WorldWideScience

Sample records for chromosome terminal deletion

  1. Expanding the clinical spectrum of chromosome 15q26 terminal deletions associated with IGF-1 resistance.

    Science.gov (United States)

    O'Riordan, Aisling M; McGrath, Niamh; Sharif, Farhana; Murphy, Nuala P; Franklin, Orla; Lynch, Sally Ann; O'Grady, Michael J

    2017-01-01

    Haploinsufficiency of the insulin-like growth factor-1 receptor (IGF1R) gene on chromosome 15q26.3 is associated with impaired prenatal and postnatal growth, developmental delay, dysmorphic features and skeletal abnormalities. Terminal deletions of chromosome 15q26 arising more proximally may also be associated with congenital heart disease, epilepsy, diaphragmatic hernia and renal anomalies. We report three additional cases of 15q26 terminal deletions with novel features which may further expand the spectrum of this rarely reported contiguous gene syndrome. Phenotypic features including neonatal lymphedema, aplasia cutis congenita and aortic root dilatation have not been reported previously. Similarly, laboratory features of insulin-like growth factor 1 (IGF-1) resistance are described, including markedly elevated IGF-1 of up to +4.7 SDS. In one patient, the elevated IGF-1 declined over time and this coincided with a period of spontaneous growth acceleration. Deletions of 15q26 are a potential risk factor for aortic root dilatation, neonatal lymphedema and aplasia cutis in addition to causing growth restriction. What is Known: • Terminal deletions of chromosome 15q26 are associated with impaired prenatal and postnatal growth, developmental delay, dysmorphic features and skeletal abnormalities. What is New: • Neonatal lymphedema, aplasia cutis congenita and aortic root dilatation have not been previously described in 15q26 terminal deletions and may represent novel features. • IGF-1 levels may be increased up to 4.7 SDS.

  2. Telomere healing following DNA polymerase arrest-induced breakages is likely the main mechanism generating chromosome 4p terminal deletions.

    Science.gov (United States)

    Hannes, Femke; Van Houdt, Jeroen; Quarrell, Oliver W; Poot, Martin; Hochstenbach, Ron; Fryns, Jean-Pierre; Vermeesch, Joris R

    2010-12-01

    Constitutional developmental disorders are frequently caused by terminal chromosomal deletions. The mechanisms and/or architectural features that might underlie those chromosome breakages remain largely unexplored. Because telomeres are the vital DNA protein complexes stabilizing linear chromosomes against chromosome degradation, fusion, and incomplete replication, those terminal-deleted chromosomes acquired new telomeres either by telomere healing or by telomere capture. To unravel the mechanisms leading to chromosomal breakage and healing, we sequenced nine chromosome 4p terminal deletion boundaries. A computational analysis of the breakpoint flanking region, including 12 previously published pure terminal breakage sites, was performed in order to identify architectural features that might be involved in this process. All terminal 4p truncations were likely stabilized by telomerase-mediated telomere healing. In the majority of breakpoints multiple genetic elements have a potential to induce secondary structures and an enrichment in replication stalling site motifs were identified. These findings suggest DNA replication stalling-induced chromosome breakage during early development is the first mechanistic step leading toward terminal deletion syndromes. © 2010 Wiley-Liss, Inc.

  3. Schizophrenia and chromosomal deletions

    Energy Technology Data Exchange (ETDEWEB)

    Lindsay, E.A.; Baldini, A. [Baylor College of Medicine, Houston, TX (United States); Morris, M. A. [Univ. of Geneva School of Medicine, NY (United States)] [and others

    1995-06-01

    Recent genetic linkage analysis studies have suggested the presence of a schizophrenia locus on the chromosomal region 22q11-q13. Schizophrenia has also been frequently observed in patients affected with velo-cardio-facial syndrome (VCFS), a disorder frequently associated with deletions within 22q11.1. It has been hypothesized that psychosis in VCFS may be due to deletion of the catechol-o-methyl transferase gene. Prompted by these observations, we screened for 22q11 deletions in a population of 100 schizophrenics selected from the Maryland Epidemiological Sample. Our results show that there are schizophrenic patients carrying a deletion of 22q11.1 and a mild VCFS phenotype that might remain unrecognized. These findings should encourage a search for a schizophrenia-susceptibility gene within the deleted region and alert those in clinical practice to the possible presence of a mild VCFS phenotype associated with schizophrenia. 9 refs.

  4. Array based characterization of a terminal deletion involving chromosome subband 15q26.2: an emerging syndrome associated with growth retardation, cardiac defects and developmental delay

    Directory of Open Access Journals (Sweden)

    Björkhem Gudrun

    2008-01-01

    Full Text Available Abstract Background Subtelomeric regions are gene rich and deletions in these chromosomal segments have been demonstrated to account for approximately 2.5% of patients displaying mental retardation with or without association of dysmorphic features. However, cases that report de novo terminal deletions on chromosome arm 15q are rare. Methods In this study we present the first example of a detailed molecular genetic mapping of a de novo deletion in involving 15q26.2-qter, caused by the formation of a dicentric chromosome 15, using metaphase FISH and tiling resolution (32 k genome-wide array-based comparative genomic hybridization (CGH. Results After an initial characterization of the dicentric chromosome by metaphase FISH, array CGH analysis mapped the terminal deletion to encompass a 6.48 megabase (Mb region, ranging from 93.86–100.34 Mb on chromosome 15. Conclusion In conclusion, we present an additional case to the growing family of reported cases with 15q26-deletion, thoroughly characterized at the molecular cytogenetic level. In the deleted regions, four candidate genes responsible for the phenotype of the patient could be delineated: IGFR1, MEF2A, CHSY1, and TM2D3. Further characterization of additional patients harboring similar 15q-aberrations might hopefully in the future lead to the description of a clear cut clinically recognizable syndrome.

  5. Complex chromosome rearrangement in a child with microcephaly, dysmorphic facial features and mosaicism for a terminal deletion del(18(q21.32-qter investigated by FISH and array-CGH: Case report

    Directory of Open Access Journals (Sweden)

    Kokotas Haris

    2008-11-01

    Full Text Available Abstract We report on a 7 years and 4 months old Greek boy with mild microcephaly and dysmorphic facial features. He was a sociable child with maxillary hypoplasia, epicanthal folds, upslanting palpebral fissures with long eyelashes, and hypertelorism. His ears were prominent and dysmorphic, he had a long philtrum and a high arched palate. His weight was 17 kg (25th percentile and his height 120 cm (50th percentile. High resolution chromosome analysis identified in 50% of the cells a normal male karyotype, and in 50% of the cells one chromosome 18 showed a terminal deletion from 18q21.32. Molecular cytogenetic investigation confirmed a del(18(q21.32-qter in the one chromosome 18, but furthermore revealed the presence of a duplication in q21.2 in the other chromosome 18. The case is discussed concerning comparable previously reported cases and the possible mechanisms of formation.

  6. Delayed chromosomal instability caused by large deletion

    International Nuclear Information System (INIS)

    Ojima, M.; Suzuki, K.; Kodama, S.; Watanabe, M.

    2003-01-01

    Full text: There is accumulating evidence that genomic instability, manifested by the expression of delayed phenotypes, is induced by X-irradiation but not by ultraviolet (UV) light. It is well known that ionizing radiation, such as X-rays, induces DNA double strand breaks, but UV-light mainly causes base damage like pyrimidine dimers and (6-4) photoproducts. Although the mechanism of radiation-induced genomic instability has not been thoroughly explained, it is suggested that DNA double strand breaks contribute the induction of genomic instability. We examined here whether X-ray induced gene deletion at the hprt locus induces delayed instability in chromosome X. SV40-immortalized normal human fibroblasts, GM638, were irradiated with X-rays (3, 6 Gy), and the hprt mutants were isolated in the presence of 6-thioguanine (6-TG). A 2-fold and a 60-fold increase in mutation frequency were found by 3 Gy and 6 Gy irradiation, respectively. The molecular structure of the hprt mutations was determined by multiplex polymerase chain reaction of nine exons. Approximately 60% of 3 Gy mutants lost a part or the entire hprt gene, and the other mutants showed point mutations like spontaneous mutants. All 6 Gy mutants show total gene deletion. The chromosomes of the hprt mutants were analyzed by Whole Human Chromosome X Paint FISH or Xq telomere FISH. None of the point or partial gene deletion mutants showed aberrations of X-chromosome, however total gene deletion mutants induced translocations and dicentrics involving chromosome X. These results suggest that large deletion caused by DNA double strand breaks destabilizes chromosome structure, which may be involved in an induction of radiation-induced genomic instability

  7. A girl with cutaneous hyperpigmentation, cafe au lait spots and ring chromosome 15 without significant deletion.

    NARCIS (Netherlands)

    Morava, E.; Bartsch, O.; Czako, M.; Frensel, A.; Karteszi, J.; Kosztolanyi, G.Y.

    2003-01-01

    Ring chromosome 15 [r(15)] syndrome is characterised by specific facial features, cafe au lait spots, failure to thrive, mental retardation and typically with a terminal deletion of the long arm of chromosome 15. We report a 2.5 year old girl showing normal growth and development, large

  8. The significance of chromosome deletions in atomic-bomb survivors

    International Nuclear Information System (INIS)

    Tanaka, Kimio; Shigeta, Chiharu; Oguma, Nobuo; Kamada, Nanao; Deng, Z.; Niimi, Masanobu; Aisaka, Tadaichi.

    1986-01-01

    In 39 A-bomb survivors 40 years after exposure at ≤ 1,000 m from ground zero, the frequency and features of chromosome deletions in peripheral lymphocytes were examined using a differential staining technique. Simultaneously, in vitro irradiation experiment with Cf-252 was made to infer chromosome aberrations occuring immediately after exposure. Californium-252 with 100 rad induced dicentric and ring chromosomes in 40 % of the cells and acentric fragments in 44 %. Among the A-bomb survivors, chromosome aberrations were observed in 651 (21 %) of the total 3,136 cells. There were 146 cells with deletions (22 % of abnormal cells; 5 % of the total cells), and 10 cells with acentric fragment (0.3 % of the total cells). The figure for deletions was far higher than that reported in the literature. A large number of deletions were seen in chromosomes no.4, no.21, and no.22, and a few deletions in chromosomes no.7 and no.20. Significance of chromosome deletions is discussed. (Namekawa, K.)

  9. Phosphatase and tensin homologue deleted on chromosome 10 ...

    African Journals Online (AJOL)

    Phosphatase and tensin homologue deleted on chromosome 10 (PTEN) is a tumor suppressor gene deleted or mutated in many human cancers such as glioblastoma, spinal tumors, prostate, bladder, adrenals, thyroid, breast, endometrium, and colon cancers. They result from loss of heterozygosity (LOH) for the PTEN ...

  10. Linguistic and Psychomotor Development in Children with Chromosome 14 Deletions

    Science.gov (United States)

    Zampini, Laura; D'Odorico, Laura; Zanchi, Paola; Zollino, Marcella; Neri, Giovanni

    2012-01-01

    The present study focussed on a specific type of rare genetic condition: chromosome 14 deletions. Children with this genetic condition often show developmental delays and brain and neurological problems, although the type and severity of symptoms varies depending on the size and location of the deleted genetic material. The specific aim of the…

  11. Monoamine oxidase deficiency in males with an X chromosome deletion.

    Science.gov (United States)

    Sims, K B; de la Chapelle, A; Norio, R; Sankila, E M; Hsu, Y P; Rinehart, W B; Corey, T J; Ozelius, L; Powell, J F; Bruns, G

    1989-01-01

    Mapping of the human MAOA gene to chromosomal region Xp21-p11 prompted our study of two affected males in a family previously reported to have Norrie disease resulting from a submicroscopic deletion in this chromosomal region. In this investigation we demonstrate in these cousins deletion of the MAOA gene, undetectable levels of MAO-A and MAO-B activities in their fibroblasts and platelets, respectively, loss of mRNA for MAO-A in fibroblasts, and substantial alterations in urinary catecholamine metabolites. The present study documents that a marked deficiency of MAO activity is compatible with life and that genes for MAO-A and MAO-B are near each other in this Xp chromosomal region. Some of the clinical features of these MAO deletion patients may help to identify X-linked MAO deficiency diseases in humans.

  12. Kaposi's sarcoma herpesvirus C-terminal LANA concentrates at pericentromeric and peri-telomeric regions of a subset of mitotic chromosomes

    International Nuclear Information System (INIS)

    Kelley-Clarke, Brenna; Ballestas, Mary E.; Komatsu, Takashi; Kaye, Kenneth M.

    2007-01-01

    The Kaposi's sarcoma-associated herpesvirus (KSHV) latency-associated nuclear antigen (LANA) tethers KSHV terminal repeat (TR) DNA to mitotic chromosomes to efficiently segregate episomes to progeny nuclei. LANA contains N- and C-terminal chromosome binding regions. We now show that C-terminal LANA preferentially concentrates to paired dots at pericentromeric and peri-telomeric regions of a subset of mitotic chromosomes through residues 996-1139. Deletions within C-terminal LANA abolished both self-association and chromosome binding, consistent with a requirement for self-association to bind chromosomes. A deletion abolishing TR DNA binding did not affect chromosome targeting, indicating LANA's localization is not due to binding its recognition sequence in chromosomal DNA. LANA distributed similarly on human and non-human mitotic chromosomes. These results are consistent with C-terminal LANA interacting with a cell factor that concentrates at pericentromeric and peri-telomeric regions of mitotic chromosomes

  13. Renal Failure Associated with APECED and Terminal 4q Deletion: Evidence of Autoimmune Nephropathy

    Directory of Open Access Journals (Sweden)

    Mohammed Al-Owain

    2010-01-01

    Full Text Available Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED is a rare autosomal recessive disorder caused by mutations in the autoimmune regulator gene (AIRE. Terminal 4q deletion is also a rare cytogenetic abnormality that causes a variable syndrome of dysmorphic features, mental retardation, growth retardation, and heart and limb defects. We report a 12-year-old Saudi boy with mucocutaneous candidiasis, hypoparathyroidism, and adrenocortical failure consistent with APECED. In addition, he has dysmorphic facial features, growth retardation, and severe global developmental delay. Patient had late development of chronic renal failure. The blastogenesis revealed depressed lymphocytes' response to Candida albicans at 38% when compared to control. Chromosome analysis of the patient revealed 46,XY,del(4(q33. FISH using a 4p/4q subtelomere DNA probe assay confirmed the deletion of qter subtelomere on chromosome 4. Parental chromosomes were normal. The deleted array was further defined using array CGH. AIRE full gene sequencing revealed a homozygous mutation namely 845_846insC. Renal biopsy revealed chronic interstitial nephritis with advanced fibrosis. In addition, there was mesangial deposition of C3, C1q, and IgM. This is, to the best of our knowledge, the first paper showing evidence of autoimmune nephropathy by renal immunofluorescence in a patient with APECED and terminal 4q deletion.

  14. Chromosomal deletion unmasking a recessive disease: 22q13 deletion syndrome and metachromatic leukodystrophy

    DEFF Research Database (Denmark)

    Bisgaard, A-M; Kirchhoff, M; Nielsen, J E

    2008-01-01

    A deletion on one chromosome and a mutant allele on the other may cause an autosomal recessive disease. We report on two patients with mental retardation, dysmorphic features and low catalytic activity of arylsulfatase A. One patient had a pathogenic mutation in the arylsulfatase A gene (ARSA......) and succumbed to metachromatic leukodystrophy (MLD). The other patient had a pseudoallele, which does not lead to MLD. The presenting clinical features and low arylsulfatase A activity were explained, in each patients, by a deletion of 22q13 and, thereby, of one allele of ARSA....

  15. Submicroscopic duplication of the Wolf-Hirschhorn critical region with a 4p terminal deletion.

    Science.gov (United States)

    Roselló, M; Monfort, S; Orellana, C; Ferrer-Bolufer, I; Quiroga, R; Oltra, S; Martínez, F

    2009-01-01

    Chromosomal rearrangements in the short arm of chromosome 4 can result in 2 different clinical entities: Wolf-Hirschhorn syndrome (WHS), characterized by severe growth delay, mental retardation, microcephaly, 'Greek helmet' facies, and closure defects, or partial 4p trisomy, associated with multiple congenital anomalies, mental retardation, and facial dysmorphisms. We present clinical and laboratory findings in a patient who showed a small duplication in 4p16.3 associated with a subtle terminal deletion in the same chromosomal region. GTG-banding analyses, multiplex ligation-dependent probe amplification analyses, and studies by array-based comparative genomic hybridization were performed. The results of the analyses revealed a de novo 1.3 Mb deletion of the terminal 4p and a 1.1 Mb duplication in our patient, encompassing the WHS critical region. Interestingly, this unusual duplication/deletion rearrangement results in an intermediate phenotype that shares characteristics of the WHS and the 4p trisomy syndrome. The use of novel technologies in the genetic diagnosis leads to the description of new clinical syndromes; there is a growing list of microduplication syndromes. Therefore, we propose that overexpression of candidate genes in WHS (WHSC1, WHSC2 and LETM1) due to a duplication causes a clinical entity different to both the WHS and 4p trisomy syndrome. (c) 2009 S. Karger AG, Basel.

  16. Deletions of the long arm of chromosome 5 define subgroups of T-cell acute lymphoblastic leukemia.

    Science.gov (United States)

    La Starza, Roberta; Barba, Gianluca; Demeyer, Sofie; Pierini, Valentina; Di Giacomo, Danika; Gianfelici, Valentina; Schwab, Claire; Matteucci, Caterina; Vicente, Carmen; Cools, Jan; Messina, Monica; Crescenzi, Barbara; Chiaretti, Sabina; Foà, Robin; Basso, Giuseppe; Harrison, Christine J; Mecucci, Cristina

    2016-08-01

    Recurrent deletions of the long arm of chromosome 5 were detected in 23/200 cases of T-cell acute lymphoblastic leukemia. Genomic studies identified two types of deletions: interstitial and terminal. Interstitial 5q deletions, found in five cases, were present in both adults and children with a female predominance (chi-square, P=0.012). Interestingly, these cases resembled immature/early T-cell precursor acute lymphoblastic leukemia showing significant down-regulation of five out of the ten top differentially expressed genes in this leukemia group, including TCF7 which maps within the 5q31 common deleted region. Mutations of genes known to be associated with immature/early T-cell precursor acute lymphoblastic leukemia, i.e. WT1, ETV6, JAK1, JAK3, and RUNX1, were present, while CDKN2A/B deletions/mutations were never detected. All patients had relapsed/resistant disease and blasts showed an early differentiation arrest with expression of myeloid markers. Terminal 5q deletions, found in 18 of patients, were more prevalent in adults (chi-square, P=0.010) and defined a subgroup of HOXA-positive T-cell acute lymphoblastic leukemia characterized by 130 up- and 197 down-regulated genes. Down-regulated genes included TRIM41, ZFP62, MAPK9, MGAT1, and CNOT6, all mapping within the 1.4 Mb common deleted region at 5q35.3. Of interest, besides CNOT6 down-regulation, these cases also showed low BTG1 expression and a high incidence of CNOT3 mutations, suggesting that the CCR4-NOT complex plays a crucial role in the pathogenesis of HOXA-positive T-cell acute lymphoblastic leukemia with terminal 5q deletions. In conclusion, interstitial and terminal 5q deletions are recurrent genomic losses identifying distinct subtypes of T-cell acute lymphoblastic leukemia. Copyright© Ferrata Storti Foundation.

  17. Replication termination and chromosome dimer resolution in the archaeon Sulfolobus solfataricus.

    Science.gov (United States)

    Duggin, Iain G; Dubarry, Nelly; Bell, Stephen D

    2011-01-05

    Archaea of the genus Sulfolobus have a single-circular chromosome with three replication origins. All three origins fire in every cell in every cell cycle. Thus, three pairs of replication forks converge and terminate in each replication cycle. Here, we report 2D gel analyses of the replication fork fusion zones located between origins. These indicate that replication termination involves stochastic fork collision. In bacteria, replication termination is linked to chromosome dimer resolution, a process that requires the XerC and D recombinases, FtsK and the chromosomal dif site. Sulfolobus encodes a single-Xer homologue and its deletion gave rise to cells with aberrant DNA contents and increased volumes. Identification of the chromosomal dif site that binds Xer in vivo, and biochemical characterization of Xer/dif recombination revealed that, in contrast to bacteria, dif is located outside the fork fusion zones. Therefore, it appears that replication termination and dimer resolution are temporally and spatially distinct processes in Sulfolobus.

  18. Molecular and cytogenetic investigation of Y chromosome deletions over three generations facilitated by intracytoplasmic sperm injection.

    Science.gov (United States)

    Minor, Agata; Wong, Edgar Chan; Harmer, Karynn; Ma, Sai

    2007-08-01

    The azoospermic factor (AZF) region is critical for normal spermatogenesis since microdeletions and partial deletions have been associated with infertility. We investigate the diagnostic ability of karyotyping in detecting clinically relevant Y chromosome deletions. The clinical significance of heterochromatin deletions, microdeletions and partial AZFc deletions is also evaluated. A patient with a Yq deletion, affected by severe oligoasthenoteratozoospermia, underwent intracytoplasmic sperm injection (ICSI) which resulted in the birth of a healthy baby boy. The patient, his father and his son underwent Y chromosome microdeletion and partial AZFc deletion screening. We also studied the aneuploidy rate in the sperm of the patient by fluorescent in situ hybridization. AZF microdeletions were absent in the family. However, microdeletion analysis confirmed that the Yq deletion was limited to the heterochromatin. We found a partial AZFc gr/gr deletion in all three family members. We observed an increased rate of sex chromosome aneuploidy in the infertile patient. Cytogenetic analysis was misleading in identifying the Yq breakpoint. Infertility observed in the patient was associated with the gr/gr partial deletion. However, because of the incomplete penetrance of gr/gr deletions, the consequence of the vertical transmission of the deletion through ICSI remains unknown. Copyright (c) 2007 John Wiley & Sons, Ltd.

  19. Fluorescence in situ hybridization evaluation of chromosome deletion patterns in prostate cancer.

    Science.gov (United States)

    Huang, S F; Xiao, S; Renshaw, A A; Loughlin, K R; Hudson, T J; Fletcher, J A

    1996-11-01

    Various nonrandom chromosomal aberrations have been identified in prostate carcinoma. These aberrations include deletions of several chromosome regions, particularly the chromosome 8 short arm. Large-scale numerical aberrations, reflected in aberrant DNA ploidy, are also found in a minority of cases. However, it is unclear whether prostate carcinomas contain aberrations of certain chromosome regions that are deleted frequently in other common types of cancer. In this study, we performed dual-color fluorescence in situ hybridization on intact nuclei from touch preparations of 16 prostate cancers. Chromosome copy number was determined using pericentromeric probes, whereas potential chromosome arm deletions were evaluated using yeast artificial chromosome (YAC) and P1 probes. Two YAC probes targeted chromosome 8 short arm regions known to be deleted frequently in prostate cancer. Other YACs and P1s were for chromosome regions, including 1p22, 3p14, 6q21, 9p21, and 22q12, that are deletion targets in a variety of cancers although not extensively studied in prostate cancer. Hybridization efficiencies and signal intensities were excellent for both repeat sequence (alpha-satellite) and single, copy (YAC and P1) fluorescence in situ hybridization probes. Of 16 prostate cancers, 11 had clonal aberrations of 1 or more of the 13 chromosome regions evaluated, and 10 cases (62.5%) had 8p deletions, including 4 cases with 8p deletion in virtually all cells and aneuploidy in only a subset of those deleted cells. Deletions at 3p14, 6q21, and 22q12 were identified in 2, 1, and 1 case, respectively, and each of those cases had a similarly sized cell population with 8p deletion. These studies confirm 8p deletion in the majority of prostate carcinomas. 8p deletions appear to be early events in prostate tumorigenesis, often antedating aneuploidy. Fluorescence in situ hybridization strategies incorporating pericentromeric and single-copy regional chromosome probes offer a powerful and

  20. Marfan syndrome with a complex chromosomal rearrangement including deletion of the FBN1 gene

    Directory of Open Access Journals (Sweden)

    Colovati Mileny ES

    2012-01-01

    Full Text Available Abstract Background The majority of Marfan syndrome (MFS cases is caused by mutations in the fibrillin-1 gene (FBN1, mapped to chromosome 15q21.1. Only few reports on deletions including the whole FBN1 gene, detected by molecular cytogenetic techniques, were found in literature. Results We report here on a female patient with clinical symptoms of the MFS spectrum plus craniostenosis, hypothyroidism and intellectual deficiency who presents a 1.9 Mb deletion, including the FBN1 gene and a complex rearrangement with eight breakpoints involving chromosomes 6, 12 and 15. Discussion This is the first report of MFS with a complex chromosome rearrangement involving a deletion of FBN1 and contiguous genes. In addition to the typical clinical findings of the Marfan syndrome due to FBN1 gene haploinsufficiency, the patient presents features which may be due to the other gene deletions and possibly to the complex chromosome rearrangement.

  1. Y chromosome gr/gr deletions are a risk factor for low semen quality

    NARCIS (Netherlands)

    Visser, L.; Westerveld, G. H.; Korver, C. M.; van Daalen, S. K. M.; Hovingh, S. E.; Rozen, S.; van der Veen, F.; Repping, S.

    2009-01-01

    Subfertility affects one in eight couples. In up to 50% of cases, the male partner has low semen quality. Four Y chromosome deletions, i.e. Azoospermia factor a (AZFa), P5/proximal-P1 (AZFb), P5/distal-P1 and AZFc deletions, are established causes of low semen quality. Whether a recently identified

  2. Utilization of deletion bins to anchor and order sequences along the wheat 7B chromosome.

    Science.gov (United States)

    Belova, Tatiana; Grønvold, Lars; Kumar, Ajay; Kianian, Shahryar; He, Xinyao; Lillemo, Morten; Springer, Nathan M; Lien, Sigbjørn; Olsen, Odd-Arne; Sandve, Simen R

    2014-09-01

    A total of 3,671 sequence contigs and scaffolds were mapped to deletion bins on wheat chromosome 7B providing a foundation for developing high-resolution integrated physical map for this chromosome. Bread wheat (Triticum aestivum L.) has a large, complex and highly repetitive genome which is challenging to assemble into high quality pseudo-chromosomes. As part of the international effort to sequence the hexaploid bread wheat genome by the international wheat genome sequencing consortium (IWGSC) we are focused on assembling a reference sequence for chromosome 7B. The successful completion of the reference chromosome sequence is highly dependent on the integration of genetic and physical maps. To aid the integration of these two types of maps, we have constructed a high-density deletion bin map of chromosome 7B. Using the 270 K Nimblegen comparative genomic hybridization (CGH) array on a set of cv. Chinese spring deletion lines, a total of 3,671 sequence contigs and scaffolds (~7.8 % of chromosome 7B physical length) were mapped into nine deletion bins. Our method of genotyping deletions on chromosome 7B relied on a model-based clustering algorithm (Mclust) to accurately predict the presence or absence of a given genomic sequence in a deletion line. The bin mapping results were validated using three different approaches, viz. (a) PCR-based amplification of randomly selected bin mapped sequences (b) comparison with previously mapped ESTs and (c) comparison with a 7B genetic map developed in the present study. Validation of the bin mapping results suggested a high accuracy of the assignment of 7B sequence contigs and scaffolds to the 7B deletion bins.

  3. The generation of chromosomal deletions to provide extensive coverage and subdivision of the Drosophila melanogaster genome.

    Science.gov (United States)

    Cook, R Kimberley; Christensen, Stacey J; Deal, Jennifer A; Coburn, Rachel A; Deal, Megan E; Gresens, Jill M; Kaufman, Thomas C; Cook, Kevin R

    2012-01-01

    Chromosomal deletions are used extensively in Drosophila melanogaster genetics research. Deletion mapping is the primary method used for fine-scale gene localization. Effective and efficient deletion mapping requires both extensive genomic coverage and a high density of molecularly defined breakpoints across the genome. A large-scale resource development project at the Bloomington Drosophila Stock Center has improved the choice of deletions beyond that provided by previous projects. FLP-mediated recombination between FRT-bearing transposon insertions was used to generate deletions, because it is efficient and provides single-nucleotide resolution in planning deletion screens. The 793 deletions generated pushed coverage of the euchromatic genome to 98.4%. Gaps in coverage contain haplolethal and haplosterile genes, but the sizes of these gaps were minimized by flanking these genes as closely as possible with deletions. In improving coverage, a complete inventory of haplolethal and haplosterile genes was generated and extensive information on other haploinsufficient genes was compiled. To aid mapping experiments, a subset of deletions was organized into a Deficiency Kit to provide maximal coverage efficiently. To improve the resolution of deletion mapping, screens were planned to distribute deletion breakpoints evenly across the genome. The median chromosomal interval between breakpoints now contains only nine genes and 377 intervals contain only single genes. Drosophila melanogaster now has the most extensive genomic deletion coverage and breakpoint subdivision as well as the most comprehensive inventory of haploinsufficient genes of any multicellular organism. The improved selection of chromosomal deletion strains will be useful to nearly all Drosophila researchers.

  4. A familial Cri-du-Chat/5p deletion syndrome resulted from rare maternal complex chromosomal rearrangements (CCRs and/or possible chromosome 5p chromothripsis.

    Directory of Open Access Journals (Sweden)

    Heng Gu

    Full Text Available Cri-du-Chat syndrome (MIM 123450 is a chromosomal syndrome characterized by the characteristic features, including cat-like cry and chromosome 5p deletions. We report a family with five individuals showing chromosomal rearrangements involving 5p, resulting from rare maternal complex chromosomal rearrangements (CCRs, diagnosed post- and pre-natally by comprehensive molecular and cytogenetic analyses. Two probands, including a 4½-year-old brother and his 2½-year- old sister, showed no diagnostic cat cry during infancy, but presented with developmental delay, dysmorphic and autistic features. Both patients had an interstitial deletion del(5(p13.3p15.33 spanning ≈ 26.22 Mb. The phenotypically normal mother had de novo CCRs involving 11 breakpoints and three chromosomes: ins(11;5 (q23;p14.1p15.31,ins(21;5(q21;p13.3p14.1,ins(21;5(q21;p15.31p15.33,inv(7(p22q32dn. In addition to these two children, she had three first-trimester miscarriages, two terminations due to the identification of the 5p deletion and one delivery of a phenotypically normal daughter. The unaffected daughter had the maternal ins(11;5 identified prenatally and an identical maternal allele haplotype of 5p. Array CGH did not detect any copy number changes in the mother, and revealed three interstitial deletions within 5p15.33-p13.3, in the unaffected daughter, likely products of the maternal insertions ins(21;5. Chromothripsis has been recently reported as a mechanism drives germline CCRs in pediatric patients with congenital defects. We postulate that the unique CCRs in the phenotypically normal mother could resulted from chromosome 5p chromothripsis, that further resulted in the interstitial 5p deletions in the unaffected daughter. Further high resolution sequencing based analysis is needed to determine whether chromothripsis is also present as a germline structural variation in phenotypically normal individuals in this family.

  5. DNA-based detection of chromosome deletion and amplification: diagnostic and mechanistic significance

    International Nuclear Information System (INIS)

    Latt, S.A.; Lalande, M.; Donlon, T.

    1986-01-01

    This paper describes a few of the many possible examples in which application of a molecular cytogenetic approach can ultimately lead to a new, important understanding about the statics and dynamics of human chromosome structure. In the case of retinoblastoma, cytological observations of deletions and linkage analysis have positioned the retinoblastoma locus to bank 13q14. This locus is grossly deleted in some spontaneous tumors. It is still necessary to locate more precisely and characterize the nature of the retinoblastoma locus, as well as the basis for the heterogeneity in deletions removing one copy of this locus. One is left with the possibility that those deletions that may be observed cytologically reflect but the tip of the iceberg of deletions; detection of others may require molecular probes. A related question is the nature of the DNA sequences at the deletion boundaries and the role they play in promoting these deletions

  6. Unmasking of a hemizygous WFS1 gene mutation by a chromosome 4p deletion of 8.3 Mb in a patient with Wolf-Hirschhorn syndrome.

    Science.gov (United States)

    Flipsen-ten Berg, Klara; van Hasselt, Peter M; Eleveld, Marc J; van der Wijst, Suzanne E; Hol, Frans A; de Vroede, Monique A M; Beemer, Frits A; Hochstenbach, P F Ron; Poot, Martin

    2007-11-01

    The Wolf-Hirschhorn syndrome (WHS (MIM 194190)), which is characterized by growth delay, mental retardation, epilepsy, facial dysmorphisms, and midline fusion defects, shows extensive phenotypic variability. Several of the proposed mutational and epigenetic mechanisms in this and other chromosomal deletion syndromes fail to explain the observed phenotypic variability. To explain the complex phenotype of a patient with WHS and features reminiscent of Wolfram syndrome (WFS (MIM 222300)), we performed extensive clinical evaluation and classical and molecular cytogenetic (GTG banding, FISH and array-CGH) and WFS1 gene mutation analyses. We detected an 8.3 Mb terminal deletion and an adjacent 2.6 Mb inverted duplication in the short arm of chromosome 4, which encompasses a gene associated with WFS (WFS1). In addition, a nonsense mutation in exon 8 of the WFS1 gene was found on the structurally normal chromosome 4. The combination of the 4p deletion with the WFS1 point mutation explains the complex phenotype presented by our patient. This case further illustrates that unmasking of hemizygous recessive mutations by chromosomal deletions represents an additional explanation for the phenotypic variability observed in chromosomal deletion disorders.

  7. The Role of Dicentric Chromosome Formation and Secondary Centromere Deletion in the Evolution of Myeloid Malignancy

    Science.gov (United States)

    MacKinnon, Ruth N.; Campbell, Lynda J.

    2011-01-01

    Dicentric chromosomes have been identified as instigators of the genome instability associated with cancer, but this instability is often resolved by one of a number of different secondary events. These include centromere inactivation, inversion, and intercentromeric deletion. Deletion or excision of one of the centromeres may be a significant occurrence in myeloid malignancy and other malignancies but has not previously been widely recognized, and our reports are the first describing centromere deletion in cancer cells. We review what is known about dicentric chromosomes and the mechanisms by which they can undergo stabilization in both constitutional and cancer genomes. The failure to identify centromere deletion in cancer cells until recently can be partly explained by the standard approaches to routine diagnostic cancer genome analysis, which do not identify centromeres in the context of chromosome organization. This hitherto hidden group of primary dicentric, secondary monocentric chromosomes, together with other unrecognized dicentric chromosomes, points to a greater role for dicentric chromosomes in cancer initiation and progression than is generally acknowledged. We present a model that predicts and explains a significant role for dicentric chromosomes in the formation of unbalanced translocations in malignancy. PMID:22567363

  8. The Role of Dicentric Chromosome Formation and Secondary Centromere Deletion in the Evolution of Myeloid Malignancy

    Directory of Open Access Journals (Sweden)

    Ruth N. MacKinnon

    2011-01-01

    Full Text Available Dicentric chromosomes have been identified as instigators of the genome instability associated with cancer, but this instability is often resolved by one of a number of different secondary events. These include centromere inactivation, inversion, and intercentromeric deletion. Deletion or excision of one of the centromeres may be a significant occurrence in myeloid malignancy and other malignancies but has not previously been widely recognized, and our reports are the first describing centromere deletion in cancer cells. We review what is known about dicentric chromosomes and the mechanisms by which they can undergo stabilization in both constitutional and cancer genomes. The failure to identify centromere deletion in cancer cells until recently can be partly explained by the standard approaches to routine diagnostic cancer genome analysis, which do not identify centromeres in the context of chromosome organization. This hitherto hidden group of primary dicentric, secondary monocentric chromosomes, together with other unrecognized dicentric chromosomes, points to a greater role for dicentric chromosomes in cancer initiation and progression than is generally acknowledged. We present a model that predicts and explains a significant role for dicentric chromosomes in the formation of unbalanced translocations in malignancy.

  9. Correlation between chromosome 9p21 locus deletion and prognosis in clinically localized prostate cancer.

    Science.gov (United States)

    Barros, Érika Aparecida Felix de; Pontes-Junior, José; Reis, Sabrina Thalita; Lima, Amanda Eunice Ramos; Souza, Isida C; Salgueiro, Jose Lucas; Fontes, Douglas; Dellê, Humberto; Coelho, Rafael Ferreira; Viana, Nayara Izabel; Leite, Kátia Ramos Moreira; Nahas, William C; Srougi, Miguel

    2017-05-04

    Some studies have reported that deletions at chromosome arm 9p occur frequently and represent a critical step in carcinogenesis of some neoplasms. Our aim was to evaluate the deletion of locus 9p21 and chromosomes 3, 7 and 17 in localized prostate cancer (PC) and correlate these alterations with prognostic factors and biochemical recurrence after surgery. We retrospectively evaluated surgical specimens from 111 patients with localized PC who underwent radical prostatectomy. Biochemical recurrence was defined as a prostate-specific antigen (PSA) >0.2 ng/mL and the mean postoperative follow-up was 123 months. The deletions were evaluated using fluorescence in situ hybridization with centromeric and locus-specific probes in a tissue microarray containing 2 samples from each patient. We correlated the occurrence of any deletion with pathological stage, Gleason score, ISUP grade group, PSA and biochemical recurrence. We observed a loss of any probe in only 8 patients (7.2%). The most common deletion was the loss of locus 9p21, which occurred in 6.4% of cases. Deletions of chromosomes 3, 7 and 17 were observed in 2.3%, 1.2% and 1.8% patients, respectively. There was no correlation between chromosome loss and Gleason score, ISUP, PSA or stage. Biochemical recurrence occurred in 83% cases involving 9p21 deletions. Loss of 9p21 locus was significantly associated with time to recurrence (p = 0.038). We found low rates of deletion in chromosomes 3, 7 and 17 and 9p21 locus. We observed that 9p21 locus deletion was associated with worse prognosis in localized PC treated by radical prostatectomy.

  10. Partial 2p deletion in a girl with a complex chromosome rearrangement involving chromosomes 2, 6, 11, and 21.

    OpenAIRE

    Young, R S; Medrano, M A; Hansen, K L

    1985-01-01

    We describe the clinical and cytogenetic findings of a 9 1/2 month old girl with a complex chromosome rearrangement resulting in a probable deletion of band 2p14. She does not resemble other reported cases of del(2p).

  11. Paracentric inversion of chromosome 2 associated with cryptic duplication of 2q14 and deletion of 2q37 in a patient with autism.

    Science.gov (United States)

    Devillard, Françoise; Guinchat, Vincent; Moreno-De-Luca, Daniel; Tabet, Anne-Claude; Gruchy, Nicolas; Guillem, Pascale; Nguyen Morel, Marie-Ange; Leporrier, Nathalie; Leboyer, Marion; Jouk, Pierre-Simon; Lespinasse, James; Betancur, Catalina

    2010-09-01

    We describe a patient with autism and a paracentric inversion of chromosome 2q14.2q37.3, with a concurrent duplication of the proximal breakpoint at 2q14.1q14.2 and a deletion of the distal breakpoint at 2q37.3. The abnormality was derived from his mother with a balanced paracentric inversion. The inversion in the child appeared to be cytogenetically balanced but subtelomere FISH revealed a cryptic deletion at the 2q37.3 breakpoint. High-resolution single nucleotide polymorphism array confirmed the presence of a 3.5 Mb deletion that extended to the telomere, and showed a 4.2 Mb duplication at 2q14.1q14.2. FISH studies using a 2q14.2 probe showed that the duplicated segment was located at the telomeric end of chromosome 2q. This recombinant probably resulted from breakage of a dicentric chromosome. The child had autism, mental retardation, speech and language delay, hyperactivity, growth retardation with growth hormone deficiency, insulin-dependent diabetes, and mild facial dysmorphism. Most of these features have been previously described in individuals with simple terminal deletion of 2q37. Pure duplications of the proximal chromosome 2q are rare and no specific syndrome has been defined yet, so the contribution of the 2q14.1q14.2 duplication to the phenotype of the patient is unknown. These findings underscore the need to explore apparently balanced chromosomal rearrangements inherited from a phenotypically normal parent in subjects with autism and/or developmental delay. In addition, they provide further evidence indicating that chromosome 2q terminal deletions are among the most frequently reported cytogenetic abnormalities in individuals with autism.

  12. Chromosomal microarray testing identifies a 4p terminal region associated with seizures in Wolf–Hirschhorn syndrome

    Science.gov (United States)

    South, Sarah T; Lortz, Amanda; Hensel, Charles H; Sdano, Mallory R; Vanzo, Rena J; Martin, Megan M; Peiffer, Andreas; Lambert, Christophe G; Calhoun, Amy; Carey, John C; Battaglia, Agatino

    2016-01-01

    Background Wolf–Hirschhorn syndrome (WHS) is a contiguous gene deletion syndrome involving variable size deletions of the 4p16.3 region. Seizures are frequently, but not always, associated with WHS. We hypothesised that the size and location of the deleted region may correlate with seizure presentation. Methods Using chromosomal microarray analysis, we finely mapped the breakpoints of copy number variants (CNVs) in 48 individuals with WHS. Seizure phenotype data were collected through parent-reported answers to a comprehensive questionnaire and supplemented with available medical records. Results We observed a significant correlation between the presence of an interstitial 4p deletion and lack of a seizure phenotype (Fisher's exact test p=3.59e-6). In our cohort, there were five individuals with interstitial deletions with a distal breakpoint at least 751 kbp proximal to the 4p terminus. Four of these individuals have never had an observable seizure, and the fifth individual had a single febrile seizure at the age of 1.5 years. All other individuals in our cohort whose deletions encompass the terminal 751 kbp region report having seizures typical of WHS. Additional examples from the literature corroborate these observations and further refine the candidate seizure susceptibility region to a region 197 kbp in size, starting 368 kbp from the terminus of chromosome 4. Conclusions We identify a small terminal region of chromosome 4p that represents a seizure susceptibility region. Deletion of this region in the context of WHS is sufficient for seizure occurrence. PMID:26747863

  13. Chromosomal microarray testing identifies a 4p terminal region associated with seizures in Wolf-Hirschhorn syndrome.

    Science.gov (United States)

    Ho, Karen S; South, Sarah T; Lortz, Amanda; Hensel, Charles H; Sdano, Mallory R; Vanzo, Rena J; Martin, Megan M; Peiffer, Andreas; Lambert, Christophe G; Calhoun, Amy; Carey, John C; Battaglia, Agatino

    2016-04-01

    Wolf-Hirschhorn syndrome (WHS) is a contiguous gene deletion syndrome involving variable size deletions of the 4p16.3 region. Seizures are frequently, but not always, associated with WHS. We hypothesised that the size and location of the deleted region may correlate with seizure presentation. Using chromosomal microarray analysis, we finely mapped the breakpoints of copy number variants (CNVs) in 48 individuals with WHS. Seizure phenotype data were collected through parent-reported answers to a comprehensive questionnaire and supplemented with available medical records. We observed a significant correlation between the presence of an interstitial 4p deletion and lack of a seizure phenotype (Fisher's exact test p=3.59e-6). In our cohort, there were five individuals with interstitial deletions with a distal breakpoint at least 751 kbp proximal to the 4p terminus. Four of these individuals have never had an observable seizure, and the fifth individual had a single febrile seizure at the age of 1.5 years. All other individuals in our cohort whose deletions encompass the terminal 751 kbp region report having seizures typical of WHS. Additional examples from the literature corroborate these observations and further refine the candidate seizure susceptibility region to a region 197 kbp in size, starting 368 kbp from the terminus of chromosome 4. We identify a small terminal region of chromosome 4p that represents a seizure susceptibility region. Deletion of this region in the context of WHS is sufficient for seizure occurrence. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  14. Molecular evidence for the induction of large interstitial deletions on mouse chromosome 8 by ionizing radiation

    International Nuclear Information System (INIS)

    Turker, Mitchell S.; Pieretti, Maura; Kumar, Sudha

    1997-01-01

    The P19H22 mouse embryonal carcinoma cell line is characterized by a hemizygous deficiency for the chromosome 8 encoded aprt (adenine phosphoribosyltransferase) gene and heterozygosity for many chromosome 8 loci. We have previously demonstrated that this cell line is suitable for mutational studies because it is permissive of events ranging in size from base-pair substitutions at the aprt locus to apparent loss of chromosome 8. Large mutational events, defined by loss of the remaining aprt allele, were found to predominate in spontaneous mutants and those induced by ionizing radiation. In this study we have used a PCR based assay to screen for loss of heterozygosity at microsatellite loci both proximal and distal to aprt in 137 Cs-induced and spontaneous aprt mutants. This approach allowed us to distinguish apparent interstitial deletional events from apparent recombinational events. Significantly, 32.5% (26 of 80) of the mutational events induced by 137 Cs appeared to be interstitial deletions as compared with 7.7% (6 of 78) in the spontaneous group. This difference was statistically significant (p 137 Cs caused a significant number of deletion mutations. Most 137 Cs-induced interstitial deletions were larger than 6 cM, whereas none of the spontaneous deletions were larger than 6 cM. These results provide further support for the notion that ionizing radiation induces deletion mutations and validate the use of the P19H22 cell line for the study of events induced by ionizing radiation

  15. Molecular characterization of chromosome 22 deletions in schwannomas

    NARCIS (Netherlands)

    Bijlsma, E. K.; Brouwer-Mladin, R.; Bosch, D. A.; Westerveld, A.; Hulsebos, T. J.

    1992-01-01

    Schwannomas are tumors of the cranial, spinal, and peripheral nerve sheaths that originate from Schwann cells. Acoustic neurinomas are the most frequent cranial schwannomas. They might develop sporadically or in the context of neurofibromatosis type 2 (NF2). Loss of part or all of chromosome 22 is

  16. Molecular and cellular pathways associated with chromosome 1p deletions during colon carcinogenesis

    Directory of Open Access Journals (Sweden)

    Payne CM

    2011-05-01

    Full Text Available Claire M Payne, Cheray Crowley-Skillicorn, Carol Bernstein, Hana Holubec, Harris BernsteinDepartment of Cell Biology and Anatomy, College of Medicine, University of Arizona Tucson, AZ, USAAbstract: Chromosomal instability is a major pathway of sporadic colon carcinogenesis. Chromosome arm 1p appears to be one of the “hot spots” in the non-neoplastic mucosa that, when deleted, is associated with the initiation of carcinogenesis. Chromosome arm 1p contains genes associated with DNA repair, spindle checkpoint function, apoptosis, multiple microRNAs, the Wnt signaling pathway, tumor suppression, antioxidant activities, and defense against environmental toxins. Loss of 1p is dangerous since it would likely contribute to genomic instability leading to tumorigenesis. The 1p deletion-associated colon carcinogenesis pathways are reviewed at the molecular and cellular levels. Sporadic colon cancer is strongly linked to a high-fat/low-vegetable/low-micronutrient, Western-style diet. We also consider how selected dietary-related compounds (eg, excess hydrophobic bile acids, and low levels of folic acid, niacin, plant-derived antioxidants, and other modulatory compounds might affect processes leading to chromosomal deletions, and to the molecular and cellular pathways specifically altered by chromosome 1p loss.Keywords: chromosome 1p, colon carcinogenesis, molecular pathways, cellular pathways

  17. Partial deletions of the W chromosome due to reciprocal translocation in the silkworm Bombyx mori.

    Science.gov (United States)

    Abe, H; Seki, M; Ohbayashi, F; Tanaka, N; Yamashita, J; Fujii, T; Yokoyama, T; Takahashi, M; Banno, Y; Sahara, K; Yoshido, A; Ihara, J; Yasukochi, Y; Mita, K; Ajimura, M; Suzuki, M G; Oshiki, T; Shimada, T

    2005-08-01

    In the silkworm, Bombyx mori (female, ZW; male, ZZ), femaleness is determined by the presence of a single W chromosome, irrespective of the number of autosomes or Z chromosomes. The W chromosome is devoid of functional genes, except the putative female-determining gene (Fem). However, there are strains in which chromosomal fragments containing autosomal markers have been translocated on to W. In this study, we analysed the W chromosomal regions of the Zebra-W strain (T(W;3)Ze chromosome) and the Black-egg-W strain (T(W;10)+(w-2) chromosome) at the molecular level. Initially, we undertook a project to identify W-specific RAPD markers, in addition to the three already established W-specific RAPD markers (W-Kabuki, W-Samurai and W-Kamikaze). Following the screening of 3648 arbitrary 10-mer primers, we obtained nine W-specific RAPD marker sequences (W-Bonsai, W-Mikan, W-Musashi, W-Rikishi, W-Sakura, W-Sasuke, W-Yukemuri-L, W-Yukemuri-S and BMC1-Kabuki), almost all of which contained the border regions of retrotransposons, namely portions of nested retrotransposons. We confirmed the presence of eleven out of twelve W-specific RAPD markers in the normal W chromosomes of twenty-five silkworm strains maintained in Japan. These results indicate that the W chromosomes of the strains in Japan are almost identical in type. The Zebra-W strain (T(W;3)Ze chromosome) lacked the W-Samurai and W-Mikan RAPD markers and the Black-egg-W strain (T(W;10)+(w-2) chromosome) lacked the W-Mikan RAPD marker. These results strongly indicate that the regions containing the W-Samurai and W-Mikan RAPD markers or the W-Mikan RAPD marker were deleted in the T(W;3)Ze and T(W;10)+(w-2) chromosomes, respectively, due to reciprocal translocation between the W chromosome and the autosome. This deletion apparently does not affect the expression of Fem; therefore, this deleted region of the W chromosome does not contain the putative Fem gene.

  18. Deletion of short arm of chromosome 18, Del(18p syndrome

    Directory of Open Access Journals (Sweden)

    Prashant Babaji

    2014-01-01

    Full Text Available Deletion of the short arm of chromosome 18 is a rare syndrome clinically presenting with variable mental retardation, growth retardation, low height, pectus excavatum, craniofacial malformations including long ear, ptosis, microcephaly and short neck. This case report presents with characteristic features along with rare feature of single nostril.

  19. Deletion of 1p36 as a primary chromosomal aberration in intestinal tumorigenesis

    DEFF Research Database (Denmark)

    Bardi, G; Pandis, N; Fenger, C

    1993-01-01

    rearrangements were found that led to loss of genetic material from 1p. In three of the cases, the deletion was restricted to the 1p36 band; the rest had lost larger 1p segments. The rearrangement of chromosome 1 was the sole karyotypic anomaly in three adenomas, all with mild or moderate dysplasia...

  20. Children with Chromosome 22q11.2 Deletion Syndrome Exhibit Impaired Spatial Working Memory

    Science.gov (United States)

    Wong, Ling M.; Riggins, Tracy; Harvey, Danielle; Cabaral, Margarita; Simon, Tony J.

    2014-01-01

    Individuals with chromosome 22q11.2 deletion syndrome (22q11.2DS) have been shown to have impairments in processing spatiotemporal information. The authors examined whether children with 22q11.2DS exhibit impairments in spatial working memory performance due to these weaknesses, even when controlling for maintenance of attention. Children with…

  1. Anterior Pituitary Aplasia in an Infant with Ring Chromosome 18p Deletion

    Directory of Open Access Journals (Sweden)

    Edward J. Bellfield

    2016-01-01

    Full Text Available We present the first reported case of an infant with 18p deletion syndrome with anterior pituitary aplasia secondary to a ring chromosome. Endocrine workup soon after birth was reassuring; however, repeat testing months later confirmed central hypopituitarism. While MRI reading initially indicated no midline defects, subsequent review of the images confirmed anterior pituitary aplasia with ectopic posterior pituitary. This case demonstrates how deletion of genetic material, even if resulting in a chromosomal ring, still results in a severe syndromic phenotype. Furthermore, it demonstrates the necessity of close follow-up in the first year of life for children with 18p deletion syndrome and emphasizes the need to verify radiology impressions if there is any doubt as to the radiologic findings.

  2. Submicroscopic interstitial deletion of the X chromosome explains a complex genetic syndrome dominated by Norrie disease.

    Science.gov (United States)

    Gal, A; Wieringa, B; Smeets, D F; Bleeker-Wagemakers, L; Ropers, H H

    1986-01-01

    Norrie disease (ND), an X-linked recessive disorder, is characterized by congenital blindness followed by bulbar atrophy. We have examined a three-generation family in which ND is part of a complex X-linked syndrome with severe mental retardation, hypogonadism, growth disturbances, and increased susceptibility to infections as additional features. This syndrome is apparently due to an interstitial deletion, as evidenced by the failure of the L1.28 DNA probe (DXS7 locus, Xp11.3) to detect complementary DNA sequences on the defective X chromosome of an affected male and of several obligatory heterozygotes. Attempts to further define this deletion with other DNA probes from the proximal short arm of the X chromosome or by prometaphase chromosome analysis were unsuccessful.

  3. Impaired spermatogenesis and gr/gr deletions related to Y chromosome haplogroups in Korean men.

    Directory of Open Access Journals (Sweden)

    Jin Choi

    Full Text Available Microdeletion of the Azoospermia Factor (AZF regions in Y chromosome is a well-known genetic cause of male infertility resulting from spermatogenetic impairment. However, the partial deletions of AZFc region related to spermatogenetic impairment are controversial. In this study, we characterized partial deletion of AZFc region in Korean patients with spermatogenetic impairment and assessed whether the DAZ and CDY1 contributes to the phenotype in patients with gr/gr deletions. Total of 377 patients with azoo-/oligozoospermia and 217 controls were analyzed using multiplex polymerase chain reaction (PCR, analysis of DAZ-CDY1 sequence family variants (SFVs, and quantitative fluorescent (QF-PCR. Of the 377 men with impaired spermatogenesis, 59 cases (15.6% had partial AZFc deletions, including 32 gr/gr (8.5%, 22 b2/b3 (5.8%, four b1/b3 (1.1% and one b3/b4 (0.3% deletion. In comparison, 14 of 217 normozoospermic controls (6.5% had partial AZFc deletions, including five gr/gr (2.3% and nine b2/b3 (4.1% deletions. The frequency of gr/gr deletions was significantly higher in the azoo-/oligozoospermic group than in the normozoospermic control group (p = 0.003; OR = 3.933; 95% CI = 1.509-10.250. Concerning Y haplogroup, we observed no significant differences in the frequency of gr/gr deletions between the case and the control groups in the YAP+ lineages, while gr/gr deletion were significantly higher in azoo-/oligozoospermia than normozoospermia in the YAP- lineage (p = 0.004; OR = 6.341; 95% CI = 1.472-27.312. Our data suggested that gr/gr deletion is associated with impaired spermatogenesis in Koreans with YAP- lineage, regardless of the gr/gr subtypes.

  4. Method of detecting genetic deletions identified with chromosomal abnormalities

    Energy Technology Data Exchange (ETDEWEB)

    Gray, Joe W; Pinkel, Daniel; Tkachuk, Douglas

    2013-11-26

    Methods and compositions for staining based upon nucleic acid sequence that employ nucleic acid probes are provided. Said methods produce staining patterns that can be tailored for specific cytogenetic analyzes. Said probes are appropriate for in situ hybridization and stain both interphase and metaphase chromosomal material with reliable signals. The nucleic acids probes are typically of a complexity greater tha 50 kb, the complexity depending upon the cytogenetic application. Methods and reagents are provided for the detection of genetic rearrangements. Probes and test kits are provided for use in detecting genetic rearrangements, particlularly for use in tumor cytogenetics, in the detection of disease related loci, specifically cancer, such as chronic myelogenous leukemia (CML) and for biological dosimetry. Methods and reagents are described for cytogenetic research, for the differentiation of cytogenetically similar ut genetically different diseases, and for many prognostic and diagnostic applications.

  5. Leukemia-related clonal chromosome aberrations observed in A-bomb survivors. Deletion in chromosome 5 and inversion in chromosome 14

    International Nuclear Information System (INIS)

    Ohtaki, Kazuo

    1999-01-01

    Chromosome aberrations were analyzed by G differentiation staining method on about 5,400 peripheral lymphocytes of 168 A-bomb survivors, of whom 143 had been exposed to mean DS86 dose of 2.05 Gy (exposed group) and of 25, 0 Gy (control) and results concerning clonal growth of abnormal cells were described in this paper. G band analysis of the aberrations in T-lymphocytes revealed that frequency of translocation in the exposed group increased to 17 times of the control and deletion, 5 times. Deletion in chromosome 5 where tumor-suppressor gene was present, [del(5q-)], was found in about 30% of total deletions. Since patients of myelodysplasia syndrome and acute myelogenic leukemia had the deletion in more than 50%, growth of cells possessing it was suggestive of the progression of pre-leukemic step. Frequency of inversion in chromosome 14, inv(14)(q11q32), was as high as 80% of total 118 inversions of T-ALL (T-acute lymphocyte leukemia) and T-CLL (T-chronic LL) types in the exposed group. Therefore, the inversion also can be a pre-leukemic step. However, it was suggested that these aberrations were not sufficient for crisis of the disease, which required other factors.(K.H.)

  6. Updating the profile of C-terminal MECP2 deletions in Rett syndrome

    Science.gov (United States)

    Bebbington, A; Percy, A; Christodoulou, J; Ravine, D; Ho, G; Jacoby, P; Anderson, A; Pineda, M; Ben Zeev, B; Bahi-Buisson, N; Smeets, E; Leonard, H

    2014-01-01

    Objectives This study aimed to compare the phenotype of Rett syndrome cases with C-terminal deletions to that of cases with different MECP2 mutations and to examine the phenotypic variation within C-terminal deletions. Methods Cases were selected from InterRett, an international database and from the population-based Australian Rett Syndrome Database. Cases (n=832) were included if they had a pathogenic MECP2 mutation in which the nature of the amino acid change was known. Three severity scale systems were used, and individual aspects of the phenotype were also compared. Results Lower severity was associated with C-terminal deletions (n=79) compared to all other MECP2 mutations (e.g. Pineda scale C-terminals mean 15.0 (95% CI 14.0–16.0) vs 16.2 (15.9–16.5). Cases with C-terminal deletions were more likely to have a normal head circumference (odds ratio 3.22, 95% CI 1.53 – 6.79) and weight (odds ratio 2.97, 95% CI 1.25–5.76). Onset of stereotypies tended to be later (median age 2.5 years vs 2 years, pmiddle of the range. In terms of individual aspects of phenotype growth and ability to ambulate appear to be particular strengths. By pooling data internationally this study has achieved the case numbers to provide a phenotypic profile of C-terminal deletions in Rett syndrome. PMID:19914908

  7. Subtelomeric deletion of chromosome 10p15.3: clinical findings and molecular cytogenetic characterization.

    Science.gov (United States)

    DeScipio, Cheryl; Conlin, Laura; Rosenfeld, Jill; Tepperberg, James; Pasion, Romela; Patel, Ankita; McDonald, Marie T; Aradhya, Swaroop; Ho, Darlene; Goldstein, Jennifer; McGuire, Marianne; Mulchandani, Surabhi; Medne, Livija; Rupps, Rosemarie; Serrano, Alvaro H; Thorland, Erik C; Tsai, Anne C-H; Hilhorst-Hofstee, Yvonne; Ruivenkamp, Claudia A L; Van Esch, Hilde; Addor, Marie-Claude; Martinet, Danielle; Mason, Thornton B A; Clark, Dinah; Spinner, Nancy B; Krantz, Ian D

    2012-09-01

    We describe 19 unrelated individuals with submicroscopic deletions involving 10p15.3 characterized by chromosomal microarray (CMA). Interestingly, to our knowledge, only two individuals with isolated, submicroscopic 10p15.3 deletion have been reported to date; however, only limited clinical information is available for these probands and the deleted region has not been molecularly mapped. Comprehensive clinical history was obtained for 12 of the 19 individuals described in this study. Common features among these 12 individuals include: cognitive/behavioral/developmental differences (11/11), speech delay/language disorder (10/10), motor delay (10/10), craniofacial dysmorphism (9/12), hypotonia (7/11), brain anomalies (4/6) and seizures (3/7). Parental studies were performed for nine of the 19 individuals; the 10p15.3 deletion was de novo in seven of the probands, not maternally inherited in one proband and inherited from an apparently affected mother in one proband. Molecular mapping of the 19 individuals reported in this study has identified two genes, ZMYND11 (OMIM 608668) and DIP2C (OMIM 611380; UCSC Genome Browser), mapping within 10p15.3 which are most commonly deleted. Although no single gene has been identified which is deleted in all 19 individuals studied, the deleted region in all but one individual includes ZMYND11 and the deleted region in all but one other individual includes DIP2C. There is not a clearly identifiable phenotypic difference between these two individuals and the size of the deleted region does not generally predict clinical features. Little is currently known about these genes complicating a direct genotype/phenotype correlation at this time. These data however, suggest that ZMYND11 and/or DIP2C haploinsufficiency contributes to the clinical features associated with 10p15 deletions in probands described in this study. Copyright © 2012 Wiley Periodicals, Inc.

