WorldWideScience

Sample records for chromosome walking

  1. Single nucleotide polymorphism discovery of Pinus radiata with chromosome walking PCR method

    Institute of Scientific and Technical Information of China (English)

    Wei LI; Hui LI; Xiaoyang CHEN; Harry WU

    2008-01-01

    In this paper, the basic principle of chromosome walking is presented and we used an actin gene of radiata pine (Pinus radiata) as an example to conduct upstream and downstream chromosome walking for EST sequences. The full genomic sequence (2154 bp) of the actin gene, including promoters 5' UTR, CDS and 3' UTR, was identified by chromosome walking. PCR amplification and DNA band sequencing from 200 unrelated radiata pine trees revealed a total of 21 SNPs for the actin gene, three in the promoter region, 15 in CDS and 4 in 3' UTR. The results of this experiment provide a technical framework for SNPs dis-covery in none coding regions of candidate genes.

  2. Gold nanoparticle-assisted primer walking for closing the human chromosomal gap

    DEFF Research Database (Denmark)

    Li, H; Shi, B; Li, X;

    2013-01-01

    NPs) to improve the efficiency in primer walking amplification. We used this strategy to close a gap in human chromosome 5 containing a DNA stretch composed of the 12SAT repeat. The obtained gap sequence is highly conserved among several mammalian genomes. The demonstrated AuNP-assisted primer walking strategy......The finished sequence of the human genome still contains 260 euchromatic gaps. All the PCR-based genome walking techniques used to close gaps have common limitations, such as low efficiency and low specificity. We herein describe a strategy to solve this problem by employing gold nanoparticles (Au...

  3. Hidden chromosome symmetry: in silico transformation reveals symmetry in 2D DNA walk trajectories of 671 chromosomes.

    Directory of Open Access Journals (Sweden)

    Maria S Poptsova

    Full Text Available Maps of 2D DNA walk of 671 examined chromosomes show composition complexity change from symmetrical half-turn in bacteria to pseudo-random trajectories in archaea, fungi and humans. In silico transformation of gene order and strand position returns most of the analyzed chromosomes to a symmetrical bacterial-like state with one transition point. The transformed chromosomal sequences also reveal remarkable segmental compositional symmetry between regions from different strands located equidistantly from the transition point. Despite extensive chromosome rearrangement the relation of gene numbers on opposite strands for chromosomes of different taxa varies in narrow limits around unity with Pearson coefficient r = 0.98. Similar relation is observed for total genes' length (r = 0.86 and cumulative GC (r = 0.95 and AT (r = 0.97 skews. This is also true for human coding sequences (CDS, which comprise only several percent of the entire chromosome length. We found that frequency distributions of the length of gene clusters, continuously located on the same strand, have close values for both strands. Eukaryotic gene distribution is believed to be non-random. Contribution of different subsystems to the noted symmetries and distributions, and evolutionary aspects of symmetry are discussed.

  4. Tracembler – software for in-silico chromosome walking in unassembled genomes

    Directory of Open Access Journals (Sweden)

    Wilkerson Matthew D

    2007-05-01

    Full Text Available Abstract Background Whole genome shotgun sequencing produces increasingly higher coverage of a genome with random sequence reads. Progressive whole genome assembly and eventual finishing sequencing is a process that typically takes several years for large eukaryotic genomes. In the interim, all sequence reads of public sequencing projects are made available in repositories such as the NCBI Trace Archive. For a particular locus, sequencing coverage may be high enough early on to produce a reliable local genome assembly. We have developed software, Tracembler, that facilitates in silico chromosome walking by recursively assembling reads of a selected species from the NCBI Trace Archive starting with reads that significantly match sequence seeds supplied by the user. Results Tracembler takes one or multiple DNA or protein sequence(s as input to the NCBI Trace Archive BLAST engine to identify matching sequence reads from a species of interest. The BLAST searches are carried out recursively such that BLAST matching sequences identified in previous rounds of searches are used as new queries in subsequent rounds of BLAST searches. The recursive BLAST search stops when either no more new matching sequences are found, a given maximal number of queries is exhausted, or a specified maximum number of rounds of recursion is reached. All the BLAST matching sequences are then assembled into contigs based on significant sequence overlaps using the CAP3 program. We demonstrate the validity of the concept and software implementation with an example of successfully recovering a full-length Chrm2 gene as well as its upstream and downstream genomic regions from Rattus norvegicus reads. In a second example, a query with two adjacent Medicago truncatula genes as seeds resulted in a contig that likely identifies the microsyntenic homologous soybean locus. Conclusion Tracembler streamlines the process of recursive database searches, sequence assembly, and gene

  5. Chromosome

    Science.gov (United States)

    Chromosomes are structures found in the center (nucleus) of cells that carry long pieces of DNA. DNA ... is the building block of the human body. Chromosomes also contain proteins that help DNA exist in ...

  6. An A-T linker adapter polymerase chain reaction method for chromosome walking without restriction site cloning bias.

    Science.gov (United States)

    Trinh, Quoclinh; Xu, Wentao; Shi, Hui; Luo, Yunbo; Huang, Kunlun

    2012-06-01

    A-T linker adapter polymerase chain reaction (PCR) was modified and employed for the isolation of genomic fragments adjacent to a known DNA sequence. The improvements in the method focus on two points. The first is the modification of the PO(4) and NH(2) groups in the adapter to inhibit the self-ligation of the adapter or the generation of nonspecific products. The second improvement is the use of the capacity of rTaq DNA polymerase to add an adenosine overhang at the 3' ends of digested DNA to suppress self-ligation in the digested DNA and simultaneously resolve restriction site clone bias. The combination of modifications in the adapter and in the digested DNA leads to T/A-specific ligation, which enhances the flexibility of this method and makes it feasible to use many different restriction enzymes with a single adapter. This novel A-T linker adapter PCR overcomes the inherent limitations of the original ligation-mediated PCR method such as low specificity and a lack of restriction enzyme choice. Moreover, this method also offers higher amplification efficiency, greater flexibility, and easier manipulation compared with other PCR methods for chromosome walking. Experimental results from 143 Arabidopsis mutants illustrate that this method is reliable and efficient in high-throughput experiments.

  7. Isolation of Ty1-copia-like Retrotransposon Sequences from the Apple Genome by Chromosome Walking Based on Modified SiteFinding-polymerase Chain Reaction

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Long terminal repeat (LTR) retrotransposons are powerful tools for studying genetic biodiversity,genome evolution, gene mutation, gene cloning and gene expression. The scarcity of retrotransposon sequence information restricts the development of these studies in higher plants. In the present study, 31 reverse transcriptase (RT) genes of Tyl-copia-like retrotransposons were identified from the apple genome by amplifying the RT coding region using degenerate primers. Nineteen RT genes showed extreme heterogeneity in terms of fragment size, base pair composition and open reading frame integrality. Originating from one 266 bp cloned RT gene, a 1966 bp Ty1-copia-like retrotransposon (named Tcrm1), including RT-ribonuclease H-LTR domain sequences, was achieved by chromosome walking based on modified SiteFinding-polymerase chain reaction. The comparison between Tcrm1 and other LTR retrotransposons in gene structure and sequence homology shows that Tcrm1 is the first Ty1-copia-like retrotransposon including an LTR domain in the apple genome. Dot blot analysis revealed that Tcrm1 copy number in the apple was approximately 1×103 copies per haploid genome.

  8. Fusion primer and nested integrated PCR (FPNI-PCR: a new high-efficiency strategy for rapid chromosome walking or flanking sequence cloning

    Directory of Open Access Journals (Sweden)

    Wang Zhen

    2011-11-01

    Full Text Available Abstract Background The advent of genomics-based technologies has revolutionized many fields of biological enquiry. However, chromosome walking or flanking sequence cloning is still a necessary and important procedure to determining gene structure. Such methods are used to identify T-DNA insertion sites and so are especially relevant for organisms where large T-DNA insertion libraries have been created, such as rice and Arabidopsis. The currently available methods for flanking sequence cloning, including the popular TAIL-PCR technique, are relatively laborious and slow. Results Here, we report a simple and effective fusion primer and nested integrated PCR method (FPNI-PCR for the identification and cloning of unknown genomic regions flanked known sequences. In brief, a set of universal primers was designed that consisted of various 15-16 base arbitrary degenerate oligonucleotides. These arbitrary degenerate primers were fused to the 3' end of an adaptor oligonucleotide which provided a known sequence without degenerate nucleotides, thereby forming the fusion primers (FPs. These fusion primers are employed in the first step of an integrated nested PCR strategy which defines the overall FPNI-PCR protocol. In order to demonstrate the efficacy of this novel strategy, we have successfully used it to isolate multiple genomic sequences namely, 21 orthologs of genes in various species of Rosaceace, 4 MYB genes of Rosa rugosa, 3 promoters of transcription factors of Petunia hybrida, and 4 flanking sequences of T-DNA insertion sites in transgenic tobacco lines and 6 specific genes from sequenced genome of rice and Arabidopsis. Conclusions The successful amplification of target products through FPNI-PCR verified that this novel strategy is an effective, low cost and simple procedure. Furthermore, FPNI-PCR represents a more sensitive, rapid and accurate technique than the established TAIL-PCR and hiTAIL-PCR procedures.

  9. Walking abnormalities

    Science.gov (United States)

    ... safety reasons, especially on uneven ground. See a physical therapist for exercise therapy and walking retraining. For a ... the right position for standing and walking. A physical therapist can supply these and provide exercise therapy, if ...

  10. Walking Problems

    Science.gov (United States)

    ... your legs or feet Movement disorders such as Parkinson's disease Diseases such as arthritis or multiple sclerosis Vision or balance problems Treatment of walking problems depends on the cause. Physical therapy, surgery, or mobility aids may help.

  11. Walking, places and wellbeing

    NARCIS (Netherlands)

    Ettema, Dick; Smajic, Ifeta

    2015-01-01

    While there is a substantial body of research on the health implications of walking, the physical, emotional and social outcomes of walking have received limited attention. This paper explores the wellbeing effects of walking and how the walking environment fosters or hinders such wellbeing effects.

  12. The Walk Poem.

    Science.gov (United States)

    Padgett, Ron

    2000-01-01

    Discusses the long history of writing poems about a walk, noting many titles. Notes four basic types of walk poems and includes one by American poet Bill Zavatksy, called "Class Walk With Notebooks After Storm." Offers numerous brief ideas for both the writing and the form of walk poems. (SR)

  13. Fire-Walking

    Science.gov (United States)

    Willey, David

    2010-01-01

    This article gives a brief history of fire-walking and then deals with the physics behind fire-walking. The author has performed approximately 50 fire-walks, took the data for the world's hottest fire-walk and was, at one time, a world record holder for the longest fire-walk (www.dwilley.com/HDATLTW/Record_Making_Firewalks.html). He currently…

  14. Marker chromosomes.

    Science.gov (United States)

    Rao, Kiran Prabhaker; Belogolovkin, Victoria

    2013-04-01

    Marker chromosomes are a morphologically heterogeneous group of structurally abnormal chromosomes that pose a significant challenge in prenatal diagnosis. Phenotypes associated with marker chromosomes are highly variable and range from normal to severely abnormal. Clinical outcomes are very difficult to predict when marker chromosomes are detected prenatally. In this review, we outline the classification, etiology, cytogenetic characterization, and clinical consequences of marker chromosomes, as well as practical approaches to prenatal diagnosis and genetic counseling.

  15. On alternating quantum walks

    Science.gov (United States)

    Rousseva, Jenia; Kovchegov, Yevgeniy

    2017-03-01

    We study an inhomogeneous quantum walk on a line that evolves according to alternating coins, each a rotation matrix. For the quantum walk with the coin alternating between clockwise and counterclockwise rotations by the same angle, we derive a closed form solution for the propagation of probabilities, and provide its asymptotic approximation via the method of stationary phase. Finally, we observe that for a x03c0;/4 angle, this alternating rotation walk will replicate the renown Hadamard walk.

  16. Virtually Abelian quantum walks

    Science.gov (United States)

    Mauro D'Ariano, Giacomo; Erba, Marco; Perinotti, Paolo; Tosini, Alessandro

    2017-01-01

    We study discrete-time quantum walks on Cayley graphs of non-Abelian groups, focusing on the easiest case of virtually Abelian groups. We present a technique to reduce the quantum walk to an equivalent one on an Abelian group with coin system having larger dimension. This method allows one to extend the notion of wave-vector to the virtually Abelian case and study analytically the walk dynamics. We apply the technique in the case of two quantum walks on virtually Abelian groups with planar Cayley graphs, finding the exact solution in terms of dispersion relation.

  17. Walks on Weighted Networks

    Institute of Scientific and Technical Information of China (English)

    WU An-Cai; XU Xin-Jian; WU Zhi-Xi; WANG Ying-Hai

    2007-01-01

    We investigate the dynamics of random walks on weighted networks. Assuming that the edge weight and the node strength are used as local information by a random walker. Two kinds of walks, weight-dependent walk and strength-dependent walk, are studied. Exact expressions for stationary distribution and average return time are derived and confirmed by computer simulations. The distribution of average return time and the mean-square that a weight-dependent walker can arrive at a new territory more easily than a strength-dependent one.

  18. Modeling Chromosomes

    Science.gov (United States)

    Robertson, Carol

    2016-01-01

    Learning about chromosomes is standard fare in biology classrooms today. However, students may find it difficult to understand the relationships among the "genome", "chromosomes", "genes", a "gene locus", and "alleles". In the simple activity described in this article, which follows the 5E approach…

  19. More Adults Are Walking

    Centers for Disease Control (CDC) Podcasts

    2012-07-31

    This podcast is based on the August 2012 CDC Vital Signs report. While more adults are walking, only half get the recommended amount of physical activity. Listen to learn how communities, employers, and individuals may help increase walking.  Created: 7/31/2012 by Centers for Disease Control and Prevention (CDC).   Date Released: 8/7/2012.

  20. Biomechanical analysis of rollator walking

    DEFF Research Database (Denmark)

    Alkjaer, T; Larsen, Peter K; Pedersen, Gitte

    2006-01-01

    The rollator is a very popular walking aid. However, knowledge about how a rollator affects the walking patterns is limited. Thus, the purpose of the study was to investigate the biomechanical effects of walking with and without a rollator on the walking pattern in healthy subjects.......The rollator is a very popular walking aid. However, knowledge about how a rollator affects the walking patterns is limited. Thus, the purpose of the study was to investigate the biomechanical effects of walking with and without a rollator on the walking pattern in healthy subjects....

  1. Crossover from random walk to self-avoiding walk

    Science.gov (United States)

    Rieger, Jens

    1988-11-01

    A one-dimensional n-step random walk on openZ1 which must not visit a vertex more than k times is studied via Monte Carlo methods. The dependences of the mean-square end-to-end distance of the walk and of the fraction of trapped walks on λ=(k-1)/n will be given for the range from λ=0 (self-avoiding walk) to λ=1 (unrestricted random walk). From the results it is conjectured that in the limit n-->∞ the walk obeys simple random walk statistics with respect to its static properties for all λ>0.

  2. When Human Walking is a Random Walk

    Science.gov (United States)

    Hausdorff, J. M.

    1998-03-01

    The complex, hierarchical locomotor system normally does a remarkable job of controlling an inherently unstable, multi-joint system. Nevertheless, the stride interval --- the duration of a gait cycle --- fluctuates from one stride to the next, even under stationary conditions. We used random walk analysis to study the dynamical properties of these fluctuations under normal conditions and how they change with disease and aging. Random walk analysis of the stride-to-stride fluctuations of healthy, young adult men surprisingly reveals a self-similar pattern: fluctuations at one time scale are statistically similar to those at multiple other time scales (Hausdorff et al, J Appl Phsyiol, 1995). To study the stability of this fractal property, we analyzed data obtained from healthy subjects who walked for 1 hour at their usual pace, as well as at slower and faster speeds. The stride interval fluctuations exhibited long-range correlations with power-law decay for up to a thousand strides at all three walking rates. In contrast, during metronomically-paced walking, these long-range correlations disappeared; variations in the stride interval were uncorrelated and non-fractal (Hausdorff et al, J Appl Phsyiol, 1996). To gain insight into the mechanism(s) responsible for this fractal property, we examined the effects of aging and neurological impairment. Using detrended fluctuation analysis (DFA), we computed α, a measure of the degree to which one stride interval is correlated with previous and subsequent intervals over different time scales. α was significantly lower in healthy elderly subjects compared to young adults (p < .003) and in subjects with Huntington's disease, a neuro-degenerative disorder of the central nervous system, compared to disease-free controls (p < 0.005) (Hausdorff et al, J Appl Phsyiol, 1997). α was also significantly related to degree of functional impairment in subjects with Huntington's disease (r=0.78). Recently, we have observed that just as

  3. Walking Shoes: Features and Fit

    Science.gov (United States)

    ... a pair of walking shoes: Wear the same socks you'll wear when walking, or take the socks with you to the store. Shop for shoes ... fits snugly in each shoe and doesn't slip as you walk. All walking shoes eventually show ...

  4. Walking - Sensing - Participation

    DEFF Research Database (Denmark)

    Bødker, Mads; Meinhardt, Nina Dam; Browning, David

    Building on ethnographic research and social theory in the field of ‘mobilities’, this workshop paper suggests that field work based on simply walking with people entails a form of embodied participation that informs technological interventions by creating a space within which to address a wider ...... set of experiential or ‘felt’ qualities of living with mobile technologies. Moving from reflections on the value of walking with people, the paper outlines some affordances of a smartphone application built to capture place experiences through walking.......Building on ethnographic research and social theory in the field of ‘mobilities’, this workshop paper suggests that field work based on simply walking with people entails a form of embodied participation that informs technological interventions by creating a space within which to address a wider...

  5. Toe Walking in Children

    Science.gov (United States)

    ... may simply monitor your child's gait during regular office visits. If a physical problem is contributing to toe walking, treatment options may include: Physical therapy. Gentle stretching of the leg and foot muscles may improve ...

  6. The Act of Walking

    DEFF Research Database (Denmark)

    Vestergaard, Maria Quvang Harck; Olesen, Mette; Helmer, Pernille Falborg

    2014-01-01

    individuals in Denmark conduct and experience walking, and the ‘rationalities’ (Giddens 1984) that lie behind their choice of mobility. It provides insight into how different lifestyles perceive and act walking in their everyday life. Kaufmann (2002) describes how the individual mobility is influenced......’ of mobility (Jensen 2013:111) such as the urban environment, and the infrastructures. Walking has indeed also a ‘software dimension’ as an embodied performance that trigger the human senses (Jensen 2013) and which is closely related to the habitus and identity of the individual (Halprin 1963). The individual...... by individual strategies, values, perceptions and habits, and how appropriation of mobility is constructed through the internalization of standards and values. The act of walking could thus be understood as the result of dynamic internal negotiation of individual, everyday mobility strategies (Lassen 2005...

  7. Synthetic chromosomes.

    Science.gov (United States)

    Schindler, Daniel; Waldminghaus, Torsten

    2015-11-01

    What a living organism looks like and how it works and what are its components-all this is encoded on DNA, the genetic blueprint. Consequently, the way to change an organism is to change its genetic information. Since the first pieces of recombinant DNA have been used to transform cells in the 1970s, this approach has been enormously extended. Bigger and bigger parts of the genetic information have been exchanged or added over the years. Now we are at a point where the construction of entire chromosomes becomes a reachable goal and first examples appear. This development leads to fundamental new questions, for example, about what is possible and desirable to build or what construction rules one needs to follow when building synthetic chromosomes. Here we review the recent progress in the field, discuss current challenges and speculate on the appearance of future synthetic chromosomes.

  8. Unitary equivalence of quantum walks

    Energy Technology Data Exchange (ETDEWEB)

    Goyal, Sandeep K., E-mail: sandeep.goyal@ucalgary.ca [School of Chemistry and Physics, University of KwaZulu-Natal, Private Bag X54001, 4000 Durban (South Africa); Konrad, Thomas [School of Chemistry and Physics, University of KwaZulu-Natal, Private Bag X54001, 4000 Durban (South Africa); National Institute for Theoretical Physics (NITheP), KwaZulu-Natal (South Africa); Diósi, Lajos [Wigner Research Centre for Physics, Institute for Particle and Nuclear Physics, H-1525 Budapest 114, P.O.B. 49 (Hungary)

    2015-01-23

    Highlights: • We have found unitary equivalent classes in coined quantum walks. • A single parameter family of coin operators is sufficient to realize all simple one-dimensional quantum walks. • Electric quantum walks are unitarily equivalent to time dependent quantum walks. - Abstract: A simple coined quantum walk in one dimension can be characterized by a SU(2) operator with three parameters which represents the coin toss. However, different such coin toss operators lead to equivalent dynamics of the quantum walker. In this manuscript we present the unitary equivalence classes of quantum walks and show that all the nonequivalent quantum walks can be distinguished by a single parameter. Moreover, we argue that the electric quantum walks are equivalent to quantum walks with time dependent coin toss operator.

  9. Construction of the Primary Physical Map of Rice Chromosome 12

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A primary physical map of rice chromosome 12 was constructed using marker-based chromosome landing and chromosome walking. A BAC library from IR64 was screened using 84 RFLP markers, 4 STS markers and 6 microsatellite markers on chromosome 12 by colony hybridization and polymerase chain reaction (PCR) amplification. A total of 59 contigs consisting of 419 BAC clones including 5 single-clones were physically aligned on rice chromosome 12 with the largest BAC contig covering 855 kb. The whole physical map had a size of ~16 Mb and covered about 52% of rice chromosome 12. This physical map will be certainly helpful for map-based gene cloning of agronomically and biological important genes and understanding the genome structure of the chromosome.

  10. Bouncing and walking droplets

    Science.gov (United States)

    Molacek, Jan; Bush, John

    2012-11-01

    Motivated by the hydrodynamic quantum analogue system of Yves Couder, we examine the dynamics of silicone oil drops bouncing on a vertically vibrating liquid bath. We report regime diagrams indicating the dependence of the vertical drop motion on the system parameters. A logarithmic spring model for the interface is developed, and provides new rationale for the regime diagrams. We further examine the spatio-temporal evolution of the standing waves created on the bath surface by repeated drop impacts. Measurement of the tangential coefficient of restitution of drops bouncing on a quiescent bath enables us to accurately determine all the major forces acting on the drop during flight and impact. By combining the horizontal and vertical dynamics, we thus develop a model for the walking drops that enables us to rationalize both the extent of the walking regime and the walking speeds. The model predictions compare favorably with experimental data in the parameter range explored.

  11. Biomechanical conditions of walking

    CERN Document Server

    Fan, Y F; Luo, L P; Li, Z Y; Han, S Y; Lv, C S; Zhang, B

    2015-01-01

    The development of rehabilitation training program for lower limb injury does not usually include gait pattern design. This paper introduced a gait pattern design by using equations (conditions of walking). Following the requirements of reducing force to the injured side to avoid further injury, we developed a lower limb gait pattern to shorten the stride length so as to reduce walking speed, to delay the stance phase of the uninjured side and to reduce step length of the uninjured side. This gait pattern was then verified by the practice of a rehabilitation training of an Achilles tendon rupture patient, whose two-year rehabilitation training (with 24 tests) has proven that this pattern worked as intended. This indicates that rehabilitation training program for lower limb injury can rest on biomechanical conditions of walking based on experimental evidence.

  12. Ways of Walking

    DEFF Research Database (Denmark)

    Eslambolchilar, Parisa; Bødker, Mads; Chamberlain, Alan

    2016-01-01

    It seems logical to argue that mobile computing technologies are intended for use "on-the-go." However, on closer inspection, the use of mobile technologies pose a number of challenges for users who are mobile, particularly moving around on foot. In engaging with such mobile technologies...... and their envisaged development, we argue that interaction designers must increasingly consider a multitude of perspectives that relate to walking in order to frame design problems appropriately. In this paper, we consider a number of perspectives on walking, and we discuss how these may inspire the design of mobile...... technologies. Drawing on insights from non-representational theory, we develop a partial vocabulary with which to engage with qualities of pedestrian mobility, and we outline how taking more mindful approaches to walking may enrich and inform the design space of handheld technologies....

  13. Walking With Meaning

    Directory of Open Access Journals (Sweden)

    Jennifer McDuff

    2015-09-01

    Full Text Available Physical activity is beneficial for people with dementia, but little research explores subjective experiences of physical activity in this population. Interpretive description guided the analysis of 26 interviews conducted with 12 people with dementia. Three themes described the subjective meaning of everyday physical activity: Participants were attracted to activity because it improved physical well-being, provided social connections, gave opportunity to be in nature, and provided structure and focus; participants experienced impediments to activity because of physical discomfort, environmental factors, lack of enthusiasm, and memory loss; and participants made adjustments by choosing walking over other activities and by being active with others. Results show that physical activity remains important for people with dementia, although they encounter barriers. They may prefer walking with others as a form of activity. Findings could influence how nurses conceptualize wandering and suggest that walking programs could be well received by people with dementia.

  14. Walking for data

    DEFF Research Database (Denmark)

    Bødker, Mads; Browning, David; Meinhardt, Nina Dam

    We suggest that ‘walking’ in ethnographic work sensitizes researchers to a particular means of making sense of place. Following a brief conceptual exposition, we present our research tool iMaCam) that supports capturing and representing activities such as walking.......We suggest that ‘walking’ in ethnographic work sensitizes researchers to a particular means of making sense of place. Following a brief conceptual exposition, we present our research tool iMaCam) that supports capturing and representing activities such as walking....

  15. From Walking to Running

    Science.gov (United States)

    Rummel, Juergen; Blum, Yvonne; Seyfarth, Andre

    The implementation of bipedal gaits in legged robots is still a challenge in state-of-the-art engineering. Human gaits could be realized by imitating human leg dynamics where a spring-like leg behavior is found as represented in the bipedal spring-mass model. In this study we explore the gap between walking and running by investigating periodic gait patterns. We found an almost continuous morphing of gait patterns between walking and running. The technical feasibility of this transition is, however, restricted by the duration of swing phase. In practice, this requires an abrupt gait transition between both gaits, while a change of speed is not necessary.

  16. Aperiodic Quantum Random Walks

    CERN Document Server

    Ribeiro, P; Mosseri, R; Ribeiro, Pedro; Milman, Perola; Mosseri, Remy

    2004-01-01

    We generalize the quantum random walk protocol for a particle in a one-dimensional chain, by using several types of biased quantum coins, arranged in aperiodic sequences, in a manner that leads to a rich variety of possible wave function evolutions. Quasiperiodic sequences, following the Fibonacci prescription, are of particular interest, leading to a sub-ballistic wavefunction spreading. In contrast, random sequences leads to diffusive spreading, similar to the classical random walk behaviour. We also describe how to experimentally implement these aperiodic sequences.

  17. Chromosome Analysis

    Science.gov (United States)

    1998-01-01

    Perceptive Scientific Instruments, Inc., provides the foundation for the Powergene line of chromosome analysis and molecular genetic instrumentation. This product employs image processing technology from NASA's Jet Propulsion Laboratory and image enhancement techniques from Johnson Space Center. Originally developed to send pictures back to earth from space probes, digital imaging techniques have been developed and refined for use in a variety of medical applications, including diagnosis of disease.

  18. k-Walk-Regular Digraphs

    Institute of Scientific and Technical Information of China (English)

    Wen LIU; Jing LIN

    2011-01-01

    In this paper,we define a class of strongly connected digraph,called the k-walk-regular digraph,study some properties of it,provide its some algebraic characterization and point out that the O-walk-regular digraph is the same as the walk-regular digraph discussed BY Liu and Lin in 2010 and the D-walk-regular digraph is identical with the weakly distance-regular digraph defined by Comellas et al in 2004.

  19. Snakes and perturbed random walks

    CERN Document Server

    Basak, Gopal

    2011-01-01

    In this paper we study some properties of random walks perturbed at extrema, which are generalizations of the walks considered e.g., in Davis (1999). This process can also be viewed as a version of {\\em excited random walk}, studied recently by many authors. We obtain a few properties related to the range of the process with infinite memory. We also prove the Strong law, Central Limit Theorem, and the criterion for the recurrence of the perturbed walk with finite memory.

  20. Walking and Sensing Mobile Lives

    DEFF Research Database (Denmark)

    Bødker, Mads; Meinhardt, Nina Dam

    In this position paper, we discuss how mindful walking with people allow us to explore sensory aspects of mobile lives that are typically absent from research. We present an app that aids researchers collect impressions from a walk.......In this position paper, we discuss how mindful walking with people allow us to explore sensory aspects of mobile lives that are typically absent from research. We present an app that aids researchers collect impressions from a walk....

  1. The walking robot project

    Science.gov (United States)

    Williams, P.; Sagraniching, E.; Bennett, M.; Singh, R.

    1991-01-01

    A walking robot was designed, analyzed, and tested as an intelligent, mobile, and a terrain adaptive system. The robot's design was an application of existing technologies. The design of the six legs modified and combines well understood mechanisms and was optimized for performance, flexibility, and simplicity. The body design incorporated two tripods for walking stability and ease of turning. The electrical hardware design used modularity and distributed processing to drive the motors. The software design used feedback to coordinate the system and simple keystrokes to give commands. The walking machine can be easily adapted to hostile environments such as high radiation zones and alien terrain. The primary goal of the leg design was to create a leg capable of supporting a robot's body and electrical hardware while walking or performing desired tasks, namely those required for planetary exploration. The leg designers intent was to study the maximum amount of flexibility and maneuverability achievable by the simplest and lightest leg design. The main constraints for the leg design were leg kinematics, ease of assembly, degrees of freedom, number of motors, overall size, and weight.

  2. Walking Advisement: Program Description.

    Science.gov (United States)

    Byram Hills School District, Armonk, NY.

    The Walking Advisement program at Crittenden Middle School in Armonk, New York was started during the 1984-1985 school year. It was based on the work of Alfred Arth, a middle school specialist at the University of Wyoming. Essentially, the program attempts to expand the guidance function of the school by bringing faculty and students together to…

  3. Deterministic Walks with Choice

    Energy Technology Data Exchange (ETDEWEB)

    Beeler, Katy E.; Berenhaut, Kenneth S.; Cooper, Joshua N.; Hunter, Meagan N.; Barr, Peter S.

    2014-01-10

    This paper studies deterministic movement over toroidal grids, integrating local information, bounded memory and choice at individual nodes. The research is motivated by recent work on deterministic random walks, and applications in multi-agent systems. Several results regarding passing tokens through toroidal grids are discussed, as well as some open questions.

  4. Walking along water

    DEFF Research Database (Denmark)

    Rasmussen, Mattias Borg

    2014-01-01

    Steep slopes, white peaks and deep valleys make up the Andes. As phenomenologists of landscape have told us, different people have different landscapes. By moving across the terrain, walking along, we might get a sense of how this has been carved out by the movement of wind and water, tectonics...

  5. Dynamic walking with Dribbel

    NARCIS (Netherlands)

    Dertien, Edwin

    2006-01-01

    This paper describes the design and construction of Dribbel, a passivity-based walking robot. Dribbel has been designed and built at the Control Engineering group of the University of Twente. This paper focuses on the practical side: the design approach, construction, electronics, and software desig

  6. Walking. Sensing. Participation

    DEFF Research Database (Denmark)

    Bødker, Mads

    2014-01-01

    This paper uses three meditations to contemplate walking, sensing and participation as three ways with which we can extend the notion of ‘experiential computing’ proposed by Yoo (2010). By using the form of meditations, loosely associated concepts that are part introspective and part ‘causative’, i...

  7. Quantum walks on Cayley graphs

    Energy Technology Data Exchange (ETDEWEB)

    Lopez Acevedo, O [Laboratoire de Physique Theorique et Modelisation, Universite de Cergy-Pontoise, 2 Avenue Adolphe Chauvin 95302 Cergy Pontoise Cedex (France); Institut fuer Mathematik und Informatik, Ernst-Moritz-Arndt-Universitaet, Friedrich-Ludwig-Jahn Str.15a, 17487 Greifswald (Germany); Gobron, T [Laboratoire de Physique Theorique et Modelisation, Universite de Cergy-Pontoise, 2 Avenue Adolphe Chauvin 95302 Cergy Pontoise Cedex (France)

    2006-01-20

    We address the problem of the construction of quantum walks on Cayley graphs. Our main motivation is the relationship between quantum algorithms and quantum walks. In particular, we discuss the choice of the dimension of the local Hilbert space and consider various classes of graphs on which the structure of quantum walks may differ. We completely characterize quantum walks on free groups and present partial results on more general cases. Some examples are given including a family of quantum walks on the hypercube involving a Clifford algebra.

  8. [Walking abnormalities in children].

    Science.gov (United States)

    Segawa, Masaya

    2010-11-01

    Walking is a spontaneous movement termed locomotion that is promoted by activation of antigravity muscles by serotonergic (5HT) neurons. Development of antigravity activity follows 3 developmental epochs of the sleep-wake (S-W) cycle and is modulated by particular 5HT neurons in each epoch. Activation of antigravity activities occurs in the first epoch (around the age of 3 to 4 months) as restriction of atonia in rapid eye movement (REM) stage and development of circadian S-W cycle. These activities strengthen in the second epoch, with modulation of day-time sleep and induction of crawling around the age of 8 months and induction of walking by 1 year. Around the age of 1 year 6 months, absence of guarded walking and interlimb cordination is observed along with modulation of day-time sleep to once in the afternoon. Bipedal walking in upright position occurs in the third epoch, with development of a biphasic S-W cycle by the age of 4-5 years. Patients with infantile autism (IA), Rett syndrome (RTT), or Tourette syndrome (TS) show failure in the development of the first, second, or third epoch, respectively. Patients with IA fail to develop interlimb coordination; those with RTT, crawling and walking; and those with TS, walking in upright posture. Basic pathophysiology underlying these condition is failure in restricting atonia in REM stage; this induces dysfunction of the pedunculopontine nucleus and consequently dys- or hypofunction of the dopamine (DA) neurons. DA hypofunction in the developing brain, associated with compensatory upward regulation of the DA receptors causes psychobehavioral disorders in infancy (IA), failure in synaptogenesis in the frontal cortex and functional development of the motor and associate cortexes in late infancy through the basal ganglia (RTT), and failure in functional development of the prefrontal cortex through the basal ganglia (TS). Further, locomotion failure in early childhood causes failure in development of functional

  9. Fractional random walk lattice dynamics

    CERN Document Server

    Michelitsch, Thomas; Riascos, Alejandro Perez; Nowakowski, Andrzeij; Nicolleau, Franck

    2016-01-01

    We analyze time-discrete and continuous `fractional' random walks on undirected regular networks with special focus on cubic periodic lattices in $n=1,2,3,..$ dimensions.The fractional random walk dynamics is governed by a master equation involving {\\it fractional powers of Laplacian matrices $L^{\\frac{\\alpha}{2}}$}where $\\alpha=2$ recovers the normal walk.First we demonstrate thatthe interval $0\\textless{}\\alpha\\leq 2$ is admissible for the fractional random walk. We derive analytical expressions for fractional transition matrix and closely related the average return probabilities. We further obtain thefundamental matrix $Z^{(\\alpha)}$, and the mean relaxation time (Kemeny constant) for the fractional random walk.The representation for the fundamental matrix $Z^{(\\alpha)}$ relates fractional random walks with normal random walks.We show that the fractional transition matrix elements exihibit for large cubic $n$-dimensional lattices a power law decay of an $n$-dimensional infinite spaceRiesz fractional deriva...

  10. Covering walks in graphs

    CERN Document Server

    Fujie, Futaba

    2014-01-01

    Covering Walks  in Graphs is aimed at researchers and graduate students in the graph theory community and provides a comprehensive treatment on measures of two well studied graphical properties, namely Hamiltonicity and traversability in graphs. This text looks into the famous Kӧnigsberg Bridge Problem, the Chinese Postman Problem, the Icosian Game and the Traveling Salesman Problem as well as well-known mathematicians who were involved in these problems. The concepts of different spanning walks with examples and present classical results on Hamiltonian numbers and upper Hamiltonian numbers of graphs are described; in some cases, the authors provide proofs of these results to illustrate the beauty and complexity of this area of research. Two new concepts of traceable numbers of graphs and traceable numbers of vertices of a graph which were inspired by and closely related to Hamiltonian numbers are introduced. Results are illustrated on these two concepts and the relationship between traceable concepts and...

  11. Minimal Walking Technicolor

    DEFF Research Database (Denmark)

    Frandsen, Mads Toudal

    2007-01-01

    I report on our construction and analysis of the effective low energy Lagrangian for the Minimal Walking Technicolor (MWT) model. The parameters of the effective Lagrangian are constrained by imposing modified Weinberg sum rules and by imposing a value for the S parameter estimated from the under...... the underlying Technicolor theory. The constrained effective Lagrangian allows for an inverted vector vs. axial-vector mass spectrum in a large part of the parameter space....

  12. Nordic Walking Classes

    CERN Multimedia

    Fitness Club

    2015-01-01

    Four classes of one hour each are held on Tuesdays. RDV barracks parking at Entrance A, 10 minutes before class time. Spring Course 2015: 05.05/12.05/19.05/26.05 Prices 40 CHF per session + 10 CHF club membership 5 CHF/hour pole rental Check out our schedule and enroll at: https://espace.cern.ch/club-fitness/Lists/Nordic%20Walking/NewForm.aspx? Hope to see you among us! fitness.club@cern.ch

  13. Quantum walks on Cayley graphs

    CERN Document Server

    Acevedo, O L

    2006-01-01

    We address the problem of the construction of quantum walks on Cayley graphs. Our main motivation is the relationship between quantum algorithms and quantum walks. Thus we consider quantum walks on a general basis and try to classify them as a preliminary step in the construction of new algorithms that could be devised in this way. In particular, we discuss the choice of the dimension of the local Hilbert space, and consider various classes of graphs on which the structure of quantum walks may differ. We characterize completely the quantum walks on free groups and present partial results on more general cases. Examples are given among which a family of quantum walks on the hypercube involving a Clifford Algebra.

  14. Quantum walks on general graphs

    CERN Document Server

    Kendon, V

    2003-01-01

    A scheme for a discrete time quantum walk on a general graph of N vertices with undirected edges is given, and compared with the continuous time quantum walk on a general graph introduced by Farhi and Gutmann [PRA 58 915 (1998)]. Both walks are contrasted with the examples of quantum walks in the literature treating graphs of fixed, small (< log N) degree. This illustrates the way in which extra information about the graph allows more efficient algorithms to be designed. To obtain a quantum speed up over classical for comparable resources it is necessary to code the position space of the quantum walk into a qubit register (or equivalent). The role of the oracle is also discussed and an efficient gate sequence is presented for implementing a discrete quantum walk given one copy of a quantum state encoding the adjacency matrix of the graph.

  15. Physical implementation of quantum walks

    CERN Document Server

    Manouchehri, Kia

    2013-01-01

    Given the extensive application of random walks in virtually every science related discipline, we may be at the threshold of yet another problem solving paradigm with the advent of quantum walks. Over the past decade, quantum walks have been explored for their non-intuitive dynamics, which may hold the key to radically new quantum algorithms. This growing interest has been paralleled by a flurry of research into how one can implement quantum walks in laboratories. This book presents numerous proposals as well as actual experiments for such a physical realization, underpinned by a wide range of

  16. Persistence of random walk records

    Science.gov (United States)

    Ben-Naim, E.; Krapivsky, P. L.

    2014-06-01

    We study records generated by Brownian particles in one dimension. Specifically, we investigate an ordinary random walk and define the record as the maximal position of the walk. We compare the record of an individual random walk with the mean record, obtained as an average over infinitely many realizations. We term the walk ‘superior’ if the record is always above average, and conversely, the walk is said to be ‘inferior’ if the record is always below average. We find that the fraction of superior walks, S, decays algebraically with time, S ˜ t-β, in the limit t → ∞, and that the persistence exponent is nontrivial, β = 0.382 258…. The fraction of inferior walks, I, also decays as a power law, I ˜ t-α, but the persistence exponent is smaller, α = 0.241 608…. Both exponents are roots of transcendental equations involving the parabolic cylinder function. To obtain these theoretical results, we analyze the joint density of superior walks with a given record and position, while for inferior walks it suffices to study the density as a function of position.

  17. Quantum Walks on the Hypercube

    CERN Document Server

    Moore, Cristopher; Moore, Cristopher; Russell, Alexander

    2001-01-01

    Recently, it has been shown that one-dimensional quantum walks can mix more quickly than classical random walks, suggesting that quantum Monte Carlo algorithms can outperform their classical counterparts. We study two quantum walks on the n-dimensional hypercube, one in discrete time and one in continuous time. In both cases we show that the quantum walk mixes in (\\pi/4)n steps, faster than the O(n log n) steps required by the classical walk. In the continuous-time case, the probability distribution is {\\em exactly} uniform at this time. More importantly, these walks expose several subtleties in the definition of mixing time for quantum walks. Even though the continuous-time walk has an O(n) instantaneous mixing time at which it is precisely uniform, it never approaches the uniform distribution when the stopping time is chosen randomly as in [AharonovAKV2001]. Our analysis treats interference between terms of different phase more carefully than is necessary for the walk on the cycle; previous general bounds p...

  18. A mathematical nature walk

    CERN Document Server

    Adam, John A

    2009-01-01

    How heavy is that cloud? Why can you see farther in rain than in fog? Why are the droplets on that spider web spaced apart so evenly? If you have ever asked questions like these while outdoors, and wondered how you might figure out the answers, this is a book for you. An entertaining and informative collection of fascinating puzzles from the natural world around us, A Mathematical Nature Walk will delight anyone who loves nature or math or both. John Adam presents ninety-six questions about many common natural phenomena--and a few uncommon ones--and then shows how to answer them using mostly b

  19. Collisions of Random Walks

    CERN Document Server

    Barlow, Martin T; Sousi, Perla

    2010-01-01

    A recurrent graph $G$ has the infinite collision property if two independent random walks on $G$, started at the same point, collide infinitely often a.s. We give a simple criterion in terms of Green functions for a graph to have this property, and use it to prove that a critical Galton-Watson tree with finite variance conditioned to survive, the incipient infinite cluster in $\\Z^d$ with $d \\ge 19$ and the uniform spanning tree in $\\Z^2$ all have the infinite collision property. For power-law combs and spherically symmetric trees, we determine precisely the phase boundary for the infinite collision property.

  20. Cookie branching random walks

    CERN Document Server

    Bartsch, Christian; Kochler, Thomas; Müller, Sebastian; Popov, Serguei

    2011-01-01

    We consider a branching random walk on $\\Z$, where the particles behave differently in visited and unvisited sites. Informally, each site on the positive half-line contains initially a cookie. On the first visit of a site its cookie is removed and particles at positions with a cookie reproduce and move differently from particles on sites without cookies. Therefore, the movement and the reproduction of the particles depend on the previous behaviour of the population of particles. We study the question if the process is recurrent or transient, i.e., whether infinitely many particles visit the origin or not.

  1. Random-walk enzymes

    Science.gov (United States)

    Mak, Chi H.; Pham, Phuong; Afif, Samir A.; Goodman, Myron F.

    2015-01-01

    Enzymes that rely on random walk to search for substrate targets in a heterogeneously dispersed medium can leave behind complex spatial profiles of their catalyzed conversions. The catalytic signatures of these random-walk enzymes are the result of two coupled stochastic processes: scanning and catalysis. Here we develop analytical models to understand the conversion profiles produced by these enzymes, comparing an intrusive model, in which scanning and catalysis are tightly coupled, against a loosely coupled passive model. Diagrammatic theory and path-integral solutions of these models revealed clearly distinct predictions. Comparison to experimental data from catalyzed deaminations deposited on single-stranded DNA by the enzyme activation-induced deoxycytidine deaminase (AID) demonstrates that catalysis and diffusion are strongly intertwined, where the chemical conversions give rise to new stochastic trajectories that were absent if the substrate DNA was homogeneous. The C → U deamination profiles in both analytical predictions and experiments exhibit a strong contextual dependence, where the conversion rate of each target site is strongly contingent on the identities of other surrounding targets, with the intrusive model showing an excellent fit to the data. These methods can be applied to deduce sequence-dependent catalytic signatures of other DNA modification enzymes, with potential applications to cancer, gene regulation, and epigenetics. PMID:26465508

  2. Random-walk enzymes

    Science.gov (United States)

    Mak, Chi H.; Pham, Phuong; Afif, Samir A.; Goodman, Myron F.

    2015-09-01

    Enzymes that rely on random walk to search for substrate targets in a heterogeneously dispersed medium can leave behind complex spatial profiles of their catalyzed conversions. The catalytic signatures of these random-walk enzymes are the result of two coupled stochastic processes: scanning and catalysis. Here we develop analytical models to understand the conversion profiles produced by these enzymes, comparing an intrusive model, in which scanning and catalysis are tightly coupled, against a loosely coupled passive model. Diagrammatic theory and path-integral solutions of these models revealed clearly distinct predictions. Comparison to experimental data from catalyzed deaminations deposited on single-stranded DNA by the enzyme activation-induced deoxycytidine deaminase (AID) demonstrates that catalysis and diffusion are strongly intertwined, where the chemical conversions give rise to new stochastic trajectories that were absent if the substrate DNA was homogeneous. The C →U deamination profiles in both analytical predictions and experiments exhibit a strong contextual dependence, where the conversion rate of each target site is strongly contingent on the identities of other surrounding targets, with the intrusive model showing an excellent fit to the data. These methods can be applied to deduce sequence-dependent catalytic signatures of other DNA modification enzymes, with potential applications to cancer, gene regulation, and epigenetics.

  3. Random-walk enzymes.

    Science.gov (United States)

    Mak, Chi H; Pham, Phuong; Afif, Samir A; Goodman, Myron F

    2015-09-01

    Enzymes that rely on random walk to search for substrate targets in a heterogeneously dispersed medium can leave behind complex spatial profiles of their catalyzed conversions. The catalytic signatures of these random-walk enzymes are the result of two coupled stochastic processes: scanning and catalysis. Here we develop analytical models to understand the conversion profiles produced by these enzymes, comparing an intrusive model, in which scanning and catalysis are tightly coupled, against a loosely coupled passive model. Diagrammatic theory and path-integral solutions of these models revealed clearly distinct predictions. Comparison to experimental data from catalyzed deaminations deposited on single-stranded DNA by the enzyme activation-induced deoxycytidine deaminase (AID) demonstrates that catalysis and diffusion are strongly intertwined, where the chemical conversions give rise to new stochastic trajectories that were absent if the substrate DNA was homogeneous. The C→U deamination profiles in both analytical predictions and experiments exhibit a strong contextual dependence, where the conversion rate of each target site is strongly contingent on the identities of other surrounding targets, with the intrusive model showing an excellent fit to the data. These methods can be applied to deduce sequence-dependent catalytic signatures of other DNA modification enzymes, with potential applications to cancer, gene regulation, and epigenetics.

  4. Quantum walks and search algorithms

    CERN Document Server

    Portugal, Renato

    2013-01-01

    This book addresses an interesting area of quantum computation called quantum walks, which play an important role in building quantum algorithms, in particular search algorithms. Quantum walks are the quantum analogue of classical random walks. It is known that quantum computers have great power for searching unsorted databases. This power extends to many kinds of searches, particularly to the problem of finding a specific location in a spatial layout, which can be modeled by a graph. The goal is to find a specific node knowing that the particle uses the edges to jump from one node to the next. This book is self-contained with main topics that include: Grover's algorithm, describing its geometrical interpretation and evolution by means of the spectral decomposition of the evolution operater Analytical solutions of quantum walks on important graphs like line, cycles, two-dimensional lattices, and hypercubes using Fourier transforms Quantum walks on generic graphs, describing methods to calculate the limiting d...

  5. Walking around to grasp interaction

    DEFF Research Database (Denmark)

    Lykke, Marianne; Jantzen, Christian

    2013-01-01

    with the sound installations. The aim was to gain an understanding of the role of the in-teraction, if interaction makes a difference for the understanding of the sound art. 30 walking interviews were carried out at ZKM, Karlsruhe with a total of 57 museum guests, individuals or groups. During the walk......The paper presents experiences from a study using walk-alongs to provide insight into museum visitors’ experience with interactive features of sound art installations. The overall goal of the study was to learn about the participants’ opinions and feelings about the possibility of interaction...... knowledge of spa-tial conditions, e.g. noise, crowds, darkness provided a profound and shared un-derstanding of e.g. the visitors’ engagement in and dislike of the installations. Another finding concerns group walking that, compared to walking with a sin-gle person, generated a diversified discussion...

  6. Human treadmill walking needs attention

    Directory of Open Access Journals (Sweden)

    Daniel Olivier

    2006-08-01

    Full Text Available Abstract Background The aim of the study was to assess the attentional requirements of steady state treadmill walking in human subjects using a dual task paradigm. The extent of decrement of a secondary (cognitive RT task provides a measure of the attentional resources required to maintain performance of the primary (locomotor task. Varying the level of difficulty of the reaction time (RT task is used to verify the priority of allocation of attentional resources. Methods 11 healthy adult subjects were required to walk while simultaneously performing a RT task. Participants were instructed to bite a pressure transducer placed in the mouth as quickly as possible in response to an unpredictable electrical stimulation applied on the back of the neck. Each subject was tested under five different experimental conditions: simple RT task alone and while walking, recognition RT task alone and while walking, walking alone. A foot switch system composed of a pressure sensitive sensor was placed under the heel and forefoot of each foot to determine the gait cycle duration. Results Gait cycle duration was unchanged (p > 0.05 by the addition of the RT task. Regardless of the level of difficulty of the RT task, the RTs were longer during treadmill walking than in sitting conditions (p 0.05 was found between the attentional demand of the walking task and the decrement of performance found in the RT task under varying levels of difficulty. This finding suggests that the healthy subjects prioritized the control of walking at the expense of cognitive performance. Conclusion We conclude that treadmill walking in young adults is not a purely automatic task. The methodology and outcome measures used in this study provide an assessment of the attentional resources required by walking on the treadmill at a steady state.

  7. Walking indoors, walking outdoors: an fMRI study

    Directory of Open Access Journals (Sweden)

    Riccardo eDalla Volta

    2015-10-01

    Full Text Available An observation/execution matching system for walking has not been assessed yet. The present fMRI study was aimed at assessing whether, as for object-directed actions, an observation/execution matching system is active for walking and whether the spatial context of walking (open or narrow space recruits different neural correlates. Two experimental conditions were employed. In the execution condition, while being scanned, participants performed walking on a rolling cylinder located just outside the scanner. The same action was performed also while observing a video presenting either an open space (a country field or a narrow space (a corridor. In the observation condition, participants observed a video presenting an individual walking on the same cylinder on which the actual action was executed, the open space video and the narrow space video, respectively. Results showed common bilateral activations in the dorsal premotor/supplementary motor areas and in the posterior parietal lobe for both execution and observation of walking, thus supporting a matching system for this action. Moreover, specific sectors of the occipital-temporal cortex and the middle temporal gyrus were consistently active when processing a narrow space versus an open one, thus suggesting their involvement in the visuo-motor transformation required when walking in a narrow space. We forward that the present findings may have implications for rehabilitation of gait and sport training.

  8. walk around Irkutsk

    Directory of Open Access Journals (Sweden)

    Elena Grigoryeva

    2011-08-01

    Full Text Available It is noteworthy that this country develops through two types of events: either through a jubilee or through a catastrophe.It seems that Irkutsk Airport will be built only after the next crash. At least the interest to this problem returns regularly after sad events, and this occurs almost half a century (a jubilee, too! – the Council of Ministers decided to relocate the Airport away from the city as long ago as 1962. The Airport does not relate to the topic of this issue, but an attentive reader understands that it is our Carthage, and that the Airport should be relocated. The Romans coped with it faster and more effectively.Back to Irkutsk’s jubilee, we should say that we will do without blare of trumpets. We will just make an unpretentious walk around the city in its summer 350. Each our route covers new (some of them have been completed by the jubilee and old buildings, some of them real monuments. All these buildings are integrated into public spaces of different quality and age.We will also touch on the problems, for old houses, especially the wooden ones often provoke a greedy developer to demolish or to burn them down. Thus a primitive thrift estimates an output of additional square meters. Not to mention how attractive it is to seize public spaces without demolition or without reallocation of the dwellers. Or, rather, the one who is to preserve, to cherish and to improve such houses for the good of the citizens never speaks about this sensitive issue. So we have to do it.Walking is a no-hurry genre, unlike the preparation for the celebration. Walking around the city you like is a pleasant and cognitive process. It will acquaint the architects with the works of their predecessors and colleagues. We hope that such a walk may be interesting for Irkutsk citizens and visitors, too. Isn’t it interesting to learn “at first hand” the intimate details of the restoration of the Trubetskoys’ estate

  9. Walking for art's sake

    CERN Multimedia

    2005-01-01

      The man who compared himself to a proton ! On 20 May, Gianni Motti went down into the LHC tunnel and walked around the 27 kilometres of the underground ring at an average, unaccelerated pace of 5 kph. This was an artistic rather than an athletic performance, aimed at drawing a parallel between the fantastic speed of the beams produced by the future accelerator and the leisurely stroll of a human. The artist, who hails from Lombardy, was accompanied by cameraman Ivo Zanetti, who filmed the event from start to finish, and physicist Jean-Pierre Merlo. The first part of the film can be seen at the Villa Bernasconi, 8 route du Grand-Lancy, Grand Lancy, until 26 June.

