Investigating stellar surface rotation using observations of starspots

    OpenAIRE

    Korhonen, H.

    2011-01-01

    Rapid rotation enhances the dynamo operating in stars, and thus also introducessignificantly stronger magnetic activity than is seen in slower rotators. Many young cool stars still have the rapid, primordial rotation rates induced by the interstellar molecular cloud from which they were formed. Also older stars in close binary systems are often rapid rotators. These types of stars can show strong magnetic activity and large starspots. In the case of large starspots which cause observable chan...

  15. Temporal variation of hemispheric solar rotation

    Institute of Scientific and Technical Information of China (English)

    Jing-Lan Xie; Xiang-Jun Shi; Jing-Chen Xu

    2012-01-01

    The daily sunspot numbers of the whole disk as well as the northern and southern hemispheres from 1945 January 1 to 2010 December 31 are used to investigate the temporal variation of rotational cycle length through the continuous wavelet transformation analysis method.Auto-correlation function analysis of daily hemispheric sunspot numbers shows that the southern hemisphere rotates faster than the northern hemisphere.The results obtained from the wavelet transformation analysis are that no direct relationship exists between the variation trend of the rotational cycle length and the solar activity in the two hemispheres and that the rotational cycle length of both hemispheres has no significant period appearing at 11 yr,but has a significant period of about 7.6 yr.Analysis concerning the solar cycle dependence of the rotational cycle length shows that acceleration seems to appear before the minimum time of solar activity in the whole disk and the northern hemisphere,respectively.Furthermore,the cross-correlation study indicates that the rotational cycle length of the two hemispheres has different phases,and that the rotational cycle length of the whole disk as well as the northern and southern hemispheres,also has phase shifts with corresponding solar activity.In addition,the temporal variation of the north-south (N- S) asymmetry of the rotational cycle length is also studied.This displays the same variation trend as the N-S asymmetry of solar activity in a solar cycle,as well as in the considered time interval,and has two significant periods of 7.7 and 17.5 yr.Moreover,the rotational cycle length and the N-S asymmetry of solar activity are highly correlated.It is inferred that the northern hemisphere should rotate faster at the beginning of solar cycle 24.

  16. Multi-wavelength high-resolution observations of a small-scale emerging magnetic flux event and the chromospheric and coronal response

    CERN Document Server

    Dominguez, Santiago Vargas; Yurchyshyn, Vasyl

    2014-01-01

    State-of-the-art solar instrumentation is revealing magnetic activity of the Sun with unprecedented resolution. Observations with the 1.6m New Solar Telescope of the Big Bear Solar Observatory are making next steps in our understanding of the solar surface structure. Granular-scale magnetic flux emergence and the response of the solar atmosphere are among the key research. As part of a joint observing program with NASA's IRIS mission, the NST observed active region NOAA 11810 in photospheric and chromospheric wavelengths. Complimentary data are provided by SDO and Hinode space-based telescopes. The region displayed a group of solar pores, in the vicinity of which we detect a small-scale buoyant horizontal magnetic flux tube causing abnormal granulation and interacting with the pre-existing ambient field in upper atmospheric layers. Following the expansion of distorted granules at the emergence site, we observed a sudden appearance of an extended surge in the HeI data. IRIS catched ejection of a hot plasma jet...

  17. Arbuscular mycorrhizal fungal diversity, root colonization, and soil alkaline phosphatase activity in response to maize-wheat rotation and no-tillage in North China.

    Science.gov (United States)

    Hu, Junli; Yang, Anna; Zhu, Anning; Wang, Junhua; Dai, Jue; Wong, Ming Hung; Lin, Xiangui

    2015-07-01

    Monitoring the effects of no-tillage (NT) in comparison with conventional tillage (CT) on soil microbes could improve our understanding of soil biochemical processes and thus help us to develop sound management strategies. The objective of this study was to compare the species composition and ecological function of soil arbuscular mycorrhizal (AM) fungi during the growth and rotation of crops under NT and CT. From late June 2009 to early June 2010, 32 topsoil (0-15 cm) samples from four individual plots per treatment (CT and NT) were collected at both the jointing and maturation stages of maize (Zea mays L.) and wheat (Triticum aestivum L.) from a long-term experimental field that was established in an Aquic Inceptisol in North China in June 2006. The AM fungal spores were isolated and identified and then used to calculate species diversity indices, including the Shannon- Wiener index (H'), Evenness (E), and Simpson's index (D). The root mycorrhizal colonization and soil alkaline phosphatase activity were also determined. A total of 34 species of AM fungi within nine genera were recorded. Compared with NT, CT negatively affected the soil AM fungal community at the maize sowing stage, leading to decreases in the average diversity indices (from 2.12, 0.79, and 0.82 to 1.79, 0.72, and 0.74 for H', E, and D, respectively), root mycorrhizal colonization (from 28% to 20%), soil alkaline phosphatase activity (from 0.24 to 0.19 mg/g/24 h) and available phosphorus concentration (from 17.4 to 10.5 mg/kg) at the maize jointing stage. However, reductions in diversity indices of H', E, and D were restored to 2.20, 0.81, and 0.84, respectively, at the maize maturation stage. CT should affect the community again at the wheat sowing stage; however, a similar restoration in the species diversity of AM fungi was completed before the wheat jointing stage, and the highest Jaccard index (0.800) for similarity in the species composition of soil AM fungi between CT and NT was recorded at