  8. Physical mapping of chromosome 8p22 markers and their homozygous deletion in a metastatic prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Bova, G.S.; Pin, S.S.; Isaacs, W.B. [Johns Hopkins Univ. School of Medicine, Baltimore, MD (United States)]|[Brady Urological Institute, Baltimore, MD (United States)] [and others

    1996-07-01

    Numerous studies have implicated the short arm of chromosome 8 as the site of one or more tumor suppressor genes inactivated in carcinogenesis of the prostate, colon, lung, and liver. Previously, we identified a homozygous deletion on chromosome 8p22 in a metastatic prostate cancer. To map this homozygous deletion physically, long-range restriction mapping was performed using yeast artificial chromosomes (YACs) spanning approximately 2 Mb of chromosome band 8p22. Subcloned genomic DNA and cDNA probes isolated by hybrid capture from these YACs were mapped in relation to one another, reinforcing map integrity. Mapped single-copy probes from the region were then applied to DNA isolated from a metastatic prostate cancer containing a chromosome 8p22 homozygous deletion and indicated that its deletion spans 730-970 kb. Candidate genes PRLTS (PDGF-receptor {beta}-like tumor suppressor) and CTSB (cathepsin B) are located outside the region of homozygous deletion. Genethon marker D8S549 is located approximately at the center of this region of homozygous deletion. Two new microsatellite polymorphisms, D8S1991 and D8S1992, also located within the region of homozygous deletion on chromosome 8p22, are described. Physical mapping places cosmid CI8-2644 telomeric to MSR (macrophage scavenger receptor), the reverse of a previously published map, altering the interpretation of published deletion studies. This work should prove helpful in the identification of candidate tumor suppressor genes in this region. 47 refs., 5 figs., 1 tab.

  9. Partial deletion 11q

    DEFF Research Database (Denmark)

    Hertz, Jens Michael; Tommerup, N; Sørensen, F B

    1995-01-01

    We describe the cytogenetic findings and the dysmorphic features in a stillborn girl with a large de novo terminal deletion of the long arm of chromosome 11. The karyotype was 46,XX,del(11)(q21qter). By reviewing previous reports of deletion 11q, we found that cleft lip and palate are most...

  10. Sexual dimorphism in white campion: complex control of carpel number is revealed by Y chromosome deletions

    International Nuclear Information System (INIS)

    Lardon, A.; Georgiev, S.; Aghmir, A.; Le Merrer, G.; Negrutiu, I.

    1999-01-01

    Sexual dimorphism in the dioecious plant white campion (Silene latifolia = Melandrium album) is under the control of two main regions on the Y chromosome. One such region, encoding the gynoecium-suppressing function (GSF), is responsible for the arrest of carpel initiation in male flowers. To generate chromosomal deletions, we used pollen irradiation in male plants to produce hermaphroditic mutants (bsx mutants) in which carpel development was restored. The mutants resulted from alterations in at least two GSF chromosomal regions, one autosomal and one located on the distal half of the (p)-arm of the Y chromosome. The two mutations affected carpel development independently, each mutation showing incomplete penetrance and variegation, albeit at significantly different levels. During successive meiotic generations, a progressive increase in penetrance and a reduction in variegation levels were observed and quantified at the level of the Y-linked GSF (GSF-Y). Possible mechanisms are proposed to explain the behavior of the bsx mutations: epigenetic regulation or/and second-site mutation of modifier genes. In addition, studies on the inheritance of the hermaphroditic trait showed that, unlike wild-type Y chromosomes, deleted Y chromosomes can be transmitted through both the male and the female lines. Altogether, these findings bring experimental support, on the one hand, to the existence on the Y chromosome of genic meiotic drive function(s) and, on the other hand, to models that consider that dioecy evolved through multiple mutation events. As such, the GSF is actually a system containing more than one locus and whose primary component is located on the Y chromosome

  11. PTEN C-Terminal Deletion Causes Genomic Instability and Tumor Development

    Directory of Open Access Journals (Sweden)

    Zhuo Sun

    2014-03-01

    Full Text Available Tumor suppressor PTEN controls genomic stability and inhibits tumorigenesis. The N-terminal phosphatase domain of PTEN antagonizes the PI3K/AKT pathway, but its C-terminal function is less defined. Here, we describe a knockin mouse model of a nonsense mutation that results in the deletion of the entire Pten C-terminal region, referred to as PtenΔC. Mice heterozygous for PtenΔC develop multiple spontaneous tumors, including cancers and B cell lymphoma. Heterozygous deletion of the Pten C-terminal domain also causes genomic instability and common fragile site rearrangement. We found that Pten C-terminal disruption induces p53 and its downstream targets. Simultaneous depletion of p53 promotes metastasis without influencing the initiation of tumors, suggesting that p53 mainly suppresses tumor progression. Our data highlight the essential role of the PTEN C terminus in the maintenance of genomic stability and suppression of tumorigenesis.

  12. Interleukin 3 gene is located on human chromosome 5 and is deleted in myeloid leukemias with a deletion of 5q

    International Nuclear Information System (INIS)

    Le Beau, M.M.; Epstein, N.D.; O'Brien, S.J.; Nienhuis, A.W.; Yang, Y.C.; Clark, S.C.; Rowley, J.D.

    1987-01-01

    The gene IL-3 encodes interleukin 3, a hematopoietic colony-stimulating factor (CSF) that is capable of supporting the proliferation of a broad range of hematopoietic cell types. By using somatic cell hybrids and in situ chromosomal hybridization, the authors localized this gene to human chromosome 5 at bands q23-31, a chromosomal region that is frequently deleted [del(5q)] in patients with myeloid disorders. By in situ hybridization, IL-3 was found to be deleted in the 5q-chromosome of one patient with refractory anemia who had a del(5)(q15q33.3), of three patients with refractory anemia (two patients) or acute nonlymphocytic leukemia (ANLL) de novo who had a similar distal breakpoint [del(5)(q13q33.3)], and of a fifth patient, with therapy-related ANLL, who had a similar distal breakpoint in band q33[del(5)(q14q33.3)]. Southern blot analysis of somatic cell hybrids retaining the normal or the deleted chromosome 5 from two patients with the refractory anemia 5q- syndrome indicated that IL-3 sequences were absent from the hybrids retaining the deleted chromosome 5 but not from hybrids that had a cytologically normal chromosome 5. Thus, a small segment of chromosome 5 contains IL-3, GM-CSF, CSF-1, and FMS. The findings and earlier results indicating that GM-CSF, CSF-1, and FMS were deleted in the 5q- chromosome, suggest that loss of IL-3 or of other CSF genes may play an important role in the pathogenesis of hematologic disorders associated with a del(5q)

  13. Periventricular heterotopia in a boy with interstitial deletion of chromosome 4p.

    Science.gov (United States)

    Gawlik-Kuklinska, Katarzyna; Wierzba, Jolanta; Wozniak, Agnieszka; Iliszko, Mariola; Debiec-Rychter, Maria; Dubaniewicz-Wybieralska, Miroslawa; Limon, Janusz

    2008-01-01

    We report on a 4-year-old boy with a proximal interstitial deletion in the short arm of chromosome 4p with the karyotype 46,XY,del(4)(p14p15.32),inv(9)(p13q13). For a precise delineation of the deleted region, an array-based comparative genomic hybridization (a-CGH) analysis was performed. The proband's phenotype and cytogenetic findings are compared with previously reported cases with proximal 4p deletion syndrome. The syndrome is associated with normal growth, varying degrees of mental retardation, characteristic facial appearance and minor dysmorphic features. Additionally, our patient developed a seizure disorder due to abnormal neuronal migration, i.e., periventricular heterotopia.

  14. Genomic clones of bovine parvovirus: Construction and effect of deletions and terminal sequence inversions on infectivity

    International Nuclear Information System (INIS)

    Shull, B.C.; Chen, K.C.; Lederman, M.; Stout, E.R.; Bates, R.C.

    1988-01-01

    Genomic clones of the autonomous parvovirus bovine parvovirus (BPV) were constructed by blunt-end ligation of reannealed virion plus and minus DNA strands into the plasmid pUC8. These clones were stable during propagation in Escherichia coli JM107. All clones tested were found to be infectious by the criteria of plaque titer and progressive cytophathic effect after transfection into bovine fetal lung cells. Sequencing of the recombinant plasmids demonstrated that all of the BPV inserts had left-end (3')-terminal deletions of up to 34 bases. Defective genomes could also be detected in the progeny DNA even though the infection was initiated with homogeneous, cloned DNA. Full-length genomic clones with 3' flip and 3' flop conformations were constructed and were found to have equal infectivity. Expression of capsid proteins from tranfected genomes was demonstrated by hemagglutination, indirect immunofluorescence, and immunoprecipitation of [ 35 S]methionine-labeled cell lysates. Use of appropriate antiserum for immunoprecipitation showed the synthesis of BPV capsid and noncapsid proteins after transfection. Independently, a series of genomic clones with increasingly larger 3'-terminal deletions was prepared from separately subcloned 3'-terminal fragments. Transfection of these clones into bovine fetal lung cells revealed that deletions of up to 34 bases at the 3' end lowered but did not abolish infectivity, while deletions of greater than 52 bases were lethal. End-label analysis showed that the 34-base deletion was repaired to wild-type length in the progeny virus

  15. [A case of mosaic ring chromosome 4 with subtelomeric 4p deletion].

    Science.gov (United States)

    Kim, Jeong Hyun; Oh, Phil Soo; Na, Hye Yeon; Kim, Sun-Hee; Cho, Hyoun Chan

    2009-02-01

    Ring chromosome is a structural abnormality that is thought to be the result of fusion and breakage in the short and long arms of chromosome. Wolf-Hirschhorn syndrome (WHS) is a well-known congenital anomaly in the ring chromosome 4 with a partial deletion of the distal short arm. Here we report a 10-month-old male of mosaic ring chromosome 4 with the chief complaint of severe short stature. He showed the height of -4 standard deviation, subtle hypothyroidism and mild atrial septal defect/ventricular septal defect, and also a mild language developmental delay was suspected. Brain magnetic resonance imaging showed multifocal leukomalacia. Chromosomal analysis of the peripheral blood showed the mosaic karyotype with [46,XY,r(4)(p16q35)[84]/45,XY,-4[9]/91,XXYY, dic r(4;4)(p16q35;p16q35)[5]/46,XY,dic r(4;4)(p16q35;p16q35)[2

  16. Deletion of DXZ4 on the human inactive X chromosome alters higher-order genome architecture.

    Science.gov (United States)

    Darrow, Emily M; Huntley, Miriam H; Dudchenko, Olga; Stamenova, Elena K; Durand, Neva C; Sun, Zhuo; Huang, Su-Chen; Sanborn, Adrian L; Machol, Ido; Shamim, Muhammad; Seberg, Andrew P; Lander, Eric S; Chadwick, Brian P; Aiden, Erez Lieberman

    2016-08-02

    During interphase, the inactive X chromosome (Xi) is largely transcriptionally silent and adopts an unusual 3D configuration known as the "Barr body." Despite the importance of X chromosome inactivation, little is known about this 3D conformation. We recently showed that in humans the Xi chromosome exhibits three structural features, two of which are not shared by other chromosomes. First, like the chromosomes of many species, Xi forms compartments. Second, Xi is partitioned into two huge intervals, called "superdomains," such that pairs of loci in the same superdomain tend to colocalize. The boundary between the superdomains lies near DXZ4, a macrosatellite repeat whose Xi allele extensively binds the protein CCCTC-binding factor. Third, Xi exhibits extremely large loops, up to 77 megabases long, called "superloops." DXZ4 lies at the anchor of several superloops. Here, we combine 3D mapping, microscopy, and genome editing to study the structure of Xi, focusing on the role of DXZ4 We show that superloops and superdomains are conserved across eutherian mammals. By analyzing ligation events involving three or more loci, we demonstrate that DXZ4 and other superloop anchors tend to colocate simultaneously. Finally, we show that deleting DXZ4 on Xi leads to the disappearance of superdomains and superloops, changes in compartmentalization patterns, and changes in the distribution of chromatin marks. Thus, DXZ4 is essential for proper Xi packaging.

  17. Sexual dimorphism in white campion: deletion on the Y chromosome results in a floral asexual phenotype

    International Nuclear Information System (INIS)

    Farbos, I.; Veuskens, J.; Vyskot, B.; Oliveira, M.; Hinnisdaels, S.; Aghmir, A.; Mouras, A.; Negrutiu, I.

    1999-01-01

    White campion is a dioecious plant with heteromorphic X and Y sex chromosomes. In male plants, a filamentous structure replaces the pistil, while in female plants the stamens degenerate early in flower development. Asexual (asx) mutants, cumulating the two developmental defects that characterize the sexual dimorphism in this species, were produced by gamma ray irradiation of pollen and screening in the M1 generation. The mutants harbor a novel type of mutation affecting an early function in sporogenous/parietal cell differentiation within the anther. The function is called stamen-promoting function (SPF). The mutants are shown to result from interstitial deletions on the Y chromosome. We present evidence that such deletions tentatively cover the central domain on the (p)-arm of the Y chromosome (Y2 region). By comparing stamen development in wild-type female and asx mutant flowers we show that they share the same block in anther development, which results in the production of vestigial anthers. The data suggest that the SPF, a key function(s) controlling the sporogenous/parietal specialization in premeiotic anthers, is genuinely missing in females (XX constitution). We argue that this is the earliest function in the male program that is Y-linked and is likely responsible for ''male dimorphism'' (sexual dimorphism in the third floral whorl) in white campion. More generally, the reported results improve our knowledge of the structural and functional organization of the Y chromosome and favor the view that sex determination in this species results primarily from a trigger signal on the Y chromosome (Y1 region) that suppresses female development. The default state is therefore the ancestral hermaphroditic state

  18. Early onset intellectual disability in chromosome 22q11.2 deletion syndrome.

    Science.gov (United States)

    Cascella, Marco; Muzio, Maria Rosaria

    2015-01-01

    Chromosome 22q11.2 deletion syndrome, or DiGeorge syndrome, or velocardiofacial syndrome, is one of the most common multiple anomaly syndromes in humans. This syndrome is commonly caused by a microdelection from chromosome 22 at band q11.2. Although this genetic disorder may reflect several clinical abnormalities and different degrees of organ commitment, the clinical features that have driven the greatest amount of attention are behavioral and developmental features, because individuals with 22q11.2 deletion syndrome have a 30-fold risk of developing schizophrenia. There are differing opinions about the cognitive development, and commonly a cognitive decline rather than an early onset intellectual disability has been observed. We report a case of 22q11.2 deletion syndrome with both early assessment of mild intellectual disabilities and tetralogy of Fallot as the only physic manifestation. Copyright © 2015 Sociedad Chilena de Pediatría. Publicado por Elsevier España, S.L.U. All rights reserved.

  19. A molecular deletion of distal chromosome 4p in two families with a satellited chromosome 4 lacking the Wolf-Hirschhorn syndrome phenotype.

    Science.gov (United States)

    Estabrooks, L L; Lamb, A N; Kirkman, H N; Callanan, N P; Rao, K W

    1992-11-01

    We report two families with a satellited chromosome 4 short arm (4ps). Satellites and stalks normally occur on the short arms of acrocentric chromosomes; however, the literature cites several reports of satellited nonacrocentric chromosomes, which presumably result from a translocation with an acrocentric chromosome. This is the first report of 4ps chromosomes. Our families are remarkable in that both unaffected and affected individuals carry the 4ps chromosome. The phenotypes observed in affected individuals, although dissimilar, were sufficient to encourage a search for a deletion of chromosome 4p. By Southern blot analysis and fluorescence in situ hybridization, a deletion of material mapping approximately 150 kb from chromosome 4pter was discovered. This deletion is notable because it does not result in the Wolf-Hirschhorn syndrome and can result in an apparently normal phenotype. We speculate that homology between subterminal repeat sequences on 4p and sequences on the acrocentric short arms may explain the origin of the rearrangement and that position effect may play a role in the expression of the abnormal phenotype.

  20. Identification of a Basic Helix-Loop-Helix-Type Transcription Regulator Gene in Aspergillus oryzae by Systematically Deleting Large Chromosomal Segments▿ †

    OpenAIRE

    Jin, Feng Jie; Takahashi, Tadashi; Machida, Masayuki; Koyama, Yasuji

    2009-01-01

    We previously developed two methods (loop-out and replacement-type recombination) for generating large-scale chromosomal deletions that can be applied to more effective chromosomal engineering in Aspergillus oryzae. In this study, the replacement-type method is used to systematically delete large chromosomal DNA segments to identify essential and nonessential regions in chromosome 7 (2.93 Mb), which is the smallest A. oryzae chromosome and contains a large number of nonsyntenic blocks. We con...

  1. Hypertensive Cerebral Hemorrhage in a Patient with Turner Syndrome Caused by Deletion in the Short Arm of the X Chromosome.

    Science.gov (United States)

    Hori, Yusuke S; Ohkura, Takahiro; Ebisudani, Yuki; Umakoshi, Michiari; Ishi, Masato; Oda, Kazunori; Aoi, Mizuho; Inoue, Takushi; Furujo, Mahoko; Tanaka, Hiroyuki; Fukuhara, Toru

    2018-01-01

    Turner syndrome is a chromosomal disorder usually caused by complete deletion of an X chromosome, with deletion in the short arm of the X chromosome being a rare cause of the condition. Patients with Turner syndrome commonly develop hypertension, and associated vascular complications such as aortic dissection or cerebral hemorrhage have been reported. Cerebral hemorrhage in Turner syndrome is a rare complication, and only a few reports have been published. In these reports, all patients have XO karyotypes or a mosaic type as the cause of Turner syndrome, while no other Turner syndrome types have been documented. In this report, we present for the first time a patient with Turner syndrome caused by deletion in the short arm of the X chromosome who experienced hypertensive hemorrhage as a late complication. © 2017 S. Karger AG, Basel.

  2. Chromosomal deletion, promoter hypermethylation and downregulation of FYN in prostate cancer

    DEFF Research Database (Denmark)

    Sørensen, Karina Dalsgaard; Borre, Michael; Ørntoft, Torben Falck

    2008-01-01

    prostate hyperplasia (BPH), as well as in 6 prostate adenocarcinoma cell lines compared with that in BPH-1 cells. By immunohistochemistry, FYN protein was detected in nonmalignant prostate epithelium, but not in cancerous glands. Moreover, genomic bisulfite sequencing revealed frequent aberrant methylation......, consistent with gene silencing, was detected in 2 of 18 tumors (11%). No methylation was found in BPH-1 cells or nonmalignant prostate tissue samples (0 of 7). These results indicate that FYN is downregulated in prostate cancer by both chromosomal deletion and promoter hypermethylation, and therefore...

  3. Inversion duplication deletions involving the long arm of chromosome 13: phenotypic description of additional three fetuses and genotype-phenotype correlation.

    Science.gov (United States)

    Quelin, Chloe; Spaggiari, Emmanuel; Khung-Savatovsky, Suonavy; Dupont, Celine; Pasquier, Laurent; Loeuillet, Laurence; Jaillard, Sylvie; Lucas, Josette; Marcorelles, Pascale; Journel, Hubert; Pluquailec-Bilavarn, Khantaby; Bazin, Anne; Verloes, Alain; Delezoide, Anne-Lise; Aboura, Azzedine; Guimiot, Fabien

    2014-10-01

    Inversion duplication and terminal deletion of the long arm of chromosome 13 (inv dup del 13q) is a rare chromosomal rearrangement: only five patients have been reported, mostly involving a ring chromosome 13. We report on additional three fetuses with pure inv dup del 13q: Patient 1 had macrosomia, enlarged kidneys, hypersegmented lungs, unilateral moderate ventriculomegaly, and a mild form of hand and feet preaxial polydactyly; Patient 2 had intrauterine growth retardation, widely spaced eyes, left microphthalmia, right anophthalmia, short nose, bilateral absent thumbs, cutaneous syndactyly of toes 4 and 5, bifid third metacarpal, a small left kidney, hyposegmented lungs, and partial agenesis of the corpus callosum; Patient 3 had widely spaced eyes, long and smooth philtrum, low-set ears, median notch in the upper alveolar ridge, bifid tongue, cutaneous syndactyly of toes 2 and 3, enlarged kidneys and pancreas, arhinencephaly, and partial agenesis of the corpus callosum. We compared the phenotypes of these patients to those previously reported for ring chromosome 13, pure 13q deletions and duplications. We narrowed some critical regions previously reported for lung, kidney and fetal growth, and for thumb, cerebral, and eye anomalies. © 2014 Wiley Periodicals, Inc.

  4. Mapping the pericentric heterochromatin by comparative genomic hybridization analysis and chromosome deletions in Drosophila melanogaster.

    Science.gov (United States)

    He, Bing; Caudy, Amy; Parsons, Lance; Rosebrock, Adam; Pane, Attilio; Raj, Sandeep; Wieschaus, Eric

    2012-12-01

    Heterochromatin represents a significant portion of eukaryotic genomes and has essential structural and regulatory functions. Its molecular organization is largely unknown due to difficulties in sequencing through and assembling repetitive sequences enriched in the heterochromatin. Here we developed a novel strategy using chromosomal rearrangements and embryonic phenotypes to position unmapped Drosophila melanogaster heterochromatic sequence to specific chromosomal regions. By excluding sequences that can be mapped to the assembled euchromatic arms, we identified sequences that are specific to heterochromatin and used them to design heterochromatin specific probes ("H-probes") for microarray. By comparative genomic hybridization (CGH) analyses of embryos deficient for each chromosome or chromosome arm, we were able to map most of our H-probes to specific chromosome arms. We also positioned sequences mapped to the second and X chromosomes to finer intervals by analyzing smaller deletions with breakpoints in heterochromatin. Using this approach, we were able to map >40% (13.9 Mb) of the previously unmapped heterochromatin sequences assembled by the whole-genome sequencing effort on arm U and arm Uextra to specific locations. We also identified and mapped 110 kb of novel heterochromatic sequences. Subsequent analyses revealed that sequences located within different heterochromatic regions have distinct properties, such as sequence composition, degree of repetitiveness, and level of underreplication in polytenized tissues. Surprisingly, although heterochromatin is generally considered to be transcriptionally silent, we detected region-specific temporal patterns of transcription in heterochromatin during oogenesis and early embryonic development. Our study provides a useful approach to elucidate the molecular organization and function of heterochromatin and reveals region-specific variation of heterochromatin.

  5. Mapping the pericentric heterochromatin by comparative genomic hybridization analysis and chromosome deletions in Drosophila melanogaster

    Science.gov (United States)

    He, Bing; Caudy, Amy; Parsons, Lance; Rosebrock, Adam; Pane, Attilio; Raj, Sandeep; Wieschaus, Eric

    2012-01-01

    Heterochromatin represents a significant portion of eukaryotic genomes and has essential structural and regulatory functions. Its molecular organization is largely unknown due to difficulties in sequencing through and assembling repetitive sequences enriched in the heterochromatin. Here we developed a novel strategy using chromosomal rearrangements and embryonic phenotypes to position unmapped Drosophila melanogaster heterochromatic sequence to specific chromosomal regions. By excluding sequences that can be mapped to the assembled euchromatic arms, we identified sequences that are specific to heterochromatin and used them to design heterochromatin specific probes (“H-probes”) for microarray. By comparative genomic hybridization (CGH) analyses of embryos deficient for each chromosome or chromosome arm, we were able to map most of our H-probes to specific chromosome arms. We also positioned sequences mapped to the second and X chromosomes to finer intervals by analyzing smaller deletions with breakpoints in heterochromatin. Using this approach, we were able to map >40% (13.9 Mb) of the previously unmapped heterochromatin sequences assembled by the whole-genome sequencing effort on arm U and arm Uextra to specific locations. We also identified and mapped 110 kb of novel heterochromatic sequences. Subsequent analyses revealed that sequences located within different heterochromatic regions have distinct properties, such as sequence composition, degree of repetitiveness, and level of underreplication in polytenized tissues. Surprisingly, although heterochromatin is generally considered to be transcriptionally silent, we detected region-specific temporal patterns of transcription in heterochromatin during oogenesis and early embryonic development. Our study provides a useful approach to elucidate the molecular organization and function of heterochromatin and reveals region-specific variation of heterochromatin. PMID:22745230

  6. Phenotypic variation within European carriers of the Y-chromosomal gr/gr deletion is independent of Y-chromosomal background

    DEFF Research Database (Denmark)

    Krausz, C; Giachini, C; Xue, Y

    2008-01-01

    of duplications and the Y-chromosomal haplogroup were characterised. Although the study had good power to detect factors that accounted for >or=5.5% of the variation in sperm concentration, no such factor was found. A negative effect of gr/gr deletions followed by b2/b4 duplication was found within...

  7. Using data mining and OLAP to discover patterns in a database of patients with Y-chromosome deletions.

    Science.gov (United States)

    Dzeroski, S; Hristovski, D; Peterlin, B

    2000-01-01

    The paper presents a database of published Y chromosome deletions and the results of analyzing the database with data mining techniques. The database describes 382 patients for which 177 different markers were tested: 364 of the 382 patients had deletions. Two data mining techniques, clustering and decision tree induction were used. Clustering was used to group patients according to the overall presence/absence of deletions at the tested markers. Decision trees and On-Line-Analytical-Processing (OLAP) were used to inspect the resulting clustering and look for correlations between deletion patterns, populations and the clinical picture of infertility. The results of the analysis indicate that there are correlations between deletion patterns and patient populations, as well as clinical phenotype severity.

  8. Phenotype and 244k array-CGH characterization of chromosome 13q deletions: an update of the phenotypic map of 13q21.1-qter

    DEFF Research Database (Denmark)

    Kirchhoff, Maria; Bisgaard, Anne-Marie; Stoeva, Radka

    2009-01-01

    Partial deletions of the long arm of chromosome 13 lead to variable phenotypes dependant on the size and position of the deleted region. In order to update the phenotypic map of chromosome 13q21.1-qter deletions, we applied 244k Agilent oligonucleotide-based array-CGH to determine the exact break......-genotype correlation on chromosome 13. In contrast to previous reports of carriers of 13q32 band deletions as the most seriously affected patients, we present two such individuals with long-term survival, 28 and 2.5 years....

  9. Overlapping Numerical Cognition Impairments in Children with Chromosome 22q11.2 Deletion or Turner Syndromes

    Science.gov (United States)

    Simon, T. J.; Takarae, Y.; DeBoer, T.; McDonald-McGinn, D. M.; Zackai, E. H.; Ross, J. L.

    2008-01-01

    Children with one of two genetic disorders (chromosome 22q11.2 deletion syndrome and Turner syndrome) as well typically developing controls, participated in three cognitive processing experiments. Two experiments were designed to test cognitive processes involved in basic aspects numerical cognition. The third was a test of simple manual motor…

  10. Working Memory Impairments in Chromosome 22q11.2 Deletion Syndrome: The Roles of Anxiety and Stress Physiology

    Science.gov (United States)

    Sanders, Ashley F.; Hobbs, Diana A.; Stephenson, David D.; Laird, Robert D.; Beaton, Elliott A.

    2017-01-01

    Stress and anxiety have a negative impact on working memory systems by competing for executive resources and attention. Broad memory deficits, anxiety, and elevated stress have been reported in individuals with chromosome 22q11.2 deletion syndrome (22q11.2DS). We investigated anxiety and physiological stress reactivity in relation to visuospatial…

  11. Localization of the MEN1 gene to a small region within chromosome 11q13 by deletion mapping in tumors

    International Nuclear Information System (INIS)

    Bystroem, C.; Larsson, C.; Blomberg, C.; Nordenskjoeld, M.; Sandelin, K.; Falkmer, U.; Werner, S.; Skogseid, B.; Oeberg, K.

    1990-01-01

    The gene for multiple endocrine neoplasia type 1 (MEN1), and inherited predisposition to neuroendocrine neoplasm of the parathyroid glands, the pancreatic islet parenchyma, and the anterior pituitary gland, was recently mapped to chromosome 11q13 based on genetic linkage in families. The authors now show that the pathogenesis of MEN1-associated parathyroid lesions involves unmasking of a recessive mutation at the disease locus and that sporadic primary hyperparathyroidism shares the same mechanisms. By examination of allele losses in MEN1-associated lesions, they could define deletions of chromosome 11 and map the MEN1 locus to a small region within chromosome band 11q13, telomeric to the PYGM locus. In contrast, a low incidence of deletions involving the MEN1 gene was found in sporadic pituitary adenomas

  12. Chromosomal aberration

    International Nuclear Information System (INIS)

    Ishii, Yutaka

    1988-01-01

    Chromosomal aberrations are classified into two types, chromosome-type and chromatid-type. Chromosom-type aberrations include terminal deletion, dicentric, ring and interstitial deletion, and chromatid-type aberrations include achromatic lesion, chromatid deletion, isochromatid deletion and chromatid exchange. Clastogens which induce chromosomal aberration are divided into ''S-dependent'' agents and ''S-independent''. It might mean whether they can induce double strand breaks independent of the S phase or not. Double strand breaks may be the ultimate lesions to induce chromosomal aberrations. Caffeine added even in the G 2 phase appeared to modify the frequency of chromatid aberrations induced by X-rays and mitomycin C. Those might suggest that the G 2 phase involves in the chromatid aberration formation. The double strand breaks might be repaired by ''G 2 repair system'', the error of which might yield breakage types of chromatid aberrations and the by-pass of which might yield chromatid exchanges. Chromosome-type aberrations might be formed in the G 1 phase. (author)

  13. Contiguous gene deletion of chromosome 2p16.3-p21 as a cause of Lynch syndrome.

    Science.gov (United States)

    Salo-Mullen, Erin E; Lynn, Patricio B; Wang, Lu; Walsh, Michael; Gopalan, Anuradha; Shia, Jinru; Tran, Christina; Man, Fung Ying; McBride, Sean; Schattner, Mark; Zhang, Liying; Weiser, Martin R; Stadler, Zsofia K

    2018-01-01

    Lynch syndrome is an autosomal dominant condition caused by pathogenic mutations in the DNA mismatch repair (MMR) genes. Although commonly associated with clinical features such as intellectual disability and congenital anomalies, contiguous gene deletions may also result in cancer predisposition syndromes. We report on a 52-year-old male with Lynch syndrome caused by deletion of chromosome 2p16.3-p21. The patient had intellectual disability and presented with a prostatic adenocarcinoma with an incidentally identified synchronous sigmoid adenocarcinoma that exhibited deficient MMR with an absence of MSH2 and MSH6 protein expression. Family history was unrevealing. Physical exam revealed short stature, brachycephaly with a narrow forehead and short philtrum, brachydactyly of the hands, palmar transverse crease, broad and small feet with hyperpigmentation of the soles. The patient underwent total colectomy with ileorectal anastomosis for a pT3N1 sigmoid adenocarcinoma. Germline genetic testing of the MSH2, MSH6, and EPCAM genes revealed full gene deletions. SNP-array based DNA copy number analysis identified a deletion of 4.8 Mb at 2p16.3-p21. In addition to the three Lynch syndrome associated genes, the deleted chromosomal section encompassed genes including NRXN1, CRIPT, CALM2, FBXO11, LHCGR, MCFD2, TTC7A, EPAS1, PRKCE, and 15 others. Contiguous gene deletions have been described in other inherited cancer predisposition syndromes, such as Familial Adenomatous Polyposis. Our report and review of the literature suggests that contiguous gene deletion within the 2p16-p21 chromosomal region is a rare cause of Lynch syndrome, but presents with distinct phenotypic features, highlighting the need for recognition and awareness of this syndromic entity.

  14. Inter-Fork Strand Annealing causes genomic deletions during the termination of DNA replication.

    Science.gov (United States)

    Morrow, Carl A; Nguyen, Michael O; Fower, Andrew; Wong, Io Nam; Osman, Fekret; Bryer, Claire; Whitby, Matthew C

    2017-06-06

    Problems that arise during DNA replication can drive genomic alterations that are instrumental in the development of cancers and many human genetic disorders. Replication fork barriers are a commonly encountered problem, which can cause fork collapse and act as hotspots for replication termination. Collapsed forks can be rescued by homologous recombination, which restarts replication. However, replication restart is relatively slow and, therefore, replication termination may frequently occur by an active fork converging on a collapsed fork. We find that this type of non-canonical fork convergence in fission yeast is prone to trigger deletions between repetitive DNA sequences via a mechanism we call Inter-Fork Strand Annealing (IFSA) that depends on the recombination proteins Rad52, Exo1 and Mus81, and is countered by the FANCM-related DNA helicase Fml1. Based on our findings, we propose that IFSA is a potential threat to genomic stability in eukaryotes.

  15. Activation of human acid sphingomyelinase through modification or deletion of C-terminal cysteine.

    Science.gov (United States)

    Qiu, Huawei; Edmunds, Tim; Baker-Malcolm, Jennifer; Karey, Kenneth P; Estes, Scott; Schwarz, Cordula; Hughes, Heather; Van Patten, Scott M

    2003-08-29

    One form of Niemann-Pick disease is caused by a deficiency in the enzymatic activity of acid sphingomyelinase. During efforts to develop an enzyme replacement therapy based on a recombinant form of human acid sphingomyelinase (rhASM), purified preparations of the recombinant enzyme were found to have substantially increased specific activity if cell harvest media were stored for several weeks at -20 degrees C prior to purification. This increase in activity was found to correlate with the loss of the single free thiol on rhASM, suggesting the involvement of a cysteine residue. It was demonstrated that a variety of chemical modifications of the free cysteine on rhASM all result in substantial activation of the enzyme, and the modified cysteine responsible for this activation was shown to be the C-terminal residue (Cys629). Activation was also achieved by copper-promoted dimerization of rhASM (via cysteine) and by C-terminal truncation using carboxypeptidase Y. The role of the C-terminal cysteine in activation was confirmed by creating mutant forms of rhASM in which this residue was either deleted or replaced by a serine, with both forms having substantially higher specific activity than wild-type rhASM. These results indicate that purified rhASM can be activated in vitro by loss of the free thiol on the C-terminal cysteine via chemical modification, dimerization, or deletion of this amino acid residue. This method of activation is similar to the cysteine switch mechanism described previously for matrix metalloproteinases and could represent a means of posttranslational regulation of ASM activity in vivo.

  16. 6q deletion detected by fluorescence in situ hybridization using bacterial artificial chromosome in chronic lymphocytic leukemia.

    Science.gov (United States)

    Dalsass, Alessia; Mestichelli, Francesca; Ruggieri, Miriana; Gaspari, Paola; Pezzoni, Valerio; Vagnoni, Davide; Angelini, Mario; Angelini, Stefano; Bigazzi, Catia; Falcioni, Sadia; Troiani, Emanuela; Alesiani, Francesco; Catarini, Massimo; Attolico, Immacolata; Scortechini, Ilaria; Discepoli, Giancarlo; Galieni, Piero

    2013-07-01

    Deletions of the long arm of chromosome 6 are known to occur at relatively low frequency (3-6%) in chronic lymphocytic leukemia (CLL), and they are more frequently observed in 6q21. Few data have been reported regarding other bands on 6q involved by cytogenetic alterations in CLL. The cytogenetic study was performed in nuclei and metaphases obtained after stimulation with a combination of CpG-oligonucleotide DSP30 and interleukin-2. Four bacterial artificial chromosome (BAC) clones mapping regions in bands 6q16, 6q23, 6q25, 6q27 were used as probes for fluorescence in situ hybridization in 107 CLL cases in order to analyze the occurrence and localization of 6q aberrations. We identified 11 cases (10.2%) with 6q deletion of 107 patients studied with CLL. The trends of survival curves and the treatment-free intervals (TFI) of patients with deletion suggest a better outcome than the other cytogenetic risk groups. We observed two subgroups with 6q deletion as the sole anomaly: two cases with 6q16 deletion, and three cases with 6q25.2-27 deletion. There were differences of age, stage, and TFI between both subgroups. By using BAC probes, we observed that 6q deletion has a higher frequency in CLL and is linked with a good prognosis. In addition, it was observed that the deletion in 6q16 appears to be the most frequent and, if present as the only abnormality, it could be associated with a most widespread disease. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. The Development of Cognitive Control in Children with Chromosome 22q11.2 Deletion Syndrome

    Directory of Open Access Journals (Sweden)

    Heather M Shapiro

    2014-06-01

    Full Text Available Chromosome 22q11.2 Deletion Syndrome (22q11.2DS is caused by the most common human microdeletion, and it is associated with cognitive impairments across many domains. While impairments in cognitive control have been described in children with 22q11.2DS, the nature and development of these impairments are not clear. Children with 22q11.2DS and typically developing children (TD were tested on four well-validated tasks aimed at measuring specific foundational components of cognitive control: response inhibition, cognitive flexibility, and working memory. Molecular assays were also conducted in order to examine genotype of catechol-O-methyltransferase (COMT, a gene located within the deleted region in 22q11.2DS and hypothesized to play a role in cognitive control. Mixed model regression analyses were used to examine group differences, as well as age-related effects on cognitive control component processes in a cross-sectional analysis. Regression models with COMT genotype were also conducted in order to examine potential effects of the different variants of the gene. Response inhibition, cognitive flexibility, and working memory were impaired in children with 22q11.2DS relative to TD children, even after accounting for global intellectual functioning (as measured by full-scale IQ. When compared with TD individuals, children with 22q11.2DS demonstrated atypical age-related patterns of response inhibition and cognitive flexibility. Both groups demonstrated typical age-related associations with working memory. The results of this cross-sectional analysis suggest a specific aberration in the development of systems mediating response inhibition in a sub-set of children with 22q11.2DS. It will be important to follow up with longitudinal analyses to directly examine these developmental trajectories, and correlate neurocognitive variables with clinical and adaptive outcome measures.

  18. Prenatal diagnosis and molecular cytogenetic characterization of a de novo proximal interstitial deletion of chromosome 4p (4p15.2→p14).

    Science.gov (United States)

    Chen, Chih-Ping; Lee, Meng-Ju; Chern, Schu-Rern; Wu, Peih-Shan; Su, Jun-Wei; Chen, Yu-Ting; Lee, Meng-Shan; Wang, Wayseen

    2013-10-25

    We present prenatal diagnosis of de novo proximal interstitial deletion of chromosome 4p (4p15.2→p14) and molecular cytogenetic characterization of the deletion using uncultured amniocytes. We review the phenotypic abnormalities of previously reported patients with similar proximal interstitial 4p deletions, and we discuss the functions of the genes of RBPJ, CCKAR, STIM2, PCDH7 and ARAP2 that are deleted within this region. © 2013.

  19. The terminal region of the E. coli chromosome localises at the periphery of the nucleoid

    Directory of Open Access Journals (Sweden)

    Stouf Mathieu

    2011-02-01

    Full Text Available Abstract Background Bacterial chromosomes are organised into a compact and dynamic structures termed nucleoids. Cytological studies in model rod-shaped bacteria show that the different regions of the chromosome display distinct and specific sub-cellular positioning and choreographies during the course of the cell cycle. The localisation of chromosome loci along the length of the cell has been described. However, positioning of loci across the width of the cell has not been determined. Results Here, we show that it is possible to assess the mean positioning of chromosomal loci across the width of the cell using two-dimension images from wide-field fluorescence microscopy. Observed apparent distributions of fluorescent-tagged loci of the E. coli chromosome along the cell diameter were compared with simulated distributions calculated using a range of cell width positioning models. Using this method, we detected the migration of chromosome loci towards the cell periphery induced by production of the bacteriophage T4 Ndd protein. In the absence of Ndd production, loci outside the replication terminus were located either randomly along the nucleoid width or towards the cell centre whereas loci inside the replication terminus were located at the periphery of the nucleoid in contrast to other loci. Conclusions Our approach allows to reliably observing the positioning of chromosome loci along the width of E. coli cells. The terminal region of the chromosome is preferentially located at the periphery of the nucleoid consistent with its specific roles in chromosome organisation and dynamics.

  20. Constitutional 11q14-q22 chromosome deletion syndrome in a child with neuroblastoma MYCN single copy.

    Science.gov (United States)

    Passariello, Annalisa; De Brasi, Daniele; Defferrari, Raffaella; Genesio, Rita; Tufano, Maria; Mazzocco, Katia; Capasso, Maria; Migliorati, Roberta; Martinsson, Tommy; Siani, Paolo; Nitsch, Lucio; Tonini, Gian Paolo

    2013-11-01

    Constitutional 11q deletion is a chromosome imbalance possibly found in MCA/MR patients analyzed for chromosomal anomalies. Its role in determining the phenotype depends on extension and position of deleted region. Loss of heterozygosity of 11q (region 11q23) is also associated with neuroblastoma, the most frequent extra cranial cancer in children. It represents one of the most frequent cytogenetic abnormalities observed in the tumor of patients with high-risk disease even if germline deletion of 11q in neuroblastoma is rare. Hereby, we describe a 18 months old girl presenting with trigonocephaly and dysmorphic facial features, including hypotelorism, broad depressed nasal bridge, micrognathia, synophrys, epicanthal folds, and with a stage 4 neuroblastoma without MYCN amplification, carrying a germline 11q deletion (11q14.1-q22.3), outside from Jacobsen syndrome and from neuroblastoma 11q critical regions. The role of 11q deletion in determining the clinical phenotype and its association with neuroblastoma development in the patient are discussed. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  1. KV4.3 N-terminal deletion mutant Δ2–39

    Science.gov (United States)

    Hovind, Laura J; Skerritt, Matthew R

    2011-01-01

    Gating transitions in the KV4.3 N-terminal deletion mutant Δ2–39 were characterized in the absence and presence of KChIP2b. We particularly focused on gating characteristics of macroscopic (open state) versus closed state inactivation (CSI) and recovery. In the absence of KChIP2b Δ2–39 did not significantly alter the steady-state activation “a4” relationship or general CSI characteristics, but it did slow the kinetics of deactivation, macroscopic inactivation and macroscopic recovery. Recovery kinetics (for both WT KV4.3 and Δ2–39) were complicated and displayed sigmoidicity, a process which was enhanced by Δ2–39. Deletion of the proximal N-terminal domain therefore appeared to specifically slow mechanisms involved in regulating gating transitions occurring after the channel open state(s) had been reached. In the presence of KChIP2b Δ2–39 recovery kinetics (from both macroscopic and CSI) were accelerated, with an apparent reduction in initial sigmoidicity. Hyperpolarizing shifts in both “a4” and isochronal inactivation “i” were also produced. KChIP2b-mediated remodeling of KV4.3 gating transitions was therefore not obligatorily dependent upon an intact N-terminus. To account for these effects we propose that KChIP2 regulatory domains exist in KV4.3 α subunit regions outside of the proximal N-terminal. In addition to regulating macroscopic inactivation, we also propose that the KV4.3 N-terminus may act as a novel regulator of deactivation-recovery coupling. PMID:21057209

  2. Plasma amine oxidase activities in Norrie disease patients with an X-chromosomal deletion affecting monoamine oxidase.

    Science.gov (United States)

    Murphy, D L; Sims, K B; Karoum, F; Garrick, N A; de la Chapelle, A; Sankila, E M; Norio, R; Breakefield, X O

    1991-01-01

    Two individuals with an X-chromosomal deletion were recently found to lack the genes encoding monoamine oxidase type A (MAO-A) and MAO-B. This abnormality was associated with almost total (90%) reductions in the oxidatively deaminated urinary metabolites of the MAO-A substrate, norepinephrine, and with marked (100-fold) increases in an MAO-B substrate, phenylethylamine, confirming systemic functional consequences of the genetic enzyme deficiency. However, urinary concentrations of the deaminated metabolites of dopamine and serotonin (5-HT) were essentially normal. To investigate other deaminating systems besides MAO-A and MAO-B that might produce these metabolites of dopamine and 5-HT, we examined plasma amine oxidase (AO) activity in these two patients and two additional patients with the same X-chromosomal deletion. Normal plasma AO activity was found in all four Norrie disease-deletion patients, in four patients with classic Norrie disease without a chromosomal deletion, and in family members of patients from both groups. Marked plasma amine metabolite abnormalities and essentially absent platelet MAO-B activity were found in all four Norrie disease-deletion patients, but in none of the other subjects in the two comparison groups. These results indicate that plasma AO is encoded by gene(s) independent of those for MAO-A and MAO-B, and raise the possibility that plasma AO, and perhaps the closely related tissue AO, benzylamine oxidase, as well as other atypical AOs or MAOs encoded independently from MAO-A and MAO-B may contribute to the oxidative deamination of dopamine and 5-HT in humans.

  3. Failure to thrive as primary feature in two patients with subtle chromosomal aneuploidy: Interstitial deletion 2q33

    Energy Technology Data Exchange (ETDEWEB)

    Grace, K.; Mulla, W.; Stump, T. [Children`s Hospital of Philadelpha, PA (United States)] [and others

    1994-09-01

    It is well known that patients with chromosomal aneuploidy present with multiple congenital anomalies and dysmorphia, and that they may have associated failure to thrive. However, rarely is failure to thrive the predominant presenting feature. We report two such patients. Patient 1 had a marked history of failure to thrive, (weight 50% for 5 1/2 months at 20 months, length 50% for 15 months at 20 months). Patient 2 was noted to be growth retarded at 2 months upon presenting to the hospital with respiratory symptoms (weight 50% for a newborn, length 50% for 36 weeks gestation). There was relative head sparing in both patients. Chromosome analysis in patient 1, prompted by a negative work-up for the failure to thrive, and emerging evidence of developmental delay, revealed a 46,XY,del(2)(q32.2q33) karyotype. Chromosome analysis in patient 2, done as part of a complete workup for the failure to thrive, revealed a 46,XX,del(2)(q33.2q33.2 or q33.2q33.3) karyotype. On careful examination, subtle dysmorphic features were seen. In both patients these included a long flat philtrum, thin upper lip and high arched palate. Patient 1 also had a small posterior cleft of the palate. These patients have the smallest interstitial deletions of chromosome 2 so far reported. Their deletions overlap within 2q33 although they are not identical. Review of the literature reveals 15 patients with interstitial deletions which include 2q33. Marked growth retardation is reported in 14 of these cases. Cleft palate/abnormal uvula were frequently associated. These cases illustrate the need to include high resolution chromosomal studies as part of a complete work-up for unexplained failure to thrive.

  4. Crystal structure of a C-terminal deletion mutant of human protein kinase CK2 catalytic subunit

    DEFF Research Database (Denmark)

    Ermakova, Inessa; Boldyreff, Brigitte; Issinger, Olaf-Georg

    2003-01-01

    structure of a C-terminal deletion mutant of human CK2alpha was solved and refined to 2.5A resolution. In the crystal the CK2alpha mutant exists as a monomer in agreement with the organization of the subunits in the CK2 holoenzyme. The refined structure shows the helix alphaC and the activation segment, two...

  5. The DrosDel Deletion Collection: A Drosophila Genomewide Chromosomal Deficiency Resource

    OpenAIRE

    Ryder, Edward; Ashburner, Michael; Bautista-Llacer, Rosa; Drummond, Jenny; Webster, Jane; Johnson, Glynnis; Morley, Terri; Chan, Yuk Sang; Blows, Fiona; Coulson, Darin; Reuter, Gunter; Baisch, Heiko; Apelt, Christian; Kauk, Andreas; Rudolph, Thomas

    2007-01-01

    We describe a second-generation deficiency kit for Drosophila melanogaster composed of molecularly mapped deletions on an isogenic background, covering ∼77% of the Release 5.1 genome. Using a previously reported collection of FRT-bearing P-element insertions, we have generated 655 new deletions and verified a set of 209 deletion-bearing fly stocks. In addition to deletions, we demonstrate how the P elements may also be used to generate a set of custom inversions and duplications, particularly...

  6. De novo deletion of chromosome 11q12.3 in monozygotic twins affected by Poland Syndrome.

    Science.gov (United States)

    Vaccari, Carlotta Maria; Romanini, Maria Victoria; Musante, Ilaria; Tassano, Elisa; Gimelli, Stefania; Divizia, Maria Teresa; Torre, Michele; Morovic, Carmen Gloria; Lerone, Margherita; Ravazzolo, Roberto; Puliti, Aldamaria

    2014-05-30

    Poland Syndrome (PS) is a rare disorder characterized by hypoplasia/aplasia of the pectoralis major muscle, variably associated with thoracic and upper limb anomalies. Familial recurrence has been reported indicating that PS could have a genetic basis, though the genetic mechanisms underlying PS development are still unknown. Here we describe a couple of monozygotic (MZ) twin girls, both presenting with Poland Syndrome. They carry a de novo heterozygous 126 Kbp deletion at chromosome 11q12.3 involving 5 genes, four of which, namely HRASLS5, RARRES3, HRASLS2, and PLA2G16, encode proteins that regulate cellular growth, differentiation, and apoptosis, mainly through Ras-mediated signaling pathways. Phenotype concordance between the monozygotic twin probands provides evidence supporting the genetic control of PS. As genes controlling cell growth and differentiation may be related to morphological defects originating during development, we postulate that the observed chromosome deletion could be causative of the phenotype observed in the twin girls and the deleted genes could play a role in PS development.

  7. Patients with High-Grade Gliomas Harboring Deletions of Chromosomes 9p and 10q Benefit from Temozolomide Treatment

    Directory of Open Access Journals (Sweden)

    Silke Wemmert

    2005-10-01

    Full Text Available Surgical cure of glioblastomas is virtually impossible and their clinical course is mainly determined by the biologic behavior of the tumor cells and their response to radiation and chemotherapy. We investigated whether response to temozolomide (TMZ chemotherapy differs in subsets of malignant glioblastomas defined by genetic lesions. Eighty patients with newly diagnosed glioblastoma were analyzed with comparative genomic hybridization and loss of heterozygosity. All patients underwent radical resection. Fifty patients received TMZ after radiotherapy (TMZ group and 30 patients received radiotherapy alone (RT group. The most common aberrations detected were gains of parts of chromosome 7 and losses of 10% 9p, or 13q. The spectrum of genetic aberrations did not differ between the TMZ and RT groups. Patients treated with TMZ showed significantly better survival than patients treated with radiotherapy alone (19.5 vs 9.3 months. Genomic deletions on chromosomes 9 and 10 are typical for glioblastoma and associated with poor prognosis. However, patients with these aberrations benefited significantly from TMZ in univariate analysis. In multivariate analysis, this effect was pronounced for 9p deletion and for elderly patients with 10q deletions, respectively. This study demonstrates that molecular genetic and cytogenetic analyses potentially predict responses to chemotherapy in patients with newly diagnosed glioblastomas.

  8. Abnormal protein in the cerebrospinal fluid of patients with a submicroscopic X-chromosomal deletion associated with Norrie disease: preliminary report.

    Science.gov (United States)

    Joy, J E; Poglod, R; Murphy, D L; Sims, K B; de la Chapelle, A; Sankila, E M; Norio, R; Merril, C R

    1991-01-01

    Norrie disease is an X-linked recessive disorder characterized by congenital blindness and, in many cases, mental retardation. Some Norrie disease cases have been shown to be associated with a submicroscopic deletion in chromosomal region Xp11.3. Cerebrospinal fluid (CSF) was collected from four male patients with an X-chromosomal deletion associated with Norrie disease. CSF proteins were resolved using two-dimensional gel electrophoresis and then analyzed by computer using the Elsie V program. Our analysis revealed a protein that appears to be altered in patients with Norrie disease deletion.

  9. Interstitial deletion in the "critical region" of the long arm of the X chromosome in a mentally retarded boy and his normal mother

    DEFF Research Database (Denmark)

    Tabor, A; Andersen, O; Lundsteen, C

    1983-01-01

    A family in which an intestitial deletion of the X chromosome, del(X)(q13q21.3), is segregating was ascertained through a boy with cleft lip and palate, agenesis of the corpus callosum, and severe mental retardation. The possible causal relationship to his chromosome abnormality is discussed. Alt....... Although the deletion occurred within the critical region, the mother showed no signs of gonadal dysgenesis. A phenotypically normal daughter was, as her mother, monosomic for this region of the X, and both showed random inactivation of the X chromosome....

  10. Small regions of overlapping deletions on 6q26 in human astrocytic tumours identified using chromosome 6 tile path array CGH

    Science.gov (United States)

    Ichimura, Koichi; Mungall, Andrew J; Fiegler, Heike; Pearson, Danita M.; Dunham, Ian; Carter, Nigel P; Collins, V. Peter

    2009-01-01

    Deletions of chromosome 6 are a common abnormality in diverse human malignancies including astrocytic tumours, suggesting the presence of tumour suppressor genes (TSG). In order to help identify candidate TSGs, we have constructed a chromosome 6 tile path microarray. The array contains 1780 clones (778 PACs and 1002 BACs) that cover 98.3% of the published chromosome 6 sequences. A total of 104 adult astrocytic tumours (10 diffuse astrocytomas, 30 anaplastic astrocytomas (AA), 64 glioblastomas (GB)) were analysed using this array. Single copy number change was successfully detected and the result was in general concordant with a microsatellite analysis. The pattern of copy number change was complex with multiple interstitial deletions/gains. However, a predominance of telomeric 6q deletions was seen. Two small common and overlapping regions of deletion at 6q26 were identified. One was 1002 kb in size and contained PACRG and QKI, while the second was 199 kb and harbours a single gene, ARID1B. The data show that the chromosome 6 tile path array is useful in mapping copy number changes with high resolution and accuracy. We confirmed the high frequency of chromosome 6 deletions in AA and GB, and identified two novel commonly deleted regions that may harbour TSGs. PMID:16205629

  11. Genotype call for chromosomal deletions using read-depth from whole genome sequence variants in cattle

    DEFF Research Database (Denmark)

    Mesbah-Uddin, Md; Guldbrandtsen, Bernt; Lund, Mogens Sandø

    2018-01-01

    We presented a deletion genotyping (copy-number estimation) method that leverages population-scale whole genome sequence variants data from 1K bull genomes project (1KBGP) to build reference panel for imputation. To estimate deletion-genotype likelihood, we extracted read-depth (RD) data of all...

  12. Identification of a basic helix-loop-helix-type transcription regulator gene in Aspergillus oryzae by systematically deleting large chromosomal segments.

    Science.gov (United States)

    Jin, Feng Jie; Takahashi, Tadashi; Machida, Masayuki; Koyama, Yasuji

    2009-09-01

    We previously developed two methods (loop-out and replacement-type recombination) for generating large-scale chromosomal deletions that can be applied to more effective chromosomal engineering in Aspergillus oryzae. In this study, the replacement-type method is used to systematically delete large chromosomal DNA segments to identify essential and nonessential regions in chromosome 7 (2.93 Mb), which is the smallest A. oryzae chromosome and contains a large number of nonsyntenic blocks. We constructed 12 mutants harboring deletions that spanned 16- to 150-kb segments of chromosome 7 and scored phenotypic changes in the resulting mutants. Among the deletion mutants, strains designated Delta5 and Delta7 displayed clear phenotypic changes involving growth and conidiation. In particular, the Delta5 mutant exhibited vigorous growth and conidiation, potentially beneficial characteristics for certain industrial applications. Further deletion analysis allowed identification of the AO090011000215 gene as the gene responsible for the Delta5 mutant phenotype. The AO090011000215 gene was predicted to encode a helix-loop-helix binding protein belonging to the bHLH family of transcription factors. These results illustrate the potential of the approach for identifying novel functional genes.

  13. Alteration of terminal heterochromatin and chromosome rearrangements in derivatives of wheat-rye hybrids.

    Science.gov (United States)

    Fu, Shulan; Lv, Zhenling; Guo, Xiang; Zhang, Xiangqi; Han, Fangpu

    2013-08-20

    Wheat-rye addition and substitution lines and their self progenies revealed variations in telomeric heterochromatin and centromeres. Furthermore, a mitotically unstable dicentric chromosome and stable multicentric chromosomes were observed in the progeny of a Chinese Spring-Imperial rye 3R addition line. An unstable multicentric chromosome was found in the progeny of a 6R/6D substitution line. Drastic variation of terminal heterochromatin including movement and disappearance of terminal heterochromatin occurred in the progeny of wheat-rye addition line 3R, and the 5RS ditelosomic addition line. Highly stable minichromosomes were observed in the progeny of a monosomic 4R addition line, a ditelosomic 5RS addition line and a 6R/6D substitution line. Minichromosomes, with and without the FISH signals for telomeric DNA (TTTAGGG)n, derived from a monosomic 4R addition line are stable and transmissible to the next generation. The results indicated that centromeres and terminal heterochromatin can be profoundly altered in wheat-rye hybrid derivatives. Copyright © 2013. Published by Elsevier Ltd.

  14. Chromosome abnormalities in colorectal adenomas: two cytogenetic subgroups characterized by deletion of 1p and numerical aberrations

    DEFF Research Database (Denmark)

    Bomme, L; Bardi, G; Pandis, N

    1996-01-01

    Cytogenetic analysis of short-term cultures from 34 benign colorectal polyps, all histologically verified as adenomas, revealed clonal chromosome aberrations in 21 of them. Eight polyps had structural rearrangements, whereas only numerical changes were found in 13. A combination of structural...... and another with a small 1p deletion. In three adenomas, del(1)(p36) was the only cytogenetic aberration, supporting the authors' previous conclusion that loss of one or more gene loci in band 1p36 is a common early change in colorectal tumorigenesis. Chromosome 8 was involved in structural changes in two...... adenomas; in one this led to loss of 8p and in the other to gain of 8q. The cytogenetic findings did not correlate in a statistically significant manner with clinicopathologic parameters, such as grade of dysplasia, macroscopic or microscopic adenoma structure, tumor size and location, or the patients' sex...

  15. Mapping the pericentric heterochromatin by comparative genomic hybridization analysis and chromosome deletions in Drosophila melanogaster

    OpenAIRE

    He, Bing; Caudy, Amy; Parsons, Lance; Rosebrock, Adam; Pane, Attilio; Raj, Sandeep; Wieschaus, Eric

    2012-01-01

    Heterochromatin represents a significant portion of eukaryotic genomes and has essential structural and regulatory functions. Its molecular organization is largely unknown due to difficulties in sequencing through and assembling repetitive sequences enriched in the heterochromatin. Here we developed a novel strategy using chromosomal rearrangements and embryonic phenotypes to position unmapped Drosophila melanogaster heterochromatic sequence to specific chromosomal regions. By excluding seque...

  16. 4p16.1-p15.31 duplication and 4p terminal deletion in a 3-years old Chinese girl: Array-CGH, genotype-phenotype and neurological characterization.

    Science.gov (United States)

    Piccione, Maria; Salzano, Emanuela; Vecchio, Davide; Ferrara, Dante; Malacarne, Michela; Pierluigi, Mauro; Ferrara, Ines; Corsello, Giovanni

    2015-07-01

    Microscopically chromosome rearrangements of the short arm of chromosome 4 include the two known clinical entities: partial trisomy 4p and deletions of the Wolf-Hirschhorn critical regions 1 and 2 (WHSCR-1 and WHSCR-2, respectively), which cause cranio-facial anomalies, congenital malformations and developmental delay/intellectual disability. We report on clinical findings detected in a Chinese patient with a de novo 4p16.1-p15.32 duplication in association with a subtle 4p terminal deletion of 6 Mb in size. This unusual chromosome imbalance resulted in WHS classical phenotype, while clinical manifestations of 4p trisomy were practically absent. This observation suggests the hypothesis that haploinsufficiency of sensitive dosage genes with regulatory function placed in WHS critical region, is more pathogenic than concomitant 4p duplicated segment. Additionally clinical findings in our patient confirm a variable penetrance of major malformations and neurological features in Chinese children despite of WHS critical region's deletion. Copyright © 2015 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.

  17. Reciprocal duplication of the Williams-Beuren syndrome deletion on chromosome 7q11.23 is associated with schizophrenia.

