WorldWideScience

Sample records for chromosome-linked cpg island

  1. CpG island mapping by epigenome prediction.

    Directory of Open Access Journals (Sweden)

    Christoph Bock

    2007-06-01

    Full Text Available CpG islands were originally identified by epigenetic and functional properties, namely, absence of DNA methylation and frequent promoter association. However, this concept was quickly replaced by simple DNA sequence criteria, which allowed for genome-wide annotation of CpG islands in the absence of large-scale epigenetic datasets. Although widely used, the current CpG island criteria incur significant disadvantages: (1 reliance on arbitrary threshold parameters that bear little biological justification, (2 failure to account for widespread heterogeneity among CpG islands, and (3 apparent lack of specificity when applied to the human genome. This study is driven by the idea that a quantitative score of "CpG island strength" that incorporates epigenetic and functional aspects can help resolve these issues. We construct an epigenome prediction pipeline that links the DNA sequence of CpG islands to their epigenetic states, including DNA methylation, histone modifications, and chromatin accessibility. By training support vector machines on epigenetic data for CpG islands on human Chromosomes 21 and 22, we identify informative DNA attributes that correlate with open versus compact chromatin structures. These DNA attributes are used to predict the epigenetic states of all CpG islands genome-wide. Combining predictions for multiple epigenetic features, we estimate the inherent CpG island strength for each CpG island in the human genome, i.e., its inherent tendency to exhibit an open and transcriptionally competent chromatin structure. We extensively validate our results on independent datasets, showing that the CpG island strength predictions are applicable and informative across different tissues and cell types, and we derive improved maps of predicted "bona fide" CpG islands. The mapping of CpG islands by epigenome prediction is conceptually superior to identifying CpG islands by widely used sequence criteria since it links CpG island detection to

  2. CpG island mapping by epigenome prediction.

    Science.gov (United States)

    Bock, Christoph; Walter, Jörn; Paulsen, Martina; Lengauer, Thomas

    2007-06-01

    CpG islands were originally identified by epigenetic and functional properties, namely, absence of DNA methylation and frequent promoter association. However, this concept was quickly replaced by simple DNA sequence criteria, which allowed for genome-wide annotation of CpG islands in the absence of large-scale epigenetic datasets. Although widely used, the current CpG island criteria incur significant disadvantages: (1) reliance on arbitrary threshold parameters that bear little biological justification, (2) failure to account for widespread heterogeneity among CpG islands, and (3) apparent lack of specificity when applied to the human genome. This study is driven by the idea that a quantitative score of "CpG island strength" that incorporates epigenetic and functional aspects can help resolve these issues. We construct an epigenome prediction pipeline that links the DNA sequence of CpG islands to their epigenetic states, including DNA methylation, histone modifications, and chromatin accessibility. By training support vector machines on epigenetic data for CpG islands on human Chromosomes 21 and 22, we identify informative DNA attributes that correlate with open versus compact chromatin structures. These DNA attributes are used to predict the epigenetic states of all CpG islands genome-wide. Combining predictions for multiple epigenetic features, we estimate the inherent CpG island strength for each CpG island in the human genome, i.e., its inherent tendency to exhibit an open and transcriptionally competent chromatin structure. We extensively validate our results on independent datasets, showing that the CpG island strength predictions are applicable and informative across different tissues and cell types, and we derive improved maps of predicted "bona fide" CpG islands. The mapping of CpG islands by epigenome prediction is conceptually superior to identifying CpG islands by widely used sequence criteria since it links CpG island detection to their characteristic

  3. The CpG island searcher: a new WWW resource.

    Science.gov (United States)

    Takai, Daiya; Jones, Peter A

    2003-01-01

    Clusters of CpG dinucleotides in GC rich regions of the genome called "CpG islands" frequently occur in the 5' ends of genes. Methylation of CpG islands plays a role in transcriptional silencing in higher organisms in certain situations. We have established a CpG-island-extraction algorithm, which we previously developed [Takai and Jones, 2002], on a web site which has a simple user interface to identify CpG islands from submitted sequences of up to 50kb. The web site determines the locations of CpG islands using parameters (lower limit of %GC, ObsCpG/ExpCpG, length) set by the user, to display the value of parameters on each CpG island, and provides a graphical map of CpG dinucleotide distribution and borders of CpG islands. A command-line version of the CpG islands searcher has also been developed for larger sequences. The CpG Island Searcher was applied to the latest sequence and mapping information of human chromosomes 20, 21 and 22, and a total of 2345 CpG islands were extracted and 534 (23%) of them contained first coding exons and 650 (28%) contained other exons. The CpG Island Searcher is available on the World Wide Web at http://www.cpgislands.com or http://www.uscnorris.com/cpgislands/cpg.cgi.

  4. Deletions of a differentially methylated CpG island at SNRPN define a putative imprinting control region

    Energy Technology Data Exchange (ETDEWEB)

    Sutcliffe, J.S.,; Nakao, M.; Beaudet, A.L. [Baylor College of Medicine, Houston, TX (United States)] [and others

    1994-09-01

    Prader-Willi syndrome (PWS) and Angelman syndrome (AS) are associated with paternal and maternal deficiencies, respectively, of gene expression within human chromosome 15q11-q13, and are caused by deletion, uniparental disomy, or other mutations. Four transcripts designated PAR-5, PAR-7, PAR-1 and PAR-4 were isolated and localized to a region within 300 kb telomeric to the gene encoding small nuclear ribonucleoprotein-associated polypeptide N (SNRPN). Analysis of the transcripts in cultured fibroblasts and lymphoblasts from deletion patients demonstrated that SNRPN, PAR-5 and PAR-1 are expressed exclusively from the paternal chromosome, defining an imprinted domain that spans at least 200 kb. All three imprinted transcripts were absent in cells from three PWS patients (one pair of sibs and one sporadic case) with small deletions that involve a differentially methylated CpG island containing a previously undescribed 5{prime} untranslated exon ({alpha}) of SNRPN. Methylation of the CpG island is specific for the maternal chromosome consistent with paternal expression of the imprinted domain. One deletion, which is benign when maternally transmitted, extends upstream <30 kb from the CpG island, and is associated with altered methylation centromeric to SNRPN, and loss of transcription telomeric to SNRPN, implying the presence of an imprinting control region around the CpG island containing exon {alpha}.

  5. Polycomb-like proteins link the PRC2 complex to CpG islands

    Energy Technology Data Exchange (ETDEWEB)

    Li, Haojie; Liefke, Robert; Jiang, Junyi; Kurland, Jesse Vigoda; Tian, Wei; Deng, Pujuan; Zhang, Weidi; He, Qian; Patel, Dinshaw J.; Bulyk, Martha L.; Shi, Yang; Wang, Zhanxin

    2017-09-06

    The Polycomb repressive complex 2 (PRC2) mainly mediates transcriptional repression1,2 and has essential roles in various biological processes including the maintenance of cell identity and proper differentiation. Polycomb-like (PCL) proteins, such as PHF1, MTF2 and PHF19, are PRC2-associated factors that form sub-complexes with PRC2 core components3, and have been proposed to modulate the enzymatic activity of PRC2 or the recruitment of PRC2 to specific genomic loci4,5,6,7,8,9,10,11,12,13. Mammalian PRC2-binding sites are enriched in CG content, which correlates with CpG islands that display a low level of DNA methylation14. However, the mechanism of PRC2 recruitment to CpG islands is not fully understood. Here we solve the crystal structures of the N-terminal domains of PHF1 and MTF2 with bound CpG-containing DNAs in the presence of H3K36me3-containing histone peptides. We show that the extended homologous regions of both proteins fold into a winged-helix structure, which specifically binds to the unmethylated CpG motif but in a completely different manner from the canonical winged-helix DNA recognition motif. We also show that the PCL extended homologous domains are required for efficient recruitment of PRC2 to CpG island-containing promoters in mouse embryonic stem cells. Our research provides the first, to our knowledge, direct evidence to demonstrate that PCL proteins are crucial for PRC2 recruitment to CpG islands, and further clarifies the roles of these proteins in transcriptional regulation in vivo.

  6. GaussianCpG: a Gaussian model for detection of CpG island in human genome sequences.

    Science.gov (United States)

    Yu, Ning; Guo, Xuan; Zelikovsky, Alexander; Pan, Yi

    2017-05-24

    As crucial markers in identifying biological elements and processes in mammalian genomes, CpG islands (CGI) play important roles in DNA methylation, gene regulation, epigenetic inheritance, gene mutation, chromosome inactivation and nuclesome retention. The generally accepted criteria of CGI rely on: (a) %G+C content is ≥ 50%, (b) the ratio of the observed CpG content and the expected CpG content is ≥ 0.6, and (c) the general length of CGI is greater than 200 nucleotides. Most existing computational methods for the prediction of CpG island are programmed on these rules. However, many experimentally verified CpG islands deviate from these artificial criteria. Experiments indicate that in many cases %G+C is human genome. We analyze the energy distribution over genomic primary structure for each CpG site and adopt the parameters from statistics of Human genome. The evaluation results show that the new model can predict CpG islands efficiently by balancing both sensitivity and specificity over known human CGI data sets. Compared with other models, GaussianCpG can achieve better performance in CGI detection. Our Gaussian model aims to simplify the complex interaction between nucleotides. The model is computed not by the linear statistical method but by the Gaussian energy distribution and accumulation. The parameters of Gaussian function are not arbitrarily designated but deliberately chosen by optimizing the biological statistics. By using the pseudopotential analysis on CpG islands, the novel model is validated on both the real and artificial data sets.

  7. Integrated analysis of gene expression, CpG island methylation, and gene copy number in breast cancer cells by deep sequencing.

    Directory of Open Access Journals (Sweden)

    Zhifu Sun

    Full Text Available We used deep sequencing technology to profile the transcriptome, gene copy number, and CpG island methylation status simultaneously in eight commonly used breast cell lines to develop a model for how these genomic features are integrated in estrogen receptor positive (ER+ and negative breast cancer. Total mRNA sequence, gene copy number, and genomic CpG island methylation were carried out using the Illumina Genome Analyzer. Sequences were mapped to the human genome to obtain digitized gene expression data, DNA copy number in reference to the non-tumor cell line (MCF10A, and methylation status of 21,570 CpG islands to identify differentially expressed genes that were correlated with methylation or copy number changes. These were evaluated in a dataset from 129 primary breast tumors. Gene expression in cell lines was dominated by ER-associated genes. ER+ and ER- cell lines formed two distinct, stable clusters, and 1,873 genes were differentially expressed in the two groups. Part of chromosome 8 was deleted in all ER- cells and part of chromosome 17 amplified in all ER+ cells. These loci encoded 30 genes that were overexpressed in ER+ cells; 9 of these genes were overexpressed in ER+ tumors. We identified 149 differentially expressed genes that exhibited differential methylation of one or more CpG islands within 5 kb of the 5' end of the gene and for which mRNA abundance was inversely correlated with CpG island methylation status. In primary tumors we identified 84 genes that appear to be robust components of the methylation signature that we identified in ER+ cell lines. Our analyses reveal a global pattern of differential CpG island methylation that contributes to the transcriptome landscape of ER+ and ER- breast cancer cells and tumors. The role of gene amplification/deletion appears to more modest, although several potentially significant genes appear to be regulated by copy number aberrations.

  8. CpG islands undermethylation in human genomic regions under selective pressure.

    Directory of Open Access Journals (Sweden)

    Sergio Cocozza

    Full Text Available DNA methylation at CpG islands (CGIs is one of the most intensively studied epigenetic mechanisms. It is fundamental for cellular differentiation and control of transcriptional potential. DNA methylation is involved also in several processes that are central to evolutionary biology, including phenotypic plasticity and evolvability. In this study, we explored the relationship between CpG islands methylation and signatures of selective pressure in Homo Sapiens, using a computational biology approach. By analyzing methylation data of 25 cell lines from the Encyclopedia of DNA Elements (ENCODE Consortium, we compared the DNA methylation of CpG islands in genomic regions under selective pressure with the methylation of CpG islands in the remaining part of the genome. To define genomic regions under selective pressure, we used three different methods, each oriented to provide distinct information about selective events. Independently of the method and of the cell type used, we found evidences of undermethylation of CGIs in human genomic regions under selective pressure. Additionally, by analyzing SNP frequency in CpG islands, we demonstrated that CpG islands in regions under selective pressure show lower genetic variation. Our findings suggest that the CpG islands in regions under selective pressure seem to be somehow more "protected" from methylation when compared with other regions of the genome.

  9. Long-range autocorrelations of CpG islands in the human genome.

    Directory of Open Access Journals (Sweden)

    Benjamin Koester

    Full Text Available In this paper, we use a statistical estimator developed in astrophysics to study the distribution and organization of features of the human genome. Using the human reference sequence we quantify the global distribution of CpG islands (CGI in each chromosome and demonstrate that the organization of the CGI across a chromosome is non-random, exhibits surprisingly long range correlations (10 Mb and varies significantly among chromosomes. These correlations of CGI summarize functional properties of the genome that are not captured when considering variation in any particular separate (and local feature. The demonstration of the proposed methods to quantify the organization of CGI in the human genome forms the basis of future studies. The most illuminating of these will assess the potential impact on phenotypic variation of inter-individual variation in the organization of the functional features of the genome within and among chromosomes, and among individuals for particular chromosomes.

  10. Methylation of the estrogen receptor CpG island distinguishes spontaneous and plutonium-induced tumors from nitrosamine-induced lung tumors

    Energy Technology Data Exchange (ETDEWEB)

    Belinsky, S.A.; Baylin, S.B.; Issa, J.J. [Johns Hopkins Univ., Baltimore, MD (United States)

    1995-12-01

    CpG islands located in the promoter region of genes constitute one mechanism for regulating transcription. These islands are normally free of methylation, regardless of the expression state of the gene. Hypermethylation of CpG islands, the addition of a methyl group to the internal cytosine within CpG dinucleotides, can cause silencing of a gene. Hypermethylation has been detected as an early event at specific chromosome loci during the development of colon cancer and represents one mechanism used by neoplatic cells to inactivate tumor suppressor genes. Recent studies have demonstrated this mechanism in inactivation of the VHL tumor suppressor gene in 19% of sporadic renal tumors and the p16 {sup INK4a} tumor suppressor gene in 30% of non-small cell lung cancers. A recent report indicates that the estrogen receptor gene could also be inactivated through methylation. In addition, estrogen receptor CpG island methylation arises as a direct function of age in normal colonic mucosa and is present in virtually all colonic tumors. In cultured colon cancer cells, methylation-associated loss of expression of the estrogen receptor gene results in deregulated growth, suggesting a role for the estrogen receptor in colon cancer development. These results provide further evidence that gene silencing through methylation could be a predominant epigenetic mechanism underlying the development of many different types of cancer. The purpose of the current investigation was to determine whether estrogen receptor CpG island methylation is involved in the development of lung cancer. The frequency for methylation of the estrogen receptor CpG island in rodent lung tumors is summarized.

  11. Fine mapping of the EDA gene: A translocation breakpoint is associated with a CpG island that is transcribed

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, A.K.; Schlessinger, D. [Washington Univ. School of Medicine, St. Louis, MO (United States); Montonen, O. [Univ. of Helsinki (Finland)] [and others

    1996-01-01

    In order to identify the gene for human X-linked anhidrotic ectodermal dysplasia (EDA), a translocation breakpoint in a female with t(X;1)(q13.1;p36.3) and EDA (patient AK) was finely mapped. The EDA region contains five groups of rare-cutter restriction sites that define CpG islands. The two more centromeric of these islands are associated with transcripts of 3.5 kb and 1.8 kb. The third CpG island maps within <1 kb of the translocation breakpoint in patient AK, as indicated by a genomic rearrangement, and {approximately}100 kb centromeric from another previously mapped translocation breakpoint (patient AnLy). Northern analysis with a probe from this CpG island detected an {approximately}6-kb mRNA in several fetal tissues tested. An extended YAC contig of 1,200 kb with an average of fivefold coverage was constructed. The two most telomeric CpG islands map 350 kb telomeric of the two translocations. Taken together, the results suggest that the CpG island just proximal of the AK translocation breakpoint lies at the 5{prime} end of a candidate gene for EDA. 26 refs., 4 figs., 1 tab.

  12. The CpG island methylator phenotype: What's in a name?

    NARCIS (Netherlands)

    L.A.E. Hughes (Laura A.); V. Melotte (Veerle); J.D. Schrijver (Joachim De); M.P.M. de Maat (Moniek); V.T.H.B.M. Smit (Vincent); J.V.M.G. Bovée (Judith); P.J. French (Pim); P.A. van den Brandt (Piet); L. Schouten (Leo); T. Meyer (Thorsten); W. van Criekinge (Wim); N. Ahuja (Nita); J.G. Herman (James); M.P. Weijenberg (Matty); M. van Engeland (Manon)

    2013-01-01

    textabstractAlthough the CpG island methylator phenotype (CIMP) was first identified and has been most extensively studied in colorectal cancer, the term "CIMP" has been repeatedly used over the past decade to describe CpG island promoter methylation in other tumor types, including bladder, breast,

  13. Compositional searching of CpG islands in the human genome

    Science.gov (United States)

    Luque-Escamilla, Pedro Luis; Martínez-Aroza, José; Oliver, José L.; Gómez-Lopera, Juan Francisco; Román-Roldán, Ramón

    2005-06-01

    We report on an entropic edge detector based on the local calculation of the Jensen-Shannon divergence with application to the search for CpG islands. CpG islands are pieces of the genome related to gene expression and cell differentiation, and thus to cancer formation. Searching for these CpG islands is a major task in genetics and bioinformatics. Some algorithms have been proposed in the literature, based on moving statistics in a sliding window, but its size may greatly influence the results. The local use of Jensen-Shannon divergence is a completely different strategy: the nucleotide composition inside the islands is different from that in their environment, so a statistical distance—the Jensen-Shannon divergence—between the composition of two adjacent windows may be used as a measure of their dissimilarity. Sliding this double window over the entire sequence allows us to segment it compositionally. The fusion of those segments into greater ones that satisfy certain identification criteria must be achieved in order to obtain the definitive results. We find that the local use of Jensen-Shannon divergence is very suitable in processing DNA sequences for searching for compositionally different structures such as CpG islands, as compared to other algorithms in literature.

  14. CpG Island Methylator Phenotype in Primary Gastric Carcinoma

    OpenAIRE

    TOJO Masayuki:筆頭著者; KONISHI Kazuo; YANO Yuichiro; KATAGIRI Atsushi; NOZAWA Hisako; KUBOTA Yutaro; MURAMOTO Takashi; KONDA Kenichi; SHINMURA Kensuke; TAKIMOTO Masafumi; IMAWARI Michio; YOSHIDA Hitoshi

    2013-01-01

    Gastric cancers (GC) with methylation of multiple CpG islands have a CpG island methylator phenotype (CIMP) and they can have different biological features. The aim of this study was to investigate the DNA methylation status of GCs and its association with their clinicopathological features. We evaluated the methylation status of four genes (MINT1, MINT2, MINT25 and MINT31) in 105 primary GCs using bisulfite-pyrosequencing analysis. We classified tumors as CIMP-high (CIMP-H), CIMP-low (CIMP-L...

  15. A novel CpG island set identifies tissue-specific methylation at developmental gene loci.

    Directory of Open Access Journals (Sweden)

    Robert Illingworth

    2008-01-01

    Full Text Available CpG islands (CGIs are dense clusters of CpG sequences that punctuate the CpG-deficient human genome and associate with many gene promoters. As CGIs also differ from bulk chromosomal DNA by their frequent lack of cytosine methylation, we devised a CGI enrichment method based on nonmethylated CpG affinity chromatography. The resulting library was sequenced to define a novel human blood CGI set that includes many that are not detected by current algorithms. Approximately half of CGIs were associated with annotated gene transcription start sites, the remainder being intra- or intergenic. Using an array representing over 17,000 CGIs, we established that 6%-8% of CGIs are methylated in genomic DNA of human blood, brain, muscle, and spleen. Inter- and intragenic CGIs are preferentially susceptible to methylation. CGIs showing tissue-specific methylation were overrepresented at numerous genetic loci that are essential for development, including HOX and PAX family members. The findings enable a comprehensive analysis of the roles played by CGI methylation in normal and diseased human tissues.

  16. CpG island methylator phenotype-low (CIMP-low) colorectal cancer shows not only few methylated CIMP-high-specific CpG islands, but also low-level methylation at individual loci.

    Science.gov (United States)

    Kawasaki, Takako; Ohnishi, Mutsuko; Nosho, Katsuhiko; Suemoto, Yuko; Kirkner, Gregory J; Meyerhardt, Jeffrey A; Fuchs, Charles S; Ogino, Shuji

    2008-03-01

    The CpG island methylator phenotype (CIMP or CIMP-high) with widespread promoter methylation is a distinct phenotype in colorectal cancer. However, the concept of CIMP-low with less extensive CpG island methylation is still evolving. Our aim is to examine whether density of methylation in individual CpG islands was different between CIMP-low and CIMP-high tumors. Utilizing MethyLight technology and 889 population-based colorectal cancers, we quantified DNA methylation (methylation index, percentage of methylated reference) at 14 CpG islands, including 8 CIMP-high-specific loci (CACNA1G, CDKN2A (p16), CRABP1, IGF2, MLH1, NEUROG1, RUNX3 and SOCS1). Methylation positivity in each locus was defined as methylation index>4. Low-level methylation (methylation index>0, CIMP-high-specific locus was significantly more common in 340 CIMP-low tumors (1/8-5/8 methylation-positive loci) than 133 CIMP-high tumors (> or =6/8 methylation-positive loci) and 416 CIMP-0 tumors (0/8 methylation-positive loci) (PCIMP-high, low-level methylation, was not persistently more prevalent in CIMP-low tumors. In conclusion, compared to CIMP-high and CIMP-0 tumors, CIMP-low colorectal cancers show not only few methylated CIMP-high-specific CpG islands, but also more frequent low-level methylation at individual loci. Our data may provide supporting evidence for a difference in pathogenesis of DNA methylation between CIMP-low and CIMP-high tumors.

  17. The CpG island methylator phenotype (CIMP) in colorectal cancer.

    Science.gov (United States)

    Nazemalhosseini Mojarad, Ehsan; Kuppen, Peter Jk; Aghdaei, Hamid Asadzadeh; Zali, Mohammad Reza

    2013-01-01

    It is clear that colorectal cancer (CRC) develops through multiple genetic and epigenetic pathways. These pathways may be determined on the basis of three molecular features: (i) mutations in DNA mismatch repair genes, leading to a DNA microsatellite instability (MSI) phenotype, (ii) mutations in APC and other genes that activate Wnt pathway, characterized by chromosomal instability (CIN) phenotype, and (iii) global genome hypermethylation, resulting in switch off of tumor suppressor genes, indicated as CpG island methylator phenotype (CIMP). Each of these pathways is characterized by specific pathological features, mechanisms of carcinogenesis and process of tumor development. The molecular aspects of these pathways have been used clinically in the diagnosis, screening and management of patients with colorectal cancer. In this review we especially describe various aspects of CIMP, one of the important and rather recently discovered pathways that lead to colorectal cancer.

  18. Unique DNA methylome profiles in CpG island methylator phenotype colon cancers

    Science.gov (United States)

    Xu, Yaomin; Hu, Bo; Choi, Ae-Jin; Gopalan, Banu; Lee, Byron H.; Kalady, Matthew F.; Church, James M.; Ting, Angela H.

    2012-01-01

    A subset of colorectal cancers was postulated to have the CpG island methylator phenotype (CIMP), a higher propensity for CpG island DNA methylation. The validity of CIMP, its molecular basis, and its prognostic value remain highly controversial. Using MBD-isolated genome sequencing, we mapped and compared genome-wide DNA methylation profiles of normal, non-CIMP, and CIMP colon specimens. Multidimensional scaling analysis revealed that each specimen could be clearly classified as normal, non-CIMP, and CIMP, thus signifying that these three groups have distinctly different global methylation patterns. We discovered 3780 sites in various genomic contexts that were hypermethylated in both non-CIMP and CIMP colon cancers when compared with normal colon. An additional 2026 sites were found to be hypermethylated in CIMP tumors only; and importantly, 80% of these sites were located in CpG islands. These data demonstrate on a genome-wide level that the additional hypermethylation seen in CIMP tumors occurs almost exclusively at CpG islands and support definitively that these tumors were appropriately named. When these sites were examined more closely, we found that 25% were adjacent to sites that were also hypermethylated in non-CIMP tumors. Thus, CIMP is also characterized by more extensive methylation of sites that are already prone to be hypermethylated in colon cancer. These observations indicate that CIMP tumors have specific defects in controlling both DNA methylation seeding and spreading and serve as an important first step in delineating molecular mechanisms that control these processes. PMID:21990380

  19. CpG island methylator phenotype (CIMP) in cancer: causes and implications.

    Science.gov (United States)

    Teodoridis, Jens M; Hardie, Catriona; Brown, Robert

    2008-09-18

    Strong evidence exists for a subgroup of tumours, from a variety of tissue types, exhibiting concordant tumour specific DNA methylation: the "CpG island methylator phenotype" (CIMP). Occurrence of CIMP is associated with a range of genetic and environmental factors, although the molecular causes are not well-understood. Both increased expression and aberrant targeting of DNA methyltransferases (DNMTs) could contribute to the occurrence of CIMP. One under-explored area is the possibility that DNA damage may induce or select for CIMP during carcinogenesis or treatment of tumours with chemotherapy. DNA damaging agents can induce DNA damage at guanine rich regions throughout the genome, including CpG islands. This DNA damage can result in stalled DNA synthesis, which will lead to localised increased DNMT1 concentration and therefore potentially increased DNA methylation at these sites. Chemotherapy can select for cells which have increased tolerance to DNA damage due to increased lesion bypass, in some cases by mechanisms which involve inactivation of genes by CpG island methylation. CIMP has been associated with worse patient prognosis, probably due to increased epigenetic plasticity. Therefore, further clinical testing of the diagnostic and prognostic value of the current CIMP markers, as well as increasing our understanding of the molecular causes underlying CIMP are required.

  20. De novo CpG methylation on an artificial chromosome-like vector maintained for a long-term in mammalian cells.

    Science.gov (United States)

    Nishioka, Keisuke; Kishida, Tsunao; Masui, Shinji; Mazda, Osam

    2016-04-01

    To examine whether an autonomously replicating, artificial chromosome-like vector containing a long genomic DNA sequence (namely, Epigenosome-Nanog) undergoes de novo CpG methylation after maintenance in cultured cells for more than a half year. Epigenosome-Nanog efficiently replicated in iPS cells after transfection. In HeLa and C2C12 cells Epigenosome-Nanog was stably maintained for more than eight months. The CpG methylation occurred de novo at the Nanog gene promoter region on the epigenosome in C2C12 cells but the degrees of methylation were much lower than those at the same CpG sites on the chromosomes. Among the four CpG sites at the region, the upstream two CpGs underwent methylation in a correlated manner while methylation at the downstream two CpGs was also correlated to each other, and these correlations were commonly shared between the epigenosome and the chromosome. CpG methylation thus was not solely dependent on the nucleotide sequence at the DNA locus. The epigenosome may become a useful tool to study the mechanisms of epigenetic regulation of a genetic region of interest in mammalian cells.

  1. JC Virus T-Antigen in Colorectal Cancer Is Associated with p53 Expression and Chromosomal Instability, Independent of CpG Island Methylator Phenotype

    Directory of Open Access Journals (Sweden)

    Katsuhiko Nosho

    2009-01-01

    Full Text Available JC virus has a transforming gene encoding JC virus T-antigen (JCVT. JCVT may inactivate wild-type p53, cause chromosomal instability (CIN, and stabilize β-catenin. A link between JCVT and CpG island methylator phenotype (CIMP has been suggested. However, no large-scale study has examined the relations of JCVT with molecular alterations, clinical outcome, or prognosis in colon cancer. We detected JCVT expression (by immunohistochemistry in 271 (35% of 766 colorectal cancers. We quantified DNA methylation in eight CIMP-specific promoters (CACNA1G, CDKN2A, CRABP1, IGF2, MLH1, NEUROG1, RUNX3, and SOCS1 and eight other loci (CHFR, HIC1, IGFBP3, MGMT, MINT1, MINT31, p14, WRN by MethyLight. We examined loss of heterozygosity in 2p, 5q, 17q, and 18q. JCVT was significantly associated with p53 expression (P < .0001, p21 loss (P < .0001, CIN (≥2 chromosomal segments with LOH; P < .0001, nuclear β-catenin (P = .006, LINE-1 hypomethylation (P = .002, and inversely with CIMP-high (P = .0005 and microsatellite instability (MSI (P < .0001, but not with PIK3CA mutation. In multivariate logistic regression analysis, the associations of JCVT with p53 [adjusted odds ratio (OR, 8.45; P < .0001], CIN (adjusted OR, 2.53; P = .003, cyclin D1 (adjusted OR, 1.57; P = .02, LINE-1 hypomethylation (adjusted OR, 1.97 for a 30% decline as a unit; P = .03, BRAF mutation (adjusted OR, 2.20; P = .04, and family history of colorectal cancer (adjusted OR, 0.64; P = .04 remained statistically significant. However, JCVT was no longer significantly associated with CIMP, MSI, β-catenin, or cyclooxygenase-2 expression in multivariate analysis. JCVT was unrelated with patient survival. In conclusion, JCVT expression in colorectal cancer is independently associated with p53 expression and CIN, which may lead to uncontrolled cell proliferation.

  2. A genome-wide map of aberrantly expressed chromosomal islands in colorectal cancer

    Directory of Open Access Journals (Sweden)

    Castanos-Velez Esmeralda

    2006-09-01

    Full Text Available Abstract Background Cancer development is accompanied by genetic phenomena like deletion and amplification of chromosome parts or alterations of chromatin structure. It is expected that these mechanisms have a strong effect on regional gene expression. Results We investigated genome-wide gene expression in colorectal carcinoma (CRC and normal epithelial tissues from 25 patients using oligonucleotide arrays. This allowed us to identify 81 distinct chromosomal islands with aberrant gene expression. Of these, 38 islands show a gain in expression and 43 a loss of expression. In total, 7.892 genes (25.3% of all human genes are located in aberrantly expressed islands. Many chromosomal regions that are linked to hereditary colorectal cancer show deregulated expression. Also, many known tumor genes localize to chromosomal islands of misregulated expression in CRC. Conclusion An extensive comparison with published CGH data suggests that chromosomal regions known for frequent deletions in colon cancer tend to show reduced expression. In contrast, regions that are often amplified in colorectal tumors exhibit heterogeneous expression patterns: even show a decrease of mRNA expression. Because for several islands of deregulated expression chromosomal aberrations have never been observed, we speculate that additional mechanisms (like abnormal states of regional chromatin also have a substantial impact on the formation of co-expression islands in colorectal carcinoma.

  3. High CpG island methylation ofp16 gene and loss of p16 protein ...

    Indian Academy of Sciences (India)

    Navya

    employed to detect CpG island methylation in p16 promoter region and ... of Fallot;p16 gene;p16 protein;CpG islands;Methylation;Promoter regions ..... Our findings that p16 has a role in heart development is ... Asian Pac J Cancer Prev 15, 75-84. .... phenotype in colorectal cancer using a large population-based sample.

  4. Deletion and aberrant CpG island methylation of Caspase 8 gene in medulloblastoma.

    Science.gov (United States)

    Gonzalez-Gomez, Pilar; Bello, M Josefa; Inda, M Mar; Alonso, M Eva; Arjona, Dolores; Amiñoso, Cinthia; Lopez-Marin, Isabel; de Campos, Jose M; Sarasa, Jose L; Castresana, Javier S; Rey, Juan A

    2004-09-01

    Aberrant methylation of promoter CpG islands in human genes is an alternative genetic inactivation mechanism that contributes to the development of human tumors. Nevertheless, few studies have analyzed methylation in medulloblastomas. We determined the frequency of aberrant CpG island methylation for Caspase 8 (CASP8) in a group of 24 medulloblastomas arising in 8 adult and 16 pediatric patients. Complete methylation of CASP8 was found in 15 tumors (62%) and one case displayed hemimethylation. Three samples amplified neither of the two primer sets for methylated or unmethylated alleles, suggesting that genomic deletion occurred in the 5' flanking region of CASP8. Our findings suggest that methylation commonly contributes to CASP8 silencing in medulloblastomas and that homozygous deletion or severe sequence changes involving the promoter region may be another mechanism leading to CASP8 inactivation in this neoplasm.

  5. DELETION AND 5'CPG ISLAND METHYLATION OF p15 GENE IN BRAIN GLIOMA

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Objective: To investigate the abnormality of p15 gene in brain glioma and the correlation of it with occurrence or malignant progression of brain glioma. Methods: Deletion and 5'CPG island methylation of p15 gene were detected by the methods of PCR and PCR-based methylation in 56 cases of brain glioma. Results: Out of 43 cases of high grade glioma, 14 cases were found to have homozygous deletion of p15E1, while none of the 13 cases of low grade glioma was found to have deletion of p15E1 (P<0.05). Methylation of 5'CPG Island of p15 gene was found only in four cases of glioma. Conclusion: Abnormality of p15 gene may involved in the occurrence and malignant progression of brain glioma. Homozygous deletion of gene is the major mechanism of inactivation for p15 gene in brain glioma.

  6. Characterization of human gastric carcinoma-related methylation of 9 miR CpG islands and repression of their expressions in vitro and in vivo

    International Nuclear Information System (INIS)

    Du, Yantao; Liu, Zhaojun; Gu, Liankun; Zhou, Jing; Zhu, Bu-dong; Ji, Jiafu; Deng, Dajun

    2012-01-01

    Many miR genes are located within or around CpG islands. It is unclear whether methylation of these CpG islands represses miR transcription regularly. The aims of this study are to characterize gastric carcinoma (GC)-related methylation of miR CpG islands and its relationship with miRNA expression. Methylation status of 9 representative miR CpG islands in a panel of cell lines and human gastric samples (including 13 normal biopsies, 38 gastritis biopsies, 112 pairs of GCs and their surgical margin samples) was analyzed by bisulfite-DHPLC and sequencing. Mature miRNA levels were determined with quantitative RT-PCR. Relationships between miR methylation, transcription, GC development, and clinicopathological characteristics were statistically analyzed. Methylation frequency of 5 miR CpG islands (miR-9-1, miR-9-3, miR-137, miR-34b, and miR-210) gradually increased while the proportion of methylated miR-200b gradually decreased during gastric carcinogenesis (Ps < 0.01). More miR-9-1 methylation was detected in 62%-64% of the GC samples and 4% of the normal or gastritis samples (18/28 versus 2/48; Odds ratio, 41.4; P < 0.01). miR-210 methylation showed high correlation with H. pylori infection. miR-375, miR-203, and miR-193b methylation might be host adaptation to the development of GCs. Methylation of these miR CpG islands was consistently shown to significantly decrease the corresponding miRNA levels presented in human cell lines. The inverse relationship was also observed for miR-9-1, miR-9-3, miR-137, and miR-200b in gastric samples. Among 112 GC patients, miR-9-1 methylation was an independent favourable predictor of overall survival of GC patients in both univariate and multivariate analysis (P < 0.02). In conclusion, alteration of methylation status of 6 of 9 tested miR CpG islands was characterized in gastric carcinogenesis. miR-210 methylation correlated with H. pylori infection. miR-9-1 methylation may be a GC-specific event. Methylation of miR CpG islands may

  7. Determining coding CpG islands by identifying regions significant for pattern statistics on Markov chains.

    Science.gov (United States)

    Singer, Meromit; Engström, Alexander; Schönhuth, Alexander; Pachter, Lior

    2011-09-23

    Recent experimental and computational work confirms that CpGs can be unmethylated inside coding exons, thereby showing that codons may be subjected to both genomic and epigenomic constraint. It is therefore of interest to identify coding CpG islands (CCGIs) that are regions inside exons enriched for CpGs. The difficulty in identifying such islands is that coding exons exhibit sequence biases determined by codon usage and constraints that must be taken into account. We present a method for finding CCGIs that showcases a novel approach we have developed for identifying regions of interest that are significant (with respect to a Markov chain) for the counts of any pattern. Our method begins with the exact computation of tail probabilities for the number of CpGs in all regions contained in coding exons, and then applies a greedy algorithm for selecting islands from among the regions. We show that the greedy algorithm provably optimizes a biologically motivated criterion for selecting islands while controlling the false discovery rate. We applied this approach to the human genome (hg18) and annotated CpG islands in coding exons. The statistical criterion we apply to evaluating islands reduces the number of false positives in existing annotations, while our approach to defining islands reveals significant numbers of undiscovered CCGIs in coding exons. Many of these appear to be examples of functional epigenetic specialization in coding exons.

  8. Aberrant septin 9 DNA methylation in colorectal cancer is restricted to a single CpG island

    International Nuclear Information System (INIS)

    Wasserkort, Reinhold; Kalmar, Alexandra; Valcz, Gabor; Spisak, Sandor; Krispin, Manuel; Toth, Kinga; Tulassay, Zsolt; Sledziewski, Andrew Z; Molnar, Bela

    2013-01-01

    The septin 9 gene (SEPT9) codes for a GTP-binding protein associated with filamentous structures and cytoskeleton formation. SEPT9 plays a role in multiple cancers as either an oncogene or a tumor suppressor gene. Regulation of SEPT9 expression is complex and not well understood; however, hypermethylation of the gene was recently introduced as a biomarker for early detection of colorectal cancer (CRC) and has been linked to cancer of the breast and of the head and neck. Because the DNA methylation landscape of different regions of SEPT9 is poorly understood in cancer, we analyzed the methylation patterns of this gene in distinct cell populations from normal and diseased colon mucosa. Laser capture microdissection was performed to obtain homogeneous populations of epithelial and stromal cells from normal, adenomatous, and tumorous colon mucosa. Microdissected samples were analyzed using direct bisulfite sequencing to determine the DNA methylation status of eight regions within and near the SEPT9 gene. Septin-9 protein expression was assessed using immunohistochemistry (IHC). Regions analyzed in SEPT9 were unmethylated in normal tissue except for a methylation boundary detected downstream of the largest CpG island. In adenoma and tumor tissues, epithelial cells displayed markedly increased DNA methylation levels (>80%, p <0.0001) in only one of the CpG islands investigated. SEPT9 methylation in stromal cells increased in adenomatous and tumor tissues (≤50%, p <0.0001); however, methylation did not increase in stromal cells of normal tissue close to the tumor. IHC data indicated a significant decrease (p <0.01) in Septin-9 protein levels in epithelial cells derived from adenoma and tumor tissues; Septin-9 protein levels in stromal cells were low in all tissues. Hypermethylation of SEPT9 in adenoma and CRC specimens is confined to one of several CpG islands of this gene. Tumor-associated aberrant methylation originates in epithelial cells; stromal cells appear to

  9. Genome-wide CpG island methylation and intergenic demethylation propensities vary among different tumor sites.

    Science.gov (United States)

    Lee, Seung-Tae; Wiemels, Joseph L

    2016-02-18

    The epigenetic landscape of cancer includes both focal hypermethylation and broader hypomethylation in a genome-wide manner. By means of a comprehensive genomic analysis on 6637 tissues of 21 tumor types, we here show that the degrees of overall methylation in CpG island (CGI) and demethylation in intergenic regions, defined as 'backbone', largely vary among different tumors. Depending on tumor type, both CGI methylation and backbone demethylation are often associated with clinical, epidemiological and biological features such as age, sex, smoking history, anatomic location, histological type and grade, stage, molecular subtype and biological pathways. We found connections between CGI methylation and hypermutability, microsatellite instability, IDH1 mutation, 19p gain and polycomb features, and backbone demethylation with chromosomal instability, NSD1 and TP53 mutations, 5q and 19p loss and long repressive domains. These broad epigenetic patterns add a new dimension to our understanding of tumor biology and its clinical implications. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  10. Gene Silencing Triggers Polycomb Repressive Complex 2 Recruitment to CpG Islands Genome Wide

    DEFF Research Database (Denmark)

    Riising, Eva Madi; Vacher-Comet, Itys; Leblanc, Benjamin Olivier

    2014-01-01

    -wide ectopic PRC2 recruitment to endogenous PcG target genes found in other tissues. PRC2 binding analysis shows that it is restricted to nucleosome-free CpG islands (CGIs) of untranscribed genes. Our results show that it is the transcriptional state that governs PRC2 binding, and we propose that it binds...

  11. Nucleosomes correlate with in vivo progression pattern of de novo methylation of p16 CpG islands in human gastric carcinogenesis.

    Directory of Open Access Journals (Sweden)

    Zhe-Ming Lu

    Full Text Available BACKGROUND: The exact relationship between nucleosome positioning and methylation of CpG islands in human pathogenesis is unknown. METHODOLOGY/PRINCIPAL FINDINGS: In the present study, we characterized the nucleosome position within the p16 CpG island and established a seeding methylation-specific PCR (sMSP assay based on bisulfite modification to enrich the p16 alleles containing methylated-CpG at the methylation "seeding" sites within its intron-1 in gastric carcinogenesis. The sMSP-positive rate in primary gastric carcinoma (GC samples (36/40 was significantly higher than that observed in gastritis (19/45 or normal samples (7/13 (P<0.01. Extensive clone sequencing of these sMSP products showed that the density of methylated-CpGs in p16 CpG islands increased gradually along with the severity of pathological changes in gastric tissues. In gastritis lesions the methylation was frequently observed in the region corresponding to the exon-1 coding-nucleosome and the 5'UTR-nucleosome; the methylation was further extended to the region corresponding to the promoter-nucleosome in GC samples. Only few methylated-CpG sites were randomly detected within p16 CpG islands in normal tissues. The significantly inversed relationship between the p16 exon-1 methylation and its transcription was observed in GC samples. An exact p16 promoter-specific 83 bp-MSP assay confirms the result of sMSP (33/55 vs. 1/6, P<0.01. In addition, p16 methylation in chronic gastritis lesions significantly correlated with H. pylori infection; however, such correlation was not observed in GC specimens. CONCLUSIONS/SIGNIFICANCE: It was determined that de novo methylation was initiated in the coding region of p16 exon-1 in gastritis, then progressed to its 5'UTR, and ultimately to the proximal promoter in GCs. Nucleosomes may function as the basic extension/progression unit of de novo methylation of p16 CpG islands in vivo.

  12. High CpG island methylation of p16 gene and loss of p16 protein

    Indian Academy of Sciences (India)

    Methylation-specific polymerase chain reaction (MSP) was employed to detect CpG island methylation in p16 promoter region andWestern blotting was used to detect p16 expression of all subjects. Real-time fluorescence quantitative polymerase chain reaction (FQ-PCR) was performed to test p16 mRNA expression.

  13. Chromosomal islands of Streptococcus pyogenes and related streptococci: molecular switches for survival and virulence.

    Science.gov (United States)

    Nguyen, Scott V; McShan, William M

    2014-01-01

    Streptococcus pyogenes is a significant pathogen of humans, annually causing over 700,000,000 infections and 500,000 deaths. Virulence in S. pyogenes is closely linked to mobile genetic elements like phages and chromosomal islands (CI). S. pyogenes phage-like chromosomal islands (SpyCI) confer a complex mutator phenotype on their host. SpyCI integrate into the 5' end of DNA mismatch repair (MMR) gene mutL, which also disrupts downstream operon genes lmrP, ruvA, and tag. During early logarithmic growth, SpyCI excise from the bacterial chromosome and replicate as episomes, relieving the mutator phenotype. As growth slows and the cells enter stationary phase, SpyCI reintegrate into the chromosome, again silencing the MMR operon. This system creates a unique growth-dependent and reversible mutator phenotype. Additional CI using the identical attachment site in mutL have been identified in related species, including Streptococcus dysgalactiae subsp. equisimilis, Streptococcus anginosus, Streptococcus intermedius, Streptococcus parauberis, and Streptococcus canis. These CI have small genomes, which range from 13 to 20 kB, conserved integrase and DNA replication genes, and no identifiable genes encoding capsid proteins. SpyCI may employ a helper phage for packaging and dissemination in a fashion similar to the Staphylococcus aureus pathogenicity islands (SaPI). Outside of the core replication and integration genes, SpyCI and related CI show considerable diversity with the presence of many indels that may contribute to the host cell phenotype or fitness. SpyCI are a subset of a larger family of streptococcal CI who potentially regulate the expression of other host genes. The biological and phylogenetic analysis of streptococcal chromosomal islands provides important clues as to how these chromosomal islands help S. pyogenes and other streptococcal species persist in human populations in spite of antibiotic therapy and immune challenges.

  14. Cloning of the anhidrotic ectodermal dysplasia gene: Identification of cDNAs associated with CpG islands mapped near translocation breakpoint in two female patients

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, A.K.; Schlessinger, D. [Washington Univ. School of Medicine, St. Louis, MO (United States); Kere, J. [Univ. of Helsinki (Finland)] [and others

    1994-09-01

    The gene for the X chromosomal developmental disorder anhidrotic ectodermal dysplasia (EDA) has been mapped to Xq12-q13 by linkage analysis and is expressed in a few females with chromosomal translocations involving band Xq12-q13. A yeast artificial chromosome (YAC) contig (2.0 Mb) spanning two translocation breakpoints has been assembled by sequence-tagged site (STS)-based chromosomal walking. The two translocation breakpoints (X:autosome translocations from the affected female patients) have been mapped less than 60 kb apart within a YAC contig. Unique probes and intragenic STSs (mapped between the two translocations) have been developed and a somatic cell hybrid carrying the translocated X chromosome from the AK patient has been analyzed by isolating unique probes that span the breakpoint. Several STSs made from intragenic sequences have been found to be conserved in mouse, hamster and monkey, but we have detected no mRNAs in a number of tissues tested. However, a probe and STS developed from the DNA spanning the AK breakpoint is conserved in mouse, hamster and monkey, and we have detected expressed sequences in skin cells and cDNA libraries. In addition, unique sequences have been obtained from two CpG islands in the region that maps proximal to the breakpoints. cDNAs containing these sequences are being studied as candidates for the gene affected in the etiology of EDA.

  15. High CpG island methylation of p16 gene and loss of p16 protein ...

    Indian Academy of Sciences (India)

    SI-JU GAO

    The study subjects consisted of 75 healthy controls and 63 ToF ... Additionally, our analysis suggested that CpG island methylation in p16 promoters in ToF ..... reduced p16 protein expression in lung cancer (Kondo et al. 2006). In this context ..... promoter methylation in gastric carcinogenesis: a meta-analysis. Mol. Biol. Rep.

  16. Phase II study of nab-paclitaxel in refractory small bowel adenocarcinoma and CpG island methylator phenotype (CIMP)-high colorectal cancer.

    Science.gov (United States)

    Overman, M J; Adam, L; Raghav, K; Wang, J; Kee, B; Fogelman, D; Eng, C; Vilar, E; Shroff, R; Dasari, A; Wolff, R; Morris, J; Karunasena, E; Pisanic, R; Azad, N; Kopetz, S

    2018-01-01

    Hypermethylation of promoter CpG islands [CpG island methylator phenotype (CIMP)] represents a unique pathway for the development of colorectal cancer (CRC), characterized by lack of chromosomal instability and a low rate of adenomatous polyposis coli (APC) mutations, which have both been correlated with taxane resistance. Similarly, small bowel adenocarcinoma (SBA), a rare tumor, also has a low rate of APC mutations. This phase II study evaluated taxane sensitivity in SBA and CIMP-high CRC. The primary objective was Response Evaluation Criteria in Solid Tumors version 1.1 response rate. Eligibility included Eastern Cooperative Oncology Group performance status 0/1, refractory disease, and SBA or CIMP-high metastatic CRC. Nab-paclitaxel was initially administered at a dose of 260 mg/m2 every 3 weeks but was reduced to 220 mg/m2 owing to toxicity. A total of 21 patients with CIMP-high CRC and 13 with SBA were enrolled from November 2012 to October 2014. The efficacy-assessable population (patients who received at least three doses of the treatment) comprised 15 CIMP-high CRC patients and 10 SBA patients. Common grade 3 or 4 toxicities were fatigue (12%), neutropenia (9%), febrile neutropenia (9%), dehydration (6%), and thrombocytopenia (6%). No responses were seen in the CIMP-high CRC cohort and two partial responses were seen in the SBA cohort. Median progression-free survival was significantly greater in the SBA cohort than in the CIMP-high CRC cohort (3.2 months compared with 2.1 months, P = 0.03). Neither APC mutation status nor CHFR methylation status correlated with efficacy in the CIMP-high CRC cohort. In vivo testing of paclitaxel in an SBA patient-derived xenograft validated the activity of taxanes in this disease type. Although preclinical studies suggested taxane sensitivity was associated with chromosomal stability and wild-type APC, we found that nab-paclitaxel was inactive in CIMP-high metastatic CRC. Nab-paclitaxel may represent a novel

  17. Detection of Turner syndrome using X-chromosome inactivation specific differentially methylated CpG sites: A pilot study.

    Science.gov (United States)

    Zhang, Qiang; Guo, Xiaohong; Tian, Tian; Wang, Teng; Li, Qiaoli; Wang, Lei; Liu, Yun; Xing, Qinghe; He, Lin; Zhao, Xinzhi

    2017-05-01

    Early diagnosis of Turner syndrome (TS) may improve preventive measures and treatment. X-chromosome inactivation specific differentially methylated CpG sites (XIDMSs) that are high methylated in inactive X chromosomes (Xi) and unmethylated in active X chromosomes (Xa) may be potential makers for TS detection. The candidate XIDMSs were screened from 9 male and 12 female DNA samples with normal karyotypes using the Illumina 450k array and validated by bisulfite sequencing PCR and pyrosequencing assay. X chromosome dosage was calculated according to the methylation level of multiple XIDMSs. Overall, 108 candidate XIDMSs were screened by the 450k array. Validations indicated that XIDMSs gathered and formed the X-chromosome inactivation specific differentially methylated regions (XIDMRs). Using 3 XIDMRs at SAT1, UXT and UTP14A loci, 36 TS, 22 normal female and 6 male samples were analyzed. Methylation levels of the 20 XIDMSs in the XIDMRs could distinguish between TS and normal female DNA samples, the X chromosome dosage was consistent with karyotyping data. Analyzing samples of 2 triple X syndrome and 3 Klinefelter syndrome patients suggested that this method could be used to detect X chromosome aneuploids other than TS. XIDMSs are widely spread along the X chromosome and might be effective markers for detection of TS and other X chromosome aneuploids. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Modulation of transcription factor binding and epigenetic regulation of the MLH1 CpG island and shore by polymorphism rs1800734 in colorectal cancer.

    Science.gov (United States)

    Savio, Andrea J; Bapat, Bharati

    2017-06-03

    The MLH1 promoter polymorphism rs1800734 is associated with MLH1 CpG island hypermethylation and expression loss in colorectal cancer (CRC). Conversely, variant rs1800734 is associated with MLH1 shore, but not island, hypomethylation in peripheral blood mononuclear cell DNA. To explore these distinct patterns, MLH1 CpG island and shore methylation was assessed in CRC cell lines stratified by rs1800734 genotype. Cell lines containing the variant A allele demonstrated MLH1 shore hypomethylation compared to wild type (GG). There was significant enrichment of transcription factor AP4 at the MLH1 promoter in GG and GA cell lines, but not the AA cell line, by chromatin immunoprecipitation studies. Preferential binding to the G allele was confirmed by sequencing in the GA cell line. The enhancer-associated histone modification H3K4me1 was enriched at the MLH1 shore; however, H3K27ac was not, indicating the shore is an inactive enhancer. These results demonstrate the role of variant rs1800734 in altering transcription factor binding as well as epigenetics at regions beyond the MLH1 CpG island in which it is located.

  19. Transcription of hepatitis B virus covalently closed circular DNA is regulated by CpG methylation during chronic infection.

    Directory of Open Access Journals (Sweden)

    Yongmei Zhang

    Full Text Available The persistence of hepatitis B virus (HBV infection is maintained by the nuclear viral covalently closed circular DNA (cccDNA, which serves as transcription template for viral mRNAs. Previous studies suggested that cccDNA contains methylation-prone CpG islands, and that the minichromosome structure of cccDNA is epigenetically regulated by DNA methylation. However, the regulatory effect of each CpG island methylation on cccDNA activity remains elusive. In the present study, we analyzed the distribution of CpG methylation within cccDNA in patient samples and investigated the impact of CpG island methylation on cccDNA-driven virus replication. Our study revealed the following observations: 1 Bisulfite sequencing of cccDNA from chronic hepatitis B patients indicated that CpG island I was seldom methylated, 2 CpG island II methylation was correlated to the low level of serum HBV DNA in patients, and in vitro methylation studies confirmed that CpG island II methylation markedly reduced cccDNA transcription and subsequent viral core DNA replication, 3 CpG island III methylation was associated with low serum HBsAg titers, and 4 Furthermore, we found that HBV genotype, HBeAg positivity, and patient age and liver fibrosis stage were also relevant to cccDNA CpG methylation status. Therefore, we clearly demonstrated that the status of cccDNA methylation is connected to the biological behavior of HBV. Taken together, our study provides a complete profile of CpG island methylation within HBV cccDNA and new insights for the function of CpG methylation in regulating HBV cccDNA transcription.

  20. A downstream CpG island controls transcript initiation and elongation and the methylation state of the imprinted Airn macro ncRNA promoter.

    Directory of Open Access Journals (Sweden)

    Martha V Koerner

    Full Text Available A CpG island (CGI lies at the 5' end of the Airn macro non-protein-coding (nc RNA that represses the flanking Igf2r promoter in cis on paternally inherited chromosomes. In addition to being modified on maternally inherited chromosomes by a DNA methylation imprint, the Airn CGI shows two unusual organization features: its position immediately downstream of the Airn promoter and transcription start site and a series of tandem direct repeats (TDRs occupying its second half. The physical separation of the Airn promoter from the CGI provides a model to investigate if the CGI plays distinct transcriptional and epigenetic roles. We used homologous recombination to generate embryonic stem cells carrying deletions at the endogenous locus of the entire CGI or just the TDRs. The deleted Airn alleles were analyzed by using an ES cell imprinting model that recapitulates the onset of Igf2r imprinted expression in embryonic development or by using knock-out mice. The results show that the CGI is required for efficient Airn initiation and to maintain the unmethylated state of the Airn promoter, which are both necessary for Igf2r repression on the paternal chromosome. The TDRs occupying the second half of the CGI play a minor role in Airn transcriptional elongation or processivity, but are essential for methylation on the maternal Airn promoter that is necessary for Igf2r to be expressed from this chromosome. Together the data indicate the existence of a class of regulatory CGIs in the mammalian genome that act downstream of the promoter and transcription start.

  1. CpG island methylator phenotype in adenocarcinomas from the digestive tract: Methods, conclusions, and controversies

    Science.gov (United States)

    Sánchez-Vega, Francisco; Gotea, Valer; Chen, Yun-Ching; Elnitski, Laura

    2017-01-01

    Over the last two decades, cancer-related alterations in DNA methylation that regulate transcription have been reported for a variety of tumors of the gastrointestinal tract. Due to its relevance for translational research, great emphasis has been placed on the analysis and molecular characterization of the CpG island methylator phenotype (CIMP), defined as widespread hypermethylation of CpG islands in clinically distinct subsets of cancer patients. Here, we present an overview of previous work in this field and also explore some open questions using cross-platform data for esophageal, gastric, and colorectal adenocarcinomas from The Cancer Genome Atlas. We provide a data-driven, pan-gastrointestinal stratification of individual samples based on CIMP status and we investigate correlations with oncogenic alterations, including somatic mutations and epigenetic silencing of tumor suppressor genes. Besides known events in CIMP such as BRAF V600E mutation, CDKN2A silencing or MLH1 inactivation, we discuss the potential role of emerging actors such as Wnt pathway deregulation through truncating mutations in RNF43 and epigenetic silencing of WIF1. Our results highlight the existence of molecular similarities that are superimposed over a larger backbone of tissue-specific features and can be exploited to reduce heterogeneity of response in clinical trials. PMID:28344746

  2. 5meCpG epigenetic marks neighboring a primate-conserved core promoter short tandem repeat indicate X-chromosome inactivation.

    Science.gov (United States)

    Machado, Filipe Brum; Machado, Fabricio Brum; Faria, Milena Amendro; Lovatel, Viviane Lamim; Alves da Silva, Antonio Francisco; Radic, Claudia Pamela; De Brasi, Carlos Daniel; Rios, Álvaro Fabricio Lopes; de Sousa Lopes, Susana Marina Chuva; da Silveira, Leonardo Serafim; Ruiz-Miranda, Carlos Ramon; Ramos, Ester Silveira; Medina-Acosta, Enrique

    2014-01-01

    X-chromosome inactivation (XCI) is the epigenetic transcriptional silencing of an X-chromosome during the early stages of embryonic development in female eutherian mammals. XCI assures monoallelic expression in each cell and compensation for dosage-sensitive X-linked genes between females (XX) and males (XY). DNA methylation at the carbon-5 position of the cytosine pyrimidine ring in the context of a CpG dinucleotide sequence (5meCpG) in promoter regions is a key epigenetic marker for transcriptional gene silencing. Using computational analysis, we revealed an extragenic tandem GAAA repeat 230-bp from the landmark CpG island of the human X-linked retinitis pigmentosa 2 RP2 promoter whose 5meCpG status correlates with XCI. We used this RP2 onshore tandem GAAA repeat to develop an allele-specific 5meCpG-based PCR assay that is highly concordant with the human androgen receptor (AR) exonic tandem CAG repeat-based standard HUMARA assay in discriminating active (Xa) from inactive (Xi) X-chromosomes. The RP2 onshore tandem GAAA repeat contains neutral features that are lacking in the AR disease-linked tandem CAG repeat, is highly polymorphic (heterozygosity rates approximately 0.8) and shows minimal variation in the Xa/Xi ratio. The combined informativeness of RP2/AR is approximately 0.97, and this assay excels at determining the 5meCpG status of alleles at the Xp (RP2) and Xq (AR) chromosome arms in a single reaction. These findings are relevant and directly translatable to nonhuman primate models of XCI in which the AR CAG-repeat is monomorphic. We conducted the RP2 onshore tandem GAAA repeat assay in the naturally occurring chimeric New World monkey marmoset (Callitrichidae) and found it to be informative. The RP2 onshore tandem GAAA repeat will facilitate studies on the variable phenotypic expression of dominant and recessive X-linked diseases, epigenetic changes in twins, the physiology of aging hematopoiesis, the pathogenesis of age-related hematopoietic

  3. 5meCpG epigenetic marks neighboring a primate-conserved core promoter short tandem repeat indicate X-chromosome inactivation.

    Directory of Open Access Journals (Sweden)

    Filipe Brum Machado

    Full Text Available X-chromosome inactivation (XCI is the epigenetic transcriptional silencing of an X-chromosome during the early stages of embryonic development in female eutherian mammals. XCI assures monoallelic expression in each cell and compensation for dosage-sensitive X-linked genes between females (XX and males (XY. DNA methylation at the carbon-5 position of the cytosine pyrimidine ring in the context of a CpG dinucleotide sequence (5meCpG in promoter regions is a key epigenetic marker for transcriptional gene silencing. Using computational analysis, we revealed an extragenic tandem GAAA repeat 230-bp from the landmark CpG island of the human X-linked retinitis pigmentosa 2 RP2 promoter whose 5meCpG status correlates with XCI. We used this RP2 onshore tandem GAAA repeat to develop an allele-specific 5meCpG-based PCR assay that is highly concordant with the human androgen receptor (AR exonic tandem CAG repeat-based standard HUMARA assay in discriminating active (Xa from inactive (Xi X-chromosomes. The RP2 onshore tandem GAAA repeat contains neutral features that are lacking in the AR disease-linked tandem CAG repeat, is highly polymorphic (heterozygosity rates approximately 0.8 and shows minimal variation in the Xa/Xi ratio. The combined informativeness of RP2/AR is approximately 0.97, and this assay excels at determining the 5meCpG status of alleles at the Xp (RP2 and Xq (AR chromosome arms in a single reaction. These findings are relevant and directly translatable to nonhuman primate models of XCI in which the AR CAG-repeat is monomorphic. We conducted the RP2 onshore tandem GAAA repeat assay in the naturally occurring chimeric New World monkey marmoset (Callitrichidae and found it to be informative. The RP2 onshore tandem GAAA repeat will facilitate studies on the variable phenotypic expression of dominant and recessive X-linked diseases, epigenetic changes in twins, the physiology of aging hematopoiesis, the pathogenesis of age-related hematopoietic

  4. CpG island protects Rous sarcoma virus-derived vectors integrated into nonpermissive cells from DNA methylation and transcriptional suppression

    Czech Academy of Sciences Publication Activity Database

    Hejnar, Jiří; Hájková, P.; Plachý, Jiří; Elleder, Daniel; Stepanets, Volodymyr; Svoboda, Jan

    2001-01-01

    Roč. 98, č. 2 (2001), s. 565-569 ISSN 0027-8424 R&D Projects: GA ČR GA312/97/P082; GA ČR GA312/98/0825 Keywords : CpG island * provirus silencing * DNA methylation Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 10.890, year: 2001

  5. Body size, physical activity and risk of colorectal cancer with or without the CpG island methylator phenotype (CIMP)

    NARCIS (Netherlands)

    Hughes, L.A.E.; Simons, C.C.J.M.; Brandt, P.A. van den; Goldbohm, R.A.; Goeij, A.F. de; Bruïne, A.P. de; Engeland, M. van; Weijenberg, M.P.

    2011-01-01

    Background: We investigated how body size and physical activity influence the risk of the CpG island methylator phenotype (CIMP) in colorectal cancer (CRC). Methods: In the Netherlands Cohort Study (n = 120,852), risk factors were self-reported at baseline in 1986. After 7.3 years of follow-up, 603

  6. CpG Island Methylation in Colorectal Cancer: Past, Present and Future

    Directory of Open Access Journals (Sweden)

    Karen Curtin

    2011-01-01

    Full Text Available The concept of a CpG island methylator phenotype, or CIMP, quickly became the focus of several colorectal cancer studies describing its clinical and pathological features after its introduction in 1999 by Toyota and colleagues. Further characterization of CIMP in tumors lead to widespread acceptance of the concept, as expressed by Shen and Issa in their 2005 editorial, “CIMP, at last.” Since that time, extensive research efforts have brought great insights into the epidemiology and prognosis of CIMP+ tumors and other epigenetic mechanisms underlying tumorigenesis. With the advances in technology and subsequent cataloging of the human methylome in cancer and normal tissue, new directions in research to understand CIMP and its role in complex biological systems yield hope for future epigenetically based diagnostics and treatments.

  7. CpG Island Methylator Phenotype-High Colorectal Cancers and Their Prognostic Implications and Relationships with the Serrated Neoplasia Pathway.

    Science.gov (United States)

    Rhee, Ye-Young; Kim, Kyung-Ju; Kang, Gyeong Hoon

    2017-01-15

    The concept of a CpG island methylator phenotype (CIMP) was first introduced by Toyota and Issa to describe a subset of colorectal cancers (CRCs) with concurrent hypermethylation of multiple CpG island loci. The concept of CIMP as a molecular carcinogenesis mechanism was consolidated by the identification of the serrated neoplasia pathway, in which CIMP participates in the initiation and progression of serrated adenomas. Distinct clinicopathological and molecular features of CIMP-high (CIMP-H) CRCs have been characterized, including proximal colon location, older age of onset, female preponderance, and frequent associations of high-level microsatellite instability and BRAF mutations. CIMP-H CRCs arise in sessile or traditional serrated adenomas and thus tend to display the morphological characteristics of serrated adenomas, including epithelial serration, vesicular nuclei, and abundant cytoplasm. Both the frequent association of CIMP and poor prognosis and different responses of CRCs to adjuvant therapy depending on CIMP status indicate clinical implications. In this review, we present an overview of the literature documenting the relevant findings of CIMP-H CRCs and their relationships with the serrated neoplasia pathway.

  8. Different definitions of CpG island methylator phenotype and outcomes of colorectal cancer: a systematic review

    OpenAIRE

    Jia, Min; Gao, Xu; Zhang, Yan; Hoffmeister, Michael; Brenner, Hermann

    2016-01-01

    Contradictory results were reported for the prognostic role of CpG island methylator phenotype (CIMP) among colorectal cancer (CRC) patients. Differences in the definitions of CIMP were the most common explanation for these discrepancies. The aim of this systematic review was to give an overview of the published studies on CRC prognosis according to the different definitions of CIMP. A systematic literature search was performed in MEDLINE and ISI Web of Science for articles published until 3 ...

  9. The core element of a CpG island protects avian sarcoma and leukosis virus-derived vectors from transcriptional silencing

    Czech Academy of Sciences Publication Activity Database

    Šenigl, Filip; Plachý, Jiří; Hejnar, Jiří

    2008-01-01

    Roč. 82, č. 16 (2008), s. 7818-7827 ISSN 0022-538X R&D Projects: GA ČR GA204/05/0939; GA ČR GA523/07/1171 Institutional research plan: CEZ:AV0Z50520514 Keywords : anti-methylation protection * retroviral vector * CpG island Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.308, year: 2008

  10. Demethylation by 5-aza-2'-deoxycytidine in colorectal cancer cells targets genomic DNA whilst promoter CpG island methylation persists

    International Nuclear Information System (INIS)

    Mossman, David; Kim, Kyu-Tae; Scott, Rodney J

    2010-01-01

    DNA methylation and histone acetylation are epigenetic modifications that act as regulators of gene expression. Aberrant epigenetic gene silencing in tumours is a frequent event, yet the factors which dictate which genes are targeted for inactivation are unknown. DNA methylation and histone acetylation can be modified with the chemical agents 5-aza-2'-deoxycytidine (5-aza-dC) and Trichostatin A (TSA) respectively. The aim of this study was to analyse de-methylation and re-methylation and its affect on gene expression in colorectal cancer cell lines treated with 5-aza-dC alone and in combination with TSA. We also sought to identify methylation patterns associated with long term reactivation of previously silenced genes. Colorectal cancer cell lines were treated with 5-aza-dC, with and without TSA, to analyse global methylation decreases by High Performance Liquid Chromatography (HPLC). Re-methylation was observed with removal of drug treatments. Expression arrays identified silenced genes with differing patterns of expression after treatment, such as short term reactivation or long term reactivation. Sodium bisulfite sequencing was performed on the CpG island associated with these genes and expression was verified with real time PCR. Treatment with 5-aza-dC was found to affect genomic methylation and to a lesser extent gene specific methylation. Reactivated genes which remained expressed 10 days post 5-aza-dC treatment featured hypomethylated CpG sites adjacent to the transcription start site (TSS). In contrast, genes with uniformly hypermethylated CpG islands were only temporarily reactivated. These results imply that 5-aza-dC induces strong de-methylation of the genome and initiates reactivation of transcriptionally inactive genes, but this does not require gene associated CpG island de-methylation to occur. In addition, for three of our selected genes, hypomethylation at the TSS of an epigenetically silenced gene is associated with the long term reversion of

  11. Genome-wide CpG island methylation analysis implicates novel genes in the pathogenesis of renal cell carcinoma

    OpenAIRE

    Ricketts, Christopher J.; Morris, Mark R.; Gentle, Dean; Brown, Michael; Wake, Naomi; Woodward, Emma R.; Clarke, Noel; Latif, Farida; Maher, Eamonn R.

    2012-01-01

    In order to identify novel candidate tumor suppressor genes (TSGs) implicated in renal cell carcinoma (RCC), we performed genome-wide methylation profiling of RCC using the HumanMethylation27 BeadChips to assess methylation at >14,000 genes. Two hundred and twenty hypermethylated probes representing 205 loci/genes were identified in genomic CpG islands. A subset of TSGs investigated in detail exhibited frequent tumor methylation, promoter methylation associated transcriptional silencing an...

  12. The DNA sequence and biology of human chromosome 19

    Energy Technology Data Exchange (ETDEWEB)

    Grimwood, J; Gordon, L A; Olsen, A; Terry, A; Schmutz, J; Lamerdin, J; Hellsten, U; Goodstein, D; Couronne, O; Tran-Gyamfi, M

    2004-04-06

    Chromosome 19 has the highest gene density of all human chromosomes, more than double the genome-wide average. The large clustered gene families, corresponding high GC content, CpG islands and density of repetitive DNA indicate a chromosome rich in biological and evolutionary significance. Here we describe 55.8 million base pairs of highly accurate finished sequence representing 99.9% of the euchromatin portion of the chromosome. Manual curation of gene loci reveals 1,461 protein-coding genes and 321 pseudogenes. Among these are genes directly implicated in Mendelian disorders, including familial hypercholesterolemia and insulin-resistant diabetes. Nearly one quarter of these genes belong to tandemly arranged families, encompassing more than 25% of the chromosome. Comparative analyses show a fascinating picture of conservation and divergence, revealing large blocks of gene orthology with rodents, scattered regions with more recent gene family expansions and deletions, and segments of coding and non-coding conservation with the distant fish species Takifugu.

  13. Prognostication of patients with clear cell renal cell carcinomas based on quantification of DNA methylation levels of CpG island methylator phenotype marker genes.

    Science.gov (United States)

    Tian, Ying; Arai, Eri; Gotoh, Masahiro; Komiyama, Motokiyo; Fujimoto, Hiroyuki; Kanai, Yae

    2014-10-20

    The CpG island methylator phenotype (CIMP) of clear cell renal cell carcinomas (ccRCCs) is characterized by accumulation of DNA methylation at CpG islands and poorer patient outcome. The aim of this study was to establish criteria for prognostication of patients with ccRCCs using the ccRCC-specific CIMP marker genes. DNA methylation levels at 299 CpG sites in the 14 CIMP marker genes were evaluated quantitatively in tissue specimens of 88 CIMP-negative and 14 CIMP-positive ccRCCs in a learning cohort using the MassARRAY system. An additional 100 ccRCCs were also analyzed as a validation cohort. Receiver operating characteristic curve analysis showed that area under the curve values for the 23 CpG units including the 32 CpG sites in the 7 CIMP-marker genes, i.e. FAM150A, ZNF540, ZNF671, ZNF154, PRAC, TRH and SLC13A5, for discrimination of CIMP-positive from CIMP-negative ccRCCs were larger than 0.95. Criteria combining the 23 CpG units discriminated CIMP-positive from CIMP-negative ccRCCs with 100% sensitivity and specificity in the learning cohort. Cancer-free and overall survival rates of patients with CIMP-positive ccRCCs diagnosed using the criteria combining the 23 CpG units in a validation cohort were significantly lower than those of patients with CIMP-negative ccRCCs (P = 1.41 × 10-5 and 2.43 × 10-13, respectively). Patients with CIMP-positive ccRCCs in the validation cohort had a higher likelihood of disease-related death (hazard ratio, 75.8; 95% confidence interval, 7.81 to 735; P = 1.89 × 10-4) than those with CIMP-negative ccRCCs. The established criteria are able to reproducibly diagnose CIMP-positive ccRCCs and may be useful for personalized medicine for patients with ccRCCs.

  14. Up-regulation of expression and lack of 5' CpG island hypermethylation of p16 INK4a in HPV-positive cervical carcinomas

    Directory of Open Access Journals (Sweden)

    Frank Georgy A

    2007-03-01

    Full Text Available Abstract Background High risk type human papilloma viruses (HR-HPV induce carcinomas of the uterine cervix by expressing viral oncogenes E6 and E7. Oncogene E7 of HR-HPV disrupts the pRb/E2F interaction, which negatively regulates the S phase entry. Expression of tumor suppressor p16ink4a drastically increases in majority of HR-HPV associated carcinomas due to removal of pRb repression. The p16ink4a overexpression is an indicator of an aberrant expression of viral oncogenes and may serve as a marker for early diagnostic of cervical cancer. On the other hand, in 25–57% of cervical carcinomas hypermethylation of the p16 INK4a promoter has been demonstrated using a methylation-specific PCR, MSP. To evaluate a potential usage of the p16 INK4a 5' CpG island hypermethylation as an indicator of tumor cell along with p16ink4a overexpression, we analyzed the methylation status of p16 INK4a in cervical carcinomas Methods Methylation status of p16 INK4a was analyzed by MSP and by bisulfite-modified DNA sequencing. The expression of p16ink4a was analyzed by RT-PCR and by immunohistochemical technique. Results The extensive methylation within p16 INK4a 5' CpG island was not detected either in 13 primary cervical carcinomas or in 5 cancer cell lines by bisulfite-modified DNA sequencing (including those that were positive by MSP in our hands. The number and distribution of rare partially methylated CpG sites did not differ considerably in tumors and adjacent normal tissues. The levels of the p16 INK4a mRNA were increased in carcinomas compared to the normal tissues independently of the number of partially methylated CpGs within 5'CpG island. The transcriptional activation of p16 INK4a was accompanied by p16ink4a cytoplasmic immunoreactivity in the majority of tumor cells and presence of a varied number of the p16 positive nuclei in different tumors. Conclusion Hypermethylaion of the p16INK4a 5' CpG island is not a frequent event in HR-HPV-positive cervical

  15. Comprehensive biostatistical analysis of CpG island methylator phenotype in colorectal cancer using a large population-based sample.

    Directory of Open Access Journals (Sweden)

    Katsuhiko Nosho

    Full Text Available The CpG island methylator phenotype (CIMP is a distinct phenotype associated with microsatellite instability (MSI and BRAF mutation in colon cancer. Recent investigations have selected 5 promoters (CACNA1G, IGF2, NEUROG1, RUNX3 and SOCS1 as surrogate markers for CIMP-high. However, no study has comprehensively evaluated an expanded set of methylation markers (including these 5 markers using a large number of tumors, or deciphered the complex clinical and molecular associations with CIMP-high determined by the validated marker panel. METHOLODOLOGY/PRINCIPAL FINDINGS: DNA methylation at 16 CpG islands [the above 5 plus CDKN2A (p16, CHFR, CRABP1, HIC1, IGFBP3, MGMT, MINT1, MINT31, MLH1, p14 (CDKN2A/ARF and WRN] was quantified in 904 colorectal cancers by real-time PCR (MethyLight. In unsupervised hierarchical clustering analysis, the 5 markers (CACNA1G, IGF2, NEUROG1, RUNX3 and SOCS1, CDKN2A, CRABP1, MINT31, MLH1, p14 and WRN were generally clustered with each other and with MSI and BRAF mutation. KRAS mutation was not clustered with any methylation marker, suggesting its association with a random methylation pattern in CIMP-low tumors. Utilizing the validated CIMP marker panel (including the 5 markers, multivariate logistic regression demonstrated that CIMP-high was independently associated with older age, proximal location, poor differentiation, MSI-high, BRAF mutation, and inversely with LINE-1 hypomethylation and beta-catenin (CTNNB1 activation. Mucinous feature, signet ring cells, and p53-negativity were associated with CIMP-high in only univariate analysis. In stratified analyses, the relations of CIMP-high with poor differentiation, KRAS mutation and LINE-1 hypomethylation significantly differed according to MSI status.Our study provides valuable data for standardization of the use of CIMP-high-specific methylation markers. CIMP-high is independently associated with clinical and key molecular features in colorectal cancer. Our data also

  16. Association of the colorectal CpG island methylator phenotype with molecular features, risk factors, and family history.

    Science.gov (United States)

    Weisenberger, Daniel J; Levine, A Joan; Long, Tiffany I; Buchanan, Daniel D; Walters, Rhiannon; Clendenning, Mark; Rosty, Christophe; Joshi, Amit D; Stern, Mariana C; LeMarchand, Loic; Lindor, Noralane M; Daftary, Darshana; Gallinger, Steven; Selander, Teresa; Bapat, Bharati; Newcomb, Polly A; Campbell, Peter T; Casey, Graham; Ahnen, Dennis J; Baron, John A; Haile, Robert W; Hopper, John L; Young, Joanne P; Laird, Peter W; Siegmund, Kimberly D

    2015-03-01

    The CpG island methylator phenotype (CIMP) represents a subset of colorectal cancers characterized by widespread aberrant DNA hypermethylation at select CpG islands. The risk factors and environmental exposures contributing to etiologic heterogeneity between CIMP and non-CIMP tumors are not known. We measured the CIMP status of 3,119 primary population-based colorectal cancer tumors from the multinational Colon Cancer Family Registry. Etiologic heterogeneity was assessed by a case-case study comparing risk factor frequency of colorectal cancer cases with CIMP and non-CIMP tumors using logistic regression to estimate the case-case odds ratio (ccOR). We found associations between tumor CIMP status and MSI-H (ccOR = 7.6), BRAF V600E mutation (ccOR = 59.8), proximal tumor site (ccOR = 9; all P CIMP status for both males and females (P = 0.0001 and P = 0.02, respectively), use of multivitamin or calcium supplements did not. Only for female colorectal cancer was CIMP status associated with increased pack-years of smoking (Ptrend CIMP status, and the associations of smoking and obesity with tumor subtype were evident only for females. Differences in the associations of a unique DNA methylation-based subgroup of colorectal cancer with important lifestyle and environmental exposures increase understanding of the molecular pathologic epidemiology of this heavily methylated subset of colorectal cancer. Cancer Epidemiol Biomarkers Prev; 24(3); 512-9. ©2015 AACR. ©2015 American Association for Cancer Research.

  17. A CpG island methylator phenotype of colorectal cancer that is contiguous with conventional adenomas, but not serrated polyps

    OpenAIRE

    HOKAZONO, KOJI; UEKI, TAKASHI; NAGAYOSHI, KINUKO; NISHIOKA, YASUNOBU; HATAE, TATSUNOBU; KOGA, YUTAKA; HIRAHASHI, MINAKO; ODA, YOSHINAO; TANAKA, MASAO

    2014-01-01

    A subset of colorectal cancers (CRCs) harbor the CpG island methylator phenotype (CIMP), with concurrent multiple promoter hypermethylation of tumor-related genes. A serrated pathway in which CIMP is developed from serrated polyps is proposed. The present study characterized CIMP and morphologically examined precursor lesions of CIMP. In total, 104 CRCs treated between January 1996 and December 2004 were examined. Aberrant promoter methylation of 15 cancer-related genes was analyzed. CIMP sta...

  18. CpGislandEVO: A Database and Genome Browser for Comparative Evolutionary Genomics of CpG Islands

    Directory of Open Access Journals (Sweden)

    Guillermo Barturen

    2013-01-01

    Full Text Available Hypomethylated, CpG-rich DNA segments (CpG islands, CGIs are epigenome markers involved in key biological processes. Aberrant methylation is implicated in the appearance of several disorders as cancer, immunodeficiency, or centromere instability. Furthermore, methylation differences at promoter regions between human and chimpanzee strongly associate with genes involved in neurological/psychological disorders and cancers. Therefore, the evolutionary comparative analyses of CGIs can provide insights on the functional role of these epigenome markers in both health and disease. Given the lack of specific tools, we developed CpGislandEVO. Briefly, we first compile a database of statistically significant CGIs for the best assembled mammalian genome sequences available to date. Second, by means of a coupled browser front-end, we focus on the CGIs overlapping orthologous genes extracted from OrthoDB, thus ensuring the comparison between CGIs located on truly homologous genome segments. This allows comparing the main compositional features between homologous CGIs. Finally, to facilitate nucleotide comparisons, we lifted genome coordinates between assemblies from different species, which enables the analysis of sequence divergence by direct count of nucleotide substitutions and indels occurring between homologous CGIs. The resulting CpGislandEVO database, linking together CGIs and single-cytosine DNA methylation data from several mammalian species, is freely available at our website.

  19. No association of CpG island methylator phenotype and colorectal cancer survival: population-based study.

    Science.gov (United States)

    Jia, Min; Jansen, Lina; Walter, Viola; Tagscherer, Katrin; Roth, Wilfried; Herpel, Esther; Kloor, Matthias; Bläker, Hendrik; Chang-Claude, Jenny; Brenner, Hermann; Hoffmeister, Michael

    2016-11-22

    Previous studies have shown adverse effects of CpG island methylator phenotype (CIMP) on colorectal cancer (CRC) prognosis. However, sample sizes were often limited and only few studies were able to adjust for relevant molecular features associated with CIMP. The aim of this study was to investigate the impact of CIMP on CRC survival in a large population-based study with comprehensive adjustment. The CIMP status and other molecular tumour features were analysed in 1385 CRC patients diagnosed between 2003 and 2010. Detailed information were obtained from standardised personal interviews and medical records. During follow-up (median: 4.9 years), we assessed vital status, cause of death and therapy details. Cox proportional hazard regression models were used to estimate adjusted hazard ratios (HRs) and 95% confidence intervals (CIs) of survival after CRC. The CIMP-H occurred more frequently in patients with older age, female gender, cancer in the proximal colon, BRAF mutation and microsatellite instability-high (MSI-H). However, CIMP status was not associated with CRC prognosis in CRC patients (HR=1.00; 95% CI=0.72-1.40 for overall survival; HR=0.96; 95% CI=0.65-1.41 for disease-specific survival) or in any of the subgroups. Although CIMP status was associated with the presence of MSI-H and BRAF mutation, the prognostic effects of MSI-H (HR=0.49; 95% CI=0.27-0.90) and BRAF mutation (HR=1.78; 95% CI=1.10-2.84) were independent of CIMP status. Similar benefit of chemotherapy was found for CRC outcomes in both the CIMP-low/negative group and the CIMP-high group. CpG island methylator phenotype was not associated with CRC prognosis after adjusting for other important clinical factors and associated mutations.

  20. Association between the CpG island methylator phenotype and its prognostic significance in primary pulmonary adenocarcinoma.

    Science.gov (United States)

    Koh, Young Wha; Chun, Sung-Min; Park, Young-Soo; Song, Joon Seon; Lee, Geon Kook; Khang, Shin Kwang; Jang, Se Jin

    2016-08-01

    Aberrant methylation of promoter CpG islands is one of the most important inactivation mechanisms for tumor suppressor and tumor-related genes. Previous studies using genome-wide DNA methylation microarray analysis have suggested the existence of a CpG island methylator phenotype (CIMP) in lung adenocarcinomas. Although the biological behavior of these tumors varies according to tumor stage, no large-scale study has examined the CIMP in lung adenocarcinoma patients according to tumor stage. Furthermore, there have been no reported results regarding the clinical significance of each of the six CIMP markers. To examine the CIMP in patients with pulmonary adenocarcinoma after a surgical resection, we performed methylation analysis of six genes (CCNA1, ACAN, GFRA1, EDARADD, MGC45800, and p16 (INK4A)) in 230 pulmonary adenocarcinoma cases using the SEQUENOM MassARRAY platform. Fifty-four patients (28 %, 54/191) were in the CIMP-high (CIMP-H) group associated with high nodal stage (P = 0.007), the presence of micropapillary or solid histology (P = 0.003), and the absence of an epidermal growth factor receptor (EGFR) mutation (P = 0.002). By multivariate analysis, CIMP was an independent prognostic marker for overall survival (OS) and disease-specific survival (P = 0.03 and P = 0.43, respectively). In the stage I subgroups alone, CIMP-H patients had lower OS rates than the CIMP-low (CIMP-L) group (P = 0.041). Of the six CIMP markers, ACAN alone was significantly associated with patient survival. CIMP predicted the risk of progression independently of clinicopathological variables and enables the stratification of pulmonary adenocarcinoma patients, particularly among stage I cases.

  1. The Huntington disease locus is most likely within 325 kilobases of the chromosome 4p telomere

    International Nuclear Information System (INIS)

    Doggett, N.A.; Cheng, J.F.; Smith, C.L.; Cantor, C.R.

    1989-01-01

    The genetic defect responsible for Huntington disease was originally localized near the tip of the short arm of chromosome 4 by genetic linkage to the locus D4S10. Several markers closer to Huntington disease have since been isolated, but these all appear to be proximal to the defect. A physical map that extends from the most distal of these loci, D4S90, to the telomere of chromosome 4 was constructed. This map identifies at least two CpG islands as markers for Huntington disease candidate genes and places the most likely location of the Huntington disease defect remarkably close (within 325 kilobases) to the telomere

  2. Analysis of RET promoter CpG island methylation using methylation-specific PCR (MSP), pyrosequencing, and methylation-sensitive high-resolution melting (MS-HRM): impact on stage II colon cancer patient outcome.

    Science.gov (United States)

    Draht, Muriel X G; Smits, Kim M; Jooste, Valérie; Tournier, Benjamin; Vervoort, Martijn; Ramaekers, Chantal; Chapusot, Caroline; Weijenberg, Matty P; van Engeland, Manon; Melotte, Veerle

    2016-01-01

    Already since the 1990s, promoter CpG island methylation markers have been considered promising diagnostic, prognostic, and predictive cancer biomarkers. However, so far, only a limited number of DNA methylation markers have been introduced into clinical practice. One reason why the vast majority of methylation markers do not translate into clinical applications is lack of independent validation of methylation markers, often caused by differences in methylation analysis techniques. We recently described RET promoter CpG island methylation as a potential prognostic marker in stage II colorectal cancer (CRC) patients of two independent series. In the current study, we analyzed the RET promoter CpG island methylation of 241 stage II colon cancer patients by direct methylation-specific PCR (MSP), nested-MSP, pyrosequencing, and methylation-sensitive high-resolution melting (MS-HRM). All primers were designed as close as possible to the same genomic region. In order to investigate the effect of different DNA methylation assays on patient outcome, we assessed the clinical sensitivity and specificity as well as the association of RET methylation with overall survival for three and five years of follow-up. Using direct-MSP and nested-MSP, 12.0 % (25/209) and 29.6 % (71/240) of the patients showed RET promoter CpG island methylation. Methylation frequencies detected by pyrosequencing were related to the threshold for positivity that defined RET methylation. Methylation frequencies obtained by pyrosequencing (threshold for positivity at 20 %) and MS-HRM were 13.3 % (32/240) and 13.8 % (33/239), respectively. The pyrosequencing threshold for positivity of 20 % showed the best correlation with MS-HRM and direct-MSP results. Nested-MSP detected RET promoter CpG island methylation in deceased patients with a higher sensitivity (33.1 %) compared to direct-MSP (10.7 %), pyrosequencing (14.4 %), and MS-HRM (15.4 %). While RET methylation frequencies detected by nested

  3. Clinical Significance of MLH1 Methylation and CpG Island Methylator Phenotype as Prognostic Markers in Patients with Gastric Cancer

    Science.gov (United States)

    Shigeyasu, Kunitoshi; Nagasaka, Takeshi; Mori, Yoshiko; Yokomichi, Naosuke; Kawai, Takashi; Fuji, Tomokazu; Kimura, Keisuke; Umeda, Yuzo; Kagawa, Shunsuke; Goel, Ajay; Fujiwara, Toshiyoshi

    2015-01-01

    Background To improve the outcome of patients suffering from gastric cancer, a better understanding of underlying genetic and epigenetic events in this malignancy is required. Although CpG island methylator phenotype (CIMP) and microsatellite instability (MSI) have been shown to play pivotal roles in gastric cancer pathogenesis, the clinical significance of these events on survival outcomes in patients with gastric cancer remains unknown. Methods This study included a patient cohort with pathologically confirmed gastric cancer who had surgical resections. A cohort of 68 gastric cancers was analyzed. CIMP and MSI statuses were determined by analyzing promoter CpG island methylation status of 28 genes/loci, and genomic instability at 10 microsatellite markers, respectively. A Cox’s proportional hazards model was performed for multivariate analysis including age, stage, tumor differentiation, KRAS mutation status, and combined CIMP/MLH1 methylation status in relation to overall survival (OS). Results By multivariate analysis, longer OS was significantly correlated with lower pathologic stage (P = 0.0088), better tumor differentiation (P = 0.0267) and CIMP-high and MLH1 3' methylated status (P = 0.0312). Stratification of CIMP status with regards to MLH1 methylation status further enabled prediction of gastric cancer prognosis. Conclusions CIMP and/or MLH1 methylation status may have a potential to be prognostic biomarkers for patients with gastric cancer. PMID:26121593

  4. Clinical Significance of MLH1 Methylation and CpG Island Methylator Phenotype as Prognostic Markers in Patients with Gastric Cancer.

    Directory of Open Access Journals (Sweden)

    Kunitoshi Shigeyasu

    Full Text Available To improve the outcome of patients suffering from gastric cancer, a better understanding of underlying genetic and epigenetic events in this malignancy is required. Although CpG island methylator phenotype (CIMP and microsatellite instability (MSI have been shown to play pivotal roles in gastric cancer pathogenesis, the clinical significance of these events on survival outcomes in patients with gastric cancer remains unknown.This study included a patient cohort with pathologically confirmed gastric cancer who had surgical resections. A cohort of 68 gastric cancers was analyzed. CIMP and MSI statuses were determined by analyzing promoter CpG island methylation status of 28 genes/loci, and genomic instability at 10 microsatellite markers, respectively. A Cox's proportional hazards model was performed for multivariate analysis including age, stage, tumor differentiation, KRAS mutation status, and combined CIMP/MLH1 methylation status in relation to overall survival (OS.By multivariate analysis, longer OS was significantly correlated with lower pathologic stage (P = 0.0088, better tumor differentiation (P = 0.0267 and CIMP-high and MLH1 3' methylated status (P = 0.0312. Stratification of CIMP status with regards to MLH1 methylation status further enabled prediction of gastric cancer prognosis.CIMP and/or MLH1 methylation status may have a potential to be prognostic biomarkers for patients with gastric cancer.