  18. Fluorescence spectra and biological activity of aerosolized bacillus spores and MS2 bacteriophage exposed to ozone at different relative humidities in a rotating drum

    International Nuclear Information System (INIS)

    Biological aerosols (bioaerosols) released into the environment may undergo physical and chemical transformations when exposed to atmospheric constituents such as solar irradiation, reactive oxygenated species, ozone, free radicals, water vapor and pollutants. Aging experiments were performed in a rotating drum chamber subjecting bioaerosols, Bacillus thuringiensis Al Hakam (BtAH) spores and MS2 bacteriophages to ozone at 0 and 150 ppb, and relative humidities (RH) at 10%, 50%, and 80+%. Fluorescence spectra and intensities of the aerosols as a function of time in the reaction chamber were measured with a single particle fluorescence spectrometer (SPFS) and an Ultra-Violet Aerodynamic Particle Sizer® Spectrometer (UV-APS). Losses in biological activity were measured by culture and quantitative polymerase chain reaction (q-PCR) assay. For both types of aerosols the largest change in fluorescence emission was between 280 and 400 nm when excited at 263 nm followed by fluorescence emission between 380 and 700 nm when excited at 351 nm. The fluorescence for both BtAH and MS2 were observed to decrease significantly at high ozone concentration and high RH when excited at 263 nm excitation. The decreases in 263 nm excited fluorescence are indicative of hydrolysis and oxidation of tryptophan in the aerosols. Fluorescence measured with the UV-APS (355-nm excitation) increased with time for both BtAH and MS2 aerosols. A two log loss of MS2 bacteriophage infectivity was observed in the presence of ozone at ~50% and 80% RH when measured by culture and normalized for physical losses by q-PCR. Viability of BtAH spores after exposure could not be measured due to the loss of genomic material during experiments, suggesting degradation of extracelluar DNA attributable to oxidation. The results of these studies indicate that the physical and biological properties of bioaerosols change significantly after exposure to ozone and water vapor. - Highlights: • Bacillus spores and MS2

  19. Chromospheric Condensation and Quasi-periodic Pulsations in a Circular-ribbon Flare

    CERN Document Server

    Zhang, Q M; Ning, Z J

    2016-01-01

    In this paper, we report our multiwavelength observations of the C3.1 circular-ribbon flare SOL2015-10-16T10:20 in AR 12434. The flare consisted of a circular flare ribbon (CFR), an inner flare ribbon (IFR) inside, and a pair of short parallel flare ribbons (PFRs). During the impulsive phase of the flare, "two-step" raster observations of \\textit{IRIS} with a cadence of 6 s and an exposure time of 2 s show plasma downflow at the CFR in the Si {\\sc iv} $\\lambda$1402.77 line, suggesting chromospheric condensation. The downflow speeds first increased rapidly from a few km s$^{-1}$ to the peak values of 45$-$52 km s$^{-1}$, before decreasing gradually to the initial levels. The decay timescales of condensation were 3$-$4 minutes, indicating ongoing magnetic reconnection. Interestingly, the downflow speeds are positively correlated with logarithm of the Si {\\sc iv} line intensity and time derivative of the \\textit{GOES} soft X-ray (SXR) flux in 1$-$8 {\\AA}. The radio dynamic spectra are characterized by a type \\Rm...

  20. Time-dependent hydrogen ionisation in the solar chromosphere. I: Methods and first results

    CERN Document Server

    Wedemeyer-Boehm, J L S

    2006-01-01

    An approximate method for solving the rate equations for the hydrogen populations was extended and implemented in the three-dimensional radiation (magneto-)hydrodynamics code CO5BOLD. The method is based on a model atom with six energy levels and fixed radiative rates. It has been tested extensively in one-dimensional simulations. The extended method has been used to create a three-dimensional model that extends from the upper convection zone to the chromosphere. The ionisation degree of hydrogen in our time-dependent simulation is comparable to the corresponding equilibrium value up to 500 km above optical depth unity. Above this height, the non-equilibrium ionisation degree is fairly constant over time and space, and tends to be at a value set by hot propagating shock waves. The hydrogen level populations and electron density are much more constant than the corresponding values for statistical equilibrium, too. In contrast, the equilibrium ionisation degree varies by more than 20 orders of magnitude between...