    Science.gov (United States)

    Mulle, Jennifer Gladys; Pulver, Ann E; McGrath, John A; Wolyniec, Paula S; Dodd, Anne F; Cutler, David J; Sebat, Jonathan; Malhotra, Dheeraj; Nestadt, Gerald; Conrad, Donald F; Hurles, Matthew; Barnes, Chris P; Ikeda, Masashi; Iwata, Nakao; Levinson, Douglas F; Gejman, Pablo V; Sanders, Alan R; Duan, Jubao; Mitchell, Adele A; Peter, Inga; Sklar, Pamela; O'Dushlaine, Colm T; Grozeva, Detelina; O'Donovan, Michael C; Owen, Michael J; Hultman, Christina M; Kähler, Anna K; Sullivan, Patrick F; Kirov, George; Warren, Stephen T

    2014-03-01

    Several copy number variants (CNVs) have been implicated as susceptibility factors for schizophrenia (SZ). Some of these same CNVs also increase risk for autism spectrum disorders, suggesting an etiologic overlap between these conditions. Recently, de novo duplications of a region on chromosome 7q11.23 were associated with autism spectrum disorders. The reciprocal deletion of this region causes Williams-Beuren syndrome. We assayed an Ashkenazi Jewish cohort of 554 SZ cases and 1014 controls for genome-wide CNV. An excess of large rare and de novo CNVs were observed, including a 1.4 Mb duplication on chromosome 7q11.23 identified in two unrelated patients. To test whether this 7q11.23 duplication is also associated with SZ, we obtained data for 14,387 SZ cases and 28,139 controls from seven additional studies with high-resolution genome-wide CNV detection. We performed a meta-analysis, correcting for study population of origin, to assess whether the duplication is associated with SZ. We found duplications at 7q11.23 in 11 of 14,387 SZ cases with only 1 in 28,139 control subjects (unadjusted odds ratio 21.52, 95% confidence interval: 3.13-922.6, p value 5.5 × 10(-5); adjusted odds ratio 10.8, 95% confidence interval: 1.46-79.62, p value .007). Of three SZ duplication carriers with detailed retrospective data, all showed social anxiety and language delay premorbid to SZ onset, consistent with both human studies and animal models of the 7q11.23 duplication. We have identified a new CNV associated with SZ. Reciprocal duplication of the Williams-Beuren syndrome deletion at chromosome 7q11.23 confers an approximately tenfold increase in risk for SZ. Copyright © 2014 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  18. Meiotic and mitotic behaviour of a ring/deleted chromosome 22 in human embryos determined by preimplantation genetic diagnosis for a maternal carrier

    Directory of Open Access Journals (Sweden)

    Laver Sarah

    2009-01-01

    Full Text Available Abstract Background Ring chromosomes are normally associated with developmental anomalies and are rarely inherited. An exception to this rule is provided by deletion/ring cases. We were provided with a unique opportunity to investigate the meiotic segregation at oogenesis in a woman who is a carrier of a deleted/ring 22 chromosome. The couple requested preimplantation genetic diagnosis (PGD following the birth of a son with a mosaic karyotype. The couple underwent two cycles of PGD. Studies were performed on lymphocytes, single embryonic cells removed from 3 day-old embryos and un-transferred embryos. Analysis was carried out using fluorescence in situ hybridisation (FISH with specific probe sets in two rounds of hybridization. Results In total, 12 embryos were biopsied, and follow up information was obtained for 10 embryos. No embryos were completely normal or balanced for chromosome 22 by day 5. There was only one embryo diagnosed as balanced of 12 biopsied but that accumulated postzygotic errors by day 5. Three oocytes apparently had a balanced chromosome 22 complement but all had the deleted and the ring 22 and not the intact chromosome 22. After fertilisation all the embryos accumulated postzygotic errors for chromosome 22. Conclusion The study of the preimplantation embryos in this case provided a rare and significant chance to study and understand the phenomena associated with this unusual type of anomaly during meiosis and in the earliest stages of development. It is the first reported PGD attempt for a ring chromosome abnormality.

  19. Gr/gr deletions on Y-chromosome correlate with male infertility: an original study, meta-analyses, and trial sequential analyses

    Science.gov (United States)

    Bansal, Sandeep Kumar; Jaiswal, Deepika; Gupta, Nishi; Singh, Kiran; Dada, Rima; Sankhwar, Satya Narayan; Gupta, Gopal; Rajender, Singh

    2016-02-01

    We analyzed the AZFc region of the Y-chromosome for complete (b2/b4) and distinct partial deletions (gr/gr, b1/b3, b2/b3) in 822 infertile and 225 proven fertile men. We observed complete AZFc deletions in 0.97% and partial deletions in 6.20% of the cases. Among partial deletions, the frequency of gr/gr deletions was the highest (5.84%). The comparison of partial deletion data between cases and controls suggested a significant association of the gr/gr deletions with infertility (P = 0.0004); however, the other partial deletions did not correlate with infertility. In cohort analysis, men with gr/gr deletions had a relatively poor sperm count (54.20 ± 57.45 million/ml) in comparison to those without deletions (72.49 ± 60.06), though the difference was not statistically significant (p = 0.071). Meta-analysis also suggested that gr/gr deletions are significantly associated with male infertility risk (OR = 1.821, 95% CI = 1.39-2.37, p = 0.000). We also performed trial sequential analyses that strengthened the evidence for an overall significant association of gr/gr deletions with the risk of male infertility. Another meta-analysis suggested a significant association of the gr/gr deletions with low sperm count. In conclusion, the gr/gr deletions show a strong correlation with male infertility risk and low sperm count, particularly in the Caucasian populations.

  20. Aplastic anaemia preceding acute lymphoblastic leukaemia in an adult with isolated deletion of chromosome 9q.

    LENUS (Irish Health Repository)

    Kelly, Kevin

    2008-12-01

    Aplastic anaemia (AA) can precede acute lymphoblastic leukaemia (ALL) in 2% of children but this is rarely reported to occur in adults. A 21-year-old male presented with bone marrow failure and bone marrow biopsy showed a profoundly hypocellular marrow. He recovered spontaneously but represented 2 months later when he was diagnosed with pre-B acute lymphoblastic leukaemia. Chromosomal examination revealed 46,XY,del(9)(q13q34). To the best of our knowledge this is the first case to be reported of aplasia preceding ALL with 9q minus as the sole chromosomal abnormality.

  1. Single-nucleotide variant in multiple copies of a deleted in azoospermia (DAZ) sequence - a human Y chromosome quantitative polymorphism.

    Science.gov (United States)

    Szmulewicz, Martin N; Ruiz, Luis M; Reategui, Erika P; Hussini, Saeed; Herrera, Rene J

    2002-01-01

    The evolution of the deleted in azoospermia (DAZ) gene family supports prevalent theories on the origin and development of sex chromosomes and sexual dimorphism. The ancestral DAZL gene in human chromosome 3 is known to be involved in germline development of both males and females. The available phylogenetic data suggest that some time after the divergence of the New World and Old World monkey lineages, the DAZL gene, which is found in all mammals, was copied to the Y chromosome of an ancestor to the Old World monkeys, but not New World monkeys. In modern man, the Y-linked DAZ gene complex is located on the distal part of the q arm. It is thought that after being copied to the Y chromosome, and after the divergence of the human and great ape lineages, the DAZ gene in the former underwent internal rearrangements. This included tandem duplications as well as a T > C transition altering an MboI restriction enzyme site in a duplicated sequence. In this study, we report on the ratios of MboI-/MboI+ variant sequences in individuals from seven worldwide human populations (Basque, Benin, Egypt, Formosa, Kungurtug, Oman and Rwanda) in the DAZ complex. The ratio of PCR MboI- and MboI+ amplicons can be used to characterize individuals and populations. Our results show a nonrandom distribution of MboI-/MboI+ sequence ratios in all populations examined, as well as significant differences in ratios between populations when compared pairwise. The multiple ratios imply that there have been more than one recent reorganization events at this locus. Considering the dynamic nature of this locus and its involvement in male fertility, we investigated the extent and distribution of this polymorphism. Copyright 2002 S. Karger AG, Basel

  2. Chromosome

    Science.gov (United States)

    ... St Louis, MO: Elsevier; 2017:chap 69. Taber's Medical Dictionary Online. Chromosome. www.tabers.com/tabersonline/view/Tabers-Dictionary/753321/all/chromosome?q=Chromosome&ti=0 . Accessed June 11, 2017.

  3. Distinctive phenotype in 9 patients with deletion of chromosome 1q24-q25.

    Science.gov (United States)

    Burkardt, Deepika D'Cunha; Rosenfeld, Jill A; Helgeson, Maria L; Angle, Brad; Banks, Valerie; Smith, Wendy E; Gripp, Karen W; Moline, Jessica; Moran, Rocio T; Niyazov, Dmitriy M; Stevens, Cathy A; Zackai, Elaine; Lebel, Robert Roger; Ashley, Douglas G; Kramer, Nancy; Lachman, Ralph S; Graham, John M

    2011-06-01

    Reports of individuals with deletions of 1q24→q25 share common features of prenatal onset growth deficiency, microcephaly, small hands and feet, dysmorphic face and severe cognitive deficits. We report nine individuals with 1q24q25 deletions, who show distinctive features of a clinically recognizable 1q24q25 microdeletion syndrome: prenatal-onset microcephaly and proportionate growth deficiency, severe cognitive disability, small hands and feet with distinctive brachydactyly, single transverse palmar flexion creases, fifth finger clinodactyly and distinctive facial features: upper eyelid fullness, small ears, short nose with bulbous nasal tip, tented upper lip, and micrognathia. Radiographs demonstrate disharmonic osseous maturation with markedly delayed bone age. Occasional features include cleft lip and/or palate, cryptorchidism, brain and spinal cord defects, and seizures. Using oligonucleotide-based array comparative genomic hybridization, we defined the critical deletion region as 1.9 Mb at 1q24.3q25.1 (chr1: 170,135,865-172,099,327, hg18 coordinates), containing 13 genes and including CENPL, which encodes centromeric protein L, a protein essential for proper kinetochore function and mitotic progression. The growth deficiency in this syndrome is similar to what is seen in other types of primordial short stature with microcephaly, such as Majewski osteodysplastic primordial dwarfism, type II (MOPD2) and Seckel syndrome, which result from loss-of-function mutations in genes coding for centrosomal proteins. DNM3 is also in the deleted region and expressed in the brain, where it participates in the Shank-Homer complex and increases synaptic strength. Therefore, DNM3 is a candidate for the cognitive disability, and CENPL is a candidate for growth deficiency in this 1q24q25 microdeletion syndrome. Copyright © 2011 Wiley-Liss, Inc.

  4. Norrie disease as part of a complex syndrome explained by a submicroscopic deletion of the X chromosome.

    Science.gov (United States)

    Bleeker-Wagemakers, E M; Zweije-Hofman, I; Gal, A

    1988-11-01

    A 15-year-old male patient with the typical ocular symptoms of Norrie disease is described. Additionally, he presents severe mental retardation, growth disturbances, hypogonadism, and increased susceptibility to infections. This complex syndrome is apparently segregating through three generations: four other male relatives of the patient were blind from birth and died from recurrent infections between the ages of three to 15 months. The DNA sequence of the DXS7 locus (L1.28 probe), known to be closely linked to the Norrie gene, was not found in the patient's DNA. This result suggests that the more complex clinical picture seen is the result of a deletion of the X chromosome spanning DXS7, the Norrie gene, and several neighbouring loci. A detailed clinical description of the patient is given and compared to that of similar cases.

  5. [Recombinant chromosome 4 with partial 4p deletion and 4q duplication inherited from paternal pericentric inversion].

    Science.gov (United States)

    Mun, Se Jin; Cho, Eun Hae; Chey, Myoung-Jae; Shim, Gyu-Hong; Shin, Bo-Moon; Lee, Rae-Kyung; Ko, Ji-Kyung; Yoo, Soo Jin

    2010-02-01

    Pericentric inversion of chromosome 4 can give rise to 2 alternate recombinant (rec) chromosomesby duplication or deletion of 4p. The deletion of distal 4p manifests as Wolf-Hirschhorn syndrome (WHS). Here, we report the molecular cytogenetic findings and clinical manifestations observed in an infant with 46,XX,rec(4)dup(4q)inv(4)(p16q31.3)pat. The infant was delivered by Cesarean section at the 33rd week of gestation because pleural effusion and polyhydramnios were detected on ultrasonography. At birth, the infant showed no malformation or dysfunction, except for a preauricular skin tag. Array comparative genomic hybridization analysis of neonatal peripheral blood samples showed a gain of 38 Mb on 4q31.3-qter and a loss of 3 Mb on 4p16.3, and these results were consistent with WHS. At the last follow-up at 8 months of age (corrected age, 6 months), the infant had not achieved complete head control.

  6. HOMOZYGOUS DELETION IN A SMALL-CELL LUNG-CANCER CELL-LINE INVOLVING A 3P21 REGION WITH A MARKED INSTABILITY IN YEAST ARTIFICIAL CHROMOSOMES

    NARCIS (Netherlands)

    KOK, K; van den Berg, Anke; VELDHUIS, PMJF; VANDERVEEN, AY; FRANKE, M; SCHOENMAKERS, EFPM; HULSBEEK, MMF; VANDERHOUT, AH; DELEIJ, L; VANDEVEN, W; BUYS, CHCM

    1994-01-01

    All types of lung carcinoma are characterized by a high frequency of loss of sequences from the short arm of chromosome 3, the smallest region of overlap containing D3F15S2 in band p21. Here we characterize a 440-kilobase segment from this region, which we found homozygously deleted in one of our

  7. Molecular dissection of a contiguous gene syndrome: Frequent submicroscopic deletions, evolutionarily conserved sequences, and a hypomethylated island in the Miller-Dieker chromosome region

    International Nuclear Information System (INIS)

    Ledbetter, D.H.; Ledbetter, S.A.; vanTuinen, P.

    1989-01-01

    The Miller-Dieker syndrome (MDS), composed of characteristic facial abnormalities and a severe neuronal migration disorder affecting the cerebral cortex, is caused by visible or submicroscopic deletions of chromosome band 17p13. Twelve anonymous DNA markers were tested against a panel of somatic cell hybrids containing 17p deletions from seven MDS patients. All patients, including three with normal karyotypes, are deleted for a variable set of 5-12 markers. Two highly polymorphic VNTR (variable number of tandem repeats) probes, YNZ22 and YNH37, are codeleted in all patients tested and make molecular diagnosis for this disorder feasible. By pulsed-field gel electrophoresis, YNZ22 and YNH37 were shown to be within 30 kilobases (kb) of each other. Cosmid clones containing both VNTR sequences were identified, and restriction mapping showed them to be 100 kb were completely deleted in all patients, providing a minimum estimate of the size of the MDS critical region. A hypomethylated island and evolutionarily conserved sequences were identified within this 100-kb region, indications of the presence of one or more expressed sequences potentially involved in the pathophysiology of this disorder. The conserved sequences were mapped to mouse chromosome 11 by using mouse-rat somatic cell hybrids, extending the remarkable homology between human chromosome 17 and mouse chromosome 11 by 30 centimorgans, into the 17p telomere region

  8. Localization of the endpoints of deletions in the 5' region of the Duchenne gene using a sequence isolated by chromosome jumping

    Energy Technology Data Exchange (ETDEWEB)

    Kenwrick, S.J.; Smith, T.J.; England, S.; Collins, F.; Davies, K.E.

    1988-02-25

    The authors have used chromosome jumping technology to move from within a large intron sequence in the Duchenne muscular dystrophy (DMD) gene to a region adjacent to exons of the gene. The single copy jump clone, HH1, was used to characterize deletions in patients previously shown to be deleted for DNA markers in the 5' end of the gene. 12 out of 15 such patients have breakpoints which lie between HH1 and the genomic locus J-47. Thus the vast majority of the deletions in these patients have proximal breakpoints in a similar region distal to the 5'end of the gene. HH1 was mapped with respect to the X;1 translocation in a DMD female and was shown to lie at least 80 kb from the starting point of the chromosome jump, HIP25.

  9. Localization of the endpoints of deletions in the 5' region of the Duchenne gene using a sequence isolated by chromosome jumping

    Energy Technology Data Exchange (ETDEWEB)

    Kenwrick, S J; Smith, T J; England, S; Collins, F; Davies, K E

    1988-02-25

    The authors have used chromosome jumping technology to move from within a large intron sequence in the Duchenne muscular dystrophy (DMD) gene to a region adjacent to exons of the gene. The single copy jump clone, HH1, was used to characterize deletions in patients previously shown to be deleted for DNA markers in the 5' end of the gene. 12 out of 15 such patients have breakpoints which lie between HH1 and the genomic locus J-47. Thus the vast majority of the deletions in these patients have proximal breakpoints in a similar region distal to the 5'end of the gene. HH1 was mapped with respect to the X;1 translocation in a DMD female and was shown to lie at least 80 kb from the starting point of the chromosome jump, HIP25.

  10. Male gametophytic sterility. 1 - Gametic sterilities and deletions in petunia

    Energy Technology Data Exchange (ETDEWEB)

    Cornu, A.; Maizonnier, D. (Station d' Amelioration des Plantes de l' I.N.R.A., Dijon (France))

    1982-01-01

    Terminal deletions induced by ionizing radiations in Petunia are not sexually transmitted. Cytogenetic study of plants with a heterozygous deletion and their progenies shows that this lack of transmission is accompanied by a gametic semi-sterility due to the fact that gametes carrying the deleted chromosome are not viable. The interest of such a male sterility with a gametophytic determinism for the study of sporophyte-gametophyte relationships is underlined.

  11. Micro deletion in the y-chromosome of egyptian infertile men

    International Nuclear Information System (INIS)

    El-maghraby, T.; Hussein, A.H.; El-sayed, N.M.; Elghandor, T.

    2003-01-01

    The present investigation was designed to study the microdeletions in 5 different sites of azoospermia factor (AZF) in y-chromosome, SY 239, SY 254, SY 277, SY 283 in AZFc and SY 133 in AZFcb region using polymerase chain reactions. The present investigation included also measuring the levels of FSH, LH, testosterone and prolactin. Semen orgasm and cytogenetic analysis were also done. The study included 50 Egyptian men, 30 patients with azoospermia or oligospermia and 20 fertile men as control. Patients were classified into 2 groups, one having sertoli cells only (SCO) and the other suffering from maturation arrest (MA) according to testis biopsies. Three patients from SCO have been exposed to radiotherapy for different reasons. Results revealed that 13.3% of infertile men (SCO and MA) showed Y microdeletions (15% and 10% respectively). Moreover, SY 239 and SY 254 in DAZ gene were the common microdeletion sitesa more in patients of the present study. However, SY 133 microdeletion was detected in SCO patients only. As expected, there were highly significant increases in serum FSH and LH in SCO group compared with normal and MA groups. PCR based assay is important to detect microdeletions in AZF region of Y-chromosome in non-idiopathic infertile men

  12. Diagnosis of a terminal deletion of 4p with duplication of Xp22.31 in a patient with findings of Opitz G/BBB syndrome and Wolf-Hirschhorn syndrome.

    Science.gov (United States)

    So, Joyce; Müller, Ines; Kunath, Melanie; Herrmann, Susanne; Ullmann, Reinhard; Schweiger, Susann

    2008-01-01

    Opitz G/BBB syndrome (OS) is a congenital midline malformation syndrome characterized by hypertelorism, hypospadias, cleft lip/palate, laryngotracheoesophageal abnormalities, imperforate anus, developmental delay and cardiac defects. The X-linked form is caused by mutations in the MID1 gene, while no gene has yet been identified for the autosomal dominant form. Here, we report on a 15-year-old boy who was referred for MID1 mutation analysis with findings typical of OS, including apparent hypertelorism, hypospadias, a history of feeding difficulties, dysphagia secondary to esophageal arteria lusoria, growth retardation and developmental delay. No MID1 mutation was found, but subsequent sub-megabase resolution array CGH unexpectedly documented a 2.34 Mb terminal 4p deletion, suggesting a diagnosis of WHS, and a duplication in Xp22.31. Wolf-Hirschhorn syndrome (WHS) is a contiguous gene deletion syndrome involving terminal chromosome 4p deletions, in particular 4p16.3. WHS is characterized by typical facial appearance ("Greek helmet facies"), mental retardation, congenital hypotonia, and growth retardation. While the severity of developmental delay in this patient supports the diagnosis of WHS rather than OS, this case illustrates the striking similarities of clinical findings in seemingly unrelated syndromes, suggesting common or interacting pathways at the molecular and pathogenetic level. This is the first report of arteria lusoria (esophageal vascular ring) in a patient with WHS. (c) 2007 Wiley-Liss, Inc.

  13. Vitamin D deficiency, behavioral atypicality, anxiety and depression in children with chromosome 22q11.2 deletion syndrome.

    Science.gov (United States)

    Kelley, L; Sanders, A F P; Beaton, E A

    2016-12-01

    Chromosome 22q11.2 deletion syndrome (22q11.2DS) is a complex developmental disorder with serious medical, cognitive and emotional symptoms across the lifespan. This genetic deletion also imparts a lifetime risk for developing schizophrenia that is 25-30 times that of the general population. The origin of this risk is multifactorial and may include dysregulation of the stress response and immunological systems in relation to brain development. Vitamin D is involved in brain development and neuroprotection, gene transcription, immunological regulation and influences neuronal signal transduction. Low levels of vitamin D are associated with schizophrenia, depression and anxiety in the general population. Yet, little is known about how vitamin D levels in children with 22q11.2DS could mediate risk of psychosis in adulthood. Blood plasma levels of vitamin D were measured in children aged 7-16 years with (n=11) and without (n=16) 22q11.2DS in relation to parent reports of children's anxiety and atypicality. Anxiety and atypicality in childhood are risk indicators for the development of schizophrenia in those with 22q11.2DS and the general population. Children with 22q11.2DS had lower vitamin D levels, as well as elevated anxiety and atypicality compared with typical peers. Higher levels of anxiety, depression and internalizing problems but not atypicality were associated with lower levels of vitamin D. Vitamin D insufficiency may relate to higher levels of anxiety and depression, in turn contributing to the elevated risk of psychosis in this population. Further study is required to determine casual linkages between anxiety, stress, mood and vitamin D in children with 22q11.2DS.

  14. An Interstitial 4q Deletion with a Mosaic Complementary Ring Chromosome in a Child with Dysmorphism, Linear Skin Pigmentation, and Hepatomegaly

    Directory of Open Access Journals (Sweden)

    J. Carter

    2017-01-01

    Full Text Available Interstitial deletions of 4q are rarely reported, vary in size, and have limited genotype-phenotype correlations. Here, genome-wide array CGH analysis identified a 21.6 Mb region of copy number loss at 4q12-q21.1 in a patient diagnosed with dysmorphism, linear skin pigmentation, and hepatomegaly. An additional small ring chromosome was detected in 5/30 cells examined via G-banding. Confirmation of the origin of the ring chromosome was obtained by FISH analysis which identified that the ring chromosome contained material from the deleted region of chromosome 4 and was therefore complementary to the 21.6 Mb deletion. Further microarray studies in the proband using a different microarray platform showed no evidence of mosaicism. This case highlights the importance of an integrated approach to cytogenetic analysis and demonstrates the value of G-banding for detecting mosaicism, as current microarray platforms are unable to detect low level mosaics.

  15. A recurrent deletion syndrome at chromosome bands 2p11.2-2p12 flanked by segmental duplications at the breakpoints and including REEP1.

    Science.gov (United States)

    Stevens, Servi J C; Blom, Eveline W; Siegelaer, Ingrid T J; Smeets, Eric E J G L

    2015-04-01

    We identified an identical and recurrent 9.4-Mbp deletion at chromosome bands 2p11.2-2p12, which occurred de novo in two unrelated patients. It is flanked at the distal and proximal breakpoints by two homologous segmental duplications consisting of low copy repeat (LCR) blocks in direct orientation, which have >99% sequence identity. Despite the fact that the deletion was almost 10 Mbp in size, the patients showed a relatively mild clinical phenotype, that is, mild-to-moderate intellectual disability, a happy disposition, speech delay and delayed motor development. Their phenotype matches with that of previously described patients. The 2p11.2-2p12 deletion includes the REEP1 gene that is associated with spastic paraplegia and phenotypic features related to this are apparent in most 2p11.2-2p12 deletion patients, but not in all. Other hemizygous genes that may contribute to the clinical phenotype include LRRTM1 and CTNNA2. We propose a recurrent but rare 2p11.2-2p12 deletion syndrome based on (1) the identical, non-random localisation of the de novo deletion breakpoints in two unrelated patients and a patient from literature, (2) the patients' phenotypic similarity and their phenotypic overlap with other 2p deletions and (3) the presence of highly identical LCR blocks flanking both breakpoints, consistent with a non-allelic homologous recombination (NAHR)-mediated rearrangement.

  16. Isolation of anonymous DNA sequences from within a submicroscopic X chromosomal deletion in a patient with choroideremia, deafness, and mental retardation

    International Nuclear Information System (INIS)

    Nussbaum, R.L.; Lesko, J.G.; Lewis, R.A.; Ledbetter, S.A.; Ledbetter, D.H.

    1987-01-01

    Choroideremia, an X-chromosome linked retinal dystrophy of unknown pathogenesis, causes progressive nightblindness and eventual central blindness in affected males by the third to fourth decade of life. Choroideremia has been mapped to Xq13-21 by tight linkage to restriction fragment length polymorphism loci. The authors have recently identified two families in which choroideremia is inherited with mental retardation and deafness. In family XL-62, an interstitial deletion Xq21 is visible by cytogenetic analysis and two linked anonymous DNA markers, DXYS1 and DXS72, are deleted. In the second family, XL-45, an interstitial deletion was suspected on phenotypic grounds but could not be confirmed by high-resolution cytogenetic analysis. They used phenol-enhanced reassociation of 48,XXXX DNA in competition with excess XL-45 DNA to generate a library of cloned DNA enriched for sequences that might be deleted in XL-45. Two of the first 83 sequences characterized from the library were found to be deleted in probands from family XL-45 as well as from family XL-62. Isolation of these sequences proves that XL-45 does contain a submicroscopic deletion and provides a starting point for identifying overlapping genomic sequences that span the XL-45 deletion. Each overlapping sequence will be studied to identify exons from the choroideremia locus

  17. Tetralogy of Fallot associated with deletion in the DiGeorge region of chromosome 22 (22q11)

    Energy Technology Data Exchange (ETDEWEB)

    D`Angelo, J.A.; Pillers, D.M.; Jett, P.L. [Oregon Health Sciences Univ. Portland, OR (United States)] [and others

    1994-09-01

    Cardiac conotruncal defects, such as Tetralogy of Fallot (TOF), are associated with DiGeorge syndrome which has been mapped to the q11 region of chromosome 22 and includes abnormalities of neural crest and branchial arch development. Patients with conotruncal defects and velo-cardio-facial syndrome may have defects in the 22q11 region but not show the complete DiGeorge phenotype consisting of cardiac, thymus, and parathyroid abnormalities. We report two neonates with TOF and small deletions in the DiGeorge region of chromosome 22 (46,XX,del(22)(q11.21q11.23) and 46,XY,del(22)(q11.2q11.2)) using both high-resolution cytogenetics and fluorescence in situ hybridization (FISH). The first patient is a female with TOF and a family history of congenital heart disease. The mother has pulmonic stenosis and a right-sided aortic arch, one brother has TOF, and a second brother has a large VSD. The patient had intrauterine growth retardation and had thrombocytopenia due to maternal IgG platelet-directed autoantibody. Lymphocyte populations, both T and B cells, were reduced in number but responded normally to stimulation. The findings were not attributed to a DiGeorge phenotype. Although she had transient neonatal hypocalcemia, her parathyroid hormone level was normal. The patient was not dysmorphic in the newborn period but her mother had features consistent with velo-cardio-facial syndrome. The second patient was a male with TOF who was not dysmorphic and had no other significant clinical findings and no family history of heart disease. Lymphocyte testing did not reveal a specific immunodeficiency. No significant postnatal hypocalcemia was noted. These cases illustrate that there is a wide spectrum of clinical features associated with defects of the 22q11 region. We recommend karyotype analysis, including FISH probes specific to the DiGeorge region, in any patient with conotruncal cardiac defects.

  18. Myeloid Malignancies with Chromosome 5q Deletions Acquire a Dependency on an Intrachromosomal NF-κB Gene Network

    Directory of Open Access Journals (Sweden)

    Jing Fang

    2014-09-01

    Full Text Available Chromosome 5q deletions (del[5q] are common in high-risk (HR myelodysplastic syndrome (MDS and acute myeloid leukemia (AML; however, the gene regulatory networks that sustain these aggressive diseases are unknown. Reduced miR-146a expression in del(5q HR MDS/AML and miR-146a−/− hematopoietic stem/progenitor cells (HSPCs results in TRAF6/NF-κB activation. Increased survival and proliferation of HSPCs from miR-146alow HR MDS/AML is sustained by a neighboring haploid gene, SQSTM1 (p62, expressed from the intact 5q allele. Overexpression of p62 from the intact allele occurs through NF-κB-dependent feedforward signaling mediated by miR-146a deficiency. p62 is necessary for TRAF6-mediated NF-κB signaling, as disrupting the p62-TRAF6 signaling complex results in cell-cycle arrest and apoptosis of MDS/AML cells. Thus, del(5q HR MDS/AML employs an intrachromosomal gene network involving loss of miR-146a and haploid overexpression of p62 via NF-κB to sustain TRAF6/NF-κB signaling for cell survival and proliferation. Interfering with the p62-TRAF6 signaling complex represents a therapeutic option in miR-146a-deficient and aggressive del(5q MDS/AML.

  19. The Involvement of Phosphatase and Tensin Homolog Deleted on Chromosome Ten (PTEN in the Regulation of Inflammation Following Coronary Microembolization

    Directory of Open Access Journals (Sweden)

    Jiangyou Wang

    2014-06-01

    Full Text Available Background/Aims: Growing evidence shows that phosphatase and tensin homolog deleted on chromosome ten (PTEN is involved in regulating inflammation in different pathological conditions. Therefore, we hypothesized that the upregulation of PTEN correlates with the impairment of cardiac function in swine following coronary microembolization (CME. Methods: To possibly disclose an anti-inflammatory effect of PTEN, we induced swine CME by injecting inertia plastic microspheres (42 μm in diameter into the left anterior descending coronary artery and analyzed the myocardial tissue by immunochemistry, qRT-PCR and western blot analyses. In addition, we downregulated PTEN using siRNA. Results: Following CME, PTEN mRNA and protein levels were elevated as early as 3 h, peaked at 12 h, and then continuously decreased at 24 h and 48 h but remained elevated. Through linear correlation analysis, the PTEN protein level positively correlated with cTnI and TNF-α but was negatively correlated with LVEF. Furthermore, PTEN siRNA reduced the microinfarct volume, improved cardiac function (LVEF, reduced the release of cTnI, and suppressed PTEN and TNF-α protein expression. Conclusion: This study demonstrated, for the first time, that PTEN is involved in CME-induced inflammatory injury. The data generated from this study provide a rationale for the development of PTEN-based anti-inflammatory strategies.

  20. The E7-associated cell-surface antigen: a marker for the 11p13 chromosomal deletion associated with aniridia-Wilms tumor.

    OpenAIRE

    Scoggin, C H; Fisher, J H; Shoemaker, S A; Morse, H; Leigh, T; Riccardi, V M

    1985-01-01

    Unbalanced interstitial deletions of the p13 region of human chromosome 11 have been associated with congenital hypoplasia or aplasia of the iris, mental retardation, ambiguous genitalia, and predisposition to Wilms tumor of the kidney. Utilizing somatic cell hybrids containing either the normal or abnormal chromosome 11 from a child with Wilms tumor and aniridia, we previously mapped the E7 cell-surface antigen to the 11p1300-to-11p15.1 region. To localize even further the site of this antig...

  1. Influence of C-terminal tail deletion on structure and stability of hyperthermophile Sulfolobus tokodaii RNase HI.

    Science.gov (United States)

    Chen, Lin; Zhang, Ji-Long; Zheng, Qing-Chuan; Chu, Wen-Ting; Xue, Qiao; Zhang, Hong-Xing; Sun, Chia-Chung

    2013-06-01

    The C-terminus tail (G144-T149) of the hyperthermophile Sulfolobus tokodaii (Sto-RNase HI) plays an important role in this protein's hyperstabilization and may therefore be a good protein stability tag. Detailed understanding of the structural and dynamic effects of C-terminus tail deletion is required for gaining insights into the thermal stability mechanism of Sto-RNase HI. Focused on Sulfolobus tokodaii RNase HI (Sto-RNase HI) and its derivative lacking the C-terminal tail (ΔC6 Sto-RNase HI) (PDB codes: 2EHG and 3ALY), we applied molecular dynamics (MD) simulations at four different temperatures (300, 375, 475, and 500 K) to examine the effect of the C-terminal tail on the hyperstabilization of Sto-RNase HI and to investigate the unfolding process of Sto-RNase HI and ΔC6 Sto-RNase HI. The simulations suggest that the C-terminal tail has significant impact in hyperstabilization of Sto-RNase HI and the unfolding of these two proteins evolves along dissimilar pathways. Essential dynamics analysis indicates that the essential subspaces of the two proteins at different temperatures are non-overlapping within the trajectories and they exhibit different directions of motion. Our work can give important information to understand the three-state folding mechanism of Sto-RNase HI and to offer alternative strategies to improve the protein stability.

  2. Mirror-symmetric duplicated chromosome 21q with minor proximal deletion, and with neocentromere in a child without the classical Down syndrome phenotype.

    Science.gov (United States)

    Barbi, G; Kennerknecht, I; Wöhr, G; Avramopoulos, D; Karadima, G; Petersen, M B

    2000-03-13

    We report on a mentally retarded child with multiple minor anomalies and an unusually rearranged chromosome 21. This der(21) chromosome has a deletion of 21p and of proximal 21q, whereas the main portion of 21q is duplicated leading to a mirror-symmetric appearance with the mirror axis at the breakpoint. The centromere is only characterized by a secondary constriction (with a centromeric index of a G chromosome) at an unexpected distal position, but fluorescence in situ hybridization (FISH) with either chromosome specific or with all human centromeres alpha satellite DNA shows no cross hybridization. Thus, the marker chromosome represents a further example of an "analphoid marker with neocentromere." Molecular analysis using polymorphic markers on chromosome 21 verified a very small monosomic segment of the proximal long arm of chromosome 21, and additionally trisomy of the remaining distal segment. Although trisomic for almost the entire 21q arm, our patient shows no classical Down syndrome phenotype, but only a few minor anomalies found in trisomy 21 and in monosomy of proximal 21q, respectively. Copyright 2000 Wiley-Liss, Inc.

  3. Induction of anchorage-independent growth of human embryonic fibroblasts with a deletion in the short arm of chromosome 11 by human papillomavirus type 16 DNA

    International Nuclear Information System (INIS)

    Smits, H.L.; Raadsheer, E.; Rood, I.; Mehendale, S.; Slater, R.M.; van der Noordaa, J.; Ter Schegget, J.

    1988-01-01

    Human embryonic fibroblasts with a large deletion (11p11.11p15.1) in the short arm of one chromosome 11 (del-11 cells) appeared to be susceptible to transformation by early human papillomavirus type 16 (HPV-16) DNA, whereas diploid human embryonic fibroblasts were not. This difference in susceptibility might be explained by the absence of a tumor suppressor gene located within the deleted part on the short arm of chromosome 11. The presence of abundant viral early-gene transcripts in transformed cells suggests that transformation was induced by an elevated level of an HPV-16 early-gene product(s). The low transcriptional activity of HPV-16 in diploid cells may indicate that cellular genes affect viral transcription. Interruption of the HPV-16 E2 early open reading frame is probably required for high-level HPV-16 early-gene expression driven from the homologous enhancer-promoter region

  4. Seizures as the first manifestation of chromosome 22q11.2 deletion syndrome in a 40-year old man: a case report

    OpenAIRE

    Tonelli, Adriano R; Kosuri, Kalyan; Wei, Sainan; Chick, Davoren

    2007-01-01

    Abstract Background The microdeletion of chromosome 22q11.2 is the most common human deletion syndrome. It typically presents early in life and is rarely considered in adult patients. As part of the manifestations of this condition, patients can have parathyroid glandular involvement ranging from hypocalcemic hypoparathyroidism to normocalcemia with normal parathryroid hormone levels. The first manifestation of the syndrome might be seizures due to profound hypocalcemia. Case presentation A 4...

  5. Radiation susceptibility of the mouse smalleye mutants, Del(2)Sey3Hpax6 and Del(2)Sey4Hpax6, which delete the chromosome 2 middle regions

    International Nuclear Information System (INIS)

    Nitta, Y.; Hoshi, M.; Yoshida, K.; Yamate, J.; Peters, J.; Cattanach, B.M.

    2003-01-01

    Full text: LOH at the chromosome 2 middle regions is common in the radiation-induced mouse acute myeloid leukemia (AML). To identify the suppressor or the modifier gene of AML at this region, the mouse deletion mutants, Del(2)Sey3H pax6 and Del(2)Sey3H pax6 could be the good models, as they deleted the chromosome 2 middle regions hemizygously. The allele of the partially deleted chromosome 2 was paternally generated and maintained hemizygously. The exact deleted regions of the two mutants were mapped by the PCR-based detection of polymorphism of the STS markers. The length of the deletions was 3.01Mb and 10.11MB for Del(2)Sey3H pax6 and Del(2)Sey3H pax6 , respectively. For the induction of tumors, a radiation, 3.0Gy of Co-60 and a chemical carcinogen, N-methyl-N-nitrosourea were applied to the mutants. Their tumorigenicity was compared with those of control as well as normal sibs by the Kaplan-Meier analysis. Both mutants were found to predispose to small intestinal tumors. Intestinal tumors developed spontaneously with the incidence of 30%. The radiation and the chemical accelerated the malignancy and increased the incidence of the intestinal tumors. Radiation shortened the latency of AML development in the Del(2)Sey3H pax6 mutant but not in the Del(2)Sey3H pax6 . Spontaneous AML has not been observed, nor any increase in the incidence of induced AMLs. The commonly deleted region of the two mutants, the 3.01Mb region, must be critical for the development of tumors and the high susceptibility to radiation. The role of Pax6 gene should be considered in the intestinal tumorigenesis, as the Pax6 gene plays an important role in the pancreas development during the embryogenesis. The Wt1, a tumor suppressor gene, which is deleted hemizygously in these mutants as well. The screening of homozygous deletion has been started using the induced as well as spontaneously developed tumors

  6. Cryptic chromosome 9q34 deletion generates TAF-Ialpha/CAN and TAF-Ibeta/CAN fusion transcripts in acute myeloid leukemia.

    Science.gov (United States)

    Rosati, Roberto; La Starza, Roberta; Barba, Gianluca; Gorello, Paolo; Pierini, Valentina; Matteucci, Caterina; Roti, Giovanni; Crescenzi, Barbara; Aloisi, Teresa; Aversa, Franco; Martelli, Massimo Fabrizio; Mecucci, Cristina

    2007-02-01

    In hematologic malignancies chromosome aberrations generating fusion genes include cryptic deletions. In a patient with acute myeloid leukemia and normal karyo-type we discovered a new cryptic 9q34 deletion and here report the cytogenetic and molecular findings. The 9q34 deletion extends 2.5 megabases and juxtaposes the 5' TAF-I to the 3' CAN producing a TAF-I/CAN fusion gene. TAF-I/CAN transcribes into two fusion proteins bearing either TAF-Ialpha or TAF-Ibeta moieties. We set up molecular assays to monitor the chimeric TAF-Ialpha/CAN and TAF-Ibeta/CAN transcripts which, after hematopoietic stem cell transplantation from an HLA-identical sibling, were no longer detected.

  7. The emerging role of genomics in the diagnosis and workup of congenital urinary tract defects: a novel deletion syndrome on chromosome 3q13.31-22.1

    Science.gov (United States)

    Materna-Kiryluk, Anna; Kiryluk, Krzysztof; Burgess, Katelyn E; Bieleninik, Arkadiusz; Sanna-Cherchi, Simone; Gharavi, Ali G.; Latos-Bielenska, Anna

    2014-01-01

    Background Copy number variants (CNVs) are increasingly recognized as an important cause of congenital malformations and likely explain over 16% cases of CAKUT. Here, we illustrate how a molecular diagnosis of CNV can inform the clinical management of a pediatric patient presenting with CAKUT and other organ defects. Methods We describe a 14 year-old girl with a large de novo deletion of chromosome 3q13.31-22.1 that disrupts 101 known genes and manifests with CAKUT, neurodevelopmental delay, agenesis of corpus callosum (ACC), cardiac malformations, electrolyte and endocrine disorders, skeletal abnormalities and dysmorphic features. We perform extensive annotation of the deleted region to prioritize genes for specific phenotypes and to predict future disease risk. Results Our case defined new minimal chromosomal candidate regions for both CAKUT and ACC. Moreover, the presence of the CASR gene in the deleted interval predicted a diagnosis of hypocalciuric hypercalcemia, which was confirmed by serum and urine chemistries. Our gene annotation explained clinical hypothyroidism and predicted that the index case is at increased risk of thoracic aortic aneurysm, renal cell carcinoma and myeloproliferative disorder. Conclusions Extended annotation of CNV regions refines diagnosis and uncovers previously unrecognized phenotypic features. This approach enables personalized treatment and prevention strategies in patients harboring genomic deletions. PMID:24292865

  8. Microclones derived from the mouse chromosome 7 D-E bands map within the proximal region of the c14CoS deletion in albino mutant mice

    International Nuclear Information System (INIS)

    Toenjes, R.R.W.; Weith, A.; Rinchik, E.M.; Winking, H.; Carnwath, J.W.; Kaliner, B.; Paul, D.

    1991-01-01

    A group of radiation-induced perinatal-lethal deletions that include the albino (c) locus on mouse chromosome 7 causes failure of expression of various hepatocyte-specific genes when homozygous. The transcription of such genes could be controlled in trans by a regulatory gene(s) located within the proximal region of the C14CoS deletion. To identify this potential regulatory gene, a microclone library was established from microdissected D and E bands of chromosome 7. Three nonoverlapping microclones (E305, E336B, and E453B) hybridizing with wildtype but not with C14CoS/C14CoS DNA were isolated. E336B represents a single-copy DNA fragment, whereas E305 and E453B hybridized with 3 and 10 EcoRI DNA restriction fragments, respectively. All fragments map exclusively within the deletion. The microclones hybridized to DNA of viable C6H/C14CoS deletion heterozygotes but not to DNA of homozygotes for the lethal mutation c10R75M, which belongs to the same complementation group as c14CoS. DNA of viable homozygous mutant C62DSD, which carries a deletion breakpoint proximal to that of c6H, hybridized only with E453B. This microclone identified 6 EcoRI restriction fragments in C62DSD/C62DSD DNA. The results demonstrate that of the isolated microclones, E453B identifies a locus (D7RT453B) that maps closest to the hsdr-1 (hepatocyte-specific developmental regulation) locus, which maps between the proximal breakpoints of deletions c10R75M and c62DSD

  9. Chromosome breakage in Prader-Willi and Angelman syndrome deletions may involve recombination between a repeat at the proximal and distal breakpoints

    Energy Technology Data Exchange (ETDEWEB)

    Amos-Landgraf J.; Nicholls, R.D. [Case Western Reserve Univ., Cleveland, OH (United States); Gottlieb, W. [Univ. of Florida, Gainesville, FL (United States)] [and others

    1994-09-01

    Prader-Willi (PWS) and Angelman (AS) syndromes most commonly arise from large deletions of 15q11-q13. Deletions in PWS are paternal in origin, while those in AS are maternal in origin, clearly demonstrating genomic imprinting in these clinically distinct neurobehavioural disorders. In at least 90% of PWS and AS deletion patients, the same 4 Mb region within 15q11-q13 is deleted with breakpoints clustering in single YAC clones at the proximal and distal ends. To study the mechanism of chromosome breakage in PWS and AS, we have previously isolated 25 independent clones from these three YACs using Alu-vector PCR. Four clones were selected that appear to detect a low copy repeat that is located in the proximal and distal breakpoint regions of chromosome 15q11-q13. Three clones detect the same 4 HindIII bands in genomic DNA, all from 15q11-q13, with differing intensities for the probes located at the proximal or distal breakpoints region, respectively. This suggests that these probes detect related members of a low-copy repeat at either location. Moreover, the 254RL2 probe detects a novel HindIII band in two unrelated PWS deletion patients, suggesting that this may represent a breakpoint fragment, with recombination occurring within a similar interval in both patients. A fourth clone, 318RL3 detects 5 bands in HindIII-digested genomic DNA, all from 15q11-q13. This YAC endclone itself is not deleted in PWS and AS deletion patients, as seen by an invariant strong band. Two other strong bands are variably intact or deleted in different PWS or AS deletion patients, suggesting a relationship of this sequence to the breakpoints. Moreover, PCR using 318RL3 primers from the distal 93C9 YAC led to the isolation of a related clone with 96% identity, demonstrating the existence of a low-copy repeat with members close to the proximal and distal breakpoints. Taken together, our data suggest a complex, low-copy repeat with members at both the proximal and distal boundaries.

  10. Recombinant Chromosome 4 from a Familial Pericentric Inversion: Prenatal and Adulthood Wolf-Hirschhorn Phenotypes

    Directory of Open Access Journals (Sweden)

    Francesca Malvestiti

    2013-01-01

    Full Text Available Pericentric inversion of chromosome 4 can give rise to recombinant chromosomes by duplication or deletion of 4p. We report on a familial case of Wolf-Hirschhorn Syndrome characterized by GTG-banding karyotypes, FISH, and array CGH analysis, caused by a recombinant chromosome 4 with terminal 4p16.3 deletion and terminal 4q35.2 duplication. This is an aneusomy due to a recombination which occurred during the meiosis of heterozygote carrier of cryptic pericentric inversion. We also describe the adulthood and prenatal phenotypes associated with the recombinant chromosome 4.

  11. One in Four Individuals of African-American Ancestry Harbors a 5.5kb Deletion at chromosome 11q13.1

    Science.gov (United States)

    Zainabadi, Kayvan; Jain, Anuja V.; Donovan, Frank X.; Elashoff, David; Rao, Nagesh P.; Murty, Vundavalli V.; Chandrasekharappa, Settara C.; Srivatsan, Eri S.

    2014-01-01

    Cloning and sequencing of 5.5kb deletion at chromosome 11q13.1 from the HeLa cells, tumorigenic hybrids and two fibroblast cell lines has revealed homologous recombination between AluSx and AluY resulting in the deletion of intervening sequences. Long-range PCR of the 5.5kb sequence in 494 normal lymphocyte samples showed heterozygous deletion in 28.3% of African- American ancestry samples but only in 4.8% of Caucasian samples (pdeletion occurs in 27% of YRI (Yoruba – West African) population but none in non-African populations. The HapMap analysis further identified strong linkage disequilibrium between 5 single nucleotide polymorphisms and the 5.5kb deletion in the people of African ancestry. Computational analysis of 175kb sequence surrounding the deletion site revealed enhanced flexibility, low thermodynamic stability, high repetitiveness, and stable stem-loop/hairpin secondary structures that are hallmarks of common fragile sites. PMID:24412158

  12. Deletions at chromosome regions 7q11.23 and 7q36 in a patient with Williams syndrome

    NARCIS (Netherlands)

    Wouters, C. H.; Meijers-Heijboer, H. J.; Eussen, B. J.; van der Heide, A. A.; van Luijk, R. B.; van Drunen, E.; Beverloo, B. B.; Visscher, F.; van Hemel, J. O.

    2001-01-01

    We report on a patient with Williams syndrome and a complex de novo chromosome rearrangement, including microdeletions at 7q11.23 and 7q36 and additional chromosomal material at 7q36. The nature of this additional material was elucidated by spectral karyotyping and first assigned to chromosome 22.

  13. A novel partial deletion of the Y chromosome azoospermia factor c region is caused by non-homologous recombination between palindromes and may be associated with increased sperm counts

    NARCIS (Netherlands)

    Noordam, M. J.; van Daalen, S. K. M.; Hovingh, S. E.; Korver, C. M.; van der Veen, F.; Repping, S.

    2011-01-01

    BACKGROUND: The male-specific region of the human Y chromosome (MSY) contains multiple testis-specific genes. Most deletions in the MSY lead to inadequate or absent sperm production. Nearly all deletions occur via homologous recombination between amplicons. Previously, we identified two P5/distal-P1

  14. Disparities in visuo-spatial constructive abilities in Williams syndrome patients with typical deletion on chromosome 7q11.23.

    Science.gov (United States)

    Muramatsu, Yukako; Tokita, Yoshihito; Mizuno, Seiji; Nakamura, Miho

    2017-02-01

    Williams syndrome (WS) is known for its uneven cognitive abilities, especially the difficulty in visuo-spatial cognition, though there are some inter-individual phenotypic differences. It has been proposed that the difficulty in visuo-spatial cognition of WS patients can be attributed to a haploinsufficiency of some genes located on the deleted region in 7q11.23, based on an examination of atypical deletions identified in WS patients with atypical cognitive deficits. According to this hypothesis, the inter-individual differences in visuo-spatial cognitive ability arise from variations in deletion. We investigated whether there were inter-individual differences in the visuo-spatial constructive abilities of five unrelated WS patients with the typical deletion on chromosome 7q11.23 that includes the candidate genes contributing visuo-spatial difficulty in WS patients. We used tests with three-dimensional factors such as Benton's three-dimensional block construction test, which are considered to be more sensitive than those with only two-dimensional factors. There were diverse inter-individual differences in the visuo-spatial constructive abilities among the present participants who shared the same typical genomic deletion of WS. One of the participants showed almost equivalent performances to typically developing adults in those tests. In the present study, we found a wide range of cognitive abilities in visuo-spatial construction even among the patients with a common deletion pattern of WS. The findings suggest that attributing differences in the phenotypes entirely to genetic factors such as an atypical deletion may not be always correct. Copyright © 2016 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  15. Genome and gene alterations by insertions and deletions in the evolution of human and chimpanzee chromosome 22

    Directory of Open Access Journals (Sweden)

    Volfovsky Natalia

    2009-01-01

    Full Text Available Abstract Background Understanding structure and function of human genome requires knowledge of genomes of our closest living relatives, the primates. Nucleotide insertions and deletions (indels play a significant role in differentiation that underlies phenotypic differences between humans and chimpanzees. In this study, we evaluated distribution, evolutionary history, and function of indels found by comparing syntenic regions of the human and chimpanzee genomes. Results Specifically, we identified 6,279 indels of 10 bp or greater in a ~33 Mb alignment between human and chimpanzee chromosome 22. After the exclusion of those in repetitive DNA, 1,429 or 23% of indels still remained. This group was characterized according to the local or genome-wide repetitive nature, size, location relative to genes, and other genomic features. We defined three major classes of these indels, using local structure analysis: (i those indels found uniquely without additional copies of indel sequence in the surrounding (10 Kb region, (ii those with at least one exact copy found nearby, and (iii those with similar but not identical copies found locally. Among these classes, we encountered a high number of exactly repeated indel sequences, most likely due to recent duplications. Many of these indels (683 of 1,429 were in proximity of known human genes. Coding sequences and splice sites contained significantly fewer of these indels than expected from random expectations, suggesting that selection is a factor in limiting their persistence. A subset of indels from coding regions was experimentally validated and their impacts were predicted based on direct sequencing in several human populations as well as chimpanzees, bonobos, gorillas, and two subspecies of orangutans. Conclusion Our analysis demonstrates that while indels are distributed essentially randomly in intergenic and intronic genomic regions, they are significantly under-represented in coding sequences. There are

  16. Compaction and binding properties of the intrinsically disordered C-terminal domain of Henipavirus nucleoprotein as unveiled by deletion studies.

    Science.gov (United States)

    Blocquel, David; Habchi, Johnny; Gruet, Antoine; Blangy, Stéphanie; Longhi, Sonia

    2012-01-01

    Henipaviruses are recently emerged severe human pathogens within the Paramyxoviridae family. Their genome is encapsidated by the nucleoprotein (N) within a helical nucleocapsid that recruits the polymerase complex via the phosphoprotein (P). We have previously shown that in Henipaviruses the N protein possesses an intrinsically disordered C-terminal domain, N(TAIL), which undergoes α-helical induced folding in the presence of the C-terminal domain (P(XD)) of the P protein. Using computational approaches, we previously identified within N(TAIL) four putative molecular recognition elements (MoREs) with different structural propensities, and proposed a structural model for the N(TAIL)-P(XD) complex where the MoRE encompassing residues 473-493 adopt an α-helical conformation at the P(XD) surface. In this work, for each N(TAIL) protein, we designed four deletion constructs bearing different combinations of the predicted MoREs. Following purification of the N(TAIL) truncated proteins from the soluble fraction of E. coli, we characterized them in terms of their conformational, spectroscopic and binding properties. These studies provided direct experimental evidence for the structural state of the four predicted MoREs, and showed that two of them have clear α-helical propensities, with the one spanning residues 473-493 being strictly required for binding to P(XD). We also showed that Henipavirus N(TAIL) and P(XD) form heterologous complexes, indicating that the P(XD) binding regions are functionally interchangeable between the two viruses. By combining spectroscopic and conformational analyses, we showed that the content in regular secondary structure is not a major determinant of protein compaction.

  17. The male gametophytic sterility. 1 - Gametic sterilities and deletions in petunia

    International Nuclear Information System (INIS)

    Cornu, A.; Maizonnier, D.

    1982-01-01

    Terminal deletions induced by ionizing radiations in Petunia are not sexually transmitted. Cytogenetic study of plants with a heterozygous deletion and their progenies shows that this lack of transmission is accompanied by a gametic semi-sterility due to the fact that gametes carrying the deleted chromosome are not viable. The interest of such a male sterility with a gametophytic determinism for the study of sporophyte-gametophyte relationships is underlined [fr

  18. A 725 kb deletion at 22q13.1 chromosomal region including SOX10 gene in a boy with a neurologic variant of Waardenburg syndrome type 2.

    Science.gov (United States)

    Siomou, Elisavet; Manolakos, Emmanouil; Petersen, Michael; Thomaidis, Loretta; Gyftodimou, Yolanda; Orru, Sandro; Papoulidis, Ioannis

    2012-11-01

    Waardenburg syndrome (WS) is a rare (1/40,000) autosomal dominant disorder resulting from melanocyte defects, with varying combinations of sensorineural hearing loss and abnormal pigmentation of the hair, skin, and inner ear. WS is classified into four clinical subtypes (WS1-S4). Six genes have been identified to be associated with the different subtypes of WS, among which SOX10, which is localized within the region 22q13.1. Lately it has been suggested that whole SOX10 gene deletions can be encountered when testing for WS. In this study we report a case of a 13-year-old boy with a unique de novo 725 kb deletion within the 22q13.1 chromosomal region, including the SOX10 gene and presenting clinical features of a neurologic variant of WS2. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  19. Clinical characterization and proposed mechanism of juvenile glaucoma--a patient with a chromosome 4p deletion, Wolf-Hirschhorn Syndrome.

    Science.gov (United States)

    Curtin, Jeremy; Moloney, Greg; Grigg, John; Sharota Franzco, Dorian

    2010-09-01

    The case presented is that of a 22-year-old male with Wolf-Hirschhorn syndrome who was referred with glaucoma refractory to medical treatment. Six other patients have been described with Wolf-Hirschhorn syndrome (WHS) and glaucoma, most being congenital glaucoma with diagnosis in infancy. We describe the first case of juvenile onset glaucoma in this syndrome. Our patient had narrow angles on gonioscopy, with ultrasound biomicroscopy revealing ciliary body cysts. We alert others to the possibility of this mechanism of secondary narrow angle glaucoma associated with this chromosomal deletion syndrome.

  20. The C-terminal domain of the bacterial SSB protein acts as a DNA maintenance hub at active chromosome replication forks.

    Directory of Open Access Journals (Sweden)

    Audrey Costes

    2010-12-01

    Full Text Available We have investigated in vivo the role of the carboxy-terminal domain of the Bacillus subtilis Single-Stranded DNA Binding protein (SSB(Cter as a recruitment platform at active chromosomal forks for many proteins of the genome maintenance machineries. We probed this SSB(Cter interactome using GFP fusions and by Tap-tag and biochemical analysis. It includes at least 12 proteins. The interactome was previously shown to include PriA, RecG, and RecQ and extended in this study by addition of DnaE, SbcC, RarA, RecJ, RecO, XseA, Ung, YpbB, and YrrC. Targeting of YpbB to active forks appears to depend on RecS, a RecQ paralogue, with which it forms a stable complex. Most of these SSB partners are conserved in bacteria, while others, such as the essential DNA polymerase DnaE, YrrC, and the YpbB/RecS complex, appear to be specific to B. subtilis. SSB(Cter deletion has a moderate impact on B. subtilis cell growth. However, it markedly affects the efficiency of repair of damaged genomic DNA and arrested replication forks. ssbΔCter mutant cells appear deficient in RecA loading on ssDNA, explaining their inefficiency in triggering the SOS response upon exposure to genotoxic agents. Together, our findings show that the bacterial SSB(Cter acts as a DNA maintenance hub at active chromosomal forks that secures their propagation along the genome.

  1. DMBT1, a new member of the SRCR superfamily, on chromosome 10q25.3-26.1 is deleted in malignant brain tumours

    DEFF Research Database (Denmark)

    Mollenhauer, J; Wiemann, S; Scheurlen, W

    1997-01-01

    Loss of sequences from human chromosome 10q has been associated with the progression of human cancer. Medulloblastoma and glioblastoma multiforme are the most common malignant brain tumours in children and adults, respectively. In glioblastoma multiforme, the most aggressive form, 80% of the tumo......Loss of sequences from human chromosome 10q has been associated with the progression of human cancer. Medulloblastoma and glioblastoma multiforme are the most common malignant brain tumours in children and adults, respectively. In glioblastoma multiforme, the most aggressive form, 80....... Intragenic homozygous deletions has been detected in 2/20 medulloblastomas and in 9/39 glioblastomas multiformes. Lack of DMBT1 expression has been demonstrated in 4/5 brain-tumour cell lines. We suggest that DMBT1 is a putative tumour-suppressor gene implicated in the carcinogenesis of medulloblastoma...

  2. Transfer of Hessian fly resistance from rye to wheat via radiation-induced terminal and intercalary chromosomal translocations

    International Nuclear Information System (INIS)

    Friebe, B.; Hatchett, J.H.; Gill, B.S.; Mukai, Y.; Sebesta, E.E.

    1991-01-01

    A new Hessian fly (Mayetiola destructor) resistance gene derived from 'Balbo' rye and its transfer to hexaploid wheat via radiation-induced terminal and intercalary chromosomal translocations are described. Crosses between resistant 'Balbo' rye and susceptible 'Suwon 92' wheat and between the F1 amphidiploids and susceptible 'TAM 106' and 'Amigo' wheats produced resistant BC2F3 lines that were identified by C-banding analysis as being 6RL telocentric addition lines. Comparative chromosomal analyses and resistance tests revealed that the resistance gene is located on the 6RL telocentric chromosome. X-irradiated pollen of 6RL addition plants was used to fertilize plants of susceptible wheats 'TAM 106,' 'TAM 101,' and 'Vona.' After several generations of selection for resistance, new sublines were obtained that were homogeneous for resistance. Thirteen of these lines were analyzed by C-banding, and three different wheat-6RL chromosomal translocations (T) were identified. Wheat chromosomes involved in the translocations were 6B, 4B, and 4A. Almost the complete 6RL arm is present in T6BS · 6BL-6RL. Only the distal half of 6RL is present in T4BS · 4BL-6RL, which locates the resistance gene in the distal half of 6RL. Only a very small segment (ca 1.0 μm) of the distal region of 6RL is present in an intercalary translocation (Ti) Ti4AS · 4AL-6RL-4AL. The 6RL segment is inserted in the intercalary region between the centromere of chromosome 4A and the large proximal C-band of 4AL. The break-points of the translocations are outside the region of the centromere, indicating that they were induced by the X-ray treatment. All three translocations are cytologically stable and can be used directly in wheat breeding programs

  3. Delimitation of the Earliness per se D1 (Eps-D1) flowering gene to a subtelomeric chromosomal deletion in bread wheat (Triticum aestivum)

    Science.gov (United States)

    Zikhali, Meluleki; Wingen, Luzie U.; Griffiths, Simon

    2016-01-01

    Earliness per se (Eps) genes account for the variation in flowering time when vernalization and photoperiod requirements are satisfied. Genomics and bioinformatics approaches were used to describe allelic variation for 40 Triticum aestivum genes predicted, by synteny with Brachypodium distachyon, to be in the 1DL Eps region. Re-sequencing 1DL genes revealed that varieties carrying early heading alleles at this locus, Spark and Cadenza, carry a subtelomeric deletion including several genes. The equivalent region in Rialto and Avalon is intact. A bimodal distribution in the segregating Spark X Rialto single seed descent (SSD) populations enabled the 1DL QTL to be defined as a discrete Mendelian factor, which we named Eps-D1. Near isogenic lines (NILs) and NIL derived key recombinants between markers flanking Eps-D1 suggest that the 1DL deletion contains the gene(s) underlying Eps-D1. The deletion spans the equivalent of the Triticum monoccocum Eps-A m 1 locus, and hence includes MODIFIER OF TRANSCRIPTION 1 (MOT1) and FTSH PROTEASE 4 (FTSH4), the candidates for Eps-A m 1. The deletion also contains T. aestivum EARLY FLOWERING 3-D1 (TaELF3-D1) a homologue of the Arabidopsis thaliana circadian clock gene EARLY FLOWERING 3. Eps-D1 is possibly a homologue of Eps-B1 on chromosome 1BL. NILs carrying the Eps-D1 deletion have significantly reduced total TaELF3 expression and altered TaGIGANTEA (TaGI) expression compared with wild type. Altered TaGI expression is consistent with an ELF3 mutant, hence we propose TaELF3-D1 as the more likely candidate for Eps-D1. This is the first direct fine mapping of Eps effect in bread wheat. PMID:26476691

  4. Delimitation of the Earliness per se D1 (Eps-D1) flowering gene to a subtelomeric chromosomal deletion in bread wheat (Triticum aestivum).