  5. Dualism of gene GC content and CpG pattern in regard to expression in the human genome: magnitude versus breadth.

    Science.gov (United States)

    Vinogradov, Alexander E

    2005-12-01

    In this article, I show that, in the human genome, the GC content in genes (but not the CpG island in the promoter) is related to the maximum level of gene expression among tissues, whereas the promoter CpG island and gene CpG level are more strongly related to the breadth of expression among tissues. The relevance of gene GC content to expression cannot be a consequence (i.e. a byproduct) of transcription because it does not correlate with expression in the germline. The variation of GC content and CpG level can determine the characteristics of gene expression in a synergistic interplay with transcription-factor-binding sites (mediated by chromatin condensation).

  6. Up-regulation of expression and lack of 5' CpG island hypermethylation of p16 INK4a in HPV-positive cervical carcinomas

    International Nuclear Information System (INIS)

    Ivanova, Tatiana A; Golovina, Daria A; Zavalishina, Larisa E; Volgareva, Galina M; Katargin, Alexey N; Andreeva, Yulia Y; Frank, Georgy A; Kisseljov, Fjodor L; Kisseljova, Natalia P

    2007-01-01

    High risk type human papilloma viruses (HR-HPV) induce carcinomas of the uterine cervix by expressing viral oncogenes E6 and E7. Oncogene E7 of HR-HPV disrupts the pRb/E2F interaction, which negatively regulates the S phase entry. Expression of tumor suppressor p16 ink4a drastically increases in majority of HR-HPV associated carcinomas due to removal of pRb repression. The p16 ink4a overexpression is an indicator of an aberrant expression of viral oncogenes and may serve as a marker for early diagnostic of cervical cancer. On the other hand, in 25–57% of cervical carcinomas hypermethylation of the p16 INK4a promoter has been demonstrated using a methylation-specific PCR, MSP. To evaluate a potential usage of the p16 INK4a 5' CpG island hypermethylation as an indicator of tumor cell along with p16 ink4a overexpression, we analyzed the methylation status of p16 INK4a in cervical carcinomas Methylation status of p16 INK4a was analyzed by MSP and by bisulfite-modified DNA sequencing. The expression of p16 ink4a was analyzed by RT-PCR and by immunohistochemical technique. The extensive methylation within p16 INK4a 5' CpG island was not detected either in 13 primary cervical carcinomas or in 5 cancer cell lines by bisulfite-modified DNA sequencing (including those that were positive by MSP in our hands). The number and distribution of rare partially methylated CpG sites did not differ considerably in tumors and adjacent normal tissues. The levels of the p16 INK4a mRNA were increased in carcinomas compared to the normal tissues independently of the number of partially methylated CpGs within 5'CpG island. The transcriptional activation of p16 INK4a was accompanied by p16 ink4a cytoplasmic immunoreactivity in the majority of tumor cells and presence of a varied number of the p16 positive nuclei in different tumors. Hypermethylaion of the p16INK4a 5' CpG island is not a frequent event in HR-HPV-positive cervical carcinomas and cannot be an effective

  7. Isocitrate dehydrogenase 1 R132C mutation occurs exclusively in microsatellite stable colorectal cancers with the CpG island methylator phenotype

    OpenAIRE

    Whitehall, VLJ; Dumenil, TD; McKeone, DM; Bond, CE; Bettington, ML; Buttenshaw, RL; Bowdler, L; Montgomery, GW; Wockner, LF; Leggett, BA

    2014-01-01

    The CpG Island Methylator Phenotype (CIMP) is fundamental to an important subset of colorectal cancer; however, its cause is unknown. CIMP is associated with microsatellite instability but is also found in BRAF mutant microsatellite stable cancers that are associated with poor prognosis. The isocitrate dehydrogenase 1 (IDH1) gene causes CIMP in glioma due to an activating mutation that produces the 2-hydroxyglutarate oncometabolite. We therefore examined IDH1 alteration as a potential cause o...

  8. Y-chromosome diversity is inversely associated with language affiliation in paired Austronesian- and Papuan-speaking communities from Solomon Islands.

    Science.gov (United States)

    Cox, Murray P; Mirazón Lahr, Marta

    2006-01-01

    The Solomon Islands lie in the center of Island Melanesia, bordered to the north by the Bismarck Archipelago and to the south by Vanuatu. The nation's half-million inhabitants speak around 70 languages from two unrelated language groups: Austronesian, a language family widespread in the Pacific and closely related to languages spoken in Island Southeast Asia, and "East Papuan", generally defined as non-Austronesian and distantly related to the extremely diverse Papuan languages of New Guinea. Despite the archipelago's presumed role as a staging post for the settlement of Remote Oceania, genetic research on Solomon Island populations is sparse. We collected paired samples from two regions that have populations speaking Austronesian and Papuan languages, respectively. Here we present Y-chromosome data from these samples, the first from Solomon Islands. We detected five Y-chromosome lineages: M-M106, O-M175, K-M9*, K-M230, and the extremely rare clade, K1-M177. Y-chromosome lineages from Solomon Islands fall within the range of other Island Melanesian populations but display markedly lower haplogroup diversity. From a broad Indo-Pacific perspective, Y-chromosome lineages show partial association with the distribution of language groups: O-M175 is associated spatially with Austronesian-speaking areas, whereas M-M106 broadly correlates with the distribution of Papuan languages. However, no relationship between Y-chromosome lineages and language affiliation was observed on a small scale within Solomon Islands. This pattern may result from a sampling strategy that targeted small communities, where individual Y-chromosome lineages can be fixed or swept to extinction by genetic drift or favored paternal exogamy. Am. J. Hum. Biol. 18:35-50, 2006. (c) 2005 Wiley-Liss, Inc.

  9. Alterations of the spindle checkpoint pathway in clinicopathologically aggressive CpG island methylator phenotype clear cell renal cell carcinomas.

    Science.gov (United States)

    Arai, Eri; Gotoh, Masahiro; Tian, Ying; Sakamoto, Hiromi; Ono, Masaya; Matsuda, Akio; Takahashi, Yoriko; Miyata, Sayaka; Totsuka, Hirohiko; Chiku, Suenori; Komiyama, Motokiyo; Fujimoto, Hiroyuki; Matsumoto, Kenji; Yamada, Tesshi; Yoshida, Teruhiko; Kanai, Yae

    2015-12-01

    CpG-island methylator phenotype (CIMP)-positive clear cell renal cell carcinomas (RCCs) are characterized by accumulation of DNA hypermethylation of CpG islands, clinicopathological aggressiveness and poor patient outcome. The aim of this study was to clarify the molecular pathways participating in CIMP-positive renal carcinogenesis. Genome (whole-exome and copy number), transcriptome and proteome (two-dimensional image converted analysis of liquid chromatography-mass spectrometry) analyses were performed using tissue specimens of 87 CIMP-negative and 14 CIMP-positive clear cell RCCs and corresponding specimens of non-cancerous renal cortex. Genes encoding microtubule-associated proteins, such as DNAH2, DNAH5, DNAH10, RP1 and HAUS8, showed a 10% or higher incidence of genetic aberrations (non-synonymous single-nucleotide mutations and insertions/deletions) in CIMP-positive RCCs, whereas CIMP-negative RCCs lacked distinct genetic characteristics. MetaCore pathway analysis of CIMP-positive RCCs revealed that alterations of mRNA or protein expression were significantly accumulated in six pathways, all participating in the spindle checkpoint, including the "The metaphase checkpoint (p = 1.427 × 10(-6))," "Role of Anaphase Promoting Complex in cell cycle regulation (p = 7.444 × 10(-6))" and "Spindle assembly and chromosome separation (p = 9.260 × 10(-6))" pathways. Quantitative RT-PCR analysis revealed that mRNA expression levels for genes included in such pathways, i.e., AURKA, AURKB, BIRC5, BUB1, CDC20, NEK2 and SPC25, were significantly higher in CIMP-positive than in CIMP-negative RCCs. All CIMP-positive RCCs showed overexpression of Aurora kinases, AURKA and AURKB, and this overexpression was mainly attributable to increased copy number. These data suggest that abnormalities of the spindle checkpoint pathway participate in CIMP-positive renal carcinogenesis, and that AURKA and AURKB may be potential therapeutic targets in more aggressive CIMP-positive RCCs.

  10. Depletion of CpG Dinucleotides in Papillomaviruses and Polyomaviruses: A Role for Divergent Evolutionary Pressures.

    Science.gov (United States)

    Upadhyay, Mohita; Vivekanandan, Perumal

    2015-01-01

    Papillomaviruses and polyomaviruses are small ds-DNA viruses infecting a wide-range of vertebrate hosts. Evidence supporting co-evolution of the virus with the host does not fully explain the evolutionary path of papillomaviruses and polyomaviruses. Studies analyzing CpG dinucleotide frequencies in virus genomes have provided interesting insights on virus evolution. CpG dinucleotide depletion has not been extensively studied among papillomaviruses and polyomaviruses. We sought to analyze the relative abundance of dinucleotides and the relative roles of evolutionary pressures in papillomaviruses and polyomaviruses. We studied 127 full-length sequences from papillomaviruses and 56 full-length sequences from polyomaviruses. We analyzed the relative abundance of dinucleotides, effective codon number (ENC), differences in synonymous codon usage. We examined the association, if any, between the extent of CpG dinucleotide depletion and the evolutionary lineage of the infected host. We also investigated the contribution of mutational pressure and translational selection to the evolution of papillomaviruses and polyomaviruses. All papillomaviruses and polyomaviruses are CpG depleted. Interestingly, the evolutionary lineage of the infected host determines the extent of CpG depletion among papillomaviruses and polyomaviruses. CpG dinucleotide depletion was more pronounced among papillomaviruses and polyomaviruses infecting human and other mammals as compared to those infecting birds. Our findings demonstrate that CpG depletion among papillomaviruses is linked to mutational pressure; while CpG depletion among polyomaviruses is linked to translational selection. We also present evidence that suggests methylation of CpG dinucleotides may explain, at least in part, the depletion of CpG dinucleotides among papillomaviruses but not polyomaviruses. The extent of CpG depletion among papillomaviruses and polyomaviruses is linked to the evolutionary lineage of the infected host. Our

  11. Pan-cancer stratification of solid human epithelial tumors and cancer cell lines reveals commonalities and tissue-specific features of the CpG island methylator phenotype.

    Science.gov (United States)

    Sánchez-Vega, Francisco; Gotea, Valer; Margolin, Gennady; Elnitski, Laura

    2015-01-01

    The term CpG island methylator phenotype (CIMP) has been used to describe widespread DNA hypermethylation at CpG-rich genomic regions affecting clinically distinct subsets of cancer patients. Even though there have been numerous studies of CIMP in individual cancer types, a uniform analysis across tissues is still lacking. We analyze genome-wide patterns of CpG island hypermethylation in 5,253 solid epithelial tumors from 15 cancer types from TCGA and 23 cancer cell lines from ENCODE. We identify differentially methylated loci that define CIMP+ and CIMP- samples, and we use unsupervised clustering to provide a robust molecular stratification of tumor methylomes for 12 cancer types and all cancer cell lines. With a minimal set of 89 discriminative loci, we demonstrate accurate pan-cancer separation of the 12 CIMP+/- subpopulations, based on their average levels of methylation. Tumor samples in different CIMP subclasses show distinctive correlations with gene expression profiles and recurrence of somatic mutations, copy number variations, and epigenetic silencing. Enrichment analyses indicate shared canonical pathways and upstream regulators for CIMP-targeted regions across cancer types. Furthermore, genomic alterations showing consistent associations with CIMP+/- status include genes involved in DNA repair, chromatin remodeling genes, and several histone methyltransferases. Associations of CIMP status with specific clinical features, including overall survival in several cancer types, highlight the importance of the CIMP+/- designation for individual tumor evaluation and personalized medicine. We present a comprehensive computational study of CIMP that reveals pan-cancer commonalities and tissue-specific differences underlying concurrent hypermethylation of CpG islands across tumors. Our stratification of solid tumors and cancer cell lines based on CIMP status is data-driven and agnostic to tumor type by design, which protects against known biases that have hindered

  12. CpG traffic lights are markers of regulatory regions in humans

    KAUST Repository

    Khamis, Abdullah M.; Lioznova, Anna V.; Artemov, Artem V.; Ramensky, Vasily; Bajic, Vladimir B.; Medvedeva, Yulia A.

    2016-01-01

    DNA methylation is involved in regulation of gene expression. Although modern methods profile DNA methylation at single CpG sites, methylation levels are usually averaged over genomic regions in the downstream analyses. In this study we demonstrate that single CpG methylation can serve as a more accurate predictor of gene expression compared to average promoter / gene body methylation. CpG positions with significant correlation between methylation and expression of a gene nearby (named CpG traffic lights) are evolutionary conserved and enriched for exact TSS positions and active enhancers. Among all promoter types, CpG traffic lights are especially enriched in poised promoters. Genes that harbor CpG traffic lights are associated with development and signal transduction. Methylation levels of individual CpG traffic lights vary between cell types dramatically with the increased frequency of intermediate methylation levels, indicating cell population heterogeneity in CpG methylation levels. Being in line with the concept of the inherited stochastic epigenetic variation, methylation of such CpG positions might contribute to transcriptional regulation. Alternatively, one can hypothesize that traffic lights are markers of absent gene expression resulting from inactivation of their regulatory elements. The CpG traffic lights provide a promising insight into mechanisms of enhancer activity and gene regulation linking methylation of single CpG to expression.

  13. CpG traffic lights are markers of regulatory regions in humans

    KAUST Repository

    Khamis, Abdullah M.

    2016-12-29

    DNA methylation is involved in regulation of gene expression. Although modern methods profile DNA methylation at single CpG sites, methylation levels are usually averaged over genomic regions in the downstream analyses. In this study we demonstrate that single CpG methylation can serve as a more accurate predictor of gene expression compared to average promoter / gene body methylation. CpG positions with significant correlation between methylation and expression of a gene nearby (named CpG traffic lights) are evolutionary conserved and enriched for exact TSS positions and active enhancers. Among all promoter types, CpG traffic lights are especially enriched in poised promoters. Genes that harbor CpG traffic lights are associated with development and signal transduction. Methylation levels of individual CpG traffic lights vary between cell types dramatically with the increased frequency of intermediate methylation levels, indicating cell population heterogeneity in CpG methylation levels. Being in line with the concept of the inherited stochastic epigenetic variation, methylation of such CpG positions might contribute to transcriptional regulation. Alternatively, one can hypothesize that traffic lights are markers of absent gene expression resulting from inactivation of their regulatory elements. The CpG traffic lights provide a promising insight into mechanisms of enhancer activity and gene regulation linking methylation of single CpG to expression.

  14. [Chromosome banding analysis of peripheral blood lymphocytes stimulated with IL2 and CpG oligonucleotide DSP30 in patients with chronic lymphocytic leukemia].

    Science.gov (United States)

    Stěpanovská, K; Vaňková, G; Némethová, V; Tomášiková, L; Smuhařová, P; Divíšková, E; Vallová, V; Kuglík, P; Plevová, K; Oltová, A; Doubek, M; Pospíšilová, S; Mayer, J

    2013-01-01

    Chromosomal aberrations play an important role as prognostic factors in chronic lymphocytic leukemia (CLL). These aberrations are mostly detected by fluorescent in situ hybridization (FISH), as chromosomal banding analysis has been scarce due to low proliferative activity of malignant B-lymphocytes in vitro. In 2006, a new method using stimulation with IL-2 and CpG oligonucleotide DSP30 for metaphase generation in CLL was published [1]. The objective of our study was to verify the efficacy of stimulation and to evaluate if the method is suitable for routine diagnostics. In total, peripheral blood samples of 369 CLL patients were analyzed in parallel by chromosomal banding analysis and by FISH probes for 13q14, 11q22-23, CEP12 and 17p13. Out of 369 patients, 307 (83%) were successfully stimulated for metaphase generation. Chromosomal aberrations were detected in 243 (79%) out of 307 patients evaluated by chromosomal banding analysis. Other aberrations that are not included into standard FISH panel were detected in patients karyotypes, e.g. del(6q), del(14q), t(14;18)(q32;q21), t(11;14)(q13;q32) and t(18;22)(q21;q11). One hundred and three (42%) patients showed complex aberrant karyotype not detected by FISH analysis. Stimulation with IL-2 and oligonucleotide DSP30 is an efficient method how to induce proliferation of malignant B-lymphocytes and allows detection of a substantial number of chromosomal aberrations in addition to those detected by standard FISH panel. Using this method in routine diagnostics is helpful particularly in identification of patients with complex aberrant karyotype.

  15. CpG dinucleotide frequencies reveal the role of host methylation capabilities in parvovirus evolution.

    Science.gov (United States)

    Upadhyay, Mohita; Samal, Jasmine; Kandpal, Manish; Vasaikar, Suhas; Biswas, Banhi; Gomes, James; Vivekanandan, Perumal

    2013-12-01

    Parvoviruses are rapidly evolving viruses that infect a wide range of hosts, including vertebrates and invertebrates. Extensive methylation of the parvovirus genome has been recently demonstrated. A global pattern of methylation of CpG dinucleotides is seen in vertebrate genomes, compared to "fractional" methylation patterns in invertebrate genomes. It remains unknown if the loss of CpG dinucleotides occurs in all viruses of a given DNA virus family that infect host species spanning across vertebrates and invertebrates. We investigated the link between the extent of CpG dinucleotide depletion among autonomous parvoviruses and the evolutionary lineage of the infected host. We demonstrate major differences in the relative abundance of CpG dinucleotides among autonomous parvoviruses which share similar genome organization and common ancestry, depending on the infected host species. Parvoviruses infecting vertebrate hosts had significantly lower relative abundance of CpG dinucleotides than parvoviruses infecting invertebrate hosts. The strong correlation of CpG dinucleotide depletion with the gain in TpG/CpA dinucleotides and the loss of TpA dinucleotides among parvoviruses suggests a major role for CpG methylation in the evolution of parvoviruses. Our data present evidence that links the relative abundance of CpG dinucleotides in parvoviruses to the methylation capabilities of the infected host. In sum, our findings support a novel perspective of host-driven evolution among autonomous parvoviruses.

  16. Familial hemiplegic migraine: a clinical comparison of families linked and unlinked to chromosome 19.DMG RG.

    Science.gov (United States)

    Terwindt, G M; Ophoff, R A; Haan, J; Frants, R R; Ferrari, M D

    1996-05-01

    We compared the clinical characteristics of 46 patients from three unrelated families with familial hemiplegic migraine (FHM) linked to chromosome 19, with those of 20 patients from two families with FHM not linked to chromosome 19. We found no significant differences for age at onset, frequency and duration of attacks, duration of the paresis, and occurrence of basilar migraine symptoms. In the linked families, significantly more patients reported unconsciousness during attacks (39% vs 15%; p < 0.05) and provocation of attacks by mild head trauma (70% vs 40%; p < 0.05). In one linked family patients also displayed chronic progressive cerebellar ataxia, whereas in one unlinked family benign infantile convulsions occurred in addition to FHM. Interestingly, so far an association with cerebellar ataxia was only described in chromosome 19-linked families. FHM linked to chromosome 19 and FHM unlinked to chromosome 19 do not differ with respect to clinical features.

  17. Links between DNA methylation and nucleosome occupancy in the human genome.

    Science.gov (United States)

    Collings, Clayton K; Anderson, John N

    2017-01-01

    DNA methylation is an epigenetic modification that is enriched in heterochromatin but depleted at active promoters and enhancers. However, the debate on whether or not DNA methylation is a reliable indicator of high nucleosome occupancy has not been settled. For example, the methylation levels of DNA flanking CTCF sites are higher in linker DNA than in nucleosomal DNA, while other studies have shown that the nucleosome core is the preferred site of methylation. In this study, we make progress toward understanding these conflicting phenomena by implementing a bioinformatics approach that combines MNase-seq and NOMe-seq data and by comprehensively profiling DNA methylation and nucleosome occupancy throughout the human genome. The results demonstrated that increasing methylated CpG density is correlated with nucleosome occupancy in the total genome and within nearly all subgenomic regions. Features with elevated methylated CpG density such as exons, SINE-Alu sequences, H3K36-trimethylated peaks, and methylated CpG islands are among the highest nucleosome occupied elements in the genome, while some of the lowest occupancies are displayed by unmethylated CpG islands and unmethylated transcription factor binding sites. Additionally, outside of CpG islands, the density of CpGs within nucleosomes was shown to be important for the nucleosomal location of DNA methylation with low CpG frequencies favoring linker methylation and high CpG frequencies favoring core particle methylation. Prominent exceptions to the correlations between methylated CpG density and nucleosome occupancy include CpG islands marked by H3K27me3 and CpG-poor heterochromatin marked by H3K9me3, and these modifications, along with DNA methylation, distinguish the major silencing mechanisms of the human epigenome. Thus, the relationship between DNA methylation and nucleosome occupancy is influenced by the density of methylated CpG dinucleotides and by other epigenomic components in chromatin.

  18. Development of TRAIL Resistance by Radiation-Induced Hypermethylation of DR4 CpG Island in Recurrent Laryngeal Squamous Cell Carcinoma

    International Nuclear Information System (INIS)

    Lee, Jong Cheol; Lee, Won Hyeok; Min, Young Joo; Cha, Hee Jeong; Han, Myung Woul; Chang, Hyo Won; Kim, Sun-A; Choi, Seung-Ho; Kim, Seong Who; Kim, Sang Yoon

    2014-01-01

    Purpose: There are limited therapeutic options for patients with recurrent head and neck cancer after radiation therapy failure. To assess the use of tumor necrosis factor–related apoptosis-inducing ligand (TRAIL) as a salvage chemotherapeutic agent for recurrent cancer after radiation failure, we investigated the effect of clinically relevant cumulative irradiation on TRAIL-induced apoptosis. Methods and Materials: Using a previously established HN3 cell line from a laryngeal carcinoma patient, we generated a chronically irradiated HN3R isogenic cell line. Viability and apoptosis in HN3 and HN3R cells treated with TRAIL were analyzed with MTS and PI/annexin V-FITC assays. Western blotting and flow cytometry were used to determine the underlying mechanism of TRAIL resistance. DR4 expression was semiquantitatively scored in a tissue microarray with 107 laryngeal cancer specimens. Methylation-specific polymerase chain reaction and bisulfite sequencing for DR4 were performed for genomic DNA isolated from each cell line. Results: HN3R cells were more resistant than HN3 cells to TRAIL-induced apoptosis because of significantly reduced levels of the DR4 receptor. The DR4 staining score in 37 salvage surgical specimens after radiation failure was lower in 70 surgical specimens without radiation treatment (3.03 ± 2.75 vs 5.46 ± 3.30, respectively; P<.001). HN3R cells had a methylated DR4 CpG island that was partially demethylated by the DNA demethylating agent 5-aza-2′-deoxycytidine. Conclusion: Epigenetic silencing of the TRAIL receptor by hypermethylation of a DR4 CpG island might be an underlying mechanism for TRAIL resistance in recurrent laryngeal carcinoma treated with radiation

  19. Glioma CpG island methylator phenotype (G-CIMP): biological and clinical implications.

    Science.gov (United States)

    Malta, Tathiane M; de Souza, Camila F; Sabedot, Thais S; Silva, Tiago C; Mosella, Maritza S; Kalkanis, Steven N; Snyder, James; Castro, Ana Valeria B; Noushmehr, Houtan

    2018-04-09

    Gliomas are a heterogeneous group of brain tumors with distinct biological and clinical properties. Despite advances in surgical techniques and clinical regimens, treatment of high-grade glioma remains challenging and carries dismal rates of therapeutic success and overall survival. Challenges include the molecular complexity of gliomas, as well as inconsistencies in histopathological grading, resulting in an inaccurate prediction of disease progression and failure in the use of standard therapy. The updated 2016 World Health Organization (WHO) classification of tumors of the central nervous system reflects a refinement of tumor diagnostics by integrating the genotypic and phenotypic features, thereby narrowing the defined subgroups. The new classification recommends molecular diagnosis of isocitrate dehydrogenase (IDH) mutational status in gliomas. IDH-mutant gliomas manifest the cytosine-phosphate-guanine (CpG) island methylator phenotype (G-CIMP). Notably, the recent identification of clinically relevant subsets of G-CIMP tumors (G-CIMP-high and G-CIMP-low) provides a further refinement in glioma classification that is independent of grade and histology. This scheme may be useful for predicting patient outcome and may be translated into effective therapeutic strategies tailored to each patient. In this review, we highlight the evolution of our understanding of the G-CIMP subsets and how recent advances in characterizing the genome and epigenome of gliomas may influence future basic and translational research.

  20. Genetics and epigenetics of small bowel adenocarcinoma: the interactions of CIN, MSI, and CIMP.

    Science.gov (United States)

    Warth, Arne; Kloor, Matthias; Schirmacher, Peter; Bläker, Hendrik

    2011-04-01

    Characterization of tumor genetics and epigenetics allows to stratify a tumor entity according to molecular pathways and may shed light on the interactions of different types of DNA alterations during tumorigenesis. Small intestinal adenocarcinoma is rare, and to date the interrelation of genomic instability and epigenetics has not been investigated in this tumor type. We therefore analyzed 37 primary small bowel carcinomas with known microsatellite instability and KRAS status for chromosomal instability using comparative genomic hybridization, for the presence of aberrant methylation (CpG island methylation phenotype) by methylation-specific polymerase chain reaction, and for BRAF mutations. Chromosomal instability was detected in 22 of 37 (59%) tumors (3 of 9 microsatellite instable, and 19 of 28 microsatellite stable carcinomas). Nine carcinomas (24%) were microsatellite and chromosomally stable. High-level DNA methylation was found in 16% of chromosomal instable tumors and in 44% of both microsatellite instable and microsatellite and chromosomally stable carcinomas. KRAS was mutated in 55, 0, and 10% of chromosomal instable, microsatellite instable, and microsatellite and chromosomally stable tumors, respectively whereas the frequencies of BRAF mutations were 6% for chromosomal instable and 22% for both microsatellite instable and microsatellite and chromosomally stable carcinomas. In conclusion, in this study we show that chromosomal instable carcinomas of the small intestine are distinguished from microsatellite instable and microsatellite and chromosomally stable tumors by a high frequency of KRAS mutations, low frequencies of CpG island methylation phenotype, and BRAF mutations. In microsatellite instable and microsatellite and chromosomally stable cancers, CpG island methylation phenotype and BRAF/KRAS mutations are similarly distributed, indicating common mechanisms of tumor initiation or progression in their molecular pathogenesis.

  1. Nonequilibrium Chromosome Looping via Molecular Slip Links

    Science.gov (United States)

    Brackley, C. A.; Johnson, J.; Michieletto, D.; Morozov, A. N.; Nicodemi, M.; Cook, P. R.; Marenduzzo, D.

    2017-09-01

    We propose a model for the formation of chromatin loops based on the diffusive sliding of molecular slip links. These mimic the behavior of molecules like cohesin, which, along with the CTCF protein, stabilize loops which contribute to organizing the genome. By combining 3D Brownian dynamics simulations and 1D exactly solvable nonequilibrium models, we show that diffusive sliding is sufficient to account for the strong bias in favor of convergent CTCF-mediated chromosome loops observed experimentally. We also find that the diffusive motion of multiple slip links along chromatin is rectified by an intriguing ratchet effect that arises if slip links bind to the chromatin at a preferred "loading site." This emergent collective behavior favors the extrusion of loops which are much larger than the ones formed by single slip links.

  2. Aberrant methylation of Polo-like kinase CpG islands in Plk4 heterozygous mice

    International Nuclear Information System (INIS)

    Ward, Alejandra; Morettin, Alan; Shum, David; Hudson, John W

    2011-01-01

    Hepatocellular carcinoma (HCC), one of the most common cancers world-wide occurs twice as often in men compared to women. Predisposing conditions such as alcoholism, chronic viral hepatitis, aflatoxin B1 ingestion, and cirrhosis all contribute to the development of HCC. We used a combination of methylation specific PCR and bisulfite sequencing, qReal-Time PCR (qPCR), and Western blot analysis to examine epigenetic changes for the Polo-like kinases (Plks) during the development of hepatocellular carcinoma (HCC) in Plk4 heterozygous mice and murine embryonic fibroblasts (MEFs). Here we report that the promoter methylation of Plk4 CpG islands increases with age, was more prevalent in males and that Plk4 epigenetic modification and subsequent downregulation of expression was associated with the development of HCC in Plk4 mutant mice. Interestingly, the opposite occurs with another Plk family member, Plk1 which was typically hypermethylated in normal liver tissue but became hypomethylated and upregulated in liver tumours. Furthermore, upon alcohol exposure murine embryonic fibroblasts exhibited increased Plk4 hypermethylation and downregulation along with increased centrosome numbers and multinucleation. These results suggest that aberrant Plk methylation is correlated with the development of HCC in mice

  3. CpG island methylator phenotype and its association with malignancy in sporadic duodenal adenomas.

    Science.gov (United States)

    Sun, Lifeng; Guzzetta, Angela A; Fu, Tao; Chen, Jinming; Jeschke, Jana; Kwak, Ruby; Vatapalli, Rajita; Baylin, Stephen B; Iacobuzio-Donahue, Christine A; Wolfgang, Christopher L; Ahuja, Nita

    2014-05-01

    CpG island methylator phenotype (CIMP) has been found in multiple precancerous and cancerous lesions, including colorectal adenomas, colorectal cancers, and duodenal adenocarcinomas. There are no reports in the literature of a relationship between CIMP status and clinicopathologic features of sporadic duodenal adenomas. This study sought to elucidate the role of methylation in duodenal adenomas and correlate it with KRAS and BRAF mutations. CIMP+ (with more than 2 markers methylated) was seen in 33.3% of duodenal adenomas; 61% of these CIMP+ adenomas were CIMP-high (with more than 3 markers methylated). Furthermore, CIMP+ status significantly correlated with older age of patients, larger size and villous type of tumor, coexistent dysplasia and periampullary location. MLH1 methylation was seen in 11.1% of duodenal adenomas and was significantly associated with CIMP+ tumors, while p16 methylation was an infrequent event. KRAS mutations were frequent and seen in 26.3% of adenomas; however, no BRAF mutations were detected. Furthermore, CIMP-high status was associated with larger size and villous type of tumor and race (non-white). These results suggest that CIMP+ duodenal adenomas may have a higher risk for developing malignancy and may require more aggressive management and surveillance.

  4. Integration of CpG-free DNA induces de novo methylation of CpG islands in pluripotent stem cells

    KAUST Repository

    Takahashi, Yuta

    2017-05-05

    CpG islands (CGIs) are primarily promoter-associated genomic regions and are mostly unmethylated within highly methylated mammalian genomes. The mechanisms by which CGIs are protected from de novo methylation remain elusive. Here we show that insertion of CpG-free DNA into targeted CGIs induces de novo methylation of the entire CGI in human pluripotent stem cells (PSCs). The methylation status is stably maintained even after CpG-free DNA removal, extensive passaging, and differentiation. By targeting the DNA mismatch repair gene MLH1 CGI, we could generate a PSC model of a cancer-related epimutation. Furthermore, we successfully corrected aberrant imprinting in induced PSCs derived from an Angelman syndrome patient. Our results provide insights into how CpG-free DNA induces de novo CGI methylation and broaden the application of targeted epigenome editing for a better understanding of human development and disease.

  5. Sequence and expression analysis of gaps in human chromosome 20

    DEFF Research Database (Denmark)

    Minocherhomji, Sheroy; Seemann, Stefan; Mang, Yuan

    2012-01-01

    /or overlap disease-associated loci, including the DLGAP4 locus. In this study, we sequenced ~99% of all three unfinished gaps on human chr 20, determined their complete genomic sizes and assessed epigenetic profiles using a combination of Sanger sequencing, mate pair paired-end high-throughput sequencing......The finished human genome-assemblies comprise several hundred un-sequenced euchromatic gaps, which may be rich in long polypurine/polypyrimidine stretches. Human chromosome 20 (chr 20) currently has three unfinished gaps remaining on its q-arm. All three gaps are within gene-dense regions and...... and chromatin, methylation and expression analyses. We found histone 3 trimethylated at Lysine 27 to be distributed across all three gaps in immortalized B-lymphocytes. In one gap, five novel CpG islands were predominantly hypermethylated in genomic DNA from peripheral blood lymphocytes and human cerebellum...

  6. Phage-inducible chromosomal islands are ubiquitous within the bacterial universe.

    Science.gov (United States)

    Fillol-Salom, Alfred; Martínez-Rubio, Roser; Abdulrahman, Rezheen F; Chen, John; Davies, Robert; Penadés, José R

    2018-06-06

    Phage-inducible chromosomal islands (PICIs) are a recently discovered family of pathogenicity islands that contribute substantively to horizontal gene transfer, host adaptation and virulence in Gram-positive cocci. Here we report that similar elements also occur widely in Gram-negative bacteria. As with the PICIs from Gram-positive cocci, their uniqueness is defined by a constellation of features: unique and specific attachment sites, exclusive PICI genes, a phage-dependent mechanism of induction, conserved replication origin organization, convergent mechanisms of phage interference, and specific packaging of PICI DNA into phage-like infectious particles, resulting in very high transfer frequencies. We suggest that the PICIs represent two or more distinct lineages, have spread widely throughout the bacterial world, and have diverged much more slowly than their host organisms or their prophage cousins. Overall, these findings represent the discovery of a universal class of mobile genetic elements.

  7. The CpG island encompassing the promoter and first exon of human DNMT3L gene is a PcG/TrX response element (PRE).

    Science.gov (United States)

    Basu, Amitava; Dasari, Vasanthi; Mishra, Rakesh K; Khosla, Sanjeev

    2014-01-01

    DNMT3L, a member of DNA methyltransferases family, is present only in mammals. As it provides specificity to the action of de novo methyltransferases, DNMT3A and DNMT3B and interacts with histone H3, DNMT3L has been invoked as the molecule that can read the histone code and translate it into DNA methylation. It plays an important role in the initiation of genomic imprints during gametogenesis and in nuclear reprogramming. With important functions attributed to it, it is imperative that the DNMT3L expression is tightly controlled. Previously, we had identified a CpG island within the human DNMT3L promoter and first exon that showed loss of DNA methylation in cancer samples. Here we show that this Differentially Methylated CpG island within DNMT3L (DNMT3L DMC) acts to repress transcription, is a Polycomb/Trithorax Response Element (PRE) and interacts with both PRC1 and PRC2 Polycomb repressive complexes. In addition, it adopts inactive chromatin conformation and is associated with other inactive chromatin-specific proteins like SUV39H1 and HP1. The presence of DNMT3L DMC also influences the adjacent promoter to adopt repressive histone post-translational modifications. Due to its association with multiple layers of repressive epigenetic modifications, we believe that PRE within the DNMT3L DMC is responsible for the tight regulation of DNMT3L expression and the aberrant epigenetic modifications of this region leading to DNMT3L overexpression could be the reason of nuclear programming during carcinogenesis.

  8. The CpG island encompassing the promoter and first exon of human DNMT3L gene is a PcG/TrX response element (PRE.

    Directory of Open Access Journals (Sweden)

    Amitava Basu

    Full Text Available DNMT3L, a member of DNA methyltransferases family, is present only in mammals. As it provides specificity to the action of de novo methyltransferases, DNMT3A and DNMT3B and interacts with histone H3, DNMT3L has been invoked as the molecule that can read the histone code and translate it into DNA methylation. It plays an important role in the initiation of genomic imprints during gametogenesis and in nuclear reprogramming. With important functions attributed to it, it is imperative that the DNMT3L expression is tightly controlled. Previously, we had identified a CpG island within the human DNMT3L promoter and first exon that showed loss of DNA methylation in cancer samples. Here we show that this Differentially Methylated CpG island within DNMT3L (DNMT3L DMC acts to repress transcription, is a Polycomb/Trithorax Response Element (PRE and interacts with both PRC1 and PRC2 Polycomb repressive complexes. In addition, it adopts inactive chromatin conformation and is associated with other inactive chromatin-specific proteins like SUV39H1 and HP1. The presence of DNMT3L DMC also influences the adjacent promoter to adopt repressive histone post-translational modifications. Due to its association with multiple layers of repressive epigenetic modifications, we believe that PRE within the DNMT3L DMC is responsible for the tight regulation of DNMT3L expression and the aberrant epigenetic modifications of this region leading to DNMT3L overexpression could be the reason of nuclear programming during carcinogenesis.

  9. Integrative DNA methylation and gene expression analysis to assess the universality of the CpG island methylator phenotype.

    Science.gov (United States)

    Moarii, Matahi; Reyal, Fabien; Vert, Jean-Philippe

    2015-10-13

    The CpG island methylator phenotype (CIMP) was first characterized in colorectal cancer but since has been extensively studied in several other tumor types such as breast, bladder, lung, and gastric. CIMP is of clinical importance as it has been reported to be associated with prognosis or response to treatment. However, the identification of a universal molecular basis to define CIMP across tumors has remained elusive. We perform a genome-wide methylation analysis of over 2000 tumor samples from 5 cancer sites to assess the existence of a CIMP with common molecular basis across cancers. We then show that the CIMP phenotype is associated with specific gene expression variations. However, we do not find a common genetic signature in all tissues associated with CIMP. Our results suggest the existence of a universal epigenetic and transcriptomic signature that defines the CIMP across several tumor types but does not indicate the existence of a common genetic signature of CIMP.

  10. CpG island methylator phenotype and prognosis of colorectal cancer in Northeast China.

    Science.gov (United States)

    Li, Xia; Hu, Fulan; Wang, Yibaina; Yao, Xiaoping; Zhang, Zuoming; Wang, Fan; Sun, Guizhi; Cui, Bin-Bin; Dong, Xinshu; Zhao, Yashuang

    2014-01-01

    To investigate the association between CpG island methylator phenotype (CIMP) and the overall survival of sporadic colorectal cancer (CRC) in Northeast China. 282 sporadic CRC patients were recruited in this study. We selected MLH1, MGMT, p16, APC, MINT1, MINT31, and RUNX3 as the CIMP panel markers. The promoter methylation was assessed by methylation sensitive high resolution melting (MS-HRM). Proportional hazards-regression models were fitted with computing hazard ratios (HR) and the corresponding 95% confidence intervals (95% CI). 12.77% (36/282) of patients were CIMP-0, 74.1% (209/282) of patients were CIMP-L, and 13.12% (37/282) of patients were CIMP-H. The five-year survival of the 282 CRC patients was 58%. There was significant association between APC gene promoter methylation and CRC overall survival (HR = 1.61; 95% CI: 1.05-2.46; P = 0.03). CIMP-H was significantly associated with worse prognosis compared to CIMP-0 (HR = 3.06; 95% CI: 1.19-7.89; P = 0.02) and CIMP-L (HR = 1.97; 95% CI: 1.11-3.48; P = 0.02), respectively. While comparing with the combine of CIMP-L and CIMP-0 (CIMP-L/0), CIMP-H also presented a worse prognosis (HR = 2.31; 95% CI: 1.02-5.24; P = 0.04). CIMP-H may be a predictor of a poor prognosis of CRC in Northeast China patients.

  11. An X-linked homologue of the autosomal inprinted gene ZNF127 escapes X inactivation

    Energy Technology Data Exchange (ETDEWEB)

    Longstreet, M.; Nicholls, R.D.; Willard, H.F. [Case Western Reserve Univ., Cleveland, OH (United States)] [and others

    1994-09-01

    The ZNF127 gene has been shown to be subject to parental imprinting in both humans and the mouse and maps to within the Prader-Willi/Angelman Syndrome critical region on chromosome 15. We have cloned two X-linked related loci, one of which, ZNFXp is a transcribed gene while the other, ZNFXq, is an untranscribed pseudogene. ZNFXp is 83.6% identical to ZNFXq and 65.4% identical to ZNF127 over 1.4 kb of open reading frame they share in common, Like ZNF127, the predicted protein sequence of ZNFXp contains a C{sub 3}HC{sub 4} zinc finger domain and C{sub 3}H zinc finger-like motifs. Whereas ZNF127 has three C{sub 3}H motifs, ZNFXp has four. A strong CpG island is located within 1 kb 5{prime} of the predicted amino terminus of ZNFXp. Expression of ZNFXp has been detected from mouse/human somatic cell hybrids containing either an active (n=2) or an inactive (n=4) chromosome, and thus escapes X inactivation. Probes made from the 3{prime} UTR of ZNFXp detect a number of related loci in both human and murine DNA, none of which is the ZNF127 locus on chromosome 15. None of the detectable murine bands shows dosage differences between males and females as would be expected for X-linked loci. This raises the possibility that ZNFXp inserted into the human X chromosome after its divergence from a common ancestor with the murine X. We have mapped ZNFXp to Xp11.4 by Southern blotting and PCR of hybrid DNAs and by fluorescence in situ hybridization (FISH). ZNFXq maps within the X Inactivation Center (XIC) region on Xq13.2, approximately 300 kb distal to the XIST gene. We find it intriguing, and perhaps significant, that two members of this gene family are subject to epigenetic regulation -- one autosomal imprinting, and the other escape from X inactivation. These results could imply an evolutionary and mechanistic relationship between these two processes.

  12. Mutational landscape of the human Y chromosome-linked genes ...

    Indian Academy of Sciences (India)

    Mutational landscape of the human Y chromosome-linked genes and loci in patients with hypogonadism. Deepali Pathak, Sandeep Kumar Yadav, Leena Rawal and Sher Ali. J. Genet. 94, 677–687. Table 1. Details showing age, sex, karyotype, clinical features and diagnosis results of the patients with H. Hormone profile.

  13. B vitamins, methionine and alcohol intake and risk of colon cancer in relation to BRAF mutation and CpG island methylator phenotype (CIMP).

    Science.gov (United States)

    Schernhammer, Eva S; Giovannucci, Edward; Baba, Yoshifumi; Fuchs, Charles S; Ogino, Shuji

    2011-01-01

    One-carbon metabolism appears to play an important role in DNA methylation reaction. Evidence suggests that a low intake of B vitamins or high alcohol consumption increases colorectal cancer risk. How one-carbon nutrients affect the CpG island methylator phenotype (CIMP) or BRAF mutation status in colon cancer remains uncertain. Utilizing incident colon cancers in a large prospective cohort of women (the Nurses' Health Study), we determined BRAF status (N = 386) and CIMP status (N = 375) by 8 CIMP-specific markers [CACNA1G, CDKN2A (p16), CRABP1, IGF2, MLH1, NEUROG1, RUNX3, and SOCS1], and 8 other CpG islands (CHFR, HIC1, IGFBP3, MGMT, MINT-1, MINT-31, p14, and WRN). We examined the relationship between intake of one-carbon nutrients and alcohol and colon cancer risk, by BRAF mutation or CIMP status. Higher folate intake was associated with a trend towards low risk of CIMP-low/0 tumors [total folate intake ≥400 µg/day vs. CIMP-high tumor risks (P(heterogeneity) = 0.73). Neither vitamin B(6), methionine or alcohol intake appeared to differentially influence risks for CIMP-high and CIMP-low/0 tumors. Using the 16-marker CIMP panel did not substantially alter our results. B vitamins, methionine or alcohol intake did not affect colon cancer risk differentially by BRAF status. This molecular pathological epidemiology study suggests that low level intake of folate may be associated with an increased risk of CIMP-low/0 colon tumors, but not that of CIMP-high tumors. However, the difference between CIMP-high and CIMP-low/0 cancer risks was not statistically significant, and additional studies are necessary to confirm these observations.

  14. Genetic polymorphisms in one-carbon metabolism: associations with CpG island methylator phenotype (CIMP) in colon cancer and the modifying effects of diet.

    Science.gov (United States)

    Curtin, Karen; Slattery, Martha L; Ulrich, Cornelia M; Bigler, Jeannette; Levin, Theodore R; Wolff, Roger K; Albertsen, Hans; Potter, John D; Samowitz, Wade S

    2007-08-01

    This study investigated associations between CpG island methylator phenotype (CIMP) colon cancer and genetic polymorphisms relevant to one-carbon metabolism and thus, potentially the provision of methyl groups and risk of colon cancer. Data from a large, population-based case-control study (916 incident colon cancer cases and 1,972 matched controls) were used. Candidate polymorphisms in methylenetetrahydrofolate reductase (MTHFR), thymidylate synthase (TS), transcobalamin II (TCNII), methionine synthase (MTR), reduced folate carrier (RFC), methylenetetrahydrofolate dehydrogenase 1 (MTHFD1), dihydrofolate reductase (DHFR) and alcohol dehydrogenase 3 (ADH3) were evaluated. CIMP- or CIMP+ phenotype was based on five CpG island markers: MINT1, MINT2, MINT31, p16 and MLH1. The influence of specific dietary factors (folate, methionine, vitamin B(12) and alcohol) on these associations was also analyzed. We hypothesized that polymorphisms involved in the provision of methyl groups would be associated with CIMP+ tumors (two or more of five markers methylated), potentially modified by diet. Few associations specific to CIMP+ tumors were observed overall, which does not support the hypothesis that the provision of methyl groups is important in defining a methylator phenotype. However, our data suggest that genetic polymorphisms in MTHFR 1,298A > C, interacting with diet, may be involved in the development of highly CpG-methylated colon cancers. AC and CC genotypes in conjunction with a high-risk dietary pattern (low folate and methionine intake and high alcohol use) were associated with CIMP+ (OR = 2.1, 95% CI = 1.3-3.4 versus AA/high risk; P-interaction = 0.03). These results provide only limited support for a role of polymorphisms in one-carbon metabolism in the etiology of CIMP colon cancer.

  15. Tet Proteins Connect the O-Linked N-acetylglucosamine Transferase Ogt to Chromatin in Embryonic Stem Cells

    DEFF Research Database (Denmark)

    Vella, Pietro; Scelfo, Andrea; Jammula, Sriganesh

    2013-01-01

    . These regions are characterized by low levels of DNA modification, suggesting a link between Tet1 and Ogt activities in regulating CpG island methylation. Finally, we show that Tet1 is required for binding of Ogt to chromatin affecting Tet1 activity. Taken together, our data characterize how O......-GlcNAcylation is recruited to chromatin and interacts with the activity of 5-methylcytosine hydroxylases....

  16. Meta-analysis of the prognostic value of CpG island methylator phenotype in gastric cancer.

    Science.gov (United States)

    Powell, A G M T; Soul, S; Christian, A; Lewis, W G

    2018-01-01

    CpG island methylator phenotype (CIMP) has been identified as a distinct molecular subtype of gastric cancer, yet associations with survival are conflicting. A meta-analysis was performed to estimate the prognostic significance of CIMP. Embase, MEDLINE, PubMed, PubMed Central and Cochrane databases were searched systematically for studies related to the association between CIMP and survival in patients undergoing potentially curative resection for gastric cancer. A total of 918 patients from ten studies were included, and the median proportion of tumours with CIMP-high (CIMP-H) status was 40·9 (range 4·8-63) per cent. Gene panels for assessing CIMP status varied between the studies. Pooled analysis suggested that specimens exhibiting CIMP-H were associated with poorer 5-year survival (odds ratio (OR) for death 1·48, 95 per cent c.i. 1·10 to 1·99; P = 0·009). Significant heterogeneity was observed between studies (I 2 = 88 per cent, P CIMP-H tumours, revealed that CIMP-H was associated with both poor (OR for death 8·15, 4·65 to 14·28, P CIMP, which may explain the survival differences. © 2018 BJS Society Ltd Published by John Wiley & Sons Ltd.

  17. Aurora-A Expression Is Independently Associated with Chromosomal Instability in Colorectal Cancer

    Directory of Open Access Journals (Sweden)

    Yoshifumi Baba

    2009-05-01

    Full Text Available AURKA (the official symbol for Aurora-A, STK15, or BTAK regulates the function of centrosomes, spindles, and kinetochores for proper mitotic progression. AURKA overexpression is observed in various cancers including colon cancer, and a link between AURKA and chromosomal instability (CIN has been proposed. However, no study has comprehensively examined AURKA expression in relation to CIN or prognosis using a large number of tumors. Using 517 colorectal cancers in two prospective cohort studies, we detected AURKA overexpression (by immunohistochemistry in 98 tumors (19%. We assessed other molecular events including loss of heterozygosity (LOH in 2p, 5q, 17q, and 18q, the CpG island methylation phenotype (CIMP, and microsatellite instability (MSI. Prognostic significance of AURKA was evaluated by Cox regression and Kaplan-Meier method. In both univariate and multivariate logistic regressions, AURKA overexpression was significantly associated with CIN (defined as the presence of LOH in any of the chromosomal segments; multivariate odds ratio, 2.97; 95% confidence interval, 1.40–6.29; P = .0045. In multivariate analysis, AURKA was associated with cyclin D1 expression (P = .010 and inversely with PIK3CA mutation (P=.014, fatty acid synthase expression (P=.028, and family history of colorectal cancer (P = .050, but not with sex, age, body mass index, tumor location, stage, CIMP, MSI, KRAS, BRAF, BMI, LINE-1 hypomethylation, p53, p21, β-catenin, or cyclooxygenase 2. AURKA was not significantly associated with clinical outcome or survival. In conclusion, AURKA overexpression is independently associated with CIN in colorectal cancer, supporting a potential role of Aurora kinase-A in colorectal carcinogenesis through genomic instability (rather than epigenomic instability.

  18. Parvovirus b19 DNA CpG dinucleotide methylation and epigenetic regulation of viral expression.

    Directory of Open Access Journals (Sweden)

    Francesca Bonvicini

    Full Text Available CpG DNA methylation is one of the main epigenetic modifications playing a role in the control of gene expression. For DNA viruses whose genome has the ability to integrate in the host genome or to maintain as a latent episome, a correlation has been found between the extent of DNA methylation and viral quiescence. No information is available for Parvovirus B19, a human pathogenic virus, which is capable of both lytic and persistent infections. Within Parvovirus B19 genome, the inverted terminal regions display all the characteristic signatures of a genomic CpG island; therefore we hypothesised a role of CpG dinucleotide methylation in the regulation of viral genome expression.The analysis of CpG dinucleotide methylation of Parvovirus B19 DNA was carried out by an aptly designed quantitative real-time PCR assay on bisulfite-modified DNA. The effects of CpG methylation on the regulation of viral genome expression were first investigated by transfection of either unmethylated or in vitro methylated viral DNA in a model cell line, showing that methylation of viral DNA was correlated to lower expression levels of the viral genome. Then, in the course of in vitro infections in different cellular environments, it was observed that absence of viral expression and genome replication were both correlated to increasing levels of CpG methylation of viral DNA. Finally, the presence of CpG methylation was documented in viral DNA present in bioptic samples, indicating the occurrence and a possible role of this epigenetic modification in the course of natural infections.The presence of an epigenetic level of regulation of viral genome expression, possibly correlated to the silencing of the viral genome and contributing to the maintenance of the virus in tissues, can be relevant to the balance and outcome of the different types of infection associated to Parvovirus B19.

  19. Parvovirus B19 DNA CpG Dinucleotide Methylation and Epigenetic Regulation of Viral Expression

    Science.gov (United States)

    Bonvicini, Francesca; Manaresi, Elisabetta; Di Furio, Francesca; De Falco, Luisa; Gallinella, Giorgio

    2012-01-01

    CpG DNA methylation is one of the main epigenetic modifications playing a role in the control of gene expression. For DNA viruses whose genome has the ability to integrate in the host genome or to maintain as a latent episome, a correlation has been found between the extent of DNA methylation and viral quiescence. No information is available for Parvovirus B19, a human pathogenic virus, which is capable of both lytic and persistent infections. Within Parvovirus B19 genome, the inverted terminal regions display all the characteristic signatures of a genomic CpG island; therefore we hypothesised a role of CpG dinucleotide methylation in the regulation of viral genome expression. The analysis of CpG dinucleotide methylation of Parvovirus B19 DNA was carried out by an aptly designed quantitative real-time PCR assay on bisulfite-modified DNA. The effects of CpG methylation on the regulation of viral genome expression were first investigated by transfection of either unmethylated or in vitro methylated viral DNA in a model cell line, showing that methylation of viral DNA was correlated to lower expression levels of the viral genome. Then, in the course of in vitro infections in different cellular environments, it was observed that absence of viral expression and genome replication were both correlated to increasing levels of CpG methylation of viral DNA. Finally, the presence of CpG methylation was documented in viral DNA present in bioptic samples, indicating the occurrence and a possible role of this epigenetic modification in the course of natural infections. The presence of an epigenetic level of regulation of viral genome expression, possibly correlated to the silencing of the viral genome and contributing to the maintenance of the virus in tissues, can be relevant to the balance and outcome of the different types of infection associated to Parvovirus B19. PMID:22413013

  20. CpG island methylation phenotype (CIMP) in oral cancer: associated with a marked inflammatory response and less aggressive tumour biology.

    Science.gov (United States)

    Shaw, Richard J; Hall, Gillian L; Lowe, Derek; Bowers, Naomi L; Liloglou, Triantafillos; Field, John K; Woolgar, Julia A; Risk, Janet M

    2007-10-01

    Studies in several tumour sites highlight the significance of the CpG island methylation phenotype (CIMP), with distinct features of histology, biological aggression and outcome. We utilise pyrosequencing techniques of quantitative methylation analysis to investigate the presence of CIMP in oral squamous cell carcinoma (OSCC) for the first time, and evaluate its correlation with allelic imbalance, pathology and clinical behaviour. Tumour tissue, control tissue and PBLs were obtained from 74 patients with oral squamous cell carcinoma. Pyrosequencing was used to analyse methylation patterns in 75-200 bp regions of the CpG rich gene promoters of 10 genes with a broad range of cellular functions. Allelic imbalance was investigated using a multiplexed panel of 11 microsatellite markers. Corresponding variables, histopathological staging and grading were correlated with these genetic and epigenetic aberrations. A cluster of tumours with a greater degree of promoter methylation than would be predicted by chance alone (P=0.001) were designated CIMP+ve. This group had less aggressive tumour biology in terms of tumour thickness (p=0.015) and nodal metastasis (P=0.012), this being apparently independent of tumour diameter. Further, it seems that these CIMP+ve tumours excited a greater host inflammatory response (P=0.019). The exact mechanisms underlying CIMP remain obscure but the association with a greater inflammatory host response supports existing theories relating these features in other tumour sites. As CIMP has significant associations with other well documented prognostic indicators, it may prove beneficial to include methylation analyses in molecular risk modelling of tumours.

  1. Cytotoxic chromosomal targeting by CRISPR/Cas systems can reshape bacterial genomes and expel or remodel pathogenicity islands.

    Science.gov (United States)

    Vercoe, Reuben B; Chang, James T; Dy, Ron L; Taylor, Corinda; Gristwood, Tamzin; Clulow, James S; Richter, Corinna; Przybilski, Rita; Pitman, Andrew R; Fineran, Peter C

    2013-04-01

    In prokaryotes, clustered regularly interspaced short palindromic repeats (CRISPRs) and their associated (Cas) proteins constitute a defence system against bacteriophages and plasmids. CRISPR/Cas systems acquire short spacer sequences from foreign genetic elements and incorporate these into their CRISPR arrays, generating a memory of past invaders. Defence is provided by short non-coding RNAs that guide Cas proteins to cleave complementary nucleic acids. While most spacers are acquired from phages and plasmids, there are examples of spacers that match genes elsewhere in the host bacterial chromosome. In Pectobacterium atrosepticum the type I-F CRISPR/Cas system has acquired a self-complementary spacer that perfectly matches a protospacer target in a horizontally acquired island (HAI2) involved in plant pathogenicity. Given the paucity of experimental data about CRISPR/Cas-mediated chromosomal targeting, we examined this process by developing a tightly controlled system. Chromosomal targeting was highly toxic via targeting of DNA and resulted in growth inhibition and cellular filamentation. The toxic phenotype was avoided by mutations in the cas operon, the CRISPR repeats, the protospacer target, and protospacer-adjacent motif (PAM) beside the target. Indeed, the natural self-targeting spacer was non-toxic due to a single nucleotide mutation adjacent to the target in the PAM sequence. Furthermore, we show that chromosomal targeting can result in large-scale genomic alterations, including the remodelling or deletion of entire pre-existing pathogenicity islands. These features can be engineered for the targeted deletion of large regions of bacterial chromosomes. In conclusion, in DNA-targeting CRISPR/Cas systems, chromosomal interference is deleterious by causing DNA damage and providing a strong selective pressure for genome alterations, which may have consequences for bacterial evolution and pathogenicity.

  2. CpG Island Methylator Phenotype and Prognosis of Colorectal Cancer in Northeast China

    Directory of Open Access Journals (Sweden)

    Xia Li

    2014-01-01

    Full Text Available Purpose. To investigate the association between CpG island methylator phenotype (CIMP and the overall survival of sporadic colorectal cancer (CRC in Northeast China. Methods. 282 sporadic CRC patients were recruited in this study. We selected MLH1, MGMT, p16, APC, MINT1, MINT31, and RUNX3 as the CIMP panel markers. The promoter methylation was assessed by methylation sensitive high resolution melting (MS-HRM. Proportional hazards-regression models were fitted with computing hazard ratios (HR and the corresponding 95% confidence intervals (95% CI. Results. 12.77% (36/282 of patients were CIMP-0, 74.1% (209/282 of patients were CIMP-L, and 13.12% (37/282 of patients were CIMP-H. The five-year survival of the 282 CRC patients was 58%. There was significant association between APC gene promoter methylation and CRC overall survival (HR = 1.61; 95% CI: 1.05–2.46; P=0.03. CIMP-H was significantly associated with worse prognosis compared to CIMP-0 (HR = 3.06; 95% CI: 1.19–7.89; P=0.02 and CIMP-L (HR = 1.97; 95% CI: 1.11–3.48; P=0.02, respectively. While comparing with the combine of CIMP-L and CIMP-0 (CIMP-L/0, CIMP-H also presented a worse prognosis (HR = 2.31; 95% CI: 1.02–5.24; P=0.04. Conclusion. CIMP-H may be a predictor of a poor prognosis of CRC in Northeast China patients.

  3. A new resource for characterizing X-linked genes in Drosophila melanogaster: systematic coverage and subdivision of the X chromosome with nested, Y-linked duplications.

    Science.gov (United States)

    Cook, R Kimberley; Deal, Megan E; Deal, Jennifer A; Garton, Russell D; Brown, C Adam; Ward, Megan E; Andrade, Rachel S; Spana, Eric P; Kaufman, Thomas C; Cook, Kevin R

    2010-12-01

    Interchromosomal duplications are especially important for the study of X-linked genes. Males inheriting a mutation in a vital X-linked gene cannot survive unless there is a wild-type copy of the gene duplicated elsewhere in the genome. Rescuing the lethality of an X-linked mutation with a duplication allows the mutation to be used experimentally in complementation tests and other genetic crosses and it maps the mutated gene to a defined chromosomal region. Duplications can also be used to screen for dosage-dependent enhancers and suppressors of mutant phenotypes as a way to identify genes involved in the same biological process. We describe an ongoing project in Drosophila melanogaster to generate comprehensive coverage and extensive breakpoint subdivision of the X chromosome with megabase-scale X segments borne on Y chromosomes. The in vivo method involves the creation of X inversions on attached-XY chromosomes by FLP-FRT site-specific recombination technology followed by irradiation to induce large internal X deletions. The resulting chromosomes consist of the X tip, a medial X segment placed near the tip by an inversion, and a full Y. A nested set of medial duplicated segments is derived from each inversion precursor. We have constructed a set of inversions on attached-XY chromosomes that enable us to isolate nested duplicated segments from all X regions. To date, our screens have provided a minimum of 78% X coverage with duplication breakpoints spaced a median of nine genes apart. These duplication chromosomes will be valuable resources for rescuing and mapping X-linked mutations and identifying dosage-dependent modifiers of mutant phenotypes.

  4. 3. Pattern of Inheritance of Autosome and Sex. Chromosome Linked ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 4; Issue 10. Teaching and Learning Genetics with Drosophila – Pattern of Inheritance of Autosome and Sex Chro-mosome Linked Genes/Characters. H A Ranganath M T Tanuja. Classroom Volume 4 Issue 10 October 1999 pp 78-87 ...

  5. Adverse prognostic impact of the CpG island methylator phenotype in metastatic colorectal cancer.

    Science.gov (United States)

    Cha, Yongjun; Kim, Kyung-Ju; Han, Sae-Won; Rhee, Ye Young; Bae, Jeong Mo; Wen, Xianyu; Cho, Nam-Yun; Lee, Dae-Won; Lee, Kyung-Hun; Kim, Tae-Yong; Oh, Do-Youn; Im, Seock-Ah; Bang, Yung-Jue; Jeong, Seung-Yong; Park, Kyu Joo; Kang, Gyeong Hoon; Kim, Tae-You

    2016-07-12

    The association between the CpG island methylator phenotype (CIMP) and clinical outcomes in metastatic colorectal cancer remains unclear. We investigated the prognostic impact of CIMP in patients with metastatic colorectal cancer treated with systemic chemotherapy. Eight CIMP-specific promoters (CACNA1G, IGF2, NEUROG1, RUNX3, SOCS1, CDKN2A, CRABP1, and MLH1) were examined. The CIMP status was determined by the number of methylated promoters as high (⩾5), low (1-4), and negative (0). A total of 153 patients were included (men/women, 103/50; median age, 61 years; range, 22-80 years). The CIMP status was negative/low/high in 77/ 69/7 patients, respectively. Overall survival (OS) was significantly different among the three CIMP groups, with median values of 35.7, 22.2, and 9.77 months for the negative, low, and high groups, respectively (PCIMP groups; the median OS was 37.9, 23.8, and 6.77 months for the negative, low, and high groups, respectively (PCIMP groups (53.4% vs 45.1% vs 16.7%, respectively; P=0.107). For patients treated with fluoropyrimidine and irinotecan second-line chemotherapy (N=86), only OS showed a difference according to the CIMP status, with median values of 20.4, 13.4, and 2.90 months for the negative, low, and high groups, respectively (PCIMP status is a negative prognostic factor for patients with metastatic colorectal cancer treated with chemotherapy.

  6. Assessment of chromosomal imbalances in CIMP-high and CIMP-low/CIMP-0 colorectal cancers.

    Science.gov (United States)

    Kozlowska, Joanna; Karpinski, Pawel; Szmida, Elzbieta; Laczmanska, Izabela; Misiak, Blazej; Ramsey, David; Bebenek, Marek; Kielan, Wojciech; Pesz, Karolina A; Sasiadek, Maria M

    2012-08-01

    Data presented in a number of recent studies have revealed a negative correlation between CpG island methylator phenotype (CIMP) and chromosomal instability (CIN) measured by a loss of heterozygosity (LOH) of selected loci, suggesting that CIN and CIMP represent two independent mechanisms in sporadic colorectal cancer (CRC) carcinogenesis. However, CIN is a heterogeneous phenomenon, which may be studied not only by employing LOH analysis but also by observing chromosomal imbalances (gains and deletions). The current study aimed to investigate the relationship between CIMP and chromosomal gains and deletions (assessed by comparative genomic hybridization) in a group of 20 CIMP-high and 79 CIMP-low/CIMP-0 CRCs. Our results revealed that the mean numbers of gains and of total chromosomal imbalances were significantly greater (p = 0.004 and p = 0.007, respectively) in the CIMP-low/CIMP-0 group compared to the CIMP-high group, while no significant difference was observed between the mean numbers of losses (p = 0.056). The analysis of copy number changes of 41 cancer-related genes by multiplex ligation-dependent probe amplification showed that CRK gene was exclusively deleted in CIMP-low/CIMP-0 tumors (p = 0.02). Given that chromosomal losses play an important role in tumor suppressor inactivation and chromosomal gains, in the activation of proto-oncogenes, we hypothesize that tumor suppressor inactivation plays similar roles in both CIMP-high and CIMP-low/CIMP-0 CRCs, while the predominance of chromosomal gains in CIMP-low/CIMP-0 tumors may suggest that the activation of proto-oncogenes is the underlying mechanism of CIMP-low/CIMP-0 CRC progression.

  7. Evaluation of CpG Island Methylator Phenotype as a Biomarker in Colorectal Cancer Treated With Adjuvant Oxaliplatin.

    Science.gov (United States)

    Cohen, Stacey A; Wu, Chen; Yu, Ming; Gourgioti, Georgia; Wirtz, Ralph; Raptou, Georgia; Gkakou, Chryssa; Kotoula, Vassiliki; Pentheroudakis, George; Papaxoinis, George; Karavasilis, Vasilios; Pectasides, Dimitrios; Kalogeras, Konstantine T; Fountzilas, George; Grady, William M

    2016-06-01

    The CpG island methylator phenotype (CIMP) is a promising biomarker for irinotecan/5-fluorouracil/leucovorin chemotherapy for stage III colon cancer. In the present study, we evaluated whether CIMP is a prognostic biomarker for standard-of-care oxaliplatin-based adjuvant therapy. The HE6C/05 trial randomized 441 patients with stage II-III colorectal adenocarcinoma to adjuvant XELOX (capecitabine, oxaliplatin) or modified FOLFOX6 (5-fluorouracil, leucovorin, oxaliplatin). The primary and secondary objectives were disease-free and overall survival, respectively. CIMP status was determined using the DNA methylation status of CACNA1G, IGF2, NEUROG1, RUNX3, and SOCS1. Cox models were used to assess the association of CIMP with survival. Of the 293 available tumors, 28 (9.6%) were CIMP(+). On univariate Cox regression analysis, no significant differences in survival were observed between individuals with CIMP(+) versus CIMP(-) tumors. CIMP(+) tumors were more likely to be right-sided and BRAF mutant (χ(2), P CIMP did not appear to be a prognostic biomarker in oxaliplatin-treated patients with resected colorectal cancer. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Cytotoxic chromosomal targeting by CRISPR/Cas systems can reshape bacterial genomes and expel or remodel pathogenicity islands.

    Directory of Open Access Journals (Sweden)

    Reuben B Vercoe

    2013-04-01

    Full Text Available In prokaryotes, clustered regularly interspaced short palindromic repeats (CRISPRs and their associated (Cas proteins constitute a defence system against bacteriophages and plasmids. CRISPR/Cas systems acquire short spacer sequences from foreign genetic elements and incorporate these into their CRISPR arrays, generating a memory of past invaders. Defence is provided by short non-coding RNAs that guide Cas proteins to cleave complementary nucleic acids. While most spacers are acquired from phages and plasmids, there are examples of spacers that match genes elsewhere in the host bacterial chromosome. In Pectobacterium atrosepticum the type I-F CRISPR/Cas system has acquired a self-complementary spacer that perfectly matches a protospacer target in a horizontally acquired island (HAI2 involved in plant pathogenicity. Given the paucity of experimental data about CRISPR/Cas-mediated chromosomal targeting, we examined this process by developing a tightly controlled system. Chromosomal targeting was highly toxic via targeting of DNA and resulted in growth inhibition and cellular filamentation. The toxic phenotype was avoided by mutations in the cas operon, the CRISPR repeats, the protospacer target, and protospacer-adjacent motif (PAM beside the target. Indeed, the natural self-targeting spacer was non-toxic due to a single nucleotide mutation adjacent to the target in the PAM sequence. Furthermore, we show that chromosomal targeting can result in large-scale genomic alterations, including the remodelling or deletion of entire pre-existing pathogenicity islands. These features can be engineered for the targeted deletion of large regions of bacterial chromosomes. In conclusion, in DNA-targeting CRISPR/Cas systems, chromosomal interference is deleterious by causing DNA damage and providing a strong selective pressure for genome alterations, which may have consequences for bacterial evolution and pathogenicity.

  9. Cytotoxic Chromosomal Targeting by CRISPR/Cas Systems Can Reshape Bacterial Genomes and Expel or Remodel Pathogenicity Islands

    Science.gov (United States)

    Vercoe, Reuben B.; Chang, James T.; Dy, Ron L.; Taylor, Corinda; Gristwood, Tamzin; Clulow, James S.; Richter, Corinna; Przybilski, Rita; Pitman, Andrew R.; Fineran, Peter C.

    2013-01-01

    In prokaryotes, clustered regularly interspaced short palindromic repeats (CRISPRs) and their associated (Cas) proteins constitute a defence system against bacteriophages and plasmids. CRISPR/Cas systems acquire short spacer sequences from foreign genetic elements and incorporate these into their CRISPR arrays, generating a memory of past invaders. Defence is provided by short non-coding RNAs that guide Cas proteins to cleave complementary nucleic acids. While most spacers are acquired from phages and plasmids, there are examples of spacers that match genes elsewhere in the host bacterial chromosome. In Pectobacterium atrosepticum the type I-F CRISPR/Cas system has acquired a self-complementary spacer that perfectly matches a protospacer target in a horizontally acquired island (HAI2) involved in plant pathogenicity. Given the paucity of experimental data about CRISPR/Cas–mediated chromosomal targeting, we examined this process by developing a tightly controlled system. Chromosomal targeting was highly toxic via targeting of DNA and resulted in growth inhibition and cellular filamentation. The toxic phenotype was avoided by mutations in the cas operon, the CRISPR repeats, the protospacer target, and protospacer-adjacent motif (PAM) beside the target. Indeed, the natural self-targeting spacer was non-toxic due to a single nucleotide mutation adjacent to the target in the PAM sequence. Furthermore, we show that chromosomal targeting can result in large-scale genomic alterations, including the remodelling or deletion of entire pre-existing pathogenicity islands. These features can be engineered for the targeted deletion of large regions of bacterial chromosomes. In conclusion, in DNA–targeting CRISPR/Cas systems, chromosomal interference is deleterious by causing DNA damage and providing a strong selective pressure for genome alterations, which may have consequences for bacterial evolution and pathogenicity. PMID:23637624

  10. CpG island methylator phenotype identifies high risk patients among microsatellite stable BRAF mutated colorectal cancers.

    Science.gov (United States)

    Vedeld, Hege Marie; Merok, Marianne; Jeanmougin, Marine; Danielsen, Stine A; Honne, Hilde; Presthus, Gro Kummeneje; Svindland, Aud; Sjo, Ole H; Hektoen, Merete; Eknaes, Mette; Nesbakken, Arild; Lothe, Ragnhild A; Lind, Guro E

    2017-09-01

    The prognostic value of CpG island methylator phenotype (CIMP) in colorectal cancer remains unsettled. We aimed to assess the prognostic value of this phenotype analyzing a total of 1126 tumor samples obtained from two Norwegian consecutive colorectal cancer series. CIMP status was determined by analyzing the 5-markers CAGNA1G, IGF2, NEUROG1, RUNX3 and SOCS1 by quantitative methylation specific PCR (qMSP). The effect of CIMP on time to recurrence (TTR) and overall survival (OS) were determined by uni- and multivariate analyses. Subgroup analyses were conducted according to MSI and BRAF mutation status, disease stage, and also age at time of diagnosis (CIMP positive tumors demonstrated significantly shorter TTR and worse OS compared to those with CIMP negative tumors (multivariate hazard ratio [95% CI] 1.86 [1.31-2.63] and 1.89 [1.34-2.65], respectively). In stratified analyses, CIMP tumors showed significantly worse outcome among patients with microsatellite stable (MSS, P CIMP is significantly associated with inferior outcome for colorectal cancer patients, and can stratify the poor prognostic patients with MSS BRAF mutated tumors. © 2017 The Authors International Journal of Cancer published by John Wiley & Sons Ltd on behalf of UICC.

  11. Taiwan Y-chromosomal DNA variation and its relationship with Island Southeast Asia

    Science.gov (United States)

    2014-01-01

    Background Much of the data resolution of the haploid non-recombining Y chromosome (NRY) haplogroup O in East Asia are still rudimentary and could be an explanatory factor for current debates on the settlement history of Island Southeast Asia (ISEA). Here, 81 slowly evolving markers (mostly SNPs) and 17 Y-chromosomal short tandem repeats were used to achieve higher level molecular resolution. Our aim is to investigate if the distribution of NRY DNA variation in Taiwan and ISEA is consistent with a single pre-Neolithic expansion scenario from Southeast China to all ISEA, or if it better fits an expansion model from Taiwan (the OOT model), or whether a more complex history of settlement and dispersals throughout ISEA should be envisioned. Results We examined DNA samples from 1658 individuals from Vietnam, Thailand, Fujian, Taiwan (Han, plain tribes and 14 indigenous groups), the Philippines and Indonesia. While haplogroups O1a*-M119, O1a1*-P203, O1a2-M50 and O3a2-P201 follow a decreasing cline from Taiwan towards Western Indonesia, O2a1-M95/M88, O3a*-M324, O3a1c-IMS-JST002611 and O3a2c1a-M133 decline northward from Western Indonesia towards Taiwan. Compared to the Taiwan plain tribe minority groups the Taiwanese Austronesian speaking groups show little genetic paternal contribution from Han. They are also characterized by low Y-chromosome diversity, thus testifying for fast drift in these populations. However, in contrast to data provided from other regions of the genome, Y-chromosome gene diversity in Taiwan mountain tribes significantly increases from North to South. Conclusion The geographic distribution and the diversity accumulated in the O1a*-M119, O1a1*-P203, O1a2-M50 and O3a2-P201 haplogroups on one hand, and in the O2a1-M95/M88, O3a*-M324, O3a1c-IMS-JST002611 and O3a2c1a-M133 haplogroups on the other, support a pincer model of dispersals and gene flow from the mainland to the islands which likely started during the late upper Paleolithic, 18,000 to 15

  12. B vitamins, methionine and alcohol intake and risk of colon cancer in relation to BRAF mutation and CpG island methylator phenotype (CIMP.

    Directory of Open Access Journals (Sweden)

    Eva S Schernhammer

    Full Text Available One-carbon metabolism appears to play an important role in DNA methylation reaction. Evidence suggests that a low intake of B vitamins or high alcohol consumption increases colorectal cancer risk. How one-carbon nutrients affect the CpG island methylator phenotype (CIMP or BRAF mutation status in colon cancer remains uncertain.Utilizing incident colon cancers in a large prospective cohort of women (the Nurses' Health Study, we determined BRAF status (N = 386 and CIMP status (N = 375 by 8 CIMP-specific markers [CACNA1G, CDKN2A (p16, CRABP1, IGF2, MLH1, NEUROG1, RUNX3, and SOCS1], and 8 other CpG islands (CHFR, HIC1, IGFBP3, MGMT, MINT-1, MINT-31, p14, and WRN. We examined the relationship between intake of one-carbon nutrients and alcohol and colon cancer risk, by BRAF mutation or CIMP status.Higher folate intake was associated with a trend towards low risk of CIMP-low/0 tumors [total folate intake ≥400 µg/day vs. <200 µg/day; the multivariate relative risk = 0.73; 95% CI = 0.53-1.02], whereas total folate intake had no influence on CIMP-high tumor risks (P(heterogeneity = 0.73. Neither vitamin B(6, methionine or alcohol intake appeared to differentially influence risks for CIMP-high and CIMP-low/0 tumors. Using the 16-marker CIMP panel did not substantially alter our results. B vitamins, methionine or alcohol intake did not affect colon cancer risk differentially by BRAF status.This molecular pathological epidemiology study suggests that low level intake of folate may be associated with an increased risk of CIMP-low/0 colon tumors, but not that of CIMP-high tumors. However, the difference between CIMP-high and CIMP-low/0 cancer risks was not statistically significant, and additional studies are necessary to confirm these observations.

  13. Dynamic Modelling of a CPG-Controlled Amphibious Biomimetic Swimming Robot

    Directory of Open Access Journals (Sweden)

    Rui Ding

    2013-04-01

    Full Text Available This paper focuses on the modelling and control problems of a self-propelled, multimodal amphibious robot. Inspired by the undulatory body motions of fish and dolphins, the amphibious robot propels itself underwater by oscillations of several modular fish-like propelling units coupled with a pair of pectoral fins capable of non-continuous 360 degree rotation. In order to mimic fish-like undulating propulsion, a control architecture based on Central Pattern Generator (CPG is applied to the amphibious robot for robust swimming gaits, including forward and backward swimming and turning, etc. With the simplification of the robot as a multi-link serial mechanism, a Lagrangian function is employed to establish the hydrodynamic model for steady swimming. The CPG motion control law is then imported into the Lagrangian-based dynamic model, where an associated system of kinematics and dynamics is formed to solve real-time movements and, further, to guide the exploration of the CPG parameters and steady locomotion gaits. Finally, comparative results between the simulations and experiments are provided to show the effectiveness of the built control models.

  14. CpG Methylation Analysis—Current Status of Clinical Assays and Potential Applications in Molecular Diagnostics

    Science.gov (United States)

    Sepulveda, Antonia R.; Jones, Dan; Ogino, Shuji; Samowitz, Wade; Gulley, Margaret L.; Edwards, Robin; Levenson, Victor; Pratt, Victoria M.; Yang, Bin; Nafa, Khedoudja; Yan, Liying; Vitazka, Patrick

    2009-01-01

    Methylation of CpG islands in gene promoter regions is a major molecular mechanism of gene silencing and underlies both cancer development and progression. In molecular oncology, testing for the CpG methylation of tissue DNA has emerged as a clinically useful tool for tumor detection, outcome prediction, and treatment selection, as well as for assessing the efficacy of treatment with the use of demethylating agents and monitoring for tumor recurrence. In addition, because CpG methylation occurs early in pre-neoplastic tissues, methylation tests may be useful as markers of cancer risk in patients with either infectious or inflammatory conditions. The Methylation Working Group of the Clinical Practice Committee of the Association of Molecular Pathology has reviewed the current state of clinical testing in this area. We report here our summary of both the advantages and disadvantages of various methods, as well as the needs for standardization and reporting. We then conclude by summarizing the most promising areas for future clinical testing in cancer molecular diagnostics. PMID:19541921

  15. Are clinicopathological features of colorectal cancers with methylation in half of CpG island methylator phenotype panel markers different from those of CpG island methylator phenotype-high colorectal cancers?

    Science.gov (United States)

    Bae, Jeong Mo; Rhee, Ye-Young; Kim, Kyung Ju; Wen, Xianyu; Song, Young Seok; Cho, Nam-Yun; Kim, Jung Ho; Kang, Gyeong Hoon

    2016-01-01

    CpG island methylator phenotype (CIMP)-high (CIMP-H) colorectal cancer (CRC) is defined when a tumor shows methylation at greater than or equal to 60% of CIMP panel markers. Although CRCs with methylation at 50% of panel markers are classified as CIMP-low/CIMP-0 tumors, little is known regarding the clinicopathological and molecular features of CRCs with methylation at 4/8 panel markers (4/8 methylated markers) and whether they are akin to CIMP-H or CIMP-low/CIMP-0 CRCs in terms of their clinicopathological or molecular features. A total of 1164 cases of surgically resected CRC were analyzed for their methylation status in 8 CIMP panel markers, and the frequencies of various clinicopathological and molecular features were compared between CRCs with 0/8, 1/8 to 3/8, 4/8, and 5/8 to 8/8 methylated markers. CRCs with 4/8 methylated markers were closer to CRCs with 5/8 to 8/8 methylated markers in terms of sex distribution, mucin production, serration, nodal metastasis, CK7 expression, CK20 loss, and CDX2 loss frequencies and overall survival rate. CRCs with methylation at 4/8 markers were closer to CRCs with 1/8 to 3/8 methylated markers in terms of less frequent right colon location and poor differentiation. CRCs with 4/8 methylated markers showed the shortest overall survival time compared with CRCs with 0/8, 1/8 to 3/8, 4/8, or 5/8 to 8/8 methylated markers. In terms of clinicopathological and molecular features, CRCs with 4/8 methylated markers appeared to be closer to CIMP-H than to CIMP-low/CIMP-0 and would thus be better classified as CIMP-H if the CRCs require classification into either CIMP-H or CIMP-low/CIMP-0. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Prognostic value of CpG island methylator phenotype among hepatocellular carcinoma patients: A systematic review and meta-analysis.

    Science.gov (United States)

    Wang, Qian; Wang, Gang; Liu, Chaoxu; He, Xianli

    2018-04-24

    CpG island methylator phenotype (CIMP), characterized by multiple genes are concurrently methylated, has been reported to be associated with the prognosis of colorectal cancer. However, current studies have not explored the relationship between CIMP status with hepatocellular carcinoma (HCC) clinicopathological features. To assess these associations, we performed a comprehensive search of PubMed, EMBASE, and the Web of Science to identify all eligible studies. Publication bias was tested using Begg's and Egger's test. Seven studies that involved 568 HCC patients (379 CIMP+ and 189 CIMP-) were eligible for inclusion in our study. CIMP+ in HCC was significantly associated with distant metastasis (OR = 4.28, 95% CI = 2.57-7.10, P 300 ng/ml) than those with CIMP- (OR = 2.63, 95% CI = 1.79,3.89, P CIMP+ was associated with an unfavorable overall survival (OS) (HR = 3.02, 95% CI = 1.60-5.70, P CIMP is independently associated with significantly worse prognosis in HCC patients. Examination of CIMP status may be useful for identifying patients who are at higher risk for disease progression. Copyright © 2018 IJS Publishing Group Ltd. Published by Elsevier Ltd. All rights reserved.

  17. The role of the CpG island methylator phenotype on survival outcome in colon cancer.

    Science.gov (United States)

    Kang, Ki Joo; Min, Byung Hoon; Ryu, Kyung Ju; Kim, Kyoung Mee; Chang, Dong Kyung; Kim, Jae J; Rhee, Jong Chul; Kim, Young Ho

    2015-03-01

    CpG island methylator phenotype (CIMP)- high colorectal cancers (CRCs) have distinct clinicopathologi-cal features from their CIMP-low/negative CRC counterparts. However, controversy exists regarding the prognosis of CRC according to the CIMP status. Therefore, this study examined the prognosis of Korean patients with colon cancer according to the CIMP status. Among a previous cohort pop-ulation with CRC, a total of 154 patients with colon cancer who had available tissue for DNA extraction were included in the study. CIMP-high was defined as ≥3/5 methylated mark-ers using the five-marker panel (CACNA1G, IGF2, NEUROG1, RUNX3, and SOCS1). CIMP-high and CIMP-low/neg-ative cancers were observed in 27 patients (17.5%) and 127 patients (82.5%), respectively. Multivariate analysis adjust-ing for age, gender, tumor location, tumor stage and CIMP and microsatellite instability (MSI) statuses indicated that CIMP-high colon cancers were associated with a significant increase in colon cancer-specific mortality (hazard ratio [HR], 3.23; 95% confidence interval [CI], 1.20 to 8.69; p=0.02). In microsatellite stable cancers, CIMP-high cancer had a poor survival outcome compared to CIMP-low/negative cancer (HR, 2.91; 95% CI, 1.02 to 8.27; p=0.04). Re-gardless of the MSI status, CIMP-high cancers had poor sur-vival outcomes in Korean patients. (Gut Liver, 2015;9202-207).

  18. Comprehensive analysis of CpG island methylator phenotype (CIMP)-high, -low, and -negative colorectal cancers based on protein marker expression and molecular features.

    Science.gov (United States)

    Zlobec, Inti; Bihl, Michel; Foerster, Anja; Rufle, Alex; Lugli, Alessandro

    2011-11-01

    CpG island methylator phenotype (CIMP) is being investigated for its role in the molecular and prognostic classification of colorectal cancer patients but is also emerging as a factor with the potential to influence clinical decision-making. We report a comprehensive analysis of clinico-pathological and molecular features (KRAS, BRAF and microsatellite instability, MSI) as well as of selected tumour- and host-related protein markers characterizing CIMP-high (CIMP-H), -low, and -negative colorectal cancers. Immunohistochemical analysis for 48 protein markers and molecular analysis of CIMP (CIMP-H: ≥ 4/5 methylated genes), MSI (MSI-H: ≥ 2 instable genes), KRAS, and BRAF were performed on 337 colorectal cancers. Simple and multiple regression analysis and receiver operating characteristic (ROC) curve analysis were performed. CIMP-H was found in 24 cases (7.1%) and linked (p CIMP-low or -negative cases. Of the 48 protein markers, decreased levels of RKIP (p = 0.0056), EphB2 (p = 0.0045), CK20 (p = 0.002), and Cdx2 (p CIMP-H, independently of MSI status. In addition to the expected clinico-pathological and molecular associations, CIMP-H colorectal cancers are characterized by a loss of protein markers associated with differentiation, and metastasis suppression, and have increased CD8+ T-lymphocytes regardless of MSI status. In particular, Cdx2 loss seems to strongly predict CIMP-H in both microsatellite-stable (MSS) and MSI-H colorectal cancers. Cdx2 is proposed as a surrogate marker for CIMP-H. Copyright © 2011 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  19. Exploring the Link between Nucleosome Occupancy and DNA Methylation

    Directory of Open Access Journals (Sweden)

    Cecilia Lövkvist

    2018-01-01

    Full Text Available Near promoters, both nucleosomes and CpG sites form characteristic spatial patterns. Previously, nucleosome depleted regions were observed upstream of transcription start sites and nucleosome occupancy was reported to correlate both with CpG density and the level of CpG methylation. Several studies imply a causal link where CpG methylation might induce nucleosome formation, whereas others argue the opposite, i.e., that nucleosome occupancy might influence CpG methylation. Correlations are indeed evident between nucleosomes, CpG density and CpG methylation—at least near promoter sites. It is however less established whether there is an immediate causal relation between nucleosome occupancy and the presence of CpG sites—or if nucleosome occupancy could be influenced by other factors. In this work, we test for such causality in human genomes by analyzing the three quantities both near and away from promoter sites. For data from the human genome we compare promoter regions with given CpG densities with genomic regions without promoters but of similar CpG densities. We find the observed correlation between nucleosome occupancy and CpG density, respectively CpG methylation, to be specific to promoter regions. In other regions along the genome nucleosome occupancy is statistically independent of the positioning of CpGs or their methylation levels. Anti-correlation between CpG density and methylation level is however similarly strong in both regions. On promoters, nucleosome occupancy is more strongly affected by the level of gene expression than CpG density or CpG methylation—calling into question any direct causal relation between nucleosome occupancy and CpG organization. Rather, our results suggest that for organisms with cytosine methylation nucleosome occupancy might be primarily linked to gene expression, with no strong impact on methylation.

  20. X-linked gene expression and X-chromosome inactivation: marsupials, mouse, and man compared.

    Science.gov (United States)

    VandeBerg, J L; Robinson, E S; Samollow, P B; Johnston, P G

    1987-01-01

    The existence of paternal X inactivation in Australian and American marsupial species suggests that this feature of X-chromosome dosage compensation is not a recent adaptation, but probably predates the evolutionary separation of the Australian and American marsupial lineages. Although it is theoretically possible that the marsupial system is one of random X inactivation with p greater than 0.99 and q less than 0.01 and dependent on parental source, no instance of random X inactivation (p = q or p not equal to q) has ever been verified in any tissue or cell type of any marsupial species. Therefore, we conclude that the most fundamental difference in X inactivation of marsupials and eutherians is whether the inactive X is the paternal one or is determined at random (with p = q in most but not all cases). The only other unequivocal difference between eutherians and marsupials is that both X chromosomes are active in mice and human oocytes, but not in kangaroo oocytes. Apparently, the inactive X is reactivated at a later meiotic stage or during early embryogenesis in kangaroos. X-chromosome inactivation takes place early in embryogenesis of eutherians and marsupials. Extraembryonic membranes of mice exhibit paternal X inactivation, whereas those of humans seem to exhibit random X inactivation with p greater than q (i.e., preferential paternal X inactivation). In general, extraembryonic membranes of marsupial exhibit paternal X inactivation, but the Gpd locus is active on both X chromosomes in at least some cells of kangaroo yolk sac. It is difficult to draw any general conclusion because of major differences in embryogeny of mice, humans, and marsupials, and uncertainties in interpreting the data from humans. Other differences between marsupials and eutherians in patterns of X-linked gene expression and X-chromosome inactivation seem to be quantitative rather than qualitative. Partial expression of some genes on the inactive X is characteristic of marsupials, with

  1. Mitotic chromosome structure

    International Nuclear Information System (INIS)

    Heermann, Dieter W.

    2012-01-01

    Mounting evidence is compiling linking the physical organizational structure of chromosomes and the nuclear structure to biological function. At the base of the physical organizational structure of both is the concept of loop formation. This implies that physical proximity within chromosomes is provided for otherwise distal genomic regions and thus hierarchically organizing the chromosomes. Together with entropy many experimental observations can be explained with these two concepts. Among the observations that can be explained are the measured physical extent of the chromosomes, their shape, mechanical behavior, the segregation into territories (chromosomal and territories within chromosomes), the results from chromosome conformation capture experiments, as well as linking gene expression to structural organization.

  2. Mitotic chromosome structure

    Energy Technology Data Exchange (ETDEWEB)

    Heermann, Dieter W., E-mail: heermann@tphys.uni-heidelberg.de

    2012-07-15

    Mounting evidence is compiling linking the physical organizational structure of chromosomes and the nuclear structure to biological function. At the base of the physical organizational structure of both is the concept of loop formation. This implies that physical proximity within chromosomes is provided for otherwise distal genomic regions and thus hierarchically organizing the chromosomes. Together with entropy many experimental observations can be explained with these two concepts. Among the observations that can be explained are the measured physical extent of the chromosomes, their shape, mechanical behavior, the segregation into territories (chromosomal and territories within chromosomes), the results from chromosome conformation capture experiments, as well as linking gene expression to structural organization.