  10. Walking for art's sake

    CERN Document Server

    2005-01-01

    The man who compared himself to a proton ! On 20 May, Gianni Motti went down into the LHC tunnel and walked around the 27 kilometres of the underground ring at an average, unaccelerated pace of 5 kph. This was an artistic rather than an athletic performance, aimed at drawing a parallel between the fantastic speed of the beams produced by the future accelerator and the leisurely stroll of a human. The artist, who hails from Lombardy, was accompanied by cameraman Ivo Zanetti, who filmed the event from start to finish, and physicist Jean-Pierre Merlo. The first part of the film can be seen at the Villa Bernasconi, 8 route du Grand-Lancy, Grand Lancy, until 26 June.

  11. Water-walking devices

    Science.gov (United States)

    Hu, David L.; Prakash, Manu; Chan, Brian; Bush, John W. M.

    We report recent efforts in the design and construction of water-walking machines inspired by insects and spiders. The fundamental physical constraints on the size, proportion and dynamics of natural water-walkers are enumerated and used as design criteria for analogous mechanical devices. We report devices capable of rowing along the surface, leaping off the surface and climbing menisci by deforming the free surface. The most critical design constraint is that the devices be lightweight and non-wetting. Microscale manufacturing techniques and new man-made materials such as hydrophobic coatings and thermally actuated wires are implemented. Using highspeed cinematography and flow visualization, we compare the functionality and dynamics of our devices with those of their natural counterparts.

  12. Undetected sex chromosome aneuploidy by chromosomal microarray.

    Science.gov (United States)

    Markus-Bustani, Keren; Yaron, Yuval; Goldstein, Myriam; Orr-Urtreger, Avi; Ben-Shachar, Shay

    2012-11-01

    We report on a case of a female fetus found to be mosaic for Turner syndrome (45,X) and trisomy X (47,XXX). Chromosomal microarray analysis (CMA) failed to detect the aneuploidy because of a normal average dosage of the X chromosome. This case represents an unusual instance in which CMA may not detect chromosomal aberrations. Such a possibility should be taken into consideration in similar cases where CMA is used in a clinical setting.

  13. Visual control of walking velocity.

    Science.gov (United States)

    François, Matthieu; Morice, Antoine H P; Bootsma, Reinoud J; Montagne, Gilles

    2011-06-01

    Even if optical correlates of self-motion velocity have already been identified, their contribution to the control of displacement velocity remains to be established. In this study, we used a virtual reality set-up coupled to a treadmill to test the role of both Global Optic Flow Rate (GOFR) and Edge Rate (ER) in the regulation of walking velocity. Participants were required to walk at a constant velocity, corresponding to their preferred walking velocity, while eye height and texture density were manipulated. This manipulation perturbed the natural relationship between the actual walking velocity and its optical specification by GOFR and ER, respectively. Results revealed that both these sources of information are indeed used by participants to control walking speed, as demonstrated by a slowing down of actual walking velocity when the optical specification of velocity by either GOFR or ER gives rise to an overestimation of actual velocity, and vice versa. Gait analyses showed that these walking velocity adjustments result from simultaneous adaptations in both step length and step duration. The role of visual information in the control of self-motion velocity is discussed in relation with other factors.

  14. Bouchaud walks with variable drift

    CERN Document Server

    Parra, Manuel Cabezas

    2010-01-01

    In this paper we study a sequence of Bouchaud trap models on $\\mathbb{Z}$ with drift. We analyze the possible scaling limits for a sequence of walks, where we make the drift decay to 0 as we rescale the walks. Depending on the speed of the decay of the drift we obtain three different scaling limits. If the drift decays slowly as we rescale the walks we obtain the inverse of an \\alpha$-stable subordinator as scaling limit. If the drift decays quickly as we rescale the walks, we obtain the F.I.N. diffusion as scaling limit. There is a critical speed of decay separating these two main regimes, where a new process appears as scaling limit. This critical speed is related to the index $\\alpha$ of the inhomogeneity of the environment.

  15. Quantum Snake Walk on Graphs

    CERN Document Server

    Rosmanis, Ansis

    2010-01-01

    I introduce a new type of continuous-time quantum walk on graphs called the quantum snake walk, the basis states of which are fixed-length paths (snakes) in the underlying graph. First I analyze the quantum snake walk on the line, and I show that, even though most states stay localized throughout the evolution, there are specific states which most likely move on the line as wave packets with momentum inversely proportional to the length of the snake. Next I discuss how an algorithm based on the quantum snake walk might be able to solve an extended version of the glued trees problem which asks to find a path connecting both roots of the glued trees graph. No efficient quantum algorithm solving this problem is known yet.

  16. Localization of reinforced random walks

    CERN Document Server

    Tarrès, Pierre

    2011-01-01

    We describe and analyze how reinforced random walks can eventually localize, i.e. only visit finitely many sites. After introducing vertex and edge self-interacting walks on a discrete graph in a general setting, and stating the main results and conjectures so far on the topic, we present martingale techniques that provide an alternative proof of the a.s. localization of vertex-reinforced random walks (VRRWs) on the integers on finitely many sites and, with positive probability, on five consecutive sites, initially proved by Pemantle and Volkov (1999). Next we introduce the continuous time-lines representation (sometimes called Rubin construction) and its martingale counterpart, and explain how it has been used to prove localization of some reinforced walks on one attracting edge. Then we show how a modified version of this construction enables one to propose a new short proof of the a.s. localization of VRRWs on five sites on Z.

  17. Walking Robot Locomotion System Conception

    Directory of Open Access Journals (Sweden)

    Ignatova D.

    2014-09-01

    Full Text Available This work is a brief analysis on the application and perspective of using the walking robots in different areas in practice. The most common characteristics of walking four legs robots are presented here. The specific features of the applied actuators in walking mechanisms are also shown in the article. The experience of Institute of Mechanics - BAS is illustrated in creation of Spiroid and Helicon1 gears and their assembly in actuation of studied robots. Loading on joints reductors of robot legs is modelled, when the geometrical and the walking parameters of the studied robot are preliminary defined. The obtained results are purposed for designing the control of the loading of reductor type Helicon in the legs of the robot, when it is experimentally tested.

  18. Integrated photonic quantum walks

    Science.gov (United States)

    Gräfe, Markus; Heilmann, René; Lebugle, Maxime; Guzman-Silva, Diego; Perez-Leija, Armando; Szameit, Alexander

    2016-10-01

    Over the last 20 years quantum walks (QWs) have gained increasing interest in the field of quantum information science and processing. In contrast to classical walkers, quantum objects exhibit intrinsic properties like non-locality and non-classical many-particle correlations, which renders QWs a versatile tool for quantum simulation and computation as well as for a deeper understanding of genuine quantum mechanics. Since they are highly controllable and hardly interact with their environment, photons seem to be ideally suited quantum walkers. In order to study and exploit photonic QWs, lattice structures that allow low loss coherent evolution of quantum states are demanded. Such requirements are perfectly met by integrated optical waveguide devices that additionally allow a substantial miniaturization of experimental settings. Moreover, by utilizing the femtosecond direct laser writing technique three-dimensional waveguide structures are capable of analyzing QWs also on higher dimensional geometries. In this context, advances and findings of photonic QWs are discussed in this review. Various concepts and experimental results are presented covering, such as different quantum transport regimes, the Boson sampling problem, and the discrete fractional quantum Fourier transform.

  19. Big power from walking

    Science.gov (United States)

    Illenberger, Patrin K.; Madawala, Udaya K.; Anderson, Iain A.

    2016-04-01

    Dielectric Elastomer Generators (DEG) offer an opportunity to capture the energy otherwise wasted from human motion. By integrating a DEG into the heel of standard footwear, it is possible to harness this energy to power portable devices. DEGs require substantial auxiliary systems which are commonly large, heavy and inefficient. A unique challenge for these low power generators is the combination of high voltage and low current. A void exists in the semiconductor market for devices that can meet these requirements. Until these become available, existing devices must be used in an innovative way to produce an effective DEG system. Existing systems such as the Bi-Directional Flyback (BDFB) and Self Priming Circuit (SPC) are an excellent example of this. The BDFB allows full charging and discharging of the DEG, improving power gained. The SPC allows fully passive voltage boosting, removing the priming source and simplifying the electronics. This paper outlines the drawbacks and benefits of active and passive electronic solutions for maximizing power from walking.

  20. The Dead Walk

    Directory of Open Access Journals (Sweden)

    Bill Phillips

    2014-02-01

    Full Text Available Monsters have always enjoyed a significant presence in the human imagination, and religion was instrumental in replacing the physical horror they engendered with that of a moral threat. Zombies, however, are amoral – their motivation purely instinctive and arbitrary, yet they are, perhaps, the most loathed of all contemporary monsters. One explanation for this lies in the theory of the uncanny valley, proposed by robotics engineer Masahiro Mori. According to the theory, we reserve our greatest fears for those things which seem most human, yet are not – such as dead bodies. Such a reaction is most likely a survival mechanism to protect us from danger and disease – a mechanism even more essential when the dead rise up and walk. From their beginnings zombies have reflected western societies’ greatest fears – be they of revolutionary Haitians, women, or communists. In recent years the rise in the popularity of the zombie in films, books and television series reflects our fears for the planet, the economy, and of death itself

  1. Quantum Walk with Jumps

    CERN Document Server

    Lavička, H; Kiss, T; Lutz, E; Jex, I

    2011-01-01

    We analyze a special class of 1-D quantum walks (QWs) realized using optical multi-ports. We assume non-perfect multi-ports showing errors in the connectivity, i.e. with a small probability the multi- ports can connect not to their nearest neighbor but to another multi-port at a fixed distance - we call this a jump. We study two cases of QW with jumps where multiple displacements can emerge at one timestep. The first case assumes time-correlated jumps (static disorder). In the second case, we choose the positions of jumps randomly in time (dynamic disorder). The probability distributions of position of the QW walker in both instances differ significantly: dynamic disorder leads to a Gaussian-like distribution, while for static disorder we find two distinct behaviors depending on the parity of jump size. In the case of even-sized jumps, the distribution exhibits a three-peak profile around the position of the initial excitation, whereas the probability distribution in the odd case follows a Laplace-like discre...

  2. Chromosome Disorder Outreach

    Science.gov (United States)

    ... BLOG Join Us Donate You are not alone. Chromosome Disorder Outreach, Inc. is a non-profit organization, ... Support For all those diagnosed with any rare chromosome disorder. Since 1992, CDO has supported the parents ...

  3. Chromosome painting in plants.

    NARCIS (Netherlands)

    Schubert, I.; Fransz, P.F.; Fuchs, J.; Jong, de J.H.

    2001-01-01

    The current 'state-of-art' as to chromosome painting in plants is reviewed. We define different situations described as painting so far: i) Genomic in situ hybridisation (GISH) with total genomic DNA to distinguish alien chromosomes on the basis of divergent dispersed repeats, ii) 'Chromosomal in si

  4. ZEBRAFISH CHROMOSOME-BANDING

    NARCIS (Netherlands)

    PIJNACKER, LP; FERWERDA, MA

    1995-01-01

    Banding techniques were carried out on metaphase chromosomes of zebrafish (Danio rerio) embryos. The karyotypes with the longest chromosomes consist of 12 metacentrics, 26 submetacentrics, and 12 subtelocentrics (2n = 50). All centromeres are C-band positive. Eight chromosomes have a pericentric C-b

  5. Comparison of forward walking and backward walking in stroke hemiplegia patients focusing on the paretic side

    Science.gov (United States)

    Makino, Misato; Takami, Akiyoshi; Oda, Atsushi

    2017-01-01

    [Purpose] To investigate the features of backward walking in stroke patients with hemiplegia by focusing on the joint movements and moments of the paretic side, walking speed, stride length, and cadence. [Subjects and Methods] Nine stroke patients performed forward walking and backward walking along a 5-m walkway. Walking speed and stride length were self-selected. Movements were measured using a three-dimensional motion analysis system and a force plate. One walking cycle of the paretic side was analyzed. [Results] Walking speed, stride length, and cadence were significantly lower in backward walking than in forward walking. Peak hip extension was significantly lower in backward walking and peak hip flexion moment, knee extension moment, and ankle dorsiflexion and plantar flexion moments were lower in backward walking. [Conclusion] Unlike forward walking, backward walking requires conscious hip joint extension. Conscious extension of the hip joint is hard for stroke patients with hemiplegia. Therefore, the range of hip joint movement declined in backward walking, and walking speed and stride length also declined. The peak ankle plantar flexion moment was significantly lower in backward walking than in forward walking, and it was hard to generate propulsion power in backward walking. These difficulties also affected the walking speed. PMID:28265136

  6. Mechanical design of walking machines.

    Science.gov (United States)

    Arikawa, Keisuke; Hirose, Shigeo

    2007-01-15

    The performance of existing actuators, such as electric motors, is very limited, be it power-weight ratio or energy efficiency. In this paper, we discuss the method to design a practical walking machine under this severe constraint with focus on two concepts, the gravitationally decoupled actuation (GDA) and the coupled drive. The GDA decouples the driving system against the gravitational field to suppress generation of negative power and improve energy efficiency. On the other hand, the coupled drive couples the driving system to distribute the output power equally among actuators and maximize the utilization of installed actuator power. First, we depict the GDA and coupled drive in detail. Then, we present actual machines, TITAN-III and VIII, quadruped walking machines designed on the basis of the GDA, and NINJA-I and II, quadruped wall walking machines designed on the basis of the coupled drive. Finally, we discuss walking machines that travel on three-dimensional terrain (3D terrain), which includes the ground, walls and ceiling. Then, we demonstrate with computer simulation that we can selectively leverage GDA and coupled drive by walking posture control.

  7. Single and Dual Task Walking

    Directory of Open Access Journals (Sweden)

    Natalie de Bruin

    2010-01-01

    Full Text Available This study explored the viability and efficacy of integrating cadence-matched, salient music into a walking intervention for patients with Parkinson's disease (PD. Twenty-two people with PD were randomised to a control (CTRL, n=11 or experimental (MUSIC, n=11 group. MUSIC subjects walked with an individualised music playlist three times a week for the intervention period. Playlists were designed to meet subject's musical preferences. In addition, the tempo of the music closely matched (±10–15 bpm the subject's preferred cadence. CTRL subjects continued with their regular activities during the intervention. The effects of training accompanied by “walking songs” were evaluated using objective measures of gait score. The MUSIC group improved gait velocity, stride time, cadence, and motor symptom severity following the intervention. This is the first study to demonstrate that music listening can be safely implemented amongst PD patients during home exercise.

  8. Chromosomal instability in meningiomas.

    Science.gov (United States)

    van Tilborg, Angela A G; Al Allak, Bushra; Velthuizen, Sandra C J M; de Vries, Annie; Kros, Johan M; Avezaat, Cees J J; de Klein, Annelies; Beverloo, H Berna; Zwarthoff, Ellen C

    2005-04-01

    Approximately 60% of sporadic meningiomas are caused by inactivation of the NF2 tumor suppressor gene on chromosome 22. No causative gene is known for the remaining 40%. Cytogenetic analysis shows that meningiomas caused by inactivation of the NF2 gene can be divided into tumors that show monosomy 22 as the sole abnormality and tumors with a more complex karyotype. Meningiomas not caused by the NF2 gene usually have a diploid karyotype. Here we report that, besides the clonal chromosomal aberrations, the chromosome numbers in many meningiomas varied from one metaphase spread to the other, a feature that is indicative of chromosomal instability. Unexpectedly and regardless of genotype, a subgroup of tumors was observed with an average number of 44.9 chromosomes and little variation in the number of chromosomes per metaphase spread. In addition, a second subgroup was recognized with a hyperdiploid number of chromosomes (average 48.5) and considerable variation in numbers per metaphase. However, this numerical instability resulted in a clonal karyotype with chromosomal gains and losses in addition to loss of chromosome 22 only in meningiomas caused by inactivation of the NF2 gene. In cultured cells of all tumor groups, bi- and multinucleated cells were seen, as well as anaphase bridges, residual chromatid strings, multiple spindle poles, and unseparated chromatids, suggesting defects in the mitotic apparatus or kinetochore. Thus, we conclude that even a benign and slow-growing tumor like a meningioma displays chromosomal instability.

  9. Self-interacting random walks

    CERN Document Server

    Peres, Yuval; Sousi, Perla

    2012-01-01

    Let $\\mu_1,... \\mu_k$ be $d$-dimensional probability measures in $\\R^d$ with mean 0. At each step we choose one of the measures based on the history of the process and take a step according to that measure. We give conditions for transience of such processes and also construct examples of recurrent processes of this type. In particular, in dimension 3 we give the complete picture: every walk generated by two measures is transient and there exists a recurrent walk generated by three measures.

  10. Pedagogies of the Walking Dead

    Directory of Open Access Journals (Sweden)

    Michael A. Peters

    2016-04-01

    Full Text Available This paper investigates the trope of the zombie and the recent upsurge in popular culture surrounding the figure of the zombie described as the “walking dead”. We investigate this trope and figure as a means of analyzing the “pedagogy of the walking dead” with particular attention to the crisis of education in the era of neoliberal capitalism. In particular we examine the professionalization and responsibilization of teachers in the new regulative environment and ask whether there is any room left for the project of critical education.

  11. Analysis of plant meiotic chromosomes by chromosome painting.

    Science.gov (United States)

    Lysak, Martin A; Mandáková, Terezie

    2013-01-01

    Chromosome painting (CP) refers to visualization of large chromosome regions, entire chromosome arms, or entire chromosomes via fluorescence in situ hybridization (FISH). For CP in plants, contigs of chromosome-specific bacterial artificial chromosomes (BAC) from the target species or from a closely related species (comparative chromosome painting, CCP) are typically applied as painting probes. Extended pachytene chromosomes provide the highest resolution of CP in plants. CP enables identification and tracing of particular chromosome regions and/or entire chromosomes throughout all meiotic stages as well as corresponding chromosome territories in premeiotic interphase nuclei. Meiotic pairing and structural chromosome rearrangements (typically inversions and translocations) can be identified by CP. Here, we describe step-by-step protocols of CP and CCP in plant species including chromosome preparation, BAC DNA labeling, and multicolor FISH.

  12. The Precarious Prokaryotic Chromosome

    OpenAIRE

    Kuzminov, Andrei

    2014-01-01

    Evolutionary selection for optimal genome preservation, replication, and expression should yield similar chromosome organizations in any type of cells. And yet, the chromosome organization is surprisingly different between eukaryotes and prokaryotes. The nuclear versus cytoplasmic accommodation of genetic material accounts for the distinct eukaryotic and prokaryotic modes of genome evolution, but it falls short of explaining the differences in the chromosome organization. I propose that the t...

  13. Mechanisms for chromosome segregation.

    Science.gov (United States)

    Bouet, Jean-Yves; Stouf, Mathieu; Lebailly, Elise; Cornet, François

    2014-12-01

    Bacteria face the problem of segregating their gigantic chromosomes without a segregation period restricted in time and space, as Eukaryotes do. Segregation thus involves multiple activities, general or specific of a chromosome region and differentially controlled. Recent advances show that these various mechanisms conform to a “pair and release” rule, which appears as a general rule in DNA segregation. We describe the latest advances in segregation of bacterial chromosomes with emphasis on the different pair and release mechanisms.

  14. Brisk Walk May Help Sidestep Heart Disease

    Science.gov (United States)

    ... fullstory_162978.html Brisk Walk May Help Sidestep Heart Disease In just 10 weeks, cholesterol, blood pressure and ... at moderate intensity may lower the risk of heart disease, a small study suggests. "We know walking is ...

  15. Minnesota Walk-In Access Sites

    Data.gov (United States)

    Minnesota Department of Natural Resources — The Minnesota Walk-In Access site (WIA) GIS data represents areas of private land that have been made open to the public for the purpose of walk-in (foot travel)...

  16. Bacterial chromosome segregation.

    Science.gov (United States)

    Possoz, Christophe; Junier, Ivan; Espeli, Olivier

    2012-01-01

    Dividing cells have mechanisms to ensure that their genomes are faithfully segregated into daughter cells. In bacteria, the description of these mechanisms has been considerably improved in the recent years. This review focuses on the different aspects of bacterial chromosome segregation that can be understood thanks to the studies performed with model organisms: Escherichia coli, Bacillus subtilis, Caulobacter crescentus and Vibrio cholerae. We describe the global positionning of the nucleoid in the cell and the specific localization and dynamics of different chromosomal loci, kinetic and biophysic aspects of chromosome segregation are presented. Finally, a presentation of the key proteins involved in the chromosome segregation is made.

  17. Chromosome oscillations in mitosis

    Science.gov (United States)

    Campas, Otger

    2008-03-01

    Successful cell division necessitates a tight regulation of chromosome movement via the activity of molecular motors. Many of the key players at the origin of the forces generating the motion have been identified, but their spatial and temporal organization remains elusive. In animal cells, chromosomes periodically switch between phases of movement towards and away from the pole. This characteristic oscillatory behaviour cannot be explained by the current models of chromosome positioning and congression. We perform a self-contained theoretical analysis in which the motion of mono-oriented chromosomes results from the competition between the activity of the kinetochore and chromokinesin motors on the chromosome arms. Our analysis, consistent with the available experimental data, proposes that the interplay between the aster-like morphology of the spindle and the collective kinetics of molecular motors is at the origin of chromosome oscillations, positioning and congression. It provides a natural explanation for the so-called chromosome directional instability and for the mechanism by which chromosomes sense their position in space. In addition, we estimate the in vivo velocity of chromokinesins at vanishing load and propose new experiments to assess the mechanism at the origin of chromosome movement in cell division.

  18. Einstein's random walk and thermal diffusion

    OpenAIRE

    2013-01-01

    Thermal diffusion has been studied for over 150 years. Despite of the long history and the increasing importance of the phenomenon, the physics of thermal diffusion remains poorly understood. In this paper Ludwig's thermal diffusion is explained using Einstein's random walk. The only new structure added is the spatial heterogeneity of the random walk to reflect the temperature gradient of thermal diffusion. Hence, the walk length and the walk speed are location dependent functions in this pap...

  19. Efficient quantum walk on a quantum processor

    OpenAIRE

    Qiang, Xiaogang; Loke, Thomas; Montanaro, Ashley; Aungskunsiri, Kanin; Zhou, Xiao-Qi; O'Brien, Jeremy; Wang, Jingbo; Matthews, Jonathan

    2016-01-01

    The random walk formalism is used across a wide range of applications, from modelling share prices to predicting population genetics. Likewise quantum walks have shown much potential as a frame- work for developing new quantum algorithms. In this paper, we present explicit efficient quantum circuits for implementing continuous-time quantum walks on the circulant class of graphs. These circuits allow us to sample from the output probability distributions of quantum walks on circulant graphs ef...

  20. Walking Tips for Older Adults

    Science.gov (United States)

    ... the most ppular form of exercise among older adults and it's a great choice. What can walking do for you? strengthen muscles help prevent weight gain lower risks of heart disease, stroke, diabetes, and osteoporosis improve balance lower the likelihood of falling If ...

  1. Walking pattern classification and walking distance estimation algorithms using gait phase information.

    Science.gov (United States)

    Wang, Jeen-Shing; Lin, Che-Wei; Yang, Ya-Ting C; Ho, Yu-Jen

    2012-10-01

    This paper presents a walking pattern classification and a walking distance estimation algorithm using gait phase information. A gait phase information retrieval algorithm was developed to analyze the duration of the phases in a gait cycle (i.e., stance, push-off, swing, and heel-strike phases). Based on the gait phase information, a decision tree based on the relations between gait phases was constructed for classifying three different walking patterns (level walking, walking upstairs, and walking downstairs). Gait phase information was also used for developing a walking distance estimation algorithm. The walking distance estimation algorithm consists of the processes of step count and step length estimation. The proposed walking pattern classification and walking distance estimation algorithm have been validated by a series of experiments. The accuracy of the proposed walking pattern classification was 98.87%, 95.45%, and 95.00% for level walking, walking upstairs, and walking downstairs, respectively. The accuracy of the proposed walking distance estimation algorithm was 96.42% over a walking distance.

  2. Developmental Continuity? Crawling, Cruising, and Walking

    Science.gov (United States)

    Adolph, Karen E.; Berger, Sarah E.; Leo, Andrew J.

    2011-01-01

    This research examined developmental continuity between "cruising" (moving sideways holding onto furniture for support) and walking. Because cruising and walking involve locomotion in an upright posture, researchers have assumed that cruising is functionally related to walking. Study 1 showed that most infants crawl and cruise concurrently prior…

  3. Claimed walking distance of lower limb amputees

    NARCIS (Netherlands)

    Geertzen, JHB; Bosmans, JC; Van der Schans, CP; Dijkstra, PU

    2005-01-01

    Purpose: Walking ability in general and specifically for lower limb amputees is of major importance for social mobility and ADL independence. Walking determines prosthesis prescription. The aim of this study was to mathematically analyse factors influencing claimed walking distance of lower limb amp

  4. Fetal chromosome analysis: screening for chromosome disease?

    DEFF Research Database (Denmark)

    Philip, J; Tabor, Ann; Bang, J

    1983-01-01

    The aim of the study was to investigate the rationale of the current indications for fetal chromosome analysis. 5372 women had 5423 amniocentesis performed, this group constituting a consecutive sample at the chromosome laboratory, Rigshospitalet, Copenhagen from March 1973 to September 1980 (Group...... to women having amniocentesis, although considered not to have any increased risk of fetal chromosome abnormality (1390 pregnancies, group B). They were also compared with 750 consecutive pregnancies in women 25-34 years of age, in whom all heritable diseases were excluded (group C). The risk of unbalanced...... with women without elevated risk. Spontaneous abortion rate and prematurity rate did not differ from rates expected without amniocentesis. It is concluded that current indications may be characterized as a mixture of evident high risk factors and factors with only a minor influence on risk. Indications...

  5. Active quantum walks: a framework for quantum walks with adiabatic quantum evolution

    Science.gov (United States)

    Wu, Nan; Song, Fangmin; Li, Xiangdong

    2016-05-01

    We study a new methodology for quantum walk based algorithms. Different from the passive quantum walk, in which a walker is guided by a quantum walk procedure, the new framework that we developed allows the walker to move by an adiabatic procedure of quantum evolution, as an active way. The use of this active quantum walk is helpful to develop new quantum walk based searching and optimization algorithms.

  6. XYY chromosome anomaly and schizophrenia.

    Science.gov (United States)

    Rajagopalan, M; MacBeth, R; Varma, S L

    1998-02-07

    Sex chromosome anomalies have been associated with psychoses, and most of the evidence is linked to the presence of an additional X chromosome. We report a patient with XYY chromosome anomaly who developed schizophrenia.

  7. Biased random walks on multiplex networks

    CERN Document Server

    Battiston, Federico; Latora, Vito

    2015-01-01

    Biased random walks on complex networks are a particular type of walks whose motion is biased on properties of the destination node, such as its degree. In recent years they have been exploited to design efficient strategies to explore a network, for instance by constructing maximally mixing trajectories or by sampling homogeneously the nodes. In multiplex networks, the nodes are related through different types of links (layers or communication channels), and the presence of connections at different layers multiplies the number of possible paths in the graph. In this work we introduce biased random walks on multiplex networks and provide analytical solutions for their long-term properties such as the stationary distribution and the entropy rate. We focus on degree-biased walks and distinguish between two subclasses of random walks: extensive biased walks consider the properties of each node separately at each layer, intensive biased walks deal instead with intrinsically multiplex variables. We study the effec...

  8. Quantum walk on a cylinder

    CERN Document Server

    Bru, Luis A; Di Molfetta, Giuseppe; Pérez, Armando; Roldán, Eugenio; Silva, Fernando

    2016-01-01

    We consider the 2D alternate quantum walk on a cylinder. We concentrate on the study of the motion along the open dimension, in the spirit of looking at the closed coordinate as a small or "hidden" extra dimension. If one starts from localized initial conditions on the lattice, the dynamics of the quantum walk that is obtained after tracing out the small dimension shows the contribution of several components, which can be understood from the study of the dispersion relations for this problem. In fact, these components originate from the contribution of the possible values of the quasi-momentum in the closed dimension. In the continuous space-time limit, the different components manifest as a set of Dirac equations, with each quasi-momentum providing the value of the corresponding mass. We briefly discuss the possible link of these ideas to the simulation of high energy physical theories that include extra dimensions.

  9. Random walk near the surface

    Science.gov (United States)

    Korneta, W.; Pytel, Z.

    1988-07-01

    The random walk of a particle on a three-dimensional semi-infinite lattice is considered. In order to study the effect of the surface on the random walk, it is assumed that the velocity of the particle depends on the distance to the surface. Moreover it is assumed that at any point the particle may be absorbed with a certain probability. The probability of the return of the particle to the starting point and the average time of eventual return are calculated. The dependence of these quantities on the distance to the surface, the probability of absorption and the properties of the surface is discussed. The method of generating functions is used.

  10. Groups, graphs and random walks

    CERN Document Server

    Salvatori, Maura; Sava-Huss, Ecaterina

    2017-01-01

    An accessible and panoramic account of the theory of random walks on groups and graphs, stressing the strong connections of the theory with other branches of mathematics, including geometric and combinatorial group theory, potential analysis, and theoretical computer science. This volume brings together original surveys and research-expository papers from renowned and leading experts, many of whom spoke at the workshop 'Groups, Graphs and Random Walks' celebrating the sixtieth birthday of Wolfgang Woess in Cortona, Italy. Topics include: growth and amenability of groups; Schrödinger operators and symbolic dynamics; ergodic theorems; Thompson's group F; Poisson boundaries; probability theory on buildings and groups of Lie type; structure trees for edge cuts in networks; and mathematical crystallography. In what is currently a fast-growing area of mathematics, this book provides an up-to-date and valuable reference for both researchers and graduate students, from which future research activities will undoubted...

  11. City Walks and Tactile Experience

    Directory of Open Access Journals (Sweden)

    Mădălina Diaconu

    2011-01-01

    Full Text Available This paper is an attempt to develop categories of the pedestrian’s tactile and kinaesthetic experience of the city. The beginning emphasizes the haptic qualities of surfaces and textures, which can be “palpated” visually or experienced by walking. Also the lived city is three-dimensional; its corporeal depth is discussed here in relation to the invisible sewers, protuberant profiles, and the formal diversity of roofscapes. A central role is ascribed in the present analysis to the formal similarities between the representation of the city by walking through it and the representation of the tactile form of objects. Additional aspects of the “tactile” experience of the city in a broad sense concern the feeling of their rhythms and the exposure to weather conditions. Finally, several aspects of contingency converge in the visible age of architectural works, which record traces of individual and collective histories.

  12. Sequential cloning of chromosomes

    Science.gov (United States)

    Lacks, S.A.

    1995-07-18

    A method for sequential cloning of chromosomal DNA of a target organism is disclosed. A first DNA segment homologous to the chromosomal DNA to be sequentially cloned is isolated. The first segment has a first restriction enzyme site on either side. A first vector product is formed by ligating the homologous segment into a suitably designed vector. The first vector product is circularly integrated into the target organism`s chromosomal DNA. The resulting integrated chromosomal DNA segment includes the homologous DNA segment at either end of the integrated vector segment. The integrated chromosomal DNA is cleaved with a second restriction enzyme and ligated to form a vector-containing plasmid, which is replicated in a host organism. The replicated plasmid is then cleaved with the first restriction enzyme. Next, a DNA segment containing the vector and a segment of DNA homologous to a distal portion of the previously isolated DNA segment is isolated. This segment is then ligated to form a plasmid which is replicated within a suitable host. This plasmid is then circularly integrated into the target chromosomal DNA. The chromosomal DNA containing the circularly integrated vector is treated with a third, retrorestriction (class IIS) enzyme. The cleaved DNA is ligated to give a plasmid that is used to transform a host permissive for replication of its vector. The sequential cloning process continues by repeated cycles of circular integration and excision. The excision is carried out alternately with the second and third enzymes. 9 figs.

  13. Chromosomal mosaicism goes global

    Directory of Open Access Journals (Sweden)

    Yurov Yuri B

    2008-11-01

    Full Text Available Intercellular differences of chromosomal content in the same individual are defined as chromosomal mosaicism (alias intercellular or somatic genomic variations or, in a number of publications, mosaic aneuploidy. It has long been suggested that this phenomenon poorly contributes both to intercellular (interindividual diversity and to human disease. However, our views have recently become to change due to a series of communications demonstrated a higher incidence of chromosomal mosaicism in diseased individuals (major psychiatric disorders and autoimmune diseases as well as depicted chromosomal mosaicism contribution to genetic diversity, the central nervous system development, and aging. The later has been produced by significant achievements in the field of molecular cytogenetics. Recently, Molecular Cytogenetics has published an article by Maj Hulten and colleagues that has provided evidences for chromosomal mosaicism to underlie formation of germline aneuploidy in human female gametes using trisomy 21 (Down syndrome as a model. Since meiotic aneuploidy is suggested to be the leading genetic cause of human prenatal mortality and postnatal morbidity, these data together with previous findings define chromosomal mosaicism not as a casual finding during cytogenetic analyses but as a more significant biological phenomenon than previously recognized. Finally, the significance of chromosomal mosaicism can be drawn from the fact, that this phenomenon is involved in genetic diversity, normal and abnormal prenatal development, human diseases, aging, and meiotic aneuploidy, the intrinsic cause of which remains, as yet, unknown.

  14. CHROMOSOMES OF AMERICAN MARSUPIALS.

    Science.gov (United States)

    BIGGERS, J D; FRITZ, H I; HARE, W C; MCFEELY, R A

    1965-06-18

    Studies of the chromosomes of four American marsupials demonstrated that Caluromys derbianus and Marmosa mexicana have a diploid number of 14 chromosomes, and that Philander opossum and Didelphis marsupialis have a diploid number of 22. The karyotypes of C. derbianus and M. mexicana are similar, whereas those of P. opossum and D. marsupialis are dissimilar. If the 14-chromosome karyotype represents a reduction from a primitive number of 22, these observations suggest that the change has occurred independently in the American and Australasian forms.

  15. Segment lengths influence hill walking strategies.

    Science.gov (United States)

    Sheehan, Riley C; Gottschall, Jinger S

    2014-08-22

    Segment lengths are known to influence walking kinematics and muscle activity patterns. During level walking at the same speed, taller individuals take longer, slower strides than shorter individuals. Based on this, we sought to determine if segment lengths also influenced hill walking strategies. We hypothesized that individuals with longer segments would display more joint flexion going uphill and more extension going downhill as well as greater lateral gastrocnemius and vastus lateralis activity in both directions. Twenty young adults of varying heights (below 155 cm to above 188 cm) walked at 1.25 m/s on a level treadmill as well as 6° and 12° up and downhill slopes while we collected kinematic and muscle activity data. Subsequently, we ran linear regressions for each of the variables with height, leg, thigh, and shank length. Despite our population having twice the anthropometric variability, the level and hill walking patterns matched closely with previous studies. While there were significant differences between level and hill walking, there were few hill walking variables that were correlated with segment length. In support of our hypothesis, taller individuals had greater knee and ankle flexion during uphill walking. However, the majority of the correlations were between tibialis anterior and lateral gastrocnemius activities and shank length. Contrary to our hypothesis, relative step length and muscle activity decreased with segment length, specifically shank length. In summary, it appears that individuals with shorter segments require greater propulsion and toe clearance during uphill walking as well as greater braking and stability during downhill walking.

  16. Chromosomal abnormalities and autism

    Directory of Open Access Journals (Sweden)

    Farida El-Baz

    2016-01-01

    Conclusion: Chromosomal abnormalities were not detected in the studied autistic children, and so the relation between the genetics and autism still needs further work up with different study methods and techniques.

  17. Walk-Startup of a Two-Legged Walking Mechanism

    Science.gov (United States)

    Babković, Kalman; Nagy, László; Krklješ, Damir; Borovac, Branislav

    There is a growing interest towards humanoid robots. One of their most important characteristic is the two-legged motion - walk. Starting and stopping of humanoid robots introduce substantial delays. In this paper, the goal is to explore the possibility of using a short unbalanced state of the biped robot to quickly gain speed and achieve the steady state velocity during a period shorter than half of the single support phase. The proposed method is verified by simulation. Maintainig a steady state, balanced gait is not considered in this paper.

  18. System overview and walking dynamics of a passive dynamic walking robot with flat feet

    Directory of Open Access Journals (Sweden)

    Xinyu Liu

    2015-12-01

    Full Text Available The concept of “passive dynamic walking robot” refers to the robot that can walk down a shallow slope stably without any actuation and control which shows a limit cycle during walking. By adding actuation at some joints, the passive dynamic walking robot can walk stably on level ground and exhibit more versatile gaits than fully passive robot, namely, the “limit cycle walker.” In this article, we present the mechanical structures and control system design for a passive dynamic walking robot with series elastic actuators at hip joint and ankle joints. We built a walking model that consisted of an upper body, knee joints, and flat feet and derived its walking dynamics that involve double stance phases in a walking cycle based on virtual power principle. The instant just before impact was chosen as the start of one step to reduce the number of independent state variables. A numerical simulation was implemented by using MATLAB, in which the proposed passive dynamic walking model could walk stably down a shallow slope, which proves that the derived walking dynamics are correct. A physical passive robot prototype was built finally, and the experiment results show that by only simple control scheme the passive dynamic robot could walk stably on level ground.

  19. Differences in walking pattern during 6-min walk test between patients with COPD and healthy subjects.

    Directory of Open Access Journals (Sweden)

    Janneke Annegarn

    Full Text Available BACKGROUND: To date, detailed analyses of walking patterns using accelerometers during the 6-min walk test (6MWT have not been performed in patients with chronic obstructive pulmonary disease (COPD. Therefore, it remains unclear whether and to what extent COPD patients have an altered walking pattern during the 6MWT compared to healthy elderly subjects. METHODOLOGY/PRINCIPAL FINDINGS: 79 COPD patients and 24 healthy elderly subjects performed the 6MWT wearing an accelerometer attached to the trunk. The accelerometer features (walking intensity, cadence, and walking variability and subject characteristics were assessed and compared between groups. Moreover, associations were sought with 6-min walk distance (6MWD using multiple ordinary least squares (OLS regression models. COPD patients walked with a significantly lower walking intensity, lower cadence and increased walking variability compared to healthy subjects. Walking intensity and height were the only two significant determinants of 6MWD in healthy subjects, explaining 85% of the variance in 6MWD. In COPD patients also age, cadence, walking variability measures and their interactions were included were significant determinants of 6MWD (total variance in 6MWD explained: 88%. CONCLUSIONS/SIGNIFICANCE: COPD patients have an altered walking pattern during 6MWT compared to healthy subjects. These differences in walking pattern partially explain the lower 6MWD in patients with COPD.

  20. [Sex chromosomes and meiosis].

    Science.gov (United States)

    Guichaoua, M-R; Geoffroy-Siraudin, C; Tassistro, V; Ghalamoun-Slaimi, R; Perrin, J; Metzler-Guillemain, C

    2009-01-01

    Sex chromosome behaviour fundamentally differs between male and female meiosis. In oocyte, X chromosomes synapse giving a XX bivalent which is not recognizable in their morphology and behaviour from autosomal bivalents. In human male, X and Y chromosomes differ from one another in their morphology and their genetic content, leading to a limited pairing and preventing genetic recombination, excepted in homologous region PAR1. During pachytene stage of the first meiotic prophase, X and Y chromosomes undergo a progressive condensation and form a transcriptionally silenced peripheral XY body. The condensation of the XY bivalent during pachytene stage led us to describe four pachytene substages and to localize the pachytene checkpoint between substages 2 and 3. We also defined the pachytene index (PI=P1+P2/P1+P2+P3+P4) which is always less than 0.50 in normal meiosis. XY body undergoes decondensation at diplotene stage, but transcriptional inactivation of the two sex chromosomes or Meiotic Sex Chromosome Inactivation (MSCI) persists through to the end of spermatogenesis. Sex chromosome inactivation involves several proteins, some of them were now identified. Two isoforms of the HP1 protein, HP1beta and HP1gamma, are involved in the facultative heterochromatinization of the XY body, but the initiation of this process involves the phosphorylation of the protein H2AX by the kinase ATR whose recruitment depends on BRCA1. Extensive researches on the inactivation of the sex chromosomes during male meiosis will allow to a better understanding of some male infertilities.

  1. Chromosome doubling method

    Science.gov (United States)

    Kato, Akio

    2006-11-14

    The invention provides methods for chromosome doubling in plants. The technique overcomes the low yields of doubled progeny associated with the use of prior techniques for doubling chromosomes in plants such as grasses. The technique can be used in large scale applications and has been demonstrated to be highly effective in maize. Following treatment in accordance with the invention, plants remain amenable to self fertilization, thereby allowing the efficient isolation of doubled progeny plants.

  2. Activation of X Chromosome Inactivation

    NARCIS (Netherlands)

    C.M. Maduro (Cheryl)

    2016-01-01

    markdownabstractIn mammals, males are the heterogametic sex having an X chromosome and a Y chromosome whereas females have two X chromosomes. Despite originating from an ancient homologous autosomal pair, the X and Y chromosome now differ greatly in size and gene content after ~180 MY of evolution.

  3. Vibrio chromosomes share common history

    Directory of Open Access Journals (Sweden)

    Gevers Dirk

    2010-05-01

    Full Text Available Abstract Background While most gamma proteobacteria have a single circular chromosome, Vibrionales have two circular chromosomes. Horizontal gene transfer is common among Vibrios, and in light of this genetic mobility, it is an open question to what extent the two chromosomes themselves share a common history since their formation. Results Single copy genes from each chromosome (142 genes from chromosome I and 42 genes from chromosome II were identified from 19 sequenced Vibrionales genomes and their phylogenetic comparison suggests consistent phylogenies for each chromosome. Additionally, study of the gene organization and phylogeny of the respective origins of replication confirmed the shared history. Conclusions Thus, while elements within the chromosomes may have experienced significant genetic mobility, the backbones share a common history. This allows conclusions based on multilocus sequence analysis (MLSA for one chromosome to be applied equally to both chromosomes.

  4. Quantum walks public key cryptographic system

    OpenAIRE

    Vlachou, C; Rodrigues, J.; Mateus, P.; Paunković, N.; Souto, A.

    2016-01-01

    Quantum Cryptography is a rapidly developing field of research that benefits from the properties of Quantum Mechanics in performing cryptographic tasks. Quantum walks are a powerful model for quantum computation and very promising for quantum information processing. In this paper, we present a quantum public-key cryptographic system based on quantum walks. In particular, in the proposed protocol the public key is given by a quantum state generated by performing a quantum walk. We show that th...

  5. Quantum random walks - an introductory overview

    CERN Document Server

    Kempe, J

    2003-01-01

    This article aims to provide an introductory survey on quantum random walks. Starting from a physical effect to illustrate the main ideas we will introduce quantum random walks, review some of their properties and outline their striking differences to classical walks. We will touch upon both physical effects and computer science applications, introducing some of the main concepts and language of present day quantum information science in this context. We will mention recent developments in this new area and outline some open questions.

  6. Walking in Place Through Virtual Worlds

    DEFF Research Database (Denmark)

    Nilsson, Niels Chr.; Serafin, Stefania; Nordahl, Rolf

    2016-01-01

    Immersive virtual reality (IVR) is seemingly on the verge of entering the homes of consumers. Enabling users to walk through virtual worlds in a limited physical space presents a challenge. With an outset in a taxonomy of virtual travel techniques, we argue that Walking-in-Place (WIP) techniques ....... Finally, we summarize work we have performed in order to produce more natural WIP locomotion and present unexplored topics which need to be address if WIP techniques are to provide perceptually natural walking experiences....

  7. Random Walk Smooth Transition Autoregressive Models

    OpenAIRE

    2004-01-01

    This paper extends the family of smooth transition autoregressive (STAR) models by proposing a specification in which the autoregressive parameters follow random walks. The random walks in the parameters can capture structural change within a regime switching framework, but in contrast to the time varying STAR (TV-STAR) speciifcation recently introduced by Lundbergh et al (2003), structural change in our random walk STAR (RW-STAR) setting follows a stochastic process rather than a determinist...

  8. Gaitography applied to prosthetic walking.

    Science.gov (United States)

    Roerdink, Melvyn; Cutti, Andrea G; Summa, Aurora; Monari, Davide; Veronesi, Davide; van Ooijen, Mariëlle W; Beek, Peter J

    2014-11-01

    During walking on an instrumented treadmill with an embedded force platform or grid of pressure sensors, center-of-pressure (COP) trajectories exhibit a characteristic butterfly-like shape, reflecting the medio-lateral and anterior-posterior weight shifts associated with alternating steps. We define "gaitography" as the analysis of such COP trajectories during walking (the "gaitograms"). It is currently unknown, however, if gaitography can be employed to characterize pathological gait, such as lateralized gait impairments. We therefore registered gaitograms for a heterogeneous sample of persons with a trans-femoral and trans-tibial amputation during treadmill walking at a self-selected comfortable speed. We found that gaitograms directly visualize between-person differences in prosthetic gait in terms of step width and the relative duration of prosthetic and non-prosthetic single-support stance phases. We further demonstrated that one should not only focus on the gaitogram's shape but also on the time evolution along that shape, given that the COP evolves much slower in the single-support phase than in the double-support phase. Finally, commonly used temporal and spatial prosthetic gait characteristics were derived, revealing both individual and systematic differences in prosthetic and non-prosthetic step lengths, step times, swing times, and double-support durations. Because gaitograms can be rapidly collected in an unobtrusive and markerless manner over multiple gait cycles without constraining foot placement, clinical application of gaitography seems both expedient and appealing. Studies examining the repeatability of gaitograms and evaluating gaitography-based gait characteristics against a gold standard with known validity and reliability are required before gaitography can be clinically applied.

  9. Motor modules in robot-aided walking

    Directory of Open Access Journals (Sweden)

    Gizzi Leonardo

    2012-10-01

    Full Text Available Abstract Background It is hypothesized that locomotion is achieved by means of rhythm generating networks (central pattern generators and muscle activation generating networks. This modular organization can be partly identified from the analysis of the muscular activity by means of factorization algorithms. The activity of rhythm generating networks is described by activation signals whilst the muscle intervention generating network is represented by motor modules (muscle synergies. In this study, we extend the analysis of modular organization of walking to the case of robot-aided locomotion, at varying speed and body weight support level. Methods Non Negative Matrix Factorization was applied on surface electromyographic signals of 8 lower limb muscles of healthy subjects walking in gait robotic trainer at different walking velocities (1 to 3km/h and levels of body weight support (0 to 30%. Results The muscular activity of volunteers could be described by low dimensionality (4 modules, as for overground walking. Moreover, the activation signals during robot-aided walking were bursts of activation timed at specific phases of the gait cycle, underlying an impulsive controller, as also observed in overground walking. This modular organization was consistent across the investigated speeds, body weight support level, and subjects. Conclusions These results indicate that walking in a Lokomat robotic trainer is achieved by similar motor modules and activation signals as overground walking and thus supports the use of robotic training for re-establishing natural walking patterns.

  10. Quantum walk with one variable absorbing boundary

    Science.gov (United States)

    Wang, Feiran; Zhang, Pei; Wang, Yunlong; Liu, Ruifeng; Gao, Hong; Li, Fuli

    2017-01-01

    Quantum walks constitute a promising ingredient in the research on quantum algorithms; consequently, exploring different types of quantum walks is of great significance for quantum information and quantum computation. In this study, we investigate the progress of quantum walks with a variable absorbing boundary and provide an analytical solution for the escape probability (the probability of a walker that is not absorbed by the boundary). We simulate the behavior of escape probability under different conditions, including the reflection coefficient, boundary location, and initial state. Moreover, it is also meaningful to extend our research to the situation of continuous-time and high-dimensional quantum walks.

  11. Excited random walks: results, methods, open problems

    CERN Document Server

    Kosygina, Elena

    2012-01-01

    We consider a class of self-interacting random walks in deterministic or random environments, known as excited random walks or cookie walks, on the d-dimensional integer lattice. The main purpose of this paper is two-fold: to give a survey of known results and some of the methods and to present several new results. The latter include functional limit theorems for transient one-dimensional excited random walks in bounded i.i.d. cookie environments as well as some zero-one laws. Several open problems are stated.

  12. Effect of Body Composition on Walking Economy

    Directory of Open Access Journals (Sweden)

    Maciejczyk Marcin

    2016-12-01

    Full Text Available Purpose. The aim of the study was to evaluate walking economy and physiological responses at two walking speeds in males with similar absolute body mass but different body composition. Methods. The study involved 22 young men with similar absolute body mass, BMI, aerobic performance, calf and thigh circumference. The participants differed in body composition: body fat (HBF group and lean body mass (HLBM group. In the graded test, maximal oxygen uptake (VO2max and maximal heart rate were measured. Walking economy was evaluated during two walks performed at two different speeds (4.8 and 6.0 km ‧ h-1. Results. The VO2max was similar in both groups, as were the physiological responses during slow walking. The absolute oxygen uptake or oxygen uptake relative to body mass did not significantly differentiate the studied groups. The only indicator significantly differentiating the two groups was oxygen uptake relative to LBM. Conclusions. Body composition does not significantly affect walking economy at low speed, while during brisk walking, the economy is better in the HLBM vs. HBF group, provided that walking economy is presented as oxygen uptake relative to LBM. For this reason, we recommend this manner of oxygen uptake normalization in the evaluation of walking economy.

  13. Quantum Walks for Computer Scientists

    CERN Document Server

    Venegas-Andraca, Salvador

    2008-01-01

    Quantum computation, one of the latest joint ventures between physics and the theory of computation, is a scientific field whose main goals include the development of hardware and algorithms based on the quantum mechanical properties of those physical systems used to implement such algorithms. Solving difficult tasks (for example, the Satisfiability Problem and other NP-complete problems) requires the development of sophisticated algorithms, many of which employ stochastic processes as their mathematical basis. Discrete random walks are a popular choice among those stochastic processes. Inspir

  14. Walk the line: station context, corridor type and bus rapid transit walk access in Jinan, China

    OpenAIRE

    Jiang, Yang; Mehndiratta, Shomik; Zegras, P. Christopher

    2011-01-01

    This paper examines BRT station walk access patterns in rapidly urbanizing China and the relationship between bus rapid transit (BRT) station context and corridor type and the distance people will walk to access the system (i.e., catchment area). We hypothesize that certain contextual built environment features and station and right-of-way configurations will increase the walk-access catchment area; that is, that urban design influences users’ willingness to walk to BRT. We base our analysis ...

  15. Large-scale cloning of human chromosome 2-specific yeast artificial chromosomes (YACs) using an interspersed repetitive sequences (IRS)-PCR approach.

    Science.gov (United States)

    Liu, J; Stanton, V P; Fujiwara, T M; Wang, J X; Rezonzew, R; Crumley, M J; Morgan, K; Gros, P; Housman, D; Schurr, E

    1995-03-20

    We report here an efficient approach to the establishment of extended YAC contigs on human chromosome 2 by using an interspersed repetitive sequences (IRS)-PCR-based screening strategy for YAC DNA pools. Genomic DNA was extracted from 1152 YAC pools comprised of 55,296 YACs mostly derived from the CEPH Mark I library. Alu-element-mediated PCR was performed for each pool, and amplification products were spotted on hybridization membranes (IRS filters). IRS probes for the screening of the IRS filters were obtained by Alu-element-mediated PCR. Of 708 distinct probes obtained from chromosome 2-specific somatic cell hybrids, 85% were successfully used for library screening. Similarly, 80% of 80 YAC walking probes were successfully used for library screening. Each probe detected an average of 6.6 YACs, which is in good agreement with the 7- to 7.5-fold genome coverage provided by the library. In a preliminary analysis, we have identified 188 YAC groups that are the basis for building contigs for chromosome 2. The coverage of the telomeric half of chromosome 2q was considered to be good since 31 of 34 microsatellites and 22 of 23 expressed sequence tags that were chosen from chromosome region 2q13-q37 were contained in a chromosome 2 YAC sublibrary generated by our experiments. We have identified a minimum of 1610 distinct chromosome 2-specific YACs, which will be a valuable asset for the physical mapping of the second largest human chromosome.

  16. Interlimb coordination during forward walking is largely preserved in backward walking in children with cerebral palsy

    NARCIS (Netherlands)

    Meyns, P.; Molenaers, G.; Desloovere, K.; Duysens, J.E.J.