    Science.gov (United States)

    Zikhali, Meluleki; Wingen, Luzie U; Griffiths, Simon

    2016-01-01

    Earliness per se (Eps) genes account for the variation in flowering time when vernalization and photoperiod requirements are satisfied. Genomics and bioinformatics approaches were used to describe allelic variation for 40 Triticum aestivum genes predicted, by synteny with Brachypodium distachyon, to be in the 1DL Eps region. Re-sequencing 1DL genes revealed that varieties carrying early heading alleles at this locus, Spark and Cadenza, carry a subtelomeric deletion including several genes. The equivalent region in Rialto and Avalon is intact. A bimodal distribution in the segregating Spark X Rialto single seed descent (SSD) populations enabled the 1DL QTL to be defined as a discrete Mendelian factor, which we named Eps-D1. Near isogenic lines (NILs) and NIL derived key recombinants between markers flanking Eps-D1 suggest that the 1DL deletion contains the gene(s) underlying Eps-D1. The deletion spans the equivalent of the Triticum monoccocum Eps-A (m) 1 locus, and hence includes MODIFIER OF TRANSCRIPTION 1 (MOT1) and FTSH PROTEASE 4 (FTSH4), the candidates for Eps-A (m) 1. The deletion also contains T. aestivum EARLY FLOWERING 3-D1 (TaELF3-D1) a homologue of the Arabidopsis thaliana circadian clock gene EARLY FLOWERING 3. Eps-D1 is possibly a homologue of Eps-B1 on chromosome 1BL. NILs carrying the Eps-D1 deletion have significantly reduced total TaELF3 expression and altered TaGIGANTEA (TaGI) expression compared with wild type. Altered TaGI expression is consistent with an ELF3 mutant, hence we propose TaELF3-D1 as the more likely candidate for Eps-D1. This is the first direct fine mapping of Eps effect in bread wheat. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  5. Feline infectious peritonitis virus with a large deletion in the 5'-terminal region of the spike gene retains its virulence for cats.

    Science.gov (United States)

    Terada, Yutaka; Shiozaki, Yuto; Shimoda, Hiroshi; Mahmoud, Hassan Youssef Abdel Hamid; Noguchi, Keita; Nagao, Yumiko; Shimojima, Masayuki; Iwata, Hiroyuki; Mizuno, Takuya; Okuda, Masaru; Morimoto, Masahiro; Hayashi, Toshiharu; Tanaka, Yoshikazu; Mochizuki, Masami; Maeda, Ken

    2012-09-01

    In this study, the Japanese strain of type I feline infectious peritonitis virus (FIPV), C3663, was found to have a large deletion of 735 bp within the gene encoding the spike (S) protein, with a deduced loss of 245 aa of the N-terminal region of the S protein. This deletion is similar to that observed in porcine respiratory coronavirus (PRCoV) when compared to transmissible gastroenteritis virus, which correlates with reduced virulence. By analogy to PRCoV, we expected that the pathogenicity of C3663 may be attenuated in cats. However, two of four cats inoculated with C3663 died of FIP, and a third C3663-inoculated cat showed FIP lesions at 91 days after challenge. These results indicate that the 5'-terminal region of the S gene is not essential for the development of FIP.

  6. Cryptic deletions and inversions of chromosome 21 in a phenotypically normal infant with transient abnormal myelopoiesis: a molecular cytogenetic study.

    Science.gov (United States)

    Kempski, H M; Craze, J L; Chessells, J M; Reeves, B R

    1998-11-01

    A case of transient abnormal myelopoiesis in a normal newborn without features of Down syndrome is described. The majority of bone marrow cells analysed belonged to a chromosomally abnormal clone with trisomy for chromosomes 18 and 21. Complex intrachromosomal rearrangements of one chromosome 21, demonstrated by fluorescence in situ hybridization using locus-specific probes, were found in a minor population of the clonal cells. These rearrangements involved loci previously shown to be rearranged in the leukaemic cells from patients with Down syndrome and leukaemia. However, the child's myeloproliferation resolved rapidly, with disappearance of the abnormal clone, and 3.5 years later she remains well.

  7. Seizures as the first manifestation of chromosome 22q11.2 deletion syndrome in a 40-year old man: a case report

    Directory of Open Access Journals (Sweden)

    Tonelli Adriano R

    2007-12-01

    Full Text Available Abstract Background The microdeletion of chromosome 22q11.2 is the most common human deletion syndrome. It typically presents early in life and is rarely considered in adult patients. As part of the manifestations of this condition, patients can have parathyroid glandular involvement ranging from hypocalcemic hypoparathyroidism to normocalcemia with normal parathryroid hormone levels. The first manifestation of the syndrome might be seizures due to profound hypocalcemia. Case presentation A 40-year-old man without significant past medical history presented with a new-onset generalized tonic-clonic seizure. He had no personal history of hypocalcemia or seizures. Physical examination was remarkable for short stature, hypertelorism, prominent forehead and nasal voice. His initial laboratory examination showed hypocalcemia (Calcium 5.2 mg/dl and Calcium ionized 0.69 mmol/l with hypoparathyroidism (Parathyroid hormone intact Conclusion Microdeletion of chromosome 22q11.2 is among the most clinically variable syndromes, with more than 180 features associated with the deletion. It has a variable phenotypical expression, requiring a high level of awareness for its early diagnosis. Seizures, related to marked hypocalcemia due to idiopathic hypoparathyroidism, might be the presenting feature in an adult patient with this syndrome.

  8. Mutated but Not Deleted Ovine PrP(C) N-Terminal Polybasic Region Strongly Interferes with Prion Propagation in Transgenic Mice.

    Science.gov (United States)

    Khalifé, Manal; Reine, Fabienne; Paquet-Fifield, Sophie; Castille, Johan; Herzog, Laetitia; Vilotte, Marthe; Moudjou, Mohammed; Moazami-Goudarzi, Katayoun; Makhzami, Samira; Passet, Bruno; Andréoletti, Olivier; Vilette, Didier; Laude, Hubert; Béringue, Vincent; Vilotte, Jean-Luc

    2016-02-01

    Mammalian prions are proteinaceous infectious agents composed of misfolded assemblies of the host-encoded, cellular prion protein (PrP). Physiologically, the N-terminal polybasic region of residues 23 to 31 of PrP has been shown to be involved in its endocytic trafficking and interactions with glycosaminoglycans or putative ectodomains of membrane-associated proteins. Several recent reports also describe this PrP region as important for the toxicity of mutant prion proteins and the efficiency of prion propagation, both in vitro and in vivo. The question remains as to whether the latter observations made with mouse PrP and mouse prions would be relevant to other PrP species/prion strain combinations given the dramatic impact on prion susceptibility of minimal amino acid substitutions and structural variations in PrP. Here, we report that transgenic mouse lines expressing ovine PrP with a deletion of residues 23 to 26 (KKRP) or mutated in this N-terminal region (KQHPH instead of KKRPK) exhibited a variable, strain-dependent susceptibility to prion infection with regard to the proportion of affected mice and disease tempo relative to findings in their wild-type counterparts. Deletion has no major effect on 127S scrapie prion pathogenesis, whereas mutation increased by almost 3-fold the survival time of the mice. Deletion marginally affected the incubation time of scrapie LA19K and ovine bovine spongiform encephalopathy (BSE) prions, whereas mutation caused apparent resistance to disease. Recent reports suggested that the N-terminal polybasic region of the prion protein could be a therapeutic target to prevent prion propagation or toxic signaling associated with more common neurodegenerative diseases such as Alzheimer's disease. Mutating or deleting this region in ovine PrP completes the data previously obtained with the mouse protein by identifying the key amino acid residues involved. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  9. Regional localization of DNA probes on the short arm of chromosome 11 using aniridia-Wilms' tumor-associated deletions

    NARCIS (Netherlands)

    Mannens, M.; Slater, R. M.; Heyting, C.; Geurts van Kessel, A.; Goedde-Salz, E.; Frants, R. R.; van Ommen, G. J.; Pearson, P. L.

    1987-01-01

    We are interested in the precise localization of various DNA probes on the short arm of chromosome 11 for our research on the aniridia-Wilms' tumor association (AWTA), assigned to region 11p13 (Knudson and Strong 1972; Riccardi et al. 1978). For this purpose we have screened lymphocyte DNA and

  10. Chromosomal amplifications, 3q gain and deletions of 2q33-q37 are the frequent genetic changes in cervical carcinoma

    International Nuclear Information System (INIS)

    Rao, Pulivarthi H; Murty, Vundavalli VVS; Arias-Pulido, Hugo; Lu, Xin-Yan; Harris, Charles P; Vargas, Hernan; Zhang, Fang F; Narayan, Gopeshwar; Schneider, Achim; Terry, Mary Beth

    2004-01-01

    Carcinoma of uterine cervix is the second most common cancers among women worldwide. Combined radiation and chemotherapy is the choice of treatment for advanced stages of the disease. The prognosis is poor, with a five-year survival rate ranging from about 20–65%, depending on stage of the disease. Therefore, genetic characterization is essential for understanding the biology and clinical heterogeneity in cervical cancer (CC). We used a genome-wide screening method – comparative genomic hybridization (CGH) to identify DNA copy number changes in 77 patients with cervical cancer. We applied categorical and survival analyses to analyze whether chromosomal changes were related to clinico-pathologic characteristics and patients survival. The CGH analysis revealed a loss of 2q33-q37 (57.1%), gain of 3q (54.5%) and chromosomal amplifications (20.77%) as frequent genetic changes. A total of 15 amplified chromosomal sites were detected in 16 cases that include 1p31, 2q32, 7q22, 8q21.2-q24, 9p22, 10q21, 10q24, 11q13, 11q21, 12q15, 14q12, 17p11.2, 17q22, 18p11.2, and 19q13.1. Recurrent amplified sites were noted at 11q13, 11q21, and 19q13.1. The genomic alterations were further evaluated for prognostic significance in CC patients, and we did not find any correlation with a number of clinical or histological parameters. The tumors harboring HPV18 exhibited higher genomic instability compared to tumors with HPV 16. This study demonstrated that 2q33-q37 deletions, 3q gains and chromosomal amplifications as characteristic changes in invasive CC. These genetic alterations will aid in the identification of novel tumor suppressor gene(s) at 2q33-q37 and oncogenes at amplified chromosomal sites. Molecular characterization of these chromosomal changes utilizing the current genomic technologies will provide new insights into the biology and clinical behavior of CC

  11. Analysis of the genome sequence of the pathogenic Muscovy duck parvovirus strain YY reveals a 14-nucleotide-pair deletion in the inverted terminal repeats.

    Science.gov (United States)

    Wang, Jianye; Huang, Yu; Zhou, Mingxu; Zhu, Guoqiang

    2016-09-01

    Genomic information about Muscovy duck parvovirus is still limited. In this study, the genome of the pathogenic MDPV strain YY was sequenced. The full-length genome of YY is 5075 nucleotides (nt) long, 57 nt shorter than that of strain FM. Sequence alignment indicates that the 5' and 3' inverted terminal repeats (ITR) of strain YY contain a 14-nucleotide-pair deletion in the stem of the palindromic hairpin structure in comparison to strain FM and FZ91-30. The deleted region contains one "E-box" site and one repeated motif with the sequence "TTCCGGT" or "ACCGGAA". Phylogenetic trees constructed based the protein coding genes concordantly showed that YY, together with nine other MDPV isolates from various places, clustered in a separate branch, distinct from the branch formed by goose parvovirus (GPV) strains. These results demonstrate that, despite the distinctive deletion, the YY strain still belongs to the classical MDPV group. Moreover, the deletion of ITR may contribute to the genome evolution of MDPV under immunization pressure.

  12. Arterial Hypertension in a Child with Williams-Beuren Syndrome (7q11.23 Chromosomal Deletion

    Directory of Open Access Journals (Sweden)

    Cristina de Sylos

    2002-08-01

    Full Text Available We report the case of a 7-year-old male child diagnosed with Williams-Beuren syndrome and arterial hypertension refractory to clinical treatment. The diagnosis was confirmed by genetic study. Narrowing of the descending aorta and stenosis of the renal arteries were also diagnosed. Systemic vascular alterations caused by deletion of the elastin gene may occur early in individuals with Williams-Beuren syndrome, leading to the clinical manifestation of systemic arterial hypertension refractory to drug treatment.

  13. Deletion affecting band 7q36 not associated with holoprosencephaly

    Energy Technology Data Exchange (ETDEWEB)

    Ebrahim, S.A.D.; Krivchenia, E.; Mohamed, A.N. [Wayne State Univ., Detroit, MI (United States)] [and others

    1994-09-01

    Although the appearance of 7q36 aberrations have been postulated to be responsible for holoprosencephaly (HPE), the presence of a de novo 7q36 deletion in fetus without HPE has not been reported. We report the first case of a fetus with 7q36 deletion but lacking HPE. Ultrasound examination of a 25-year-old G3P1 Caucasian female showed small head circumference with microcephaly at 28 weeks. Decreased amniotic fluid volume, bilateral renal dilatation and abnormal facial features were also noted. Chromosome analysis after cordocentesis showed an abnormal female karyotype with a deletion involving the chromosome band 7q36, 46,XX,del(7)(q36). Chromosome studies on the biological parents were normal. In view of the chromosome finding and after extensive counseling, the couple elected to terminate the pregnancy. The chromosome findings were confirmed by fetal blood chromosome analysis at termination. Post-mortem examination confirmed dysmorphic features including a depressed nasal bridge and large flat ears with no lobules, but no cleft lip or palate was noted. Internal abnormalities included a bicuspid pulmonary valve and abnormally located lungs. The brain weighed 190g (249 {plus_minus} 64g expected) and had symmetric cerebral hemispheres without evidence of HPE or other gross or microscopic malformation, except focal cerebellar cortical dysplasia. In summary, our patient showed a deletion of the same chromosomal band implicated in HPE but lacked HPE. This finding indicates that 7q36 deletion may be seen in the absence of HPE and suggests that other genetic mechanisms may be responsible for HPE in this setting.

  14. Chromosomal mechanisms in murine radiation acute myeloid leukemogenesis

    International Nuclear Information System (INIS)

    Bouffler, S.D.; Breckon, G.; Cox, R.

    1996-01-01

    Chromosome 2 abnormalities, particularly interstitial deletions, characterize murine radiation-induced acute myeloid leukaemias (AMLs). Here, G-band analyses in CBA/H mice of early (1-6 month) post 3 Gy X-radiation events in bone marrow cells in vivo and karyotype evolution in one unusual AML are presented. The early event analysis showed that all irradiated animals carry chromosome 2 abnormalities, that chromosome 2 abnormalities are more frequent than expected and that interstitial deletions are more common in chromosome 2 than in the remainder of the genome. On presentation AML case N122 carried a t(2; 11) terminal translocation which, with passaging, evolved into a del2(C3F3). Therefore two pathways in leukaemogenesis might exist, one deletion-driven, the other terminal tranlocation-driven involving interstitial genes and terminal genes respectively of chromosome 2. As all irradiated individuals carried chromosome 2 abnormalities, the formation of these aberrations does not determine individual leukaemogenic sensitivity as only 20-25% of animals would be expected to develop AML. Similar lines of argument suggest that chromosome 2 abnormalities are necessary but not sufficient for radiation leukaemogenesis in CBA/H nor are they rate limiting in leukaemogenesis. (Author)

  15. Antigenicity and Immunogenicity of RV144 Vaccine AIDSVAX Clade E Envelope Immunogen Is Enhanced by a gp120 N-Terminal Deletion

    Science.gov (United States)

    Liao, Hua-Xin; Tomaras, Georgia D.; Bonsignori, Mattia; Tsao, Chun-Yen; Hwang, Kwan-Ki; Chen, Haiyan; Lloyd, Krissey E.; Bowman, Cindy; Sutherland, Laura; Jeffries, Thomas L.; Kozink, Daniel M.; Stewart, Shelley; Anasti, Kara; Jaeger, Frederick H.; Parks, Robert; Yates, Nicole L.; Overman, R. Glenn; Sinangil, Faruk; Berman, Phillip W.; Pitisuttithum, Punnee; Kaewkungwal, Jaranit; Nitayaphan, Sorachai; Karasavva, Nicos; Rerks-Ngarm, Supachai; Kim, Jerome H.; Michael, Nelson L.; Zolla-Pazner, Susan; Santra, Sampa; Letvin, Norman L.; Harrison, Stephen C.

    2013-01-01

    An immune correlates analysis of the RV144 HIV-1 vaccine trial revealed that antibody responses to the gp120 V1/V2 region correlated inversely with infection risk. The RV144 protein immunogens (A244-rp120 and MN-rgp120) were modified by an N-terminal 11-amino-acid deletion (Δ11) and addition of a herpes simplex virus (HSV) gD protein-derived tag (gD). We investigated the effects of these modifications on gp120 expression, antigenicity, and immunogenicity by comparing unmodified A244 gp120 with both Δ11 deletion and gD tag and with Δ11 only. Analysis of A244 gp120, with or without Δ11 or gD, demonstrated that the Δ11 deletion, without the addition of gD, was sufficient for enhanced antigenicity to gp120 C1 region, conformational V2, and V1/V2 gp120 conformational epitopes. RV144 vaccinee serum IgGs bound more avidly to A244 gp120 Δ11 than to the unmodified gp120, and their binding was blocked by C1, V2, and V1/V2 antibodies. Rhesus macaques immunized with the three different forms of A244 gp120 proteins gave similar levels of gp120 antibody titers, although higher antibody titers developed earlier in A244 Δ11 gp120-immunized animals. Conformational V1/V2 monoclonal antibodies (MAbs) gave significantly higher levels of blocking of plasma IgG from A244 Δ11 gp120-immunized animals than IgG from animals immunized with unmodified A244 gp120, thus indicating a qualitative difference in the V1/V2 antibodies induced by A244 Δ11 gp120. These results demonstrate that deletion of N-terminal residues in the RV144 A244 gp120 immunogen improves both envelope antigenicity and immunogenicity. PMID:23175357

  16. Assignment of CSF-1 to 5q33.1: evidence for clustering of genes regulating hematopoiesis and for their involvement in the deletion of the long arm of chromosome 5 in myeloid disorders

    International Nuclear Information System (INIS)

    Pettenati, M.J.; Le Beau, M.M.; Lemons, R.S.; Shima, E.A.; Kawasaki, E.S.; Larson, R.A.; Sherr, C.J.; Diaz, M.O.; Rowley, J.D.

    1987-01-01

    The CSF-1 gene encodes a hematopoietic colony-stimulating factor (CSF) that promotes growth, differentiation, and survival of mononuclear phagocytes. By using somatic cell hybrids and in situ hybridization, the authors localized this gene to human chromosome 5 at bands q31 to q35, a chromosomal region that is frequently deleted [del(5q)] in patients with myeloid disorders. By in situ hybridization, the CSF-1 gene was found to be deleted in the 5q- chromosome of a patient with refractory anemia who had a del(5) (q15q33.3) and in that of a second patient with acute nonlymphocytic leukemia de novo who had a similar distal breakpoint [del(5)(q13q33.3)]. The gene was present in the deleted chromosome of a third patient, with therapy-related acute nonlymphocytic leukemia, who had a more proximal breakpoint in band q33 [del(5)(q22q33.1)]. Hybridization of the CSF-1 probe to metaphase cells of a fourth patient, with acute nonlymphocytic leukemia de novo, who had a rearrangement of chromosomes 5 and 21 resulted in labeling of the breakpoint junctions of both rearranged chromosomes; this suggested that CSF-1 is located at 5q33.1. Thus, a small segment of chromosome 5 contains GM-CSF (the gene encoding the granulocyte-macrophage CSF), CSF-1, and FMS, which encodes the CSF-1 receptor, in that order from the centromere; this cluster of genes may be involved in the altered hematopoiesis associated with a deletion of 5q

  17. 1.5Mb deletion of chromosome 4p16.3 associated with postnatal growth delay, psychomotor impairment, epilepsy, impulsive behavior and asynchronous skeletal development.

    Science.gov (United States)

    Misceo, D; Barøy, T; Helle, J R; Braaten, O; Fannemel, M; Frengen, E

    2012-10-01

    Several Wolf-Hirschhorn syndrome patients have been studied, mouse models for a few candidate genes have been constructed and two WHS critical regions have been postulated, but the molecular basis of the syndrome remains poorly understood. Single gene contributions to phenotypes of microdeletion syndromes have often been based on the study of patients carrying small, atypical deletions. We report a 5-year-old girl harboring an atypical 1.5Mb del4p16.3 and review seven previously published patients carrying a similar deletion. They show a variable clinical presentation and the only consistent feature is post-natal growth delay. However, four of eight patients carry a ring (4), and ring chromosomes in general are associated with growth deficiency. The Greek helmet profile is absent, although a trend towards common dysmorphic features exists. Variable expressivity and incomplete penetrance might play a role in WHS, resulting in difficult clinical diagnosis and challenge in understanding of the genotype/phenotype correlation. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Selective Deletion of Sodium Salt Taste during Development Leads to Expanded Terminal Fields of Gustatory Nerves in the Adult Mouse Nucleus of the Solitary Tract.

    Science.gov (United States)

    Sun, Chengsan; Hummler, Edith; Hill, David L

    2017-01-18

    Neuronal activity plays a key role in the development of sensory circuits in the mammalian brain. In the gustatory system, experimental manipulations now exist, through genetic manipulations of specific taste transduction processes, to examine how specific taste qualities (i.e., basic tastes) impact the functional and structural development of gustatory circuits. Here, we used a mouse knock-out model in which the transduction component used to discriminate sodium salts from other taste stimuli was deleted in taste bud cells throughout development. We used this model to test the hypothesis that the lack of activity elicited by sodium salt taste impacts the terminal field organization of nerves that carry taste information from taste buds to the nucleus of the solitary tract (NST) in the medulla. The glossopharyngeal, chorda tympani, and greater superficial petrosal nerves were labeled to examine their terminal fields in adult control mice and in adult mice in which the α-subunit of the epithelial sodium channel was conditionally deleted in taste buds (αENaC knockout). The terminal fields of all three nerves in the NST were up to 2.7 times greater in αENaC knock-out mice compared with the respective field volumes in control mice. The shapes of the fields were similar between the two groups; however, the density and spread of labels were greater in αENaC knock-out mice. Overall, our results show that disruption of the afferent taste signal to sodium salts disrupts the normal age-dependent "pruning" of all terminal fields, which could lead to alterations in sensory coding and taste-related behaviors. Neural activity plays a major role in the development of sensory circuits in the mammalian brain. To date, there has been no direct test of whether taste-elicited neural activity has a role in shaping central gustatory circuits. However, recently developed genetic tools now allow an assessment of how specific taste stimuli, in this case sodium salt taste, play a role

  19. Interstitial deletion of the short arm of chromosome 3. Fetal pathology and exclusion of the gene for beta-galactosidase-1 (GLB-1) from 3(p11----p14.2)

    DEFF Research Database (Denmark)

    Hertz, Jens Michael; Coerdt, W; Hahnemann, N

    1988-01-01

    A de novo interstitial deletion of the short arm of chromosome 3 was prenatally diagnosed in a male fetus, karyotype 46,XY,del(3)(pter----p14.2::p11----qter). The fetus had craniofacial dysmorphisms, a single transverse palmar crease, ulnar deviation in the wrists, cardiovascular anomalies...

  20. A Case With Short Stature, Growth Hormone Deficiency and 46, XX, Xq27-qter Deletion.

    Science.gov (United States)

    Yıldırım, Şule; Topaloğlu, Naci; Tekin, Mustafa; Sılan, Fatma

    2017-10-01

    We report a case of 11-year-old girl with growth retardation and 46, XX, Xq27-qter deletion. The endocrinologic evaluation revealed growth hormone deficiency. In karyotype analysis  46, XX, Xq27-qter deletion was determined. The deletion of terminal region of chromosome 27 is most commonly being detected during the evaluation of infertility, premature ovarian insufficiency or in screening for fragile X carrier status. To our knowledge, this is the first reported case with 46, XX, Xq27-qter deletion and growth hormone deficiency. Furthermore, this case might facilitate future search for candidate genes involved in growth hormone deficiency.

  1. Detection of 1p36 deletion by clinical exome-first diagnostic approach.

    Science.gov (United States)

    Watanabe, Miki; Hayabuchi, Yasunobu; Ono, Akemi; Naruto, Takuya; Horikawa, Hideaki; Kohmoto, Tomohiro; Masuda, Kiyoshi; Nakagawa, Ryuji; Ito, Hiromichi; Kagami, Shoji; Imoto, Issei

    2016-01-01

    Although chromosome 1p36 deletion syndrome is considered clinically recognizable based on characteristic features, the clinical manifestations of patients during infancy are often not consistent with those observed later in life. We report a 4-month-old girl who showed multiple congenital anomalies and developmental delay, but no clinical signs of syndromic disease caused by a terminal deletion in 1p36.32-p36.33 that was first identified by targeted-exome sequencing for molecular diagnosis.

  2. Inhibition of colorectal cancer genomic copy number alterations and chromosomal fragile site tumor suppressor FHIT and WWOX deletions by DNA mismatch repair

    Science.gov (United States)

    Gelincik, Ozkan; Blecua, Pedro; Edelmann, Winfried; Kucherlapati, Raju; Zhou, Kathy; Jasin, Maria; Gümüş, Zeynep H.; Lipkin, Steven M.

    2017-01-01

    Homologous recombination (HR) enables precise DNA repair after DNA double strand breaks (DSBs) using identical sequence templates, whereas homeologous recombination (HeR) uses only partially homologous sequences. Homeologous recombination introduces mutations through gene conversion and genomic deletions through single-strand annealing (SSA). DNA mismatch repair (MMR) inhibits HeR, but the roles of mammalian MMR MutL homologues (MLH1, PMS2 and MLH3) proteins in HeR suppression are poorly characterized. Here, we demonstrate that mouse embryonic fibroblasts (MEFs) carrying Mlh1, Pms2, and Mlh3 mutations have higher HeR rates, by using 7,863 uniquely mapping paired direct repeat sequences (DRs) in the mouse genome as endogenous gene conversion and SSA reporters. Additionally, when DSBs are induced by gamma-radiation, Mlh1, Pms2 and Mlh3 mutant MEFs have higher DR copy number alterations (CNAs), including DR CNA hotspots previously identified in mouse MMR-deficient colorectal cancer (dMMR CRC). Analysis of The Cancer Genome Atlas CRC data revealed that dMMR CRCs have higher genome-wide DR HeR rates than MMR proficient CRCs, and that dMMR CRCs have deletion hotspots in tumor suppressors FHIT/WWOX at chromosomal fragile sites FRA3B and FRA16D (which have elevated DSB rates) flanked by paired homologous DRs and inverted repeats (IR). Overall, these data provide novel insights into the MMR-dependent HeR inhibition mechanism and its role in tumor suppression. PMID:29069730

  3. Partial deletion of chromosome 8 β-defensin cluster confers sperm dysfunction and infertility in male mice.

    Directory of Open Access Journals (Sweden)

    Yu S Zhou

    2013-10-01

    Full Text Available β-defensin peptides are a family of antimicrobial peptides present at mucosal surfaces, with the main site of expression under normal conditions in the male reproductive tract. Although they kill microbes in vitro and interact with immune cells, the precise role of these genes in vivo remains uncertain. We show here that homozygous deletion of a cluster of nine β-defensin genes (DefbΔ9 in the mouse results in male sterility. The sperm derived from the mutants have reduced motility and increased fragility. Epididymal sperm isolated from the cauda should require capacitation to induce the acrosome reaction but sperm from the mutants demonstrate precocious capacitation and increased spontaneous acrosome reaction compared to wild-types but have reduced ability to bind the zona pellucida of oocytes. Ultrastructural examination reveals a defect in microtubule structure of the axoneme with increased disintegration in mutant derived sperm present in the epididymis cauda region, but not in caput region or testes. Consistent with premature acrosome reaction, sperm from mutant animals have significantly increased intracellular calcium content. Thus we demonstrate in vivo that β-defensins are essential for successful sperm maturation, and their disruption leads to alteration in intracellular calcium, inappropriate spontaneous acrosome reaction and profound male infertility.

  4. Social cognitive training in adolescents with chromosome 22q11.2 deletion syndrome: feasibility and preliminary effects of the intervention.

    Science.gov (United States)

    Shashi, V; Harrell, W; Eack, S; Sanders, C; McConkie-Rosell, A; Keshavan, M S; Bonner, M J; Schoch, K; Hooper, S R

    2015-10-01

    Children with chromosome 22q11.2 deletion syndrome (22q11DS) often have deficits in social cognition and social skills that contribute to poor adaptive functioning. These deficits may be of relevance to the later occurrence of serious psychiatric illnesses such as schizophrenia. Yet, there are no evidence-based interventions to improve social cognitive functioning in children with 22q11DS. Using a customised social cognitive curriculum, we conducted a pilot small-group-based social cognitive training (SCT) programme in 13 adolescents with 22q11DS, relative to a control group of nine age- and gender-matched adolescents with 22q11DS. We found the SCT programme to be feasible, with high rates of compliance and satisfaction on the part of the participants and their families. Our preliminary analyses indicated that the intervention group showed significant improvements in an overall social cognitive composite index. SCT in a small-group format for adolescents with 22q11DS is feasible and results in gains in social cognition. A larger randomised controlled trial would permit assessment of efficacy of this promising novel intervention. © 2015 MENCAP and International Association of the Scientific Study of Intellectual and Developmental Disabilities and John Wiley & Sons Ltd.

  5. Phenotypic and molecular assessment of seven patients with 6p25 deletion syndrome: Relevance to ocular dysgenesis and hearing impairment

    Directory of Open Access Journals (Sweden)

    Ritch Robert

    2004-06-01

    Full Text Available Abstract Background Thirty-nine patients have been described with deletions involving chromosome 6p25. However, relatively few of these deletions have had molecular characterization. Common phenotypes of 6p25 deletion syndrome patients include hydrocephalus, hearing loss, and ocular, craniofacial, skeletal, cardiac, and renal malformations. Molecular characterization of deletions can identify genes that are responsible for these phenotypes. Methods We report the clinical phenotype of seven patients with terminal deletions of chromosome 6p25 and compare them to previously reported patients. Molecular characterization of the deletions was performed using polymorphic marker analysis to determine the extents of the deletions in these seven 6p25 deletion syndrome patients. Results Our results, and previous data, show that ocular dysgenesis and hearing impairment are the two most highly penetrant phenotypes of the 6p25 deletion syndrome. While deletion of the forkhead box C1 gene (FOXC1 probably underlies the ocular dysgenesis, no gene in this region is known to be involved in hearing impairment. Conclusions Ocular dysgenesis and hearing impairment are the two most common phenotypes of 6p25 deletion syndrome. We conclude that a locus for dominant hearing loss is present at 6p25 and that this locus is restricted to a region distal to D6S1617. Molecular characterization of more 6p25 deletion patients will aid in refinement of this locus and the identification of a gene involved in dominant hearing loss.

  6. Deletion of a 197-Amino-Acid Region in the N-Terminal Domain of Spike Protein Attenuates Porcine Epidemic Diarrhea Virus in Piglets.

    Science.gov (United States)

    Hou, Yixuan; Lin, Chun-Ming; Yokoyama, Masaru; Yount, Boyd L; Marthaler, Douglas; Douglas, Arianna L; Ghimire, Shristi; Qin, Yibin; Baric, Ralph S; Saif, Linda J; Wang, Qiuhong

    2017-07-15

    We previously isolated a porcine epidemic diarrhea virus (PEDV) strain, PC177, by blind serial passaging of the intestinal contents of a diarrheic piglet in Vero cell culture. Compared with the highly virulent U.S. PEDV strain PC21A, the tissue culture-adapted PC177 (TC-PC177) contains a 197-amino-acid (aa) deletion in the N-terminal domain of the spike (S) protein. We orally inoculated neonatal, conventional suckling piglets with TC-PC177 or PC21A to compare their pathogenicities. Within 7 days postinoculation, TC-PC177 caused mild diarrhea and lower fecal viral RNA shedding, with no mortality, whereas PC21A caused severe clinical signs and 55% mortality. To investigate whether infection with TC-PC177 can induce cross-protection against challenge with a highly virulent PEDV strain, all the surviving piglets were challenged with PC21A at 3 weeks postinoculation. Compared with 100% protection in piglets initially inoculated with PC21A, 88% and 100% TC-PC177- and mock-inoculated piglets had diarrhea following challenge, respectively, indicating incomplete cross-protection. To investigate whether this 197-aa deletion was the determinant for the attenuation of TC-PC177, we generated a mutant (icPC22A-S1Δ197) bearing the 197-aa deletion from an infectious cDNA clone of the highly virulent PEDV PC22A strain (infectious clone PC22A, icPC22A). In neonatal gnotobiotic pigs, the icPC22A-S1Δ197 virus caused mild to moderate diarrhea, lower titers of viral shedding, and no mortality, whereas the icPC22A virus caused severe diarrhea and 100% mortality. Our data indicate that deletion of this 197-aa fragment in the spike protein can attenuate a highly virulent PEDV, but the virus may lose important epitopes for inducing robust protective immunity. IMPORTANCE The emerging, highly virulent PEDV strains have caused substantial economic losses worldwide. However, the virulence determinants are not established. In this study, we found that a 197-aa deletion in the N-terminal region

  7. Mapping of Transcription Termination within the S Segment of SFTS Phlebovirus Facilitated Generation of NSs Deletant Viruses.

    Science.gov (United States)

    Brennan, Benjamin; Rezelj, Veronica V; Elliott, Richard M

    2017-08-15

    SFTS phlebovirus (SFTSV) is an emerging tick-borne bunyavirus that was first reported in China in 2009. Here we report the generation of a recombinant SFTSV (rHB29NSsKO) that cannot express the viral nonstructural protein (NSs) upon infection of cells in culture. We show that rHB29NSsKO replication kinetics are greater in interferon (IFN)-incompetent cells and that the virus is unable to suppress IFN induced in response to viral replication. The data confirm for the first time in the context of virus infection that NSs acts as a virally encoded IFN antagonist and that NSs is dispensable for virus replication. Using 3' rapid amplification of cDNA ends (RACE), we mapped the 3' end of the N and NSs mRNAs, showing that the mRNAs terminate within the coding region of the opposite open reading frame. We show that the 3' end of the N mRNA terminates upstream of a 5'-GCCAGCC-3' motif present in the viral genomic RNA. With this knowledge, and using virus-like particles, we could demonstrate that the last 36 nucleotides of the NSs open reading frame (ORF) were needed to ensure the efficient termination of the N mRNA and were required for recombinant virus rescue. We demonstrate that it is possible to recover viruses lacking NSs (expressing just a 12-amino-acid NSs peptide or encoding enhanced green fluorescent protein [eGFP]) or an NSs-eGFP fusion protein in the NSs locus. This opens the possibility for further studies of NSs and potentially the design of attenuated viruses for vaccination studies. IMPORTANCE SFTS phlebovirus (SFTSV) and related tick-borne viruses have emerged globally since 2009. SFTSV has been shown to cause severe disease in humans. For bunyaviruses, it has been well documented that the nonstructural protein (NSs) enables the virus to counteract the human innate antiviral defenses and that NSs is one of the major determinants of virulence in infection. Therefore, the use of reverse genetics systems to engineer viruses lacking NSs is an attractive strategy

  8. Hyperpolarization-activated inward leakage currents caused by deletion or mutation of carboxy-terminal tyrosines of the Na+/K+-ATPase {alpha} subunit.

    Science.gov (United States)

    Meier, Susan; Tavraz, Neslihan N; Dürr, Katharina L; Friedrich, Thomas

    2010-02-01

    The Na(+)/K(+)-ATPase mediates electrogenic transport by exporting three Na(+) ions in exchange for two K(+) ions across the cell membrane per adenosine triphosphate molecule. The location of two Rb(+) ions in the crystal structures of the Na(+)/K(+)-ATPase has defined two "common" cation binding sites, I and II, which accommodate Na(+) or K(+) ions during transport. The configuration of site III is still unknown, but the crystal structure has suggested a critical role of the carboxy-terminal KETYY motif for the formation of this "unique" Na(+) binding site. Our two-electrode voltage clamp experiments on Xenopus oocytes show that deletion of two tyrosines at the carboxy terminus of the human Na(+)/K(+)-ATPase alpha(2) subunit decreases the affinity for extracellular and intracellular Na(+), in agreement with previous biochemical studies. Apparently, the DeltaYY deletion changes Na(+) affinity at site III but leaves the common sites unaffected, whereas the more extensive DeltaKETYY deletion affects the unique site and the common sites as well. In the absence of extracellular K(+), the DeltaYY construct mediated ouabain-sensitive, hyperpolarization-activated inward currents, which were Na(+) dependent and increased with acidification. Furthermore, the voltage dependence of rate constants from transient currents under Na(+)/Na(+) exchange conditions was reversed, and the amounts of charge transported upon voltage pulses from a certain holding potential to hyperpolarizing potentials and back were unequal. These findings are incompatible with a reversible and exclusively extracellular Na(+) release/binding mechanism. In analogy to the mechanism proposed for the H(+) leak currents of the wild-type Na(+)/K(+)-ATPase, we suggest that the DeltaYY deletion lowers the energy barrier for the intracellular Na(+) occlusion reaction, thus destabilizing the Na(+)-occluded state and enabling inward leak currents. The leakage currents are prevented by aromatic amino acids at the

  9. Ring Chromosome 17 Not Involving the Miller-Dieker Region: A Case with Drug-Resistant Epilepsy.

    Science.gov (United States)

    Coppola, Antonietta; Morrogh, Deborah; Farrell, Fiona; Balestrini, Simona; Hernandez-Hernandez, Laura; Krithika, S; Sander, Josemir W; Waters, Jonathan J; Sisodiya, Sanjay M

    2017-12-01

    Chromosomal abnormalities are often identified in people with neurodevelopmental disorders including intellectual disability, autism, and epilepsy. Ring chromosomes, which usually involve gene copy number loss, are formed by fusion of subtelomeric or telomeric chromosomal regions. Some ring chromosomes, including ring 14, 17, and 20, are strongly associated with seizure disorders. We report an individual with a ring chromosome 17, r(17)(p13.3q25.3), with a terminal 17q25.3 deletion and no short arm copy number loss, and with a phenotype characterized by intellectual disability and drug-resistant epilepsy, including a propensity for nonconvulsive status epilepticus.

  10. 18q deletion in a cystic fibrosis infant, increased morbidity and challenge for correct treatment choices: a case report

    OpenAIRE

    Dester Silvia; Fogazzi Annalisa; Timpano Silviana; Spinelli Elide; Milianti Susanna; Padoan Rita

    2011-01-01

    Abstract Cystic Fibrosis (CF) is the most frequent recessive disease of Caucasian patients. Association with other diseases or syndromes has previously been reported. Co-morbidity may be a challenge for clinicians, who have to face more severe problems. We have described a CF infant, F508del homozygote, diagnosed by neonatal screening, who also had a chromosome 18q terminal deletion [del (18)(q22-qter)]. Some clinical features of the 18q deletion: e.g., cardiopathy, gastro-oesophageal reflux ...

  11. A cross-sectional analysis of the development of response inhibition in children with Chromosome 22q11.2 Deletion Syndrome

    Directory of Open Access Journals (Sweden)

    Heather M Shapiro

    2013-08-01

    Full Text Available Chromosome 22q11.2 Deletion Syndrome (22q11.2DS is a neurogenetic disorder that is associated with cognitive impairments and significantly elevated risk for developing schizophrenia. While impairments in response inhibition are central to executive dysfunction in schizophrenia, the nature and development of such impairments in children with 22q11.2DS, a group at high risk for the disorder, are not clear. Here we used a classic Go/No-Go paradigm to quantify proactive (anticipatory stopping and reactive (actual stopping response inhibition in 47 children with 22q11.2DS and 36 typically developing (TD children, all ages 7-14. A cross-sectional design was used to examine age-related associations with response inhibition. When compared with TD individuals, children with 22q11.2DS demonstrated typical proactive response inhibition at all ages. By contrast, reactive response inhibition was impaired in children with 22q11.2DS relative to TD children. While older age predicted better reactive response inhibition in TD children, there was no age-related association with reactive response inhibition in children with 22q11.2DS. Closer examination of individual performance data revealed a wide range of performance abilities in older children with 22q11.2DS; some typical and others highly impaired. The results of this cross-sectional analysis suggest an impaired developmental trajectory of reactive response inhibition in some children with 22q11.2DS that might be related to atypical development of neuroanatomical systems underlying this cognitive process. As part of a larger study, this investigation might help identify risk factors for conversion to schizophrenia and lead to early diagnosis and preventive intervention.

  12. [Distribution of abnormal cell clone with deletion of chromosome 20q in marrow cell lineages and apoptosis cells in myelodysplastic syndrome].

    Science.gov (United States)

    Qin, Ling; Wang, Chun; Qin, You-Wen; Xie, Kuang-Cheng; Yan, Shi-Ke; Gao, Yan-Rong; Wang, Xiao-Rui; Zhao, Chu-Xian

    2008-06-01

    This study was aimed to investigate the distribution of abnormal clone in marrow cell lineages and apoptosis cells in myelodysplastic syndrome (MDS) with deletion of chromosome 20q. Monoclonal antibodies recognizing myeloid precursors (CD15), erythroid precursors (GPA), T cells (CD3(+)CD56(-)CD16(-)), B cells (CD19), NK cells (CD3(-)CD56(+)CD16(+)) were used to sort bone marrow cells in a MDS patient with del (20q) by fluorescence activated cell sorting (FACS). Annexin V-FITC and PI were used to sort bone marrow Annexin V(+)PI(-) and Annexin V(-)PI(-) cells by FACS. The sorted positive cells were detected by interphase dual-color fluorescence in situ hybridization (D-FISH) using a LSI D20S108 probe (Spectrum Orange) and a Telvysion TM 20p probe (Spectrum Green). FACS and FISH analysis were also performed on the samples from 4 cases with normal karyotype. The results showed that the proportions of MDS clone in the myeloid and erythroid precursors were 70.50% and 93.33% respectively, in the RAEB-1 patient with del (20q) and were obviously higher than that in control group (5.39% and 6.17%). The proportions of abnormal clone in T, B and NK cells were 3.23%, 4.32% and 5.77% respectively and were less than that in control group (5.76%, 4.85%, 6.36%). The percentage of apoptotic cells in the bone marrow nucleated cells was 16.09%. The proportions of MDS clone in Annexin V(+)PI(-) and Annexin V(-)PI(-) cells were 32.48% and 70.11%, respectively. It is concluded that most myeloid and erythroid precursors are originated from the abnormal clone in MDS with del (20q). A little part of apoptotic cells are derived from the abnormal clone.

  13. Mosaic deletion of 20pter due to rescue by somatic recombination.

    Science.gov (United States)

    Martin, Megan M; Vanzo, Rena J; Sdano, Mallory R; Baxter, Adrianne L; South, Sarah T

    2016-01-01

    We report on a unique case of a mosaic 20pter-p13 deletion due to a somatic repair event identified by allele differentiating single nucleotide polymorphism (SNP) probes on chromosomal microarray. Small terminal deletions of 20p have been reported in a few individuals and appear to result in a variable phenotype. This patient was a 24-month-old female who presented with failure to thrive and speech delay. Chromosomal microarray analysis (CMA) performed on peripheral blood showed a 1.6 Mb deletion involving the terminus of 20p (20pter-20p13). This deletion appeared mosaic by CMA and this suspicion was confirmed by fluorescence in situ hybridization (FISH) analysis. Additionally, the deletion interval at 20p was directly adjacent to 15 Mb of mosaic copy-neutral loss of heterozygosity (LOH). The pattern of SNP probes was highly suggestive of a somatic repair event that resulted in rescue of the deleted region using the non-deleted homologue as a template. Structural mosaicism is rare and most often believed to be due to a postzygotic mechanism. This case demonstrates the additional utility of allele patterns to help distinguish mechanisms and in this case identified the possibility of either a post-zygotic repair of a germline deletion or a post-zygotic deletion with somatic recombination repair in a single step. © 2015 Wiley Periodicals, Inc.

  14. Activation of PI3K/Akt signaling by n-terminal SH2 domain mutants of the p85α regulatory subunit of PI3K is enhanced by deletion of its c-terminal SH2 domain.

    Science.gov (United States)

    Hofmann, Bianca T; Jücker, Manfred

    2012-10-01

    The phosphoinositide 3-kinase (PI3K) is frequently activated in human cancer cells due to gain of function mutations in the catalytic (p110) and the regulatory (p85) subunits. The regulatory subunit consists of an SH3 domain and two SH2 domains. An oncogenic form of p85α named p65 lacking the c-terminal SH2 domain (cSH2) has been cloned from an irradiation-induced murine thymic lymphoma and transgenic mice expressing p65 in T lymphocytes develop a lymphoproliferative disorder. We have recently detected a c-terminal truncated form of p85α named p76α in a human lymphoma cell line lacking most of the cSH2 domain due to a frame shift mutation. Here, we report that the deletion of the cSH2 domain enhances the activating effects of the n-terminal SH2 domain (nSH2) mutants K379E and R340E on the PI3K/Akt pathway and micro tumor formation in a focus assay. Further analysis revealed that this transforming effect is mediated by activation of the catalytic PI3K isoform p110α and downstream signaling through mTOR. Our data further support a mechanistic model in which mutations of the cSH2 domain of p85α can abrogate its negative regulatory function on PI3K activity via the nSH2 domain of p85α. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Prenatal Diagnosis of 4p and 4q Subtelomeric Microdeletion in De Novo Ring Chromosome 4

    Directory of Open Access Journals (Sweden)

    Halit Akbas

    2013-01-01

    Full Text Available Ring chromosomes are unusual abnormalities that are observed in prenatal diagnosis. A 23-year-old patient (gravida 1, para 0 referred for amniocentesis due to abnormal maternal serum screening result in the 16th week of second pregnancy. Cytogenetic analysis of cultured amniyotic fluid cells revealed out ring chromosome 4. Both maternal and paternal karyotypes were normal. Terminal deletion was observed in both 4p and 4q arms of ring chromosome 4 by fluorescence in situ hybridization (FISH. However deletion was not observed in the WHS critical region of both normal and ring chromosome 4 by an additional FISH study. These results were confirmed by means of array-CGH showing terminal deletions on 4p16.3 (130 kb and 4q35.2 (2.449 Mb. In the 21th week of pregnancy, no gross anomalia, except two weeks symmetric growth retardation, was present in the fetal ultrasonographic examination. According to our review of literature, this is the first prenatal case with 4p and 4q subtelomeric deletion of ring chromosome 4 without the involvement of WHS critical region. Our report describes the prenatal case with a ring chromosome 4 abnormality completely characterized by array-CGH which provided complementary data for genetic counseling of prenatal diagnosis.

  16. Prenatal diagnosis of 4p and 4q subtelomeric microdeletion in de novo ring chromosome 4.

    Science.gov (United States)

    Akbas, Halit; Cine, Naci; Erdemoglu, Mahmut; Atay, Ahmet Engin; Simsek, Selda; Turkyilmaz, Aysegul; Fidanboy, Mehmet

    2013-01-01

    Ring chromosomes are unusual abnormalities that are observed in prenatal diagnosis. A 23-year-old patient (gravida 1, para 0) referred for amniocentesis due to abnormal maternal serum screening result in the 16th week of second pregnancy. Cytogenetic analysis of cultured amniyotic fluid cells revealed out ring chromosome 4. Both maternal and paternal karyotypes were normal. Terminal deletion was observed in both 4p and 4q arms of ring chromosome 4 by fluorescence in situ hybridization (FISH). However deletion was not observed in the WHS critical region of both normal and ring chromosome 4 by an additional FISH study. These results were confirmed by means of array-CGH showing terminal deletions on 4p16.3 (130 kb) and 4q35.2 (2.449 Mb). In the 21th week of pregnancy, no gross anomalia, except two weeks symmetric growth retardation, was present in the fetal ultrasonographic examination. According to our review of literature, this is the first prenatal case with 4p and 4q subtelomeric deletion of ring chromosome 4 without the involvement of WHS critical region. Our report describes the prenatal case with a ring chromosome 4 abnormality completely characterized by array-CGH which provided complementary data for genetic counseling of prenatal diagnosis.

  17. Deletion of the B-B' and C-C' regions of inverted terminal repeats reduces rAAV productivity but increases transgene expression.

    Science.gov (United States)

    Zhou, Qingzhang; Tian, Wenhong; Liu, Chunguo; Lian, Zhonghui; Dong, Xiaoyan; Wu, Xiaobing

    2017-07-14

    Inverted terminal repeats (ITRs) of the adeno-associated virus (AAV) are essential for rescue, replication, packaging, and integration of the viral genome. While ITR mutations have been identified in previous reports, we designed a new truncated ITR lacking the B-B' and C-C' regions named as ITRΔBC and investigated its effects on viral genome replication, packaging, and expression of recombinant AAV (rAAV). The packaging ability was compared between ITRΔBC rAAV and wild-type (wt) ITR rAAV. Our results showed the productivity of ITRΔBC rAAV was reduced 4-fold, which is consistent with the 8-fold decrease in the replication of viral genomic DNA of ITRΔBC rAAV compared with wt ITR rAAV. Surprisingly, transgene expression was significantly higher for ITRΔBC rAAV. A preliminary exploration of the underlying mechanisms was carried out by inhibiting and degrading the ataxia telangiectasia mutated (ATM) protein and the Mre11 complex (MRN), respectively, since the rAAV expression was inhibited by the ATM and/or MRN through cis interaction or binding with wt ITRs. We demonstrated that the inhibitory effects were weakened on ITRΔBC rAAV expression. This study suggests deletion in ITR can affect the transgene expression of AAV, which provides a new way to improve the AAV expression through ITRs modification.

  18. Computational Analysis of G-Quadruplex Forming Sequences across Chromosomes Reveals High Density Patterns Near the Terminal Ends.

    Directory of Open Access Journals (Sweden)

    Julia H Chariker

    Full Text Available G-quadruplex structures (G4 are found throughout the human genome and are known to play a regulatory role in a variety of molecular processes. Structurally, they have many configurations and can form from one or more DNA strands. At the gene level, they regulate gene expression and protein synthesis. In this paper, chromosomal-level patterns of distribution are analyzed on the human genome to identify high-level distribution patterns potentially related to global functional processes. Here we show unique high density banding patterns on individual chromosomes that are highly correlated, appearing in a mirror pattern, across forward and reverse DNA strands. The highest density of G4 sequences occurs within four megabases of one end of most chromosomes and contains G4 motifs that bind with zinc finger proteins. These findings suggest that G4 may play a role in global chromosomal processes such as those found in meiosis.

  19. Chromosome 12q24.31-q24.33 deletion causes multiple dysmorphic features and developmental delay: First mosaic patient and overview of the phenotype related to 12q24qter defects

    Directory of Open Access Journals (Sweden)

    Sakati Nadia

    2011-04-01

    Full Text Available Abstract Background Genomic imbalances of the 12q telomere are rare; only a few patients having 12q24.31-q24.33 deletions were reported. Interestingly none of these were mosaic. Although some attempts have been made to establish phenotype/genotype interaction for the deletions in this region, no clear relationship has been established to date. Results We have clinically screened more than 100 patients with dysmorphic features, mental retardation and normal karyotype using high density oligo array-CGH (aCGH and identified a ~9.2 Mb hemizygous interstitial deletion at the 12q telomere (Chromosome 12: 46,XY,del(12(q24.31q24.33 in a severely developmentally retarded patient having dysmorphic features such as low set ears, microcephaly, undescended testicles, bent elbow, kyphoscoliosis, and micropenis. Parents were found to be not carriers. MLPA experiments confirmed the aCGH result. Interphase FISH revealed mosaicism in cultured peripheral blood lymphocytes. Conclusions Since conventional G-Banding technique missed the abnormality; this work re-confirms that any child with unexplained developmental delay and systemic involvement should be studied by aCGH techniques. The FISH technique, however, would still be useful to further delineate the research work and identify such rare mosaicism. Among the 52 deleted genes, P2RX2, ULK1, FZD10, RAN, NCOR2 STX2, TESC, FBXW8, and TBX3 are noteworthy since they may have a role in observed phenotype.

  20. Cell-autonomous correction of ring chromosomes in human induced pluripotent stem cells

    Science.gov (United States)

    Bershteyn, Marina; Hayashi, Yohei; Desachy, Guillaume; Hsiao, Edward C.; Sami, Salma; Tsang, Kathryn M.; Weiss, Lauren A.; Kriegstein, Arnold R.; Yamanaka, Shinya; Wynshaw-Boris, Anthony

    2014-03-01

    Ring chromosomes are structural aberrations commonly associated with birth defects, mental disabilities and growth retardation. Rings form after fusion of the long and short arms of a chromosome, and are sometimes associated with large terminal deletions. Owing to the severity of these large aberrations that can affect multiple contiguous genes, no possible therapeutic strategies for ring chromosome disorders have been proposed. During cell division, ring chromosomes can exhibit unstable behaviour leading to continuous production of aneuploid progeny with low viability and high cellular death rate. The overall consequences of this chromosomal instability have been largely unexplored in experimental model systems. Here we generated human induced pluripotent stem cells (iPSCs) from patient fibroblasts containing ring chromosomes with large deletions and found that reprogrammed cells lost the abnormal chromosome and duplicated the wild-type homologue through the compensatory uniparental disomy (UPD) mechanism. The karyotypically normal iPSCs with isodisomy for the corrected chromosome outgrew co-existing aneuploid populations, enabling rapid and efficient isolation of patient-derived iPSCs devoid of the original chromosomal aberration. Our results suggest a fundamentally different function for cellular reprogramming as a means of `chromosome therapy' to reverse combined loss-of-function across many genes in cells with large-scale aberrations involving ring structures. In addition, our work provides an experimentally tractable human cellular system for studying mechanisms of chromosomal number control, which is of critical relevance to human development and disease.

  1. Pure Erythroleukemia (Variant Acute Myeloid Leukemia-vAML-M6) with Deletion of Chromosome 20, Mainly Presenting as Late Erythroblasts, a Unique Case Report with Review of Literature.

    Science.gov (United States)

    Rasool, Javid; Geelani, Sajad; Khursheed; Yasir; Lone, Mohd Suhail; Shaban, Mohd

    2014-03-01

    Acute erythroleukemia is characterized by a predominant immature erythroid population and accounts for approximately 2-5 % of all cases of acute leukemia. Two subtypes are recognized based on the presence or absence of a significant myeloid component: erythroleukemia and pure erythroid leukemia. Erythroleukemia is predominantly a disease of adults, while pure erythroid leukemia can be seen in any age including children. Here is a case of pure erythroleukemia presenting mainly as late erythroblasts which was diagnosed on bone marrow examination, cytochemistry and was confirmed on immunophenotyping. Possibly this is the only case so for demonstrating deletion of long arm of chromosome 20 in pure erythroleukemia.

  2. Mitrocomin from the jellyfish Mitrocoma cellularia with deleted C-terminal tyrosine reveals a higher bioluminescence activity compared to wild type photoprotein

    Energy Technology Data Exchange (ETDEWEB)

    Burakova, Ludmila P.; Natashin, Pavel V.; Markova, Svetlana V.; Eremeeva, Elena V.; Malikova, Natalia P.; Cheng, Chongyun; Liu, Zhi-Jie; Vysotski, Eugene S.

    2016-09-01

    The full-length cDNA genes encoding five new isoforms of Ca2 +-regulated photoprotein mitrocomin from a small tissue sample of the outer bell margin containing photocytes of only one specimen of the luminous jellyfish Mitrocoma cellularia were cloned, sequenced, and characterized after their expression in Escherichia coli and subsequent purification. The analysis of cDNA nucleotide sequences encoding mitrocomin isoforms allowed suggestion that two isoforms might be the products of two allelic genes differing in one amino acid residue (64R/Q) whereas other isotypes appear as a result of transcriptional mutations. In addition, the crystal structure of mitrocomin was determined at 1.30 Å resolution which expectedly revealed a high similarity with the structures of other hydromedusan photoproteins. Although mitrocomin isoforms reveal a high degree of identity of amino acid sequences, they vary in specific bioluminescence activities. At that, all isotypes displayed the identical bioluminescence spectra (473–474 nm with no shoulder at 400 nm). Fluorescence spectra of Ca2 +-discharged mitrocomins were almost identical to their light emission spectra similar to the case of Ca2 +-discharged aequorin, but different from Ca2 +-discharged obelins and clytin which fluorescence is red-shifted by 25–30 nm from bioluminescence spectra. The main distinction of mitrocomin from other hydromedusan photoproteins is an additional Tyr at the C-terminus. Using site-directed mutagenesis, we showed that this Tyr is not important for bioluminescence because its deletion even increases specific activity and efficiency of apo-mitrocomin conversion into active photoprotein, in contrast to C-terminal Pro of other photoproteins. Since genes in a population generally exist as different isoforms, it makes us anticipate the cloning of even more isoforms of mitrocomin and other hydromedusan photoproteins with different bioluminescence properties.

  3. Identifying patterns of anxiety and depression in children with chromosome 22q11.2 deletion syndrome: comorbidity predicts behavioral difficulties and impaired functional communications.

    Science.gov (United States)

    Stephenson, David D; Beaton, Elliott A; Weems, Carl F; Angkustsiri, Kathleen; Simon, Tony J

    2015-01-01

    Chromosome 22q11.2 deletion syndrome (22q11.2DS) is a complex genetic disorder with a variable clinical presentation that can include cardiac, neural, immunological, and psychological issues. Previous studies have measured elevated anxiety and depression in children with 22q11.2DS. Comorbity of anxiety and depression is well established in the pediatric literature but the nature of comorbidity patterns has not been empirically established in children with 22q11.2DS. Comorbidity of anxiety and depression has important implications for treatment and prognosis, and may be a marker of risk in this population of children at high-risk for developing schizophrenia. Participants were 131 boys and girls ages 8-14 with (n=76) and without (n=55) 22q11.2DS and their mothers. Children and mothers independently completed self- and parent-report measures of anxiety and depression. Mothers also completed measures of behavioral functioning including the Behavioral Assessment for Children, 2nd ed. (BASC-2). Cluster analyses were conducted to test if theoretically based groupings of anxiety and depression could be identified. We hypothesized four psychological profiles based on child- and mother-reports: low/no anxiety and low/no depression, higher depression and low/no anxiety, higher anxiety and no/low depression, and a comorbid profile of higher anxiety and higher depression. BASC-2 subscale scores were then compared across subgroups of children to determine if a comorbid profile would predict greater behavioral difficulties. In the full sample of children both with and without 22q11.2DS, cluster analyses of self and maternal reported anxiety and depression revealed the expected subgroups: (1) a group of children with higher anxiety/lower depression (anxious); (2) a group with primary depression (lower anxiety/higher depression (depressed)); (3) a comorbid group with higher anxiety/higher depression (comorbid); and, (4) a lowest anxiety/lowest depression group (NP). Mothers

  4. On two patients with and without the classical Wolf-Hirschhorn syndrome (WHS) sharing the same chromosome 4p16.3 specific probe deletion: evidence of a contiguous gene deletion syndrome.

    Science.gov (United States)

    Petit, P; Schmit, J; Van den Berghe, H; Fryns, J P

    1996-07-01

    We report here on phenotype-karyotype correlations in two patients with and without complete features of the WHS but sharing the lack of a specific cosmic probe (D4S96/D4Z1) from 4p16.3. These findings indicate that WHS is true a contiguous gene deletion syndrome in nature and expression.

  5. Homozygous deletion of six genes including corneodesmosin on chromosome 6p21.3 is associated with generalized peeling skin disease.