  3. Search for common haplotypes on chromosome 22q in patients with schizophrenia or bipolar disorder from the Faroe Islands

    DEFF Research Database (Denmark)

    Jorgensen, T H; Børglum, A D; Mors, O

    2002-01-01

    Chromosome 22q may harbor risk genes for schizophrenia and bipolar affective disorder. This is evidenced through genetic mapping studies, investigations of cytogenetic abnormalities, and direct examination of candidate genes. Patients with schizophrenia and bipolar affective disorder from the Faroe...... Islands were typed for 35 evenly distributed polymorphic markers on 22q in a search for shared risk genes in the two disorders. No single marker was strongly associated with either disease, but five two-marker segments that cluster within two regions on the chromosome have haplotypes occurring...

  4. Different definitions of CpG island methylator phenotype and outcomes of colorectal cancer: a systematic review.

    Science.gov (United States)

    Jia, Min; Gao, Xu; Zhang, Yan; Hoffmeister, Michael; Brenner, Hermann

    2016-01-01

    Contradictory results were reported for the prognostic role of CpG island methylator phenotype (CIMP) among colorectal cancer (CRC) patients. Differences in the definitions of CIMP were the most common explanation for these discrepancies. The aim of this systematic review was to give an overview of the published studies on CRC prognosis according to the different definitions of CIMP. A systematic literature search was performed in MEDLINE and ISI Web of Science for articles published until 3 April 2015. Data extraction included information about the study population, the definition of CIMP, and investigated outcomes. Thirty-six studies were included in this systematic review. Among them, 30 studies reported the association of CIMP and CRC prognosis and 11 studies reported the association of CIMP with survival after CRC therapy. Overall, 16 different definitions of CIMP were identified. The majority of studies reported a poorer prognosis for patients with CIMP-positive (CIMP+)/CIMP-high (CIMP-H) CRC than with CIMP-negative (CIMP-)/CIMP-low (CIMP-L) CRC. Inconsistent results or varying effect strengths could not be explained by different CIMP definitions used. No consistent variation in response to specific therapies according to CIMP status was found. Comparative analyses of different CIMP panels in the same large study populations are needed to further clarify the role of CIMP definitions and to find out how methylation information can best be used to predict CRC prognosis and response to specific CRC therapies.

  5. The CpG island methylator phenotype is concordant between primary colorectal carcinoma and matched distant metastases.

    Science.gov (United States)

    Cohen, Stacey A; Yu, Ming; Baker, Kelsey; Redman, Mary; Wu, Chen; Heinzerling, Tai J; Wirtz, Ralph M; Charalambous, Elpida; Pentheroudakis, George; Kotoula, Vassiliki; Kalogeras, Konstantine T; Fountzilas, George; Grady, William M

    2017-01-01

    The CpG island methylator phenotype (CIMP) in stage III colon cancer (CRC) has been associated with improved survival after treatment with adjuvant irinotecan-based chemotherapy. In this analysis, we determine whether CIMP status in the primary CRC is concordant with the CIMP status of matched metastases in order to determine if assessment of CIMP status in the primary tumor can be used to predict CIMP status of metastatic disease, which is relevant for patient management as well as for understanding the biology of CIMP CRCs. We assessed the CIMP status of 70 pairs of primary CRC and matched metastases using a CRC-specific panel of five markers ( CACNA1G , IGF2 , NEUROG1 , RUNX3 , and SOCS1 ) where CIMP positive was defined as 3/5 positive markers at a percent methylated reference threshold of ≥10%. Concordance was compared using the Fisher's exact test and P  CIMP status in the primary tumor and matched metastasis; five (7.0%) of the pairs were concordantly CIMP positive. Only one pair (1.4%) had divergent CIMP status, demonstrating CIMP positivity (4/5 markers positive) in the primary tumor, while the matched metastasis was CIMP negative (0 markers positive). CIMP status is generally concordant between primary CRCs and matched metastases. Thus, CIMP status in the primary tumor is maintained in matched metastases and can be used to inform CIMP-based therapy options for the metastases.

  6. Humanoids Learning to Walk: A Natural CPG-Actor-Critic Architecture.

    Science.gov (United States)

    Li, Cai; Lowe, Robert; Ziemke, Tom

    2013-01-01

    The identification of learning mechanisms for locomotion has been the subject of much research for some time but many challenges remain. Dynamic systems theory (DST) offers a novel approach to humanoid learning through environmental interaction. Reinforcement learning (RL) has offered a promising method to adaptively link the dynamic system to the environment it interacts with via a reward-based value system. In this paper, we propose a model that integrates the above perspectives and applies it to the case of a humanoid (NAO) robot learning to walk the ability of which emerges from its value-based interaction with the environment. In the model, a simplified central pattern generator (CPG) architecture inspired by neuroscientific research and DST is integrated with an actor-critic approach to RL (cpg-actor-critic). In the cpg-actor-critic architecture, least-square-temporal-difference based learning converges to the optimal solution quickly by using natural gradient learning and balancing exploration and exploitation. Futhermore, rather than using a traditional (designer-specified) reward it uses a dynamic value function as a stability indicator that adapts to the environment. The results obtained are analyzed using a novel DST-based embodied cognition approach. Learning to walk, from this perspective, is a process of integrating levels of sensorimotor activity and value.

  7. Humanoids Learning to Walk: a Natural CPG-Actor-Critic Architecture

    Directory of Open Access Journals (Sweden)

    CAI eLI

    2013-04-01

    Full Text Available The identification of learning mechanisms for locomotion has been the subject of much researchfor some time but many challenges remain. Dynamic systems theory (DST offers a novel approach to humanoid learning through environmental interaction. Reinforcement learning (RL has offered a promising method to adaptively link the dynamic system to the environment it interacts with via a reward-based value system.In this paper, we propose a model that integrates the above perspectives and applies it to the case of a humanoid (NAO robot learning to walk the ability of which emerges from its value-based interaction with the environment. In the model,a simplified central pattern generator (CPG architecture inspired by neuroscientific research and DST is integrated with an actor-critic approach to RL (cpg-actor-critic. In the cpg-actor-critic architecture, least-square-temporal-difference (LSTD based learning converges to the optimal solution quickly by using natural gradient and balancing exploration and exploitation. Futhermore, rather than using a traditional (designer-specified reward it uses a dynamic value function as a stability indicator (SI that adapts to the environment.The results obtained are analyzed and explained by using a novel DST embodied cognition approach. Learning to walk, from this perspective, is a process of integrating sensorimotor levels and value.

  8. Non-CpG island promoter hypomethylation and miR-149 regulate the expression of SRPX2 in colorectal cancer

    DEFF Research Database (Denmark)

    Oster, Bodil; Linnet, Lene; Christensen, Lise Lotte

    2012-01-01

    Gene silencing by DNA hypermethylation of CpG islands is a well-characterized phenomenon in cancer. The effect of hypomethylation in particular of non-CpG island genes is much less well described. By genome-wide screening, we identified 105 genes in microsatellite stable (MSS) colorectal adenocar......Gene silencing by DNA hypermethylation of CpG islands is a well-characterized phenomenon in cancer. The effect of hypomethylation in particular of non-CpG island genes is much less well described. By genome-wide screening, we identified 105 genes in microsatellite stable (MSS) colorectal...... of non-CpG island-associated promoters deregulate gene expression nearly as frequent as do CpG-island hypermethylation. The hypomethylation of SRPX2 is focal and not part of a large block. Furthermore, it often translates to an increased expression level, which may be modulated by miR-149....

  9. Significant genetic differentiation within the population of the Island of Corsica (France) revealed by y-chromosome analysis.

    Science.gov (United States)

    Ghiani, Maria Elena; Varesi, Laurent; Mitchell, Robert John; Vona, Giuseppe

    2009-12-01

    Using 10 Y-chromosome short tandem repeat allelic and haplotypic frequencies, we examined genetic variation within the population of Corsica and its relationship with other Mediterranean populations. The most significant finding is the high level of genetic differentiation within Corsica, with strong evidence of an effective barrier to male-mediated gene flow between the south and the rest of the island. This internal differentiation most probably results from low exogamy among small isolated populations and also from the orography of the island, with a central mountain chain running the length of the island restricting human movement. This physical barrier is reflected not only in present-day intraisland linguistic and genetic differences but also in the relatedness of Corsican regions to other Mediterranean groups. Northwest and Central Corsica are much closer to West Mediterranean populations, whereas South Corsica is closer to Central-North Sardinia and East Mediterranean populations.

  10. Immortalization of T-Cells Is Accompanied by Gradual Changes in CpG Methylation Resulting in a Profile Resembling a Subset of T-Cell Leukemias

    Directory of Open Access Journals (Sweden)

    Sofie Degerman

    2014-07-01

    Full Text Available We have previously described gene expression changes during spontaneous immortalization of T-cells, thereby identifying cellular processes important for cell growth crisis escape and unlimited proliferation. Here, we analyze the same model to investigate the role of genome-wide methylation in the immortalization process at different time points pre-crisis and post-crisis using high-resolution arrays. We show that over time in culture there is an overall accumulation of methylation alterations, with preferential increased methylation close to transcription start sites (TSSs, islands, and shore regions. Methylation and gene expression alterations did not correlate for the majority of genes, but for the fraction that correlated, gain of methylation close to TSS was associated with decreased gene expression. Interestingly, the pattern of CpG site methylation observed in immortal T-cell cultures was similar to clinical T-cell acute lymphoblastic leukemia (T-ALL samples classified as CpG island methylator phenotype positive. These sites were highly overrepresented by polycomb target genes and involved in developmental, cell adhesion, and cell signaling processes. The presence of non-random methylation events in in vitro immortalized T-cell cultures and diagnostic T-ALL samples indicates altered methylation of CpG sites with a possible role in malignant hematopoiesis.

  11. Molecular correlates with MGMT promoter methylation and silencing support CpG island methylator phenotype-low (CIMP-low) in colorectal cancer.

    Science.gov (United States)

    Ogino, Shuji; Kawasaki, Takako; Kirkner, Gregory J; Suemoto, Yuko; Meyerhardt, Jeffrey A; Fuchs, Charles S

    2007-11-01

    The CpG island methylator phenotype (CIMP or CIMP-high) with widespread promoter methylation is a distinct epigenetic phenotype in colorectal cancer. In contrast, a phenotype with less widespread promoter methylation (CIMP-low) has not been well characterised. O-6-methylguanine-DNA methyltransferase (MGMT) promoter methylation and silencing have been associated with G>A mutations and microsatellite instability-low (MSI-low). To examine molecular correlates with MGMT methylation/silencing in colorectal cancer. Utilising MethyLight technology, we quantified DNA methylation in MGMT and eight other markers (a CIMP-diagnostic panel; CACNA1G, CDKN2A (p16), CRABP1, IGF2, MLH1, NEUROG1, RUNX3 and SOCS1) in 920 population-based colorectal cancers. Tumours with both MGMT methylation and loss were correlated positively with MSI-low (p = 0.02), CIMP-high (>or=6/8 methylated CIMP markers, p = 0.005), CIMP-low (1/8-5/8 methylated CIMP markers, p = 0.002, compared to CIMP-0 with 0/8 methylated markers), KRAS G>A mutation (p = 0.02), and inversely with 18q loss of heterozygosity (p = 0.0002). Tumours were classified into nine MSI/CIMP subtypes. Among the CIMP-low group, tumours with both MGMT methylation and loss were far more frequent in MSI-low tumours (67%, 12/18) than MSI-high tumours (5.6%, 1/18; p = 0.0003) and microsatellite stable (MSS) tumours (33%, 52/160; p = 0.008). However, no such relationship was observed among the CIMP-high or CIMP-0 groups. The relationship between MGMT methylation/silencing and MSI-low is limited to only CIMP-low tumours, supporting the suggestion that CIMP-low in colorectal cancer may be a different molecular phenotype from CIMP-high and CIMP-0. Our data support a molecular difference between MSI-low and MSS in colorectal cancer, and a possible link between CIMP-low, MSI-low, MGMT methylation/loss and KRAS mutation.

  12. R-loops and initiation of DNA replication in human cells: a missing link?

    Directory of Open Access Journals (Sweden)

    Rodrigo eLombraña

    2015-04-01

    Full Text Available The unanticipated widespread occurrence of stable hybrid DNA/RNA structures (R-loops in human cells and the increasing evidence of their involvement in several human malignancies have invigorated the research on R-loop biology in recent years. Here we propose that physiological R-loop formation at CpG island promoters can contribute to DNA replication origin specification at these regions, the most efficient replication initiation sites in mammalian cells. Quite likely, this occurs by the strand-displacement reaction activating the formation of G-quadruplex structures that target the Origin Recognition Complex (ORC in the single-stranded conformation. In agreement with this, we found that R-loops co-localize with the ORC within the same CpG island region in a significant fraction of these efficient replication origins, precisely at the position displaying the highest density of G4 motifs. This scenario builds on the connection between transcription and replication in human cells and suggests that R-loop dysregulation at CpG island promoter-origins might contribute to the phenotype of DNA replication abnormalities and loss of genome integrity detected in cancer cells.

  13. Histone H2AFX Links Meiotic Chromosome Asynapsis to Prophase I Oocyte Loss in Mammals.

    Directory of Open Access Journals (Sweden)

    Jeffrey M Cloutier

    2015-10-01

    Full Text Available Chromosome abnormalities are common in the human population, causing germ cell loss at meiotic prophase I and infertility. The mechanisms driving this loss are unknown, but persistent meiotic DNA damage and asynapsis may be triggers. Here we investigate the contribution of these lesions to oocyte elimination in mice with chromosome abnormalities, e.g. Turner syndrome (XO and translocations. We show that asynapsed chromosomes trigger oocyte elimination at diplonema, which is linked to the presence of phosphorylated H2AFX (γH2AFX. We find that DNA double-strand break (DSB foci disappear on asynapsed chromosomes during pachynema, excluding persistent DNA damage as a likely cause, and demonstrating the existence in mammalian oocytes of a repair pathway for asynapsis-associated DNA DSBs. Importantly, deletion or point mutation of H2afx restores oocyte numbers in XO females to wild type (XX levels. Unexpectedly, we find that asynapsed supernumerary chromosomes do not elicit prophase I loss, despite being enriched for γH2AFX and other checkpoint proteins. These results suggest that oocyte loss cannot be explained simply by asynapsis checkpoint models, but is related to the gene content of asynapsed chromosomes. A similar mechanistic basis for oocyte loss may operate in humans with chromosome abnormalities.

  14. Histone H2AFX Links Meiotic Chromosome Asynapsis to Prophase I Oocyte Loss in Mammals

    Science.gov (United States)

    Cloutier, Jeffrey M.; Mahadevaiah, Shantha K.; ElInati, Elias; Nussenzweig, André; Tóth, Attila; Turner, James M. A.

    2015-01-01

    Chromosome abnormalities are common in the human population, causing germ cell loss at meiotic prophase I and infertility. The mechanisms driving this loss are unknown, but persistent meiotic DNA damage and asynapsis may be triggers. Here we investigate the contribution of these lesions to oocyte elimination in mice with chromosome abnormalities, e.g. Turner syndrome (XO) and translocations. We show that asynapsed chromosomes trigger oocyte elimination at diplonema, which is linked to the presence of phosphorylated H2AFX (γH2AFX). We find that DNA double-strand break (DSB) foci disappear on asynapsed chromosomes during pachynema, excluding persistent DNA damage as a likely cause, and demonstrating the existence in mammalian oocytes of a repair pathway for asynapsis-associated DNA DSBs. Importantly, deletion or point mutation of H2afx restores oocyte numbers in XO females to wild type (XX) levels. Unexpectedly, we find that asynapsed supernumerary chromosomes do not elicit prophase I loss, despite being enriched for γH2AFX and other checkpoint proteins. These results suggest that oocyte loss cannot be explained simply by asynapsis checkpoint models, but is related to the gene content of asynapsed chromosomes. A similar mechanistic basis for oocyte loss may operate in humans with chromosome abnormalities. PMID:26509888

  15. Linking Y-chromosomal short tandem repeat loci to human male impulsive aggression.

    Science.gov (United States)

    Yang, Chun; Ba, Huajie; Cao, Yin; Dong, Guoying; Zhang, Shuyou; Gao, Zhiqin; Zhao, Hanqing; Zhou, Xianju

    2017-11-01

    Men are more susceptible to impulsive behavior than women. Epidemiological studies revealed that the impulsive aggressive behavior is affected by genetic factors, and the male-specific Y chromosome plays an important role in this behavior. In this study, we investigated the association between the impulsive aggressive behavior and Y-chromosomal short tandem repeats (Y-STRs) loci. The collected biologic samples from 271 offenders with impulsive aggressive behavior and 492 healthy individuals without impulsive aggressive behavior were amplified by PowerPlex R Y23 PCR System and the resultant products were separated by electrophoresis and further genotyped. Then, comparisons in allele and haplotype frequencies of the selected 22 Y-STRs were made in the two groups. Our results showed that there were significant differences in allele frequencies at DYS448 and DYS456 between offenders and controls ( p  impulsive aggression. However, the DYS448-DYS456-22-15 is less related to impulsive aggression. Our results suggest a link between Y-chromosomal allele types and male impulsive aggression.

  16. Aberrant TET1 Methylation Closely Associated with CpG Island Methylator Phenotype in Colorectal Cancer.

    Science.gov (United States)

    Ichimura, Norihisa; Shinjo, Keiko; An, Byonggu; Shimizu, Yasuhiro; Yamao, Kenji; Ohka, Fumiharu; Katsushima, Keisuke; Hatanaka, Akira; Tojo, Masayuki; Yamamoto, Eiichiro; Suzuki, Hiromu; Ueda, Minoru; Kondo, Yutaka

    2015-08-01

    Inactivation of methylcytosine dioxygenase, ten-eleven translocation (TET) is known to be associated with aberrant DNA methylation in cancers. Tumors with a CpG island methylator phenotype (CIMP), a distinct subgroup with extensive DNA methylation, show characteristic features in the case of colorectal cancer. The relationship between TET inactivation and CIMP in colorectal cancers is not well understood. The expression level of TET family genes was compared between CIMP-positive (CIMP-P) and CIMP-negative (CIMP-N) colorectal cancers. Furthermore, DNA methylation profiling, including assessment of the TET1 gene, was assessed in colorectal cancers, as well as colon polyps. The TET1 was silenced by DNA methylation in a subset of colorectal cancers as well as cell lines, expression of which was reactivated by demethylating agent. TET1 methylation was more frequent in CIMP-P (23/55, 42%) than CIMP-N (2/113, 2%, P CIMP-P, 16/40, 40%; CIMP-N, 2/24, 8%; P = 0.002), suggesting that TET1 methylation is an early event in CIMP tumorigenesis. TET1 methylation was significantly associated with BRAF mutation but not with hMLH1 methylation in the CIMP-P colorectal cancers. Colorectal cancers with TET1 methylation have a significantly greater number of DNA methylated genes and less pathological metastasis compared to those without TET1 methylation (P = 0.007 and 0.045, respectively). Our data suggest that TET1 methylation may contribute to the establishment of a unique pathway in respect to CIMP-mediated tumorigenesis, which may be incidental to hMLH1 methylation. In addition, our findings provide evidence that TET1 methylation may be a good biomarker for the prediction of metastasis in colorectal cancer. ©2015 American Association for Cancer Research.

  17. CpG Oligodeoxynucleotides as a Future Vaccine for Allergic Diseases

    Directory of Open Access Journals (Sweden)

    Kunio Sano

    2005-01-01

    Full Text Available An astounding feature of the DNA sequences termed CpG motifs is the induction of immune and inflammatory responses in a senseless manner. CpG motifs exist abundantly in microbes and evoke innate immunity that constitutes the first line of defense against microbial infections in vertebrates. CpG motifs that essentially work in an antigen-nonspecific fashion, however, turn into novel immunomodulators that can manipulate acquired immunity in an antigen-specific manner if oligodeoxynucleotides containing CpG motifs (CpG ODNs are directly conjugated to the antigen. CpG ODNs with potent polyclonal Th1-inducing ability show promise for application in immunotherapy whereby neutralization of dominant allergy-prone Th2 cells is achieved by inducing allergen-specific Th1 cells. The underlying mechanisms include an unexpected enhancement of dendritic cell function as a linker between innate and acquired immunity. In the foreseeable future the mainstream therapeutic role of corticosteroids in anti-inflammatory therapy for allergic diseases could possibly be replaced by immunotherapy using CpG ODN-conjugated antigens.

  18. Immortalization of T-cells is accompanied by gradual changes in CpG methylation resulting in a profile resembling a subset of T-cell leukemias.

    Science.gov (United States)

    Degerman, Sofie; Landfors, Mattias; Siwicki, Jan Konrad; Revie, John; Borssén, Magnus; Evelönn, Emma; Forestier, Erik; Chrzanowska, Krystyna H; Rydén, Patrik; Keith, W Nicol; Roos, Göran

    2014-07-01

    We have previously described gene expression changes during spontaneous immortalization of T-cells, thereby identifying cellular processes important for cell growth crisis escape and unlimited proliferation. Here, we analyze the same model to investigate the role of genome-wide methylation in the immortalization process at different time points pre-crisis and post-crisis using high-resolution arrays. We show that over time in culture there is an overall accumulation of methylation alterations, with preferential increased methylation close to transcription start sites (TSSs), islands, and shore regions. Methylation and gene expression alterations did not correlate for the majority of genes, but for the fraction that correlated, gain of methylation close to TSS was associated with decreased gene expression. Interestingly, the pattern of CpG site methylation observed in immortal T-cell cultures was similar to clinical T-cell acute lymphoblastic leukemia (T-ALL) samples classified as CpG island methylator phenotype positive. These sites were highly overrepresented by polycomb target genes and involved in developmental, cell adhesion, and cell signaling processes. The presence of non-random methylation events in in vitro immortalized T-cell cultures and diagnostic T-ALL samples indicates altered methylation of CpG sites with a possible role in malignant hematopoiesis. Copyright © 2014 Neoplasia Press, Inc. Published by Elsevier Inc. All rights reserved.

  19. TIA: algorithms for development of identity-linked SNP islands for analysis by massively parallel DNA sequencing.

    Science.gov (United States)

    Farris, M Heath; Scott, Andrew R; Texter, Pamela A; Bartlett, Marta; Coleman, Patricia; Masters, David

    2018-04-11

    Single nucleotide polymorphisms (SNPs) located within the human genome have been shown to have utility as markers of identity in the differentiation of DNA from individual contributors. Massively parallel DNA sequencing (MPS) technologies and human genome SNP databases allow for the design of suites of identity-linked target regions, amenable to sequencing in a multiplexed and massively parallel manner. Therefore, tools are needed for leveraging the genotypic information found within SNP databases for the discovery of genomic targets that can be evaluated on MPS platforms. The SNP island target identification algorithm (TIA) was developed as a user-tunable system to leverage SNP information within databases. Using data within the 1000 Genomes Project SNP database, human genome regions were identified that contain globally ubiquitous identity-linked SNPs and that were responsive to targeted resequencing on MPS platforms. Algorithmic filters were used to exclude target regions that did not conform to user-tunable SNP island target characteristics. To validate the accuracy of TIA for discovering these identity-linked SNP islands within the human genome, SNP island target regions were amplified from 70 contributor genomic DNA samples using the polymerase chain reaction. Multiplexed amplicons were sequenced using the Illumina MiSeq platform, and the resulting sequences were analyzed for SNP variations. 166 putative identity-linked SNPs were targeted in the identified genomic regions. Of the 309 SNPs that provided discerning power across individual SNP profiles, 74 previously undefined SNPs were identified during evaluation of targets from individual genomes. Overall, DNA samples of 70 individuals were uniquely identified using a subset of the suite of identity-linked SNP islands. TIA offers a tunable genome search tool for the discovery of targeted genomic regions that are scalable in the population frequency and numbers of SNPs contained within the SNP island regions

  20. CpG promoter methylation of the ALKBH3 alkylation repair gene in breast cancer.

    Science.gov (United States)

    Stefansson, Olafur Andri; Hermanowicz, Stefan; van der Horst, Jasper; Hilmarsdottir, Holmfridur; Staszczak, Zuzanna; Jonasson, Jon Gunnlaugur; Tryggvadottir, Laufey; Gudjonsson, Thorkell; Sigurdsson, Stefan

    2017-07-05

    DNA repair of alkylation damage is defective in various cancers. This occurs through somatically acquired inactivation of the MGMT gene in various cancer types, including breast cancers. In addition to MGMT, the two E. coli AlkB homologs ALKBH2 and ALKBH3 have also been linked to direct reversal of alkylation damage. However, it is currently unknown whether ALKBH2 or ALKBH3 are found inactivated in cancer. Methylome datasets (GSE52865, GSE20713, GSE69914), available through Omnibus, were used to determine whether ALKBH2 or ALKBH3 are found inactivated by CpG promoter methylation. TCGA dataset enabled us to then assess the impact of CpG promoter methylation on mRNA expression for both ALKBH2 and ALKBH3. DNA methylation analysis for the ALKBH3 promoter region was carried out by pyrosequencing (PyroMark Q24) in 265 primary breast tumours and 30 proximal normal breast tissue samples along with 8 breast-derived cell lines. ALKBH3 mRNA and protein expression were analysed in cell lines using RT-PCR and Western blotting, respectively. DNA alkylation damage assay was carried out in cell lines based on immunofluorescence and confocal imaging. Data on clinical parameters and survival outcomes in patients were obtained and assessed in relation to ALKBH3 promoter methylation. The ALKBH3 gene, but not ALKBH2, undergoes CpG promoter methylation and transcriptional silencing in breast cancer. We developed a quantitative alkylation DNA damage assay based on immunofluorescence and confocal imaging revealing higher levels of alkylation damage in association with epigenetic inactivation of the ALKBH3 gene (P = 0.029). In our cohort of 265 primary breast cancer, we found 72 cases showing aberrantly high CpG promoter methylation over the ALKBH3 promoter (27%; 72 out of 265). We further show that increasingly higher degree of ALKBH3 promoter methylation is associated with reduced breast-cancer specific survival times in patients. In this analysis, ALKBH3 promoter methylation at >20

  1. [Familial febrile convulsions is supposed to link to human chromosome 19p13.3].

    Science.gov (United States)

    Qi, Y; Lü, J; Wu, X

    2001-01-10

    To localize the familial febrile convulsion (FC) genes on human chromosomes. For 63 FC pedigrees, tetranucleotide repeat markers D19S253 D19S395 and D19S591 on the short arm of chromosome 19, as well as dinucleotide repeat markers D8S84 and D8S85 on the long arm of chromosome 8 were genotyped. Transmission disequilibrium test (TDT) and Lod score calculation were carried out. The data were processed by PPAP software package. All the alleles in every locus of FC probands and normal controls were in Hardy-Weinburg balance. Transmission disequilibrium was found on D8S84, D19S395 and D19S591 in FC families. chi(2) values were 4.0, 5.124 and 7.364 separately. Each P value was < 0.05, and significantly meaningful. The two-point Lod scores between D8S84 and FC, D8S85 and FC, D19S253 and FC, D19S395 and FC, D19S591 and FC are 0.00002, 0.000017, 0.58, 1.53 and 1.42 respectively. The multi-point Lod score among markers on chromosome 8q and FC was 0.88, while Lod score among markers on chromosome 19p and FC reached 2.78. The results by both the non-parameter (TDT) and parameter (Lod score) methods were consistant on a whole. FC is linked with chromosome region 19p13.3, but not with chromosome 8q.

  2. CpG island methylator phenotype-low (CIMP-low) in colorectal cancer: possible associations with male sex and KRAS mutations.

    Science.gov (United States)

    Ogino, Shuji; Kawasaki, Takako; Kirkner, Gregory J; Loda, Massimo; Fuchs, Charles S

    2006-11-01

    The CpG island methylator phenotype (CIMP or CIMP-high) with extensive promoter methylation seems to be a distinct epigenotype of colorectal cancer. However, no study has comprehensively examined features of colorectal cancer with less extensive promoter methylation (designated as "CIMP-low"). Using real-time polymerase chain reaction (MethyLight), we quantified DNA methylation in five CIMP-specific gene promoters [CACNA1G, CDKN2A (p16), CRABP1, MLH1, and NEUROG1] in 840 relatively unbiased, population-based colorectal cancer samples, obtained from two large prospective cohort studies. CIMP-low (defined as 1/5 to 3/5 methylated promoters) colorectal cancers were significantly more common among men (38 versus 30% in women, P = 0.01) and among KRAS-mutated tumors (44 versus 30% in KRAS/BRAF wild-type tumors, P = 0.0003; 19% in BRAF-mutated tumors, P CIMP-low tumors (47%) than in CIMP-high tumors (with > or =4/5 methylated promoters, 12%, P CIMP-0 tumors (with 0/5 methylated promoters, 37%, P = 0.007). The associations of CIMP-low tumors with male sex and KRAS mutations still existed after tumors were stratified by microsatellite instability status. In conclusion, CIMP-low colorectal cancer is associated with male sex and KRAS mutations. The hypothesis that CIMP-low tumors are different from CIMP-high and CIMP-0 tumors needs to be tested further.

  3. Functional Characterization and Drug Response of Freshly Established Patient-Derived Tumor Models with CpG Island Methylator Phenotype.

    Directory of Open Access Journals (Sweden)

    Claudia Maletzki

    Full Text Available Patient-individual tumor models constitute a powerful platform for basic and translational analyses both in vitro and in vivo. However, due to the labor-intensive and highly time-consuming process, only few well-characterized patient-derived cell lines and/or corresponding xenografts exist. In this study, we describe successful generation and functional analysis of novel tumor models from patients with sporadic primary colorectal carcinomas (CRC showing CpG island methylator phenotype (CIMP. Initial DNA fingerprint analysis confirmed identity with the patient in all four cases. These freshly established cells showed characteristic features associated with the CIMP-phenotype (HROC40: APCwt, TP53 mut, KRAS mut; 3/8 marker methylated; HROC43: APC mut, TP53 mut, KRAS mut; 4/8 marker methylated; HROC60: APCwt, TP53 mut, KRASwt; 4/8 marker methylated; HROC183: APC mut, TP53 mut, KRAS mut; 6/8 marker methylated. Cell lines were of epithelial origin (EpCAM+ with distinct morphology and growth kinetics. Response to chemotherapeutics was quite individual between cells, with stage I-derived cell line HROC60 being most susceptible towards standard clinically approved chemotherapeutics (e.g. 5-FU, Irinotecan. Of note, most cell lines were sensitive towards "non-classical" CRC standard drugs (sensitivity: Gemcitabin > Rapamycin > Nilotinib. This comprehensive analysis of tumor biology, genetic alterations and assessment of chemosensitivity towards a broad range of (chemo- therapeutics helps bringing forward the concept of personalized tumor therapy.

  4. Knockdown of αII spectrin in normal human cells by siRNA leads to chromosomal instability and decreased DNA interstrand cross-link repair

    International Nuclear Information System (INIS)

    McMahon, Laura W.; Zhang Pan; Sridharan, Deepa M.; Lefferts, Joel A.; Lambert, Muriel W.

    2009-01-01

    Nonerythroid α-spectrin (αIISp) is a structural protein involved in repair of DNA interstrand cross-links and is deficient in cells from patients with Fanconi anemia (FA), which are defective in ability to repair cross-links. In order to further demonstrate the importance of the role that αIISp plays in normal human cells and in the repair defect in FA, αIISp was knocked down in normal cells using siRNA. Depletion of αIISp in normal cells by siRNA resulted in chromosomal instability and cellular hypersensitivity to DNA interstrand cross-linking agents. An increased number of chromosomal aberrations were observed and, following treatment with a DNA interstrand cross-linking agent, mitomycin C, cells showed decreased cell growth and survival and decreased formation of damage-induced αIISp and XPF nuclear foci. Thus depletion of αIISp in normal cells leads to a number of defects observed in FA cells, such as chromosome instability and a deficiency in cross-link repair.

  5. Sex-linked dominant

    Science.gov (United States)

    Inheritance - sex-linked dominant; Genetics - sex-linked dominant; X-linked dominant; Y-linked dominant ... can be either an autosomal chromosome or a sex chromosome. It also depends on whether the trait ...

  6. Comparison of CpG island methylator phenotype (CIMP) frequency in colon cancer using different probe- and gene-specific scoring alternatives on recommended multi-gene panels.

    Science.gov (United States)

    Berg, Marianne; Hagland, Hanne R; Søreide, Kjetil

    2014-01-01

    In colorectal cancer a distinct subgroup of tumours demonstrate the CpG island methylator phenotype (CIMP). However, a consensus of how to score CIMP is not reached, and variation in definition may influence the reported CIMP prevalence in tumours. Thus, we sought to compare currently suggested definitions and cut-offs for methylation markers and how they influence CIMP classification in colon cancer. Methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA), with subsequent fragment analysis, was used to investigate methylation of tumour samples. In total, 31 CpG sites, located in 8 different genes (RUNX3, MLH1, NEUROG1, CDKN2A, IGF2, CRABP1, SOCS1 and CACNA1G) were investigated in 64 distinct colon cancers and 2 colon cancer cell lines. The Ogino gene panel includes all 8 genes, in addition to the Weisenberger panel of which only 5 of the 8 genes included were investigated. In total, 18 alternative combinations of scoring of CIMP positivity on probe-, gene-, and panel-level were analysed and compared. For 47 samples (71%), the CIMP status was constant and independent of criteria used for scoring; 34 samples were constantly scored as CIMP negative, and 13 (20%) consistently scored as CIMP positive. Only four of 31 probes (13%) investigated showed no difference in the numbers of positive samples using the different cut-offs. Within the panels a trend was observed that increasing the gene-level stringency resulted in a larger difference in CIMP positive samples than increasing the probe-level stringency. A significant difference between positive samples using 'the most stringent' as compared to 'the least stringent' criteria (20% vs 46%, respectively; pCIMP depending on the cut-offs and genes included in a panel was found, with twice as many positives samples by least compared to most stringent definition used.

  7. Not all hypochondroplasia families are linked to chromosome 4p16.3

    Energy Technology Data Exchange (ETDEWEB)

    Rousseau, F.; Munnich, A.; Merrer, M.Le. [INSERM, Paris (France)] [and others

    1994-09-01

    Achondroplasia (ACH, MIM 100800) and hypochondroplasia (HCH, MIM 146000) are short limb dwarfism with enlarged head sharing some specific radiological features. Inter- and intrafamilial clinical variability and histolopathological aspects of the growth cartilage suggested that ACH and HCH are allelic disorders. Recently, the gene for achondroplasia was mapped to chromosome 4p and no recombinants were found in 9 families with hypochondroplasia between D4S111 and the telomere (Zmax=1.70, {theta}=0). By using an additional polymorphic DNA marker which detects VNTR-like polymorphism at the D4S227 locus and a new microsatellite at locus D4S? (AFM163yc1), we observed recombinant events with markers of the chromosome 4p16.3 in 3/10 hypochondroplasia families, indicating that not all hypochondroplasia families are linked to chromosome 4p. A fibroblast growth factor receptor (FGFR3) expressed in chondrocytes during endochondral ossification which is located in the 2.5 Mb candidate region for achondroplasia was regarded as a good candidate gene. No major rearrangement of the FGFR3 gene was detected by Southern blot analysis using an FGFR3 cDNA probe. Further investigations will be required to conclude as to the possible involvement of this gene in ACH.

  8. Evaluation of markers for CpG island methylator phenotype (CIMP) in colorectal cancer by a large population-based sample.

    Science.gov (United States)

    Ogino, Shuji; Kawasaki, Takako; Kirkner, Gregory J; Kraft, Peter; Loda, Massimo; Fuchs, Charles S

    2007-07-01

    The CpG island methylator phenotype (CIMP or CIMP-high) with extensive promoter methylation is a distinct phenotype in colorectal cancer. However, a choice of markers for CIMP has been controversial. A recent extensive investigation has selected five methylation markers (CACNA1G, IGF2, NEUROG1, RUNX3, and SOCS1) as surrogate markers for epigenomic aberrations in tumor. The use of these markers as a CIMP-specific panel needs to be validated by an independent, large dataset. Using MethyLight assays on 920 colorectal cancers from two large prospective cohort studies, we quantified DNA methylation in eight CIMP-specific markers [the above five plus CDKN2A (p16), CRABP1, and MLH1]. A CIMP-high cutoff was set at > or = 6/8 or > or = 5/8 methylated promoters, based on tumor distribution and BRAF/KRAS mutation frequencies. All but two very specific markers [MLH1 (98% specific) and SOCS1 (93% specific)] demonstrated > or = 85% sensitivity and > or = 80% specificity, indicating overall good concordance in methylation patterns and good performance of these markers. Based on sensitivity, specificity, and false positives and negatives, the eight markers were ranked in order as: RUNX3, CACNA1G, IGF2, MLH1, NEUROG1, CRABP1, SOCS1, and CDKN2A. In conclusion, a panel of markers including at least RUNX3, CACNA1G, IGF2, and MLH1 can serve as a sensitive and specific marker panel for CIMP-high.

  9. Prognostic and Predictive Value of CpG Island Methylator Phenotype in Patients with Locally Advanced Nonmetastatic Sporadic Colorectal Cancer

    Directory of Open Access Journals (Sweden)

    Yuwei Wang

    2014-01-01

    Full Text Available Purpose. In the present study, the prognostic significance of CpG island methylator phenotype (CIMP in stage II/III sporadic colorectal cancer was evaluated using a five-gene panel. Methods. Fifty stage II/III colorectal cancer patients who received radical resection were included in this study. Promoter methylation of p14ARF, hMLH1, p16INK4a, MGMT, and MINT1 was determined by methylation specific polymerase chain reaction (MSP. CIMP positive was defined as hypermethylation of three or more of the five genes. Impact factors on disease-free survival (DFS and overall survival (OS were analyzed using Kaplan-Meier method (log-rank test and adjusted Cox proportional hazards model. Results. Twenty-four percent (12/50 of patients were characterized as CIMP positive. Univariate analysis showed stage III (P=0.049 and CIMP positive (P=0.014 patients who had significantly inferior DFS. In Cox regression analysis, CIMP positive epigenotype was independently related with poor DFS with HR = 2.935 and 95% CI: 1.193–7.220 (P=0.019. In patients with CIMP positive tumor, those receiving adjuvant chemotherapy had a poor DFS than those without adjuvant chemotherapy (P=0.023. Conclusions. CIMP positive was significantly correlated with decreased DFS in stage II/III colorectal cancer. Patients with CIMP positive locally advanced sporadic colorectal cancers may not benefit from 5-fluorouracil based adjuvant chemotherapy.

  10. Correlation of pathologic features with CpG island methylator phenotype (CIMP) by quantitative DNA methylation analysis in colorectal carcinoma.

    Science.gov (United States)

    Ogino, Shuji; Odze, Robert D; Kawasaki, Takako; Brahmandam, Mohan; Kirkner, Gregory J; Laird, Peter W; Loda, Massimo; Fuchs, Charles S

    2006-09-01

    Extensive gene promoter methylation in colorectal carcinoma has been termed the CpG island methylator phenotype (CIMP). Previous studies on CIMP used primarily methylation-specific polymerase chain reaction (PCR), which, unfortunately, may detect low levels of methylation that has little or no biological significance. Utilizing quantitative real-time PCR (MethyLight), we measured DNA methylation in a panel of 5 CIMP-specific gene promoters (CACNA1G, CDKN2A (p16), CRABP1, MLH1, and NEUROG1) in 459 colorectal carcinomas obtained from 2 large prospective cohort studies. CIMP was defined as tumors that showed methylation in >or=4/5 promoters. CIMP was significantly associated with the presence of mucinous or signet ring cell morphology, marked Crohn's-like lymphoid reaction, tumor infiltrating lymphocytes, marked peritumoral lymphocytic reaction, tumor necrosis, tumor cell sheeting, and poor differentiation. All these features have previously been associated with microsatellite instability (MSI). Therefore, we divided the 459 colorectal carcinomas into 6 subtypes, namely, MSI-high (MSI-H)/CIMP, MSI-H/non-CIMP, MSI-low (MSI-L)/CIMP, MSI-L/non-CIMP, microsatellite stable/CIMP, and micro satellite sstable/non-CIMP. Compared with MSI-H/non-CIMP, MSI-H/CIMP was associated with marked tumor infiltrating lymphocytes, tumor necrosis, sheeting, and poor differentiation (all PCIMP, MSI-L/CIMP was associated with tumors that had CIMP. Both MSI and CIMP appear to play a role in the pathogenesis of specific morphologic patterns of colorectal carcinoma.

  11. A CpG island methylator phenotype of colorectal cancer that is contiguous with conventional adenomas, but not serrated polyps.

    Science.gov (United States)

    Hokazono, Koji; Ueki, Takashi; Nagayoshi, Kinuko; Nishioka, Yasunobu; Hatae, Tatsunobu; Koga, Yutaka; Hirahashi, Minako; Oda, Yoshinao; Tanaka, Masao

    2014-11-01

    A subset of colorectal cancers (CRCs) harbor the CpG island methylator phenotype (CIMP), with concurrent multiple promoter hypermethylation of tumor-related genes. A serrated pathway in which CIMP is developed from serrated polyps is proposed. The present study characterized CIMP and morphologically examined precursor lesions of CIMP. In total, 104 CRCs treated between January 1996 and December 2004 were examined. Aberrant promoter methylation of 15 cancer-related genes was analyzed. CIMP status was classified according to the number of methylated genes and was correlated with the clinicopathological features, including the concomitant polyps in and around the tumors. The frequency of aberrant methylation in each CRC showed a bimodal pattern, and the CRCs were classified as CIMP-high (CIMP-H), CIMP-low (CIMP-L) and CIMP-negative (CIMP-N). CIMP-H was associated with aberrant methylation of MLH1 (P=0.005) and with an improved recurrence-free survival (RFS) rate following curative resection compared with CIMP-L/N (five-year RFS rate, 93.8 vs. 67.1%; P=0.044), while CIMP-N tumors were associated with frequent distant metastases at diagnosis (P=0.023). No concomitant serrated lesions were present in the tumors, whereas conventional adenoma was contiguous with 11 (10.6%) of 104 CRCs, including four CIMP-H CRCs. CIMP-H was classified in CRCs by a novel CIMP marker panel and the presence of concomitant tumors revealed that certain CIMP-H CRCs may have arisen from conventional adenomas.

  12. CPG-based Locomotion Controller Design for a Boxfish-like Robot

    Directory of Open Access Journals (Sweden)

    Wei Wang

    2014-06-01

    Full Text Available This paper focuses on a Central Pattern Generator (CPG-based locomotion controller design for a boxfish-like robot. The bio-inspired controller is aimed at flexible switching in multiple 3D swimming patterns and exact attitude control of yaw and roll such that the robot will swim more like a real boxfish. The CPG network comprises two layers, the lower layer is the network of coupled linear oscillators and the upper is the transition layer where the lower-dimensional locomotion stimuli are transformed into the higher-dimensional control parameters serving for all the oscillators. Based on such a two-layer framework, flexible switching between multiple three-dimensional swimming patterns, such as swimming forwards/backwards, turning left/right, swimming upwards/downwards and rolling clockwise/counter-clockwise, can be simply realized by inputting different stimuli. Moreover, the stability of the CPG network is strictly proved to guarantee the intrinsic stability of the swimming patterns. As to exact attitude control, based on this open-loop CPG network and the sensory feedback from the Inertial Measurement Unit (IMU, a closed-loop CPG controller is advanced for yaw and roll control of the robotic fish for the first time. This CPG-based online attitude control for a robotic fish will greatly facilitate high-level practical underwater applications. A series of relevant experiments with the robotic fish are conducted systematically to validate the effectiveness and stability of the open-loop and closed-loop CPG controllers.

  13. Machado-Joseph disease in pedigrees of Azorean descent is linked to chromosome 14.

    Science.gov (United States)

    St George-Hyslop, P; Rogaeva, E; Huterer, J; Tsuda, T; Santos, J; Haines, J L; Schlumpf, K; Rogaev, E I; Liang, Y; McLachlan, D R

    1994-07-01

    A locus for Machado-Joseph disease (MJD) has recently been mapped to a 30-cM region of chromosome 14q in five pedigrees of Japanese descent. MJD is a clinically pleomorphic neurodegenerative disease that was originally described in subjects of Azorean descent. In light of the nonallelic heterogeneity in other inherited spinocerebellar ataxias, we were interested to determine if the MJD phenotype in Japanese and Azorean pedigrees arose from mutations at the same locus. We provide evidence that MJD in five pedigrees of Azorean descent is also linked to chromosome 14q in an 18-cM region between the markers D14S67 and AACT (multipoint lod score +7.00 near D14S81). We also report molecular evidence for homozygosity at the MJD locus in an MJD-affected subject with severe, early-onset symptoms. These observations confirm the initial report of linkage of MJD to chromosome 14; suggest that MJD in Japanese and Azorean subjects may represent allelic or identical mutations at the same locus; and provide one possible explanation (MJD gene dosage) for the observed phenotypic heterogeneity in this disease.

  14. Phase 1 trial of AMA1-C1/Alhydrogel plus CPG 7909: an asexual blood-stage vaccine for Plasmodium falciparum malaria.

    Directory of Open Access Journals (Sweden)

    Gregory E D Mullen

    2008-08-01

    Full Text Available Apical Membrane Antigen 1 (AMA1, a polymorphic merozoite surface protein, is a leading blood-stage malaria vaccine candidate. This is the first reported use in humans of an investigational vaccine, AMA1-C1/Alhydrogel, with the novel adjuvant CPG 7909.A phase 1 trial was conducted at the University of Rochester with 75 malaria-naive volunteers to assess the safety and immunogenicity of the AMA1-C1/Alhydrogel+CPG 7909 malaria vaccine. Participants were sequentially enrolled and randomized within dose escalating cohorts to receive three vaccinations on days 0, 28 and 56 of either 20 microg of AMA1-C1/Alhydrogel+564 microg CPG 7909 (n = 15, 80 microg of AMA1-C1/Alhydrogel (n = 30, or 80 microg of AMA1-C1/Alhydrogel+564 microg CPG 7909 (n = 30.Local and systemic adverse events were significantly more likely to be of higher severity with the addition of CPG 7909. Anti-AMA1 immunoglobulin G (IgG were detected by enzyme-linked immunosorbent assay (ELISA, and the immune sera of volunteers that received 20 microg or 80 microg of AMA1-C1/Alhydrogel+CPG 7909 had up to 14 fold significant increases in anti-AMA1 antibody concentration compared to 80 microg of AMA1-C1/Alhydrogel alone. The addition of CPG 7909 to the AMA1-C1/Alhydrogel vaccine in humans also elicited AMA1 specific immune IgG that significantly and dramatically increased the in vitro growth inhibition of homologous parasites to levels as high as 96% inhibition.The safety profile of the AMA1-C1/Alhydrogel+CPG 7909 malaria vaccine is acceptable, given the significant increase in immunogenicity observed. Further clinical development is ongoing.ClinicalTrials.gov NCT00344539.

  15. A new chromosomal race of the house mouse, Mus musculus domesticus, in the Vulcano Island-Aeolian Archipelago, Italy.

    Science.gov (United States)

    Solano, Emanuela; Castiglia, Riccardo; Corti, Marco

    2007-07-01

    In this paper we describe a new Robertsonian (Rb) race of the house mouse from Vulcano (Aeolian archipelago) through the identification of the metacentric chromosomes. We analysed fifteen mice. All the specimens were found to have the same karyotype 2n=26. This karyotype is characterized by Rb(1.2), Rb(3.9), Rb(4.13), Rb(5.14), Rb(8.12), Rb(10.16) and Rb(15.17). The differences between the race of Vulcano and the races in a neighbour island (Lipari) consist in the presence of Rb(10.16) and Rb(15.17) in the former and Rb(6.16) and Rb(10.15) in the latter. We discuss the possible hypotheses regarding the origin between these two races including the possible occurrence of a whole arm reciprocal translocation (WART) on the Vulcano island.

  16. The contribution of color to visual memory in X-chromosome-linked dichromats.

    Science.gov (United States)

    Gegenfurtner, K R; Wichmann, F A; Sharpe, L T

    1998-04-01

    We used a recognition memory paradigm to assess the visual memory of X-chromosome-linked dichromats for color images of natural scenes. The performance of 17 protanopes and 14 deuteranopes, who lack the second (red-green opponent) subsystem of color vision, but retain the primordial (yellow-blue opponent) subsystem, was compared with that of 36 color normal observers. During the presentation phase, 48 images of natural scenes were displayed on a CRT for durations between 50 and 1000 msec. Each image was followed by a random noise mask. Half of the images were presented in color and half in black and white. In the subsequent query phase, the same 48 images were intermixed with 48 new images and the subjects had to indicate which of the images they had already seen during the presentation phase. We find that the performance of the color normal observers increases with exposure duration. However, they perform 5-10% better for colored than for black and white images, even at exposure durations as short as 50 msec. Surprisingly, performance is not impaired for the dichromats, whose recognition performance is also better for colored than for black and white images. We conclude either that X-chromosome-linked dichromats may be able to compensate for their reduced chromatic information range when viewing complex natural scenes or that the chromatic information in most natural scenes, for the durations tested, is sufficiently represented by the surviving primordial color subsystem.

  17. 18q loss of heterozygosity in microsatellite stable colorectal cancer is correlated with CpG island methylator phenotype-negative (CIMP-0) and inversely with CIMP-low and CIMP-high.

    Science.gov (United States)

    Ogino, Shuji; Kawasaki, Takako; Kirkner, Gregory J; Ohnishi, Mutsuko; Fuchs, Charles S

    2007-05-02

    The CpG island methylator phenotype (CIMP) with widespread promoter methylation is a distinct epigenetic phenotype in colorectal cancer, associated with microsatellite instability-high (MSI-high) and BRAF mutations. 18q loss of heterozygosity (LOH) commonly present in colorectal cancer with chromosomal instability (CIN) is associated with global hypomethylation in tumor cell. A recent study has shown an inverse correlation between CIN and CIMP (determined by MINTs, p16, p14 and MLH1 methylation) in colorectal cancer. However, no study has examined 18q LOH in relation to CIMP-high, CIMP-low (less extensive promoter methylation) and CIMP-0 (CIMP-negative), determined by quantitative DNA methylation analysis. Utilizing MethyLight technology (real-time PCR), we quantified DNA methylation in 8 CIMP-specific promoters {CACNA1G, CDKN2A (p16), CRABP1, IGF2, MLH1, NEUROG1, RUNX3 and SOCS1} in 758 non-MSI-high colorectal cancers obtained from two large prospective cohorts. Using four 18q microsatellite markers (D18S55, D18S56, D18S67 and D18S487) and stringent criteria for 18q LOH, we selected 374 tumors (236 LOH-positive tumors with > or = 2 markers showing LOH; and 138 LOH-negative tumors with > or = 3 informative markers and no LOH). CIMP-0 (0/8 methylated promoters) was significantly more common in 18q LOH-positive tumors (59% = 139/236, p = 0.002) than 18q LOH-negative tumors (44% = 61/138), while CIMP-low/high (1/8-8/8 methylated promoters) was significantly more common (56%) in 18q LOH-negative tumors than 18q LOH-positive tumors (41%). These relations persisted after stratification by sex, location, or the status of MSI, p53 expression (by immunohistochemistry), or KRAS/BRAF mutation. 18q LOH is correlated positively with CIMP-0 and inversely with CIMP-low and CIMP-high. Our findings provide supporting evidence for relationship between CIMP-0 and 18q LOH as well as a molecular difference between CIMP-0 and CIMP-low in colorectal cancer.

  18. Predictive value of CpG island methylator phenotype for tumor recurrence in hepatitis B virus-associated hepatocellular carcinoma following liver transplantation

    Directory of Open Access Journals (Sweden)

    Zheng Shu-Sen

    2010-08-01

    Full Text Available Abstract Background CpG island methylator phenotype (CIMP, in which multiple genes concordantly methylated, has been demonstrated to be associated with progression, recurrence, as well as overall survival in some types of cancer. Methods We examined the promoter methylation status of seven genes including P16, CDH1, GSTP1, DAPK, XAF1, SOCS1 and SYK in 65 cases of HCC treated with LT by methylation-specific PCR. CIMP+ was defined as having three or more genes that are concordantly methylated. The relationship between CIMP status and clinicopathological parameters, as well as tumor recurrence was further analyzed. Results CIMP+ was more frequent in HCC with AFP > 400 ng/ml than those with AFP ≤ 400 ng/ml (P = 0.017. In addition, patients with CIMP+ were prone to have multiple tumor numbers than those with CIMP- (P = 0.007. Patients with CIMP+ tumors had significantly worse recurrence-free survival (RFS than patients with CIMP-tumors by Kaplan-Meier estimates (P = 0.004. Multivariate analysis also revealed that CIMP status might be a novel independent prognostic factor of RFS for HCC patients treated with LT (HR: 3.581; 95% CI: 1.473-8.710, P = 0.005. Conclusion Our results suggested that CIMP could serve as a new prognostic biomarker to predict the risk of tumor recurrence in HCC after transplantation.

  19. Predictive value of CpG island methylator phenotype for tumor recurrence in hepatitis B virus-associated hepatocellular carcinoma following liver transplantation

    International Nuclear Information System (INIS)

    Wu, Li-Ming; Zhang, Feng; Zhou, Lin; Yang, Zhe; Xie, Hai-Yang; Zheng, Shu-Sen

    2010-01-01

    CpG island methylator phenotype (CIMP), in which multiple genes concordantly methylated, has been demonstrated to be associated with progression, recurrence, as well as overall survival in some types of cancer. We examined the promoter methylation status of seven genes including P16, CDH1, GSTP1, DAPK, XAF1, SOCS1 and SYK in 65 cases of HCC treated with LT by methylation-specific PCR. CIMP+ was defined as having three or more genes that are concordantly methylated. The relationship between CIMP status and clinicopathological parameters, as well as tumor recurrence was further analyzed. CIMP+ was more frequent in HCC with AFP > 400 ng/ml than those with AFP ≤ 400 ng/ml (P = 0.017). In addition, patients with CIMP+ were prone to have multiple tumor numbers than those with CIMP- (P = 0.007). Patients with CIMP+ tumors had significantly worse recurrence-free survival (RFS) than patients with CIMP-tumors by Kaplan-Meier estimates (P = 0.004). Multivariate analysis also revealed that CIMP status might be a novel independent prognostic factor of RFS for HCC patients treated with LT (HR: 3.581; 95% CI: 1.473-8.710, P = 0.005). Our results suggested that CIMP could serve as a new prognostic biomarker to predict the risk of tumor recurrence in HCC after transplantation

  20. Isocitrate dehydrogenase 1 R132C mutation occurs exclusively in microsatellite stable colorectal cancers with the CpG island methylator phenotype.

    Science.gov (United States)

    Whitehall, V L J; Dumenil, T D; McKeone, D M; Bond, C E; Bettington, M L; Buttenshaw, R L; Bowdler, L; Montgomery, G W; Wockner, L F; Leggett, B A

    2014-11-01

    The CpG Island Methylator Phenotype (CIMP) is fundamental to an important subset of colorectal cancer; however, its cause is unknown. CIMP is associated with microsatellite instability but is also found in BRAF mutant microsatellite stable cancers that are associated with poor prognosis. The isocitrate dehydrogenase 1 (IDH1) gene causes CIMP in glioma due to an activating mutation that produces the 2-hydroxyglutarate oncometabolite. We therefore examined IDH1 alteration as a potential cause of CIMP in colorectal cancer. The IDH1 mutational hotspot was screened in 86 CIMP-positive and 80 CIMP-negative cancers. The entire coding sequence was examined in 81 CIMP-positive colorectal cancers. Forty-seven cancers varying by CIMP-status and IDH1 mutation status were examined using Illumina 450K DNA methylation microarrays. The R132C IDH1 mutation was detected in 4/166 cancers. All IDH1 mutations were in CIMP cancers that were BRAF mutant and microsatellite stable (4/45, 8.9%). Unsupervised hierarchical cluster analysis identified an IDH1 mutation-like methylation signature in approximately half of the CIMP-positive cancers. IDH1 mutation appears to cause CIMP in a small proportion of BRAF mutant, microsatellite stable colorectal cancers. This study provides a precedent that a single gene mutation may cause CIMP in colorectal cancer, and that this will be associated with a specific epigenetic signature and clinicopathological features.

  1. Evidence for linkage disequilibrium in chromosome 13-linked Duchenne-like muscular dystrophy

    Energy Technology Data Exchange (ETDEWEB)

    Othmane, K.B.; Speer, M.C.; Stauffer, J. [Duke Univ. Medical Center, Durham, NC (United States)] [and others

    1995-09-01

    Duchenne-like muscular dystrophy (DLMD) is an autosomal recessive Limb Girdle muscular dystrophy (LGMD2C) characterized by late age of onset, proximal muscle weakness leading to disability, high creatine kinase values, normal intelligence and normal dystrophin in muscle biopsy. We have shown previously that three DLMD families from Tunisia are linked to chromosome 13q12. To further localize the LGMD2C gene, we have investigated seven additional families (119 individuals). Both genotyping and two-point linkage analysis were performed as described elsewhere. 7 refs., 1 fig., 1 tab.

  2. Tumors with unmethylated MLH1 and the CpG island methylator phenotype are associated with a poor prognosis in stage II colorectal cancer patients.

    Science.gov (United States)

    Fu, Tao; Liu, Yanliang; Li, Kai; Wan, Weiwei; Pappou, Emmanouil P; Iacobuzio-Donahue, Christine A; Kerner, Zachary; Baylin, Stephen B; Wolfgang, Christopher L; Ahuja, Nita

    2016-12-27

    We previously developed a novel tumor subtype classification model for duodenal adenocarcinomas based on a combination of the CpG island methylator phenotype (CIMP) and MLH1 methylation status. Here, we tested the prognostic value of this model in stage II colorectal cancer (CRC) patients. Tumors were assigned to CIMP+/MLH1-unmethylated (MLH1-U), CIMP+/MLH1-methylated (MLH1-M), CIMP-/MLH1-U, or CIMP-/MLH1-M groups. Age, tumor location, lymphovascular invasion, and mucin production differed among the four patient subgroups, and CIMP+/MLH1-U tumors were more likely to have lymphovascular invasion and mucin production. Kaplan-Meier analyses revealed differences in both disease-free survival (DFS) and overall survival (OS) among the four groups. In a multivariate analysis, CIMP/MLH1 methylation status was predictive of both DFS and OS, and DFS and OS were shortest in CIMP+/MLH1-U stage II CRC patients. These results suggest that tumor subtype classification based on the combination of CIMP and MLH1 methylation status is informative in stage II CRC patients, and that CIMP+/MLH1-U tumors exhibit aggressive features and are associated with poor clinical outcomes.

  3. IGFBP3 Promoter Methylation in Colorectal Cancer: Relationship with Microsatellite Instability, CpG Island Methylator Phenotype, p53

    Directory of Open Access Journals (Sweden)

    Takako Kawasaki

    2007-12-01

    Full Text Available Insulin-like growth factor binding protein 3 (IGFBP3, which is induced by wild-type p53, regulates IGF and interacts with the TGF-β pathway. IGFBP3 promoter methylation may occur in colorectal cancer with or without the CpG island methylator phenotype (CIMP, which is associated with microsatellite instability (MSI and TGFBR2 mutation. We examined the relationship between IGFBP3 methylation, p53 expression, CIMP and MSI in 902 population-based colorectal cancers. Utilizing real-time PCR (MethyLight, we quantified promoter methylation in IGFBP3 and eight other CIMP-high-specific promoters (CACNA1G, CDKN2A, CRABP1, IGF2, MLH1, NEUROG1, RUNX3, and SOCS1. IGFBP3 methylation was far more frequent in non-MSI-high CIMP-high tumors (85% = 35/41 than in MSI-high CIMPhigh (49% = 44/90, P < .0001, MSI-high non-CIMP-high (17% = 6/36, P < .0001, non-MSI-high non-CIMP-high tumors (22% = 152/680, P < .0001. Among CIMPhigh tumors, the inverse relationship between MSI and IGFBP3 methylation persisted in p53-negative tumors (P < .0001, but not in p53-positive tumors. IGFBP3 methylation was associated inversely with TGFBR2 mutation in MSI-high non-CIMP-high tumors (P = .02. In conclusion, IGFBP3 methylation is inversely associated with MSI in CIMP-high colorectal cancers, this relationship is limited to p53-negative tumors. Our data suggest complex relationship between global genomic/epigenomic phenomena (such as MSI/ CIMP, single molecular events (e.g., IGFBP3 methylation, TP53 mutation, TGFBR2 mutation, the related pathways.

  4. A CpG island methylator phenotype in acute myeloid leukemia independent of IDH mutations and associated with a favorable outcome.

    Science.gov (United States)

    Kelly, A D; Kroeger, H; Yamazaki, J; Taby, R; Neumann, F; Yu, S; Lee, J T; Patel, B; Li, Y; He, R; Liang, S; Lu, Y; Cesaroni, M; Pierce, S A; Kornblau, S M; Bueso-Ramos, C E; Ravandi, F; Kantarjian, H M; Jelinek, J; Issa, J-Pj

    2017-10-01

    Genetic changes are infrequent in acute myeloid leukemia (AML) compared with other malignancies and often involve epigenetic regulators, suggesting that an altered epigenome may underlie AML biology and outcomes. In 96 AML cases including 65 pilot samples selected for cured/not-cured, we found higher CpG island (CGI) promoter methylation in cured patients. Expanded genome-wide digital restriction enzyme analysis of methylation data revealed a CGI methylator phenotype independent of IDH1/2 mutations we term AML-CGI methylator phenotype (CIMP) (A-CIMP + ). A-CIMP was associated with longer overall survival (OS) in this data set (median OS, years: A-CIMP + =not reached, CIMP - =1.17; P=0.08). For validation we used 194 samples from The Cancer Genome Atlas interrogated with Illumina 450k methylation arrays where we confirmed longer OS in A-CIMP (median OS, years: A-CIMP + =2.34, A-CIMP - =1.00; P=0.01). Hypermethylation in A-CIMP + favored CGIs (OR: CGI/non-CGI=5.21), and while A-CIMP + was enriched in CEBPA (P=0.002) and WT1 mutations (P=0.02), 70% of cases lacked either mutation. Hypermethylated genes in A-CIMP + function in pluripotency maintenance, and a gene expression signature of A-CIMP was associated with outcomes in multiple data sets. We conclude that CIMP in AML cannot be explained solely by gene mutations (for example, IDH1/2, TET2), and that curability in A-CIMP + AML should be validated prospectively.

  5. Molecular Classification and Correlates in Colorectal Cancer

    OpenAIRE

    Ogino, Shuji; Goel, Ajay

    2008-01-01

    Molecular classification of colorectal cancer is evolving. As our understanding of colorectal carcinogenesis improves, we are incorporating new knowledge into the classification system. In particular, global genomic status [microsatellite instability (MSI) status and chromosomal instability (CIN) status] and epigenomic status [CpG island methylator phenotype (CIMP) status] play a significant role in determining clinical, pathological and biological characteristics of colorectal cancer. In thi...

  6. In vivo control of CpG and non-CpG DNA methylation by DNA methyltransferases.

    Directory of Open Access Journals (Sweden)

    Julia Arand

    2012-06-01

    Full Text Available The enzymatic control of the setting and maintenance of symmetric and non-symmetric DNA methylation patterns in a particular genome context is not well understood. Here, we describe a comprehensive analysis of DNA methylation patterns generated by high resolution sequencing of hairpin-bisulfite amplicons of selected single copy genes and repetitive elements (LINE1, B1, IAP-LTR-retrotransposons, and major satellites. The analysis unambiguously identifies a substantial amount of regional incomplete methylation maintenance, i.e. hemimethylated CpG positions, with variant degrees among cell types. Moreover, non-CpG cytosine methylation is confined to ESCs and exclusively catalysed by Dnmt3a and Dnmt3b. This sequence position-, cell type-, and region-dependent non-CpG methylation is strongly linked to neighboring CpG methylation and requires the presence of Dnmt3L. The generation of a comprehensive data set of 146,000 CpG dyads was used to apply and develop parameter estimated hidden Markov models (HMM to calculate the relative contribution of DNA methyltransferases (Dnmts for de novo and maintenance DNA methylation. The comparative modelling included wild-type ESCs and mutant ESCs deficient for Dnmt1, Dnmt3a, Dnmt3b, or Dnmt3a/3b, respectively. The HMM analysis identifies a considerable de novo methylation activity for Dnmt1 at certain repetitive elements and single copy sequences. Dnmt3a and Dnmt3b contribute de novo function. However, both enzymes are also essential to maintain symmetrical CpG methylation at distinct repetitive and single copy sequences in ESCs.

  7. Correlation of beta-catenin localization with cyclooxygenase-2 expression and CpG island methylator phenotype (CIMP) in colorectal cancer.

    Science.gov (United States)

    Kawasaki, Takako; Nosho, Katsuhiko; Ohnishi, Mutsuko; Suemoto, Yuko; Kirkner, Gregory J; Dehari, Reiko; Meyerhardt, Jeffrey A; Fuchs, Charles S; Ogino, Shuji

    2007-07-01

    The WNT/beta-catenin (CTNNB1) pathway is commonly activated in the carcinogenic process. Cross-talks between the WNT and cyclooxygenase-2 (COX-2 or PTGS2)/prostaglandin pathways have been suggested. The relationship between beta-catenin activation and microsatellite instability (MSI) in colorectal cancer has been controversial. The CpG island methylator phenotype (CIMP or CIMP-high) with widespread promoter methylation is a distinct epigenetic phenotype in colorectal cancer, which is associated with MSI-high. However, no study has examined the relationship between beta-catenin activation and CIMP status. Using 832 population-based colorectal cancer specimens, we assessed beta-catenin localization by immunohistochemistry. We quantified DNA methylation in eight CIMP-specific promoters [CACNA1G, CDKN2A(p16), CRABP1, IGF2, MLH1, NEUROG1, RUNX3, and SOCS1] by real-time polymerase chain reaction (MethyLight). MSI-high, CIMP-high, and BRAF mutation were associated inversely with cytoplasmic and nuclear beta-catenin expressions (i.e., beta-catenin activation) and associated positively with membrane expression. The inverse relation between beta-catenin activation and CIMP was independent of MSI. COX-2 overexpression correlated with cytoplasmic beta-catenin expression (even after tumors were stratified by CIMP status), but did not correlate significantly with nuclear or membrane expression. In conclusion, beta-catenin activation is inversely associated with CIMP-high independent of MSI status. Cytoplasmic beta-catenin is associated with COX-2 overexpression, supporting the role of cytoplasmic beta-catenin in stabilizing PTGS2 (COX-2) mRNA.

  8. Correlation of β-Catenin Localization with Cyclooxygenase-2 Expression and CpG Island Methylator Phenotype (CIMP in Colorectal Cancer

    Directory of Open Access Journals (Sweden)

    Takako Kawasaki

    2007-07-01

    Full Text Available The WNT/β-catenin (CTNNB1 pathway is commonly activated in the carcinogenic process. Cross-talks between the WNT and cyclooxygenase-2 (COX-2 or PTGS2/prostaglandin pathways have been suggested. The relationship between (3-catenin activation and microsatellite instability (MSI in colorectal cancer has been controversial. The CpG island methylator phenotype (CIMP or CIMP-high with widespread promoter methylation is a distinct epigenetic phenotype in colorectal cancer, which is associated with MSI-high. However, no study has examined the relationship between (β-catenin activation and CIMP status. Using 832 population-based colorectal cancer specimens, we assessed (3-catenin localization by immunohistochemistry. We quantified DNA methylation in eight CIMP-specific promoters [CACNA1G, CDKN2A(p16, CRABP1, IGF2, MLH1, NEUROG1, RUNX3, and SOCS1] by real-time polymerase chain reaction (MethyLight. MSI-high, CIMP-high, and BRAF mutation were associated inversely with cytoplasmic and nuclear (β-catenin expressions (i.e., β-catenin activation and associated positively with membrane expression. The inverse relation between (β-catenin activation and CIMP was independent of MSI. COX-2 overexpression correlated with cytoplasmic (β-catenin expression (even after tumors were stratified by CIMP status, but did not correlate significantly with nuclear or membrane expression. In conclusion, β-catenin activation is inversely associated with CIMP-high independent of MSI status. Cytoplasmic β-catenin is associated with COX-2 overexpression, supporting the role of cytoplasmic β-catenin in stabilizing PTGS2(COX-2 mRNA.

  9. Comparison of CpG island methylator phenotype (CIMP frequency in colon cancer using different probe- and gene-specific scoring alternatives on recommended multi-gene panels.

    Directory of Open Access Journals (Sweden)

    Marianne Berg

    Full Text Available BACKGROUND: In colorectal cancer a distinct subgroup of tumours demonstrate the CpG island methylator phenotype (CIMP. However, a consensus of how to score CIMP is not reached, and variation in definition may influence the reported CIMP prevalence in tumours. Thus, we sought to compare currently suggested definitions and cut-offs for methylation markers and how they influence CIMP classification in colon cancer. METHODS: Methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA, with subsequent fragment analysis, was used to investigate methylation of tumour samples. In total, 31 CpG sites, located in 8 different genes (RUNX3, MLH1, NEUROG1, CDKN2A, IGF2, CRABP1, SOCS1 and CACNA1G were investigated in 64 distinct colon cancers and 2 colon cancer cell lines. The Ogino gene panel includes all 8 genes, in addition to the Weisenberger panel of which only 5 of the 8 genes included were investigated. In total, 18 alternative combinations of scoring of CIMP positivity on probe-, gene-, and panel-level were analysed and compared. RESULTS: For 47 samples (71%, the CIMP status was constant and independent of criteria used for scoring; 34 samples were constantly scored as CIMP negative, and 13 (20% consistently scored as CIMP positive. Only four of 31 probes (13% investigated showed no difference in the numbers of positive samples using the different cut-offs. Within the panels a trend was observed that increasing the gene-level stringency resulted in a larger difference in CIMP positive samples than increasing the probe-level stringency. A significant difference between positive samples using 'the most stringent' as compared to 'the least stringent' criteria (20% vs 46%, respectively; p<0.005 was demonstrated. CONCLUSIONS: A statistical significant variation in the frequency of CIMP depending on the cut-offs and genes included in a panel was found, with twice as many positives samples by least compared to most stringent definition

  10. Increased Y-chromosome resolution of haplogroup O suggests genetic ties between the Ami aborigines of Taiwan and the Polynesian Islands of Samoa and Tonga.

    Science.gov (United States)

    Mirabal, Sheyla; Herrera, Kristian J; Gayden, Tenzin; Regueiro, Maria; Underhill, Peter A; Garcia-Bertrand, Ralph L; Herrera, Rene J

    2012-01-25

    The Austronesian expansion has left its fingerprint throughout two thirds of the circumference of the globe reaching the island of Madagascar in East Africa to the west and Easter Island, off the coast of Chile, to the east. To date, several theories exist to explain the current genetic distribution of Austronesian populations, with the "slow boat" model being the most widely accepted, though other conjectures (i.e., the "express train" and "entangled bank" hypotheses) have also been widely discussed. In the current study, 158 Y chromosomes from the Polynesian archipelagos of Samoa and Tonga were typed using high resolution binary markers and compared to populations across Mainland East Asia, Taiwan, Island Southeast Asia, Melanesia and Polynesia in order to establish their patrilineal genetic relationships. Y-STR haplotypes on the C2 (M38), C2a (M208), O1a (M119), O3 (M122) and O3a2 (P201) backgrounds were utilized in an attempt to identify the differing sources of the current Y-chromosomal haplogroups present throughout Polynesia (of Melanesian and/or Asian descent). We find that, while haplogroups C2a, S and K3-P79 suggest a Melanesian component in 23%-42% of the Samoan and Tongan Y chromosomes, the majority of the paternal Polynesian gene pool exhibits ties to East Asia. In particular, the prominence of sub-haplogroup O3a2c* (P164), which has previously been observed at only minimal levels in Mainland East Asians (2.0-4.5%), in both Polynesians (ranging from 19% in Manua to 54% in Tonga) and Ami aborigines from Taiwan (37%) provides, for the first time, evidence for a genetic connection between the Polynesian populations and the Ami. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. CpG + CpNpG Analysis of Protein-Coding Sequences from Tomato

    DEFF Research Database (Denmark)

    Hobolth, Asger; Nielsen, Rasmus; Wang, Ying

    2006-01-01

    We develop codon-based models for simultaneously inferring the mutational effects of CpG and CpNpG methylation in coding regions. In a data set of 369 tomato genes, we show that there is very little effect of CpNpG methylation but a strong effect of CpG methylation affecting almost all genes. We...... further show that the CpNpG and CpG effects are largely uncorrelated. Our results suggest different roles of CpG and CpNpG methylation, with CpNpG methylation possibly playing a specialized role in defense against transposons and RNA viruses....

  12. Balinese Y-chromosome perspective on the peopling of Indonesia: genetic contributions from pre-neolithic hunter-gatherers, Austronesian farmers, and Indian traders.

    Science.gov (United States)

    Karafet, Tatiana M; Lansing, J S; Redd, Alan J; Reznikova, Svetlana; Watkins, Joseph C; Surata, S P K; Arthawiguna, W A; Mayer, Laura; Bamshad, Michael; Jorde, Lynn B; Hammer, Michael F

    2005-02-01

    The island of Bali lies near the center of the southern chain of islands in the Indonesian archipelago, which served as a stepping-stone for early migrations of hunter-gatherers to Melanesia and Australia and for more recent migrations of Austronesian farmers from mainland Southeast Asia to the Pacific. Bali is the only Indonesian island with a population that currently practices the Hindu religion and preserves various other Indian cultural, linguistic, and artistic traditions (Lansing 1983). Here, we examine genetic variation on the Y chromosomes of 551 Balinese men to investigate the relative contributions of Austronesian farmers and pre-Neolithic hunter-gatherers to the contemporary Balinese paternal gene pool and to test the hypothesis of recent paternal gene flow from the Indian subcontinent. Seventy-one Y-chromosome binary polymorphisms (single nucleotide polymorphisms, SNPs) and 10 Y-chromosome-linked short tandem repeats (STRs) were genotyped on a sample of 1,989 Y chromosomes from 20 populations representing Indonesia (including Bali), southern China, Southeast Asia, South Asia, the Near East, and Oceania. SNP genotyping revealed 22 Balinese lineages, 3 of which (O-M95, O-M119, and O-M122) account for nearly 83.7% of Balinese Y chromosomes. Phylogeographic analyses suggest that all three major Y-chromosome haplogroups migrated to Bali with the arrival of Austronesian speakers; however, STR diversity patterns associated with these haplogroups are complex and may be explained by multiple waves of Austronesian expansion to Indonesia by different routes. Approximately 2.2% of contemporary Balinese Y chromosomes (i.e., K-M9*, K-M230, and M lineages) may represent the pre-Neolithic component of the Indonesian paternal gene pool. In contrast, eight other haplogroups (e.g., within H, J, L, and R), making up approximately 12% of the Balinese paternal gene pool, appear to have migrated to Bali from India. These results indicate that the Austronesian expansion had a

  13. The impact of intragenic CpG content on gene expression.

    Science.gov (United States)

    Bauer, Asli Petra; Leikam, Doris; Krinner, Simone; Notka, Frank; Ludwig, Christine; Längst, Gernot; Wagner, Ralf

    2010-07-01

    The development of vaccine components or recombinant therapeutics critically depends on sustained expression of the corresponding transgene. This study aimed to determine the contribution of intragenic CpG content to expression efficiency in transiently and stably transfected mammalian cells. Based upon a humanized version of green fluorescent protein (GFP) containing 60 CpGs within its coding sequence, a CpG-depleted variant of the GFP reporter was established by carefully modulating the codon usage. Interestingly, GFP reporter activity and detectable protein amounts in stably transfected CHO and 293 cells were significantly decreased upon CpG depletion and independent from promoter usage (CMV, EF1 alpha). The reduction in protein expression associated with CpG depletion was likewise observed for other unrelated reporter genes and was clearly reflected by a decline in mRNA copy numbers rather than translational efficiency. Moreover, decreased mRNA levels were neither due to nuclear export restrictions nor alternative splicing or mRNA instability. Rather, the intragenic CpG content influenced de novo transcriptional activity thus implying a common transcription-based mechanism of gene regulation via CpGs. Increased high CpG transcription correlated with changed nucleosomal positions in vitro albeit histone density at the two genes did not change in vivo as monitored by ChIP.

  14. Editorial: X-chromosome-linked Kallmann's syndrome: Pathology at the molecular level

    Energy Technology Data Exchange (ETDEWEB)

    Prager, D.; Braunstein, G.D. (Cedars-Sinai Medical Center, Los Angeles, CA (United States))

    1993-04-01

    Kallmann's syndrome or olfactogenital dysplasia refers to a disorder characterized by hypogonadotropic hypogonadism and anosmia or hyposmia which can occur sporadically or in a familial setting. Originally described in 1856, the first familial cases were reported by Kallmann et al., in 1944. Based on segregation analysis of multiple families, three modes of transmission have been documented: X-linked, autosomal dominant with variable penetrance, and autosomal recessive. Kallmann's syndrome occurs in less than 1 in 10,000 male births, with a 5-fold excess of affected males to females, suggesting that the X-linked form is the most frequent. By genetic linkage analysis the X-linked form of Kallmann's syndrome was localized to Xp22.3. This was confirmed by the description of patients with contiguous gene syndromes due to deletions of various portions of the distal short arm of the X-chromosome. Such patients present with complex phenotypes characterized by a combination of Kallmann's syndrome with X-linked icthyosis due to steroid sulfatase deficiency, chondrodysplasia punctata, short stature, and mental retardation. DNA analysis has identified and mapped the genes responsible for these disorders. 10 refs., 1 fig., 1 tab.

  15. Identification of a boron nitride nanosphere-binding peptide for the intracellular delivery of CpG oligodeoxynucleotides

    Science.gov (United States)

    Zhang, Huijie; Yamazaki, Tomohiko; Zhi, Chunyi; Hanagata, Nobutaka

    2012-09-01

    CpG oligonucleotides (CpG ODNs) interact with Toll-like receptor 9 (TLR9), which results in the induction of immunostimulatory cytokines. We delivered CpG ODNs intracellularly using boron nitride nanospheres (BNNS). To enhance the loading capacity of CpG ODNs on BNNS, we used a phage display technique to identify a 12-amino acid peptide designated as BP7, with specific affinity for BNNS, and used it as a linker to load CpG ODNs on BNNS. The tyrosine residue (Y) at the eighth position from the N-terminus played a crucial role in the affinity of BP7 to BNNS. BNNS that bound BP7 (BNNS-BP7) were taken up by cells and showed no cytotoxicity, and CpG ODNs were successfully crosslinked with BP7 to create BP7-CpG ODN conjugates. Using BP7 as a linker, the loading efficiency of CpG ODNs on BNNS increased 5-fold compared to the direct binding of CpG ODNs to BNNS. Furthermore, the BP7-CpG ODN conjugate-loaded BNNS had a greater capacity to induce interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) production from peripheral blood mononuclear cells (PBMCs) than that of CpG ODNs directly loaded on BNNS. The higher amount of cytokine induction by BP7-CpG ODN conjugate-loaded BNNS may be attributed to a higher loading capacity and stronger binding to BNNS of the linker BP7. The greater functionality of BP7-conjugated CpG ODNs on BNNS expands the potential of BNNS for drug delivery applications.CpG oligonucleotides (CpG ODNs) interact with Toll-like receptor 9 (TLR9), which results in the induction of immunostimulatory cytokines. We delivered CpG ODNs intracellularly using boron nitride nanospheres (BNNS). To enhance the loading capacity of CpG ODNs on BNNS, we used a phage display technique to identify a 12-amino acid peptide designated as BP7, with specific affinity for BNNS, and used it as a linker to load CpG ODNs on BNNS. The tyrosine residue (Y) at the eighth position from the N-terminus played a crucial role in the affinity of BP7 to BNNS. BNNS that bound BP7

  16. CpG oligodeoxynucleotides are potent enhancers of radio- and chemoresponses of murine tumors

    International Nuclear Information System (INIS)

    Mason, Kathryn A.; Neal, Robert; Hunter, Nancy; Ariga, Hisanori; Ang, Kian; Milas, Luka

    2006-01-01

    Background and purpose: Synthetic oligodeoxynucleotides (ODNs) containing unmethylated cytosine-guanine (CpG) motifs bind to Toll-like receptor 9 (TLR9) and stimulate both innate and adaptive immune reactions and possess anti-tumor activity. We recently reported that CpG ODN 1826 strongly enhances radioresponse of both immunogenic [Milas L, Mason K, Ariga H, et al. CpG oligodeoxynucleotide enhances tumor response to radiation. Cancer Res 2004;64:5074-7] and non-immunogenic [Mason KA, Ariga H, Neal R, et al. Targeting toll-like receptor-9 with CpG oligodeoxynucleotides enhances tumor response to fractionated radiotherapy. Clin Cancer Res 2005;11:361-9] murine tumors. Using two immunogenic murine tumors, a fibrosarcoma (FSa) and a mammary carcinoma (MCa-K), the present study explored whether CpG ODN 1826 also improves the response of murine tumors to the chemotherapeutic agent docetaxel (DOC). Materials and methods: CpG ODN 1826 (100 μg) was given sc three times: when leg tumors were 6 mm, when they grew to 8 mm and again 1 week later. DOC (33 mg/kg iv) and local tumor radiation (10 Gy) were given when tumors were 8 mm. Effects of the treatments were assayed by tumor growth delay, defined as days for tumors to grow from 8 to 12 mm in diameter. Results: Treatment with CpG ODN 1826 resulted in strongly enhanced response of FSa tumors to radiation and MCa-K tumors to the chemotherapeutic agent DOC. Enhancement of tumor treatment response was demonstrated by a strong prolongation in the primary tumor treatment endpoint, tumor growth delay. Coincidentally, this treatment also resulted in a higher rate of tumor cure than that observed after tumor radiotherapy or chemotherapy alone. When all three agents were combined the effect was comparable to that of the combination of CpG ODN 1826 with radiation in the case of FSa or of the combination of CpG ODN 1826 with DOC in the case of MCa-K. Conclusion: Overall results show that CpG ODN 1826 can markedly improve tumor response

  17. Chromosome Banding in Amphibia. XXXVI. Multimorphic Sex Chromosomes and an Enigmatic Sex Determination in Eleutherodactylus johnstonei (Anura, Eleutherodactylidae).

    Science.gov (United States)

    Schmid, Michael; Steinlein, Claus

    2018-01-01

    A detailed cytogenetic study on the leaf litter frog Eleutherodactylus johnstonei from 14 different Caribbean islands and the mainlands of Venezuela and Guyana revealed the existence of multimorphic XY♂/XX♀ sex chromosomes 14. Their male sex determination and development depends either on the presence of 2 telocentric chromosomes 14 (XtYt), or on 1 submetacentric chromosome 14 (Xsm) plus 1 telocentric chromosome 14 (Yt), or on the presence of 2 submetacentric chromosomes 14 (XsmYsm). The female sex determination and development requires either the presence of 2 telocentric chromosomes 14 (XtXt) or 2 submetacentric chromosomes 14 (XsmXsm). In all individuals analyzed, the sex chromosomes 14 carry a prominent nucleolus organizer region in their long arms. An explanation is given for the origin of the (XtYt)♂, (XsmYt)♂, (XsmYsm)♂, (XtXt)♀, and (XsmXsm)♀ in the different populations of E. johnstonei. Furthermore, the present study gives detailed data on the chromosome banding patterns, in situ hybridization experiments, and the genome size of E. johnstonei. © 2018 S. Karger AG, Basel.

  18. Proinflammatory Stimulation of Toll-Like Receptor 9 with High Dose CpG ODN 1826 Impairs Endothelial Regeneration and Promotes Atherosclerosis in Mice.

    Directory of Open Access Journals (Sweden)

    Alexander O Krogmann

    Full Text Available Toll-like receptors (TLR of the innate immune system have been closely linked with the development of atherosclerotic lesions. TLR9 is activated by unmethylated CpG motifs within ssDNA, but also by CpG motifs in nucleic acids released during vascular apoptosis and necrosis. The role of TLR9 in vascular disease remains controversial and we sought to investigate the effects of a proinflammatory TLR9 stimulation in mice.TLR9-stimulation with high dose CpG ODN at concentrations between 6.25 nM to 30 nM induced a significant proinflammatory cytokine response in mice. This was associated with impaired reendothelialization upon acute denudation of the carotid and increased numbers of circulating endothelial microparticles, as a marker for amplified endothelial damage. Chronic TLR9 agonism in apolipoprotein E-deficient (ApoE-/- mice fed a cholesterol-rich diet increased aortic production of reactive oxygen species, the number of circulating endothelial microparticles, circulating sca-1/flk-1 positive cells, and most importantly augmented atherosclerotic plaque formation when compared to vehicle treated animals. Importantly, high concentrations of CpG ODN are required for these proatherogenic effects.Systemic stimulation of TLR9 with high dose CpG ODN impaired reendothelialization upon acute vascular injury and increased atherosclerotic plaque development in ApoE-/- mice. Further studies are necessary to fully decipher the contradictory finding of TLR9 agonism in vascular biology.

  19. +2.71 LOD score at zero recombination is not sufficient for establishing linkage between X-linked mental retardation and X-chromosome markers

    Energy Technology Data Exchange (ETDEWEB)

    Robledo, R.; Melis, P.; Siniscalco, M. [and others

    1996-07-12

    Nonspecific X-linked mental retardation (MRX) is the denomination attributed to the familial type of mental retardation compatible with X-linked inheritance but lacking specific phenotypic manifestations. It is thus to be expected that families falling under such broad definition are genetically heterogeneous in the sense that they may be due to different types of mutations occurring, most probably, at distinct X-chromosome loci. To facilitate a genetic classification of these conditions, the Nomenclature Committee of the Eleventh Human Gene Mapping Workshop proposed to assign a unique MRX-serial number to each family where evidence of linkage with one or more X-chromosome markers had been established with a LOD score of at least +2 at zero recombination. This letter is meant to emphasize the inadequacy of this criterion for a large pedigree where the segregation of the disease has been evaluated against the haplotype constitution of the entire X-chromosome carrying the mutation in question. 12 refs., 2 figs., 1 tab.

  20. The X chromosome in space.

    Science.gov (United States)

    Jégu, Teddy; Aeby, Eric; Lee, Jeannie T

    2017-06-01

    Extensive 3D folding is required to package a genome into the tiny nuclear space, and this packaging must be compatible with proper gene expression. Thus, in the well-hierarchized nucleus, chromosomes occupy discrete territories and adopt specific 3D organizational structures that facilitate interactions between regulatory elements for gene expression. The mammalian X chromosome exemplifies this structure-function relationship. Recent studies have shown that, upon X-chromosome inactivation, active and inactive X chromosomes localize to different subnuclear positions and adopt distinct chromosomal architectures that reflect their activity states. Here, we review the roles of long non-coding RNAs, chromosomal organizational structures and the subnuclear localization of chromosomes as they relate to X-linked gene expression.

  1. Assessment of clusters of transcription factor binding sites in relationship to human promoter, CpG islands and gene expression

    Directory of Open Access Journals (Sweden)

    Sakaki Yoshiyuki

    2004-02-01

    Full Text Available Abstract Background Gene expression is regulated mainly by transcription factors (TFs that interact with regulatory cis-elements on DNA sequences. To identify functional regulatory elements, computer searching can predict TF binding sites (TFBS using position weight matrices (PWMs that represent positional base frequencies of collected experimentally determined TFBS. A disadvantage of this approach is the large output of results for genomic DNA. One strategy to identify genuine TFBS is to utilize local concentrations of predicted TFBS. It is unclear whether there is a general tendency for TFBS to cluster at promoter regions, although this is the case for certain TFBS. Also unclear is the identification of TFs that have TFBS concentrated in promoters and to what level this occurs. This study hopes to answer some of these questions. Results We developed the cluster score measure to evaluate the correlation between predicted TFBS clusters and promoter sequences for each PWM. Non-promoter sequences were used as a control. Using the cluster score, we identified a PWM group called PWM-PCP, in which TFBS clusters positively correlate with promoters, and another PWM group called PWM-NCP, in which TFBS clusters negatively correlate with promoters. The PWM-PCP group comprises 47% of the 199 vertebrate PWMs, while the PWM-NCP group occupied 11 percent. After reducing the effect of CpG islands (CGI against the clusters using partial correlation coefficients among three properties (promoter, CGI and predicted TFBS cluster, we identified two PWM groups including those strongly correlated with CGI and those not correlated with CGI. Conclusion Not all PWMs predict TFBS correlated with human promoter sequences. Two main PWM groups were identified: (1 those that show TFBS clustered in promoters associated with CGI, and (2 those that show TFBS clustered in promoters independent of CGI. Assessment of PWM matches will allow more positive interpretation of TFBS in

  2. MicroRNA-31 expression in relation to BRAF mutation, CpG island methylation and colorectal continuum in serrated lesions.