    2014-01-01

    OBJECTIVE: Limb kinematics in backward walking (BW) are essentially those of forward walking (FW) in reverse. It has been argued that subcortical mechanisms could underlie both walking modes. METHODS: Therefore, we tested whether participants with supraspinal/cortical deficits (i.e. cerebral palsy)

  17. IMU-based ambulatory walking speed estimation in constrained treadmill and overground walking.

    Science.gov (United States)

    Yang, Shuozhi; Li, Qingguo

    2012-01-01

    This study evaluated the performance of a walking speed estimation system based on using an inertial measurement unit (IMU), a combination of accelerometers and gyroscopes. The walking speed estimation algorithm segments the walking sequence into individual stride cycles (two steps) based on the inverted pendulum-like behaviour of the stance leg during walking and it integrates the angular velocity and linear accelerations of the shank to determine the displacement of each stride. The evaluation was performed in both treadmill and overground walking experiments with various constraints on walking speed, step length and step frequency to provide a relatively comprehensive assessment of the system. Promising results were obtained in providing accurate and consistent walking speed/step length estimation in different walking conditions. An overall percentage root mean squared error (%RMSE) of 4.2 and 4.0% was achieved in treadmill and overground walking experiments, respectively. With an increasing interest in understanding human walking biomechanics, the IMU-based ambulatory system could provide a useful walking speed/step length measurement/control tool for constrained walking studies.

  18. Walking performance: correlation between energy cost of walking and walking participation. new statistical approach concerning outcome measurement.

    Directory of Open Access Journals (Sweden)

    Marco Franceschini

    Full Text Available Walking ability, though important for quality of life and participation in social and economic activities, can be adversely affected by neurological disorders, such as Spinal Cord Injury, Stroke, Multiple Sclerosis or Traumatic Brain Injury. The aim of this study is to evaluate if the energy cost of walking (CW, in a mixed group of chronic patients with neurological diseases almost 6 months after discharge from rehabilitation wards, can predict the walking performance and any walking restriction on community activities, as indicated by Walking Handicap Scale categories (WHS. One hundred and seven subjects were included in the study, 31 suffering from Stroke, 26 from Spinal Cord Injury and 50 from Multiple Sclerosis. The multivariable binary logistical regression analysis has produced a statistical model with good characteristics of fit and good predictability. This model generated a cut-off value of.40, which enabled us to classify correctly the cases with a percentage of 85.0%. Our research reveal that, in our subjects, CW is the only predictor of the walking performance of in the community, to be compared with the score of WHS. We have been also identifying a cut-off value of CW cost, which makes a distinction between those who can walk in the community and those who cannot do it. In particular, these values could be used to predict the ability to walk in the community when discharged from the rehabilitation units, and to adjust the rehabilitative treatment to improve the performance.

  19. Spatial search by quantum walk

    CERN Document Server

    Childs, A M; Childs, Andrew M.; Goldstone, Jeffrey

    2003-01-01

    Grover's quantum search algorithm provides a way to speed up combinatorial search, but is not directly applicable to searching a physical database. Nevertheless, Aaronson and Ambainis showed that a database of N items laid out in d spatial dimensions can be searched in time of order sqrt(N) for d>2, and in time of order sqrt(N) poly(log N) for d=2. We consider an alternative search algorithm based on a continuous time quantum walk on a graph. The case of the complete graph gives the continuous time search algorithm of Farhi and Gutmann, and other previously known results can be used to show that sqrt(N) speedup can also be achieved on the hypercube. We show that full sqrt(N) speedup can be achieved on a d-dimensional periodic lattice for d>4. In d=4, the quantum walk search algorithm takes time of order sqrt(N) poly(log N), and in d<4, the algorithm provides no speedup.

  20. "Chromosome": a knowledge-based system for the chromosome classification.

    Science.gov (United States)

    Ramstein, G; Bernadet, M

    1993-01-01

    Chromosome, a knowledge-based analysis system has been designed for the classification of human chromosomes. Its aim is to perform an optimal classification by driving a tool box containing the procedures of image processing, pattern recognition and classification. This paper presents the general architecture of Chromosome, based on a multiagent system generator. The image processing tool box is described from the met aphasic enhancement to the fine classification. Emphasis is then put on the knowledge base intended for the chromosome recognition. The global classification process is also presented, showing how Chromosome proceeds to classify a given chromosome. Finally, we discuss further extensions of the system for the karyotype building.

  1. Treadmill walking is not equivalent to overground walking for the study of walking smoothness and rhythmicity in older adults.

    Science.gov (United States)

    Row Lazzarini, Brandi S; Kataras, Theodore J

    2016-05-01

    Treadmills are appealing for gait studies, but some gait mechanics are disrupted during treadmill walking. The purpose of this study was to examine the effects of speed and treadmill walking on walking smoothness and rhythmicity of 40 men and women between the ages of 70-96 years. Gait smoothness was examined during overground (OG) and treadmill (TM) walking by calculating the harmonic ratio from linear accelerations measured at the level of the lumbar spine. Rhythmicity was quantified as the stride time standard deviation. TM walking was performed at two speeds: a speed matching the natural OG walk speed (TM-OG), and a preferred TM speed (PTM). A dual-task OG condition (OG-DT) was evaluated to determine if TM walking posed a similar cognitive challenge. Statistical analysis included a one-way Analysis of Variance with Bonferroni corrected post hoc comparisons and the Wilcoxon signed rank test for non-normally distributed variables. Average PTM speed was slower than OG. Compared to OG, those who could reach the TM-OG speed (74.3% of sample) exhibited improved ML smoothness and rhythmicity, and the slower PTM caused worsened vertical and AP smoothness, but did not affect rhythmicity. PTM disrupted smoothness and rhythmicity differently than the OG-DT condition, likely due to reduced speed. The use of treadmills for gait smoothness and rhythmicity studies in older adults is problematic; some participants will not achieve OG speed during TM walking, walking at the TM-OG speed artificially improves rhythmicity and ML smoothness, and walking at the slower PTM speed worsens vertical and AP gait smoothness.

  2. Walking on high heels changes muscle activity and the dynamics of human walking significantly

    DEFF Research Database (Denmark)

    Simonsen, Erik B; Svendsen, Morten Bo Søndergaard; Nørreslet, Andreas;

    2012-01-01

    The aim of the study was to investigate the distribution of net joint moments in the lower extremities during walking on high-heeled shoes compared with barefooted walking at identical speed. Fourteen female subjects walked at 4 km/h across three force platforms while they were filmed by five...... digital video cameras operating at 50 frames/second. Both barefooted walking and walking on high-heeled shoes (heel height: 9 cm) were recorded. Net joint moments were calculated by 3D inverse dynamics. EMG was recorded from eight leg muscles. The knee extensor moment peak in the first half of the stance...

  3. Chromosome numbers in Bromeliaceae

    Directory of Open Access Journals (Sweden)

    Cotias-de-Oliveira Ana Lúcia Pires

    2000-01-01

    Full Text Available The present study reports chromosome numbers of 17 species of Bromeliaceae, belonging to the genera Encholirium, Bromelia, Orthophytum, Hohenbergia, Billbergia, Neoglaziovia, Aechmea, Cryptanthus and Ananas. Most species present 2n = 50, however, Bromelia laciniosa, Orthophytum burle-marxii and O. maracasense are polyploids with 2n = 150, 2n = 100 and 2n = 150, respectively, while for Cryptanthus bahianus, 2n = 34 + 1-4B. B chromosomes were observed in Bromelia plumieri and Hohenbergia aff. utriculosa. The chromosome number of all species was determined for the first time, except for Billbergia chlorosticta and Cryptanthus bahianus. Our data supports the hypothesis of a basic number of x = 25 for the Bromeliaceae family and decreasing aneuploidy in the genus Cryptanthus.

  4. Those amazing dinoflagellate chromosomes

    Institute of Scientific and Technical Information of China (English)

    PETER J RIZZO

    2003-01-01

    Dinoflagellates are a very large and diverse group of eukaryotic algae that play a major role in aquatic food webs of both fresh water and marine habitats. Moreover, the toxic members of this group pose a health threat in the form of red tides. Finally, dinoflagellates are of great evolutionary importance,because of their taxonomic position, and their unusual chromosome structure and composition. While the cytoplasm of dinoflagellates is typically eukaryotic, the nucleus is unique when compared to the nucleus of other eukaryotes. More specifically, while the chromosomes of all other eukaryotes contain histones,dinoflagellate chromosomes lack histones completely. There are no known exceptions to this observation: all dinoflagellates lack histones, and all other eukaryotes contain histones. Nevertheless, dinoflagellates remain a relatively unstudied group of eukaryotes.

  5. Realisation of an energy efficient walking robot

    NARCIS (Netherlands)

    Dertien, Edwin; Oort, van Gijs; Stramigioli, Stefano

    2006-01-01

    In this video the walking robot ‘Dribbel’ is presented, which has been built at the Control Engineering group of the University of Twente, the Netherlands. This robot has been designed with a focus on minimal energy consumption, using a passive dynamic approach. It is a so-called four-legged 2D walk

  6. Walking (Gait), Balance, and Coordination Problems

    Science.gov (United States)

    ... Seeking Services: Questions to Ask d Employment Disclosure Decisions Career Options Accommodations d Resources for Specific Populations Pediatric ... MS Navigator Program Patient Resources Contact Us d Careers in MS ... MS Symptoms Walking (Gait) Difficulties Share this page Facebook Twitter Email Walking (Gait) ...

  7. Locomotor sequence learning in visually guided walking.

    Science.gov (United States)

    Choi, Julia T; Jensen, Peter; Nielsen, Jens Bo

    2016-04-01

    Voluntary limb modifications must be integrated with basic walking patterns during visually guided walking. In this study we tested whether voluntary gait modifications can become more automatic with practice. We challenged walking control by presenting visual stepping targets that instructed subjects to modify step length from one trial to the next. Our sequence learning paradigm is derived from the serial reaction-time (SRT) task that has been used in upper limb studies. Both random and ordered sequences of step lengths were used to measure sequence-specific and sequence-nonspecific learning during walking. In addition, we determined how age (i.e., healthy young adults vs. children) and biomechanical factors (i.e., walking speed) affected the rate and magnitude of locomotor sequence learning. The results showed that healthy young adults (age 24 ± 5 yr,n= 20) could learn a specific sequence of step lengths over 300 training steps. Younger children (age 6-10 yr,n= 8) had lower baseline performance, but their magnitude and rate of sequence learning were the same compared with those of older children (11-16 yr,n= 10) and healthy adults. In addition, learning capacity may be more limited at faster walking speeds. To our knowledge, this is the first study to demonstrate that spatial sequence learning can be integrated with a highly automatic task such as walking. These findings suggest that adults and children use implicit knowledge about the sequence to plan and execute leg movement during visually guided walking.

  8. Quantum random walks and decision making.

    Science.gov (United States)

    Shankar, Karthik H

    2014-01-01

    How realistic is it to adopt a quantum random walk model to account for decisions involving two choices? Here, we discuss the neural plausibility and the effect of initial state and boundary thresholds on such a model and contrast it with various features of the classical random walk model of decision making.

  9. Nordic walking improves mobility in Parkinson's disease.

    NARCIS (Netherlands)

    Eijkeren, FJ van; Reijmers, R.S.; Kleinveld, M.J.; Minten, A.; Bruggen, J.P.; Bloem, B.R.

    2008-01-01

    Nordic walking may improve mobility in Parkinson's disease (PD). Here, we examined whether the beneficial effects persist after the training period. We included 19 PD patients [14 men; mean age 67.0 years (range 58-76); Hoehn and Yahr stage range 1-3] who received a 6-week Nordic walking exercise pr

  10. Efficient quantum walk on a quantum processor.

    Science.gov (United States)

    Qiang, Xiaogang; Loke, Thomas; Montanaro, Ashley; Aungskunsiri, Kanin; Zhou, Xiaoqi; O'Brien, Jeremy L; Wang, Jingbo B; Matthews, Jonathan C F

    2016-05-05

    The random walk formalism is used across a wide range of applications, from modelling share prices to predicting population genetics. Likewise, quantum walks have shown much potential as a framework for developing new quantum algorithms. Here we present explicit efficient quantum circuits for implementing continuous-time quantum walks on the circulant class of graphs. These circuits allow us to sample from the output probability distributions of quantum walks on circulant graphs efficiently. We also show that solving the same sampling problem for arbitrary circulant quantum circuits is intractable for a classical computer, assuming conjectures from computational complexity theory. This is a new link between continuous-time quantum walks and computational complexity theory and it indicates a family of tasks that could ultimately demonstrate quantum supremacy over classical computers. As a proof of principle, we experimentally implement the proposed quantum circuit on an example circulant graph using a two-qubit photonics quantum processor.

  11. Getting mobile with a walking-help

    DEFF Research Database (Denmark)

    Krummheuer, Antonia Lina; Raudaskoski, Pirkko Liisa

    Ethnomethodology has been one of the few fields were mundane experiences and social ordering such as walking have been a focus of interest (e.g. Ryave and Schenkein 1974). In the present paper we want to discuss how this mundane practice sometimes needs to be achieved through the help of technology...... people with acquired brain injury were introduced to a new walking help that should enable them to walk (better). Our multimodal interaction analysis (Goodwin 2000) of the data will show how the practice of walking with this specific technology is dependent on the interplay of the material affordances...... of the technology (e.g. Gaver 1996), the bodily affordances (e.g. Sheller 2011) of the user and, furthermore, the scaffolding by an accompanying helper. The paper will discuss how movement as an enabled experience can be analysed as an entanglement of these three aspects. To do that, the situations of walk...

  12. Design Issues for Hexapod Walking Robots

    Directory of Open Access Journals (Sweden)

    Franco Tedeschi

    2014-06-01

    Full Text Available Hexapod walking robots have attracted considerable attention for several decades. Many studies have been carried out in research centers, universities and industries. However, only in the recent past have efficient walking machines been conceived, designed and built with performances that can be suitable for practical applications. This paper gives an overview of the state of the art on hexapod walking robots by referring both to the early design solutions and the most recent achievements. Careful attention is given to the main design issues and constraints that influence the technical feasibility and operation performance. A design procedure is outlined in order to systematically design a hexapod walking robot. In particular, the proposed design procedure takes into account the main features, such as mechanical structure and leg configuration, actuating and driving systems, payload, motion conditions, and walking gait. A case study is described in order to show the effectiveness and feasibility of the proposed design procedure.

  13. Walk modularity and community structure in networks

    CERN Document Server

    Mehrle, David; Harkin, Anthony

    2014-01-01

    Modularity maximization has been one of the most widely used approaches in the last decade for discovering community structure in networks of practical interest in biology, computing, social science, statistical mechanics, and more. Modularity is a quality function that measures the difference between the number of edges found within clusters minus the number of edges one would statistically expect to find based on random chance. We present a natural generalization of modularity based on the difference between the actual and expected number of walks within clusters, which we call walk-modularity. Walk-modularity can be expressed in matrix form, and community detection can be performed by finding leading eigenvectors of the walk-modularity matrix. We demonstrate community detection on both synthetic and real-world networks and find that walk-modularity maximization returns significantly improved results compared to traditional modularity maximization.

  14. Efficient quantum walk on a quantum processor

    Science.gov (United States)

    Qiang, Xiaogang; Loke, Thomas; Montanaro, Ashley; Aungskunsiri, Kanin; Zhou, Xiaoqi; O'Brien, Jeremy L.; Wang, Jingbo B.; Matthews, Jonathan C. F.

    2016-05-01

    The random walk formalism is used across a wide range of applications, from modelling share prices to predicting population genetics. Likewise, quantum walks have shown much potential as a framework for developing new quantum algorithms. Here we present explicit efficient quantum circuits for implementing continuous-time quantum walks on the circulant class of graphs. These circuits allow us to sample from the output probability distributions of quantum walks on circulant graphs efficiently. We also show that solving the same sampling problem for arbitrary circulant quantum circuits is intractable for a classical computer, assuming conjectures from computational complexity theory. This is a new link between continuous-time quantum walks and computational complexity theory and it indicates a family of tasks that could ultimately demonstrate quantum supremacy over classical computers. As a proof of principle, we experimentally implement the proposed quantum circuit on an example circulant graph using a two-qubit photonics quantum processor.

  15. Two- and 6-minute walk tests assess walking capability equally in neuromuscular diseases

    DEFF Research Database (Denmark)

    Andersen, Linda Kahr; Knak, Kirsten Lykke; Witting, Nanna;

    2016-01-01

    to participate on 2 test days, each consisting of 1 2MWT and 1 6MWT separated by a minimum 30-minute period of rest. The order of the walk tests was randomly assigned via sealed envelopes. A group of 38 healthy controls completed 1 6MWT. RESULTS: The mean walking distance for the 2MWT was 142.8 meters......OBJECTIVE: This methodologic study investigates if the 2-minute walk test (2MWT) can be a valid alternative to the 6-minute walk test (6MWT) to describe walking capability in patients with neuromuscular diseases. METHODS: Patients (n = 115) with different neuromuscular diseases were invited...... and for the 6MWT 405.3 meters. The distance walked in the 2MWT was highly correlated to the distance walked in the 6MWT (r = 0.99, p minute in the 6MWT, both among patients and healthy controls, which was not evident in the 2MWT...

  16. Chromosomal rearrangements in cattle and pigs revealed by chromosome microdissection and chromosome painting

    Directory of Open Access Journals (Sweden)

    Yerle Martine

    2003-11-01

    Full Text Available Abstract A pericentric inversion of chromosome 4 in a boar, as well as a case of (2q-;5p+ translocation mosaicism in a bull were analysed by chromosome painting using probes generated by conventional microdissection. For the porcine inversion, probes specific for p arms and q arms were produced and hybridised simultaneously on metaphases of a heterozygote carrier. In the case of the bovine translocation, two whole chromosome probes (chromosome 5, and derived chromosome 5 were elaborated and hybridised independently on chromosomal preparations of the bull who was a carrier of the mosaic translocation. The impossibility of differentiating chromosomes 2 and der(2 from other chromosomes of the metaphases did not allow the production of painting probes for these chromosomes. For all experiments, the quality of painting was comparable to that usually observed with probes obtained from flow-sorted chromosomes. The results obtained allowed confirmation of the interpretations proposed with G-banding karyotype analyses. In the bovine case, however, the reciprocity of the translocation could not be proven. The results presented in this paper show the usefulness of the microdissection technique for characterising chromosomal rearrangements in species for which commercial probes are not available. They also confirmed that the main limiting factor of the technique is the quality of the chromosomal preparations, which does not allow the identification of target chromosomes or chromosome fragments in all cases.

  17. Chromosomal rearrangement interferes with meiotic X chromosome inactivation

    OpenAIRE

    Homolka, David; Ivanek, Robert; Capkova, Jana; Jansa, Petr; Forejt, Jiri

    2007-01-01

    Heterozygosity for certain mouse and human chromosomal rearrangements is characterized by the incomplete meiotic synapsis of rearranged chromosomes, by their colocalization with the XY body in primary spermatocytes, and by male-limited sterility. Previously, we argued that such X–autosomal associations could interfere with meiotic sex chromosome inactivation. Recently, supporting evidence has reported modifications of histones in rearranged chromosomes by a process called the meiotic silencin...

  18. Walking droplets in confined geometries

    Science.gov (United States)

    Filoux, Boris; Mathieu, Olivier; Vandewalle, Nicolas

    2014-11-01

    When gently placing a droplet onto a vertically vibrated bath, coalescence may be avoided: the drop bounces permanently. Upon increasing forcing acceleration, a drop interacts with the wave it generates, and becomes a ``walker'' with a well defined velocity. In this work, we investigate the confinement of a walker in a mono-dimensional geometry. The system consists of linear submarine channels used as waveguides for a walker. By studying the dynamics of walkers in those channels, we discover some 1D-2D transition. We also propose a model based on an analogy with ``Quantum Wires.'' Finally, we consider the situation of a walker in a circular submarine channel, and examine the behavior of several walking droplets in this system. We show the quantization of the drop distances, and correlate it to their bouncing modes.

  19. Snell's law and walking droplets

    Science.gov (United States)

    Bush, John; Pucci, Giuseppe; Aubin, Benjamin; Brun, Pierre-Thomas; Faria, Luiz

    2016-11-01

    Droplets walking on the surface of a vibrating bath have been shown to exhibit a number of quantum-like features. We here present the results of a combined experimental and theoretical investigation of such droplets crossing a linear step corresponding to a reduction in bath depth. When the step is sufficiently large, the walker reflects off the step; otherwise, it is refracted as it crosses the step. Particular attention is given to an examination of the regime in which the droplet obeys a form of Snell's Law, a behavior captured in accompanying simulations. Attempts to provide theoretical rationale for the dependence of the effective refractive index on the system parameters are described. Supported by NSF through CMMI-1333242.

  20. Random walks on reductive groups

    CERN Document Server

    Benoist, Yves

    2016-01-01

    The classical theory of Random Walks describes the asymptotic behavior of sums of independent identically distributed random real variables. This book explains the generalization of this theory to products of independent identically distributed random matrices with real coefficients. Under the assumption that the action of the matrices is semisimple – or, equivalently, that the Zariski closure of the group generated by these matrices is reductive - and under suitable moment assumptions, it is shown that the norm of the products of such random matrices satisfies a number of classical probabilistic laws. This book includes necessary background on the theory of reductive algebraic groups, probability theory and operator theory, thereby providing a modern introduction to the topic.

  1. Symbolic walk in regular networks

    Science.gov (United States)

    Ermann, Leonardo; Carlo, Gabriel G.

    2015-01-01

    We find that a symbolic walk (SW)—performed by a walker with memory given by a Bernoulli shift—is able to distinguish between the random or chaotic topology of a given network. We show this result by means of studying the undirected baker network, which is defined by following the Ulam approach for the baker transformation in order to introduce the effect of deterministic chaos into its structure. The chaotic topology is revealed through the central role played by the nodes associated with the positions corresponding to the shortest periodic orbits of the generating map. They are the overwhelmingly most visited nodes in the limit cycles at which the SW asymptotically arrives. Our findings contribute to linking deterministic chaotic dynamics with the properties of networks constructed using the Ulam approach.

  2. Blindman-Walking Optimization Method

    Directory of Open Access Journals (Sweden)

    Chunming Li

    2010-12-01

    Full Text Available Optimization methods are all implemented with the hypothesis of unknowing the mathematic express of objective objection. Using the human analogy innovative method, the one-dimension blind-walking optimal method is proposed in this paper. The theory and the algorithm of this method includes halving, doubling, reversing probing step and verifying the applicability condition. Double-step is available to make current point moving to the extremum point. Half-step is available to accelerate convergence. In order to improve the optimization, the applicability condition decides whether update current point or not. The operation process, algorithmic flow chart and characteristic analysis of the method were given. Two optimization problems with unimodal or multimodal objective function were solved by the proposed method respectively. The simulation result shows that the proposed method is better than the ordinary method. The proposed method has the merit of rapid convergence, little calculation capacity, wide applicable range, etc. Taking the method as innovative kernel, the random research method, feasible direction method and complex shape method were improved. Taking the innovative content of this paper as innovative kernel, a monograph was published. The other innovations of the monograph are listed, such as applied algorithm of Karush-Kuhn-Tucker (KKT qualifications on judging the restriction extremum point, the design step of computing software, the complementarity and derivation of Powell criterion, the method of keeping the complex shape not to deduce dimension and the analysis of gradual optimization characteristic, the reinforced wall of inner point punish function method, the analysis of problem with constrained monstrosity extremum point, the improvement of Newton method and the validation of optimization idea of blind walking repeatedly, the explanation of later-day optimization method, the conformity of seeking algorithm needing the

  3. Electochemical detection of chromosome translocation

    DEFF Research Database (Denmark)

    Kwasny, Dorota; Dimaki, Maria; Silahtaroglu, Asli;

    2014-01-01

    Cytogenetics is a study of the cell structure with a main focus on chromosomes content and their structure. Chromosome abnormalities, such as translocations may cause various genetic disorders and heametological malignancies. Chromosome translocations are structural rearrangements of two...... chromosomes that results in formation of derivative chromosomes with a mixed DNA sequence. The method currently used for their detection is Fluorescent In Situ Hybridization, which requires a use of expensive, fluorescently labeled probes that target the derivative chromosomes. We present here a double...... hybridization approach developed for label-free detection of the chromosome translocations. For specific translocation detection it is necessary to determine that the two DNA sequences forming a derivative chromosome are connected, which is achieved by two subsequent hybridization steps. The electrochemical...

  4. Chromosome Variations And Human Behavior

    Science.gov (United States)

    Soudek, D.

    1974-01-01

    Article focused on the science of cytogenetics, which studied the transmission of the units of heredity called chromosomes, and considered the advantage of proper diagnosis of genetic diseases, treated on the chromosomal level. (Author/RK)

  5. Ring chromosome 13

    DEFF Research Database (Denmark)

    Brandt, C A; Hertz, Jens Michael; Petersen, M B;

    1992-01-01

    A stillborn male child with anencephaly and multiple malformations was found to have the karyotype 46,XY,r(13) (p11q21.1). The breakpoint at 13q21.1, determined by high resolution banding, is the most proximal breakpoint ever reported in patients with ring chromosome 13. In situ hybridisation...

  6. Chromosomes, cancer and radiosensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Samouhos, E.

    1983-08-01

    Some specific chromosomal abnormalities are associated with certain cancers. The earliest description of such a specific association is the one of the Philadelphia chromosome and myelogenous leukemia (1960). Other congenital karyotype abnormalities are associated with specific cancers. Examples of these are Down's syndrome with leukemia and Klinefelter's syndrome with male breast cancer. Genetic diseases of increased chromosome breakage, or of defective chromosome repair, are associated with greatly increased cancer incidence. Three such diseases have been recognized: 1) Fanconi's anemia, associated with leukemias and lymphomas, 2) Bloom's syndrome, associated with acute leukemias and lymphosarcoma, and 3) ataxia telangiectasia, associated with Hodgkin's disease, leukemia, and lymphosarcomas. Ten percent of individuals with ataxia telangiectasia will develop one of these neoplasms. Individuals with certain of these syndromes display an unusually high radiosensitivity. Radiation therapy for cancers has been fatal in patients who received as low as 3000 rad. This remarkable radiosensitivity has been quantitated in cell cultures from such cases. Evidence suggests that the apparent sensitivity may reflect subnormal ability to repair radiation damage. The rapid proliferation of information in this field stems from the interdigitation of many disciplines and specialties, including cytogenetics, cell biology, molecular biology, epidemiology, radiobiology, and several others. This paper is intended for clinicians; it presents a structured analytic scheme for correlating and classifying this multidisciplinary information as it becomes available.

  7. The Y Chromosome

    Science.gov (United States)

    Offner, Susan

    2010-01-01

    The Y chromosome is of great interest to students and can be used to teach about many important biological concepts in addition to sex determination. This paper discusses mutation, recombination, mammalian sex determination, sex determination in general, and the evolution of sex determination in mammals. It includes a student activity that…

  8. Why Chromosome Palindromes?

    Directory of Open Access Journals (Sweden)

    Esther Betrán

    2012-01-01

    Full Text Available We look at sex-limited chromosome (Y or W evolution with particular emphasis on the importance of palindromes. Y chromosome palindromes consist of inverted duplicates that allow for local recombination in an otherwise nonrecombining chromosome. Since palindromes enable intrachromosomal gene conversion that can help eliminate deleterious mutations, they are often highlighted as mechanisms to protect against Y degeneration. However, the adaptive significance of recombination resides in its ability to decouple the evolutionary fates of linked mutations, leading to both a decrease in degeneration rate and an increase in adaptation rate. Our paper emphasizes the latter, that palindromes may exist to accelerate adaptation by increasing the potential targets and fixation rates of incoming beneficial mutations. This hypothesis helps reconcile two enigmatic features of the “palindromes as protectors” view: (1 genes that are not located in palindromes have been retained under purifying selection for tens of millions of years, and (2 under models that only consider deleterious mutations, gene conversion benefits duplicate gene maintenance but not initial fixation. We conclude by looking at ways to test the hypothesis that palindromes enhance the rate of adaptive evolution of Y-linked genes and whether this effect can be extended to palindromes on other chromosomes.

  9. Telomere dysfunction and chromosome instability

    Energy Technology Data Exchange (ETDEWEB)

    Murnane, John P., E-mail: jmurnane@radonc.ucsf.edu [Department of Radiation Oncology, University of California San Francisco, 2340 Sutter Street, San Francisco, CA 94143-1331 (United States)

    2012-02-01

    The ends of chromosomes are composed of a short repeat sequence and associated proteins that together form a cap, called a telomere, that keeps the ends from appearing as double-strand breaks (DSBs) and prevents chromosome fusion. The loss of telomeric repeat sequences or deficiencies in telomeric proteins can result in chromosome fusion and lead to chromosome instability. The similarity between chromosome rearrangements resulting from telomere loss and those found in cancer cells implicates telomere loss as an important mechanism for the chromosome instability contributing to human cancer. Telomere loss in cancer cells can occur through gradual shortening due to insufficient telomerase, the protein that maintains telomeres. However, cancer cells often have a high rate of spontaneous telomere loss despite the expression of telomerase, which has been proposed to result from a combination of oncogene-mediated replication stress and a deficiency in DSB repair in telomeric regions. Chromosome fusion in mammalian cells primarily involves nonhomologous end joining (NHEJ), which is the major form of DSB repair. Chromosome fusion initiates chromosome instability involving breakage-fusion-bridge (B/F/B) cycles, in which dicentric chromosomes form bridges and break as the cell attempts to divide, repeating the process in subsequent cell cycles. Fusion between sister chromatids results in large inverted repeats on the end of the chromosome, which amplify further following additional B/F/B cycles. B/F/B cycles continue until the chromosome acquires a new telomere, most often by translocation of the end of another chromosome. The instability is not confined to a chromosome that loses its telomere, because the instability is transferred to the chromosome donating a translocation. Moreover, the amplified regions are unstable and form extrachromosomal DNA that can reintegrate at new locations. Knowledge concerning the factors promoting telomere loss and its consequences is

  10. [Dicentric Y chromosome].

    Science.gov (United States)

    Abdelmoula, N Bouayed; Amouri, A

    2005-01-01

    Dicentric Y chromosomes are the most common Y structural abnormalities and their influence on gonadal and somatic development is extremely variable. Here, we report the third comprehensive review of the literature concerning dicentric Y chromosomes reported since 1994. We find 78 new cases for which molecular studies (PCR or FISH) have been widely applied to investigate SRY (68% of cases), GBY, ZFY, RFS4Y, GCY and different genes at AZF region. For dic(Yq), all cases (n = 20) were mosaic for 45,X and 4 of them were also mosaic for a 46,XY cell line. When breakpoints were available (15/20 cases), they were in Yp11. 50% of cases were phenotypic female and 20% phenotypic male while 20% of cases were reported with gonadal dysgenesis. Gonadal histology was defined in 8 cases but only in one case, gonadal tissu was genetically investigated because of gonadoblastoma. For dic(Yp) (n = 55), mosaicism concerned only 45,X cell line and was found in 50 cases while the remainder five cases were homogeneous. When breakpoints were available, it was at Yq11 in 50 cases and at Yq12 in two cases. 54% of cases were phenotypic female, 26% were phenotypic male and 18% were associated with genitalia ambiguous. SRY was analyzed in 33 cases, sequenced in 9 cases and was muted in only one case. Gonads were histologically explored in 34 cases and genetically investigated in 8 cases. Gonadoblastoma was found in only two cases. Through this review, it seems that phenotype-genotype correlations are still not possible and that homogeneous studies of dic(Y) in more patients using molecular tools for structural characterization of the rearranged Y chromosome and assessment of mosaicism in many organs are necessary to clarify the basis of the phenotypic heterogeneity of dicentric Y chromosomes and then to help phenotypic prediction of such chromosome rearrangement.

  11. The Walking Renaissance: A Longitudinal Analysis of Walking Travel in the Greater Los Angeles Area, USA

    Directory of Open Access Journals (Sweden)

    Kenneth Joh

    2015-07-01

    Full Text Available Promoting walking travel is considered important for reducing automobile use and improving public health. Recent U.S. transportation policy has incentivized investments in alternative, more sustainable transportation modes such as walking, bicycling and transit in auto-oriented cities such as Los Angeles. Although many past studies have analyzed changes in walking travel across the U.S., there is little clarity on the drivers of change. We address this gap by conducting a longitudinal analysis of walking travel in the greater Los Angeles area from 2001 to 2009. We use travel diary and household data from regional and national surveys to analyze changes in walking trip shares and rates across our study area. Results show that walking has significantly increased across most of Los Angeles, and that increases in walking trips generally correspond with increases in population, employment, and transit service densities. Estimates from fixed-effects regression analysis generally suggest a positive association between population density and walking, and that higher increases in transit stop density are correlated with increased walking trips to and from transit stops. These findings illustrate how regional planning efforts to pursue a coordinated land use-transit planning strategy can help promote walking in auto-oriented or vehicle adopting cities.

  12. Effects of a Flexibility and Relaxation Programme, Walking, and Nordic Walking on Parkinson's Disease

    Directory of Open Access Journals (Sweden)

    I. Reuter

    2011-01-01

    Full Text Available Symptoms of Parkinson's disease (PD progress despite optimized medical treatment. The present study investigated the effects of a flexibility and relaxation programme, walking, and Nordic walking (NW on walking speed, stride length, stride length variability, Parkinson-specific disability (UPDRS, and health-related quality of life (PDQ 39. 90 PD patients were randomly allocated to the 3 treatment groups. Patients participated in a 6-month study with 3 exercise sessions per week, each lasting 70 min. Assessment after completion of the training showed that pain was reduced in all groups, and balance and health-related quality of life were improved. Furthermore, walking, and Nordic walking improved stride length, gait variability, maximal walking speed, exercise capacity at submaximal level, and PD disease-specific disability on the UPDRS in addition. Nordic walking was superior to the flexibility and relaxation programme and walking in improving postural stability, stride length, gait pattern and gait variability. No significant injuries occurred during the training. All patients of the Nordic walking group continued Nordic walking after completing the study.

  13. Community walking training program improves walking function and social participation in chronic stroke patients.

    Science.gov (United States)

    Kim, MinKyu; Cho, KiHun; Lee, WanHee

    2014-01-01

    Stroke patients live with balance and walking dysfunction. Walking is the most important factor for independent community activities. The purpose of this study was to investigate the effect of a community walking training program (CWTP) within the real environment on walking function and social participation in chronic stroke patients. Twenty-two stroke patients (13 male, 50.45 years old, post stroke duration 231.64 days) were randomly assigned to either the CWTP group or the control group. All subjects participated in the same standard rehabilitation program consisting of physical and occupational therapy for 60 min per day, five times a week, for four weeks. In addition, the CWTP group participated in CWTP for 30 min per day, five times a week, for four weeks. Walking function was assessed using the 10-m walk test (measurement for 10-meter walking speed), 6-min walk assessment (measurement of gait length for 6-minutes), and community gait assessment. Social participation was assessed using a social participation domain of stroke impact scale. In walking function, greater improvement was observed in the CWTP group compared with the control group (P participation improved more in the CWTP group compared with the control group (P participation in chronic stroke patients. Therefore, we suggest that CWTP within the real environment may be an effective method for improving walking function and social participation of chronic stroke patients when added to standard rehabilitation.

  14. Walking dreams in congenital and acquired paraplegia.

    Science.gov (United States)

    Saurat, Marie-Thérèse; Agbakou, Maité; Attigui, Patricia; Golmard, Jean-Louis; Arnulf, Isabelle

    2011-12-01

    To test if dreams contain remote or never-experienced motor skills, we collected during 6 weeks dream reports from 15 paraplegics and 15 healthy subjects. In 9/10 subjects with spinal cord injury and in 5/5 with congenital paraplegia, voluntary leg movements were reported during dream, including feelings of walking (46%), running (8.6%), dancing (8%), standing up (6.3%), bicycling (6.3%), and practicing sports (skiing, playing basketball, swimming). Paraplegia patients experienced walking dreams (38.2%) just as often as controls (28.7%). There was no correlation between the frequency of walking dreams and the duration of paraplegia. In contrast, patients were rarely paraplegic in dreams. Subjects who had never walked or stopped walking 4-64 years prior to this study still experience walking in their dreams, suggesting that a cerebral walking program, either genetic or more probably developed via mirror neurons (activated when observing others performing an action) is reactivated during sleep.

  15. The work of walking: a calorimetric study.

    Science.gov (United States)

    Webb, P; Saris, W H; Schoffelen, P F; Van Ingen Schenau, G J; Ten Hoor, F

    1988-08-01

    Experiments were designed to test the traditional assumption that during level walking all of the energy from oxidation of fuel appears as heat and no work is done. Work is force expressed through distance, or energy transferred from a man to the environment, but not as heat. While wearing a suit calorimeter in a respiration chamber, five women and five men walked for 70 to 90 min on a level treadmill at 2.5, 4.6, and 6.7 km.h-1 and pedalled a cycle ergometer for 70 to 90 min against 53 and 92 W loads. They also walked with a weighted backpack and against a horizontal load. During cycling, energy from fuel matched heat loss plus the power measured by the ergometer. During walking, however, energy from fuel exceeded that which appeared as heat, meaning that work was done. The power increased with walking speed; values were 14, 29, and 63 W, which represented 11, 12, and 13% of the incremental cost of fuel above the resting level. Vertical and horizontal loads increased the fuel cost and heat loss of walking but did not alter the power output. This work energy did not re-appear as thermal energy during 18 h of recovery. The most likely explanation of the work done is in the inter-action between the foot and the ground, such as compressing the heel of the shoe and bending the sole. We conclude that work is done in level walking.

  16. Dynamics of X Chromosome Inactivation

    NARCIS (Netherlands)

    F. Loos (Friedemann)

    2015-01-01

    markdownabstract__Abstract__ Dosage compensation evolved to account for the difference in expression of sex chromosome-linked genes. In mammals dosage compensation is achieved by inactivation of one X chromosome during early female embryogenesis in a process called X chromosome inactivation (XCI).

  17. Chromosomal breakpoints characterization of two supernumerary ring chromosomes 20.

    Science.gov (United States)

    Guediche, N; Brisset, S; Benichou, J-J; Guérin, N; Mabboux, P; Maurin, M-L; Bas, C; Laroudie, M; Picone, O; Goldszmidt, D; Prévot, S; Labrune, P; Tachdjian, G

    2010-02-01

    The occurrence of an additional ring chromosome 20 is a rare chromosome abnormality, and no common phenotype has been yet described. We report on two new patients presenting with a supernumerary ring chromosome 20 both prenatally diagnosed. The first presented with intrauterine growth retardation and some craniofacial dysmorphism, and the second case had a normal phenotype except for obesity. Conventional cytogenetic studies showed for each patient a small supernumerary marker chromosome (SMC). Using fluorescence in situ hybridization, these SMCs corresponded to ring chromosomes 20 including a part of short and long arms of chromosome 20. Detailed molecular cytogenetic characterization showed different breakpoints (20p11.23 and 20q11.23 for Patient 1 and 20p11.21 and 20q11.21 for Patient 2) and sizes of the two ring chromosomes 20 (13.6 Mb for case 1 and 4.8 Mb for case 2). Review of the 13 case reports of an extra r(20) ascertained postnatally (8 cases) and prenatally (5 cases) showed varying degrees of phenotypic abnormalities. We document a detailed molecular cytogenetic chromosomal breakpoints characterization of two cases of supernumerary ring chromosomes 20. These results emphasize the need to characterize precisely chromosomal breakpoints of supernumerary ring chromosomes 20 in order to establish genotype-phenotype correlation. This report may be helpful for prediction of natural history and outcome, particularly in prenatal diagnosis.

  18. Familial complex chromosomal rearrangement resulting in a recombinant chromosome.

    Science.gov (United States)

    Berend, Sue Ann; Bodamer, Olaf A F; Shapira, Stuart K; Shaffer, Lisa G; Bacino, Carlos A

    2002-05-15

    Familial complex chromosomal rearrangements (CCRs) are rare and tend to involve fewer breakpoints and fewer chromosomes than CCRs that are de novo in origin. We report on a CCR identified in a child with congenital heart disease and dysmorphic features. Initially, the child's karyotype was thought to involve a straightforward three-way translocation between chromosomes 3, 8, and 16. However, after analyzing the mother's chromosomes, the mother was found to have a more complex rearrangement that resulted in a recombinant chromosome in the child. The mother's karyotype included an inverted chromosome 2 and multiple translocations involving chromosomes 3, 5, 8, and 16. No evidence of deletion or duplication that could account for the clinical findings in the child was identified.

  19. Quantum walk public-key cryptographic system

    Science.gov (United States)

    Vlachou, C.; Rodrigues, J.; Mateus, P.; Paunković, N.; Souto, A.

    2015-12-01

    Quantum Cryptography is a rapidly developing field of research that benefits from the properties of Quantum Mechanics in performing cryptographic tasks. Quantum walks are a powerful model for quantum computation and very promising for quantum information processing. In this paper, we present a quantum public-key cryptographic system based on quantum walks. In particular, in the proposed protocol the public-key is given by a quantum state generated by performing a quantum walk. We show that the protocol is secure and analyze the complexity of public key generation and encryption/decryption procedures.

  20. Elements of random walk and diffusion processes

    CERN Document Server

    Ibe, Oliver C

    2013-01-01

    Presents an important and unique introduction to random walk theory Random walk is a stochastic process that has proven to be a useful model in understanding discrete-state discrete-time processes across a wide spectrum of scientific disciplines. Elements of Random Walk and Diffusion Processes provides an interdisciplinary approach by including numerous practical examples and exercises with real-world applications in operations research, economics, engineering, and physics. Featuring an introduction to powerful and general techniques that are used in the application of physical and dynamic

  1. Scaling of random walk betweenness in networks

    CERN Document Server

    Narayan, O

    2016-01-01

    The betweenness centrality of graphs using random walk paths instead of geodesics is studied. A scaling collapse with no adjustable parameters is obtained as the graph size $N$ is varied; the scaling curve depends on the graph model. A normalized random betweenness, that counts each walk passing through a node only once, is also defined. It is argued to be more useful and seen to have simpler scaling behavior. In particular, the probability for a random walk on a preferential attachment graph to pass through the root node is found to tend to unity as $N\\rightarrow\\infty.$

  2. Limit cycle walking on a regularized ground

    CERN Document Server

    Jacobs, Henry O

    2012-01-01

    The singular nature of contact problems, such as walking, makes them difficult to analyze mathematically. In this paper we will "regularize" the contact problem of walking by approximating the ground with a smooth repulsive potential energy and a smooth dissipative friction force. Using this model we are able to prove the existence of a limit cycle for a periodically perturbed system which consists of three masses connected by springs. In particular, this limit cycle exists in a symmetry reduced phase. In the unreduced phase space, the motion of the masses resembles walking.

  3. Exponential algorithmic speedup by quantum walk

    CERN Document Server

    Childs, A M; Deotto, E; Farhi, E; Gutmann, S; Spielman, D A; Childs, Andrew M.; Cleve, Richard; Deotto, Enrico; Farhi, Edward; Gutmann, Sam; Spielman, Daniel A.

    2002-01-01

    We construct an oracular problem that can be solved exponentially faster on a quantum computer than on a classical computer. The quantum algorithm is based on a continuous time quantum walk, and thus employs a different technique from previous quantum algorithms based on quantum Fourier transforms. We show how to implement the quantum walk efficiently in our oracular setting. We then show how this quantum walk can be used to solve our problem by rapidly traversing a graph. Finally, we prove that no classical algorithm can solve this problem with high probability in subexponential time.

  4. Chromosome 19 International Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Pericak-Vance, M.A. (Duke Univ., Durham, NC (United States). Medical Center); Ropers, H.H. (Univ. Hospital Nijmegen, (The Netherlands). Dept. of Human Genetics); Carrano, A.J. (Lawrence Livermore National Lab., CA (United States))

    1993-01-04

    The Second International Workshop on Human Chromosome 19 was hosted on January 25 and 26, 1992, by the Department of Human Genetics, University Hospital Nijmegen, The Netherlands, at the 'Meerdal Conference Center'. The workshop was supported by a grant from the European Community obtained through HUGO, the Dutch Research Organization (NWO) and the Muscular Dystrophy Association (MDA). Travel support for American participants was provided by the Department of Energy. The goals of this workshop were to produce genetic, physical and integrated maps of chromosome 19, to identify inconsistencies and gaps, and to discuss and exchange resources and techniques available for the completion of these maps. The second day of the meeting was largely devoted to region or disease specific efforts. In particular, the meeting served as a platform for assessing and discussing the recent progress made into the molecular elucidation of myotonic dystrophy.

  5. Variability and stability analysis of walking of transfemoral amputees

    NARCIS (Netherlands)

    Lamoth, Claudine C.; Ainsworth, Erik; Polomski, Wojtek; Houdijk, Han

    2010-01-01

    Variability and stability of walking of eight transfemoral amputees and eight healthy controls was studied under four conditions walking inside on a smooth terrain walking while performing a dual-task and walking outside on (ir)regular surfaces Trunk accelerations were recorded with a tri-axial acce

  6. Symmetricity of Distribution for One-Dimensional Hadamard Walk

    CERN Document Server

    Konno, N; Soshi, T; Konno, Norio; Namiki, Takao; Soshi, Takahiro

    2002-01-01

    In this paper we study a one-dimensional quantum random walk with the Hadamard transformation which is often called the Hadamard walk. We construct the Hadamard walk using a transition matrix on probability amplitude and give some results on symmetricity of probability distributions for the Hadamard walk.

  7. Urban Walking and the Pedagogies of the Street

    Science.gov (United States)

    Bairner, Alan

    2011-01-01

    Drawing upon the extensive literature on urban walking and also on almost 60 years' experience of walking the streets, this article argues that there is a pressing need to re-assert the educational value of going for a walk. After a brief discussion of the social significance of the "flaneur," the historic pioneer of urban walking, the article…

  8. Sensitivity Study of Stochastic Walking Load Models

    DEFF Research Database (Denmark)

    Pedersen, Lars; Frier, Christian

    2010-01-01

    On flexible structures such as footbridges and long-span floors, walking loads may generate excessive structural vibrations and serviceability problems. The problem is increasing because of the growing tendency to employ long spans in structural design. In many design codes, the vibration...... serviceability limit state is assessed using a walking load model in which the walking parameters are modelled deterministically. However, the walking parameters are stochastic (for instance the weight of the pedestrian is not likely to be the same for every footbridge crossing), and a natural way forward...... investigates whether statistical distributions of bridge response are sensitive to some of the decisions made by the engineer doing the analyses. For the paper a selected part of potential influences are examined and footbridge responses are extracted using Monte-Carlo simulations and focus is on estimating...

  9. Simple expressions for the long walk distance

    CERN Document Server

    Chebotarev, Pavel; Balaji, R

    2011-01-01

    The walk distances in graphs are defined as the result of appropriate transformations of the $\\sum_{k=0}^\\infty(tA)^k$ proximity measures, where $A$ is the weighted adjacency matrix of a connected weighted graph and $t$ is a sufficiently small positive parameter. The walk distances are graph-geodetic, moreover, they converge to the shortest path distance and to the so-called long walk distance as the parameter $t$ approaches its limiting values. In this paper, simple expressions for the long walk distance are obtained. They involve the generalized inverse, minors, and inverses of submatrices of the symmetric irreducible singular M-matrix ${\\cal L}=\\rho I-A,$ where $\\rho$ is the Perron root of $A.$

  10. Levy random walks on multiplex networks

    CERN Document Server

    Guo, Quantong; Zheng, Zhiming; Moreno, Yamir

    2016-01-01

    Random walks constitute a fundamental mechanism for many dynamics taking place on complex networks. Besides, as a more realistic description of our society, multiplex networks have been receiving a growing interest, as well as the dynamical processes that occur on top of them. Here, inspired by one specific model of random walks that seems to be ubiquitous across many scientific fields, the Levy flight, we study a new navigation strategy on top of multiplex networks. Capitalizing on spectral graph and stochastic matrix theories, we derive analytical expressions for the mean first passage time and the average time to reach a node on these networks. Moreover, we also explore the efficiency of Levy random walks, which we found to be very different as compared to the single layer scenario, accounting for the structure and dynamics inherent to the multiplex network. Finally, by comparing with some other important random walk processes defined on multiplex networks, we find that in some region of the parameters, a ...

  11. Locomotor sequence learning in visually guided walking

    DEFF Research Database (Denmark)

    Choi, Julia T; Jensen, Peter; Nielsen, Jens Bo

    2016-01-01

    at faster walking speeds. To our knowledge, this is the first study to demonstrate that spatial sequence learning can be integrated with a highly automatic task like walking. These findings suggest that adults and children use implicit knowledge about the sequence to plan and execute leg movement during...... walking. In addition, we determined how age (i.e., healthy young adults vs. children) and biomechanical factors (i.e., walking speed) affected the rate and magnitude of locomotor sequence learning. The results showed that healthy young adults (age 24 ± 5 years, N = 20) could learn a specific sequence...... of step lengths over 300 training steps. Younger children (age 6-10 years, N = 8) have lower baseline performance, but their magnitude and rate of sequence learning was the same compared to older children (11-16 years, N = 10) and healthy adults. In addition, learning capacity may be more limited...

  12. Community walking in people with Parkinson's disease.

    Science.gov (United States)

    Lamont, Robyn M; Morris, Meg E; Woollacott, Marjorie H; Brauer, Sandra G

    2012-01-01

    People with Parkinson's disease often have walking difficulty, and this is likely to be exacerbated while walking in places in the community, where people are likely to face greater and more varied challenges. This study aims to understand the facilitators and the barriers to walking in the community perceived by people with Parkinson's disease. This qualitative study involved 5 focus groups (n = 34) of people with Parkinson's disease and their partners residing in metropolitan and rural regions in Queensland, Australia. Results found that people with PD reported to use internal personal strategies as facilitators to community walking, but identified primarily external factors, particularly the environmental factors as barriers. The adoption of strategies or the use of facilitators allows people with Parkinson's disease to cope so that participants often did not report disability.

  13. Holographic walking from tachyon DBI

    Energy Technology Data Exchange (ETDEWEB)

    Kutasov, David [EFI and Department of Physics, University of Chicago, 5640 S. Ellis Av., Chicago, IL 60637 (United States); Lin, Jennifer, E-mail: jenlin@uchicago.edu [EFI and Department of Physics, University of Chicago, 5640 S. Ellis Av., Chicago, IL 60637 (United States); Parnachev, Andrei [Institute Lorentz for Theoretical Physics, Leiden University, PO Box 9506, Leiden 2300RA (Netherlands)

    2012-10-11

    We use holography to study conformal phase transitions, which are believed to be realized in four dimensional QCD and play an important role in walking technicolor models of electroweak symmetry breaking. At strong coupling they can be modeled by the non-linear dynamics of a tachyonic scalar field with mass close to the Breitenlohner-Freedman bound in anti-de Sitter spacetime. Taking the action for this field to have a tachyon-Dirac-Born-Infeld form gives rise to models that resemble hard and soft wall AdS/QCD, with a dynamically generated wall. For hard wall models, the highly excited spectrum has the KK form m{sub n}{approx}n; in the soft wall case we exhibit potentials with m{sub n}{approx}n{sup {alpha}}, 0<{alpha} Less-Than-Or-Slanted-Equal-To 1/2. We investigate the finite temperature phase structure and find first or second order symmetry restoration transitions, depending on the behavior of the potential near the origin of field space.

  14. Design of a walking robot

    Science.gov (United States)

    Whittaker, William; Dowling, Kevin

    1994-01-01

    Carnegie Mellon University's Autonomous Planetary Exploration Program (APEX) is currently building the Daedalus robot; a system capable of performing extended autonomous planetary exploration missions. Extended autonomy is an important capability because the continued exploration of the Moon, Mars and other solid bodies within the solar system will probably be carried out by autonomous robotic systems. There are a number of reasons for this - the most important of which are the high cost of placing a man in space, the high risk associated with human exploration and communication delays that make teleoperation infeasible. The Daedalus robot represents an evolutionary approach to robot mechanism design and software system architecture. Daedalus incorporates key features from a number of predecessor systems. Using previously proven technologies, the Apex project endeavors to encompass all of the capabilities necessary for robust planetary exploration. The Ambler, a six-legged walking machine was developed by CMU for demonstration of technologies required for planetary exploration. In its five years of life, the Ambler project brought major breakthroughs in various areas of robotic technology. Significant progress was made in: mechanism and control, by introducing a novel gait pattern (circulating gait) and use of orthogonal legs; perception, by developing sophisticated algorithms for map building; and planning, by developing and implementing the Task Control Architecture to coordinate tasks and control complex system functions. The APEX project is the successor of the Ambler project.