    Science.gov (United States)

    Teye, Kwesi; Hamada, Takahiro; Krol, Rafal P; Numata, Sanae; Ishii, Norito; Matsuda, Mitsuhiro; Ohata, Chika; Furumura, Minao; Hashimoto, Takashi

    2014-07-01

    Peeling skin syndrome (PSS) is a rare autosomal recessive form of ichthyosis showing skin exfoliation. PSS is divided into acral and generalized PSS, and the latter is further classified into non-inflammatory type (PSS type A) and inflammatory type (PSS type B). PSS type B is now called peeling skin disease (PSD). Different loss-of-function mutations in the corneodesmosin (CDSN) gene have been reported to cause PSD. The aim of this study was to determine genetic basis of disease in a 14-year-old Japanese patient with PSD. Immunohistochemical study showed lack of corneodesmosin (CDSN) in the skin, and standard PCR for genomic DNA failed to amplify CDSN product, suggesting CDSN defect. Multiplex ligation-dependent probe amplification and genomic quantitative real-time PCR analyses detected large homozygous deletion of 59,184bp extending from 40.6kb upstream to 13.2kb downstream of CDSN, which included 6 genes (TCF19, CCHCR1, PSORS1C2, PSORS1C1, CDSN and C6orf15). The continuous gene lost did not result in additional clinical features. Inverted repeats with 85% similarity flanking the deletion breakpoint were considered to mediate the deletion by non-homologous end joining or fork stalling and template switching/microhomology-mediated break-induced replication. Parents were clinically unaffected and were heterozygote carriers of the same deletion, which was absent in 284 ethnically matched control alleles. We also developed simple PCR method, which is useful for detection of this deletion. Although 5 other genes were also deleted, homozygous deletion of CDSN was considered to be responsible for this PSD. Copyright © 2014 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  6. Sons conceived by assisted reproduction techniques inherit deletions in the azoospermia factor (AZF) region of the Y chromosome and the DAZ gene copy number

    DEFF Research Database (Denmark)

    Mau Kai, C; Juul, A; McElreavey, K

    2008-01-01

    number, supplemented with haplogroup typing in deleted patients, were performed, in combination with clinical assessments in 264 fathers and their sons conceived by assisted reproduction techniques (ART), and in 168 fertile men with normal sperm concentration. RESULTS: In the ART fathers group...

  7. Chromosome aberrations involving 10q22: report of three overlapping interstitial deletions and a balanced translocation disrupting C10orf11

    DEFF Research Database (Denmark)

    Tzschach, Andreas; Bisgaard, Anne-Marie; Kirchhoff, Maria

    2010-01-01

    feeding problems, facial dysmorphisms and profound mental retardation. Patients 2 and 3 had nearly identical deletions of 3.2 and 3.6 Mb, the proximal breakpoints of which were located at an identical low-copy repeat. Both patients were mentally retarded; patient 3 also suffered from growth retardation...

  8. Molecular cytogenetic characterization of the first reported case of an inv dup (4p)(p15.1-pter) with a concomitant 4q35.1-qter deletion and normal parents.

    Science.gov (United States)

    Tassano, E; Alpigiani, M G; Salvati, P; Gimelli, S; Lorini, R; Gimelli, G

    2012-12-15

    Inverted duplications associated with terminal deletions are complex anomalies described in an increasing of chromosome ends. We report on the cytogenetic characterization of the first de novo inv dup del(4) with partial 4p duplication and 4q deletion in a girl with clinical signs consistent with "recombinant 4 syndrome". This abnormality was suspected by banding, but high-resolution molecular cytogenetic investigations allowed us to define the breakpoints of the rearrangement. The terminal duplicated region extending from 4p15.1 to the telomere was estimated to be 29.27 Mb, while the size of the terminal deletion was 3.114 Mb in the 4q35.1 region. Until now, 10 patients with duplicated 4p14-p15 and deleted 4q35 chromosome 4 have been described. In all cases the abnormal chromosome 4 was derived from a pericentric inversion inherited from one of the parents. In conclusion, we have identified the first case of inv dup del(4) with normal parents suggesting that, often, terminal duplications or terminal deletions mask complex rearrangements. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Detailed clinical and molecular study of 20 females with Xq deletions with special reference to menstruation and fertility.

    Science.gov (United States)

    Mercer, Catherine L; Lachlan, Katherine; Karcanias, Alexandra; Affara, Nabeel; Huang, Shuwen; Jacobs, Patricia A; Thomas, N Simon

    2013-01-01

    Integrity of the long arm of the X chromosome is important for maintaining female fertility and several critical regions for normal ovarian function have been proposed. In order to understand further the importance of specific areas of the X chromosome, we describe a series of 20 previously unreported patients missing part of Xq in whom detailed phenotypic information has been gathered as well as precise chromosome mapping using array Comparative Genomic Hybridization. Features often associated with Turner syndrome were not common in our study and excluding puberty, menarche and menstruation, the phenotypes observed were present in only a minority of women and were not specific to the X chromosome. The most frequently occurring phenotypic features in our patients were abnormalities of menstruation and fertility. Larger terminal deletions were associated with a higher incidence of primary ovarian failure, occurring at a younger age; however patients with similar or even identical deletions had discordant menstrual phenotypes, making accurate genetic counselling difficult. Nevertheless, large deletions are likely to be associated with complete skewing of X inactivation so that the resulting phenotypes are relatively benign given the amount of genetic material missing, even in cases with unbalanced X;autosome translocations. Some degree of ovarian dysfunction is highly likely, especially for terminal deletions extending proximal to Xq27. In conjunction with patient data from the literature, our study suggests that loss of Xq26-Xq28 has the most significant effect on ovarian function. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  10. [Polymorphisms of KITLG, SPRY4, and BAK1 genes in patients with testicular germ cell tumors and individuals with infertility associated with AZFc deletion of the Y chromosome].

    Science.gov (United States)

    Nemtsova, M V; Ivkin, E V; Simonova, O A; Rudenko, V V; Chernykh, V B; Mikhaylenko, D S; Loran, O B

    2016-01-01

    Testicular cancer is the most common form of solid cancer in young men. Testicular cancer is represented by testicular germ cell tumors (TGCTs) derived from embryonic stem cells with different degrees of differentiation in about 95% of cases. The development of these tumors is related to the formation of a pool of male germ cells and gametogenesis. Clinical factors that are predisposed to the development of germ-cell tumors include cryptorchidism and testicular microlithiasis, as well as infertility associated with the gr/gr deletion within the AZFс locus. KITLG, SPRY4, and BAK1 genes affect the development of the testes and gametogenesis; mutations and polymorphisms of these genes lead to a significant increase in the risk of the TGCT development. To determine the relationship between gene polymorphisms and the development of TGCTs, we developed a system for detection and studied the allele and genotype frequencies of the KITLG (rs995030, rs1508595), SPRY4 (rs4624820, rs6897876), and BAK1 (rs210138) genes in fertile men, patients with TGCTs, and patients with infertility that have the AZFс deletion. A significant association of rs995030 of the KITLG gene with the development of TGCTs (p = 0.029 for the allele G, p = 0.0124 for the genotype GG) was revealed. Significant differences in the frequencies of the studied polymorphisms in patients with the AZFc deletion and the control group of fertile men were not found. We showed significant differences in the frequencies for the combination of all high-risk polymorphisms in the control group, patients with the AZFc deletion and patients with TGCTs (p (TGCTs-AZF-control) = 0.0207). A fivefold increase in the frequency of the combination of all genotypes in the TGCT group (p = 0.0116; OR = 5.25 [1.44-19.15]) and 3.7-fold increase was identified in patients with the AZFc deletion (p = 0.045; OR = 3.69 [1.11-12.29]) were revealed. The genotyping of patients with infertility caused by the AZFc deletion can be used to

  11. Site-specific deletions of chromosomally located DNA segments with the multimer resolution system of broad-host-range plasmid RP4

    DEFF Research Database (Denmark)

    Sternberg, Claus; Eberl, Leo; Sanchezromero, Juan M.

    1995-01-01

    The multimer resolution system (mrs) of the broad-host-range plasmid RP4 has been exploited to develop a general method that permits the precise excision of chromosomal segments in a variety of gram-negative bacteria. The procedure is based on the site-specific recombination between two directly ...

  12. Verbal short-term memory in individuals with chromosome 22q11.2 deletion: Specific deficit in serial order retention capacities?

    OpenAIRE

    Majerus, Steve; Van der Linden, Martial; Braissand, V.; Eliez, S.

    2007-01-01

    Many researchers have recently explored the cognitive profile of velocardiofacial syndrome (VCFS), a neurodevelopmental disorder linked to a 22q11.2 deletion. However, verbal short-term memory has not yet been systematically investigated. We explored verbal short-term memory abilities in a group of 11 children and adults presenting with VCFS and two control groups, matched on either CA or vocabulary knowledge, by distinguishing short-term memory for serial order and item information. The VCFS...

  13. Increased progesterone production in cumulus-oocyte complexes of female mice sired by males with the Y-chromosome long arm deletion and its potential influence on fertilization efficiency.

    Science.gov (United States)

    Kotarska, Katarzyna; Galas, Jerzy; Przybyło, Małgorzata; Bilińska, Barbara; Styrna, Józefa

    2015-02-01

    It was revealed previously that B10.BR(Y(del)) females sired by males with the Y-chromosome long arm deletion differ from genetically identical B10.BR females sired by males with the intact Y chromosome. This is interpreted as a result of different epigenetic information which females of both groups inherit from their fathers. In the following study, we show that cumulus-oocyte complexes ovulated by B10.BR(Y(del)) females synthesize increased amounts of progesterone, which is important sperm stimulator. Because their extracellular matrix is excessively firm, the increased progesterone secretion belongs presumably to factors that compensate this feature enabling unchanged fertilization ratios. Described compensatory mechanism can act only on sperm of high quality, presenting proper receptors. Indeed, low proportion of sperm of Y(del) males that poorly fertilize B10.BR(Y(del)) oocytes demonstrates positive staining of membrane progesterone receptors. This proportion is significantly higher for sperm of control males that fertilize B10.BR(Y(del)) and B10.BR oocytes with the same efficiency. © The Author(s) 2014.

  14. Molecular genetic characterization of a prenatally detected de novo interstitial deletion of chromosome 2q (2q31.1-q32.1 encompassing HOXD13, ZNF385B and ZNF804A associated with syndactyly and increased first-trimester nuchal translucency

    Directory of Open Access Journals (Sweden)

    Chih-Ping Chen

    2017-06-01

    Conclusion: Fetuses with an interstitial deletion of 2q31.1-q32.1 may be associated with increased first-trimester NT. Haploinsufficiency of HOXD13 is associated with syndactyly. Genomic microarray is useful in detecting subtle chromosomal abnormalities in fetuses with increased NT and normal karyotype.

  15. Chromosome 13q deletion and IgH abnormalities may be both masked by near-tetraploidy in a high proportion of multiple myeloma patients: a combined morphology and I-FISH analysis.

    Science.gov (United States)

    Koren-Michowitz, Maya; Hardan, Izhar; Berghoff, Janina; Yshoev, Galina; Amariglio, Ninette; Rechavi, Gideon; Nagler, Arnon; Trakhtenbrot, Luba

    2007-10-08

    Ploidy status and chromosomal aberrations involving chromosome 13q and the immunoglobulin heavy chain locus (IgH) are important prognostic features in multiple myeloma (MM). However, conventional cytogenetic studies are often not reveling and determination of plasma cells (PC) ploidy status in MM is technically difficult. We have used a combined cell morphology and interphase FISH (I-FISH) analysis in 184 consecutive BM samples from 136 MM patients for the diagnosis of chromosome 13q deletion [del (13q)] and IgH abnormalities. We have found a high prevalence (37%) of near-tetraploid (NT) PC in the BM samples studied. NT status of PC was verified with DNA index (DI) measurements. del (13q) was found in 69% and a total absence of one IgH copy (loss of IgH) in 20% of NT samples. We have shown that the presence of del (13q) and loss of IgH can be masked in NT cases: in 12 NT samples originally identified as normal for del (13q) the abnormality was obscured in the majority of plasma cells due to the presence of NT. Similarly, loss of IgH was masked in four samples with a large population of NT cells. Moreover, in one case the appearance of a 100% tetraploidy during disease progression masked the presence of del (13q), originally present, and could therefore falsely appear as disappearance of this prognostic marker. In conclusion, we have shown that a combination of three abnormalities, i.e., del (13q), loss of IgH and NT, all of potential prognostic significance, can be overlooked unless NT is specifically searched for and ruled out. Therefore, we suggest that a search for NT should be added to the routine BM assessment in MM patients.

  16. Distal 3p duplication and terminal 7q deletion associated with nuchal edema and cyclopia in a fetus and a review of the literature

    Directory of Open Access Journals (Sweden)

    Chih-Ping Chen

    2015-06-01

    Conclusion: Simultaneous occurrence of 7q deletion and 3p duplication can be associated with alobar holoprosencephaly. For the couple with a parental translocation involving 7q and 3p, prenatal ultrasound should include a detailed investigation of central nervous system anomalies.

  17. Familial DiGeorge/velocardiofacial syndrome with deletions of chromosome area 22q11.2: Report of five families with a review of the literature

    Energy Technology Data Exchange (ETDEWEB)

    Leana-Cox, J.; Pangkanon, Suthipong; Eanet, K.R. [Univ. of Maryland School of Medicine, Baltimore, MD (United States)] [and others

    1996-11-11

    The DiGeorge (DG), velocardiofacial (VCF), and conotruncal anomaly-face (CTAF) syndromes were originally described as distinct disorders, although overlapping phenotypes have been recognized. It is now clear that all three syndromes result from apparently similar or identical 22q11.2 deletions, suggesting that they represent phenotypic variability of a single genetic syndrome. We report on 12 individuals in five families with del(22)(q11.2) by fluorescent in situ hybridization, and define the frequency of phenotypic abnormalities in those cases and in 70 individuals from 27 del(22)(q11.2) families from the literature. Common manifestations include mental impairment (97%), abnormal face (93%), cardiac malformations (681%), thymic (64%) and parathyroid (63%) abnormalities, and cleft palate or velopharyngeal insufficiency (48%). Familial DG, VCF, and CTAF syndromes due to del(22)(q11.2) show significant inter- and intrafamilial clinical variability consistent with the hypothesis that a single gene or group of tightly linked genes is the common cause of these syndromes. Up to 25% of 22q deletions are inherited, indicating that parents of affected children warrant molecular cytogenetic evaluation. We propose use of the compound term {open_quotes}DiGeorge/velocardiofacial (DGNCF) syndrome{close_quotes} in referring to this condition, as it calls attention to the phenotypic spectrum using historically familiar names. 41 refs., 2 figs., 2 tabs.

  18. Characterization of a complex rearrangement involving duplication and deletion of 9p in an infant with craniofacial dysmorphism and cardiac anomalies

    Directory of Open Access Journals (Sweden)

    Di Bartolo Daniel L

    2012-07-01

    Full Text Available Abstract Partial duplication and partial deletion of the short arm of chromosome 9 have each been reported in the literature as clinically recognizable syndromes. We present clinical, cytogenetic, and molecular findings on a five-week-old female infant with concomitant duplication and terminal deletion of the short arm of chromosome 9. To our knowledge ten such cases have previously been reported. Conventional cytogenetic analysis identified additional material on chromosome 9 at band p23. FISH analysis aided in determining the additional material consisted of an inverted duplication with a terminal deletion of the short arm. Microarray analysis confirmed this interpretation and further characterized the abnormality as a duplication of about 32.7 Mb, from 9p23 to 9p11.2, and a terminal deletion of about 11.5 Mb, from 9p24.3 to 9p23. The infant displayed characteristic features of Duplication 9p Syndrome (hypotonia, bulbous nose, single transverse palmar crease, cranial anomalies, as well as features associated with Deletion 9p Syndrome (flat nasal bridge, long philtrum, cardiac anomalies despite the deletion being distal to the reported critical region for this syndrome. This case suggests that there are genes or regulatory elements that lie outside of the reported critical region responsible for certain phenotypic features associated with Deletion 9p Syndrome. It also underscores the importance of utilizing array technology to precisely define abnormalities involving the short arm of 9p in order to further refine genotype/phenotype associations and to identify additional cases of duplication/deletion.

  19. Genotype-phenotype analysis of recombinant chromosome 4 syndrome: an array-CGH study and literature review.

    Science.gov (United States)

    Hemmat, Morteza; Hemmat, Omid; Anguiano, Arturo; Boyar, Fatih Z; El Naggar, Mohammed; Wang, Jia-Chi; Wang, Borris T; Sahoo, Trilochan; Owen, Renius; Haddadin, Mary

    2013-05-02

    Recombinant chromosome 4, a rare constitutional rearrangement arising from pericentric inversion, comprises a duplicated segment of 4p13~p15→4pter and a deleted segment of 4q35→4qter. To date, 10 cases of recombinant chromosome 4 have been reported. We describe the second case in which array-CGH was used to characterize recombinant chromosome 4 syndrome. The patient was a one-year old boy with consistent clinical features. Conventional cytogenetics and FISH documented a recombinant chromosome 4, derived from a paternal pericentric inversion, leading to partial trisomy 4p and partial monosomy of 4q. Array-CGH, performed to further characterize the rearranged chromosome 4 and delineate the breakpoints, documented a small (4.36 Mb) 4q35.1 terminal deletion and a large (23.81 Mb) 4p15.1 terminal duplication. Genotype-phenotype analysis of 10 previously reported cases and the present case indicated relatively consistent clinical features and breakpoints. This consistency was more evident in our case and another characterized by array-CGH, where both showed the common breakpoints of p15.1 and q35.1. A genotype-phenotype correlation study between rec(4), dup(4p), and del(4q) syndromes revealed that urogenital and cardiac defects are probably due to the deletion of 4q whereas the other clinical features are likely due to 4p duplication. Our findings support that the clinical features of patients with rec(4) are relatively consistent and specific to the regions of duplication or deletion. Recombinant chromosome 4 syndrome thus appears to be a discrete entity that can be suspected on the basis of clinical features or specific deleted and duplicated chromosomal regions.

  20. Straightening Beta: Overdispersion of Lethal Chromosome Aberrations following Radiotherapeutic Doses Leads to Terminal Linearity in the Alpha–Beta Model

    Directory of Open Access Journals (Sweden)

    Igor Shuryak

    2017-12-01

    Full Text Available Recent technological advances allow precise radiation delivery to tumor targets. As opposed to more conventional radiotherapy—where multiple small fractions are given—in some cases, the preferred course of treatment may involve only a few (or even one large dose(s per fraction. Under these conditions, the choice of appropriate radiobiological model complicates the tasks of predicting radiotherapy outcomes and designing new treatment regimens. The most commonly used model for this purpose is the venerable linear-quadratic (LQ formalism as it applies to cell survival. However, predictions based on the LQ model are frequently at odds with data following very high acute doses. In particular, although the LQ predicts a continuously bending dose–response relationship for the logarithm of cell survival, empirical evidence over the high-dose region suggests that the survival response is instead log-linear with dose. Here, we show that the distribution of lethal chromosomal lesions among individual human cells (lymphocytes and fibroblasts exposed to gamma rays and X rays is somewhat overdispersed, compared with the Poisson distribution. Further, we show that such overdispersion affects the predicted dose response for cell survival (the fraction of cells with zero lethal lesions. This causes the dose response to approximate log-linear behavior at high doses, even when the mean number of lethal lesions per cell is well fitted by the continuously curving LQ model. Accounting for overdispersion of lethal lesions provides a novel, mechanistically based explanation for the observed shapes of cell survival dose responses that, in principle, may offer a tractable and clinically useful approach for modeling the effects of high doses per fraction.

  1. The role of parental cognitive, behavioral, and motor profiles in clinical variability in individuals with chromosome 16p11.2 deletions.

    Science.gov (United States)

    Moreno-De-Luca, Andres; Evans, David W; Boomer, K B; Hanson, Ellen; Bernier, Raphael; Goin-Kochel, Robin P; Myers, Scott M; Challman, Thomas D; Moreno-De-Luca, Daniel; Slane, Mylissa M; Hare, Abby E; Chung, Wendy K; Spiro, John E; Faucett, W Andrew; Martin, Christa L; Ledbetter, David H

    2015-02-01

    Most disorders caused by copy number variants (CNVs) display significant clinical variability, often referred to as incomplete penetrance and variable expressivity. Genetic and environmental sources of this variability are not well understood. To investigate the contributors to phenotypic variability in probands with CNVs involving the same genomic region; to measure the effect size for de novo mutation events; and to explore the contribution of familial background to resulting cognitive, behavioral, and motor performance outcomes in probands with de novo CNVs. Family-based study design with a volunteer sample of 56 individuals with de novo 16p11.2 deletions and their noncarrier parents and siblings from the Simons Variation in Individuals Project. We used linear mixed-model analysis to measure effect size and intraclass correlation to determine the influence of family background for a de novo CNV on quantitative traits representing the following 3 neurodevelopmental domains: cognitive ability (Full-Scale IQ), social behavior (Social Responsiveness Scale), and neuromotor performance (Purdue Pegboard Test). We included an anthropometric trait, body mass index, for comparison. A significant deleterious effect of the 16p11.2 deletion was demonstrated across all domains. Relative to the biparental mean, the effect sizes were -1.7 SD for cognitive ability, 2.2 SD for social behavior, and -1.3 SD for neuromotor performance (P siblings, with an intraclass correlation of 0.40 (P = .07). Analysis of families with de novo CNVs provides the least confounded estimate of the effect size of the 16p11.2 deletion on heritable, quantitative traits and demonstrates a 1- to 2-SD effect across all neurodevelopmental dimensions. Significant parent-proband correlations indicate that family background contributes to the phenotypic variability seen in this and perhaps other CNV disorders and may have implications for counseling families regarding their children's developmental and

  2. Verbal short-term memory in individuals with chromosome 22q11.2 deletion: specific deficit in serial order retention capacities?

    Science.gov (United States)

    Majerus, Steve; Van der Linden, Martial; Braissand, Vérane; Eliez, Stephan

    2007-03-01

    Many researchers have recently explored the cognitive profile of velocardiofacial syndrome (VCFS), a neurodevelopmental disorder linked to a 22q11.2 deletion. However, verbal short-term memory has not yet been systematically investigated. We explored verbal short-term memory abilities in a group of 11 children and adults presenting with VCFS and two control groups, matched on either CA or vocabulary knowledge, by distinguishing short-term memory for serial order and item information. The VCFS group showed impaired performance on the serial order short-term memory tasks compared to both control groups. Relative to the vocabulary-matched control group, item short-term memory was preserved. The implication of serial order short-term memory deficits on other aspects of cognitive development in VCFS (e.g., language development, numerical cognition) is discussed.

  3. Adaptation to diverse nitrogen-limited environments by deletion or extrachromosomal element formation of the GAP1 locus

    DEFF Research Database (Denmark)

    Gresham, D.; Usaite, Renata; Germann, S.M.

    2010-01-01

    and deletions at the GAP1 locus. GAP1 encodes the general amino acid permease, which transports amino acids across the plasma membrane. We identified a self-propagating extrachromosomal circular DNA molecule that results from intrachromosomal recombination between long terminal repeats (LTRs) flanking GAP1....... Extrachromosomal DNA circles (GAP1(circle)) contain GAP1, the replication origin ARS1116, and a single hybrid LTR derived from recombination between the two flanking LTRs. Formation of the GAP1(circle) is associated with deletion of chromosomal GAP1 (gap1 Delta) and production of a single hybrid LTR at the GAP1...

  4. Alternative Lengthening of Telomeres: Recurrent Cytogenetic Aberrations and Chromosome Stability under Extreme Telomere Dysfunction

    Directory of Open Access Journals (Sweden)

    Despoina Sakellariou

    2013-11-01

    Full Text Available Human tumors using the alternative lengthening of telomeres (ALT exert high rates of telomere dysfunction. Numerical chromosomal aberrations are very frequent, and structural rearrangements are widely scattered among the genome. This challenging context allows the study of telomere dysfunction-driven chromosomal instability in neoplasia (CIN in a massive scale. We used molecular cytogenetics to achieve detailed karyotyping in 10 human ALT neoplastic cell lines.We identified 518 clonal recombinant chromosomes affected by 649 structural rearrangements. While all human chromosomes were involved in random or clonal, terminal, or pericentromeric rearrangements and were capable to undergo telomere healing at broken ends, a differential recombinatorial propensity of specific genomic regions was noted.We show that ALT cells undergo epigenetic modifications rendering polycentric chromosomes functionally monocentric, and because of increased terminal recombinogenicity, they generate clonal recombinant chromosomes with interstitial telomeric repeats. Losses of chromosomes 13, X, and 22, gains of 2, 3, 5, and 20, and translocation/deletion events involving several common chromosomal fragile sites (CFSs were recurrent. Long-term reconstitution of telomerase activity in ALT cells reduced significantly the rates of random ongoing telomeric and pericentromeric CIN. However, the contribution of CFS in overall CIN remained unaffected, suggesting that in ALT cells whole-genome replication stress is not suppressed by telomerase activation. Our results provide novel insights into ALT-driven CIN, unveiling in parallel specific genomic sites that may harbor genes critical for ALT cancerous cell growth.

  5. Three patients with Wolf-Hirschhorn syndrome carrying a satellited chromosome 4p.

    Science.gov (United States)

    Liang, Desheng; Zhou, Zhongmin; Meng, Dahua; Du, Juan; Wen, Juan; Niikawa, Norio; Wu, Lingqian

    2012-07-01

    Wolf-Hirschhorn syndrome (WHS) is caused by a deletion involving the 4p16.3 region. Approximately 70% of WHS patients have a de novo isolated deletion and 22% involve unbalanced translocations. However, WHS with unbalanced rearrangements involving the short arm of an acrocentric chromosome are infrequently reported. Cytogenetic and molecular analyses by using standard G-banding, argyrophilic nucleolar organiser region (Ag-NOR) staining, fluorescence in situ hybridization, and single nucleotide polymorphism array for copy number detection were performed in three patients with WHS phenotype from two Chinese families. A heterozygous 2,767,380-bp terminal 4p deletion was detected in patients 1 and 2 and a heterozygous 5,047,291-bp terminal 4p deletion was detected in patient3. Clinical comparisons among our patients and previously reported cases have been reviewed. Two terminal 4p deletions were identified in three WHS patients with a satellited 4p and an attempt was made to refine the genotypic-phenotypic correlations of the deleted regions. Copyright © 2012 Wiley Periodicals, Inc.

  6. The hippocampi of children with chromosome 22q11.2 deletion syndrome have localized anterior alterations that predict severity of anxiety.

    Science.gov (United States)

    Scott, Julia A; Goodrich-Hunsaker, Naomi; Kalish, Kristopher; Lee, Aaron; Hunsaker, Michael R; Schumann, Cynthia M; Carmichael, Owen T; Simon, Tony J

    2016-04-01

    Individuals with 22q11.2 deletion syndrome (22q11.2DS) have an elevated risk for schizophrenia, which increases with history of childhood anxiety. Altered hippocampal morphology is a common neuroanatomical feature of 22q11.2DS and idiopathic schizophrenia. Relating hippocampal structure in children with 22q11.2DS to anxiety and impaired cognitive ability could lead to hippocampus-based characterization of psychosis-proneness in this at-risk population. We measured hippocampal volume using a semiautomated approach on MRIs collected from typically developing children and children with 22q11.2DS. We then analyzed hippocampal morphology with Localized Components Analysis. We tested the modulating roles of diagnostic group, hippocampal volume, sex and age on local hippocampal shape components. Lastly, volume and shape components were tested as covariates of IQ and anxiety. We included 48 typically developing children and 69 children with 22q11.2DS in our study. Hippocampal volume was reduced bilaterally in children with 22q11.2DS, and these children showed greater variation in the shape of the anterior hippocampus than typically developing children. Children with 22q11.2DS had greater inward deformation of the anterior hippocampus than typically developing children. Greater inward deformation of the anterior hippocampus was associated with greater severity of anxiety, specifically fear of physical injury, within the 22q11.2DS group. Shape alterations are not specific to hippocampal subfields. Alterations in the structure of the anterior hippocampus likely affect function and may impact limbic circuitry. We suggest these alterations potentially contribute to anxiety symptoms in individuals with 22q11.2DS through modulatory pathways. Altered hippocampal morphology may be uniquely linked to anxiety risk factors for schizophrenia, which could be a powerful neuroanatomical marker of schizophrenia risk and hence protection.

  7. Chromosomal aberrations induced by low-dose γ-irradiation: Study of R-banded chromosomes of human lymphocytes

    International Nuclear Information System (INIS)

    Al-Achkar, W.; Lefrancois, D.; Aurias, A.

    1991-01-01

    The effect of low-dose (0-0.5 Gy) γ-radiations was studied on R-banded chromosomes from lymphocytes of healthy donors of various ages. In cells from newborns, an increase of chromosome damage roughly proportional to the dose was found. In lymphocytes from young adults chromosomal aberrations were not detected at doses of 0.05 and 0.1 Gy, and in lymphocytes from old adults not even at 0.2 Gy. The difficulty in detecting aberrations in lymphocytes from adults is largely due to a considerable background of chromosomal anomalies which should be borne in mind in dosimetry studies. The rate of induction largely depends on the types of rearrangements. One-break terminal deletions are efficiently induced at 0.1 and 0.2 Gy and are the best indicators of exposure at these doses. At 0.5 Gy, the frequencies of 2-break lesions, i.e., dicentrics and reciprocal translocations, increase, whereas the of deletions decreases. (author). 6 refs., 3 figs., 2 tabs

  8. Expansion of the clinical phenotype of the distal 10q26.3 deletion syndrome to include ataxia and hyperemia of the hands and feet.

    Science.gov (United States)

    Lacaria, Melanie; Srour, Myriam; Michaud, Jacques L; Doja, Asif; Miller, Elka; Schwartzentruber, Jeremy; Goldsmith, Claire; Majewski, Jacek; Boycott, Kym M

    2017-06-01

    Distal deletion of the long arm of chromosome 10 is associated with a dysmorphic craniofacial appearance, microcephaly, behavioral issues, developmental delay, intellectual disability, and ocular, urogenital, and limb abnormalities. Herein, we present clinical, molecular, and cytogenetic investigations of four patients, including two siblings, with nearly identical terminal deletions of 10q26.3, all of whom have an atypical presentation of this syndrome. Their prominent features include ataxia, mild-to-moderate intellectual disability, and hyperemia of the hands and feet, and they do not display many of the other features commonly associated with deletions of this region. These results point to a novel gene locus associated with ataxia and highlight the variability of the clinical presentation of patients with deletions of this region. © 2017 Wiley Periodicals, Inc.

  9. Prenatal detection of a de novo terminal inverted duplication 4p in a fetus with the Wolf-Hirschhorn syndrome phenotype.

    Science.gov (United States)

    Beaujard, M-P; Jouannic, J-M; Bessières, B; Borie, C; Martin-Luis, I; Fallet-Bianco, C; Portnoï, M-F

    2005-06-01

    To present the prenatal diagnosis of a de novo terminal inversion duplication of the short arm of chromosome 4 and a review of the literature. An amniocentesis for chromosome analysis was performed at 33 weeks' gestation because ultrasound examination showed a female fetus with multiple abnormalities consisting of severe intrauterine growth retardation, microcephaly, a cleft lip and renal hypoplasia. Cytogenetic analysis and FISH studies of the cultured amniocytes revealed a de novo terminal inversion duplication of the short arm of chromosome 4 characterized by a duplication of 4p14-p16.1 chromosome region concomitant with a terminal deletion 4p16.1-pter. The karyotype was thus: 46,XX, inv dup del (4)(:p14-->p16.1::p16.1-->qter). The parents opted to terminate the pregnancy. Fetopathological examination showed dysmorphic features and abnormalities consistent with a Wolf-Hirschhorn syndrome (WHS) diagnosis, clinical manifestations of partial 4p trisomy being mild. Although relatively rare, inverted duplications have been reported repeatedly in an increasing number of chromosomes. Only two previous cases with de novo inv dup del (4p) and one with tandem dup 4p have been reported, all of them associated with a 4pter deletion. We report the first case diagnosed prenatally. Breakpoints are variable, resulting in different abnormal phenotype. In our case, clinical manifestations resulted in a WHS phenotype.

  10. Chromosome r(10(p15.3q26.12 in a newborn child: case report

    Directory of Open Access Journals (Sweden)

    Jonasson Jon

    2009-12-01

    Full Text Available Abstract Background Ring chromosome 10 is a rare cytogenetic finding. Of the less than 10 reported cases we have found in the literature, none was characterized using high-resolution microarray analysis. Ring chromosomes are frequently unstable due to sister chromatid exchanges and mitotic failures. When mosaicism is present, the interpretation of genotype-phenotype correlations becomes extremely difficult. Results We report on a newborn girl with growth retardation, microcephaly, congenital heart defects, dysmorphic features and psychomotor retardation. Karyotyping revealed a non-mosaic apparently stable ring chromosome 10 replacing one of the normal homologues in all analyzed metaphases. High-resolution oligonucleotide microarray analysis showed a de novo approximately 12.5 Mb terminal deletion 10q26.12 -> qter and a corresponding 285 kb terminal deletion of 10pter -> p15.3. Conclusion This case demonstrates that an increased nuchal translucency thickness detected by early ultrasonography should preferably lead to not only QF-PCR for the diagnosis of Down syndrome but also karyotyping. In the future, microarray analysis, which needs further evaluation, might become the method of choice. The clinical phenotype of our patient was in agreement with that of patients with a terminal 10q deletion. For the purpose of genotype-phenotype analysis, there seems to be no need for a "ring syndrome" concept.

  11. Chromosomal abnormalities in human glioblastomas: gain in chromosome 7p correlating with loss in chromosome 10q.

    Science.gov (United States)

    Inda, María del Mar; Fan, Xing; Muñoz, Jorge; Perot, Christine; Fauvet, Didier; Danglot, Giselle; Palacio, Ana; Madero, Pilar; Zazpe, Idoya; Portillo, Eduardo; Tuñón, Teresa; Martínez-Peñuela, José María; Alfaro, Jorge; Eiras, José; Bernheim, Alain; Castresana, Javier S

    2003-01-01

    Various genomic alterations have been detected in glioblastoma. Chromosome 7p, with the epidermal growth factor receptor locus, together with chromosome 10q, with the phosphatase and tensin homologue deleted in chromosome 10 and deleted in malignant brain tumors-1 loci, and chromosome 9p, with the cyclin-dependent kinase inhibitor 2A locus, are among the most frequently damaged chromosomal regions in glioblastoma. In this study, we evaluated the genetic status of 32 glioblastomas by comparative genomic hybridization; the sensitivity of comparative genomic hybridization versus differential polymerase chain reaction to detect deletions at the phosphatase and tensin homologue deleted in chromosome 10, deleted in malignant brain tumors-1, and cyclin-dependent kinase inhibitor 2A loci and amplifications at the cyclin-dependent kinase 4 locus; the frequency of genetic lesions (gain or loss) at 16 different selected loci (including oncogenes, tumor-suppressor genes, and proliferation markers) mapping on 13 different chromosomes; and the possible existence of a statistical association between any pair of molecular markers studied, to subdivide the glioblastoma entity molecularly. Comparative genomic hybridization showed that the most frequent region of gain was chromosome 7p, whereas the most frequent losses occurred on chromosomes 10q and 13q. The only statistically significant association was found for 7p gain and 10q loss. Copyright 2002 Wiley-Liss, Inc.

  12. Modulation of ocular surface glycocalyx barrier function by a galectin-3 N-terminal deletion mutant and membrane-anchored synthetic glycopolymers.

    Directory of Open Access Journals (Sweden)

    Jerome Mauris

    Full Text Available BACKGROUND: Interaction of transmembrane mucins with the multivalent carbohydrate-binding protein galectin-3 is critical to maintaining the integrity of the ocular surface epithelial glycocalyx. This study aimed to determine whether disruption of galectin-3 multimerization and insertion of synthetic glycopolymers in the plasma membrane could be used to modulate glycocalyx barrier function in corneal epithelial cells. METHODOLOGY/PRINCIPAL FINDINGS: Abrogation of galectin-3 biosynthesis in multilayered cultures of human corneal epithelial cells using siRNA, and in galectin-3 null mice, resulted in significant loss of corneal barrier function, as indicated by increased permeability to the rose bengal diagnostic dye. Addition of β-lactose, a competitive carbohydrate inhibitor of galectin-3 binding activity, to the cell culture system, transiently disrupted barrier function. In these experiments, treatment with a dominant negative inhibitor of galectin-3 polymerization lacking the N-terminal domain, but not full-length galectin-3, prevented the recovery of barrier function to basal levels. As determined by fluorescence microscopy, both cellobiose- and lactose-containing glycopolymers incorporated into apical membranes of corneal epithelial cells, independently of the chain length distribution of the densely glycosylated, polymeric backbones. Membrane incorporation of cellobiose glycopolymers impaired barrier function in corneal epithelial cells, contrary to their lactose-containing counterparts, which bound to galectin-3 in pull-down assays. CONCLUSIONS/SIGNIFICANCE: These results indicate that galectin-3 multimerization and surface recognition of lactosyl residues is required to maintain glycocalyx barrier function at the ocular surface. Transient modification of galectin-3 binding could be therapeutically used to enhance the efficiency of topical drug delivery.

  13. The fate of deleted DNA produced during programmed genomic deletion events in Tetrahymena thermophila.

    Science.gov (United States)

    Saveliev, S V; Cox, M M

    1994-01-01

    Thousands of DNA deletion events occur during macronuclear development in the ciliate Tetrahymena thermophila. In two deleted genomic regions, designated M and R, the eliminated sequences form circles that can be detected by PCR. However, the circles are not normal products of the reaction pathway. The circular forms occur at very low levels in conjugating cells, but are stable. Sequencing analysis showed that many of the circles (as many as 50% of those examined) reflected a precise deletion in the M and R regions. The remaining circles were either smaller or larger and contained varying lengths of sequences derived from the chromosomal DNA surrounding the eliminated region. The chromosomal junctions left behind after deletion were more precise, although deletions in either the M or R regions can generate any of several alternative junctions (1). Some new chromosomal junctions were detected in the present study. The results suggest that the deleted segment is released as a linear DNA species that is degraded rapidly. The species is only rarely converted to the stable circles we detect. The deletion mechanism is different from those proposed for deletion events in hypotrichous ciliates (2-4), and does not reflect a conservative site-specific recombination process such as that promoted by the bacteriophage lambda integrase (5). Images PMID:7838724

  14. Survival and transmission of symmetrical chromosomal aberrations

    International Nuclear Information System (INIS)

    Savage, J.R.K.

    1979-01-01

    The interaction between the lesions to produce chromosomal structural changes may be either asymmetrical (A) or symmetrical (S). In A, one or more acentric fragments are always produced, and there may also be the mechanical separation problems resulting from bridges at anaphase, while S-changes never produce fragment, and pose no mechanical problem in cell division. If A and S events occur with equal frequency, it might be an indication that they are truly the alternative modes of lesion interaction. Unstimulated lymphocytes were irradiated with 2.68 Gy 250 kV X-ray, and metaphases were sampled at 50 h after the stimulation. Preparations were complete diploid cells, and any obvious second division cells were rejected. So far as dermal repair and fibroblast functions are concerned, aberration burden seems to have little consequence from the view-point of the long-term survival in vivo. Large numbers of aberrations (mainly S translocation and terminal deletion) were found in the samples taken up to 60 years after therapy. Skin biopsies were removed 1 day and 6 months after irradiation and cultured. In irradiated cells, reciprocal translocations dominated, followed by terminal deletions, then inversions, while no chromosome-type aberration was seen in the control cells. a) The relative occurrence of A : S changes, b) long-term survival in vivo, c) the possibility of in vivo repair, and d) some unusual features of translocation found in Syrian hamsters are reviewed. The relevance or importance of major S events is clearly dependent upon the cells, the tissues or the organisms in which they occur. (Yamashita, S.)

  15. The C-terminal domain of the Bloom syndrome DNA helicase is essential for genomic stability

    Directory of Open Access Journals (Sweden)

    Noonan James P

    2001-07-01

    Full Text Available Abstract Background Bloom syndrome is a rare cancer-prone disorder in which the cells of affected persons have a high frequency of somatic mutation and genomic instability. Bloom syndrome cells have a distinctive high frequency of sister chromatid exchange and quadriradial formation. BLM, the protein altered in BS, is a member of the RecQ DNA helicase family, whose members share an average of 40% identity in the helicase domain and have divergent N-terminal and C-terminal flanking regions of variable lengths. The BLM DNA helicase has been shown to localize to the ND10 (nuclear domain 10 or PML (promyelocytic leukemia nuclear bodies, where it associates with TOPIIIα, and to the nucleolus. Results This report demonstrates that the N-terminal domain of BLM is responsible for localization of the protein to the nuclear bodies, while the C-terminal domain directs the protein to the nucleolus. Deletions of the N-terminal domain of BLM have little effect on sister chromatid exchange frequency and chromosome stability as compared to helicase and C-terminal mutations which can increase SCE frequency and chromosome abnormalities. Conclusion The helicase activity and the C-terminal domain of BLM are critical for maintaining genomic stability as measured by the sister chromatid exchange assay. The localization of BLM into the nucleolus by the C-terminal domain appears to be more important to genomic stability than localization in the nuclear bodies.

  16. Conditional Deletion of Pten Causes Bronchiolar Hyperplasia

    OpenAIRE

    Davé, Vrushank; Wert, Susan E.; Tanner, Tiffany; Thitoff, Angela R.; Loudy, Dave E.; Whitsett, Jeffrey A.

    2007-01-01

    Tumor suppressor phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is a lipid phosphatase that regulates multiple cellular processes including cell polarity, migration, proliferation, and carcinogenesis. In this work, we demonstrate that conditional deletion of Pten (PtenΔ/Δ) in the respiratory epithelial cells of the developing mouse lung caused epithelial cell proliferation and hyperplasia as early as 4 to 6 weeks of age. While bronchiolar cell differentiation was normal, as in...

  17. Falência ovariana precoce associada a deleção no braço longo do cromossomo: relato de dois casos e revisão da literatura Premature ovarian failure with a deletion in the long arm of chromosome: report of two cases and review of the literature

    Directory of Open Access Journals (Sweden)

    Mariangela Badalotti

    2006-09-01

    Full Text Available Falência ovariana prematura pode ser idiopática ou estar associada a várias distúrbios auto-imunes ou genéticos, como as deleções do cromossomo X. Relatamos dois novos casos de deleções do braço longo do cromossomo X, em pacientes nuligrávidas apresentando amenorréia secundária e infertilidade. Nenhuma paciente referia história familiar de falência ovariana prematura e relatavam desenvolvimento puberal normal. A avaliação genética mostrou deleção distal no braço longo do cromossomo X, sendo os resultados 46,X,del(Xq22 e 46,X,del(Xq13q28, respectivamente. Após o diagnóstico as pacientes optaram por fertilização in vitro com óvulos doados.Premature ovarian failure may be idiopathic or associated with several autoimmune and genetic disorders as X chromosome deletions. We report two cases of preamture ovarian failure associated with a deletion in the long arm of X chromosome. Both patients were nulligravidas presenting secondary amenorrhea and complaints of infertility, without family history of premature ovarian failure and reporting normal puberal development. Their karyotypes showed deletions of the distal long arm of all X chromosomes and were 46,X, del(Xq22 and 46,X, del(Xq13q28, respectively. After the diagnosis the patients decided to be submitted to an in vitro fertilization with egg donation.

  18. Deletion mutants of the Escherichia coli K-12 mannitol permease: dissection of transport-phosphorylation, phospho-exchange, and mannitol-binding activities.

    Science.gov (United States)

    Grisafi, P L; Scholle, A; Sugiyama, J; Briggs, C; Jacobson, G R; Lengeler, J W

    1989-05-01

    We have constructed a series of deletion mutations of the cloned Escherichia coli K-12 mtlA gene, which encodes the mannitol-specific enzyme II of the phosphoenolpyruvate (PEP)-dependent carbohydrate phosphotransferase system. This membrane-bound permease consists of 637 amino acid residues and is responsible for the concomitant transport and phosphorylation of D-mannitol in E. coli. Deletions into the 3' end of mtlA were constructed by exonuclease III digestion. Restriction mapping of the resultant plasmids identified several classes of deletions that lacked approximately 5% to more than 75% of the gene. Immunoblotting experiments revealed that many of these plasmids expressed proteins within the size range predicted by the restriction analyses, and all of these proteins were membrane localized, which demonstrated that none of the C-terminal half of the permease is required for membrane insertion. Functional analyses of the deletion proteins, expressed in an E. coli strain deleted for the chromosomal copy of mtlA, showed that all but one of the strains containing confirmed deletions were inactive in transport and PEP-dependent phosphorylation of mannitol, but deletions removing up to at least 117 amino acid residues from the C terminus of the permease were still active in catalyzing phospho exchange between mannitol 1-phosphate and mannitol. A deletion protein that lacked 240 residues from the C terminus of the permease was inactive in phospho exchange but still bound mannitol with high affinity. These experiments localize sites important for transport and PEP-dependent phosphorylation to the extreme C terminus of the mannitol permease, sites important for phospho exchange to between residues 377 and 519, and sites necessary for mannitol binding to the N-terminal 60% of the molecule. The results are discussed with respect to the fact that the mannitol permease consists of structurally independent N- and C-terminal domains.

  19. 17q12 Deletion in a patient with Williams syndrome: Case report and review of the literature.

    Science.gov (United States)

    Cohen, Lilian; Samanich, Joy; Pan, Quilu; Mehta, Lakshmi; Marion, Robert

    2012-06-01

    Williams syndrome (WS) is a complex genomic disorder entailing distinctive facial dysmorphism, cardiovascular abnormalities, intellectual disabilities, unusual behavioral features, and a specific cognitive profile with considerable variability. Additional symptoms include endocrine abnormalities, renal anomalies and connective tissue disorders. We report a monozygotic twin patient with WS who presented with multicystic kidneys in the newborn period, and, in addition to the typical WS deletion at 7q11.23, was found to have a de novo 1.7 Mb deletion in the 17q12 region on microarray comparative genomic hybridization. The co-twin was selectively terminated at 23 wk of gestation after being diagnosed with bilateral multicystic dysplastic kidneys and anhydramnios. Review of the literature shows that deletion of chromosome 17q12, encompassing hepatocyte nuclear factor 1beta gene, is associated with cystic renal disease and is the first recurrent genomic deletion associated with maturity onset diabetes of the young. In addition, reports of female reproductive tract malformations and patients with neurocognitive or psychiatric phenotypes have recently been described. This review of the literature summarizes 47 other cases involving 17q12 deletions with wide variability in phenotype, possibly suggesting a contiguous gene syndrome. It is likely that the additional 17q12 deletion has played a role in modifying the phenotype in our patient. This case highlights the importance of using array comparative genomic hybridization in the clinical setting to uncover the etiology of atypical findings in individuals with known microdeletion syndromes.

  20. 4p16.3 microdeletions and microduplications detected by chromosomal microarray analysis: New insights into mechanisms and critical regions.

    Science.gov (United States)

    Bi, Weimin; Cheung, Sau-Wai; Breman, Amy M; Bacino, Carlos A

    2016-10-01

    Deletions in the 4p16.3 region cause Wolf-Hirschhorn syndrome, a well known contiguous microdeletion syndrome with the critical region for common phenotype mapped in WHSCR2. Recently, duplications in 4p16.3 were reported in three patients with developmental delay and dysmorphic features. Through chromosomal microarray analysis, we identified 156 patients with a deletion (n = 109) or duplication (n = 47) in 4p16.3 out of approximately 60,000 patients analyzed by Baylor Miraca Genetics Laboratories. Seventy-five of the postnatally detected deletions encompassed the entire critical region, 32 (43%) of which were associated with other chromosome rearrangements, including six patients (8%) that had a duplication adjacent to the terminal deletion. Our data indicate that Wolf-Hirschhorn syndrome deletions with an adjacent duplication occur at a higher frequency than previously appreciated. Pure deletions (n = 14) or duplications (n = 15) without other copy number changes distal to or inside the WHSCR2 were identified for mapping of critical regions. Our data suggest that deletion of the segment from 0.6 to 0.9 Mb from the terminus of 4p causes a seizure phenotype and duplications of a region distal to the previously defined smallest region of overlap for 4p16.3 microduplication syndrome are associated with neurodevelopmental problems. We detected seven Wolf-Hirschhorn syndrome deletions and one 4p16.3 duplication prenatally; all of the seven are either >8 Mb in size and/or associated with large duplications. In conclusion, our study provides deeper insight into the molecular mechanisms, the critical regions and effective prenatal diagnosis for 4p16.3 deletions/ duplications. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  1. Survey of prenatal screening policies in Europe for structural malformations and chromosome anomalies, and their impact on detection and termination rates for neural tube defects and Down's syndrome

    DEFF Research Database (Denmark)

    Boyd, P A; Devigan, C; Khoshnood, B

    2008-01-01

    tube defects (NTDs) using the EUROCAT database. MAIN OUTCOME MEASURES: Existence of national prenatal screening policies, legal gestation limit for TOPFA, prenatal detection and termination rates for Down's syndrome and NTD. RESULTS: Ten of the 18 countries had a national country-wide policy for Down...... cases. Six of the 18 countries had a legal gestational age limit for TOPFA, and in two countries, termination of pregnancy was illegal at any gestation. CONCLUSIONS: There are large differences in screening policies between countries in Europe. These, as well as organisational and cultural factors...

  2. Role of phosphatase and tensin homolog deleted on chromosome ten in a rat model of carbon tetrachloride-induced liver fibrosis and the effect of qi-tonifying and blood-activating prescription

    Directory of Open Access Journals (Sweden)

    NIU Xuemin

    2018-01-01

    Full Text Available Objective To investigate the role of phosphatase and tensin homology deleted on chromosome ten (PTEN in a rat model of carbon tetrachloride (CCl4-induced liver fibrosis and the molecular mechanism of action of qi-tonifying and blood-activating prescription in regulating PTEN and inhibiting liver fibrosis. Methods A total of 27 male Wistar rats were randomly divided into three groups, with 9 rats in each group. The rats in liver fibrosis group were treated with CCl4 to establish a model of liver fibrosis, and those in qi-tonifying and blood-activating prescription group were also treated with CCl4 to establish a model and then given a self-made qi-tonifying and blood-activating prescription containing Astragalus membranaceus, Salvia miltiorrhiza, and poria. The rats in the control group were given intraperitoneally injected olive oil. HE staining, Masson staining, and immunohistochemical staining of collagen type I alpha 1 (Col1A1 and collagen type Ⅳ (Col4 were performed to observe the degree of liver fibrosis and collagen deposition; qRT-PCR, immunohistochemistry, and Western blot were used to measure the expression of transforming growth factor-β1 (TGF-β1, PTEN, and downstream genes AKT, mTOR, and p70S6K. A one-way analysis of variance was used for comparison of continuous data between multiple groups and the least significant difference t-test was used for further comparison between any two groups. Results In the liver fibrosis group, liver pathology showed perisinusoidal fibrosis and fibrous tissue proliferation, collagen deposition, and formation of fibrous septum in the portal area; compared with the control group, the liver fibrosis group had significant increases in the mRNA and protein expression of TGF-β1, a significant reduction in the expression of PTEN, and significant increases in the mRNA and phosphorylated protein expression of AKT, mTOR, and p70S6K (all P<0.01. The qi-tonifying and blood-activating prescription group had a

  3. Rapid change of chromomeric and pairing patterns of polytene chromosome tips in D. melanogaster: migration of polytene-nonpolytene transition zone?

    Science.gov (United States)

    Roberts, P A

    1979-07-01

    The high variability of chromomeric patterns in near-terminal regions of polytene chromosome arms has been explored in a number of races, strains and hybrids of Drosophila melanogaster. Traditional explanations for tip differences between strains (differential compaction of chromatin, somatic or germinal deletion) are examined and, in the light of the reported observations, rejected. The range of polytene tip variability and rates of change in wild races are greater than has been supposed: strains formerly considered to be terminally deleted appear to gain terminal bands; others, formerly considered normal, appear to have lost them. Strains with high cell-to-cell tip variability are also described. Cell-to-cell variations, as well as much of the observed rapid changes in tip appearance, are probably due to heritable differences in the location of an abrupt transition zone between polytene and nonpolytene chromatin. A quantitative relationship between the amount of certain subterminal bands present and the frequency of tip association of nonhomologous chromosomes is shown and its possible significance for chromosome is shown and its possible for chromosome pairing discussed.

  4. Molecular studies of deletions at the human steroid sulfatase locus

    International Nuclear Information System (INIS)

    Shapiro, L.J.; Yen, P.; Pomerantz, D.; Martin, E.; Rolewic, L.; Mohandas, T.

    1989-01-01

    The human steroid sulfatase gene (STS) is located on the distal X chromosome short arm close to the pseudoautosomal region but in a segment of DNA that is unique to the X chromosome. In contrast to most X chromosome-encoded genes, STS expression is not extinguished during the process of X chromosome inactivation. Deficiency of STS activity produced the syndrome of X chromosome-linked ichthyosis, which is one of the most common inborn errors of metabolism in man. Approximately 90% of STS - individuals have large deletions at the STS locus. The authors and others have found that the end points of such deletions are heterogeneous in their location. One recently ascertained subject was observed to have a 40-kilobase deletion that is entirely intragenic, permitting the cloning and sequencing of the deletion junction. Studies of this patient and of other X chromosome sequences in other subjects permit some insight into the mechanism(s) responsible for generating frequent deletions on the short arm of the X chromosome

  5. Coexistence of 9p Deletion Syndrome and Autism Spectrum Disorder

    Science.gov (United States)

    Günes, Serkan; Ekinci, Özalp; Ekinci, Nuran; Toros, Fevziye

    2017-01-01

    Deletion or duplication of the short arm of chromosome 9 may lead to a variety of clinical conditions including craniofacial and limb abnormalities, skeletal malformations, mental retardation, and autism spectrum disorder. Here, we present a case report of 5-year-old boy with 9p deletion syndrome and autism spectrum disorder.

  6. Partial duplication of the APBA2 gene in chromosome 15q13 corresponds to duplicon structures

    Directory of Open Access Journals (Sweden)

    Kesterson Robert A

    2003-04-01

    Full Text Available Abstract Background Chromosomal abnormalities affecting human chromosome 15q11-q13 underlie multiple genomic disorders caused by deletion, duplication and triplication of intervals in this region. These events are mediated by highly homologous segments of DNA, or duplicons, that facilitate mispairing and unequal cross-over in meiosis. The gene encoding an amyloid precursor protein-binding protein (APBA2 was previously mapped to the distal portion of the interval commonly deleted in Prader-Willi and Angelman syndromes and duplicated in cases of autism. Results We show that this gene actually maps to a more telomeric location and is partially duplicated within the broader region. Two highly homologous copies of an interval containing a large 5' exon and downstream sequence are located ~5 Mb distal to the intact locus. The duplicated copies, containing the first coding exon of APBA2, can be distinguished by single nucleotide sequence differences and are transcriptionally inactive. Adjacent to APBA2 maps a gene termed KIAA0574. The protein encoded by this gene is weakly homologous to a protein termed X123 that in turn maps adjacent to APBA1 on 9q21.12; APBA1 is highly homologous to APBA2 in the C-terminal region and is distinguished from APBA2 by the N-terminal region encoded by this duplicated exon. Conclusion The duplication of APBA2 sequences in this region adds to a complex picture of different low copy repeats present across this region and elsewhere on the chromosome.

  7. Small supernumerary marker chromosome derived from proximal p-arm of chromosome 2: identification by fluorescent in situ hybridization.

    Science.gov (United States)

    Lasan Trcić, Ruzica; Hitrec, Vlasta; Letica, Ljiljana; Cuk, Mario; Begović, Davor

    2003-08-01

    Conventional cytogenetics detected an interstitial deletion of proximal region of p-arm of chromosome 2 in a 6-month-old boy with a phenotype slightly resembling Down's syndrome. The deletion was inherited from the father, whose karyotype revealed a small ring-shaped marker chromosome, in addition to interstitial deletion. Fluorescence in situ hybridization identified the marker, which consisted of the proximal region of the p-arm of chromosome 2, including a part of its centromere. This case shows that molecular cytogenetic analysis can reveal the mechanism of the formation of the marker chromosome.

  8. Clival encephalocele and 5q15 deletion: a case report.

    Science.gov (United States)

    Puvabanditsin, Surasak; Malik, Imran; Garrow, Eugene; Francois, Lissa; Mehta, Rajeev

    2015-03-01

    A preterm neonate presenting with respiratory distress after birth was found to have a clival encephalocele, which is a variant of a basal encephalocele, and hypoplasia of the cerebellum. Genetic studies revealed a small deletion of the long arm of chromosome 5: 5q15 deletion. We report a rare variant of a basal encephalocele with a cerebellar malformation and 5q15 deletion. © The Author(s) 2014.

  9. Genetics Home Reference: distal 18q deletion syndrome

    Science.gov (United States)

    ... 18q deletion syndrome chromosome 18q monosomy chromosome 18q- syndrome De Grouchy syndrome del(18q) syndrome monosomy 18q Related Information How ... MS, Tienari PJ, Wirtavuori KO, Valanne LK. 18q-syndrome: brain MRI shows poor differentiation of gray and white matter on ... RL, Hale DE, Rose SR, Leach RJ, Cody JD. The spectrum ...

  10. Periventricular heterotopia and white matter abnormalities in a girl with mosaic ring chromosome 6.

    Science.gov (United States)

    Nishigaki, Satsuki; Hamazaki, Takashi; Saito, Mika; Yamamoto, Toshiyuki; Seto, Toshiyuki; Shintaku, Haruo

    2015-01-01

    Ring chromosome 6 is a rare chromosome abnormality that arises typically de novo. The phenotypes can be highly variable, ranging from almost normal to severe malformations and neurological defects. We report a case of a 3-year-old girl with mosaic ring chromosome 6 who presented with being small for gestational age and intellectual disability, and whose brain MRI later revealed periventricular heterotopia and white matter abnormalities. Mosaicism was identified in peripheral blood cells examined by standard G-bands, mos 46,XX,r(6)(p25q27)[67]/45,XX,-6[25]/46,XX,dic r(6:6)(p25q27:p25q27)[6]/47,XX,r(6)(p25q27) × 2[2]. Using array-comparative genomic hybridization, we identified terminal deletion of 6q27 (1.5 Mb) and no deletion on 6p. To our knowledge, this is the first report of periventricular heterotopia and white matter abnormalities manifested in a patient with ring chromosome 6. These central nervous system malformations are further discussed in relation to molecular genetics.

  11. Interstitial deletion of 5q33.3q35.1 in a boy with severe mental retardation

    OpenAIRE

    Lee, Jin Hwan; Kim, Hyo Jeong; Yoon, Jung Min; Cheon, Eun Jung; Lim, Jae Woo; Ko, Kyong Og; Lee, Gyung Min

    2016-01-01

    Constitutional interstitial deletions of the long arm of chromosome 5 (5q) are quite rare, and the corresponding phenotype is not yet clearly delineated. Severe mental retardation has been described in most patients who present 5q deletions. Specifically, the interstitial deletion of chromosome 5q33.3q35.1, an extremely rare chromosomal aberration, is characterized by mental retardation, developmental delay, and facial dysmorphism. Although the severity of mental retardation varies across cas...

  12. A study of chromosomal aberrations in amniotic fluid cell cultures.

    Science.gov (United States)

    Wolstenholme, J; Crocker, M; Jonasson, J

    1988-06-01

    This paper represents the analysis of 1916 routine amniotic fluid specimens harvested by an in situ fixation technique in a prospective study with regard to cultural chromosome anomalies. Excluding constitutional abnormalities, 2.9 per cent of 19,432 cells analysed showed some form of chromosome anomaly, terminal deletions (57 per cent) and chromatid/chromosome breaks and gaps (18 per cent) being the most frequent, followed by interchange aberrations (13 per cent) and trisomy (5 per cent). No case was found of more than one colony from the same culture showing the same anomaly without it being present in other cultures from the same fluid. The wholly abnormal colonies had a surplus of trisomies and from the mathematical considerations presented one may infer that these are likely to reflect the presence of abnormal cells in the amniotic fluid. Partly abnormal colonies appeared at a frequency that would correspond to virtual absence of selection against chromosomally abnormal cells when cultured in vitro. The aberrations found were similar to those seen as single cell anomalies, except for chromatid breaks and exchanges. The data suggest a basic preferential induction of trisomy for chromosomes 2, 18, 21, and the Y-chromosome. Structural aberrations showed a marked clustering of breakpoints around the centromeres. The frequency of mutant cells was low (1.4 X 10(-3)) before culture was initiated. At harvest, the frequency of abnormal cells was much higher (3 X 10(-2)) corresponding to 3 X 10(-3) mutations per cell per generation accumulating over approximately ten generations in vitro.

  13. Deletion of Xpter encompassing the SHOX gene and PAR1 region in familial patients with Leri-Weill Dyschondrosteosis syndrome.