    Science.gov (United States)

    Ito, Miki; Mitsuhashi, Kei; Igarashi, Hisayoshi; Nosho, Katsuhiko; Naito, Takafumi; Yoshii, Shinji; Takahashi, Hiroaki; Fujita, Masahiro; Sukawa, Yasutaka; Yamamoto, Eiichiro; Takahashi, Taiga; Adachi, Yasushi; Nojima, Masanori; Sasaki, Yasushi; Tokino, Takashi; Baba, Yoshifumi; Maruyama, Reo; Suzuki, Hiromu; Imai, Kohzoh; Yamamoto, Hiroyuki; Shinomura, Yasuhisa

    2014-12-01

    The CpG island methylator phenotype (CIMP) is a distinct form of epigenomic instability. Many CIMP-high colorectal cancers (CRCs) with BRAF mutation are considered to arise from serrated pathway. We recently reported that microRNA-31 (miR-31) is associated with BRAF mutation in colorectal tumors. Emerging new approaches have revealed gradual changes in BRAF mutation and CIMP-high throughout the colorectum in CRCs. Here, we attempted to identify a possible association between miR-31 and epigenetic features in serrated pathway, and hypothesized that miR-31 supports the "colorectal continuum" concept. We evaluated miR-31 expression, BRAF mutation and epigenetic features including CIMP status in 381 serrated lesions and 222 non-serrated adenomas and examined associations between them and tumor location (rectum; sigmoid, descending, transverse and ascending colon and cecum). A significant association was observed between high miR-31 expression and CIMP-high status in serrated lesions with BRAF mutation (p = 0.0001). In contrast, miR-31 was slightly but insignificantly associated with CIMP status in the cases with wild-type BRAF. miR-31 expression in sessile serrated adenomas (SSAs) with cytological dysplasia was higher than that in SSAs, whereas, no significant difference was observed between traditional serrated adenomas (TSAs) and TSAs with high-grade dysplasia. The frequency of miR-31, BRAF mutation CIMP-high and MLH1 methylation increased gradually from the rectum to cecum in serrated lesions. In conclusion, miR-31 expression was associated with CIMP-high status in serrated lesions with BRAF mutation. Our data also suggested that miR-31 plays an important role in SSA evolution and may be a molecule supporting the colorectal continuum. © 2014 UICC.

  3. Body size, physical activity and risk of colorectal cancer with or without the CpG island methylator phenotype (CIMP.

    Directory of Open Access Journals (Sweden)

    Laura A E Hughes

    Full Text Available BACKGROUND: We investigated how body size and physical activity influence the risk of the CpG island methylator phenotype (CIMP in colorectal cancer (CRC. METHODS: In the Netherlands Cohort Study (n = 120,852, risk factors were self-reported at baseline in 1986. After 7.3 years of follow-up, 603 cases and 4,631 sub-cohort members were available. CIMP status according to the Weisenberger markers was determined using methylation specific PCR on DNA from paraffin embedded tumor tissue. Hazard rate ratios (HR and 95% confidence intervals for CIMP (27.7% and non-CIMP (72.3% tumors were calculated according to BMI, BMI at age 20, BMI change, trouser/skirt size, height, and physical activity. RESULTS: BMI modeled per 5 kg/m(2 increase was associated with both CIMP and non-CIMP tumors, however, HRs were attenuated when additionally adjusted for trouser/skirt size. Trouser/skirt size, per 2 size increase, was associated with both tumor subtypes, even after adjustment for BMI (CIMP HR: 1.20, 95%CI: 1.01-1.43; non-CIMP HR: 1.14, 95%CI: 1.04-1.28. Height per 5 cm was associated with both tumor sub-types, but HRs were attenuated when adjusted for body weight. BMI at age 20 was positively associated with increased risk of CIMP tumors and the association was significantly less pronounced for non-CIMP tumors (P-heterogeneity = 0.01. Physical activity was inversely associated with both subtypes, but a dose-response association was observed only for non-CIMP tumors (P-trend = 0.02. CONCLUSIONS: Body size, especially central adiposity, may increase the risk of both CIMP and non-CIMP tumors. Body fat at young age may differentially influence risk. Physical activity appears to decrease the risk of CRC regardless of these molecular subtypes.

  4. Body size, physical activity and risk of colorectal cancer with or without the CpG island methylator phenotype (CIMP).

    Science.gov (United States)

    Hughes, Laura A E; Simons, Colinda C J M; van den Brandt, Piet A; Goldbohm, R Alexandra; de Goeij, Anton F; de Bruïne, Adriaan P; van Engeland, Manon; Weijenberg, Matty P

    2011-04-05

    We investigated how body size and physical activity influence the risk of the CpG island methylator phenotype (CIMP) in colorectal cancer (CRC). In the Netherlands Cohort Study (n = 120,852), risk factors were self-reported at baseline in 1986. After 7.3 years of follow-up, 603 cases and 4,631 sub-cohort members were available. CIMP status according to the Weisenberger markers was determined using methylation specific PCR on DNA from paraffin embedded tumor tissue. Hazard rate ratios (HR) and 95% confidence intervals for CIMP (27.7%) and non-CIMP (72.3%) tumors were calculated according to BMI, BMI at age 20, BMI change, trouser/skirt size, height, and physical activity. BMI modeled per 5 kg/m(2) increase was associated with both CIMP and non-CIMP tumors, however, HRs were attenuated when additionally adjusted for trouser/skirt size. Trouser/skirt size, per 2 size increase, was associated with both tumor subtypes, even after adjustment for BMI (CIMP HR: 1.20, 95%CI: 1.01-1.43; non-CIMP HR: 1.14, 95%CI: 1.04-1.28). Height per 5 cm was associated with both tumor sub-types, but HRs were attenuated when adjusted for body weight. BMI at age 20 was positively associated with increased risk of CIMP tumors and the association was significantly less pronounced for non-CIMP tumors (P-heterogeneity = 0.01). Physical activity was inversely associated with both subtypes, but a dose-response association was observed only for non-CIMP tumors (P-trend = 0.02). Body size, especially central adiposity, may increase the risk of both CIMP and non-CIMP tumors. Body fat at young age may differentially influence risk. Physical activity appears to decrease the risk of CRC regardless of these molecular subtypes.

  5. 18q loss of heterozygosity in microsatellite stable colorectal cancer is correlated with CpG island methylator phenotype-negative (CIMP-0 and inversely with CIMP-low and CIMP-high

    Directory of Open Access Journals (Sweden)

    Kirkner Gregory J

    2007-05-01

    Full Text Available Abstract Background: The CpG island methylator phenotype (CIMP with widespread promoter methylation is a distinct epigenetic phenotype in colorectal cancer, associated with microsatellite instability-high (MSI-high and BRAF mutations. 18q loss of heterozygosity (LOH commonly present in colorectal cancer with chromosomal instability (CIN is associated with global hypomethylation in tumor cell. A recent study has shown an inverse correlation between CIN and CIMP (determined by MINTs, p16, p14 and MLH1 methylation in colorectal cancer. However, no study has examined 18q LOH in relation to CIMP-high, CIMP-low (less extensive promoter methylation and CIMP-0 (CIMP-negative, determined by quantitative DNA methylation analysis. Methods: Utilizing MethyLight technology (real-time PCR, we quantified DNA methylation in 8 CIMP-specific promoters {CACNA1G, CDKN2A (p16, CRABP1, IGF2, MLH1, NEUROG1, RUNX3 and SOCS1} in 758 non-MSI-high colorectal cancers obtained from two large prospective cohorts. Using four 18q microsatellite markers (D18S55, D18S56, D18S67 and D18S487 and stringent criteria for 18q LOH, we selected 374 tumors (236 LOH-positive tumors with ≥ 2 markers showing LOH; and 138 LOH-negative tumors with ≥ 3 informative markers and no LOH. Results: CIMP-0 (0/8 methylated promoters was significantly more common in 18q LOH-positive tumors (59% = 139/236, p = 0.002 than 18q LOH-negative tumors (44% = 61/138, while CIMP-low/high (1/8–8/8 methylated promoters was significantly more common (56% in 18q LOH-negative tumors than 18q LOH-positive tumors (41%. These relations persisted after stratification by sex, location, or the status of MSI, p53 expression (by immunohistochemistry, or KRAS/BRAF mutation. Conclusion: 18q LOH is correlated positively with CIMP-0 and inversely with CIMP-low and CIMP-high. Our findings provide supporting evidence for relationship between CIMP-0 and 18q LOH as well as a molecular difference between CIMP-0 and CIMP-low in

  6. Identification of the CIMP-like subtype and aberrant methylation of members of the chromosomal segregation and spindle assembly pathways in esophageal adenocarcinoma.

    Science.gov (United States)

    Krause, Lutz; Nones, Katia; Loffler, Kelly A; Nancarrow, Derek; Oey, Harald; Tang, Yue Hang; Wayte, Nicola J; Patch, Ann Marie; Patel, Kalpana; Brosda, Sandra; Manning, Suzanne; Lampe, Guy; Clouston, Andrew; Thomas, Janine; Stoye, Jens; Hussey, Damian J; Watson, David I; Lord, Reginald V; Phillips, Wayne A; Gotley, David; Smithers, B Mark; Whiteman, David C; Hayward, Nicholas K; Grimmond, Sean M; Waddell, Nicola; Barbour, Andrew P

    2016-04-01

    The incidence of esophageal adenocarcinoma (EAC) has risen significantly over recent decades. Although survival has improved, cure rates remain poor, with <20% of patients surviving 5 years. This is the first study to explore methylome, transcriptome and ENCODE data to characterize the role of methylation in EAC. We investigate the genome-wide methylation profile of 250 samples including 125 EAC, 19 Barrett's esophagus (BE), 85 squamous esophagus and 21 normal stomach. Transcriptome data of 70 samples (48 EAC, 4 BE and 18 squamous esophagus) were used to identify changes in methylation associated with gene expression. BE and EAC showed similar methylation profiles, which differed from squamous tissue. Hypermethylated sites in EAC and BE were mainly located in CpG-rich promoters. A total of 18575 CpG sites associated with 5538 genes were differentially methylated, 63% of these genes showed significant correlation between methylation and mRNA expression levels. Pathways involved in tumorigenesis including cell adhesion, TGF and WNT signaling showed enrichment for genes aberrantly methylated. Genes involved in chromosomal segregation and spindle formation were aberrantly methylated. Given the recent evidence that chromothripsis may be a driver mechanism in EAC, the role of epigenetic perturbation of these pathways should be further investigated. The methylation profiles revealed two EAC subtypes, one associated with widespread CpG island hypermethylation overlapping H3K27me3 marks and binding sites of the Polycomb proteins. These subtypes were supported by an independent set of 89 esophageal cancer samples. The most hypermethylated tumors showed worse patient survival. © The Author 2016. Published by Oxford University Press.

  7. Reproducibility of methylated CpG typing with the Illumina MiSeq

    DEFF Research Database (Denmark)

    Kampmann, Marie-Louise; Meyer, Olivia Strunge; Greby Schmidt, Suzanne

    2017-01-01

    DNA methylation patterns may be used for identification of body fluids and for age estimation of human individuals. We evaluated some of the challenges and pitfalls of studying methylated CpG sites. We compared the methylated CpG analysis of two different methods 1) massively parallel sequencing...

  8. Relation of DNA methylation of 5'-CpG island of ACSL3 to transplacental exposure to airborne polycyclic aromatic hydrocarbons and childhood asthma.

    Directory of Open Access Journals (Sweden)

    Frederica Perera

    Full Text Available In a longitudinal cohort of approximately 700 children in New York City, the prevalence of asthma (>25% is among the highest in the US. This high risk may in part be caused by transplacental exposure to traffic-related polycyclic aromatic hydrocarbons (PAHs but biomarkers informative of PAH-asthma relationships is lacking. We here hypothesized that epigenetic marks associated with transplacental PAH exposure and/or childhood asthma risk could be identified in fetal tissues. Mothers completed personal prenatal air monitoring for PAH exposure determination. Methylation sensitive restriction fingerprinting was used to analyze umbilical cord white blood cell (UCWBC DNA of 20 cohort children. Over 30 DNA sequences were identified whose methylation status was dependent on the level of maternal PAH exposure. Six sequences were found to be homologous to known genes having one or more 5'-CpG island(s (5'-CGI. Of these, acyl-CoA synthetase long-chain family member 3 (ACSL3 exhibited the highest concordance between the extent of methylation of its 5'-CGI in UCWBCs and the level of gene expression in matched fetal placental tissues in the initial 20 cohort children. ACSL3 was therefore chosen for further investigation in a larger sample of 56 cohort children. Methylation of the ACSL3 5'-CGI was found to be significantly associated with maternal airborne PAH exposure exceeding 2.41 ng/m(3 (OR = 13.8; p<0.001; sensitivity = 75%; specificity = 82% and with a parental report of asthma symptoms in children prior to age 5 (OR = 3.9; p<0.05. Thus, if validated, methylated ACSL3 5'CGI in UCWBC DNA may be a surrogate endpoint for transplacental PAH exposure and/or a potential biomarker for environmentally-related asthma. This exploratory report provides a new blueprint for the discovery of epigenetic biomarkers relevant to other exposure assessments and/or investigations of exposure-disease relationships in birth cohorts. The results support the emerging theory of

  9. Absence of methylation of a CpG-rich region at the 5' end of the MIC2 gene on the active X, the inactive X, and the Y chromosome

    International Nuclear Information System (INIS)

    Goodfellow, P.J.; Mondello, C.; Darling, S.M.; Pym, B.; Little, P.; Goodfellow, P.N.

    1988-01-01

    The authors have identified and characterized a Hpa II tiny fragment (HTF) island associated with the promoter region of the pseudoautosomal gene MIC2. The MIC2 HTF island is unmethylated on both the active and inactive X chromosome and is similarly unmethylated on the Y chromosome. Unlike the majority of genes borne on the X chromosome, MIC2 fails to undergo X chromosome inactivation. HTF islands associated with X chromosome-liked genes that are inactivated are highly methylated on the inactive or transcriptionally silent homologue. The failure of MIC2 to undergo X chromosome inactivation correlates with the lack of methylation of HTF island at the 5' end of the gene. These results provide further evidence that DNA methylation plays an important role in the phenomenon of X chromosome inactivation

  10. CpG oligodeoxynucleotide nanomedicines for the prophylaxis or treatment of cancers, infectious diseases, and allergies.

    Science.gov (United States)

    Hanagata, Nobutaka

    2017-01-01

    Unmethylated cytosine-guanine dinucleotide-containing oligodeoxynucleotides (CpG ODNs), which are synthetic agonists of Toll-like receptor 9 (TLR9), activate humoral and cellular immunity and are being developed as vaccine adjuvants to prevent or treat cancers, infectious diseases, and allergies. Free CpG ODNs have been used in many clinical trials implemented to verify their effects. However, recent research has reported that self-assembled CpG ODNs, protein/peptide-CpG ODN conjugates, and nanomaterial-CpG ODN complexes demonstrate higher adjuvant effects than free CpG ODNs, owing to their improved uptake efficiency into cells expressing TLR9. Moreover, protein/peptide-CpG ODN conjugates and nanomaterial-CpG ODN complexes are able to deliver CpG ODNs and antigens (or allergens) to the same types of cells, which enables a higher degree of prophylaxis or therapeutic effect. In this review, the author describes recent trends in the research and development of CpG ODN nanomedicines containing self-assembled CpG ODNs, protein/peptide-CpG ODN conjugates, and nanomaterial-CpG ODN complexes, focusing mainly on the results of preclinical and clinical studies.

  11. Accounting for eXentricities: analysis of the X chromosome in GWAS reveals X-linked genes implicated in autoimmune diseases.

    Directory of Open Access Journals (Sweden)

    Diana Chang

    Full Text Available Many complex human diseases are highly sexually dimorphic, suggesting a potential contribution of the X chromosome to disease risk. However, the X chromosome has been neglected or incorrectly analyzed in most genome-wide association studies (GWAS. We present tailored analytical methods and software that facilitate X-wide association studies (XWAS, which we further applied to reanalyze data from 16 GWAS of different autoimmune and related diseases (AID. We associated several X-linked genes with disease risk, among which (1 ARHGEF6 is associated with Crohn's disease and replicated in a study of ulcerative colitis, another inflammatory bowel disease (IBD. Indeed, ARHGEF6 interacts with a gastric bacterium that has been implicated in IBD. (2 CENPI is associated with three different AID, which is compelling in light of known associations with AID of autosomal genes encoding centromere proteins, as well as established autosomal evidence of pleiotropy between autoimmune diseases. (3 We replicated a previous association of FOXP3, a transcription factor that regulates T-cell development and function, with vitiligo; and (4 we discovered that C1GALT1C1 exhibits sex-specific effect on disease risk in both IBDs. These and other X-linked genes that we associated with AID tend to be highly expressed in tissues related to immune response, participate in major immune pathways, and display differential gene expression between males and females. Combined, the results demonstrate the importance of the X chromosome in autoimmunity, reveal the potential of extensive XWAS, even based on existing data, and provide the tools and incentive to properly include the X chromosome in future studies.

  12. Distinct features between MLH1-methylated and unmethylated colorectal carcinomas with the CpG island methylator phenotype: implications in the serrated neoplasia pathway.

    Science.gov (United States)

    Kim, Jung Ho; Bae, Jeong Mo; Cho, Nam-Yun; Kang, Gyeong Hoon

    2016-03-22

    The presence or absence of MLH1 methylation may critically affect the heterogeneity of colorectal carcinoma (CRC) with the CpG island methylator phenotype (CIMP). Here, we investigated the differential characteristics of CIMP-high (CIMP-H) CRCs according to MLH1 methylation status. To further confirm the MLH1-dependent features in CIMP-H CRC, an independent analysis was performed using data from The Cancer Genome Atlas (TCGA). In our CIMP-H CRC samples, MLH1-methylated tumors were characterized by older patient age, proximal colonic location, mucinous histology, intense lymphoid reactions, RUNX3/SOCS1 promoter methylation, BRAF mutations, and microsatellite instability-high (MSI-H) status. By contrast, MLH1-unmethylated tumors were associated with earlier age of onset, increased distal colorectal localization, adverse pathologic features, and KRAS mutations. In the TCGA dataset, the MLH1-silenced CIMP-H CRC demonstrated proximal location, MSI-H status, hypermutated phenotype, and frequent BRAF mutations, but the MLH1-non-silenced CIMP-H CRC was significantly associated with high frequencies of KRAS and APC mutations. In conclusion, the differential nature of CIMP-H CRCs depends primarily on the MLH1 methylation status. Based on the current knowledge, the sessile serrated adenoma/polyp may be the major precursor of MLH1-methylated CIMP-H CRCs, whereas MLH1-unmethylated CIMP-H CRCs may develop predominantly from KRAS-mutated traditional serrated adenomas and less commonly from BRAF-mutated traditional serrated adenomas and/or sessile serrated adenomas/polyps.

  13. The origin of the RB1 imprint.

    Directory of Open Access Journals (Sweden)

    Deniz Kanber

    Full Text Available The human RB1 gene is imprinted due to a differentially methylated CpG island in intron 2. This CpG island is part of PPP1R26P1, a truncated retrocopy of PPP1R26, and serves as a promoter for an alternative RB1 transcript. We show here by in silico analyses that the parental PPP1R26 gene is present in the analysed members of Haplorrhini, which comprise Catarrhini (Old World Monkeys, Small apes, Great Apes and Human, Platyrrhini (New World Monkeys and tarsier, and Strepsirrhini (galago. Interestingly, we detected the retrocopy, PPP1R26P1, in all Anthropoidea (Catarrhini and Platyrrhini that we studied but not in tarsier or galago. Additional retrocopies are present in human and chimpanzee on chromosome 22, but their distinct composition indicates that they are the result of independent retrotransposition events. Chimpanzee and marmoset have further retrocopies on chromosome 8 and chromosome 4, respectively. To examine the origin of the RB1 imprint, we compared the methylation patterns of the parental PPP1R26 gene and its retrocopies in different primates (human, chimpanzee, orangutan, rhesus macaque, marmoset and galago. Methylation analysis by deep bisulfite sequencing showed that PPP1R26 is methylated whereas the retrocopy in RB1 intron 2 is differentially methylated in all primates studied. All other retrocopies are fully methylated, except for the additional retrocopy on marmoset chromosome 4, which is also differentially methylated. Using an informative SNP for the methylation analysis in marmoset, we could show that the differential methylation pattern of the retrocopy on chromosome 4 is allele-specific. We conclude that the epigenetic fate of a PPP1R26 retrocopy after integration depends on the DNA sequence and selective forces at the integration site.

  14. Revised genomic consensus for the hypermethylated CpG island region of the human L1 transposon and integration sites of full length L1 elements from recombinant clones made using methylation-tolerant host strains

    DEFF Research Database (Denmark)

    Crowther, P J; Doherty, J P; Linsenmeyer, M E

    1991-01-01

    preferentially from L1 members which have accumulated mutations that have removed sites of methylation. We present a revised consensus from the 5' presumptive control region of these elements. This revised consensus contains a consensus RNA polymerase III promoter which would permit the synthesis of transcripts......Efficient recovery of clones from the 5' end of the human L1 dispersed repetitive elements necessitates the use of deletion mcr- host strains since this region contains a CpG island which is hypermethylated in vivo. Clones recovered with conventional mcr+ hosts seem to have been derived...... from the 5' end of full length L1 elements. Such potential transcripts are likely to exhibit a high degree of secondary structure. In addition, we have determined the flanking sequences for 6 full length L1 elements. The majority of full length L1 clones show no convincing evidence for target site...

  15. Reinforcement learning for a biped robot based on a CPG-actor-critic method.

    Science.gov (United States)

    Nakamura, Yutaka; Mori, Takeshi; Sato, Masa-aki; Ishii, Shin

    2007-08-01

    Animals' rhythmic movements, such as locomotion, are considered to be controlled by neural circuits called central pattern generators (CPGs), which generate oscillatory signals. Motivated by this biological mechanism, studies have been conducted on the rhythmic movements controlled by CPG. As an autonomous learning framework for a CPG controller, we propose in this article a reinforcement learning method we call the "CPG-actor-critic" method. This method introduces a new architecture to the actor, and its training is roughly based on a stochastic policy gradient algorithm presented recently. We apply this method to an automatic acquisition problem of control for a biped robot. Computer simulations show that training of the CPG can be successfully performed by our method, thus allowing the biped robot to not only walk stably but also adapt to environmental changes.

  16. HOX Gene Promoter Prediction and Inter-genomic Comparison: An Evo-Devo Study

    Directory of Open Access Journals (Sweden)

    Marla A. Endriga

    2010-10-01

    Full Text Available Homeobox genes direct the anterior-posterior axis of the body plan in eukaryotic organisms. Promoter regions upstream of the Hox genes jumpstart the transcription process. CpG islands found within the promoter regions can cause silencing of these promoters. The locations of the promoter regions and the CpG islands of Homeo sapiens sapiens (human, Pan troglodytes (chimpanzee, Mus musculus (mouse, and Rattus norvegicus (brown rat are compared and related to the possible influence on the specification of the mammalian body plan. The sequence of each gene in Hox clusters A-D of the mammals considered were retrieved from Ensembl and locations of promoter regions and CpG islands predicted using Exon Finder. The predicted promoter sequences were confirmed via BLAST and verified against the Eukaryotic Promoter Database. The significance of the locations was determined using the Kruskal-Wallis test. Among the four clusters, only promoter locations in cluster B showed significant difference. HOX B genes have been linked with the control of genes that direct the development of axial morphology, particularly of the vertebral column bones. The magnitude of variation among the body plans of closely-related species can thus be partially attributed to the promoter kind, location and number, and gene inactivation via CpG methylation.

  17. CpG island methylator phenotype (CIMP) of colorectal cancer is best characterised by quantitative DNA methylation analysis and prospective cohort studies.

    Science.gov (United States)

    Ogino, S; Cantor, M; Kawasaki, T; Brahmandam, M; Kirkner, G J; Weisenberger, D J; Campan, M; Laird, P W; Loda, M; Fuchs, C S

    2006-07-01

    The concept of CpG island methylator phenotype (CIMP) is not universally accepted. Even if specific clinicopathological features have been associated with CIMP, investigators often failed to demonstrate a bimodal distribution of the number of methylated markers, which would suggest CIMP as a distinct subtype of colorectal cancer. Previous studies primarily used methylation specific polymerase chain reaction which might detect biologically insignificant low levels of methylation. To demonstrate a distinct genetic profile of CIMP colorectal cancer using quantitative DNA methylation analysis that can distinguish high from low levels of DNA methylation. We developed quantitative real time polymerase chain reaction (MethyLight) assays and measured DNA methylation (percentage of methylated reference) of five carefully selected loci (promoters of CACNA1G, CDKN2A (p16), CRABP1, MLH1, and NEUROG1) in 460 colorectal cancers from large prospective cohorts. There was a clear bimodal distribution of 80 microsatellite instability-high (MSI-H) tumours according to the number of methylated promoters, with no tumours showing 3/5 methylated loci. Thus we defined CIMP as having >or=4/5 methylated loci, and 17% (78) of the 460 tumours were classified as CIMP. CIMP was significantly associated with female sex, MSI, BRAF mutations, and wild-type KRAS. Both CIMP MSI-H tumours and CIMP microsatellite stable (MSS) tumours showed much higher frequencies of BRAF mutations (63% and 54%) than non-CIMP counterparts (non-CIMP MSI-H (0%, pCIMP MSS tumours (6.6%, pCIMP is best characterised by quantitative DNA methylation analysis. CIMP is a distinct epigenotype of colorectal cancer and may be less frequent than previously reported.

  18. CpG island methylator phenotype is an independent predictor of survival after curative resection for colorectal cancer: A prospective cohort study.

    Science.gov (United States)

    Kim, Chang Hyun; Huh, Jung Wook; Kim, Hyeong Rok; Kim, Young Jin

    2017-08-01

    The CpG island methylator phenotype (CIMP) is found in approximately 30% of colorectal cancer (CRC) cases. However, the role of CIMP status in predicting oncologic outcomes in curatively resected CRC is still unclear. Between January 2006 and December 2006, we retrospectively reviewed 157 consecutive patients who underwent curative surgery for CRC. Prognostic significance of CIMP status was evaluated using reverse transcriptase-polymerase chain reaction. CIMP-high (H) and CIMP-none/low (N/L) tumors were found in 50 cases (31.8%) and 107 cases (68.2%), respectively. CIMP-H tumors were significantly associated with female sex, colonic location, poorly/mucinous histologic type, higher T category, perineural invasion, and MSI-high status (P = 0.001). During a median of 64.5 months, tumor recurrence developed in 47 (29.9%) patients. The 5-year disease-free survival for CIMP-H and CIMP-N/L was 61.4% and 76.3% (P = 0.018). In addition, multivariate analysis showed that CIMP-H was also a significant prognostic factor (P = 0.042). When analysis was performed according to anatomical location, more marked survival differences were observed in patients with colon cancer (P = 0.026) than in patients with rectal cancer (P = 0.210). Similarly, the role of CIMP status as a prognostic indicator was more prominent in patients with stage I/II (P = 0.006) than in patients with stage III/IV CRC (P = 0.65). DNA methylation status can be considered as a useful predictor of survival after CRC surgery, particularly for patients with stage I/II disease or colon cancer. © 2017 Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons Australia, Ltd.

  19. Haplotype analysis and a novel allele-sharing method refines a chromosome 4p locus linked to bipolar affective disorder.

    Science.gov (United States)

    Le Hellard, Stephanie; Lee, Andrew J; Underwood, Sarah; Thomson, Pippa A; Morris, Stewart W; Torrance, Helen S; Anderson, Susan M; Adams, Richard R; Navarro, Pau; Christoforou, Andrea; Houlihan, Lorna M; Detera-Wadleigh, Sevilla; Owen, Michael J; Asherson, Philip; Muir, Walter J; Blackwood, Douglas H R; Wray, Naomi R; Porteous, David J; Evans, Kathryn L

    2007-03-15

    Bipolar affective disorder (BPAD) and schizophrenia (SCZ) are common conditions. Their causes are unknown, but they include a substantial genetic component. Previously, we described significant linkage of BPAD to a chromosome 4p locus within a large pedigree (F22). Others subsequently have found evidence for linkage of BPAD and SCZ to this region. We constructed high-resolution haplotypes for four linked families, calculated logarithm of the odds (LOD) scores, and developed a novel method to assess the extent of allele sharing within genes between the families. We describe an increase in the F22 LOD score for this region. Definition and comparison of the linked haplotypes allowed us to prioritize two subregions of 3.8 and 4.4 Mb. Analysis of the extent of allele sharing within these subregions identified 200 kb that shows increased allele sharing between families. Linkage of BPAD to chromosome 4p has been strengthened. Haplotype analysis in the additional linked families refined the 20-Mb linkage region. Development of a novel allele-sharing method allowed us to bridge the gap between conventional linkage and association studies. Description of a 200-kb region of increased allele sharing prioritizes this region, which contains two functional candidate genes for BPAD, SLC2A9, and WDR1, for subsequent studies.

  20. Mobilisation and remobilisation of a large archetypal pathogenicity island of uropathogenic Escherichia coli in vitro support the role of conjugation for horizontal transfer of genomic islands

    Directory of Open Access Journals (Sweden)

    Hochhut Bianca

    2011-09-01

    Full Text Available Abstract Background A substantial amount of data has been accumulated supporting the important role of genomic islands (GEIs - including pathogenicity islands (PAIs - in bacterial genome plasticity and the evolution of bacterial pathogens. Their instability and the high level sequence similarity of different (partial islands suggest an exchange of PAIs between strains of the same or even different bacterial species by horizontal gene transfer (HGT. Transfer events of archetypal large genomic islands of enterobacteria which often lack genes required for mobilisation or transfer have been rarely investigated so far. Results To study mobilisation of such large genomic regions in prototypic uropathogenic E. coli (UPEC strain 536, PAI II536 was supplemented with the mobRP4 region, an origin of replication (oriVR6K, an origin of transfer (oriTRP4 and a chloramphenicol resistance selection marker. In the presence of helper plasmid RP4, conjugative transfer of the 107-kb PAI II536 construct occured from strain 536 into an E. coli K-12 recipient. In transconjugants, PAI II536 existed either as a cytoplasmic circular intermediate (CI or integrated site-specifically into the recipient's chromosome at the leuX tRNA gene. This locus is the chromosomal integration site of PAI II536 in UPEC strain 536. From the E. coli K-12 recipient, the chromosomal PAI II536 construct as well as the CIs could be successfully remobilised and inserted into leuX in a PAI II536 deletion mutant of E. coli 536. Conclusions Our results corroborate that mobilisation and conjugal transfer may contribute to evolution of bacterial pathogens through horizontal transfer of large chromosomal regions such as PAIs. Stabilisation of these mobile genetic elements in the bacterial chromosome result from selective loss of mobilisation and transfer functions of genomic islands.

  1. Molecular dissection of a contiguous gene syndrome: Frequent submicroscopic deletions, evolutionarily conserved sequences, and a hypomethylated island in the Miller-Dieker chromosome region

    International Nuclear Information System (INIS)

    Ledbetter, D.H.; Ledbetter, S.A.; vanTuinen, P.

    1989-01-01

    The Miller-Dieker syndrome (MDS), composed of characteristic facial abnormalities and a severe neuronal migration disorder affecting the cerebral cortex, is caused by visible or submicroscopic deletions of chromosome band 17p13. Twelve anonymous DNA markers were tested against a panel of somatic cell hybrids containing 17p deletions from seven MDS patients. All patients, including three with normal karyotypes, are deleted for a variable set of 5-12 markers. Two highly polymorphic VNTR (variable number of tandem repeats) probes, YNZ22 and YNH37, are codeleted in all patients tested and make molecular diagnosis for this disorder feasible. By pulsed-field gel electrophoresis, YNZ22 and YNH37 were shown to be within 30 kilobases (kb) of each other. Cosmid clones containing both VNTR sequences were identified, and restriction mapping showed them to be 100 kb were completely deleted in all patients, providing a minimum estimate of the size of the MDS critical region. A hypomethylated island and evolutionarily conserved sequences were identified within this 100-kb region, indications of the presence of one or more expressed sequences potentially involved in the pathophysiology of this disorder. The conserved sequences were mapped to mouse chromosome 11 by using mouse-rat somatic cell hybrids, extending the remarkable homology between human chromosome 17 and mouse chromosome 11 by 30 centimorgans, into the 17p telomere region

  2. Mutational analysis of the Wolfram syndrome gene in two families with chromosome 4p-linked bipolar affective disorder.

    Science.gov (United States)

    Evans, K L; Lawson, D; Meitinger, T; Blackwood, D H; Porteous, D J

    2000-04-03

    Bipolar affective disorder (BPAD) is a complex disease with a significant genetic component. Heterozygous carriers of Wolfram syndrome (WFS) are at increased risk of psychiatric illness. A gene for WFS (WFS1) has recently been cloned and mapped to chromosome 4p, in the general region we previously reported as showing linkage to BPAD. Here we present sequence analysis of the WFS1 coding sequence in five affected individuals from two chromosome 4p-linked families. This resulted in the identification of six polymorphisms, two of which are predicted to change the amino acid sequence of the WFS1 protein, however none of the changes segregated with disease status. Am. J. Med. Genet. (Neuropsychiatr. Genet.) 96:158-160, 2000. Copyright 2000 Wiley-Liss, Inc.

  3. Borealin/Dasra B is a cell cycle-regulated chromosomal passenger protein and its nuclear accumulation is linked to poor prognosis for human gastric cancer

    International Nuclear Information System (INIS)

    Chang, J.-L.; Chen, T.-H.; Wang, C.-F.; Chiang, Y.-H.; Huang, Y.-L.; Wong, F.-H.; Chou, C.-K.; Chen, C.-M.

    2006-01-01

    Chromosomal passenger proteins including Aurora B, Survivin, and Borealin/Dasra B, also called CDCA8/FLJ10468, are known to play crucial roles during mitosis and cell division. Inappropriate chromosomal segregation and cell division may cause auneuploidy leading to cancer. However, it is still unclear how the expression of chromosomal passenger proteins may be linked to cancer. In this study, we demonstrated that Borealin is a cell cycle-regulated gene and is upregulated at G2-M phases of the cell cycle. We showed that Borealin interacts with Survivin but not with Aurora B. The interaction domain of Survivin in Borealin was mapped to the N-terminal 92 amino-acid residues of Borealin. To examine the linkage between expression of Borealin and cancer, we performed immunohistochemistry analysis using anti-Borealin specific antibody on the paraffin-embedded gastric cancer tissues. Our results showed that Borealin expression is significantly correlated with Survivin (P = 0.003) and Ki67 (P = 0.007) in gastric cancer. Interestingly, an increased nuclear Borealin level reveals borderline association with a poor survival rate (P = 0.047). Taken together, our results demonstrated that Borealin is a cell cycle-regulated chromosomal passenger protein and its aberrant expression is linked to a poor prognosis for gastric cancer

  4. Extramural vascular invasion and response to neoadjuvant chemoradiotherapy in rectal cancer: Influence of the CpG island methylator phenotype.

    Science.gov (United States)

    Williamson, Jeremy Stuart; Jones, Huw Geraint; Williams, Namor; Griffiths, Anthony Paul; Jenkins, Gareth; Beynon, John; Harris, Dean Anthony

    2017-05-15

    To identify whether CpG island methylator phenotype (CIMP) is predictive of response to neoadjuvant chemoradiotherapy (NACRT) and outcomes in rectal cancer. Patients undergoing NACRT and surgical resection for rectal cancer in a tertiary referral centre between 2002-2011 were identified. Pre-treatment tumour biopsies were analysed for CIMP status (high, intermediate or low) using methylation specific PCR. KRAS and BRAF status were also determined using pyrosequencing analysis. Clinical information was extracted from case records and cancer services databases. Response to radiotherapy was measured by tumour regression scores determined upon histological examination of the resected specimen. The relationship between these molecular features, response to NACRT and oncological outcomes were analysed. There were 160 patients analysed with a median follow-up time of 46.4 mo. Twenty-one (13%) patients demonstrated high levels of CIMP methylation (CIMP-H) and this was significantly associated with increased risk of extramural vascular invasion (EMVI) compared with CIMP-L [8/21 (38%) vs 15/99 (15%), P = 0.028]. CIMP status was not related to tumour regression after radiotherapy or survival, however EMVI was significantly associated with adverse survival ( P CIMP status was significantly associated with KRAS mutation ( P = 0.01). There were 14 (9%) patients with a pathological complete response (pCR) compared to 116 (73%) patients having no or minimal regression after neoadjuvant chemoradiotherapy. Those patients with pCR had median survival of 106 mo compared to 65.8 mo with minimal regression, although this was not statistically significant ( P = 0.26). Binary logistic regression analysis of the relationship between EMVI and other prognostic features revealed, EMVI positivity was associated with poor overall survival, advanced "T" stage and CIMP-H but not nodal status, age, sex, KRAS mutation status and presence of local or systemic recurrence. We report a novel

  5. Pathogenicity island mobility and gene content.

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Kelly Porter

    2013-10-01

    Key goals towards national biosecurity include methods for analyzing pathogens, predicting their emergence, and developing countermeasures. These goals are served by studying bacterial genes that promote pathogenicity and the pathogenicity islands that mobilize them. Cyberinfrastructure promoting an island database advances this field and enables deeper bioinformatic analysis that may identify novel pathogenicity genes. New automated methods and rich visualizations were developed for identifying pathogenicity islands, based on the principle that islands occur sporadically among closely related strains. The chromosomally-ordered pan-genome organizes all genes from a clade of strains; gaps in this visualization indicate islands, and decorations of the gene matrix facilitate exploration of island gene functions. A %E2%80%9Clearned phyloblocks%E2%80%9D method was developed for automated island identification, that trains on the phylogenetic patterns of islands identified by other methods. Learned phyloblocks better defined termini of previously identified islands in multidrug-resistant Klebsiella pneumoniae ATCC BAA-2146, and found its only antibiotic resistance island.

  6. Sex Reversal and Comparative Data Undermine the W Chromosome and Support Z-linked DMRT1 as the Regulator of Gonadal Sex Differentiation in Birds.

    Science.gov (United States)

    Hirst, Claire E; Major, Andrew T; Ayers, Katie L; Brown, Rosie J; Mariette, Mylene; Sackton, Timothy B; Smith, Craig A

    2017-09-01

    The exact genetic mechanism regulating avian gonadal sex differentiation has not been completely resolved. The most likely scenario involves a dosage mechanism, whereby the Z-linked DMRT1 gene triggers testis development. However, the possibility still exists that the female-specific W chromosome may harbor an ovarian determining factor. In this study, we provide evidence that the universal gene regulating gonadal sex differentiation in birds is Z-linked DMRT1 and not a W-linked (ovarian) factor. Three candidate W-linked ovarian determinants are HINTW, female-expressed transcript 1 (FET1), and female-associated factor (FAF). To test the association of these genes with ovarian differentiation in the chicken, we examined their expression following experimentally induced female-to-male sex reversal using the aromatase inhibitor fadrozole (FAD). Administration of FAD on day 3 of embryogenesis induced a significant loss of aromatase enzyme activity in female gonads and masculinization. However, expression levels of HINTW, FAF, and FET1 were unaltered after experimental masculinization. Furthermore, comparative analysis showed that FAF and FET1 expression could not be detected in zebra finch gonads. Additionally, an antibody raised against the predicted HINTW protein failed to detect it endogenously. These data do not support a universal role for these genes or for the W sex chromosome in ovarian development in birds. We found that DMRT1 (but not the recently identified Z-linked HEMGN gene) is male upregulated in embryonic zebra finch and emu gonads, as in the chicken. As chicken, zebra finch, and emu exemplify the major evolutionary clades of birds, we propose that Z-linked DMRT1, and not the W sex chromosome, regulates gonadal sex differentiation in birds. Copyright © 2017 Endocrine Society.

  7. The Use of Chlorhexidine/n-Propyl Gallate (CPG) as an Ambient-Temperature Urine Preservative

    Science.gov (United States)

    Nillen, Jeannie L.; Smith, Scott M.

    2003-01-01

    A safe, effective ambient temperature urine preservative, chlorhexidine/n-propyl gallate (CPG), has been formulated for use during spacefli ght that reduces the effects of oxidation and bacterial contamination on sample integrity while maintaining urine pH. The ability of this preservative to maintain stability of nine key analytes was evaluated for a period of one year. CPG effectively maintained stability of a mmonia, total nitrogen, 3-methylhistidine, chloride, sodium, potassiu m, and urea; however, creatinine and osmolality were not preserved by CPG. These data indicate that CPG offers prolonged room-temperature storage for multiple urine analytes, reducing the requirements for f rozen urine storage on future spaceflights. Iii medical applications on Earth, this technology can allow urine samples to be collected in remote settings and eliminate the need to ship frozen samples.

  8. Prion disease resembling frontotemporal dementia and parkinsonism linked to chromosome 17

    Directory of Open Access Journals (Sweden)

    Nitrini Ricardo

    2001-01-01

    Full Text Available OBJECTIVE: To compare the clinical features of a familial prion disease with those of frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17. BACKGROUND: Prion diseases are not usually considered in the differential diagnosis of FTDP-17, since familial Creutzfeldt-Jakob disease (CJD, the most common inherited prion disease, often manifests as a rapidly progressive dementia. Conversely, FTDP-17 usually has an insidious onset in the fifth decade, with abnormal behavior and parkinsonian features. METHOD: We present the clinical features of 12 patients from a family with CJD associated with a point mutation at codon 183 of the prion protein gene. RESULTS: The mean age at onset was 44.0 ± 3.7; the duration of the symptoms until death ranged from two to nine years. Behavioral disturbances were the predominant presenting symptoms. Nine patients were first seen by psychiatrists. Eight patients manifested parkinsonian signs. CONCLUSION: These clinical features bear a considerable resemblance to those described in FTDP-17.

  9. Proteus genomic island 1 (PGI1), a new resistance genomic island from two Proteus mirabilis French clinical isolates.

    Science.gov (United States)

    Siebor, Eliane; Neuwirth, Catherine

    2014-12-01

    To analyse the genetic environment of the antibiotic resistance genes in two clinical Proteus mirabilis isolates resistant to multiple antibiotics. PCR, gene walking and whole-genome sequencing were used to determine the sequence of the resistance regions, the surrounding genetic structure and the flanking chromosomal regions. A genomic island of 81.1 kb named Proteus genomic island 1 (PGI1) located at the 3'-end of trmE (formerly known as thdF) was characterized. The large MDR region of PGI1 (55.4 kb) included a class 1 integron (aadB and aadA2) and regions deriving from several transposons: Tn2 (blaTEM-135), Tn21, Tn6020-like transposon (aphA1b), a hybrid Tn502/Tn5053 transposon, Tn501, a hybrid Tn1696/Tn1721 transposon [tetA(A)] carrying a class 1 integron (aadA1) and Tn5393 (strA and strB). Several ISs were also present (IS4321, IS1R and IS26). The PGI1 backbone (25.7 kb) was identical to that identified in Salmonella Heidelberg SL476 and shared some identity with the Salmonella genomic island 1 (SGI1) backbone. An IS26-mediated recombination event caused the division of the MDR region into two parts separated by a large chromosomal DNA fragment of 197 kb, the right end of PGI1 and this chromosomal sequence being in inverse orientation. PGI1 is a new resistance genomic island from P. mirabilis belonging to the same island family as SGI1. The role of PGI1 in the spread of antimicrobial resistance genes among Enterobacteriaceae of medical importance needs to be evaluated. © The Author 2014. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  10. Prognostic value of CpG island methylator phenotype among colorectal cancer patients: a systematic review and meta-analysis.

    Science.gov (United States)

    Juo, Y Y; Johnston, F M; Zhang, D Y; Juo, H H; Wang, H; Pappou, E P; Yu, T; Easwaran, H; Baylin, S; van Engeland, M; Ahuja, N

    2014-12-01

    Divergent findings regarding the prognostic value of CpG island methylator phenotype (CIMP) in colorectal cancer (CRC) patients exist in current literature. We aim to review data from published studies in order to examine the association between CIMP and CRC prognosis. A comprehensive search for studies reporting disease-free survival (DFS), overall survival (OS), or cancer-specific mortality of CRC patients stratified by CIMP is carried out. Study findings are summarized descriptively and quantitatively, using adjusted hazard ratios (HRs) as summary statistics. Thirty-three studies reporting survival in 10 635 patients are included for review. Nineteen studies provide data suitable for meta-analysis. The definition of CIMP regarding gene panel, marker threshold, and laboratory method varies across studies. Pooled analysis shows that CIMP is significantly associated with shorter DFS (pooled HR estimate 1.45; 95% confidence interval (CI) 1.07-1.97, Q = 3.95, I(2) = 0%) and OS (pooled HR estimate 1.43; 95% CI 1.18-1.73, Q = 4.03, I(2) = 0%) among CRC patients irrespective of microsatellite instability (MSI) status. Subgroup analysis of microsatellite stable (MSS) CRC patients also shows significant association between shorter OS (pooled HR estimate 1.37; 95% CI 1.12-1.68, Q = 4.45, I(2) = 33%) and CIMP. Seven studies have explored CIMP's value as a predictive factor on stage II and III CRC patient's DFS after receiving adjuvant 5-fluorouracil (5-FU) therapy: of these, four studies showed that adjuvant chemotherapy conferred a DFS benefit among CIMP(+) patients, one concluded to the contrary, and two found no significant correlation. Insufficient data was present for statistical synthesis of CIMP's predictive value among CRC patients receiving adjuvant 5-FU therapy. CIMP is independently associated with significantly worse prognosis in CRC patients. However, CIMP's value as a predictive factor in assessing whether adjuvant 5-FU therapy will confer additional survival

  11. Physiological, anatomical and genetic identification of CPG neurons in the developing mammalian spinal cord

    DEFF Research Database (Denmark)

    Kiehn, Ole; Butt, Simon J.B.

    2003-01-01

    . These latter experiments have defined EphA4 as a molecular marker for mammalian excitatory hindlimb CPG neurons. We also review genetic approaches that can be applied to the mouse spinal cord. These include methods for identifying sub-populations of neurons by genetically encoded reporters, techniques to trace...... network connectivity with cell-specific genetically encoded tracers, and ways to selectively ablate or eliminate neuron populations from the CPG. We propose that by applying a multidisciplinary approach it will be possible to understand the network structure of the mammalian locomotor CPG...

  12. Effect of the assignment of ancestral CpG state on the estimation of nucleotide substitution rates in mammals

    Directory of Open Access Journals (Sweden)

    Keightley Peter D

    2008-09-01

    Full Text Available Abstract Background Molecular evolutionary studies in mammals often estimate nucleotide substitution rates within and outside CpG dinucleotides separately. Frequently, in alignments of two sequences, the division of sites into CpG and non-CpG classes is based simply on the presence or absence of a CpG dinucleotide in either sequence, a procedure that we refer to as CpG/non-CpG assignment. Although it likely that this procedure is biased, it is generally assumed that the bias is negligible if species are very closely related. Results Using simulations of DNA sequence evolution we show that assignment of the ancestral CpG state based on the simple presence/absence of the CpG dinucleotide can seriously bias estimates of the substitution rate, because many true non-CpG changes are misassigned as CpG. Paradoxically, this bias is most severe between closely related species, because a minimum of two substitutions are required to misassign a true ancestral CpG site as non-CpG whereas only a single substitution is required to misassign a true ancestral non-CpG site as CpG in a two branch tree. We also show that CpG misassignment bias differentially affects fourfold degenerate and noncoding sites due to differences in base composition such that fourfold degenerate sites can appear to be evolving more slowly than noncoding sites. We demonstrate that the effects predicted by our simulations occur in a real evolutionary setting by comparing substitution rates estimated from human-chimp coding and intronic sequence using CpG/non-CpG assignment with estimates derived from a method that is largely free from bias. Conclusion Our study demonstrates that a common method of assigning sites into CpG and non CpG classes in pairwise alignments is seriously biased and recommends against the adoption of ad hoc methods of ancestral state assignment.

  13. Synergy of anti-CD40, CpG and MPL in activation of mouse macrophages.

    Science.gov (United States)

    Shi, Yongyu; Felder, Mildred A R; Sondel, Paul M; Rakhmilevich, Alexander L

    2015-08-01

    Activation of macrophages is a prerequisite for their antitumor effects. Several reagents, including agonistic anti-CD40 monoclonal antibody (anti-CD40), CpG oligodeoxynucleotides (CpG) and monophosphoryl lipid A (MPL), can stimulate activation of macrophages. Our previous studies showed synergy between anti-CD40 and CpG and between anti-CD40 and MPL in macrophage activation and antitumor efficacy in mice. In the present study, we asked whether there was synergy among these three reagents. The activation of adherent peritoneal exudate cells (PEC) obtained from mice injected with anti-CD40 and then treated with CpG and/or MPL in vitro was determined by their ability to suppress proliferation of tumor cells and to produce various cytokines and chemokines in vitro. Cell sorting and histology followed by functional testing showed that macrophages were the main cell population in PEC activated by CD40 ligation in vivo. A combination of anti-CD40, CpG or MPL activated PEC to suppress proliferation of B16 cells and produce nitric oxide far greater than the single reagents or any of the double combinations of these reagents. In addition, the combination of all three reagents activated PEC to secrete IL-12, IFN-γ and MCP-1 to a greater degree than any single reagent or any two combined reagents. These results demonstrate that macrophages can be synergistically activated by anti-CD40, CpG and MPL, suggesting that this novel combined approach might be further investigated as potential cancer therapy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Synergy of anti-CD40, CpG and MPL in activation of mouse macrophages

    Science.gov (United States)

    Shi, Yongyu; Felder, Mildred A.R.; Sondel, Paul M.; Rakhmilevich, Alexander L.

    2015-01-01

    Activation of macrophages is a prerequisite for their antitumor effects. Several reagents, including agonistic anti-CD40 monoclonal antibody (anti-CD40), CpG oligodeoxynucleotides (CpG) and monophosphoryl lipid A (MPL), can stimulate activation of macrophages. Our previous studies showed synergy between anti-CD40 and CpG and between anti-CD40 and MPL in macrophage activation and antitumor efficacy in mice. In the present study, we asked whether there was synergy among these three reagents. The activation of adherent peritoneal exudate cells (PEC) obtained from mice injected with anti-CD40 and then treated with CpG and/or MPL in vitro was determined by their ability to suppress proliferation of tumor cells and to produce various cytokines and chemokines in vitro. Cell sorting and histology followed by functional testing showed that macrophages were the main cell population in PEC activated by CD40 ligation in vivo. A combination of anti-CD40, CpG or MPL activated PEC to suppress proliferation of B16 cells and produce nitric oxide far greater than the single reagents or any of the double combinations of these reagents. In addition, the combination of all three reagents activated PEC to secrete IL-12, IFN-γ and MCP-1 to a greater degree than any single reagent or any two combined reagents. These results demonstrate that macrophages can be synergistically activated by anti-CD40, CpG and MPL, suggesting that this novel combined approach might be further investigated as potential cancer therapy. PMID:25829245

  15. DNA-damage response during mitosis induces whole-chromosome missegregation.

    Science.gov (United States)

    Bakhoum, Samuel F; Kabeche, Lilian; Murnane, John P; Zaki, Bassem I; Compton, Duane A

    2014-11-01

    Many cancers display both structural (s-CIN) and numerical (w-CIN) chromosomal instabilities. Defective chromosome segregation during mitosis has been shown to cause DNA damage that induces structural rearrangements of chromosomes (s-CIN). In contrast, whether DNA damage can disrupt mitotic processes to generate whole chromosomal instability (w-CIN) is unknown. Here, we show that activation of the DNA-damage response (DDR) during mitosis selectively stabilizes kinetochore-microtubule (k-MT) attachments to chromosomes through Aurora-A and PLK1 kinases, thereby increasing the frequency of lagging chromosomes during anaphase. Inhibition of DDR proteins, ATM or CHK2, abolishes the effect of DNA damage on k-MTs and chromosome segregation, whereas activation of the DDR in the absence of DNA damage is sufficient to induce chromosome segregation errors. Finally, inhibiting the DDR during mitosis in cancer cells with persistent DNA damage suppresses inherent chromosome segregation defects. Thus, the DDR during mitosis inappropriately stabilizes k-MTs, creating a link between s-CIN and w-CIN. The genome-protective role of the DDR depends on its ability to delay cell division until damaged DNA can be fully repaired. Here, we show that when DNA damage is induced during mitosis, the DDR unexpectedly induces errors in the segregation of entire chromosomes, thus linking structural and numerical chromosomal instabilities. ©2014 American Association for Cancer Research.

  16. Natural Selection Reduced Diversity on Human Y Chromosomes

    Science.gov (United States)

    Wilson Sayres, Melissa A.; Lohmueller, Kirk E.; Nielsen, Rasmus

    2014-01-01

    The human Y chromosome exhibits surprisingly low levels of genetic diversity. This could result from neutral processes if the effective population size of males is reduced relative to females due to a higher variance in the number of offspring from males than from females. Alternatively, selection acting on new mutations, and affecting linked neutral sites, could reduce variability on the Y chromosome. Here, using genome-wide analyses of X, Y, autosomal and mitochondrial DNA, in combination with extensive population genetic simulations, we show that low observed Y chromosome variability is not consistent with a purely neutral model. Instead, we show that models of purifying selection are consistent with observed Y diversity. Further, the number of sites estimated to be under purifying selection greatly exceeds the number of Y-linked coding sites, suggesting the importance of the highly repetitive ampliconic regions. While we show that purifying selection removing deleterious mutations can explain the low diversity on the Y chromosome, we cannot exclude the possibility that positive selection acting on beneficial mutations could have also reduced diversity in linked neutral regions, and may have contributed to lowering human Y chromosome diversity. Because the functional significance of the ampliconic regions is poorly understood, our findings should motivate future research in this area. PMID:24415951

  17. Endogenous sunk costs and the geographic differences in the market structures of CPG Categories

    NARCIS (Netherlands)

    Bronnenberg, B.J.; Dhar, S.; Dube, J.P.

    2011-01-01

    We describe the industrial market structure of CPG categories. The analysis uses a unique database spanning 31 consumer package goods (CPG) categories, 39 months, and the 50 largest US metropolitan markets. We organize our description of market structure around the notion that firms can improve

  18. A CpG oligonucleotide can protect mice from a low aerosol challenge dose of Burkholderia mallei.

    Science.gov (United States)

    Waag, David M; McCluskie, Michael J; Zhang, Ningli; Krieg, Arthur M

    2006-03-01

    Treatment with an oligodeoxynucleotide (ODN) containing CPG motifs (CpG ODN 7909) was found to protect BALB/c mice from lung infection or death after aerosol challenge with Burkholderia mallei. Protection was associated with enhanced levels of gamma interferon (IFN-gamma)-inducible protein 10, interleukin-12 (IL-12), IFN-gamma, and IL-6. Preexposure therapy with CpG ODNs may protect victims of a biological attack from glanders.

  19. Know Your Chromosomes

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 1; Issue 3. Know Your Chromosomes The Strong Holds of Family Trees. Vani Brahmachari. Series Article Volume 1 Issue 3 March 1996 pp 30-38. Fulltext. Click here to view fulltext PDF. Permanent link:

  20. Clinical utility of the X-chromosome array.

    Science.gov (United States)

    Zarate, Yuri A; Dwivedi, Alka; Bartel, Frank O; Bellomo, M Allison; Cathey, Sara S; Champaigne, Neena L; Clarkson, L Kate; Dupont, Barbara R; Everman, David B; Geer, Joseph S; Gordon, Barbara C; Lichty, Angie W; Lyons, Michael J; Rogers, R Curtis; Saul, Robert A; Schroer, Richard J; Skinner, Steven A; Stevenson, Roger E

    2013-01-01

    Previous studies have limited the use of specific X-chromosome array designed platforms to the evaluation of patients with intellectual disability. In this retrospective analysis, we reviewed the clinical utility of an X-chromosome array in a variety of scenarios. We divided patients according to the indication for the test into four defined categories: (1) autism spectrum disorders and/or developmental delay and/or intellectual disability (ASDs/DD/ID) with known family history of neurocognitive disorders; (2) ASDs/DD/ID without known family history of neurocognitive disorders; (3) breakpoint definition of an abnormality detected by a different cytogenetic test; and (4) evaluation of suspected or known X-linked conditions. A total of 59 studies were ordered with 27 copy number variants detected in 25 patients (25/59 = 42%). The findings were deemed pathogenic/likely pathogenic (16/59 = 27%), benign (4/59 = 7%) or uncertain (7/59 = 12%). We place particular emphasis on the utility of this test for the diagnostic evaluation of families affected with X-linked conditions and how it compares to whole genome arrays in this setting. In conclusion, the X-chromosome array frequently detects genomic alterations of the X chromosome and it has advantages when evaluating some specific X-linked conditions. However, careful interpretation and correlation with clinical findings is needed to determine the significance of such changes. When the X-chromosome array was used to confirm a suspected X-linked condition, it had a yield of 63% (12/19) and was useful in the evaluation and risk assessment of patients and families. Copyright © 2012 Wiley Periodicals, Inc.

  1. Single cell Hi-C reveals cell-to-cell variability in chromosome structure

    Science.gov (United States)

    Schoenfelder, Stefan; Yaffe, Eitan; Dean, Wendy; Laue, Ernest D.; Tanay, Amos; Fraser, Peter

    2013-01-01

    Large-scale chromosome structure and spatial nuclear arrangement have been linked to control of gene expression and DNA replication and repair. Genomic techniques based on chromosome conformation capture assess contacts for millions of loci simultaneously, but do so by averaging chromosome conformations from millions of nuclei. Here we introduce single cell Hi-C, combined with genome-wide statistical analysis and structural modeling of single copy X chromosomes, to show that individual chromosomes maintain domain organisation at the megabase scale, but show variable cell-to-cell chromosome territory structures at larger scales. Despite this structural stochasticity, localisation of active gene domains to boundaries of territories is a hallmark of chromosomal conformation. Single cell Hi-C data bridge current gaps between genomics and microscopy studies of chromosomes, demonstrating how modular organisation underlies dynamic chromosome structure, and how this structure is probabilistically linked with genome activity patterns. PMID:24067610

  2. Birth and death of genes linked to chromosomal inversion

    Science.gov (United States)

    Furuta, Yoshikazu; Kawai, Mikihiko; Yahara, Koji; Takahashi, Noriko; Handa, Naofumi; Tsuru, Takeshi; Oshima, Kenshiro; Yoshida, Masaru; Azuma, Takeshi; Hattori, Masahira; Uchiyama, Ikuo; Kobayashi, Ichizo

    2011-01-01

    The birth and death of genes is central to adaptive evolution, yet the underlying genome dynamics remain elusive. The availability of closely related complete genome sequences helps to follow changes in gene contents and clarify their relationship to overall genome organization. Helicobacter pylori, bacteria in our stomach, are known for their extreme genome plasticity through mutation and recombination and will make a good target for such an analysis. In comparing their complete genome sequences, we found that gain and loss of genes (loci) for outer membrane proteins, which mediate host interaction, occurred at breakpoints of chromosomal inversions. Sequence comparison there revealed a unique mechanism of DNA duplication: DNA duplication associated with inversion. In this process, a DNA segment at one chromosomal locus is copied and inserted, in an inverted orientation, into a distant locus on the same chromosome, while the entire region between these two loci is also inverted. Recognition of this and three more inversion modes, which occur through reciprocal recombination between long or short sequence similarity or adjacent to a mobile element, allowed reconstruction of synteny evolution through inversion events in this species. These results will guide the interpretation of extensive DNA sequencing results for understanding long- and short-term genome evolution in various organisms and in cancer cells. PMID:21212362

  3. High CpG island methylation ofp16 gene and loss of p16 protein ...

    Indian Academy of Sciences (India)

    Navya

    :Tetralogy of Fallot;p16 gene;p16 protein;CpG islands;Methylation;Promoter regions ... of congenital heart disease, as well as the exclusion of previous history of ..... malignant progression of oral epithelial dysplasia: a prospective cohort study.

  4. Reassignment of Drosophila willistoni Genome Scaffolds to Chromosome II Arms

    OpenAIRE

    Garcia, Carolina; Delprat, Alejandra; Ruiz, Alfredo; Valente, Vera L. S.

    2015-01-01

    Drosophila willistoni is a geographically widespread Neotropical species. The genome of strain Gd-H4-1 from Guadeloupe Island (Caribbean) was sequenced in 2007 as part of the 12 Drosophila Genomes Project. The assembled scaffolds were joined based on conserved linkage and assigned to polytene chromosomes based on a handful of genetic and physical markers. This paucity of markers was particularly striking in the metacentric chromosome II, comprised two similarly sized arms, IIL and IIR, tradit...

  5. Chromosomal instability can be induced by the formation of breakage-prone chromosome rearrangement junctions

    International Nuclear Information System (INIS)

    Allen, R.N.; Ritter, L.; Moore, S.R.; Grosovsky, A.J.

    2003-01-01

    Full text: Studies in our lab have led to the hypothesis that chromosomal rearrangements can generate novel breakage-prone sites, resulting in chromosomal instability acting predominantly in cis. For example, specific breakage of large blocks of centromeric region heterochromatin on chromosome 16q by treatment with 2,6-diaminopurine (DAP) is associated with repeated rearrangement of chromosome 16q during outgrowth of DAP-treated clones, thereby establishing a link between the initial site of damage and the occurrence of persistent chromosomal instability. Similarly, karyotypic analysis of gamma ray induced instability demonstrated that chromosomal rearrangements in sub-clones were significantly clustered near the site of previously identified chromosomal rearrangement junctions in unstable parental clones. This study investigates the hypothesis that integration of transfected sequences into host chromosomes could create breakage-prone junction regions and persistent genomic instability without exposure to DNA-damage agents. These junctions may mimic the unstable chromosomal rearrangements induced by DAP or radiation, and thus provide a test of the broader hypothesis that instability can to some extent be attributed to the formation of novel chromosomal breakage hot spots. These experiments were performed using human-hamster hybrid AL cells containing a single human chromosome 11, which was used to monitor instability in a chromosomal painting assay. AL cells were transfected with a 2.5 Kb fragment containing multiple copies of the 180 bp human alpha heterochromatic repeat, which resulted in chromosomal instability in 41% of the transfected clones. Parallel exposure to gamma-radiation resulted in a similar level of chromosomal instability, although control transfections with plasmid alone did not lead to karyotypic instability. Chromosomal instability induced by integration of alpha heterochromatic repeats was also frequently associated with delayed reproductive

  6. The effect of TLR9 agonist CpG oligodeoxynucleotides on the intestinal immune response of cobia (Rachycentron canadum).

    Science.gov (United States)

    Byadgi, Omkar; Puteri, Dinda; Lee, Jai-Wei; Chang, Tsung-Chou; Lee, Yan-Horn; Chu, Chun-Yen; Cheng, Ta-Chih

    2014-01-01

    Cytosine-guanine oligodeoxynucleotide (CpG ODN) motifs of bacterial DNA are recognized through toll-like receptor 9 (TLR9) and are potent activators of innate immunity. However, the interaction between TLR9 and CpG ODN in aquatic species has not been well characterized. Hence, cobia TLR9 isoform B (RCTLR9B) was cloned and its expression and induction in intestine were investigated. RCTLR9B cDNA consists of 3113bp encoding 1009 amino acids containing three regions, leucine rich repeats, transmembrane domain, and toll/interleukin-1 receptor (TIR) domain. Intraperitoneal injection of CpG ODN 2395 upregulated RCTLR9 A and B and MyD88 and also induced the expressions of Mx, chemokine CC, and interleukin IL-1 β . Cobia intraperitoneally injected with CpG ODN 1668 and 2395 had increased survival rates after challenge with Photobacterium damselae subsp. piscicida. In addition, formulation of CpG ODN with formalin-killed bacteria (FKB) and aluminum hydroxide gel significantly increased expressions of RCTLR9 A (50 folds) and B (30 folds) isoforms at 10 dpi (CpG ODN 1668) and MyD88 (21 folds) at 6 dpv (CpG ODN 2395). Subsequently, IL-1 β increased at 6 dpv in 1668 group. No histopathological damage and inflammatory responses were observed in the injected cobia. Altogether, these results facilitate CpG ODNs as an adjuvant to increase bacterial disease resistance and efficacy of vaccines in cobia.

  7. The Effect of TLR9 Agonist CpG Oligodeoxynucleotides on the Intestinal Immune Response of Cobia (Rachycentron canadum

    Directory of Open Access Journals (Sweden)

    Omkar Byadgi

    2014-01-01

    Full Text Available Cytosine-guanine oligodeoxynucleotide (CpG ODN motifs of bacterial DNA are recognized through toll-like receptor 9 (TLR9 and are potent activators of innate immunity. However, the interaction between TLR9 and CpG ODN in aquatic species has not been well characterized. Hence, cobia TLR9 isoform B (RCTLR9B was cloned and its expression and induction in intestine were investigated. RCTLR9B cDNA consists of 3113bp encoding 1009 amino acids containing three regions, leucine rich repeats, transmembrane domain, and toll/interleukin-1 receptor (TIR domain. Intraperitoneal injection of CpG ODN 2395 upregulated RCTLR9 A and B and MyD88 and also induced the expressions of Mx, chemokine CC, and interleukin IL-1β. Cobia intraperitoneally injected with CpG ODN 1668 and 2395 had increased survival rates after challenge with Photobacterium damselae subsp. piscicida. In addition, formulation of CpG ODN with formalin-killed bacteria (FKB and aluminum hydroxide gel significantly increased expressions of RCTLR9 A (50 folds and B (30 folds isoforms at 10 dpi (CpG ODN 1668 and MyD88 (21 folds at 6 dpv (CpG ODN 2395. Subsequently, IL-1β increased at 6 dpv in 1668 group. No histopathological damage and inflammatory responses were observed in the injected cobia. Altogether, these results facilitate CpG ODNs as an adjuvant to increase bacterial disease resistance and efficacy of vaccines in cobia.

  8. GenBank blastx search result: AK241034 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK241034 J065058O11 AL020991.1 HS884M20 Human DNA sequence from clone RP5-884M20 on chromosome Xp11.21 Contains the ALAS2 gene for aminolevulinate, delta-, synthase 2 (sideroblastic/hypochromic anemia), the APEX2 gene for APEX nuclease (apurinic/apyrimidinic endonuclease) 2, the 5' end of the PFKFB1 gene for 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 1 and a CpG island, complete sequence. PRI 2e-34 1 ...

  9. Molecular evolution of a Y chromosome to autosome gene duplication in Drosophila.

    Science.gov (United States)

    Dyer, Kelly A; White, Brooke E; Bray, Michael J; Piqué, Daniel G; Betancourt, Andrea J

    2011-03-01

    In contrast to the rest of the genome, the Y chromosome is restricted to males and lacks recombination. As a result, Y chromosomes are unable to respond efficiently to selection, and newly formed Y chromosomes degenerate until few genes remain. The rapid loss of genes from newly formed Y chromosomes has been well studied, but gene loss from highly degenerate Y chromosomes has only recently received attention. Here, we identify and characterize a Y to autosome duplication of the male fertility gene kl-5 that occurred during the evolution of the testacea group species of Drosophila. The duplication was likely DNA based, as other Y-linked genes remain on the Y chromosome, the locations of introns are conserved, and expression analyses suggest that regulatory elements remain linked. Genetic mapping reveals that the autosomal copy of kl-5 resides on the dot chromosome, a tiny autosome with strongly suppressed recombination. Molecular evolutionary analyses show that autosomal copies of kl-5 have reduced polymorphism and little recombination. Importantly, the rate of protein evolution of kl-5 has increased significantly in lineages where it is on the dot versus Y linked. Further analyses suggest this pattern is a consequence of relaxed purifying selection, rather than adaptive evolution. Thus, although the initial fixation of the kl-5 duplication may have been advantageous, slightly deleterious mutations have accumulated in the dot-linked copies of kl-5 faster than in the Y-linked copies. Because the dot chromosome contains seven times more genes than the Y and is exposed to selection in both males and females, these results suggest that the dot suffers the deleterious effects of genetic linkage to more selective targets compared with the Y chromosome. Thus, a highly degenerate Y chromosome may not be the worst environment in the genome, as is generally thought, but may in fact be protected from the accumulation of deleterious mutations relative to other nonrecombining

  10. CpG Island Methylator Phenotype is Associated With Response to Adjuvant Irinotecan-Based Therapy for Stage 3 Colon Cancer

    Science.gov (United States)

    Shiovitz, Stacey; Bertagnolli, Monica M.; Renfro, Lindsay A.; Nam, Eunmi; Foster, Nathan R.; Dzieciatkowski, Slavomir; Luo, Yanxin; Lao, Victoria Valinluck; Monnat, Raymond J.; Emond, Mary J.; Maizels, Nancy; Niedzwiecki, Donna; Goldberg, Richard M.; Saltz, Leonard B.; Venook, Alan; Warren, Robert S.; Grady, William M.

    2014-01-01

    BACKGROUND & AIMS The CpG island methylator phenotype (CIMP), defined by a high frequency of aberrantly methylated genes, is a characteristic of a subclass of colon tumors with distinct clinical and molecular features. Cohort studies have produced conflicting results on responses of CIMP-positive tumors to chemotherapy. We assessed the association between tumor CIMP status and survival of patients receiving adjuvant fluorouracil and leucovorin alone or with irinotecan (IFL) METHODS We analyzed data from patients with stage 3 colon adenocarcinoma randomly assigned to groups given fluorouracil and leucovorin or IFL following surgery, from April 1999 through April 2001. The primary endpoint of the trial was overall survival and the secondary endpoint was disease-free survival. DNA isolated from available tumor samples (n=615) was used to determine CIMP status based on methylation patterns at the CACNA1G, IGF2, NEUROG1, RUNX3, and SOCS1 loci. The effects of CIMP on survival were modeled using Kaplan-Meier and Cox proportional hazards; interactions with treatment and BRAF, KRAS, and mismatch repair (MMR) status were also investigated. RESULTS Of the tumor samples characterized for CIMP status, 145 were CIMP positive (23%). Patients with CIMP-positive tumors had shorter overall survival times than patients with CIMP-negative tumors (hazard ratio [HR]=1.36; 95% confidence interval [CI], 1.01–1.84). Treatment with IFL showed a trend toward increased overall survival for patients with CIMP-positive tumors, compared to treatment with fluorouracil and leucovorin (HR=0.62; 95% CI, 0.37–1.05; P=.07), but not for patients with CIMP-negative tumors (HR=1.38; 95% CI, 1.00–1.89; P=.049). In a 3-way interaction analysis, patients with CIMP-positive, MMR-intact tumors benefited most from the addition of irinotecan to fluorouracil and leucovorin therapy (for the interaction, P=.01). CIMP was more strongly associated with response to IFL than MMR status. Results for disease

  11. CpG island methylator phenotype is associated with response to adjuvant irinotecan-based therapy for stage III colon cancer.

    Science.gov (United States)

    Shiovitz, Stacey; Bertagnolli, Monica M; Renfro, Lindsay A; Nam, Eunmi; Foster, Nathan R; Dzieciatkowski, Slavomir; Luo, Yanxin; Lao, Victoria Valinluck; Monnat, Raymond J; Emond, Mary J; Maizels, Nancy; Niedzwiecki, Donna; Goldberg, Richard M; Saltz, Leonard B; Venook, Alan; Warren, Robert S; Grady, William M

    2014-09-01

    The CpG island methylator phenotype (CIMP), defined by a high frequency of aberrantly methylated genes, is a characteristic of a subclass of colon tumors with distinct clinical and molecular features. Cohort studies have produced conflicting results on responses of CIMP-positive tumors to chemotherapy. We assessed the association between tumor CIMP status and survival of patients receiving adjuvant fluorouracil and leucovorin alone or with irinotecan (IFL). We analyzed data from patients with stage III colon adenocarcinoma randomly assigned to groups given fluorouracil and leucovorin or IFL after surgery, from April 1999 through April 2001. The primary end point of the trial was overall survival and the secondary end point was disease-free survival. DNA isolated from available tumor samples (n = 615) was used to determine CIMP status based on methylation patterns at the CACNA1G, IGF2, NEUROG1, RUNX3, and SOCS1 loci. The effects of CIMP on survival were modeled using Kaplan-Meier and Cox proportional hazards; interactions with treatment and BRAF, KRAS, and mismatch repair (MMR) status were also investigated. Of the tumor samples characterized for CIMP status, 145 were CIMP positive (23%). Patients with CIMP-positive tumors had shorter overall survival times than patients with CIMP-negative tumors (hazard ratio = 1.36; 95% confidence interval: 1.01-1.84). Treatment with IFL showed a trend toward increased overall survival for patients with CIMP-positive tumors, compared with treatment with fluorouracil and leucovorin (hazard ratio = 0.62; 95% CI: 0.37-1.05; P = .07), but not for patients with CIMP-negative tumors (hazard ratio = 1.38; 95% CI: 1.00-1.89; P = .049). In a 3-way interaction analysis, patients with CIMP-positive, MMR-intact tumors benefited most from the addition of irinotecan to fluorouracil and leucovorin therapy (for the interaction, P = .01). CIMP was more strongly associated with response to IFL than MMR status. Results for disease

  12. Protective immunity against Megalocytivirus infection in rock bream (Oplegnathus fasciatus) following CpG ODN administration.

    Science.gov (United States)

    Jung, Myung-Hwa; Lee, Jehee; Ortega-Villaizan, M; Perez, Luis; Jung, Sung-Ju

    2017-06-27

    Rock bream iridovirus (RBIV) disease in rock bream (Oplegnathus fasciatus) remains an unsolved problem in Korea aquaculture farms. CpG ODNs are known as immunostimulant, can improve the innate immune system of fish providing resistance to diseases. In this study, we evaluated the potential of CpG ODNs to induce anti-viral status protecting rock bream from different RBIV infection conditions. We found that, when administered into rock bream, CpG ODN 1668 induces better antiviral immune responses compared to other 5 CpG ODNs (2216, 1826, 2133, 2395 and 1720). All CpG ODN 1668 administered fish (1/5µg) at 2days before infection (1.1×10 7 ) held at 26°C died even though mortality was delayed from 8days (1µg) and 4days (5µg). Similarly, CpG ODN 1668 administered (5µg) at 2days before infection (1.2×10 6 ) held at 23/20°C had 100% mortality; the mortality was delayed from 9days (23°C) and 11days (20°C). Moreover, when CpG ODN 1668 administered (1/5/10µg) at 2/4/7days before infection or virus concentration was decreased to 1.1×10 4 and held at 20°C had mortality rates of 20/60/30% (2days), 30/40/60% (4days) and 60/60/20% (7days), respectively, for the respective administration dose, through 100 dpi. To investigate the development of a protective immune response, survivors were re-infected with RBIV (1.1×10 7 ) at 100 and 400 dpi, respectively. While 100% of the previously unexposed fish died, 100% of the previously infected fish survived. The high survival rate of fish following re-challenge with RBIV indicates that protective immunity was established in the surviving rock bream. Our results showed the possibility of developing preventive measures against RBIV using CpG ODN 1668 by reducing RBIV replication speed (i.e. water temperature of 20°C and infection dose of 1.1×10 4 ). Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Protection of Balb/c mice against infection with FMDV by immunostimulation with CpG oligonucleotides

    DEFF Research Database (Denmark)

    Kamstrup, Søren; Frimann, Tine; Barfoed, Annette Malene

    2006-01-01

    disease virus (FMDV). Susceptibility of Balb/c mice to infection with isolates from the different serotypes of FMDV was investigated, and, at the same time, the capacity of CpG ODN to modulate the infection was evaluated. Treatment with CpG significantly reduced viremia, disease and death in five of six...... serotypes, when compared to no treatment or treatment with a control ODN. The effect was observed when ODN was administered simultaneously with, or up to 12 h after, infection with FMDV, and lasted for 14 days post treatment. The potential application of CpG ODN for control of FMDV during an outbreak...

  14. An X chromosome association scan of the Norfolk Island genetic isolate provides evidence for a novel migraine susceptibility locus at Xq12.

    Directory of Open Access Journals (Sweden)

    Bridget H Maher

    Full Text Available Migraine is a common and debilitating neurovascular disorder with a complex envirogenomic aetiology. Numerous studies have demonstrated a preponderance of women affected with migraine and previous pedigree linkage studies in our laboratory have identified susceptibility loci on chromosome Xq24-Xq28. In this study we have used the genetic isolate of Norfolk Island to further analyse the X chromosome for migraine susceptibility loci.An association approach was employed to analyse 14,124 SNPs spanning the entire X chromosome. Genotype data from 288 individuals comprising a large core-pedigree, of which 76 were affected with migraine, were analysed. Although no SNP reached chromosome-wide significance (empirical α = 1 × 10(-5 ranking by P-value revealed two primary clusters of SNPs in the top 25. A 10 SNP cluster represents a novel migraine susceptibility locus at Xq12 whilst a 11 SNP cluster represents a previously identified migraine susceptibility locus at Xq27. The strongest association at Xq12 was seen for rs599958 (OR = 1.75, P = 8.92 × 10(-4, whilst at Xq27 the strongest association was for rs6525667 (OR = 1.53, P = 1.65 × 10(-4. Further analysis of SNPs at these loci was performed in 5,122 migraineurs from the Women's Genome Health Study and provided additional evidence for association at the novel Xq12 locus (P<0.05.Overall, this study provides evidence for a novel migraine susceptibility locus on Xq12. The strongest effect SNP (rs102834, joint P = 1.63 × 10(-5 is located within the 5'UTR of the HEPH gene, which is involved in iron homeostasis in the brain and may represent a novel pathway for involvement in migraine pathogenesis.

  15. CpG island methylator phenotype, Helicobacter pylori, Epstein-Barr virus, and microsatellite instability and prognosis in gastric cancer: a systematic review and meta-analysis.

    Directory of Open Access Journals (Sweden)

    Liang Zong

    Full Text Available BACKGROUND: The controversy of CpG island methylator phenotype (CIMP in gastric cancer persists, despite the fact that many studies have been conducted on its relation with helicobacter pylori (H. pylori, Epstein-Barr virus (EBV, and microsatellite instability (MSI and prognosis. To drive a more precise estimate of this postulated relationship, a meta-analysis was performed based on existing relevant studies. METHODS: We combined individual patient data from 12 studies which involved 1000 patients with gastric cancer, which met the criteria. We tabulated and analyzed parameters from each study, including H. pylori, EBV, MSI, and clinical information of patients. RESULTS: The overall OR for H. pylori infection in CIMP positive group vs. negative group revealed that significantly elevated risks of positive H. pylori infection in the former were achieved (OR 2.23 95% CI, 1.25-4.00; P = 0.007, Pheterogeneity = 0.05. Similarly, strong relation between EBV infection and CIMP was achieved by OR 51.27 (95% CI, 9.39-279.86; P<0.00001, Pheterogeneity = 0.39. The overall OR for MSI in CIMP positive group vs. negative group was 4.44 (95% CI, 1.17-16.88; P = 0.03, Pheterogeneity = 0.01. However, there did not appear to be any correlations with clinical parameters such as tumor site, pathological type, cell differentiation, TNM stage, distant metastasis, lymph node metastasis, and 5-year survival. CONCLUSIONS: The meta-analysis highlights the strong relation of CIMP with H. pylori, EBV, and MSI, but CIMP can not be used as a prognostic marker for gastric cancer.

  16. UTILIDAD DEL BANDEO CROMOSÓMICO CON LA ENZIMA Alu I PARA LA IDENTIFICACIÓN DE ZONAS METILADAS EN LEUCEMIAS AGUDAS I UTILITY OF CHROMOSOME BANDING WITH Alu I ENZYME FOR IDENTIFYING METHYLATED AREAS IN ACUTE LEUKEMIAS

    Directory of Open Access Journals (Sweden)

    Maribel Quintero

    2018-04-01

    Full Text Available Acute leukemias are malignant hematopoietic cells of immature proliferations of the blastic type, whose progressive accumulation is accompanied by a decrease in the production of normal myeloid elements. Transcription of inactive tumor suppressor genes by hypermethylation of CpG islands in promoter regions, has been a focus of researchers as a causal factor in hematological malignancies. The purpose of this study was to determine hypermethylated regions of chromosomal spread samples using Alu I and relate these regions with sites of suppressor gene associated to acute leukemia tumors. From an analysis of a 30 bone marrow samples, 18 were diagnosed with Acute Myeloid Leukemia and Acute Lymphoid Leukemia, and 12 underwent cell culture. Chromosomal spreads were stained with Giemsa after being previously digested with the enzyme Alu I. In patients with acute myeloid leukemia and acute lymphoid leukemia it was observed that 16/18 (88% and 12/12 (100% had abnormally stained regions, single in four and three methylated regions observed in acute myeloid leukemia and acute lymphoid leukemia, respectively, no association was found in the literature with methylated genes, which was highly significant ( p < 0.01 in both conditions. This shows the usefulness of this technique for the identification of methylated areas, since they have provided the foundation and the molecular basis for a better targeted therapeutic approach with demethylating agents, both in acute leukemias and myelodysplastic syndromes.

  17. High rate of translocation-based gene birth on the Drosophila Y chromosome.

    Science.gov (United States)

    Tobler, Ray; Nolte, Viola; Schlötterer, Christian

    2017-10-31

    The Y chromosome is a unique genetic environment defined by a lack of recombination and male-limited inheritance. The Drosophila Y chromosome has been gradually acquiring genes from the rest of the genome, with only seven Y-linked genes being gained over the past 63 million years (0.12 gene gains per million years). Using a next-generation sequencing (NGS)-powered genomic scan, we show that gene transfers to the Y chromosome are much more common than previously suspected: at least 25 have arisen across three Drosophila species over the past 5.4 million years (1.67 per million years for each lineage). The gene transfer rate is significantly lower in Drosophila melanogaster than in the Drosophila simulans clade, primarily due to Y-linked retrotranspositions being significantly more common in the latter. Despite all Y-linked gene transfers being evolutionarily recent (Drosophila Y chromosome to be more dynamic than previously appreciated. Our analytical method provides a powerful means to identify Y-linked gene transfers and will help illuminate the evolutionary dynamics of the Y chromosome in Drosophila and other species. Copyright © 2017 the Author(s). Published by PNAS.

  18. CpG oligodeoxyribonucleotides protect mice from Burkholderia pseudomallei but not Francisella tularensis Schu S4 aerosols.

    Science.gov (United States)

    Rozak, David A; Gelhaus, Herbert C; Smith, Mark; Zadeh, Mojgan; Huzella, Louis; Waag, David; Adamovicz, Jeffrey J

    2010-02-05

    Studies have shown that CpG oligodeoxyribonucleotides (ODN) protect mice from various bacterial pathogens, including Burkholderia pseudomallei and Francisella tularensis live vaccine strain (LVS), when administered before parenteral challenge. Given the potential to develop CpG ODN as a pre-treatment for multiple bacterial biological warfare agents, we examined survival, histopathology, and cytokine data from CpG ODN-treated C57BL/6 mice to determine whether previously-reported protection extended to aerosolized B. pseudomallei 1026b and highly virulent F. tularensis Schu S4 infections. We found that, although CpG ODN protected mice from aerosolized B. pseudomallei challenges, the immunostimulant failed to benefit the animals exposed to F. tularensis Schu S4 aerosols. Our results, which contrast with earlier F. tularensis LVS studies, highlight potential differences in Francisella species pathogenesis and underscore the need to evaluate immunotherapies against human pathogenic species.

  19. Brown and polar bear Y chromosomes reveal extensive male-biased gene flow within brother lineages.

    Science.gov (United States)

    Bidon, Tobias; Janke, Axel; Fain, Steven R; Eiken, Hans Geir; Hagen, Snorre B; Saarma, Urmas; Hallström, Björn M; Lecomte, Nicolas; Hailer, Frank

    2014-06-01

    Brown and polar bears have become prominent examples in phylogeography, but previous phylogeographic studies relied largely on maternally inherited mitochondrial DNA (mtDNA) or were geographically restricted. The male-specific Y chromosome, a natural counterpart to mtDNA, has remained underexplored. Although this paternally inherited chromosome is indispensable for comprehensive analyses of phylogeographic patterns, technical difficulties and low variability have hampered its application in most mammals. We developed 13 novel Y-chromosomal sequence and microsatellite markers from the polar bear genome and screened these in a broad geographic sample of 130 brown and polar bears. We also analyzed a 390-kb-long Y-chromosomal scaffold using sequencing data from published male ursine genomes. Y chromosome evidence support the emerging understanding that brown and polar bears started to diverge no later than the Middle Pleistocene. Contrary to mtDNA patterns, we found 1) brown and polar bears to be reciprocally monophyletic sister (or rather brother) lineages, without signals of introgression, 2) male-biased gene flow across continents and on phylogeographic time scales, and 3) male dispersal that links the Alaskan ABC islands population to mainland brown bears. Due to female philopatry, mtDNA provides a highly structured estimate of population differentiation, while male-biased gene flow is a homogenizing force for nuclear genetic variation. Our findings highlight the importance of analyzing both maternally and paternally inherited loci for a comprehensive view of phylogeographic history, and that mtDNA-based phylogeographic studies of many mammals should be reevaluated. Recent advances in sequencing technology render the analysis of Y-chromosomal variation feasible, even in nonmodel organisms. © The Author 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e

  20. A sexy spin on nonrandom chromosome segregation.

    Science.gov (United States)

    Charville, Gregory W; Rando, Thomas A

    2013-06-06

    Nonrandom chromosome segregation is an intriguing phenomenon linked to certain asymmetric stem cell divisions. In a recent report in Nature, Yadlapalli and Yamashita (2013) observe nonrandom segregation of X and Y chromosomes in Drosophila germline stem cells and shed light on the complex mechanisms of this fascinating process. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Genetics, Cytogenetics, and Epigenetics of Colorectal Cancer

    Directory of Open Access Journals (Sweden)

    Lucia Migliore

    2011-01-01

    Full Text Available Most of the colorectal cancer (CRC cases are sporadic, only 25% of the patients have a family history of the disease, and major genes causing syndromes predisposing to CRC only account for 5-6% of the total cases. The following subtypes can be recognized: MIN (microsatellite instability, CIN (chromosomal instability, and CIMP (CpG island methylator phenotype. CIN occurs in 80–85% of CRC. Chromosomal instability proceeds through two major mechanisms, missegregation that results in aneuploidy through the gain or loss of whole chromosomes, and unbalanced structural rearrangements that lead to the loss and/or gain of chromosomal regions. The loss of heterozygosity that occur in the first phases of the CRC cancerogenesis (in particular for the genes on 18q as well as the alteration of methylation pattern of multiple key genes can drive the development of colorectal cancer by facilitating the acquisition of multiple tumor-associated mutations and the instability phenotype.

  2. Characterization of Immune Responses to an Inactivated Avian Influenza Virus Vaccine Adjuvanted with Nanoparticles Containing CpG ODN.

    Science.gov (United States)

    Singh, Shirene M; Alkie, Tamiru N; Abdelaziz, Khaled Taha; Hodgins, Douglas C; Novy, Anastasia; Nagy, Éva; Sharif, Shayan

    2016-06-01

    Avian influenza virus (AIV), a mucosal pathogen, gains entry into host chickens through respiratory and gastrointestinal routes. Most commercial AIV vaccines for poultry consist of inactivated, whole virus with adjuvant, delivered by parenteral administration. Recent advances in vaccine development have led to the application of nanoparticle emulsion delivery systems, such as poly (d,l-lactic-co-glycolic acid) (PLGA) nanoparticles to enhance antigen-specific immune responses. In chickens, the Toll-like receptor 21 ligand, CpG oligodeoxynucleotides (ODNs), have been demonstrated to be immunostimulatory. The objective of this study was to compare the adjuvant potential of CpG ODN 2007 encapsulated in PLGA nanoparticles with nonencapsulated CpG ODN 2007 when combined with a formalin-inactivated H9N2 virus, through intramuscular and aerosol delivery routes. Chickens were vaccinated at days 7 and 21 posthatch for the intramuscular route and at days 7, 21, and 35 for the aerosol route. Antibody-mediated responses were evaluated weekly in sera and lacrimal secretions in specific pathogen-free chickens. The results indicate that nonencapsulated CpG ODN 2007 in inactivated AIV vaccines administered by the intramuscular route generated higher antibody responses compared to the encapsulated CpG ODN 2007 formulation by the same route. Additionally, encapsulated CpG ODN 2007 in AIV vaccines administered by the aerosol route elicited higher mucosal responses compared to nonencapsulated CpG ODN 2007. Future studies may be aimed at evaluating protective immune responses induced with PLGA encapsulation of AIV and adjuvants.

  3. Large Scale Chromosome Folding Is Stable against Local Changes in Chromatin Structure.

    Directory of Open Access Journals (Sweden)

    Ana-Maria Florescu

    2016-06-01

    Full Text Available Characterizing the link between small-scale chromatin structure and large-scale chromosome folding during interphase is a prerequisite for understanding transcription. Yet, this link remains poorly investigated. Here, we introduce a simple biophysical model where interphase chromosomes are described in terms of the folding of chromatin sequences composed of alternating blocks of fibers with different thicknesses and flexibilities, and we use it to study the influence of sequence disorder on chromosome behaviors in space and time. By employing extensive computer simulations, we thus demonstrate that chromosomes undergo noticeable conformational changes only on length-scales smaller than 105 basepairs and time-scales shorter than a few seconds, and we suggest there might exist effective upper bounds to the detection of chromosome reorganization in eukaryotes. We prove the relevance of our framework by modeling recent experimental FISH data on murine chromosomes.

  4. CINcere Modelling : What Have Mouse Models for Chromosome Instability Taught Us?

    NARCIS (Netherlands)

    Simon, Judith E; Bakker, Bjorn; Foijer, Floris

    2015-01-01

    Chromosomal instability (CIN) is a process leading to errors in chromosome segregation and results in aneuploidy, a state in which cells have an abnormal number of chromosomes. CIN is a hallmark of cancer, and furthermore linked to ageing and age-related diseases such as Alzheimer's. Various mouse

  5. [SINEs in mammalian genomes can serve as additional signals in formation of facultative heterochromatin].