  15. Does getting a dog increase recreational walking?

    Directory of Open Access Journals (Sweden)

    Knuiman Matthew W

    2008-03-01

    Full Text Available Abstract Background This study examines changes in socio-demographic, environmental and intrapersonal factors associated with dog acquisition in non-dog owners at baseline to 12-months follow-up and the effect of dog acquisition on minutes per week of recreational walking. Methods RESIDE study participants completed self-administered questionnaires (baseline and 12-months follow-up measuring physical activity, dog ownership, dog walking behavior as well as environmental, intrapersonal and socio-demographic factors. Analysis was restricted to 'Continuing non-owners' (i.e., non-owners at both baseline and follow-up; n = 681 and 'New dog owners' (i.e., non-owners who acquired a dog by follow-up; n = 92. Results Overall, 12% of baseline non-owners had acquired a dog at follow-up. Dog acquisition was associated with working and having children at home. Those who changed from single to couple marital status were also more likely to acquire a dog. The increase in minutes of walking for recreation within the neighborhood from baseline to follow-up was 48 minutes/week for new dog owners compared with 12 minutes/week for continuing non-owners (p p p > 0.05 after further adjustment for change in baseline to follow-up variables. Increase in intention to walk was the main factor contributing to attenuation of the effect of dog acquisition on recreational walking. Conclusion This study used a large representative sample of non-owners to examine the relationship between dog acquisition and recreational walking and provides evidence to suggest that dog acquisition leads to an increase in walking. The most likely mechanism through which dog acquisition facilitates increased physical activity is through behavioral intention via the dog's positive effect on owner's cognitive beliefs about walking, and through the provision of motivation and social support for walking. The results suggest that behavioral intention mediates the relationship between dog acquisition

  16. Walking on high heels changes muscle activity and the dynamics of human walking significantly

    DEFF Research Database (Denmark)

    Simonsen, Erik Bruun; Svendsen, Morten B; Nørreslet, Andreas

    2012-01-01

    digital video cameras operating at 50 frames/second. Both barefooted walking and walking on high-heeled shoes (heel height: 9 cm) were recorded. Net joint moments were calculated by 3D inverse dynamics. EMG was recorded from eight leg muscles. The knee extensor moment peak in the first half of the stance...... joint abductor moment. Several EMG parameters increased significantly when walking on high-heels. The results indicate a large increase in bone-on-bone forces in the knee joint directly caused by the increased knee joint extensor moment during high-heeled walking, which may explain the observed higher...

  17. Momentum Dynamics of One Dimensional Quantum Walks

    CERN Document Server

    Fuss, I; Sherman, P J; Naguleswaran, S; Fuss, Ian; White, langord B.; Sherman, Peter J.; Naguleswaran, Sanjeev

    2006-01-01

    We derive the momentum space dynamic equations and state functions for one dimensional quantum walks by using linear systems and Lie group theory. The momentum space provides an analytic capability similar to that contributed by the z transform in discrete systems theory. The state functions at each time step are expressed as a simple sum of three Chebyshev polynomials. The functions provide an analytic expression for the development of the walks with time.

  18. Effect of Body Composition on Walking Economy

    OpenAIRE

    Maciejczyk Marcin; Wiecek Magdalena; Szymura Jadwiga; Szygula Zbigniew

    2016-01-01

    Purpose. The aim of the study was to evaluate walking economy and physiological responses at two walking speeds in males with similar absolute body mass but different body composition. Methods. The study involved 22 young men with similar absolute body mass, BMI, aerobic performance, calf and thigh circumference. The participants differed in body composition: body fat (HBF group) and lean body mass (HLBM group). In the graded test, maximal oxygen uptake (VO2max) and maximal heart rate were me...

  19. On a directionally reinforced random walk

    CERN Document Server

    Ghosh, Arka; Roitershtein, Alexander

    2011-01-01

    We consider a generalized version of a directionally reinforced random walk, which was originally introduced by Mauldin, Monticino, and von Weizs\\"{a}cker in \\cite{drw}. Our main result is a stable limit theorem for the position of the random walk in higher dimensions. This extends a result of Horv\\'{a}th and Shao \\cite{limits} that was previously obtained in dimension one only (however, in a more stringent functional form).

  20. Balancing of the anthropomorphous robot walking

    Science.gov (United States)

    Devaev, V. M.; Nikitina, D. V.; Fadeev, A. Y.

    2016-06-01

    Anthropomorphic robots are designed a human environment operates: buildings and structures, cabs and etc. The movement of these robots is carried out by walking which provides high throughput to overcome natural and manmade obstacles. The article presents some algorithm results for dynamic walking on the anthropomorphic robot AR601 example. The work is performed according to the Russian Government Program of Competitive Growth of Kazan Federal University.

  1. Go Naked: Diapers Affect Infant Walking

    OpenAIRE

    Cole, Whitney G.; Lingeman, Jesse M.; Adolph, Karen E.

    2012-01-01

    In light of cross-cultural and experimental research highlighting effects of childrearing practices on infant motor skill, we asked whether wearing diapers, a seemingly innocuous childrearing practice, affects infant walking. Diapers introduce bulk between the legs, potentially exacerbating infants’ poor balance and wide stance. We show that walking is adversely affected by old-fashioned cloth diapers, and that even modern disposable diapers—habitually worn by most infants in the sample—incur...

  2. Feedback control system for walking in man.

    Science.gov (United States)

    Petrofsky, J S; Phillips, C A; Heaton, H H

    1984-01-01

    A computer control stimulation system is described which has been successfully tested by allowing a paraplegic subject to stand and walk through closed loop control. This system is a Z80 microprocessor system with eight channels of analog to digital and 16 channels of digital to analog control. Programming is written in CPM and works quite successfully for maintaining lower body postural control in paraplegics. Further expansion of this system would enable a feedback control system for multidirectional walking in man.

  3. The Snail Takes a Walk with Me

    Institute of Scientific and Technical Information of China (English)

    王宜鸣; 乐伟国

    2008-01-01

    @@ 一、故事内容 I'm a snake. Today God gives me a job-I should take a walk with the snail. The snail moves too slowly. I have to scare him. He looks at me, full of shame. I am very angry. I pull him, and even kick.The snail cries, so he stops walking. I feel quite helpless.

  4. Walking Out of the Family Towards Rights

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    WALKING in any city or ruralarea in China today, one will seewomen with confidence andpride, with their own work and lives.There is not much difference between theurban and rural women in dress. Theirfaces portray contentment and happiness.These are significant changes which havebeen brought about by women walking outof the family over the past near 50 years,and getting involved in society, alteringtheir dependence on men and making thempeople of dignity. The government knew clearly that to

  5. A Walk in the Semantic Park

    DEFF Research Database (Denmark)

    Danvy, Olivier; Johannsen, Jacob; Zerny, Ian

    2011-01-01

    To celebrate the 20th anniversary of PEPM, we are inviting you to a walk in the semantic park and to inter-derive reduction-based and reduction-free negational normalization functions.......To celebrate the 20th anniversary of PEPM, we are inviting you to a walk in the semantic park and to inter-derive reduction-based and reduction-free negational normalization functions....

  6. More Adults Are Walking PSA (:60)

    Centers for Disease Control (CDC) Podcasts

    2012-07-31

    This 60 second PSA is based on the August 2012 CDC Vital Signs report. While more adults are walking, only half get the recommended amount of physical activity. Listen to learn how communities, employers, and individuals may help increase walking.  Created: 7/31/2012 by Centers for Disease Control and Prevention (CDC).   Date Released: 8/7/2012.

  7. Factors associated with daily walking of dogs

    OpenAIRE

    Westgarth, Carri; Christian, Hayley E; Christley, Robert M

    2015-01-01

    Background Regular physical activity is beneficial to the health of both people and animals. The role of regular exercise undertaken together, such as dog walking, is a public health interest of mutual benefit. Exploration of barriers and incentives to regular dog walking by owners is now required so that effective interventions to promote it can be designed. This study explored a well-characterised cross-sectional dataset of 276 dogs and owners from Cheshire, UK, for evidence of factors asso...

  8. Design with the feet: walking methods and participatory design

    DEFF Research Database (Denmark)

    Kanstrup, Anne Marie; Bertelsen, Pernille; Madsen, Jacob Østergaard

    2014-01-01

    This paper presents an analysis of walking methods and their relation to participatory design (PD). The paper includes a study of walking methods found in the literature and an empirical study of transect walks in a PD project. From this analysis, we identify central attributes of, and challenges...... to, PD walks. Walking with people in the context of design is a natural activity for the participatory designer, who acknowledges the importance of immersion and relationships in design. However, the various intentions of walking approaches indicate an underacknowledged awareness of walking methods....... With this study, we take a step towards a methodological framework for "design with the feet" in PD....

  9. Coined quantum walks on percolation graphs

    Energy Technology Data Exchange (ETDEWEB)

    Leung, Godfrey; Knott, Paul; Bailey, Joe; Kendon, Viv, E-mail: V.Kendon@leeds.ac.uk [School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT (United Kingdom)

    2010-12-15

    Quantum walks, both discrete (coined) and continuous time, form the basis of several quantum algorithms and have been used to model processes such as transport in spin chains and quantum chemistry. The enhanced spreading and mixing properties of quantum walks compared with their classical counterparts have been well studied on regular structures and also shown to be sensitive to defects and imperfections in the lattice. As a simple example of a disordered system, we consider percolation lattices, in which edges or sites are randomly missing, interrupting the progress of the quantum walk. We use numerical simulation to study the properties of coined quantum walks on these percolation lattices in one and two dimensions. In one dimension (the line), we introduce a simple notion of quantum tunnelling and determine how this affects the properties of the quantum walk as it spreads. On two-dimensional percolation lattices, we show how the spreading rate varies from linear in the number of steps down to zero as the percolation probability decreases towards the critical point. This provides an example of fractional scaling in quantum-walk dynamics.

  10. Levy Walks Suboptimal under Predation Risk.

    Directory of Open Access Journals (Sweden)

    Masato S Abe

    2015-11-01

    Full Text Available A key challenge in movement ecology is to understand how animals move in nature. Previous studies have predicted that animals should perform a special class of random walks, called Lévy walk, to obtain more targets. However, some empirical studies did not support this hypothesis, and the relationship between search strategy and ecological factors is still unclear. We focused on ecological factors, such as predation risk, and analyzed whether Lévy walk may not be favored. It was remarkable that the ecological factors often altered an optimal search strategy from Lévy walk to Brownian walk, depending on the speed of the predator's movement, density of predators, etc. This occurred because higher target encounter rates simultaneously led searchers to higher predation risks. Our findings indicate that animals may not perform Lévy walks often, and we suggest that it is crucial to consider the ecological context for evaluating the search strategy performed by animals in the field.

  11. Calcaneal loading during walking and running

    Science.gov (United States)

    Giddings, V. L.; Beaupre, G. S.; Whalen, R. T.; Carter, D. R.

    2000-01-01

    PURPOSE: This study of the foot uses experimentally measured kinematic and kinetic data with a numerical model to evaluate in vivo calcaneal stresses during walking and running. METHODS: External ground reaction forces (GRF) and kinematic data were measured during walking and running using cineradiography and force plate measurements. A contact-coupled finite element model of the foot was developed to assess the forces acting on the calcaneus during gait. RESULTS: We found that the calculated force-time profiles of the joint contact, ligament, and Achilles tendon forces varied with the time-history curve of the moment about the ankle joint. The model predicted peak talocalcaneal and calcaneocuboid joint loads of 5.4 and 4.2 body weights (BW) during walking and 11.1 and 7.9 BW during running. The maximum predicted Achilles tendon forces were 3.9 and 7.7 BW for walking and running. CONCLUSIONS: Large magnitude forces and calcaneal stresses are generated late in the stance phase, with maximum loads occurring at approximately 70% of the stance phase during walking and at approximately 60% of the stance phase during running, for the gait velocities analyzed. The trajectories of the principal stresses, during both walking and running, corresponded to each other and qualitatively to the calcaneal trabecular architecture.

  12. Winding angles of long lattice walks

    Science.gov (United States)

    Hammer, Yosi; Kantor, Yacov

    2016-07-01

    We study the winding angles of random and self-avoiding walks (SAWs) on square and cubic lattices with number of steps N ranging up to 107. We show that the mean square winding angle of random walks converges to the theoretical form when N → ∞. For self-avoiding walks on the square lattice, we show that the ratio /2 converges slowly to the Gaussian value 3. For self-avoiding walks on the cubic lattice, we find that the ratio /2 exhibits non-monotonic dependence on N and reaches a maximum of 3.73(1) for N ≈ 104. We show that to a good approximation, the square winding angle of a self-avoiding walk on the cubic lattice can be obtained from the summation of the square change in the winding angles of lnN independent segments of the walk, where the ith segment contains 2i steps. We find that the square winding angle of the ith segment increases approximately as i0.5, which leads to an increase of the total square winding angle proportional to (lnN)1.5.

  13. Exploring scalar quantum walks on Cayley graphs

    CERN Document Server

    Acevedo, O L; Roland, J; Acevedo, Olga Lopez; Cerf, Nicolas J.

    2006-01-01

    A quantum walk, \\emph{i.e.}, the quantum evolution of a particle on a graph, is termed \\emph{scalar} if the internal space of the moving particle (often called the coin) has a dimension one. Here, we study the existence of scalar quantum walks on Cayley graphs, which are built from the generators of a group. After deriving a necessary condition on these generators for the existence of a scalar quantum walk, we present a general method to express the evolution operator of the walk, assuming homogeneity of the evolution. We use this necessary condition and the subsequent constructive method to investigate the existence of scalar quantum walks on Cayley graphs of various groups presented with two or three generators. In this restricted framework, we classify all groups -- in terms of relations between their generators -- that admit scalar quantum walks, and we also derive the form of the most general evolution operator. Finally, we point out some interesting special cases, and extend our study to a few examples ...

  14. Walking in postpoliomyelitis syndrome: The relationships between time-scored tests, walking in daily life and perceived mobility problems

    NARCIS (Netherlands)

    H.L.D. Horemans (Herwin); J.B.J. Bussmann (Hans); A. Beelen (Anita); H.J. Stam (Henk); F. Nollet (Frans)

    2005-01-01

    textabstractObjective: To compare walking test results with walking in daily life, and to investigate the relationships between walking tests, walking activity in daily life, and perceived mobility problems in patients with post-poliomyelitis syndrome. Subjects: Twenty-four ambulant patients with po

  15. Angular momentum in human walking.

    Science.gov (United States)

    Herr, Hugh; Popovic, Marko

    2008-02-01

    Angular momentum is a conserved physical quantity for isolated systems where no external moments act about a body's center of mass (CM). However, in the case of legged locomotion, where the body interacts with the environment (ground reaction forces), there is no a priori reason for this relationship to hold. A key hypothesis in this paper is that angular momentum is highly regulated throughout the walking cycle about all three spatial directions [|Lt| approximately 0], and therefore horizontal ground reaction forces and the center of pressure trajectory can be explained predominantly through an analysis that assumes zero net moment about the body's CM. Using a 16-segment human model and gait data for 10 study participants, we found that calculated zero-moment forces closely match experimental values (Rx2=0.91; Ry2=0.90). Additionally, the centroidal moment pivot (point where a line parallel to the ground reaction force, passing through the CM, intersects the ground) never leaves the ground support base, highlighting how closely the body regulates angular momentum. Principal component analysis was used to examine segmental contributions to whole-body angular momentum. We found that whole-body angular momentum is small, despite substantial segmental momenta, indicating large segment-to-segment cancellations ( approximately 95% medio-lateral, approximately 70% anterior-posterior and approximately 80% vertical). Specifically, we show that adjacent leg-segment momenta are balanced in the medio-lateral direction (left foot momentum cancels right foot momentum, etc.). Further, pelvis and abdomen momenta are balanced by leg, chest and head momenta in the anterior-posterior direction, and leg momentum is balanced by upper-body momentum in the vertical direction. Finally, we discuss the determinants of gait in the context of these segment-to-segment cancellations of angular momentum.

  16. Kinematic evaluation of virtual walking trajectories.

    Science.gov (United States)

    Cirio, Gabriel; Olivier, Anne-Hélène; Marchal, Maud; Pettré, Julien

    2013-04-01

    Virtual walking, a fundamental task in Virtual Reality (VR), is greatly influenced by the locomotion interface being used, by the specificities of input and output devices, and by the way the virtual environment is represented. No matter how virtual walking is controlled, the generation of realistic virtual trajectories is absolutely required for some applications, especially those dedicated to the study of walking behaviors in VR, navigation through virtual places for architecture, rehabilitation and training. Previous studies focused on evaluating the realism of locomotion trajectories have mostly considered the result of the locomotion task (efficiency, accuracy) and its subjective perception (presence, cybersickness). Few focused on the locomotion trajectory itself, but in situation of geometrically constrained task. In this paper, we study the realism of unconstrained trajectories produced during virtual walking by addressing the following question: did the user reach his destination by virtually walking along a trajectory he would have followed in similar real conditions? To this end, we propose a comprehensive evaluation framework consisting on a set of trajectographical criteria and a locomotion model to generate reference trajectories. We consider a simple locomotion task where users walk between two oriented points in space. The travel path is analyzed both geometrically and temporally in comparison to simulated reference trajectories. In addition, we demonstrate the framework over a user study which considered an initial set of common and frequent virtual walking conditions, namely different input devices, output display devices, control laws, and visualization modalities. The study provides insight into the relative contributions of each condition to the overall realism of the resulting virtual trajectories.

  17. Assessing walking behaviors of selected subpopulations.

    Science.gov (United States)

    Le Masurier, Guy C; Bauman, Adrian E; Corbin, Charles B; Konopack, James F; Umstattd, Renee M; VAN Emmerik, Richard E A

    2008-07-01

    Recent innovations in physical activity (PA) assessment have made it possible to assess the walking behaviors of a wide variety of populations. Objective measurement methods (e.g., pedometers, accelerometers) have been widely used to assess walking and other prevalent types of PA. Questionnaires suitable for international populations (e.g., the International Physical Activity Questionnaire and the Global Physical Activity Questionnaire) and measurement techniques for the assessment of gait patterns in disabled populations allow for the study of walking and its health benefits among many populations. Results of studies using the aforementioned techniques indicate that children are more active than adolescents and adolescents are more active than adults. Males, particularly young males, are typically more active than females. The benefits associated with regular participation in PA for youth and walking for older adults have been well documented, although improvements in the assessments of physical, cognitive, and psychosocial parameters must be made if we are to fully understand the benefits of walking for people of all ages. Most youth meet appropriate age-related PA activity recommendations, but adults, particularly older adults and adults with disabilities, are less likely to meet PA levels necessary for the accrual of health benefits. International studies indicate variation in walking by culture. It is clear, however, that walking is a prevalent form of PA across countries and a movement form that has great potential in global PA promotion. Continued development of measurement techniques that allow for the study of individualized gait patterns will help us add to the already rich body of knowledge on chronically disabled populations and allow for individual prescriptions for these populations.

  18. Energy efficient walking with central pattern generators: from passive dynamic walking to biologically inspired control

    NARCIS (Netherlands)

    Verdaasdonk, B.W.; Koopman, H.F.J.M.; Van der Helm, F.C.T.

    2009-01-01

    Like human walking, passive dynamic walking—i.e. walking down a slope with no actuation except gravity—is energy efficient by exploiting the natural dynamics. In the animal world, neural oscillators termed central pattern generators (CPGs) provide the basic rhythm for muscular activity in locomotion

  19. The associated random walk and martingales in random walks with stationary increments

    CERN Document Server

    Grey, D R

    2010-01-01

    We extend the notion of the associated random walk and the Wald martingale in random walks where the increments are independent and identically distributed to the more general case of stationary ergodic increments. Examples are given where the increments are Markovian or Gaussian, and an application in queueing is considered.

  20. Does walking strategy in older people change as a function of walking distance?

    NARCIS (Netherlands)

    Najafi, Bijan; Helbostad, Jorunn L.; Moe-Nilssen, Rolf; Zijlstra, Wiebren; Aminian, Kamiar

    2009-01-01

    This study investigates whether the spatio-temporal parameters of gait in the elderly vary as a function of walking distance. The gait pattern of older subjects (n = 27) over both short (SWD <10 m) and long (LWD > 20 in) walking was evaluated using an ambulatory device consisting of body-worn sensor

  1. Intraspecific chromosome variability

    Directory of Open Access Journals (Sweden)

    N Dubinin

    2010-12-01

    Full Text Available (Editorial preface. The publication is presented in order to remind us of one of dramatic pages of the history of genetics. It re-opens for the contemporary reader a comprehensive work marking the priority change from plant cytogenetics to animal cytogenetics led by wide population studies which were conducted on Drosophila polytene chromosomes. The year of the publication (1937 became the point of irretrievable branching between the directions of Old World and New World genetics connected with the problems of chromosome variability and its significance for the evolution of the species. The famous book of T. Dobzhansky (1937 was published by Columbia University in the US under the title “Genetics and the origin of species”, and in the shadow of this American ‘skybuilding’ all other works grew dim. It is remarkable that both Dobzhansky and Dubinin come to similar conclusions about the role of chromosomes in speciation. This is not surprising given that they both might be considered as representatives of the Russian genetic school, by their birth and education. Interestingly, Dobzhansky had never referred to the full paper of Dubinin et al. (1937, though a previous short communication in Nature (1936 was included together with all former papers on the related subject. In full, the volume of the original publication printed in the Biological Journal in Moscow comprised 47 pages, in that number 41 pages of the Russian text accompanied by 16 Figs, a table and reference list, and, above all, 6 pages of the English summary. This final part in English is now reproduced in the authors’ version with the only addition being the reference list in the originally printed form.

  2. Chromosome assortment in Saccharum.

    Science.gov (United States)

    Al-Janabi, S M; Honeycutt, R J; Sobral, B W

    1994-12-01

    Recent work has revealed random chromosome pairing and assortment in Saccharum spontaneum L., the most widely distributed, and morphologically and cytologically variable of the species of Saccharum. This conclusion was based on the analysis of a segregating population from across between S. spontaneum 'SES 208' and a spontaneously-doubled haploid of itself, derived from anther culture. To determine whether polysomic inheritance is common in Saccharum and whether it is observed in a typical biparental cross, we studied chromosome pairing and assortment in 44 progeny of a cross between euploid, meiotically regular, 2n=80 forms of Saccharum officinarum 'LA Purple' and Saccharum robustum ' Mol 5829'. Papuan 2n=80 forms of S. robustum have been suggested as the immediate progenitor species for cultivated sugarcane (S. officinarum). A total of 738 loci in LA Purple and 720 loci in Mol 5829 were amplified and typed in the progeny by arbitrarily primed PCR using 45 primers. Fifty and 33 single-dose polymorphisms were identified in the S. officinarum and S. robustum genomes, respectively (χ 2 at 98%). Linkage analysis of single-dose polymorphisms in both genomes revealed linkages in repulsion and coupling phases. In the S. officinarum genome, a map hypothesis gave 7 linkage groups with 17 linked and 33 unlinked markers. Four of 13 pairwise linkages were in repulsion phase and 9 were in coupling phase. In the S. robustum genome, a map hypothesis gave 5 linkage groups, defined by 12 markers, with 21 markers unlinked, and 2 of 9 pairwise linkages were in repulsion phase. Therefore, complete polysomic inheritance was not observed in either species, suggesting that chromosomal behavior is different from that observed by linkage analysis of over 500 markers in the S. spontaneum map. Implications of this finding for evolution and breeding are discussed.

  3. Psychometric performance of a generic walking scale (Walk-12G) in multiple sclerosis and Parkinson's disease.

    Science.gov (United States)

    Bladh, Stina; Nilsson, Maria H; Hariz, Gun-Marie; Westergren, Albert; Hobart, Jeremy; Hagell, Peter

    2012-04-01

    Walking difficulties are common in neurological and other disorders, as well as among the elderly. There is a need for reliable and valid instruments for measuring walking difficulties in everyday life since existing gait tests are clinician rated and focus on situation specific capacity. The Walk-12G was adapted from the 12-item multiple sclerosis walking scale as a generic patient-reported rating scale for walking difficulties in everyday life. The aim of this study is to examine the psychometric properties of the Walk-12G in people with multiple sclerosis (MS) and Parkinson's disease (PD). The Walk-12G was translated into Swedish and evaluated qualitatively among 25 people with and without various neurological and other conditions. Postal survey (MS, n = 199; PD, n = 189) and clinical (PD, n = 36) data were used to test its psychometric properties. Respondents considered the Walk-12G relevant and easy to use. Mean completion time was 3.5 min. Data completeness was good (0.6). Coefficient alpha and test-retest reliabilities were >0.9, and standard errors of measurement were 2.3-2.8. Construct validity was supported by correlations in accordance with a priori expectations. Results are similar to those with previous Walk-12G versions, indicating that scale adaptation was successful. Data suggest that the Walk-12G meets rating scale criteria for clinical trials, making it a valuable complement to available gait tests. Further studies involving other samples and application of modern psychometric methods are warranted to examine the scale in more detail.

  4. Vection in depth during treadmill walking.

    Science.gov (United States)

    Ash, April; Palmisano, Stephen; Apthorp, Deborah; Allison, Robert S

    2013-01-01

    Vection has typically been induced in stationary observers (ie conditions providing visual-only information about self-motion). Two recent studies have examined vection during active treadmill walking--one reported that treadmill walking in the same direction as the visually simulated self-motion impaired vection (Onimaru et al, 2010 Journal of Vision 10(7):860), the other reported that it enhanced vection (Seno et al, 2011 Perception 40 747-750; Seno et al, 2011 Attention, Perception, & Psychophysics 73 1467-1476). Our study expands on these earlier investigations of vection during observer active movement. In experiment 1 we presented radially expanding optic flow and compared the vection produced in stationary observers with that produced during walking forward on a treadmill at a 'matched' speed. Experiment 2 compared the vection induced by forward treadmill walking while viewing expanding or contracting optic flow with that induced by viewing playbacks of these same displays while stationary. In both experiments subjects' tracked head movements were either incorporated into the self-motion displays (as simulated viewpoint jitter) or simply ignored. We found that treadmill walking always reduced vection (compared with stationary viewing conditions) and that simulated viewpoint jitter always increased vection (compared with constant velocity displays). These findings suggest that while consistent visual-vestibular information about self-acceleration increases vection, biomechanical self-motion information reduces this experience (irrespective of whether it is consistent or not with the visual input).

  5. Scaling Argument of Anisotropic Random Walk

    Institute of Scientific and Technical Information of China (English)

    XU Bing-Zhen; JIN Guo-Jun; WANG Fei-Feng

    2005-01-01

    In this paper, we analytically discuss the scaling properties of the average square end-to-end distance for anisotropic random walk in D-dimensional space ( D ≥ 2), and the returning probability Pn(ro) for the walker into a certain neighborhood of the origin. We will not only give the calculating formula for and Pn (ro), but also point out that if there is a symmetric axis for the distribution of the probability density of a single step displacement, we always obtain ~ n, where ⊥ refers to the projections of the displacement perpendicular to each symmetric axes of the walk; in D-dimensional space with D symmetric axes perpendicular to each other, we always have ~ n and the random walk will be like a purely random motion; if the number of inter-perpendicular symmetric axis is smaller than the dimensions of the space, we must have ~ n2 for very large n and the walk will be like a ballistic motion. It is worth while to point out that unlike the isotropic random walk in one and two dimensions, which is certain to return into the neighborhood of the origin, generally there is only a nonzero probability for the anisotropic random walker in two dimensions to return to the neighborhood.

  6. Coined quantum walks on percolation graphs

    CERN Document Server

    Leung, Godfrey; Bailey, Joe; Kendon, Viv

    2010-01-01

    Quantum walks, both discrete (coined) and continuous time, form the basis of several quantum algorithms and have been used to model processes such as transport in spin chains and quantum chemistry. The enhanced spreading and mixing properties of quantum walks compared with their classical counterparts have been well-studied on regular structures and also shown to be sensitive to defects and imperfections in the lattice. As a simple example of a disordered system, we consider percolation lattices, in which edges or sites are randomly missing, interrupting the progress of the quantum walk. We use numerical simulation to study the properties of coined quantum walks on these percolation lattices in one and two dimensions. In one dimension (the line) we introduce a simple notion of quantum tunneling and determine how this affects the properties of the quantum walk as it spreads. On two-dimensional percolation lattices, we show how the spreading rate varies from linear to square root in the number of steps, as the ...

  7. Myoelectric walking mode classification for transtibial amputees.

    Science.gov (United States)

    Miller, Jason D; Beazer, Mahyo Seyedali; Hahn, Michael E

    2013-10-01

    Myoelectric control algorithms have the potential to detect an amputee's motion intent and allow the prosthetic to adapt to changes in walking mode. The development of a myoelectric walking mode classifier for transtibial amputees is outlined. Myoelectric signals from four muscles (tibialis anterior, medial gastrocnemius (MG), vastus lateralis, and biceps femoris) were recorded for five nonamputee subjects and five transtibial amputees over a variety of walking modes: level ground at three speeds, ramp ascent/descent, and stair ascent/descent. These signals were decomposed into relevant features (mean absolute value, variance, wavelength, number of slope sign changes, number of zero crossings) over three subwindows from the gait cycle and used to test the ability of classification algorithms for transtibial amputees using linear discriminant analysis (LDA) and support vector machine (SVM) classifiers. Detection of all seven walking modes had an accuracy of 97.9% for the amputee group and 94.7% for the nonamputee group. Misclassifications occurred most frequently between different walking speeds due to the similar nature of the gait pattern. Stair ascent/descent had the best classification accuracy with 99.8% for the amputee group and 100.0% for the nonamputee group. Stability of the developed classifier was explored using an electrode shift disturbance for each muscle. Shifting the electrode placement of the MG had the most pronounced effect on the classification accuracy for both samples. No increase in classification accuracy was observed when using SVM compared to LDA for the current dataset.

  8. Chromosome Connections: Compelling Clues to Common Ancestry

    Science.gov (United States)

    Flammer, Larry

    2013-01-01

    Students compare banding patterns on hominid chromosomes and see striking evidence of their common ancestry. To test this, human chromosome no. 2 is matched with two shorter chimpanzee chromosomes, leading to the hypothesis that human chromosome 2 resulted from the fusion of the two shorter chromosomes. Students test that hypothesis by looking for…

  9. Chromosomal rearrangement interferes with meiotic X chromosome inactivation.

    Science.gov (United States)

    Homolka, David; Ivanek, Robert; Capkova, Jana; Jansa, Petr; Forejt, Jiri

    2007-10-01

    Heterozygosity for certain mouse and human chromosomal rearrangements is characterized by the incomplete meiotic synapsis of rearranged chromosomes, by their colocalization with the XY body in primary spermatocytes, and by male-limited sterility. Previously, we argued that such X-autosomal associations could interfere with meiotic sex chromosome inactivation. Recently, supporting evidence has reported modifications of histones in rearranged chromosomes by a process called the meiotic silencing of unsynapsed chromatin (MSUC). Here, we report on the transcriptional down-regulation of genes within the unsynapsed region of the rearranged mouse chromosome 17, and on the subsequent disturbance of X chromosome inactivation. The partial transcriptional suppression of genes in the unsynapsed chromatin was most prominent prior to the mid-pachytene stage of primary spermatocytes. Later, during the mid-late pachytene, the rearranged autosomes colocalized with the XY body, and the X chromosome failed to undergo proper transcriptional silencing. Our findings provide direct evidence on the MSUC acting at the mRNA level, and implicate that autosomal asynapsis in meiosis may cause male sterility by interfering with meiotic sex chromosome inactivation.

  10. Fast Scramblers, Democratic Walks and Information Fields

    CERN Document Server

    Magan, Javier M

    2015-01-01

    We study a family of weighted random walks on complete graphs. These `democratic walks' turn out to be explicitly solvable, and we find the hierarchy window for which the characteristic time scale saturates the so-called fast scrambling conjecture. We show that these democratic walks describe well the properties of information spreading in systems in which every degree of freedom interacts with every other degree of freedom, such as Matrix or infinite range models. The argument is based on the analysis of suitably defined `Information fields' ($\\mathcal{I}$), which are shown to evolve stochastically towards stationarity due to unitarity of the microscopic model. The model implies that in democratic systems, stabilization of one subsystem is equivalent to global scrambling. We use these results to study scrambling of infalling perturbations in black hole backgrounds, and argue that the near horizon running coupling constants are connected to entanglement evolution of single particle perturbations in democratic...

  11. Photonics walking up a human hair

    Science.gov (United States)

    Zeng, Hao; Parmeggiani, Camilla; Martella, Daniele; Wasylczyk, Piotr; Burresi, Matteo; Wiersma, Diederik S.

    2016-03-01

    While animals have access to sugars as energy source, this option is generally not available to artificial machines and robots. Energy delivery is thus the bottleneck for creating independent robots and machines, especially on micro- and nano- meter length scales. We have found a way to produce polymeric nano-structures with local control over the molecular alignment, which allowed us to solve the above issue. By using a combination of polymers, of which part is optically sensitive, we can create complex functional structures with nanometer accuracy, responsive to light. In particular, this allowed us to realize a structure that can move autonomously over surfaces (it can "walk") using the environmental light as its energy source. The robot is only 60 μm in total length, thereby smaller than any known terrestrial walking species, and it is capable of random, directional walking and rotating on different dry surfaces.

  12. Modeling, simulation and optimization of bipedal walking

    CERN Document Server

    Berns, Karsten

    2013-01-01

    The model-based investigation of motions of anthropomorphic systems is an important interdisciplinary research topic involving specialists from many fields such as Robotics, Biomechanics, Physiology, Orthopedics, Psychology, Neurosciences, Sports, Computer Graphics and Applied Mathematics. This book presents a study of basic locomotion forms such as walking and running is of particular interest due to the high demand on dynamic coordination, actuator efficiency and balance control. Mathematical models and numerical simulation and optimization techniques are explained, in combination with experimental data, which can help to better understand the basic underlying mechanisms of these motions and to improve them. Example topics treated in this book are Modeling techniques for anthropomorphic bipedal walking systems Optimized walking motions for different objective functions Identification of objective functions from measurements Simulation and optimization approaches for humanoid robots Biologically inspired con...

  13. Humanoid robot Lola: design and walking control.

    Science.gov (United States)

    Buschmann, Thomas; Lohmeier, Sebastian; Ulbrich, Heinz

    2009-01-01

    In this paper we present the humanoid robot LOLA, its mechatronic hardware design, simulation and real-time walking control. The goal of the LOLA-project is to build a machine capable of stable, autonomous, fast and human-like walking. LOLA is characterized by a redundant kinematic configuration with 7-DoF legs, an extremely lightweight design, joint actuators with brushless motors and an electronics architecture using decentralized joint control. Special emphasis was put on an improved mass distribution of the legs to achieve good dynamic performance. Trajectory generation and control aim at faster, more flexible and robust walking. Center of mass trajectories are calculated in real-time from footstep locations using quadratic programming and spline collocation methods. Stabilizing control uses hybrid position/force control in task space with an inner joint position control loop. Inertial stabilization is achieved by modifying the contact force trajectories.

  14. Gaussian Networks Generated by Random Walks

    CERN Document Server

    Javarone, Marco Alberto

    2014-01-01

    We propose a random walks based model to generate complex networks. Many authors studied and developed different methods and tools to analyze complex networks by random walk processes. Just to cite a few, random walks have been adopted to perform community detection, exploration tasks and to study temporal networks. Moreover, they have been used also to generate scale-free networks. In this work, we define a random walker that plays the role of "edges-generator". In particular, the random walker generates new connections and uses these ones to visit each node of a network. As result, the proposed model allows to achieve networks provided with a Gaussian degree distribution, and moreover, some features as the clustering coefficient and the assortativity show a critical behavior. Finally, we performed numerical simulations to study the behavior and the properties of the cited model.

  15. Quantum walk search through potential barriers

    Science.gov (United States)

    Wong, Thomas G.

    2016-12-01

    An ideal quantum walk transitions from one vertex to another with perfect fidelity, but in physical systems, the particle may be hindered by potential energy barriers. Then the particle has some amplitude of tunneling through the barriers, and some amplitude of staying put. We investigate the algorithmic consequence of such barriers for the quantum walk formulation of Grover’s algorithm. We prove that the failure amplitude must scale as O(1/\\sqrt{N}) for search to retain its quantum O(\\sqrt{N}) runtime; otherwise, it searches in classical O(N) time. Thus searching larger ‘databases’ requires increasingly reliable hop operations or error correction. This condition holds for both discrete- and continuous-time quantum walks.

  16. Large-scale cloning of human chromosome 2-specific yeast artificial chromosomes (YACs) using an interspersed repetitive sequences (IRS)-PCR approach

    Energy Technology Data Exchange (ETDEWEB)

    Liu, J.; Rezonzew, R. [McGill Centre for the Study of Host Resistance, Montreal, Quebec (Canada)]|[McGill Univ., Montreal, Quebec (Canada); Stanton, V.P. Jr. [Massachusetts Institute of Technology, Cambridge, MA (United States)] [and others

    1995-03-20

    We report here an efficient approach to the establishment of extended YAC contigs on human chromosome 2 by using an interspersed repetitive sequences (IRS)-PCR-based screening strategy for YAC DNA pools. Genomic DNA was extracted from 1152 YAC pools comprised of 55,296 YACs mostly derived from the CEPH Mark I library. Alu-element-mediated PCR was performed for each pool, and amplification products were spotted on hybridization membranes (IRS filters). IRS probes for the screening of the IRS filters were obtained by Alu-element-mediated PCR. Of 708 distinct probes obtained from chromosome 2-specific somatic cell hybrids, 85% were successfully used for library screening. Similarly, 80% of 80 YAC walking probes were successfully used for library screening. Each probe detected an average of 6.6 YACs, which is in good agreement with the 7- to 7.5-fold genome coverage provided by the library. In a preliminary analysis, we have identified 188 YAC groups that are the basis for building contigs for chromosome 2. The coverage of the telomeric half of chromosome 2q was considered to be good since 31 of 34 microsatellites and 22 of 23 expressed sequence tags that were chosen from chromosome region 2q13-q37 were contained in a chromosome 2 YAC sublibrary generated by our experiments. We have identified a minimum of 1610 distinct chromosome 2-specific YACs, which will be a valuable asset for the physical mapping of the second largest human chromosome. 81 refs., 8 figs., 3 tabs.

  17. Stride Counting in Human Walking and Walking Distance Estimation Using Insole Sensors

    Science.gov (United States)

    Truong, Phuc Huu; Lee, Jinwook; Kwon, Ae-Ran; Jeong, Gu-Min

    2016-01-01

    This paper proposes a novel method of estimating walking distance based on a precise counting of walking strides using insole sensors. We use an inertial triaxial accelerometer and eight pressure sensors installed in the insole of a shoe to record walkers’ movement data. The data is then transmitted to a smartphone to filter out noise and determine stance and swing phases. Based on phase information, we count the number of strides traveled and estimate the movement distance. To evaluate the accuracy of the proposed method, we created two walking databases on seven healthy participants and tested the proposed method. The first database, which is called the short distance database, consists of collected data from all seven healthy subjects walking on a 16 m distance. The second one, named the long distance database, is constructed from walking data of three healthy subjects who have participated in the short database for an 89 m distance. The experimental results show that the proposed method performs walking distance estimation accurately with the mean error rates of 4.8% and 3.1% for the short and long distance databases, respectively. Moreover, the maximum difference of the swing phase determination with respect to time is 0.08 s and 0.06 s for starting and stopping points of swing phases, respectively. Therefore, the stride counting method provides a highly precise result when subjects walk. PMID:27271634

  18. Stride Counting in Human Walking and Walking Distance Estimation Using Insole Sensors

    Directory of Open Access Journals (Sweden)

    Phuc Huu Truong

    2016-06-01

    Full Text Available This paper proposes a novel method of estimating walking distance based on a precise counting of walking strides using insole sensors. We use an inertial triaxial accelerometer and eight pressure sensors installed in the insole of a shoe to record walkers’ movement data. The data is then transmitted to a smartphone to filter out noise and determine stance and swing phases. Based on phase information, we count the number of strides traveled and estimate the movement distance. To evaluate the accuracy of the proposed method, we created two walking databases on seven healthy participants and tested the proposed method. The first database, which is called the short distance database, consists of collected data from all seven healthy subjects walking on a 16 m distance. The second one, named the long distance database, is constructed from walking data of three healthy subjects who have participated in the short database for an 89 m distance. The experimental results show that the proposed method performs walking distance estimation accurately with the mean error rates of 4.8% and 3.1% for the short and long distance databases, respectively. Moreover, the maximum difference of the swing phase determination with respect to time is 0.08 s and 0.06 s for starting and stopping points of swing phases, respectively. Therefore, the stride counting method provides a highly precise result when subjects walk.

  19. Cohesin in determining chromosome architecture

    Energy Technology Data Exchange (ETDEWEB)

    Haering, Christian H., E-mail: christian.haering@embl.de [Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg (Germany); Jessberger, Rolf, E-mail: rolf.jessberger@tu-dresden.de [Institute of Physiological Chemistry, Dresden University of Technology, Dresden (Germany)

    2012-07-15

    Cells use ring-like structured protein complexes for various tasks in DNA dynamics. The tripartite cohesin ring is particularly suited to determine chromosome architecture, for it is large and dynamic, may acquire different forms, and is involved in several distinct nuclear processes. This review focuses on cohesin's role in structuring chromosomes during mitotic and meiotic cell divisions and during interphase.

  20. Movement Behavior of High-Heeled Walking

    DEFF Research Database (Denmark)

    Alkjær, Tine; Raffalt, Peter Christian; Petersen, Nicolas Caesar

    2012-01-01

    The human locomotor system is flexible and enables humans to move without falling even under less than optimal conditions. Walking with high-heeled shoes constitutes an unstable condition and here we ask how the nervous system controls the ankle joint in this situation? We investigated the movement...... behavior of high-heeled and barefooted walking in eleven female subjects. The movement variability was quantified by calculation of approximate entropy (ApEn) in the ankle joint angle and the standard deviation (SD) of the stride time intervals. Electromyography (EMG) of the soleus (SO) and tibialis...

  1. Random walk term weighting for information retrieval

    DEFF Research Database (Denmark)

    Blanco, R.; Lioma, Christina

    2007-01-01

    We present a way of estimating term weights for Information Retrieval (IR), using term co-occurrence as a measure of dependency between terms.We use the random walk graph-based ranking algorithm on a graph that encodes terms and co-occurrence dependencies in text, from which we derive term weights...... that represent a quantification of how a term contributes to its context. Evaluation on two TREC collections and 350 topics shows that the random walk-based term weights perform at least comparably to the traditional tf-idf term weighting, while they outperform it when the distance between co-occurring terms...

  2. On d-Walk Regular Graphs

    OpenAIRE

    Estrada, Ernesto; de la Pena, Jose A.

    2013-01-01

    Let G be a graph with set of vertices 1,...,n and adjacency matrix A of size nxn. Let d(i,j)=d, we say that f_d:N->N is a d-function on G if for every pair of vertices i,j and k>=d, we have a_ij^(k)=f_d(k). If this function f_d exists on G we say that G is d-walk regular. We prove that G is d-walk regular if and only if for every pair of vertices i,j at distance

  3. Nordic walking and chronic low back pain

    DEFF Research Database (Denmark)

    Morsø, Lars; Hartvigsen, Jan; Puggaard, Lis;

    2006-01-01

    Low Back Pain is a major public health problem all over the western world. Active approaches including exercise in the treatment of low back pain results in better outcomes for patients, but it is not known exactly which types of back exercises are most beneficial or whether general physical....... Until now no studies have been performed to investigate whether Nordic Walking has beneficial effects in relation to low back pain. The primary aim of this study is to investigate whether supervised Nordic Walking can reduce pain and improve function in a population of chronic low back pain patients...

  4. Environmental factors influencing older adults’ walking for transportation: a study using walk-along interviews

    Directory of Open Access Journals (Sweden)

    Van Cauwenberg Jelle

    2012-07-01

    Full Text Available Abstract Background Current knowledge on the relationship between the physical environment and walking for transportation among older adults (≥ 65 years is limited. Qualitative research can provide valuable information and inform further research. However, qualitative studies are scarce and fail to include neighborhood outings necessary to study participants’ experiences and perceptions while interacting with and interpreting the local social and physical environment. The current study sought to uncover the perceived environmental influences on Flemish older adults’ walking for transportation. To get detailed and context-sensitive environmental information, it used walk-along interviews. Methods Purposeful convenience sampling was used to recruit 57 older adults residing in urban or semi-urban areas. Walk-along interviews to and from a destination (e.g. a shop located within a 15 minutes’ walk from the participants’ home were conducted. Content analysis was performed using NVivo 9 software (QSR International. An inductive approach was used to derive categories and subcategories from the data. Results Data were categorized in the following categories and subcategories: access to facilities (shops & services, public transit, connectivity, walking facilities (sidewalk quality, crossings, legibility, benches, traffic safety (busy traffic, behavior of other road users, familiarity, safety from crime (physical factors, other persons, social contacts, aesthetics (buildings, natural elements, noise & smell, openness, decay and weather. Conclusions The findings indicate that to promote walking for transportation a neighborhood should provide good access to shops and services, well-maintained walking facilities, aesthetically appealing places, streets with little traffic and places for social interaction. In addition, the neighborhood environment should evoke feelings of familiarity and safety from crime. Future quantitative studies should

  5. Genetics Home Reference: Y chromosome infertility

    Science.gov (United States)

    ... Home Health Conditions Y chromosome infertility Y chromosome infertility Enable Javascript to view the expand/collapse boxes. ... PDF Open All Close All Description Y chromosome infertility is a condition that affects the production of ...

  6. Higher order structure of chromosomes.

    Science.gov (United States)

    Okada, T A; Comings, D E

    1979-04-01

    Isolated Chinese hamster metaphase chromosomes were resuspended in 4 M ammonium acetate and spread on a surface of distilled water or 0.15 to 0.5 M ammonium acetate. The DNA was released in the form of a regular series of rosettes connected by interrossette DNA. The mean length of the rosette DNA was 14 micron, similar to the mean length of 10 micron for chromomere DNA of Drosophila polytene chromosomes. The mean interrosette DNA was 4.2 micron. SDS gel electrophoresis of the chromosomal nonhistone proteins showed them to be very similar to nuclear nonhistone proteins except for the presence of more actin and tubulin. Nuclear matrix proteins were present in the chromosomes and may play a role in forming the rosettes. Evidence that the rosette pattern is artifactual versus the possibility that it represents a real organizational substructure of the chromosomes is reviewed.

  7. Bacterial chromosome organization and segregation.

    Science.gov (United States)

    Badrinarayanan, Anjana; Le, Tung B K; Laub, Michael T

    2015-01-01

    If fully stretched out, a typical bacterial chromosome would be nearly 1 mm long, approximately 1,000 times the length of a cell. Not only must cells massively compact their genetic material, but they must also organize their DNA in a manner that is compatible with a range of cellular processes, including DNA replication, DNA repair, homologous recombination, and horizontal gene transfer. Recent work, driven in part by technological advances, has begun to reveal the general principles of chromosome organization in bacteria. Here, drawing on studies of many different organisms, we review the emerging picture of how bacterial chromosomes are structured at multiple length scales, highlighting the functions of various DNA-binding proteins and the impact of physical forces. Additionally, we discuss the spatial dynamics of chromosomes, particularly during their segregation to daughter cells. Although there has been tremendous progress, we also highlight gaps that remain in understanding chromosome organization and segregation.

  8. Chromosome choreography: the meiotic ballet.

    Science.gov (United States)

    Page, Scott L; Hawley, R Scott

    2003-08-08

    The separation of homologous chromosomes during meiosis in eukaryotes is the physical basis of Mendelian inheritance. The core of the meiotic process is a specialized nuclear division (meiosis I) in which homologs pair with each other, recombine, and then segregate from each other. The processes of chromosome alignment and pairing allow for homolog recognition. Reciprocal meiotic recombination ensures meiotic chromosome segregation by converting sister chromatid cohesion into mechanisms that hold homologous chromosomes together. Finally, the ability of sister kinetochores to orient to a single pole at metaphase I allows the separation of homologs to two different daughter cells. Failures to properly accomplish this elegant chromosome dance result in aneuploidy, a major cause of miscarriage and birth defects in human beings.

  9. Schizophrenia and chromosomal deletions

    Energy Technology Data Exchange (ETDEWEB)

    Lindsay, E.A.; Baldini, A. [Baylor College of Medicine, Houston, TX (United States); Morris, M. A. [Univ. of Geneva School of Medicine, NY (United States)] [and others

    1995-06-01

    Recent genetic linkage analysis studies have suggested the presence of a schizophrenia locus on the chromosomal region 22q11-q13. Schizophrenia has also been frequently observed in patients affected with velo-cardio-facial syndrome (VCFS), a disorder frequently associated with deletions within 22q11.1. It has been hypothesized that psychosis in VCFS may be due to deletion of the catechol-o-methyl transferase gene. Prompted by these observations, we screened for 22q11 deletions in a population of 100 schizophrenics selected from the Maryland Epidemiological Sample. Our results show that there are schizophrenic patients carrying a deletion of 22q11.1 and a mild VCFS phenotype that might remain unrecognized. These findings should encourage a search for a schizophrenia-susceptibility gene within the deleted region and alert those in clinical practice to the possible presence of a mild VCFS phenotype associated with schizophrenia. 9 refs.

  10. Invertebrate neurobiology: sensory processing in reverse for backward walking.

    Science.gov (United States)

    Zill, Sasha N

    2007-06-19

    Humans and many other animals can readily walk forward or backward. In insects, the nervous system changes the effects of sense organs that signal forces on a leg when the direction of walking is reversed.

  11. Anchored PCR (A-PCR):A new method for chromosome walking

    Institute of Scientific and Technical Information of China (English)

    CHEN Bojun; SUN Chao; WANG Yong; HU Yuanlei; LIN Zhongping

    2004-01-01

    @@ PCR-based techniques are most popular methods for isolation of DNA sequences flanking a known region.Such techniques published to date mainly include three types: inverse PCR (IPCR)[1-3], ligation-mediated PCR (LM-PCR)[4-9] and randomly primed PCR (RP-PCR)[10-12].IPCR was the first method developed for this kind of purpose. However, it is now rarely used because of the difficulty in finding suitable restriction sites in the target region or poor circularization of the template molecule.LM-PCR and RP-PCR are more frequently used nowadays, yet they also have some limitations. For example,LM-PCR depends on restriction sites within a reasonable distance in the flanking regions, while the amplified products of RP-PCR are generally small (<1 kb). Moreover, both methods often result in excessive amplification of non-specific molecules, which greatly reduces their efficiencies in obtaining sequences of interest. To resolve these problems, some new strategies have emerged in the past few years, such as Vectorette-PCR[6], biotin-capture PCR[7], TAIL-PCR[l2] and T-linker PCR[9]. These improved methods are more efficient than their old versions;however, most of them are still limited by restriction digestion or ligation. Although the intervening steps are avoided in TAIL-PCR, the amplified fragments are often small because of the use of random primers.

  12. Chromatid Painting for Chromosomal Inversion Detection Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose the continued development of a novel approach to the detection of chromosomal inversions. Transmissible chromosome aberrations (translocations and...

  13. CHROMOSOMAL MAPPING IN STRAINS OF STAPHYLOCOCCUS AUREUS,

    Science.gov (United States)

    STAPHYLOCOCCUS AUREUS , CHROMOSOMES), (*CHROMOSOMES, MAPPING), NITROSO COMPOUNDS, GUANIDINES, GENETICS, MUTATIONS, DRUGS, TOLERANCES(PHYSIOLOGY), TEST METHODS, DEOXYRIBONUCLEIC ACIDS, INHIBITION, RESISTANCE(BIOLOGY).

  14. Chromatid Painting for Chromosomal Inversion Detection Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose a novel approach to the detection of chromosomal inversions. Transmissible chromosome aberrations (translocations and inversions) have profound genetic...

  15. Mitotic chromosome condensation in vertebrates

    Energy Technology Data Exchange (ETDEWEB)

    Vagnarelli, Paola, E-mail: P.Vagnarelli@ed.ac.uk

    2012-07-15

    Work from several laboratories over the past 10-15 years has revealed that, within the interphase nucleus, chromosomes are organized into spatially distinct territories [T. Cremer, C. Cremer, Chromosome territories, nuclear architecture and gene regulation in mammalian cells, Nat. Rev. Genet. 2 (2001) 292-301 and T. Cremer, M. Cremer, S. Dietzel, S. Muller, I. Solovei, S. Fakan, Chromosome territories-a functional nuclear landscape, Curr. Opin. Cell Biol. 18 (2006) 307-316]. The overall compaction level and intranuclear location varies as a function of gene density for both entire chromosomes [J.A. Croft, J.M. Bridger, S. Boyle, P. Perry, P. Teague,W.A. Bickmore, Differences in the localization and morphology of chromosomes in the human nucleus, J. Cell Biol. 145 (1999) 1119-1131] and specific chromosomal regions [N.L. Mahy, P.E. Perry, S. Gilchrist, R.A. Baldock, W.A. Bickmore, Spatial organization of active and inactive genes and noncoding DNA within chromosome territories, J. Cell Biol. 157 (2002) 579-589] (Fig. 1A, A'). In prophase, when cyclin B activity reaches a high threshold, chromosome condensation occurs followed by Nuclear Envelope Breakdown (NEB) [1]. At this point vertebrate chromosomes appear as compact structures harboring an attachment point for the spindle microtubules physically recognizable as a primary constriction where the two sister chromatids are held together. The transition from an unshaped interphase chromosome to the highly structured mitotic chromosome (compare Figs. 1A and B) has fascinated researchers for several decades now; however a definite picture of how this process is achieved and regulated is not yet in our hands and it will require more investigation to comprehend the complete process. From a biochemical point of view a vertebrate mitotic chromosomes is composed of DNA, histone proteins (60%) and non-histone proteins (40%) [6]. I will discuss below what is known to date on the contribution of these two different classes

  16. Iterated random walks with shape prior

    DEFF Research Database (Denmark)

    Pujadas, Esmeralda Ruiz; Kjer, Hans Martin; Piella, Gemma;

    2016-01-01

    We propose a new framework for image segmentation using random walks where a distance shape prior is combined with a region term. The shape prior is weighted by a confidence map to reduce the influence of the prior in high gradient areas and the region term is computed with k-means to estimate th...