    Science.gov (United States)

    Mutesa, L; Vanbellinghen, J F; Hellin, A C; Segers, K; Jamar, M; Pierquin, G; Bours, V

    2009-01-01

    Heterozygote deletions or mutations of pseudoautosomal 1 region (PAR1) encompassing the short stature homeobox-containing (SHOX) gene cause Leri-Weill Dyschondrosteosis (LWD), which is a dominantly inherited osteochondroplasia characterized by short stature with mesomelic shortening of the upper and lower limbs and Madelung deformity of the wrists. SHOX is expressed by both sex chromosomes in males and females and plays an important role in bone growth and development. Clinically, the LWD expression is variable and more severe in females than males due to sex differences in oestrogen levels. Here, we report two familial cases of LWD with a large Xp terminal deletion (approximately 943 kb) of distal PAR1 encompassing the SHOX gene. In addition, the proband had mental retardation which appeared to be from recessive inheritance in the family.

  14. Comparison of type and frequency of chromosome aberrations by conventional and G-staining methods in Hiroshima atomic bomb survivors

    International Nuclear Information System (INIS)

    Ohtaki, Kazuo; Shimba, Hachiro; Sofuni, Toshio; Awa, A.A.

    1982-07-01

    Somatic chromosomes derived from cultured lymphocytes of 23 atomic bomb survivors of Hiroshima were analyzed to determine the type and frequency of radiation-induced structural aberrations, using in sequence the ordinary staining method (O-method) and the trypsin G-banding method (G-method). Of 896 cells examined, 342 were found to contain induced aberrations, including 31 cells in which the precise identification of the type of aberrations was not possible even by the G-method. The number of chromosome aberrations observed was 376 in the 311 cells where aberrant precise identification was possible. The majority (288 or 76.6%) were intra- or inter-chromosomal symmetric exchanges due to a two-break event, while only 24 were found to be asymmetric exchanges (dicentrics, rings, and interstitial deletions). Further, there were 28 aberrations showing acentric fragments and terminal deletions, and the remaining 36 were complex intra- and inter-chromosomal exchanges involving three or more breaks which result in insertions and double translocations. A comparative karyotype analysis of the same metaphases examined by the sequential 0- And G-methods was carried out independently on 361 aberrations, mostly of the symmetric type. It was found that 78 (21.6%) of the 361 were detected only by the G-method; among these were 14 paracentric inversions, 48 reciprocal interchanges of chromosome segments with either equal length (11) or unequal length (37), 14 minor deletions and 2 complex rearrangements, all of which were nevertheless judged to fall within the normal range of variation by theO-method. In contrast, 25 aberrations detected in O-method chromosomes which were overcontracted or twisted, were shown to have normal banding patterns by the G-method. (author)

  15. Clinical, cytogenetic and molecular investigation in a fetus with Wolf-Hirschhorn syndrome with paternally derived 4p deletion. Case report and review of the literature.

    Science.gov (United States)

    Dietze, Ilona; Fritz, Barbara; Huhle, Dagmar; Simoens, Wouter; Piecha, Ernestine; Rehder, Helga

    2004-01-01

    Wolf-Hirschhorn (4p-) syndrome (WHS), caused by partial deletion of the short arm of chromosome 4, has been extensively described in children and young adults. Knowledge on fetuses with WHS is still limited due to the small number of published cases. We report on a fetus with prenatally diagnosed severe intrauterine growth retardation, reduced thoracal diameter, clubfeet deformity and midface hypoplasia including slight microretrognathia indicative for fetal karyotyping. Chromosome analysis after amniocentesis revealed a de novo terminal deletion of chromosome 4p [karyotype: 46,XX,del(4) (p16)] which was confirmed by FISH. Analyses of a set of polymorphic markers mapping in 4pter->4p15.3 showed absence of paternal haplotypes. These observations corroborate the preferential paternal origin of the de novo 4p deletion in WHS patients. Furthermore, the distal breakpoint could be narrowed to band 4p16.1. At autopsy, the fetus showed typical craniofacial dysmorphic signs of WHS, severe IUGR and delayed bone age. This report suggests the possibility of recognising the particular phenotype of WHS in utero by prenatal ultrasound and emphasises the importance of karyotyping fetuses with severe IUGR, especially when the amount of amniotic fluid is normal. Copyright 2004 S. Karger AG, Basel

  16. Deletion 22q13.3 syndrome

    Directory of Open Access Journals (Sweden)

    Phelan Mary C

    2008-05-01

    Full Text Available Abstract The deletion 22q13.3 syndrome (deletion 22q13 syndrome or Phelan-McDermid syndrome is a chromosome microdeletion syndrome characterized by neonatal hypotonia, global developmental delay, normal to accelerated growth, absent to severely delayed speech, and minor dysmorphic features. The deletion occurs with equal frequency in males and females and has been reported in mosaic and non-mosaic forms. Due to lack of clinical recognition and often insufficient laboratory testing, the syndrome is under-diagnosed and its true incidence remains unknown. Common physical traits include long eye lashes, large or unusual ears, relatively large hands, dysplastic toenails, full brow, dolicocephaly, full cheeks, bulbous nose, and pointed chin. Behavior is autistic-like with decreased perception of pain and habitual chewing or mouthing. The loss of 22q13.3 can result from simple deletion, translocation, ring chromosome formation and less common structural changes affecting the long arm of chromosome 22, specifically the region containing the SHANK3 gene. The diagnosis of deletion 22q13 syndrome should be considered in all cases of hypotonia of unknown etiology and in individuals with absent speech. Although the deletion can sometimes be detected by high resolution chromosome analysis, fluorescence in situ hybridization (FISH or array comparative genomic hybridization (CGH is recommended for confirmation. Differential diagnosis includes syndromes associated with hypotonia, developmental delay, speech delay and/or autistic-like affect (Prader-Willi, Angelman, Williams, Smith-Magenis, Fragile X, Sotos, FG, trichorhinophalangeal and velocardiofacial syndromes, autism spectrum disorders, cerebral palsy. Genetic counseling is recommended and parental laboratory studies should be considered to identify cryptic rearrangements and detect parental mosaicism. Prenatal diagnosis should be offered for future pregnancies in those families with inherited rearrangements

  17. Subtelomeric study of 132 patients with mental retardation reveals 9 chromosomal anomalies and contributes to the delineation of submicroscopic deletions of 1pter, 2qter, 4pter, 5qter and 9qter

    DEFF Research Database (Denmark)

    Sogaard, Marie; Tümer, Zeynep; Hjalgrim, Helle

    2005-01-01

    BACKGROUND: Cryptic chromosome imbalances are increasingly acknowledged as a cause for mental retardation and learning disability. New phenotypes associated with specific rearrangements are also being recognized. Techniques for screening for subtelomeric rearrangements are commercially available,...... dysmorphic features. Five had imbalances leading to recognizable phenotypes. CONCLUSION: Subtelomeric screening is a useful adjunct to conventional cytogenetic analyses, and should be considered in mentally retarded subjects with dysmorphic features and unknown cause....

  18. Prenatal forehead edema in 4p- deletion: the 'Greek warrior helmet' profile revisited.

    Science.gov (United States)

    Levaillant, J M; Touboul, C; Sinico, M; Vergnaud, A; Serero, S; Druart, L; Blondeau, J R; Abd Alsamad, I; Haddad, B; Gérard-Blanluet, M

    2005-12-01

    Deletion of short arm of chromosome 4 is difficult to ascertain prenatally, and can be missed. A prenatal suspicion of 4p- syndrome was thoroughly investigated by using two-dimensional and three-dimensional sonography, with a description of the fetal face dysmorphological pattern. The cytogenetic confirmation, obtained by karyotype and FISH technique, allowed a precise description of the prenatal abnormalities. Post-termination tridimensional helicoidal scanner of the fetal face was performed. The main anomaly discovered using two-dimensional sonography was the presence of a strikingly thick prefrontal edema (8 mm, twice the normal values, at 22 weeks: 3.81 +/- 0.62 mm). Three-dimensional sonography showed the classical postnatal profile, with the phenotypic aspect of a 'Greek warrior helmet'. Nasal bones were normal in size and placement, confirmed by helicoidal scanner. Prenatal diagnosis of 4p deletion syndrome can be difficult, and it is the presence of prefrontal edema, associated with more subtle facial anomalies (short philtrum, microretrognathia) which should trigger cytogenetic investigation for 4p- deletion, even with only borderline growth retardation. Copyright 2005 John Wiley & Sons, Ltd

  19. Prenatal diagnosis of 17q12 deletion syndrome: from fetal hyperechogenic kidneys to high risk for autism.

    Science.gov (United States)

    Gilboa, Yinon; Perlman, Sharon; Pode-Shakked, Naomi; Pode-Shakked, Ben; Shrim, Alon; Azaria-Lahav, Einat; Dekel, Benjamin; Yonath, Hagith; Berkenstadt, Michal; Achiron, Reuven

    2016-11-01

    The linkage between 17q12 microdeletions, renal anomalies, and higher risk for neurodevelopmental disorders is well described in the literature. The current study presents prenatal diagnosis of normal-sized fetal hyperechogenic kidneys leading to the diagnosis of 17q12 deletion syndrome and autism spectrum disorder. Over a period of 9 years in a single referral center, seven fetuses were diagnosed with hyperechogenic renal parenchyma and were followed up prospectively. Amniocentesis for molecular diagnosis was performed in all cases, and subsequently, five fetuses were found to harbor a 17q12 deletion by chromosomal microarray analysis. Postnatal evaluation was carried out by a developmental neurologist. Five of the seven fetuses had molecular diagnosis of 17q12 deletion. One patient elected termination of pregnancy. On long-term follow-up, all of the four children showed symptoms consistent with neurodevelopmental disorders. The two fetuses with no deletion have a normal follow-up with regression of the renal hyperechogenicity. We report a strikingly high correlation between prenatal hyperechogenic kidneys, 17q12 microdeletion, and autism spectrum disorder with the advantage of optimal prenatal counseling as well as early diagnosis and intervention. © 2016 John Wiley & Sons, Ltd. © 2016 John Wiley & Sons, Ltd.

  20. Size does matter: Cre-mediated somatic deletion efficiency depends on the distance between the target lox-sites

    NARCIS (Netherlands)

    Coppoolse, E.R.; Vroomen, de M.J.; Gennip, van F.; Hersmus, B.J.M.; Haaren, van M.J.

    2005-01-01

    Cre/lox recombination in vivo has become an important tool to induce chromosomal rearrangements like deletions. Using a combination of Ds transposition and Cre/lox recombination in two independent experiments on chromosomes 6 and 7 of tomato, two sets of somatic deletions up to a size of 200 kb were

  1. Modeling Chromosomes

    Science.gov (United States)

    Robertson, Carol

    2016-01-01

    Learning about chromosomes is standard fare in biology classrooms today. However, students may find it difficult to understand the relationships among the "genome", "chromosomes", "genes", a "gene locus", and "alleles". In the simple activity described in this article, which follows the 5E approach…

  2. Chromosomal Conditions

    Science.gov (United States)

    ... and more. Stony Point, NY 10980 Close X Home > Complications & Loss > Birth defects & other health conditions > Chromosomal conditions Chromosomal conditions ... Disorders See also: Genetic counseling , Your family health history Last reviewed: February, 2013 ... labor & premature birth The newborn intensive care unit (NICU) Birth defects & ...

  3. Mechanisms of ring chromosome formation in 11 cases of human ring chromosome 21

    DEFF Research Database (Denmark)

    McGinniss, M J; Kazazian, H H; Stetten, G

    1992-01-01

    We studied the mechanism of ring chromosome 21 (r(21)) formation in 13 patients (11 unique r(21)s), consisting of 7 from five families with familial r(21) and 6 with de novo r(21). The copy number of chromosome 21 sequences in the rings of these patients was determined by quantitative dosage......), resulting in deletion of varying amounts of 21q22.1 to 21qter. The data from one individual who had a Down syndrome phenotype were consistent with asymmetric breakage and reunion of 21q sequences from an intermediate isochromosome or Robertsonian translocation chromosome as reported by Wong et al. Another......). The phenotype of patients correlated well with the extent of deletion or duplication of chromosome 21 sequences. These data demonstrate three mechanisms of r(21) formation and show that the phenotype of r(21) patients varies with the extent of chromosome 21 monosomy or trisomy....

  4. Familial deletion 18p syndrome: case report

    Directory of Open Access Journals (Sweden)

    Lemyre Emmanuelle

    2006-07-01

    Full Text Available Abstract Background Deletion 18p is a frequent deletion syndrome characterized by dysmorphic features, growth deficiencies, and mental retardation with a poorer verbal performance. Until now, five families have been described with limited clinical description. We report transmission of deletion 18p from a mother to her two daughters and review the previous cases. Case presentation The proband is 12 years old and has short stature, dysmorphic features and moderate mental retardation. Her sister is 9 years old and also has short stature and similar dysmorphic features. Her cognitive performance is within the borderline to mild mental retardation range. The mother also presents short stature. Psychological evaluation showed moderate mental retardation. Chromosome analysis from the sisters and their mother revealed the same chromosomal deletion: 46, XX, del(18(p11.2. Previous familial cases were consistent regarding the transmission of mental retardation. Our family differs in this regard with variable cognitive impairment and does not display poorer verbal than non-verbal abilities. An exclusive maternal transmission is observed throughout those families. Women with del(18p are fertile and seem to have a normal miscarriage rate. Conclusion Genetic counseling for these patients should take into account a greater range of cognitive outcome than previously reported.

  5. PTPN13, a Fas-associated protein tyrosine phosphatase, is located on the long arm of chromosome 4 at band q21.3

    Energy Technology Data Exchange (ETDEWEB)

    Inazawa, Johji; Ariyama, Takeshi; Abe, Tatsuo [Kyoto Prefectural Univ. of Medicine (Japan)] [and others

    1996-01-15

    PTPN13 is a protein tyrosine phosphatase that associates with the C-terminal negative regulatory domain in the Fas (APO-1/CD95) receptor. The PTPN13 protein contains six GLGF repeats that have been found in the rat postsynaptic density protein (PSD-95) and the Drosophila tumor suppressor protein, lethal-(1)-disclarge-1 (dlg-1). The localization of the PTPN13 gene to human chromosome 4q21.3 was determined by both FISH and PCR analysis of somatic cell hybrids. This 4q21.3 chromosomal region contains a gene for autosomal dominant polycystic kidney disease as well as the region frequently deleted in liver and ovarian cancers, suggesting that PTPN13 is a candidate for one of the putative tumor suppressor genes on the long arm of chromosome 4. 21 refs., 1 fig.

  6. Human chromosome-specific changes in a human-hamster hybrid cell line (AL) assessed by fluorescent in situ hybridization (fish)

    International Nuclear Information System (INIS)

    Geard, Charles R.; Jenkins, Gloria

    1995-01-01

    Purpose: To quantitatively assess all gamma-ray induced chromosomal changes confined to one human chromosome using fluorescence microscopy and in situ hybridization with a fluorescently labeled human chromosome specific nucleic acid probe. Methods and Materials: Synchronized human-hamster hybrid cells containing human chromosome 11 were obtained by a modified mitotic shake-off procedure. G1 phase cells (> 95%) were irradiated with 137 Cs gamma rays (0, 0.5, 1.0, 1.5, 2.0, 4.0, 6.0, 8.0, and 10.0 Gy) at a dose rate of 1.1 Gy/min and mitotic cells collected 16-20 h later; chromosomal spreads were prepared, denatured, and hybridized with a fluorescein-tagged nucleic acid probe against total human DNA. Chromosomes were examined by fluorescence microscopy and all categories of change involving the human chromosome 11 as target, recorded. Results: Overall, of the 3104 human-hamster hybrid cells examined, 82.1% were euploid, of which 88.6% contained one copy of human chromosome 11, 6.2% contained two copies, and 5.2% contained 0 copies. This is compatible with mitotic nondisjunction in a small fraction of cells. Of the remaining 17.9% of cells, 85.2% were tetraploid cells with two copies of human chromosome 11. For all aberrations involving human chromosome 11 there was a linear relationship between yield and absorbed dose of 0.1 aberrations per chromosome per Gy. The yield of dicentrics, translocations, and terminal deletions that involve one lesion on the human chromosome was linear, while the yield of interstitial deletions that arise from two interacting lesions on the human chromosome was curvilinear. The frequencies of dicentrics and translocations were about equal, while there was a high (40-60%) incidence of incomplete exchanges between human and hamster chromosomes. Conclusions: Fluorescent in situ hybridization (FISH) procedures allow for the efficient detection of a broad range of induced changes in target chromosomes. Symmetrical exchanges induced in G1

  7. Ring chromosome 9 in a girl with developmental delay and dysmorphic features

    DEFF Research Database (Denmark)

    la Cour Sibbesen, Else; Jespersgaard, Cathrine; Alosi, Daniela

    2013-01-01

    In this report, we describe a female child with dysmorphic features and developmental delay. Chromosome microarray analysis followed by conventional karyotyping revealed a ring chromosome 9 with a 12 Mb deletion at 9pter-p23 and a 540 kb deletion at 9q34.3-qter. Four percent of the analyzed cells...

  8. Chromosome Territories

    OpenAIRE

    Cremer, Thomas; Cremer, Marion

    2010-01-01

    Chromosome territories (CTs) constitute a major feature of nuclear architecture. In a brief statement, the possible contribution of nuclear architecture studies to the field of epigenomics is considered, followed by a historical account of the CT concept and the final compelling experimental evidence of a territorial organization of chromosomes in all eukaryotes studied to date. Present knowledge of nonrandom CT arrangements, of the internal CT architecture, and of structural interactions wit...

  9. Role of DNA deletion length in mutation and cell survival

    International Nuclear Information System (INIS)

    Braby, L.A.; Morgan, T.L.

    1992-01-01

    A model is presented which is based on the assumption that malignant transformation, mutation, chromosome aberration, and reproductive death of cells are all manifestations of radiation induced deletions in the DNA of the cell, and that the size of the deletion in relation to the spacing of essential genes determines the consequences of that deletion. It is assumed that two independent types of potentially lethal lesions can result in DNA deletions, and that the relative numbers of these types of damage is dependent on radiation quality. The repair of the damage reduces the length of a deletion, but does not always eliminate it. The predictions of this model are in good agreement with a wide variety of experimental evidence. (author)

  10. A de novo 2q35-q36.1 deletion incorporating IHH in a Chinese boy (47,XYY) with syndactyly, type III Waardenburg syndrome, and congenital heart disease.

    Science.gov (United States)

    Wang, D; Ren, G F; Zhang, H Z; Yi, C Y; Peng, Z J

    2016-12-02

    Reports of terminal and interstitial deletions of the long arm of chromosome 2 are rare in the literature. Here, we present a case report concerning a Chinese boy with a 47,XYY karyotype and a de novo deletion comprising approximately 5 Mb between 2q35 and q36.1, along with syndactyly, type III Waardenburg syndrome, and congenital heart disease. High-resolution chromosome analysis to detect copy number variations was carried out using an Affymetrix microarray platform, and the genes affected by the patient's deletion, including IHH, were determined. However, no copy number changes were observed in his healthy parents. The present case exhibited novel syndactyly features, broadening the spectrum of clinical findings observed in individuals with 2q interstitial deletions. Our data, together with previous observations, suggest that IHH haploinsufficiency is the principal pathogenic factor in the syndactyly phenotype in this study, and that different types of variations at the IHH locus may cause divergent disease phenotypes. This is the first report of the involvement of IHH haploinsufficiency in syndactyly phenotype.

  11. Production and characterization of alien chromosome additions in shallot (Allium cepa L. Aggregatum group) carrying extra chromosome(s) of Japanese bunching onion (A. fistulosum L.).

    Science.gov (United States)

    Hang, Tran Thi Minh; Shigyo, Masayoshi; Yamauchi, Naoki; Tashiro, Yosuke

    2004-10-01

    First and second backcrosses of amphidiploid hybrids (2n = 4x = 32, genomes AAFF) between shallot (Allium cepa Aggregatum group) and A. fistulosum were conducted to produce A. cepa - A. fistulosum alien addition lines. When shallot (A. cepa Aggregatum group) was used as a pollinator, the amphidiploids and allotriploids set germinable BC(1) and BC(2) seeds, respectively. The 237 BC(1) plants mainly consisted of 170 allotriploids (2n = 3x = 24, AAF) and 42 hypo-allotriploids possessing 23 chromosomes, i.e., single-alien deletions (2n = 3x-1 = 23, AAF-nF). The single-alien deletions in the BC(1) progeny showed dwarfing characteristics and were discriminated from the allotriploids (2n = 24) and hyper-allotriploids (2n = 25) by means of flow cytometric analysis. The chromosome numbers of 46 BC(2) seedlings varied from 16 to 24. Eight monosomic additions (2n = 2x+1 = 17, AA+nF) and 20 single-alien deletions were found in these BC(2) seedlings. Consequently, six kinds of A. cepa - A. fistulosum alien chromosome additions possessing different chromosome numbers (2n = 17, 18, 20, 21, 22, 23) were recognized in the BC(1) and BC(2) populations. A total of 79 aneuploids, including 62 single-alien deletions, were analyzed by a chromosome 6F-specific isozyme marker (Got-2) in order to recognize its existence in their chromosome complements. This analysis revealed that two out of 62 single-alien deletions did not possess 6F. One (AAF-6F) out of the possible eight single-alien deletions could be identified at first. The present study is a first step toward the development of a useful tool, such as a complete set of eight different single-alien deletions, for the rapid chromosomal assignment of genes and genetic markers in A. fistulosum.

  12. Deletion mutations of bacteriophage

    International Nuclear Information System (INIS)

    Ryo, Yeikou

    1975-01-01

    Resolution of mutation mechanism with structural changes of DNA was discussed through the studies using bacteriophage lambda. One of deletion mutations inductions of phage lambda is the irradiation of ultraviolet ray. It is not clear if the inductions are caused by errors in reparation of ultraviolet-induced damage or by the activation of int gene. Because the effective site of int gene lies within the regions unnecessary for existing, it is considered that int gene is connected to deletion mutations induction. A certain system using prophage complementarity enables to detect deletion mutations at essential hereditary sites and to solve the relations of deletion mutations with other recombination system, DNA reproduction and repairment system. Duplication and multiplication of hereditary elements were discussed. If lambda deletion mutations of the system, which can control recombination, reproduction and repairment of added DNA, are constructed, mutations mechanism with great changes of DNA structure can be solved by phage lambda. (Ichikawa, K.)

  13. Molecular and biochemical identification of alien chromosome additions in shallot (Allium cepa L. Aggregatum group) carrying extra chromosome(s) of bunching onion (A. fistulosum L.).

    Science.gov (United States)

    Yaguchi, Shigenori; Hang, Tran Thi Minh; Tsukazaki, Hikaru; Hoa, Vu Quynh; Masuzaki, Shin-ichi; Wako, Tadayuki; Masamura, Noriya; Onodera, Shuichi; Shiomi, Norio; Yamauchi, Naoki; Shigyo, Masayoshi

    2009-02-01

    To develop the bunching onion (Allium fistulosum L.; genomes, FF) chromosome-specific genetic markers for identifying extra chromosomes, eight shallot (A. cepa L. Aggregatum group; genomes, AA)--A. fistulosum monosomic addition plants (AA+nF) and 62 shallot--A. fistulosum single-alien deletion plants (AAF-nF) were analyzed by 23 different chromosome-specific genetic markers of shallot. The eight monosomic addition plants consisted of one AA+2F, two AA+6F, and five AA+8F. Of the 62 single-alien deletion plants, 60 could be identified as six different single-alien deletion lines (AAF-1F, -3F, -4F, -6F, -7F, and -8F) out of the eight possible types. Several single-alien deletion lines were classified on the basis of leaf and bulb characteristics. AAF-8F had the largest number of expanded leaves of five deletion plants. AAF-7F grew most vigorously, as expressed by its long leaf blade and biggest bulb size. AAF-4F had very small bulbs. AAF-7F and AAF-8F had different bulbs from those of shallot as well as other types of single-alien deletion lines in skin and outer scale color. Regarding the sugar content of the bulb tissues, the single-alien deletion lines showed higher fructan content than shallot. Moreover, shallot could not produce fructan with degree of polymerization (DP) 12 or higher, although the single-alien deletion lines showed DP 20 or higher. The content of S-alk(en)yl-L-cysteine sulfoxide (ACSO) in the single-alien deletion lines was significantly lower than that in shallot. These results indicated that chromosomes from A. fistulosum might carry anonymous factors to increase the highly polymerized fructan production and inhibit the synthesis of ACSO in shallot bulbs. Accordingly, alien chromosomes from A. fistulosum in shallot would contribute to modify the quality of shallot bulbs.

  14. 18q deletion in a cystic fibrosis infant, increased morbidity and challenge for correct treatment choices: a case report

    Directory of Open Access Journals (Sweden)

    Dester Silvia

    2011-05-01

    Full Text Available Abstract Cystic Fibrosis (CF is the most frequent recessive disease of Caucasian patients. Association with other diseases or syndromes has previously been reported. Co-morbidity may be a challenge for clinicians, who have to face more severe problems. We have described a CF infant, F508del homozygote, diagnosed by neonatal screening, who also had a chromosome 18q terminal deletion [del (18(q22-qter]. Some clinical features of the 18q deletion: e.g., cardiopathy, gastro-oesophageal reflux and severe muscular hypotonia, worsened the CF clinical picture and his quality of life, with repeated pulmonary exacerbations and failure to thrive in the first six months of life. The treatment strategy was chosen following an accurate multi-disciplinary team study of overlapping chromosome syndrome and CF symptoms. The use of a gastrostomy device for enteral nutrition together with a new device (Ez-PAP for chest physiotherapy led to normal growth, a notably reduced hospitalization rate and improved quality of life. This case shows how co-morbidities worsening the clinical course of a "complicated patient" can be faced thanks to unconventional therapies that represent a challenge for clinicians.

  15. Attenuation of G2 cell cycle checkpoint control in human tumor cells is associated with increased frequencies of unrejoined chromosome breaks but not increased cytotoxicity following radiation exposure

    International Nuclear Information System (INIS)

    Schwartz, J.L.; Cowan, J.; Grdina, D.J.

    1997-01-01

    The contribution of G 2 cell cycle checkpoint control to ionizing radiation responses was examined in ten human tumor cell lines. Most of the delay in cell cycle progression seen in the first cell cycle following radiation exposure was due to blocks in G 2 and there were large cell line-to-cell line variations in the length of the G 2 block. Longer delays were seen in cell lines that had mutations in p53. There was a highly significant inverse correlation between the length of G 2 delay and the frequency of unrejoined chromosome breaks seen as chromosome terminal deletions in mitosis, and observation that supports the hypothesis that the signal for G 2 delay in mammalian cells is an unrejoined chromosome break. There were also an inverse correlation between the length of G 2 delay and the level of chromosome aneuploidy in each cell line, suggesting that the G 2 and mitotic spindel checkpoints may be linked to each other. Attenuation in G 2 checkpoint control was not associated with alterations in either the frequency of induced chromosome rearrangements or cell survival following radiation exposure suggesting that chromosome rearrangements, the major radiation-induced lethal lesion in tumor cells, form before cells enters G 2 . Thus, agents that act solely to override G 2 arrest should produce little radiosensitization in human tumor cells

  16. Genetics Home Reference: ring chromosome 14 syndrome

    Science.gov (United States)

    ... be something about the ring structure itself that causes epilepsy. Seizures may occur because certain genes on the ... mapping of telomeric 14q32 deletions: search for the cause of seizures. Am J Med Genet A. ... L, Elia M, Vigevano F. Epilepsy in ring 14 chromosome syndrome. Epilepsy Behav. 2012 ...

  17. Clinical Utility of Array Comparative Genomic Hybridization for Detection of Chromosomal Abnormalities in Pediatric Acute Lymphoblastic Leukemia

    Science.gov (United States)

    Rabin, Karen R.; Man, Tsz-Kwong; Yu, Alexander; Folsom, Matthew R.; Zhao, Yi-Jue; Rao, Pulivarthi H.; Plon, Sharon E.; Naeem, Rizwan C.

    2014-01-01

    Background Accurate detection of recurrent chromosomal abnormalities is critical to assign patients to risk-based therapeutic regimens for pediatric acute lymphoblastic leukemia (ALL). Procedure We investigated the utility of array comparative genomic hybridization (aCGH) for detection of chromosomal abnormalities compared to standard clinical evaluation with karyotype and fluorescent in-situ hybridization (FISH). Fifty pediatric ALL diagnostic bone marrows were analyzed by bacterial artificial chromosome (BAC) array, and findings compared to standard clinical evaluation. Results Sensitivity of aCGH was 79% to detect karyotypic findings other than balanced translocations, which cannot be detected by aCGH because they involve no copy number change. aCGH also missed abnormalities occurring in subclones constituting less than 25% of cells. aCGH detected 44 additional abnormalities undetected or misidentified by karyotype, 21 subsequently validated by FISH, including abnormalities in 4 of 10 cases with uninformative cytogenetics. aCGH detected concurrent terminal deletions of both 9p and 20q in three cases, in two of which the 20q deletion was undetected by karyotype. A narrow region of loss at 7p21 was detected in two cases. Conclusions An array with increased BAC density over regions important in ALL, combined with PCR for fusion products of balanced translocations, could minimize labor- and time-intensive cytogenetic assays and provide key prognostic information in the approximately 35% of cases with uninformative cytogenetics. PMID:18253961

  18. Quantum deletion: Beyond the no-deletion principle

    International Nuclear Information System (INIS)

    Adhikari, Satyabrata

    2005-01-01

    Suppose we are given two identical copies of an unknown quantum state and we wish to delete one copy from among the given two copies. The quantum no-deletion principle restricts us from perfectly deleting a copy but it does not prohibit us from deleting a copy approximately. Here we construct two types of a 'universal quantum deletion machine' which approximately deletes a copy such that the fidelity of deletion does not depend on the input state. The two types of universal quantum deletion machines are (1) a conventional deletion machine described by one unitary operator and (2) a modified deletion machine described by two unitary operators. Here it is shown that the modified deletion machine deletes a qubit with fidelity 3/4, which is the maximum limit for deleting an unknown quantum state. In addition to this we also show that the modified deletion machine retains the qubit in the first mode with average fidelity 0.77 (approx.) which is slightly greater than the fidelity of measurement for two given identical states, showing how precisely one can determine its state [S. Massar and S. Popescu, Phys. Rev. Lett. 74, 1259 (1995)]. We also show that the deletion machine itself is input state independent, i.e., the information is not hidden in the deleting machine, and hence we can delete the information completely from the deletion machine

  19. Restoration of half the normal dystrophin sequence in a double-deletion Duchenne muscular dystrophy family

    Energy Technology Data Exchange (ETDEWEB)

    Hoop, R.C.; Schwartz, L.S.; Hoffman, E.P. [Univ. of Pittsburgh School of Medicine, Pittsburgh, PA (United States); Russo, L.S. [Univ. of Florida, Jacksonville, FL (United States); Riconda, D.L. [Orlando Regional Medical Center, Orlando, FL (United States)

    1994-02-01

    Two male cousins with Duchenne muscular dystrophy were found to have different maternal dystrophin gene haplotypes and different deletion mutations. One propositus showed two noncontiguous deletions-one in the 5{prime}, proximal deletional hotspot region, and the other in the 3{prime}, more distal deletional hotspot region. The second propositus showed only the 5{prime} deletion. Using multiple fluorescent exon dosage and fluorescent multiplex CA repeat linkage analyses, the authors show that the mother of each propositus carries both deletions on the same grandmaternal X chromosome. This paradox is explained by a single recombinational event between the 2 deleted regions of one of the carrier`s dystrophin genes, giving rise to a son with a partially {open_quotes}repaired{close_quotes} gene retaining only the 5{prime} deletion. 20 refs., 4 figs.

  20. Rare human diseases: 9p deletion syndrome

    Directory of Open Access Journals (Sweden)

    Galagan V.O.

    2014-09-01

    Full Text Available Objective of the study was to review the anamnesis, pheno - and genotype in patients with rare chromosome disorders such as 9p deletion syndrome. Genetic methods of investigation (clinical and genealogical, cytogenetic, FISH- method, paraclinical and instrumental methods of examination were used. Karyotyping was performed by the G-method of differential staining of chromosomes. Only three cases of pathology were diagnosed in the Medical Genetics Center over the last 10 years. By anamnesis data nobody in the probands’ families had bad habits, was exposed to occupational hazards, took part in the elimination of the Chernobyl accident or lived in contaminated areas. Clinical signs of diseases have not been identified in probands’ parents. All probands had trigonocephaly, bilateral epicanthal folds, ocular hypertelorism, downslanting palpebral fissures, long philtrum, flat face and nasal bridge, low set ears with malformed auricles. Two patients of three ones had exophthalmos, contracture of the second and third fingers, abnormal external genitalia. In all three cases there was monosomy of chromosome 9 of critical segment p 24. Normal karyotypes were seen in all parents, so there were three cases of new mutations of 9p deletion syndrome. Retardation of physical, psycho-spech, mental development in proband with or without congenital anomalies requires medical genetic counseling in a specialized institution. Cases of reproductive loss in anamnesis require cytogenetic investigation of fetal membranes and amniotic fluid.

  1. Sex Chromosome Translocations in the Evolution of Reproductive Isolation

    Science.gov (United States)

    Tracey, Martin L.

    1972-01-01

    Haldane's rule states that in organisms with differentiated sex chromosomes, hybrid sterility or inviability is generally expressed more frequently in the heterogametic sex. This observation has been variously explained as due to either genic or chromosomal imbalance. The fixation probabilities and mean times to fixation of sex-chromosome translocations of the type necessary to explain Haldane's rule on the basis of chromosomal imbalance have been estimated in small populations of Drosophila melanogaster. The fixation probability of an X chromosome carrying the long arm of the Y(X·YL) is approximately 30% greater than expected under the assumption of no selection. No fitness differences associated with the attached YL segment were detected. The fixation probability of a deficient Y chromosome is 300% greater than expected when the X chromosome contains the deleted portion of the Y. It is suggested that sex-chromosome translocations may play a role in the establishment of reproductive isolation. PMID:4630586

  2. Genetics Home Reference: 2q37 deletion syndrome

    Science.gov (United States)

    ... on PubMed or Free article on PubMed Central Casas KA, Mononen TK, Mikail CN, Hassed SJ, Li S, ... 2005 Aug 18. Citation on PubMed Falk RE, Casas KA. Chromosome 2q37 deletion: clinical and molecular aspects. ...

  3. Frequency of heterozygous TET2 deletions in myeloproliferative neoplasms

    Directory of Open Access Journals (Sweden)

    Joseph Tripodi

    2010-09-01

    Full Text Available Joseph Tripodi1, Ronald Hoffman1, Vesna Najfeld2, Rona Weinberg31The Myeloproliferative Disorders Program, Tisch Cancer Institute, Department of Medicine and 2Department of Medicine and Pathology, Mount Sinai School of Medicine, 3The Myeloproliferative Disorders Program, Cellular Therapy Laboratory, The New York Blood Center, New York, NY, USAAbstract: The Philadelphia chromosome (Ph-negative myeloproliferative neoplasms (MPNs, including polycythemia vera, essential thrombocythemia, and primary myelofibrosis, are a group of clonal hematopoietic stem cell disorders with overlapping clinical and cytogenetic features and a variable tendency to evolve into acute leukemia. These diseases not only share overlapping chromosomal abnormalities but also a number of acquired somatic mutations. Recently, mutations in a putative tumor suppressor gene, ten-eleven translocation 2 (TET2 on chromosome 4q24 have been identified in 12% of patients with MPN. Additionally 4q24 chromosomal rearrangements in MPN, including TET2 deletions, have also been observed using conventional cytogenetics. The goal of this study was to investigate the frequency of genomic TET2 rearrangements in MPN using fluorescence in situ hybridization as a more sensitive method for screening and identifying genomic deletions. Among 146 MPN patients, we identified two patients (1.4% who showed a common 4q24 deletion, including TET2. Our observations also indicated that the frequency of TET2 deletion is increased in patients with an abnormal karyotype (5%.Keywords: TET2, myeloproliferative neoplasms, fluorescence in situ hybridization, cytogenetics

  4. Oncogenic activation of FOXR1 by 11q23 intrachromosomal deletion-fusions in neuroblastoma

    NARCIS (Netherlands)

    Santo, E. E.; Ebus, M. E.; Koster, J.; Schulte, J. H.; Lakeman, A.; van Sluis, P.; Vermeulen, J.; Gisselsson, D.; Øra, I.; Lindner, S.; Buckley, P. G.; Stallings, R. L.; Vandesompele, J.; Eggert, A.; Caron, H. N.; Versteeg, R.; Molenaar, J. J.

    2012-01-01

    Neuroblastoma tumors frequently show loss of heterozygosity of chromosome 11q with a shortest region of overlap in the 11q23 region. These deletions are thought to cause inactivation of tumor suppressor genes leading to haploinsufficiency. Alternatively, micro-deletions could lead to gene fusion

  5. Neural correlates of reward processing in adults with 22q11 deletion syndrome

    NARCIS (Netherlands)

    van Duin, Esther D. A.; Goossens, Liesbet; Hernaus, Dennis; da Silva Alves, Fabiana; Schmitz, Nicole; Schruers, Koen; van Amelsvoort, Therese

    2016-01-01

    Background: 22q11.2 deletion syndrome (22q11DS) is caused by a microdeletion on chromosome 22q11.2 and associated with an increased risk to develop psychosis. The gene coding for catechol-O-methyl-transferase (COMT) is located at the deleted region, resulting in disrupted dopaminergic

  6. Detailed comparison between the wheat chromosome group 7 short arms and the rice chromosome arms 6S and 8L with special reference to genes involved in starch biosynthesis

    DEFF Research Database (Denmark)

    Li, Zhongyi; Huang, Bingyan; Rampling, Lynette

    2004-01-01

    Rice bacterial artificial chromosome (BAC) clones have been identified that contain sequences orthologous to each EST localized to wheat chromosome 7AS deletion stocks by Southern blot hybridization. This information has been used to relate the DNA sequence included in each wheat deletion stock t...

  7. G-banding analysis of radiation-induced chromosome damage in lymphocytes of Hiroshima atomic-bomb survivors

    International Nuclear Information System (INIS)

    Ohtaki, Kazuo; Nakashima, Eiji.

    1994-06-01

    This report describes the G-banding analysis of somatic chromosomes in lymphocytes from 63 atomic-bomb survivors in Hiroshima to determine the type and frequency of radiation-induced chromosome aberrations. Summary findings are as follows: (1) The cells with stable-type chromosome aberrations (Cs cells) predominated among the aberrant cells and showed a dose-dependent increase. All stable chromosome aberrations were classified into 9 types: reciprocal translocations (t), translocations of complex type (t-cx), insertions (ins), complex exchanges (e-cx), peri- and paracentric inversions (inv-peri, inv-para), terminal and interstitial deletions (del-ter, del-int), and unidentified rearrangements. Aberration frequencies increased with increasing dose for all aberration categories. Among the chromosome aberrations classified, reciprocal translocations predominated in all dose ranges. The frequencies of complex aberrations were low at the low-dose level but increased sharply as dose increased. (2) The linear model was fitted to test the dose-response relationship for Cs-cell frequencies. With a constant neutron relative biological effectiveness of 10, an estimated linear slope of 15.2%/Sv was obtained for Dosimetry System 1986 bone-marrow dose with an intercept of 2.9% at dose 0. The present observation confirmed a wide variability of Cs-cell frequencies among individual survivors in every dose category.(3) Statistical analysis of data on 3370 break sites showed good correlations between relative DNA content and the distribution of chromosome breaks involved in translocations, although the involvement of chromosome 1 is significantly higher, for as-yet-unknown reasons. (J.P.N.)

  8. Termination of pregnancy for fetal anomaly in a Tunisian population

    African Journals Online (AJOL)

    Chromosomal anomalies included 10 cases of trisomy 21. (62.5%), 2 cases of trisomy 18 (12.5%), 3 cases of trisomy 13 (18.7%) and 1 case of a deletion of the short arm of chromosome 18. All fetal anomalies were suspected by antenatal ultrasound, except for a case of β-thalassaemia major. The first antenatal ultrasound ...

  9. Exploration of methods to localize DNA sequences missing from c-locus deletions

    International Nuclear Information System (INIS)

    Albritton, L.M.; Russell, L.B.; Montgomery, C.S.

    1987-01-01

    The authors have earlier characterized a large number of radiation-induced mutations at the c locus (on Chromosome 7) through genetic analysis, including extensive complementation tests. Based on this work, they have postulated that many of these mutations are deletions of various lengths, overlapping at c (the marker used in the mutation-rate experiments that generated the mutants). It was possible to apportion these deletions among 13 complementation groups and to fit them to a linear map of 8 functional units. Collectively, the deletions extend from a point between tp and c to one between sh-1 and Hbb, i.e., a genetic distance of from 6 to 10 cM, corresponding to at least 10 4 Kb of DNA. This year, the authors completed a pilot study designed to explore methods for finding DNA sequences that map to the region covered by the various c-deletions. The general plan was to probe DNA with clones derived from Chromosome-7-enriched libraries or with sequences known (or suspected) to reside in Chromosome 7. Three methods were explored for deriving the c-region-deficient DNA: (a) from mouse-hamster somatic-cell hydrids retaining a deleted mouse Chromosome 7, but no homologue; (b) from F 1 hybrids of M. musculus domesticus (carrying a c-locus deletion) by M. spretus; and (c) from F 1 hybrids of M. domesticus stocks carrying complementing deletions

  10. Analysis of the Ceratitis capitata y chromosome using in situ hybridization to mitotic chromosomes

    International Nuclear Information System (INIS)

    Willhoeft, U.; Franz, G.

    1998-01-01

    In Ceratitis capitata the Y chromosome is responsible for sex-determination. We used fluorescence in situ hybridization (FISH) for cytogenetic analysis of mitotic chromosomes. FISH with the wild-type strain EgyptII and two repetitive DNA probes enabled us to differentiate between the short and the long arm of the Y chromosome and gives a much better resolution than C-banding of mitotic chromosomes. We identified the Y-chromosomal breakpoints in Y-autosome translocations using FISH. Even more complex rearrangements i.e. deletions and insertions in some translocation strains were detected by this method. A strategy for mapping the primary sex determination factor in Ceratitis capitata by FISH is presented. (author)

  11. Chromosomal changes in cultured human epithelial cells transformed by low- and high-LET radiation

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Tracy Chui-hsu; Craise, L.M; Prioleau, J.C.; Stampfer, M.R.; Rhim, J.S.

    1990-11-01

    For a better assessment of radiation risk in space, an understanding of the responses of human cells, especially the epithelial cells, to low- and high-LET radiation is essential. In our laboratory, we have successfully developed techniques to study the neoplastic transformation of two human epithelial cell systems by ionizing radiation. These cell systems are human mammary epithelial cells (H184B5) and human epidermal keratinocytes (HEK). Both cell lines are immortal, anchorage dependent for growth, and nontumorigenic in athymic nude nice. Neoplastic transformation was achieved by irradiation cells successively. Our results showed that radiogenic cell transformation is a multistep process and that a single exposure of ionizing radiation can cause only one step of transformation. It requires, therefore, multihits to make human epithelial cells fully tumorigenic. Using a simple karyotyping method, we did chromosome analysis with cells cloned at various stages of transformation. We found no consistent large terminal deletion of chromosomes in radiation-induced transformants. Some changes of total number of chromosomes, however, were observed in the transformed cells. These transformants provide an unique opportunity for further genetic studies at a molecular level. 15 refs., 9 figs., 2 tabs.

  12. Chromosomal changes in cultured human epithelial cells transformed by low- and high-LET radiation

    International Nuclear Information System (INIS)

    Yang, Tracy Chui-hsu; Craise, L.M; Prioleau, J.C.; Stampfer, M.R.; Rhim, J.S.

    1990-11-01

    For a better assessment of radiation risk in space, an understanding of the responses of human cells, especially the epithelial cells, to low- and high-LET radiation is essential. In our laboratory, we have successfully developed techniques to study the neoplastic transformation of two human epithelial cell systems by ionizing radiation. These cell systems are human mammary epithelial cells (H184B5) and human epidermal keratinocytes (HEK). Both cell lines are immortal, anchorage dependent for growth, and nontumorigenic in athymic nude nice. Neoplastic transformation was achieved by irradiation cells successively. Our results showed that radiogenic cell transformation is a multistep process and that a single exposure of ionizing radiation can cause only one step of transformation. It requires, therefore, multihits to make human epithelial cells fully tumorigenic. Using a simple karyotyping method, we did chromosome analysis with cells cloned at various stages of transformation. We found no consistent large terminal deletion of chromosomes in radiation-induced transformants. Some changes of total number of chromosomes, however, were observed in the transformed cells. These transformants provide an unique opportunity for further genetic studies at a molecular level. 15 refs., 9 figs., 2 tabs

  13. Chromosomal Abnormalities Associated With Omphalocele

    Directory of Open Access Journals (Sweden)

    Chih-Ping Chen

    2007-03-01

    Full Text Available Fetuses with omphalocele have an increased risk for chromosomal abnormalities. The risk varies with maternal age, gestational age at diagnosis, association with umbilical cord cysts, complexity of associated anomalies, and the contents of omphalocele. There is considerable evidence that genetics contributes to the etiology of omphalocele. This article provides an overview of chromosomal abnormalities associated with omphalocele and a comprehensive review of associated full aneuploidy such as trisomy 18, trisomy 13, triploidy, trisomy 21, 45,X, 47,XXY, and 47,XXX, partial aneuploidy such as dup(3q, dup(11p, inv(11, dup(1q, del(1q, dup(4q, dup(5p, dup(6q, del(9p, dup(15q, dup(17q, Pallister-Killian syndrome with mosaic tetrasomy 12p and Miller-Dieker lissencephaly syndrome with deletion of 17p13.3, and uniparental disomy (UPD such as UPD 11 and UPD 14. Omphalocele is a prominent marker for chromosomal abnormalities. Perinatal identification of omphalocele should alert chromosomal abnormalities and familial unbalanced translocations, and prompt thorough cytogenetic investigations and genetic counseling.

  14. Establishment of a mouse model with misregulated chromosome condensation due to defective Mcph1 function.

    Directory of Open Access Journals (Sweden)

    Marc Trimborn

    Full Text Available Mutations in the human gene MCPH1 cause primary microcephaly associated with a unique cellular phenotype with premature chromosome condensation (PCC in early G2 phase and delayed decondensation post-mitosis (PCC syndrome. The gene encodes the BRCT-domain containing protein microcephalin/BRIT1. Apart from its role in the regulation of chromosome condensation, the protein is involved in the cellular response to DNA damage. We report here on the first mouse model of impaired Mcph1-function. The model was established based on an embryonic stem cell line from BayGenomics (RR0608 containing a gene trap in intron 12 of the Mcph1 gene deleting the C-terminal BRCT-domain of the protein. Although residual wild type allele can be detected by quantitative real-time PCR cell cultures generated from mouse tissues bearing the homozygous gene trap mutation display the cellular phenotype of misregulated chromosome condensation that is characteristic for the human disorder, confirming defective Mcph1 function due to the gene trap mutation. While surprisingly the DNA damage response (formation of repair foci, chromosomal breakage, and G2/M checkpoint function after irradiation appears to be largely normal in cell cultures derived from Mcph1(gt/gt mice, the overall survival rates of the Mcph1(gt/gt animals are significantly reduced compared to wild type and heterozygous mice. However, we could not detect clear signs of premature malignant disease development due to the perturbed Mcph1 function. Moreover, the animals show no obvious physical phenotype and no reduced fertility. Body and brain size are within the range of wild type controls. Gene expression on RNA and protein level did not reveal any specific pattern of differentially regulated genes. To the best of our knowledge this represents the first mammalian transgenic model displaying a defect in mitotic chromosome condensation and is also the first mouse model for impaired Mcph1-function.

  15. Establishment of a mouse model with misregulated chromosome condensation due to defective Mcph1 function.

    Science.gov (United States)

    Trimborn, Marc; Ghani, Mahdi; Walther, Diego J; Dopatka, Monika; Dutrannoy, Véronique; Busche, Andreas; Meyer, Franziska; Nowak, Stefanie; Nowak, Jean; Zabel, Claus; Klose, Joachim; Esquitino, Veronica; Garshasbi, Masoud; Kuss, Andreas W; Ropers, Hans-Hilger; Mueller, Susanne; Poehlmann, Charlotte; Gavvovidis, Ioannis; Schindler, Detlev; Sperling, Karl; Neitzel, Heidemarie

    2010-02-16

    Mutations in the human gene MCPH1 cause primary microcephaly associated with a unique cellular phenotype with premature chromosome condensation (PCC) in early G2 phase and delayed decondensation post-mitosis (PCC syndrome). The gene encodes the BRCT-domain containing protein microcephalin/BRIT1. Apart from its role in the regulation of chromosome condensation, the protein is involved in the cellular response to DNA damage. We report here on the first mouse model of impaired Mcph1-function. The model was established based on an embryonic stem cell line from BayGenomics (RR0608) containing a gene trap in intron 12 of the Mcph1 gene deleting the C-terminal BRCT-domain of the protein. Although residual wild type allele can be detected by quantitative real-time PCR cell cultures generated from mouse tissues bearing the homozygous gene trap mutation display the cellular phenotype of misregulated chromosome condensation that is characteristic for the human disorder, confirming defective Mcph1 function due to the gene trap mutation. While surprisingly the DNA damage response (formation of repair foci, chromosomal breakage, and G2/M checkpoint function after irradiation) appears to be largely normal in cell cultures derived from Mcph1(gt/gt) mice, the overall survival rates of the Mcph1(gt/gt) animals are significantly reduced compared to wild type and heterozygous mice. However, we could not detect clear signs of premature malignant disease development due to the perturbed Mcph1 function. Moreover, the animals show no obvious physical phenotype and no reduced fertility. Body and brain size are within the range of wild type controls. Gene expression on RNA and protein level did not reveal any specific pattern of differentially regulated genes. To the best of our knowledge this represents the first mammalian transgenic model displaying a defect in mitotic chromosome condensation and is also the first mouse model for impaired Mcph1-function.

  16. A case of 18p deletion syndrome after blepharoplasty

    Directory of Open Access Journals (Sweden)

    Xu LJ

    2017-01-01

    Full Text Available Li-juan Xu,1 Lv-xian Wu,2 Qing Yuan,3 Zhi-gang Lv,1 Xue-yan Jiang2 1Department of Opthalmology, 2Department of Pediatrics, 3Department of Clinical Laboratory, Jinhua Central Hospital, Jinhua, Zhejiang, People’s Republic of China Objective: The deletion of the short arm of chromosome 18 is thought to be one of the rare chromosomal aberrations. Here, we report a case to review this disease.Case report: The proband is a five-and-a-half-year-old girl who has had phenotypes manifested mainly by ptosis, broad face, broad neck with low posterior hairline, mental retardation, short stature, and other malformations. Chromosomal analysis for her mother showed a normal karyotype. Her father and younger brother were phenotypically normal.Result: Phenotypical features were quite similar throughout other cases and in accordance with the usual phenotype of del(18p suggested within the same cases and among the del(18p cases described. She underwent blepharoplasty, which improved her appearance.Conclusion: 18p deletion syndrome is diagnosed by gene analysis. Plastic surgeries for improving the appearance might be an option for these patients. Keywords: chromosome, deletion, blepharoplasty

  17. Attenuation of G{sub 2} cell cycle checkpoint control in human tumor cells is associated with increased frequencies of unrejoined chromosome breaks but not increased cytotoxicity following radiation exposure

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, J.L.; Cowan, J.; Grdina, D.J. [and others

    1997-08-01

    The contribution of G{sub 2} cell cycle checkpoint control to ionizing radiation responses was examined in ten human tumor cell lines. Most of the delay in cell cycle progression seen in the first cell cycle following radiation exposure was due to blocks in G{sub 2} and there were large cell line-to-cell line variations in the length of the G{sub 2} block. Longer delays were seen in cell lines that had mutations in p53. There was a highly significant inverse correlation between the length of G{sub 2} delay and the frequency of unrejoined chromosome breaks seen as chromosome terminal deletions in mitosis, and observation that supports the hypothesis that the signal for G{sub 2} delay in mammalian cells is an unrejoined chromosome break. There were also an inverse correlation between the length of G{sub 2} delay and the level of chromosome aneuploidy in each cell line, suggesting that the G{sub 2} and mitotic spindel checkpoints may be linked to each other. Attenuation in G{sub 2} checkpoint control was not associated with alterations in either the frequency of induced chromosome rearrangements or cell survival following radiation exposure suggesting that chromosome rearrangements, the major radiation-induced lethal lesion in tumor cells, form before cells enters G{sub 2}. Thus, agents that act solely to override G{sub 2} arrest should produce little radiosensitization in human tumor cells.

  18. Conditional deletion of Pten causes bronchiolar hyperplasia.

    Science.gov (United States)

    Davé, Vrushank; Wert, Susan E; Tanner, Tiffany; Thitoff, Angela R; Loudy, Dave E; Whitsett, Jeffrey A

    2008-03-01

    Tumor suppressor phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is a lipid phosphatase that regulates multiple cellular processes including cell polarity, migration, proliferation, and carcinogenesis. In this work, we demonstrate that conditional deletion of Pten (Pten(Delta/Delta)) in the respiratory epithelial cells of the developing mouse lung caused epithelial cell proliferation and hyperplasia as early as 4 to 6 weeks of age. While bronchiolar cell differentiation was normal, as indicated by beta-tubulin and FOXJ1 expression in ciliated cells and by CCSP expression in nonciliated cells, cell proliferation (detected by expression of Ki-67, phospho-histone-H3, and cyclin D1) was increased and associated with activation of the AKT/mTOR survival pathway. Deletion of Pten caused papillary epithelial hyperplasia characterized by a hypercellular epithelium lining papillae with fibrovascular cores that protruded into the airway lumens. Cell polarity, as assessed by subcellular localization of cadherin, beta-catenin, and zonula occludens-1, was unaltered. PTEN is required for regulation of epithelial cell proliferation in the lung and for the maintenance of the normal simple columnar epithelium characteristics of bronchi and bronchioles.

  19. Concurrent deletion of 16q23 and PTEN is an independent prognostic feature in prostate cancer.

    Science.gov (United States)

    Kluth, Martina; Runte, Frederic; Barow, Philipp; Omari, Jazan; Abdelaziz, Zaid M; Paustian, Lisa; Steurer, Stefan; Christina Tsourlakis, Maria; Fisch, Margit; Graefen, Markus; Tennstedt, Pierre; Huland, Hartwig; Michl, Uwe; Minner, Sarah; Sauter, Guido; Simon, Ronald; Adam, Meike; Schlomm, Thorsten

    2015-11-15

    The deletion of 16q23-q24 belongs to the most frequent chromosomal changes in prostate cancer, but the clinical consequences of this alteration have not been studied in detail. We performed fluorescence in situ hybridization analysis using a 16q23 probe in more than 7,400 prostate cancers with clinical follow-up data assembled in a tissue microarray format. Chromosome 16q deletion was found in 21% of cancers, and was linked to advanced tumor stage, high Gleason grade, accelerated cell proliferation, the presence of lymph node metastases (p Deletion was more frequent in ERG fusion-positive (27%) as compared to ERG fusion-negative cancers (16%, p deletions including phosphatase and tensin homolog (PTEN) (p deletion of 16q was linked to early biochemical recurrence independently from the ERG status (p deletion of 16q alone. Multivariate modeling revealed that the prognostic value of 16q/PTEN deletion patterns was independent from the established prognostic factors. In summary, the results of our study demonstrate that the deletion of 16q and PTEN cooperatively drives prostate cancer progression, and suggests that deletion analysis of 16q and PTEN could be of important clinical value particularly for preoperative risk assessment of the clinically most challenging group of low- and intermediated grade prostate cancers. © 2015 UICC.

  20. Genetics Home Reference: 22q13.3 deletion syndrome

    Science.gov (United States)

    ... 5 links) Diagnostic Tests Drug Therapy Genetic Counseling Palliative Care Surgery and Rehabilitation Related Information How are genetic ... Veltman JA, de Vries BB. Molecular characterisation of patients with subtelomeric 22q ... L, Enns GM, Hoyme HE. Terminal 22q deletion syndrome: a newly recognized cause of ...

  1. The entire β-globin gene cluster is deleted in a form of τδβ-thalassemia.

    NARCIS (Netherlands)

    E.R. Fearon; H.H.Jr. Kazazian; P.G. Waber (Pamela); J.I. Lee (Joseph); S.E. Antonarakis; S.H. Orkin (Stuart); E.F. Vanin; P.S. Henthorn; F.G. Grosveld (Frank); A.F. Scott; G.R. Buchanan

    1983-01-01

    textabstractWe have used restriction endonuclease mapping to study a deletion involving the beta-globin gene cluster in a Mexican-American family with gamma delta beta-thalassemia. Analysis of DNA polymorphisms demonstrated deletion of the beta-globin gene from the affected chromosome. Using a DNA

  2. Refinement of genotype-phenotype correlation in 18 patients carrying a 1q24q25 deletion

    DEFF Research Database (Denmark)

    Chatron, Nicolas; Haddad, Véronique; Andrieux, Joris

    2015-01-01

    of different sizes (490 kb to 20.95 Mb) localized within chromosome bands 1q23.3-q31.2 (chr1:160797550-192912120, hg19). The 490 kb deletion is the smallest deletion reported to date associated with this phenotype. We delineated three regions that may contribute to the phenotype: a proximal one (chr1...

  3. Cerebellar and brainstem hypoplasia in a child with a partial monosomy for the short arm of chromosome 5 and partial trisomy for the short arm of chromosome 10

    NARCIS (Netherlands)

    Arts, W F M; Hofstee, Y; Drejer, G F; Beverstock, G C; Oosterwijk, J C

    A child with hypoplasia of the cerebellum and brainstem in association with an unbalanced translocation, resulting in a partial deletion of the short arm of chromosome 5 and a partial trisomy of the short arm of chromosome 10, is described. A balanced translocation was present in his mother and

  4. Detection of genomic deletions in rice using oligonucleotide microarrays

    Directory of Open Access Journals (Sweden)

    Bordeos Alicia

    2009-03-01

    Full Text Available Abstract Background The induction of genomic deletions by physical- or chemical- agents is an easy and inexpensive means to generate a genome-saturating collection of mutations. Different mutagens can be selected to ensure a mutant collection with a range of deletion sizes. This would allow identification of mutations in single genes or, alternatively, a deleted group of genes that might collectively govern a trait (e.g., quantitative trait loci, QTL. However, deletion mutants have not been widely used in functional genomics, because the mutated genes are not tagged and therefore, difficult to identify. Here, we present a microarray-based approach to identify deleted genomic regions in rice mutants selected from a large collection generated by gamma ray or fast neutron treatment. Our study focuses not only on the utility of this method for forward genetics, but also its potential as a reverse genetics tool through accumulation of hybridization data for a collection of deletion mutants harboring multiple genetic lesions. Results We demonstrate that hybridization of labeled genomic DNA directly onto the Affymetrix Rice GeneChip® allows rapid localization of deleted regions in rice mutants. Deletions ranged in size from one gene model to ~500 kb and were predicted on all 12 rice chromosomes. The utility of the technique as a tool in forward genetics was demonstrated in combination with an allelic series of mutants to rapidly narrow the genomic region, and eventually identify a candidate gene responsible for a lesion mimic phenotype. Finally, the positions of mutations in 14 mutants were aligned onto the rice pseudomolecules in a user-friendly genome browser to allow for rapid identification of untagged mutations http://irfgc.irri.org/cgi-bin/gbrowse/IR64_deletion_mutants/. Conclusion We demonstrate the utility of oligonucleotide arrays to discover deleted genes in rice. The density and distribution of deletions suggests the feasibility of a

  5. Targeted tandem duplication of a large chromosomal segment in Aspergillus oryzae.

    Science.gov (United States)

    Takahashi, Tadashi; Sato, Atsushi; Ogawa, Masahiro; Hanya, Yoshiki; Oguma, Tetsuya

    2014-08-01

    We describe here the first successful construction of a targeted tandem duplication of a large chromosomal segment in Aspergillus oryzae. The targeted tandem chromosomal duplication was achieved by using strains that had a 5'-deleted pyrG upstream of the region targeted for tandem chromosomal duplication and a 3'-deleted pyrG downstream of the target region. Consequently,strains bearing a 210-kb targeted tandem chromosomal duplication near the centromeric region of chromosome 8 and strains bearing a targeted tandem chromosomal duplication of a 700-kb region of chromosome 2 were successfully constructed. The strains bearing the tandem chromosomal duplication were efficiently obtained from the regenerated protoplast of the parental strains. However, the generation of the chromosomal duplication did not depend on the introduction of double-stranded breaks(DSBs) by I-SceI. The chromosomal duplications of these strains were stably maintained after five generations of culture under nonselective conditions. The strains bearing the tandem chromosomal duplication in the 700-kb region of chromosome 2 showed highly increased protease activity in solid-state culture, indicating that the duplication of large chromosomal segments could be a useful new breeding technology and gene analysis method.