    Science.gov (United States)

    Usmanova, N M; Kazakov, V I; Tomilin, N V

    2008-01-01

    Using computer-based methods we determined the global distribution of short interspersed nuclear elements (SINEs) in the human and mouse X chromosomes. It has been shown that this distributions is similar to the distributions of CpG islands and genes but is different from the distribution of LINE1 elements. Since SINEs (human Alu and mouse B2) may have binding sites for Polycomb protein YY1, we suggest that these repeats can serve as additional signals ("boosters") in Polycomb-dependent silencing of gene rich segments during X inactivation.

  6. Genomic island excisions in Bordetella petrii

    Directory of Open Access Journals (Sweden)

    Levillain Erwan

    2009-07-01

    Full Text Available Abstract Background Among the members of the genus Bordetella B. petrii is unique, since it is the only species isolated from the environment, while the pathogenic Bordetellae are obligately associated with host organisms. Another feature distinguishing B. petrii from the other sequenced Bordetellae is the presence of a large number of mobile genetic elements including several large genomic regions with typical characteristics of genomic islands collectively known as integrative and conjugative elements (ICEs. These elements mainly encode accessory metabolic factors enabling this bacterium to grow on a large repertoire of aromatic compounds. Results During in vitro culture of Bordetella petrii colony variants appear frequently. We show that this variability can be attributed to the presence of a large number of metastable mobile genetic elements on its chromosome. In fact, the genome sequence of B. petrii revealed the presence of at least seven large genomic islands mostly encoding accessory metabolic functions involved in the degradation of aromatic compounds and detoxification of heavy metals. Four of these islands (termed GI1 to GI3 and GI6 are highly related to ICEclc of Pseudomonas knackmussii sp. strain B13. Here we present first data about the molecular characterization of these islands. We defined the exact borders of each island and we show that during standard culture of the bacteria these islands get excised from the chromosome. For all but one of these islands (GI5 we could detect circular intermediates. For the clc-like elements GI1 to GI3 of B. petrii we provide evidence that tandem insertion of these islands which all encode highly related integrases and attachment sites may also lead to incorporation of genomic DNA which originally was not part of the island and to the formation of huge composite islands. By integration of a tetracycline resistance cassette into GI3 we found this island to be rather unstable and to be lost from

  7. Destabilized SMC5/6 complex leads to chromosome breakage syndrome with severe lung disease

    NARCIS (Netherlands)

    van der Crabben, Saskia N; Hennus, Marije P; McGregor, Grant A; Ritter, Deborah I; Nagamani, Sandesh C S; Wells, Owen S; Harakalova, Magdalena; Chinn, Ivan K; Alt, Aaron; Vondrova, Lucie; Hochstenbach, Ron; van Montfrans, Joris M; Terheggen-Lagro, Suzanne W; van Lieshout, Stef; van Roosmalen, Markus J; Renkens, Ivo; Duran, Karen; Nijman, Isaäc J.; Kloosterman, Wigard P; Hennekam, Eric; Orange, Jordan S; van Hasselt, Peter M; Wheeler, David A; Palecek, Jan J; Lehmann, Alan R; Oliver, Antony W; Pearl, Laurence H; Plon, Sharon E; Murray, Johanne M; van Haaften, Gijs

    The structural maintenance of chromosomes (SMC) family of proteins supports mitotic proliferation, meiosis, and DNA repair to control genomic stability. Impairments in chromosome maintenance are linked to rare chromosome breakage disorders. Here, we have identified a chromosome breakage syndrome

  8. Chromosomal localization of the gonadotropin-releasing hormone receptor gene to human chromosome 4q13. 1-q21. 1 and mouse chromosome 5

    Energy Technology Data Exchange (ETDEWEB)

    Kaiser, U.B.; Dushkin, H.; Beier, D.R.; Chin, W.W. (Harvard Medical School, Boston, MA (United States)); Altherr, M.R. (Los Alamos National Lab., NM (United States))

    1994-04-01

    The gonadotropin-releasing hormone receptor (GRHR) is a G-protein-coupled receptor on the cell surface of pituitary gonadotropes, where it serves to transduce signals from the extracellular ligand, the hypothalamic factor gonadotropin-releasing hormone, and to modulate the synthesis and secretion of luteinizing hormone and follicle-stimulating hormone. The authors have localized the GRHR gene to the q13.1-q21.1 region of the human chromosome 4 using mapping panels of human/rodent somatic cell hybrids containing different human chromosomes or different regions of human chromosome 4. Furthermore, using linkage analysis of single-strand conformational polymorphisms, the murine GRHR gene was localized to mouse chromosome 5, linked to the endogenous retroviral marker Pmv-11. This is consistent with the evolutionary conservation of homology between these two regions, as has been previously suggested from comparative mapping of several other loci. The localization of the GRHR gene may be useful in the study of disorders of reproduction. 22 refs., 2 figs.

  9. Subsets of microsatellite-unstable colorectal cancers exhibit discordance between the CpG island methylator phenotype and MLH1 methylation status.

    Science.gov (United States)

    Kim, Jung H; Rhee, Ye-Y; Bae, Jeong-M; Kwon, Hyeong-J; Cho, Nam-Y; Kim, Mi J; Kang, Gyeong H

    2013-07-01

    Although the presence of MLH1 methylation in microsatellite-unstable colorectal cancer generally indicates involvement of the CpG island methylator phenotype (CIMP) in the development of the tumor, these two conditions do not always correlate. A minority of microsatellite-unstable colorectal cancers exhibit discordance between CIMP and MLH1 methylation statuses. However, the clinicopathological features of such microsatellite-unstable colorectal cancers with discrepant MLH1 methylation and CIMP statuses remain poorly studied. Microsatellite-unstable colorectal cancers (n=220) were analyzed for CIMP and MLH1 methylation statuses using the MethyLight assay. Based on the combinatorial CIMP and MLH1 methylation statuses, the microsatellite-unstable colorectal cancers were grouped into four subtypes (CIMP-high (CIMP-H) MLH1 methylation-positive (MLH1m+), CIMP-H MLH1 methylation-negative, CIMP-low/0 (CIMP-L/0) MLH1m+, and CIMP-L/0 MLH1 methylation-negative), which were compared in terms of their associations with clinicopathological and molecular features. The CIMP-L/0 MLH1 methylation-negative and CIMP-H MLH1m+ subtypes were predominant, comprising 63.6 and 24.1% of total microsatellite-unstable colorectal cancers, respectively. The discordant subtypes, CIMP-H MLH1 methylation-negative and CIMP-L/0 MLH1m+, were found in 5 and 7% of microsatellite-unstable colorectal cancers, respectively. The CIMP-H MLH1 methylation-negative subtype exhibited elevated incidence rates in male patients and was associated with larger tumor size, more frequent loss of MSH2 expression, increased frequency of KRAS mutation, and advanced cancer stage. The CIMP-L/0 MLH1m+ subtype was associated with onset at an earlier age, a predominance of MLH1 loss, and earlier cancer stage. None of the CIMP-L/0 MLH1m+ subtype patients succumbed to death during the follow-up. Our findings suggest that the discordant subtypes of colorectal cancers exhibit distinct clinicopathological and molecular features

  10. Survival differences of CIMP subtypes integrated with CNA information in human breast cancer.

    Science.gov (United States)

    Wang, Huihan; Yan, Weili; Zhang, Shumei; Gu, Yue; Wang, Yihan; Wei, Yanjun; Liu, Hongbo; Wang, Fang; Wu, Qiong; Zhang, Yan

    2017-07-25

    CpG island methylator phenotype of breast cancer is associated with widespread aberrant methylation at specified CpG islands and distinct patient outcomes. However, the influence of copy number contributing to the prognosis of tumors with different CpG island methylator phenotypes is still unclear. We analyzed both genetic (copy number) and epigenetic alterations in 765 breast cancers from The Cancer Genome Atlas data portal and got a panel of 15 biomarkers for copy number and methylation status evaluation. The gene panel identified two groups corresponding to distinct copy number profiles. In status of mere-loss copy number, patients were faced with a greater risk if they presented a higher CpG islands methylation pattern in biomarker panels. But for samples presenting merely-gained copy number, higher methylation level of CpG islands was associated with improved viability. In all, the integration of copy number alteration and methylation information enhanced the classification power on prognosis. Moreover, we found the molecular subtypes of breast cancer presented different distributions in two CpG island methylation phenotypes. Generated by the same set of human methylation 450K data, additional copy number information could provide insights into survival prediction of cancers with less heterogeneity and might help to determine the biomarkers for diagnosis and treatment for breast cancer patients in a more personalized approach.

  11. The DNA sequence of the human X chromosome

    Science.gov (United States)

    Ross, Mark T.; Grafham, Darren V.; Coffey, Alison J.; Scherer, Steven; McLay, Kirsten; Muzny, Donna; Platzer, Matthias; Howell, Gareth R.; Burrows, Christine; Bird, Christine P.; Frankish, Adam; Lovell, Frances L.; Howe, Kevin L.; Ashurst, Jennifer L.; Fulton, Robert S.; Sudbrak, Ralf; Wen, Gaiping; Jones, Matthew C.; Hurles, Matthew E.; Andrews, T. Daniel; Scott, Carol E.; Searle, Stephen; Ramser, Juliane; Whittaker, Adam; Deadman, Rebecca; Carter, Nigel P.; Hunt, Sarah E.; Chen, Rui; Cree, Andrew; Gunaratne, Preethi; Havlak, Paul; Hodgson, Anne; Metzker, Michael L.; Richards, Stephen; Scott, Graham; Steffen, David; Sodergren, Erica; Wheeler, David A.; Worley, Kim C.; Ainscough, Rachael; Ambrose, Kerrie D.; Ansari-Lari, M. Ali; Aradhya, Swaroop; Ashwell, Robert I. S.; Babbage, Anne K.; Bagguley, Claire L.; Ballabio, Andrea; Banerjee, Ruby; Barker, Gary E.; Barlow, Karen F.; Barrett, Ian P.; Bates, Karen N.; Beare, David M.; Beasley, Helen; Beasley, Oliver; Beck, Alfred; Bethel, Graeme; Blechschmidt, Karin; Brady, Nicola; Bray-Allen, Sarah; Bridgeman, Anne M.; Brown, Andrew J.; Brown, Mary J.; Bonnin, David; Bruford, Elspeth A.; Buhay, Christian; Burch, Paula; Burford, Deborah; Burgess, Joanne; Burrill, Wayne; Burton, John; Bye, Jackie M.; Carder, Carol; Carrel, Laura; Chako, Joseph; Chapman, Joanne C.; Chavez, Dean; Chen, Ellson; Chen, Guan; Chen, Yuan; Chen, Zhijian; Chinault, Craig; Ciccodicola, Alfredo; Clark, Sue Y.; Clarke, Graham; Clee, Chris M.; Clegg, Sheila; Clerc-Blankenburg, Kerstin; Clifford, Karen; Cobley, Vicky; Cole, Charlotte G.; Conquer, Jen S.; Corby, Nicole; Connor, Richard E.; David, Robert; Davies, Joy; Davis, Clay; Davis, John; Delgado, Oliver; DeShazo, Denise; Dhami, Pawandeep; Ding, Yan; Dinh, Huyen; Dodsworth, Steve; Draper, Heather; Dugan-Rocha, Shannon; Dunham, Andrew; Dunn, Matthew; Durbin, K. James; Dutta, Ireena; Eades, Tamsin; Ellwood, Matthew; Emery-Cohen, Alexandra; Errington, Helen; Evans, Kathryn L.; Faulkner, Louisa; Francis, Fiona; Frankland, John; Fraser, Audrey E.; Galgoczy, Petra; Gilbert, James; Gill, Rachel; Glöckner, Gernot; Gregory, Simon G.; Gribble, Susan; Griffiths, Coline; Grocock, Russell; Gu, Yanghong; Gwilliam, Rhian; Hamilton, Cerissa; Hart, Elizabeth A.; Hawes, Alicia; Heath, Paul D.; Heitmann, Katja; Hennig, Steffen; Hernandez, Judith; Hinzmann, Bernd; Ho, Sarah; Hoffs, Michael; Howden, Phillip J.; Huckle, Elizabeth J.; Hume, Jennifer; Hunt, Paul J.; Hunt, Adrienne R.; Isherwood, Judith; Jacob, Leni; Johnson, David; Jones, Sally; de Jong, Pieter J.; Joseph, Shirin S.; Keenan, Stephen; Kelly, Susan; Kershaw, Joanne K.; Khan, Ziad; Kioschis, Petra; Klages, Sven; Knights, Andrew J.; Kosiura, Anna; Kovar-Smith, Christie; Laird, Gavin K.; Langford, Cordelia; Lawlor, Stephanie; Leversha, Margaret; Lewis, Lora; Liu, Wen; Lloyd, Christine; Lloyd, David M.; Loulseged, Hermela; Loveland, Jane E.; Lovell, Jamieson D.; Lozado, Ryan; Lu, Jing; Lyne, Rachael; Ma, Jie; Maheshwari, Manjula; Matthews, Lucy H.; McDowall, Jennifer; McLaren, Stuart; McMurray, Amanda; Meidl, Patrick; Meitinger, Thomas; Milne, Sarah; Miner, George; Mistry, Shailesh L.; Morgan, Margaret; Morris, Sidney; Müller, Ines; Mullikin, James C.; Nguyen, Ngoc; Nordsiek, Gabriele; Nyakatura, Gerald; O’Dell, Christopher N.; Okwuonu, Geoffery; Palmer, Sophie; Pandian, Richard; Parker, David; Parrish, Julia; Pasternak, Shiran; Patel, Dina; Pearce, Alex V.; Pearson, Danita M.; Pelan, Sarah E.; Perez, Lesette; Porter, Keith M.; Ramsey, Yvonne; Reichwald, Kathrin; Rhodes, Susan; Ridler, Kerry A.; Schlessinger, David; Schueler, Mary G.; Sehra, Harminder K.; Shaw-Smith, Charles; Shen, Hua; Sheridan, Elizabeth M.; Shownkeen, Ratna; Skuce, Carl D.; Smith, Michelle L.; Sotheran, Elizabeth C.; Steingruber, Helen E.; Steward, Charles A.; Storey, Roy; Swann, R. Mark; Swarbreck, David; Tabor, Paul E.; Taudien, Stefan; Taylor, Tineace; Teague, Brian; Thomas, Karen; Thorpe, Andrea; Timms, Kirsten; Tracey, Alan; Trevanion, Steve; Tromans, Anthony C.; d’Urso, Michele; Verduzco, Daniel; Villasana, Donna; Waldron, Lenee; Wall, Melanie; Wang, Qiaoyan; Warren, James; Warry, Georgina L.; Wei, Xuehong; West, Anthony; Whitehead, Siobhan L.; Whiteley, Mathew N.; Wilkinson, Jane E.; Willey, David L.; Williams, Gabrielle; Williams, Leanne; Williamson, Angela; Williamson, Helen; Wilming, Laurens; Woodmansey, Rebecca L.; Wray, Paul W.; Yen, Jennifer; Zhang, Jingkun; Zhou, Jianling; Zoghbi, Huda; Zorilla, Sara; Buck, David; Reinhardt, Richard; Poustka, Annemarie; Rosenthal, André; Lehrach, Hans; Meindl, Alfons; Minx, Patrick J.; Hillier, LaDeana W.; Willard, Huntington F.; Wilson, Richard K.; Waterston, Robert H.; Rice, Catherine M.; Vaudin, Mark; Coulson, Alan; Nelson, David L.; Weinstock, George; Sulston, John E.; Durbin, Richard; Hubbard, Tim; Gibbs, Richard A.; Beck, Stephan; Rogers, Jane; Bentley, David R.

    2009-01-01

    The human X chromosome has a unique biology that was shaped by its evolution as the sex chromosome shared by males and females. We have determined 99.3% of the euchromatic sequence of the X chromosome. Our analysis illustrates the autosomal origin of the mammalian sex chromosomes, the stepwise process that led to the progressive loss of recombination between X and Y, and the extent of subsequent degradation of the Y chromosome. LINE1 repeat elements cover one-third of the X chromosome, with a distribution that is consistent with their proposed role as way stations in the process of X-chromosome inactivation. We found 1,098 genes in the sequence, of which 99 encode proteins expressed in testis and in various tumour types. A disproportionately high number of mendelian diseases are documented for the X chromosome. Of this number, 168 have been explained by mutations in 113 X-linked genes, which in many cases were characterized with the aid of the DNA sequence. PMID:15772651

  12. Knockdown of αII spectrin in normal human cells by siRNA leads to chromosomal instability and decreased DNA interstrand cross-link repair

    OpenAIRE

    McMahon, Laura W.; Zhang, Pan; Sridharan, Deepa M.; Lefferts, Joel A.; Lambert, Muriel W.

    2009-01-01

    Nonerythroid α-spectrin (αIISp) is a structural protein involved in repair of DNA interstrand cross-links and is deficient in cells from patients with Fanconi anemia (FA), which are defective in ability to repair cross-links. In order to further demonstrate the importance of the role that αIISp plays in normal human cells and in the repair defect in FA, αIISp was knocked down in normal cells using siRNA. Depletion of αIISp in normal cells by siRNA resulted in chromosomal instability and cellu...

  13. Combined Analysis of COX-2 and p53 Expressions Reveals Synergistic Inverse Correlations with Microsatellite Instability and CpG Island Methylator Phenotype in Colorectal Cancer

    Directory of Open Access Journals (Sweden)

    Shuji Ogino

    2006-06-01

    Full Text Available Cyclooxygenase-2 (COX-2 overexpression and mutations of p53 (a known COX-2 regulator are inversely associated with microsatellite instability—high (MSI-H and CpG island methylator phenotype (CIMP, characterized by extensive promoter methylation, is associated with MSI-H. However, no studies have comprehensively examined interrelations between COX-2, p53, MSI, and CIMP. Using MethyLight, we measured DNA methylation in five CIMP-specific gene promoters [CACNA1G, CDKN2A (p16/INK4A, CRABP1, MLH1, and NEUROG1] in relatively unbiased samples of 751 colorectal cancer cases obtained from two large prospective cohorts; 115 (15% tumors were CIMP-high (≥ 4 of 5 methylated promoters, 251 (33% were CIMP-low (1 to 3 methylated promoters, and the remaining 385 (51% were CIMP-0 (no methylated promoters. CIMP-high tumors were much less frequent in COX-2+/p53+ tumors (4.6% than in COX-2+/p53- tumors (19%; P < .0001, COX-2-/p53+ tumors (17%; P = .04, and COX-2-/p53- tumors (28%; P < .0001. In addition, COX-2+/p53+ tumors were significantly less common in MSI-H CIMP-high tumors (9.7% than in non-MSI-H CIMP-low/CIMP-0 tumors (44–47%; P < .0001. In conclusion, COX-2 and p53 alterations were synergistically inversely correlated with both MSI-H and CIMP-high. Our data suggest that a combined analysis of COX-2 and p53 may be more useful for the molecular classification of colorectal cancer than either COX-2 or p53 analysis alone.

  14. Chromosome 11-linked determinant controls fetal globin expression and the fetal-to-adult globin switch

    International Nuclear Information System (INIS)

    Melis, M.; Demopulos, G.; Najfeld, V.; Zhang, J.W.; Brice, M.; Papayannopoulou, T.; Stamatoyannopoulos, G.

    1987-01-01

    Hybrids formed by fusing mouse erythroleukemia (MEL) cells with human fetal erythroid cells produce human fetal globin, but they switch to adult globin production as culture time advances. To obtain information on the chromosomal assignment of the elements that control γ-to-β switching, the authors analyzed the chromosomal composition of hybrids producing exclusively or predominantly human fetal globin and hybrids producing only adult human globin. No human chromosome was consistently present in hybrids expressing fetal globin and consistently absent in hybrids expressing adult globin. Subcloning experiments demonstrated identical chromosomal compositions in subclones displaying the fetal globin program and those that had switched to expression of the adult globin program. These data indicate that retention of only one human chromosome -- i.e., chromosome 11 -- is sufficient for expression of human fetal globin and the subsequent γ-to-β switch. The results suggest that the γ-to-β switch is controlled either cis to the β-globin locus of by a trans-acting mechanism, the genes of which reside on human chromosome 11

  15. High DNA melting temperature predicts transcription start site location in human and mouse.

    LENUS (Irish Health Repository)

    Dineen, David G

    2009-12-01

    The accurate computational prediction of transcription start sites (TSS) in vertebrate genomes is a difficult problem. The physicochemical properties of DNA can be computed in various ways and a many combinations of DNA features have been tested in the past for use as predictors of transcription. We looked in detail at melting temperature, which measures the temperature, at which two strands of DNA separate, considering the cooperative nature of this process. We find that peaks in melting temperature correspond closely to experimentally determined transcription start sites in human and mouse chromosomes. Using melting temperature alone, and with simple thresholding, we can predict TSS with accuracy that is competitive with the most accurate state-of-the-art TSS prediction methods. Accuracy is measured using both experimentally and manually determined TSS. The method works especially well with CpG island containing promoters, but also works when CpG islands are absent. This result is clear evidence of the important role of the physical properties of DNA in the process of transcription. It also points to the importance for TSS prediction methods to include melting temperature as prior information.

  16. Smooth transition for CPG-based body shape control of a snake-like robot

    International Nuclear Information System (INIS)

    Nor, Norzalilah Mohamad; Ma, Shugen

    2014-01-01

    This paper presents a locomotion control based on central pattern generator (CPG) of a snake-like robot. The main point addressed in this paper is a method that produces a smooth transition of the body shape of a snake-like robot. Body shape transition is important for snake-like robot locomotion to adapt to different space widths and also for obstacle avoidance. By manipulating the phase difference of the CPG outputs instantly, it will results in a sharp point or discontinuity which lead to an unstable movement of the snake-like robot. To tackle the problem, we propose a way of controlling the body shape: by incorporating activation function in the phase oscillator CPG model. The simplicity of the method promises an easy implementation and simple control. Simulation results and torque analysis confirm the effectiveness of the proposed control method and thus, can be used as a locomotion control in various potential applications of a snake-like robot. (paper)

  17. Molecular analysis of sex chromosome-linked mutants in the ...

    Indian Academy of Sciences (India)

    2010-09-06

    Sep 6, 2010 ... 1Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, ... In Bombyx mori, the W chromosome determines the female sex. .... located on an autosome, and there is no difference in the ex- ..... tral nervous system or in a brain-controlled body wall muscle.

  18. High CpG island methylation of p16 gene and loss of p16 protein ...

    Indian Academy of Sciences (India)

    SI-JU GAO

    abnormality or family history of congenital heart disease, as well as the exclusion of ... Germany) according to the manufacture's protocol. A total of. 45 μL of DNA was ... islands and the primer sites are illustrated in figure 1. Detection of p16 ...

  19. Human Vav1 expression in hematopoietic and cancer cell lines is regulated by c-Myb and by CpG methylation.

    Directory of Open Access Journals (Sweden)

    Lena Ilan

    Full Text Available Vav1 is a signal transducer protein that functions as a guanine nucleotide exchange factor for the Rho/Rac GTPases in the hematopoietic system where it is exclusively expressed. Recently, Vav1 was shown to be involved in several human malignancies including neuroblastoma, lung cancer, and pancreatic ductal adenocarcinoma (PDA. Although some factors that affect vav1 expression are known, neither the physiological nor pathological regulation of vav1 expression is completely understood. We demonstrate herein that mutations in putative transcription factor binding sites at the vav1 promoter affect its transcription in cells of different histological origin. Among these sites is a consensus site for c-Myb, a hematopoietic-specific transcription factor that is also found in Vav1-expressing lung cancer cell lines. Depletion of c-Myb using siRNA led to a dramatic reduction in vav1 expression in these cells. Consistent with this, co-transfection of c-Myb activated transcription of a vav1 promoter-luciferase reporter gene construct in lung cancer cells devoid of Vav1 expression. Together, these results indicate that c-Myb is involved in vav1 expression in lung cancer cells. We also explored the methylation status of the vav1 promoter. Bisulfite sequencing revealed that the vav1 promoter was completely unmethylated in human lymphocytes, but methylated to various degrees in tissues that do not normally express vav1. The vav1 promoter does not contain CpG islands in proximity to the transcription start site; however, we demonstrated that methylation of a CpG dinucleotide at a consensus Sp1 binding site in the vav1 promoter interferes with protein binding in vitro. Our data identify two regulatory mechanisms for vav1 expression: binding of c-Myb and CpG methylation of 5' regulatory sequences. Mutation of other putative transcription factor binding sites suggests that additional factors regulate vav1 expression as well.

  20. Reassignment of Drosophila willistoni Genome Scaffolds to Chromosome II Arms.

    Science.gov (United States)

    Garcia, Carolina; Delprat, Alejandra; Ruiz, Alfredo; Valente, Vera L S

    2015-10-04

    Drosophila willistoni is a geographically widespread Neotropical species. The genome of strain Gd-H4-1 from Guadeloupe Island (Caribbean) was sequenced in 2007 as part of the 12 Drosophila Genomes Project. The assembled scaffolds were joined based on conserved linkage and assigned to polytene chromosomes based on a handful of genetic and physical markers. This paucity of markers was particularly striking in the metacentric chromosome II, comprised two similarly sized arms, IIL and IIR, traditionally considered homologous to Muller elements C and B, respectively. In this paper we present the cytological mapping of 22 new gene markers to increase the number of markers mapped by in situ hybridization and to test the assignment of scaffolds to the polytene chromosome II arms. For this purpose, we generated, by polymerase chain reaction amplification, one or two gene probes from each scaffold assigned to the chromosome II arms and mapped these probes to the Gd-H4-1 strain's polytene chromosomes by nonfluorescent in situ hybridization. Our findings show that chromosome arms IIL and IIR correspond to Muller elements B and C, respectively, directly contrasting the current homology assignments in D. willistoni and constituting a major reassignment of the scaffolds to chromosome II arms. Copyright © 2015 Garcia et al.

  1. CNVs affecting cancer predisposing genes (CPGs) detected as incidental findings in routine germline diagnostic chromosomal microarray (CMA) testing.

    Science.gov (United States)

    Innes, Josie; Reali, Lisa; Clayton-Smith, Jill; Hall, Georgina; Lim, Derek Hk; Burghel, George J; French, Kim; Khan, Unzela; Walker, Daniel; Lalloo, Fiona; Evans, D Gareth R; McMullan, Dominic; Maher, Eamonn R; Woodward, Emma R

    2018-02-01

    Identification of CNVs through chromosomal microarray (CMA) testing is the first-line investigation in individuals with learning difficulties/congenital abnormalities. Although recognised that CMA testing may identify CNVs encompassing a cancer predisposition gene (CPG), limited information is available on the frequency and nature of such results. We investigated CNV gains and losses affecting 39 CPGs in 3366 pilot index case individuals undergoing CMA testing, and then studied an extended cohort (n=10 454) for CNV losses at 105 CPGs and CNV gains at 9 proto-oncogenes implicated in inherited cancer susceptibility. In the pilot cohort, 31/3366 (0.92%) individuals had a CNV involving one or more of 16/39 CPGs. 30/31 CNVs involved a tumour suppressor gene (TSG), and 1/30 a proto-oncogene (gain of MET ). BMPR1A , TSC2 and TMEM127 were affected in multiple cases. In the second stage analysis, 49/10 454 (0.47%) individuals in the extended cohort had 50 CNVs involving 24/105 CPGs. 43/50 CNVs involved a TSG and 7/50 a proto-oncogene (4 gains, 3 deletions). The most frequently involved genes, FLCN (n=10) and SDHA (n=7), map to the Smith-Magenis and cri-du-chat regions, respectively. Incidental identification of a CNV involving a CPG is not rare and poses challenges for future cancer risk estimation. Prospective data collection from CPG-CNV cohorts ascertained incidentally and through syndromic presentations is required to determine the risks posed by specific CNVs. In particular, ascertainment and investigation of adults with CPG-CNVs and adults with learning disability and cancer, could provide important information to guide clinical management and surveillance. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  2. Linking Y‐chromosomal short tandem repeat loci to human male impulsive aggression

    OpenAIRE

    Yang, Chun; Ba, Huajie; Cao, Yin; Dong, Guoying; Zhang, Shuyou; Gao, Zhiqin; Zhao, Hanqing; Zhou, Xianju

    2017-01-01

    Abstract Introduction Men are more susceptible to impulsive behavior than women. Epidemiological studies revealed that the impulsive aggressive behavior is affected by genetic factors, and the male‐specific Y chromosome plays an important role in this behavior. In this study, we investigated the association between the impulsive aggressive behavior and Y‐chromosomal short tandem repeats (Y‐STRs) loci. Methods The collected biologic samples from 271 offenders with impulsive aggressive behavior...

  3. Dosage compensation and demasculinization of X chromosomes in Drosophila.

    Science.gov (United States)

    Bachtrog, Doris; Toda, Nicholas R T; Lockton, Steven

    2010-08-24

    The X chromosome of Drosophila shows a deficiency of genes with male-biased expression, whereas mammalian X chromosomes are enriched for spermatogenesis genes expressed premeiosis and multicopy testis genes. Meiotic X-inactivation and sexual antagonism can only partly account for these patterns. Here, we show that dosage compensation (DC) in Drosophila may contribute substantially to the depletion of male genes on the X. To equalize expression between X-linked and autosomal genes in the two sexes, male Drosophila hypertranscribe their single X, whereas female mammals silence one of their two X chromosomes. We combine fine-scale mapping data of dosage compensated regions with genome-wide expression profiles and show that most male-biased genes on the D. melanogaster X are located outside dosage compensated regions. Additionally, X-linked genes that have newly acquired male-biased expression in D. melanogaster are less likely to be dosage compensated, and parental X-linked genes that gave rise to an autosomal male-biased retrocopy are more likely located within compensated regions. This suggests that DC contributes to the observed demasculinization of X chromosomes in Drosophila, both by limiting the emergence of male-biased expression patterns of existing X genes, and by contributing to gene trafficking of male genes off the X. Copyright 2010 Elsevier Ltd. All rights reserved.

  4. Microdissection and molecular manipulation of single chromosomes in woody fruit trees with small chromosomes using pomelo (Citrus grandis) as a model. II. Cloning of resistance gene analogs from single chromosomes.

    Science.gov (United States)

    Huang, D; Wu, W; Lu, L

    2004-05-01

    Amplification of resistance gene analogs (RGAs) is both a useful method for acquiring DNA markers closely linked to disease resistance (R) genes and a potential approach for the rapid cloning of R genes in plants. However, the screening of target sequences from among the numerous amplified RGAs can be very laborious. The amplification of RGAs from specific chromosomes could greatly reduce the number of RGAs to be screened and, consequently, speed up the identification of target RGAs. We have developed two methods for amplifying RGAs from single chromosomes. Method 1 uses products of Sau3A linker adaptor-mediated PCR (LAM-PCR) from a single chromosome as the templates for RGA amplification, while Method 2 directly uses a single chromosomal DNA molecule as the template. Using a pair of degenerate primers designed on the basis of the conserved nucleotide-binding-site motifs in many R genes, RGAs were successfully amplified from single chromosomes of pomelo using both these methods. Sequencing and cluster analysis of RGA clones obtained from single chromosomes revealed the number, type and organization of R-gene clusters on the chromosomes. We suggest that Method 1 is suitable for analyzing chromosomes that are unidentifiable under a microscope, while Method 2 is more appropriate when chromosomes can be clearly identified.

  5. The Polynesian gene pool: an early contribution by Amerindians to Easter Island.

    Science.gov (United States)

    Thorsby, Erik

    2012-03-19

    It is now generally accepted that Polynesia was first settled by peoples from southeast Asia. An alternative that eastern parts of Polynesia were first inhabited by Amerindians has found little support. There are, however, many indications of a 'prehistoric' (i.e. before Polynesia was discovered by Europeans) contact between Polynesia and the Americas, but genetic evidence of a prehistoric Amerindian contribution to the Polynesian gene pool has been lacking. We recently carried out genomic HLA (human leucocyte antigen) typing as well as typing for mitochondrial DNA (mtDNA) and Y chromosome markers of blood samples collected in 1971 and 2008 from reputedly non-admixed Easter Islanders. All individuals carried HLA alleles and mtDNA types previously found in Polynesia, and most of the males carried Y chromosome markers of Polynesian origin (a few had European Y chromosome markers), further supporting an initial Polynesian population on Easter Island. The HLA investigations revealed, however, that some individuals also carried HLA alleles which have previously almost only been found in Amerindians. We could trace the introduction of these Amerindian alleles to before the Peruvian slave trades, i.e. before the 1860s, and provide suggestive evidence that they were introduced already in prehistoric time. Our results demonstrate an early Amerindian contribution to the Polynesian gene pool on Easter Island, and illustrate the usefulness of typing for immunogenetic markers such as HLA to complement mtDNA and Y chromosome analyses in anthropological investigations.

  6. LARG at chromosome 11q23 has functional characteristics of a tumor suppressor in human breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Ong, Danny C.T.; Rudduck, Christina; Chin, Koei; Kuo, Wen-Lin; Lie, Daniel K.H.; Chua, Constance L.M.; Wong, Chow Yin; Hong, Ga Sze; Gray, Joe; Lee, Ann S.G.

    2008-05-06

    Deletion of 11q23-q24 is frequent in a diverse variety of malignancies, including breast and colorectal carcinoma, implicating the presence of a tumor suppressor gene at that chromosomal region. We show here that LARG, from 11q23, has functional characteristics of a tumor suppressor. We examined a 6-Mb region on 11q23 by high-resolution deletion mapping, utilizing both loss of heterozygosity (LOH) analysis and microarray comparative genomic hybridization (CGH). LARG (also called ARHGEF12), identified from the analyzed region, was underexpressed in 34% of primary breast carcinomas and 80% of breast cancer cell lines including the MCF-7 line. Multiplex ligation-dependent probe amplification on 30 primary breast cancers and six breast cancer cell lines showed that LARG had the highest frequency of deletion compared to the BCSC-1 and TSLC1 genes, two known candidate tumor suppressor genes from 11q. In vitro analysis of breast cancer cell lines that underexpress LARG showed that LARG could be reactivated by trichostatin A, a histone deacetylase inhibitor, but not by 5-Aza-2{prime}-deoxycytidine, a demethylating agent. Bisulfite sequencing and quantitative high-throughput analysis of DNA methylation confirmed the lack of CpG island methylation in LARG in breast cancer. Restoration of LARG expression in MCF-7 cells by stable transfection resulted in reduced proliferation and colony formation, suggesting that LARG has functional characteristics of a tumor suppressor gene.

  7. CpG Island Methylator Phenotype Positive Tumors in the Absence of MLH1 Methylation Constitute a Distinct Subset of Duodenal Adenocarcinomas and Are Associated with Poor Prognosis

    Science.gov (United States)

    Fu, Tao; Pappou, Emmanouil P.; Guzzetta, Angela A.; Jeschke, Jana; Kwak, Ruby; Dave, Pujan; Hooker, Craig M.; Morgan, Richard; Baylin, Stephen B.; Iacobuzio-Donahue, Christine A.; Wolfgang, Christopher L.; Ahuja, Nita

    2012-01-01

    Purpose Little information is available on genetic and epigenetic changes in duodenal adenocarcinomas. The purpose was to identify possible subsets of duodenal adenocarcinomas based on microsatellite instability (MSI), DNA methylation, mutations in the KRAS and BRAF genes, clinicopathologic features, and prognosis. Experimental Design Demographics, tumor characteristics and survival were available for 99 duodenal adenocarcinoma patients. Testing for KRAS and BRAF mutations, MSI, MLH1 methylation and CpG island methylator phenotype (CIMP) status was performed. A Cox proportional hazard model was built to predict survival. Results CIMP+ was detected in 27 of 99 (27.3%) duodenal adenocarcinomas, and was associated with MSI (P = 0.011) and MLH1 methylation (P CIMP− tumors. No BRAF V600E mutation was detected. Among the CIMP+ tumors, 15 (55.6%) were CIMP+/MLH1-unmethylated (MLH1-U). Kaplan-Meier analysis showed tumors classified by CIMP, CIMP/MLH1 methylation status or CIMP/MSI status could predict overall survival (OS; P = 0.047, 0.002, and 0.002, respectively), while CIMP/MLH1 methylation status could also predict time-to-recurrence (TTR; P = 0.016). In multivariate analysis, CIMP/MLH1 methylation status showed a significant prognostic value regarding both OS (P CIMP+/MLH1-U tumors had the worst OS and TTR. Conclusions Our results demonstrate existence of CIMP in duodenal adenocarcinomas. The combination of CIMP+/MLH1-U appears to be independently associated with poor prognosis in patients with duodenal adenocarcinomas. This study also suggests that BRAF mutations are not involved in duodenal tumorigenesis, MSI or CIMP development. PMID:22825585

  8. Chromosome painting in the manatee supports Afrotheria and Paenungulata

    Directory of Open Access Journals (Sweden)

    Zori Roberto T

    2007-01-01

    Full Text Available Abstract Background Sirenia (manatees, dugongs and Stellar's sea cow have no evolutionary relationship with other marine mammals, despite similarities in adaptations and body shape. Recent phylogenomic results place Sirenia in Afrotheria and with elephants and rock hyraxes in Paenungulata. Sirenia and Hyracoidea are the two afrotherian orders as yet unstudied by comparative molecular cytogenetics. Here we report on the chromosome painting of the Florida manatee. Results The human autosomal and X chromosome paints delimited a total of 44 homologous segments in the manatee genome. The synteny of nine of the 22 human autosomal chromosomes (4, 5, 6, 9, 11, 14, 17, 18 and 20 and the X chromosome were found intact in the manatee. The syntenies of other human chromosomes were disrupted in the manatee genome into two to five segments. The hybridization pattern revealed that 20 (15 unique associations of human chromosome segments are found in the manatee genome: 1/15, 1/19, 2/3 (twice, 3/7 (twice, 3/13, 3/21, 5/21, 7/16, 8/22, 10/12 (twice, 11/20, 12/22 (three times, 14/15, 16/19 and 18/19. Conclusion There are five derived chromosome traits that strongly link elephants with manatees in Tethytheria and give implicit support to Paenungulata: the associations 2/3, 3/13, 8/22, 18/19 and the loss of the ancestral eutherian 4/8 association. It would be useful to test these conclusions with chromosome painting in hyraxes. The manatee chromosome painting data confirm that the associations 1/19 and 5/21 phylogenetically link afrotherian species and show that Afrotheria is a natural clade. The association 10/12/22 is also ubiquitous in Afrotheria (clade I, present in Laurasiatheria (clade IV, only partially present in Xenarthra (10/12, clade II and absent in Euarchontoglires (clade III. If Afrotheria is basal to eutherians, this association could be part of the ancestral eutherian karyotype. If afrotherians are not at the root of the eutherian tree, then the 10

  9. Efficient identification of Y chromosome sequences in the human and Drosophila genomes

    Science.gov (United States)

    Carvalho, Antonio Bernardo; Clark, Andrew G.

    2013-01-01

    Notwithstanding their biological importance, Y chromosomes remain poorly known in most species. A major obstacle to their study is the identification of Y chromosome sequences; due to its high content of repetitive DNA, in most genome projects, the Y chromosome sequence is fragmented into a large number of small, unmapped scaffolds. Identification of Y-linked genes among these fragments has yielded important insights about the origin and evolution of Y chromosomes, but the process is labor intensive, restricting studies to a small number of species. Apart from these fragmentary assemblies, in a few mammalian species, the euchromatic sequence of the Y is essentially complete, owing to painstaking BAC mapping and sequencing. Here we use female short-read sequencing and k-mer comparison to identify Y-linked sequences in two very different genomes, Drosophila virilis and human. Using this method, essentially all D. virilis scaffolds were unambiguously classified as Y-linked or not Y-linked. We found 800 new scaffolds (totaling 8.5 Mbp), and four new genes in the Y chromosome of D. virilis, including JYalpha, a gene involved in hybrid male sterility. Our results also strongly support the preponderance of gene gains over gene losses in the evolution of the Drosophila Y. In the intensively studied human genome, used here as a positive control, we recovered all previously known genes or gene families, plus a small amount (283 kb) of new, unfinished sequence. Hence, this method works in large and complex genomes and can be applied to any species with sex chromosomes. PMID:23921660

  10. Efficient identification of Y chromosome sequences in the human and Drosophila genomes.

    Science.gov (United States)

    Carvalho, Antonio Bernardo; Clark, Andrew G

    2013-11-01

    Notwithstanding their biological importance, Y chromosomes remain poorly known in most species. A major obstacle to their study is the identification of Y chromosome sequences; due to its high content of repetitive DNA, in most genome projects, the Y chromosome sequence is fragmented into a large number of small, unmapped scaffolds. Identification of Y-linked genes among these fragments has yielded important insights about the origin and evolution of Y chromosomes, but the process is labor intensive, restricting studies to a small number of species. Apart from these fragmentary assemblies, in a few mammalian species, the euchromatic sequence of the Y is essentially complete, owing to painstaking BAC mapping and sequencing. Here we use female short-read sequencing and k-mer comparison to identify Y-linked sequences in two very different genomes, Drosophila virilis and human. Using this method, essentially all D. virilis scaffolds were unambiguously classified as Y-linked or not Y-linked. We found 800 new scaffolds (totaling 8.5 Mbp), and four new genes in the Y chromosome of D. virilis, including JYalpha, a gene involved in hybrid male sterility. Our results also strongly support the preponderance of gene gains over gene losses in the evolution of the Drosophila Y. In the intensively studied human genome, used here as a positive control, we recovered all previously known genes or gene families, plus a small amount (283 kb) of new, unfinished sequence. Hence, this method works in large and complex genomes and can be applied to any species with sex chromosomes.

  11. Search for common haplotypes on chromosome 22q in patients with schizophrenia or bipolar disorder from the Faroe Islands

    DEFF Research Database (Denmark)

    Jorgensen, Tove H; Børglum, A.D; Mors, O

    2002-01-01

    Chromosome 22q may harbor risk genes for schizophrenia and bipolar affective disorder. This is evidenced through genetic mapping studies, investigations of cytogenetic abnormalities, and direct examination of candidate genes. Patients with schizophrenia and bipolar affective disorder from the Faroe...... was found at a segment of at least 1.1 cM including markers D22S1161 and D22S922 (P=0.0081 in the test for association). Our results also support the a priori evidence of a susceptibility gene to schizophrenia at a segment of at least 0.45 cM including markers D22S279 and D22S276 (P=0.0075). Patients were...... tested for the presence of a missense mutation in the WKL1 gene encoding a putative cation channel close to segment D22S1161-D22S922, which has been associated with schizophrenia. We did not find this mutation in schizophrenic or bipolar patients or the controls from the Faroe Islands. © 2002 Wiley...

  12. CpG Type A Induction of an Early Protective Environment in Experimental Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    James Crooks

    2017-01-01

    Full Text Available Experimental autoimmune encephalomyelitis (EAE is an inflammatory, demyelinating disease of the CNS that mimics human multiple sclerosis (MS, and it is thought to be driven by Th1 and Th17 myelin-reactive cells. Although adaptive immunity is clearly pivotal in the pathogenesis of EAE, with an essential role of CD4+ T cells, little is known of early, innate responses in this experimental setting. CpG-rich oligodeoxynucleotides (ODNs, typically found in microbial genomes, are potent activators of TLR9 in plasmacytoid dendritic cells (pDCs. In this study, we compared the effects of two types of CpG, namely, type A and type B, on EAE. We found that treatment with CpG type A ODN (CpG-A, known to induce high amounts of IFN-α in pDCs, significantly reduced disease severity in EAE, relative to controls (12.63±1.86 versus 23.49±1.46, resp.; p=0.001. Treatment also delayed onset of neurological deficits and reduced spinal cord demyelination, while increasing the percentage of splenic regulatory (Foxp3+ CD4+ T cells. CpG-A likewise reduced the levels of IL-17 and IFN-γ in the CNS. Mechanistic insight into those events showed that CpG-A promoted a regulatory phenotype in pDCs. Moreover, adoptive transfer of pDCs isolated from CpG-A-treated mice inhibited CNS inflammation and induced disease remission in acute-phase EAE. Our data thus identify a link between TLR9 activation by specific ligands and the induction of tolerance via innate immunity mechanisms.

  13. Co-regulation analysis of closely linked genes identifies a highly recurrent gain on chromosome 17q25.3 in prostate cancer

    International Nuclear Information System (INIS)

    Bermudo, Raquel; Martínez-A, Carlos; Ortiz, Ángel R; Fernández, Pedro L; Thomson, Timothy M; Abia, David; Ferrer, Berta; Nayach, Iracema; Benguria, Alberto; Zaballos, Ángel; Rey, Javier del; Miró, Rosa; Campo, Elías

    2008-01-01

    Transcriptional profiling of prostate cancer (PC) has unveiled new markers of neoplasia and allowed insights into mechanisms underlying this disease. Genomewide analyses have also identified new chromosomal abnormalities associated with PC. The combination of both classes of data for the same sample cohort might provide better criteria for identifying relevant factors involved in neoplasia. Here we describe transcriptional signatures identifying distinct normal and tumoral prostate tissue compartments, and the inference and demonstration of a new, highly recurrent copy number gain on chromosome 17q25.3. We have applied transcriptional profiling to tumoral and non-tumoral prostate samples with relatively homogeneous epithelial representations as well as pure stromal tissue from peripheral prostate and cultured cell lines, followed by quantitative RT-PCR validations and immunohistochemical analysis. In addition, we have performed in silico colocalization analysis of co-regulated genes and validation by fluorescent in situ hybridization (FISH). The transcriptomic analysis has allowed us to identify signatures corresponding to non-tumoral luminal and tumoral epithelium, basal epithelial cells, and prostate stromal tissue. In addition, in silico analysis of co-regulated expression of physically linked genes has allowed us to predict the occurrence of a copy number gain at chromosomal region 17q25.3. This computational inference was validated by fluorescent in situ hybridization, which showed gains in this region in over 65% of primary and metastatic tumoral samples. Our approach permits to directly link gene copy number variations with transcript co-regulation in association with neoplastic states. Therefore, transcriptomic studies of carefully selected samples can unveil new diagnostic markers and transcriptional signatures highly specific of PC, and lead to the discovery of novel genomic abnormalities that may provide additional insights into the causes and mechanisms

  14. BRAF mutation-specific promoter methylation of FOX genes in colorectal cancer

    NARCIS (Netherlands)

    E.H.J. van Roon (Eddy); A. Boot (Arnoud); A.A. Dihal (Ashwin); R.F. Ernst (Robert); T. van Wezel (Tom); H. Morreau (Hans); J.M. Boer (Judith)

    2013-01-01

    textabstractBackground: Cancer-specific hypermethylation of (promoter) CpG islands is common during the tumorigenesis of colon cancer. Although associations between certain genetic aberrations, such as BRAF mutation and microsatellite instability, and the CpG island methylator phenotype (CIMP), have

  15. Genomic regulatory landscapes and chromosomal rearrangements

    DEFF Research Database (Denmark)

    Ladegaard, Elisabete L Engenheiro

    2008-01-01

    The main objectives of the PhD study are to identify and characterise chromosomal rearrangements within evolutionarily conserved regulatory landscapes around genes involved in the regulation of transcription and/or development (trans-dev genes). A frequent feature of trans-dev genes is that they ......The main objectives of the PhD study are to identify and characterise chromosomal rearrangements within evolutionarily conserved regulatory landscapes around genes involved in the regulation of transcription and/or development (trans-dev genes). A frequent feature of trans-dev genes...... the complex spatio-temporal expression of the associated trans-dev gene. Rare chromosomal breakpoints that disrupt the integrity of these regulatory landscapes may be used as a tool, not only to make genotype-phenotype associations, but also to link the associated phenotype with the position and tissue...... specificity of the individual CNEs. In this PhD study I have studied several chromosomal rearrangements with breakpoints in the vicinity of trans-dev genes. This included chromosomal rearrangements compatible with known phenotype-genotype associations (Rieger syndrome-PITX2, Mowat-Wilson syndrome-ZEB2...

  16. The CpG island methylator phenotype may confer a survival benefit in patients with stage II or III colorectal carcinomas receiving fluoropyrimidine-based adjuvant chemotherapy

    International Nuclear Information System (INIS)

    Min, Byung-Hoon; Kim, Kyoung-Mee; Kang, Gyeong Hoon; Bae, Jeong Mo; Lee, Eui Jin; Yu, Hong Suk; Kim, Young-Ho; Chang, Dong Kyung; Kim, Hee Cheol; Park, Cheol Keun; Lee, Suk-Hee

    2011-01-01

    Colorectal carcinoma (CRC) with CpG island methylator phenotype (CIMP) is recognized as a distinct subgroup of CRC, and CIMP status affects prognosis and response to chemotherapy. Identification of CIMP status in CRC is important for proper patient management. In Eastern countries, however, the clinicopathologic and molecular characteristics and prognosis of CRCs with CIMP are still unclear. A total of 245 patients who underwent their first surgical resection for sporadic CRC were enrolled and CIMP status of the CRCs was determined using the quantitative MethyLight assay. The clinicopathologic and molecular characteristics were reviewed and compared according to CIMP status. In addition, the three-year recurrence-free survival (RFS) of 124 patients with stage II or stage III CRC was analyzed in order to assess the effectiveness of fluoropyrimidine-based adjuvant chemotherapy with respect to CIMP status. CIMP-high CRCs were identified in 34 cases (13.9%), and were significantly associated with proximal tumor location, poorly differentiated carcinoma, mucinous histology, and high frequencies of BRAF mutation, MGMT methylation, and MSI-high compared to CIMP-low/negative carcinomas. For patients with stage II or III CIMP-low/negative CRCs, no significant difference was found in RFS between those undergoing surgery alone and those receiving surgery with fluoropyrimidine-based adjuvant chemotherapy. However, for patients with CIMP-high CRCs, patients undergoing surgery with fluoropyrimidine-based adjuvant chemotherapy (n = 17; three-year RFS: 100%) showed significantly better RFS than patients treated with surgery alone (n = 7; three-year RFS: 71.4%) (P = 0.022). Our results suggest that selected patients with CIMP-high CRC may benefit from fluoropyrimidine-based adjuvant chemotherapy with longer RFS. Further large scale-studies are required to confirm our results

  17. The CpG island methylator phenotype may confer a survival benefit in patients with stage II or III colorectal carcinomas receiving fluoropyrimidine-based adjuvant chemotherapy

    Directory of Open Access Journals (Sweden)

    Park Cheol

    2011-08-01

    Full Text Available Abstract Background Colorectal carcinoma (CRC with CpG island methylator phenotype (CIMP is recognized as a distinct subgroup of CRC, and CIMP status affects prognosis and response to chemotherapy. Identification of CIMP status in CRC is important for proper patient management. In Eastern countries, however, the clinicopathologic and molecular characteristics and prognosis of CRCs with CIMP are still unclear. Methods A total of 245 patients who underwent their first surgical resection for sporadic CRC were enrolled and CIMP status of the CRCs was determined using the quantitative MethyLight assay. The clinicopathologic and molecular characteristics were reviewed and compared according to CIMP status. In addition, the three-year recurrence-free survival (RFS of 124 patients with stage II or stage III CRC was analyzed in order to assess the effectiveness of fluoropyrimidine-based adjuvant chemotherapy with respect to CIMP status. Results CIMP-high CRCs were identified in 34 cases (13.9%, and were significantly associated with proximal tumor location, poorly differentiated carcinoma, mucinous histology, and high frequencies of BRAF mutation, MGMT methylation, and MSI-high compared to CIMP-low/negative carcinomas. For patients with stage II or III CIMP-low/negative CRCs, no significant difference was found in RFS between those undergoing surgery alone and those receiving surgery with fluoropyrimidine-based adjuvant chemotherapy. However, for patients with CIMP-high CRCs, patients undergoing surgery with fluoropyrimidine-based adjuvant chemotherapy (n = 17; three-year RFS: 100% showed significantly better RFS than patients treated with surgery alone (n = 7; three-year RFS: 71.4% (P = 0.022. Conclusions Our results suggest that selected patients with CIMP-high CRC may benefit from fluoropyrimidine-based adjuvant chemotherapy with longer RFS. Further large scale-studies are required to confirm our results.

  18. The CpG island methylator phenotype may confer a survival benefit in patients with stage II or III colorectal carcinomas receiving fluoropyrimidine-based adjuvant chemotherapy

    Science.gov (United States)

    2011-01-01

    Background Colorectal carcinoma (CRC) with CpG island methylator phenotype (CIMP) is recognized as a distinct subgroup of CRC, and CIMP status affects prognosis and response to chemotherapy. Identification of CIMP status in CRC is important for proper patient management. In Eastern countries, however, the clinicopathologic and molecular characteristics and prognosis of CRCs with CIMP are still unclear. Methods A total of 245 patients who underwent their first surgical resection for sporadic CRC were enrolled and CIMP status of the CRCs was determined using the quantitative MethyLight assay. The clinicopathologic and molecular characteristics were reviewed and compared according to CIMP status. In addition, the three-year recurrence-free survival (RFS) of 124 patients with stage II or stage III CRC was analyzed in order to assess the effectiveness of fluoropyrimidine-based adjuvant chemotherapy with respect to CIMP status. Results CIMP-high CRCs were identified in 34 cases (13.9%), and were significantly associated with proximal tumor location, poorly differentiated carcinoma, mucinous histology, and high frequencies of BRAF mutation, MGMT methylation, and MSI-high compared to CIMP-low/negative carcinomas. For patients with stage II or III CIMP-low/negative CRCs, no significant difference was found in RFS between those undergoing surgery alone and those receiving surgery with fluoropyrimidine-based adjuvant chemotherapy. However, for patients with CIMP-high CRCs, patients undergoing surgery with fluoropyrimidine-based adjuvant chemotherapy (n = 17; three-year RFS: 100%) showed significantly better RFS than patients treated with surgery alone (n = 7; three-year RFS: 71.4%) (P = 0.022). Conclusions Our results suggest that selected patients with CIMP-high CRC may benefit from fluoropyrimidine-based adjuvant chemotherapy with longer RFS. Further large scale-studies are required to confirm our results. PMID:21827707

  19. Patterns of genic diversity and structure in a species undergoing rapid chromosomal radiation: an allozyme analysis of house mice from the Madeira archipelago.

    Science.gov (United States)

    Britton-Davidian, J; Catalan, J; Lopez, J; Ganem, G; Nunes, A C; Ramalhinho, M G; Auffray, J C; Searle, J B; Mathias, M L

    2007-10-01

    The chromosomal radiation of the house mouse in the island of Madeira most likely involved a human-mediated colonization event followed by within-island geographical isolation and recurrent episodes of genetic drift. The genetic signature of such processes was assessed by an allozyme analysis of the chromosomal races from Madeira. No trace of a decrease in diversity was observed suggesting the possibility of large founder or bottleneck sizes, multiple introductions and/or a high post-colonization expansion rate. The Madeira populations were more closely related to those of Portugal than to other continental regions, in agreement with the documented human colonization of the island. Such a Portuguese origin contrasts with a study indicating a north European source of the mitochondrial haplotypes present in the Madeira mice. This apparent discrepancy may be resolved if not one but two colonization events took place, an initial north European introduction followed by a later one from Portugal. Asymmetrical reproduction between these mice would have resulted in a maternal north European signature with a nuclear Portuguese genome. The extensive chromosomal divergence of the races in Madeira is expected to contribute to their genic divergence. However, there was no significant correlation between chromosomal and allozyme distances. This low apparent chromosomal impact on genic differentiation may be related to the short time since the onset of karyotypic divergence, as the strength of the chromosomal barrier will become significant only at later stages.

  20. Genomic evidence for island population conversion resolves conflicting theories of polar bear evolution.

    Directory of Open Access Journals (Sweden)

    James A Cahill

    Full Text Available Despite extensive genetic analysis, the evolutionary relationship between polar bears (Ursus maritimus and brown bears (U. arctos remains unclear. The two most recent comprehensive reports indicate a recent divergence with little subsequent admixture or a much more ancient divergence followed by extensive admixture. At the center of this controversy are the Alaskan ABC Islands brown bears that show evidence of shared ancestry with polar bears. We present an analysis of genome-wide sequence data for seven polar bears, one ABC Islands brown bear, one mainland Alaskan brown bear, and a black bear (U. americanus, plus recently published datasets from other bears. Surprisingly, we find clear evidence for gene flow from polar bears into ABC Islands brown bears but no evidence of gene flow from brown bears into polar bears. Importantly, while polar bears contributed <1% of the autosomal genome of the ABC Islands brown bear, they contributed 6.5% of the X chromosome. The magnitude of sex-biased polar bear ancestry and the clear direction of gene flow suggest a model wherein the enigmatic ABC Island brown bears are the descendants of a polar bear population that was gradually converted into brown bears via male-dominated brown bear admixture. We present a model that reconciles heretofore conflicting genetic observations. We posit that the enigmatic ABC Islands brown bears derive from a population of polar bears likely stranded by the receding ice at the end of the last glacial period. Since then, male brown bear migration onto the island has gradually converted these bears into an admixed population whose phenotype and genotype are principally brown bear, except at mtDNA and X-linked loci. This process of genome erosion and conversion may be a common outcome when climate change or other forces cause a population to become isolated and then overrun by species with which it can hybridize.

  1. CpG preconditioning regulates miRNA expression that modulates genomic reprogramming associated with neuroprotection against ischemic injury

    Science.gov (United States)

    Vartanian, Keri B; Mitchell, Hugh D; Stevens, Susan L; Conrad, Valerie K; McDermott, Jason E; Stenzel-Poore, Mary P

    2015-01-01

    Cytosine-phosphate-guanine (CpG) preconditioning reprograms the genomic response to stroke to protect the brain against ischemic injury. The mechanisms underlying genomic reprogramming are incompletely understood. MicroRNAs (miRNAs) regulate gene expression; however, their role in modulating gene responses produced by CpG preconditioning is unknown. We evaluated brain miRNA expression in response to CpG preconditioning before and after stroke using microarray. Importantly, we have data from previous gene microarrays under the same conditions, which allowed integration of miRNA and gene expression data to specifically identify regulated miRNA gene targets. CpG preconditioning did not significantly alter miRNA expression before stroke, indicating that miRNA regulation is not critical for the initiation of preconditioning-induced neuroprotection. However, after stroke, differentially regulated miRNAs between CpG- and saline-treated animals associated with the upregulation of several neuroprotective genes, implicating these miRNAs in genomic reprogramming that increases neuroprotection. Statistical analysis revealed that the miRNA targets were enriched in the gene population regulated in the setting of stroke, implying that miRNAs likely orchestrate this gene expression. These data suggest that miRNAs regulate endogenous responses to stroke and that manipulation of these miRNAs may have the potential to acutely activate novel neuroprotective processes that reduce damage. PMID:25388675

  2. Consolidated Recovered Materials Advisory Notice (RMAN) for the Comprehensive Procurement Guideline (CPG)

    Data.gov (United States)

    U.S. Environmental Protection Agency — EPA's Comprehensive Procurement Guideline (CPG) designates recycled content products that government agencies should buy. EPA publishes purchasing guidance and...

  3. Phylogenomics of a rapid radiation: is chromosomal evolution linked to increased diversification in north american spiny lizards (Genus Sceloporus)?

    Science.gov (United States)

    Leaché, Adam D; Banbury, Barbara L; Linkem, Charles W; de Oca, Adrián Nieto-Montes

    2016-03-22

    Resolving the short phylogenetic branches that result from rapid evolutionary diversification often requires large numbers of loci. We collected targeted sequence capture data from 585 nuclear loci (541 ultraconserved elements and 44 protein-coding genes) to estimate the phylogenetic relationships among iguanian lizards in the North American genus Sceloporus. We tested for diversification rate shifts to determine if rapid radiation in the genus is correlated with chromosomal evolution. The phylogenomic trees that we obtained for Sceloporus using concatenation and coalescent-based species tree inference provide strong support for the monophyly and interrelationships among nearly all major groups. The diversification analysis supported one rate shift on the Sceloporus phylogeny approximately 20-25 million years ago that is associated with the doubling of the speciation rate from 0.06 species/million years (Ma) to 0.15 species/Ma. The posterior probability for this rate shift occurring on the branch leading to the Sceloporus species groups exhibiting increased chromosomal diversity is high (posterior probability = 0.997). Despite high levels of gene tree discordance, we were able to estimate a phylogenomic tree for Sceloporus that solves some of the taxonomic problems caused by previous analyses of fewer loci. The taxonomic changes that we propose using this new phylogenomic tree help clarify the number and composition of the major species groups in the genus. Our study provides new evidence for a putative link between chromosomal evolution and the rapid divergence and radiation of Sceloporus across North America.

  4. X chromosome dosage compensation via enhanced transcriptional elongation in Drosophila.

    Science.gov (United States)

    Larschan, Erica; Bishop, Eric P; Kharchenko, Peter V; Core, Leighton J; Lis, John T; Park, Peter J; Kuroda, Mitzi I

    2011-03-03

    The evolution of sex chromosomes has resulted in numerous species in which females inherit two X chromosomes but males have a single X, thus requiring dosage compensation. MSL (Male-specific lethal) complex increases transcription on the single X chromosome of Drosophila males to equalize expression of X-linked genes between the sexes. The biochemical mechanisms used for dosage compensation must function over a wide dynamic range of transcription levels and differential expression patterns. It has been proposed that the MSL complex regulates transcriptional elongation to control dosage compensation, a model subsequently supported by mapping of the MSL complex and MSL-dependent histone 4 lysine 16 acetylation to the bodies of X-linked genes in males, with a bias towards 3' ends. However, experimental analysis of MSL function at the mechanistic level has been challenging owing to the small magnitude of the chromosome-wide effect and the lack of an in vitro system for biochemical analysis. Here we use global run-on sequencing (GRO-seq) to examine the specific effect of the MSL complex on RNA Polymerase II (RNAP II) on a genome-wide level. Results indicate that the MSL complex enhances transcription by facilitating the progression of RNAP II across the bodies of active X-linked genes. Improving transcriptional output downstream of typical gene-specific controls may explain how dosage compensation can be imposed on the diverse set of genes along an entire chromosome.

  5. Increased sensitivity of transforming growth factor (TGF) beta 1 null cells to alkylating agents reveals a novel link between TGFbeta signaling and O(6)-methylguanine methyltransferase promoter hypermethylation.

    Science.gov (United States)

    Yamada, H; Vijayachandra, K; Penner, C; Glick, A

    2001-06-01

    Inactivation of the transforming growth factor beta (TGFbeta)-signaling pathway and gene silencing through hypermethylation of promoter CpG islands are two frequent alterations in human and experimental cancers. Here we report that nonneoplastic TGFbeta1-/- keratinocyte cell lines exhibit increased sensitivity to cell killing by alkylating agents, and this is due to lack of expression of the DNA repair enzyme O(6)-methylguanine DNA methyltransferase (MGMT). In TGFbeta1-/- but not TGFbeta1+/- cell lines, the CpG dinucleotides in the MGMT promoter are hypermethylated, as measured by restriction enzyme analysis and methylation specific polymerase chain reaction. In one unstable TGFbeta1+/- cell line, loss of the wild type TGFbeta1 allele correlates with the appearance of methylation in the MGMT promoter. Bisulfite sequencing shows that in the KO3 TGFbeta1-/- cell line nearly all of the 28 CpG sites in the MGMT promoter 475 base pairs upstream of the start site of transcription are methylated, whereas most are unmethylated in the H1 TGFbeta1+/- line. Treatment of the TGFbeta1-/- cell lines with 5-azacytidine causes reexpression of MGMT mRNA and demethylation of CpG islands in the promoter. Analysis of the time course of methylation using methylation-specific polymerase chain reaction shows a lack of methylation in primary TGFbeta1-/- keratinocytes and increasing methylation with passage number of immortalized clones. Subcloning of early passage clones reveals a remarkable heterogeneity and instability of the methylation state in the TGFbeta1-/- keratinocytes. Thus, the TGFbeta1-/- genotype does not directly regulate MGMT methylation but predisposes cells to immortalization-associated MGMT hypermethylation.

  6. Polymorphic haplotypes on R408BW PKU and normal PAH chromosomes in Quebec and European populations

    Energy Technology Data Exchange (ETDEWEB)

    Byck, S.; Morgan, K.; Scriver, C.R. [McGill Univ., Montreal (Canada)] [and others

    1994-09-01

    The R408W mutation in the phenylalanine hydroxylase gene (PAH) is associated with haplotype 2.3 (RFLP haplotype 2, VNTR 3 of the HindIII system) in most European populations. Another chromosome, first observed in Quebec and then in northwest Europe, carries R408W on haplotype 1.8. The occurrence of the R408W mutation on two different PKU chromosomes could be the result of intragenic recombination, recurrent mutation or gene conversion. In this study, we analyzed both normal and R408W chromosomes carrying 1.8 and 2.3 haplotypes in Quebec and European populations; we used the TCTA{sub (n)} short tandem repeat sequence (STR) at the 5{prime} end of the PAH gene and the HindIII VNTR system at the 3{prime} end of the PAH gene to characterize chromosomes. Fourteen of sixteen R408W chromosomes from {open_quotes}Celtic{close_quotes} families in Quebec and the United Kingdom (UK) harbor a 244 bp STR allele; the remaining two chromosomes, carry a 240 bp or 248bp STR allele. Normal chromosomes (n=18) carry the 240 bp STR allele. R408W chromosomes are different from mutant H1.8 chromosomes; mutant H2.3 carries the 240 bp STR allele (14 of 16 chromosomes) or the 236 allele (2 of 16 chromosomes). The HindIII VNTR comprises variable numbers of 30 bp repeats (cassettes); the repeats also vary in nucleotide sequence. Variation clusters toward the 3{prime} end of cassettes and VNTRs. VNTR 3 alleles on normal H2 (n=9) and mutant R408W H2 (n=19) chromosomes were identical. VNTR 8 alleles on normal H1 chromosomes (n=9) and on R408W H1 chromosomes (n=15) differ by 1 bp substitution near the 3{prime} end of the 6th cassette. In summary, the mutant H1.8 chromosome harboring the R408W mutation has unique features at both the 5{prime} and 3{prime} end of the gene that distinguish it from the mutant H2.3 and normal H1.8 and H2.3 counterparts. The explanation for the occurrence of R408W on two different PAH haplotypes is recurrent mutation affecting the CpG dinucleotide in PAH codon 408.

  7. A crucial role for plasmacytoid dendritic cells in antiviral protection by CpG ODN–based vaginal microbicide

    Science.gov (United States)

    Shen, Hong; Iwasaki, Akiko

    2006-01-01

    Topical microbicides represent a promising new approach to preventing HIV and other sexually transmitted infections. TLR agonists are ideal candidates for microbicides, as they trigger a multitude of antiviral genes effective against a broad range of viruses. Although vaginal application of CpG oligodeoxynucleotides (ODNs) and poly I:C has been shown to protect mice from genital herpes infection, the mechanism by which these agents provide protection remains unclear. Here, we show that plasmacytoid DCs (pDCs) are required for CpG ODN–mediated protection against lethal vaginal challenge with herpes simplex virus type 2 (HSV-2). Moreover, we demonstrate that cells of both the hematopoietic and stromal compartments must respond to CpG ODN via TLR9 and to type I IFNs through IFN-αβ receptor (IFN-αβR) for protection. Thus, crosstalk between pDCs and vaginal stromal cells provides for optimal microbicide efficacy. Our results imply that temporally and spatially controlled targeting of CpG ODN to pDCs and epithelial cells can potentially maximize their effectiveness as microbicides while minimizing the associated inflammatory responses. PMID:16878177

  8. Marfan syndrome is closely linked to a marker on chromosome 15q1. 5 r arrow q2. 1

    Energy Technology Data Exchange (ETDEWEB)

    Tsipouras, P.; Sarfarazi, M.; Devi, A. (Univ. of Connecticut Health Center, Farmington (United States)); Weiffenbach, B. (Collaborative Research, Inc., Waltham, MA (United States)); Boxer, M. (Ninewells Hospital and Medical School, Dundee (Scotland))

    1991-05-15

    Marfan syndrome is a systemic disorder of the connective tissue inherited as an autosomal dominant trait. The disorder imparts significant morbidity and martality. The etiology of the disorder remains elusive. A recent study localized the gene for Marfan syndrome on chromosome 15. The authors present data showing that marker D15S48 is genetically linked to Marfan syndrome. Pairwise linkage analysis gave a maximum lod (logarithm of odds) score of Z = 11.78 at {theta} = 0.02. Furthermore our data suggest that the Marfan syndrome locus is possibly flanked on either side by D15S48 and D15S49.

  9. Modeling and experimental methods to probe the link between global transcription and spatial organization of chromosomes.

    Directory of Open Access Journals (Sweden)

    K Venkatesan Iyer

    Full Text Available Genomes are spatially assembled into chromosome territories (CT within the nucleus of living cells. Recent evidences have suggested associations between three-dimensional organization of CTs and the active gene clusters within neighboring CTs. These gene clusters are part of signaling networks sharing similar transcription factor or other downstream transcription machineries. Hence, presence of such gene clusters of active signaling networks in a cell type may regulate the spatial organization of chromosomes in the nucleus. However, given the probabilistic nature of chromosome positions and complex transcription factor networks (TFNs, quantitative methods to establish their correlation is lacking. In this paper, we use chromosome positions and gene expression profiles in interphase fibroblasts and describe methods to capture the correspondence between their spatial position and expression. In addition, numerical simulations designed to incorporate the interacting TFNs, reveal that the chromosome positions are also optimized for the activity of these networks. These methods were validated for specific chromosome pairs mapped in two distinct transcriptional states of T-Cells (naïve and activated. Taken together, our methods highlight the functional coupling between topology of chromosomes and their respective gene expression patterns.

  10. Chromosome Bridges Maintain Kinetochore-Microtubule Attachment throughout Mitosis and Rarely Break during Anaphase.

    Science.gov (United States)

    Pampalona, Judit; Roscioli, Emanuele; Silkworth, William T; Bowden, Brent; Genescà, Anna; Tusell, Laura; Cimini, Daniela

    2016-01-01

    Accurate chromosome segregation during cell division is essential to maintain genome stability, and chromosome segregation errors are causally linked to genetic disorders and cancer. An anaphase chromosome bridge is a particular chromosome segregation error observed in cells that enter mitosis with fused chromosomes/sister chromatids. The widely accepted Breakage/Fusion/Bridge cycle model proposes that anaphase chromosome bridges break during mitosis to generate chromosome ends that will fuse during the following cell cycle, thus forming new bridges that will break, and so on. However, various studies have also shown a link between chromosome bridges and aneuploidy and/or polyploidy. In this study, we investigated the behavior and properties of chromosome bridges during mitosis, with the idea to gain insight into the potential mechanism underlying chromosome bridge-induced aneuploidy. We find that only a small number of chromosome bridges break during anaphase, whereas the rest persist through mitosis into the subsequent cell cycle. We also find that the microtubule bundles (k-fibers) bound to bridge kinetochores are not prone to breakage/detachment, thus supporting the conclusion that k-fiber detachment is not the cause of chromosome bridge-induced aneuploidy. Instead, our data suggest that while the microtubules bound to the kinetochores of normally segregating chromosomes shorten substantially during anaphase, the k-fibers bound to bridge kinetochores shorten only slightly, and may even lengthen, during anaphase. This causes some of the bridge kinetochores/chromosomes to lag behind in a position that is proximal to the cell/spindle equator and may cause the bridged chromosomes to be segregated into the same daughter nucleus or to form a micronucleus.

  11. CpG methylation differences between neurons and glia are highly conserved from mouse to human.

    Science.gov (United States)

    Kessler, Noah J; Van Baak, Timothy E; Baker, Maria S; Laritsky, Eleonora; Coarfa, Cristian; Waterland, Robert A

    2016-01-15

    Understanding epigenetic differences that distinguish neurons and glia is of fundamental importance to the nascent field of neuroepigenetics. A recent study used genome-wide bisulfite sequencing to survey differences in DNA methylation between these two cell types, in both humans and mice. That study minimized the importance of cell type-specific differences in CpG methylation, claiming these are restricted to localized genomic regions, and instead emphasized that widespread and highly conserved differences in non-CpG methylation distinguish neurons and glia. We reanalyzed the data from that study and came to markedly different conclusions. In particular, we found widespread cell type-specific differences in CpG methylation, with a genome-wide tendency for neuronal CpG-hypermethylation punctuated by regions of glia-specific hypermethylation. Alarmingly, our analysis indicated that the majority of genes identified by the primary study as exhibiting cell type-specific CpG methylation differences were misclassified. To verify the accuracy of our analysis, we isolated neuronal and glial DNA from mouse cortex and performed quantitative bisulfite pyrosequencing at nine loci. The pyrosequencing results corroborated our analysis, without exception. Most interestingly, we found that gene-associated neuron vs. glia CpG methylation differences are highly conserved across human and mouse, and are very likely to be functional. In addition to underscoring the importance of independent verification to confirm the conclusions of genome-wide epigenetic analyses, our data indicate that CpG methylation plays a major role in neuroepigenetics, and that the mouse is likely an excellent model in which to study the role of DNA methylation in human neurodevelopment and disease. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Frequent alteration of MLL3 frameshift mutations in microsatellite deficient colorectal cancer.

    Directory of Open Access Journals (Sweden)

    Yoshiyuki Watanabe

    Full Text Available MLL3 is a histone 3-lysine 4 methyltransferase with tumor-suppressor properties that belongs to a family of chromatin regulator genes potentially altered in neoplasia. Mutations in MLL3 were found in a whole genome analysis of colorectal cancer but have not been confirmed by a separate study.We analyzed mutations of coding region and promoter methylation in MLL3 using 126 cases of colorectal cancer. We found two isoforms of MLL3 and DNA sequencing revealed frameshift and other mutations affecting both isoforms of MLL3 in colorectal cancer cells and 19 of 134 (14% primary colorectal samples analyzed. Moreover, frameshift mutations were more common in cases with microsatellite instability (31% both in CRC cell lines and primary tumors. The largest isoform of MLL3 is transcribed from a CpG island-associated promoter that has highly homology with a pseudo-gene on chromosome 22 (psiTPTE22. Using an assay which measured both loci simultaneously we found prominent age related methylation in normal colon (from 21% in individuals less than 25 years old to 56% in individuals older than 70, R = 0.88, p<0.001 and frequent hypermethylation (83% in both CRC cell lines and primary tumors. We next studied the two loci separately and found that age and cancer related methylation was solely a property of the pseudogene CpG island and that the MLL3 loci was unmethylated.We found that frameshift mutations of MLL3 in both CRC cells and primary tumor that were more common in cases with microsatellite instability. Moreover, we have shown CpG island-associated promoter of MLL3 gene has no DNA methylation in CRC cells but also primary tumor and normal colon, and this region has a highly homologous of pseudo gene (psiTPTE22 that was age relate DNA methylation.

  13. Genetic and chromosomal effects of ionizing radiation

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    The genetic and chromosomal effects of ionizing radiations deal with those effects in the descendants of the individuals irradiated. The information base concerning genetic and chromosomal injury to humans from radiation is less adequate than is the information base for cancer and leukemia. As a result, it is not possible to make the kinds of quantitative estimates that have been made for carcinogenesis in previous chapters of this book. The chapter includes a detailed explanation of various types of genetic injuries such as chromosomal diseases, x-linked diseases, autosomal dominant diseases, recessive diseases, and irregularly inherited diseases. Quantitative estimates of mutation rates and incidences are given based on atomic bomb survivors data

  14. CpG plus radiotherapy: a review of preclinical works leading to clinical trial

    Energy Technology Data Exchange (ETDEWEB)

    Mason, Kathy A.; Hunter, Nancy R., E-mail: kmason@mdanderson.org [Department of Experimental Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX (United States)

    2012-08-14

    Studies performed three decades ago in our laboratory supported the hypothesis that radiation efficacy may be augmented by bacterial extracts that stimulate non-specific systemic antitumor immune responses. Application to the clinic was halted by unacceptable side effects and toxicities resulting from exposure to whole bacterial pathogens. Later scientific advances demonstrated that DNA isolated from bacteria was immunostimulatory and could be reproduced with synthetic oligodeoxynucleotides (ODNs), thus fueling the transition from bugs to drugs. Unmethylated CpG motifs within bacterial DNA induce activation of Toll-like receptor 9 and subsequently activate antigen-specific cellular immune responses. CpG ODNs have demonstrated favorable toxicity profiles in phase I clinical trials. We showed that this potent immunoadjuvant can be used in combination with radiation therapy to enhance local and systemic responses of several murine tumors. Studies demonstrated that enhanced tumor response is mediated in part by the host immune system. Antitumor efficacy was diminished in immunocompromised mice. Animals cured by combination of radiation and CpG ODN were resistant to subsequent tumor rechallenge. This body of work contributes to our understanding of the dynamic interplay between tumor irradiation and the host immune system and may facilitate translation to clinical trials.

  15. CpG plus radiotherapy: a review of preclinical works leading to clinical trial

    International Nuclear Information System (INIS)

    Mason, Kathy A.; Hunter, Nancy R.

    2012-01-01

    Studies performed three decades ago in our laboratory supported the hypothesis that radiation efficacy may be augmented by bacterial extracts that stimulate non-specific systemic antitumor immune responses. Application to the clinic was halted by unacceptable side effects and toxicities resulting from exposure to whole bacterial pathogens. Later scientific advances demonstrated that DNA isolated from bacteria was immunostimulatory and could be reproduced with synthetic oligodeoxynucleotides (ODNs), thus fueling the transition from bugs to drugs. Unmethylated CpG motifs within bacterial DNA induce activation of Toll-like receptor 9 and subsequently activate antigen-specific cellular immune responses. CpG ODNs have demonstrated favorable toxicity profiles in phase I clinical trials. We showed that this potent immunoadjuvant can be used in combination with radiation therapy to enhance local and systemic responses of several murine tumors. Studies demonstrated that enhanced tumor response is mediated in part by the host immune system. Antitumor efficacy was diminished in immunocompromised mice. Animals cured by combination of radiation and CpG ODN were resistant to subsequent tumor rechallenge. This body of work contributes to our understanding of the dynamic interplay between tumor irradiation and the host immune system and may facilitate translation to clinical trials.

  16. A Quantitative Trait Locus (LSq-1) on Mouse Chromosome 7 Is Linked to the Absence of Tissue Loss After Surgical Hindlimb Ischemia

    Science.gov (United States)

    Dokun, Ayotunde O.; Keum, Sehoon; Hazarika, Surovi; Li, Yongjun; Lamonte, Gregory M.; Wheeler, Ferrin; Marchuk, Douglas A.; Annex, Brian H.

    2010-01-01

    Background Peripheral arterial disease (PAD) caused by occlusive atherosclerosis of the lower extremity has 2 major clinical manifestations. Critical limb ischemia is characterized by rest pain and/or tissue loss and has a ≥40% risk of death and major amputation. Intermittent claudication causes pain on walking, has no tissue loss, and has amputation plus mortality rates of 2% to 4% per year. Progression from claudication to limb ischemia is infrequent. Risk factors in most PAD patients overlap. Thus, we hypothesized that genetic variations may be linked to presence or absence of tissue loss in PAD. Methods and Results Hindlimb ischemia (murine model of PAD) was induced in C57BL/6, BALB/c, C57BL/6×BALB/c (F1), F1×BALB/c (N2), A/J, and C57BL/6J-Chr7A/J/NaJ chromosome substitution strains. Mice were monitored for perfusion recovery and tissue necrosis. Genome-wide scanning with polymorphic markers across the 19 murine autosomes was performed on the N2 mice. Greater tissue loss and poorer perfusion recovery occurred in BALB/c than in the C57BL/6 strain. Analysis of 105 N2 progeny identified a single quantitative trait locus on chromosome 7 that exhibited significant linkage to both tissue necrosis and extent of perfusion recovery. Using the appropriate chromosome substitution strain, we demonstrate that C57BL/6-derived chromosome 7 is required for tissue preservation. Conclusions We have identified a quantitative trait locus on murine chromosome 7 (LSq-1) that is associated with the absence of tissue loss in a preclinical model of PAD and may be useful in identifying gene(s) that influence PAD in humans. PMID:18285563

  17. Meiotic drive on aberrant chromosome 1 in the mouse is determined by a linked distorter.

    Science.gov (United States)

    Agulnik, S I; Sabantsev, I D; Orlova, G V; Ruvinsky, A O

    1993-04-01

    An aberrant chromosome 1 carrying an inverted fragment with two amplified DNA regions was isolated from wild populations of Mus musculus. Meiotic drive favouring the aberrant chromosome was demonstrated for heterozygous females. Its cause was preferential passage of aberrant chromosome 1 to the oocyte. Genetic analysis allowed us to identify a two-component system conditioning deviation from equal segregation of the homologues. The system consists of a postulated distorter and responder. The distorter is located on chromosome 1 distally to the responder, between the ln and Pep-3 genes, and it acts on the responder when in trans position. Polymorphism of the distorters was manifested as variation in their effect on meiotic drive level in the laboratory strain and mice from wild populations.

  18. The application of methylation specific electrophoresis (MSE to DNA methylation analysis of the 5' CpG island of mucin in cancer cells

    Directory of Open Access Journals (Sweden)

    Yokoyama Seiya

    2012-02-01

    Full Text Available Abstract Background Methylation of CpG sites in genomic DNA plays an important role in gene regulation and especially in gene silencing. We have reported mechanisms of epigenetic regulation for expression of mucins, which are markers of malignancy potential and early detection of human neoplasms. Epigenetic changes in promoter regions appear to be the first step in expression of mucins. Thus, detection of promoter methylation status is important for early diagnosis of cancer, monitoring of tumor behavior, and evaluating the response of tumors to targeted therapy. However, conventional analytical methods for DNA methylation require a large amount of DNA and have low sensitivity. Methods Here, we report a modified version of the bisulfite-DGGE (denaturing gradient gel electrophoresis using a nested PCR approach. We designated this method as methylation specific electrophoresis (MSE. The MSE method is comprised of the following steps: (a bisulfite treatment of genomic DNA, (b amplification of the target DNA by a nested PCR approach and (c applying to DGGE. To examine whether the MSE method is able to analyze DNA methylation of mucin genes in various samples, we apply it to DNA obtained from state cell lines, ethanol-fixed colonic crypts and human pancreatic juices. Result The MSE method greatly decreases the amount of input DNA. The lower detection limit for distinguishing different methylation status is Conclusions The MSE method can provide a qualitative information of methylated sequence profile. The MSE method allows sensitive and specific analysis of the DNA methylation pattern of almost any block of multiple CpG sites. The MSE method can be applied to analysis of DNA methylation status in many different clinical samples, and this may facilitate identification of new risk markers.

  19. Rapid Induction of Protective Immunity Against Biothreat Agents Using CPG-Based Oglionucleotides

    National Research Council Canada - National Science Library

    Klinman, Dennise

    2001-01-01

    .... Additional studies examining the ability of these CpG ODN to act as adjuvants when co-administered with vaccines being developed to prevent infection by biowarfare pathogens are also being pursued...

  20. Genomic evidence for island population conversion resolves conflicting theories of polar bear evolution.

    Science.gov (United States)

    Cahill, James A; Green, Richard E; Fulton, Tara L; Stiller, Mathias; Jay, Flora; Ovsyanikov, Nikita; Salamzade, Rauf; St John, John; Stirling, Ian; Slatkin, Montgomery; Shapiro, Beth

    2013-01-01

    Despite extensive genetic analysis, the evolutionary relationship between polar bears (Ursus maritimus) and brown bears (U. arctos) remains unclear. The two most recent comprehensive reports indicate a recent divergence with little subsequent admixture or a much more ancient divergence followed by extensive admixture. At the center of this controversy are the Alaskan ABC Islands brown bears that show evidence of shared ancestry with polar bears. We present an analysis of genome-wide sequence data for seven polar bears, one ABC Islands brown bear, one mainland Alaskan brown bear, and a black bear (U. americanus), plus recently published datasets from other bears. Surprisingly, we find clear evidence for gene flow from polar bears into ABC Islands brown bears but no evidence of gene flow from brown bears into polar bears. Importantly, while polar bears contributed bear, they contributed 6.5% of the X chromosome. The magnitude of sex-biased polar bear ancestry and the clear direction of gene flow suggest a model wherein the enigmatic ABC Island brown bears are the descendants of a polar bear population that was gradually converted into brown bears via male-dominated brown bear admixture. We present a model that reconciles heretofore conflicting genetic observations. We posit that the enigmatic ABC Islands brown bears derive from a population of polar bears likely stranded by the receding ice at the end of the last glacial period. Since then, male brown bear migration onto the island has gradually converted these bears into an admixed population whose phenotype and genotype are principally brown bear, except at mtDNA and X-linked loci. This process of genome erosion and conversion may be a common outcome when climate change or other forces cause a population to become isolated and then overrun by species with which it can hybridize.

  1. Molecular genetic studies of natives on Easter Island: evidence of an early European and Amerindian contribution to the Polynesian gene pool.

    Science.gov (United States)

    Lie, B A; Dupuy, B M; Spurkland, A; Fernández-Viña, M A; Hagelberg, E; Thorsby, E

    2007-01-01

    Most archaeological and linguistic evidence suggest a Polynesian origin of the population of Easter Island (Rapanui), and this view has been supported by the identification of Polynesian mitochondrial DNA (mtDNA) polymorphisms in prehistoric skeletal remains. However, some evidence of an early South American contact also exists (the sweet potato, bottle gourd etc.), but genetic studies have so far failed to show an early Amerindian contribution to the gene pool on Easter Island. To address this issue, we analyzed mtDNA and Y chromosome markers and performed high-resolution human leukocyte antigen (HLA) genotyping of DNA harvested from previously collected sera of 48 reputedly nonadmixed native Easter Islanders. All individuals carried mtDNA types and HLA alleles previously found in Polynesia, and most men carried Y chromosome markers of Polynesian origin, providing further evidence of a Polynesian origin of the population of Easter Island. A few individuals carried HLA alleles and/or Y chromosome markers of European origin. More interestingly, some individuals carried the HLA alleles A*0212 and B*3905, which are of typical Amerindian origin. The genealogy of some of the individuals carrying these non-Polynesian HLA alleles and their haplotypic backgrounds suggest an introduction into Easter Island in the early 1800s, or earlier. Thus, there may have been an early European and Amerindian contribution to the Polynesian gene pool of Easter Island.

  2. A Comparison of Selective Pressures in Plant X-Linked and Autosomal Genes.

    Science.gov (United States)

    Krasovec, Marc; Nevado, Bruno; Filatov, Dmitry A

    2018-05-03

    Selection is expected to work differently in autosomal and X-linked genes because of their ploidy difference and the exposure of recessive X-linked mutations to haploid selection in males. However, it is not clear whether these expectations apply to recently evolved sex chromosomes, where many genes retain functional X- and Y-linked gametologs. We took advantage of the recently evolved sex chromosomes in the plant Silene latifolia and its closely related species to compare the selective pressures between hemizygous and non-hemizygous X-linked genes as well as between X-linked genes and autosomal genes. Our analysis, based on over 1000 genes, demonstrated that, similar to animals, X-linked genes in Silene evolve significantly faster than autosomal genes—the so-called faster-X effect. Contrary to expectations, faster-X divergence was detectable only for non-hemizygous X-linked genes. Our phylogeny-based analyses of selection revealed no evidence for faster adaptation in X-linked genes compared to autosomal genes. On the other hand, partial relaxation of purifying selection was apparent on the X-chromosome compared to the autosomes, consistent with a smaller genetic diversity in S. latifolia X-linked genes (π x = 0.016; π aut = 0.023). Thus, the faster-X divergence in S. latifolia appears to be a consequence of the smaller effective population size rather than of a faster adaptive evolution on the X-chromosome. We argue that this may be a general feature of “young” sex chromosomes, where the majority of X-linked genes are not hemizygous, preventing haploid selection in heterogametic sex.

  3. Rapid Induction of Protective Immunity Against Biothreat Agents Using CPG-Based Oglionucleotides

    National Research Council Canada - National Science Library

    Klinman, Dennise

    2001-01-01

    This research project examines the ability of synthetic oligonucleotides (ODN) containing immunostimulatory 'CpG motifs' to trigger the innate immune system, thereby improving the host's ability to survive infection by biowarfare agents...

  4. Rapid Induction of Protective Immunity Against Biothreat Agents Using CPG-Based Oligonucleotides

    National Research Council Canada - National Science Library

    Klinman, Dennis

    2003-01-01

    This research project examines the ability of synthetic oligonucleotides (ODN) containing immunostimulatory "CpG motifs' to trigger the innate immune system, thereby improving the host's ability to survive infection by biowarfare agents...

  5. Rapid Induction of Protective Immunity Against Biothreat Agens Using CPG-Based Oglionucleotides

    National Research Council Canada - National Science Library

    Klinman, Dennis

    1999-01-01

    This research project examines the ability of synthetic oligonucleotides (ODN) containing immunostimulatory 'CpG' motifs to trigger the innate immune system, thereby improving the host's ability to survive infection by biowarfare agents...