  17. The Quantum Walk of F. Riesz

    CERN Document Server

    Grunbaum, F A

    2011-01-01

    We exhibit a way to associate a quantum walk (QW) on the non-negative integers to any probability measure on the unit circle. This forces us to consider one step transitions that are not traditionally allowed. We illustrate this in the case of a very interesting measure, originally proposed by F. Riesz for a different purpose.

  18. The variability problem of normal human walking

    DEFF Research Database (Denmark)

    Simonsen, Erik B; Alkjær, Tine

    2012-01-01

    Previous investigations have suggested considerable inter-individual variability in the time course pattern of net joint moments during normal human walking, although the limited sample sizes precluded statistical analyses. The purpose of the present study was to obtain joint moment patterns from...

  19. Autonomous exoskeleton reduces metabolic cost of walking.

    Science.gov (United States)

    Mooney, Luke M; Rouse, Elliott J; Herr, Hugh M

    2014-01-01

    We developed an autonomous powered leg exoskeleton capable of providing large amounts of positive mechanical power to the wearer during powered plantarflexion phase of walking. The autonomous exoskeleton consisted of a winch actuator fasted to the shin which pulled on fiberglass struts attached to a boot. The fiberglass struts formed a rigid extension of the foot when the proximal end of the strut was pulled in forward by the winch actuator. This lightweight, geometric transmission allowed the electric winch actuator to efficiently produce biological levels of power at the ankle joint. The exoskeleton was powered and controlled by lithium polymer batteries and motor controller worn around the waist. Preliminary testing on two subjects walking at 1.4 m/s resulted in the exoskeleton reducing the metabolic cost of walking by 6-11% as compared to not wearing the device. The exoskeleton provided a peak mechanical power of over 180 W at each ankle (mean standard ± deviation) and an average positive mechanical power of 27 ± 1 W total to both ankles, while electrically using 75-89 W of electricity. The batteries (800 g) used in this experiment are estimated to be capable of providing this level of assistance for up to 7 km of walking.

  20. Second annual Dog Walk Against Cancer scheduled

    OpenAIRE

    Douglas, Jeffrey S.

    2005-01-01

    The second annual "Dog Walk Against Cancer" will be held from 10 a.m. to 2 p.m. Saturday, April 9, on the grounds of the Virginia-Maryland Regional College of Veterinary Medicine at Virginia Tech in Blacksburg. The event is open to the public and will be held in conjunction with the college's annual "Open House."

  1. Influence of moving visual surroundings on walking

    NARCIS (Netherlands)

    Mert, A.; Hak, L.; Bles, W.

    2011-01-01

    Introduction: Balance is negatively influenced by optokinetic stimuli. Fall research with these stimuli has been done with standing subjects. Less is known of the influence these stimuli have on risk of falling while walking. The objective of this study was to qualitatively investigate the influence

  2. Exploring Space and Place with Walking Interviews

    Science.gov (United States)

    Jones, Phil; Bunce, Griff; Evans, James; Gibbs, Hannah; Hein, Jane Ricketts

    2008-01-01

    This article explores the use of walking interviews as a research method. In spite of a wave of interest in methods which take interviewing out of the "safe," stationary environment, there has been limited work critically examining the techniques for undertaking such work. Curiously for a method which takes an explicitly spatial approach, few…

  3. Mesonic spectroscopy of Minimal Walking Technicolor

    DEFF Research Database (Denmark)

    Del Debbio, Luigi; Lucini, Biagio; Patella, Agostino

    2010-01-01

    We investigate the structure and the novel emerging features of the mesonic non-singlet spectrum of the Minimal Walking Technicolor (MWT) theory. Precision measurements in the nonsinglet pseudoscalar and vector channels are compared to the expectations for an IR-conformal field theory and a QCD...

  4. Random Walk Method for Potential Problems

    Science.gov (United States)

    Krishnamurthy, T.; Raju, I. S.

    2002-01-01

    A local Random Walk Method (RWM) for potential problems governed by Lapalace's and Paragon's equations is developed for two- and three-dimensional problems. The RWM is implemented and demonstrated in a multiprocessor parallel environment on a Beowulf cluster of computers. A speed gain of 16 is achieved as the number of processors is increased from 1 to 23.

  5. Go Naked: Diapers Affect Infant Walking

    Science.gov (United States)

    Cole, Whitney G.; Lingeman, Jesse M.; Adolph, Karen E.

    2012-01-01

    In light of cross-cultural and experimental research highlighting effects of childrearing practices on infant motor skill, we asked whether wearing diapers, a seemingly innocuous childrearing practice, affects infant walking. Diapers introduce bulk between the legs, potentially exacerbating infants' poor balance and wide stance. We show that…

  6. Osteogenesis imperfecta in childhood : Prognosis for walking

    NARCIS (Netherlands)

    Engelbert, RHH; Uiterwaal, CSPM; Gulmans, VAM; Pruijs, H; Helders, PJM

    2000-01-01

    Objectives: We studied the predicted value of disease-related characteristics for the ability of children with osteogenesis imperfecta (OI) to walk. Study design: The severity of OI was classified according to Sillence. The parents were asked to report the age at which the child achieved motor miles

  7. Random walk centrality for temporal networks

    CERN Document Server

    Rocha, Luis Enrique Correa

    2014-01-01

    Nodes can be ranked according to their relative importance within the network. Ranking algorithms based on random walks are particularly useful because they connect topological and diffusive properties of the network. Previous methods based on random walks, as for example the PageRank, have focused on static structures. However, several realistic networks are indeed dynamic, meaning that their structure changes in time. In this paper, we propose a centrality measure for temporal networks based on random walks which we call TempoRank. While in a static network, the stationary density of the random walk is proportional to the degree or the strength of a node, we find that in temporal networks, the stationary density is proportional to the in-strength of the so-called effective network. The stationary density also depends on the sojourn probability q which regulates the tendency of the walker to stay in the node. We apply our method to human interaction networks and show that although it is important for a node ...

  8. Exact Random Walk Distributions using Noncommutative Geometry

    CERN Document Server

    Bellissard, J; Barelli, A; Claro, F; Bellissard, Jean; Camacho, Carlos J; Barelli, Armelle; Claro, Francisco

    1997-01-01

    Using the results obtained by the non commutative geometry techniques applied to the Harper equation, we derive the areas distribution of random walks of length $ N $ on a two-dimensional square lattice for large $ N $, taking into account finite size contributions.

  9. Assessment of a Solar System Walk

    Science.gov (United States)

    LoPresto, Michael C.; Murrell, Steven R.; Kirchner, Brian

    2010-01-01

    The idea of sending students and the general public on a walk through a scale model of the solar system in an attempt to instill an appreciation of the relative scales of the sizes of the objects compared to the immense distances between them is certainly not new. A good number of such models exist, including one on the National Mall in…

  10. Infrared dynamics of Minimal Walking Technicolor

    DEFF Research Database (Denmark)

    Del Debbio, Luigi; Lucini, Biagio; Patella, Agostino;

    2010-01-01

    We study the gauge sector of Minimal Walking Technicolor, which is an SU(2) gauge theory with nf=2 flavors of Wilson fermions in the adjoint representation. Numerical simulations are performed on lattices Nt x Ns^3, with Ns ranging from 8 to 16 and Nt=2Ns, at fixed \\beta=2.25, and varying the fer...

  11. Quantifiying the stability of walking using accelerometers

    NARCIS (Netherlands)

    Waarsing, Jan H.; Mayagoitia, Ruth E.; Veltink, Peter H.

    1996-01-01

    A dynamic analysis method is sought to measure the relative stability of walking, using a triaxial accelerometer. A performance parameter that can be calculated from the data from the accelerometer is defined; it should give a measure of the stability of the subject. It is based on the balancing for

  12. Establishing the Range of Perceptually Natural Visual Walking Speeds for Virtual Walking-In-Place Locomotion

    DEFF Research Database (Denmark)

    Nilsson, Niels Christian; Serafin, Stefania; Nordahl, Rolf

    2014-01-01

    from 1.0 to 3.0. Thus, the slowest speed was equal to an estimate of the subjects normal walking speed, while the highest speed was three times greater. The perceived naturalness of the visual speed was assessed using self-reports. The first study compared four different types of movement, namely...... to virtual motion. This paper describes two within-subjects studies performed with the intention of establishing the range of perceptually natural walking speeds for WIP locomotion. In both studies, subjects performed a series of virtual walks while exposed to visual gains (optic flow multipliers) ranging......, no leg movement, walking on a treadmill, and two forms of gestural input for WIP locomotion. The results suggest that WIP locomotion is accompanied by a perceptual distortion of the speed of optic flow. The second study was performed using a 4×2 factorial design and compared four different display field...

  13. Searching via walking: How to find a marked clique of a complete graph using quantum walks

    Science.gov (United States)

    Hillery, Mark; Reitzner, Daniel; Bužek, Vladimír

    2010-06-01

    We show how a quantum walk can be used to find a marked edge or a marked complete subgraph of a complete graph. We employ a version of a quantum walk, the scattering walk, which lends itself to experimental implementation. The edges are marked by adding elements to them that impart a specific phase shift to the particle as it enters or leaves the edge. If the complete graph has N vertices and the subgraph has K vertices, the particle becomes localized on the subgraph in O(N/K) steps. This leads to a quantum search that is quadratically faster than a corresponding classical search. We show how to implement the quantum walk using a quantum circuit and a quantum oracle, which allows us to specify the resources needed for a quantitative comparison of the efficiency of classical and quantum searches—the number of oracle calls.

  14. Speed dependence of averaged EMG profiles in walking

    NARCIS (Netherlands)

    Hof, AL; Elzinga, H; Grimmius, W; Halbertsma, JPK

    2002-01-01

    Electromyogram (EMG) profiles strongly depend on walking speed and, in pathological gait, patients do not usually walk at normal speeds. EMG data was collected from 14 muscles in two groups of healthy young subjects who walked at five different speeds ranging from 0.75 to 1.75 ms(-1). We found that

  15. Modeling Framework and Software Tools for Walking Robots

    NARCIS (Netherlands)

    Duindam, Vincent; Stramigioli, Stefano; Groen, Frank

    2005-01-01

    In research on passive dynamic walking, the aim is to study and design robots that walk naturally, i.e., with little or no control effort. McGeer [1] and others (e.g. [2, 3]) have shown that, indeed, robots can walk down a shallow slope with no actuation, only powered by gravity. In this work, we de

  16. The Walking Classroom: Active Learning Is Just Steps Away!

    Science.gov (United States)

    Becker, Kelly Mancini

    2016-01-01

    Walking is a viable and valuable form of exercise for young children that has both physical and mental health benefits. There is much evidence showing that school-age children are not getting the recommended 60 minutes of daily exercise. A school-wide walking program can be a great way to encourage walking in and out of school, can be aligned with…

  17. Accumulating Brisk Walking for Fitness, Cardiovascular Risk, and Psychological Health.

    Science.gov (United States)

    Murphy, Marie; Nevill, Alan; Neville, Charlotte; Biddle, Stuart; Hardman, Adrianne

    2002-01-01

    Compared the effects of different patterns of regular brisk walking on fitness, cardiovascular disease risk factors, and psychological well-being in previously sedentary adults. Data on adults who completed either short-bout or long-bout walking programs found that three short bouts of brisk walking accumulated throughout the day were as effective…

  18. A Passive Dynamic Walking Model Based on Knee-Bend Behaviour: Stability and Adaptability for Walking Down Steep Slopes

    Directory of Open Access Journals (Sweden)

    Kang An

    2013-10-01

    Full Text Available This paper presents a passive dynamic walking model based on knee-bend behaviour, which is inspired by the way human beings walk. The length and mass parameters of human beings are used in the walking model. The knee-bend mechanism of the stance leg is designed in the phase between knee-strike and heel- strike. q* which is the angular difference of the stance leg between the two events, knee-strike and knee-bend, is adjusted in order to find a stable walking motion. The results show that the stable periodic walking motion on a slope of r <0.4 can be found by adjusting q*. Furthermore, with a particular q* in the range of 0.12walk down more steps before falling down on an arbitrary slope. The walking motion is more stable and adaptable than the conventional walking motion, especially for steep slopes.

  19. Exploring Muscle Activation during Nordic Walking: A Comparison between Conventional and Uphill Walking

    Science.gov (United States)

    Pellegrini, Barbara; Peyré-Tartaruga, Leonardo Alexandre; Zoppirolli, Chiara; Bortolan, Lorenzo; Bacchi, Elisabetta; Figard-Fabre, Hélène; Schena, Federico

    2015-01-01

    Nordic Walking (NW) owes much of its popularity to the benefits of greater energy expenditure and upper body engagement than found in conventional walking (W). Muscle activation during NW is still understudied, however. The aim of the present study was to assess differences in muscle activation and physiological responses between NW and W in level and uphill walking conditions. Nine expert Nordic Walkers (mean age 36.8±11.9 years; BMI 24.2±1.8 kg/m2) performed 5-minute treadmill trials of W and NW at 4 km/h on inclines of 0% and 15%. The electromyographic activity of seven upper body and five leg muscles and oxygen consumption (VO2) were recorded and pole force during NW was measured. VO2 during NW was 22.3% higher at 0% and only 6.9% higher at 15% than during W, while upper body muscle activation was 2- to 15-fold higher under both conditions. Lower body muscle activation was similarly increased during NW and W in the uphill condition, whereas the increase in erector spinae muscle activity was lower during NW than W. The lack of a significant increase in pole force during uphill walking may explain the lower extra energy expenditure of NW, indicating less upper body muscle activation to lift the body against gravity. NW seemed to reduce lower back muscle contraction in the uphill condition, suggesting that walking with poles may reduce effort to control trunk oscillations and could contribute to work production during NW. Although the difference in extra energy expenditure between NW and W was smaller in the uphill walking condition, the increased upper body muscle involvement during exercising with NW may confer additional benefit compared to conventional walking also on uphill terrains. Furthermore, people with low back pain may gain benefit from pole use when walking uphill. PMID:26418339

  20. How might we increase physical activity through dog walking?: A comprehensive review of dog walking correlates

    OpenAIRE

    Westgarth, Carri; Christley, Robert M; Christian, Hayley E

    2014-01-01

    Background Physical inactivity and sedentary behaviour are major threats to population health. A considerable proportion of people own dogs, and there is good evidence that dog ownership is associated with higher levels of physical activity. However not all owners walk their dogs regularly. This paper comprehensively reviews the evidence for correlates of dog walking so that effective interventions may be designed to increase the physical activity of dog owners. Methods Published findings fro...

  1. Gametocidal chromosomes enhancing chromosome aberration in common wheat induced by 5-azacytidine.

    Science.gov (United States)

    Su, W-Y; Cong, W-W; Shu, Y-J; Wang, D; Xu, G-H; Guo, C-H

    2013-07-08

    The gametocidal (Gc) chromosome from Aegilops spp induces chromosome mutation, which is introduced into common wheat as a tool of chromosome manipulation for genetic improvement. The Gc chromosome functions similar to a restriction-modification system in bacteria, in which DNA methylation is an important regulator. We treated root tips of wheat carrying Gc chromosomes with the hypomethylation agent 5-azacytidine; chromosome breakage and micronuclei were observed in these root tips. The frequency of aberrations differed in wheat containing different Gc chromosomes, suggesting different functions inducing chromosome breakage. Gc chromosome 3C caused the greatest degree of chromosome aberration, while Gc chromosome 3C(SAT) and 2C caused only slight chromosome aberration. Gc chromosome 3C induced different degrees of chromosome aberration in wheat varieties Triticum aestivum var. Chinese Spring and Norin 26, demonstrating an inhibition function in common wheat.

  2. Comparison of elliptical training, stationary cycling, treadmill walking and overground walking. Electromyographic patterns.

    Science.gov (United States)

    Prosser, Laura A; Stanley, Christopher J; Norman, Tracy L; Park, Hyung S; Damiano, Diane L

    2011-02-01

    The most common functional motor goal of lower extremity rehabilitation is to improve walking ability. For reasons of feasibility, safety or intensity, devices are frequently used to facilitate or augment gait training. The objective of this study was to compare the muscle activity patterns of the rectus femoris and semitendinosus muscles during four conditions: overground walking, treadmill walking, stationary cycling, and elliptical training. Ten healthy adults (six male, four female; mean age 22.7±2.9 years, range 20-29) participated and surface electromyographic data were recorded. Linear envelope curves were generated and time normalized from 0 to 100% cycle. The mean plus three standard deviations from a static trial was used as the threshold for muscle activity. Repeated measures analysis of variance procedures were used to detect differences between conditions. Elliptical training demonstrated greater rectus femoris activity and greater rectus femoris/semitendinosus coactivation than all other conditions. Consistent with previous work, treadmill walking demonstrated greater rectus femoris activity than overground walking. Minimal differences in semitendinosus activation were observed between conditions, limited to lower peak activity during cycling compared to treadmill walking. These results provide normative values for rectus femoris and semitendinosus activation for different locomotor training methods and may assist in selecting the most appropriate training device for specific patients. Clinicians and researchers should also consider the kinematic and kinetic differences between tasks, which cannot necessarily be inferred from muscle activation patterns.

  3. Chromosome segregation in Vibrio cholerae.

    Science.gov (United States)

    Ramachandran, Revathy; Jha, Jyoti; Chattoraj, Dhruba K

    2014-01-01

    The study of chromosome segregation is currently one of the most exciting research frontiers in cell biology. In this review, we discuss our current knowledge of the chromosome segregation process in Vibrio cholerae, based primarily on findings from fluorescence microscopy experiments. This bacterium is of special interest because of its eukaryotic feature of having a divided genome, a feature shared with 10% of known bacteria. We also discuss how the segregation mechanisms of V. cholerae compare with those in other bacteria, and highlight some of the remaining questions regarding the process of bacterial chromosome segregation.

  4. Numerous transitions of sex chromosomes in Diptera.

    Science.gov (United States)

    Vicoso, Beatriz; Bachtrog, Doris

    2015-04-01

    Many species groups, including mammals and many insects, determine sex using heteromorphic sex chromosomes. Diptera flies, which include the model Drosophila melanogaster, generally have XY sex chromosomes and a conserved karyotype consisting of six chromosomal arms (five large rods and a small dot), but superficially similar karyotypes may conceal the true extent of sex chromosome variation. Here, we use whole-genome analysis in 37 fly species belonging to 22 different families of Diptera and uncover tremendous hidden diversity in sex chromosome karyotypes among flies. We identify over a dozen different sex chromosome configurations, and the small dot chromosome is repeatedly used as the sex chromosome, which presumably reflects the ancestral karyotype of higher Diptera. However, we identify species with undifferentiated sex chromosomes, others in which a different chromosome replaced the dot as a sex chromosome or in which up to three chromosomal elements became incorporated into the sex chromosomes, and others yet with female heterogamety (ZW sex chromosomes). Transcriptome analysis shows that dosage compensation has evolved multiple times in flies, consistently through up-regulation of the single X in males. However, X chromosomes generally show a deficiency of genes with male-biased expression, possibly reflecting sex-specific selective pressures. These species thus provide a rich resource to study sex chromosome biology in a comparative manner and show that similar selective forces have shaped the unique evolution of sex chromosomes in diverse fly taxa.

  5. A comparison of at-home walking and 10-meter walking test parameters of individuals with post-stroke hemiparesis.

    Science.gov (United States)

    Nagano, Katsuhito; Hori, Hideaki; Muramatsu, Ken

    2015-02-01

    [Purpose] The purpose of this study was to clarify the difference in gait parameters of at-home walking and the 10-meter walking test results of individuals with hemiparesis. [Subjects] A total of 14 hemiparetic stroke recovery patients participated in this study. Inclusion criteria were: living at home, the ability to walk independently, and demonstrated low extremity on recovery stages III-V on the Brunnstrom Approach. The average age of the subjects was 66 years. [Methods] We used video surveillance and the inked footprint technique to record usual walking speed and maximum speed patterns both in subjects' homes and during the 10-meter walking test. From these methods, walking speed, stride length, and step rate were calculated. [Results] While both usual and maximum walking speeds of the 10-meter walking test correlated with stride length and step rate, at-home walking speeds only significantly correlated with stride length. [Conclusion] Walking patterns of the 10-meter walking test are quantifiably distinct from those demonstrated in patients' homes, and this difference is mainly characterized by stride length. In order to enhance in-home walking ability, exercises that improve length of stride rather than step rate should be recommended.

  6. Random walk search in unstructured P2P

    Institute of Scientific and Technical Information of China (English)

    Jia Zhaoqing; You Jinyuan; Rao Ruonan; Li Minglu

    2006-01-01

    Unstructured P2P has power-law link distribution, and the random walk in power-law networks is analyzed. The analysis results show that the probability that a random walker walks through the high degree nodes is high in the power-law network, and the information on the high degree nodes can be easily found through random walk. Random walk spread and random walk search method (RWSS) is proposed based on the analysis result. Simulation results show that RWSS achieves high success rates at low cost and is robust to high degree node failure.

  7. Concave Majorants of Random Walks and Related Poisson Processes

    CERN Document Server

    Abramson, Josh

    2010-01-01

    We offer a unified approach to the theory of concave majorants of random walks by providing a path transformation for a walk of finite length that leaves the law of the walk unchanged whilst providing complete information about the concave majorant. This leads to a description of a walk of random geometric length as a Poisson point process of excursions away from its concave majorant, which is then used to find a complete description of the concave majorant for a walk of infinite length. In the case where subsets of increments may have the same arithmetic mean, we investigate three nested compositions that naturally arise from our construction of the concave majorant.

  8. Chromosome fragility in Freemartin cattle

    Directory of Open Access Journals (Sweden)

    V. Barbieri

    2010-04-01

    Full Text Available The aim of the present study was to verify chromosome fragility in freemartin cattle using chromosome aberration (CA and sister chromatid exchange (SCE tests. A total of eighteen co-twins were investigated. Fourteen animals were identified as cytogenetically chimeric (2n=60, XX/XY while 4 were classified as normal. Freemartin cattle showed a higher percentage of aneuploid cells (18.64% and highly significant statistical differences (P < 0.001 in mean values of gaps (4.53 ± 2.05, chromatid breaks (0.26 ± 0.51, and significant statistical differences (P < 0.005 in mean values of chromosome breaks (0.12 ± 0.43 when compared to 10 control animals from single births (aneuploid cells, 11.20%; gaps, 2.01 ± 1.42; chromatid breaks, 0.05 ± 0.22; chromosome breaks, 0.02 ± 0.14.

  9. Chromosome Segregation in Vibrio cholerae

    OpenAIRE

    Ramachandran, R.; Jha, J.; Chattoraj, DK

    2014-01-01

    The study of chromosome segregation is currently one of the most exciting research frontiers in cell biology. In this review, we discuss our current knowledge of the chromosome segregation process in Vibrio cholerae, based primarily on findings from fluorescence microscopy experiments. This bacterium is of special interest because of its eukaryotic feature of having a divided genome, a feature shared with 10% of known bacteria. We also discuss how the segregation mechanisms of V. cholerae com...

  10. B chromosomes and sex in animals.

    Science.gov (United States)

    Camacho, J P M; Schmid, M; Cabrero, J

    2011-01-01

    Supernumerary (B) chromosomes are dispensable elements found in many eukaryote genomes in addition to standard (A) chromosomes. In many respects, B chromosomes resemble sex chromosomes, so that a common ancestry for them has frequently been suggested. For instance, B chromosomes in grasshoppers, and other insects, show a pycnotic cycle of condensation-decondensation during meiosis remarkably similar to that of the X chromosome. In some cases, B chromosome size is even very similar to that of the X chromosome. These resemblances have led to suggest the X as the B ancestor in many cases. In addition, sex chromosome origin from B chromosomes has also been suggested. In this article, we review the existing evidence for both evolutionary pathways, as well as sex differences for B frequency at adult and embryo progeny levels, B chromosome effects or B chromosome transmission. In addition, we review cases found in the literature showing sex-ratio distortion associated with B chromosome presence, the most extreme case being the paternal sex ratio (PSR) chromosomes in some Hymenoptera. We finally analyse the possibility of B chromosome regularisation within the host genome and, as a consequence of it, whether B chromosomes can become regular members of the host genome.

  11. Origin and domestication of papaya Yh chromosome

    Science.gov (United States)

    Sex in papaya is controlled by a pair of nascent sex chromosomes. Females are XX, and two slightly different Y chromosomes distinguish males (XY) and hermaphrodites (XYh). The hermaphrodite-specific region of the Yh chromosome (HSY) and its X chromosome counterpart were sequenced and analyzed previo...

  12. Cardiovascular Responses Associated with Daily Walking in Subacute Stroke

    Directory of Open Access Journals (Sweden)

    Sanjay K. Prajapati

    2013-01-01

    Full Text Available Despite the importance of regaining independent ambulation after stroke, the amount of daily walking completed during in-patient rehabilitation is low. The purpose of this study is to determine if (1 walking-related heart rate responses reached the minimum intensity necessary for therapeutic aerobic exercise (40%–60% heart rate reserve or (2 heart rate responses during bouts of walking revealed excessive workload that may limit walking (>80% heart rate reserve. Eight individuals with subacute stroke attending in-patient rehabilitation were recruited. Participants wore heart rate monitors and accelerometers during a typical rehabilitation day. Walking-related changes in heart rate and walking bout duration were determined. Patients did not meet the minimum cumulative requirements of walking intensity (>40% heart rate reserve and duration (>10 minutes continuously necessary for cardiorespiratory benefit. Only one patient exceeded 80% heart rate reserve. The absence of significant increases in heart rate associated with walking reveals that patients chose to walk at speeds well below a level that has meaningful cardiorespiratory health benefits. Additionally, cardiorespiratory workload is unlikely to limit participation in walking. Measurement of heart rate and walking during in-patient rehabilitation may be a useful approach to encourage patients to increase the overall physical activity and to help facilitate recovery.

  13. Distracted walking: Examining the extent to pedestrian safety problems

    Directory of Open Access Journals (Sweden)

    Judith Mwakalonge

    2015-10-01

    Full Text Available Pedestrians, much like drivers, have always been engaged in multi-tasking like using hand-held devices, listening to music, snacking, or reading while walking. The effects are similar to those experienced by distracted drivers. However, distracted walking has not received similar policies and effective interventions as distracted driving to improve pedestrian safety. This study reviewed the state-of-practice on policies, campaigns, available data, identified research needs, and opportunities pertaining to distracted walking. A comprehensive review of literature revealed that some of the agencies/organizations disseminate useful information about certain distracting activities that pedestrians should avoid while walking to improve their safety. Various walking safety rules/tips have been given, such as not wearing headphones or talking on a cell phone while crossing a street, keeping the volume down, hanging up the phone while walking, being aware of traffic, and avoiding distractions like walking with texting. The majority of the past observational-based and experimental-based studies reviewed in this study on distracted walking is in agreement that there is a positive correlation between distraction and unsafe walking behavior. However, limitations of the existing crash data suggest that distracted walking may not be a severe threat to the public health. Current pedestrian crash data provide insufficient information for researchers to examine the extent to which distracted walking causes and/or contributes to actual pedestrian safety problems.

  14. Pseudo Memory Effects, Majorization and Entropy in Quantum Random Walks

    CERN Document Server

    Bracken, A J; Tsohantjis, I; Bracken, Anthony J.; Ellinas, Demosthenes; Tsohantjis, Ioannis

    2004-01-01

    A quantum random walk on the integers exhibits pseudo memory effects, in that its probability distribution after N steps is determined by reshuffling the first N distributions that arise in a classical random walk with the same initial distribution. In a classical walk, entropy increase can be regarded as a consequence of the majorization ordering of successive distributions. The Lorenz curves of successive distributions for a symmetric quantum walk reveal no majorization ordering in general. Nevertheless, entropy can increase, and computer experiments show that it does so on average. Varying the stages at which the quantum coin system is traced out leads to new quantum walks, including a symmetric walk for which majorization ordering is valid but the spreading rate exceeds that of the usual symmetric quantum walk.

  15. A formative evaluation of a family-based walking intervention-Furness Families Walk4Life

    Directory of Open Access Journals (Sweden)

    Bull Fiona

    2011-08-01

    Full Text Available Abstract Background The family unit may be an important mechanism for increasing physical activity levels, yet little is known about what types of family-based interventions are effective. This study involved a formative evaluation of a 12 week intervention to encourage walking as a family based activity. The intervention consisted of several key elements including led walks and tailored resources, as well as remote support provided via the telephone. The project aimed to explore factors associated with successful delivery of the programme and to identify areas of improvement for future implementation. Methods A total of nine interviews were undertaken with programme staff who were involved in either the set up or delivery of the intervention. In addition, four interviews and two focus groups were undertaken with participants to explore their experiences of the programme. The analysis involved both deductive and inductive reasoning. Results In total, 114 people participated in the programme, which included 36 adults, 10 adolescents and 68 children (≤ 10 years of age. Adult participants reported several barriers to walking including concerns over their children's behaviour and their ability to maintain 'control' of their children. Walking in a group with other families gave parents confidence to go out walking with their children and provided a valuable opportunity for social interaction for parents and children alike. The most successful walks incorporated specific destinations and an activity to undertake upon reaching the destination. Incorporating other activities along the way also helped to keep the children engaged. Conclusions The results of this study have highlighted the important contribution that formative research can make in informing and refining a programme to increase appropriateness and effectiveness. The study has helped to highlight the key characteristics associated with delivering a successful walking intervention to young

  16. Comparison of elliptical training, stationary cycling, treadmill walking and overground walking.

    Science.gov (United States)

    Damiano, Diane L; Norman, Tracy; Stanley, Christopher J; Park, Hyung-Soon

    2011-06-01

    The extent to which therapeutic, exercise or robotic devices can maximize gait function is a major unresolved issue in neurorehabilitation. Several factors may influence gait outcomes such as similarity of the task to overground walking, degree of coordination within and across limbs, and cycle-to-cycle variability in each device. Our objective was to compare lower extremity kinematics, coordination and variability during four locomotor tasks: overground walking, treadmill walking, elliptical training and stationary cycling in 10 non-disabled adults (6 male; mean age 22.7±2.9 yrs, range 20-29). All first performed four overground walking trials at self-selected speed with mean temporal-spatial data used to pace the other conditions. Joint positions, excursions, and the Gait Deviation Index (GDI) were compared across conditions to evaluate kinematic similarity. Time-series data were correlated within and across limbs to evaluate intralimb and interlimb coordination, respectively. Variability in cadence was quantified to assess how constrained the locomotor rhythm was compared to overground walking. Treadmill walking most closely resembled overground with GDI values nearly overlapping, reinforcing its appropriateness for gait training. Cycling showed the largest GDI difference from overground, with elliptical closer but still a significant distance from all three. Cycling showed greater hip reciprocation Cycling and elliptical showed stronger intralimb synergism at the hip and knee than the other two. Based on kinematics, results suggest that elliptical training may have greater transfer to overground walking than cycling and cycling may be more useful for enhancing reciprocal coordination. Further evaluation of these devices in neurological gait disorders is needed.

  17. Numerically abnormal chromosome constitutions in humans

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-12-31

    Chapter 24, discusses numerically abnormal chromosome constitutions in humans. This involves abnormalities of human chromosome number, including polyploidy (when the number of sets of chromosomes increases) and aneuploidy (when the number of individual normal chromosomes changes). Chapter sections discuss the following chromosomal abnormalities: human triploids, imprinting and uniparental disomy, human tetraploids, hydatidiform moles, anomalies caused by chromosomal imbalance, 13 trisomy (D{sub 1} trisomy, Patau syndrome), 21 trisomy (Down syndrome), 18 trisomy syndrome (Edwards syndrome), other autosomal aneuploidy syndromes, and spontaneous abortions. The chapter concludes with remarks on the nonrandom participation of chromosomes in trisomy. 69 refs., 3 figs., 4 tabs.

  18. Flow karyotyping and sorting of human chromosomes

    Energy Technology Data Exchange (ETDEWEB)

    Gray, J.W.; Lucas, J.; Peters, D.; Pinkel, D.; Trask, B.; van den Engh, G.; Van Dilla, M.A.

    1986-07-16

    Flow cytometry and sorting are becoming increasingly useful as tools for chromosome classfication and for the detection of numerical and structural chromosome aberrations. Chromosomes of a single type can be purified with these tools to facilitate gene mapping or production of chromosome specific recombinant DNA libraries. For analysis of chromosomes with flow cytometry, the chromosomes are extracted from mitotic cells, stained with one or more fluorescent dyes and classified one-by-one according to their dye content(s). Thus, the flow approach is fundamentally different than conventional karyotyping where chromosomes are classified within the context of a metaphase spread. Flow sorting allows purification of chromosomes that can be distinguished flow cytometrically. The authors describe the basic principles of flow cytometric chromosome classification i.e. flow karyotyping, and chromosome sorting and describe several applications. 30 refs., 8 figs.

  19. Random Walk Picture of Basketball Scoring

    CERN Document Server

    Gabel, Alan

    2011-01-01

    We present evidence, based on play-by-play data from all 6087 games from the 2006/07--2009/10 seasons of the National Basketball Association (NBA), that basketball scoring is well described by a weakly-biased continuous-time random walk. The time between successive scoring events follows an exponential distribution, with little memory between different scoring intervals. Using this random-walk picture that is augmented by features idiosyncratic to basketball, we account for a wide variety of statistical properties of scoring, such as the distribution of the score difference between opponents and the fraction of game time that one team is in the lead. By further including the heterogeneity of team strengths, we build a computational model that accounts for essentially all statistical features of game scoring data and season win/loss records of each team.

  20. Random walk centrality in interconnected multilayer networks

    CERN Document Server

    Solé-Ribalta, Albert; Gómez, Sergio; Arenas, Alex

    2015-01-01

    Real-world complex systems exhibit multiple levels of relationships. In many cases they require to be modeled as interconnected multilayer networks, characterizing interactions of several types simultaneously. It is of crucial importance in many fields, from economics to biology and from urban planning to social sciences, to identify the most (or the less) influential nodes in a network using centrality measures. However, defining the centrality of actors in interconnected complex networks is not trivial. In this paper, we rely on the tensorial formalism recently proposed to characterize and investigate this kind of complex topologies, and extend two well known random walk centrality measures, the random walk betweenness and closeness centrality, to interconnected multilayer networks. For each of the measures we provide analytical expressions that completely agree with numerically results.

  1. Exploring Space and Place With Walking Interviews

    Directory of Open Access Journals (Sweden)

    Phil Jones

    2008-01-01

    Full Text Available This article explores the use of walking interviews as a research method. In spite of a wave of interest in methods which take interviewing out of the “safe,” stationary environment, there has been limited work critically examining the techniques for undertaking such work. Curiously for a method which takes an explicitly spatial approach, few projects have attempted to rigorously connect what participants say with where they say it. The article reviews three case studies where the authors have used different techniques, including GPS, for locating the interview in space. The article concludes by arguing that researchers considering using walking interviews need to think carefully about what kinds of data they wish to generate when deciding which approach to adopt.

  2. The Walking Egg non-profit organisation.

    Science.gov (United States)

    Dhont, N

    2011-01-01

    The Walking Egg non-profit organisation (npo) was founded in 2010 by scientists and an artist to realise the Arusha Project which strives to implement accessible infertility programmes in resource-poor countries. Right from the start The Walking Egg has opted for a multidisciplinary and global approach towards the problem of infertility and in cooperation with the Special Task Force (STF) on "Developing countries and infertility" of the European Society of Human reproduction and Embryology (ESHRE) and the WHO, it gathers medical, social and economical scientists and experts along with artists to discuss and work together towards its goal. The project aims to raise awareness -surrounding childlessness in resource-poor countries and to make infertility care in all its aspects, including assisted reproductive technologies, available and accessible for a much larger part of the population.

  3. Random walks, random fields, and disordered systems

    CERN Document Server

    Černý, Jiří; Kotecký, Roman

    2015-01-01

    Focusing on the mathematics that lies at the intersection of probability theory, statistical physics, combinatorics and computer science, this volume collects together lecture notes on recent developments in the area. The common ground of these subjects is perhaps best described by the three terms in the title: Random Walks, Random Fields and Disordered Systems. The specific topics covered include a study of Branching Brownian Motion from the perspective of disordered (spin-glass) systems, a detailed analysis of weakly self-avoiding random walks in four spatial dimensions via methods of field theory and the renormalization group, a study of phase transitions in disordered discrete structures using a rigorous version of the cavity method, a survey of recent work on interacting polymers in the ballisticity regime and, finally, a treatise on two-dimensional loop-soup models and their connection to conformally invariant systems and the Gaussian Free Field. The notes are aimed at early graduate students with a mod...

  4. Influences on Neighborhood Walking in Older Adults

    OpenAIRE

    Gallagher, Nancy Ambrose; Clarke, Philippa J.; Ronis, David L.; Cherry, Carol Loveland; Nyquist, Linda; Gretebeck, Kimberlee A.

    2012-01-01

    The purpose of this cross-sectional survey study was to examine the influence of self-efficacy, outcome expectations and environment on neighborhood walking in older adults with (n=163, mean age=78.7, SD=7.96 years) and without (n=163, mean age=73.6, SD=7.93 years) mobility limitations (controlling for demographic characteristics). Measures included: Neighborhood Physical Activity Questionnaire, Multidimensional Outcome Expectations for Exercise Scale, Neighborhood Environment Walkability Sca...

  5. Discriminative Parameter Estimation for Random Walks Segmentation

    OpenAIRE

    Baudin, Pierre-Yves; Goodman, Danny; Kumar, Puneet; Azzabou, Noura; Carlier, Pierre G.; Paragios, Nikos; Pawan Kumar, M.

    2013-01-01

    International audience; The Random Walks (RW) algorithm is one of the most e - cient and easy-to-use probabilistic segmentation methods. By combining contrast terms with prior terms, it provides accurate segmentations of medical images in a fully automated manner. However, one of the main drawbacks of using the RW algorithm is that its parameters have to be hand-tuned. we propose a novel discriminative learning framework that estimates the parameters using a training dataset. The main challen...

  6. A Short Walk along the Gravimeters Path

    Directory of Open Access Journals (Sweden)

    Iginio Marson

    2012-01-01

    Full Text Available The history of gravity measurements begun in 1604 with Galileo Galilei experiments on the acceleration due to the gravity force of the earth, g, along inclined planes. In his memory, the most used unit to measure g is the gal (10−2 m/s2. The paper takes the interested reader through a walk along some of the most important achievements in gravity measurements and gives some perspectives for future developments in terrestrial gravity.

  7. Cavity QED-based quantum walk

    Science.gov (United States)

    di, Tiegang; Hillery, Mark; Zubairy, M. Suhail

    2004-09-01

    We discuss a possible experimental scheme for the implementation of a quantum walk. The scheme is based on the passage of an atom inside a high- Q cavity. The chirality is characterized by the atomic states and the displacement is characterized by the photon number inside the cavity. The quantum steps are described by appropriate interactions with a sequence of classical and quantized cavity fields.

  8. Piano crossing - walking on a keyboard

    OpenAIRE

    Bojan Kverh; Matevz Lipanje; Borut Batagelj; Franc Solina

    2015-01-01

    Piano Crossing is an interactive art installation which turns a pedestrian crossing marked with white stripes into a piano keyboard so that pedestrians can generate music by walking over it. Matching tones are generated when a pedestrian is over a particular stripe or key. A digital camera is directed at the crossing from above. A special computer vision application was developed that maps the stripes of the pedestrian crossing to piano keys and which detects over which key is the center of g...

  9. Mesonic spectroscopy of Minimal Walking Technicolor

    CERN Document Server

    Del Debbio, Luigi; Patella, Agostino; Pica, Claudio; Rago, Antonio

    2010-01-01

    We investigate the structure and the novel emerging features of the mesonic non-singlet spectrum of the Minimal Walking Technicolor (MWT) theory. Precision measurements in the nonsinglet pseudoscalar and vector channels are compared to the expectations for an IR-conformal field theory and a QCD-like theory. Our results favor a scenario in which MWT is (almost) conformal in the infrared, while spontaneous chiral symmetry breaking seems less plausible.

  10. Dynamic random walks theory and applications

    CERN Document Server

    Guillotin-Plantard, Nadine

    2006-01-01

    The aim of this book is to report on the progress realized in probability theory in the field of dynamic random walks and to present applications in computer science, mathematical physics and finance. Each chapter contains didactical material as well as more advanced technical sections. Few appendices will help refreshing memories (if necessary!).· New probabilistic model, new results in probability theory· Original applications in computer science· Applications in mathematical physics· Applications in finance

  11. WalkThrough Example Procedures for MAMA

    Energy Technology Data Exchange (ETDEWEB)

    Ruggiero, Christy E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Gaschen, Brian Keith [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bloch, Jeffrey Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-07-15

    This documentation is a growing set of walk through examples of analyses using the MAMA V2.0 software. It does not cover all the features or possibilities with the MAMA software, but will address using many of the basic analysis tools to quantify particle size and shape in an image. This document will continue to evolve as additional procedures and examples are added. The starting assumption is that the MAMA software has been successfully installed.

  12. Submaximal Exercise Testing Treadmill and Floor Walking.

    Science.gov (United States)

    1978-05-01

    Association, 65(Suppl 1): 18-25, 1969. 35. Traugh, G. H., Corcoran, P. J., and Reyes , R. L., "Energy Expenditure of Ambulation in Patients with Above Knee...subjects were measured over three walking velocities. 1 No comments were offered on the subjects attire during the testa or the experimental conditions...Testing," Journal of the South Carolina Medical Association, 65(Suppl 1): 18- ,- _19-69.7 .. i 35. Traugh, G. H., Corcoran, P. J., and Reyes , R. L

  13. A Random Walk Picture of Basketball

    Science.gov (United States)

    Gabel, Alan; Redner, Sidney

    2012-02-01

    We analyze NBA basketball play-by-play data and found that scoring is well described by a weakly-biased, anti-persistent, continuous-time random walk. The time between successive scoring events follows an exponential distribution, with little memory between events. We account for a wide variety of statistical properties of scoring, such as the distribution of the score difference between opponents and the fraction of game time that one team is in the lead.

  14. 'It was not just a walking experience': reflections on the role of care in dog-walking.

    Science.gov (United States)

    Degeling, Chris; Rock, Melanie

    2013-09-01

    Research into physical activity and human health has recently begun to attend to dog-walking. This study extends the literature on dog-walking as a health behaviour by conceptualizing dog-walking as a caring practice. It centres on qualitative interviews with 11 Canadian dog-owners. All participants resided in urban neighbourhoods identified through previous quantitative research as conducive to dog-walking. Canine characteristics, including breed and age, were found to influence people's physical activity. The health of the dog and its position in the life-course influenced patterns of dog-walking. Frequency, duration and spatial patterns of dog-walking all depended on relationships and people's capacity to tap into resources. In foregrounding networks of care, inclusive of pets and public spaces, a relational conceptualization of dog-walking as a practice of caring helps to make sense of heterogeneity in patterns of physical activity among dog-owners.

  15. Quantum simulation of a quantum stochastic walk

    Science.gov (United States)

    Govia, Luke C. G.; Taketani, Bruno G.; Schuhmacher, Peter K.; Wilhelm, Frank K.

    2017-03-01

    The study of quantum walks has been shown to have a wide range of applications in areas such as artificial intelligence, the study of biological processes, and quantum transport. The quantum stochastic walk (QSW), which allows for incoherent movement of the walker, and therefore, directionality, is a generalization on the fully coherent quantum walk. While a QSW can always be described in Lindblad formalism, this does not mean that it can be microscopically derived in the standard weak-coupling limit under the Born–Markov approximation. This restricts the class of QSWs that can be experimentally realized in a simple manner. To circumvent this restriction, we introduce a technique to simulate open system evolution on a fully coherent quantum computer, using a quantum trajectories style approach. We apply this technique to a broad class of QSWs, and show that they can be simulated with minimal experimental resources. Our work opens the path towards the experimental realization of QSWs on large graphs with existing quantum technologies.

  16. Deterministic Random Walks on Regular Trees

    CERN Document Server

    Cooper, Joshua; Friedrich, Tobias; Spencer, Joel; 10.1002/rsa.20314

    2010-01-01

    Jim Propp's rotor router model is a deterministic analogue of a random walk on a graph. Instead of distributing chips randomly, each vertex serves its neighbors in a fixed order. Cooper and Spencer (Comb. Probab. Comput. (2006)) show a remarkable similarity of both models. If an (almost) arbitrary population of chips is placed on the vertices of a grid $\\Z^d$ and does a simultaneous walk in the Propp model, then at all times and on each vertex, the number of chips on this vertex deviates from the expected number the random walk would have gotten there by at most a constant. This constant is independent of the starting configuration and the order in which each vertex serves its neighbors. This result raises the question if all graphs do have this property. With quite some effort, we are now able to answer this question negatively. For the graph being an infinite $k$-ary tree ($k \\ge 3$), we show that for any deviation $D$ there is an initial configuration of chips such that after running the Propp model for a ...

  17. Modulation of Head Movement Control During Walking

    Science.gov (United States)

    Mulavara, Ajitkumar P.; Verstraete, Mary C.; Bloomberg, Jacob J.; Paloski, William H. (Technical Monitor)

    1999-01-01

    The purpose of this study was to investigate the coordination of the head relative to the trunk within a gait cycle during gaze fixation. Nine normal subjects walked on a motorized treadmill driven at 1.79 m/sec (20 s trials) while fixing their gaze on a centrally located earth-fixed target positioned at a distance of 2m from their eyes. The relative motion of the head and the net torque acting on it relative to the trunk during the gait cycle were used as measures of coordination. It was found that the net torque applied to the head counteracts the destabilizing forces acting on the upper body during locomotion. The average net torque impulse was significantly different (p less than 0.05) between the heel strike and swing phases and were found to be symmetrical between the right and left leg events of the gait cycle. However, the average net displacement of the head relative to the trunk was maintained uniform (p greater than 0.05) throughout the gait cycle. Thus, the coordination of the motion of the head relative to the trunk during walking is dynamically modulated depending on the behavioral events occurring in the gait cycle. This modulation may serve to aid stabilization of the head by counteracting the force variations acting on the upper body that may aid in the visual fixing of targets during walking.

  18. Stationary states in quantum walk search

    Science.gov (United States)

    PrÅ«sis, Krišjānis; Vihrovs, Jevgěnijs; Wong, Thomas G.

    2016-09-01

    When classically searching a database, having additional correct answers makes the search easier. For a discrete-time quantum walk searching a graph for a marked vertex, however, additional marked vertices can make the search harder by causing the system to approximately begin in a stationary state, so the system fails to evolve. In this paper, we completely characterize the stationary states, or 1-eigenvectors, of the quantum walk search operator for general graphs and configurations of marked vertices by decomposing their amplitudes into uniform and flip states. This infinitely expands the number of known stationary states and gives an optimization procedure to find the stationary state closest to the initial uniform state of the walk. We further prove theorems on the existence of stationary states, with them conditionally existing if the marked vertices form a bipartite connected component and always existing if nonbipartite. These results utilize the standard oracle in Grover's algorithm, but we show that a different type of oracle prevents stationary states from interfering with the search algorithm.

  19. Computational Models to Synthesize Human Walking

    Institute of Scientific and Technical Information of China (English)

    Lei Ren; David Howard; Laurence Kenney

    2006-01-01

    The synthesis of human walking is of great interest in biomechanics and biomimetic engineering due to its predictive capabilities and potential applications in clinical biomechanics, rehabilitation engineering and biomimetic robotics. In this paper,the various methods that have been used to synthesize humanwalking are reviewed from an engineering viewpoint. This involves a wide spectrum of approaches, from simple passive walking theories to large-scale computational models integrating the nervous, muscular and skeletal systems. These methods are roughly categorized under four headings: models inspired by the concept of a CPG (Central Pattern Generator), methods based on the principles of control engineering, predictive gait simulation using optimisation, and models inspired by passive walking theory. The shortcomings and advantages of these methods are examined, and future directions are discussed in the context of providing insights into the neural control objectives driving gait and improving the stability of the predicted gaits. Future advancements are likely to be motivated by improved understanding of neural control strategies and the subtle complexities of the musculoskeletal system during human locomotion. It is only a matter of time before predictive gait models become a practical and valuable tool in clinical diagnosis, rehabilitation engineering and robotics.

  20. Visual evoked responses during standing and walking

    Directory of Open Access Journals (Sweden)

    Klaus Gramann

    2010-10-01

    Full Text Available Human cognition has been shaped both by our body structure and by its complex interactionswith its environment. Our cognition is thus inextricably linked to our own and others’ motorbehavior. To model brain activity associated with natural cognition, we propose recording theconcurrent brain dynamics and body movements of human subjects performing normal actions.Here we tested the feasibility of such a mobile brain/body (MoBI imaging approach byrecording high-density electroencephalographic (EEG activity and body movements of subjectsstanding or walking on a treadmill while performing a visual oddball response task. Independentcomponent analysis (ICA of the EEG data revealed visual event-related potentials (ERPs thatduring standing, slow walking, and fast walking did not differ across movement conditions,demonstrating the viability of recording brain activity accompanying cognitive processes duringwhole body movement. Non-invasive and relatively low-cost MoBI studies of normal, motivatedactions might improve understanding of interactions between brain and body dynamics leadingto more complete biological models of cognition.

  1. "Feeling younger, walking faster": subjective age and walking speed in older adults.

    Science.gov (United States)

    Stephan, Yannick; Sutin, Angelina R; Terracciano, Antonio

    2015-10-01

    Walking speed is a key vital sign in older people. Given the implications of slower gait speed, a large literature has identified health-related, behavioral, cognitive, and biological factors that moderate age-related decline in mobility. The present study aims to contribute to existing knowledge by examining whether subjective age, how old or young individuals experience themselves to be relative to their chronological age, contributes to walking speed. Participants were drawn from the 2008 and 2012 waves of the Health and Retirement Study (HRS, N = 2970) and the 2011 and 2013 waves of the National Health and Aging Trends Study (NHATS, N = 5423). In both the HRS and the NHATS, linear regression analysis revealed that a younger subjective age was associated with faster walking speed at baseline and with less decline over time, controlling for age, sex, education, and race. These associations were partly accounted for by depressive symptoms, disease burden, physical activity, cognition, body mass index, and smoking. Additional analysis revealed that feeling younger than one's age was associated with a reduced risk of walking slower than the frailty-related threshold of 0.6 m/s at follow-up in the HRS. The present study provides novel and consistent evidence across two large prospective studies for an association between the subjective experience of age and walking speed of older adults. Subjective age may help identify individuals at risk for mobility limitations in old age and may be a target for interventions designed to mitigate functional decline.

  2. Chromosome therapy. Correction of large chromosomal aberrations by inducing ring chromosomes in induced pluripotent stem cells (iPSCs).

    Science.gov (United States)

    Kim, Taehyun; Bershteyn, Marina; Wynshaw-Boris, Anthony

    2014-01-01

    The fusion of the short (p) and long (q) arms of a chromosome is referred to as a "ring chromosome." Ring chromosome disorders occur in approximately 1 in 50,000-100,000 patients. Ring chromosomes can result in birth defects, mental disabilities, and growth retardation if additional genes are deleted during the formation of the ring. Due to the severity of these large-scale aberrations affecting multiple contiguous genes, no possible therapeutic strategies for ring chromosome disorders have so far been proposed. Our recent study (Bershteyn et al.) using patient-derived fibroblast lines containing ring chromosomes, found that cellular reprogramming of these fibroblasts into induced pluripotent stem cells (iPSCs) resulted in the cell-autonomous correction of the ring chromosomal aberration via compensatory uniparental disomy (UPD). These observations have important implications for studying the mechanism of chromosomal number control and may lead to the development of effective therapies for other, more common, chromosomal aberrations.