  6. The prevalence of Y chromosome microdeletions in Pakistani infertile men

    Directory of Open Access Journals (Sweden)

    Rubina Tabassum Siddiqui

    2013-01-01

    Full Text Available Background: Microdeletions of the azoospermia factor locus of the long arm of Y chromosome are an etiological factor of severe oligozoospermia or azoospermia. Objective: The aim of this study was to investigate the prevalence of Y-chromosome microdeletions in AZF region and their role in infertility in Pakistani population. Materials and Methods: The type of deletions in AZF locus were detected in infertile men (n=113 and the association of Y chromosome microdeletions with male infertility was assessed by including men (50 with normal karyotype and having children. Y chromosome microdeletions were detected by multiplex PCR using 10 sequence tagged sites namely sY81, sY130, sY141, sY142, sY155, sY157, sY160, sY182, sY231, and sY202 that covered all three regions of AZF. Results: Individuals with severe oligozoospermia showed 2.86% deletion frequency in AZFc region as compared to azoospermic males (5.5%. Conclusion: The results of our study showed that deletions in Y chromosome are not playing major part in male infertility. Moreover, multiplex-PCR strategy might preferably be employed for the detection of Y chromosome microdeletions allied to male infertility.

  7. Cortical Development Requires Mesodermal Expression of Tbx1, a Gene Haploinsufficient in 22q11.2 Deletion Syndrome.

    Science.gov (United States)

    Flore, Gemma; Cioffi, Sara; Bilio, Marchesa; Illingworth, Elizabeth

    2017-03-01

    In mammals, proper temporal control of neurogenesis and neural migration during embryonic development ensures correct formation of the cerebral cortex. Changes in the distribution of cortical projection neurons and interneurons are associated with behavioral disorders and psychiatric diseases, including schizophrenia and autism, suggesting that disrupted cortical connectivity contributes to the brain pathology. TBX1 is the major candidate gene for 22q11.2 deletion syndrome (22q11.2DS), a chromosomal deletion disorder characterized by a greatly increased risk for schizophrenia. We have previously shown that Tbx1 heterozygous mice have reduced prepulse inhibition, a behavioral abnormality that is associated with 22q11.2DS and nonsyndromic schizophrenia. Here, we show that loss of Tbx1 disrupts corticogenesis in mice by promoting premature neuronal differentiation in the medio-lateral embryonic cortex, which gives rise to the somatosensory cortex (S1). In addition, we found altered polarity in both radially migrating excitatory neurons and tangentially migrating inhibitory interneurons. Together, these abnormalities lead to altered lamination in the S1 at the terminal stages of corticogenesis in Tbx1 null mice and similar anomalies in Tbx1 heterozygous adult mice. Finally, we show that mesoderm-specific inactivation of Tbx1 is sufficient to recapitulate the brain phenotype indicating that Tbx1 exerts a cell nonautonomous role in cortical development from the mesoderm. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  8. Deletion Mutagenesis and Identification of Causative Mutations in Maize.

    Science.gov (United States)

    Jia, Shangang; Li, Aixia; Zhang, Chi; Holding, David

    2018-01-01

    We describe a method for gamma-irradiation of mature maize seeds to generate mutants with opaque endosperm and reduced kernel fill phenotypes. We also describe methods for mapping mutants and identifying causal gene mutations. Using this method, a population of 1788M2 families and 47 Mo17 × F2s showing stable, segregating, and viable kernel phenotypes was developed. For molecular characterization of the mutants, we utilized a novel functional genomics platform that combines separate Bulked Segregant RNA and exome sequencing data sets (BSREx-seq) to map causative mutations and identify candidate genes within mapping intervals. We also describe the use of exome capture sequencing of F2 mutant and normal pools to perform mapping and candidate gene identification without the need for separate RNA-seq (BSEx-seq). To exemplify the utility of the deletion mutants for functional genomics and provide proof-of-concept for the bioinformatics platform, we summarize the identification of the causative deletion in two mutants. Mutant 937, which was characterized by BSREx-seq, harbors a 6203-bp in-frame deletion covering six exons within the Opaque-1 gene on chromosome 4. Preliminary investigation of opaque mutant 1486 with BSEx-seq shows a tight mapping interval and associated deletion on chromosome 10.

  9. Chromosomal abnormalities in a psychiatric population

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, K.E.; Lubetsky, M.J.; Wenger, S.L.; Steele, M.W. [Univ. of Pittsburgh Medical Center, PA (United States)

    1995-02-27

    Over a 3.5 year period of time, 345 patients hospitalized for psychiatric problems were evaluated cytogenetically. The patient population included 76% males and 94% children with a mean age of 12 years. The criteria for testing was an undiagnosed etiology for mental retardation and/or autism. Cytogenetic studies identified 11, or 3%, with abnormal karyotypes, including 4 fragile X positive individuals (2 males, 2 females), and 8 with chromosomal aneuploidy, rearrangements, or deletions. While individuals with chromosomal abnormalities do not demonstrate specific behavioral, psychiatric, or developmental problems relative to other psychiatric patients, our results demonstrate the need for an increased awareness to order chromosomal analysis and fragile X testing in those individuals who have combinations of behavioral/psychiatric, learning, communication, or cognitive disturbance. 5 refs., 1 fig., 2 tabs.

  10. The complete sequence of human chromosome 5

    Energy Technology Data Exchange (ETDEWEB)

    Schmutz, Jeremy; Martin, Joel; Terry, Astrid; Couronne, Olivier; Grimwood, Jane; Lowry, State; Gordon, Laurie A.; Scott, Duncan; Xie, Gary; Huang, Wayne; Hellsten, Uffe; Tran-Gyamfi, Mary; She, Xinwei; Prabhakar, Shyam; Aerts, Andrea; Altherr, Michael; Bajorek, Eva; Black, Stacey; Branscomb, Elbert; Caoile, Chenier; Challacombe, Jean F.; Chan, Yee Man; Denys, Mirian; Detter, Chris; Escobar, Julio; Flowers, Dave; Fotopulos, Dea; Glavina, Tijana; Gomez, Maria; Gonzales, Eidelyn; Goodstenin, David; Grigoriev, Igor; Groza, Matthew; Hammon, Nancy; Hawkins, Trevor; Haydu, Lauren; Israni, Sanjay; Jett, Jamie; Kadner, Kristen; Kimbal, Heather; Kobayashi, Arthur; Lopez, Frederick; Lou, Yunian; Martinez, Diego; Medina, Catherine; Morgan, Jenna; Nandkeshwar, Richard; Noonan, James P.; Pitluck, Sam; Pollard, Martin; Predki, Paul; Priest, James; Ramirez, Lucia; Rash, Sam; Retterer, James; Rodriguez, Alex; Rogers, Stephanie; Salamov, Asaf; Salazar, Angelica; Thayer, Nina; Tice, Hope; Tsai, Ming; Ustaszewska, Anna; Vo, Nu; Wheeler, Jeremy; Wu, Kevin; Yang, Joan; Dickson, Mark; Cheng, Jan-Fang; Eichler, Evan E.; Olsen, Anne; Pennacchio, Len A.; Rokhsar, Daniel S.; Richardson, Paul; Lucas, Susan M.; Myers, Richard M.; Rubin, Edward M.

    2004-04-15

    Chromosome 5 is one of the largest human chromosomes yet has one of the lowest gene densities. This is partially explained by numerous gene-poor regions that display a remarkable degree of noncoding and syntenic conservation with non-mammalian vertebrates, suggesting they are functionally constrained. In total, we compiled 177.7 million base pairs of highly accurate finished sequence containing 923 manually curated protein-encoding genes including the protocadherin and interleukin gene families and the first complete versions of each of the large chromosome 5 specific internal duplications. These duplications are very recent evolutionary events and play a likely mechanistic role, since deletions of these regions are the cause of debilitating disorders including spinal muscular atrophy (SMA).

  11. Clinical spectrum associated with recurrent genomic rearrangements in chromosome 17q12

    OpenAIRE

    Nagamani, Sandesh Chakravarthy Sreenath; Erez, Ayelet; Shen, Joseph; Li, Chumei; Roeder, Elizabeth; Cox, Sarah; Karaviti, Lefkothea; Pearson, Margret; Kang, Sung-Hae L; Sahoo, Trilochan; Lalani, Seema R; Stankiewicz, Pawel; Sutton, V Reid; Cheung, Sau Wai

    2009-01-01

    Deletions in chromosome 17q12 encompassing the HNF1β gene cause cystic renal disease and maturity onset diabetes of the young, and have been recently described as the first recurrent genomic deletion leading to diabetes. Earlier reports of patients with this microdeletion syndrome have suggested an absence of cognitive impairment, differentiating it from most other contiguous gene deletion syndromes. The reciprocal duplication of 17q12 is rare and has been hypothesized to be associated with a...

  12. Mitotic chromosome structure

    International Nuclear Information System (INIS)

    Heermann, Dieter W.

    2012-01-01

    Mounting evidence is compiling linking the physical organizational structure of chromosomes and the nuclear structure to biological function. At the base of the physical organizational structure of both is the concept of loop formation. This implies that physical proximity within chromosomes is provided for otherwise distal genomic regions and thus hierarchically organizing the chromosomes. Together with entropy many experimental observations can be explained with these two concepts. Among the observations that can be explained are the measured physical extent of the chromosomes, their shape, mechanical behavior, the segregation into territories (chromosomal and territories within chromosomes), the results from chromosome conformation capture experiments, as well as linking gene expression to structural organization.

  13. Mitotic chromosome structure

    Energy Technology Data Exchange (ETDEWEB)

    Heermann, Dieter W., E-mail: heermann@tphys.uni-heidelberg.de

    2012-07-15

    Mounting evidence is compiling linking the physical organizational structure of chromosomes and the nuclear structure to biological function. At the base of the physical organizational structure of both is the concept of loop formation. This implies that physical proximity within chromosomes is provided for otherwise distal genomic regions and thus hierarchically organizing the chromosomes. Together with entropy many experimental observations can be explained with these two concepts. Among the observations that can be explained are the measured physical extent of the chromosomes, their shape, mechanical behavior, the segregation into territories (chromosomal and territories within chromosomes), the results from chromosome conformation capture experiments, as well as linking gene expression to structural organization.

  14. [Analysis of genetics mechanism for the phenotypic diversity in a patient carrying a rare ring chromosome 9].

    Science.gov (United States)

    Qin, Shengfang; Wang, Xueyan; Li, Yunxing; Wei, Ping; Chen, Chun; Zeng, Lan

    2016-02-01

    To explore the genetics mechanism for the phenotypic variability in a patient carrying a rare ring chromosome 9. The karyotype of the patient was analyzed with cytogenetics method. Presence of sex chromosome was confirmed with fluorescence in situ hybridization. The SRY gene was subjected to PCR amplification and direct sequencing. Potential deletion and duplication were detected with array-based comparative genomic hybridization (array-CGH). The karyotype of the patient has comprised 6 types of cell lines containing a ring chromosome 9. The SRY gene sequence was normal. By array-CGH, the patient has carried a hemizygous deletion at 9p24.3-p23 (174 201-9 721 761) encompassing 30 genes from Online Mendelian Inheritance in Man. The phenotypic variability of the 9p deletion syndrome in conjunct with ring chromosome 9 may be attributable to multiple factors including loss of chromosomal material, insufficient dosage of genes, instability of ring chromosome, and pattern of inheritance.

  15. An Fgf8 Mouse Mutant Phenocopies Human 22q11 Deletion Syndrome

    OpenAIRE

    Frank, Deborah U.; Fotheringham, Lori K.; Brewer, Judson A.; Muglia, Louis J.; Tristani-Firouzi, Martin; Capecchi, Mario R.; Moon, Anne M.

    2002-01-01

    Deletion of chromosome 22q11, the most common microdeletion detected in humans, is associated with a life-threatening array of birth defects. Although 90% of affected individuals share the same three megabase deletion, their phenotype is highly variable and includes craniofacial and cardiovascular anomalies, hypoplasia or aplasia of the thymus with associated deficiency of T cells, hypocalcemia with hypoplasia or aplasia of the parathyroids, and a variety of central nervous system abnormaliti...

  16. The contribution of p53 and Y chromosome long arm genes to regulation of apoptosis in mouse testis.

    Science.gov (United States)

    Lech, Tomasz; Styrna, Józefa; Kotarska, Katarzyna

    2018-03-01

    Apoptosis of excessive or defective germ cells is a natural process occurring in mammalian testes. Tumour suppressor protein p53 is involved in this process both in developing and adult male gonads. Its contribution to testicular physiology is known to be modified by genetic background. The aim of this study was to evaluate the combined influence of the p53 and Y chromosome long arm genes on male germ cell apoptosis. Knockout of the transformation related protein 53 (Trp53) gene was introduced into congenic strains: B10.BR (intact Y chromosome) and B10.BR-Ydel (Y chromosome with a deletion in the long arm). The level of apoptosis in the testes of 19-day-old and 3-month-old male mice was determined using the terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate in situ nick-end labelling (TUNEL) method. The study revealed that although p53 is involved in germ cell apoptosis in peripubertal testes, this process can also be mediated by p53-independent mechanisms. However, activation of p53-independent apoptotic pathways in the absence of the p53 protein requires engagement of the multicopy Yq genes and was not observed in gonads of B10.BR-Ydel-p53-/- males. The role of Yq genes in the regulation of testicular apoptosis seems to be restricted to the initial wave of spermatogenesis and is not evident in adult gonads. The study confirmed, instead, that p53 does participate in spontaneous apoptosis in mature testes.

  17. Roles of the Y chromosome genes in human cancers

    Directory of Open Access Journals (Sweden)

    Tatsuo Kido

    2015-06-01

    Full Text Available Male and female differ genetically by their respective sex chromosome composition, that is, XY as male and XX as female. Although both X and Y chromosomes evolved from the same ancestor pair of autosomes, the Y chromosome harbors male-specific genes, which play pivotal roles in male sex determination, germ cell differentiation, and masculinization of various tissues. Deletions or translocation of the sex-determining gene, SRY, from the Y chromosome causes disorders of sex development (previously termed as an intersex condition with dysgenic gonads. Failure of gonadal development results not only in infertility, but also in increased risks of germ cell tumor (GCT, such as gonadoblastoma and various types of testicular GCT. Recent studies demonstrate that either loss of Y chromosome or ectopic expression of Y chromosome genes is closely associated with various male-biased diseases, including selected somatic cancers. These observations suggest that the Y-linked genes are involved in male health and diseases in more frequently than expected. Although only a small number of protein-coding genes are present in the male-specific region of Y chromosome, the impacts of Y chromosome genes on human diseases are still largely unknown, due to lack of in vivo models and differences between the Y chromosomes of human and rodents. In this review, we highlight the involvement of selected Y chromosome genes in cancer development in men.

  18. 35-Year Follow-Up of a Case of Ring Chromosome 2

    DEFF Research Database (Denmark)

    Sarri, Catherine; Douzgou, Sofia; Kontos, Haris

    2015-01-01

    Côté et al. [1981] suggested that ring chromosomes with or without deletions share a common pattern of phenotypic anomalies, regardless of which chromosome is involved. The phenotype of this 'general ring syndrome' consists of growth failure without malformations, few or no minor anomalies, and m...

  19. Microdeletion of Y‑chromosome and Their High Impact on Male ...

    African Journals Online (AJOL)

    crossing over (meiosis). The region outside PARs does not play a significant role in linkage and known as the nonrecombining region of the Y‑chromosome. However, molecular deletion studies of Y‑chromosomes (Yq11.21,. Yq11.22, and Yq11.23) are based on sequence tagged sites have identified the loci responsible for ...

  20. Chromosomal aberrations in the bone marrow cells of mice induced by accelerated {sup 12}C{sup 6+} ions

    Energy Technology Data Exchange (ETDEWEB)

    Ma Xiaofei [Department of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000 (China); Key Laboratory of Heavy Ion Radiation Medicine of Chinese Academy of Sciences, Lanzhou 730000 (China); Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Lanzhou 730000 (China); Graduate University of Chinese Academy of Sciences, Beijing 100049 (China); Zhang Hong, E-mail: zhangh@impac.ac.cn [Department of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Key Laboratory of Heavy Ion Radiation Medicine of Chinese Academy of Sciences, Lanzhou 730000 (China); Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Lanzhou 730000 (China); Wang Zhenhua; Min Xianhua; Liu Yang; Wu Zhenhua [Department of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Key Laboratory of Heavy Ion Radiation Medicine of Chinese Academy of Sciences, Lanzhou 730000 (China); Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Lanzhou 730000 (China); Sun Chao [Department of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Key Laboratory of Heavy Ion Radiation Medicine of Chinese Academy of Sciences, Lanzhou 730000 (China); Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Lanzhou 730000 (China); Graduate University of Chinese Academy of Sciences, Beijing 100049 (China); Hu Bitao [School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000 (China)

    2011-11-01

    Highlights: {yields} 220 MeV/u {sup 12}C{sup 6+} ions is 1.5 times more effective than X-rays in inducing chromosomal aberration in bone marrow cell. {yields} The ratio of dose averaged liner energy transfer is approach the RBE. {yields} {sup 12}C{sup 6+} ions could induce severe mitosis delay. {yields} The cell cycle is not recovered 72 h following irradiation. - Abstract: The whole bodies of 6-week-old male Kun-Ming mice were exposed to different doses of {sup 12}C{sup 6+} ions or X-rays. Chromosomal aberrations of the bone marrow (gaps, terminal deletions and breaks, fragments, inter-chromosomal fusions and sister-chromatid union) were scored in metaphase 9 h after exposure, corresponding to cells exposed in the G{sub 2}-phase of the first mitosis cycle. Dose-response relationships for the frequency of chromosomal aberrations were plotted both by linear and linear-quadratic equations. The data showed that there was a dose-related increase in the frequency of chromosomal aberrations in all treated groups compared to controls. Linear-quadratic equations were a good fit for both radiation types. The compound theory of dual radiation action was applied to decipher the bigger curvature (D{sup 2}) of the dose-response curves of X-rays compared to those of {sup 12}C{sup 6+} ions. Different distributions of the five types of aberrations and different degrees of homogeneity were found between {sup 12}C{sup 6+} ion and X-ray irradiation and the possible underlying mechanism for these phenomena were analyzed according to the differences in the spatial energy deposition of both types of radiation.

  1. Chromosome 22q11 in a Xhosa schizophrenia population | Koen ...

    African Journals Online (AJOL)

    Chromosome 22q11 aberrations substantially increase the risk for developing schizophrenia. Although micro-deletions in this region have been extensively investigated in different populations across the world, little is known of their prevalence in African subjects with schizophrenia. We screened 110 African ...

  2. Genetic Analysis of a Mammalian Chromosomal Origin of Replication

    National Research Council Canada - National Science Library

    Altman, Amy

    2002-01-01

    .... We have shown that a 5.8 kb DNA fragment containing the initiation region (IR) DHFR ori-beta is active at ectopic chromosomal locations in hamster cells and that deletion of three specific elements in ori-beta reduced initiation activity...

  3. SnoRNA Snord116 (Pwcr1/MBII-85 deletion causes growth deficiency and hyperphagia in mice.

    Directory of Open Access Journals (Sweden)

    Feng Ding

    Full Text Available Prader-Willi syndrome (PWS is the leading genetic cause of obesity. After initial severe hypotonia, PWS children become hyperphagic and morbidly obese, if intake is not restricted. Short stature with abnormal growth hormone secretion, hypogonadism, cognitive impairment, anxiety and behavior problems are other features. PWS is caused by lack of expression of imprinted genes in a approximately 4 mb region of chromosome band 15q11.2. Our previous translocation studies predicted a major role for the C/D box small nucleolar RNA cluster SNORD116 (PWCR1/HBII-85 in PWS. To test this hypothesis, we created a approximately 150 kb deletion of the > 40 copies of Snord116 (Pwcr1/MBII-85 in C57BL/6 mice. Snord116del mice with paternally derived deletion lack expression of this snoRNA. They have early-onset postnatal growth deficiency, but normal fertility and lifespan. While pituitary structure and somatotrophs are normal, liver Igf1 mRNA is decreased. In cognitive and behavior tests, Snord116del mice are deficient in motor learning and have increased anxiety. Around three months of age, they develop hyperphagia, but stay lean on regular and high-fat diet. On reduced caloric intake, Snord116del mice maintain their weight better than wild-type littermates, excluding increased energy requirement as a cause of hyperphagia. Normal compensatory feeding after fasting, and ability to maintain body temperature in the cold indicate normal energy homeostasis regulation. Metabolic chamber studies reveal that Snord116del mice maintain energy homeostasis by altered fuel usage. Prolonged mealtime and increased circulating ghrelin indicate a defect in meal termination mechanism. Snord116del mice, the first snoRNA deletion animal model, reveal a novel role for a non-coding RNA in growth and feeding regulation.

  4. Chromosome aberrations in human lymphocytes exposed to tritiated water in vitro

    International Nuclear Information System (INIS)

    Bocian, E.; Ziemba-zak, B.; Rosiek, O.; Sablinski, J.

    1978-01-01

    The induction of chromosome aberrations in human peripheral blood lymphocytes by tritiated water or 180 kV X-rays in vitro was studied. Lymphocytes were exposed to various concentrations of HTO for 2 h or for 53 h. Chromosome and chromatid type aberrations were scored during the first mitotic division after stimulation with phytohaemagglutinin. For the analysis of the dose-response relationship the data were fitted by the method of least-squares to different models. After acute exposure to tritium β-rays and X-rays, the dicentrics + centric rings and terminal + interstitial deletions gave the best fit to the linear-quadratic function. However, data for these types of aberrations after 53 h exposure to HTO gave equally good fit to the linear and linear-quadratic functions. The best description of the dose-response relationship for chromatid aberrations is given by the linear model. In the system studied the RBE of tritium β-rays as compared to 180 KV X-rays was 1.17+-0.02. (Auth.)

  5. Chromosome fragility at FRAXA in human cleavage stage embryos at risk for fragile X syndrome.

    Science.gov (United States)

    Verdyck, Pieter; Berckmoes, Veerle; De Vos, Anick; Verpoest, Willem; Liebaers, Inge; Bonduelle, Maryse; De Rycke, Martine

    2015-10-01

    Fragile X syndrome (FXS), the most common inherited intellectual disability syndrome, is caused by expansion and hypermethylation of the CGG repeat in the 5' UTR of the FMR1 gene. This expanded repeat, also known as the rare fragile site FRAXA, causes X chromosome fragility in cultured cells from patients but only when induced by perturbing pyrimidine synthesis. We performed preimplantation genetic diagnosis (PGD) on 595 blastomeres biopsied from 442 cleavage stage embryos at risk for FXS using short tandem repeat (STR) markers. In six blastomeres, from five embryos an incomplete haplotype was observed with loss of all alleles telomeric to the CGG repeat. In all five embryos, the incomplete haplotype corresponded to the haplotype carrying the CGG repeat expansion. Subsequent analysis of additional blastomeres from three embryos by array comparative genomic hybridization (aCGH) confirmed the presence of a terminal deletion with a breakpoint close to the CGG repeat in two blastomeres from one embryo. A blastomere from another embryo showed the complementary duplication. We conclude that a CGG repeat expansion at FRAXA causes X chromosome fragility in early human IVF embryos at risk for FXS. © 2015 Wiley Periodicals, Inc.

  6. Sorting genomes by reciprocal translocations, insertions, and deletions.

    Science.gov (United States)

    Qi, Xingqin; Li, Guojun; Li, Shuguang; Xu, Ying

    2010-01-01

    The problem of sorting by reciprocal translocations (abbreviated as SBT) arises from the field of comparative genomics, which is to find a shortest sequence of reciprocal translocations that transforms one genome Pi into another genome Gamma, with the restriction that Pi and Gamma contain the same genes. SBT has been proved to be polynomial-time solvable, and several polynomial algorithms have been developed. In this paper, we show how to extend Bergeron's SBT algorithm to include insertions and deletions, allowing to compare genomes containing different genes. In particular, if the gene set of Pi is a subset (or superset, respectively) of the gene set of Gamma, we present an approximation algorithm for transforming Pi into Gamma by reciprocal translocations and deletions (insertions, respectively), providing a sorting sequence with length at most OPT + 2, where OPT is the minimum number of translocations and deletions (insertions, respectively) needed to transform Pi into Gamma; if Pi and Gamma have different genes but not containing each other, we give a heuristic to transform Pi into Gamma by a shortest sequence of reciprocal translocations, insertions, and deletions, with bounds for the length of the sorting sequence it outputs. At a conceptual level, there is some similarity between our algorithm and the algorithm developed by El Mabrouk which is used to sort two chromosomes with different gene contents by reversals, insertions, and deletions.

  7. Wolf-Hirschhorn (4p-) syndrome: prenatal diagnosis, molecular cytogenetic characterization and association with a 1.2-Mb microduplication at 8p22-p21.3 and a 1.1-Mb microduplication at 10p15.3 in a fetus with an apparently pure 4p deletion.

    Science.gov (United States)

    Chen, Chih-Ping; Su, Yi-Ning; Chen, Yi-Yung; Su, Jun-Wei; Chern, Schu-Rern; Chen, Yu-Ting; Chen, Wen-Lin; Chen, Li-Feng; Wang, Wayseen

    2011-12-01

    To present prenatal diagnosis and molecular cytogenetic characterization of Wolf-Hirschhorn syndrome (WHS) associated with microduplications at 8p and 10p in a fetus with an apparently pure 4p deletion. A 35-year-old gravida 2, para 1 woman underwent amniocentesis at 18 weeks of gestation because of advanced maternal age. Her husband was 38 years of age. There was no family history of congenital malformations. Amniocentesis revealed a karyotype of 46,XY,del(4p16.1). The parental karyotypes were normal. Array comparative genomic hybridization (aCGH) analysis revealed a 6.5-Mb deletion at 4p16.3-p16.1, a 1.2-Mb microduplication at 8p22-p21.3, and a 1.1-Mb microduplication at 10p15.3, or arr cgh 4p16.3p16.1 (0-6,531,998 bp)×1, 8p22p21.3 (18,705,388-19,940,445 bp)×3, 10p15.3 (0-1,105,065 bp)×3. Polymorphic DNA marker analysis confirmed a paternal origin of 4p deletion. Prenatal ultrasound revealed facial dysmorphism and hypospadias. The aCGH analysis of the parents revealed no genomic imbalance. Fluorescence in situ hybridization study showed an unbalanced reciprocal translocation between chromosomes 4 and 10 at bands 4p16.1 and 10p15.3. The cytogenetic result, thus, was 46,XY,der(4)t(4;10)(p16.1;p15.3),dup(8)(p21.3p22). The parents elected to terminate the pregnancy, and a 470-g malformed fetus was delivered. The present case provides evidence that an apparently pure 4p deletion can be associated with subtle chromosome imbalances in other chromosomes. Copyright © 2011. Published by Elsevier B.V.

  8. Occurrence of two different intragenic deletions in two male relatives affected with Duchenne muscular dystrophy

    Energy Technology Data Exchange (ETDEWEB)

    Mostacciuolo, M.L.; Miorin, M.; Vitiello, L.; Rampazzo, A.; Fanin, M.; Angelini, C.; Danieli, G.A. [Univ. of Padua (Italy)

    1994-03-01

    The occurrence of 2 different intragenic deletions (exons 10-44 and exon 45, respectively) is reported in 2 male relatives affected with Duchenne muscular dystrophy, both showing the same haplotype for DNA markers not included in the deleted segment. The 2 different deletions seem to have occurred independently in the same X chromosome. This finding, together with other reports, suggests possibly an increased predisposition to mutations within the DMD locus in some families. Therefore, when dealing with prenatal diagnosis, the investigation on fetal DNA cannot be restricted only to the region in which a mutation was previously identified in the family. 14 refs., 1 fig.

  9. Allelic imbalance on chromosome 1 in human breast cancer. I. Minisatellite and RFLP analysis.

    Science.gov (United States)

    Loupart, M L; Armour, J; Walker, R; Adams, S; Brammar, W; Varley, J

    1995-01-01

    In order to characterise the role of chromosome 1 more fully in breast cancer, polymorphic markers mapping along the length of the whole chromosome were used to assess a panel of 71 tumour-lymphocyte pairs for allelic imbalance. Complex patterns of alterations were established that are consistent with cytogenetic data in the literature. Deletion mapping of individuals with loss of heterozygosity identified five independent smallest common regions of deletion, two of which are novel. There are also three discrete regions showing a gain in copy number of one homologue. The two arms of the chromosome may be subject to different events; the short arm primarily undergoes interstitial deletions, whereas the long arm is subject to whole arm events (as both gains and losses) as well as regional deletions.

  10. Deletion at the GCNT2 Locus Causes Autosomal Recessive Congenital Cataracts.

    Science.gov (United States)

    Irum, Bushra; Khan, Shahid Y; Ali, Muhammad; Daud, Muhammad; Kabir, Firoz; Rauf, Bushra; Fatima, Fareeha; Iqbal, Hira; Khan, Arif O; Al Obaisi, Saif; Naeem, Muhammad Asif; Nasir, Idrees A; Khan, Shaheen N; Husnain, Tayyab; Riazuddin, Sheikh; Akram, Javed; Eghrari, Allen O; Riazuddin, S Amer

    2016-01-01

    The aim of this study is to identify the molecular basis of autosomal recessive congenital cataracts (arCC) in a large consanguineous pedigree. All participating individuals underwent a detailed ophthalmic examination. Each patient's medical history, particularly of cataracts and other ocular abnormalities, was compiled from available medical records and interviews with family elders. Blood samples were donated by all participating family members and used to extract genomic DNA. Genetic analysis was performed to rule out linkage to known arCC loci and genes. Whole-exome sequencing libraries were prepared and paired-end sequenced. A large deletion was found that segregated with arCC in the family, and chromosome walking was conducted to estimate the proximal and distal boundaries of the deletion mutation. Exclusion and linkage analysis suggested linkage to a region of chromosome 6p24 harboring GCNT2 (glucosaminyl (N-acetyl) transferase 2) with a two-point logarithm of odds score of 5.78. PCR amplifications of the coding exons of GCNT2 failed in individuals with arCC, and whole-exome data analysis revealed a large deletion on chromosome 6p in the region harboring GCNT2. Chromosomal walking using multiple primer pairs delineated the extent of the deletion to approximately 190 kb. Interestingly, a failure to amplify a junctional fragment of the deletion break strongly suggests an insertion in addition to the large deletion. Here, we report a novel insertion/deletion mutation at the GCNT2 locus that is responsible for congenital cataracts in a large consanguineous family.

  11. Gray Matter Heterotopia, Mental Retardation, Developmental Delay, Microcephaly, and Facial Dysmorphisms in a Boy with Ring Chromosome 6: A 10-Year Follow-Up and Literature Review.

    Science.gov (United States)

    Liu, Shu; Wang, Zhiqing; Wei, Sisi; Liang, Jinqun; Chen, Nuan; OuYang, Haimei; Zeng, Weihong; Chen, Liying; Xie, Xunjie; Jiang, Jianhui

    2018-04-14

    Ring chromosome 6, r(6), is an extremely rare cytogenetic abnormality with clinical heterogeneity which arises typically de novo. The phenotypes of r(6) can be highly variable, ranging from almost normal to severe malformations and neurological defects. Up to now, only 33 cases have been reported in the literature. In this 10-year follow-up study, we report a case presenting distinctive facial features, severe developmental delay, and gray matter heterotopia with r(6) and terminal deletions of 6p25.3 (115426-384174, 268 kb) and 6q26-27 (168697778-170732033, 2.03 Mb) encompassing 2 and 15 candidate genes, respectively, which were detected using G-banding karyotyping, FISH, and chromosomal microarray analysis. We also analyzed the available information on the clinical features of the reported r(6) cases in order to provide more valuable information on genotype-phenotype correlations. To the best of our knowledge, this is the first report of gray matter heterotopia manifested in a patient with r(6) in China, and the deletions of 6p and 6q in our case are the smallest with the precise size of euchromatic material loss currently known. © 2018 S. Karger AG, Basel.

  12. Fetal chromosome analysis: screening for chromosome disease?

    DEFF Research Database (Denmark)

    Philip, J; Tabor, Ann; Bang, J

    1983-01-01

    The aim of the study was to investigate the rationale of the current indications for fetal chromosome analysis. 5372 women had 5423 amniocentesis performed, this group constituting a consecutive sample at the chromosome laboratory, Rigshospitalet, Copenhagen from March 1973 to September 1980 (Group...... A + B). Pregnant women 35 years of age, women who previously had a chromosomally abnormal child, families with translocation carriers or other heritable chromosomal disease, families where the father was 50 years or more and women in families with a history of Down's syndrome (group A), were compared...... to women having amniocentesis, although considered not to have any increased risk of fetal chromosome abnormality (1390 pregnancies, group B). They were also compared with 750 consecutive pregnancies in women 25-34 years of age, in whom all heritable diseases were excluded (group C). The risk of unbalanced...

  13. A Rare De novo Complex Chromosomal Rearrangement (CCR) Involving Four Chromosomes in An Oligo-asthenosperm Infertile Man.

    Science.gov (United States)

    Asia, Saba; Vaziri Nasab, Hamed; Sabbaghian, Marjan; Kalantari, Hamid; Zari Moradi, Shabnam; Gourabi, Hamid; Mohseni Meybodi, Anahita

    2014-01-01

    Complex chromosomal rearrangements (CCRs) are rare events involving more than two chromosomes and over two breakpoints. They are usually associated with infertility or sub fertility in male carriers. Here we report a novel case of a CCR in a 30-year-old oligoasthenosperm man with a history of varicocelectomy, normal testes size and normal endocrinology profile referred for chromosome analysis to the Genetics unit of Royan Reproductive Biomedicine Research Center. Chromosomal analysis was performed using peripheral blood lymphocyte cultures and analyzed by GTG banding. Additional tests such as C-banding and multicolor fluorescence in situ hybridization (FISH) procedure for each of the involved chromosomes were performed to determine the patterns of the segregations. Y chromosome microdeletions in the azoospermia factor (AZF) region were analyzed with multiplex polymerase chain reaction. To identify the history and origin of this CCR, all the family members were analyzed. No micro deletion in Y chromosome was detected. The same de novo reciprocal exchange was also found in his monozygous twin brother. The other siblings and parents were normal. CCRs are associated with male infertility as a result of spermatogenic disruption due to complex meiotic configurations and the production of chromosomally abnormal sperms. These chromosomal rearrangements might have an influence on decreasing the number of sperms.

  14. The mutational spectrum in Treacher Collins syndrome reveals a predominance of mutations that create a premature-termination codon

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, S.J.; Gladwin, A.J.; Dixon, M.J. [Univ. of Manchester (United Kingdom)

    1997-03-01

    Treacher Collins syndrome (TCS) is an autosomal dominant disorder of craniofacial development, the features of which include conductive hearing loss and cleft palate. The TCS locus has been mapped to human chromosome 5q31.3-32 and the mutated gene identified. In the current investigation, 25 previously undescribed mutations, which are spread throughout the gene, are presented. This brings the total reported to date to 35, which represents a detection rate of 60%. Of the mutations that have been reported to date, all but one result in the introduction of a premature-termination codon into the predicted protein, treacle. Moreover, the mutations are largely family specific, although a common 5-bp deletion in exon 24 (seven different families) and a recurrent splicing mutation in intron 3 (two different families) have been identified. This mutational spectrum supports the hypothesis that TCS results from haploin-sufficiency. 49 refs., 4 figs., 3 tabs.

  15. Chromosome painting in plants.

    NARCIS (Netherlands)

    Schubert, I.; Fransz, P.F.; Fuchs, J.; Jong, de J.H.

    2001-01-01

    The current 'state-of-art' as to chromosome painting in plants is reviewed. We define different situations described as painting so far: i) Genomic in situ hybridisation (GISH) with total genomic DNA to distinguish alien chromosomes on the basis of divergent dispersed repeats, ii) 'Chromosomal in

  16. Chromosome 15q24 microdeletion syndrome

    Directory of Open Access Journals (Sweden)

    Magoulas Pilar L

    2012-01-01

    Full Text Available Abstract Chromosome 15q24 microdeletion syndrome is a recently described rare microdeletion syndrome that has been reported in 19 individuals. It is characterized by growth retardation, intellectual disability, and distinct facial features including long face with high anterior hairline, hypertelorism, epicanthal folds, downslanting palpebral fissures, sparse and broad medial eyebrows, broad and/or depressed nasal bridge, small mouth, long smooth philtrum, and full lower lip. Other common findings include skeletal and digital abnormalities, genital abnormalities in males, hypotonia, behavior problems, recurrent infections, and eye problems. Other less frequent findings include hearing loss, growth hormone deficiency, hernias, and obesity. Congenital malformations, while rare, can be severe and include structural brain anomalies, cardiovascular malformations, congenital diaphragmatic hernia, intestinal atresia, imperforate anus, and myelomeningocele. Karyotypes are typically normal, and the deletions were detected in these individuals by array comparative genomic hybridization (aCGH. The deletions range in size from 1.7-6.1 Mb and usually result from nonallelic homologous recombination (NAHR between paralogous low-copy repeats (LCRs. The majority of 15q24 deletions have breakpoints that localize to one of five LCR clusters labeled LCR15q24A, -B, -C, -D, and -E. The smallest region of overlap (SRO spans a 1.2 Mb region between LCR15q24B to LCR15q24C. There are several candidate genes within the SRO, including CYP11A1, SEMA7A, CPLX3, ARID3B, STRA6, SIN3A and CSK, that may predispose to many of the clinical features observed in individuals with 15q24 deletion syndrome. The deletion occurred as a de novo event in all of the individuals when parents were available for testing. Parental aCGH and/or FISH studies are recommended to provide accurate genetic counseling and guidance regarding prognosis, recurrence risk, and reproductive options. Management

  17. Deletion of 7q33-q35 in a Patient with Intellectual Disability and Dysmorphic Features: Further Characterization of 7q Interstitial Deletion Syndrome

    Directory of Open Access Journals (Sweden)

    Kristen Dilzell

    2015-01-01

    Full Text Available This case report concerns a 16-year-old girl with a 9.92 Mb, heterozygous interstitial chromosome deletion at 7q33-q35, identified using array comparative genomic hybridization. The patient has dysmorphic facial features, intellectual disability, recurrent infections, self-injurious behavior, obesity, and recent onset of hemihypertrophy. This patient has overlapping features with previously reported individuals who have similar deletions spanning the 7q32-q36 region. It has been difficult to describe an interstitial 7q deletion syndrome due to variations in the sizes and regions in the few patients reported in the literature. This case contributes to the further characterization of an interstitial distal 7q deletion syndrome.

  18. Terminal Ballistics

    CERN Document Server

    Rosenberg, Zvi

    2012-01-01

    This book covers the important issues of terminal ballistics in a comprehensive way combining experimental data, numerical simulations and analytical modeling. The first chapter reviews the experimental equipment which are used for ballistic tests and the diagnostics for material characterization under impulsive loading conditions. The second chapter covers essential features of the codes which are used for terminal ballistics such as the Euler vs. Lagrange schemes and meshing techniques, as well as the most popular material models. The third chapter, devoted to the penetration mechanics of rigid penetrators, brings the update of modeling in this field. The fourth chapter deals with plate perforation and the fifth chapter deals with the penetration mechanics of shaped charge jets and eroding long rods. The last two chapters discuss several techniques for the disruption and defeating of the main threats in armor design. Throughout the book the authors demonstrate the advantages of numerical simulations in unde...

  19. Terminal structure

    Science.gov (United States)

    Schmidt, Frank [Langenhagen, DE; Allais, Arnaud [Hannover, DE; Mirebeau, Pierre [Villebon sur Yvette, FR; Ganhungu, Francois [Vieux-Reng, FR; Lallouet, Nicolas [Saint Martin Boulogne, FR

    2009-10-20

    A terminal structure (2) for a superconducting cable (1) is described. It consists of a conductor (2a) and an insulator (2b) that surrounds the conductor (2a), wherein the superconducting cable (1) has a core with a superconducting conductor (5) and a layer of insulation that surrounds the conductor (5), and wherein the core is arranged in such a way that it can move longitudinally in a cryostat. The conductor (2a) of the terminal structure (2) is electrically connected with the superconducting conductor (5) or with a normal conductor (6) that is connected with the superconducting conductor (5) by means of a tubular part (7) made of an electrically conductive material, wherein the superconducting conductor (5) or the normal conductor (6) can slide in the part (7) in the direction of the superconductor.

  20. Genomic deletions in OPA1 in Danish patients with autosomal dominant optic atrophy

    DEFF Research Database (Denmark)

    Almind, Gitte J; Grønskov, Karen; Milea, Dan

    2011-01-01

    Autosomal dominant optic atrophy (ADOA, Kjer disease, MIM #165500) is the most common form of hereditary optic neuropathy. Mutations in OPA1 located at chromosome 3q28 are the predominant cause for ADOA explaining between 32 and 89% of cases. Although deletions of OPA1 were recently reported...

  1. Refinement of the critical 2p25.3 deletion region

    DEFF Research Database (Denmark)

    De Rocker, Nina; Vergult, Sarah; Koolen, David

    2015-01-01

    PURPOSE: Submicroscopic deletions of chromosome band 2p25.3 are associated with intellectual disability and/or central obesity. Although MYT1L is believed to be a critical gene responsible for intellectual disability, so far no unequivocal data have confirmed this hypothesis. METHODS: In this study...

  2. Mathematical Learning Disabilities in Children with 22q11.2 Deletion Syndrome: A Review

    Science.gov (United States)

    De Smedt, Bert; Swillen, Ann; Verschaffel, Lieven; Ghesquiere, Pol

    2009-01-01

    Mathematical learning disabilities (MLD) occur frequently in children with specific genetic disorders, like Turner syndrome, fragile X syndrome and neurofibromatosis. This review focuses on MLD in children with chromosome 22q11.2 deletion syndrome (22q11DS). This syndrome is the most common known microdeletion syndrome with a prevalence of at…

  3. Brain and behaviour in children with 22q11.2 deletion syndrome: a volumetric and voxel-based morphometry MRI study

    NARCIS (Netherlands)

    Campbell, Linda E.; Daly, Eileen; Toal, Fiona; Stevens, Angela; Azuma, Rayna; Catani, Marco; Ng, Virginia; van Amelsvoort, Therese; Chitnis, Xavier; Cutter, William; Murphy, Declan G. M.; Murphy, Kieran C.

    2006-01-01

    In people with velo-cardio-facial syndrome [or 22q11.2 deletion syndrome (22qDS)], a single interstitial deletion of chromosome 22q11.2 causes a wide spectrum of cognitive deficits ranging from global learning difficulties to specific cognitive deficits. People with 22qDS are also at high risk of

  4. Detecting 22q11.2 deletions by use of multiplex ligation-dependent probe amplification on DNA from neonatal dried blood spot samples

    DEFF Research Database (Denmark)

    Sørensen, Karina M; Agergaard, Peter; Olesen, Charlotte

    2010-01-01

    The 22q11 deletion syndrome, which is caused by a 1.5- to 3.0-megabase hemizygous deletion in chromosome 22q11.2, has a prevalence of 1/2000 to 1/4000. However, the syndrome presents with highly variable phenotypes and thus may be underestimated among Danish newborns. To establish a true incidenc...

  5. Chromosome aberrations induced by radiation. With special reference to possible relation between chromosome aberrations and carcinogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Kamada, N [Hiroshima Univ. (Japan). Research Inst. for Nuclear Medicine and Biology

    1980-02-01

    Chromosome aberration seems to be one of the most conspicuous residual abnormalities recognizable in radiation-exposed persons for many years after exposure. Knowledge of the biological significance of these abnormalities seems to be necessary for understanding of the effect of radiation on humans, especially in relation to possible leukemic development. Cytogenetic studies were performed on the bone marrow cells, T and B lymphocytes, and fibroblasts in atomic bomb-survivors who were in apparent good health (105 cases), atomic bomb exposed patients who had prolonged periods of blood disorders which terminated in acute leukemia (8 cases), and who had no such abnormalities (6 cases). All patients with chronic myelocytic leukemia (CML) and a history of atomic bomb exposure showed Philadelphia chromosome, a characteristic chromosome abnormality for CML. The persistent chromosome aberrations of bone marrow cells, T and B lymphocytes found among the atomic bomb survivors with or without blood disorders may give some clue to solve the problems of carcinogenesis.

  6. Chromosome structures: reduction of certain problems with unequal gene content and gene paralogs to integer linear programming.

    Science.gov (United States)

    Lyubetsky, Vassily; Gershgorin, Roman; Gorbunov, Konstantin

    2017-12-06

    Chromosome structure is a very limited model of the genome including the information about its chromosomes such as their linear or circular organization, the order of genes on them, and the DNA strand encoding a gene. Gene lengths, nucleotide composition, and intergenic regions are ignored. Although highly incomplete, such structure can be used in many cases, e.g., to reconstruct phylogeny and evolutionary events, to identify gene synteny, regulatory elements and promoters (considering highly conserved elements), etc. Three problems are considered; all assume unequal gene content and the presence of gene paralogs. The distance problem is to determine the minimum number of operations required to transform one chromosome structure into another and the corresponding transformation itself including the identification of paralogs in two structures. We use the DCJ model which is one of the most studied combinatorial rearrangement models. Double-, sesqui-, and single-operations as well as deletion and insertion of a chromosome region are considered in the model; the single ones comprise cut and join. In the reconstruction problem, a phylogenetic tree with chromosome structures in the leaves is given. It is necessary to assign the structures to inner nodes of the tree to minimize the sum of distances between terminal structures of each edge and to identify the mutual paralogs in a fairly large set of structures. A linear algorithm is known for the distance problem without paralogs, while the presence of paralogs makes it NP-hard. If paralogs are allowed but the insertion and deletion operations are missing (and special constraints are imposed), the reduction of the distance problem to integer linear programming is known. Apparently, the reconstruction problem is NP-hard even in the absence of paralogs. The problem of contigs is to find the optimal arrangements for each given set of contigs, which also includes the mutual identification of paralogs. We proved that these

  7. Large deletions play a minor but essential role in congenital coagulation factor VII and X deficiencies.

    Science.gov (United States)

    Rath, M; Najm, J; Sirb, H; Kentouche, K; Dufke, A; Pauli, S; Hackmann, K; Liehr, T; Hübner, C A; Felbor, U

    2015-01-01

    Congenital factor VII (FVII) and factor X (FX) deficiencies belong to the group of rare bleeding disorders which may occur in separate or combined forms since both the F7 and F10 genes are located in close proximity on the distal long arm of chromosome 13 (13q34). We here present data of 192 consecutive index cases with FVII and/or FX deficiency. 10 novel and 53 recurrent sequence alterations were identified in the F7 gene and 5 novel as well as 11 recurrent in the F10 gene including one homozygous 4.35 kb deletion within F7 (c.64+430_131-6delinsTCGTAA) and three large heterozygous deletions involving both the F7 and F10 genes. One of the latter proved to be cytogenetically visible as a chromosome 13q34 deletion and associated with agenesis of the corpus callosum and psychomotor retardation. Large deletions play a minor but essential role in the mutational spectrum of the F7 and F10 genes. Copy number analyses (e. g. MLPA) should be considered if sequencing cannot clarify the underlying reason of an observed coagulopathy. Of note, in cases of combined FVII/FX deficiency, a deletion of the two contiguous genes might be part of a larger chromosomal rearrangement.

  8. Termination unit

    Energy Technology Data Exchange (ETDEWEB)

    Traeholt, Chresten; Willen, Dag; Roden, Mark; Tolbert, Jerry C.; Lindsay, David; Fisher, Paul W.; Nielsen, Carsten Thidemann

    2016-05-03

    Cable end section comprises end-parts of N electrical phases/neutral, and a thermally-insulation envelope comprising cooling fluid. The end-parts each comprises a conductor and are arranged with phase 1 innermost, N outermost surrounded by the neutral, electrical insulation being between phases and N and neutral. The end-parts comprise contacting surfaces located sequentially along the longitudinal extension of the end-section. A termination unit has an insulating envelope connected to a cryostat, special parts at both ends comprising an adapter piece at the cable interface and a closing end-piece terminating the envelope in the end-section. The special parts houses an inlet and/or outlet for cooling fluid. The space between an inner wall of the envelope and a central opening of the cable is filled with cooling fluid. The special part at the end connecting to the cryostat houses an inlet or outlet, splitting cooling flow into cable annular flow and termination annular flow.

  9. The two chromosomes of Vibrio cholerae are initiated at different time points in the cell cycle

    DEFF Research Database (Denmark)

    Rasmussen, Tue; Jensen, Rasmus Bugge; Skovgaard, Ole

    2007-01-01

    for analysing flow cytometry data and marker frequency analysis, we show that the small chromosome II is replicated late in the C period of the cell cycle, where most of chromosome I has been replicated. Owing to the delay in initiation of chromosome II, the two chromosomes terminate replication...... at approximately the same time and the average number of replication origins per cell is higher for chromosome I than for chromosome II. Analysis of cell-cycle parameters shows that chromosome replication and segregation is exceptionally fast in V. cholerae. The divided genome and delayed replication of chromosome...... II may reduce the metabolic burden and complexity of chromosome replication by postponing DNA synthesis to the last part of the cell cycle and reducing the need for overlapping replication cycles during rapid proliferation...

  10. On Deletion of Sutra Translation

    Institute of Scientific and Technical Information of China (English)

    CHEN Shu-juan

    2017-01-01

    Dao An's the metaphor of translation "wine diluted with water' ' expressed a view about translation that had been abridged.Later Kumarajiva provided metaphor "rice chewed—tasteless and downright disgusting".Both of them felt regretted at the weakening of taste,sometimes even the complete loss of flavor caused by deletion in translation of Buddhist sutras.In early sutra translation,deletion is unavoidable which made many sutra translators felt confused and drove them to study it further and some even managed to give their understanding to this issue.This thesis will discuss the definition,and what causes deletion and the measures adopted by the sutra translators.

  11. Centromere Destiny in Dicentric Chromosomes: New Insights from the Evolution of Human Chromosome 2 Ancestral Centromeric Region.

    Science.gov (United States)

    Chiatante, Giorgia; Giannuzzi, Giuliana; Calabrese, Francesco Maria; Eichler, Evan E; Ventura, Mario

    2017-07-01

    Dicentric chromosomes are products of genomic rearrangements that place two centromeres on the same chromosome. Due to the presence of two primary constrictions, they are inherently unstable and overcome their instability by epigenetically inactivating and/or deleting one of the two centromeres, thus resulting in functionally monocentric chromosomes that segregate normally during cell division. Our understanding to date of dicentric chromosome formation, behavior and fate has been largely inferred from observational studies in plants and humans as well as artificially produced de novo dicentrics in yeast and in human cells. We investigate the most recent product of a chromosome fusion event fixed in the human lineage, human chromosome 2, whose stability was acquired by the suppression of one centromere, resulting in a unique difference in chromosome number between humans (46 chromosomes) and our most closely related ape relatives (48 chromosomes). Using molecular cytogenetics, sequencing, and comparative sequence data, we deeply characterize the relicts of the chromosome 2q ancestral centromere and its flanking regions, gaining insight into the ancestral organization that can be easily broadened to all acrocentric chromosome centromeres. Moreover, our analyses offered the opportunity to trace the evolutionary history of rDNA and satellite III sequences among great apes, thus suggesting a new hypothesis for the preferential inactivation of some human centromeres, including IIq. Our results suggest two possible centromere inactivation models to explain the evolutionarily stabilization of human chromosome 2 over the last 5-6 million years. Our results strongly favor centromere excision through a one-step process. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Transcriptional profiling in response to terminal drought stress reveals differential responses along the wheat genome

    Directory of Open Access Journals (Sweden)

    Ferrari Francesco

    2009-06-01

    Full Text Available Abstract Background Water stress during grain filling has a marked effect on grain yield, leading to a reduced endosperm cell number and thus sink capacity to accumulate dry matter. The bread wheat cultivar Chinese Spring (CS, a Chinese Spring terminal deletion line (CS_5AL-10 and the durum wheat cultivar Creso were subjected to transcriptional profiling after exposure to mild and severe drought stress at the grain filling stage to find evidences of differential stress responses associated to different wheat genome regions. Results The transcriptome analysis of Creso, CS and its deletion line revealed 8,552 non redundant probe sets with different expression levels, mainly due to the comparisons between the two species. The drought treatments modified the expression of 3,056 probe sets. Besides a set of genes showing a similar drought response in Creso and CS, cluster analysis revealed several drought response features that can be associated to the different genomic structure of Creso, CS and CS_5AL-10. Some drought-related genes were expressed at lower level (or not expressed in Creso (which lacks the D genome or in the CS_5AL-10 deletion line compared to CS. The chromosome location of a set of these genes was confirmed by PCR-based mapping on the D genome (or the 5AL-10 region. Many clusters were characterized by different level of expression in Creso, CS and CS_AL-10, suggesting that the different genome organization of the three genotypes may affect plant adaptation to stress. Clusters with similar expression trend were grouped and functional classified to mine the biological mean of their activation or repression. Genes involved in ABA, proline, glycine-betaine and sorbitol pathways were found up-regulated by drought stress. Furthermore, the enhanced expression of a set of transposons and retrotransposons was detected in CS_5AL-10. Conclusion Bread and durum wheat genotypes were characterized by a different physiological reaction to water

  13. Deletion analysis of male sterility effects of t-haplotypes in the mouse.

    Science.gov (United States)

    Bennett, D; Artzt, K

    1990-01-01

    We present data on the effects of three chromosome 17 deletions on transmission ratio distortion (TRD) and sterility of several t-haplotypes. All three deletions have similar effects on male TRD: that is, Tdel/tcomplete genotypes all transmit their t-haplotype in very high proportion. However, each deletion has different effects on sterility of heterozygous males, with TOr/t being fertile, Thp/t less fertile, and TOrl/t still less fertile. These data suggest that wild-type genes on chromosomes homologous to t-haplotypes can be important regulators of both TRD and fertility in males, and that the wild-type genes concerned with TRD and fertility are at least to some extent different. The data also provide a rough map of the positions of these genes.

  14. A Rare Chromosome 3 Imbalance and Its Clinical Implications

    Directory of Open Access Journals (Sweden)

    Karen Sims

    2012-01-01

    Full Text Available The duplication of chromosome 3q is a rare disorder with varying chromosomal breakpoints and consequently symptoms. Even rarer is the unbalanced outcome from a parental inv(3 resulting in duplicated 3q and a deletion of 3p. Molecular karyotyping should aid in precisely determining the length and breakpoints of the 3q+/3p− so as to better understand a child’s future development and needs. We report a case of an infant male with a 57.5 Mb duplication from 3q23-qter. This patient also has an accompanying 1.7 Mb deletion of 3p26.3. The duplicated segment in this patient encompasses the known critical region of 3q26.3-q27, which is implicated in the previously reported 3q dup syndrome; however, the accompanying 3p26.3 deletion is smaller than the previously reported cases. The clinical phenotype of this patient relates to previously reported cases of 3q+ that may suggest that the accompanying 1.7 Mb heterozygous deletion is not clinically relevant. Taken together, our data has refined the location and extent of the chromosome 3 imbalance, which will aid in better understanding the molecular underpinning of the 3q syndrome.

  15. A persistent mitochondrial deletion reduces fitness and sperm performance in heteroplasmic populations of C. elegans

    Directory of Open Access Journals (Sweden)

    Chin Kara

    2007-03-01

    Full Text Available Abstract Background Mitochondrial DNA (mtDNA mutations are of increasing interest due to their involvement in aging, disease, fertility, and their role in the evolution of the mitochondrial genome. The presence of reactive oxygen species and the near lack of repair mechanisms cause mtDNA to mutate at a faster rate than nuclear DNA, and mtDNA deletions are not uncommon in the tissues of individuals, although germ-line mtDNA is largely lesion-free. Large-scale deletions in mtDNA may disrupt multiple genes, and curiously, some large-scale deletions persist over many generations in a heteroplasmic state. Here we examine the phenotypic effects of one such deletion, uaDf5, in Caenorhabditis elegans (C. elegans. Our study investigates the phenotypic effects of this 3 kbp deletion. Results The proportion of uaDf5 chromosomes in worms was highly heritable, although uaDf5 content varied from worm to worm and within tissues of individual worms. We also found an impact of the uaDf5 deletion on metabolism. The deletion significantly reduced egg laying rate, defecation rate, and lifespan. Examination of sperm bearing the uaDf5 deletion revealed that sperm crawled more slowly, both in vitro and in vivo. Conclusion Worms harboring uaDf5 are at a selective disadvantage compared to worms with wild-type mtDNA. These effects should lead to the rapid extinction of the deleted chromosome, but it persists indefinitely. We discuss both the implications of this phenomenon and the possible causes of a shortened lifespan for uaDf5 mutant worms.

  16. Radiation-induced chromosome aberrations in bone marrow cells leading to acute myeloid leukemia in mouse

    International Nuclear Information System (INIS)

    Nobuhiko Ban; Tomoko Kusama

    1996-01-01

    It is well known that radiation-induced acute myeloid leukemia (RI-AML) in mice is charaterized by deletion and/or rearrangement of chromosome 2. While chromosome 2 has been suspected to be a target of RI-AML, radiation-sensitive site of the chromosome might be implicated in the leukemogenesis. There were few cytogenetical studies, however, focusing on chromosomal rearrangements shortly after irradiation, and little was known about the frequency and pattern of chromosome 2 aberrations during the early period. In this study, metaphase samples were prepared from whole-body irradiated mice 24 hours after irradiation, most of the cells considered to be in the first mitotic stage. Distribution of chromosomal breakpoints on the metaphase samples were analyzed to study the relationship between chromosome aberrations and RI-AML. (author)

  17. Skin fibroblasts from a D-deletion type retinoblastoma patient are abnormally X-ray sensitive

    International Nuclear Information System (INIS)

    Weichselbaum, R.R.; Nove, J.; Little, J.B.

    1977-01-01

    Retinoblastoma is a rare malignant eye tumour that appears either spontaneously or in genetically predisposed persons. The latter group is composed of persons who inherit the tumour with a dominant mode of transmission (the familial type) and those who have a deletion in the long arm of chromosome 13 referred to as the D-deletion type. When this deletion is present it is observed in many somatic cells and is often associated with structural defects. Survivors of the genetic forms of retinoblastoma have an increased risk of the development of cancers at other sites. A single genetic locus is unlikely to predispose many somatic cells to tumour formation unless a fundamental molecular defect, possibly related to DNA repair, is present. In order to investigate this hypothesis a study was made of the in vitro X-ray sensitivity of skin fibroblasts derived from three retinoblastoma patients, comprising a pair of twins with the familial type accompanied by no gross chromosome abnormalities, and a patient with the D-deletion type. It was found that fibroblasts derived from the D-deletion patient were significantly more radiosensitive than those from the other two patients. X-ray survival curves are shown. It is concluded that skin fibroblasts derived from a patient with the D-deletion variant of retinoblastoma are abnormally radiosensitive. Future investigations may indicate a specific defect in molecular repair of DNA that will explain the predisposition of these patients to the development of other tumours. (U.K.)

  18. HRAS1-selected chromosome transfer generates markers that colocalize aniridia- and genitourinary dysplasia-associated translocation breakpoints and the Wilms tumor gene within band 11p13.

    OpenAIRE

    Porteous, D J; Bickmore, W; Christie, S; Boyd, P A; Cranston, G; Fletcher, J M; Gosden, J R; Rout, D; Seawright, A; Simola, K O

    1987-01-01

    We show that chromosome-mediated gene transfer can provide an enriched source of DNA markers for predetermined, subchromosomal regions of the human genome. Forty-four human DNA recombinants isolated from a HRAS1-selected chromosome-mediated gene transformant map exclusively to chromosome 11, with several sublocalizing to the Wilms tumor region at 11p13. We present a detailed molecular map of the deletion chromosomes 11 from five WAGR (Wilms tumor/aniridia/genitourinary abnormalities/mental re...