  6. Experiment list: SRX186657 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available tone H3 (di methyl K4). Marks promoters and enhancers. Most CpG islands are marked by H3K4me2 in primary cel...me2 || antibody targetdescription=Histone H3 (di methyl K4). Marks promoters and enhancers. Most CpG islands

  7. CpG oligodeoxynucleotides containing GACGTT motifs enhance the immune responses elicited by a goose parvovirus vaccine in ducks.

    Science.gov (United States)

    Lee, Jai-Wei; Lin, Yu-Ming; Yen, Ting-Ying; Yang, Wen-Jen; Chu, Chun-Yen

    2010-11-23

    Recombinant parvovirus VP2 (rVP2) was formulated with different types of adjuvant, including aluminum adjuvant and CpG oligodeoxynucleotides (ODNs), and the immunological responses after vaccination in ducks were examined. In comparison with the control group, production of rVP2-specific antibodies, expression of cytokines in peripheral blood mononuclear cells (PBMC) stimulated by rVP2, and percentage of CD4(+)/CD8(+) cells in PBMC were significantly increased in ducks immunized with rVP2 formulated with CpG ODNs containing 3 copies of GACGTT motif. CpG ODNs with GACGTT motifs might be used to improve the efficacy of vaccines for ducks. Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. Intratracheal synthetic CpG oligodeoxynucleotide causes acute lung injury with systemic inflammatory response

    Directory of Open Access Journals (Sweden)

    Hasegawa Naoki

    2009-09-01

    Full Text Available Abstract Bacterial genome is characterized by frequent unmethylated cytosine-phosphate-guanine (CpG motifs. Deleterious effects can occur when synthetic oligodeoxynucleotides (ODN with unmethylated CpG dinucleotides (CpG-ODN are administered in a systemic fashion. We aimed to evaluate the effect of intratracheal CpG-ODN on lung inflammation and systemic inflammatory response. C57BL/6J mice received intratracheal administration of CpG-ODN (0.01, 0.1, 1.0, 10, or 100 μM or control ODN without CpG motif. Bronchoalveolar lavage (BAL fluid was obtained 3 or 6 h or 1, 2, 7, or 14 days after the instillation and subjected to a differential cell count and cytokine measurement. Lung permeability was evaluated as the BAL fluid-to-plasma ratio of the concentration of human serum albumin that was injected 1 h before euthanasia. Nuclear factor (NF-κB DNA binding activity was also evaluated in lung homogenates. Intratracheal administration of 10 μM or higher concentration of CpG-ODN induced significant inflammatory cell accumulation into the airspace. The peak accumulation of neutrophils and lymphocytes occurred 1 and 2 days after the CpG-ODN administration, respectively. Lung permeability was increased 1 day after the 10 μM CpG-ODN challenge. CpG-ODN also induced nuclear translocation of NF-κB and upregulation of various inflammatory cytokines in BAL fluid and plasma. Histopathology of the lungs and liver revealed acute lung injury and liver damage with necrosis, respectively. Control ODN without CpG motif did not induce any inflammatory change. Since intratracheal CpG-ODN induced acute lung injury as well as systemic inflammatory response, therapeutic strategies to neutralize bacterial DNA that is released after administration of bactericidal agents should be considered.

  9. Simultaneous CXCL12 and ESR1 CpG island hypermethylation correlates with poor prognosis in sporadic breast cancer

    International Nuclear Information System (INIS)

    Ramos, Edneia AS; Klassen, Giseli; Camargo, Anamaria A; Braun, Karin; Slowik, Renata; Cavalli, Iglenir J; Ribeiro, Enilze MSF; Pedrosa, Fábio de O; Souza, Emanuel M de; Costa, Fabrício F

    2010-01-01

    CXCL12 is a chemokine that is constitutively expressed in many organs and tissues. CXCL12 promoter hypermethylation has been detected in primary breast tumours and contributes to their metastatic potential. It has been shown that the oestrogen receptor α (ESR1) gene can also be silenced by DNA methylation. In this study, we used methylation-specific PCR (MSP) to analyse the methylation status in two regions of the CXCL12 promoter and ESR1 in tumour cell lines and in primary breast tumour samples, and correlated our results with clinicopathological data. First, we analysed CXCL12 expression in breast tumour cell lines by RT-PCR. We also used 5-aza-2'-deoxycytidine (5-aza-CdR) treatment and DNA bisulphite sequencing to study the promoter methylation for a specific region of CXCL12 in breast tumour cell lines. We evaluated CXCL12 and ESR1 methylation in primary tumour samples by methylation-specific PCR (MSP). Finally, promoter hypermethylation of these genes was analysed using Fisher's exact test and correlated with clinicopathological data using the Chi square test, Kaplan-Meier survival analysis and Cox regression analysis. CXCL12 promoter hypermethylation in the first region (island 2) and second region (island 4) was correlated with lack of expression of the gene in tumour cell lines. In the primary tumours, island 2 was hypermethylated in 14.5% of the samples and island 4 was hypermethylated in 54% of the samples. The ESR1 promoter was hypermethylated in 41% of breast tumour samples. In addition, the levels of ERα protein expression diminished with increased frequency of ESR1 methylation (p < 0.0001). This study also demonstrated that CXCL12 island 4 and ESR1 methylation occur simultaneously at a high frequency (p = 0.0220). This is the first study showing a simultaneous involvement of epigenetic regulation for both CXCL12 and ESR1 genes in Brazilian women. The methylation status of both genes was significantly correlated with histologically advanced

  10. PReMod: a database of genome-wide mammalian cis-regulatory module predictions.

    Science.gov (United States)

    Ferretti, Vincent; Poitras, Christian; Bergeron, Dominique; Coulombe, Benoit; Robert, François; Blanchette, Mathieu

    2007-01-01

    We describe PReMod, a new database of genome-wide cis-regulatory module (CRM) predictions for both the human and the mouse genomes. The prediction algorithm, described previously in Blanchette et al. (2006) Genome Res., 16, 656-668, exploits the fact that many known CRMs are made of clusters of phylogenetically conserved and repeated transcription factors (TF) binding sites. Contrary to other existing databases, PReMod is not restricted to modules located proximal to genes, but in fact mostly contains distal predicted CRMs (pCRMs). Through its web interface, PReMod allows users to (i) identify pCRMs around a gene of interest; (ii) identify pCRMs that have binding sites for a given TF (or a set of TFs) or (iii) download the entire dataset for local analyses. Queries can also be refined by filtering for specific chromosomal regions, for specific regions relative to genes or for the presence of CpG islands. The output includes information about the binding sites predicted within the selected pCRMs, and a graphical display of their distribution within the pCRMs. It also provides a visual depiction of the chromosomal context of the selected pCRMs in terms of neighboring pCRMs and genes, all of which are linked to the UCSC Genome Browser and the NCBI. PReMod: http://genomequebec.mcgill.ca/PReMod.

  11. On the origin of sex chromosomes from meiotic drive

    Science.gov (United States)

    Úbeda, Francisco; Patten, Manus M.; Wild, Geoff

    2015-01-01

    Most animals and many plants make use of specialized chromosomes (sex chromosomes) to determine an individual's sex. Best known are the XY and ZW sex-determination systems. Despite having evolved numerous times, sex chromosomes present something of an evolutionary puzzle. At their origin, alleles that dictate development as one sex or the other (primitive sex chromosomes) face a selective penalty, as they will be found more often in the more abundant sex. How is it possible that primitive sex chromosomes overcome this disadvantage? Any theory for the origin of sex chromosomes must identify the benefit that outweighs this cost and enables a sex-determining mutation to establish in the population. Here we show that a new sex-determining allele succeeds when linked to a sex-specific meiotic driver. The new sex-determining allele benefits from confining the driving allele to the sex in which it gains the benefit of drive. Our model requires few special assumptions and is sufficiently general to apply to the evolution of sex chromosomes in outbreeding cosexual or dioecious species. We highlight predictions of the model that can discriminate between this and previous theories of sex-chromosome origins. PMID:25392470

  12. Neo-sex Chromosomes in the Monarch Butterfly, Danaus plexippus

    Directory of Open Access Journals (Sweden)

    Andrew J. Mongue

    2017-10-01

    Full Text Available We report the discovery of a neo-sex chromosome in the monarch butterfly, Danaus plexippus, and several of its close relatives. Z-linked scaffolds in the D. plexippus genome assembly were identified via sex-specific differences in Illumina sequencing coverage. Additionally, a majority of the D. plexippus genome assembly was assigned to chromosomes based on counts of one-to-one orthologs relative to the butterfly Melitaea cinxia (with replication using two other lepidopteran species, in which genome scaffolds have been mapped to linkage groups. Sequencing coverage-based assessments of Z linkage combined with homology-based chromosomal assignments provided strong evidence for a Z-autosome fusion in the Danaus lineage, involving the autosome homologous to chromosome 21 in M. cinxia. Coverage analysis also identified three notable assembly errors resulting in chimeric Z-autosome scaffolds. Cytogenetic analysis further revealed a large W chromosome that is partially euchromatic, consistent with being a neo-W chromosome. The discovery of a neo-Z and the provisional assignment of chromosome linkage for >90% of D. plexippus genes lays the foundation for novel insights concerning sex chromosome evolution in this female-heterogametic model species for functional and evolutionary genomics.

  13. Diagnosis of Fanconi Anemia: Chromosomal Breakage Analysis

    Science.gov (United States)

    Oostra, Anneke B.; Nieuwint, Aggie W. M.; Joenje, Hans; de Winter, Johan P.

    2012-01-01

    Fanconi anemia (FA) is a rare inherited syndrome with diverse clinical symptoms including developmental defects, short stature, bone marrow failure, and a high risk of malignancies. Fifteen genetic subtypes have been distinguished so far. The mode of inheritance for all subtypes is autosomal recessive, except for FA-B, which is X-linked. Cells derived from FA patients are—by definition—hypersensitive to DNA cross-linking agents, such as mitomycin C, diepoxybutane, or cisplatinum, which becomes manifest as excessive growth inhibition, cell cycle arrest, and chromosomal breakage upon cellular exposure to these drugs. Here we provide a detailed laboratory protocol for the accurate assessment of the FA diagnosis as based on mitomycin C-induced chromosomal breakage analysis in whole-blood cultures. The method also enables a quantitative estimate of the degree of mosaicism in the lymphocyte compartment of the patient. PMID:22693659

  14. Fine mapping of dominant X-linked incompatibility alleles in Drosophila hybrids.

    Science.gov (United States)

    Matute, Daniel R; Gavin-Smyth, Jackie

    2014-04-01

    Sex chromosomes have a large effect on reproductive isolation and play an important role in hybrid inviability. In Drosophila hybrids, X-linked genes have pronounced deleterious effects on fitness in male hybrids, which have only one X chromosome. Several studies have succeeded at locating and identifying recessive X-linked alleles involved in hybrid inviability. Nonetheless, the density of dominant X-linked alleles involved in interspecific hybrid viability remains largely unknown. In this report, we study the effects of a panel of small fragments of the D. melanogaster X-chromosome carried on the D. melanogaster Y-chromosome in three kinds of hybrid males: D. melanogaster/D. santomea, D. melanogaster/D. simulans and D. melanogaster/D. mauritiana. D. santomea and D. melanogaster diverged over 10 million years ago, while D. simulans (and D. mauritiana) diverged from D. melanogaster over 3 million years ago. We find that the X-chromosome from D. melanogaster carries dominant alleles that are lethal in mel/san, mel/sim, and mel/mau hybrids, and more of these alleles are revealed in the most divergent cross. We then compare these effects on hybrid viability with two D. melanogaster intraspecific crosses. Unlike the interspecific crosses, we found no X-linked alleles that cause lethality in intraspecific crosses. Our results reveal the existence of dominant alleles on the X-chromosome of D. melanogaster which cause lethality in three different interspecific hybrids. These alleles only cause inviability in hybrid males, yet have little effect in hybrid females. This suggests that X-linked elements that cause hybrid inviability in males might not do so in hybrid females due to differing sex chromosome interactions.

  15. CpG methylation controls reactivation of HIV from latency

    Czech Academy of Sciences Publication Activity Database

    Blažková, Jana; Trejbalová, Kateřina; Gondois-Rey, F.; Halfon, P.; Philibert, P.; Guiguen, A.; Verdin, E.; Olive, D.; Van Lint, C.; Hejnar, Jiří; Hirsch, I.

    2009-01-01

    Roč. 5, č. 8 (2009), e1000554-e1000554 E-ISSN 1553-7374 R&D Projects: GA ČR GA204/05/0939; GA ČR GP204/08/P616 Institutional research plan: CEZ:AV0Z50520514 Keywords : HIV-1 * proviral latency * CpG methylation * histone modifications * HAART * epigenetics Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 8.978, year: 2009

  16. The rates of G:C[yields]T:A and G:C[yields]C:G transversions at CpG dinucleotides in the human factor IX gene

    Energy Technology Data Exchange (ETDEWEB)

    Ketterling, R.P.; Vielhaber, E.; Sommer, S.S. (Mayo Clinic/Foundation, Rochester, MN (United States))

    1994-05-01

    The authors have identified eight independent transversions at CpG in 290 consecutive families with hemophilia B. These eight transversions account for 16.3% of all independent transversions in the sample, yet the expected frequency of CpG transversions at random in the factor IX gene is only 2.6% (P<0.1). The aggregate data suggest that the two types of CpG transversions (G:C[yields]T:A and G:C[yields]C:G) possess similar mutation rates (24.8 [times] 10[sup [minus]10] and 20.6 [times] 10[sup [minus]10], respectively), which are about fivefold greater than the comparable rates for transversions at non-CpG dinucleotides. The enhancement of transversions at CpG suggest that the model by which mutations occur at CpG may need to be reevaluated. The relationship, if any, between deamination of 5-methyl cytosine and enhancement of transversions at CpG remains to be defined. 28 refs., 2 tabs.

  17. CpG methylation controls reactivation of HIV from latency.

    Directory of Open Access Journals (Sweden)

    Jana Blazkova

    2009-08-01

    Full Text Available DNA methylation of retroviral promoters and enhancers localized in the provirus 5' long terminal repeat (LTR is considered to be a mechanism of transcriptional suppression that allows retroviruses to evade host immune responses and antiretroviral drugs. However, the role of DNA methylation in the control of HIV-1 latency has never been unambiguously demonstrated, in contrast to the apparent importance of transcriptional interference and chromatin structure, and has never been studied in HIV-1-infected patients. Here, we show in an in vitro model of reactivable latency and in a latent reservoir of HIV-1-infected patients that CpG methylation of the HIV-1 5' LTR is an additional epigenetic restriction mechanism, which controls resistance of latent HIV-1 to reactivation signals and thus determines the stability of the HIV-1 latency. CpG methylation acts as a late event during establishment of HIV-1 latency and is not required for the initial provirus silencing. Indeed, the latent reservoir of some aviremic patients contained high proportions of the non-methylated 5' LTR. The latency controlled solely by transcriptional interference and by chromatin-dependent mechanisms in the absence of significant promoter DNA methylation tends to be leaky and easily reactivable. In the latent reservoir of HIV-1-infected individuals without detectable plasma viremia, we found HIV-1 promoters and enhancers to be hypermethylated and resistant to reactivation, as opposed to the hypomethylated 5' LTR in viremic patients. However, even dense methylation of the HIV-1 5'LTR did not confer complete resistance to reactivation of latent HIV-1 with some histone deacetylase inhibitors, protein kinase C agonists, TNF-alpha, and their combinations with 5-aza-2deoxycytidine: the densely methylated HIV-1 promoter was most efficiently reactivated in virtual absence of T cell activation by suberoylanilide hydroxamic acid. Tight but incomplete control of HIV-1 latency by CpG

  18. Identification of Mitosis-Specific Phosphorylation in Mitotic Chromosome-Associated Proteins.

    Science.gov (United States)

    Ohta, Shinya; Kimura, Michiko; Takagi, Shunsuke; Toramoto, Iyo; Ishihama, Yasushi

    2016-09-02

    During mitosis, phosphorylation of chromosome-associated proteins is a key regulatory mechanism. Mass spectrometry has been successfully applied to determine the complete protein composition of mitotic chromosomes, but not to identify post-translational modifications. Here, we quantitatively compared the phosphoproteome of isolated mitotic chromosomes with that of chromosomes in nonsynchronized cells. We identified 4274 total phosphorylation sites and 350 mitosis-specific phosphorylation sites in mitotic chromosome-associated proteins. Significant mitosis-specific phosphorylation in centromere/kinetochore proteins was detected, although the chromosomal association of these proteins did not change throughout the cell cycle. This mitosis-specific phosphorylation might play a key role in regulation of mitosis. Further analysis revealed strong dependency of phosphorylation dynamics on kinase consensus patterns, thus linking the identified phosphorylation sites to known key mitotic kinases. Remarkably, chromosomal axial proteins such as non-SMC subunits of condensin, TopoIIα, and Kif4A, together with the chromosomal periphery protein Ki67 involved in the establishment of the mitotic chromosomal structure, demonstrated high phosphorylation during mitosis. These findings suggest a novel mechanism for regulation of chromosome restructuring in mitosis via protein phosphorylation. Our study generated a large quantitative database on protein phosphorylation in mitotic and nonmitotic chromosomes, thus providing insights into the dynamics of chromatin protein phosphorylation at mitosis onset.

  19. Roles of the Y chromosome genes in human cancers

    Directory of Open Access Journals (Sweden)

    Tatsuo Kido

    2015-06-01

    Full Text Available Male and female differ genetically by their respective sex chromosome composition, that is, XY as male and XX as female. Although both X and Y chromosomes evolved from the same ancestor pair of autosomes, the Y chromosome harbors male-specific genes, which play pivotal roles in male sex determination, germ cell differentiation, and masculinization of various tissues. Deletions or translocation of the sex-determining gene, SRY, from the Y chromosome causes disorders of sex development (previously termed as an intersex condition with dysgenic gonads. Failure of gonadal development results not only in infertility, but also in increased risks of germ cell tumor (GCT, such as gonadoblastoma and various types of testicular GCT. Recent studies demonstrate that either loss of Y chromosome or ectopic expression of Y chromosome genes is closely associated with various male-biased diseases, including selected somatic cancers. These observations suggest that the Y-linked genes are involved in male health and diseases in more frequently than expected. Although only a small number of protein-coding genes are present in the male-specific region of Y chromosome, the impacts of Y chromosome genes on human diseases are still largely unknown, due to lack of in vivo models and differences between the Y chromosomes of human and rodents. In this review, we highlight the involvement of selected Y chromosome genes in cancer development in men.

  20. Mapping of the X-linked cataract (Xcat) mutation, the gene implicated in the Nance Horan syndrome, on the mouse X chromosome.

    Science.gov (United States)

    Stambolian, D; Favor, J; Silvers, W; Avner, P; Chapman, V; Zhou, E

    1994-07-15

    The Xcat mutation in the mouse, an X-linked inherited disorder, is characterized by the congenital onset of cataracts. The cataracts have morphologies similar to those of cataracts found in the human Nance Horan (X-linked cataract dental) syndrome, suggesting that Xcat is an animal model for Nance Horan. The Xcat mutation provides an opportunity to investigate, at the molecular level, the pathogenesis of cataract. As a first step to cloning the Xcat gene, we report the localization of the Xcat mutation with respect to known molecular markers on the mouse X chromosome. Back-cross progeny carrying the Xcat mutation were obtained from an interspecific cross. Genomic DNA from each mouse was subjected to Southern and PCR analysis to identify restriction fragment length polymorphisms and simple sequence length polymorphisms, respectively. Our results refine the location of Xcat to a 2-cM region, eliminate several genes from consideration as the Xcat mutation, identify molecular probes tightly linked with Xcat, and suggest candidate genes responsible for the Xcat phenotype.

  1. Phosphoinositide 3-kinaseγ controls the intracellular localization of CpG to limit DNA-PKcs-dependent IL-10 production in macrophages.

    Directory of Open Access Journals (Sweden)

    Kaoru Hazeki

    Full Text Available Synthetic oligodeoxynucleotides containing unmethylated CpG motifs (CpG stimulate innate immune responses. Phosphoinositide 3-kinase (PI3K has been implicated in CpG-induced immune activation; however, its precise role has not yet been clarified. CpG-induced production of IL-10 was dramatically increased in macrophages deficient in PI3Kγ (p110γ(-/-. By contrast, LPS-induced production of IL-10 was unchanged in the cells. CpG-induced, but not LPS-induced, IL-10 production was almost completely abolished in SCID mice having mutations in DNA-dependent protein kinase catalytic subunit (DNA-PKcs. Furthermore, wortmannin, an inhibitor of DNA-PKcs, completely inhibited CpG-induced IL-10 production, both in wild type and p110γ(-/- cells. Microscopic analyses revealed that CpG preferentially localized with DNA-PKcs in p110γ(-/- cells than in wild type cells. In addition, CpG was preferentially co-localized with the acidic lysosomal marker, LysoTracker, in p110γ(-/- cells, and with an early endosome marker, EEA1, in wild type cells. Over-expression of p110γ in Cos7 cells resulted in decreased acidification of CpG containing endosome. A similar effect was reproduced using kinase-dead mutants, but not with a ras-binding site mutant, of p110γ. Thus, it is likely that p110γ, in a manner independent of its kinase activity, inhibits the acidification of CpG-containing endosomes. It is considered that increased acidification of CpG-containing endosomes in p110γ(-/- cells enforces endosomal escape of CpG, which results in increased association of CpG with DNA-PKcs to up-regulate IL-10 production in macrophages.

  2. Further evidence of an Amerindian contribution to the Polynesian gene pool on Easter Island.

    Science.gov (United States)

    Thorsby, E; Flåm, S T; Woldseth, B; Dupuy, B M; Sanchez-Mazas, A; Fernandez-Vina, M A

    2009-06-01

    Available evidence suggests a Polynesian origin of the Easter Island population. We recently found that some native Easter Islanders also carried some common American Indian (Amerindian) human leukocyte antigen (HLA) alleles, which probably were introduced before Europeans discovered the island in 1722. In this study, we report molecular genetic investigations of 21 other selected native Easter Islanders. Analysis of mitochondrial DNA and Y chromosome markers showed no traces of an Amerindian contribution. However, high-resolution genomic HLA typing showed that two individuals carried some other common Amerindian HLA alleles, different from those found in our previous investigations. The new data support our previous evidence of an Amerindian contribution to the gene pool on Easter Island.

  3. Inactivation of Adenomatous Polyposis Coli Reduces Bile Acid/Farnesoid X Receptor Expression through Fxr gene CpG Methylation in Mouse Colon Tumors and Human Colon Cancer Cells.

    Science.gov (United States)

    Selmin, Ornella I; Fang, Changming; Lyon, Adam M; Doetschman, Tom C; Thompson, Patricia A; Martinez, Jesse D; Smith, Jeffrey W; Lance, Peter M; Romagnolo, Donato F

    2016-02-01

    The farnesoid X receptor (FXR) regulates bile acid (BA) metabolism and possesses tumor suppressor functions. FXR expression is reduced in colorectal tumors of subjects carrying inactivated adenomatous polyposis coli (APC). Identifying the mechanisms responsible for this reduction may offer new molecular targets for colon cancer prevention. We investigated how APC inactivation influences the regulation of FXR expression in colonic mucosal cells. We hypothesized that APC inactivation would epigenetically repress nuclear receptor subfamily 1, group H, member 4 (FXR gene name) expression through increased CpG methylation. Normal proximal colonic mucosa and normal-appearing adjacent colonic mucosa and colon tumors were collected from wild-type C57BL/6J and Apc-deficient (Apc(Min) (/+)) male mice, respectively. The expression of Fxr, ileal bile acid-binding protein (Ibabp), small heterodimer partner (Shp), and cyclooxygenase-2 (Cox-2) were determined by real-time polymerase chain reaction. In both normal and adjacent colonic mucosa and colon tumors, we measured CpG methylation of Fxr in bisulfonated genomic DNA. In vitro, we measured the impact of APC inactivation and deoxycholic acid (DCA) treatment on FXR expression in human colon cancer HCT-116 cells transfected with silencing RNA for APC and HT-29 cells carrying inactivated APC. In Apc(Min) (/+) mice, constitutive CpG methylation of the Fxrα3/4 promoter was linked to reduced (60-90%) baseline Fxr, Ibabp, and Shp and increased Cox-2 expression in apparently normal adjacent mucosa and colon tumors. Apc knockdown in HCT-116 cells increased cellular myelocytomatosis (c-MYC) and lowered (∼50%) FXR expression, which was further reduced (∼80%) by DCA. In human HCT-116 but not HT-29 colon cancer cells, DCA induced FXR expression and lowered CpG methylation of FXR. We conclude that the loss of APC function favors the silencing of FXR expression through CpG hypermethylation in mouse colonic mucosa and human colon cells

  4. A Dense Brown Trout (Salmo trutta) Linkage Map Reveals Recent Chromosomal Rearrangements in the Salmo Genus and the Impact of Selection on Linked Neutral Diversity

    Science.gov (United States)

    Leitwein, Maeva; Guinand, Bruno; Pouzadoux, Juliette; Desmarais, Erick; Berrebi, Patrick; Gagnaire, Pierre-Alexandre

    2017-01-01

    High-density linkage maps are valuable tools for conservation and eco-evolutionary issues. In salmonids, a complex rediploidization process consecutive to an ancient whole genome duplication event makes linkage maps of prime importance for investigating the evolutionary history of chromosome rearrangements. Here, we developed a high-density consensus linkage map for the brown trout (Salmo trutta), a socioeconomically important species heavily impacted by human activities. A total of 3977 ddRAD markers were mapped and ordered in 40 linkage groups using sex- and lineage-averaged recombination distances obtained from two family crosses. Performing map comparison between S. trutta and its sister species, S. salar, revealed extensive chromosomal rearrangements. Strikingly, all of the fusion and fission events that occurred after the S. salar/S. trutta speciation happened in the Atlantic salmon branch, whereas the brown trout remained closer to the ancestral chromosome structure. Using the strongly conserved synteny within chromosome arms, we aligned the brown trout linkage map to the Atlantic salmon genome sequence to estimate the local recombination rate in S. trutta at 3721 loci. A significant positive correlation between recombination rate and within-population nucleotide diversity (π) was found, indicating that selection constrains variation at linked neutral sites in brown trout. This new high-density linkage map provides a useful genomic resource for future aquaculture, conservation, and eco-evolutionary studies in brown trout. PMID:28235829

  5. A Dense Brown Trout (Salmo trutta Linkage Map Reveals Recent Chromosomal Rearrangements in the Salmo Genus and the Impact of Selection on Linked Neutral Diversity

    Directory of Open Access Journals (Sweden)

    Maeva Leitwein

    2017-04-01

    Full Text Available High-density linkage maps are valuable tools for conservation and eco-evolutionary issues. In salmonids, a complex rediploidization process consecutive to an ancient whole genome duplication event makes linkage maps of prime importance for investigating the evolutionary history of chromosome rearrangements. Here, we developed a high-density consensus linkage map for the brown trout (Salmo trutta, a socioeconomically important species heavily impacted by human activities. A total of 3977 ddRAD markers were mapped and ordered in 40 linkage groups using sex- and lineage-averaged recombination distances obtained from two family crosses. Performing map comparison between S. trutta and its sister species, S. salar, revealed extensive chromosomal rearrangements. Strikingly, all of the fusion and fission events that occurred after the S. salar/S. trutta speciation happened in the Atlantic salmon branch, whereas the brown trout remained closer to the ancestral chromosome structure. Using the strongly conserved synteny within chromosome arms, we aligned the brown trout linkage map to the Atlantic salmon genome sequence to estimate the local recombination rate in S. trutta at 3721 loci. A significant positive correlation between recombination rate and within-population nucleotide diversity (π was found, indicating that selection constrains variation at linked neutral sites in brown trout. This new high-density linkage map provides a useful genomic resource for future aquaculture, conservation, and eco-evolutionary studies in brown trout.

  6. Role for DNA methylation in the regulation of miR-200c and miR-141 expression in normal and cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Vrba, Lukas; Jensen, Taylor J.; Garbe, James C.; Heimark, Ronald L.; Cress, Anne E.; Dickinson, Sally; Stampfer, Martha R.; Futscher, Bernard W.

    2009-12-23

    BACKGROUND: The microRNA-200 family participates in the maintenance of an epithelial phenotype and loss of its expression can result in epithelial to mesenchymal transition (EMT). Furthermore, the loss of expression of miR-200 family members is linked to an aggressive cancer phenotype. Regulation of the miR-200 family expression in normal and cancer cells is not fully understood. METHODOLOGY/ PRINCIPAL FINDINGS: Epigenetic mechanisms participate in the control of miR-200c and miR-141 expression in both normal and cancer cells. A CpG island near the predicted mir-200c/mir-141 transcription start site shows a striking correlation between miR-200c and miR-141 expression and DNA methylation in both normal and cancer cells, as determined by MassARRAY technology. The CpG island is unmethylated in human miR-200/miR-141 expressing epithelial cells and in miR-200c/miR-141 positive tumor cells. The CpG island is heavily methylated in human miR-200c/miR-141 negative fibroblasts and miR-200c/miR-141 negative tumor cells. Mouse cells show a similar inverse correlation between DNA methylation and miR-200c expression. Enrichment of permissive histone modifications, H3 acetylation and H3K4 trimethylation, is seen in normal miR-200c/miR-141-positive epithelial cells, as determined by chromatin immunoprecipitation coupled to real-time PCR. In contrast, repressive H3K9 dimethylation marks are present in normal miR-200c/miR-141-negative fibroblasts and miR-200c/miR-141 negative cancer cells and the permissive histone modifications are absent. The epigenetic modifier drug, 5-aza-2'-deoxycytidine, reactivates miR-200c/miR-141 expression showing that epigenetic mechanisms play a functional role in their transcriptional control. CONCLUSIONS/ SIGNIFICANCE: We report that DNA methylation plays a role in the normal cell type-specific expression of miR-200c and miR-141 and this role appears evolutionarily conserved, since similar results were obtained in mouse. Aberrant DNA methylation

  7. An X-linked Myh11-CreERT2 mouse line resulting from Y to X chromosome-translocation of the Cre allele.

    Science.gov (United States)

    Liao, Mingmei; Zhou, Junmei; Wang, Fen; Ali, Yasmin H; Chan, Kelvin L; Zou, Fei; Offermanns, Stefan; Jiang, Zhisheng; Jiang, Zhihua

    2017-09-01

    The Myh11-CreER T2 mouse line (Cre + ) has gained increasing application because of its high lineage specificity relative to other Cre drivers targeting smooth muscle cells (SMCs). This Cre allele, however, was initially inserted into the Y chromosome (X/Y Cre+ ), which excluded its application in female mice. Our group established a Cre + colony from male ancestors. Surprisingly, genotype screening identified female carriers that stably transmitted the Cre allele to the following generations. Crossbreeding experiments revealed a pattern of X-linked inheritance for the transgene (k > 1000), indicating that these female carries acquired the Cre allele through a mechanism of Y to X chromosome translocation. Further characterization demonstrated that in hemizygous X/X Cre+ mice Cre activity was restricted to a subset arterial SMCs, with Cre expression in arteries decreased by 50% compared to X/Y Cre+ mice. This mosaicism, however, diminished in homozygous X Cre+ /X Cre+ mice. In a model of aortic aneurysm induced by a SMC-specific Tgfbr1 deletion, the homozygous X Cre+ /X Cre+ Cre driver unmasked the aortic phenotype that is otherwise subclinical when driven by the hemizygous X/X Cre+ Cre line. In conclusion, the Cre allele carried by this female mouse line is located on the X chromosome and subjected to X-inactivation. The homozygous X Cre+ /X Cre+ mice produce uniform Cre activity in arterial SMCs. © 2017 Wiley Periodicals, Inc.

  8. Interspecific Y chromosome variation is sufficient to rescue hybrid male sterility and is influenced by the grandparental origin of the chromosomes.

    Science.gov (United States)

    Araripe, L O; Tao, Y; Lemos, B

    2016-06-01

    Y chromosomes display population variation within and between species. Co-evolution within populations is expected to produce adaptive interactions between Y chromosomes and the rest of the genome. One consequence is that Y chromosomes from disparate populations could disrupt harmonious interactions between co-evolved genetic elements and result in reduced male fertility, sterility or inviability. Here we address the contribution of 'heterospecific Y chromosomes' to fertility in hybrid males carrying a homozygous region of Drosophila mauritiana introgressed in the Drosophila simulans background. In order to detect Y chromosome-autosome interactions, which may go unnoticed in a single-species background of autosomes, we constructed hybrid genotypes involving three sister species: Drosophila simulans, D. mauritiana, and D. sechellia. These engineered strains varied due to: (i) species origin of the Y chromosome (D. simulans or D. sechellia); (ii) location of the introgressed D. mauritiana segment on the D. simulans third chromosome, and (iii) grandparental genomic background (three genotypes of D. simulans). We find complex interactions between the species origin of the Y chromosome, the identity of the D. mauritiana segment and the grandparental genetic background donating the chromosomes. Unexpectedly, the interaction of the Y chromosome and one segment of D. mauritiana drastically reduced fertility in the presence of Ysim, whereas the fertility is partially rescued by the Y chromosome of D. sechellia when it descends from a specific grandparental genotype. The restoration of fertility occurs in spite of an autosomal and X-linked genome that is mostly of D. simulans origin. These results illustrate the multifactorial basis of genetic interactions involving the Y chromosome. Our study supports the hypothesis that the Y chromosome can contribute significantly to the evolution of reproductive isolation and highlights the conditional manifestation of infertility in

  9. Low genetic variation in the MHC class II DRB gene and MHC-linked microsatellites in endangered island populations of the leopard cat (Prionailurus bengalensis) in Japan.

    Science.gov (United States)

    Saka, Toshinori; Nishita, Yoshinori; Masuda, Ryuichi

    2018-02-01

    Isolated populations of the leopard cat (Prionailurus bengalensis) on Tsushima and Iriomote islands in Japan are classified as subspecies P. b. euptilurus and P. b. iriomotensis, respectively. Because both populations have decreased to roughly 100, an understanding of their genetic diversity is essential for conservation. We genotyped MHC class II DRB exon 2 and MHC-linked microsatellite loci to evaluate the diversity of MHC genes in the Tsushima and Iriomote cat populations. We detected ten and four DRB alleles in these populations, respectively. A phylogenetic analysis showed DRB alleles from both populations to be closely related to those in other felid DRB lineages, indicating trans-species polymorphism. The MHC-linked microsatellites were more polymorphic in the Tsushima than in the Iriomote population. The MHC diversity of both leopard cat populations is much lower than in the domestic cat populations on these islands, probably due to inbreeding associated with founder effects, geographical isolation, or genetic drift. Our results predict low resistance of the two endangered populations to new pathogens introduced to the islands.

  10. Molecular and karyological data confirm that the enigmatic genus Platypholis from Bonin-Islands (SE Japan) is phylogenetically nested within Orobanche (Orobanchaceae).

    Science.gov (United States)

    Li, Xi; Jang, Tae-Soo; Temsch, Eva M; Kato, Hidetoshi; Takayama, Koji; Schneeweiss, Gerald M

    2017-03-01

    Molecular phylogenetic studies have greatly improved our understanding of phylogenetic relationships of non-photosynthetic parasitic broomrapes (Orobanche and related genera, Orobanchaceae), but a few genera have remained unstudied. One of those is Platypholis, whose sole species, Platypholis boninsimae, is restricted to the Bonin-Islands (Ogasawara Islands) about 1000 km southeast of Japan. Based on overall morphological similarity, Platypholis has been merged with Orobanche, but this hypothesis has never been tested with molecular data. Employing maximum likelihood and Bayesian analyses on a family-wide data set (two plastid markers, matK and rps2, and three nuclear markers, ITS, phyA and phyB) as well as on an ITS data set focusing on Orobanche s. str., it is shown that P. boninsimae Maxim. is phylogenetically closely linked to or even nested within Orobanche s. str. This position is supported both by morphological evidence and by the newly obtained chromosome number of 2n = 38, which is characteristic for the genus Orobanche s. str.

  11. Human hereditary diseases associated with elevated frequency of chromosome aberrations

    International Nuclear Information System (INIS)

    Ejima, Yosuke

    1988-01-01

    Human recessive diseases collectively known as chromosome breakage syndromes include Fanconi's anemia, Bloom's syndrome and ataxia telangiectasia. Cells from these patients show chromosome instabilities both spontaneously and following treatments with radiations or certain chemicals, where defects in DNA metabolisms are supposed to be involved. Cells from patients with ataxia telangiectasia are hypersensitive to ionizing radiations, though DNA replication is less affected than in normal cells. Chromatid-type as well as chromosom-type aberrations are induced in cells irradiated in G 0 or G 1 phases. These unusual responses to radiations may provide clues for understanding the link between DNA replicative response and cellular radiosensitivity. Alterations in cellular radiosensitivity or spontaneous chromosome instabilities are observed in some patients with congenital chromosome anomalies or dominant diseases, where underlying defects may be different from those in recessive diseases. (author)

  12. Human hereditary diseases associated with elevated frequency of chromosome aberrations

    Energy Technology Data Exchange (ETDEWEB)

    Ejima, Yosuke; Ikushima, Takaji (ed.)

    1988-07-01

    Human recessive diseases collectively known as chromosome breakage syndromes include Fanconi's anemia, Bloom's syndrome and ataxia telangiectasia. Cells from these patients show chromosome instabilities both spontaneously and following treatments with radiations or certain chemicals, where defects in DNA metabolisms are supposed to be involved. Cells from patients with ataxia telangiectasia are hypersensitive to ionizing radiations, though DNA replication is less affected than in normal cells. Chromatid-type as well as chromosom-type aberrations are induced in cells irradiated in G/sub 0/ or G/sub 1/ phases. These unusual responses to radiations may provide clues for understanding the link between DNA replicative response and cellular radiosensitivity. Alterations in cellular radiosensitivity or spontaneous chromosome instabilities are observed in some patients with congenital chromosome anomalies or dominant diseases, where underlying defects may be different from those in recessive diseases.

  13. Mitotic chromosome transmission fidelity mutants in Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Spencer, F.; Gerring, S.L.; Connelly, C.; Hieter, P.

    1990-01-01

    The authors have isolated 136 independent EMS-induced mutations in haploid yeast strains that exhibit decreased chromosome transmission fidelity in mitosis. Eight-five percent of the mutations are recessive and 15% are partially dominant. Complementation analysis between MATa and MATα isolates identifies 11 chromosome transmission fidelity (CTF) complementation groups, the largest of which is identical to CHL1. For 49 independent mutations, no corresponding allele has been recovered in the opposite mating type. The initial screen monitored the stability of a centromere-linked color marker on a nonessential yeast chromosome fragment; the mitotic inheritance of natural yeast chromosome III is also affected by the ctf mutations. Of the 136 isolates identified, seven were inviable at 37 degree and five were inviable at 11 degree. In all cases tested, these temperature conditional lethalities cosegregated with the chromosome instability phenotype. Five additional complementation groups (ctf12 through ctf16) have been defined by complementation analysis of the mutations causing inviability at 37 degree. All of the mutant strains showed normal sensitivity to ultraviolet and γ-irradiation

  14. Malaria early warning tool: linking inter-annual climate and malaria variability in northern Guadalcanal, Solomon Islands.

    Science.gov (United States)

    Smith, Jason; Tahani, Lloyd; Bobogare, Albino; Bugoro, Hugo; Otto, Francis; Fafale, George; Hiriasa, David; Kazazic, Adna; Beard, Grant; Amjadali, Amanda; Jeanne, Isabelle

    2017-11-21

    Malaria control remains a significant challenge in the Solomon Islands. Despite progress made by local malaria control agencies over the past decade, case rates remain high in some areas of the country. Studies from around the world have confirmed important links between climate and malaria transmission. This study focuses on understanding the links between malaria and climate in Guadalcanal, Solomon Islands, with a view towards developing a climate-based monitoring and early warning for periods of enhanced malaria transmission. Climate records were sourced from the Solomon Islands meteorological service (SIMS) and historical malaria case records were sourced from the National Vector-Borne Disease Control Programme (NVBDCP). A declining trend in malaria cases over the last decade associated with improved malaria control was adjusted for. A stepwise regression was performed between climate variables and climate-associated malaria transmission (CMT) at different lag intervals to determine where significant relationships existed. The suitability of these results for use in a three-tiered categorical warning system was then assessed using a Mann-Whitney U test. Of the climate variables considered, only rainfall had a consistently significant relationship with malaria in North Guadalcanal. Optimal lag intervals were determined for prediction using R 2 skill scores. A highly significant negative correlation (R = - 0.86, R 2  = 0.74, p malaria transmission periods in January-June. Cross-validation emphasized the suitability of this relationship for forecasting purposes [Formula: see text]  as did Mann-Whitney U test results showing that rainfall below or above specific thresholds was significantly associated with above or below normal malaria transmission, respectively. This study demonstrated that rainfall provides the best predictor of malaria transmission in North Guadalcanal. This relationship is thought to be underpinned by the unique hydrological conditions

  15. Regulatory cross-talk links Vibrio cholerae chromosome II replication and segregation.

    Directory of Open Access Journals (Sweden)

    Yoshiharu Yamaichi

    2011-07-01

    Full Text Available There is little knowledge of factors and mechanisms for coordinating bacterial chromosome replication and segregation. Previous studies have revealed that genes (and their products that surround the origin of replication (oriCII of Vibrio cholerae chromosome II (chrII are critical for controlling the replication and segregation of this chromosome. rctB, which flanks one side of oriCII, encodes a protein that initiates chrII replication; rctA, which flanks the other side of oriCII, inhibits rctB activity. The chrII parAB2 operon, which is essential for chrII partitioning, is located immediately downstream of rctA. Here, we explored how rctA exerts negative control over chrII replication. Our observations suggest that RctB has at least two DNA binding domains--one for binding to oriCII and initiating replication and the other for binding to rctA and thereby inhibiting RctB's ability to initiate replication. Notably, the inhibitory effect of rctA could be alleviated by binding of ParB2 to a centromere-like parS site within rctA. Furthermore, by binding to rctA, ParB2 and RctB inversely regulate expression of the parAB2 genes. Together, our findings suggest that fluctuations in binding of the partitioning protein ParB2 and the chrII initiator RctB to rctA underlie a regulatory network controlling both oriCII firing and the production of the essential chrII partitioning proteins. Thus, by binding both RctB and ParB2, rctA serves as a nexus for regulatory cross-talk coordinating chrII replication and segregation.

  16. Methylated site display (MSD)-AFLP, a sensitive and affordable method for analysis of CpG methylation profiles.

    Science.gov (United States)

    Aiba, Toshiki; Saito, Toshiyuki; Hayashi, Akiko; Sato, Shinji; Yunokawa, Harunobu; Maruyama, Toru; Fujibuchi, Wataru; Kurita, Hisaka; Tohyama, Chiharu; Ohsako, Seiichiroh

    2017-03-09

    It has been pointed out that environmental factors or chemicals can cause diseases that are developmental in origin. To detect abnormal epigenetic alterations in DNA methylation, convenient and cost-effective methods are required for such research, in which multiple samples are processed simultaneously. We here present methylated site display (MSD), a unique technique for the preparation of DNA libraries. By combining it with amplified fragment length polymorphism (AFLP) analysis, we developed a new method, MSD-AFLP. Methylated site display libraries consist of only DNAs derived from DNA fragments that are CpG methylated at the 5' end in the original genomic DNA sample. To test the effectiveness of this method, CpG methylation levels in liver, kidney, and hippocampal tissues of mice were compared to examine if MSD-AFLP can detect subtle differences in the levels of tissue-specific differentially methylated CpGs. As a result, many CpG sites suspected to be tissue-specific differentially methylated were detected. Nucleotide sequences adjacent to these methyl-CpG sites were identified and we determined the methylation level by methylation-sensitive restriction endonuclease (MSRE)-PCR analysis to confirm the accuracy of AFLP analysis. The differences of the methylation level among tissues were almost identical among these methods. By MSD-AFLP analysis, we detected many CpGs showing less than 5% statistically significant tissue-specific difference and less than 10% degree of variability. Additionally, MSD-AFLP analysis could be used to identify CpG methylation sites in other organisms including humans. MSD-AFLP analysis can potentially be used to measure slight changes in CpG methylation level. Regarding the remarkable precision, sensitivity, and throughput of MSD-AFLP analysis studies, this method will be advantageous in a variety of epigenetics-based research.

  17. Usher syndrome type III (USH3) linked to chromosome 3q in an Italian family.

    Science.gov (United States)

    Gasparini, P; De Fazio, A; Croce, A I; Stanziale, P; Zelante, L

    1998-08-01

    We report an Italian family affected by Usher type III syndrome. Linkage study, performed using markers corresponding to the Usher loci already mapped, clearly showed linkage with markers on chromosome 3q24-25. Our data further support the presence of an Usher III locus on chromosome 3, as recently reported in a Finnish population.

  18. Usher syndrome type III (USH3) linked to chromosome 3q in an Italian family.

    OpenAIRE

    Gasparini, P; De Fazio, A; Croce, A I; Stanziale, P; Zelante, L

    1998-01-01

    We report an Italian family affected by Usher type III syndrome. Linkage study, performed using markers corresponding to the Usher loci already mapped, clearly showed linkage with markers on chromosome 3q24-25. Our data further support the presence of an Usher III locus on chromosome 3, as recently reported in a Finnish population.

  19. Genome-Wide Search Identifies 1.9 Mb from the Polar Bear Y Chromosome for Evolutionary Analyses

    Science.gov (United States)

    Bidon, Tobias; Schreck, Nancy; Hailer, Frank; Nilsson, Maria A.; Janke, Axel

    2015-01-01

    The male-inherited Y chromosome is the major haploid fraction of the mammalian genome, rendering Y-linked sequences an indispensable resource for evolutionary research. However, despite recent large-scale genome sequencing approaches, only a handful of Y chromosome sequences have been characterized to date, mainly in model organisms. Using polar bear (Ursus maritimus) genomes, we compare two different in silico approaches to identify Y-linked sequences: 1) Similarity to known Y-linked genes and 2) difference in the average read depth of autosomal versus sex chromosomal scaffolds. Specifically, we mapped available genomic sequencing short reads from a male and a female polar bear against the reference genome and identify 112 Y-chromosomal scaffolds with a combined length of 1.9 Mb. We verified the in silico findings for the longer polar bear scaffolds by male-specific in vitro amplification, demonstrating the reliability of the average read depth approach. The obtained Y chromosome sequences contain protein-coding sequences, single nucleotide polymorphisms, microsatellites, and transposable elements that are useful for evolutionary studies. A high-resolution phylogeny of the polar bear patriline shows two highly divergent Y chromosome lineages, obtained from analysis of the identified Y scaffolds in 12 previously published male polar bear genomes. Moreover, we find evidence of gene conversion among ZFX and ZFY sequences in the giant panda lineage and in the ancestor of ursine and tremarctine bears. Thus, the identification of Y-linked scaffold sequences from unordered genome sequences yields valuable data to infer phylogenomic and population-genomic patterns in bears. PMID:26019166

  20. Age-Related DNA Methylation Changes and Neoplastic Transformation of the Human Prostate

    Science.gov (United States)

    2009-07-01

    associated CpG island to be d ifferentially hyp ermethylated in th e L NCaP cell line and 25 unique promoter associated CpG island s to b e dif ferentially h...ypomethylated in the L NCaP cell line . Several of these differentially m ethylated genes have been previously reported. Novel methylated genes of

  1. Identification of susceptibility genes for bipolar affective disorder and schizophrenia on chromosome 22q13

    DEFF Research Database (Denmark)

    Severinsen, Jacob Eg

    2006-01-01

    Linkage analyses suggest that chromosome 22q12-13 may harbor one or more shared susceptibility loci for bipolar affective disorder (BPD) and schizophrenia (SZ). In a study of distantly related cases and control individuals from the Faeroe Islands our group has previously reported that chromosome 22...... samples (total of 1,751 individuals), and by bioinformatic and expression analyses of a subset of disease associated genes and gene variants. In total 67 single nucleotide polymorphisms (SNPs) located in 18 positional candidate genes, and 4 microsattelite markers were investigated, using a Scottish case...

  2. Restoration of CpG Methylation in The Egf Promoter Region during Rat Liver Regeneration

    Science.gov (United States)

    Deming, Li; Ziwei, Li; Xueqiang, Guo; Cunshuan, Xu

    2015-01-01

    Epidermal growth factor (EGF) is an important factor for healing after tissue damage in diverse experimental models. It plays an important role in liver regeneration (LR). The objective of this experiment is to investigate the methylation variation of 10 CpG sites in the Egf promoter region and their relevance to Egf expression during rat liver regenera- tion. As a follow up of our previous study, rat liver tissue was collected after rat 2/3 partial hepatectomy (PH) during the re-organization phase (from days 14 to days 28). Liver DNA was extracted and modified by sodium bisulfate. The methylation status of 10 CpG sites in Egf promoter region was determined using bisulfite sequencing polymerase chain reaction (PCR), as BSP method. The results showed that 3 (sites 3, 4 and 9) out of 10 CpG sites have strikingly methylation changes during the re-organization phase compared to the regeneration phase (from 2 hours to 168 hours, P=0.002, 0.048 and 0.018, respectively). Our results showed that methylation modification of CpGs in the Egf promoter region could be restored to the status before PH operation and changes of methylation didn’t affect Egf mRNA expression during the re-organization phase. PMID:26464832

  3. Constitutional and somatic rearrangement of chromosome 21 in acute lymphoblastic leukaemia.

    Science.gov (United States)

    Li, Yilong; Schwab, Claire; Ryan, Sarra; Papaemmanuil, Elli; Robinson, Hazel M; Jacobs, Patricia; Moorman, Anthony V; Dyer, Sara; Borrow, Julian; Griffiths, Mike; Heerema, Nyla A; Carroll, Andrew J; Talley, Polly; Bown, Nick; Telford, Nick; Ross, Fiona M; Gaunt, Lorraine; McNally, Richard J Q; Young, Bryan D; Sinclair, Paul; Rand, Vikki; Teixeira, Manuel R; Joseph, Olivia; Robinson, Ben; Maddison, Mark; Dastugue, Nicole; Vandenberghe, Peter; Stephens, Philip J; Cheng, Jiqiu; Van Loo, Peter; Stratton, Michael R; Campbell, Peter J; Harrison, Christine J

    2014-04-03

    Changes in gene dosage are a major driver of cancer, known to be caused by a finite, but increasingly well annotated, repertoire of mutational mechanisms. This can potentially generate correlated copy-number alterations across hundreds of linked genes, as exemplified by the 2% of childhood acute lymphoblastic leukaemia (ALL) with recurrent amplification of megabase regions of chromosome 21 (iAMP21). We used genomic, cytogenetic and transcriptional analysis, coupled with novel bioinformatic approaches, to reconstruct the evolution of iAMP21 ALL. Here we show that individuals born with the rare constitutional Robertsonian translocation between chromosomes 15 and 21, rob(15;21)(q10;q10)c, have approximately 2,700-fold increased risk of developing iAMP21 ALL compared to the general population. In such cases, amplification is initiated by a chromothripsis event involving both sister chromatids of the Robertsonian chromosome, a novel mechanism for cancer predisposition. In sporadic iAMP21, breakage-fusion-bridge cycles are typically the initiating event, often followed by chromothripsis. In both sporadic and rob(15;21)c-associated iAMP21, the final stages frequently involve duplications of the entire abnormal chromosome. The end-product is a derivative of chromosome 21 or the rob(15;21)c chromosome with gene dosage optimized for leukaemic potential, showing constrained copy-number levels over multiple linked genes. Thus, dicentric chromosomes may be an important precipitant of chromothripsis, as we show rob(15;21)c to be constitutionally dicentric and breakage-fusion-bridge cycles generate dicentric chromosomes somatically. Furthermore, our data illustrate that several cancer-specific mutational processes, applied sequentially, can coordinate to fashion copy-number profiles over large genomic scales, incrementally refining the fitness benefits of aggregated gene dosage changes.

  4. CRISPR-Cas and Contact-Dependent Secretion Systems Present on Excisable Pathogenicity Islands with Conserved Recombination Modules.

    Science.gov (United States)

    Carpenter, Megan R; Kalburge, Sai S; Borowski, Joseph D; Peters, Molly C; Colwell, Rita R; Boyd, E Fidelma

    2017-05-15

    Pathogenicity islands (PAIs) are mobile integrated genetic elements that contain a diverse range of virulence factors. PAIs integrate into the host chromosome at a tRNA locus that contains their specific bacterial attachment site, attB , via integrase-mediated site-specific recombination generating attL and attR sites. We identified conserved recombination modules (integrases and att sites) previously described in choleragenic Vibrio cholerae PAIs but with novel cargo genes. Clustered regularly interspaced short palindromic repeat (CRISPR)-associated proteins (Cas proteins) and a type VI secretion system (T6SS) gene cluster were identified at the Vibrio pathogenicity island 1 (VPI-1) insertion site in 19 V. cholerae strains and contained the same recombination module. Two divergent type I-F CRISPR-Cas systems were identified, which differed in Cas protein homology and content. The CRISPR repeat sequence was identical among all V. cholerae strains, but the CRISPR spacer sequences and the number of spacers varied. In silico analysis suggests that the CRISPR-Cas systems were active against phages and plasmids. A type III secretion system (T3SS) was present in 12 V. cholerae strains on a 68-kb island inserted at the same tRNA-serine insertion site as VPI-2 and contained the same recombination module. Bioinformatics analysis showed that two divergent T3SSs exist among the strains examined. Both the CRISPR and T3SS islands excised site specifically from the bacterial chromosome as complete units, and the cognate integrases were essential for this excision. These data demonstrated that identical recombination modules that catalyze integration and excision from the chromosome can acquire diverse cargo genes, signifying a novel method of acquisition for both CRISPR-Cas systems and T3SSs. IMPORTANCE This work demonstrated the presence of CRISPR-Cas systems and T3SSs on PAIs. Our work showed that similar recombination modules can associate with different cargo genes and

  5. Effects of CPG ODN on biological behavior of PANC-1 and expression of TLR9 in pancreatic cancer.

    Science.gov (United States)

    Wu, Han-Qing; Wang, Bo; Zhu, Shi-Kai; Tian, Yuan; Zhang, Jing-Hui; Wu, He-Shui

    2011-02-28

    To determine the expression of toll-like receptor 9 (TLR9) in pancreatic tumor and the effects of cytosine phosphate-guanosine oligodeoxynucleotides 2216 (CPG ODN2216) on biological behavior of pancreatic carcinoma cell line PANC-1 and explore their clinical significance. The immunohistochemistry and Western blot were used to determine the expression of TLR9 protein in pancreatic cancer tissues, and immunofluorescence staining was performed to detect the TLR9 protein expression in pancreatic carcinoma cell line PANC-1. To assess the effects of CPG ODN2216 on the invasive property of Panc-1 cells, in vitro cell adhesion, wound-healing scrape, and invasion and cell colony formation were evaluated. TLR9 was highly expressed in pancreatic cancer tissues and PANC-1 cells. The percentage of positive cells expressing TLR9 protein in human pancreatic tissues, paracancerous tissues and normal tissues were 73.3%, 33.3% and 20.0%, respectively, and the protein expression level of TLR9 was gradually descending (P PANC-1 cells in CPG ODN 2216 treatment group were significantly lower than in the control group (P PANC-1 cells in treatment group was significantly decreased and CPG ODN2216 had an inhibitive effect in the growth of Panc-1 cells in a dose and time-dependent manner (P Panc-1 cells.

  6. FPGA implementation of a configurable neuromorphic CPG-based locomotion controller.

    Science.gov (United States)

    Barron-Zambrano, Jose Hugo; Torres-Huitzil, Cesar

    2013-09-01

    Neuromorphic engineering is a discipline devoted to the design and development of computational hardware that mimics the characteristics and capabilities of neuro-biological systems. In recent years, neuromorphic hardware systems have been implemented using a hybrid approach incorporating digital hardware so as to provide flexibility and scalability at the cost of power efficiency and some biological realism. This paper proposes an FPGA-based neuromorphic-like embedded system on a chip to generate locomotion patterns of periodic rhythmic movements inspired by Central Pattern Generators (CPGs). The proposed implementation follows a top-down approach where modularity and hierarchy are two desirable features. The locomotion controller is based on CPG models to produce rhythmic locomotion patterns or gaits for legged robots such as quadrupeds and hexapods. The architecture is configurable and scalable for robots with either different morphologies or different degrees of freedom (DOFs). Experiments performed on a real robot are presented and discussed. The obtained results demonstrate that the CPG-based controller provides the necessary flexibility to generate different rhythmic patterns at run-time suitable for adaptable locomotion. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Improvement of the Immunogenicity of Porcine Circovirus Type 2 DNA Vaccine by Recombinant ORF2 Gene and CpG Motifs.

    Science.gov (United States)

    Li, Jun; Shi, Jian-Li; Wu, Xiao-Yan; Fu, Fang; Yu, Jiang; Yuan, Xiao-Yuan; Peng, Zhe; Cong, Xiao-Yan; Xu, Shao-Jian; Sun, Wen-Bo; Cheng, Kai-Hui; Du, Yi-Jun; Wu, Jia-Qiang; Wang, Jin-Bao; Huang, Bao-Hua

    2015-06-01

    Nowadays, adjuvant is still important for boosting immunity and improving resistance in animals. In order to boost the immunity of porcine circovirus type 2 (PCV2) DNA vaccine, CpG motifs were inserted. In this study, the dose-effect was studied, and the immunity of PCV2 DNA vaccines by recombinant open reading frame 2 (ORF2) gene and CpG motifs was evaluated. Three-week-old Changbai piglets were inoculated intramuscularly with 200 μg, 400 μg, and 800 μg DNA vaccines containing 14 and 18 CpG motifs, respectively. Average gain and rectum temperature were recorded everyday during the experiments. Blood was collected from the piglets after vaccination to detect the changes of specific antibodies, interleukin-2, and immune cells every week. Tissues were collected for histopathology and polymerase chain reaction. The results indicated that compared to those of the control piglets, all concentrations of two DNA vaccines could induce PCV2-specific antibodies. A cellular immunity test showed that PCV2-specific lymphocytes proliferated the number of TH, TC, and CD3+ positive T-cells raised in the blood of DNA vaccine immune groups. There was no distinct pathological damage and viremia occurring in pigs that were inoculated with DNA vaccines, but there was some minor pathological damage in the control group. The results demonstrated that CpG motifs as an adjuvant could boost the humoral and cellular immunity of pigs to PCV2, especially in terms of cellular immunity. Comparing two DNA vaccines that were constructed, the one containing 18 CpG motifs was more effective. This is the first report that CpG motifs as an adjuvant insert to the PCV2 DNA vaccine could boost immunity.

  8. Newly identified CpG ODNs, M5-30 and M6-395, stimulate mouse immune cells to secrete TNF-alpha and enhance Th1-mediated immunity.

    Science.gov (United States)

    Choi, Sun-Shim; Chung, Eunkyung; Jung, Yu-Jin

    2010-08-01

    Bacterial CpG motifs are known to induce both innate and adaptive immunity in infected hosts via toll-like receptor 9 (TLR9). Because small oligonucleotides (ODNs) mimicking bacterial CpG motifs are easily synthesized, they have found use as immunomodulatory agents in a number of disease models. We have developed a novel bioinformatics approach to identify effective CpG ODN sequences and evaluate their function as TLR9 ligands in a murine system. Among the CpG ODNs we identified, M5-30 and M6-395 showed significant ability to stimulate TNF-alpha and IFN-gamma production in a mouse macrophage cell line and mouse splenocytes, respectively. We also found that these CpG ODNs activated cells through the canonical NF-kappa B signaling pathway. Moreover, both CpG ODNs were able to induce Th1-mediated immunity in Mycobacterium tuberculosis (Mtb)-infected mice. Our results demonstrate that M5-30 and M6-395 function as TLR9-specific ligands, making them useful in the study of TLR9 functionality and signaling in mice.

  9. Comparative Sex Chromosome Genomics in Snakes: Differentiation, Evolutionary Strata, and Lack of Global Dosage Compensation

    Science.gov (United States)

    Zektser, Yulia; Mahajan, Shivani; Bachtrog, Doris

    2013-01-01

    Snakes exhibit genetic sex determination, with female heterogametic sex chromosomes (ZZ males, ZW females). Extensive cytogenetic work has suggested that the level of sex chromosome heteromorphism varies among species, with Boidae having entirely homomorphic sex chromosomes, Viperidae having completely heteromorphic sex chromosomes, and Colubridae showing partial differentiation. Here, we take a genomic approach to compare sex chromosome differentiation in these three snake families. We identify homomorphic sex chromosomes in boas (Boidae), but completely heteromorphic sex chromosomes in both garter snakes (Colubridae) and pygmy rattlesnake (Viperidae). Detection of W-linked gametologs enables us to establish the presence of evolutionary strata on garter and pygmy rattlesnake sex chromosomes where recombination was abolished at different time points. Sequence analysis shows that all strata are shared between pygmy rattlesnake and garter snake, i.e., recombination was abolished between the sex chromosomes before the two lineages diverged. The sex-biased transmission of the Z and its hemizygosity in females can impact patterns of molecular evolution, and we show that rates of evolution for Z-linked genes are increased relative to their pseudoautosomal homologs, both at synonymous and amino acid sites (even after controlling for mutational biases). This demonstrates that mutation rates are male-biased in snakes (male-driven evolution), but also supports faster-Z evolution due to differential selective effects on the Z. Finally, we perform a transcriptome analysis in boa and pygmy rattlesnake to establish baseline levels of sex-biased expression in homomorphic sex chromosomes, and show that heteromorphic ZW chromosomes in rattlesnakes lack chromosome-wide dosage compensation. Our study provides the first full scale overview of the evolution of snake sex chromosomes at the genomic level, thus greatly expanding our knowledge of reptilian and vertebrate sex chromosomes

  10. Rhizobia from Lanzarote, the Canary Islands, that nodulate Phaseolus vulgars have characteristics in common with Sinorhizobium meliloti isolates from mainland Spain

    Science.gov (United States)

    Common bean and Medicago rhizobia isolated from five locations on the island of Lanzarote, the Canary Islands, by partial analysis of 10 chromosomal genes were shown to exhibit close similarity to Sinorhizobium meliloti. Several bean isolates from Lanzarote, mainland Spain and Tunisia nodulated Leu...

  11. Effects of Genotype and Child Abuse on DNA Methylation and Gene Expression at the Serotonin Transporter

    Directory of Open Access Journals (Sweden)

    Meeshanthini eVijayendran

    2012-06-01

    Full Text Available Altered regulation of the serotonin transporter (SLC6A4 is hypothesized to be a key event in many forms of neuropsychiatric illness, yet our understanding of the molecular mechanisms through which changes in gene function could lead to illness remains incomplete. In prior studies, we and others have demonstrated that methylation of CpG residues in the promoter associated CpG island alters SLC6A4 gene expression, that the extent of that DNA methylation in child abuse is genotype dependent, and that adverse childhood experiences such as child sex abuse are related to methylation. However, we have not examined whether these effects are splice variant specific, whether the association of methylation to gene expression varies as a function of genotype, and whether methylation in other SLC6A4 gene regions are more likely candidates for GxE effects. In the current investigation we measured methylation in lymphoblast DNA from 158 female subjects in the Iowa Adoption Studies at 16 CpG residues spread across the SLC6A4 locus, and analyzed their relationship to gene expression for two SLC6A4 splice variants. Methylation of two CpG residues in the shore of the CpG island (cg22584138 and cg05951817, a location immediately upstream from exon 1A, predicted gene expression for the splice variant containing Exon 1A + 1B. Methylation at two residues in the CpG island itself (cg 25769822 and cg05016953 was associated with total SLC6A4 expression. Examination of these four CpG residues indicated that methylation of cg22584138 was influenced by both genotype and sex abuse, whereas methylation of cg05016953 was influenced only by sex abuse history. Factors influencing methylation at other CpG dinucleotide pairs were not identified. We conclude that methylation effects on transcription may vary as a function of underlying gene motif and splice variant, and that the shore of CpG islands, upstream of TSS, may be of particular interest in examining environmental effects

  12. Down-regulation of p21 (CDKN1A/CIP1) is inversely associated with microsatellite instability and CpG island methylator phenotype (CIMP) in colorectal cancer.

    Science.gov (United States)

    Ogino, S; Kawasaki, T; Kirkner, G J; Ogawa, A; Dorfman, I; Loda, M; Fuchs, C S

    2006-10-01

    p21 (CDKN1A/CIP1/WAF1), one of the cyclin-dependent kinase inhibitors, plays a key role in regulating the cell cycle and is transcriptionally regulated by p53. Down-regulation of p21 is caused by TP53 mutations in colorectal cancer. CpG island methylator phenotype (CIMP) appears to be a distinct subtype of colorectal cancer with concordant methylation of multiple gene promoters and is associated with a high degree of microsatellite instability (MSI-H) and BRAF mutations. However, no study to date has evaluated the relationship between p21 expression and CIMP in colorectal cancer. The purpose of this study was to examine the inter-relationships between p21, p53, CIMP, MSI and KRAS/BRAF status in colorectal cancer. We utilized 737 relatively unbiased samples of colorectal cancers from two large prospective cohort studies. Using quantitative real-time PCR (MethyLight), we measured DNA methylation in five CIMP-specific gene promoters [CACNA1G, CDKN2A (p16/INK4A), CRABP1, MLH1 and NEUROG1]. CIMP-high (>or=4/5 methylated promoters) was diagnosed in 118 (16%) of the 737 tumours. We also assessed expression of p21 and p53 by immunohistochemistry. Among the 737 tumours, 371 (50%) showed p21 loss. Both p21 loss and p53 positivity were inversely associated with CIMP-high, MSI-H and BRAF mutations. The associations of p21 with these molecular features were still present after tumours were stratified by p53 status. In contrast, the associations of p53 positivity with the molecular features were no longer present after tumours were stratified by p21 status. When CIMP-high and non-CIMP-high tumours were stratified by MSI or KRAS/BRAF status, CIMP-high and MSI-H (but not BRAF mutations) were still inversely associated with p21 loss. In conclusion, down-regulation of p21 is inversely correlated with CIMP-high and MSI-H in colorectal cancer, independent of TP53 and BRAF status.

  13. Genome-wide methylation analysis identifies differentially methylated CpG loci associated with severe obesity in childhood.

    Science.gov (United States)

    Huang, R C; Garratt, E S; Pan, H; Wu, Y; Davis, E A; Barton, S J; Burdge, G C; Godfrey, K M; Holbrook, J D; Lillycrop, K A

    2015-01-01

    Childhood obesity is a major public health issue. Here we investigated whether differential DNA methylation was associated with childhood obesity. We studied DNA methylation profiles in whole blood from 78 obese children (mean BMI Z-score: 2.6) and 71 age- and sex-matched controls (mean BMI Z-score: 0.1). DNA samples from obese and control groups were pooled and analyzed using the Infinium HumanMethylation450 BeadChip array. Comparison of the methylation profiles between obese and control subjects revealed 129 differentially methylated CpG (DMCpG) loci associated with 80 unique genes that had a greater than 10% difference in methylation (P-value obesity were validated using sodium bisulfite pyrosequencing across loci within the FYN, PIWIL4, and TAOK3 genes in individual subjects. Three CpG loci within FYN were hypermethylated in obese individuals (all P obesity was associated with lower methylation of CpG loci within PIWIL4 (P = 0.003) and TAOK3 (P = 0.001). After building logistic regression models, we determined that a 1% increase in methylation in TAOK3, multiplicatively decreased the odds of being obese by 0.91 (95% CI: 0.86 - 0.97), and an increase of 1% methylation in FYN CpG3, multiplicatively increased the odds of being obese by 1.03 (95% CI: 0.99 - 1.07). In conclusion, these findings provide evidence that childhood obesity is associated with specific DNA methylation changes in whole blood, which may have utility as biomarkers of obesity risk.

  14. Gender-Associated Genomic Differences in Colorectal Cancer: Clinical Insight from Feminization of Male Cancer Cells

    Directory of Open Access Journals (Sweden)

    Rola H. Ali

    2014-09-01

    Full Text Available Gender-related differences in colorectal cancer (CRC are not fully understood. Recent studies have shown that CRC arising in females are significantly associated with CpG island methylator phenotype (CIMP-high. Using array comparative genomic hybridization, we analyzed a cohort of 116 CRCs (57 males, 59 females for chromosomal copy number aberrations (CNA and found that CRC in females had significantly higher numbers of gains involving chromosome arms 1q21.2–q21.3, 4q13.2, 6p21.1 and 16p11.2 and copy number losses of chromosome arm 11q25 compared to males. Interestingly, a subset of male CRCs (46% exhibited a "feminization" phenomenon in the form of gains of X chromosomes (or an arm of X and/or losses of the Y chromosome. Feminization of cancer cells was significantly associated with microsatellite-stable CRCs (p-value 0.003 and wild-type BRAF gene status (p-value 0.009. No significant association with other clinicopathological parameters was identified including disease-free survival. In summary, our data show that some CNAs in CRC may be gender specific and that male cancers characterized by feminization may constitute a specific subset of CRCs that warrants further investigation.

  15. AtMBD6, a methyl CpG binding domain protein, maintains gene ...

    Indian Academy of Sciences (India)

    DNA methylation, mediated by double-stranded RNA, is a conserved epigenetic phenomenon that protects a genome fromtransposons, silences unwanted genes and has a paramount function in plant or animal development. Methyl CpG bindingdomain proteins are members of a class of proteins that bind tomethylated ...

  16. AtMBD6, a methyl CpG binding domain protein, maintains gene ...

    Indian Academy of Sciences (India)

    2017-01-13

    Jan 13, 2017 ... 13 methyl CpG binding domain (MBD) proteins, but the molecular/biological functions of most of these ... AtMBD5, AtMBD6 and AtMBD7 are more similar to those .... prey were able to grow on -AHLW (-Ade, -His, -Leu, -Trp).

  17. Chromosome

    Science.gov (United States)

    ... St Louis, MO: Elsevier; 2017:chap 69. Taber's Medical Dictionary Online. Chromosome. www.tabers.com/tabersonline/view/Tabers-Dictionary/753321/all/chromosome?q=Chromosome&ti=0 . Accessed June 11, 2017.

  18. Genome-Wide Search Identifies 1.9 Mb from the Polar Bear Y Chromosome for Evolutionary Analyses.

    Science.gov (United States)

    Bidon, Tobias; Schreck, Nancy; Hailer, Frank; Nilsson, Maria A; Janke, Axel

    2015-05-27

    The male-inherited Y chromosome is the major haploid fraction of the mammalian genome, rendering Y-linked sequences an indispensable resource for evolutionary research. However, despite recent large-scale genome sequencing approaches, only a handful of Y chromosome sequences have been characterized to date, mainly in model organisms. Using polar bear (Ursus maritimus) genomes, we compare two different in silico approaches to identify Y-linked sequences: 1) Similarity to known Y-linked genes and 2) difference in the average read depth of autosomal versus sex chromosomal scaffolds. Specifically, we mapped available genomic sequencing short reads from a male and a female polar bear against the reference genome and identify 112 Y-chromosomal scaffolds with a combined length of 1.9 Mb. We verified the in silico findings for the longer polar bear scaffolds by male-specific in vitro amplification, demonstrating the reliability of the average read depth approach. The obtained Y chromosome sequences contain protein-coding sequences, single nucleotide polymorphisms, microsatellites, and transposable elements that are useful for evolutionary studies. A high-resolution phylogeny of the polar bear patriline shows two highly divergent Y chromosome lineages, obtained from analysis of the identified Y scaffolds in 12 previously published male polar bear genomes. Moreover, we find evidence of gene conversion among ZFX and ZFY sequences in the giant panda lineage and in the ancestor of ursine and tremarctine bears. Thus, the identification of Y-linked scaffold sequences from unordered genome sequences yields valuable data to infer phylogenomic and population-genomic patterns in bears. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  19. DNA methylation in states of cell physiology and pathology.

    Directory of Open Access Journals (Sweden)

    Lech Chyczewski

    2007-10-01

    Full Text Available DNA methylation is one of epigenetic mechanisms regulating gene expression. The methylation pattern is determined during embryogenesis and passed over to differentiating cells and tissues. In a normal cell, a significant degree of methylation is characteristic for extragenic DNA (cytosine within the CG dinucleotide while CpG islands located in gene promoters are unmethylated, except for inactive genes of the X chromosome and the genes subjected to genomic imprinting. The changes in the methylation pattern, which may appear as the organism age and in early stages of cancerogenesis, may lead to the silencing of over ninety endogenic genes. It has been found, that these disorders consist not only of the methylation of CpG islands, which are normally unmethylated, but also of the methylation of other dinucleotides, e.g. CpA. Such methylation has been observed in non-small cell lung cancer, in three regions of the exon 5 of the p53 gene (so-called "non-CpG" methylation. The knowledge of a normal methylation process and its aberrations appeared to be useful while searching for new markers enabling an early detection of cancer. With the application of the Real-Time PCR technique (using primers for methylated and unmethylated sequences five new genes which are potential biomarkers of lung cancer have been presented.

  20. New insights into sex chromosome evolution in anole lizards (Reptilia, Dactyloidae).

    Science.gov (United States)

    Giovannotti, M; Trifonov, V A; Paoletti, A; Kichigin, I G; O'Brien, P C M; Kasai, F; Giovagnoli, G; Ng, B L; Ruggeri, P; Cerioni, P Nisi; Splendiani, A; Pereira, J C; Olmo, E; Rens, W; Caputo Barucchi, V; Ferguson-Smith, M A

    2017-03-01

    Anoles are a clade of iguanian lizards that underwent an extensive radiation between 125 and 65 million years ago. Their karyotypes show wide variation in diploid number spanning from 26 (Anolis evermanni) to 44 (A. insolitus). This chromosomal variation involves their sex chromosomes, ranging from simple systems (XX/XY), with heterochromosomes represented by either micro- or macrochromosomes, to multiple systems (X 1 X 1 X 2 X 2 /X 1 X 2 Y). Here, for the first time, the homology relationships of sex chromosomes have been investigated in nine anole lizards at the whole chromosome level. Cross-species chromosome painting using sex chromosome paints from A. carolinensis, Ctenonotus pogus and Norops sagrei and gene mapping of X-linked genes demonstrated that the anole ancestral sex chromosome system constituted by microchromosomes is retained in all the species with the ancestral karyotype (2n = 36, 12 macro- and 24 microchromosomes). On the contrary, species with a derived karyotype, namely those belonging to genera Ctenonotus and Norops, show a series of rearrangements (fusions/fissions) involving autosomes/microchromosomes that led to the formation of their current sex chromosome systems. These results demonstrate that different autosomes were involved in translocations with sex chromosomes in closely related lineages of anole lizards and that several sequential microautosome/sex chromosome fusions lead to a remarkable increase in size of Norops sagrei sex chromosomes.

  1. First report on an X-linked hypohidrotic ectodermal dysplasia family with X chromosome inversion: Breakpoint mapping reveals the pathogenic mechanism and preimplantation genetics diagnosis achieves an unaffected birth.

    Science.gov (United States)

    Wu, Tonghua; Yin, Biao; Zhu, Yuanchang; Li, Guangui; Ye, Lijun; Liang, Desheng; Zeng, Yong

    2017-12-01

    To investigate the etiology of X-linked hypohidrotic ectodermal dysplasia (XLHED) in a family with an inversion of the X chromosome [inv(X)(p21q13)] and to achieve a healthy birth following preimplantation genetic diagnosis (PGD). Next generation sequencing (NGS) and Sanger sequencing analysis were carried out to define the inversion breakpoint. Multiple displacement amplification, amplification of breakpoint junction fragments, Sanger sequencing of exon 1 of ED1, haplotyping of informative short tandem repeat markers and gender determination were performed for PGD. NGS data of the proband sample revealed that the size of the possible inverted fragment was over 42Mb, spanning from position 26, 814, 206 to position 69, 231, 915 on the X chromosome. The breakpoints were confirmed by Sanger sequencing. A total of 5 blastocyst embryos underwent trophectoderm biopsy. Two embryos were diagnosed as carriers and three were unaffected. Two unaffected blastocysts were transferred and a singleton pregnancy was achieved. Following confirmation by prenatal diagnosis, a healthy baby was delivered. This is the first report of an XLHED family with inv(X). ED1 is disrupted by the X chromosome inversion in this XLHED family and embryos with the X chromosomal abnormality can be accurately identified by means of PGD. Copyright © 2017. Published by Elsevier B.V.

  2. Regulatory domain or CpG site variation in SLC12A5, encoding the chloride transporter KCC2, in human autism and schizophrenia

    Directory of Open Access Journals (Sweden)

    Nancy D Merner

    2015-10-01

    Full Text Available Many encoded gene products responsible for neurodevelopmental disorders (NDs like autism spectrum disorders (ASD, schizophrenia (SCZ, intellectual disability (ID, and idiopathic generalized epilepsy (IGE converge on networks controlling synaptic function. An increase in KCC2 (SLC12A5 Cl- transporter activity drives the developmental GABA excitatory-inhibitory sequence, but the role of KCC2 in human NDs is essentially unknown. Here, we report two rare, non-synonymous (NS, functionally-impairing variants in the KCC2 C-terminal regulatory domain (CTRD in human ASD (R952H and R1049C and SCZ (R952H previously linked with IGE and familial febrile seizures, and another novel NS KCC2 variant in ASD (R1048W with highly-predicted pathogenicity. Exome data from 2517 simplex families in the ASD Simon Simplex Collection revealed significantly more KCC2 CTRD variants in ASD cases than controls, and interestingly, these were more often synonymous and predicted to disrupt or introduce a CpG site. Furthermore, full gene analysis showed ASD cases are more likely to contain rare KCC2 variants affecting CpG sites than controls. These data suggest genetically-encoded dysregulation of KCC2-dependent GABA signaling may contribute to multiple human NDs.

  3. The application of methylation specific electrophoresis (MSE) to DNA methylation analysis of the 5' CpG island of mucin in cancer cells

    International Nuclear Information System (INIS)

    Yokoyama, Seiya; Yonezawa, Suguru; Kitamoto, Sho; Yamada, Norishige; Houjou, Izumi; Sugai, Tamotsu; Nakamura, Shin-ichi; Arisaka, Yoshifumi; Takaori, Kyoichi; Higashi, Michiyo

    2012-01-01

    Methylation of CpG sites in genomic DNA plays an important role in gene regulation and especially in gene silencing. We have reported mechanisms of epigenetic regulation for expression of mucins, which are markers of malignancy potential and early detection of human neoplasms. Epigenetic changes in promoter regions appear to be the first step in expression of mucins. Thus, detection of promoter methylation status is important for early diagnosis of cancer, monitoring of tumor behavior, and evaluating the response of tumors to targeted therapy. However, conventional analytical methods for DNA methylation require a large amount of DNA and have low sensitivity. Here, we report a modified version of the bisulfite-DGGE (denaturing gradient gel electrophoresis) using a nested PCR approach. We designated this method as methylation specific electrophoresis (MSE). The MSE method is comprised of the following steps: (a) bisulfite treatment of genomic DNA, (b) amplification of the target DNA by a nested PCR approach and (c) applying to DGGE. To examine whether the MSE method is able to analyze DNA methylation of mucin genes in various samples, we apply it to DNA obtained from state cell lines, ethanol-fixed colonic crypts and human pancreatic juices. The MSE method greatly decreases the amount of input DNA. The lower detection limit for distinguishing different methylation status is < 0.1% and the detectable minimum amount of DNA is 20 pg, which can be obtained from only a few cells. We also show that MSE can be used for analysis of challenging samples such as human isolated colonic crypts or human pancreatic juices, from which only a small amount of DNA can be extracted. The MSE method can provide a qualitative information of methylated sequence profile. The MSE method allows sensitive and specific analysis of the DNA methylation pattern of almost any block of multiple CpG sites. The MSE method can be applied to analysis of DNA methylation status in many different clinical

  4. A toxin antitoxin system promotes the maintenance of the IncA/C-mobilizable Salmonella Genomic Island 1.

    Science.gov (United States)

    Huguet, Kevin T; Gonnet, Mathieu; Doublet, Benoît; Cloeckaert, Axel

    2016-08-31

    The multidrug resistance Salmonella Genomic Island 1 (SGI1) is an integrative mobilizable element identified in several enterobacterial pathogens. This chromosomal island requires a conjugative IncA/C plasmid to be excised as a circular extrachromosomal form and conjugally mobilized in trans. Preliminary observations suggest stable maintenance of SGI1 in the host chromosome but paradoxically also incompatibility between SGI1 and IncA/C plasmids. Here, using a Salmonella enterica serovar Agona clonal bacterial population as model, we demonstrate that a Toxin-Antitoxin (TA) system encoded by SGI1 plays a critical role in its stable host maintenance when an IncA/C plasmid is concomitantly present. This system, designated sgiAT for Salmonella genomic island 1 Antitoxin and Toxin respectively, thus seems to play a stabilizing role in a situation where SGI1 is susceptible to be lost through plasmid IncA/C-mediated excision. Moreover and for the first time, the incompatibility between SGI1 and IncA/C plasmids was experimentally confirmed.

  5. Application of a linked stress release model in Corinth Gulf and Central Ionian Islands (Greece)

    Science.gov (United States)

    Mangira, Ourania; Vasiliadis, Georgios; Papadimitriou, Eleftheria

    2017-06-01

    Spatio-temporal stress changes and interactions between adjacent fault segments consist of the most important component in seismic hazard assessment, as they can alter the occurrence probability of strong earthquake onto these segments. The investigation of the interactions between adjacent areas by means of the linked stress release model is attempted for moderate earthquakes ( M ≥ 5.2) in the Corinth Gulf and the Central Ionian Islands (Greece). The study areas were divided in two subareas, based on seismotectonic criteria. The seismicity of each subarea is investigated by means of a stochastic point process and its behavior is determined by the conditional intensity function, which usually gets an exponential form. A conditional intensity function of Weibull form is used for identifying the most appropriate among the models (simple, independent and linked stress release model) for the interpretation of the earthquake generation process. The appropriateness of the models was decided after evaluation via the Akaike information criterion. Despite the fact that the curves of the conditional intensity functions exhibit similar behavior, the use of the exponential-type conditional intensity function seems to fit better the data.

  6. The alpha-spectrin gene is on chromosome 1 in mouse and man.

    Science.gov (United States)

    Huebner, K; Palumbo, A P; Isobe, M; Kozak, C A; Monaco, S; Rovera, G; Croce, C M; Curtis, P J

    1985-06-01

    By using alpha-spectrin cDNA clones of murine and human origin and somatic cell hybrids segregating either mouse or human chromosomes, the gene for alpha-spectrin has been mapped to chromosome 1 in both species. This assignment of the mouse alpha-spectrin gene to mouse chromosome 1 by DNA hybridization strengthens the previous identification of the alpha-spectrin locus in mouse with the sph locus, which previously was mapped by linkage analysis to mouse chromosome 1, distal to the Pep-3 locus. By in situ hybridization to human metaphase chromosomes, the human alpha-spectrin gene has been localized to 1q22-1q25; interestingly, the locus for a non-Rh-linked form of elliptocytosis has been provisionally mapped to band 1q2 by family linkage studies.

  7. SEX-DETector: A Probabilistic Approach to Study Sex Chromosomes in Non-Model Organisms

    Science.gov (United States)

    Muyle, Aline; Käfer, Jos; Zemp, Niklaus; Mousset, Sylvain; Picard, Franck; Marais, Gabriel AB

    2016-01-01

    We propose a probabilistic framework to infer autosomal and sex-linked genes from RNA-seq data of a cross for any sex chromosome type (XY, ZW, and UV). Sex chromosomes (especially the non-recombining and repeat-dense Y, W, U, and V) are notoriously difficult to sequence. Strategies have been developed to obtain partially assembled sex chromosome sequences. Most of them remain difficult to apply to numerous non-model organisms, either because they require a reference genome, or because they are designed for evolutionarily old systems. Sequencing a cross (parents and progeny) by RNA-seq to study the segregation of alleles and infer sex-linked genes is a cost-efficient strategy, which also provides expression level estimates. However, the lack of a proper statistical framework has limited a broader application of this approach. Tests on empirical Silene data show that our method identifies 20–35% more sex-linked genes than existing pipelines, while making reliable inferences for downstream analyses. Approximately 12 individuals are needed for optimal results based on simulations. For species with an unknown sex-determination system, the method can assess the presence and type (XY vs. ZW) of sex chromosomes through a model comparison strategy. The method is particularly well optimized for sex chromosomes of young or intermediate age, which are expected in thousands of yet unstudied lineages. Any organisms, including non-model ones for which nothing is known a priori, that can be bred in the lab, are suitable for our method. SEX-DETector and its implementation in a Galaxy workflow are made freely available. PMID:27492231

  8. The dynamic DNA methylation landscape of the mutL homolog 1 shore is altered by MLH1-93G>A polymorphism in normal tissues and colorectal cancer.

    Science.gov (United States)

    Savio, Andrea J; Mrkonjic, Miralem; Lemire, Mathieu; Gallinger, Steven; Knight, Julia A; Bapat, Bharat

    2017-01-01

    Colorectal cancers (CRCs) undergo distinct genetic and epigenetic alterations. Expression of mutL homolog 1 ( MLH1 ), a mismatch repair gene that corrects DNA replication errors, is lost in up to 15% of sporadic tumours due to mutation or, more commonly, due to DNA methylation of its promoter CpG island. A single nucleotide polymorphism (SNP) in the CpG island of MLH1 ( MLH1 -93G>A or rs1800734) is associated with CpG island hypermethylation and decreased MLH1 expression in CRC tumours. Further, in peripheral blood mononuclear cell (PBMC) DNA of both CRC cases and non-cancer controls, the variant allele of rs1800734 is associated with hypomethylation at the MLH1 shore, a region upstream of its CpG island that is less dense in CpG sites . To determine whether this genotype-epigenotype association is present in other tissue types, including colorectal tumours, we assessed DNA methylation in matched normal colorectal tissue, tumour, and PBMC DNA from 349 population-based CRC cases recruited from the Ontario Familial Colorectal Cancer Registry. Using the semi-quantitative real-time PCR-based MethyLight assay, MLH1 shore methylation was significantly higher in tumour tissue than normal colon or PBMCs ( P  MLH1 was not associated with MSI status or promoter CpG island hypermethylation, regardless of genotype. To confirm these results, bisulfite sequencing was performed in matched tumour and normal colorectal specimens from six CRC cases, including two cases per genotype (wildtype, heterozygous, and homozygous variant). Bisulfite sequencing results corroborated the methylation patterns found by MethyLight, with significant hypomethylation in normal colorectal tissue of variant SNP allele carriers. These results indicate that the normal tissue types tested (colorectum and PBMC) experience dynamic genotype-associated epigenetic alterations at the MLH1 shore, whereas tumour DNA incurs aberrant hypermethylation compared to normal DNA.

  9. CpG island methylator phenotype is associated with the efficacy of sequential oxaliplatin- and irinotecan-based chemotherapy and EGFR-related gene mutation in Japanese patients with metastatic colorectal cancer.

    Science.gov (United States)

    Zhang, Xiaofei; Shimodaira, Hideki; Soeda, Hiroshi; Komine, Keigo; Takahashi, Hidekazu; Ouchi, Kota; Inoue, Masahiro; Takahashi, Masanobu; Takahashi, Shin; Ishioka, Chikashi

    2016-12-01

    The CpG island methylator phenotype (CIMP) with multiple promoter methylated loci has been observed in a subset of human colorectal cancer (CRC) cases. CIMP status, which is closely associated with specific clinicopathological and molecular characteristics, is considered a potential predictive biomarker for efficacy of cancer treatment. However, the relationship between the effect of standard chemotherapy, including cytotoxic drugs and anti-epidermal growth factor receptor (EGFR) antibodies, and CIMP status has not been elucidated. In 125 metastatic colorectal cancer (mCRC) patients, we investigated how clinical outcome of chemotherapy was related to CIMP status as detected by methylation-specific PCR (MSP) and to genetic status in five EGFR-related genes (KRAS, BRAF, PIK3CA, NRAS, and AKT1) as detected by direct sequencing. CIMP-positive status was significantly associated with proximal tumor location and peritoneum metastasis (all P values CIMP-positive tumors receiving sequential therapy with FOLFOX as the first-line treatment followed by irinotecan-based therapy as the second-line treatment (median = 6.6 months) was inferior to that of such patients receiving the reverse sequence (median = 15.2 months; P = 0.043). Furthermore, CIMP-positive tumors showed higher mutation frequencies for the five EGFR-related genes (74.1 %) than the CIMP-negative tumors did (50.0 %). Among the KRAS wild-type tumors, CIMP-positive tumors were associated with a worse clinical outcome than CIMP-negative tumors following anti-EGFR antibody therapy. Sequential FOLFOX followed by an irinotecan-based regimen is unfavorable in patients with CIMP-positive tumors. High frequencies of mutation in EGFR-related genes in CIMP-positive tumors may cause the lower response to anti-EGFR antibody therapy seen in patients with wild-type KRAS and CIMP-positive tumors.