  3. Revised selection criteria for candidate restriction enzymes in genome walking.

    Science.gov (United States)

    Taheri, Ali; Robinson, Stephen J; Parkin, Isobel; Gruber, Margaret Y

    2012-01-01

    A new method to improve the efficiency of flanking sequence identification by genome walking was developed based on an expanded, sequential list of criteria for selecting candidate enzymes, plus several other optimization steps. These criteria include: step (1) initially choosing the most appropriate restriction enzyme according to the average fragment size produced by each enzyme determined using in silico digestion of genomic DNA, step (2) evaluating the in silico frequency of fragment size distribution between individual chromosomes, step (3) selecting those enzymes that generate fragments with the majority between 100 bp and 3,000 bp, step (4) weighing the advantages and disadvantages of blunt-end sites vs. cohesive-end sites, step (5) elimination of methylation sensitive enzymes with methylation-insensitive isoschizomers, and step (6) elimination of enzymes with recognition sites within the binary vector sequence (T-DNA and plasmid backbone). Step (7) includes the selection of a second restriction enzyme with highest number of recognition sites within regions not covered by the first restriction enzyme. Step (8) considers primer and adapter sequence optimization, selecting the best adapter-primer pairs according to their hairpin/dimers and secondary structure. In step (9), the efficiency of genomic library development was improved by column-filtration of digested DNA to remove restriction enzyme and phosphatase enzyme, and most important, to remove small genomic fragments (enzymes, NsiI and NdeI, fit these criteria for the Arabidopsis thaliana genome. Their efficiency was assessed using 54 T(3) lines from an Arabidopsis SK enhancer population. Over 70% success rate was achieved in amplifying the flanking sequences of these lines. This strategy was also tested with Brachypodium distachyon to demonstrate its applicability to other larger genomes.

  4. Inherited unbalanced structural chromosome abnormalities at prenatal chromosome analysis are rarely ascertained through recurrent miscarriage

    NARCIS (Netherlands)

    Franssen, M. T. M.; Korevaar, J. C.; Tjoa, W. M.; Leschot, N. J.; Bossuyt, P. M. M.; Knegt, A. C.; Suykerbuyk, R. F.; Hochstenbach, R.; van der Veen, F.; Goddijn, M.

    2008-01-01

    Objective To determine the mode of ascertainment of inherited unbalanced structural chromosome abnormalities detected at prenatal chromosome analysis. Methods From the databases of three centres for clinical genetics in the Netherlands, all cases of inherited unbalanced structural chromosome abnorma

  5. Using intelligent controller to enhance the walking stability of bipedal walking robot

    Science.gov (United States)

    Hsieh, Tsung-Che; Chang, Chia-Der

    2016-07-01

    This paper is to improve the stability issue of the bipedal walking robot. The study of robot's pivot joint constructs the driver system to control the implementation. First, a Proportion-Integral-Derivative (PID) controller is designed by which is used the concept of tuning parameter to achieve the stability of the system. Second, Fuzzy controller and tradition PID controller is used to maintain output. It improved original PID controller efficacy. Finally, Artificial Neuro-Fuzzy Inference System (ANFIS) is utilized which is made the controller to achieve self-studying and modify the effect which is completed by the intelligent controller. It improved bipedal robot's stability control of realization. The result is verified that the walking stability of the bipedal walking robot in Matlab/Simulink. The intelligent controller has achieved the desired position of motor joint and the target stability performance.

  6. Dean flow fractionation of chromosomes

    Science.gov (United States)

    Hockin, Matt; Sant, Himanshu J.; Capecchi, Mario; Gale, Bruce K.

    2016-03-01

    Efforts to transfer intact mammalian chromosomes between cells have been attempted for more than 50 years with the consistent result being transfer of sub unit length pieces regardless of method. Inertial microfluidics is a new field that has shown much promise in addressing the fractionation of particles in the 2-20 μm size range (with unknown limits) and separations are based upon particles being carried by curving confined flows (within a spiral shaped, often rectangular flow chamber) and migrating to stable "equilibrium" positions of varying distance from a chamber wall depending on the balance of dean and lift forces. We fabricated spiral channels for inertial microfluidic separations using a standard soft lithography process. The concentration of chromosomes, small contaminant DNA and large cell debris in each outlets were evaluated using microscope (60X) and a flow cytometer. Using Dean Flow Fractionation, we were able to focus 4.5 times more chromosomes in outlet 2 compared to outlet 4 where most of the large debris is found. We recover 16% of the chromosomes in outlet #1- 50% in 2, 23% in 3 and 11% in 4. It should be noted that these estimates of recovery do not capture one piece of information- it actually may be that the chromosomes at each outlet are physically different and work needs to be done to verify this potential.

  7. Chromosome segregation in plant meiosis

    Directory of Open Access Journals (Sweden)

    Linda eZamariola

    2014-06-01

    Full Text Available Faithful chromosome segregation in meiosis is essential for ploidy stability over sexual life cycles. In plants, defective chromosome segregation caused by gene mutations or other factors leads to the formation of unbalanced or unreduced gametes creating aneuploid or polyploid progeny, respectively. Accurate segregation requires the coordinated execution of conserved processes occurring throughout the two meiotic cell divisions. Synapsis and recombination ensure the establishment of chiasmata that hold homologous chromosomes together allowing their correct segregation in the first meiotic division, which is also tightly regulated by cell-cycle dependent release of cohesin and monopolar attachment of sister kinetochores to microtubules. In meiosis II, bi-orientation of sister kinetochores and proper spindle orientation correctly segregate chromosomes in four haploid cells. Checkpoint mechanisms acting at kinetochores control the accuracy of kinetochore-microtubule attachment, thus ensuring the completion of segregation. Here we review the current knowledge on the processes taking place during chromosome segregation in plant meiosis, focusing on the characterization of the molecular factors involved.

  8. The Reduction of Chromosome Number in Meiosis Is Determined by Properties Built into the Chromosomes

    OpenAIRE

    Paliulis, Leocadia V.; Nicklas, R. Bruce

    2000-01-01

    In meiosis I, two chromatids move to each spindle pole. Then, in meiosis II, the two are distributed, one to each future gamete. This requires that meiosis I chromosomes attach to the spindle differently than meiosis II chromosomes and that they regulate chromosome cohesion differently. We investigated whether the information that dictates the division type of the chromosome comes from the whole cell, the spindle, or the chromosome itself. Also, we determined when chromosomes can switch from ...

  9. Walking for Well-Being: Are Group Walks in Certain Types of Natural Environments Better for Well-Being than Group Walks in Urban Environments?

    Directory of Open Access Journals (Sweden)

    Sara L. Warber

    2013-10-01

    Full Text Available The benefits of walking in natural environments for well-being are increasingly understood. However, less well known are the impacts different types of natural environments have on psychological and emotional well-being. This cross-sectional study investigated whether group walks in specific types of natural environments were associated with greater psychological and emotional well-being compared to group walks in urban environments. Individuals who frequently attended a walking group once a week or more (n = 708 were surveyed on mental well-being (Warwick Edinburgh Mental Well-being Scale, depression (Major Depressive Inventory, perceived stress (Perceived Stress Scale and emotional well-being (Positive and Negative Affect Schedule. Compared to group walks in urban environments, group walks in farmland were significantly associated with less perceived stress and negative affect, and greater mental well-being. Group walks in green corridors were significantly associated with less perceived stress and negative affect. There were no significant differences between the effect of any environment types on depression or positive affect. Outdoor walking group programs could be endorsed through “green prescriptions” to improve psychological and emotional well-being, as well as physical activity.

  10. Optimal speeds for walking and running, and walking on a moving walkway

    Science.gov (United States)

    Srinivasan, Manoj

    2009-06-01

    Many aspects of steady human locomotion are thought to be constrained by a tendency to minimize the expenditure of metabolic cost. This paper has three parts related to the theme of energetic optimality: (1) a brief review of energetic optimality in legged locomotion, (2) an examination of the notion of optimal locomotion speed, and (3) an analysis of walking on moving walkways, such as those found in some airports. First, I describe two possible connotations of the term "optimal locomotion speed:" that which minimizes the total metabolic cost per unit distance and that which minimizes the net cost per unit distance (total minus resting cost). Minimizing the total cost per distance gives the maximum range speed and is a much better predictor of the speeds at which people and horses prefer to walk naturally. Minimizing the net cost per distance is equivalent to minimizing the total daily energy intake given an idealized modern lifestyle that requires one to walk a given distance every day—but it is not a good predictor of animals' walking speeds. Next, I critique the notion that there is no energy-optimal speed for running, making use of some recent experiments and a review of past literature. Finally, I consider the problem of predicting the speeds at which people walk on moving walkways—such as those found in some airports. I present two substantially different theories to make predictions. The first theory, minimizing total energy per distance, predicts that for a range of low walkway speeds, the optimal absolute speed of travel will be greater—but the speed relative to the walkway smaller—than the optimal walking speed on stationary ground. At higher walkway speeds, this theory predicts that the person will stand still. The second theory is based on the assumption that the human optimally reconciles the sensory conflict between the forward speed that the eye sees and the walking speed that the legs feel and tries to equate the best estimate of the

  11. Quantum Walk on a Line with Two Entangled Particles

    CERN Document Server

    Omar, Y; Sheridan, L; Bose, S

    2004-01-01

    We introduce the concept of a quantum walk with two particles and study it for the case of a discrete time walk on a line. A quantum walk with more than one particle may contain entanglement, thus offering a resource unavailable in the classical scenario and which can present interesting advantages. In this work, we show how the entanglement and the relative phase between the states describing the coin degree of freedom of each particle will influence the evolution of the quantum walk. In particular, the probability to find at least one particle in a certain position after $N$ steps of the walk, as well as the average distance between the two particles, can be larger or smaller than the case of two unentangled particles, depending on the initial conditions we choose. This resource can then be tuned according to our needs, in particular to enhance a given application (algorithmic or other) based on a quantum walk. Experimental implementations are briefly discussed.

  12. Biomechanics of slow running and walking with a rocker shoe.

    Science.gov (United States)

    Sobhani, Sobhan; Hijmans, Juha; van den Heuvel, Edwin; Zwerver, Johannes; Dekker, Rienk; Postema, Klaas

    2013-09-01

    Evidence suggests a link between the loading of the Achilles tendon and the magnitude of the ankle internal plantar flexion moment during late stance of gait, which is clinically relevant in the management of Achilles tendinopathy. Some studies showed that rocker shoes can reduce the ankle internal plantar flexion moment. However, the existing evidence is not conclusive and focused on walking and scarce in running. Sixteen healthy runners participated in this study. Lower extremity kinetics, kinematics and electromyographic (EMG) signals of triceps surae and tibialis anterior were quantified for two types of shoes during running and walking. The peak ankle plantar flexion moment was reduced significantly in late stance of running (0.27 Nm/kg; prunning and walking with the rocker shoe (prunning and walking. A significant delay of the EMG peak, approximately 2% (prunning and walking. The peak amplitude of tibialis anterior was significantly increased (64.7 μV, prunning and walking in healthy people.

  13. Finding tree symmetries using continuous-time quantum walk

    Institute of Scientific and Technical Information of China (English)

    Wu Jun-Jie; Zhang Bai-Da; Tang Yu-Hua; Qiang Xiao-Gang; Wang Hui-Quan

    2013-01-01

    Quantum walk,the quantum counterpart of random walk,is an important model and widely studied to develop new quantum algorithms.This paper studies the relationship between the continuous-time quantum walk and the symmetry of a graph,especially that of a tree.Firstly,we prove in mathematics that the symmetry of a graph is highly related to quantum walk.Secondly,we propose an algorithm based on the continuous-time quantum walk to compute the symmetry of a tree.Our algorithm has better time complexity O(N3) than the current best algorithm.Finally,through testing three types of 10024 trees,we find that the symmetry of a tree can be found with an extremely high efficiency with the help of the continuous-time quantum walk.

  14. Laplacian versus adjacency matrix in quantum walk search

    Science.gov (United States)

    Wong, Thomas G.; Tarrataca, Luís; Nahimov, Nikolay

    2016-10-01

    A quantum particle evolving by Schrödinger's equation contains, from the kinetic energy of the particle, a term in its Hamiltonian proportional to Laplace's operator. In discrete space, this is replaced by the discrete or graph Laplacian, which gives rise to a continuous-time quantum walk. Besides this natural definition, some quantum walk algorithms instead use the adjacency matrix to effect the walk. While this is equivalent to the Laplacian for regular graphs, it is different for non-regular graphs and is thus an inequivalent quantum walk. We algorithmically explore this distinction by analyzing search on the complete bipartite graph with multiple marked vertices, using both the Laplacian and adjacency matrix. The two walks differ qualitatively and quantitatively in their required jumping rate, runtime, sampling of marked vertices, and in what constitutes a natural initial state. Thus the choice of the Laplacian or adjacency matrix to effect the walk has important algorithmic consequences.

  15. Bicycling and walking are associated with different cortical oscillatory dynamics

    Directory of Open Access Journals (Sweden)

    Lena eStorzer

    2016-02-01

    Full Text Available Although bicycling and walking involve similar complex coordinated movements, surprisingly Parkinson’s patients with freezing of gait typically remain able to bicycle despite severe difficulties walking. This observation suggests functional differences in the motor networks subserving bicycling and walking. However, a direct comparison of brain activity related to bicycling and walking has never been performed, neither in healthy participants nor in patients. Such a comparison could potentially help elucidating the cortical involvement in motor control and the mechanisms through which bicycling ability may be preserved in patients with freezing of gait. The aim of this study was to contrast the cortical oscillatory dynamics involved in bicycling and walking in healthy participants.To this end, EEG and EMG data of 14 healthy participants were analyzed, who cycled on a stationary bicycle at a slow cadence of 40 revolutions per minute (rpm and walked at 40 strides per minute (spm, respectively.Relative to walking, bicycling was associated with a stronger power decrease in the high beta band (23-35 Hz during movement initiation and execution, followed by a stronger beta power increase after movement termination. Walking, on the other hand, was characterized by a stronger and persisting alpha power (8-12 Hz decrease. Both bicycling and walking exhibited movement cycle-dependent power modulation in the 24-40 Hz range that was correlated with EMG activity. This modulation was significantly stronger in walking.The present findings reveal differential cortical oscillatory dynamics in motor control for two types of complex coordinated motor behavior, i.e., bicycling and walking. Bicycling was associated with a stronger sustained cortical activation as indicated by the stronger high beta power decrease during movement execution and less cortical motor control within the movement cycle. We speculate this to be due to the more continuous nature of

  16. Tempo and walking speed with music in the urban context

    Directory of Open Access Journals (Sweden)

    Marek eFranek

    2014-12-01

    Full Text Available The study explored the effect of music on the temporal aspects of walking behavior in a real outdoor urban setting. First, spontaneous synchronization between the beat of the music and step tempo was explored. The effect of motivational and non-motivational music (Karageorghis et al. 1999 on the walking speed was also studied. Finally, we investigated whether music can mask the effects of visual aspects of the walking route environment, which involve fluctuation of walking speed as a response to particular environmental settings. In two experiments, we asked participants to walk around an urban route through various environments in the downtown area of Hradec Králové. In Experiment 1, the participants listened to a musical track consisting of world pop music with a clear beat. In Experiment 2, participants were walking either with motivational music, which had a fast tempo and a strong rhythm, or with non-motivational music, which was slower, nice music, but with no strong implication to movement. Musical beat, as well as the sonic character of the music listened to while walking, influenced walking speed but did not lead to precise synchronization. It was found that many subjects did not spontaneously synchronize with the beat of the music at all, and some subjects synchronized only part of the time. The fast, energetic music increases the speed of the walking tempo, while slower, relaxing music makes the walking tempo slower. Further, it was found that listening to music with headphones while walking can mask the influence of the surrounding environment to some extent. Both motivational music and non-motivational music had a larger effect than the music from Experiment 1. Individual differences in responses to the music listened to while walking that were linked to extraversion and neuroticism were also observed. The findings described here could be useful in rhythmic stimulation for enhancing or recovering the features of movement

  17. Implement Quantum Random Walks with Linear Optics Elements

    CERN Document Server

    Zhao, Z; Li, H; Yang, T; Chen, Z B; Pan, J W; Zhao, Zhi; Du, Jiangfeng; Li, Hui; Yang, Tao; Chen, Zeng-Bing; Pan, Jian-Wei

    2002-01-01

    The quantum random walk has drawn special interests because its remarkable features to the classical counterpart could lead to new quantum algorithms. In this paper, we propose a feasible scheme to implement quantum random walks on a line using only linear optics elements. With current single-photon interference technology, the steps that could be experimentally implemented can be extended to very large numbers. We also show that, by decohering the quantum states, our scheme for quantum random walk tends to be classical.

  18. Explicit expression of the counting generating function for Gessel's walk

    CERN Document Server

    Kurkova, Irina

    2009-01-01

    We consider the so-called Gessel's walk, that is the planar random walk that is confined to the first quadrant and that can move in unit steps to the West, North-East, East and South-West. For this walk we make explicit the generating function of the number of paths starting at $(0,0)$ and ending at $(i,j)$ in time $k$.

  19. Head movement during walking in the cat.

    Science.gov (United States)

    Zubair, Humza N; Beloozerova, Irina N; Sun, Hai; Marlinski, Vladimir

    2016-09-22

    Knowledge of how the head moves during locomotion is essential for understanding how locomotion is controlled by sensory systems of the head. We have analyzed head movements of the cat walking along a straight flat pathway in the darkness and light. We found that cats' head left-right translations, and roll and yaw rotations oscillated once per stride, while fore-aft and vertical translations, and pitch rotations oscillated twice. The head reached its highest vertical positions during second half of each forelimb swing, following maxima of the shoulder/trunk by 20-90°. Nose-up rotation followed head upward translation by another 40-90° delay. The peak-to-peak amplitude of vertical translation was ∼1.5cm and amplitude of pitch rotation was ∼3°. Amplitudes of lateral translation and roll rotation were ∼1cm and 1.5-3°, respectively. Overall, cats' heads were neutral in roll and 10-30° nose-down, maintaining horizontal semicircular canals and utriculi within 10° of the earth horizontal. The head longitudinal velocity was 0.5-1m/s, maximal upward and downward linear velocities were ∼0.05 and ∼0.1m/s, respectively, and maximal lateral velocity was ∼0.05m/s. Maximal velocities of head pitch rotation were 20-50°/s. During walking in light, cats stood 0.3-0.5cm taller and held their head 0.5-2cm higher than in darkness. Forward acceleration was 25-100% higher and peak-to-peak amplitude of head pitch oscillations was ∼20°/s larger. We concluded that, during walking, the head of the cat is held actively. Reflexes appear to play only a partial role in determining head movement, and vision might further diminish their role.

  20. When to walk away from a deal.

    Science.gov (United States)

    Cullinan, Geoffrey; Le Roux, Jean-Marc; Weddigen, Rolf-Magnus

    2004-04-01

    Deal making is glamorous; due diligence is not. That simple statement goes a long way toward explaining why so many companies have made so many acquisitions that have produced so little value. The momentum of a transaction is hard to resist once senior management has the target in its sights. Companies contract "deal fever," and due diligence all too often becomes an exercise in verifying the target's financial statements rather than conducting a fair analysis of the deal's strategic logic and the acquirer's ability to realize value from it. Seldom does the process lead managers to kill potential acquisitions, even when the deals are deeply flawed. In a recent Bain & Company survey of 250 international executives with M&A responsibilities, only 30% of them were satisfied with the rigor of their due diligence. And fully a third admitted they hadn't walked away from deals they had nagging doubts about. In this article, the authors, all Bain consultants, emphasize the importance of comprehensive due diligence practices and suggest ways companies can improve their capabilities in this area. They provide rich real-world examples of companies that have had varying levels of success with their due diligence processes, including Safeway, Odeon, American Sea-foods, and Kellogg's. Effective due diligence requires answering four basic questions: What are we really buying? What is the target's stand-alone value? Where are the synergies--and the skeletons? And what's our walk-away price? Each of these questions will prompt an even deeper level of querying that puts the broader, strategic rationale for acquisitions under a microscope. Successful acquirers pay close heed to the results of such in-depth investigations and analyses--to the extent that they are prepared to walk away from a deal, even in the very late stages of negotiations.

  1. Walking through Apertures in Individuals with Stroke

    Science.gov (United States)

    Higuchi, Takahiro

    2017-01-01

    Objective Walking through a narrow aperture requires unique postural configurations, i.e., body rotation in the yaw dimension. Stroke individuals may have difficulty performing the body rotations due to motor paralysis on one side of their body. The present study was therefore designed to investigate how successfully such individuals walk through apertures and how they perform body rotation behavior. Method Stroke fallers (n = 10), stroke non-fallers (n = 13), and healthy controls (n = 23) participated. In the main task, participants walked for 4 m and passed through apertures of various widths (0.9–1.3 times the participant’s shoulder width). Accidental contact with the frame of an aperture and kinematic characteristics at the moment of aperture crossing were measured. Participants also performed a perceptual judgment task to measure the accuracy of their perceived aperture passability. Results and Discussion Stroke fallers made frequent contacts on their paretic side; however, the contacts were not frequent when they penetrated apertures from their paretic side. Stroke fallers and non-fallers rotated their body with multiple steps, rather than a single step, to deal with their motor paralysis. Although the minimum passable width was greater for stroke fallers, the body rotation angle was comparable among groups. This suggests that frequent contact in stroke fallers was due to insufficient body rotation. The fact that there was no significant group difference in the perceived aperture passability suggested that contact occurred mainly due to locomotor factors rather than perceptual factors. Two possible explanations (availability of vision and/or attention) were provided as to why accidental contact on the paretic side did not occur frequently when stroke fallers penetrated the apertures from their paretic side. PMID:28103299

  2. The effect of walking sticks on balance in geriatric subjects

    Science.gov (United States)

    Dogru, Esra; Kizilci, Harun; Balci, Nilay Comuk; Korkmaz, Nilufer Cetisli; Canbay, Ozden; Katayifci, Nihan

    2016-01-01

    [Purpose] Guidelines and clarity regarding the information for deciding the need for walking sticks and the suitability of these sticks is insufficient. This study aimed to evaluate the suitability of walking stick and its effects on the balance in the elderly. [Subjects and Methods] A total of 39 elderly subjects aged between 65–95 years (mean age, 76.15 ± 8.35 years) and living in the Residential Aged Care and Rehabilitation Center were included. Sociodemographic data of the individuals, the material of the walking stick, who made the decision of usage and length of walking sticks were questioned. The Berg Balance Scale (BBS) scores were used to evaluate balance. [Results] Subjects’ BBS scores while using the walking stick were higher than that without the walking stick. A significant difference was observed in BBS scores obtained with the stick and without the stick, according to body mass index parameters. Majority of the subjects also started to use walking sticks by themselves. No significant difference was observed between the ideal length and actual length of the walking stick was used. [Conclusion] Our study demonstrated that the elderly generally decide to use walking stick by themselves and chose the appropriate materials; which improves their balance. PMID:28174431

  3. Random recursive trees and the elephant random walk

    Science.gov (United States)

    Kürsten, Rüdiger

    2016-03-01

    One class of random walks with infinite memory, so-called elephant random walks, are simple models describing anomalous diffusion. We present a surprising connection between these models and bond percolation on random recursive trees. We use a coupling between the two models to translate results from elephant random walks to the percolation process. We calculate, besides other quantities, exact expressions for the first and the second moment of the root cluster size and of the number of nodes in child clusters of the first generation. We further introduce another model, the skew elephant random walk, and calculate the first and second moment of this process.

  4. Walking Robots Dynamic Control Systems on an Uneven Terrain

    Directory of Open Access Journals (Sweden)

    MUNTEANU, M. S.

    2010-05-01

    Full Text Available The paper presents ZPM dynamic control of walking robots, developing an open architecture real time control multiprocessor system, in view of obtaining new capabilities for walking robots. The complexity of the movement mechanism of a walking robot was taken into account, being a repetitive tilting process with numerous instable movements and which can lead to its turnover on an uneven terrain. The control system architecture for the dynamic robot walking is presented in correlation with the control strategy which contains three main real time control loops: balance robot control using sensorial feedback, walking diagram control with periodic changes depending on the sensorial information during each walk cycle, predictable movement control based on a quick decision from the previous experimental data. The results obtained through simulation and experiments show an increase in mobility, stability in real conditions and obtaining of high performances related to the possibility of moving walking robots on terrains with a configuration as close as possible to real situations, respectively developing new technological capabilities of the walking robot control systems for slope movement and walking by overtaking or going around obstacles.

  5. Fractional scaling of quantum walks on percolation lattices

    Energy Technology Data Exchange (ETDEWEB)

    Kendon, Viv; Knott, Paul; Leung, Godfrey; Bailey, Joe, E-mail: V.Kendon@leeds.ac.uk, E-mail: ppxgl@nottingham.ac.uk, E-mail: joe.bailey.09@ucl.ac.uk [School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT (United Kingdom)

    2011-03-01

    Quantum walks can be used to model processes such as transport in spin chains and bio-molecules. The enhanced spreading and mixing properties of quantum walks compared with their classical counterparts have been well-studied on regular structures and also shown to be sensitive to defects and imperfections. Using numerical simulation, we study the spreading properties of quantum walks on percolation lattices for both bond and site percolation. The randomly missing edges or sites provide a controlled amount of disorder in the regular Cartesian lattice. In one dimension (the line) we introduce a simple model of quantum tunneling to allow the walk to proceed past the missing edges or sites. This allows the quantum walk to spread faster than a classical random walk for short times, but at longer times the disorder localises the quantum walk. In two dimensions, we observe fractional scaling of the spreading with the number of steps of the walk. For percolation above the 85% level, we obtain faster spreading than classical random walks on the full lattice.

  6. Superdiffusive Dispersals Impart the Geometry of Underlying Random Walks

    Science.gov (United States)

    Zaburdaev, V.; Fouxon, I.; Denisov, S.; Barkai, E.

    2016-12-01

    It is recognized now that a variety of real-life phenomena ranging from diffusion of cold atoms to the motion of humans exhibit dispersal faster than normal diffusion. Lévy walks is a model that excelled in describing such superdiffusive behaviors albeit in one dimension. Here we show that, in contrast to standard random walks, the microscopic geometry of planar superdiffusive Lévy walks is imprinted in the asymptotic distribution of the walkers. The geometry of the underlying walk can be inferred from trajectories of the walkers by calculating the analogue of the Pearson coefficient.

  7. Dog Walking and Physical Activity in the United States

    Directory of Open Access Journals (Sweden)

    Sandra A. Ham, MS

    2006-03-01

    Full Text Available Introduction Dog walking is a purposeful physical activity that may have health benefits for humans and canines. A descriptive epidemiology of the contribution of dog walking to physically active lifestyles among dog walkers in the United States has not been previously reported. Methods Data on youth and adults who reported walking for pet care trips (N = 1282 on the National Household Travel Survey 2001 were analyzed for number of trips, proportion walking a dog for at least 10 minutes on one trip, and accumulation of 30 minutes or more in 1 day of walks lasting at least 10 minutes. Results In 1 day, 58.9% of dog walkers took two or more walks, 80.2% took at least one walk of 10 minutes or more, and 42.3% accumulated 30 minutes or more from walks lasting at least 10 minutes each. There were no significant differences by sex, family income, or categories of urbanization. Conclusion Walking a dog may contribute to a physically active lifestyle and should be promoted as a strategy that fits within the framework set forth by the Task Force on Community Preventive Services for Physical Activity.

  8. Random walk immunization strategy on scale-free networks

    Institute of Scientific and Technical Information of China (English)

    Weidong PEI; Zengqiang CHEN; Zhuzhi YUAN

    2009-01-01

    A novel immunization strategy called the random walk immunization strategy on scale-free networks is proposed. Different from other known immunization strategies, this strategy works as follows: a node is randomly chosen from the network. Starting from this node, randomly walk to one of its neighbor node; if the present node is not immunized, then immunize it and continue the random walk; otherwise go back to the previous node and randomly walk again. This process is repeated until a certain fraction of nodes is immunized. By theoretical analysis and numerical simulations, we found that this strategy is very effective in comparison with the other known immunization strategies.

  9. Shared muscle synergies in human walking and cycling.

    Science.gov (United States)

    Barroso, Filipe O; Torricelli, Diego; Moreno, Juan C; Taylor, Julian; Gomez-Soriano, Julio; Bravo-Esteban, Elisabeth; Piazza, Stefano; Santos, Cristina; Pons, José L

    2014-10-15

    The motor system may rely on a modular organization (muscle synergies activated in time) to execute different tasks. We investigated the common control features of walking and cycling in healthy humans from the perspective of muscle synergies. Three hypotheses were tested: 1) muscle synergies extracted from walking trials are similar to those extracted during cycling; 2) muscle synergies extracted from one of these motor tasks can be used to mathematically reconstruct the electromyographic (EMG) patterns of the other task; 3) muscle synergies of cycling can result from merging synergies of walking. A secondary objective was to identify the speed (and cadence) at which higher similarities emerged. EMG activity from eight muscles of the dominant leg was recorded in eight healthy subjects during walking and cycling at four matched cadences. A factorization technique [nonnegative matrix factorization (NNMF)] was applied to extract individual muscle synergy vectors and the respective activation coefficients behind the global muscular activity of each condition. Results corroborated hypotheses 2 and 3, showing that 1) four synergies from walking and cycling can successfully explain most of the EMG variability of cycling and walking, respectively, and 2) two of four synergies from walking appear to merge together to reconstruct one individual synergy of cycling, with best reconstruction values found for higher speeds. Direct comparison of the muscle synergy vectors of walking and the muscle synergy vectors of cycling (hypothesis 1) produced moderated values of similarity. This study provides supporting evidence for the hypothesis that cycling and walking share common neuromuscular mechanisms.

  10. Walking control of small size humanoid robot: HAJIME ROBOT 18

    Science.gov (United States)

    Sakamoto, Hajime; Nakatsu, Ryohei

    2007-12-01

    HAJIME ROBOT 18 is a fully autonomous biped robot. It has been developed for RoboCup which is a worldwide soccer competition of robots. It is necessary for a robot to have high mobility to play soccer. High speed walking and all directional walking are important to approach and to locate in front of a ball. HAJIME ROBOT achieved these walking. This paper describes walking control of a small size humanoid robot 'HAJIME ROBOT 18' and shows the measurement result of ZMP (Zero Moment Point). HAJIME ROBOT won the Robotics Society of Japan Award in RoboCup 2005 and in RoboCup 2006 Japan Open.

  11. The use of relative coupling intervals in horses during walk

    DEFF Research Database (Denmark)

    Olsen, Emil; Pfau, Thilo

    Walking speed varies between over-ground trials and a speed-independent gait-parameter does not exist for use in horses. We introduce relative (R) lateral (L) and diagonal (D) coupling intervals (CI) and hypothesize that both are independent of walking speed. Four horses were walked over 8 Kistler...... for either RLCI or RDCI. RLCI and RDCI can thus be applied as speed-independent stride-to-stride variability parameters in horses during walk over-ground. This might prove useful for detection of gait deficits caused by spinal cord injury....

  12. Effects of Initial Stance of Quadruped Trotting on Walking Stability

    Directory of Open Access Journals (Sweden)

    Peisun Ma

    2008-11-01

    Full Text Available It is very important for quadruped walking machine to keep its stability in high speed walking. It has been indicated that moment around the supporting diagonal line of quadruped in trotting gait largely influences walking stability. In this paper, moment around the supporting diagonal line of quadruped in trotting gait is modeled and its effects on body attitude are analyzed. The degree of influence varies with different initial stances of quadruped and we get the optimal initial stance of quadruped in trotting gait with maximal walking stability. Simulation results are presented.

  13. FRACTAL DIMENSION RESULTS FOR CONTINUOUS TIME RANDOM WALKS.

    Science.gov (United States)

    Meerschaert, Mark M; Nane, Erkan; Xiao, Yimin

    2013-04-01

    Continuous time random walks impose random waiting times between particle jumps. This paper computes the fractal dimensions of their process limits, which represent particle traces in anomalous diffusion.

  14. Chromosome-specific families in Vibrio genomes

    Directory of Open Access Journals (Sweden)

    Oksana eLukjancenko

    2014-03-01

    Full Text Available We have compared chromosome-specific genes in a set of 18 finished Vibrio genomes, and, in addition, also calculated the pan- and core-genomes from a data set of more than 250 draft Vibrio genome sequences. These genomes come from 9 known species and 2 unknown species. Within the finished chromosomes, we find a core set of 1269 encoded protein families for chromosome 1, and a core of 252 encoded protein families for chromosome 2. Many of these core proteins are also found in the draft genomes (although which chromosome they are located on is unknown. Of the chromosome specific core protein families, 1169 and 153 are uniquely found in chromosomes 1 and 2, respectively. Gene ontology (GO terms for each of the protein families were determined, and the different sets for each chromosome were compared. A total of 363 different `Molecular Function` GO categories were found for chromosome 1 specific protein families, and these include several broad activities: pyridoxine 5' phosphate synthetase, glucosylceramidase, heme transport, DNA ligase, amino acid binding, and ribosomal components; in contrast, chromosome 2 specific protein families have only 66 Molecular Function GO terms and include many membrane-associated activities, such as ion channels, transmembrane transporters, and electron transport chain proteins. Thus, it appears that whilst there are many 'housekeeping systems' encoded in chromosome 1, there are far fewer core functions found in chromosome 2. However, the presence of many membrane-associated encoded proteins in chromosome 2 is surprising.

  15. A Random Walk to Economic Freedom?

    Directory of Open Access Journals (Sweden)

    Witte, Mark David

    2013-04-01

    Full Text Available Given the wide use of economic freedom in economic literature it is imperative to understand how economic freedom evolves. Results suggest that levels of economic freedom are dominated by random shocks. Using a test for stationarity devised by Westerlund and Larsson (2012 we are unable to reject the null hypothesis of a random walk. The changes to economic freedom also are mostly driven by random shocks with only a minor role played by country specific characteristics. Additionally, changes to economic freedom are partially reversed as increases (decreases in one year are partially offset by decreases (increases in the next year.

  16. Sound design and perception in walking interactions

    DEFF Research Database (Denmark)

    Visell, Yon; Fontana, Federico; Giordano, Bruno;

    2009-01-01

    This paper reviews the state of the art in the display and perception of walking generated sounds and tactile vibrations, and their current and potential future uses in interactive systems. As non-visual information sources that are closely linked to human activities in diverse environments......, such signals are capable of communicating about the spaces we traverse and activities we encounter in familiar and intuitive ways. However, in order for them to be effectively employed in human–computer interfaces, significant knowledge is required in areas including the perception of acoustic signatures...

  17. Exoskeleton Motion Control for Children Walking Rehabilitation

    Directory of Open Access Journals (Sweden)

    Cristina Ploscaru

    2016-06-01

    Full Text Available This paper introduces a quick method for motion control of an exoskeleton used on children walking rehabilitation with ages between four to seven years old. The exoskeleton used on this purpose has six servomotors which work independently and actuates each human lower limb joints (hips, knees and ankles. For obtaining the desired motion laws, a high-speed motion analysis equipment was used. The experimental rough data were mathematically modeled in order to obtain the proper motion equations for controlling the exoskeleton servomotors.

  18. From Here I Walked into Ancient China

    Institute of Scientific and Technical Information of China (English)

    Yan Manman

    2011-01-01

    @@ When I was a little girl, I had heard about the eighth world wonder - terra cotta warriors in Qin Emperor Mausoleum.I have been wishing to visit there to see those magnificent scene which were created thousands of years ago.While with my age added, I gradually learned the terra cotta warriors were lust only one of many ancient marks of Xi'an, which once was capital of 13 dynasties in ancient China.Xi'an actually is a carrier of ancient China culture, where I walked from the modern world to the ancient China.

  19. Angular processes related to Cauchy random walks

    CERN Document Server

    Cammarota, Valemtina

    2011-01-01

    We study the angular process related to random walks in the Euclidean and in the non-Euclidean space where steps are Cauchy distributed. This leads to different types of non-linear transformations of Cauchy random variables which preserve the Cauchy density. We give the explicit form of these distributions for all combinations of the scale and the location parameters. Continued fractions involving Cauchy random variables are analyzed. It is shown that the $n$-stage random variables are still Cauchy distributed with parameters related to Fibonacci numbers. This permits us to show the convergence in distribution of the sequence to the golden ratio.

  20. Sex chromosome rearrangements in Polyphaga beetles.

    Science.gov (United States)

    Dutrillaux, A M; Dutrillaux, B

    2009-01-01

    The presence of a parachute sex chromosome bivalent (Xyp) at metaphase I of male meiosis is a well-known characteristic of Coleoptera, present in almost all families of this order and assumed to represent their ancestral sex chromosome formula. Sex chromosomes appear to be manifold more frequently involved in inter-chromosomal rearrangements than the average of the nine autosomal pairs usually forming their karyotype. This leads to various formulae such as neo-sex, multiple sex and perhaps unique sex chromosomes. These rearrangements alter the intimate association between sex chromosomes and nucleolar proteins, which are usual components of the Xyp. Different situations, selected in a series of 125 mitotic and meiotic cytogenetic studies of Polyphaga beetle species, are reported and discussed, with the aim to improve our knowledge on the mechanisms of sex chromosome rearrangements, the relationships with nucleoli and the consequences on dosage compensation and chromosome segregation.

  1. Vibrio chromosome-specific families

    DEFF Research Database (Denmark)

    Lukjancenko, Oksana; Ussery, David

    2014-01-01

    We have compared chromosome-specific genes in a set of 18 finished Vibrio genomes, and, in addition, also calculated the pan- and core-genomes from a data set of more than 250 draft Vibrio genome sequences. These genomes come from 9 known species and 2 unknown species. Within the finished...

  2. Chromosome Territory Modeller and Viewer.

    Science.gov (United States)

    Tkacz, Magdalena A; Chromiński, Kornel; Idziak-Helmcke, Dominika; Robaszkiewicz, Ewa; Hasterok, Robert

    2016-01-01

    This paper presents ChroTeMo, a tool for chromosome territory modelling, accompanied by ChroTeVi-a chromosome territory visualisation software that uses the data obtained by ChroTeMo. These tools have been developed in order to complement the molecular cytogenetic research of interphase nucleus structure in a model grass Brachypodium distachyon. Although the modelling tool has been initially created for one particular species, it has universal application. The proposed version of ChroTeMo allows for generating a model of chromosome territory distribution in any given plant or animal species after setting the initial, species-specific parameters. ChroTeMo has been developed as a fully probabilistic modeller. Due to this feature, the comparison between the experimental data on the structure of a nucleus and the results obtained from ChroTeMo can indicate whether the distribution of chromosomes inside a nucleus is also fully probabilistic or is subjected to certain non-random patterns. The presented tools have been written in Python, so they are multiplatform, portable and easy to read. Moreover, if necessary they can be further developed by users writing their portions of code. The source code, documentation, and wiki, as well as the issue tracker and the list of related articles that use ChroTeMo and ChroTeVi, are accessible in a public repository at Github under GPL 3.0 license.

  3. CHROMOSOMAL MULTIPLICITY IN BURKHOLDERIA CEPACIA

    Science.gov (United States)

    We have used CHEF gel electrophoresis to screen preparations of large DNA from different Burkholderia cepacia isolates for the presence of DNA species corresponding to the linearized forms of the three chromosomes of 3.4,2.5, and 0.9 Mb identified in B. cepacia strain 17616. DNA ...

  4. Chromosome synteny in cucumis species

    Science.gov (United States)

    Cucumber, Cucumis sativus L. (2n = 2x = 14) and melon, C. melo L. (2n = 2x = 24) are two important vegetable species in the genus Cucumis (family Cucurbitaceae). Two inter-fertile botanical varieties with 14 chromosomes, the cultivated C. sativus var. sativus L. and the wild C. sativus var. hardwick...

  5. Chromosomal disorders and male infertility

    Institute of Scientific and Technical Information of China (English)

    Gary L Harton; Helen G Tempest

    2012-01-01

    infertility in humans is surprisingly common occurring in approximately 15% of the population wishing to start a family.Despite this,the molecular and genetic factors underlying the cause of infertility remain largely undiscovered.Nevertheless,more and more genetic factors associated with infertility are being identified.This review will focus on our current understanding of the chromosomal basis of male infertility specifically:chromosomal aneuploidy,structural and numerical karyotype abnormalities and Y chromosomal microdeletions.Chromosomal aneuploidy is the leading cause of pregnancy loss and developmental disabilities in humans.Aneuploidy is predominantly maternal in origin,but concerns have been raised regarding the safety of intracytoplasmic sperm injection as infertile men have significantly higher levels of sperm aneuploidy compared to their fertile counterparts.Males with numerical or structural karyotype abnormalities are also at an increased risk of producing aneuploid sperm.Our current understanding of how sperm aneuploidy translates to embryo aneuploidy will be reviewed,as well as the application of preimplantation genetic diagnosis (PGD) in such cases.Clinical recommendations where possible will be made,as well as discussion of the use of emerging array technology in PGD and its potential applications in male infertility.

  6. WHEN PROSE DANCES AND DANCE WALKS

    Directory of Open Access Journals (Sweden)

    Ana Marques Gastão

    2011-04-01

    Full Text Available To Paul Valéry, prose follows the less action path, as in marching in a straight line, and poetry, as in dancing – in as much as it is a «system of acts» – it not only intends to go nowhere but it remains in its own realisation, creating its own purpose. Why then does his prose contain this commanded impulse, led by desire, and his poetry does not, since they are so often one and the same? In this essay, looking at works by Rainer Marie Rilke, Fernando Pessoa, António Vieira and Yvette K. Centeno, I develop the idea that, very often, to establish a distinction between genres can be impractical and useless, if one considers concepts such as march/walk and dance from a choreographic perspective. Even if it be a possible question and since it has nevertheless been the object of study by scholars of all times, why is it undertaken? Why can’t prose be danced to, and poetry marched to? Can the walking essence unconsciously dance?

  7. Hitting times for random walks with restarts

    CERN Document Server

    Janson, Svante

    2010-01-01

    The time it takes a random walker in a lattice to reach the origin from another vertex $x$, has infinite mean. If the walker can restart the walk at $x$ at will, then the minimum expected hitting time $T(x,0)$ (minimized over restarting strategies) is finite; it was called the ``grade'' of $x$ by Dumitriu, Tetali and Winkler. They showed that, in a more general setting, the grade (a variant of the ``Gittins index'') plays a crucial role in control problems involving several Markov chains. Here we establish several conjectures of Dumitriu et al on the asymptotics of the grade in Euclidean lattices. In particular, we show that in the planar square lattice, $T(x,0)$ is asymptotic to $2|x|^2\\log|x|$ as $|x| \\to \\infty$. The proof hinges on the local variance of the potential kernel $h$ being almost constant on the level sets of $h$. We also show how the same method yields precise second order asymptotics for hitting times of a random walk (without restarts) in a lattice disk.

  8. Theories of bipedal walking: an odyssey.

    Science.gov (United States)

    Vaughan, Christopher L

    2003-04-01

    In this paper six theories of bipedal walking, and the evidence in support of the theories, are reviewed. They include: evolution, minimising energy consumption, maturation in children, central pattern generators, linking control and effect, and robots on two legs. Specifically, the six theories posit that: (1) bipedalism is the fundamental evolutionary adaptation that sets hominids--and therefore humans--apart from other primates; (2) locomotion is the translation of the centre of gravity along a pathway requiring the least expenditure of energy; (3) when a young child takes its first few halting steps, his or her biomechanical strategy is to minimise the risk of falling; (4) a dedicated network of interneurons in the spinal cord generates the rhythm and cyclic pattern of electromyographic signals that give rise to bipedal gait; (5) bipedal locomotion is generated through global entrainment of the neural system on the one hand, and the musculoskeletal system plus environment on the other; and (6) powered dynamic gait in a bipedal robot can be realised only through a strategy which is based on stability and real-time feedback control. The published record suggests that each of the theories has some measure of support. However, it is important to note that there are other important theories of locomotion which have not been covered in this review. Despite such omissions, this odyssey has explored the wide spectrum of bipedal walking, from its origins through to the integration of the nervous, muscular and skeletal systems.

  9. Improving the accuracy of walking piezo motors.

    Science.gov (United States)

    den Heijer, M; Fokkema, V; Saedi, A; Schakel, P; Rost, M J

    2014-05-01

    Many application areas require ultraprecise, stiff, and compact actuator systems with a high positioning resolution in combination with a large range as well as a high holding and pushing force. One promising solution to meet these conflicting requirements is a walking piezo motor that works with two pairs of piezo elements such that the movement is taken over by one pair, once the other pair reaches its maximum travel distance. A resolution in the pm-range can be achieved, if operating the motor within the travel range of one piezo pair. However, applying the typical walking drive signals, we measure jumps in the displacement up to 2.4 μm, when the movement is given over from one piezo pair to the other. We analyze the reason for these large jumps and propose improved drive signals. The implementation of our new drive signals reduces the jumps to less than 42 nm and makes the motor ideally suitable to operate as a coarse approach motor in an ultra-high vacuum scanning tunneling microscope. The rigidity of the motor is reflected in its high pushing force of 6.4 N.

  10. A Plain English Map of the Human Chromosomes.

    Science.gov (United States)

    Offner, Susan

    1992-01-01

    Presents a chromosome map for 19 known chromosomes in human genetics. Describes the characteristics attributed to the genetic codes for each of the chromosomes and discusses the teaching applications of the chromosome map. (MDH)

  11. Familial transmission of a ring chromosome 21

    DEFF Research Database (Denmark)

    Hertz, Jens Michael

    1987-01-01

    A ring chromosome 21 was found in a phenotypically normal mother and her son. The clinical findings in the son were bilateral retention of the testes and a slightly delayed puberty onset. Consequences of a ring formation of a chromosome 21 in phenotypically normal patients are presented...... and discussed, and the previously reported cases of familially transmitted G-group ring chromosomes are reviewed....

  12. Female meiotic sex chromosome inactivation in chicken

    NARCIS (Netherlands)

    S. Schoenmakers (Sam); E. Wassenaar (Evelyne); J.W. Hoogerbrugge (Jos); J.S.E. Laven (Joop); J.A. Grootegoed (Anton); W.M. Baarends (Willy)

    2009-01-01

    textabstractDuring meiotic prophase in male mammals, the heterologous X and Y chromosomes remain largely unsynapsed, and meiotic sex chromosome inactivation (MSCI) leads to formation of the transcriptionally silenced XY body. In birds, the heterogametic sex is female, carrying Z and W chromosomes (Z

  13. Mechanically induced ankle inversion during human walking and jumping.

    NARCIS (Netherlands)

    Nieuwenhuijzen, P.H.J.A.; Grüneberg, C.; Duysens, J.E.J.

    2002-01-01

    A new method to study sudden ankle inversions during human walking and jumping is presented. Ankle inversions of 25 degrees were elicited using a box containing a trap door. During the gait task, subjects walked at a speed of 4 km/h. At a pre-programmed delay after left heel strike, an electromagnet

  14. How Mosquitoes Walk on Water and Up Walls

    Institute of Scientific and Technical Information of China (English)

    Andrea; Thompson; 施小英

    2007-01-01

    Mosquitoes may be annoying,disease-carrying, blood-sucking pests,but they have a pair of talents that no other animal has:They can both walk up walls and walk on water,and a new study reveals exactly how they manage these circus feats.

  15. Energy Cost during Prolonged Walking vs Jogging Exercise.

    Science.gov (United States)

    Thomas, Tom R.; Londeree, Ben R.

    1989-01-01

    This study of nine young men compared the energy expended, substrates used, and perception of effort from brisk walking and jogging at the same target heart rates. Jogging utilized more total energy and fat energy than walking and was perceived as less strenuous. Oxygen pulse was higher during jogging. (Author/SM)

  16. Steady and transient coordination structures of walking and running

    NARCIS (Netherlands)

    Lamoth, C. J. C.; Daffertshofer, A.; Huys, R.; Beek, P. J.

    2009-01-01

    We studied multisegmental coordination and stride characteristics in nine participants while walking and running on a treadmill. The study's main aim was to evaluate the coordination patterns of walking and running and their variance as a function of locomotion speed, with a specific focus on gait t

  17. ON THE RANGE OF RANDOM WALKS IN RANDOM ENVIRONMENT

    Institute of Scientific and Technical Information of China (English)

    ZHOUXIANYIN

    1995-01-01

    The range of roaldom walk on Zd in symmetric random environment is investigated. As results, it is proved that the strong law of large numbers for the range of random walk oil Zd in some random environments holds if d > 3, and a weak law of large numbers holds for d = 1.

  18. Probability of walking in children with cerebral palsy in Europe

    DEFF Research Database (Denmark)

    Beckung, E.; Hagberg, G.; Uldall, P.;

    2008-01-01

    OBJECTIVES: The purpose of this work was to describe walking ability in children with cerebral palsy from the Surveillance of Cerebral Palsy in Europe common database through 21 years and to examine the association between walking ability and predicting factors. PATIENTS AND METHODS: Anonymous data...

  19. Walk-In Triage Systems in University Counseling Centers

    Science.gov (United States)

    Shaffer, Katharine S.; Love, Michael M.; Chapman, Kelsey M.; Horn, Angela J.; Haak, Patricia P.; Shen, Claire Y. W.

    2017-01-01

    To meet the complex mental health needs of students, some university counseling centers (UCCs) have implemented walk-in triage intake systems, which have not yet been empirically investigated. This study compared client and clinician differences (N = 5564) between a traditional scheduled intake system (Year 1) and a walk-in triage system (Year 2)…

  20. Renormalization of the unitary evolution equation for coined quantum walks

    Science.gov (United States)

    Boettcher, Stefan; Li, Shanshan; Portugal, Renato

    2017-03-01

    We consider discrete-time evolution equations in which the stochastic operator of a classical random walk is replaced by a unitary operator. Such a problem has gained much attention as a framework for coined quantum walks that are essential for attaining the Grover limit for quantum search algorithms in physically realizable, low-dimensional geometries. In particular, we analyze the exact real-space renormalization group (RG) procedure recently introduced to study the scaling of quantum walks on fractal networks. While this procedure, when implemented numerically, was able to provide some deep insights into the relation between classical and quantum walks, its analytic basis has remained obscure. Our discussion here is laying the groundwork for a rigorous implementation of the RG for this important class of transport and algorithmic problems, although some instances remain unresolved. Specifically, we find that the RG fixed-point analysis of the classical walk, which typically focuses on the dominant Jacobian eigenvalue {λ1} , with walk dimension dw\\text{RW}={{log}2}{λ1} , needs to be extended to include the subdominant eigenvalue {λ2} , such that the dimension of the quantum walk obtains dw\\text{QW}={{log}2}\\sqrt{{λ1}{λ2}} . With that extension, we obtain analytically previously conjectured results for dw\\text{QW} of Grover walks on all but one of the fractal networks that have been considered.

  1. Quantifying dynamic characteristics of human walking for comprehensive gait cycle.

    Science.gov (United States)

    Mummolo, Carlotta; Mangialardi, Luigi; Kim, Joo H

    2013-09-01

    Normal human walking typically consists of phases during which the body is statically unbalanced while maintaining dynamic stability. Quantifying the dynamic characteristics of human walking can provide better understanding of gait principles. We introduce a novel quantitative index, the dynamic gait measure (DGM), for comprehensive gait cycle. The DGM quantifies the effects of inertia and the static balance instability in terms of zero-moment point and ground projection of center of mass and incorporates the time-varying foot support region (FSR) and the threshold between static and dynamic walking. Also, a framework of determining the DGM from experimental data is introduced, in which the gait cycle segmentation is further refined. A multisegmental foot model is integrated into a biped system to reconstruct the walking motion from experiments, which demonstrates the time-varying FSR for different subphases. The proof-of-concept results of the DGM from a gait experiment are demonstrated. The DGM results are analyzed along with other established features and indices of normal human walking. The DGM provides a measure of static balance instability of biped walking during each (sub)phase as well as the entire gait cycle. The DGM of normal human walking has the potential to provide some scientific insights in understanding biped walking principles, which can also be useful for their engineering and clinical applications.

  2. Validity of the Nike+ device during walking and running.

    Science.gov (United States)

    Kane, N A; Simmons, M C; John, D; Thompson, D L; Bassett, D R; Basset, D R

    2010-02-01

    We determined the validity of the Nike+ device for estimating speed, distance, and energy expenditure (EE) during walking and running. Twenty trained individuals performed a maximal oxygen uptake test and underwent anthropometric and body composition testing. Each participant was outfitted with a Nike+ sensor inserted into the shoe and an Apple iPod nano. They performed eight 6-min stages on the treadmill, including level walking at 55, 82, and 107 m x min(-1), inclined walking (82 m x min(-1)) at 5 and 10% grades, and level running at 134, 161, and 188 m x min(-1). Speed was measured using a tachometer and EE was measured by indirect calorimetry. Results showed that the Nike+ device overestimated the speed of level walking at 55 m x min(-1) by 20%, underestimated the speed of level walking at 107 m x min(-1) by 12%, but closely estimated the speed of level walking at 82 m x min(-1), and level running at all speeds (p<0.05). Similar results were found for distance. The Nike+ device overestimated the EE of level walking by 18-37%, but closely estimated the EE of level running (p<0.05). In conclusion the Nike+ in-shoe device provided reasonable estimates of speed and distance during level running at the three speeds tested in this study. However, it overestimated EE during level walking and it did not detect the increased cost of inclined locomotion.