  10. Modeling of chromosome intermingling by partially overlapping uniform random polygons.

    Science.gov (United States)

    Blackstone, T; Scharein, R; Borgo, B; Varela, R; Diao, Y; Arsuaga, J

    2011-03-01

    During the early phase of the cell cycle the eukaryotic genome is organized into chromosome territories. The geometry of the interface between any two chromosomes remains a matter of debate and may have important functional consequences. The Interchromosomal Network model (introduced by Branco and Pombo) proposes that territories intermingle along their periphery. In order to partially quantify this concept we here investigate the probability that two chromosomes form an unsplittable link. We use the uniform random polygon as a crude model for chromosome territories and we model the interchromosomal network as the common spatial region of two overlapping uniform random polygons. This simple model allows us to derive some rigorous mathematical results as well as to perform computer simulations easily. We find that the probability that one uniform random polygon of length n that partially overlaps a fixed polygon is bounded below by 1 − O(1/√n). We use numerical simulations to estimate the dependence of the linking probability of two uniform random polygons (of lengths n and m, respectively) on the amount of overlapping. The degree of overlapping is parametrized by a parameter [Formula: see text] such that [Formula: see text] indicates no overlapping and [Formula: see text] indicates total overlapping. We propose that this dependence relation may be modeled as f (ε, m, n) = [Formula: see text]. Numerical evidence shows that this model works well when [Formula: see text] is relatively large (ε ≥ 0.5). We then use these results to model the data published by Branco and Pombo and observe that for the amount of overlapping observed experimentally the URPs have a non-zero probability of forming an unsplittable link.

  11. A specific insertion of a solo-LTR characterizes the Y-chromosome of Bryonia dioica (Cucurbitaceae).

    Science.gov (United States)

    Oyama, Ryan K; Silber, Martina V; Renner, Susanne S

    2010-06-14

    Relatively few species of flowering plants are dioecious and even fewer are known to have sex chromosomes. Current theory posits that homomorphic sex chromosomes, such as found in Bryonia dioica (Cucurbitaceae), offer insight into the early stages in the evolution of sex chromosomes from autosomes. Little is known about these early steps, but an accumulation of transposable element sequences has been observed on the Y-chromosomes of some species with heteromorphic sex chromosomes. Recombination, by which transposable elements are removed, is suppressed on at least part of the emerging Y-chromosome, and this may explain the correlation between the emergence of sex chromosomes and transposable element enrichment. We sequenced 2321 bp of the Y-chromosome in Bryonia dioica that flank a male-linked marker, BdY1, reported previously. Within this region, which should be suppressed for recombination, we observed a solo-LTR nested in a Copia-like transposable element. We also found other, presumably paralogous, solo-LTRs in a consensus sequence of the underlying Copia-like transposable element. Given that solo-LTRs arise via recombination events, it is noteworthy that we find one in a genomic region where recombination should be suppressed. Although the solo-LTR could have arisen before recombination was suppressed, creating the male-linked marker BdY1, our previous study on B. dioica suggested that BdY1 may not lie in the recombination-suppressed region of the Y-chromosome in all populations. Presence of a solo-LTR near BdY1 therefore fits with the observed correlation between retrotransposon accumulation and the suppression of recombination early in the evolution of sex chromosomes. These findings further suggest that the homomorphic sex chromosomes of B. dioica, the first organism for which genetic XY sex-determination was inferred, are evolutionarily young and offer reference information for comparative studies of other plant sex chromosomes.

  12. Turnover of sex chromosomes in the stickleback fishes (gasterosteidae.

    Directory of Open Access Journals (Sweden)

    Joseph A Ross

    2009-02-01

    Full Text Available Diverse sex-chromosome systems are found in vertebrates, particularly in teleost fishes, where different systems can be found in closely related species. Several mechanisms have been proposed for the rapid turnover of sex chromosomes, including the transposition of an existing sex-determination gene, the appearance of a new sex-determination gene on an autosome, and fusions between sex chromosomes and autosomes. To better understand these evolutionary transitions, a detailed comparison of sex chromosomes between closely related species is essential. Here, we used genetic mapping and molecular cytogenetics to characterize the sex-chromosome systems of multiple stickleback species (Gasterosteidae. Previously, we demonstrated that male threespine stickleback fish (Gasterosteus aculeatus have a heteromorphic XY pair corresponding to linkage group (LG 19. In this study, we found that the ninespine stickleback (Pungitius pungitius has a heteromorphic XY pair corresponding to LG12. In black-spotted stickleback (G. wheatlandi males, one copy of LG12 has fused to the LG19-derived Y chromosome, giving rise to an X(1X(2Y sex-determination system. In contrast, neither LG12 nor LG19 is linked to sex in two other species: the brook stickleback (Culaea inconstans and the fourspine stickleback (Apeltes quadracus. However, we confirmed the existence of a previously reported heteromorphic ZW sex-chromosome pair in the fourspine stickleback. The sex-chromosome diversity that we have uncovered in sticklebacks provides a rich comparative resource for understanding the mechanisms that underlie the rapid turnover of sex-chromosome systems.

  13. Molecular patterns of X chromosome-linked color vision genes among 134 menof European ancestry

    International Nuclear Information System (INIS)

    Drummond-Borg, M.; Deeb, S.S.; Motulsky, A.G.

    1989-01-01

    The authors used Southern blot hybridization to study X chromosome-linked color vision genes encoding the apoproteins of red and green visual pigments in 134 unselected Caucasian men. One hundred and thirteen individuals (84.3%) had a normal arrangement of their color vision pigment genes. All had one red pigment gene; the number of green pigment genes ranged from one to five with a mode of two. The frequency of molecular genotypes indicative of normal color vision (84.3%) was significantly lower than had been observed in previous studies of color vision phenotypes. Color vision defects can be due to deletions of red or green pigment genes or due to formation of hybrid genes comprising portions of both red and green pigment genes. Characteristic anomalous patterns were seen in 15 (11.2%) individuals: 7 (5.2%) had patterns characteristic of deuteranomaly, 2 (1.5%) had patterns characteristic of deuteranopia, and 6 (4.5%) had protan patterns. Previously undescribed hybrid gene patterns consisting of both green and red pigment gene fragments in addition to normal red and green genes were observed in another 6 individuals (4.5%). Thus, DNA testing detected anomalous color vision pigment genes at a higher frequency than expected from phenotypic color vision tests

  14. Dissection of barley chromosomes 1H and 6H by the gametocidal system

    Czech Academy of Sciences Publication Activity Database

    Ishihara, A.; Mizuno, N.; Islam, R.A.K.M.; Doležel, Jaroslav; Endo, Takashi R.; Nasuda, S.

    2014-01-01

    Roč. 89, č. 5 (2014), s. 203-214 ISSN 1341-7568 Institutional support: RVO:61389030 Keywords : barley * chromosome dissection * chromosome mapping Subject RIV: EI - Biotechnology ; Bionics Impact factor: 0.930, year: 2014 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=MEDLINE&DestLinkType=FullRecord&UT=25832747

  15. Genetic and epigenetic silencing of the beclin 1 gene in sporadic breast tumors

    International Nuclear Information System (INIS)

    Li, Zidong; Chen, Bo; Wu, Yiqing; Jin, Feng; Xia, Yongjing; Liu, Xiangjun

    2010-01-01

    Beclin 1, an important autophagy-related protein in human cells, is involved in cell death and cell survival. Beclin 1 mapped to human chromosome 17q21. It is widely expressed in normal mammary epithelial cells. Although down-regulated expression with mono-allelic deletions of beclin 1 gene was frequently observed in breast tumors, whether there was other regulatory mechanism of beclin 1 was to be investigated. We studied the expression of beclin 1 and explored the possible regulatory mechanisms on its expression in breast tumors. 20 pairs of tumors and adjacent normal tissues from patients with sporadic breast invasive ductal cancer (IDCs) were collected. The mRNA expression of beclin 1 was detected by real-time quantitative RT-PCR. Loss of heterozygosity (LOH) was determined by real-time quantitative PCR and microsatellite methods. The protein expression of beclin 1, p53, BRCA1 and BRCA2 was assessed by immunohistochemistry. CpG islands in 5' genomic region of beclin 1 gene were identified using MethylPrimer Program. Sodium bisulfite sequencing was used in examining the methylation status of each CpG island. Decreased beclin 1 mRNA expression was detected in 70% of the breast tumors, and the protein levels were co-related to the mRNA levels. Expression of beclin 1 mRNA was demonstrated to be much higher in the BRCA1 positive tumors than that in the BRCA1 negative ones. Loss of heterozygosity was detected in more than 45% of the breast tumors, and a dense cluster of CpG islands was found from the 5' end to the intron 2 of the beclin 1 gene. Methylation analysis showed that the promoter and the intron 2 of beclin 1 were aberrantly methylated in the tumors with decreased expression. These data indicated that LOH and aberrant DNA methylation might be the possible reasons of the decreased expression of beclin 1 in the breast tumors. The findings here shed some new light on the regulatory mechanisms of beclin 1 in breast cancer

  16. Dengue-1 envelope protein domain III along with PELC and CpG oligodeoxynucleotides synergistically enhances immune responses.

    Directory of Open Access Journals (Sweden)

    Chen-Yi Chiang

    Full Text Available The major weaknesses of subunit vaccines are their low immunogenicity and poor efficacy. Adjuvants can help to overcome some of these inherent defects with subunit vaccines. Here, we evaluated the efficacy of the newly developed water-in-oil-in-water multiphase emulsion system, termed PELC, in potentiating the protective capacity of dengue-1 envelope protein domain III. Unlike aluminum phosphate, dengue-1 envelope protein domain III formulated with PELC plus CpG oligodeoxynucleotides induced neutralizing antibodies against dengue-1 virus and increased the splenocyte secretion of IFN-γ after in vitro re-stimulation. The induced antibodies contained both the IgG1 and IgG2a subclasses. A rapid anamnestic neutralizing antibody response against a live dengue virus challenge was elicited at week 26 after the first immunization. These results demonstrate that PELC plus CpG oligodeoxynucleotides broaden the dengue-1 envelope protein domain III-specific immune responses. PELC plus CpG oligodeoxynucleotides is a promising adjuvant for recombinant protein based vaccination against dengue virus.

  17. Methylation status of individual CpG sites within Alu elements in the human genome and Alu hypomethylation in gastric carcinomas

    International Nuclear Information System (INIS)

    Xiang, Shengyan; Liu, Zhaojun; Zhang, Baozhen; Zhou, Jing; Zhu, Bu-Dong; Ji, Jiafu; Deng, Dajun

    2010-01-01

    Alu methylation is correlated with the overall level of DNA methylation and recombination activity of the genome. However, the maintenance and methylation status of each CpG site within Alu elements (Alu) and its methylation status have not well characterized. This information is useful for understanding natural status of Alu in the genome and helpful for developing an optimal assay to quantify Alu hypomethylation. Bisulfite clone sequencing was carried out in 14 human gastric samples initially. A Cac8I COBRA-DHPLC assay was developed to detect methylated-Alu proportion in cell lines and 48 paired gastric carcinomas and 55 gastritis samples. DHPLC data were statistically interpreted using SPSS version 16.0. From the results of 427 Alu bisulfite clone sequences, we found that only 27.2% of CpG sites within Alu elements were preserved (4.6 of 17 analyzed CpGs, A ~ Q) and that 86.6% of remaining-CpGs were methylated. Deamination was the main reason for low preservation of methylation targets. A high correlation coefficient of methylation was observed between Alu clones and CpG site J (0.963), A (0.950), H (0.946), D (0.945). Comethylation of the sites H and J were used as an indicator of the proportion of methylated-Alu in a Cac8I COBRA-DHPLC assay. Validation studies showed that hypermethylation or hypomethylation of Alu elements in human cell lines could be detected sensitively by the assay after treatment with 5-aza-dC and M.SssI, respectively. The proportion of methylated-Alu copies in gastric carcinomas (3.01%) was significantly lower than that in the corresponding normal samples (3.19%) and gastritis biopsies (3.23%). Most Alu CpG sites are deaminated in the genome. 27% of Alu CpG sites represented in our amplification products. 87% of the remaining CpG sites are methylated. Alu hypomethylation in primary gastric carcinomas could be detected with the Cac8I COBRA-DHPLC assay quantitatively

  18. [Identification of the genetic sex chromosomes in the monogenic blowfly Chrysomya rufifacies (Calliphoridae, Diptera)].

    Science.gov (United States)

    Ullerich, F H

    1975-01-01

    Previous investigations have shown the sex determination in the monogenic blowfly Chrysomya rufifacies to be controlled by a cytologically not discernible homogametry-heterogamety mechanism in the female. Female-producing (thelygenic) females are assumed to be heterozygous for a dominant female sex realizer (F') with sex-predetermining properties, while male-producing (arrhenogenic) females as well as males are supposed to be homozygous for the recessive allele (f). In order to identify the genetic sex chromosomes of C. rufifacies among its five pairs of long euchromatic chromosomes (nos. 1-5) plus one pair of small heterochromatic ones (no. 6), all chromosomes were marked by reciprocal translocations induced by X-ray treatment of adult males. The inheritance of thirteen different heteroxygous translocations has been analyzed. All of the translocations (eleven) between two of the four longer chromosomes did not show sex-linked inheritance, thus demonstrating the autosomal character of the chromosomes nos 1, 2, 3 and 4. The same is true for the translocation T6 (2/6). Therefore the small heterochromatic chromosome no. 6, corresponding to the morphlogically differentiated six chromosomes within the amphogenic calliphorid species, remains without sex determining function in the monogenic fly. This could be confirmed by the analysis of monosomic (monosomy-6) and trisomic (trisomy-6) individuals, which resulted from meiotic non-disfunction in T6/+ translocation heterozygotes. Contrary to these translocations, the heteroxygous 5/2 translocation (T14) exhibited sex-linked inheritance: There was but a very low frequency (0,76 per cent) of recombinants resulting from crossing-over between F'/f and the translocation breakage point in theylgenic F1 T14/+females. The sex-linked inheritance of T14 was confirmed by the progeny of a thelygenic F1 T14/+ female crossed to a homozygous T14/T14 translocation male.Among the offspring of that F1 T14/+ female, which had received the

  19. DMPD: Signal transduction pathways mediated by the interaction of CpG DNA withToll-like receptor 9. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 14751759 Signal transduction pathways mediated by the interaction of CpG DNA withTo...;16(1):17-22. (.png) (.svg) (.html) (.csml) Show Signal transduction pathways mediated by the interaction of... CpG DNA withToll-like receptor 9. PubmedID 14751759 Title Signal transduction pathways media

  20. Y-Chromosome Markers for the Red Fox.

    Science.gov (United States)

    Rando, Halie M; Stutchman, Jeremy T; Bastounes, Estelle R; Johnson, Jennifer L; Driscoll, Carlos A; Barr, Christina S; Trut, Lyudmila N; Sacks, Benjamin N; Kukekova, Anna V

    2017-09-01

    The de novo assembly of the red fox (Vulpes vulpes) genome has facilitated the development of genomic tools for the species. Efforts to identify the population history of red foxes in North America have previously been limited by a lack of information about the red fox Y-chromosome sequence. However, a megabase of red fox Y-chromosome sequence was recently identified over 2 scaffolds in the reference genome. Here, these scaffolds were scanned for repeated motifs, revealing 194 likely microsatellites. Twenty-three of these loci were selected for primer development and, after testing, produced a panel of 11 novel markers that were analyzed alongside 2 markers previously developed for the red fox from dog Y-chromosome sequence. The markers were genotyped in 76 male red foxes from 4 populations: 7 foxes from Newfoundland (eastern Canada), 12 from Maryland (eastern United States), and 9 from the island of Great Britain, as well as 48 foxes of known North American origin maintained on an experimental farm in Novosibirsk, Russia. The full marker panel revealed 22 haplotypes among these red foxes, whereas the 2 previously known markers alone would have identified only 10 haplotypes. The haplotypes from the 4 populations clustered primarily by continent, but unidirectional gene flow from Great Britain and farm populations may influence haplotype diversity in the Maryland population. The development of new markers has increased the resolution at which red fox Y-chromosome diversity can be analyzed and provides insight into the contribution of males to red fox population diversity and patterns of phylogeography. © The American Genetic Association 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. A new approach to chromosome-wide analysis of X-linked markers identifies new associations in Asian and European case-parent triads of orofacial clefts.

    Directory of Open Access Journals (Sweden)

    Øivind Skare

    Full Text Available GWAS discoveries on the X-chromosome are underrepresented in the literature primarily because the analytical tools that have been applied were originally designed for autosomal markers. Our objective here is to employ a new robust and flexible tool for chromosome-wide analysis of X-linked markers in complex traits. Orofacial clefts are good candidates for such analysis because of the consistently observed excess of females with cleft palate only (CPO and excess of males with cleft lip with or without cleft palate (CL/P.Genotypes for 14,486 X-chromosome SNPs in 1,291 Asian and 1,118 European isolated cleft triads were available from a previously published GWAS. The R-package HAPLIN enables genome-wide-level analyses as well as statistical power simulations for a range of biologic scenarios. We analyzed isolated CL/P and isolated CPO for each ethnicity in HAPLIN, using a sliding-window approach to haplotype analysis and two different statistical models, with and without X-inactivation in females.There was a larger number of associations in the Asian versus the European sample, and similar to previous reports that have analyzed the same GWAS dataset using different methods, we identified associations with EFNB1/PJA1 and DMD. In addition, new associations were detected with several other genes, among which KLHL4, TBX22, CPXCR1 and BCOR were noteworthy because of their roles in clefting syndromes. A few of the associations were only detected by one particular X-inactivation model, whereas a few others were only detected in one sex.We found new support for the involvement of X-linked variants in isolated clefts. The associations were specific for ethnicity, sex and model parameterization, highlighting the need for flexible tools that are capable of detecting and estimating such effects. Further efforts are needed to verify and elucidate the potential roles of EFNB1/PJA1, KLHL4, TBX22, CPXCR1 and BCOR in isolated clefts.

  2. Methyl-CpG island-associated genome signature tags

    Science.gov (United States)

    Dunn, John J

    2014-05-20

    Disclosed is a method for analyzing the organismic complexity of a sample through analysis of the nucleic acid in the sample. In the disclosed method, through a series of steps, including digestion with a type II restriction enzyme, ligation of capture adapters and linkers and digestion with a type IIS restriction enzyme, genome signature tags are produced. The sequences of a statistically significant number of the signature tags are determined and the sequences are used to identify and quantify the organisms in the sample. Various embodiments of the invention described herein include methods for using single point genome signature tags to analyze the related families present in a sample, methods for analyzing sequences associated with hyper- and hypo-methylated CpG islands, methods for visualizing organismic complexity change in a sampling location over time and methods for generating the genome signature tag profile of a sample of fragmented DNA.

  3. Comparative methylome analysis in solid tumors reveals aberrant methylation at chromosome 6p in nasopharyngeal carcinoma

    International Nuclear Information System (INIS)

    Dai, Wei; Cheung, Arthur Kwok Leung; Ko, Josephine Mun Yee; Cheng, Yue; Zheng, Hong; Ngan, Roger Kai Cheong; Ng, Wai Tong; Lee, Anne Wing Mui; Yau, Chun Chung; Lee, Victor Ho Fu; Lung, Maria Li

    2015-01-01

    Altered patterns of DNA methylation are key features of cancer. Nasopharyngeal carcinoma (NPC) has the highest incidence in Southern China. Aberrant methylation at the promoter region of tumor suppressors is frequently reported in NPC; however, genome-wide methylation changes have not been comprehensively investigated. Therefore, we systematically analyzed methylome data in 25 primary NPC tumors and nontumor counterparts using a high-throughput approach with the Illumina HumanMethylation450 BeadChip. Comparatively, we examined the methylome data of 11 types of solid tumors collected by The Cancer Genome Atlas (TCGA). In NPC, the hypermethylation pattern was more dominant than hypomethylation and the majority of de novo methylated loci were within or close to CpG islands in tumors. The comparative methylome analysis reveals hypermethylation at chromosome 6p21.3 frequently occurred in NPC (false discovery rate; FDR=1.33 × 10 −9 ), but was less obvious in other types of solid tumors except for prostate and Epstein–Barr virus (EBV)-positive gastric cancer (FDR<10 −3 ). Bisulfite pyrosequencing results further confirmed the aberrant methylation at 6p in an additional patient cohort. Evident enrichment of the repressive mark H3K27me3 and active mark H3K4me3 derived from human embryonic stem cells were found at these regions, indicating both DNA methylation and histone modification function together, leading to epigenetic deregulation in NPC. Our study highlights the importance of epigenetic deregulation in NPC. Polycomb Complex 2 (PRC2), responsible for H3K27 trimethylation, is a promising therapeutic target. A key genomic region on 6p with aberrant methylation was identified. This region contains several important genes having potential use as biomarkers for NPC detection

  4. Phase 1 trial of the Plasmodium falciparum blood stage vaccine MSP1(42-C1/Alhydrogel with and without CPG 7909 in malaria naïve adults.

    Directory of Open Access Journals (Sweden)

    Ruth D Ellis

    2010-01-01

    Full Text Available Merozoite surface protein 1(42 (MSP1(42 is a leading blood stage malaria vaccine candidate. In order to induce immune responses that cover the major antigenic polymorphisms, FVO and 3D7 recombinant proteins of MSP1(42 were mixed (MSP1(42-C1. To improve the level of antibody response, MSP1(42-C1 was formulated with Alhydrogel plus the novel adjuvant CPG 7909.A Phase 1 clinical trial was conducted in healthy malaria-naïve adults at the Center for Immunization Research in Washington, D.C., to evaluate the safety and immunogenicity of MSP1(42-C1/Alhydrogel +/- CPG 7909. Sixty volunteers were enrolled in dose escalating cohorts and randomized to receive three vaccinations of either 40 or 160 microg protein adsorbed to Alhydrogel +/- 560 microg CPG 7909 at 0, 1 and 2 months.Vaccinations were well tolerated, with only one related adverse event graded as severe (Grade 3 injection site erythema and all other vaccine related adverse events graded as either mild or moderate. Local adverse events were more frequent and severe in the groups receiving CPG. The addition of CPG enhanced anti-MSP1(42 antibody responses following vaccination by up to 49-fold two weeks after second immunization and 8-fold two weeks after the third immunization when compared to MSP1(42-C1/Alhydrogel alone (p<0.0001. After the third immunization, functionality of the antibody was tested by an in vitro growth inhibition assay. Inhibition was a function of antibody titer, with an average of 3% (range -2 to 10% in the non CPG groups versus 14% (3 to 32% in the CPG groups.The favorable safety profile and high antibody responses induced with MSP1(42-C1/Alhydrogel + CPG 7909 are encouraging. MSP1(42-C1/Alhydrogel is being combined with other blood stage antigens and will be taken forward in a formulation adjuvanted with CPG 7909.ClinicalTrials.gov Identifier: NCT00320658.

  5. Protection of CpG ODN 1826 against radiation pulmonary fibrosis in rats

    International Nuclear Information System (INIS)

    Li Xuan; Qiao Tiankui; Zhuang Xibing; Zhang Jihong

    2014-01-01

    Objective: To explore the protectional function of CpG ODN 1826 against radiation pulmonary fibrosis in rats. Methods: The rat left lung was exposed to 20 Gy of 6 MV X-rays for establishing a radiation pulmonary fibrosis model. SD rats were randomly divided into control group, irradiated group and intervention group, with 30 rats in each group. CpG ODN 1826 was intraperitoneally injected into rats at 0, 1, 2, 5 and 7 d post-irradiation. The rats were terminated at 5, 15, 30 and 90 d post-irradiation, and the lung indexes were recorded. Paraffin sections of the radiated lung were conducted with HE staining and Masson staining, the pulmonary fibrosis scores were recorded. The serum concentrations of TGF-β1 and hydroxyproline (Hyp) were measured. Results: The radiation pulmonary fibrosis rat model was successfully established. The lung indexes of the control group were lower than those of the irradiated and intervention groups at 5 d post-irradiation (t = 3.046, 2.252, P < 0.05). The lung indexes of the intervention group were lower than those of the irradiated group (t = 4.120, 5.226, 5.719, P < 0.05). Pulmonary fibrosis scores of intervention group were lower than those of irradiated group (t = 3.212, 4.959, P < 0.05). The serum concentrations of TGF-β1 of irradiated group were higher than those of the intervention group (t = 4.138, 5.924, 4.138, 5.924, P < 0.05). The Hyp in the lung of irradiated group was higher than that of intervention group (t = 7.527, 8.416, P < 0.05). Conclusions: CpG ODN1826 will not worse the radiation pulmonary fibrosis, on the contrary, it could reduce the serum concentrations of TGF-β1 and the lung content of Hyp in radiation pulmonary fibrosis, and protects rat against radiation pulmonary fibrosis. (authors)

  6. Comparative mapping of DNA markers from the familial Alzheimer disease and Down syndrome regions of human chromosome 21 to mouse chromosomes 16 and 17

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, S.V.; Nadeau, J.H.; Tanzi, R.E.; Watkins, P.C.; Jagadesh, J.; Taylor, B.A.; Haines, J.L.; Sacchi, N.; Gusella, J.F. (Harvard Medical School, Boston, MA (USA))

    1988-08-01

    Mouse trisomy 16 has been proposed as an animal model of Down syndrome (DS), since this chromosome contains homologues of several loci from the q22 band of human chromosome 21. The recent mapping of the defect causing familial Alzheimer disease (FAD) and the locus encoding the Alzheimer amyloid {beta} precursor protein (APP) to human chromosome 21 has prompted a more detailed examination of the extent of conservation of this linkage group between the two species. Using anonymous DNA probes and cloned genes from human chromosome 21 in a combination of recombinant inbred and interspecific mouse backcross analyses, the authors have established that the linkage group shared by mouse chromosome 16 includes not only the critical DS region of human chromosome 21 but also the APP gene and FAD-linked markers. Extending from the anonymous DNA locus D21S52 to ETS2, the linkage map of six loci spans 39% recombination in man but only 6.4% recombination in the mouse. A break in synteny occurs distal to ETS2, with the homologue of the human marker D21S56 mapping to mouse chromosome 17. Conservation of the linkage relationships of markers in the FAD region suggests that the murine homologue of the FAD locus probably maps to chromosome 16 and that detailed comparison of the corresponding region in both species could facilitate identification of the primary defect in this disorder. The break in synteny between the terminal portion of human chromosome 21 and mouse chromosome 16 indicates, however, that mouse trisomy 16 may not represent a complete model of DS.

  7. Comparative mapping of DNA markers from the familial Alzheimer disease and Down syndrome regions of human chromosome 21 to mouse chromosomes 16 and 17

    International Nuclear Information System (INIS)

    Cheng, S.V.; Nadeau, J.H.; Tanzi, R.E.; Watkins, P.C.; Jagadesh, J.; Taylor, B.A.; Haines, J.L.; Sacchi, N.; Gusella, J.F.

    1988-01-01

    Mouse trisomy 16 has been proposed as an animal model of Down syndrome (DS), since this chromosome contains homologues of several loci from the q22 band of human chromosome 21. The recent mapping of the defect causing familial Alzheimer disease (FAD) and the locus encoding the Alzheimer amyloid β precursor protein (APP) to human chromosome 21 has prompted a more detailed examination of the extent of conservation of this linkage group between the two species. Using anonymous DNA probes and cloned genes from human chromosome 21 in a combination of recombinant inbred and interspecific mouse backcross analyses, the authors have established that the linkage group shared by mouse chromosome 16 includes not only the critical DS region of human chromosome 21 but also the APP gene and FAD-linked markers. Extending from the anonymous DNA locus D21S52 to ETS2, the linkage map of six loci spans 39% recombination in man but only 6.4% recombination in the mouse. A break in synteny occurs distal to ETS2, with the homologue of the human marker D21S56 mapping to mouse chromosome 17. Conservation of the linkage relationships of markers in the FAD region suggests that the murine homologue of the FAD locus probably maps to chromosome 16 and that detailed comparison of the corresponding region in both species could facilitate identification of the primary defect in this disorder. The break in synteny between the terminal portion of human chromosome 21 and mouse chromosome 16 indicates, however, that mouse trisomy 16 may not represent a complete model of DS

  8. Close linkage of the locus for X chromosome-linked severe combined immunodeficiency to polymorphic DNA markers in Xq11-q13

    International Nuclear Information System (INIS)

    de Saint Basile, G.; Arveiler, B.; Oberle, I.

    1987-01-01

    The gene for X chromosome-linked severe combined immunodeficiency (SCID), a disease characterized by a block in early T-cell differentiation, has been mapped to the region Xq11-q13 by linkage analysis with restriction fragment length polymorphisms. High logarithm of odds (lod) scores were obtained with the marker 19.2 (DXS3) and with the marker cpX73 (DXS159) that showed complete cosegregation with the disease locus in the informative families analyzed. Other significant linkages were obtained with several markers from Xq11 to q22. With the help of a recently developed genetic map of the region, it was possible to perform multipoint linkage analysis, and the most likely genetic order is DXS1-(SCID, DXS159)-DXYS1-DXYS12-DXS3, with a maximum multipoint logarithm of odds score of 11.0. The results demonstrate that the SCID locus (gene symbol IMD4) is not closely linked to the locus of Bruton's agammaglobulinemia (a defect in B-cell maturation). They also provide a way for a better estimation of risk for carrier and antenatal diagnosis

  9. Nicotine induced CpG methylation of Pax6 binding motif in StAR promoter reduces the gene expression and cortisol production

    International Nuclear Information System (INIS)

    Wang, Tingting; Chen, Man; Liu, Lian; Cheng, Huaiyan; Yan, You-E; Feng, Ying-Hong; Wang, Hui

    2011-01-01

    Steroidogenic acute regulatory protein (StAR) mediates the rate-limiting step in the synthesis of steroid hormones, essential to fetal development. We have reported that the StAR expression in fetal adrenal is inhibited in a rat model of nicotine-induced intrauterine growth retardation (IUGR). Here using primary human fetal adrenal cortex (pHFAC) cells and a human fetal adrenal cell line NCI-H295A, we show that nicotine inhibits StAR expression and cortisol production in a dose- and time-dependent manner, and prolongs the inhibitory effect on cells proliferating over 5 passages after termination of nicotine treatment. Methylation detection within the StAR promoter region uncovers a single site CpG methylation at nt -377 that is sensitive to nicotine treatment. Nicotine-induced alterations in frequency of this point methylation correlates well with the levels of StAR expression, suggesting an important role of the single site in regulating StAR expression. Further studies using bioinformatics analysis and siRNA approach reveal that the single CpG site is part of the Pax6 binding motif (CGCCTGA) in the StAR promoter. The luciferase activity assays validate that Pax6 increases StAR gene expression by binding to the glucagon G3-like motif (CGCCTGA) and methylation of this site blocks Pax6 binding and thus suppresses StAR expression. These data identify a nicotine-sensitive CpG site at the Pax6 binding motif in the StAR promoter that may play a central role in regulating StAR expression. The results suggest an epigenetic mechanism that may explain how nicotine contributes to onset of adult diseases or disorders such as metabolic syndrome via fetal programming. -- Highlights: ► Nicotine-induced StAR inhibition in two human adrenal cell models. ► Nicotine-induced single CpG site methylation in StAR promoter. ► Persistent StAR inhibition and single CpG methylation after nicotine termination. ► Single CpG methylation located at Pax6 binding motif regulates St

  10. CpG ODN 1668 induce innate and adaptive immune responses in rock bream (Oplegnathus fasciatus) against rock bream iridovirus (RBIV) infection.

    Science.gov (United States)

    Jung, Myung-Hwa; Jung, Sung-Ju

    2017-10-01

    Rock bream iridovirus (RBIV) causes severe mass mortalities in rock bream in Korea. CpG ODN 1668 showed promise as immunoprotective agents against RBIV infection in rock bream. In this study, we assessed innate/adaptive-related gene expression patterns in RBIV-infected rock bream with and without CpG ODN 1668 administration to determine important immune defense related factors that may affect fish survival. In the CpG ODN 1668+virus-injected group, virus copies were more than 7.4- to 790591-fold lower than in the virus-injected group at 4 d (8.79 × 10 4 and 6.58 × 10 5 /μl, respectively), 7 d (5.30 × 10 2 and 2.29 × 10 7 /μl, respectively) and 10 dpi (7.79 × 10 1 and 6.16 × 10 7 /μl, respectively). Furthermore, in the CpG ODN 1668+virus-injected group, significantly higher levels of MyD88 (6 h, 1 d, 4 d and 7 dpi), IL1β (1 d, 2 d and 7 dpi) and perforin/granzyme (1 dpi) expression were observed, whereas these genes were not significantly expressed in the virus-injected group at that time points. Mx, ISG15 and PKR were significantly highly expressed at 4 d and 7 dpi and reduced when low viral loads at 10 dpi in the CpG ODN 1668+virus-injected group. Conversely, in the virus-injected group, Mx, ISG15 and PKR expression were significantly higher than the control group until 10 dpi. However, MHC class I, CD8, Fas, Fas ligand and caspases (3, 8 and 9) expression levels showed no statistically significant differences between virus- and CpG ODN 1668+virus-injected group. In summary, CpG ODN 1668 administration in fish induces innate immune response or cell death pathway, which could be a major contributing factor to effective fish control over viral transcription on 4 d to 10 dpi. Expression of MyD88, IL1β, perforin and granzyme-related immune gene response is critical factor for inhibition of RBIV replication. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Submicroscopic interstitial deletion of the X chromosome explains a complex genetic syndrome dominated by Norrie disease.

    Science.gov (United States)

    Gal, A; Wieringa, B; Smeets, D F; Bleeker-Wagemakers, L; Ropers, H H

    1986-01-01

    Norrie disease (ND), an X-linked recessive disorder, is characterized by congenital blindness followed by bulbar atrophy. We have examined a three-generation family in which ND is part of a complex X-linked syndrome with severe mental retardation, hypogonadism, growth disturbances, and increased susceptibility to infections as additional features. This syndrome is apparently due to an interstitial deletion, as evidenced by the failure of the L1.28 DNA probe (DXS7 locus, Xp11.3) to detect complementary DNA sequences on the defective X chromosome of an affected male and of several obligatory heterozygotes. Attempts to further define this deletion with other DNA probes from the proximal short arm of the X chromosome or by prometaphase chromosome analysis were unsuccessful.

  12. X-Chromosome Control of Genome-Scale Recombination Rates in House Mice.

    Science.gov (United States)

    Dumont, Beth L

    2017-04-01

    Sex differences in recombination are widespread in mammals, but the causes of this pattern are poorly understood. Previously, males from two interfertile subspecies of house mice, Mus musculus musculus and M. m. castaneus , were shown to exhibit a ∼30% difference in their global crossover frequencies. Much of this crossover rate divergence is explained by six autosomal loci and a large-effect locus on the X chromosome. Intriguingly, the allelic effects at this X-linked locus are transgressive, with the allele conferring increased crossover rate being transmitted by the low crossover rate M. m. castaneus parent. Despite the pronounced divergence between males, females from these subspecies exhibit similar crossover rates, raising the question of how recombination is genetically controlled in this sex. Here, I analyze publicly available genotype data from early generations of the Collaborative Cross, an eight-way panel of recombinant inbred strains, to estimate crossover frequencies in female mice with sex-chromosome genotypes of diverse subspecific origins. Consistent with the transgressive influence of the X chromosome in males, I show that females inheriting an M. m. castaneus X possess higher average crossover rates than females lacking the M. m. castaneus X chromosome. The differential inheritance of the X chromosome in males and females provides a simple genetic explanation for sex-limited evolution of this trait. Further, the presence of X-linked and autosomal crossover rate modifiers with antagonistic effects hints at an underlying genetic conflict fueled by selection for distinct crossover rate optima in males and females. Copyright © 2017 by the Genetics Society of America.

  13. Quantitative Evaluation of MMP-9 and TIMP-1 Promoter Methylation in Chronic Periodontitis.

    Science.gov (United States)

    Li, Xiting; Lu, Jiaxuan; Teng, Wei; Zhao, Chuanjiang; Ye, Xiaolei

    2018-03-01

    In this study, we investigated the promoter DNA methylation (DNAm) status of the MMP-9 and TIMP-1 genes in patients with chronic periodontitis to evaluate disease progression. Using pyrosequencing technology, DNAm levels of MMP-9 and TIMP-1 CpG islands were measured in 88 chronic periodontitis patients and 15 healthy controls. We found a positive correlation between methylation levels of MMP-9 CpG islands and the severity of chronic periodontitis. Methylated CpG islands were also closely associated with the duration of chronic periodontitis. Moreover, female patients exhibited lower methylation levels of MMP-9 but higher methylation levels of TIMP-1 compared with male patients, and the methylation levels of TIMP-1 gradually decreased with age. The findings of gender disparity in the DNAm of MMP-9 and TIMP-1 genes provide novel insights into chronic periodontitis.

  14. Gametocidal chromosomes enhancing chromosome aberration in common wheat induced by 5-azacytidine.

    Science.gov (United States)

    Su, W-Y; Cong, W-W; Shu, Y-J; Wang, D; Xu, G-H; Guo, C-H

    2013-07-08

    The gametocidal (Gc) chromosome from Aegilops spp induces chromosome mutation, which is introduced into common wheat as a tool of chromosome manipulation for genetic improvement. The Gc chromosome functions similar to a restriction-modification system in bacteria, in which DNA methylation is an important regulator. We treated root tips of wheat carrying Gc chromosomes with the hypomethylation agent 5-azacytidine; chromosome breakage and micronuclei were observed in these root tips. The frequency of aberrations differed in wheat containing different Gc chromosomes, suggesting different functions inducing chromosome breakage. Gc chromosome 3C caused the greatest degree of chromosome aberration, while Gc chromosome 3C(SAT) and 2C caused only slight chromosome aberration. Gc chromosome 3C induced different degrees of chromosome aberration in wheat varieties Triticum aestivum var. Chinese Spring and Norin 26, demonstrating an inhibition function in common wheat.

  15. Origin and domestication of papaya Yh chromosome

    Science.gov (United States)

    VanBuren, Robert; Zeng, Fanchang; Chen, Cuixia; Zhang, Jisen; Wai, Ching Man; Han, Jennifer; Aryal, Rishi; Gschwend, Andrea R.; Wang, Jianping; Na, Jong-Kuk; Huang, Lixian; Zhang, Lingmao; Miao, Wenjing; Gou, Jiqing; Arro, Jie; Guyot, Romain; Moore, Richard C.; Wang, Ming-Li; Zee, Francis; Charlesworth, Deborah; Moore, Paul H.; Yu, Qingyi; Ming, Ray

    2015-01-01

    Sex in papaya is controlled by a pair of nascent sex chromosomes. Females are XX, and two slightly different Y chromosomes distinguish males (XY) and hermaphrodites (XYh). The hermaphrodite-specific region of the Yh chromosome (HSY) and its X chromosome counterpart were sequenced and analyzed previously. We now report the sequence of the entire male-specific region of the Y (MSY). We used a BAC-by-BAC approach to sequence the MSY and resequence the Y regions of 24 wild males and the Yh regions of 12 cultivated hermaphrodites. The MSY and HSY regions have highly similar gene content and structure, and only 0.4% sequence divergence. The MSY sequences from wild males include three distinct haplotypes, associated with the populations’ geographic locations, but gene flow is detected for other genomic regions. The Yh sequence is highly similar to one Y haplotype (MSY3) found only in wild dioecious populations from the north Pacific region of Costa Rica. The low MSY3-Yh divergence supports the hypothesis that hermaphrodite papaya is a product of human domestication. We estimate that Yh arose only ∼4000 yr ago, well after crop plant domestication in Mesoamerica >6200 yr ago but coinciding with the rise of the Maya civilization. The Yh chromosome has lower nucleotide diversity than the Y, or the genome regions that are not fully sex-linked, consistent with a domestication bottleneck. The identification of the ancestral MSY3 haplotype will expedite investigation of the mutation leading to the domestication of the hermaphrodite Yh chromosome. In turn, this mutation should identify the gene that was affected by the carpel-suppressing mutation that was involved in the evolution of males. PMID:25762551

  16. Unique signatures of natural background radiation on human Y chromosomes from Kerala, India.

    Directory of Open Access Journals (Sweden)

    Sanjay Premi

    Full Text Available The most frequently observed major consequences of ionizing radiation are chromosomal lesions and cancers, although the entire genome may be affected. Owing to its haploid status and absence of recombination, the human Y chromosome is an ideal candidate to be assessed for possible genetic alterations induced by ionizing radiation. We studied the human Y chromosome in 390 males from the South Indian state of Kerala, where the level of natural background radiation (NBR is ten-fold higher than the worldwide average, and that from 790 unexposed males as control.We observed random microdeletions in the Azoospermia factor (AZF a, b and c regions in >90%, and tandem duplication and copy number polymorphism (CNP of 11 different Y-linked genes in about 80% of males exposed to NBR. The autosomal homologues of Y-linked CDY genes largely remained unaffected. Multiple polymorphic copies of the Y-linked genes showing single Y-specific signals suggested their tandem duplication. Some exposed males showed unilocus duplication of DAZ genes resulting in six copies. Notably, in the AZFa region, approximately 25% of exposed males showed deletion of the DBY gene, whereas flanking genes USP9Y and UTY remained unaffected. All these alterations were detected in blood samples but not in the germline (sperm samples.Exposure to high levels of NBR correlated with several interstitial polymorphisms of the human Y chromosome. CNPs and enhanced transcription of the SRY gene after duplication are envisaged to compensate for the loss of Y chromosome in some cells. The aforesaid changes, confined to peripheral blood lymphocytes, suggest a possible innate mechanism protecting the germline DNA from the NBR. Genome analysis of a larger population focusing on greater numbers of genes may provide new insights into the mechanisms and risks of the resultant genetic damages. The present work demonstrates unique signatures of NBR on human Y chromosomes from Kerala, India.

  17. Unequal rates of Y chromosome gene divergence during speciation of the family Ursidae.

    Science.gov (United States)

    Nakagome, Shigeki; Pecon-Slattery, Jill; Masuda, Ryuichi

    2008-07-01

    Evolution of the bear family Ursidae is well investigated in terms of morphological, paleontological, and genetic features. However, several phylogenetic ambiguities occur within the subfamily Ursinae (the family Ursidae excluding the giant panda and spectacled bear), which may correlate with behavioral traits of female philopatry and male-biased dispersal which form the basis of the observed matriarchal population structure in these species. In the process of bear evolution, we investigate the premise that such behavioral traits may be reflected in patterns of variation among genes with different modes of inheritance: matrilineal mitochondrial DNA (mtDNA), patrilineal Y chromosome, biparentally inherited autosomes, and the X chromosome. In the present study, we sequenced 3 Y-linked genes (3,453 bp) and 4 X-linked genes (4,960 bp) and reanalyzed previously published sequences from autosome genes (2,347 bp) in ursid species to investigate differences in evolutionary rates associated with patterns of inheritance. The results describe topological incongruence between sex-linked genes and autosome genes and between nuclear DNA and mtDNA. In more ancestral branches within the bear phylogeny, Y-linked genes evolved faster than autosome and X-linked genes, consistent with expectations based on male-driven evolution. However, this pattern changes among branches leading to each species within the lineage of Ursinae whereby the evolutionary rates of Y-linked genes have fewer than expected substitutions. This inconsistency between more recent nodes of the bear phylogeny with more ancestral nodes may reflect the influences of sex-biased dispersal as well as molecular evolutionary characteristics of the Y chromosome, and stochastic events in species natural history, and phylogeography unique to ursine bears.

  18. Association testing to detect gene-gene interactions on sex chromosomes in trio data

    Directory of Open Access Journals (Sweden)

    Yeonok eLee

    2013-11-01

    Full Text Available Autism Spectrum Disorder (ASD occurs more often among males than females in a 4:1 ratio. Among theories used to explain the causes of ASD, the X chromosome and the Y chromosome theories attribute ASD to X-linked mutation and the male-limited gene expressions on the Y chromosome, respectively. Despite the rationale of the theory, studies have failed to attribute the sex-biased ratio to the significant linkage or association on the regions of interest on X chromosome. We further study the gender biased ratio by examining the possible interaction effects between two genes in the sex chromosomes. We propose a logistic regression model with mixed effects to detect gene-gene interactions on sex chromosomes. We investigated the power and type I error rates of the approach for a range of minor allele frequencies and varying linkage disequilibrium between markers and QTLs. We also evaluated the robustness of the model to population stratification. We applied the model to a trio-family data set with an ASD affected male child to study gene-gene interactions on sex chromosomes.

  19. Positioning of NORs and NOR-bearing chromosomes in relation to nucleoli.

    Science.gov (United States)

    Kalmárová, Markéta; Smirnov, Evgeny; Masata, Martin; Koberna, Karel; Ligasová, Anna; Popov, Alexey; Raska, Ivan

    2007-10-01

    It is widely accepted that chromosomes occupy more or less fixed positions in mammalian interphase nucleus. However, relation between large-scale order of chromosome positioning and gene activity remains unclear. We used the model of the human ribosomal genes to address specific aspects of this problem. Ribosomal genes are organized at particular chromosomal sites in clusters termed nucleolus organizer regions (NORs). Only some NORs, called competent are generally accepted to be transcriptionally active during interphase. Importantly in this respect, the regularities in distribution of competent, and non-competent NORs among the specific chromosomes were already established in two human-derived cell lines: transformed HeLa and primary LEP cells. In the present study, using FISH and immunocytochemistry, we found that in HeLa and LEP cells the large-scale positioning of the NOR-bearing chromosomes with regard to nucleoli is linked to the transcription activity of rDNA. Namely, the tendency of rDNA-bearing chromosomes to associate with nucleoli correlates with the number of transcriptionally competent NORs in the respective chromosome homologs. Regarding the position of NORs, we found that not only competent but also most of the non-competent NORs are included in the nucleoli. Some intranucleolar NORs (supposedly non-competent) are situated on elongated chromatin protrusions connecting nucleoli with respective chromosome territories spatially distanced from nucleoli.

  20. Fetal chromosome analysis: screening for chromosome disease?

    DEFF Research Database (Denmark)

    Philip, J; Tabor, Ann; Bang, J

    1983-01-01

    The aim of the study was to investigate the rationale of the current indications for fetal chromosome analysis. 5372 women had 5423 amniocentesis performed, this group constituting a consecutive sample at the chromosome laboratory, Rigshospitalet, Copenhagen from March 1973 to September 1980 (Group...... A + B). Pregnant women 35 years of age, women who previously had a chromosomally abnormal child, families with translocation carriers or other heritable chromosomal disease, families where the father was 50 years or more and women in families with a history of Down's syndrome (group A), were compared...... to women having amniocentesis, although considered not to have any increased risk of fetal chromosome abnormality (1390 pregnancies, group B). They were also compared with 750 consecutive pregnancies in women 25-34 years of age, in whom all heritable diseases were excluded (group C). The risk of unbalanced...

  1. Comparative Genomics of Interreplichore Translocations in Bacteria: A Measure of Chromosome Topology?

    Directory of Open Access Journals (Sweden)

    Supriya Khedkar

    2016-06-01

    Full Text Available Genomes evolve not only in base sequence but also in terms of their architecture, defined by gene organization and chromosome topology. Whereas genome sequence data inform us about the changes in base sequences for a large variety of organisms, the study of chromosome topology is restricted to a few model organisms studied using microscopy and chromosome conformation capture techniques. Here, we exploit whole genome sequence data to study the link between gene organization and chromosome topology in bacteria. Using comparative genomics across ∼250 pairs of closely related bacteria we show that: (a many organisms show a high degree of interreplichore translocations throughout the chromosome and not limited to the inversion-prone terminus (ter or the origin of replication (oriC; (b translocation maps may reflect chromosome topologies; and (c symmetric interreplichore translocations do not disrupt the distance of a gene from oriC or affect gene expression states or strand biases in gene densities. In summary, we suggest that translocation maps might be a first line in defining a gross chromosome topology given a pair of closely related genome sequences.

  2. Comparative Genomics of Interreplichore Translocations in Bacteria: A Measure of Chromosome Topology?

    Science.gov (United States)

    Khedkar, Supriya; Seshasayee, Aswin Sai Narain

    2016-06-01

    Genomes evolve not only in base sequence but also in terms of their architecture, defined by gene organization and chromosome topology. Whereas genome sequence data inform us about the changes in base sequences for a large variety of organisms, the study of chromosome topology is restricted to a few model organisms studied using microscopy and chromosome conformation capture techniques. Here, we exploit whole genome sequence data to study the link between gene organization and chromosome topology in bacteria. Using comparative genomics across ∼250 pairs of closely related bacteria we show that: (a) many organisms show a high degree of interreplichore translocations throughout the chromosome and not limited to the inversion-prone terminus (ter) or the origin of replication (oriC); (b) translocation maps may reflect chromosome topologies; and (c) symmetric interreplichore translocations do not disrupt the distance of a gene from oriC or affect gene expression states or strand biases in gene densities. In summary, we suggest that translocation maps might be a first line in defining a gross chromosome topology given a pair of closely related genome sequences. Copyright © 2016 Khedkar and Seshasayee.

  3. A molecularly defined duplication set for the X chromosome of Drosophila melanogaster

    Energy Technology Data Exchange (ETDEWEB)

    Venken, Koen J. T.; Popodi, Ellen; Holtzman, Stacy L.; Schulze, Karen L.; Park, Soo; Carlson, Joseph W.; Hoskins, Roger A.; Bellen, Hugo J.; Kaufman, Thomas C.

    2010-07-22

    We describe a molecularly defined duplication kit for the X chromosome of Drosophila melanogaster. A set of 408 overlapping P[acman] BAC clones was used to create small duplications (average length 88 kb) covering the 22-Mb sequenced portion of the chromosome. The BAC clones were inserted into an attP docking site on chromosome 3L using C31 integrase, allowing direct comparison of different transgenes. The insertions complement 92% of the essential and viable mutations and deletions tested, demonstrating that almost all Drosophila genes are compact and that the current annotations of the genome are reasonably accurate. Moreover, almost all genes are tolerated at twice the normal dosage. Finally, we more precisely mapped two regions at which duplications cause diplo-lethality in males. This collection comprises the first molecularly defined duplication set to cover a whole chromosome in a multicellular organism. The work presented removes a long-standing barrier to genetic analysis of the Drosophila X chromosome, will greatly facilitate functional assays of X-linked genes in vivo, and provides a model for functional analyses of entire chromosomes in other species.

  4. Tracking the Correlation Between CpG Island Methylator Phenotype and Other Molecular Features and Clinicopathological Features in Human Colorectal Cancers: A Systematic Review and Meta-Analysis.

    Science.gov (United States)

    Zong, Liang; Abe, Masanobu; Ji, Jiafu; Zhu, Wei-Guo; Yu, Duonan

    2016-03-10

    The controversy of CpG island methylator phenotype (CIMP) in colorectal cancers (CRCs) persists, despite many studies that have been conducted on its correlation with molecular and clinicopathological features. To drive a more precise estimate of the strength of this postulated relationship, a meta-analysis was performed. A comprehensive search for studies reporting molecular and clinicopathological features of CRCs stratified by CIMP was performed within the PubMed, EMBASE, and Cochrane Library. CIMP was defined by either one of the three panels of gene-specific CIMP markers (Weisenberger panel, classic panel, or a mixture panel of the previous two) or the genome-wide DNA methylation profile. The associations of CIMP with outcome parameters were estimated using odds ratio (OR) or weighted mean difference (WMD) or hazard ratios (HRs) with 95% confidence interval (CI) for each study using a fixed effects or random effects model. A total of 29 studies involving 9,393 CRC patients were included for analysis. We observed more BRAF mutations (OR 34.87; 95% CI, 22.49-54.06) and microsatellite instability (MSI) (OR 12.85 95% CI, 8.84-18.68) in CIMP-positive vs. -negative CRCs, whereas KRAS mutations were less frequent (OR 0.47; 95% CI, 0.30-0.75). Subgroup analysis showed that only the genome-wide methylation profile-defined CIMP subset encompassed all BRAF-mutated CRCs. As expected, CIMP-positive CRCs displayed significant associations with female (OR 0.64; 95% CI, 0.56-0.72), older age at diagnosis (WMD 2.77; 95% CI, 1.15-4.38), proximal location (OR 6.91; 95% CI, 5.17-9.23), mucinous histology (OR 3.81; 95% CI, 2.93-4.95), and poor differentiation (OR 4.22; 95% CI, 2.52-7.08). Although CIMP did not show a correlation with tumor stage (OR 1.10; 95% CI, 0.82-1.46), it was associated with shorter overall survival (HR 1.73; 95% CI, 1.27-2.37). The meta-analysis highlights that CIMP-positive CRCs take their own molecular feature, especially overlapping with BRAF mutations

  5. Conserved chromosomal positions of dual domains of the ets protooncogene in cats, mice, and humans

    International Nuclear Information System (INIS)

    Watson, D.K.; McWilliams-Smith, M.J.; Kozak, C.

    1986-01-01

    The mammalian protooncogene homologue of the avian v-ets sequence from the E26 retrovirus consists of two sequentially distinct domains located on different chromosomes. Using somatic cell hybrid panels, the authors have mapped the mammalian homologue of the 5' v-ets-domain to chromosome 11 (ETS1) in man, to chromosome 9 (ets-1) in mouse, and to chromosome D1 (ETS1) in the domestic cat. The mammalian homologue of the 3' v-ets domain was similarly mapped to human chromosome 21 (ETS2), to mouse chromosome 16 (Ets-2), and to feline chromosome C2 (ETS2). Both protooncogenes fell in syntenic groups of homologous linked loci that were conserved among the three species. The occurrence of two distinct functional protooncogenes and their conservation of linkage positions in the three mammalian orders indicate that these two genes have been separate since before the evolutionary divergence of mammals

  6. Chromosomal Location by Use of Trisomics and New Alleles of an Endopeptidase in Zea Mays

    DEFF Research Database (Denmark)

    Nielsen, Gunnar Gissel; Scandalios, John G.

    1974-01-01

    An association was found earlier between the Ep1 gene locus coding for an endopeptidase and the endosperm color gene Y1 on chromosome 6 of Zea mays. By employing primary trisomics we have unequivocally placed the Ep1 gene on chromosome 6, closely linked to the Y1 locus. Additionally we describe new...

  7. The pacific island health care project.

    Science.gov (United States)

    Person, Donald Ames

    2014-01-01

    US Associated/Affiliated Pacific Islands (USAPI) include three freely associated states: Marshall Islands, Federated States of Micronesia, Palau, and three Territories: American Samoa, Guam, and Commonwealth of the Northern Mariana Islands. The Pacific Island Health Care Project (PIHCP) provides humanitarian medical referral/consultation/care to >500,000 indigenous people of these remote islands. In the mid-1990s, we developed a simple store-and-forward program to link the USAPI with Tripler Army Medical Center. This application allowed image attachment to email consultations. More than 8000 Pacific Islanders have benefited from the program. Three thousand Pacific Islanders prior to telemedicine (1990-1997) and since store-and-forward telemedicine (1997-present), the PIHCP has helped an additional 5000. Records post dynamically and are stored in an archival database. The PIHCP is the longest running telemedicine program in the world delivering humanitarian medical care. It has bridged the Developing World of the remote Pacific Islands with advanced medical and surgical care available at a major US military teaching hospital. (The opinions expressed here are those of the author and not that of the Army, Department of Defense, or the US Government.).

  8. The Pacific Island Health Care Project

    Directory of Open Access Journals (Sweden)

    Donald Ames Person

    2014-10-01

    Full Text Available Introduction/BackgroundUS Associated/Affiliated Pacific Islands (USAPI include 3 Freely Associated States: Marshall Islands, Federated States of Micronesia, Palau and 3 Territories: American Samoa, Guam, and Commonwealth of the Northern Mariana Islands. ObjectiveThe Pacific Island Health Care Project (PIHCP provides humanitarian medical referral/consultation/care to >500,000 indigenous people of these remote islands. Methods In the mid-1990s, we developed a simple store-and-forward program to link the USAPI with Tripler Army Medical Center (TAMC. This application allowed image attachment to email consultations. ResultsMore than 8000 Pacific Islanders have benefited from the program. 3000 Pacific Islanders prior to telemedicine (1990-1997 and since store-and-forward telemedicine (1997-present, the PIHCP has helped an additional 5000. Records post dynamically and are stored in an archival database. Conclusion The PIHCP is the longest running telemedicine program in the world delivering humanitarian medical care. It has bridged the Developing World of the remote Pacific islands with advanced medical and surgical care available at a major US military teaching hospital.(The opinions expressed here are those of the author and not that of the Army, Department of Defense, or the US Government.

  9. Chromosomal Aberrations in Monozygotic and Dizygotic Twins Versus Singletons in Denmark During 1968-2009

    DEFF Research Database (Denmark)

    Kristensen, Lone Krøldrup; Larsen, Lisbeth A; Fagerberg, Christina

    2017-01-01

    BACKGROUND: Hall (Embryologic development and monozygotic twinning. Acta Geneticae Medicae et Gemellologiae, Vol. 45, 1996, pp. 53-57) hypothesized that chromosomal aberrations can lead to monozygotic (MZ) twinning. However, twinning and chromosomal aberrations increase prenatal mortality and could...... reduce the prevalence of chromosomal aberrations in live-born twins. We compared prevalence proportion ratios (PPR) of chromosomal aberrations and trisomy 21 (T21) in live-born twins versus singletons born in Denmark during 1968-2009. METHODS: We linked the Danish Twin Registry and a 5% random sample...... of all singletons to the Danish Cytogenetic Central Register and calculated PPR adjusted for maternal age for MZ, dizygotic (DZ), and all twins versus singletons. Zygosity was based on questionnaires or genetic markers. RESULTS: No overall difference in risk of chromosomal aberrations or T21 in twins...

  10. Accuracy of preimplantation genetic diagnosis (PGD) of single gene and chromosomal disorders

    Energy Technology Data Exchange (ETDEWEB)

    Verlinsky, Y.; Strom, C.; Rechitsky, S. [Reproductive Genetics Institute, Chicage, IL (United States)] [and others

    1994-09-01

    We have developed a polar body inferred approach for preconception diagnosis of single gene and chromosomal disorders. Preconception PCR or FISH analysis was performed in a total of 310 first polar bodies for the following genetic conditions: cystic fibrosis, hemophilia A, alpha-1-antitrypsin deficiency, Tay Sachs disease, retinitis pigmentosa and common chromosomal trisomies. An important advantage of this approach is the avoidance of sperm (DNA) contamination, which is the major problem of PGD. We are currently applying FISH analysis of biopsied blastomeres, in combination with PCR or separately, and have demonstrated a significant improvement of the accuracy of PGD of X-linked disorders at this stage. Our data have also demonstrated feasibility of the application of FISH technique for PGD of chromosomal disorders. It was possible to detect chromosomal non-disjunctions and chromatid malsegregations in the first meiotic division, as well as to evaluate chromosomal mutations originating from the second meiotic nondisjunction.

  11. 78 FR 28904 - CPG Carlyle Private Equity Fund, LLC, et al.; Notice of Application

    Science.gov (United States)

    2013-05-16

    ... as Delaware limited liability companies. The Feeder Fund operates as a feeder fund in a master-feeder..., and mezzanine). 2. The Adviser, a Delaware limited liability company and wholly- owned subsidiary of... SECURITIES AND EXCHANGE COMMISSION [Investment Company Act Release No. 30512; 812-14089] CPG...

  12. Transient neonatal diabetes mellitus with macroglossia diagnosed by methylation specific PCR (MS-PCR

    Directory of Open Access Journals (Sweden)

    Hye Young Jin

    2010-03-01

    Full Text Available Transient neonatal diabetes mellitus (TNDM has been associated with paternal uniparental isodisomy of chromosome 6, paternally inherited duplication of 6q24, or a methylation defect at a CpG island of the ZAC or HYMAI gene. We experienced a case of TNDM in which the patient presented with hyperglycemia, macroglossia, and intrauterine growth retardation, caused by a paternally derived HYMAI. An 18-day-old female infant was admitted to the hospital because of macroglossia and recurrent hyperglycemia. In addition to the macroglossia, she also presented with large fontanelles, micrognathia, and prominent eyes. Serum glucose levels were 200&#8211;300 mg/dL and they improved spontaneously 2 days after admission. To identify the presence of a maternal methylated allele, bisulfite-treated genomic DNA from peripheral blood was prepared and digested with BssHII after polymerase chain reaction (PCR amplification with methylation-specific HYMAI primers. PCR and restriction fragment length polymorphism analysis showed that the patient had only the paternal origin of the HYMA1 gene. TNDM is associated with a methylation defect in chromosome 6, suggesting that an imprinted gene on chromosome 6 is responsible for this phenotype.

  13. Cross-species chromosome painting in bats from Madagascar: the contribution of Myzopodidae to revealing ancestral syntenies in Chiroptera.

    Science.gov (United States)

    Richards, Leigh R; Rambau, Ramugondo V; Lamb, Jennifer M; Taylor, Peter J; Yang, Fengtang; Schoeman, M Corrie; Goodman, Steven M

    2010-09-01

    The chiropteran fauna of Madagascar comprises eight of the 19 recognized families of bats, including the endemic Myzopodidae. While recent systematic studies of Malagasy bats have contributed to our understanding of the morphological and genetic diversity of the island's fauna, little is known about their cytosystematics. Here we investigate karyotypic relationships among four species, representing four families of Chiroptera endemic to the Malagasy region using cross-species chromosome painting with painting probes of Myotis myotis: Myzopodidae (Myzopoda aurita, 2n = 26), Molossidae (Mormopterus jugularis, 2n = 48), Miniopteridae (Miniopterus griveaudi, 2n = 46), and Vespertilionidae (Myotis goudoti, 2n = 44). This study represents the first time a member of the family Myzopodidae has been investigated using chromosome painting. Painting probes of M. myotis were used to delimit 29, 24, 23, and 22 homologous chromosomal segments in the genomes of M. aurita, M. jugularis, M. griveaudi, and M. goudoti, respectively. Comparison of GTG-banded homologous chromosomes/chromosomal segments among the four species revealed the genome of M. aurita has been structured through 14 fusions of chromosomes and chromosomal segments of M. myotis chromosomes leading to a karyotype consisting solely of bi-armed chromosomes. In addition, chromosome painting revealed a novel X-autosome translocation in M. aurita. Comparison of our results with published chromosome maps provided further evidence for karyotypic conservatism within the genera Mormopterus, Miniopterus, and Myotis. Mapping of chromosomal rearrangements onto a molecular consensus phylogeny revealed ancestral syntenies shared between Myzopoda and other bat species of the infraorders Pteropodiformes and Vespertilioniformes. Our study provides further evidence for the involvement of Robertsonian (Rb) translocations and fusions/fissions in chromosomal evolution within Chiroptera.

  14. Inter-chromosomal heterogeneity in the formation of radiation induced chromosomal aberrations

    International Nuclear Information System (INIS)

    Natarajan, A.T.; Vermeulen, S.; Boei, J.J.W.A.

    1997-01-01

    It is generally assumed that radiation induced chromosomal lesions are distributed randomly and repaired randomly among the genome. Recent studies using fluorescent in situ hybridization (FISH) and chromosome specific DNA libraries indicate that some chromosomes are more sensitive for radiation induced aberration formation than others. Chromosome No. 4 in human and chromosome No. 8 in Chinese hamster have been found to involve more in exchange aberrations than others, when calculated on the basis of their DNA content. Painting with arm specific chromosome libraries indicate that the frequencies of radiation induced intra-chromosome exchanges (i.e., between the arms of a chromosome, such as centric rings and inversions) are far in excess than one would expect on the basis of the frequencies of observed inter-chromosomal exchanges. The possible factors leading to the observed heterogeneity will be discussed

  15. Nicotine induced CpG methylation of Pax6 binding motif in StAR promoter reduces the gene expression and cortisol production

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Tingting [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071 (China); Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, Maryland (United States); Chen, Man; Liu, Lian [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071 (China); Cheng, Huaiyan [Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, Maryland (United States); Yan, You-E [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071 (China); Feng, Ying-Hong, E-mail: yhfeng@usuhs.edu [Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, Maryland (United States); Wang, Hui, E-mail: wanghui19@whu.edu.cn [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071 (China); Research Center of Food and Drug Evaluation, Wuhan University, Wuhan 430071 (China)

    2011-12-15

    Steroidogenic acute regulatory protein (StAR) mediates the rate-limiting step in the synthesis of steroid hormones, essential to fetal development. We have reported that the StAR expression in fetal adrenal is inhibited in a rat model of nicotine-induced intrauterine growth retardation (IUGR). Here using primary human fetal adrenal cortex (pHFAC) cells and a human fetal adrenal cell line NCI-H295A, we show that nicotine inhibits StAR expression and cortisol production in a dose- and time-dependent manner, and prolongs the inhibitory effect on cells proliferating over 5 passages after termination of nicotine treatment. Methylation detection within the StAR promoter region uncovers a single site CpG methylation at nt -377 that is sensitive to nicotine treatment. Nicotine-induced alterations in frequency of this point methylation correlates well with the levels of StAR expression, suggesting an important role of the single site in regulating StAR expression. Further studies using bioinformatics analysis and siRNA approach reveal that the single CpG site is part of the Pax6 binding motif (CGCCTGA) in the StAR promoter. The luciferase activity assays validate that Pax6 increases StAR gene expression by binding to the glucagon G3-like motif (CGCCTGA) and methylation of this site blocks Pax6 binding and thus suppresses StAR expression. These data identify a nicotine-sensitive CpG site at the Pax6 binding motif in the StAR promoter that may play a central role in regulating StAR expression. The results suggest an epigenetic mechanism that may explain how nicotine contributes to onset of adult diseases or disorders such as metabolic syndrome via fetal programming. -- Highlights: Black-Right-Pointing-Pointer Nicotine-induced StAR inhibition in two human adrenal cell models. Black-Right-Pointing-Pointer Nicotine-induced single CpG site methylation in StAR promoter. Black-Right-Pointing-Pointer Persistent StAR inhibition and single CpG methylation after nicotine termination

  16. Transmission of chromosomal and instability via a chromosome irradiated with ionizing radiation

    International Nuclear Information System (INIS)

    Kodama, Seiji; Tanabe, Masateru; Shiraishi, Kazunori; Oshimura, Mitsuo

    2010-01-01

    We examined the stability of the transferred chromosome in 5 and 12 microcell hybrids including unirradiated human chromosomes 6 and 8, respectively, and 6 and 19 microcell hybrids including 4 Gy-irradiated human chromosomes 6 and 8, respectively. The transferred chromosome was structurally stable in most microcell hybrids transferred with the unirradiated chromosomes 6 and 8. In contrast, the 4 Gy-irradiated human chromosomes were unstable in 3 out of 6 hybrids (50%) with chromosome 6 and 3 out of 19 hybrids (16%) with chromosome 8, showing multiple aberrations in high frequencies (35∼98%). To know the cause of delayed chromosomal instability, intrachromosomal rearrangements of the human chromosome is investigated by subtelomere FISH in 17 microcell hybrids transferred with chromosomes 6 and 8. We found frequent intrachromosomal in 7 microcell hybrids (41%). However, no clear correlation was observed between the intrachromosomal rearrangements and the induction of delayed chromosomal instability by ionizing radiation

  17. Analysis of the SOS response of Vibrio and other bacteria with multiple chromosomes

    Directory of Open Access Journals (Sweden)

    Sanchez-Alberola Neus

    2012-02-01

    Full Text Available Abstract Background The SOS response is a well-known regulatory network present in most bacteria and aimed at addressing DNA damage. It has also been linked extensively to stress-induced mutagenesis, virulence and the emergence and dissemination of antibiotic resistance determinants. Recently, the SOS response has been shown to regulate the activity of integrases in the chromosomal superintegrons of the Vibrionaceae, which encompasses a wide range of pathogenic species harboring multiple chromosomes. Here we combine in silico and in vitro techniques to perform a comparative genomics analysis of the SOS regulon in the Vibrionaceae, and we extend the methodology to map this transcriptional network in other bacterial species harboring multiple chromosomes. Results Our analysis provides the first comprehensive description of the SOS response in a family (Vibrionaceae that includes major human pathogens. It also identifies several previously unreported members of the SOS transcriptional network, including two proteins of unknown function. The analysis of the SOS response in other bacterial species with multiple chromosomes uncovers additional regulon members and reveals that there is a conserved core of SOS genes, and that specialized additions to this basic network take place in different phylogenetic groups. Our results also indicate that across all groups the main elements of the SOS response are always found in the large chromosome, whereas specialized additions are found in the smaller chromosomes and plasmids. Conclusions Our findings confirm that the SOS response of the Vibrionaceae is strongly linked with pathogenicity and dissemination of antibiotic resistance, and suggest that the characterization of the newly identified members of this regulon could provide key insights into the pathogenesis of Vibrio. The persistent location of key SOS genes in the large chromosome across several bacterial groups confirms that the SOS response plays an

  18. Analysis of the SOS response of Vibrio and other bacteria with multiple chromosomes.

    Science.gov (United States)

    Sanchez-Alberola, Neus; Campoy, Susana; Barbé, Jordi; Erill, Ivan

    2012-02-03

    The SOS response is a well-known regulatory network present in most bacteria and aimed at addressing DNA damage. It has also been linked extensively to stress-induced mutagenesis, virulence and the emergence and dissemination of antibiotic resistance determinants. Recently, the SOS response has been shown to regulate the activity of integrases in the chromosomal superintegrons of the Vibrionaceae, which encompasses a wide range of pathogenic species harboring multiple chromosomes. Here we combine in silico and in vitro techniques to perform a comparative genomics analysis of the SOS regulon in the Vibrionaceae, and we extend the methodology to map this transcriptional network in other bacterial species harboring multiple chromosomes. Our analysis provides the first comprehensive description of the SOS response in a family (Vibrionaceae) that includes major human pathogens. It also identifies several previously unreported members of the SOS transcriptional network, including two proteins of unknown function. The analysis of the SOS response in other bacterial species with multiple chromosomes uncovers additional regulon members and reveals that there is a conserved core of SOS genes, and that specialized additions to this basic network take place in different phylogenetic groups. Our results also indicate that across all groups the main elements of the SOS response are always found in the large chromosome, whereas specialized additions are found in the smaller chromosomes and plasmids. Our findings confirm that the SOS response of the Vibrionaceae is strongly linked with pathogenicity and dissemination of antibiotic resistance, and suggest that the characterization of the newly identified members of this regulon could provide key insights into the pathogenesis of Vibrio. The persistent location of key SOS genes in the large chromosome across several bacterial groups confirms that the SOS response plays an essential role in these organisms and sheds light into the

  19. Allele-specific marker generation and linkage mapping on the Xiphophorus sex chromosomes.

    Science.gov (United States)

    Woolcock, B; Kazianis, S; Lucito, R; Walter, R B; Kallman, K D; Morizot, D C; Vielkind, J R

    2006-01-01

    There is great interest in the sex chromosomes of Xiphophorus fishes because both WY/YY and XX/XY sex-determining mechanisms function in these species, with at least one taxon possessing all three types of sex chromosomes, and because in certain interspecific hybrids melanoma arises as a consequence of inheritance of the sex-linked macromelanophore determining locus (MDL). Representational difference analysis (RDA) has been used to clone two sequences from the sex-determining region of X. maculatus, including a cholinergic receptor, nicotinic, delta polypeptide (CHRND) orthologue. Allele-specific assays for these sequences, as well as for the sex-linked XMRK1 and XMRK2 genes, were developed to distinguish W, X, and Y chromosomes derived from a X. maculatus (XX/XY) strain and a X. helleri (WY/YY) strain. Linkage mapping localized these markers to linkage group (LG) 24. No recombinants were observed between XMRK2 and MDL, confirming a role for XMRK2 in macromelanophore development. Although the master sex-determining (SD) locus certainly resides on Xiphophorus LG 24, autosomal loci are probably involved in sex determination as well, as indicated by the abnormal sex ratios in the backcross hybrids that contrast theoretical predictions based on LG 24 genotyping. Marker development and allelic discrimination on the Xiphophorus sex chromosomes should prove highly useful for studies that utilize this genus as an animal model.

  20. Chromosomal mapping of quantitative trait loci controlling elastin content in rat aorta.

    Science.gov (United States)

    Gauguier, Dominique; Behmoaras, Jacques; Argoud, Karène; Wilder, Steven P; Pradines, Christelle; Bihoreau, Marie Thérèse; Osborne-Pellegrin, Mary; Jacob, Marie Paule

    2005-03-01

    Extracellular matrix molecules such as elastin and collagens provide mechanical support to the vessel wall. In addition to its structural role, elastin is a regulator that maintains homeostasis through biologic signaling. Genetically determined minor modifications in elastin and collagen in the aorta could influence the onset and evolution of arterial pathology, such as hypertension and its complications. We previously demonstrated that the inbred Brown Norway (BN) rat shows an aortic elastin deficit in both abdominal and thoracic segments, partly because of a decrease in tropoelastin synthesis when compared with the LOU rat, that elastin gene polymorphisms in these strains do not significantly account for. After a genome-wide search for quantitative trait loci (QTL) influencing the aortic elastin, collagen, and cell protein contents in an F2 population derived from BN and LOU rats, we identified on chromosomes 2 and 14, 3 QTL specifically controlling elastin levels, and a further highly significant QTL on chromosome 17 linked to the level of cell proteins. We also mapped 3 highly significant QTL linked to body weight (on chromosomes 1 and 3) and heart weight (on chromosome 1) in the cross. This study demonstrates the polygenic control of the content of key components of the arterial wall. Such information represents a first step in understanding possible mechanisms involved in dysregulation of these parameters in arterial pathology.

  1. Distribution of CpG Motifs in Upstream Gene Domains in a Reef Coral and Sea Anemone: Implications for Epigenetics in Cnidarians.

    Science.gov (United States)

    Marsh, Adam G; Hoadley, Kenneth D; Warner, Mark E

    2016-01-01

    Coral reefs are under assault from stressors including global warming, ocean acidification, and urbanization. Knowing how these factors impact the future fate of reefs requires delineating stress responses across ecological, organismal and cellular scales. Recent advances in coral reef biology have integrated molecular processes with ecological fitness and have identified putative suites of temperature acclimation genes in a Scleractinian coral Acropora hyacinthus. We wondered what unique characteristics of these genes determined their coordinate expression in response to temperature acclimation, and whether or not other corals and cnidarians would likewise possess these features. Here, we focus on cytosine methylation as an epigenetic DNA modification that is responsive to environmental stressors. We identify common conserved patterns of cytosine-guanosine dinucleotide (CpG) motif frequencies in upstream promoter domains of different functional gene groups in two cnidarian genomes: a coral (Acropora digitifera) and an anemone (Nematostella vectensis). Our analyses show that CpG motif frequencies are prominent in the promoter domains of functional genes associated with environmental adaptation, particularly those identified in A. hyacinthus. Densities of CpG sites in upstream promoter domains near the transcriptional start site (TSS) are 1.38x higher than genomic background levels upstream of -2000 bp from the TSS. The increase in CpG usage suggests selection to allow for DNA methylation events to occur more frequently within 1 kb of the TSS. In addition, observed shifts in CpG densities among functional groups of genes suggests a potential role for epigenetic DNA methylation within promoter domains to impact functional gene expression responses in A. digitifera and N. vectensis. Identifying promoter epigenetic sequence motifs among genes within specific functional groups establishes an approach to describe integrated cellular responses to environmental stress in

  2. Distribution of CpG Motifs in Upstream Gene Domains in a Reef Coral and Sea Anemone: Implications for Epigenetics in Cnidarians.

    Directory of Open Access Journals (Sweden)

    Adam G Marsh

    Full Text Available Coral reefs are under assault from stressors including global warming, ocean acidification, and urbanization. Knowing how these factors impact the future fate of reefs requires delineating stress responses across ecological, organismal and cellular scales. Recent advances in coral reef biology have integrated molecular processes with ecological fitness and have identified putative suites of temperature acclimation genes in a Scleractinian coral Acropora hyacinthus. We wondered what unique characteristics of these genes determined their coordinate expression in response to temperature acclimation, and whether or not other corals and cnidarians would likewise possess these features. Here, we focus on cytosine methylation as an epigenetic DNA modification that is responsive to environmental stressors. We identify common conserved patterns of cytosine-guanosine dinucleotide (CpG motif frequencies in upstream promoter domains of different functional gene groups in two cnidarian genomes: a coral (Acropora digitifera and an anemone (Nematostella vectensis. Our analyses show that CpG motif frequencies are prominent in the promoter domains of functional genes associated with environmental adaptation, particularly those identified in A. hyacinthus. Densities of CpG sites in upstream promoter domains near the transcriptional start site (TSS are 1.38x higher than genomic background levels upstream of -2000 bp from the TSS. The increase in CpG usage suggests selection to allow for DNA methylation events to occur more frequently within 1 kb of the TSS. In addition, observed shifts in CpG densities among functional groups of genes suggests a potential role for epigenetic DNA methylation within promoter domains to impact functional gene expression responses in A. digitifera and N. vectensis. Identifying promoter epigenetic sequence motifs among genes within specific functional groups establishes an approach to describe integrated cellular responses to

  3. Small chromosomal regions position themselves autonomously according to their chromatin class.

    Science.gov (United States)

    van de Werken, Harmen J G; Haan, Josien C; Feodorova, Yana; Bijos, Dominika; Weuts, An; Theunis, Koen; Holwerda, Sjoerd J B; Meuleman, Wouter; Pagie, Ludo; Thanisch, Katharina; Kumar, Parveen; Leonhardt, Heinrich; Marynen, Peter; van Steensel, Bas; Voet, Thierry; de Laat, Wouter; Solovei, Irina; Joffe, Boris

    2017-06-01

    The spatial arrangement of chromatin is linked to the regulation of nuclear processes. One striking aspect of nuclear organization is the spatial segregation of heterochromatic and euchromatic domains. The mechanisms of this chromatin segregation are still poorly understood. In this work, we investigated the link between the primary genomic sequence and chromatin domains. We analyzed the spatial intranuclear arrangement of a human artificial chromosome (HAC) in a xenospecific mouse background in comparison to an orthologous region of native mouse chromosome. The two orthologous regions include segments that can be assigned to three major chromatin classes according to their gene abundance and repeat repertoire: (1) gene-rich and SINE-rich euchromatin; (2) gene-poor and LINE/LTR-rich heterochromatin; and (3) gene-depleted and satellite DNA-containing constitutive heterochromatin. We show, using fluorescence in situ hybridization (FISH) and 4C-seq technologies, that chromatin segments ranging from 0.6 to 3 Mb cluster with segments of the same chromatin class. As a consequence, the chromatin segments acquire corresponding positions in the nucleus irrespective of their chromosomal context, thereby strongly suggesting that this is their autonomous property. Interactions with the nuclear lamina, although largely retained in the HAC, reveal less autonomy. Taken together, our results suggest that building of a functional nucleus is largely a self-organizing process based on mutual recognition of chromosome segments belonging to the major chromatin classes. © 2017 van de Werken et al.; Published by Cold Spring Harbor Laboratory Press.

  4. X-chromosome inactivation in development and cancer.

    Science.gov (United States)

    Chaligné, Ronan; Heard, Edith

    2014-08-01

    X-chromosome inactivation represents an epigenetics paradigm and a powerful model system of facultative heterochromatin formation triggered by a non-coding RNA, Xist, during development. Once established, the inactive state of the Xi is highly stable in somatic cells, thanks to a combination of chromatin associated proteins, DNA methylation and nuclear organization. However, sporadic reactivation of X-linked genes has been reported during ageing and in transformed cells and disappearance of the Barr body is frequently observed in cancer cells. In this review we summarise current knowledge on the epigenetic changes that accompany X inactivation and discuss the extent to which the inactive X chromosome may be epigenetically or genetically perturbed in breast cancer. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  5. B-CLL cells acquire APC- and CTL-like phenotypic characteristics after stimulation with CpG ODN and IL-21

    Science.gov (United States)

    Hagn, Magdalena; Blackwell, Sue E.; Beyer, Thamara; Ebel, Verena; Fabricius, Dorit; Lindner, Stefanie; Stilgenbauer, Stefan; Simmet, Thomas; Tam, Constantine; Neeson, Paul; Trapani, Joseph A.; Schrezenmeier, Hubert; Weiner, George J.

    2014-01-01

    CpG oligodeoxynucleotides (CpG) and IL-21 are two promising agents for the treatment of B-cell chronic lymphocytic leukemia (B-CLL). Recently, we reported that the combination of CpG and IL-21 (CpG/IL-21) can induce granzyme B (GrB)-dependent apoptosis in B-CLL cells. Here, we demonstrate that treatment of B-CLL cells with CpG and IL-21 results in the development of antigen-presenting cell (APC)-like cells with cytotoxic features. These properties eventually give rise to B-CLL cell apoptosis, independently of their cytogenetic phenotype, whereas normal B-cell survival is not negatively affected by CpG/IL-21. APC- and CTL-typical molecules found to be up-regulated in CpG/IL-21-stimulated B-CLL cells include GrB, perforin, T-bet, monokine-induced by IFN-γ and IFN-γ-inducible protein 10 (IP-10), as well as molecules important for cell adhesion, antigen cross-presentation and costimulation. Also induced are molecules involved in GrB induction, trafficking and processing, whereas the GrB inhibitor Serpin B9 [formerly proteinase inhibitor-9 (PI-9)] is down-modulated by CpG/IL-21. In conclusion, CpG/IL-21-stimulated B-CLL cells acquire features that are reminiscent of killer dendritic cells, and which result in enhanced immunogenicity, cytotoxicity and apoptosis. Our results provide novel insights into the aberrant immune state of B-CLL cells and may establish a basis for the development of an innovative cellular vaccination approach in B-CLL. PMID:24497611

  6. Destabilized SMC5/6 complex leads to chromosome breakage syndrome with severe lung disease

    Science.gov (United States)

    van der Crabben, Saskia N.; Hennus, Marije P.; McGregor, Grant A.; Ritter, Deborah I.; Nagamani, Sandesh C.S.; Wells, Owen S.; Harakalova, Magdalena; Chinn, Ivan K.; Alt, Aaron; Vondrova, Lucie; Hochstenbach, Ron; van Montfrans, Joris M.; Terheggen-Lagro, Suzanne W.; van Lieshout, Stef; van Roosmalen, Markus J.; Renkens, Ivo; Duran, Karen; Nijman, Isaac J.; Kloosterman, Wigard P.; Hennekam, Eric; van Hasselt, Peter M.; Wheeler, David A.; Palecek, Jan J.; Lehmann, Alan R.; Oliver, Antony W.; Pearl, Laurence H.; Plon, Sharon E.; Murray, Johanne M.

    2016-01-01

    The structural maintenance of chromosomes (SMC) family of proteins supports mitotic proliferation, meiosis, and DNA repair to control genomic stability. Impairments in chromosome maintenance are linked to rare chromosome breakage disorders. Here, we have identified a chromosome breakage syndrome associated with severe lung disease in early childhood. Four children from two unrelated kindreds died of severe pulmonary disease during infancy following viral pneumonia with evidence of combined T and B cell immunodeficiency. Whole exome sequencing revealed biallelic missense mutations in the NSMCE3 (also known as NDNL2) gene, which encodes a subunit of the SMC5/6 complex that is essential for DNA damage response and chromosome segregation. The NSMCE3 mutations disrupted interactions within the SMC5/6 complex, leading to destabilization of the complex. Patient cells showed chromosome rearrangements, micronuclei, sensitivity to replication stress and DNA damage, and defective homologous recombination. This work associates missense mutations in NSMCE3 with an autosomal recessive chromosome breakage syndrome that leads to defective T and B cell function and acute respiratory distress syndrome in early childhood. PMID:27427983

  7. Roles of CcrA and CcrB in Excision and Integration of Staphylococcal Cassette Chromosome mec, a Staphylococcus aureus Genomic Island▿

    OpenAIRE

    Wang, Lei; Archer, Gordon L.

    2010-01-01

    The gene encoding resistance to methicillin and other β-lactam antibiotics in staphylococci, mecA, is carried on a genomic island, SCCmec (for staphylococcal cassette chromosome mec). The chromosomal excision and integration of types I to IV SCCmec are catalyzed by the site-specific recombinases CcrA and CcrB, the genes for which are encoded on each element. We sought to identify the relative contributions of CcrA and CcrB in the excision and integration of SCCmec. Purified CcrB but not CcrA ...

  8. Substitution rates in the X- and Y-linked genes of the plants, Silene latifolia and S. dioica.

    Science.gov (United States)

    Filatov, Dmitry A; Charlesworth, Deborah

    2002-06-01

    Theory predicts that selection should be less effective in the nonrecombining genes of Y-chromosomes, relative to the situation for genes on the other chromosomes, and this should lead to the accumulation of deleterious nonsynonymous substitutions. In addition, synonymous substitution rates may differ between X- and Y-linked genes because of the male-driven evolution effect and also because of actual differences in per-replication mutation rates between the sex chromosomes. Here, we report the first study of synonymous and nonsynonymous substitution rates on plant sex chromosomes. We sequenced two pairs of sex-linked genes, SlX1-SlY1 and SlX4-SlY4, from dioecious Silene latifolia and S. dioica, and their non-sex-linked homologues from nondioecious S. vulgaris and Lychnis flos-jovis, respectively. The rate of nonsynonymous substitutions in the SlY4 gene is significantly higher than that in the SlX4 gene. Silent substitution rates are also significantly higher in both Y-linked genes, compared with their X-linked homologues. The higher nonsynonymous substitution rate in the SlY4 gene is therefore likely to be caused by a mutation rate difference between the sex chromosomes. The difference in silent substitution rates between the SlX4 and SlY4 genes is too great to be explained solely by a higher per-generation mutation rate in males than females. It is thus probably caused by a difference in per-replication mutation rates between the sex chromosomes. This suggests that the local mutation rate can change in a relatively short evolutionary time.

  9. Replication termination and chromosome dimer resolution in the archaeon Sulfolobus solfataricus.

    Science.gov (United States)

    Duggin, Iain G; Dubarry, Nelly; Bell, Stephen D

    2011-01-05

    Archaea of the genus Sulfolobus have a single-circular chromosome with three replication origins. All three origins fire in every cell in every cell cycle. Thus, three pairs of replication forks converge and terminate in each replication cycle. Here, we report 2D gel analyses of the replication fork fusion zones located between origins. These indicate that replication termination involves stochastic fork collision. In bacteria, replication termination is linked to chromosome dimer resolution, a process that requires the XerC and D recombinases, FtsK and the chromosomal dif site. Sulfolobus encodes a single-Xer homologue and its deletion gave rise to cells with aberrant DNA contents and increased volumes. Identification of the chromosomal dif site that binds Xer in vivo, and biochemical characterization of Xer/dif recombination revealed that, in contrast to bacteria, dif is located outside the fork fusion zones. Therefore, it appears that replication termination and dimer resolution are temporally and spatially distinct processes in Sulfolobus.

  10. A molecularly defined duplication set for the X chromosome of Drosophila melanogaster.

    Science.gov (United States)

    Venken, Koen J T; Popodi, Ellen; Holtzman, Stacy L; Schulze, Karen L; Park, Soo; Carlson, Joseph W; Hoskins, Roger A; Bellen, Hugo J; Kaufman, Thomas C

    2010-12-01

    We describe a molecularly defined duplication kit for the X chromosome of Drosophila melanogaster. A set of 408 overlapping P[acman] BAC clones was used to create small duplications (average length 88 kb) covering the 22-Mb sequenced portion of the chromosome. The BAC clones were inserted into an attP docking site on chromosome 3L using ΦC31 integrase, allowing direct comparison of different transgenes. The insertions complement 92% of the essential and viable mutations and deletions tested, demonstrating that almost all Drosophila genes are compact and that the current annotations of the genome are reasonably accurate. Moreover, almost all genes are tolerated at twice the normal dosage. Finally, we more precisely mapped two regions at which duplications cause diplo-lethality in males. This collection comprises the first molecularly defined duplication set to cover a whole chromosome in a multicellular organism. The work presented removes a long-standing barrier to genetic analysis of the Drosophila X chromosome, will greatly facilitate functional assays of X-linked genes in vivo, and provides a model for functional analyses of entire chromosomes in other species.

  11. Establishment of a 10-Plex Quantitative Fluorescent-PCR Assay for rapid diagnosis of sex chromosome aneuploidies.

    Directory of Open Access Journals (Sweden)

    Xingmei Xie

    Full Text Available Sex chromosome aneuploidies occur commonly in the general population, with an incidence of 1 in 400 newborns. However, no tests specifically targeting sex chromosomes have been carried out in prenatal diagnosis or newborn screening, resulting in late recognition of these diseases. In this study, a rapid diagnostic method for sex chromosome aneuploidies was established using Quantitative Fluorescent-PCR (QF-PCR. Ten markers were included in one multiplex QF-PCR assay, including two sex determination genes (AMXY and SRY, five X-linked short tandem repeats (STRs; DXS1053, DXS981, DXS6809, DXS1187, and DXS8377, one X/Y-common STR (X22, and two autosomal STRs (D13S305 and D21S11. Retrospective tests of 70 cases with known cytogenetic results indicated that the 10-plex QF-PCR assay could well determine sex chromosome copy numbers by both allelic peak numbers and a sex chromosome dosage calculation with the autosomal STRs as internal controls. Prospective comparison with cytogenetic karyotyping on 534 cases confirmed that the 10-plex QF-PCR assay could be well employed for sex chromosome aneuploidy diagnosis in at least the Chinese Han population. This is the first QF-PCR test for the diagnosis of sex chromosome aneuploidies in the Chinese population. This test is superior to previous designs by including up to 8 sex-linked markers covering different parts of sex chromosomes as well as employing internal controls for copy number dosage calculation in a single PCR reaction. Due to simple technique and data analysis, as well as easy implementation within routine clinical services, this method is of great clinical application value and could be widely applied.

  12. Monoamine oxidase deficiency in males with an X chromosome deletion.

    Science.gov (United States)

    Sims, K B; de la Chapelle, A; Norio, R; Sankila, E M; Hsu, Y P; Rinehart, W B; Corey, T J; Ozelius, L; Powell, J F; Bruns, G

    1989-01-01

    Mapping of the human MAOA gene to chromosomal region Xp21-p11 prompted our study of two affected males in a family previously reported to have Norrie disease resulting from a submicroscopic deletion in this chromosomal region. In this investigation we demonstrate in these cousins deletion of the MAOA gene, undetectable levels of MAO-A and MAO-B activities in their fibroblasts and platelets, respectively, loss of mRNA for MAO-A in fibroblasts, and substantial alterations in urinary catecholamine metabolites. The present study documents that a marked deficiency of MAO activity is compatible with life and that genes for MAO-A and MAO-B are near each other in this Xp chromosomal region. Some of the clinical features of these MAO deletion patients may help to identify X-linked MAO deficiency diseases in humans.

  13. Chromosomal aberration

    International Nuclear Information System (INIS)

    Ishii, Yutaka

    1988-01-01

    Chromosomal aberrations are classified into two types, chromosome-type and chromatid-type. Chromosom-type aberrations include terminal deletion, dicentric, ring and interstitial deletion, and chromatid-type aberrations include achromatic lesion, chromatid deletion, isochromatid deletion and chromatid exchange. Clastogens which induce chromosomal aberration are divided into ''S-dependent'' agents and ''S-independent''. It might mean whether they can induce double strand breaks independent of the S phase or not. Double strand breaks may be the ultimate lesions to induce chromosomal aberrations. Caffeine added even in the G 2 phase appeared to modify the frequency of chromatid aberrations induced by X-rays and mitomycin C. Those might suggest that the G 2 phase involves in the chromatid aberration formation. The double strand breaks might be repaired by ''G 2 repair system'', the error of which might yield breakage types of chromatid aberrations and the by-pass of which might yield chromatid exchanges. Chromosome-type aberrations might be formed in the G 1 phase. (author)

  14. MPT-51/CpG DNA vaccine protects mice against Mycobacterium tuberculosis.

    Science.gov (United States)

    Silva, Bruna Daniella de Souza; da Silva, Ediane Batista; do Nascimento, Ivan Pereira; Dos Reis, Michelle Cristina Guerreiro; Kipnis, André; Junqueira-Kipnis, Ana Paula

    2009-07-16

    Tuberculosis (TB) is a severe infectious disease that kills approximately two million people worldwide every year. Because BCG protection is variable and does not protects adults, there is a great need for a new vaccine against TB that does not represent a risk for immunocompromised patients and that is also capable of protecting adult individuals. MPT-51 is a protein found in the genome of mycobacteria and binds to the fibronectin of the extracellular matrix, which may have a role in host tissue attachment and virulence. In order to test the usefulness of MPT-51 as a subunit vaccine, BALB/c were vaccinated and challenged with Mycobacterium tuberculosis. The infection of BALB/c with M. tuberculosis increased the number of IFN-gamma(+) T lymphocytes specific to MPT-51 in the spleen and lungs. Inoculation with rMPT-51/FIA and with rMPT-51/CpG DNA in non-infected BALB/c increased the amounts of IFN-gamma(+) T lymphocytes. Inoculation with rMPT-51/FIA also induced a humoral response specific to MPT-51. CFU counts of lung tissues done 60 days after infection showed a reduction of about 2 log in the bacteria load in the group of animals inoculated with rMPT-51/CpG DNA. These results make MPT-51 a valuable component to be further evaluated in the development of other subunit vaccines.

  15. Y-chromosome evolution: emerging insights into processes of Y-chromosome degeneration.

    Science.gov (United States)

    Bachtrog, Doris

    2013-02-01

    The human Y chromosome is intriguing not only because it harbours the master-switch gene that determines gender but also because of its unusual evolutionary history. The Y chromosome evolved from an autosome, and its evolution has been characterized by massive gene decay. Recent whole-genome and transcriptome analyses of Y chromosomes in humans and other primates, in Drosophila species and in plants have shed light on the current gene content of the Y chromosome, its origins and its long-term fate. Furthermore, comparative analysis of young and old Y chromosomes has given further insights into the evolutionary and molecular forces triggering Y-chromosome degeneration and into the evolutionary destiny of the Y chromosome.

  16. A complex genetic basis to X-linked hybrid male sterility between two species of house mice.

    Science.gov (United States)

    Good, Jeffrey M; Dean, Matthew D; Nachman, Michael W

    2008-08-01

    The X chromosome plays a central role in the evolution of reproductive isolation, but few studies have examined the genetic basis of X-linked incompatibilities during the early stages of speciation. We report the results of a large experiment focused on the reciprocal introgression of the X chromosome between two species of house mice, Mus musculus and M. domesticus. Introgression of the M. musculus X chromosome into a wild-derived M. domesticus genetic background produced male-limited sterility, qualitatively consistent with previous experiments using classic inbred strains to represent M. domesticus. The genetic basis of sterility involved a minimum of four X-linked factors. The phenotypic effects of major sterility QTL were largely additive and resulted in complete sterility when combined. No sterility factors were uncovered on the M. domesticus X chromosome. Overall, these results revealed a complex and asymmetric genetic basis to X-linked hybrid male sterility during the early stages of speciation in mice. Combined with data from previous studies, we identify one relatively narrow interval on the M. musculus X chromosome involved in hybrid male sterility. Only a handful of spermatogenic genes are within this region, including one of the most rapidly evolving genes on the mouse X chromosome.

  17. Tissue- and stage-dependent dosage compensation on the Neo-X chromosome in drosophila pseudoobscura

    KAUST Repository

    Nozawa, Masafumi

    2013-12-03

    Sex chromosome dosage compensation (DC) is widely accepted in various organisms. This concept is mostly supported by comparisons of gene expression between chromosomes and between sexes. However, genes on the X chromosome and autosomes are mostly not homologous, and the average gene expression level on these chromosomes may not be the same even under DC, which complicates comparisons between chromosomes. Many genes with sex-biased expression also make comparisons between sexes difficult. To overcome these issues, we investigated DC by comparing the expression of neo-X-linked genes in Drosophila pseudoobscura with those of their autosomal orthologs in other Drosophila species. The ratio of the former to the latter in males would be 1 under DC, whereas it becomes 0.5 without DC. We found that the ratio was ∼0.85 for adult whole bodies, indicating that the DC is incomplete on the neo-X chromosome in adults as a whole. The ratio (∼0.90) was also significantly less than 1 for adult bodies without gonads, whereas it was ∼1.0 for adult heads. These results indicate that DC varies among tissues. Our sliding-window analysis of the ratio also revealed that the upregulation of neo-X-linked genes in males occurred chromosome wide in all tissues analyzed, indicating global upregulation mechanisms. However, we found that gene functions also affected the levels of DC. Furthermore, most of the genes recently moved to the X were already under DC at the larval stage but not at the adult stage. These results suggest that DC in Drosophila species operates in a tissue/stage-dependent manner. © 2013 The Author 2013. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved.

  18. Chromosomal abnormalities in human glioblastomas: gain in chromosome 7p correlating with loss in chromosome 10q.

    Science.gov (United States)

    Inda, María del Mar; Fan, Xing; Muñoz, Jorge; Perot, Christine; Fauvet, Didier; Danglot, Giselle; Palacio, Ana; Madero, Pilar; Zazpe, Idoya; Portillo, Eduardo; Tuñón, Teresa; Martínez-Peñuela, José María; Alfaro, Jorge; Eiras, José; Bernheim, Alain; Castresana, Javier S

    2003-01-01

    Various genomic alterations have been detected in glioblastoma. Chromosome 7p, with the epidermal growth factor receptor locus, together with chromosome 10q, with the phosphatase and tensin homologue deleted in chromosome 10 and deleted in malignant brain tumors-1 loci, and chromosome 9p, with the cyclin-dependent kinase inhibitor 2A locus, are among the most frequently damaged chromosomal regions in glioblastoma. In this study, we evaluated the genetic status of 32 glioblastomas by comparative genomic hybridization; the sensitivity of comparative genomic hybridization versus differential polymerase chain reaction to detect deletions at the phosphatase and tensin homologue deleted in chromosome 10, deleted in malignant brain tumors-1, and cyclin-dependent kinase inhibitor 2A loci and amplifications at the cyclin-dependent kinase 4 locus; the frequency of genetic lesions (gain or loss) at 16 different selected loci (including oncogenes, tumor-suppressor genes, and proliferation markers) mapping on 13 different chromosomes; and the possible existence of a statistical association between any pair of molecular markers studied, to subdivide the glioblastoma entity molecularly. Comparative genomic hybridization showed that the most frequent region of gain was chromosome 7p, whereas the most frequent losses occurred on chromosomes 10q and 13q. The only statistically significant association was found for 7p gain and 10q loss. Copyright 2002 Wiley-Liss, Inc.

  19. Function of Junk: Pericentromeric Satellite DNA in Chromosome Maintenance.

    Science.gov (United States)

    Jagannathan, Madhav; Yamashita, Yukiko M

    2018-04-02

    Satellite DNAs are simple tandem repeats that exist at centromeric and pericentromeric regions on eukaryotic chromosomes. Unlike the centromeric satellite DNA that comprises the vast majority of natural centromeres, function(s) for the much more abundant pericentromeric satellite repeats are poorly understood. In fact, the lack of coding potential allied with rapid divergence of repeat sequences across eukaryotes has led to their dismissal as "junk DNA" or "selfish parasites." Although implicated in various biological processes, a conserved function for pericentromeric satellite DNA remains unidentified. We have addressed the role of satellite DNA through studying chromocenters, a cytological aggregation of pericentromeric satellite DNA from multiple chromosomes into DNA-dense nuclear foci. We have shown that multivalent satellite DNA-binding proteins cross-link pericentromeric satellite DNA on chromosomes into chromocenters. Disruption of chromocenters results in the formation of micronuclei, which arise by budding off the nucleus during interphase. We propose a model that satellite DNAs are critical chromosome elements that are recognized by satellite DNA-binding proteins and incorporated into chromocenters. We suggest that chromocenters function to preserve the entire chromosomal complement in a single nucleus, a fundamental and unquestioned feature of eukaryotic genomes. We speculate that the rapid divergence of satellite DNA sequences between closely related species results in discordant chromocenter function and may underlie speciation and hybrid incompatibility. © 2017 Jagannathan and Yamashita; Published by Cold Spring Harbor Laboratory Press.

  20. Effects of a chromosome-3 mutator gene on radiation-induced mutability in Drosophila melanogaster females

    Energy Technology Data Exchange (ETDEWEB)

    Sankaranarayanan, K. (Rijksuniversiteit Leiden (Netherlands). Dept. of Radiation Genetics and Chemical Mutagenesis; Cohen (J.A.) Inst. voor Radiopathologie en Stralenbescherming, Leiden (Netherlands))

    1982-01-01

    A series of X-irradiation experiments was carried out using Drosophila melanogaster females homozygous for a third chromosome mutator gene and females which had a similar genetic background except that the mutator-bearing third chromosomes were substituted by normal wild-type chromosomes. In the present work, the sensitivity of the pre-meiotic germ cells of mutator and normal females to the X-ray induction (2000 R) of sex-linked recessive lethals was studied. In addition, experiments were conducted to examine the sensitivity of the immature (stage 7; prophase I of meiosis) oocytes of both kinds of females to the induction of dominant lethals, X-linked recessive lethals and X-chromosome losses. The results show that in pre-meiotic germ cells, the frequencies of radiation-induced recessive lethals are similar in both kinds of females. However, the proportion of these mutations that occur in clusters of size 3 and higher, is higher in mutator than in normal females. In stage-7 oocytes, the frequencies of radiation-induced dominant lethals and sex-linked recessive lethals were similar in both kinds of females. The X-loss frequencies however, were consistently higher in mutator females although statistical significance was obtained only at higher exposures (3000 and 3750 R) and not at lower ones (750-2250 R). Possible reasons for the discrepancy between the present results and those of Gold and Green with respect to pre-meiotic germ cells are discussed.

  1. Evaluation of methylation pattern in promoter region of E-cadherin ...

    African Journals Online (AJOL)

    user

    2011-03-07

    Mar 7, 2011 ... promoter methylation in CDH1 gene inactivation in breast cancer, the CpG methylation status of E- ..... 5'CpG island of CDH1 in prostate, lung, liver, bladder, .... and estrogen receptor alpha from Sp1 sites to induce cell cycle.

  2. Tumor vaccine composed of C-class CpG oligodeoxynucleotides and irradiated tumor cells induces long-term antitumor immunity

    Directory of Open Access Journals (Sweden)

    Cerkovnik Petra

    2010-09-01

    Full Text Available Abstract Background An ideal tumor vaccine should activate both effector and memory immune response against tumor-specific antigens. Beside the CD8+ T cells that play a central role in the generation of a protective immune response and of long-term memory, dendritic cells (DCs are important for the induction, coordination and regulation of the adaptive immune response. The DCs can conduct all of the elements of the immune orchestra and are therefore a fundamental target and tool for vaccination. The present study was aimed at assessing the ability of tumor vaccine composed of C-class CpG ODNs and irradiated melanoma tumor cells B16F1 followed by two additional injections of CpG ODNs to induce the generation of a functional long-term memory response in experimental tumor model in mice (i.p. B16F1. Results It has been shown that the functional memory response in vaccinated mice persists for at least 60 days after the last vaccination. Repeated vaccination also improves the survival of experimental animals compared to single vaccination, whereas the proportion of animals totally protected from the development of aggressive i.p. B16F1 tumors after vaccination repeated three times varies between 88.9%-100.0%. Additionally, the long-term immune memory and tumor protection is maintained over a prolonged period of time of at least 8 months. Finally, it has been demonstrated that following the vaccination the tumor-specific memory cells predominantly reside in bone marrow and peritoneal tissue and are in a more active state than their splenic counterparts. Conclusions In this study we demonstrated that tumor vaccine composed of C-class CpG ODNs and irradiated tumor cells followed by two additional injections of CpG ODNs induces a long-term immunity against aggressive B16F1 tumors.

  3. Expansion of GA Dinucleotide Repeats Increases the Density of CLAMP Binding Sites on the X-Chromosome to Promote Drosophila Dosage Compensation.

    Directory of Open Access Journals (Sweden)

    Guray Kuzu

    2016-07-01

    Full Text Available Dosage compensation is an essential process that equalizes transcript levels of X-linked genes between sexes by forming a domain of coordinated gene expression. Throughout the evolution of Diptera, many different X-chromosomes acquired the ability to be dosage compensated. Once each newly evolved X-chromosome is targeted for dosage compensation in XY males, its active genes are upregulated two-fold to equalize gene expression with XX females. In Drosophila melanogaster, the CLAMP zinc finger protein links the dosage compensation complex to the X-chromosome. However, the mechanism for X-chromosome identification has remained unknown. Here, we combine biochemical, genomic and evolutionary approaches to reveal that expansion of GA-dinucleotide repeats likely accumulated on the X-chromosome over evolutionary time to increase the density of CLAMP binding sites, thereby driving the evolution of dosage compensation. Overall, we present new insight into how subtle changes in genomic architecture, such as expansions of a simple sequence repeat, promote the evolution of coordinated gene expression.

  4. A cross-study analysis of prenatal exposures to environmental contaminants and the epigenome: support for stress-responsive transcription factor occupancy as a mediator of gene-specific CpG methylation patterning

    Science.gov (United States)

    Martin, Elizabeth M.; Fry, Rebecca C.

    2016-01-01

    Abstract A biological mechanism by which exposure to environmental contaminants results in gene-specific CpG methylation patterning is currently unknown. We hypothesize that gene-specific CpG methylation is related to environmentally perturbed transcription factor occupancy. To test this hypothesis, a database of 396 genes with altered CpG methylation either in cord blood leukocytes or placental tissue was compiled from 14 studies representing assessments of six environmental contaminants. Subsequently, an in silico approach was used to identify transcription factor binding sites enriched among the genes with altered CpG methylation in relationship to the suite of environmental contaminants. For each study, the sequences of the promoter regions (representing −1000 to +500 bp from the transcription start site) of all genes with altered CpG methylation were analyzed for enrichment of transcription factor binding sites. Binding sites for a total of 56 unique transcription factors were identified to be enriched within the promoter regions of the genes. Binding sites for the Kidney-Enriched Krupple-like Factor 15, a known responder to endogenous stress, were enriched ( P  contaminants. These data support the transcription factor occupancy theory as a potential mechanism underlying environmentally-induced gene-specific CpG methylation. PMID:27066266

  5. Karyotypic Evolution in Malagasy Flying Foxes (Pteropodidae, Chiroptera) and Their Hipposiderid Relatives as Determined by Comparative Chromosome Painting.

    Science.gov (United States)

    Richards, Leigh R; Rambau, Ramugondo V; Goodman, Steven M; Taylor, Peter J; Schoeman, M Corrie; Yang, Fengtang; Lamb, Jennifer M

    2016-01-01

    Pteropodidae and Hipposideridae are 2 of the 9 chiropteran families that occur on Madagascar. Despite major advancements in the systematic study of the island's bat fauna, few karyotypic data exist for endemic species. We utilized G- and C-banding in combination with chromosome painting with Myotismyotis probes to establish a genome-wide homology among Malagasy species belonging to the families Pteropodidae (Pteropus rufus 2n = 38; Rousettus madagascariensis, 2n = 36), Hipposideridae (Hipposideros commersoni s.s., 2n = 52), and a single South African representative of the Rhinolophidae (Rhinolophus clivosus, 2n = 58). Painting probes of M. myotis detected 26, 28, 28, and 29 regions of homology in R. madagascariensis, P. rufus, H. commersoni s.s, and R. clivosus, respectively. Translocations, pericentric inversions, and heterochromatin additions were responsible for karyotypic differences amongst the Malagasy pteropodids. Comparative chromosome painting revealed a novel pericentric inversion on P. rufus chromosome 4. Chromosomal characters suggest a close evolutionary relationship between Rousettus and Pteropus. H. commersoni s.s. shared several chromosomal characters with extralimital congeners but did not exhibit 2 chromosomal synapomorphies proposed for Hipposideridae. This study provides further insight into the ancestral karyotypes of pteropodid and hipposiderid bats and corroborates certain molecular phylogenetic hypotheses. © 2016 S. Karger AG, Basel.

  6. Slit scan flow cytometry of isolated chromosomes following fluorescence hybridization: an approach of online screening for specific chromosomes and chromosome translocations

    NARCIS (Netherlands)

    Hausmann, M.; Dudin, G.; Aten, J. A.; Heilig, R.; Diaz, E.; Cremer, C.

    1991-01-01

    The recently developed methods of non radioactive in situ hybridization of chromosomes offer new aspects for chromosome analysis. Fluorescent labelling of hybridized chromosomes or chromosomal subregions allows to facilitate considerably the detection of specific chromosomal abnormalities. For many

  7. Meiotic sex chromosome inactivation is disrupted in sterile hybrid male house mice.

    Science.gov (United States)

    Campbell, Polly; Good, Jeffrey M; Nachman, Michael W

    2013-03-01

    In male mammals, the X and Y chromosomes are transcriptionally silenced in primary spermatocytes by meiotic sex chromosome inactivation (MSCI) and remain repressed for the duration of spermatogenesis. Here, we test the longstanding hypothesis that disrupted MSCI might contribute to the preferential sterility of heterogametic hybrid males. We studied a cross between wild-derived inbred strains of Mus musculus musculus and M. m. domesticus in which sterility is asymmetric: F1 males with a M. m. musculus mother are sterile or nearly so while F1 males with a M. m. domesticus mother are normal. In previous work, we discovered widespread overexpression of X-linked genes in the testes of sterile but not fertile F1 males. Here, we ask whether this overexpression is specifically a result of disrupted MSCI. To do this, we isolated cells from different stages of spermatogenesis and measured the expression of several genes using quantitative PCR. We found that X overexpression in sterile F1 primary spermatocytes is coincident with the onset of MSCI and persists in postmeiotic spermatids. Using a series of recombinant X genotypes, we then asked whether X overexpression in hybrids is controlled by cis-acting loci across the X chromosome. We found that it is not. Instead, one large interval in the proximal portion of the M. m. musculus X chromosome is associated with both overexpression and the severity of sterility phenotypes in hybrids. These results demonstrate a strong association between X-linked hybrid male sterility and disruption of MSCI and suggest that trans-acting loci on the X are important for the transcriptional regulation of the X chromosome during spermatogenesis.

  8. RNA sequencing reveals sexually dimorphic gene expression before gonadal differentiation in chicken and allows comprehensive annotation of the W-chromosome

    Science.gov (United States)

    2013-01-01

    Background Birds have a ZZ male: ZW female sex chromosome system and while the Z-linked DMRT1 gene is necessary for testis development, the exact mechanism of sex determination in birds remains unsolved. This is partly due to the poor annotation of the W chromosome, which is speculated to carry a female determinant. Few genes have been mapped to the W and little is known of their expression. Results We used RNA-seq to produce a comprehensive profile of gene expression in chicken blastoderms and embryonic gonads prior to sexual differentiation. We found robust sexually dimorphic gene expression in both tissues pre-dating gonadogenesis, including sex-linked and autosomal genes. This supports the hypothesis that sexual differentiation at the molecular level is at least partly cell autonomous in birds. Different sets of genes were sexually dimorphic in the two tissues, indicating that molecular sexual differentiation is tissue specific. Further analyses allowed the assembly of full-length transcripts for 26 W chromosome genes, providing a view of the W transcriptome in embryonic tissues. This is the first extensive analysis of W-linked genes and their expression profiles in early avian embryos. Conclusion Sexual differentiation at the molecular level is established in chicken early in embryogenesis, before gonadal sex differentiation. We find that the W chromosome is more transcriptionally active than previously thought, expand the number of known genes to 26 and present complete coding sequences for these W genes. This includes two novel W-linked sequences and three small RNAs reassigned to the W from the Un_Random chromosome. PMID:23531366

  9. Deciphering neo-sex and B chromosome evolution by the draft genome of Drosophila albomicans

    Directory of Open Access Journals (Sweden)

    Zhou Qi

    2012-03-01

    Full Text Available Abstract Background Drosophila albomicans is a unique model organism for studying both sex chromosome and B chromosome evolution. A pair of its autosomes comprising roughly 40% of the whole genome has fused to the ancient X and Y chromosomes only about 0.12 million years ago, thereby creating the youngest and most gene-rich neo-sex system reported to date. This species also possesses recently derived B chromosomes that show non-Mendelian inheritance and significantly influence fertility. Methods We sequenced male flies with B chromosomes at 124.5-fold genome coverage using next-generation sequencing. To characterize neo-Y specific changes and B chromosome sequences, we also sequenced inbred female flies derived from the same strain but without B's at 28.5-fold. Results We assembled a female genome and placed 53% of the sequence and 85% of the annotated proteins into specific chromosomes, by comparison with the 12 Drosophila genomes. Despite its very recent origin, the non-recombining neo-Y chromosome shows various signs of degeneration, including a significant enrichment of non-functional genes compared to the neo-X, and an excess of tandem duplications relative to other chromosomes. We also characterized a B-chromosome linked scaffold that contains an actively transcribed unit and shows sequence similarity to the subcentromeric regions of both the ancient X and the neo-X chromosome. Conclusions Our results provide novel insights into the very early stages of sex chromosome evolution and B chromosome origination, and suggest an unprecedented connection between the births of these two systems in D. albomicans.

  10. Hypermethylation of the 5′ CpG island of the p14ARF flanking exon 1β in human colorectal cancer displaying a restricted pattern of p53 overexpression concomitant with increased MDM2 expression

    Directory of Open Access Journals (Sweden)

    Nyiraneza Christine

    2012-06-01

    Full Text Available Abstract Background It has been suggested that inactivation of p14ARF, a tumor suppressor central to regulating p53 protein stability through interaction with the MDM2 oncoprotein, abrogates p53 activity in human tumors retaining the wild-type TP53 gene. Differences in expression of tumor suppressor genes are frequently associated with cancer. We previously reported on a pattern of restricted p53 immunohistochemical overexpression significantly associated with microsatellite instability (MSI, low TP53 mutation frequency, and MDM2 overexpression in colorectal cancers (CRCs. In this study, we investigated whether p14ARF alterations could be a mechanism for disabling the p53 pathway in this subgroup of CRCs. Results Detailed maps of the alterations in the p14ARF gene were determined in a cohort of 98 CRCs to detect both nucleotide and copy-number changes. Methylation-specific PCR combined with bisulfite sequencing was used to evaluate the prevalence and distribution of p14ARF methylation. p14ARF alterations were then correlated with MSI status, TP53 mutations, and immunohistochemical expression of p53 and MDM2. The frequency of p14ARF mutations was extremely low (1/98; 1%, whereas coexistence of methylated and unmethylated alleles in both tumors and normal colon mucosa was common (91/98; 93%. Only seven of ninety-eight tumors (7% had a distinct pattern of methylation compared with normal colon mucosa. Evaluation of the prevalence and distribution of p14ARF promoter methylation in a region containing 27 CpG sites in 35 patients showed a range of methylated CpG sites in tumors (0 to 25 (95% CI 1 to 13 versus 0 to 17 (95% CI 0 to 2 in adjacent colon mucosa (P = 0.004. Hypermethylation of the p14ARF promoter was significantly correlated with the restricted p53 overexpression pattern (P = 0.03, and MDM2 overexpression (P = 0.02, independently of MSI phenotype. Although no significant correlation between p14ARF methylation and TP53 mutational

  11. Chromosomes of older humans are more prone to aminopterine-induced breakage

    International Nuclear Information System (INIS)

    Esposito, D.; Fassina, G.; Szabo, P.; Weksler, M.; De Angelis, P.; Siniscalco, M.; Rodgers, L.

    1989-01-01

    The authors have adopted a simplified version of the cell hybrid cotransfer method to test the hypothesis that human lymphocytes derived from elderly individuals have a higher chromosome instability. Peripheral blood lymphocytes from old male individuals and young controls were fused with a Chinese hamster cell line (CHO-YH21), yielding 10 HAT-resistant rodent-human clones from the old propositi and 22 from the young controls. Both series of hybrid clones were analyzed with respect to the retention of the enzyme glucose-6-phosphate dehydrogenase and the surface antigen MIC2 identified by monoclonal antibody 12E7, two human X chromosome-linked markers located at opposite ends of the X chromosome. Cell hybrid clones with an X chromosome from a young control retained both markers in about 70% of the cells. In contrast, cell hybrid clones with an X chromosome from an old donor retained the MIC2 marker in only 30% of their cells. Slot-blot hybridization studies have established that the observed loss of the MIC2 marker is due to loss of the coding gene, not to suppression of its expression. T lymphocytes from old donors were also found to have an LD 50 for aminopterine significantly lower than the concentration of this drug in the HAT medium used to grow the hybrids. They speculate that the higher rate of chromosomal breakage and of marker loss observed along the old-age X chromosomes could be the result of molecular scars accumulated with aging at sites of constitutive chromosomal fragility

  12. Expression and new exon mutations of the human Beta defensins and their association on colon cancer development.

    Directory of Open Access Journals (Sweden)

    Abdelhabib Semlali

    Full Text Available The development of cancer involves genetic predisposition and a variety of environmental exposures. Genome-wide linkage analyses provide evidence for the significant linkage of many diseases to susceptibility loci on chromosome 8p23, the location of the human defensin gene cluster. Human β-defensins (hBDs are important molecules of innate immunity. This study was designed to analyze the expression and genetic variations in hBDs (hBD-1, hBD-2, hBD-3 and hBD-4 and their putative association with colon cancer. hBD gene expression and relative protein expression were evaluated by Real-Time polymerase chain reaction (qPCR and immunohistochemistry, respectively, from 40 normal patients and 40 age-matched patients with colon cancer in Saudi Arabia. In addition, hBD polymorphisms were genotyped by exon sequencing and by promoter methylation. hBD-1, hBD-2, hBD-3 and hBD-4 basal messenger RNA expression was significantly lower in tumor tissues compared with normal tissues. Several insertion mutations were detected in different exons of the analyzed hBDs. However, no methylation in any hBDs promoters was detected because of the limited number of CpG islands in these regions. We demonstrated for the first time a link between hBD expression and colon cancer. This suggests that there is a significant link between innate immunity deregulation through disruption of cationic peptides (hBDs and the potential development of colon cancer.

  13. Researching Pacific island livelihoods: mobility, natural resource management and nissology.

    Science.gov (United States)

    Christensen, Andreas E; Mertz, Ole

    2010-01-01

    Small island literature is vast in focus and aim, and is rooted in many different disciplines. The challenge is to find common grounds for researching small islands conceptually and theoretically. The aim of this article is to comment on how to research small islands, including a discussion on contemporary theories of nissology and conceptual analytical frameworks for island research. Through a review of selected case-study-based island literature on changing livelihoods coming out of the South Pacific, we wish to illustrate and discuss advantages of finding common grounds for small island studies. The focus is on two dimensions of island livelihood, migration and natural resource management, both of which are significant contributors in making island livelihoods and shaping Pacific seascapes. We argue that there is still a substantial lack of studies targeting small island dynamics that are empirical and interdisciplinary in focus and link socio-economic and ecological processes of small island societies at temporal and analytical scales.

  14. Genetic Analysis of Eight X-Chromosomal Short Tandem Repeat ...

    African Journals Online (AJOL)

    X-Chromosome short tandem repeat (STR) typing can complement existing DNA profiling protocols and can also offer useful information in cases of complex kinship analysis. This is the first population study of 8 X-linked STRs in Iraq. The purpose of this work was to provide a basic data of allele and haplotype frequency for ...

  15. Analysis of the association between CIMP and BRAF in colorectal cancer by DNA methylation profiling.

    Directory of Open Access Journals (Sweden)

    Toshinori Hinoue

    Full Text Available A CpG island methylator phenotype (CIMP is displayed by a distinct subset of colorectal cancers with a high frequency of DNA hypermethylation in a specific group of CpG islands. Recent studies have shown that an activating mutation of BRAF (BRAF(V600E is tightly associated with CIMP, raising the question of whether BRAF(V600E plays a causal role in the development of CIMP or whether CIMP provides a favorable environment for the acquisition of BRAF(V600E. We employed Illumina GoldenGate DNA methylation technology, which interrogates 1,505 CpG sites in 807 different genes, to further study this association. We first examined whether expression of BRAF(V600E causes DNA hypermethylation by stably expressing BRAF(V600E in the CIMP-negative, BRAF wild-type COLO 320DM colorectal cancer cell line. We determined 100 CIMP-associated CpG sites and examined changes in DNA methylation in eight stably transfected clones over multiple passages. We found that BRAF(V600E is not sufficient to induce CIMP in our system. Secondly, considering the alternative possibility, we identified genes whose DNA hypermethylation was closely linked to BRAF(V600E and CIMP in 235 primary colorectal tumors. Interestingly, genes that showed the most significant link include those that mediate various signaling pathways implicated in colorectal tumorigenesis, such as BMP3 and BMP6 (BMP signaling, EPHA3, KIT, and FLT1 (receptor tyrosine kinases and SMO (Hedgehog signaling. Furthermore, we identified CIMP-dependent DNA hypermethylation of IGFBP7, which has been shown to mediate BRAF(V600E-induced cellular senescence and apoptosis. Promoter DNA hypermethylation of IGFBP7 was associated with silencing of the gene. CIMP-specific inactivation of BRAF(V600E-induced senescence and apoptosis pathways by IGFBP7 DNA hypermethylation might create a favorable context for the acquisition of BRAF(V600E in CIMP+ colorectal cancer. Our data will be useful for future investigations toward

  16. Analysis of the association between CIMP and BRAF in colorectal cancer by DNA methylation profiling.

    Science.gov (United States)

    Hinoue, Toshinori; Weisenberger, Daniel J; Pan, Fei; Campan, Mihaela; Kim, Myungjin; Young, Joanne; Whitehall, Vicki L; Leggett, Barbara A; Laird, Peter W

    2009-12-21

    A CpG island methylator phenotype (CIMP) is displayed by a distinct subset of colorectal cancers with a high frequency of DNA hypermethylation in a specific group of CpG islands. Recent studies have shown that an activating mutation of BRAF (BRAF(V600E)) is tightly associated with CIMP, raising the question of whether BRAF(V600E) plays a causal role in the development of CIMP or whether CIMP provides a favorable environment for the acquisition of BRAF(V600E). We employed Illumina GoldenGate DNA methylation technology, which interrogates 1,505 CpG sites in 807 different genes, to further study this association. We first examined whether expression of BRAF(V600E) causes DNA hypermethylation by stably expressing BRAF(V600E) in the CIMP-negative, BRAF wild-type COLO 320DM colorectal cancer cell line. We determined 100 CIMP-associated CpG sites and examined changes in DNA methylation in eight stably transfected clones over multiple passages. We found that BRAF(V600E) is not sufficient to induce CIMP in our system. Secondly, considering the alternative possibility, we identified genes whose DNA hypermethylation was closely linked to BRAF(V600E) and CIMP in 235 primary colorectal tumors. Interestingly, genes that showed the most significant link include those that mediate various signaling pathways implicated in colorectal tumorigenesis, such as BMP3 and BMP6 (BMP signaling), EPHA3, KIT, and FLT1 (receptor tyrosine kinases) and SMO (Hedgehog signaling). Furthermore, we identified CIMP-dependent DNA hypermethylation of IGFBP7, which has been shown to mediate BRAF(V600E)-induced cellular senescence and apoptosis. Promoter DNA hypermethylation of IGFBP7 was associated with silencing of the gene. CIMP-specific inactivation of BRAF(V600E)-induced senescence and apoptosis pathways by IGFBP7 DNA hypermethylation might create a favorable context for the acquisition of BRAF(V600E) in CIMP+ colorectal cancer. Our data will be useful for future investigations toward understanding

  17. Genomic expression analysis of rat chromosome 4 for skeletal traits at femoral neck

    OpenAIRE

    Alam, Imranul; Sun, Qiwei; Liu, Lixiang; Koller, Daniel L.; Liu, Yunlong; Edenberg, Howard J.; Econs, Michael J.; Foroud, Tatiana; Turner, Charles H.

    2008-01-01

    Hip fracture is the most devastating osteoporotic fracture type with significant morbidity and mortality. Several studies in humans and animal models identified chromosomal regions linked to hip size and bone mass. Previously, we identified that the region of 4q21-q41 on rat chromosome (Chr) 4 harbors multiple femoral neck quantitative trait loci (QTLs) in inbred Fischer 344 (F344) and Lewis (LEW) rats. The purpose of this study is to identify the candidate genes for femoral neck structure an...

  18. Characterization of the human laminin beta2 chain locus (LAMB2): linkage to a gene containing a nonprocessed, transcribed LAMB2-like pseudogene (LAMB2L) and to the gene encoding glutaminyl tRNA synthetase (QARS)

    DEFF Research Database (Denmark)

    Durkin, M E; Jäger, A C; Khurana, T S

    1999-01-01

    The laminin beta2 chain is an important constituent of certain kidney and muscle basement membranes. We have generated a detailed physical map of a 110-kb genomic DNA segment surrounding the human laminin beta2 chain gene (LAMB2) on chromosome 3p21.3-->p21.2, a region paralogous with the chromosome...... 7q22-->q31 region that contains the laminin beta1 chain gene locus (LAMB1). Several CpG islands and a novel polymorphic microsatellite marker (D3S4594) were identified. The 3' end of LAMB2 lies 16 kb from the 5' end of the glutaminyl tRNA synthetase gene (QARS). About 20 kb upstream of LAMB2 we...... found a gene encoding a transcribed, non-processed LAMB2-like pseudogene (LAMB2L). The sequence of 1.75 kb of genomic DNA at the 3' end of LAMB2L was similar to exons 8-12 of the laminin beta2 chain gene. The LAMB2L-LAMB2-QARS cluster lies telomeric to the gene encoding the laminin-binding protein...

  19. Molecular evolution of colorectal cancer: from multistep carcinogenesis to the big bang.

    Science.gov (United States)

    Amaro, Adriana; Chiara, Silvana; Pfeffer, Ulrich

    2016-03-01

    Colorectal cancer is characterized by exquisite genomic instability either in the form of microsatellite instability or chromosomal instability. Microsatellite instability is the result of mutation of mismatch repair genes or their silencing through promoter methylation as a consequence of the CpG island methylator phenotype. The molecular causes of chromosomal instability are less well characterized. Genomic instability and field cancerization lead to a high degree of intratumoral heterogeneity and determine the formation of cancer stem cells and epithelial-mesenchymal transition mediated by the TGF-β and APC pathways. Recent analyses using integrated genomics reveal different phases of colorectal cancer evolution. An initial phase of genomic instability that yields many clones with different mutations (big bang) is followed by an important, previously not detected phase of cancer evolution that consists in the stabilization of several clones and a relatively flat outgrowth. The big bang model can best explain the coexistence of several stable clones and is compatible with the fact that the analysis of the bulk of the primary tumor yields prognostic information.

  20. Widespread over-expression of the X chromosome in sterile F₁hybrid mice.

    Directory of Open Access Journals (Sweden)

    Jeffrey M Good

    2010-09-01

    Full Text Available The X chromosome often plays a central role in hybrid male sterility between species, but it is unclear if this reflects underlying regulatory incompatibilities. Here we combine phenotypic data with genome-wide expression data to directly associate aberrant expression patterns with hybrid male sterility between two species of mice. We used a reciprocal cross in which F₁ males are sterile in one direction and fertile in the other direction, allowing us to associate expression differences with sterility rather than with other hybrid phenotypes. We found evidence of extensive over-expression of the X chromosome during spermatogenesis in sterile but not in fertile F₁ hybrid males. Over-expression was most pronounced in genes that are normally expressed after meiosis, consistent with an X chromosome-wide disruption of expression during the later stages of spermatogenesis. This pattern was not a simple consequence of faster evolutionary divergence on the X chromosome, because X-linked expression was highly conserved between the two species. Thus, transcriptional regulation of the X chromosome during spermatogenesis appears particularly sensitive to evolutionary divergence between species. Overall, these data provide evidence for an underlying regulatory basis to reproductive isolation in house mice and underscore the importance of transcriptional regulation of the X chromosome to the evolution of hybrid male sterility.

  1. Widespread over-expression of the X chromosome in sterile F₁hybrid mice.

    Science.gov (United States)

    Good, Jeffrey M; Giger, Thomas; Dean, Matthew D; Nachman, Michael W

    2010-09-30

    The X chromosome often plays a central role in hybrid male sterility between species, but it is unclear if this reflects underlying regulatory incompatibilities. Here we combine phenotypic data with genome-wide expression data to directly associate aberrant expression patterns with hybrid male sterility between two species of mice. We used a reciprocal cross in which F₁ males are sterile in one direction and fertile in the other direction, allowing us to associate expression differences with sterility rather than with other hybrid phenotypes. We found evidence of extensive over-expression of the X chromosome during spermatogenesis in sterile but not in fertile F₁ hybrid males. Over-expression was most pronounced in genes that are normally expressed after meiosis, consistent with an X chromosome-wide disruption of expression during the later stages of spermatogenesis. This pattern was not a simple consequence of faster evolutionary divergence on the X chromosome, because X-linked expression was highly conserved between the two species. Thus, transcriptional regulation of the X chromosome during spermatogenesis appears particularly sensitive to evolutionary divergence between species. Overall, these data provide evidence for an underlying regulatory basis to reproductive isolation in house mice and underscore the importance of transcriptional regulation of the X chromosome to the evolution of hybrid male sterility.

  2. A new nonsyndromic X-linked sensorineural hearing impairment linked to Xp21.2

    Energy Technology Data Exchange (ETDEWEB)

    Lalwani, A.K.; Brister, J.R.; Fex, J.; Grundfast, K.M.; Pikus, A.T.; Ploplis, B.; San Agustin, T.; Skarka, H.; Wilcox, E.R. [National Institutes of Health, Bethesda, MD (United States)

    1994-10-01

    X-linked deafness is a rare cause of hereditary hearing impairment. We have identified a family with X-linked dominant sensorineural hearing impairment, characterized by incomplete penetrance and variable expressivity in carrier females, that is linked to the Xp21.2, which contains the Duchenne muscular dystrophy (DMD) locus. The auditory impairment in affected males was congenital, bilateral, profound, sensorineural, affecting all frequencies, and without evidence of radiographic abnormality of the temporal bone. Adult carrier females manifested bilateral, mild-to-moderate high-frequency sensorineural hearing impairment of delayed onset during adulthood. Eighteen commercially available polymorphic markers from the X chromosome, generating a 10-15-cM map, were initially used for identification of a candidate region. DXS997, located within the DMD gene, generated a two-point LOD score of 2.91 at {theta} = 0, with every carrier mother heterozygous at this locus. Recombination events at DXS992 (located within the DMD locus, 3{prime} to exon 50 of the dystrophin gene) and at DXS1068 (5{prime} to the brain promoter of the dystrophin gene) were observed. No recombination events were noted with the following markers within the DMD locus: 5{prime}DYS II, intron 44, DXS997, and intron 50. There was no clinical evidence of Duchenne or Becker muscular dystrophy in any family member. It is likely that this family represents a new locus on the X chromosome, which when mutated results in nonsyndromic sensorineural hearing loss and is distinct from the heterogeneous group of X-linked hearing losses that have been previously described. 57 refs., 6 figs., 1 tab.

  3. Knockdown of μ-calpain in Fanconi Anemia, FA-A, cells by siRNA Restores αII Spectrin levels and Corrects Chromosomal Instability and Defective DNA Interstrand Cross-link Repair†

    OpenAIRE

    Zhang, Pan; Sridharan, Deepa; Lambert, Muriel W.

    2010-01-01

    We have previously shown that there is a deficiency in the structural protein, nonerythroid α spectrin (αIISp), in cells from patients with Fanconi anemia (FA). These studies indicate that this deficiency is due to reduced stability of αIISp and correlates with decreased repair of DNA interstrand cross-links and chromosomal instability in FA cells. An important factor in the stability of αIISp is its susceptibility to cleavage by the protease, μ-calpain. We hypothesized that increased μ-calpa...

  4. A simple chromosomal marker can reliably distinguishes Poncirus from Citrus species.

    Science.gov (United States)

    Brasileiro-Vidal, A C; Dos Santos-Serejo, J A; Soares Filho, W Dos S; Guerra, M

    2007-03-01

    Several chromosome types have been recognized in Citrus and related genera by chromomycin A(3 )(CMA) banding patterns and fluorescent in situ hybridization (FISH). They can be used to characterize cultivars and species or as markers in hybridization and backcrossing experiments. In the present work, characterization of six cultivars of P. trifoliata ("Barnes", "Fawcett", "Flying Dragon", "Pomeroy", "Rubidoux", "USDA") and one P. trifoliata x C. limonia hybrid was performed by sequential analyses of CMA banding and FISH using 5S and 45S rDNA as probes. All six cultivars showed a similar CMA(+) banding pattern with the karyotype formula 4B + 8D + 6F. The capital letters indicate chromosomal types: B, a chromosome with one telomeric and one proximal band; D, with only one telomeric band; F, without bands. In situ hybridization labeling was also similar among cultivars. Three chromosome pairs displayed a closely linked set of 5S and 45S rDNA sites, two of them co-located with the proximal band of the B type chromosomes (B/5S-45S) and the third one co-located with the terminal band of a D pair (D/5S-45S). The B/5S-45S chromosome has never been found in any citrus accessions investigated so far. Therefore, this B chromosome can be used as a marker to recognize the intergeneric Poncirus x Citrus hybrids. The intergeneric hybrid analyzed here displayed the karyotype formula 4B + 8D + 6F, with two chromosome types B/5S-45S and two D/5S-45S. The karyotype formula and the presence of two B/5S-45S chromosomes clearly indicate that the plant investigated is a symmetric hybrid. It also demonstrates the suitability of karyotype analyses to differentiate zygotic embryos or somatic cell fusions involving trifoliate orange germplasm.

  5. Purifying Selection Maintains Dosage-Sensitive Genes during Degeneration of the Threespine Stickleback Y Chromosome

    Science.gov (United States)

    White, Michael A.; Kitano, Jun; Peichel, Catherine L.

    2015-01-01

    Sex chromosomes are subject to unique evolutionary forces that cause suppression of recombination, leading to sequence degeneration and the formation of heteromorphic chromosome pairs (i.e., XY or ZW). Although progress has been made in characterizing the outcomes of these evolutionary processes on vertebrate sex chromosomes, it is still unclear how recombination suppression and sequence divergence typically occur and how gene dosage imbalances are resolved in the heterogametic sex. The threespine stickleback fish (Gasterosteus aculeatus) is a powerful model system to explore vertebrate sex chromosome evolution, as it possesses an XY sex chromosome pair at relatively early stages of differentiation. Using a combination of whole-genome and transcriptome sequencing, we characterized sequence evolution and gene expression across the sex chromosomes. We uncovered two distinct evolutionary strata that correspond with known structural rearrangements on the Y chromosome. In the oldest stratum, only a handful of genes remain, and these genes are under strong purifying selection. By comparing sex-linked gene expression with expression of autosomal orthologs in an outgroup, we show that dosage compensation has not evolved in threespine sticklebacks through upregulation of the X chromosome in males. Instead, in the oldest stratum, the genes that still possess a Y chromosome allele are enriched for genes predicted to be dosage sensitive in mammals and yeast. Our results suggest that dosage imbalances may have been avoided at haploinsufficient genes by retaining function of the Y chromosome allele through strong purifying selection. PMID:25818858

  6. Creating Consciousness About the Opportunities to Integrate Sustainable Energy on Islands

    DEFF Research Database (Denmark)

    Möller, Bernd; Nielsen, Steffen; Sperling, Karl

    2011-01-01

    . Islands in transition towards using more renewable energy sources are part of the project “Cradle to Cradle Islands”, funded by the EU Interreg IVB North Sea Region Programme. Energy systems on islands are diverse and linked to each specific location. Opportunities for the development of sustainable...

  7. Vibrio chromosome-specific families

    DEFF Research Database (Denmark)

    Lukjancenko, Oksana; Ussery, David

    2014-01-01

    We have compared chromosome-specific genes in a set of 18 finished Vibrio genomes, and, in addition, also calculated the pan- and core-genomes from a data set of more than 250 draft Vibrio genome sequences. These genomes come from 9 known species and 2 unknown species. Within the finished...... chromosomes, we find a core set of 1269 encoded protein families for chromosome 1, and a core of 252 encoded protein families for chromosome 2. Many of these core proteins are also found in the draft genomes (although which chromosome they are located on is unknown.) Of the chromosome specific core protein...... families, 1169 and 153 are uniquely found in chromosomes 1 and 2, respectively. Gene ontology (GO) terms for each of the protein families were determined, and the different sets for each chromosome were compared. A total of 363 different "Molecular Function" GO categories were found for chromosome 1...

  8. An algorithm for the diagnosis of X-linked intellectual disability in children

    Directory of Open Access Journals (Sweden)

    V. Yu. Voinova

    2016-01-01

    Full Text Available X-linked intellectual disability (XLID is a clinically and genetically heterogeneous group of hereditary diseases caused by mutations on the X chromosome, which lead to impaired intellectual development. The paper determines for the first time the proportion of X-linked diseases (6.54% in the pattern of intellectual disability in children. A system has been developed to quantify the clinical severity of fragile X mental retardation syndrome and Rett syndrome. A system has been scientifically justified to predict the clinical severity, which is based on an analysis of the impact of genetic and epigenetic factors (mutation type and location, X chromosome inactivation. The authors have determined the contribution of nonrandom X inactivation to the clinical polymorphism of various forms of XLID and established its role as an important diagnostic marker for pathology. It is shown that the study of X chromosome inactivation can identify asymptomatic female carriers of X-linked mutations to provide medical genetic counseling to families. An algorithm has been elaborated to diagnose XLID among the undifferentiated forms of mental developmental abnormalities in children. 

  9. Ornithine decarboxylase antizyme induces hypomethylation of genome DNA and histone H3 lysine 9 dimethylation (H3K9me2 in human oral cancer cell line.

    Directory of Open Access Journals (Sweden)

    Daisuke Yamamoto

    2010-09-01

    Full Text Available Methylation of CpG islands of genome DNA and lysine residues of histone H3 and H4 tails regulates gene transcription. Inhibition of polyamine synthesis by ornithine decarboxylase antizyme-1 (OAZ in human oral cancer cell line resulted in accumulation of decarboxylated S-adenosylmethionine (dcSAM, which acts as a competitive inhibitor of methylation reactions. We anticipated that accumulation of dcSAM impaired methylation reactions and resulted in hypomethylation of genome DNA and histone tails.Global methylation state of genome DNA and lysine residues of histone H3 and H4 tails were assayed by Methylation by Isoschizomers (MIAMI method and western blotting, respectively, in the presence or absence of OAZ expression. Ectopic expression of OAZ mediated hypomethylation of CpG islands of genome DNA and histone H3 lysine 9 dimethylation (H3K9me2. Protein level of DNA methyltransferase 3B (DNMT3B and histone H3K9me specific methyltransferase G9a were down-regulated in OAZ transfectant.OAZ induced hypomethylation of CpG islands of global genome DNA and H3K9me2 by down-regulating DNMT3B and G9a protein level. Hypomethylation of CpG islands of genome DNA and histone H3K9me2 is a potent mechanism of induction of the genes related to tumor suppression and DNA double strand break repair.

  10. Unusual distribution of Zfy and Zfx sequences on the sex chromosomes of the wood lemming, a species exhibiting XY sex reversal.

    Science.gov (United States)

    Lau, Y F; Yang-Feng, T L; Elder, B; Fredga, K; Wiberg, U H

    1992-01-01

    Sex reversal occurs naturally in the wood lemming (Myopus schisticolor) due to the presence in populations of this species of a variant (mutated) X chromosome, designated X*. Thus, X*Y animals develop into females, whereas XY animals develop into normal males. Chromosome mapping by in situ hybridization of DNA sequences homologous to the human ZFY gene localized the wood lemming Zfx sequences to region p12----p11 on both the wild-type X and the mutated X* chromosomes, at or proximal to a presumed breakpoint (Xp12) involved in the generation of the X* chromosome from the normal X, and Zfy sequences along the entire short arm of the Y chromosome. Differences between Zfx and Zfx* were readily detected by Southern blot analysis. However, both the Zfx and Zfx* genes expressed similarly sized transcripts in all adult somatic tissues investigated. Although the precise molecular difference between the Zfx and Zfx* genes is still unknown, their chromosomal location suggests that either Zfx or some other closely linked gene(s) on the X chromosome may be a major X-linked sex-determining gene, Tdx, which in the X* chromosome fails to interact properly with the Y-linked testis-determining gene, Tdy, thus causing X*Y embryos to develop into females. At least 15 copies of wood lemming Zfy sequences are distributed along the short arm of the Y chromosome. Northern hybridization analyses of adult tissues and somatic cell lines indicated that these Zfy repeats were transcriptionally inactive. Normally, 3-kb Zfy (ZFY) transcripts are readily detected in mouse and human testes, especially in the germ cells. It has therefore been postulated that expression of the Zfy (ZFY) gene may be important for spermatogenesis. Whether the lack of sufficient Zfy transcripts in the testis of the adult wood lemming has any impact on spermatogenesis in this species is still to be elucidated by further studies.

  11. Hyperexpansion of wheat chromosomes sorted by flow cytometry

    Czech Academy of Sciences Publication Activity Database

    Endo, Takashi R.; Kubaláková, Marie; Vrána, Jan; Doležel, Jaroslav

    2014-01-01

    Roč. 89, č. 4 (2014), s. 181-185 ISSN 1341-7568 R&D Projects: GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : flow cytometry * flow sorting * chromosome Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 0.930, year: 2014 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=MEDLINE&DestLinkType=FullRecord&UT=25747042

  12. Giemsa C-banding of Barley Chromosomes. IV. Chromosomal Constitution of Autotetraploid Barley

    DEFF Research Database (Denmark)

    Linde-Laursen, Ib

    1984-01-01

    The progeny of an autotetraploid barley plant (C1) consisted of 45 tetraploids and 33 aneuploids. Giemsa C-banding was used to identify each of the chromosomes in 20 euploid and 31 aneuploid C2--seedlings, and in 11 C3--offspring of aneuploid C2--plants. The euploid C2--seedlings all had four...... homologues of each of the chromosomes. The aneuploid C2--seedlings were fairly equally distributed on hypo-and hyperploids, and on the seven chromosome groups. This suggests that a particular chromosome is lost or gained at random in gametes and embryos. The 11 C3--seedlings comprised seven true euploids......, one seedling with 2n=28 having an extra chromosome 6 and missing one chromosome 3, and three seedlings with 2n=29. The chromosomal composition of aneuploid C3--seedlings did not reflect that of their aneuploid C2--parents with respect to missing or extra chromosomes. Two hypohexaploid C2--seedlings...

  13. A novel method to quantify local CpG methylation density by regional methylation elongation assay on microarray

    Directory of Open Access Journals (Sweden)

    Qiao Yingjuan

    2008-01-01

    Full Text Available Abstract Background DNA methylation based techniques are important tools in both clinical diagnostics and therapeutics. But most of these methods only analyze a few CpG sites in a target region. Indeed, difference of site-specific methylation may also lead to a change of methylation density in many cases, and it has been found that the density of methylation is more important than methylation of single CpG site for gene silencing. Results We have developed a novel approach for quantitative analysis of CpG methylation density on the basis of microarray-based hybridization and incorporation of Cy5-dCTP into the Cy3 labeled target DNA by using Taq DNA Polymerase on microarray. The quantification is achieved by measuring Cy5/Cy3 signal ratio which is proportional to methylation density. This methylation-sensitive technique, termed RMEAM (regional methylation elongation assay on microarray, provides several advantages over existing methods used for methylation analysis. It can determine an exact methylation density of the given region, and has potential of high throughput. We demonstrate a use of this method in determining the methylation density of the promoter region of the tumor-related gene MLH1, TERT and MGMT in colorectal carcinoma patients. Conclusion This technique allows for quantitative analysis of regional methylation density, which is the representative of all allelic methylation patterns in the sample. The results show that this technique has the characteristics of simplicity, rapidness, specificity and high-throughput.

  14. Contrasting Patterns of Genomic Diversity Reveal Accelerated Genetic Drift but Reduced Directional Selection on X-Chromosome in Wild and Domestic Sheep Species.

    Science.gov (United States)

    Chen, Ze-Hui; Zhang, Min; Lv, Feng-Hua; Ren, Xue; Li, Wen-Rong; Liu, Ming-Jun; Nam, Kiwoong; Bruford, Michael W; Li, Meng-Hua

    2018-04-01

    Analyses of genomic diversity along the X chromosome and of its correlation with autosomal diversity can facilitate understanding of evolutionary forces in shaping sex-linked genomic architecture. Strong selective sweeps and accelerated genetic drift on the X-chromosome have been inferred in primates and other model species, but no such insight has yet been gained in domestic animals compared with their wild relatives. Here, we analyzed X-chromosome variability in a large ovine data set, including a BeadChip array for 943 ewes from the world's sheep populations and 110 whole genomes of wild and domestic sheep. Analyzing whole-genome sequences, we observed a substantially reduced X-to-autosome diversity ratio (∼0.6) compared with the value expected under a neutral model (0.75). In particular, one large X-linked segment (43.05-79.25 Mb) was found to show extremely low diversity, most likely due to a high density of coding genes, featuring highly conserved regions. In general, we observed higher nucleotide diversity on the autosomes, but a flat diversity gradient in X-linked segments, as a function of increasing distance from the nearest genes, leading to a decreased X: autosome (X/A) diversity ratio and contrasting to the positive correlation detected in primates and other model animals. Our evidence suggests that accelerated genetic drift but reduced directional selection on X chromosome, as well as sex-biased demographic events, explain low X-chromosome diversity in sheep species. The distinct patterns of X-linked and X/A diversity we observed between Middle Eastern and non-Middle Eastern sheep populations can be explained by multiple migrations, selection, and admixture during the domestic sheep's recent postdomestication demographic expansion, coupled with natural selection for adaptation to new environments. In addition, we identify important novel genes involved in abnormal behavioral phenotypes, metabolism, and immunity, under selection on the sheep X-chromosome.

  15. Emergence and Evolution of Multidrug-Resistant Klebsiella pneumoniae with both blaKPC and blaCTX-M Integrated in the Chromosome.

    Science.gov (United States)

    Huang, Weihua; Wang, Guiqing; Sebra, Robert; Zhuge, Jian; Yin, Changhong; Aguero-Rosenfeld, Maria E; Schuetz, Audrey N; Dimitrova, Nevenka; Fallon, John T

    2017-07-01

    The extended-spectrum-β-lactamase (ESBL)- and Klebsiella pneumoniae carbapenemase (KPC)-producing Enterobacteriaceae represent serious and urgent threats to public health. In a retrospective study of multidrug-resistant K. pneumoniae , we identified three clinical isolates, CN1, CR14, and NY9, carrying both bla CTX-M and bla KPC genes. The complete genomes of these three K. pneumoniae isolates were de novo assembled by using both short- and long-read whole-genome sequencing. In CR14 and NY9, bla CTX-M and bla KPC were carried on two different plasmids. In contrast, CN1 had one copy of bla KPC-2 and three copies of bla CTX-M-15 integrated in the chromosome, for which the bla CTX-M-15 genes were linked to an insertion sequence, IS Ecp1 , whereas the bla KPC-2 gene was in the context of a Tn 4401a transposition unit conjugated with a PsP3-like prophage. Intriguingly, downstream of the Tn 4401a-bla KPC-2 -prophage genomic island, CN1 also carried a clustered regularly interspaced short palindromic repeat (CRISPR)- cas array with four spacers targeting a variety of K. pneumoniae plasmids harboring antimicrobial resistance genes. Comparative genomic analysis revealed that there were two subtypes of type I-E CRISPR- cas in K. pneumoniae strains and suggested that the evolving CRISPR- cas , with its acquired novel spacer, induced the mobilization of antimicrobial resistance genes from plasmids into the chromosome. The integration and dissemination of multiple copies of bla CTX-M and bla KPC from plasmids to chromosome depicts the complex pandemic scenario of multidrug-resistant K. pneumoniae Additionally, the implications from this study also raise concerns for the application of a CRISPR- cas strategy against antimicrobial resistance. Copyright © 2017 American Society for Microbiology.

  16. Mechanisms and consequences of paternally transmitted chromosomal abnormalities

    Energy Technology Data Exchange (ETDEWEB)

    Marchetti, F; Wyrobek, A J

    2005-04-05

    Paternally transmitted chromosomal damage has been associated with pregnancy loss, developmental and morphological defects, infant mortality, infertility, and genetic diseases in the offspring including cancer. There is epidemiological evidence linking paternal exposure to occupational or environmental agents with an increased risk of abnormal reproductive outcomes. There is also a large body of literature on germ cell mutagenesis in rodents showing that treatment of male germ cells with mutagens has dramatic consequences on reproduction producing effects such as those observed in human epidemiological studies. However, we know very little about the etiology, transmission and early embryonic consequences of paternally-derived chromosomal abnormalities. The available evidence suggests that: (1) there are distinct patterns of germ cell-stage differences in the sensitivity of induction of transmissible genetic damage with male postmeiotic cells being the most sensitive; (2) cytogenetic abnormalities at first metaphase after fertilization are critical intermediates between paternal exposure and abnormal reproductive outcomes; and, (3) there are maternally susceptibility factors that may have profound effects on the amount of sperm DNA damage that is converted into chromosomal aberrations in the zygote and directly affect the risk for abnormal reproductive outcomes.

  17. Heterochromatin position effects on circularized sex chromosomes cause filicidal embryonic lethality in Drosophila melanogaster.

    Science.gov (United States)

    Ferree, Patrick M; Gomez, Karina; Rominger, Peter; Howard, Dagnie; Kornfeld, Hannah; Barbash, Daniel A

    2014-04-01

    Some circularized X-Y chromosomes in Drosophila melanogaster are mitotically unstable and induce early embryonic lethality, but the genetic basis is unknown. Our experiments suggest that a large region of X-linked satellite DNA causes anaphase bridges and lethality when placed into a new heterochromatic environment within certain circularized X-Y chromosomes. These results reveal that repetitive sequences can be incompatible with one another in cis. The lethal phenotype also bears a remarkable resemblance to a case of interspecific hybrid lethality.

  18. Genetic markers, translocations and sexing genes on chromosome 2 of Ceratitis capitata

    International Nuclear Information System (INIS)

    Cladera, J.L.

    1997-01-01

    A review is presented of results obtained in a search for genetic markers, translocations and selectable genes obtained at the Instituto de Genetica, Castelar, Argentina, with special reference to chromosome 2 linked mutations and genes useful for developing self-sexing strains in Ceratitis capitata. (author)

  19. Klinefelter syndrome comorbidities linked to increased X chromosome gene dosage and altered protein interactome activity

    DEFF Research Database (Denmark)

    Belling, Kirstine González-Izarzugaza; Russo, Francesco; Jensen, Anders Boeck

    2017-01-01

    Klinefelter syndrome (KS) (47,XXY) is the most common male sex chromosome aneuploidy. Diagnosis and clinical supervision remain a challenge due to varying phenotypic presentation and insufficient characterization of the syndrome. Here we combine health data-driven epidemiology and molecular level...

  20. Pathogenicity Island Cross Talk Mediated by Recombination Directionality Factors Facilitates Excision from the Chromosome.

    Science.gov (United States)

    Carpenter, Megan R; Rozovsky, Sharon; Boyd, E Fidelma

    2015-12-14

    Pathogenicity islands (PAIs) are mobile integrated genetic elements (MIGEs) that contain a diverse range of virulence factors and are essential in the evolution of pathogenic bacteria. PAIs are widespread among bacteria and integrate into the host genome, commonly at a tRNA locus, via integrase-mediated site-specific recombination. The excision of PAIs is the first step in the horizontal transfer of these elements and is not well understood. In this study, we examined the role of recombination directionality factors (RDFs) and their relationship with integrases in the excision of two PAIs essential for Vibrio cholerae host colonization: Vibrio pathogenicity island 1 (VPI-1) and VPI-2. VPI-1 does not contain an RDF, which allowed us to answer the question of whether RDFs are an absolute requirement for excision. We found that an RDF was required for efficient excision of VPI-2 but not VPI-1 and that RDFs can induce excision of both islands. Expression data revealed that the RDFs act as transcriptional repressors to both VPI-1- and VPI-2-encoded integrases. We demonstrated that the RDFs Vibrio excision factor A (VefA) and VefB bind at the attachment sites (overlapping the int promoter region) of VPI-1 and VPI-2, thus supporting this mode of integrase repression. In addition, V. cholerae RDFs are promiscuous due to their dual functions of promoting excision of both VPI-1 and VPI-2 and acting as negative transcriptional regulators of the integrases. This is the first demonstration of cross talk between PAIs mediated via RDFs which reveals the complex interactions that occur between separately acquired MIGEs. Deciphering the mechanisms of pathogenicity island excision is necessary for understanding the evolution and spread of these elements to their nonpathogenic counterparts. Such mechanistic insight would assist in predicting the mobility of uncharacterized genetic elements. This study identified extensive RDF-mediated cross talk between two nonhomologous VPIs and

  1. Identification of molecular markers linked to rice bacterial blight resistance genes from Oryza meyeriana

    Directory of Open Access Journals (Sweden)

    Jing WANG,Chen CHENG,Yanru ZHOU,Yong YANG,Qiong MEI,Junmin LI,Ye CHENG,Chengqi YAN,Jianping CHEN

    2015-09-01

    Full Text Available Y73 is a progeny of asymmetric somatic hybridization between Oryza sativa cv. Dalixiang and the wild rice species Oryza meyeriana. Inoculation with a range of strains of Xanthomonas oryzae pv. oryzae showed that Y73 had inherited a high level of resistance to rice bacterial blight (BB from its wild parent. An F2 population of 7125 individuals was constructed from the cross between Y73 and a BB-susceptible cultivar IR24. After testing 615 SSR and STS markers covering the 12 rice chromosomes, 186 markers were selected that showed polymorphism between Y73 and IR24. Molecular markers linked to the BB resistance genes in Y73 were scanned using the F2 population and the polymorphic markers. The SSR marker RM128 on chromosome 1, the STS marker R03D159 on chromosome 3 and the STS marker R05D104 on chromosome 5 were found to be linked to the rice BB resistance genes in Y73.

  2. Discrimination of chromosome by autoradiography

    International Nuclear Information System (INIS)

    Masubuchi, Masanori

    1975-01-01

    This paper describes discrimination of chromosome by autoradiography. In this method, the difference in DNA synthetic phase between each chromosome was used as a standard, and the used chromosome was in metaphase, as morphological characteristics were markedly in this phase. Cell cycle and autoradiography with 3 H-thymidine were also examined. In order to discriminate chromosome by autoradiography, it was effective to utilize the labelled pattern in late DNA synthetic phase, where asynchronous replication of chromosome appeared most obviously. DNA synthesis in chromosome was examined in each DNA synthetic phase by culturing the chromosome after the treatment with 3 H-thymidine and altering the time to prepare chromosome specimen. Discrimination of chromosome in plants and animals by autoradiography was also mentioned. It was noticed as a structural and functional discrimination of chromosome to observe amino acid uptake into chromosome protein and to utilize the difference in labelled pattern between the sites of chromosome. (K. Serizawa)

  3. Genetic affinities between the Yami tribe people of Orchid Island and the Philippine Islanders of the Batanes archipelago

    Science.gov (United States)

    2011-01-01

    Background Yami and Ivatan islanders are Austronesian speakers from Orchid Island and the Batanes archipelago that are located between Taiwan and the Philippines. The paternal genealogies of the Yami tribe from 1962 monograph of Wei and Liu were compared with our dataset of non-recombining Y (NRY) chromosomes from the corresponding families. Then mitochondrial DNA polymorphism was also analyzed to determine the matrilineal relationships between Yami, Ivatan, and other East Asian populations. Results The family relationships inferred from the NRY Phylogeny suggested a low number of paternal founders and agreed with the genealogy of Wei and Liu (P Philippine people was closer than that between Yami and Ivatan, suggesting that the Orchid islanders were colonized separately by their nearest neighbors and bred in isolation. However a northward gene flow to Orchid Island from the Philippines was suspected as Yami and Ivatan peoples both speak Western Malayo-Polynesian languages which are not spoken in Taiwan. Actually, only very little gene flow was observed between Yami and Ivatan or between Yami and the Philippines as indicated by the sharing of mtDNA haplogroup B4a1a4 and one O1a1* Y-STR lineage. Conclusions The NRY and mtDNA genetic information among Yami tribe peoples fitted well the patrilocal society model proposed by Wei and Liu. In this proposal, there were likely few genetic exchanges among Yami and the Philippine people. Trading activities may have contributed to the diffusion of Malayo-Polynesian languages among them. Finally, artifacts dating 4,000 YBP, found on Orchid Island and indicating association with the Out of Taiwan hypothesis might be related to a pioneering stage of settlement, as most dating estimates inferred from DNA variation in our data set ranged between 100-3,000 YBP. PMID:21281460

  4. Molecular and cellular pathways associated with chromosome 1p deletions during colon carcinogenesis

    Directory of Open Access Journals (Sweden)

    Payne CM

    2011-05-01

    Full Text Available Claire M Payne, Cheray Crowley-Skillicorn, Carol Bernstein, Hana Holubec, Harris BernsteinDepartment of Cell Biology and Anatomy, College of Medicine, University of Arizona Tucson, AZ, USAAbstract: Chromosomal instability is a major pathway of sporadic colon carcinogenesis. Chromosome arm 1p appears to be one of the “hot spots” in the non-neoplastic mucosa that, when deleted, is associated with the initiation of carcinogenesis. Chromosome arm 1p contains genes associated with DNA repair, spindle checkpoint function, apoptosis, multiple microRNAs, the Wnt signaling pathway, tumor suppression, antioxidant activities, and defense against environmental toxins. Loss of 1p is dangerous since it would likely contribute to genomic instability leading to tumorigenesis. The 1p deletion-associated colon carcinogenesis pathways are reviewed at the molecular and cellular levels. Sporadic colon cancer is strongly linked to a high-fat/low-vegetable/low-micronutrient, Western-style diet. We also consider how selected dietary-related compounds (eg, excess hydrophobic bile acids, and low levels of folic acid, niacin, plant-derived antioxidants, and other modulatory compounds might affect processes leading to chromosomal deletions, and to the molecular and cellular pathways specifically altered by chromosome 1p loss.Keywords: chromosome 1p, colon carcinogenesis, molecular pathways, cellular pathways

  5. Widespread Over-Expression of the X Chromosome in Sterile F1 Hybrid Mice

    Science.gov (United States)

    Good, Jeffrey M.; Giger, Thomas; Dean, Matthew D.; Nachman, Michael W.

    2010-01-01

    The X chromosome often plays a central role in hybrid male sterility between species, but it is unclear if this reflects underlying regulatory incompatibilities. Here we combine phenotypic data with genome-wide expression data to directly associate aberrant expression patterns with hybrid male sterility between two species of mice. We used a reciprocal cross in which F1 males are sterile in one direction and fertile in the other direction, allowing us to associate expression differences with sterility rather than with other hybrid phenotypes. We found evidence of extensive over-expression of the X chromosome during spermatogenesis in sterile but not in fertile F1 hybrid males. Over-expression was most pronounced in genes that are normally expressed after meiosis, consistent with an X chromosome-wide disruption of expression during the later stages of spermatogenesis. This pattern was not a simple consequence of faster evolutionary divergence on the X chromosome, because X-linked expression was highly conserved between the two species. Thus, transcriptional regulation of the X chromosome during spermatogenesis appears particularly sensitive to evolutionary divergence between species. Overall, these data provide evidence for an underlying regulatory basis to reproductive isolation in house mice and underscore the importance of transcriptional regulation of the X chromosome to the evolution of hybrid male sterility. PMID:20941395

  6. Experiment list: SRX186707 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available =Histone H3 (di methyl K4). Marks promoters and enhancers. Most CpG islands are marked by H3K4me2 in primary...H3K4me2 || antibody targetdescription=Histone H3 (di methyl K4). Marks promoters and enhancers. Most CpG isl

  7. Experiment list: SRX186692 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available tion=Histone H3 (di methyl K4). Marks promoters and enhancers. Most CpG islands are marked by H3K4me2 in pri...et: H3K4me2 || antibody targetdescription=Histone H3 (di methyl K4). Marks promoters and enhancers. Most CpG

  8. The Y chromosome of the Atelidae family (Platyrrhini): study by chromosome microdissection.

    Science.gov (United States)

    Gifalli-Iughetti, C; Koiffmann, C P

    2009-01-01

    In order to study the intergeneric variability of the Y chromosome, we describe the hybridization of the Y chromosome of Brachytelesarachnoides, obtained by microdissection, to metaphases of Atelesbelzebuthmarginatus, Lagothrixlagothricha, and Alouatta male specimens. Brachytelesarachnoides (Atelinae) has 62 chromosomes and a very small Y chromosome. Our results showed that the Brachytelesarachnoides Y chromosome probe hybridized to Lagothrixlagothricha metaphases yielding one hybridization signal on only the tiny Y chromosome, and when hybridized with Atelesbelzebuthmarginatus metaphases it yielded one hybridization signal on two thirds of the small acrocentric Y chromosome. However, no hybridization signal was observed in Alouatta metaphases (subfamily Alouattinae), a closely related genus in the Atelidae family. Furthermore, our data support a close phylogenetic relationship among Brachyteles, Ateles, and Lagothrix and their placement in the Atelinae subfamily, but exclude Alouatta from this group indicating its placement as basal to this group. Copyright 2009 S. Karger AG, Basel.

  9. Demographic history of Canary Islands male gene-pool: replacement of native lineages by European

    Directory of Open Access Journals (Sweden)

    Amorim António

    2009-08-01

    Full Text Available Abstract Background The origin and prevalence of the prehispanic settlers of the Canary Islands has attracted great multidisciplinary interest. However, direct ancient DNA genetic studies on indigenous and historical 17th–18th century remains, using mitochondrial DNA as a female marker, have only recently been possible. In the present work, the analysis of Y-chromosome polymorphisms in the same samples, has shed light on the way the European colonization affected male and female Canary Island indigenous genetic pools, from the conquest to present-day times. Results Autochthonous (E-M81 and prominent (E-M78 and J-M267 Berber Y-chromosome lineages were detected in the indigenous remains, confirming a North West African origin for their ancestors which confirms previous mitochondrial DNA results. However, in contrast with their female lineages, which have survived in the present-day population since the conquest with only a moderate decline, the male indigenous lineages have dropped constantly being substituted by European lineages. Male and female sub-Saharan African genetic inputs were also detected in the Canary population, but their frequencies were higher during the 17th–18th centuries than today. Conclusion The European colonization of the Canary Islands introduced a strong sex-biased change in the indigenous population in such a way that indigenous female lineages survived in the extant population in a significantly higher proportion than their male counterparts.

  10. DNA methylome changes by estradiol benzoate and bisphenol A links early-life environmental exposures to prostate cancer risk.

    Science.gov (United States)

    Cheong, Ana; Zhang, Xiang; Cheung, Yuk-Yin; Tang, Wan-Yee; Chen, Jing; Ye, Shu-Hua; Medvedovic, Mario; Leung, Yuet-Kin; Prins, Gail S; Ho, Shuk-Mei

    2016-09-01

    Developmental exposure to endocrine-disrupting chemicals (EDCs), 17β-estradiol-3-benzoate (EB) and bisphenol A (BPA), increases susceptibility to prostate cancer (PCa) in rodent models. Here, we used the methylated-CpG island recovery assay (MIRA)-assisted genomic tiling and CpG island arrays to identify treatment-associated methylome changes in the postnatal day (PND)90 dorsal prostate tissues of Sprague-Dawley rats neonatally (PND1, 3, and 5) treated with 25 µg/pup or 2,500 µg EB/kg body weight (BW) or 0.1 µg BPA/pup or 10 µg BPA/kg BW. We identified 111 EB-associated and 86 BPA-associated genes, with 20 in common, that have significant differentially methylated regions. Pathway analysis revealed cancer as the top common disease pathway. Bisulfite sequencing validated the differential methylation patterns observed by array analysis in 15 identified candidate genes. The methylation status of 7 (Pitx3, Wnt10b, Paqr4, Sox2, Chst14, Tpd52, Creb3l4) of these 15 genes exhibited an inverse correlation with gene expression in tissue samples. Cell-based assays, using 5-aza-cytidine-treated normal (NbE-1) and cancerous (AIT) rat prostate cells, added evidence of DNA methylation-mediated gene expression of 6 genes (exception: Paqr4). Functional connectivity of these genes was linked to embryonic stem cell pluripotency. Furthermore, clustering analyses using the dataset from The Cancer Genome Atlas revealed that expression of this set of 7 genes was associated with recurrence-free survival of PCa patients. In conclusion, our study reveals that gene-specific promoter methylation changes, resulting from early-life EDC exposure in the rat, may serve as predictive epigenetic biomarkers of PCa recurrence, and raises the possibility that such exposure may impact human disease.

  11. Comparative Hi-C Reveals that CTCF Underlies Evolution of Chromosomal Domain Architecture

    Directory of Open Access Journals (Sweden)

    Matteo Vietri Rudan

    2015-03-01

    Full Text Available Topological domains are key architectural building blocks of chromosomes, but their functional importance and evolutionary dynamics are not well defined. We performed comparative high-throughput chromosome conformation capture (Hi-C in four mammals and characterized the conservation and divergence of chromosomal contact insulation and the resulting domain architectures within distantly related genomes. We show that the modular organization of chromosomes is robustly conserved in syntenic regions and that this is compatible with conservation of the binding landscape of the insulator protein CTCF. Specifically, conserved CTCF sites are co-localized with cohesin, are enriched at strong topological domain borders, and bind to DNA motifs with orientations that define the directionality of CTCF’s long-range interactions. Conversely, divergent CTCF binding between species is correlated with divergence of internal domain structure, likely driven by local CTCF binding sequence changes, demonstrating how genome evolution can be linked to a continuous flux of local conformation changes. We also show that large-scale domains are reorganized during genome evolution as intact modules.

  12. Micromechanics of human mitotic chromosomes

    International Nuclear Information System (INIS)

    Sun, Mingxuan; Kawamura, Ryo; Marko, John F

    2011-01-01

    Eukaryote cells dramatically reorganize their long chromosomal DNAs to facilitate their physical segregation during mitosis. The internal organization of folded mitotic chromosomes remains a basic mystery of cell biology; its understanding would likely shed light on how chromosomes are separated from one another as well as into chromosome structure between cell divisions. We report biophysical experiments on single mitotic chromosomes from human cells, where we combine micromanipulation, nano-Newton-scale force measurement and biochemical treatments to study chromosome connectivity and topology. Results are in accord with previous experiments on amphibian chromosomes and support the 'chromatin network' model of mitotic chromosome structure. Prospects for studies of chromosome-organizing proteins using siRNA expression knockdowns, as well as for differential studies of chromosomes with and without mutations associated with genetic diseases, are also discussed

  13. Epigenetic silencing of BTB and CNC homology 2 and concerted promoter CpG methylation in gastric cancer.

    Science.gov (United States)

    Haam, Keeok; Kim, Hee-Jin; Lee, Kyung-Tae; Kim, Jeong-Hwan; Kim, Mirang; Kim, Seon-Young; Noh, Seung-Moo; Song, Kyu-Sang; Kim, Yong Sung

    2014-09-01

    BTB and CNC homology 2 (BACH2) is a lymphoid-specific transcription factor with a prominent role in B-cell development. Genetic polymorphisms within a single locus encoding BACH2 are associated with various autoimmune diseases and allergies. In this study, restriction landmark genomic scanning revealed methylation at a NotI site in a CpG island covering the BACH2 promoter in gastric cancer cell lines and primary gastric tumors. Increased methylation of the BACH2 promoter was observed in 52% (43/83) of primary gastric tumors, and BACH2 hypermethylation was significantly associated with decreased gene expression. Treatment with 5-aza-2'-deoxycytidine and/or trichostatin. A restored BACH2 expression in BACH2-silenced gastric cancer cell lines, and knockdown of BACH2 using short hairpin RNA (i.e. RNA interference) increased cell proliferation in gastric cancer cells. Clinicopathologic data showed that decreased BACH2 expression occurred significantly more frequently in intestinal-type (27/44, 61%) compared with diffuse-type (13/50, 26%) gastric cancers (P<0.001). Furthermore, BACH2 promoter methylation paralleled that of previously identified targets, such as LRRC3B, LIMS2, PRKD1 and POPDC3, in a given set of gastric tumors. We propose that concerted methylation in many promoters plays a role in accelerating gastric tumor formation and that methylated promoter loci may be targets for therapeutic treatment, such as the recently introduced technique of epigenetic editing. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  14. Sex determination in Madagascar geckos of the genus Paroedura (Squamata: Gekkonidae): are differentiated sex chromosomes indeed so evolutionary stable?

    Science.gov (United States)

    Koubová, Martina; Johnson Pokorná, Martina; Rovatsos, Michail; Farkačová, Klára; Altmanová, Marie; Kratochvíl, Lukáš

    2014-12-01

    Among amniote vertebrates, geckos represent a clade with exceptional variability in sex determination; however, only a minority of species of this highly diverse group has been studied in this respect. Here, we describe for the first time a female heterogamety in the genus Paroedura, the group radiated in Madagascar and adjacent islands. We identified homomorphic ZZ/ZW sex chromosomes with a highly heterochromatic W chromosome in Paroedura masobe, Paroedura oviceps, Paroedura karstophila, Paroedura stumpffi, and Paroedura lohatsara. Comparative genomic hybridization (CGH) revealed that female-specific sequences are greatly amplified in the W chromosome of P. lohatsara and that P. gracilis seems to possess a derived system of multiple sex chromosomes. Contrastingly, neither CGH nor heterochromatin visualization revealed differentiated sex chromosomes in the members of the Paroedura picta-Paroedura bastardi-Paroedura ibityensis clade, which is phylogenetically nested within lineages with a heterochromatic W chromosome. As a sex ratio consistent with genotypic sex determination has been reported in P. picta, it appears that the members of the P. picta-P. bastardi-P. ibityensis clade possess homomorphic, poorly differentiated sex chromosomes and may represent a rare example of evolutionary loss of highly differentiated sex chromosomes. Fluorescent in situ hybridization (FISH) with a telomeric probe revealed a telomere-typical pattern in all species and an accumulation of telomeric sequences in the centromeric region of autosomes in P. stumpffi and P. bastardi. Our study adds important information for the greater understanding of the variability and evolution of sex determination in geckos and demonstrates how the geckos of the genus Paroedura provide an interesting model for studying the evolution of the sex chromosomes.

  15. Evolutionary Dynamics of the Gametologous CTNNB1 Gene on the Z and W Chromosomes of Snakes.

    Science.gov (United States)

    Laopichienpong, Nararat; Muangmai, Narongrit; Chanhome, Lawan; Suntrarachun, Sunutcha; Twilprawat, Panupon; Peyachoknagul, Surin; Srikulnath, Kornsorn

    2017-03-01

    Snakes exhibit genotypic sex determination with female heterogamety (ZZ males and ZW females), and the state of sex chromosome differentiation also varies among lineages. To investigate the evolutionary history of homologous genes located in the nonrecombining region of differentiated sex chromosomes in snakes, partial sequences of the gametologous CTNNB1 gene were analyzed for 12 species belonging to henophid (Cylindrophiidae, Xenopeltidae, and Pythonidae) and caenophid snakes (Viperidae, Elapidae, and Colubridae). Nonsynonymous/synonymous substitution ratios (Ka/Ks) in coding sequences were low (Ka/Ks < 1) between CTNNB1Z and CTNNB1W, suggesting that these 2 genes may have similar functional properties. However, frequencies of intron sequence substitutions and insertion–deletions were higher in CTNNB1Z than CTNNB1W, suggesting that Z-linked sequences evolved faster than W-linked sequences. Molecular phylogeny based on both intron and exon sequences showed the presence of 2 major clades: 1) Z-linked sequences of Caenophidia and 2) W-linked sequences of Caenophidia clustered with Z-linked sequences of Henophidia, which suggests that the sequence divergence between CTNNB1Z and CTNNB1W in Caenophidia may have occurred by the cessation of recombination after the split from Henophidia.

  16. A Link between Meiotic Prophase Progression and CrossoverControl

    Energy Technology Data Exchange (ETDEWEB)

    Carlton, Peter M.; Farruggio, Alfonso P.; Dernburg, Abby F.

    2005-07-06

    During meiosis, most organisms ensure that homologous chromosomes undergo at least one exchange of DNA, or crossover, to link chromosomes together and accomplish proper segregation. How each chromosome receives a minimum of one crossover is unknown. During early meiosis in Caenorhabditis elegans and many other species, chromosomes adopt a polarized organization within the nucleus, which normally disappears upon completion of homolog synapsis. Mutations that impair synapsis even between a single pair of chromosomes in C. elegans delay this nuclear reorganization. We quantified this delay by developing a classification scheme for discrete stages of meiosis. Immunofluorescence localization of RAD-51 protein revealed that delayed meiotic cells also contained persistent recombination intermediates. Through genetic analysis, we found that this cytological delay in meiotic progression requires double-strand breaks and the function of the crossover-promoting heteroduplex HIM-14 (Msh4) and MSH-5. Failure of X chromosome synapsis also resulted in impaired crossover control on autosomes, which may result from greater numbers and persistence of recombination intermediates in the delayed nuclei. We conclude that maturation of recombination events on chromosomes promotes meiotic progression, and is coupled to the regulation of crossover number and placement. Our results have broad implications for the interpretation of meiotic mutants, as we have shown that asynapsis of a single chromosome pair can exert global effects on meiotic progression and recombination frequency.

  17. Spontaneous chromosome aberrations in cancer cells. Evidence of existence of hidden genetic lesions in genetic structures

    International Nuclear Information System (INIS)

    Poryadkova-Luchnik, N.A.; Kuz'mina, E.G.

    1996-01-01

    Chromosome aberrations spontaneously observed in cancer cells were quantitively studied under the effect of non-mutagenic (suboptimal temperature, low content of propilgallate and caffeine) and mutagenic (ionizing radiation) factors. Human larynx cancer cells during several years or gamma-irradiation were used to carry out experiments. The experiments linked with cloning of the initial population and investigation into chromosome aberrations in 22 clones demonstrated persuasively the occurrence of latent genetic lesions in cancer cells

  18. Dissociable effects of Sry and sex chromosome complement on activity, feeding and anxiety-related behaviours in mice.

    Science.gov (United States)

    Kopsida, Eleni; Lynn, Phoebe M; Humby, Trevor; Wilkinson, Lawrence S; Davies, William

    2013-01-01

    Whilst gonadal hormones can substantially influence sexual differentiation of the brain, recent findings have suggested that sex-linked genes may also directly influence neurodevelopment. Here we used the well-established murine 'four core genotype' (FCG) model on a gonadally-intact, outbred genetic background to characterise the contribution of Sry-dependent effects (i.e. those arising from the expression of the Y-linked Sry gene in the brain, or from hormonal sequelae of gonadal Sry expression) and direct effects of sex-linked genes other than Sry ('sex chromosome complement' effects) to sexually dimorphic mouse behavioural phenotypes. Over a 24 hour period, XX and XY gonadally female mice (lacking Sry) exhibited greater horizontal locomotor activity and reduced food consumption per unit bodyweight than XX and XY gonadally male mice (possessing Sry); in two behavioural tests (the elevated plus and zero mazes) XX and XY gonadally female mice showed evidence for increased anxiety-related behaviours relative to XX and XY gonadally male mice. Exploratory correlational analyses indicated that these Sry-dependent effects could not be simply explained by brain expression of the gene, nor by circulating testosterone levels. We also noted a sex chromosome complement effect on food (but not water) consumption whereby XY mice consumed more over a 24hr period than XX mice, and a sex chromosome complement effect in a third test of anxiety-related behaviour, the light-dark box. The present data suggest that: i) the male-specific factor Sry may influence activity and feeding behaviours in mice, and ii) dissociable feeding and anxiety-related murine phenotypes may be differentially modulated by Sry and by other sex-linked genes. Our results may have relevance for understanding the molecular underpinnings of sexually dimorphic behavioural phenotypes in healthy men and women, and in individuals with abnormal sex chromosome constitutions.

  19. Dissociable effects of Sry and sex chromosome complement on activity, feeding and anxiety-related behaviours in mice.

    Directory of Open Access Journals (Sweden)

    Eleni Kopsida

    Full Text Available Whilst gonadal hormones can substantially influence sexual differentiation of the brain, recent findings have suggested that sex-linked genes may also directly influence neurodevelopment. Here we used the well-established murine 'four core genotype' (FCG model on a gonadally-intact, outbred genetic background to characterise the contribution of Sry-dependent effects (i.e. those arising from the expression of the Y-linked Sry gene in the brain, or from hormonal sequelae of gonadal Sry expression and direct effects of sex-linked genes other than Sry ('sex chromosome complement' effects to sexually dimorphic mouse behavioural phenotypes. Over a 24 hour period, XX and XY gonadally female mice (lacking Sry exhibited greater horizontal locomotor activity and reduced food consumption per unit bodyweight than XX and XY gonadally male mice (possessing Sry; in two behavioural tests (the elevated plus and zero mazes XX and XY gonadally female mice showed evidence for increased anxiety-related behaviours relative to XX and XY gonadally male mice. Exploratory correlational analyses indicated that these Sry-dependent effects could not be simply explained by brain expression of the gene, nor by circulating testosterone levels. We also noted a sex chromosome complement effect on food (but not water consumption whereby XY mice consumed more over a 24hr period than XX mice, and a sex chromosome complement effect in a third test of anxiety-related behaviour, the light-dark box. The present data suggest that: i the male-specific factor Sry may influence activity and feeding behaviours in mice, and ii dissociable feeding and anxiety-related murine phenotypes may be differentially modulated by Sry and by other sex-linked genes. Our results may have relevance for understanding the molecular underpinnings of sexually dimorphic behavioural phenotypes in healthy men and women, and in individuals with abnormal sex chromosome constitutions.

  20. Allele-Specific DNA Methylation and Its Interplay with Repressive Histone Marks at Promoter-Mutant TERT Genes

    Directory of Open Access Journals (Sweden)

    Josh Lewis Stern

    2017-12-01

    Full Text Available A mutation in the promoter of the Telomerase Reverse Transcriptase (TERT gene is the most frequent noncoding mutation in cancer. The mutation drives unusual monoallelic expression of TERT, allowing immortalization. Here, we find that DNA methylation of the TERT CpG island (CGI is also allele-specific in multiple cancers. The expressed allele is hypomethylated, which is opposite to cancers without TERT promoter mutations. The continued presence of Polycomb repressive complex 2 (PRC2 on the inactive allele suggests that histone marks of repressed chromatin may be causally linked to high DNA methylation. Consistent with this hypothesis, TERT promoter DNA containing 5-methyl-CpG has much increased affinity for PRC2 in vitro. Thus, CpG methylation and histone marks appear to collaborate to maintain the two TERT alleles in different epigenetic states in TERT promoter mutant cancers. Finally, in several cancers, DNA methylation levels at the TERT CGI correlate with altered patient survival.