  3. The Simple Random Walk Snake on Z^4 is Recurrent

    CERN Document Server

    Benjamini, Itai

    2011-01-01

    Consider the branching simple random walk on Z^d indexed by a critical geometric Galton-Watson tree conditioned to survive. Using the concept of unimodular random graphs, we show that the walk is recurrent if and only if d is less than or equal to 4.

  4. Automated Optimization of Walking Parameters for the Nao Humanoid Robot

    NARCIS (Netherlands)

    Girardi, N.; Kooijman, C.; Wiggers, A.J.; Visser, A.

    2013-01-01

    This paper describes a framework for optimizing walking parameters for a Nao humanoid robot. In this case an omnidirectional walk is learned. The parameters are learned in simulation with an evolutionary approach. The best performance was obtained for a combination of a low mutation rate and a high

  5. Some case studies of random walks in dynamic random environments

    NARCIS (Netherlands)

    Soares dos Santos, Renato

    2012-01-01

    This thesis is dedicated to the study of random walks in dynamic random environments. These are models for the motion of a tracer particle in a disordered medium, which is called a static random environment if it stays constant in time, or dynamic otherwise. The evolution of the random walk is defi

  6. Factors of the physical environment associated with walking and bicycling

    NARCIS (Netherlands)

    Wendel-Vos, G.C.W.; Schuit, A.J.; Niet, de R.; Boshuizen, H.C.; Saris, W.H.M.; Kromhout, D.

    2004-01-01

    PURPOSE: The purpose of this study was to identify factors of the physical environment that may influence time spent on walking and bicycling. METHODS: Demographic factors and time spent on walking and bicycling (during leisure time and for commuting purposes) were assessed with a self-administered

  7. Asymptotic Properties of Multistate Random Walks. I. Theory

    NARCIS (Netherlands)

    Roerdink, J.B.T.M.; Shuler, K.E.

    1985-01-01

    A calculation is presented of the long-time behavior of various random walk properties (moments, probability of return to the origin, expected number of distinct sites visited) for multistate random walks on periodic lattices. In particular, we consider inhomogeneous periodic lattices, consisting of

  8. Infant Language Development Is Related to the Acquisition of Walking

    Science.gov (United States)

    Walle, Eric A.; Campos, Joseph J.

    2014-01-01

    The present investigation explored the question of whether walking onset is related to infant language development. Study 1 used a longitudinal design (N = 44) to assess infant locomotor and language development every 2 weeks from 10 to 13.5 months of age. The acquisition of walking was associated with a significant increase in both receptive and…

  9. Uphill and downhill walking in unilateral lower limb amputees

    NARCIS (Netherlands)

    Vrieling, A. H.; van Keeken, H. G.; Schoppen, T.; Otten, E.; Halbertsma, J. P. K.; Hof, A. L.; Postema, K.

    2008-01-01

    Objective: To study adjustment strategies in unilateral amputees in uphill and downhill walking. Design: observational cohort study. Subjects: Seven transfemoral, 12 transtibial unilateral amputees and 10 able-bodied subjects. Methods: In a motion analysis laboratory the subjects walked over a level

  10. Walking in Beauty: An American Indian Perspective on Social Justice

    Science.gov (United States)

    Eason, Evan Allen; Robbins, Rockey

    2012-01-01

    The purpose of this article is to introduce "walking in beauty," an American Indian spiritual perspective related to social justice that emphasizes beauty, harmony, connectedness/unity of experience, and imagination. Walking in beauty includes 3 processes: embodiment, creativity, and appreciation of the sublime. Recommendations are offered for…

  11. Determining asymmetry of roll-over shapes in prosthetic walking

    NARCIS (Netherlands)

    Curtze, C.; Otten, B.; Hof, A.L.; Postema, K.

    2011-01-01

    How does the inherent asymmetry of the locomotor system in people with lower-limb amputation affect the ankle-foot roll-over shape of prosthetic walking? In a single-case design, we evaluated the walking patterns of six people with lower-limb amputation (3 transtibial and 3 transfemoral) and three m

  12. Recycling Energy to Restore Impaired Ankle Function during Human Walking

    NARCIS (Netherlands)

    Collins, S.H.; Kuo, A.D.

    2010-01-01

    Background: Humans normally dissipate significant energy during walking, largely at the transitions between steps. The ankle then acts to restore energy during push-off, which may be the reason that ankle impairment nearly always leads to poorer walking economy. The replacement of lost energy is nec

  13. A random walk with a branching system in random environments

    Institute of Scientific and Technical Information of China (English)

    Ying-qiu LI; Xu LI; Quan-sheng LIU

    2007-01-01

    We consider a branching random walk in random environments, where the particles are reproduced as a branching process with a random environment (in time), and move independently as a random walk on Z with a random environment (in locations). We obtain the asymptotic properties on the position of the rightmost particle at time n, revealing a phase transition phenomenon of the system.

  14. The origin of human chromosome 2 analyzed by comparative chromosome mapping with a DNA microlibrary

    OpenAIRE

    Wienberg, Johannes; Jauch, Anna; Lüdecke, H J; Senger, G.; Horsthemke, B; Claussen, U.; Cremer, Thomas; Arnold, N; Lengauer, Christoph

    1994-01-01

    Fluorescencein situ hybridization (FISH) of microlibraries established from distinct chromosome subregions can test the evolutionary conservation of chromosome bands as well as chromosomal rearrangements that occurred during primate evolution and will help to clarify phylogenetic relationships. We used a DNA library established by microdissection and microcloning from the entire long arm of human chromosome 2 for fluorescencein situ hybridization and comparative mapping of the chromosomes of ...

  15. Chromosomal instability in Streptomyces avermitilis: major deletion in the central region and stable circularized chromosome

    Directory of Open Access Journals (Sweden)

    Wen Ying

    2010-07-01

    Full Text Available Abstract Background The chromosome of Streptomyces has been shown to be unstable, frequently undergoing gross chromosomal rearrangements. However, the mechanisms underlying this phenomenon remain unclear, with previous studies focused on two chromosomal ends as targets for rearrangements. Here we investigated chromosomal instability of Streptomyces avermitilis, an important producer of avermectins, and characterized four gross chromosomal rearrangement events, including a major deletion in the central region. The present findings provide a valuable contribution to the mechanistic study of genetic instability in Streptomyces. Results Thirty randomly-selected "bald" mutants derived from the wild-type strain all contained gross chromosomal rearrangements of various types. One of the bald mutants, SA1-8, had the same linear chromosomal structure as the high avermectin-producing mutant 76-9. Chromosomes of both strains displayed at least three independent chromosomal rearrangements, including chromosomal arm replacement to form new 88-kb terminal inverted repeats (TIRs, and two major deletions. One of the deletions eliminated the 36-kb central region of the chromosome, but surprisingly did not affect viability of the cells. The other deletion (74-kb was internal to the right chromosomal arm. The chromosome of another bald mutant, SA1-6, was circularized with deletions at both ends. No obvious homology was found in all fusion sequences. Generational stability analysis showed that the chromosomal structure of SA1-8 and SA1-6 was stable. Conclusions Various chromosomal rearrangements, including chromosomal arm replacement, interstitial deletions and chromosomal circularization, occurred in S. avermitilis by non-homologous recombination. The finding of an inner deletion involving in the central region of S. avermitilis chromosome suggests that the entire Streptomyces chromosome may be the target for rearrangements, which are not limited, as previously

  16. Y-chromosome polymorphism: Possible largest Y chromosome in man?

    Energy Technology Data Exchange (ETDEWEB)

    Murthy, D.S.K.; Al-Awadi, S.A.; Bastaki, L. [Kuwait Medical Genetics Centre, Sulaibikat (Kuwait)] [and others

    1994-09-01

    The role of variations (inversions/deletion or duplication) in the heterochromatin in gonadal development and function, reproductive fitness, and malignant disease has been extensively studied. However, the causal-relationship of large Y (Yqh+) and repeated fetal loss has not been established unequivocally. An Arab couple (?Bedouin origin) with a history of repeated abortions were investigated. Karyotype analysis of the husband showed a very large Y chromosome, confirmed by GTG-, QFQ- and CBG-banding techniques. C-banding showed discontinuous distribution of the heterochromatin blocks separated by pale bands. The origin of the large heterochromatin segment could be due to tandem duplication of the Yq region or translocation (Yq:Yq). No other relatives (males) of the propositus have been available for investigation. Polymorphism of the Y chromosome could be attributed to evolutionary changes from an ancestral type, either by deletion or duplication of the heterochromatin segment. More detailed studies on isolated, aboriginal/tribal human populations will enable us to better understand the significance of the Y chromosome polymorphism.

  17. Multiobjective Gate Assignment Based on Passenger Walking Distance and Fairness

    Directory of Open Access Journals (Sweden)

    Yu Jiang

    2013-01-01

    Full Text Available Passenger walking distance is an important index of the airport service quality. How to shorten the walking distance and balance the airlines' service quality is the focus of much research on airport gate assignment problems. According to the problems of airport passenger service quality, an optimization gate assignment model is established. The gate assignment model is based on minimizing the total walking distance of all passengers and balancing the average walking distance of passengers among different airlines. Lingo is used in the simulation of a large airport gate assignment. Test results show that the optimization model can reduce the average walking distance of passenger effectively, improve the number of flights assigned to gate, balance airline service quality, and enhance the overall service level of airports and airlines. The model provides reference for the airport gate preassignment.

  18. Near-Optimal Random Walk Sampling in Distributed Networks

    CERN Document Server

    Sarma, Atish Das; Pandurangan, Gopal

    2012-01-01

    Performing random walks in networks is a fundamental primitive that has found numerous applications in communication networks such as token management, load balancing, network topology discovery and construction, search, and peer-to-peer membership management. While several such algorithms are ubiquitous, and use numerous random walk samples, the walks themselves have always been performed naively. In this paper, we focus on the problem of performing random walk sampling efficiently in a distributed network. Given bandwidth constraints, the goal is to minimize the number of rounds and messages required to obtain several random walk samples in a continuous online fashion. We present the first round and message optimal distributed algorithms that present a significant improvement on all previous approaches. The theoretical analysis and comprehensive experimental evaluation of our algorithms show that they perform very well in different types of networks of differing topologies. In particular, our results show h...

  19. Online Joint Trajectory Generation of Human-like Biped Walking

    Directory of Open Access Journals (Sweden)

    Jong-Wook Kim

    2014-02-01

    Full Text Available Biped walking has long been studied in the area of gait analysis and robotic locomotion. The goal of this paper is to establish a systematic methodology for human-like natural walking by fusing the measured human joint data and optimal pattern generation techniques based on a full-body humanoid model. To this end, this paper proposes an adaptive two-stage gait pattern by which the step length and walking velocity can be changed with two scaling factors. In addition, to cope with the situations involving passing over a small obstacle, the joint trajectories of the swing foot can be adjusted with a novel concept of differential angle trajectory using a reliable optimization method, viz. particle swarm optimization. The feasibility of the proposed walking scheme is validated by walking experiments with the robot platform DARwIn-OP.

  20. Quantum walk coherences on a dynamical percolation graph.

    Science.gov (United States)

    Elster, Fabian; Barkhofen, Sonja; Nitsche, Thomas; Novotný, Jaroslav; Gábris, Aurél; Jex, Igor; Silberhorn, Christine

    2015-08-27

    Coherent evolution governs the behaviour of all quantum systems, but in nature it is often subjected to influence of a classical environment. For analysing quantum transport phenomena quantum walks emerge as suitable model systems. In particular, quantum walks on percolation structures constitute an attractive platform for studying open system dynamics of random media. Here, we present an implementation of quantum walks differing from the previous experiments by achieving dynamical control of the underlying graph structure. We demonstrate the evolution of an optical time-multiplexed quantum walk over six double steps, revealing the intricate interplay between the internal and external degrees of freedom. The observation of clear non-Markovian signatures in the coin space testifies the high coherence of the implementation and the extraordinary degree of control of all system parameters. Our work is the proof-of-principle experiment of a quantum walk on a dynamical percolation graph, paving the way towards complex simulation of quantum transport in random media.

  1. Random walk models for top-N recommendation task

    Institute of Scientific and Technical Information of China (English)

    Yin ZHANG; Jiang-qin WU; Yue-ting ZHUANG

    2009-01-01

    Recently there has been an increasing interest in applying random walk based methods to recommender systems.We employ a Gaussian random field to model the top-N recommendation task as a semi-supervised learning problem.taking into account the degree of each node on the user-item bipartite graph,and induce an effective absorbing random walk (ARW) algorithm for the top-N recommendation task.Our random walk approach directly generates the top-N recommendations for individuals,rather than predicting the ratings of the recommendations.Experimental results on the two real data sets show that our random walk algorithm significantly outperforms the state-of-the-art random walk based personalized ranking algorithm as well as the popular item-based collaborative filtering method.

  2. Building the repertoire of measures of walking in Rett syndrome

    DEFF Research Database (Denmark)

    Stahlhut, Michelle; Downs, Jenny; Leonard, Helen;

    2017-01-01

    BACKGROUND: The repertoire of measures of walking in Rett syndrome is limited. This study aimed to determine measurement properties of a modified two-minute walk test (2MWT) and a modified Rett syndrome-specific functional mobility scale (FMS-RS) in Rett syndrome. METHODS: Forty-two girls and women...... with Rett syndrome (median 18.4 years, range 2.4-60.9 years) were assessed for clinical severity, gross motor skills, and mobility. To measure walking capacity, 27 of this group completed a 2MWT twice on two different assessment days. To assess walking performance, the FMS-RS was administered to the total......) and the Rett syndrome-specific functional mobility scale (FMS-RS). The 2MWT and FMS-RS offer detailed information of the capacity and performance of walking, respectively, in girls and women with RTT....

  3. Quantum walk coherences on a dynamical percolation graph

    Science.gov (United States)

    Elster, Fabian; Barkhofen, Sonja; Nitsche, Thomas; Novotný, Jaroslav; Gábris, Aurél; Jex, Igor; Silberhorn, Christine

    2015-08-01

    Coherent evolution governs the behaviour of all quantum systems, but in nature it is often subjected to influence of a classical environment. For analysing quantum transport phenomena quantum walks emerge as suitable model systems. In particular, quantum walks on percolation structures constitute an attractive platform for studying open system dynamics of random media. Here, we present an implementation of quantum walks differing from the previous experiments by achieving dynamical control of the underlying graph structure. We demonstrate the evolution of an optical time-multiplexed quantum walk over six double steps, revealing the intricate interplay between the internal and external degrees of freedom. The observation of clear non-Markovian signatures in the coin space testifies the high coherence of the implementation and the extraordinary degree of control of all system parameters. Our work is the proof-of-principle experiment of a quantum walk on a dynamical percolation graph, paving the way towards complex simulation of quantum transport in random media.

  4. Simulation of energy consumption for quadruped walking vehicle

    Science.gov (United States)

    Lei, Jingtao; Gao, Feng; Xu, Guoyan

    2006-11-01

    Simulation of energy consumption for walking vehicle is one of the basic way to preliminarily estimate the energy that will be consumed before constructing the real vehicle, providing basis for the design of vehicle to minish energy consumption. One of the most influential factors of the accuracy dynamic simulation is the appropriate contact model between leg and ground. In this paper, we adopt virtual prototyping technique to develop the dynamic modeling of a quadruped walking vehicle considering contact force between legs and ground during walking, finish simulation of dynamics and obtain dynamics characteristics, investigate the effects of different contact condition and the energy consumption. The purpose is to analyze the relationship between energy consumption and relevant influence factors, and the energy efficiency during walking is discussed with different walking velocity, strokes, duty factors and different contact material. Moreover contact force is obtained from simulations. Commercial ADAMS package is used.

  5. Chromosome congression explained by nanoscale electrostatics.

    Science.gov (United States)

    Gagliardi, L John; Shain, Daniel H

    2014-02-24

    Nanoscale electrostatic microtubule disassembly forces between positively charged molecules in kinetochores and negative charges on plus ends of microtubules have been implicated in poleward chromosome motions and may also contribute to antipoleward chromosome movements. We propose that chromosome congression can be understood in terms of antipoleward nanoscale electrostatic microtubule assembly forces between negatively charged microtubule plus ends and like-charged chromosome arms, acting in conjunction with poleward microtubule disassembly forces. Several other aspects of post-attachment prometaphase chromosome motions, as well as metaphase oscillations, are consistently explained within this framework.

  6. The Chromosomes of Birds during Meiosis.

    Science.gov (United States)

    Pigozzi, María I

    2016-01-01

    The cytological analysis of meiotic chromosomes is an exceptional tool to approach complex processes such as synapsis and recombination during the division. Chromosome studies of meiosis have been especially valuable in birds, where naturally occurring mutants or experimental knock-out animals are not available to fully investigate the basic mechanisms of major meiotic events. This review highlights the main contributions of synaptonemal complex and lampbrush chromosome research to the current knowledge of avian meiosis, with special emphasis on the organization of chromosomes during prophase I, the impact of chromosome rearrangements during meiosis, and distinctive features of the ZW pair.

  7. Polymer models of chromosome (re)organization

    Science.gov (United States)

    Mirny, Leonid

    Chromosome Conformation Capture technique (Hi-C) provides comprehensive information about frequencies of spatial interactions between genomic loci. Inferring 3D organization of chromosomes from these data is a challenging biophysical problem. We develop a top-down approach to biophysical modeling of chromosomes. Starting with a minimal set of biologically motivated interactions we build ensembles of polymer conformations that can reproduce major features observed in Hi-C experiments. I will present our work on modeling organization of human metaphase and interphase chromosomes. Our works suggests that active processes of loop extrusion can be a universal mechanism responsible for formation of domains in interphase and chromosome compaction in metaphase.

  8. Chromosome painting of Z and W sex chromosomes in Characidium (Characiformes, Crenuchidae).

    Science.gov (United States)

    Pazian, Marlon F; Shimabukuro-Dias, Cristiane Kioko; Pansonato-Alves, José Carlos; Oliveira, Claudio; Foresti, Fausto

    2013-03-01

    Some species of the genus Characidium have heteromorphic ZZ/ZW sex chromosomes with a totally heterochromatic W chromosome. Methods for chromosome microdissection associated with chromosome painting have become important tools for cytogenetic studies in Neotropical fish. In Characidium cf. fasciatum, the Z chromosome contains a pericentromeric heterochromatin block, whereas the W chromosome is completely heterochromatic. Therefore, a probe was produced from the W chromosome through microdissection and degenerate oligonucleotide-primed polymerase chain reaction amplification. FISH was performed using the W probe on the chromosomes of specimens of this species. This revealed expressive marks in the pericentromeric region of the Z chromosome as well as a completely painted W chromosome. When applying the same probe on chromosome preparations of C. cf. gomesi and Characidium sp., a pattern similar to C. cf. fasciatum was found, while C. cf. zebra, C. cf. lagosantense and Crenuchus spilurus species showed no hybridization signals. Structural changes in the chromosomes of an ancestral sexual system in the group that includes the species C. cf. gomesi, C. cf. fasciatum and Characidium sp., could have contributed to the process of speciation and could represent a causal mechanism of chromosomal diversification in this group. The heterochromatinization process possibly began in homomorphic and homologous chromosomes of an ancestral form, and this process could have given rise to the current patterns found in the species with sex chromosome heteromorphism.

  9. Chromosomal patterns in human malignant astrocytomas.

    Science.gov (United States)

    Rey, J A; Bello, M J; de Campos, J M; Kusak, M E; Ramos, C; Benitez, J

    1987-12-01

    Cytogenetic analysis by direct and/or in vitro preparations was performed on 34 malignant astrocytomas. Thirty tumors showed near-diploid chromosome numbers, whereas, tritetraploid chromosome complements were present in four tumors. The most frequent chromosomal changes implied numerical deviations by a gain of chromosomes #7, #19, and #20, and by losses of #10, #22, and Y. Structural rearrangements were present in stem- or side lines of 24 tumors. Although no common chromosomal rearrangement seems to exist among those tumors, chromosomes #1, #6, #7, and #9 were predominantly involved. Polysomy and structural rearrangements of chromosome #7 could be related to the overexpression of epidermal growth factor gene, previously observed in some malignant gliomas.

  10. Entropy as the driver of chromosome segregation.

    Science.gov (United States)

    Jun, Suckjoon; Wright, Andrew

    2010-08-01

    We present a new physical biology approach to understanding the relationship between the organization and segregation of bacterial chromosomes. We posit that replicated Escherichia coli daughter strands will spontaneously demix as a result of entropic forces, despite their strong confinement within the cell; in other words, we propose that entropy can act as a primordial physical force which drives chromosome segregation under the right physical conditions. Furthermore, proteins implicated in the regulation of chromosome structure and segregation may in fact function primarily in supporting such an entropy-driven segregation mechanism by regulating the physical state of chromosomes. We conclude that bacterial chromosome segregation is best understood in terms of spontaneous demixing of daughter strands. Our concept may also have important implications for chromosome segregation in eukaryotes, in which spindle-dependent chromosome movement follows an extended period of sister chromatid demixing and compaction.

  11. Flow cytometric detection of aberrant chromosomes

    Energy Technology Data Exchange (ETDEWEB)

    Gray, J.W.; Lucas, J.; Yu, L.C.; Langlois, R.

    1983-05-11

    This report describes the quantification of chromosomal aberrations by flow cytometry. Both homogeneously and heterogeneously occurring chromosome aberrations were studied. Homogeneously occurring aberrations were noted in chromosomes isolated from human colon carcinoma (LoVo) cells, stained with Hoechst 33258 and chromomycin A3 and analyzed using dual beam flow cytometry. The resulting bivariate flow karyotype showed a homogeneously occurring marker chromosome of intermediate size. Heterogeneously occurring aberrations were quantified by slit-scan flow cytometry in chromosomes isolated from control and irradiated Chinese hamster cells and stained with propidium iodide. Heterogeneously occurring dicentric chromosomes were detected by their shapes (two centrometers). The frequencies of such chromosomes estimated by slit-scan flow cytometry correlated well with the frequencies determined by visual microscopy.

  12. Chromosome X aneuploidy in Brazilian schizophrenic patients.

    Science.gov (United States)

    de Moraes, Leopoldo Silva; Khayat, André Salim; de Lima, Patrícia Danielle Lima; Lima, Eleonidas Moura; Pinto, Giovanny Rebouças; Leal, Mariana Ferreira; de Arruda Cardoso Smith, Marília; Burbano, Rommel Rodríguez

    2010-01-01

    The identification of cytogenetic abnormalities in schizophrenic patients may provide clues to the genes involved in this disease. For this reason, a chromosomal analysis of samples from 62 schizophrenics and 70 controls was performed with trypsin-Giemsa banding and fluorescence in situ hybridization of the X chromosome. A clonal pericentric inversion on chromosome 9 was detected in one male patient, and we also discovered mosaicism associated with X chromosome aneuploidy in female patients, primarily detected in schizophrenic and normal female controls over 40 years old. When compared with age-matched female controls, the frequency of X chromosome loss was not significantly different between schizophrenics and controls, except for the 40- to 49-year-old age group. Our findings suggest that the X chromosome loss seen in schizophrenic patients is inherent to the normal cellular aging process. However, our data also suggest that X chromosome gain may be correlated with schizophrenia in this Brazilian population.

  13. Walking the line : a randomised trial on the effects of a short term walking programme on cognition in dementia

    NARCIS (Netherlands)

    Eggermont, L. H. P.; Swaab, D. F.; Hol, E. M.; Scherder, E. J. A.

    2009-01-01

    Background: Walking has proven to be beneficial for cognition in healthy sedentary older people. The aim of this study was to examine the effects of a walking intervention on cognition in older people with dementia. Methods: 97 older nursing home residents with moderate dementia (mean age 85.4 years

  14. Chromosomal instability determines taxane response

    DEFF Research Database (Denmark)

    Swanton, C.; Nicke, B.; Schuett, M.;

    2009-01-01

    -positive breast cancer and occurs frequently in basal-like and Her2-positive cases. In diploid cells, but not in chromosomally unstable cells, paclitaxel causes repression of CIN-survival genes, followed by cell death. In the OV01 ovarian cancer clinical trial, a high level of CIN was associated with taxane...... chromosomal instability (CIN). Silencing 22/50 of these genes, many of which are involved in DNA repair, caused cancer cell death, suggesting that these genes are involved in the survival of aneuploid cells. Overexpression of these "CIN-survival'' genes is associated with poor outcome in estrogen receptor...... resistance but carboplatin sensitivity, indicating that CIN may determine MTS response in vivo. Thus, pretherapeutic assessment of CIN may optimize treatment stratification and clinical trial design using these agents....

  15. Discriminative parameter estimation for random walks segmentation.

    Science.gov (United States)

    Baudin, Pierre-Yves; Goodman, Danny; Kumrnar, Puneet; Azzabou, Noura; Carlier, Pierre G; Paragios, Nikos; Kumar, M Pawan

    2013-01-01

    The Random Walks (RW) algorithm is one of the most efficient and easy-to-use probabilistic segmentation methods. By combining contrast terms with prior terms, it provides accurate segmentations of medical images in a fully automated manner. However, one of the main drawbacks of using the RW algorithm is that its parameters have to be hand-tuned. we propose a novel discriminative learning framework that estimates the parameters using a training dataset. The main challenge we face is that the training samples are not fully supervised. Specifically, they provide a hard segmentation of the images, instead of a probabilistic segmentation. We overcome this challenge by treating the optimal probabilistic segmentation that is compatible with the given hard segmentation as a latent variable. This allows us to employ the latent support vector machine formulation for parameter estimation. We show that our approach significantly outperforms the baseline methods on a challenging dataset consisting of real clinical 3D MRI volumes of skeletal muscles.

  16. The QWalk simulator of quantum walks

    Science.gov (United States)

    Marquezino, F. L.; Portugal, R.

    2008-09-01

    Several research groups are giving special attention to quantum walks recently, because this research area have been used with success in the development of new efficient quantum algorithms. A general simulator of quantum walks is very important for the development of this area, since it allows the researchers to focus on the mathematical and physical aspects of the research instead of deviating the efforts to the implementation of specific numerical simulations. In this paper we present QWalk, a quantum walk simulator for one- and two-dimensional lattices. Finite two-dimensional lattices with generic topologies can be used. Decoherence can be simulated by performing measurements or by breaking links of the lattice. We use examples to explain the usage of the software and to show some recent results of the literature that are easily reproduced by the simulator. Program summaryProgram title: QWalk Catalogue identifier: AEAX_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEAX_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public Licence No. of lines in distributed program, including test data, etc.: 10 010 No. of bytes in distributed program, including test data, etc.: 172 064 Distribution format: tar.gz Programming language: C Computer: Any computer with a C compiler that accepts ISO C99 complex arithmetic (recent versions of GCC, for instance). Pre-compiled Windows versions are also provided Operating system: The software should run in any operating system with a recent C compiler. Successful tests were performed in Linux and Windows RAM: Less than 10 MB were required for a two-dimensional lattice of size 201×201. About 400 MB, for a two-dimensional lattice of size 1601×1601 Classification: 16.5 Nature of problem: Classical simulation of discrete quantum walks in one- and two-dimensional lattices. Solution method: Iterative approach without explicit representation of

  17. Self-attracting walk on heterogeneous networks

    Science.gov (United States)

    Kim, Kanghun; Kyoung, Jaegu; Lee, D.-S.

    2016-05-01

    Understanding human mobility in cyberspace becomes increasingly important in this information era. While human mobility, memory-dependent and subdiffusive, is well understood in Euclidean space, it remains elusive in random heterogeneous networks like the World Wide Web. Here we study the diffusion characteristics of self-attracting walks, in which a walker is more likely to move to the locations visited previously than to unvisited ones, on scale-free networks. Under strong attraction, the number of distinct visited nodes grows linearly in time with larger coefficients in more heterogeneous networks. More interestingly, crossovers to sublinear growths occur in strongly heterogeneous networks. To understand these phenomena, we investigate the characteristic volumes and topology of the cluster of visited nodes and find that the reinforced attraction to hubs results in expediting exploration first but delaying later, as characterized by the scaling exponents that we derive. Our findings and analysis method can be useful for understanding various diffusion processes mediated by human.

  18. Optimal paths as correlated random walks

    Science.gov (United States)

    Perlsman, E.; Havlin, S.

    2006-01-01

    A numerical study of optimal paths in the directed polymer model shows that the paths are similar to correlated random walks. It is shown that when a directed optimal path of length t is divided into 3 segments whose length is t/3, the correlation between the transversal movements along the first and last path segments is independent of the path length t. It is also shown that the transversal correlations along optimal paths decrease as the paths approach their endpoints. The numerical results obtained for optimal paths in 1+4 dimensions are qualitatively similar to those obtained for optimal paths in lower dimensions, and the data supplies a strong numerical indication that 1+4 is not the upper critical dimension of this model, and of the associated KPZ equation.

  19. Microdissection and chromosome painting of the alien chromosome in an addition line of wheat-Thinopyrum intermedium

    Science.gov (United States)

    The chromosome painting is an efficient tool for chromosome research. However, plant chromosome painting is relatively underdeveloped. In this study, chromosome painting was developed and used to identify alien chromosomes in TAi-27, a wheat-Thinopyrum intermedium addition line, and chromosomes of...

  20. Bacterial Chromosome Organization and Segregation

    OpenAIRE

    Toro, Esteban; Shapiro, Lucy

    2010-01-01

    Bacterial chromosomes are generally ∼1000 times longer than the cells in which they reside, and concurrent replication, segregation, and transcription/translation of this crowded mass of DNA poses a challenging organizational problem. Recent advances in cell-imaging technology with subdiffraction resolution have revealed that the bacterial nucleoid is reliably oriented and highly organized within the cell. Such organization is transmitted from one generation to the next by progressive segrega...

  1. Environmental pollution, chromosomes, and health

    Science.gov (United States)

    Bell, Peter M.

    In mid-May, 1980, President Carter declared a state of emergency at the Love Canal area, near Niagara Falls, New York. The reason for this was for the U.S. to underwrite the relocation costs ($3-5 million) of some 2500 residents who, according to a report by the EPA (Environmental Protection Agency) may have suffered damaged chromosomes. These injuries were apparently caused by contact with toxic wastes that had been dumped in the area in the years prior to development for housing.That the toxic compounds exist in the Love Canal and Niagara Falls subsurface zones, including public water supplies, appears to be established fact. That the residents of the Love Canal area suffered chromosomal damage may be established fact as well. Whether or not these two findings can be linked to ill health of the residents is another matter. Recently, the EPA report has been described as having ‘close to zero scientific significance,’ and has been ‘discredited’(Science, 208, 123a, 1980). The reasons for this disparity go beyond differences of opinion, beyond possible inadequacies of the EPA study, and even beyond problems that probably will arise from future studies, including those now in the planning stages. The problem is that even if victims have easily recognizable injuries from toxic substances (injury that apparently has not occurred to Love Canal residents), medical science usually cannot show a causal relationship. Even chromosomal damage is, at best, difficult to interpret. In ideal studies of significant populations and control groups, the association of toxic chemical to chromosome damage and to cancer and birth defects is indirect and, up to now, has been shown to have little or no significance to an individual member of the exposed population.

  2. GSK-3 inhibitors induce chromosome instability

    Directory of Open Access Journals (Sweden)

    Staples Oliver D

    2007-08-01

    Full Text Available Abstract Background Several mechanisms operate during mitosis to ensure accurate chromosome segregation. However, during tumour evolution these mechanisms go awry resulting in chromosome instability. While several lines of evidence suggest that mutations in adenomatous polyposis coli (APC may promote chromosome instability, at least in colon cancer, the underlying mechanisms remain unclear. Here, we turn our attention to GSK-3 – a protein kinase, which in concert with APC, targets β-catenin for proteolysis – and ask whether GSK-3 is required for accurate chromosome segregation. Results To probe the role of GSK-3 in mitosis, we inhibited GSK-3 kinase activity in cells using a panel of small molecule inhibitors, including SB-415286, AR-A014418, 1-Azakenpaullone and CHIR99021. Analysis of synchronised HeLa cells shows that GSK-3 inhibitors do not prevent G1/S progression or cell division. They do, however, significantly delay mitotic exit, largely because inhibitor-treated cells have difficulty aligning all their chromosomes. Although bipolar spindles form and the majority of chromosomes biorient, one or more chromosomes often remain mono-oriented near the spindle poles. Despite a prolonged mitotic delay, anaphase frequently initiates without the last chromosome aligning, resulting in chromosome non-disjunction. To rule out the possibility of "off-target" effects, we also used RNA interference to selectively repress GSK-3β. Cells deficient for GSK-3β exhibit a similar chromosome alignment defect, with chromosomes clustered near the spindle poles. GSK-3β repression also results in cells accumulating micronuclei, a hallmark of chromosome missegregation. Conclusion Thus, not only do our observations indicate a role for GSK-3 in accurate chromosome segregation, but they also raise the possibility that, if used as therapeutic agents, GSK-3 inhibitors may induce unwanted side effects by inducing chromosome instability.

  3. Mechanisms of Chromosome Congression during Mitosis

    Science.gov (United States)

    Maiato, Helder; Gomes, Ana Margarida; Sousa, Filipe; Barisic, Marin

    2017-01-01

    Chromosome congression during prometaphase culminates with the establishment of a metaphase plate, a hallmark of mitosis in metazoans. Classical views resulting from more than 100 years of research on this topic have attempted to explain chromosome congression based on the balance between opposing pulling and/or pushing forces that reach an equilibrium near the spindle equator. However, in mammalian cells, chromosome bi-orientation and force balance at kinetochores are not required for chromosome congression, whereas the mechanisms of chromosome congression are not necessarily involved in the maintenance of chromosome alignment after congression. Thus, chromosome congression and maintenance of alignment are determined by different principles. Moreover, it is now clear that not all chromosomes use the same mechanism for congressing to the spindle equator. Those chromosomes that are favorably positioned between both poles when the nuclear envelope breaks down use the so-called “direct congression” pathway in which chromosomes align after bi-orientation and the establishment of end-on kinetochore-microtubule attachments. This favors the balanced action of kinetochore pulling forces and polar ejection forces along chromosome arms that drive chromosome oscillatory movements during and after congression. The other pathway, which we call “peripheral congression”, is independent of end-on kinetochore microtubule-attachments and relies on the dominant and coordinated action of the kinetochore motors Dynein and Centromere Protein E (CENP-E) that mediate the lateral transport of peripheral chromosomes along microtubules, first towards the poles and subsequently towards the equator. How the opposite polarities of kinetochore motors are regulated in space and time to drive congression of peripheral chromosomes only now starts to be understood. This appears to be regulated by position-dependent phosphorylation of both Dynein and CENP-E and by spindle microtubule

  4. Mechanisms of Chromosome Congression during Mitosis

    Directory of Open Access Journals (Sweden)

    Helder Maiato

    2017-02-01

    Full Text Available Chromosome congression during prometaphase culminates with the establishment of a metaphase plate, a hallmark of mitosis in metazoans. Classical views resulting from more than 100 years of research on this topic have attempted to explain chromosome congression based on the balance between opposing pulling and/or pushing forces that reach an equilibrium near the spindle equator. However, in mammalian cells, chromosome bi-orientation and force balance at kinetochores are not required for chromosome congression, whereas the mechanisms of chromosome congression are not necessarily involved in the maintenance of chromosome alignment after congression. Thus, chromosome congression and maintenance of alignment are determined by different principles. Moreover, it is now clear that not all chromosomes use the same mechanism for congressing to the spindle equator. Those chromosomes that are favorably positioned between both poles when the nuclear envelope breaks down use the so-called “direct congression” pathway in which chromosomes align after bi-orientation and the establishment of end-on kinetochore-microtubule attachments. This favors the balanced action of kinetochore pulling forces and polar ejection forces along chromosome arms that drive chromosome oscillatory movements during and after congression. The other pathway, which we call “peripheral congression”, is independent of end-on kinetochore microtubule-attachments and relies on the dominant and coordinated action of the kinetochore motors Dynein and Centromere Protein E (CENP-E that mediate the lateral transport of peripheral chromosomes along microtubules, first towards the poles and subsequently towards the equator. How the opposite polarities of kinetochore motors are regulated in space and time to drive congression of peripheral chromosomes only now starts to be understood. This appears to be regulated by position-dependent phosphorylation of both Dynein and CENP-E and by spindle

  5. Construction of physical maps for the sex-specific regions of papaya sex chromosomes

    Directory of Open Access Journals (Sweden)

    Na Jong-Kuk

    2012-05-01

    Full Text Available Abstract Background Papaya is a major fruit crop in tropical and subtropical regions worldwide. It is trioecious with three sex forms: male, female, and hermaphrodite. Sex determination is controlled by a pair of nascent sex chromosomes with two slightly different Y chromosomes, Y for male and Yh for hermaphrodite. The sex chromosome genotypes are XY (male, XYh (hermaphrodite, and XX (female. The papaya hermaphrodite-specific Yh chromosome region (HSY is pericentromeric and heterochromatic. Physical mapping of HSY and its X counterpart is essential for sequencing these regions and uncovering the early events of sex chromosome evolution and to identify the sex determination genes for crop improvement. Results A reiterate chromosome walking strategy was applied to construct the two physical maps with three bacterial artificial chromosome (BAC libraries. The HSY physical map consists of 68 overlapped BACs on the minimum tiling path, and covers all four HSY-specific Knobs. One gap remained in the region of Knob 1, the only knob structure shared between HSY and X, due to the lack of HSY-specific sequences. This gap was filled on the physical map of the HSY corresponding region in the X chromosome. The X physical map consists of 44 BACs on the minimum tiling path with one gap remaining in the middle, due to the nature of highly repetitive sequences. This gap was filled on the HSY physical map. The borders of the non-recombining HSY were defined genetically by fine mapping using 1460 F2 individuals. The genetically defined HSY spanned approximately 8.5 Mb, whereas its X counterpart extended about 5.4 Mb including a 900 Kb region containing the Knob 1 shared by the HSY and X. The 8.5 Mb HSY corresponds to 4.5 Mb of its X counterpart, showing 4 Mb (89% DNA sequence expansion. Conclusion The 89% increase of DNA sequence in HSY indicates rapid expansion of the Yh chromosome after genetic recombination was suppressed 2–3 million years ago. The

  6. Chromosome aberration assays in Allium

    Energy Technology Data Exchange (ETDEWEB)

    Grant, W.F.

    1982-01-01

    The common onion (Allium cepa) is an excellent plant for the assay of chromosome aberrations after chemical treatment. Other species of Allium (A. cepa var. proliferum, A. carinatum, A. fistulosum and A. sativum) have also been used but to a much lesser extent. Protocols have been given for using root tips from either bulbs or seeds of Allium cepa to study the cytological end-points, such as chromosome breaks and exchanges, which follow the testing of chemicals in somatic cells. It is considered that both mitotic and meiotic end-points should be used to a greater extent in assaying the cytogenetic effects of a chemical. From a literature survey, 148 chemicals are tabulated that have been assayed in 164 Allium tests for their clastogenic effect. Of the 164 assays which have been carried out, 75 are reported as giving a positive reaction, 49 positive and with a dose response, 1 positive and temperature-related, 9 borderline positive, and 30 negative; 76% of the chemicals gave a definite positive response. It is proposed that the Allium test be included among those tests routinely used for assessing chromosomal damage induced by chemicals.

  7. Demand response to improved walking infrastructure: A study into the economics of walking and health behaviour change.

    Science.gov (United States)

    Longo, Alberto; Hutchinson, W George; Hunter, Ruth F; Tully, Mark A; Kee, Frank

    2015-10-01

    Walking is the most common form of moderate-intensity physical activity among adults, is widely accessible and especially appealing to obese people. Most often policy makers are interested in valuing the effect on walking of changes in some characteristics of a neighbourhood, the demand response for walking, of infrastructure changes. A positive demand response to improvements in the walking environment could help meet the public health target of 150 min of at least moderate-intensity physical activity per week. We model walking in an individual's local neighbourhood as a 'weak complement' to the characteristics of the neighbourhood itself. Walking is affected by neighbourhood characteristics, substitutes, and individual's characteristics, including their opportunity cost of time. Using compensating variation, we assess the economic benefits of walking and how walking behaviour is affected by improvements to the neighbourhood. Using a sample of 1209 respondents surveyed over a 12 month period (Feb 2010-Jan 2011) in East Belfast, United Kingdom, we find that a policy that increased walkability and people's perception of access to shops and facilities would lead to an increase in walking of about 36 min/person/week, valued at £13.65/person/week. When focussing on inactive residents, a policy that improved the walkability of the area would lead to guidelines for physical activity being reached by only 12.8% of the population who are currently inactive. Additional interventions would therefore be needed to encourage inactive residents to achieve the recommended levels of physical activity, as it appears that interventions that improve the walkability of an area are particularly effective in increasing walking among already active citizens, and, among the inactive ones, the best response is found among healthier, younger and wealthier citizens.

  8. Deletion breakpoint mapping on chromosome 9p21 in breast cancer cell line MCF-7

    Directory of Open Access Journals (Sweden)

    Hua-ping XIE

    2012-05-01

    Full Text Available Objective  To map the deletion breakpoint of chromosome 9p21 in breast cancer cell line MCF-7. Methods  The deletion of chromosome 9p21 was checked by Multiplex Ligation-dependent Probe Amplification (MLPA in MCF-7. Subsequently, the deletion breakpoint was amplified by long range PCR and the deletion region was narrowed by primer walking. Finally, the deletion position was confirmed by sequencing. Results  The deletion was found starting within the MTAP gene and ending within CDKN2A gene by MLPA. Based on long range PCR and primer walking, the deletion was confirmed to cover the region from chr9:21819532 to chr9:21989622 by sequencing, with a deletion size of 170kb, starting within the intron 4 of MTAP and ending within the intron 1 near exon 1β of CDKN2A. Conclusions  Long range PCR is an efficient way to detect deletion breakpoints. In MCF-7, the deletion has been confirmed to be 170kb, starting within the MTAP gene and ending within the CDKN2A gene. The significance of the deletion warrants further research.

  9. Chromosomal divergence and evolutionary inferences in Rhodniini based on the chromosomal location of ribosomal genes

    Directory of Open Access Journals (Sweden)

    Sebastian Pita

    2013-05-01

    Full Text Available In this study, we used fluorescence in situ hybridisation to determine the chromosomal location of 45S rDNA clusters in 10 species of the tribe Rhodniini (Hemiptera: Reduviidae: Triatominae. The results showed striking inter and intraspecific variability, with the location of the rDNA clusters restricted to sex chromosomes with two patterns: either on one (X chromosome or both sex chromosomes (X and Y chromosomes. This variation occurs within a genus that has an unchanging diploid chromosome number (2n = 22, including 20 autosomes and 2 sex chromosomes and a similar chromosome size and genomic DNA content, reflecting a genome dynamic not revealed by these chromosome traits. The rDNA variation in closely related species and the intraspecific polymorphism in Rhodnius ecuadoriensis suggested that the chromosomal position of rDNA clusters might be a useful marker to identify recently diverged species or populations. We discuss the ancestral position of ribosomal genes in the tribe Rhodniini and the possible mechanisms involved in the variation of the rDNA clusters, including the loss of rDNA loci on the Y chromosome, transposition and ectopic pairing. The last two processes involve chromosomal exchanges between both sex chromosomes, in contrast to the widely accepted idea that the achiasmatic sex chromosomes of Heteroptera do not interchange sequences.

  10. Whole chromosome painting of B chromosomes of the red-eye tetra Moenkhausia sanctaefilomenae (Teleostei, Characidae).

    Science.gov (United States)

    Scudeler, Patricia Elda Sobrinho; Diniz, Débora; Wasko, Adriane Pinto; Oliveira, Claudio; Foresti, Fausto

    2015-01-01

    B chromosomes are dispensable genomic elements found in different groups of animals and plants. In the present study, a whole chromosome probe was generated from a specific heterochromatic B chromosome occurring in cells of the characidae fish Moenkhausia sanctaefilomenae (Steindachner, 1907). The chromosome painting probes were used in fluorescence in situ hybridization (FISH) experiments for the assessment of metaphase chromosomes obtained from individuals from three populations of Moenkhausia sanctaefilomenae. The results revealed that DNA sequences were shared between a specific B chromosome and many chromosomes of the A complement in all populations analyzed, suggesting a possible intra-specific origin of these B chromosomes. However, no hybridization signals were observed in other B chromosomes found in the same individuals, implying a possible independent origin of B chromosome variants in this species. FISH experiments using 18S rDNA probes revealed the presence of non-active ribosomal genes in some B chromosomes and in some chromosomes of the A complement, suggesting that at least two types of B chromosomes had an independent origin. The role of heterochromatic segments and ribosomal sequences in the origin of B chromosomes were discussed.

  11. Automaticity of walking: functional significance, mechanisms, measurement and rehabilitation strategies

    Directory of Open Access Journals (Sweden)

    David J Clark

    2015-05-01

    Full Text Available Automaticity is a hallmark feature of walking in adults who are healthy and well-functioning. In the context of walking, ‘automaticity’ refers to the ability of the nervous system to successfully control typical steady state walking with minimal use of attention-demanding executive control resources. Converging lines of evidence indicate that walking deficits and disorders are characterized in part by a shift in the locomotor control strategy from healthy automaticity to compensatory executive control. This is potentially detrimental to walking performance, as an executive control strategy is not optimized for locomotor control. Furthermore, it places excessive demands on a limited pool of executive reserves. The result is compromised ability to perform basic and complex walking tasks and heightened risk for adverse mobility outcomes including falls. Strategies for rehabilitation of automaticity are not well defined, which is due to both a lack of systematic research into the causes of impaired automaticity and to a lack of robust neurophysiological assessments by which to gauge automaticity. These gaps in knowledge are concerning given the serious functional implications of compromised automaticity. Therefore, the objective of this article is to advance the science of automaticity of walking by consolidating evidence and identifying gaps in knowledge regarding: a functional significance of automaticity; b neurophysiology of automaticity; c measurement of automaticity; d mechanistic factors that compromise automaticity; and e strategies for rehabilitation of automaticity.

  12. Rotor-Router Walks on Directed Covers of Graphs

    CERN Document Server

    Huss, Wilfried

    2012-01-01

    The aim of this paper is to study the behaviour of rotor-router walks on directed covers of finite graphs. The latter are also called in the literature trees with finitely many cone types or periodic trees. A rotor-router walk is a deterministic version of a random walk, in which the walker is routed to each of the neighbouring vertices in some fixed cyclic order. We study several quantities related to rotor-router walks such as: order of the rotor-router group, order of the root element in the rotor-router group and the connection with random walks. For random initial configurations of rotors, we also address the question of recurrence and transience of transfinite rotor-router walks. On homogeneous trees, the recurrence/transience was studied by Angel and Holroyd. We extend their theory and provide an example of a directed cover such that the rotor-router walk can be either recurrent or transient, depending only on the planar embedding of the periodic tree.

  13. Foot trajectory approximation using the pendulum model of walking.

    Science.gov (United States)

    Fang, Juan; Vuckovic, Aleksandra; Galen, Sujay; Conway, Bernard A; Hunt, Kenneth J

    2014-01-01

    Generating a natural foot trajectory is an important objective in robotic systems for rehabilitation of walking. Human walking has pendular properties, so the pendulum model of walking has been used in bipedal robots which produce rhythmic gait patterns. Whether natural foot trajectories can be produced by the pendulum model needs to be addressed as a first step towards applying the pendulum concept in gait orthosis design. This study investigated circle approximation of the foot trajectories, with focus on the geometry of the pendulum model of walking. Three able-bodied subjects walked overground at various speeds, and foot trajectories relative to the hip were analysed. Four circle approximation approaches were developed, and best-fit circle algorithms were derived to fit the trajectories of the ankle, heel and toe. The study confirmed that the ankle and heel trajectories during stance and the toe trajectory in both the stance and the swing phases during walking at various speeds could be well modelled by a rigid pendulum. All the pendulum models were centred around the hip with pendular lengths approximately equal to the segment distances from the hip. This observation provides a new approach for using the pendulum model of walking in gait orthosis design.

  14. Survey of Korean pedestrians' natural preference for walking directions.

    Science.gov (United States)

    Jung, Hwa S; Jung, Hyung-Shik

    2013-11-01

    The primary objective of this study was to investigate the stereotypes of Koreans regarding preferred walking directions when encountering various public walking facilities, and to provide useful information to pedestrians and traffic policy legislators. To this end, this study was conducted in two phases. In the first phase, we conducted observational research on pedestrians' walking directions in ten different situations. In the second phase, six hundred Korean male and female subjects were selected to investigate the various statistics about their preferred walking directions and their employment characteristics in diverse walking facilities. The results showed that 59.3% abided by the Left-side Traffic rule while 40.7% abided by the Right-side rule. On the contrary, 73.7% of respondents showed preferences to the Right-side Traffic rule. Moreover, right-handed people showed strong tendencies to walk on the right side of the road and vice versa, hence suggesting that the direction people naturally prefer in walking should be a crucial determinant when regulating traffic policies.

  15. Simulation Studies of Bipedal Walking on the Moon and Mars

    Science.gov (United States)

    Yamada, Shin; Ohshima, Hiroshi; Yamaguchi, Tomofumi; Narukawa, Terumasa; Takahashi, Masaki; Hase, Kimitaka; Liu, Meigen; Mukai, Chiaki

    In order to walk upright on the Moon or Mars without falling, a specific walking strategy to account for altered gravitational conditions must be verified. We have therefore been studying changes in the kinematics of walking at different gravitational loads using a body weight suspension system. Our simulation consisted of three gravitational conditions: 1 g (Earth); 1/3 g (Mars); and 1/6 g (the Moon). Surface EMG recordings were taken from the leg muscles of subjects walking on a treadmill. Cadence, stance phase duration, and step length were calculated from the walking velocity and steps. Subsequent experiments revealed that muscle activity and the duration of the double support phase decreased as simulated gravity was reduced. These changes are apparently caused not only by the direct effects of unloading but also by kinematic adaptations to the same. It can be said that humans walk slowly with a shortened stride and elongated stance phase in order to adjust to low gravitational conditions. One major limitation of our study that may have affected walking stability was the fact that the suspension system was fixed to an immovable frame. We have begun further studies using a newer movable body weight suspension system to achieve more realistic simulations.

  16. Intersegmental coordination of walking movements in stick insects.

    Science.gov (United States)

    Ludwar, Björn Ch; Göritz, Marie L; Schmidt, Joachim

    2005-03-01

    Locomotion requires the coordination of movements across body segments, which in walking animals is expressed as gaits. We studied the underlying neural mechanisms of this coordination in a semi-intact walking preparation of the stick insect Carausius morosus. During walking of a single front leg on a treadmill, leg motoneuron (MN) activity tonically increased and became rhythmically modulated in the ipsilateral deafferented and deefferented mesothoracic (middle leg) ganglion. The pattern of modulation was correlated with the front leg cycle and specific for a given MN pool, although it was not consistent with functional leg movements for all MN pools. In an isolated preparation of a pair of ganglia, where one ganglion was made rhythmically active by application of pilocarpine, we found no evidence for coupling between segmental central pattern generators (CPGs) that could account for the modulation of MN activity observed in the semi-intact walking preparation. However, a third preparation provided evidence that signals from the front leg's femoral chordotonal organ (fCO) influenced activity of ipsilateral MNs in the adjacent mesothoracic ganglion. These intersegmental signals could be partially responsible for the observed MN activity modulation during front leg walking. While afferent signals from a single walking front leg modulate the activity of MNs in the adjacent segment, additional afferent signals, local or from contralateral or posterior legs, might be necessary to produce the functional motor pattern observed in freely walking animals.

  17. Treadmill motor current value based walk phase estimation.

    Science.gov (United States)

    Ohki, Eiichi; Nakashima, Yasutaka; Ando, Takeshi; Fujie, Masakatsu G

    2009-01-01

    We have developed a gait rehabilitation robot for hemiplegic patients using the treadmill. A walk phase, which includes time balance of stance and swing legs, is one of the most basic indexes to evaluate patients' gait. In addition, the walking phase is one of the indexes to control our robotic rehabilitation system. However, conventional methods to measure the walk phase require another system such as the foot switch and force plate. In this paper, an original algorithm to estimate the walk phase of a person on a treadmill using only the current value of DC motor to control the treadmill velocity is proposed. This algorithm was verified by experiments on five healthy subjects, and the walk phase of four subjects could be estimated in 0.2 (s) errors. However, the algorithm had erroneously identified a period of time in the stance phase as swing phase time when little body weight loaded on the subject's leg. Because a period of time with little body weight to affected leg is often observed in a hemiplegic walk, the proposed algorithm might fail to properly estimate the walk phase of hemiplegic patients. However, this algorithm could be used to estimate the time when body weight is loaded on patient legs, and thus could be used as a new quantitative evaluation index.

  18. Chromosome aberrations induced by zebularine in triticale.

    Science.gov (United States)

    Ma, Xuhui; Wang, Qing; Wang, Yanzhi; Ma, Jieyun; Wu, Nan; Ni, Shuang; Luo, Tengxiao; Zhuang, Lifang; Chu, Chenggen; Cho, Seong-Woo; Tsujimoto, Hisashi; Qi, Zengjun

    2016-07-01

    Chromosome engineering is an important approach for generating wheat germplasm. Efficient development of chromosome aberrations will facilitate the introgression and application of alien genes in wheat. In this study, zebularine, a DNA methylation transferase inhibitor, was successfully used to induce chromosome aberrations in the octoploid triticale cultivar Jinghui#1. Dry seeds were soaked in zebularine solutions (250, 500, and 750 μmol/L) for 24 h, and the 500 μmol/L treatment was tested in three additional treatment times, i.e., 12, 36, and 48 h. All treatments induced aberrations involving wheat and rye chromosomes. Of the 920 cells observed in 67 M1 plants, 340 (37.0%) carried 817 aberrations with an average of 0.89 aberrations per cell (range: 0-12). The aberrations included probable deletions, telosomes and acentric fragments (49.0%), large segmental translocations (28.9%), small segmental translocations (17.1%), intercalary translocations (2.6%), long chromosomes that could carry more than one centromere (2.0%), and ring chromosomes (0.5%). Of 510 M2 plants analyzed, 110 (21.6%) were found to carry stable aberrations. Such aberrations included 79 with varied rye chromosome numbers, 7 with wheat and rye chromosome translocations, 15 with possible rye telosomes/deletions, and 9 with complex aberrations involving variation in rye chromosome number and wheat-rye translocations. These indicated that aberrations induced by zebularine can be steadily transmitted, suggesting that zebularine is a new efficient agent for chromosome manipulation.

  19. The importance of having two X chromosomes.

    Science.gov (United States)

    Arnold, Arthur P; Reue, Karen; Eghbali, Mansoureh; Vilain, Eric; Chen, Xuqi; Ghahramani, Negar; Itoh, Yuichiro; Li, Jingyuan; Link, Jenny C; Ngun, Tuck; Williams-Burris, Shayna M

    2016-02-19

    Historically, it was thought that the number of X chromosomes plays little role in causing sex differences in traits. Recently, selected mouse models have been used increasingly to compare mice with the same type of gonad but with one versus two copies of the X chromosome. Study of these models demonstrates that mice with one X chromosome can be strikingly different from those with two X chromosomes, when the differences are not attributable to confounding group differences in gonadal hormones. The number of X chromosomes affects adiposity and metabolic disease, cardiovascular ischaemia/reperfusion injury and behaviour. The effects of X chromosome number are likely the result of inherent differences in expression of X genes that escape inactivation, and are therefore expressed from both X chromosomes in XX mice, resulting in a higher level of expression when two X chromosomes are present. The effects of X chromosome number contribute to sex differences in disease phenotypes, and may explain some features of X chromosome aneuploidies such as in Turner and Klinefelter syndromes.

  20. Chromosome analysis of arsenic affected cattle

    Directory of Open Access Journals (Sweden)

    S. Shekhar

    2014-10-01

    Full Text Available Aim: The aim was to study the chromosome analysis of arsenic affected cattle. Materials and Methods: 27 female cattle (21 arsenic affected and 6 normal were selected for cytogenetical study. The blood samples were collected, incubated, and cultured using appropriate media and specific methods. The samples were analyzed for chromosome number and morphology, relative length of the chromosome, arm ratio, and centromere index of X chromosome and chromosomal abnormalities in arsenic affected cattle to that of normal ones. Results: The diploid number of metaphase chromosomes in arsenic affected cattle as well as in normal cattle were all 2n=60, 58 being autosomes and 2 being sex chromosomes. From the centromeric position, karyotyping studies revealed that all the 29 pair of autosomes was found to be acrocentric or telocentric, and the sex chromosomes (XX were submetacentric in both normal and arsenic affected cattle. The relative length of all the autosome pairs and sex chrosomosome pair was found to be higher in normal than that of arsenic affected cattle. The mean arm ratio of X-chromosome was higher in normal than that of arsenic affected cattle, but it is reverse in case of centromere index value of X-chromosome. There was no significant difference of arm ratio and centromere index of X-chromosomes between arsenic affected and normal cattle. No chromosomal abnormalities were found in arsenic affected cattle. Conclusion: The chromosome analysis of arsenic affected cattle in West Bengal reported for the first time in this present study which may serve as a guideline for future studies in other species. These reference values will also help in comparison of cytological studies of arsenic affected cattle to that of various toxicants.

  1. Infant Social Development across the Transition from Crawling to Walking.

    Science.gov (United States)

    Walle, Eric A

    2016-01-01

    The onset of walking is a developmental transition that sets in motion a cascade of change across a range of domains, including social interactions and language learning. However, research on the unfolding of such change in the infant across this transition is limited. This investigation utilized a longitudinal design to examine the effect of walking acquisition on infant social development and parent perceptions of the infant to explore how changes in these factors relate with infant language development. Parents reported on infant social behaviors and their perception of the infant, as well as motor and language development, in 2-week intervals from 10.5 to 13 months of age. Mixed linear models revealed infant initiation of joint engagement (e.g., pointing, bringing objects to the parent) and following of the parent's joint engagement cues (e.g., point following, gaze following) increased as a function of infant walking experience, particularly between 2- and 4-weeks after the onset of walking, independent of age. Additionally, the parent's perception of the infant as an individual increased between 2- and 4-weeks after the infant began to walk. Finally, the unique relations of infant walking experience, following of social cues, and the parents' perception of the infant as an individual with infant language development were examined. Infant following of joint engagement behaviors and parent perception of the infant as an individual were related to receptive, but not productive, vocabulary size. Additionally, infant walking experience remained a significant predictor of infant receptive and productive language. These findings provide insight on important factors that change as the infant begins to walk. Future research utilizing more direct assessment of these factors is described, as well as general patterning of developmental change across the transition from crawling to walking.

  2. Implementing entangling gates via quantum walks through branching graphs

    Science.gov (United States)

    Solenov, Dmitry; Cavin, Thomas

    Efficient quantum gates are essential to quantum computing. It was found recently that quantum walks can enhance performance of quantum gates. We investigate how the propagation of a complicated, branching system can be solved analytically by first mapping it to linear chain. We found that certain types of systems, including systems of n qubits, can be algorithmically mapped to a system of disjoint linear chains. In particular, we found a solution for the 3 qubit system that performs either a trivial return walk or a return walk with a phase of pi introduced.

  3. Quantum state revivals in quantum walks on cycles

    Directory of Open Access Journals (Sweden)

    Phillip R. Dukes

    2014-01-01

    Full Text Available Recurrence in the classical random walk is well known and described by the Pólya number. For quantum walks, recurrence is similarly understood in terms of the probability of a localized quantum walker to return to its origin. Under certain circumstances the quantum walker may also return to an arbitrary initial quantum state in a finite number of steps. Quantum state revivals in quantum walks on cycles using coin operators which are constant in time and uniform across the path have been described before but only incompletely. In this paper we find the general conditions for which full-quantum state revival will occur.

  4. Discrete Quantum Walk on a Line with Two Entangled Particles

    CERN Document Server

    Nsofini, Joachim

    2012-01-01

    A review of discrete quantum walk with two particle is given. The use of different states encountered in identical particle, and the idea of entanglement and superposition is explored to explored the interesting dynamics of two particle quantum walk. Boundary conditions can specify certain dynamics and so a survey of periodic boundary condition (circle) is presented. A simulation for a Hadamard walk for different periods of a circle is considered and results are compared for various periods and for a case with absorbing boundaries.

  5. Pseudo-Hermitian continuous-time quantum walks

    Energy Technology Data Exchange (ETDEWEB)

    Salimi, S; Sorouri, A, E-mail: shsalimi@uok.ac.i, E-mail: a.sorouri@uok.ac.i [Department of Physics, University of Kurdistan, PO Box 66177-15175, Sanandaj (Iran, Islamic Republic of)

    2010-07-09

    In this paper we present a model exhibiting a new type of continuous-time quantum walk (as a quantum-mechanical transport process) on networks, which is described by a non-Hermitian Hamiltonian possessing a real spectrum. We call it pseudo-Hermitian continuous-time quantum walk. We introduce a method to obtain the probability distribution of walk on any vertex and then study a specific system. We observe that the probability distribution on certain vertices increases compared to that of the Hermitian case. This formalism makes the transport process faster and can be useful for search algorithms.

  6. Simulation of neutrino oscillations using discrete-time quantum walk

    CERN Document Server

    Mallick, Arindam; Chandrashekar, C M

    2016-01-01

    Neutrino oscillation is a well-known phenomenon observed in high energy physics. Here starting from a one-spatial dimensional discrete-time quantum walk we present a method to simulate neutrino oscillation. We present the set of walk parameters with which we can obtain the same oscillation probability profile obtained in both, long range and short range neutrino experiment. Our scheme to simulate three-generation neutrino oscillation from quantum walk evolution operators can be physically realized in any low energy experimental setup with access to control a single six-level system, a multiparticle three-qubits or a qubit-qutrit system.

  7. Audio-haptic interaction in simulated walking experiences

    DEFF Research Database (Denmark)

    Serafin, Stefania

    2011-01-01

    and interchangeable use of the haptic and auditory modality in floor interfaces, and for the synergy of perception and action in capturing and guiding human walking. We describe the technology developed in the context of this project, together with some experiments performed to evaluate the role of auditory......In this paper an overview of the work conducted on audio-haptic physically based simulation and evaluation of walking is provided. This work has been performed in the context of the Natural Interactive Walking (NIW) project, whose goal is to investigate possibilities for the integrated...

  8. Deciphering evolutionary strata on plant sex chromosomes and fungal mating-type chromosomes through compositional segmentation.

    Science.gov (United States)

    Pandey, Ravi S; Azad, Rajeev K

    2016-03-01

    Sex chromosomes have evolved from a pair of homologous autosomes which differentiated into sex determination systems, such as XY or ZW system, as a consequence of successive recombination suppression between the gametologous chromosomes. Identifying the regions of recombination suppression, namely, the "evolutionary strata", is central to understanding the history and dynamics of sex chromosome evolution. Evolution of sex chromosomes as a consequence of serial recombination suppressions is well-studied for mammals and birds, but not for plants, although 48 dioecious plants have already been reported. Only two plants Silene latifolia and papaya have been studied until now for the presence of evolutionary strata on their X chromosomes, made possible by the sequencing of sex-linked genes on both the X and Y chromosomes, which is a requirement of all current methods that determine stratum structure based on the comparison of gametologous sex chromosomes. To circumvent this limitation and detect strata even if only the sequence of sex chromosome in the homogametic sex (i.e. X or Z chromosome) is available, we have developed an integrated segmentation and clustering method. In application to gene sequences on the papaya X chromosome and protein-coding sequences on the S. latifolia X chromosome, our method could decipher all known evolutionary strata, as reported by previous studies. Our method, after validating on known strata on the papaya and S. latifolia X chromosome, was applied to the chromosome 19 of Populus trichocarpa, an incipient sex chromosome, deciphering two, yet unknown, evolutionary strata. In addition, we applied this approach to the recently sequenced sex chromosome V of the brown alga Ectocarpus sp. that has a haploid sex determination system (UV system) recovering the sex determining and pseudoautosomal regions, and then to the mating-type chromosomes of an anther-smut fungus Microbotryum lychnidis-dioicae predicting five strata in the non

  9. To walk or not to walk: insights from a qualitative description study with women suffering from fibromyalgia.

    Science.gov (United States)

    Sanz-Baños, Yolanda; Pastor, María-Ángeles; Velasco, Lilian; López-Roig, Sofía; Peñacoba, Cecilia; Lledo, Ana; Rodríguez, Charo

    2016-08-01

    Walking improves health outcomes in fibromyalgia; however, there is low adherence to this practice. The aim of this research was to explore the beliefs of women suffering from fibromyalgia toward walking, and the meaning that they attribute to the behavior of walking as part of their fibromyalgia treatment. This study is a qualitative description research. Forty-six (46) women suffering from fibromyalgia and associated with local fibromyalgia associations located in four different Spanish cities (Elche, Alicante, Madrid, and Talavera de la Reina) participated in focus group discussions in the summer 2012. Thematic content analysis was performed in transcribed verbatim from interviews. Participants perceived several inhibitors for walking even when they had positive beliefs toward its therapeutic value. Whereas participants believed that walking can generate improvement in their disease and their health in general, they did not feel able to actually do so given their many physical impediments. Furthermore, participants struggled with social isolation and stigma, which was lessened through the conscious support of family. Advice from family doctors was also a very important facilitator to participants. In a health care delivery context that favors person-centered care, and in order to foster adherence to walking-based fibromyalgia treatments, it is recommended that therapeutic walking programs be tailored to each woman' individual circumstances, and developed in close collaboration with them to help them increase control over their health and their condition.

  10. Scaling Chromosomes for an Evolutionary Karyotype: A Chromosomal Tradeoff between Size and Number across Woody Species.

    Science.gov (United States)

    Liang, Guolu; Chen, Hong

    2015-01-01

    This study aims to examine the expected scaling relationships between chromosome size and number across woody species and to clarify the importance of the scaling for the maintenance of chromosome diversity by analyzing the scaling at the inter- & intra-chromosomal level. To achieve for the goals, chromosome trait data were extracted for 191 woody species (including 56 evergreen species and 135 deciduous species) from the available literature. Cross-species analyses revealed a tradeoff among chromosomes between chromosome size and number, demonstrating there is selective mechanism crossing chromosomes among woody species. And the explanations for the result were presented from intra- to inter-chromosome contexts that the scaling may be compromises among scale symmetry, mechanical requirements, and resource allocation across chromosomes. Therein, a 3/4 scaling pattern was observed between total chromosomes and m-chromosomes within nucleus which may imply total chromosomes may evolve from more to less. In addition, the primary evolutionary trend of karyotype and the role of m-chromosomes in the process of karyotype evolution were also discussed.

  11. Microdissection and chromosome painting of X and B chromosomes in Locusta migratoria.

    Science.gov (United States)

    Teruel, María; Cabrero, Josefa; Montiel, Eugenia E; Acosta, Manuel J; Sánchez, Antonio; Camacho, Juan Pedro M

    2009-01-01

    Acquisition of knowledge of the nature and DNA content of B chromosomes has been triggered by a collection of molecular techniques, one of which, microdissection, has provided interesting results in a number of B chromosome systems. Here we provide the first data on the molecular composition of B chromosomes in Locusta migratoria, after microdissection of the B and X chromosomes, DNA amplification by one (B) or two (X) different methods, and chromosome painting. The results showed that B chromosomes share at least two types of repetitive DNA sequences with the A chromosomes, suggesting that Bs in this species most likely arose intraspecifically. One of these repetitive DNAs is located on the heterochromatic distal half of the B chromosome and in the pericentromeric regions of about half of the A chromosomes, including the X. The other type of repetitive DNA is located interspersedly over the non-centromeric euchromatic regions of all A chromosomes and in an interstitial part of the proximal euchromatic half of the B chromosome. Chromosome painting, however, did not provide results sufficiently reliable to determine, in this species, which A chromosome gave rise to the B; this might be done by detailed analysis of the microdissected DNA sequences.

  12. Chromosome-specific segmentation revealed by structural analysis of individually isolated chromosomes.

    Science.gov (United States)

    Kitada, Kunio; Taima, Akira; Ogasawara, Kiyomoto; Metsugi, Shouichi; Aikawa, Satoko

    2011-04-01

    Analysis of structural rearrangements at the individual chromosomal level is still technologically challenging. Here we optimized a chromosome isolation method using fluorescent marker-assisted laser-capture and laser-beam microdissection and applied it to structural analysis of two aberrant chromosomes found in a lung cancer cell line. A high-density array-comparative genomic hybridization (array-CGH) analysis of DNA samples prepared from each of the chromosomes revealed that these two chromosomes contained 296 and 263 segments, respectively, ranging from 1.5 kb to 784.3 kb in size, derived from different portions of chromosome 8. Among these segments, 242 were common in both aberrant chromosomes, but 75 were found to be chromosome-specific. Sequences of 263 junction sites connecting the ends of segments were determined using a PCR/Sanger-sequencing procedure. Overlapping microhomologies were found at 169 junction sites. Junction partners came from various portions of chromosome 8 and no biased pattern in the positional distribution of junction partners was detected. These structural characteristics suggested the occurrence of random fragmentation of the entire chromosome 8 followed by random rejoining of these fragments. Based on that, we proposed a model to explain how these aberrant chromosomes are formed. Through these structural analyses, it was demonstrated that the optimized chromosome isolation method described here can provide high-quality chromosomal DNA for high resolution array-CGH analysis and probably for massively parallel sequencing analysis.

  13. Building bridges within the bacterial chromosome.

    Science.gov (United States)

    Song, Dan; Loparo, Joseph J

    2015-03-01

    All organisms must dramatically compact their genomes to accommodate DNA within the cell. Bacteria use a set of DNA-binding proteins with low sequence specificity called nucleoid-associated proteins (NAPs) to assist in chromosome condensation and organization. By bending or bridging DNA, NAPs also facilitate chromosome segregation and regulate gene expression. Over the past decade, emerging single-molecule and chromosome conformation capture techniques have investigated the molecular mechanisms by which NAPs remodel and organize the bacterial chromosome. In this review we describe how such approaches reveal the biochemical mechanisms of three NAPs that are believed to facilitate DNA bridging: histone-like nucleoid structuring protein (H-NS), ParB, and structural maintenance of chromosomes (SMC). These three proteins form qualitatively different DNA bridges, leading to varied effects on transcription and chromosome segregation.

  14. Sexual maldevelopment and sex reversal, chromosomal causes.

    Science.gov (United States)

    Magenis, R Ellen

    2006-01-01

    The SRY gene on the Y chromosome is the testis determining factor (TDF). It is therefore the initial male determining factor. However, phenotypic sex determination includes a cascade of genes located on autosomes as well as sex chromosomes. Aberrations of these genes may cause sexual maldevelopment or sex reversal. Abnormalities may include single gene mutations and gene loss or gain-changes may involve only sex organs or may be part of syndromes. These changes may also arise as chromosome abnormalities involving contiguous genes. Eight cases with chromosomal abnormalities involving different causative mechanisms are described herein. The most common cause is nondisjunction, including loss or gain of sex chromosomes. Less common causes are mispairing and crossing over in meiosis, chromosome breaks with repair, nonhomologous pairing due to low copy repeats and crossing over, and translocation (familial or de novo) with segregation. Cases include: [see: text].

  15. Swing- and support-related muscle actions differentially trigger human walk-run and run-walk transitions.

    Science.gov (United States)

    Prilutsky, B I; Gregor, R J

    2001-07-01

    There has been no consistent explanation as to why humans prefer changing their gait from walking to running and from running to walking at increasing and decreasing speeds, respectively. This study examined muscle activation as a possible determinant of these gait transitions. Seven subjects walked and ran on a motor-driven treadmill for 40s at speeds of 55, 70, 85, 100, 115, 130 and 145% of the preferred transition speed. The movements of subjects were videotaped, and surface electromyographic activity was recorded from seven major leg muscles. Resultant moments at the leg joints during the swing phase were calculated. During the swing phase of locomotion at preferred running speeds (115, 130, 145%), swing-related activation of the ankle, knee and hip flexors and peaks of flexion moments were typically lower (Prunning than during walking. At preferred walking speeds (55, 70, 85%), support-related activation of the ankle and knee extensors was typically lower during stance of walking than during stance of running (Prun transition might be triggered by the increased sense of effort due to the exaggerated swing-related activation of the tibialis anterior, rectus femoris and hamstrings; this increased activation is necessary to meet the higher joint moment demands to move the swing leg during fast walking. The preferred run-walk transition might be similarly triggered by the sense of effort due to the higher support-related activation of the soleus, gastrocnemius and vastii that must generate higher forces during slow running than during walking at the same speed.

  16. Comparison of bioenergetics of walking during a multistage incremental shuttle walk test and a 6-min walk test in active older adults.

    Science.gov (United States)

    Leone, Mario; Duvergé, Sébastien; Kalinova, Émilia; Bui, Hung Tien; Comtois, Alain S

    2016-03-14

    The goal of the present research was to compare the bioenergetics variability of walking, during the 6-min walk test (6-MWT) and a multistage incremental shuttle walk test (MISWT) in an active older population. Twenty-two healthy physically active older adults with a group mean age of 70.4 ± 5.8 years completed the 6-MWT and the MISWT. Heart rate (HR), walking speed and walking [Formula: see text]O2 were measured throughout each test with a portable metabolic cart. Strong correlations were found for the [Formula: see text]O2 peak and the walking speed (r = 0.91 and r = 0.89 respectively for 6-MWT and MISWT). Differences in [Formula: see text]O2 peak values were analysed with a paired Student's t test. Repeated measures ANOVA were conducted to detect differences between tests. The Bland and Altman plot indicates that the average difference between both tests was 2.5 ml kg(-1) min(-1). MISWT [Formula: see text]O2 peak means were significantly greater than the 6-MWT [Formula: see text]O2 peak mean values (21.6 ± 5.3 vs. 18.9 ± 4.5 ml kg(-1) min(-1)) which indicate bioenergetics differences between the two walking tests. Thus, the MISWT and 6-MWT elicited different walking [Formula: see text]O2 peak and HR suggesting that the MISWT field test challenge the participants to a higher level of cardiovascular and respiratory stress. The walking [Formula: see text]O2 peak recorded for the MISWT was significantly greater than the 6-MWT. Consequently, both tests seem to measure different facets of the aerobic capacity. MISWT seems to be a better indicator of maximal aerobic power whereas the 6-MWT provides more relevant information regarding aerobic endurance in aging population.

  17. Chromosomal rearrangements in Tourette syndrome

    DEFF Research Database (Denmark)

    Bertelsen, Birgitte; Debes, Nanette Mol; Hjermind, Lena E

    2013-01-01

    Tourette syndrome (TS) is a childhood-onset complex neurobiological disorder characterized by a combination of persistent motor and vocal tics and frequent presence of other neuropsychiatric comorbidities. TS shares the fate of other complex disorders, where the genetic etiology is largely unknown......, and identification of susceptibility genes through linkage and association studies has been complicated due to inherent difficulties such as no clear mode of inheritance, genetic heterogeneity, and apparently incomplete penetrance. Positional cloning through mapping of disease-related chromosome rearrangements has...

  18. Meiosis I: When Chromosomes Undergo Extreme Makeover

    OpenAIRE

    Miller, Matthew P; Amon, Angelika; Ünal, Elçin

    2013-01-01

    The ultimate success of cell division relies on the accurate partitioning of the genetic material. Errors in this process occur in nearly all tumors and are the leading cause of miscarriages and congenital birth defects in humans. Two cell divisions, mitosis and meiosis, use common as well as unique mechanisms to ensure faithful chromosome segregation. In mitosis, alternating rounds of DNA replication and chromosome segregation preserves the chromosome complement of the progenitor cell. In co...

  19. A comparison of at-home walking and 10-meter walking test parameters of individuals with post-stroke hemiparesis

    OpenAIRE

    Nagano, Katsuhito; Hori, Hideaki; Muramatsu, Ken

    2015-01-01

    [Purpose] The purpose of this study was to clarify the difference in gait parameters of at-home walking and the 10-meter walking test results of individuals with hemiparesis. [Subjects] A total of 14 hemiparetic stroke recovery patients participated in this study. Inclusion criteria were: living at home, the ability to walk independently, and demonstrated low extremity on recovery stages III–V on the Brunnstrom Approach. The average age of the subjects was 66 years. [Methods] We used video su...

  20. Movement of chromosomes with severed kinetochore microtubules.

    Science.gov (United States)

    Forer, Arthur; Johansen, Kristen M; Johansen, Jørgen

    2015-05-01

    Experiments dating from 1966 and thereafter showed that anaphase chromosomes continued to move poleward after their kinetochore microtubules were severed by ultraviolet microbeam irradiation. These observations were initially met with scepticism as they contradicted the prevailing view that kinetochore fibre microtubules pulled chromosomes to the pole. However, recent experiments using visible light laser microbeam irradiations have corroborated these earlier experiments as anaphase chromosomes again were shown to move poleward after their kinetochore microtubules were severed. Thus, multiple independent studies using different techniques have shown that chromosomes can indeed move poleward without direct microtubule connections to the pole, with only a kinetochore 'stub' of microtubules. An issue not yet settled is: what propels the disconnected chromosome? There are two not necessarily mutually exclusive proposals in the literature: (1) chromosome movement is propelled by the kinetochore stub interacting with non-kinetochore microtubules and (2) chromosome movement is propelled by a spindle matrix acting on the stub. In this review, we summarise the data indicating that chromosomes can move with severed kinetochore microtubules and we discuss proposed mechanisms for chromosome movement with severed kinetochore microtubules.

  1. Genome architecture: domain organization of interphase chromosomes.

    Science.gov (United States)

    Bickmore, Wendy A; van Steensel, Bas

    2013-03-14

    The architecture of interphase chromosomes is important for the regulation of gene expression and genome maintenance. Chromosomes are linearly segmented into hundreds of domains with different protein compositions. Furthermore, the spatial organization of chromosomes is nonrandom and is characterized by many local and long-range contacts among genes and other sequence elements. A variety of genome-wide mapping techniques have made it possible to chart these properties at high resolution. Combined with microscopy and computational modeling, the results begin to yield a more coherent picture that integrates linear and three-dimensional (3D) views of chromosome organization in relation to gene regulation and other nuclear functions.

  2. Cognitive and medical features of chromosomal aneuploidy.

    Science.gov (United States)

    Hutaff-Lee, Christa; Cordeiro, Lisa; Tartaglia, Nicole

    2013-01-01

    This chapter describes the physical characteristics, medical complications, and cognitive and psychological profiles that are associated with chromosomal aneuploidy conditions, a group of conditions in which individuals are born with one or more additional chromosome. Overall, chromosomal aneuploidy conditions occur in approximately 1 in 250 children. Information regarding autosomal disorders including trisomy 21 (Down syndrome), trisomy 13 (Patau syndrome), and trisomy 18 (Edward syndrome) are presented. Sex chromosome aneuploidy conditions such as Klinefelter syndrome (47,XXY), XYY, trisomy X, and Turner syndrome (45,X), in addition to less frequently occurring tetrasomy and pentasomy conditions are also covered. Treatment recommendations and suggestions for future research directions are discussed.

  3. Research on automatic human chromosome image analysis

    Science.gov (United States)

    Ming, Delie; Tian, Jinwen; Liu, Jian

    2007-11-01

    Human chromosome karyotyping is one of the essential tasks in cytogenetics, especially in genetic syndrome diagnoses. In this thesis, an automatic procedure is introduced for human chromosome image analysis. According to different status of touching and overlapping chromosomes, several segmentation methods are proposed to achieve the best results. Medial axis is extracted by the middle point algorithm. Chromosome band is enhanced by the algorithm based on multiscale B-spline wavelets, extracted by average gray profile, gradient profile and shape profile, and calculated by the WDD (Weighted Density Distribution) descriptors. The multilayer classifier is used in classification. Experiment results demonstrate that the algorithms perform well.

  4. Meiotic chromosome abnormalities in human spermatogenesis.

    Science.gov (United States)

    Martin, Renée H

    2006-08-01

    The last few years have witnessed an explosion in the information about chromosome abnormalities in human sperm and the meiotic events that predispose to these abnormalities. We have determined that all chromosomes are susceptible to nondisjunction, but chromosomes 21 and 22 and, especially, the sex chromosomes have an increased frequency of aneuploidy. Studies are just beginning on the effects of potential mutagens on the chromosomal constitution of human sperm. The effects of pesticides and cancer therapeutic agents have been reviewed. In the last decade, there has been a great impetus to study chromosome abnormalities in sperm from infertile men because the advent of intracytoplasmic sperm injection (ICSI) made it possible for these men to father pregnancies. A large number of studies have demonstrated that infertile men have an increased frequency of chromosomally abnormal sperm and children, even when they have a normal somatic karyotype. Meiotic studies on the pachytene stage of spermatogenesis have demonstrated that infertile men have impaired chromosome synapsis, a significantly decreased frequency of recombination, and an increased frequency of chromosomes completely lacking a recombination site. Such errors make these cells susceptible to meiotic arrest and the production of aneuploid gametes.

  5. Real-Time Walk Light Detection with a Mobile Phone.

    Science.gov (United States)

    Ivanchenko, Volodymyr; Coughlan, James; Shen, Huiying

    2010-07-01

    Crossing an urban traffic intersection is one of the most dangerous activities of a blind or visually impaired person's travel. Building on past work by the authors on the issue of proper alignment with the crosswalk, this paper addresses the complementary issue of knowing when it is time to cross. We describe a prototype portable system that alerts the user in real time once the Walk light is illuminated. The system runs as a software application on an off-the-shelf Nokia N95 mobile phone, using computer vision algorithms to analyze video acquired by the built-in camera to determine in real time if a Walk light is currently visible. Once a Walk light is detected, an audio tone is sounded to alert the user. Experiments with a blind volunteer subject at urban traffic intersections demonstrate proof of concept of the system, which successfully alerted the subject when the Walk light appeared.

  6. Six-minute-walk test in chronic obstructive pulmonary disease

    DEFF Research Database (Denmark)

    Polkey, Michael I; Spruit, Martijn A; Edwards, Lisa D

    2013-01-01

    Outcomes other than spirometry are required to assess nonbronchodilator therapies for chronic obstructive pulmonary disease. Estimates of the minimal clinically important difference for the 6-minute-walk distance (6MWD) have been derived from narrow cohorts using nonblinded intervention....

  7. Interindividual differences in H reflex modulation during normal walking

    DEFF Research Database (Denmark)

    Simonsen, Erik B; Dyhre-Poulsen, Poul; Alkjaer, T

    2002-01-01

    of afferent input to the spinal cord, by EMG activity and by walking mechanics. Increasing H reflex excitability during the swing phase appears to protect the subject against unexpected perturbations around heel strike by a facilitated stretch reflex in the triceps surae muscle. Alternatively, in subjects......Based on previous studies, at least two different types of soleus Hoffmann (H) reflex modulation were likely to be found during normal human walking. Accordingly, the aim of the present study was to identify different patterns of modulation of the soleus H reflex and to examine whether...... or not subjects with different H reflex modulation would exhibit different walking mechanics and different EMG activity. Fifteen subjects walked across two force platforms at 4.5 km/h (+/-10%) while the movements were recorded on video. The soleus H reflex and EMG activity were recorded separately during...

  8. Characterisation of walking loads by 3D inertial motion tracking

    Science.gov (United States)

    Van Nimmen, K.; Lombaert, G.; Jonkers, I.; De Roeck, G.; Van den Broeck, P.

    2014-09-01

    The present contribution analyses the walking behaviour of pedestrians in situ by 3D inertial motion tracking. The technique is first tested in laboratory experiments with simultaneous registration of the ground reaction forces. The registered motion of the pedestrian allows for the identification of stride-to-stride variations, which is usually disregarded in the simulation of walking forces. Subsequently, motion tracking is used to register the walking behaviour of (groups of) pedestrians during in situ measurements on a footbridge. The calibrated numerical model of the structure and the information gathered using the motion tracking system enables detailed simulation of the step-by-step pedestrian induced vibrations. Accounting for the in situ identified walking variability of the test-subjects leads to a significantly improved agreement between the measured and the simulated structural response.

  9. Dynamic Simulation and Analysis of Human Walking Mechanism

    Science.gov (United States)

    Azahari, Athirah; Siswanto, W. A.; Ngali, M. Z.; Salleh, S. Md.; Yusup, Eliza M.

    2017-01-01

    Behaviour such as gait or posture may affect a person with the physiological condition during daily activities. The characteristic of human gait cycle phase is one of the important parameter which used to described the human movement whether it is in normal gait or abnormal gait. This research investigates four types of crouch walking (upright, interpolated, crouched and severe) by simulation approach. The assessment are conducting by looking the parameters of hamstring muscle joint, knee joint and ankle joint. The analysis results show that based on gait analysis approach, the crouch walking have a weak pattern of walking and postures. Short hamstring and knee joint is the most influence factor contributing to the crouch walking due to excessive hip flexion that typically accompanies knee flexion.

  10. The experimental study on the contact process of passive walking

    Science.gov (United States)

    Qi, Feng; Bi, Lai-Ye; Wang, Tian-Shu; Li, Jun-Feng

    2012-08-01

    The passive dynamic walking is a new concept of biped walking. Researchers have been working on this area with both theoretical analysis and experimental analysis ever since McGeer. This paper presents our compass-like passive walking model with a new set of testing system. Two gyroscopes are used for measuring the angles of two legs, and ten FlexiForce sensors are used for measuring the contact forces on the feet. We got the experimental data on the passive walking process with the validated testing system. A great emphasis was put on the contact process between the feet and the slope. The contact process of the stance leg was divided into four sections, and differences between the real testing contact process and the classic analytical contact process with no bouncing and slipping were summarized.

  11. Dialysis Patients May Walk Their Way to Better Health

    Science.gov (United States)

    ... page: https://medlineplus.gov/news/fullstory_162312.html Dialysis Patients May Walk Their Way to Better Health ... just be steps away for people on kidney dialysis, a new study suggests. A simple program that ...

  12. Walking...A Step in the Right Direction!

    Science.gov (United States)

    ... surroundings. [ Top ] How can I make walking a habit? The key to building any habit is to stick with the new behavior. Having ... Human Subjects Research Funding Process Research Training & Career Development Funded Grants & Grant History Research Resources Research at ...

  13. qwViz: Visualisation of quantum walks on graphs

    Science.gov (United States)

    Berry, Scott D.; Bourke, Paul; Wang, Jingbo B.

    2011-10-01

    qwViz is a software package for interactive visualisation of the time-evolution of quantum walks on arbitrarily complex graphs. The package is written in C and uses OpenGL to generate graphics in real-time. The qwViz package can be used to directly simulate discrete-time quantum walks on undirected graphs when provided with the adjacency matrix of the graph. For more detailed studies, qwViz can also be used to visualise externally generated quantum walk data written in an XML-based file format (QWML). Various aspects of the visualisation can be customised and manipulated in real-time, allowing quantum walk dynamics to be probed at various length and time scales.

  14. Research advances in control methods of wearable walking assist robots

    Directory of Open Access Journals (Sweden)

    Xia ZHANG

    2016-04-01

    Full Text Available As the proportion of the elderly in China increases, the need for robotic assist walking is growing. The assisted-as-needed (AAN property of a wearable walking assist robot matches a user’s biological need and improves the flexibility, appetency and friendliness of a mechanical system. To realize AAN walking and aiming at realizing master/slave flexible assist, a new hybrid control method consisting of hip joint control based on central pattern generators and knee joint impedance structured control is proposed. The adaptation of a robot's master/slave motion mode to a user's physical function, the continuous switching method for knee joint impedance structured control and its stability, and the AAN effect of the Hybrid control theory are studied, which provides a new thought for the development of wearable walking assist robots.

  15. Local-to-global principles for rotor walk

    CERN Document Server

    Giacaglia, Giuliano Pezzolo; Propp, James; Zayas-Palmer, Linda

    2011-01-01

    In rotor walk on a finite directed graph, the exits from each vertex follow a prescribed periodic sequence. Here we consider the case of rotor walk where a particle starts from a designated source vertex and continues until it hits a designated target set, at which point the walk is restarted from the source. We show that the sequence of successively hit targets, which is easily seen to be eventually periodic, is in fact periodic. We show moreover that reversing the periodic patterns of all rotor sequences causes the periodic pattern of the hitting sequence to be reversed as well. The proofs involve a new notion of equivalence of rotor configurations, and an extension of rotor walk incorporating time-reversed particles.

  16. Random walks of cytoskeletal motors in open and closed compartments

    NARCIS (Netherlands)

    Lipowsky, R.; Klumpp, S.

    2001-01-01

    Random walks of molecular motors, which bind to and unbind from cytoskeletal filaments, are studied theoretically. The bound and unbound motors undergo directed and nondirected motion, respectively. Motors in open compartments exhibit anomalous drift velocities. Motors in closed compartments generat

  17. Biomechanically Excited SMD Model of a Walking Pedestrian

    DEFF Research Database (Denmark)

    Zhang, Mengshi; Georgakis, Christos T.; Chen, Jun

    2016-01-01

    estimated from a known walking frequency and the pedestrian's weight, assuming that pedestrians always walk in displacement resonance and retain a constant damping ratio of 0.3. Thus, biomechanical forces were extracted using the measured SMD dynamic responses and the estimated SMD parameters. Extracted...... of biomechanical forces, was used to model a pedestrian for application in vertical human-structure interaction (HSI). Tests were undertaken in a gait laboratory, where a three-dimensional motion-capture system was used to record a pedestrian's walking motions at various frequencies. The motion-capture system...... produced the pedestrian's center of mass (COM) trajectories from the captured motion markers. The vertical COM trajectory was approximated to be the pedestrian SMD dynamic responses under the excitation of biomechanical forces. SMD model parameters of a pedestrian for a specific walking frequency were...

  18. Hairy Legs:Secret behind a Bug's Walking on Water

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    @@ In human society, you can see people walking barefoot on water only in kongfu films; however, in the natural world, you can find a narrow, light-framed insect called water striders (Gerris remigis) doing it effortlessly all the time.

  19. Movie Recommendation using Random Walks over the Contextual Graph

    DEFF Research Database (Denmark)

    Bogers, Toine

    Recommender systems have become an essential tool in fighting information overload. However, the majority of recommendation algorithms focus only on using ratings information, while disregarding information about the context of the recommendation process. We present ContextWalk, a recommendation...

  20. Walk-In Hunting Access (WIHA) Fall 2010

    Data.gov (United States)

    Kansas Data Access and Support Center — This shapefile represents the private lands leased by the Kansas Department of Wildlife and Parks for fall 2010 public hunting access through the Walk-In Hunting...

  1. The experimental study on the contact process of passive walking

    Institute of Scientific and Technical Information of China (English)

    Feng Qi; Lai-Ye Bi; Tian-Shu Wang; Jun-Feng Li

    2012-01-01

    The passive dynamic walking is a new concept of biped walking.Researchers have been working on this area with both theoretical analysis and experimental analysis ever since McGeer.This paper presents our compass-like passive walking model with a new set of testing system.Two gyroscopes are used for measuring the angles of two legs,and ten FlexiForce sensors are used for measuring the contact forces on the feet.We got the experimental data on the passive walking process with the validated testing system.A great emphasis was put on the contact process between the feet and the slope.The contact process of the stance leg was divided into four sections,and differences between the real testing contact process and the classic analytical contact process with no bouncing and slipping were summarized.

  2. A scaling law for random walks on networks

    Science.gov (United States)

    Perkins, Theodore J.; Foxall, Eric; Glass, Leon; Edwards, Roderick

    2014-10-01

    The dynamics of many natural and artificial systems are well described as random walks on a network: the stochastic behaviour of molecules, traffic patterns on the internet, fluctuations in stock prices and so on. The vast literature on random walks provides many tools for computing properties such as steady-state probabilities or expected hitting times. Previously, however, there has been no general theory describing the distribution of possible paths followed by a random walk. Here, we show that for any random walk on a finite network, there are precisely three mutually exclusive possibilities for the form of the path distribution: finite, stretched exponential and power law. The form of the distribution depends only on the structure of the network, while the stepping probabilities control the parameters of the distribution. We use our theory to explain path distributions in domains such as sports, music, nonlinear dynamics and stochastic chemical kinetics.

  3. Effects of Interactive Sonification on Emotionally Expressive Walking Styles

    DEFF Research Database (Denmark)

    Turchet, Luca; Bresin, Roberto

    2015-01-01

    This paper describes two experiments conducted to investigate the role of sonically simulated ground materials in modulating both production and recognition of walks performed with emotional intentions. The results of the first experiment showed that the involved auditory feedbacks affected...

  4. Perceived neighbourhood environmental attributes associated with adults׳ recreational walking

    DEFF Research Database (Denmark)

    Sugiyama, Takemi; Cerin, Ester; Owen, Neville

    2014-01-01

    This study examined the strength and shape of associations between perceived environmental attributes and adults' recreational walking, using data collected from 13,745 adult participants in 12 countries. Perceived residential density, land use mix, street connectivity, aesthetics, safety from...

  5. Kinesthetic taping improves walking function in patients with stroke

    DEFF Research Database (Denmark)

    Boeskov, Birgitte; Carver, Line Tornehøj; von Essen-Leise, Anders;

    2014-01-01

    BACKGROUND: Stroke is an important cause of severe disability and impaired motor function. Treatment modalities that improve motor function in patients with stroke are needed. The objective of this study was to investigate the effect of kinesthetic taping of the anterior thigh and knee on maximal...... walking speed and clinical indices of spasticity in patients with stroke. METHODS: Thirty-two patients (9 women) receiving rehabilitation after stroke (average, 50 days since stroke) who had impaired walking ability were recruited. Primary outcome was maximal walking speed measured by the 10-meter walk...... test. Secondary outcomes were number of steps taken during the test and clinical signs of spasticity measured by the Tardieu Scale. Tests were conducted before and immediately after application of kinesthetic tape to the anterior thigh and knee of the paretic lower limb. RESULTS: After application...

  6. Checklist and "Pollard Walk" butterfly survey methods on public lands

    Science.gov (United States)

    Royer, Ronald A.; Austin, Jane E.; Newton, Wesley E.

    1998-01-01

    Checklist and “Pollard Walk” butterfly survey methods were contemporaneously applied to seven public sites in North Dakota during the summer of 1995. Results were compared for effect of method and site on total number of butterflies and total number of species detected per hour. Checklist searching produced significantly more butterfly detections per hour than Pollard Walks at all sites. Number of species detected per hour did not differ significantly either among sites or between methods. Many species were detected by only one method, and at most sites generalist and invader species were more likely to be observed during checklist searches than during Pollard Walks. Results indicate that checklist surveys are a more efficient means for initial determination of a species list for a site, whereas for long-term monitoring the Pollard Walk is more practical and statistically manageable. Pollard Walk transects are thus recommended once a prairie butterfly fauna has been defined for a site by checklist surveys.

  7. Walk-In Hunting Access (WIHA) Fall 2009

    Data.gov (United States)

    Kansas Data Access and Support Center — This shapefile represents the private lands leased by the Kansas Department of Wildlife and Parks for fall 2009 public hunting access through the Walk-In Hunting...

  8. Walk-In Hunting Access (WIHA) Fall 2008

    Data.gov (United States)

    Kansas Data Access and Support Center — This shapefile represents the private lands leased by the Kansas Department of Wildlife and Parks for fall 2008 public hunting access through the Walk-In Hunting...

  9. Quenched moderate deviations principle for random walk in random environment

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    We derive a quenched moderate deviations principle for the one-dimensional nearest random walk in random environment,where the environment is assumed to be stationary and ergodic.The approach is based on hitting time decomposition.

  10. A Walk in the Woods: Or, What Is Art?

    Science.gov (United States)

    Tolstoy, Leo

    1999-01-01

    Presents a passage from Tolstoy's essay "The School at Yasnaya Polyana." Discusses his experience as a teacher walking through the woods with several children and telling them stories. Describes their reactions and personalities, all very different. (SC)

  11. Piano Crossing – Walking on a Keyboard

    Directory of Open Access Journals (Sweden)

    Franc Solina

    2010-04-01

    Full Text Available Piano Crossing is an interactive art installation which turns a pedestrian crossing marked with white stripes into a piano keyboard so that pedestrians can generate music by walking over it. Matching tones are created when a pedestrian steps on a particular stripe or key. A digital camera is directed at the crossing from above. A special computer vision application was developed, which maps the stripes of the pedestrian crossing to piano keys and detects by means of an image over which key the center of gravity of each pedestrian is placed at any given moment. Black stripes represent the black piano keys. The application consists of two parts: (1 initialization, where the model of the abstract piano keyboard is mapped to the image of the pedestrian crossing, and (2 the detection of pedestrians at the crossing, so that musical tones can be generated according to their locations. The art installation Piano crossing was presented to the public for the first time during the 51st Jazz Festival in Ljubljana in July 2010.

  12. The infrared dynamics of Minimal Walking Technicolor

    CERN Document Server

    Del Debbio, Luigi; Patella, Agostino; Pica, Claudio; Rago, Antonio

    2010-01-01

    We study the gauge sector of Minimal Walking Technicolor, which is an SU(2) gauge theory with nf=2 flavors of Wilson fermions in the adjoint representation. Numerical simulations are performed on lattices Nt x Ns^3, with Ns ranging from 8 to 16 and Nt=2Ns, at fixed \\beta=2.25, and varying the fermion bare mass m0, so that our numerical results cover the full range of fermion masses from the quenched region to the chiral limit. We present results for the string tension and the glueball spectrum. A comparison of mesonic and gluonic observables leads to the conclusion that the infrared dynamics is given by an SU(2) pure Yang-Mills theory with a typical energy scale for the spectrum sliding to zero with the fermion mass. The typical mesonic mass scale is proportional to, and much larger than this gluonic scale. Our findings are compatible with a scenario in which the massless theory is conformal in the infrared. An analysis of the scaling of the string tension with the fermion mass towards the massless limit allo...

  13. Random walks in directed modular networks

    Science.gov (United States)

    Comin, Cesar H.; Viana, Mateus P.; Antiqueira, Lucas; Costa, Luciano da F.

    2014-12-01

    Because diffusion typically involves symmetric interactions, scant attention has been focused on studying asymmetric cases. However, important networked systems underlain by diffusion (e.g. cortical networks and WWW) are inherently directed. In the case of undirected diffusion, it can be shown that the steady-state probability of the random walk dynamics is fully correlated with the degree, which no longer holds for directed networks. We investigate the relationship between such probability and the inward node degree, which we call efficiency, in modular networks. Our findings show that the efficiency of a given community depends mostly on the balance between its ingoing and outgoing connections. In addition, we derive analytical expressions to show that the internal degree of the nodes does not play a crucial role in their efficiency, when considering the Erdős-Rényi and Barabási-Albert models. The results are illustrated with respect to the macaque cortical network, providing subsidies for improving transportation and communication systems.

  14. Piano Crossing – Walking on a Keyboard

    Directory of Open Access Journals (Sweden)

    Bojan Kverh

    2010-11-01

    Full Text Available Piano Crossing is an interactive art installation which turns a pedestrian crossing marked with white stripes into a piano keyboard so that pedestrians can generate music by walking over it. Matching tones are created when a pedestrian steps on a particular stripe or key. A digital camera is directed at the crossing from above. A special computer vision application was developed, which maps the stripes of the pedestrian crossing to piano keys and detects by means of an image over which key the center of gravity of each pedestrian is placed at any given moment. Black stripes represent the black piano keys. The application consists of two parts: (1 initialization, where the model of the abstract piano keyboard is mapped to the image of the pedestrian crossing, and (2 the detection of pedestrians at the crossing, so that musical tones can be generated according to their locations. The art installation Piano crossing was presented to the public for the first time during the 51st Jazz Festival in Ljubljana in July 2010.

  15. The limits of agency in walking humans.

    Science.gov (United States)

    Kannape, O A; Schwabe, L; Tadi, T; Blanke, O

    2010-05-01

    An important principle of human ethics is that individuals are not responsible for actions performed when unconscious. Recent research found that the generation of an action and the building of a conscious experience of that action (agency) are distinct processes and crucial mechanisms for self-consciousness. Yet, previous agency studies have focussed on actions of a finger or hand. Here, we investigate how agents consciously monitor actions of the entire body in space during locomotion. This was motivated by previous work revealing that (1) a fundamental aspect of self-consciousness concerns a single and coherent representation of the entire spatially situated body and (2) clinical instances of human behaviour without consciousness occur in rare neurological conditions such as sleepwalking or epileptic nocturnal wandering. Merging techniques from virtual reality, full-body tracking, and cognitive science of conscious action monitoring, we report experimental data about consciousness during locomotion in healthy participants. We find that agents consciously monitor the location of their entire body and its locomotion only with low precision and report that while precision remains low it can be systematically modulated in several experimental conditions. This shows that conscious action monitoring in locomoting agents can be studied in a fine-grained manner. We argue that the study of the mechanisms of agency for a person's full body may help to refine our scientific criteria of self-hood and discuss sleepwalking and related conditions as alterations in neural systems encoding motor awareness in walking humans.

  16. Biased random walks on Kleinberg's spatial networks

    Science.gov (United States)

    Pan, Gui-Jun; Niu, Rui-Wu

    2016-12-01

    We investigate the problem of the particle or message that travels as a biased random walk toward a target node in Kleinberg's spatial network which is built from a d-dimensional (d = 2) regular lattice improved by adding long-range shortcuts with probability P(rij) ∼rij-α, where rij is the lattice distance between sites i and j, and α is a variable exponent. Bias is represented as a probability p of the packet to travel at every hop toward the node which has the smallest Manhattan distance to the target node. We study the mean first passage time (MFPT) for different exponent α and the scaling of the MFPT with the size of the network L. We find that there exists a threshold probability pth ≈ 0.5, for p ≥pth the optimal transportation condition is obtained with an optimal transport exponent αop = d, while for 0 pth, and increases with L less than a power law and get close to logarithmical law for 0 complex network with a highly efficient structure for navigation although nodes hold null local information with a relatively large probability, which gives a powerful evidence for the reason why many real networks' navigability have small world property.

  17. RESPONSE TO 6 MINUTE WALK TEST IN HEALTHY ADULTS

    Directory of Open Access Journals (Sweden)

    Vibhuti kiran shah

    2015-12-01

    Full Text Available Background: 6Minute walk test (MWT has been used as a performance based measure of functional exercise capacity in all populations including healthy adults. 6MWT is recommended out of other all timed walked tests due to its reproducibility and ease of administration compared to other longer or shorter time duration tests. It detects changes following interventions to improve exercise tolerance in healthy individuals, to assess the fitness level, used as intervention to improve walking endurance and as predictor of objectively measured aerobic fitness in healthy adults. It is essential to know a level of fitness healthy adults possess in our community, thus aim of this study was to evaluate response to 6MWT in young healthy adults. Method: 50 healthy individuals (25 males and 25 females of 18 - 30 years of age were recruited. The 6MWT was performed as per standard guidelines. All subjects were assessed for the outcome measures by principal investigator at baseline i.e. before and post- 6MWT for following parameters. BP, PR, RR, SPO2, RPE. Results: The mean 6 minute walked distance (6MWD was 635.6+59.07, for men it was 675.0+46.88 and for women it was 596.5+41.41. Out of study population 18% of people covered 70%-80%, 54% people covered 80%-90% and 28% people covered 90%-100% of their predicted distance. Oxygen saturation remained unaltered throughout the walk. Mean resting and walking spo2 values were 96.80+13.55% and 96.71+13.55% (p-value: 0.2288. Pulse rate (PR and respiratory rate (RR were affected by the walk. Mean resting and walking PR was 79.82+9.18 and 142.6+19.62 (p-value: 0.0001 and RR was 18.48+2.78 and 30.20+4.35 (p-value: 0.0001 respectively. Mean resting and walking systolic and diastolic blood pressure was significantly higher in males as compared to females. Conclusion: The 6 minute walk test is a useful measure of functional capacity in healthy adults. There was a difference between predicted distance covered and actual distance

  18. Toe walking as a presenting sign of systemic lupus erythematosus.

    Science.gov (United States)

    Basiaga, M; Sherry, D

    2015-10-01

    Toe walking is a previously unreported presentation of systemic lupus erythematosus (SLE). We describe a patient who presented with profound multisystem involvement that was preceded by one month of toe walking and multiple flexion contractures without arthritis. Her lupus is now under control after aggressive therapy, yet she continues to struggle with tendinopathy despite continued physical and occupational therapy. Lupus should be considered in the appropriate clinical context in children who have new-onset contractures due to tight tendons.

  19. Humanoid Walking Robot: Modeling, Inverse Dynamics, and Gain Scheduling Control

    OpenAIRE

    Elvedin Kljuno; Williams, Robert L.

    2010-01-01

    This article presents reference-model-based control design for a 10 degree-of-freedom bipedal walking robot, using nonlinear gain scheduling. The main goal is to show concentrated mass models can be used for prediction of the required joint torques for a bipedal walking robot. Relatively complicated architecture, high DOF, and balancing requirements make the control task of these robots difficult. Although linear control techniques can be used to control bipedal robots, nonlinear control is n...

  20. Destinations matter: increasing walking rates in a Richmond, BC neighbourhood

    OpenAIRE

    Doiron, Dany

    2009-01-01

    This study explores the effect of built environment characteristics on the walking habits of local residents using data obtained from the 2006 British Columbia Health and Wellness Survey. Regression analysis of 375 questionnaires collected from a random sample of residents in a Richmond, BC neighbourhood indicates that spatial access to retail establishments and recreational facilities are positively associated with walking. Given the study’s findings, it is suggested that the City of Richmon...