  19. Ring 2 chromosome associated with failure to thrive, microcephaly and dysmorphic facial features.

    Science.gov (United States)

    López-Uriarte, Arelí; Quintero-Rivera, Fabiola; de la Fuente Cortez, Beatriz; Puente, Viviana Gómez; Campos, María Del Roble Velazco; de Villarreal, Laura E Martínez

    2013-10-15

    We report here a child with a ring chromosome 2 [r(2)] associated with failure to thrive, microcephaly and dysmorphic features. The chromosomal aberration was defined by chromosome microarray analysis, revealing two small deletions of 2p25.3 (139 kb) and 2q37.3 (147 kb). We show the clinical phenotype of the patient, using a conventional approach and the molecular cytogenetics of a male with a history of prenatal intrauterine growth restriction (IUGR), failure to thrive, microcephaly and dysmorphic facial features. The phenotype is very similar to that reported in other clinical cases with ring chromosome 2. © 2013 Elsevier B.V. All rights reserved.

  20. [Molecular cytogenetic analysis of a case with ring chromosome 3 syndrome].

    Science.gov (United States)

    Zhang, Kaihui; Song, Fengling; Zhang, Dongdong; Zhang, Haiyan; Wang, Ying; Dong, Rui; Zhang, Yufeng; Liu, Yi; Gai, Zhongtao

    2016-12-10

    To investigate the genetic cause for a child with developmental delay and congenital heart disease through molecular cytogenetic analysis. G-banded karyotyping and chromosomal microarray analysis (CMA) were performed for the patient and his parents. The proband's karyotype was detected as ring chromosome 3, and a 3q26.3-25.3 deletion encompassing 45 genes has been found with CMA. Testing of both parents was normal. Clinical phenotype of the patient with ring chromosome 3 mainly depends on the involved genes. It is necessary to combine CMA and karyotyping for the diagnosis of ring chromosome, as CMA can provide more accurate information for variations of the genome.

  1. Interstitial deletion of 14q24.3-q32.2 in a male patient with plagiocephaly, BPES features, developmental delay, and congenital heart defects

    DEFF Research Database (Denmark)

    Cingöz, Sultan; Bache, Iben; Bjerglund, Lise

    2011-01-01

    Distal interstitial deletions of chromosome 14 involving the 14q24-q23.2 region are rare, and only been reported so far in 20 patients. Ten of these patients were analyzed both clinically and genetically. Here we present a de novo interstitial deletion of chromosome 14q24.3-q32.2 in a male patient...... on genotype-phenotype comparisons of the 10 previously published patients and the present case, we suggest that the shortest regions for deletion overlap may include candidate genes for speech impairment, mental retardation, and hypotonia....

  2. Chromosome 10q tetrasomy: First reported case

    Energy Technology Data Exchange (ETDEWEB)

    Blackston, R.D.; May, K.M.; Jones, F.D. [Emory Univ., Atlanta, GA (United States)] [and others

    1994-09-01

    While there are several reports of trisomy 10q (at least 35), we are not aware of previous cases of 10q tetrasomy. We present what we believe to be the initial report of such a case. R.J. is a 6 1/2 year old white male who presented with multiple dysmorphic features, marked articulation problems, hyperactivity, and developmental delays. He is the product of a term uncomplicated pregnancy. There was a normal spontaneous vaginal delivery with a birth weight of 6 lbs. 4oz. and length was 19 1/2 inch. Dysmorphic features include small size, an asymmetrically small head, low set ears with overfolded helixes, bilateral ptosis, downslanting eyes, right eye esotropia, prominent nose, asymmetric facies, high palate, mild pectus excavatum deformity of chest, and hyperextensible elbow joints. The patient is in special needs classes for mildly mentally handicapped students. Chromosome analysis at a resolution of 800 bands revealed a complex rearrangement of chromosomes 10 and 11. The segment 10q25.3 to q16.3 appears to be inverted and duplicated within the long arm of chromosome 10 at band q25.3 and the same segment of chromosome 10 is present on the terminal end of the short arm of chromosome 11. There is no visible loss of material from chromosome 11. Fluorescence in situ hybridization was performed with a chromosome 10 specific {open_quotes}paint{close_quotes} to confirm that all of the material on the abnormal 10 and the material on the terminal short arm of 11 was from chromosome 10. Thus, it appears that the segment 10q25.3 to q26.3 is present in four copies. Parental chromosome studies are normal. We compared findings which differ in that the case of 10q tetrasomy did not have prenatal growth deficiency, microphthalmia, cleft palate, digital anomalies, heart, or renal defects. Whereas most cases of 10q trisomy are said to have severe mental deficiency, our case of 10q tetrasomy was only mildly delayed. We report this first apparent cited case of 10q tetrasomy.

  3. 22q13.3 Deletion Syndrome: An Underdiagnosed Cause of Mental Retardation

    Directory of Open Access Journals (Sweden)

    ilknur Erol

    2015-03-01

    Full Text Available Phelan-McDermid syndrome, also known as 22q13.3 deletion syndrome, is characterized by global developmental delay, absent or delayed speech, generalized hypotonia, and minor physical anomalies. The deletion typically involves the terminal band 22q13.3 and has been associated with both familial and de-novo translocations. We report the case of an 11-year-old Turkish girl with 22q13.3 deletion syndrome presenting with repeated seizures during the course of a rubella infection. We also review the clinical features of 22q13.3 deletion syndrome and emphasize the importance of considering a rare microdeletion syndrome for idiopathic mental retardation when results of a routine karyotype analysis are normal. To the best of our knowledge, this is the first reported case of a Turkish patient with isolated 22q13.3 deletion syndrome. [Cukurova Med J 2015; 40(1.000: 169-173

  4. 22q11.2 deletion syndrome

    Science.gov (United States)

    McDonald-McGinn, Donna M.; Sullivan, Kathleen E.; Marino, Bruno; Philip, Nicole; Swillen, Ann; Vorstman, Jacob A. S.; Zackai, Elaine H.; Emanuel, Beverly S.; Vermeesch, Joris R.; Morrow, Bernice E.; Scambler, Peter J.; Bassett, Anne S.

    2016-01-01

    22q11.2 deletion syndrome (22q11.2DS) is the most common chromosomal microdeletion disorder, estimated to result mainly from de novo non-homologous meiotic recombination events occurring in approximately 1 in every 1,000 fetuses. The first description in the English language of the constellation of findings now known to be due to this chromosomal difference was made in the 1960s in children with DiGeorge syndrome, who presented with the clinical triad of immunodeficiency, hypoparathyroidism and congenital heart disease. The syndrome is now known to have a heterogeneous presentation that includes multiple additional congenital anomalies and later-onset conditions, such as palatal, gastrointestinal and renal abnormalities, autoimmune disease, variable cognitive delays, behavioural phenotypes and psychiatric illness — all far extending the original description of DiGeorge syndrome. Management requires a multidisciplinary approach involving paediatrics, general medicine, surgery, psychiatry, psychology, interventional therapies (physical, occupational, speech, language and behavioural) and genetic counselling. Although common, lack of recognition of the condition and/or lack of familiarity with genetic testing methods, together with the wide variability of clinical presentation, delays diagnosis. Early diagnosis, preferably prenatally or neonatally, could improve outcomes, thus stressing the importance of universal screening. Equally important, 22q11.2DS has become a model for understanding rare and frequent congenital anomalies, medical conditions, psychiatric and developmental disorders, and may provide a platform to better understand these disorders while affording opportunities for translational strategies across the lifespan for both patients with 22q11.2DS and those with these associated features in the general population. PMID:27189754

  5. Delineation and analysis of chromosomal regions specifying Yersinia pestis.

    Science.gov (United States)

    Derbise, Anne; Chenal-Francisque, Viviane; Huon, Christèle; Fayolle, Corinne; Demeure, Christian E; Chane-Woon-Ming, Béatrice; Médigue, Claudine; Hinnebusch, B Joseph; Carniel, Elisabeth

    2010-09-01

    Yersinia pestis, the causative agent of plague, has recently diverged from the less virulent enteropathogen Yersinia pseudotuberculosis. Its emergence has been characterized by massive genetic loss and inactivation and limited gene acquisition. The acquired genes include two plasmids, a filamentous phage, and a few chromosomal loci. The aim of this study was to characterize the chromosomal regions acquired by Y. pestis. Following in silico comparative analysis and PCR screening of 98 strains of Y. pseudotuberculosis and Y. pestis, we found that eight chromosomal loci (six regions [R1pe to R6pe] and two coding sequences [CDS1pe and CDS2pe]) specified Y. pestis. Signatures of integration by site specific or homologous recombination were identified for most of them. These acquisitions and the loss of ancestral DNA sequences were concentrated in a chromosomal region opposite to the origin of replication. The specific regions were acquired very early during Y. pestis evolution and were retained during its microevolution, suggesting that they might bring some selective advantages. Only one region (R3pe), predicted to carry a lambdoid prophage, is most likely no longer functional because of mutations. With the exception of R1pe and R2pe, which have the potential to encode a restriction/modification and a sugar transport system, respectively, no functions could be predicted for the other Y. pestis-specific loci. To determine the role of the eight chromosomal loci in the physiology and pathogenicity of the plague bacillus, each of them was individually deleted from the bacterial chromosome. None of the deletants exhibited defects during growth in vitro. Using the Xenopsylla cheopis flea model, all deletants retained the capacity to produce a stable and persistent infection and to block fleas. Similarly, none of the deletants caused any acute flea toxicity. In the mouse model of infection, all deletants were fully virulent upon subcutaneous or aerosol infections. Therefore

  6. Chromosomal Evolution in Chiroptera.

    Science.gov (United States)

    Sotero-Caio, Cibele G; Baker, Robert J; Volleth, Marianne

    2017-10-13

    Chiroptera is the second largest order among mammals, with over 1300 species in 21 extant families. The group is extremely diverse in several aspects of its natural history, including dietary strategies, ecology, behavior and morphology. Bat genomes show ample chromosome diversity (from 2n = 14 to 62). As with other mammalian orders, Chiroptera is characterized by clades with low, moderate and extreme chromosomal change. In this article, we will discuss trends of karyotypic evolution within distinct bat lineages (especially Phyllostomidae, Hipposideridae and Rhinolophidae), focusing on two perspectives: evolution of genome architecture, modes of chromosomal evolution, and the use of chromosome data to resolve taxonomic problems.

  7. Chromosomal Evolution in Chiroptera

    Directory of Open Access Journals (Sweden)

    Cibele G. Sotero-Caio

    2017-10-01

    Full Text Available Chiroptera is the second largest order among mammals, with over 1300 species in 21 extant families. The group is extremely diverse in several aspects of its natural history, including dietary strategies, ecology, behavior and morphology. Bat genomes show ample chromosome diversity (from 2n = 14 to 62. As with other mammalian orders, Chiroptera is characterized by clades with low, moderate and extreme chromosomal change. In this article, we will discuss trends of karyotypic evolution within distinct bat lineages (especially Phyllostomidae, Hipposideridae and Rhinolophidae, focusing on two perspectives: evolution of genome architecture, modes of chromosomal evolution, and the use of chromosome data to resolve taxonomic problems.

  8. Rare deletions at 16p13.11 predispose to a diverse spectrum of sporadic epilepsy syndromes.

    Science.gov (United States)

    Heinzen, Erin L; Radtke, Rodney A; Urban, Thomas J; Cavalleri, Gianpiero L; Depondt, Chantal; Need, Anna C; Walley, Nicole M; Nicoletti, Paola; Ge, Dongliang; Catarino, Claudia B; Duncan, John S; Kasperaviciūte, Dalia; Tate, Sarah K; Caboclo, Luis O; Sander, Josemir W; Clayton, Lisa; Linney, Kristen N; Shianna, Kevin V; Gumbs, Curtis E; Smith, Jason; Cronin, Kenneth D; Maia, Jessica M; Doherty, Colin P; Pandolfo, Massimo; Leppert, David; Middleton, Lefkos T; Gibson, Rachel A; Johnson, Michael R; Matthews, Paul M; Hosford, David; Kälviäinen, Reetta; Eriksson, Kai; Kantanen, Anne-Mari; Dorn, Thomas; Hansen, Jörg; Krämer, Günter; Steinhoff, Bernhard J; Wieser, Heinz-Gregor; Zumsteg, Dominik; Ortega, Marcos; Wood, Nicholas W; Huxley-Jones, Julie; Mikati, Mohamad; Gallentine, William B; Husain, Aatif M; Buckley, Patrick G; Stallings, Ray L; Podgoreanu, Mihai V; Delanty, Norman; Sisodiya, Sanjay M; Goldstein, David B

    2010-05-14

    Deletions at 16p13.11 are associated with schizophrenia, mental retardation, and most recently idiopathic generalized epilepsy. To evaluate the role of 16p13.11 deletions, as well as other structural variation, in epilepsy disorders, we used genome-wide screens to identify copy number variation in 3812 patients with a diverse spectrum of epilepsy syndromes and in 1299 neurologically-normal controls. Large deletions (> 100 kb) at 16p13.11 were observed in 23 patients, whereas no control had a deletion greater than 16 kb. Patients, even those with identically sized 16p13.11 deletions, presented with highly variable epilepsy phenotypes. For a subset of patients with a 16p13.11 deletion, we show a consistent reduction of expression for included genes, suggesting that haploinsufficiency might contribute to pathogenicity. We also investigated another possible mechanism of pathogenicity by using hybridization-based capture and next-generation sequencing of the homologous chromosome for ten 16p13.11-deletion patients to look for unmasked recessive mutations. Follow-up genotyping of suggestive polymorphisms failed to identify any convincing recessive-acting mutations in the homologous interval corresponding to the deletion. The observation that two of the 16p13.11 deletions were larger than 2 Mb in size led us to screen for other large deletions. We found 12 additional genomic regions harboring deletions > 2 Mb in epilepsy patients, and none in controls. Additional evaluation is needed to characterize the role of these exceedingly large, non-locus-specific deletions in epilepsy. Collectively, these data implicate 16p13.11 and possibly other large deletions as risk factors for a wide range of epilepsy disorders, and they appear to point toward haploinsufficiency as a contributor to the pathogenicity of deletions. Copyright (c) 2010 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  9. Terminal ballistics

    CERN Document Server

    Rosenberg, Zvi

    2016-01-01

    This book comprehensively discusses essential aspects of terminal ballistics, combining experimental data, numerical simulations and analytical modeling. Employing a unique approach to numerical simulations as a measure of sensitivity for the major physical parameters, the new edition also includes the following features: new figures to better illustrate the problems discussed; improved explanations for the equation of state of a solid and for the cavity expansion process; new data concerning the Kolsky bar test; and a discussion of analytical modeling for the hole diameter in a thin metallic plate impacted by a shaped charge jet. The section on thick concrete targets penetrated by rigid projectiles has now been expanded to include the latest findings, and two new sections have been added: one on a novel approach to the perforation of thin concrete slabs, and one on testing the failure of thin metallic plates using a hydrodynamic ram.

  10. Syndrome of proximal interstitial deletion 4p15: Report of three cases and review of the literature

    Energy Technology Data Exchange (ETDEWEB)

    Chitayat, D.; Babul, R.; Teshima, I.E. [Univ. of Toronto, Ontario (Canada)] [and others

    1995-01-16

    We report on two boys and a girl with interstitial deletion in the short arm of chromosome 4 including the segment p15.2p15.33. All had normal growth with psychomotor retardation, multiple minor congenital anomalies, and a characteristic face distinct from that of the Wolf-Hirschhorn syndrome. One of the patients had congenitally enlarged penis. These patients resemble some of the previously reported patients with similar cytogenetic abnormalities and suggests the recognition of a specific clinical chromosome deletion syndrome. 12 refs., 6 figs., 1 tab.

  11. Philadelphia chromosome-positive adult acute leukemia with monosomy of chromosome number seven: a subgroup with poor response to therapy.

    Science.gov (United States)

    Maddox, A M; Keating, M J; Trujillo, J; Cork, A; Youness, E; Ahearn, M J; McCredie, K B; Freireich, E J

    1983-01-01

    Thirty-four adult patients were seen at the University of Texas M. D. Anderson Hospital and Tumor Institute at Houston, Texas between 1969 and 1980 with acute leukemia (AL) and a deleted G-group chromosome that was shown by Giemsa banding to be a Philadelphia (Ph1) chromosome t(9;22) in 21 patients. Fourteen had the Ph1 chromosome as the sole abnormality, 12 had the Ph1 chromosome and loss of one chromosome of the C-group (identified by Giemsa banding analysis as number 7 in eight patients), while eight had the Ph1 chromosome and other changes. These three groups were similar in sex, age distribution and hematologic parameters. The median age of 40 was lower than usually seen in AL. The distribution of the morphologic subtypes was similar to that seen at this institution, with 50% being acute myeloblastic, 12% acute myelomonocytic, 20% lymphoblastic and 18% acute undifferentiated. The complete remission rate with chemotherapy was low: 25% in the Ph1 +/- 7, 50% in the Ph1 +/other group and 43% in the Ph1 +/other group. Median survival time was 8 months for the Ph1 +/- 7 group, 5.5 months for the Ph1 +/other group and 9.0 months for the Ph1 +/alone group. These patients with Ph1 + AL had higher white blood cell counts, increased extramedullary disease and poorer responses to therapy than usual for patients with AL. The deletion of chromosome 7 and the acquisition of the Ph1 chromosome identifies a group of patients with characteristics similar to all the patients with Ph1 + AL but a poor response to therapy and short remission duration.

  12. Acquired retinal pigmentary degeneration in a child with 13q deletion syndrome.

    Science.gov (United States)

    Aguilera, Zenia P; Belin, Peter J; Cavuoto, Kara M; Jayakar, Parul; McKeown, Craig A

    2015-10-01

    Orbeli syndrome, or 13q deletion syndrome, is a rare condition caused by a distal deletion in the long arm of chromosome 13. The syndrome is characterized by severe physical malformations and developmental delays and has been associated with numerous ocular manifestations. We report the case of a 10-year-old boy with 13q deletion syndrome, who was evaluated for impaired vision and found to have bilateral retinal pigmentary changes resembling those seen in retinitis pigmentosa. There has only been one other case of retinal pigment variation in association with 13q deletion syndrome; however, this represents the first case of bilateral symmetric retinal pigmentary changes with corresponding rod and cone dysfunction on electroretinography. Copyright © 2015 American Association for Pediatric Ophthalmology and Strabismus. Published by Elsevier Inc. All rights reserved.

  13. Catalytic properties of ADAM12 and its domain deletion mutants

    DEFF Research Database (Denmark)

    Jacobsen, Jonas; Visse, Robert; Sørensen, Hans Peter

    2008-01-01

    of pro, catalytic, disintegrin, cysteine-rich, and EGF domains. Here we present a novel activity of recombinant ADAM12-S and its domain deletion mutants on S-carboxymethylated transferrin (Cm-Tf). Cleavage of Cm-Tf occurred at multiple sites, and N-terminal sequencing showed that the enzyme exhibits...... restricted specificity but a consensus sequence could not be defined as its subsite requirements are promiscuous. Kinetic analysis revealed that the noncatalytic C-terminal domains are important regulators of Cm-Tf activity and that ADAM12-PC consisting of the pro domain and catalytic domain is the most...... active on this substrate. It was also observed that NaCl inhibits ADAM12. Among the tissue inhibitors of metalloproteinases (TIMP) examined, the N-terminal domain of TIMP-3 (N-TIMP-3) inhibits ADAM12-S and ADAM12-PC with low nanomolar Ki(app) values while TIMP-2 inhibits them with a slightly lower...

  14. Alternative Splicing of CHEK2 and Codeletion with NF2 Promote Chromosomal Instability in Meningioma

    Directory of Open Access Journals (Sweden)

    Hong Wei Yang

    2012-01-01

    Full Text Available Mutations of the NF2 gene on chromosome 22q are thought to initiate tumorigenesis in nearly 50% of meningiomas, and 22q deletion is the earliest and most frequent large-scale chromosomal abnormality observed in these tumors. In aggressive meningiomas, 22q deletions are generally accompanied by the presence of large-scale segmental abnormalities involving other chromosomes, but the reasons for this association are unknown. We find that large-scale chromosomal alterations accumulate during meningioma progression primarily in tumors harboring 22q deletions, suggesting 22q-associated chromosomal instability. Here we show frequent codeletion of the DNA repair and tumor suppressor gene, CHEK2, in combination with NF2 on chromosome 22q in a majority of aggressive meningiomas. In addition, tumor-specific splicing of CHEK2 in meningioma leads to decreased functional Chk2 protein expression. We show that enforced Chk2 knockdown in meningioma cells decreases DNA repair. Furthermore, Chk2 depletion increases centrosome amplification, thereby promoting chromosomal instability. Taken together, these data indicate that alternative splicing and frequent codeletion of CHEK2 and NF2 contribute to the genomic instability and associated development of aggressive biologic behavior in meningiomas.

  15. Strategies for state-dependent quantum deleting

    International Nuclear Information System (INIS)

    Song Wei; Yang Ming; Cao Zhuoliang

    2004-01-01

    A quantum state-dependent quantum deleting machine is constructed. We obtain a upper bound of the global fidelity on N-to-M quantum deleting from a set of K non-orthogonal states. Quantum networks are constructed for the above state-dependent quantum deleting machine when K=2. Our deleting protocol only involves a unitary interaction among the initial copies, with no ancilla. We also present some analogies between quantum cloning and deleting

  16. Chromosomal replication incompatibility in Dam methyltransferase deficient Escherichia coli cells

    DEFF Research Database (Denmark)

    Freiesleben, Ulrik Von

    1996-01-01

    Dam methyltransferase deficient Escherichia coli cells containing minichromosomes were constructed. Free plasmid DNA could not be detected in these cells and the minichromosomes were found to be integrated in multiple copies in the origin of replication (oriC) region of the host chromosome....... The absence of the initiation cascade in Dam- cells is proposed to account for this observation of apparent incompatibility between plasmid and chromosomal copies of oriC. Studies using oriC-pBR322 chimeric plasmids and their deletion derivatives indicated that the incompatibility determinant is an intact...

  17. Patients Carrying 9q31.1-q32 Deletion Share Common Features with Cornelia de Lange Syndrome

    Directory of Open Access Journals (Sweden)

    Ruixue Cao

    2015-01-01

    Full Text Available Background: Cornelia de Lange Syndrome (CdLS is a rare but severe clinically heterogeneous developmental disorder characterized by facial dysmorphia, growth and cognitive retardation, and abnormalities of limb development. Objectives: To determine the pathogenesis of a patient with CdLS. Methods: We studied a patient with CdLS by whole exome sequencing, karyotyping and Agilent CGH Array. The results were confirmed by quantitative real-time PCR analysis of the patient and her parents. Further comparison of our patient and cases with partially overlapping deletions retrieved from the literature and databases was undertaken. Results: Whole exome sequencing had excluded the mutation of cohesion genes such as NIPBL,SMC1A and SMC3. The result of karyotyping showed a deletion of chromosome 9q31.1-q32 and the result of Agilent CGH Array further displayed a 12.01-Mb region of deletion at chromosome bands 9q31.1-q32. Reported cases with the deletion of 9q31.1-q32 share similar features with our CdLS patient. One of the genes in the deleted region, SMC2, belongs to the Structural Maintenance of Chromosomes (SMC family and regulates gene expression and DNA repair. Conclusions: Patients carrying the deletion of 9q31.1-q32 showed similar phenotypes with CdLS.

  18. Microgravitational effects on chromosome behavior (7-IML-1)

    Science.gov (United States)

    Bruschi, Carlo

    1992-01-01

    The effects of the two major space-related conditions, microgravity and radiation, on the maintenance and transmission of genetic information have been partially documented in many organisms. Specifically, microgravity acts at the chromosomal level, primarily on the structure and segregation of chromosomes, in producing major abberations such as deletions, breaks, nondisjunction, and chromosome loss, and to a lesser degree, cosmic radiation appears to affect the genic level, producing point mutations and DNA damage. To distinguish between the effects from microgravity and from radiation, it is necessary to monitor both mitotic and meiotic genetic damage in the same organism. The yeast Saccharomyces cerevisiae is used to monitor at high resolution the frequency of chromosome loss, nondisjunction, intergenic recombination, and gene mutation in mitotic and meiotic cells, to a degree impossible in other organisms. Because the yeast chromosomes are small, sensitive measurements can be made that can be extrapolated to higher organisms and man. The objectives of the research are: (1) to quantitate the effects of microgravity and its synergism with cosmic radiation on chromosomal integrity and transmission during mitosis and meiosis; (2) to discriminate between chromosomal processes sensitive to microgravity and/or radiation during mitosis and meiosis; and (3) to relate these findings to anomalous mitotic mating type switching and ascosporogenesis following meiosis.

  19. Tau deletion promotes brain insulin resistance.

    Science.gov (United States)

    Marciniak, Elodie; Leboucher, Antoine; Caron, Emilie; Ahmed, Tariq; Tailleux, Anne; Dumont, Julie; Issad, Tarik; Gerhardt, Ellen; Pagesy, Patrick; Vileno, Margaux; Bournonville, Clément; Hamdane, Malika; Bantubungi, Kadiombo; Lancel, Steve; Demeyer, Dominique; Eddarkaoui, Sabiha; Vallez, Emmanuelle; Vieau, Didier; Humez, Sandrine; Faivre, Emilie; Grenier-Boley, Benjamin; Outeiro, Tiago F; Staels, Bart; Amouyel, Philippe; Balschun, Detlef; Buee, Luc; Blum, David

    2017-08-07

    The molecular pathways underlying tau pathology-induced synaptic/cognitive deficits and neurodegeneration are poorly understood. One prevalent hypothesis is that hyperphosphorylation, misfolding, and fibrillization of tau impair synaptic plasticity and cause degeneration. However, tau pathology may also result in the loss of specific physiological tau functions, which are largely unknown but could contribute to neuronal dysfunction. In the present study, we uncovered a novel function of tau in its ability to regulate brain insulin signaling. We found that tau deletion leads to an impaired hippocampal response to insulin, caused by altered IRS-1 and PTEN (phosphatase and tensin homologue on chromosome 10) activities. Our data also demonstrate that tau knockout mice exhibit an impaired hypothalamic anorexigenic effect of insulin that is associated with energy metabolism alterations. Consistently, we found that tau haplotypes are associated with glycemic traits in humans. The present data have far-reaching clinical implications and raise the hypothesis that pathophysiological tau loss-of-function favors brain insulin resistance, which is instrumental for cognitive and metabolic impairments in Alzheimer's disease patients. © 2017 Marciniak et al.

  20. ATLAS DQ2 Deletion Service

    International Nuclear Information System (INIS)

    Oleynik, Danila; Petrosyan, Artem; Garonne, Vincent; Campana, Simone

    2012-01-01

    The ATLAS Distributed Data Management project DQ2 is responsible for the replication, access and bookkeeping of ATLAS data across more than 100 distributed grid sites. It also enforces data management policies decided on by the collaboration and defined in the ATLAS computing model. The DQ2 Deletion Service is one of the most important DDM services. This distributed service interacts with 3rd party grid middleware and the DQ2 catalogues to serve data deletion requests on the grid. Furthermore, it also takes care of retry strategies, check-pointing transactions, load management and fault tolerance. In this paper special attention is paid to the technical details which are used to achieve the high performance of service, accomplished without overloading either site storage, catalogues or other DQ2 components. Special attention is also paid to the deletion monitoring service that allows operators a detailed view of the working system.

  1. A new physical mapping approach refines the sex-determining gene positions on the Silene latifolia Y-chromosome

    Science.gov (United States)

    Kazama, Yusuke; Ishii, Kotaro; Aonuma, Wataru; Ikeda, Tokihiro; Kawamoto, Hiroki; Koizumi, Ayako; Filatov, Dmitry A.; Chibalina, Margarita; Bergero, Roberta; Charlesworth, Deborah; Abe, Tomoko; Kawano, Shigeyuki

    2016-01-01

    Sex chromosomes are particularly interesting regions of the genome for both molecular genetics and evolutionary studies; yet, for most species, we lack basic information, such as the gene order along the chromosome. Because they lack recombination, Y-linked genes cannot be mapped genetically, leaving physical mapping as the only option for establishing the extent of synteny and homology with the X chromosome. Here, we developed a novel and general method for deletion mapping of non-recombining regions by solving “the travelling salesman problem”, and evaluate its accuracy using simulated datasets. Unlike the existing radiation hybrid approach, this method allows us to combine deletion mutants from different experiments and sources. We applied our method to a set of newly generated deletion mutants in the dioecious plant Silene latifolia and refined the locations of the sex-determining loci on its Y chromosome map.

  2. Discrimination of chromosome by autoradiography

    International Nuclear Information System (INIS)

    Masubuchi, Masanori

    1975-01-01

    This paper describes discrimination of chromosome by autoradiography. In this method, the difference in DNA synthetic phase between each chromosome was used as a standard, and the used chromosome was in metaphase, as morphological characteristics were markedly in this phase. Cell cycle and autoradiography with 3 H-thymidine were also examined. In order to discriminate chromosome by autoradiography, it was effective to utilize the labelled pattern in late DNA synthetic phase, where asynchronous replication of chromosome appeared most obviously. DNA synthesis in chromosome was examined in each DNA synthetic phase by culturing the chromosome after the treatment with 3 H-thymidine and altering the time to prepare chromosome specimen. Discrimination of chromosome in plants and animals by autoradiography was also mentioned. It was noticed as a structural and functional discrimination of chromosome to observe amino acid uptake into chromosome protein and to utilize the difference in labelled pattern between the sites of chromosome. (K. Serizawa)

  3. TTY2 genes deletions as genetic risk factor of male infertility.

    Science.gov (United States)

    Shaveisi-Zadeh, F; Alibakhshi, R; Asgari, R; Rostami-Far, Z; Bakhtiari, M; Abdi, H; Movafagh, A; Mirfakhraie, R

    2017-02-28

    Y chromosome has a number of genes that are expressed in testis and have a role in spermatogenesis. TTY2L12A and TTY2L2A are the members of testis transcript Y2 (TTY2) that are Y linked multi-copy gene families, located on Yp11 and Yq11 loci respectively. The aim of this study was to investigate frequency of TTY2L12A and TTY2L2A deletions in azoospermic patients compared with fertile males. This study was performed on 45 infertile males with idiopathic azoospermia without any AZF micro deletions (group A), 33 infertile males with azoospermia which do not screened for AZF micro deletions (group B) and 65 fertile males (group C), from October 2013 to April 2015 in west of Iran. Polymerase chain reaction (PCR) method was used for detection of TTY2L12A and TTY2L2A gene deletions in studied groups. No deletions were detected in normal fertile males of group C. 1 out of 45 azoospermic males of group A (2.22%) and 3 out of 33 azoospermic males of group B (9.09%) had TTY2L2A deletion (p= 0.409 and p= 0.036 respectively), also 1 out of 45 azoospermic males of group A (2.22%) and 4 out of 33 azoospermic males of group B (12.12%) had TTY2L12A deletion (p= 0.409 and p= 0.011 respectively).  None of azoospermic males in Group A and B had deletions in both genes. Our data showed significant correlation between non-obstructive azoospermia and TTY2L12A and TTY2L2A deletions. Thus, it seems that TTY2L12A and TTY2L2A deletions can consider as one of the genetic risk factors for non-obstructive azoospermia.

  4. Spontaneous and mutagen-induced deletions: mechanistic studies in Salmonella tester strain TA102

    International Nuclear Information System (INIS)

    Levin, D.E.; Marnett, L.J.; Ames, B.N.

    1984-01-01

    Salmonella tester strain TA102 carries the hisG428 ochre mutation on the multicopy plasmid pAQ1. DNA sequence analysis of 45 spontaneous revertants of hisG428 on the chromosome in the presence of pKM101 (strain TA103) indicates that hisG428 revertants fall into three major categories: (i) small, in-frame deletions (3 or 6 base pairs) that remove part or all of the ochre triplet; (ii) base substitution mutations at the ochre site; (iii) extragenic ochre suppressors. Deletion revertants are identified in a simple phenotypic screen by their resistance to the inhibitory histidine analog thiazolealanine, which feedback inhibits the wild-type hisG enzyme but not the enzyme resulting from the deletions. The effect of various genetic backgrounds on the generation of spontaneous deletion revertants was examined. The presence of a uvrB mutation or a recA mutation suppressed the generation of spontaneous deletion revertants to approximately 1/2.5. When hisG428 was in multiple copies on pAQ1, the frequency of spontaneous deletion revertants increased by 40-fold, which is the approximate copy number of pAQ1. Mutagenic agents that induce single-strand breaks in DNA (e.g., x-rays, bleomycin, and nalidixic acid) induced deletion revertants in TA102. These agents induced deletion revertants only in hisG428 on pAQ1 and only in the presence of pKM101. Deletion revertants were not induced by frameshift mutagens (i.e., ICR-191 and 9aminoacridine). These results indicate that different pathways exist for the generation of spontaneous and mutagen-induced deletion revertants of hisG428. 41 references, 2 figures, 3 tables

  5. Fetal chromosome analysis

    DEFF Research Database (Denmark)

    Philip, J; Tabor, A; Bang, J

    1983-01-01

    The aim of the study was to investigate the rationale of the current indications for fetal chromosome analysis. 5372 women had 5423 amniocentesis performed, this group constituting a consecutive sample at the chromosome laboratory, Rigshospitalet, Copenhagen from March 1973 to September 1980 (Group...... A + B). Pregnant women 35 years of age, women who previously had a chromosomally abnormal child, families with translocation carriers or other heritable chromosomal disease, families where the father was 50 years or more and women in families with a history of Down's syndrome (group A), were compared...... to women having amniocentesis, although considered not to have any increased risk of fetal chromosome abnormality (1390 pregnancies, group B). They were also compared with 750 consecutive pregnancies in women 25-34 years of age, in whom all heritable diseases were excluded (group C). The risk of unbalanced...

  6. A TAD boundary is preserved upon deletion of the CTCF-rich Firre locus.

    Science.gov (United States)

    Barutcu, A Rasim; Maass, Philipp G; Lewandowski, Jordan P; Weiner, Catherine L; Rinn, John L

    2018-04-13

    The binding of the transcriptional regulator CTCF to the genome has been implicated in the formation of topologically associated domains (TADs). However, the general mechanisms of folding the genome into TADs are not fully understood. Here we test the effects of deleting a CTCF-rich locus on TAD boundary formation. Using genome-wide chromosome conformation capture (Hi-C), we focus on one TAD boundary on chromosome X harboring ~ 15 CTCF binding sites and located at the long non-coding RNA (lncRNA) locus Firre. Specifically, this TAD boundary is invariant across evolution, tissues, and temporal dynamics of X-chromosome inactivation. We demonstrate that neither the deletion of this locus nor the ectopic insertion of Firre cDNA or its ectopic expression are sufficient to alter TADs in a sex-specific or allele-specific manner. In contrast, Firre's deletion disrupts the chromatin super-loop formation of the inactive X-chromosome. Collectively, our findings suggest that apart from CTCF binding, additional mechanisms may play roles in establishing TAD boundary formation.

  7. Termination unit

    Science.gov (United States)

    Traeholt, Chresten [Frederiksberg, DK; Willen, Dag [Klagshamn, SE; Roden, Mark [Newnan, GA; Tolbert, Jerry C [Carrollton, GA; Lindsay, David [Carrollton, GA; Fisher, Paul W [Heiskell, TN; Nielsen, Carsten Thidemann [Jaegerspris, DK

    2014-01-07

    This invention relates to a termination unit comprising an end-section of a cable. The end section of the cable defines a central longitudinal axis and comprising end-parts of N electrical phases, an end-part of a neutral conductor and a surrounding thermally insulation envelope adapted to comprising a cooling fluid. The end-parts of the N electrical phases and the end-part of the neutral conductor each comprising at least one electrical conductor and being arranged in the cable concentrically around a core former with a phase 1 located relatively innermost, and phase N relatively outermost in the cable, phase N being surrounded by the neutral conductor, electrical insulation being arrange between neighboring electrical phases and between phase N and the neutral conductor, and wherein the end-parts of the neutral conductor and the electrical phases each comprise a contacting surface electrically connected to at least one branch current lead to provide an electrical connection: The contacting surfaces each having a longitudinal extension, and being located sequentially along the longitudinal extension of the end-section of the cable. The branch current leads being individually insulated from said thermally insulation envelope by individual electrical insulators.

  8. Dynamics of chromosome number and genome size variation in a cytogenetically variable sedge (Carex scoparia var. scoparia, Cyperaceae).

    Science.gov (United States)

    Chung, Kyong-Sook; Weber, Jaime A; Hipp, Andrew L

    2011-01-01

    High intraspecific cytogenetic variation in the sedge genus Carex (Cyperaceae) is hypothesized to be due to the "diffuse" or non-localized centromeres, which facilitate chromosome fission and fusion. If chromosome number changes are dominated by fission and fusion, then chromosome evolution will result primarily in changes in the potential for recombination among populations. Chromosome duplications, on the other hand, entail consequent opportunities for divergent evolution of paralogs. In this study, we evaluate whether genome size and chromosome number covary within species. We used flow cytometry to estimate genome sizes in Carex scoparia var. scoparia, sampling 99 plants (23 populations) in the Chicago region, and we used meiotic chromosome observations to document chromosome numbers and chromosome pairing relations. Chromosome numbers range from 2n = 62 to 2n = 68, and nuclear DNA 1C content from 0.342 to 0.361 pg DNA. Regressions of DNA content on chromosome number are nonsignificant for data analyzed by individual or population, and a regression model that excludes slope is favored over a model in which chromosome number predicts genome size. Chromosome rearrangements within cytogenetically variable Carex species are more likely a consequence of fission and fusion than of duplication and deletion. Moreover, neither genome size nor chromosome number is spatially autocorrelated, which suggests the potential for rapid chromosome evolution by fission and fusion at a relatively fine geographic scale (<350 km). These findings have important implications for ecological restoration and speciation within the largest angiosperm genus of the temperate zone.

  9. Chronic lymphocytic leukemia-associated chromosomal abnormalities and miRNA deregulation

    Directory of Open Access Journals (Sweden)

    Kiefer Y

    2012-03-01

    Full Text Available Yvonne Kiefer1, Christoph Schulte2, Markus Tiemann2, Joern Bullerdiek11Center for Human Genetics, University of Bremen, Bremen, Germany; 2Hematopathology Hamburg, Hamburg, GermanyAbstract: Chronic lymphocytic leukemia is the most common leukemia in adults. By cytogenetic investigations major subgroups of the disease can be identified that reflect different routes of tumor development. Of these chromosomal deviations, trisomy 12 and deletions of parts of either the long arm of chromosome 13, the long arm of chromosome 11, or the short arm of chromosome 17 are most commonly detected. In some of these aberrations the molecular target has been identified as eg, ataxia telangiectasia mutated (ATM in case of deletions of chromosomal region 11q22~23 and the genes encoding microRNAs miR-15a/16-1 as likely targets of deletions of chromosomal band 13q14.3. Of note, these aberrations do not characterize independent subgroups but often coexist within the metaphases of one tumor. Generally, complex aberrations are associated with a worse prognosis than simple karyotypic alterations. Due to smaller sizes of the missing segment the detection of recurrent deletions is not always possible by means of classical cytogenetics but requires more advanced techniques as in particular fluorescence in situ hybridization (FISH. Nevertheless, at this time it is not recommended to replace classical cytogenetics by FISH because this would miss additional information given by complex or secondary karyotypic alterations. However, the results of cytogenetic analyses allow the stratification of prognostic and predictive groups of the disease. Of these, the group characterized by deletions involving TP53 is clinically most relevant. In the future refined methods as eg, array-based comparative genomic hybridization will supplement the existing techniques to characterize CLL. Keywords: chronic lymphocytic leukemia, chromosomal abnormality, miRNA deregulation

  10. Case report: cytogenetic and molecular analysis of proximal interstitial deletion of 4p, review of the literature and comparison with wolf-hirschhorn syndrome.

    Science.gov (United States)

    Bailey, Nathanael G; South, Sarah T; Hummel, Marybeth; Wenger, Sharon L

    2010-01-01

    We report on a two-year-old female with a de novo proximal interstitial deletion of the short arm of chromosome 4 and a tetralogy of Fallot malformation. The patient had a karyotype of 46,XX,del(4)(p14p15.33) that was further characterized by array comparative genomic hybridization (aCGH). Phenotypic abnormalities for our patient are compared with those of previously reported patients with similar proximal 4p deletions as well as more distal deletions. The functions of genes that are deleted within this segment are reviewed.

  11. Insulin dependent diabetes mellitus (IDDM) and autoimmune thyroiditis in a boy with a ring chromosome 18: additional evidence of autoimmunity or IDDM gene(s) on chromosome 18.

    Science.gov (United States)

    Dacou-Voutetakis, C; Sertedaki, A; Maniatis-Christidis, M; Sarri, C; Karadima, G; Petersen, M B; Xaidara, A; Kanariou, M; Nicolaidou, P

    1999-02-01

    A 4 year 3 month old boy with insulin dependent diabetes mellitus (IDDM), autoimmune thyroiditis, slight mental retardation, facial dysmorphism, and a de novo ring chromosome 18 (deletion 18q22.3-18qter) is described. This unique association of defects could represent a chance association. Alternatively, the clinical features could be the result of the chromosomal aberration. If so, one could speculate that a gene or genes on chromosome 18 might act as a suppressor or activator of the autoimmune process by itself or in concert with other IDDM loci.

  12. Insulin dependent diabetes mellitus (IDDM) and autoimmune thyroiditis in a boy with a ring chromosome 18: additional evidence of autoimmunity or IDDM gene(s) on chromosome 18

    OpenAIRE

    Dacou-Voutetakis, C; Sertedaki, A; Maniatis-Christid..., M; Sarri, C; Karadima, G; Petersen, M; Xaidara, A; Kanariou, M; Nicolaidou, P

    1999-01-01

    A 4 year 3 month old boy with insulin dependent diabetes mellitus (IDDM), autoimmune thyroiditis, slight mental retardation, facial dysmorphism, and a de novo ring chromosome 18 (deletion 18q22.3-18qter) is described. This unique association of defects could represent a chance association. Alternatively, the clinical features could be the result of the chromosomal aberration. If so, one could speculate that a gene or genes on chromosome 18 might act as a suppressor or activator of the autoimm...

  13. R3-R4 deletion in the PRNP gene is associated with Creutzfeldt-Jakob disease (CJD)

    Energy Technology Data Exchange (ETDEWEB)

    Cervenakova, L.; Brown, P.; Nagle, J. [and others

    1994-09-01

    There are conflicting reports on the association of deletions in the PRNP gene on chromosome 20 with CJD, a rapidly progressive fatal spongiform encephalopathy. We accumulated data suggesting that a deletion of R3-R4 type (parts of the third and fourth repeats are deleted from the area of four repeating 24 bp sequences in the 5{prime} region of the gene) is causing CJD. Screening of 129 unaffected control individuals demonstrated presence of a deletion of R2 type in four (1.55% of the studied chromosomes), but none of them had the R3-R4 type. Of 181 screened patients with spongiform encephalopathies, two had a deletion of R3-R4 type with no other mutations in the coding sequence. Both patients had a classical rapidly progressive dementing disease and diffuse spongiform degeneration, and both cases were apparently sporadic. The same R3-R4 type of deletion was detected in three additional neuropathologically confirmed spongiform encephalopathy patients, of which two had other known pathogenic mutations in the PRNP gene: at codon 178 on the methionine allele exhibiting the phenotype of fatal familial insomnia, and codon 200 causing CJD with severe dementia; the third was a patient with iatrogenic CJD who developed the disease after treatment with growth hormone extracted from cadaveric human pituitary glands. In all cases the deletion coincided with a variant sequence at position 129 coding for methionine.

  14. De novo interstitial deletions of 9q22.1-22.3 in two unrelated cases with different phenotype

    Energy Technology Data Exchange (ETDEWEB)

    Mohamed, A.N.; Bawle, E.; Conard, J. [Wayne State Univ., Detroit, MI (United States)] [and others

    1994-09-01

    Deletions involving the long arm of chromosome 9 are rare. A recent review, particularly with deletions of 9q22-32 region, failed to recognize a distinct pattern of dysmorphies and malformations. Herein, we described two phenotypically abnormal unrelated cases with interstitial deletion of chromosome 9 at band q22.1-q22.3. Parents of both cases exhibited normal karyotypes, indicating that the deletions were de novo events. Therefore, the clinical features present in these two cases can be attributed to partial monosomy for the deleted band 9q22. The first case was a 2-day-old baby with ambiguous genitalia, hydrocephalus, cleft palate and lip, polycystic kidney, absence of uterus on ultrasound and one gonad in the labiosacral region. Chromosome analysis showed a male karyotype, 46,XY,del(9)(q22.1q22.3). The absence of monosomy X cell line and the normal histology of testicular tissue were against the diagnosis of mixed gonadal dysgenesis or XY gonadal dysgenesis. The second 3-day-old newborn baby girl presented with right side hypoplastic heart and pulmonary atresia. In addition, the patient showed multiple dysmorphic features including epicanthal fold, low-set ears, depressed nasal bridge, hypertelorism, and micrognathia. The uvula is absent with slight cleft palate. Bilateral clinodactyly of 5th fingers and severe club feet were also present. The external genitalia was of a normal female phenotype. Chromosome study also indicated interstatial deletion of band 9q22. Although both cases appeared to have the same chromosomal anomalies, neither a discrete facial appearance nor a common pattern of malformations was noted.

  15. Frontonasal malformation with tetralogy of Fallot associated with a submicroscopic deletion of 22q11

    Energy Technology Data Exchange (ETDEWEB)

    Stratton, R.F. [South Texas Genetics Center, San Antonio, TX (United States); Payne, R.M. [Central Texas Genetics Center, Austin, TX (United States)

    1997-03-31

    We report on a 14-month-old girl with bifid nasal tip and tetralogy of Fallot. Several similar patients have been described with CNS or eye abnormalities. Chromosome analysis with FISH, using Oncor DiGeorge probes, confirmed a submicroscopic deletion of 22q11. Many patients with Shprintzen (velo-cardio-facial) syndrome have a similar deletion with conotruncal cardiac defects and an abnormal nasal shape, suggesting that a gene in this area, possibly affecting neural crest cells, influences facial and other midline development. 13 refs., 1 fig.

  16. Frequent Chromosome Aberrations Revealed by Molecular Cytogenetic Studies in Patients with Aniridia

    OpenAIRE

    Crolla, John A.; van Heyningen, Veronica

    2002-01-01

    Seventy-seven patients with aniridia, referred for cytogenetic analysis predominantly to assess Wilms tumor risk, were studied by fluorescence in situ hybridization (FISH), through use of a panel of cosmids encompassing the aniridia-associated PAX6 gene, the Wilms tumor predisposition gene WT1, and flanking markers, in distal chromosome 11p13. Thirty patients were found to be chromosomally abnormal. Cytogenetically visible interstitial deletions involving 11p13 were found in 13 patients, 11 o...

  17. SHANK1 Deletions in Males with Autism Spectrum Disorder.

    Science.gov (United States)

    Sato, Daisuke; Lionel, Anath C; Leblond, Claire S; Prasad, Aparna; Pinto, Dalila; Walker, Susan; O'Connor, Irene; Russell, Carolyn; Drmic, Irene E; Hamdan, Fadi F; Michaud, Jacques L; Endris, Volker; Roeth, Ralph; Delorme, Richard; Huguet, Guillaume; Leboyer, Marion; Rastam, Maria; Gillberg, Christopher; Lathrop, Mark; Stavropoulos, Dimitri J; Anagnostou, Evdokia; Weksberg, Rosanna; Fombonne, Eric; Zwaigenbaum, Lonnie; Fernandez, Bridget A; Roberts, Wendy; Rappold, Gudrun A; Marshall, Christian R; Bourgeron, Thomas; Szatmari, Peter; Scherer, Stephen W

    2012-05-04

    Recent studies have highlighted the involvement of rare (number variations and point mutations in the genetic etiology of autism spectrum disorder (ASD); these variants particularly affect genes involved in the neuronal synaptic complex. The SHANK gene family consists of three members (SHANK1, SHANK2, and SHANK3), which encode scaffolding proteins required for the proper formation and function of neuronal synapses. Although SHANK2 and SHANK3 mutations have been implicated in ASD and intellectual disability, the involvement of SHANK1 is unknown. Here, we assess microarray data from 1,158 Canadian and 456 European individuals with ASD to discover microdeletions at the SHANK1 locus on chromosome 19. We identify a hemizygous SHANK1 deletion that segregates in a four-generation family in which male carriers--but not female carriers--have ASD with higher functioning. A de novo SHANK1 deletion was also detected in an unrelated male individual with ASD with higher functioning, and no equivalent SHANK1 mutations were found in >15,000 controls (p = 0.009). The discovery of apparent reduced penetrance of ASD in females bearing inherited autosomal SHANK1 deletions provides a possible contributory model for the male gender bias in autism. The data are also informative for clinical-genetics interpretations of both inherited and sporadic forms of ASD involving SHANK1. Copyright © 2012 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  18. CHROMOSOMES OF WOODY SPECIES

    Directory of Open Access Journals (Sweden)

    Julio R Daviña

    2000-01-01

    Full Text Available Chromosome numbers of nine subtropical woody species collected in Argentina and Paraguay are reported. The counts tor Coutarea hexandra (2n=52, Inga vera subsp. affinis 2n=26 (Fabaceae and Chorisia speciosa 2n=86 (Bombacaceae are reported for the first time. The chromosome number given for Inga semialata 2n=52 is a new cytotype different from the previously reported. Somatic chromosome numbers of the other taxa studied are: Sesbania punicea 2n=12, S. virgata 2n=12 and Pilocarpus pennatifolius 2n=44 from Argentina

  19. New trends in chromosomal investigation in children with cardiovascular malformations.

    Science.gov (United States)

    Schellberg, Ruth; Schwanitz, Gesa; Grävinghoff, Lutz; Kallenberg, Rolf; Trost, Detlef; Raff, Ruth; Wiebe, Walter

    2004-12-01

    We investigated a group of 376 children, seen over a period of 7 years with different types of congenital cardiovascular defects, to assess the presence of chromosomal aberrations. The diagnostic approach, achieved in 3 consecutive steps, revealed conventional chromosomal aberrations in 30 of the patients (8%) excluding trisomies 13, 18, 21. Fluorescence in situ hybridisation for microdeletions showed 51 microdeletions (15%), with 43 patients having deletions of 22q11.2, 7 patients with deletion of 7q11.23, and 1 patient with deletion of 4p16.3. In 23 patients with additional clinical abnormalities, we carried out a subtelomeric screening. This revealed, in two cases (9%), different subtelomeric aberrations, namely deletions of 1p and of 1q. Thus, subtelomeric screening proved to be a very valuable as a new diagnostic approach. Our approach to genetic investigation in three phases makes it possible to detect a high rate of pathologic karyotypes in patients with congenital cardiovascular malformations, thus guaranteeing more effective genetic counselling of the families, and a more precise prognosis for the patient.

  20. Allele-specific deletions in mouse tumors identify Fbxw7 as germline modifier of tumor susceptibility.

    Directory of Open Access Journals (Sweden)

    Jesus Perez-Losada

    Full Text Available Genome-wide association studies (GWAS have been successful in finding associations between specific genetic variants and cancer susceptibility in human populations. These studies have identified a range of highly statistically significant associations between single nucleotide polymorphisms (SNPs and susceptibility to development of a range of human tumors. However, the effect of each SNP in isolation is very small, and all of the SNPs combined only account for a relatively minor proportion of the total genetic risk (5-10%. There is therefore a major requirement for alternative routes to the discovery of genetic risk factors for cancer. We have previously shown using mouse models that chromosomal regions harboring susceptibility genes identified by linkage analysis frequently exhibit allele-specific genetic alterations in tumors. We demonstrate here that the Fbxw7 gene, a commonly mutated gene in a wide range of mouse and human cancers, shows allele-specific deletions in mouse lymphomas and skin tumors. Lymphomas from three different F1 hybrids show 100% allele-specificity in the patterns of allelic loss. Parental alleles from 129/Sv or Spretus/Gla mice are lost in tumors from F1 hybrids with C57BL/6 animals, due to the presence of a specific non-synonymous coding sequence polymorphism at the N-terminal portion of the gene. A specific genetic test of association between this SNP and lymphoma susceptibility in interspecific backcross mice showed a significant linkage (p = 0.001, but only in animals with a functional p53 gene. These data therefore identify Fbxw7 as a p53-dependent tumor susceptibility gene. Increased p53-dependent tumor susceptibility and allele-specific losses were also seen in a mouse skin model of skin tumor development. We propose that analysis of preferential allelic imbalances in tumors may provide an efficient means of uncovering genetic variants that affect mouse and human tumor susceptibility.

  1. Topography of multi-locus deletions induced by gamma-rays and neutrons in the black, cinnabar and vestigial regions of drosophila melanogaster

    International Nuclear Information System (INIS)

    Alexandrov, I.V.; Lapidus, I.L.; Alexandrova, M.V.

    1997-01-01

    The extend and breakpoint location of 85 chromosomal-scale deletions induced by gamma-rays or fission neutrons in the black, cinnabar and vestigial regions of Drosophila genome have been examined by conventional cytogenetic analysis of the polytene chromosomes. It was found that the topographies of deletions are similar for both type of radiation and for all regions under study: the largest deletions have 3.5 Mb length, i.e. more than 2 divisions of the polytene chromosome; the breakpoints of deletions are located within the inter-bands and mapped more often in the centro-metric directions; the sizes of deletions are multiple to one, two or more visible chromomeres of polytene chromosome. These findings seem to be very well explained within the framework of the rosette-loopy model of higher (super-chromosome) level of the chromatin organization and of the notions about the illegitimate recombination promoted by the clustered damages of the core DNA resulting from the one-hit events of energy deposition at this target supported by the linear relationship observed between the delation yield and the dose of radiations studied. (authors)

  2. Detection of the deletion on Yp11.2 in a Chinese population.

    Science.gov (United States)

    Chen, Wenjing; Wu, Weiwei; Cheng, Jianding; Zhang, Yinming; Chen, Yong; Sun, Hongyu

    2014-01-01

    Sex determination tests based on Amelogenin gene as part of commercial PCR multiplex reaction kits have been widely applied in forensic DNA analysis. Mutations that cause dropout of Y chromosomal Amelogenin gene (AMELY) could lead to errors in gender determination and mixture interpretation. To infer the mechanism and estimate the dropout frequency of AMELY and adjacent Y-STRs, we studied 3 samples with AMELY dropout combined with DYS458 and/or DYS456 and 37 samples with DYS456 dropout. DYS456, DYS458 and AMELY are located in the Yp11.2 region. The singleplex amplification system showed the null alleles could be caused by fragment deletion in Yp11.2 rather than a point mutation in the primer binding region. After detection of the 17 Y-STR and 77 STS markers, the deletion map showed different patterns. The DYS456-AMELY-DYS458 deletion pattern was the largest, breaking from 3.60 Mb to 8.29 Mb in the Y chromosome, and the overall frequency was 0.0077%. The AMELY-DYS458 deletion pattern was broke from 6.74 Mb to 9.17 Mb, with a 0.0155% frequency. The DYS456 negative pattern was concentrated in two main deletion regions, with a 0.8220% frequency. The frequency of all negative pattern was 0.0155%. All the AMELY-DYS458 and DYS456-AMELY-DYS458, and 92% of the DYS456 deletion patterns belonged to Hg O3, the rest belonged to Hg Q. The DYS456 deletion pattern was first reported in Chinese population. The current and previous findings suggest additional gender test for ambiguous sex determination may be required. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  3. Velocardiofacial syndrome in father and daughter: What is the mechanism for the deletion 22(q11.2q11.2) in only the daughter?

    Energy Technology Data Exchange (ETDEWEB)

    Magenis, R.E.; Gunter, K.; Toth-Fejel, S. [Oregon Health Sciences Univ., Portland, OR (United States)] [and others

    1994-09-01

    E.G. had marked feeding difficulty noted at birth; the cause was determined to be a paralyzed palate. In 1992 chromosome studies were performed because of the provisional diagnosis of velocardiofacial syndrome, and a small interstitial deletion of chromosome 22 was found. Recently the family was seen in our Genetics Clinic. The father had unusual facial features shared by his daughter, a paralyzed upper lip and a history of repaired Tetralogy of Fallot. His chromosomes appeared normal. FISH studies were performed on the child`s peripheral blood using the ONCOR DiGeorge region probe (D22S75) and the deletion verified. However, the father`s chromosomes were not deleted for the ONCOR probe (D22S75) and probe DO832 sent to us by Peter Scambler. Skin cells were then obtained and no deletion was detected in a total of 66 cells examined using both probes. Several questions arise from these data: does the father have velocardiofacial syndrome? Does he have occult mosaicism? Does he have a molecular deletion not detected by the probes used? And was this deletion somehow {open_quotes}amplified{close_quotes} in his daughter?

  4. Chromosomal abnormalities and autism

    Directory of Open Access Journals (Sweden)

    Farida El-Baz

    2016-01-01

    Conclusion: Chromosomal abnormalities were not detected in the studied autistic children, and so the relation between the genetics and autism still needs further work up with different study methods and techniques.

  5. Chromosome condensation and segmentation

    International Nuclear Information System (INIS)

    Viegas-Pequignot, E.M.

    1981-01-01

    Some aspects of chromosome condensation in mammalians -humans especially- were studied by means of cytogenetic techniques of chromosome banding. Two further approaches were adopted: a study of normal condensation as early as prophase, and an analysis of chromosome segmentation induced by physical (temperature and γ-rays) or chemical agents (base analogues, antibiotics, ...) in order to show out the factors liable to affect condensation. Here 'segmentation' means an abnormal chromosome condensation appearing systematically and being reproducible. The study of normal condensation was made possible by the development of a technique based on cell synchronization by thymidine and giving prophasic and prometaphasic cells. Besides, the possibility of inducing R-banding segmentations on these cells by BrdU (5-bromodeoxyuridine) allowed a much finer analysis of karyotypes. Another technique was developed using 5-ACR (5-azacytidine), it allowed to induce a segmentation similar to the one obtained using BrdU and identify heterochromatic areas rich in G-C bases pairs [fr

  6. Exon-disrupting deletions of NRXN1 in idiopathic generalized epilepsy

    DEFF Research Database (Denmark)

    Møller, Rikke S; Weber, Yvonne G; Klitten, Laura L

    2013-01-01

    Neurexins are neuronal adhesion molecules located in the presynaptic terminal, where they interact with postsynaptic neuroligins to form a transsynaptic complex required for efficient neurotransmission in the brain. Recently, deletions and point mutations of the neurexin 1 (NRXN1) gene have been ...

  7. Chromosomal abnormalities and environmental exposures in acute nonlymphocytic leukemia

    International Nuclear Information System (INIS)

    Crane, M.M.; Keating, M.J.; Trujillo, J.M.; Labarthe, D.R.

    1988-01-01

    Chromosomal abnormalities are present in bone marrow of approximately 50% of newly diagnostic acute nonlymphatic leukemia (ANLL) patients, but their etiologic significance, if any, is unclear. The frequency of environmental exposures, gathered by questionnaire from patients or relatives, was compared in 127 newly diagnosed ANLL patients with marrow abnormalities (AA) and 109 ANLL patients with cytogenetically normal marrow. These represented 73% of de novo patients treated at M. D. Anderson Hospital between 1976 and 1983. AA patients were more likely than NN patients to: report cytotoxic treatment for prior medical conditions, smoke cigarettes, drink alcoholic beverages, and work at occupations with possible exposure to mutagens. No statistically significant associations between aneuploidy and use of other tobacco, avocational exposure to chemicals or exposure to animals were present. Associations between specific abnormalities and prior cytotoxic therapy (deletion of chromosome 7), smoking (extra chromosome 8, inversion chromosome 16), and occupation at the time of diagnosis (translocation between chromosomes 8 and 21) were noted. No association between occupational exposure to benzene or ionizing radiation and the 6 most common chromosomal abnormalities in ANLL patients were noted, although these agents are known to be leukemogenic. Problems with interpreting the above associations, including the high nonresponse rate, a high proportion of surrogate respondents, and the large number of significance tests that were performed, are discussed. These results are consistent with those from previously reported series, and suggest that tumor-specific markers may be present for some exposures in this disease

  8. Chromosomal Evolution in Chiroptera

    OpenAIRE

    Sotero-Caio, Cibele G.; Baker, Robert J.; Volleth, Marianne

    2017-01-01

    Chiroptera is the second largest order among mammals, with over 1300 species in 21 extant families. The group is extremely diverse in several aspects of its natural history, including dietary strategies, ecology, behavior and morphology. Bat genomes show ample chromosome diversity (from 2n = 14 to 62). As with other mammalian orders, Chiroptera is characterized by clades with low, moderate and extreme chromosomal change. In this article, we will discuss trends of karyotypic evolution within d...

  9. Deletion of Late Cornified Envelope 3B and 3C Genes Is Not Associated with Atopic Dermatitis

    NARCIS (Netherlands)

    Bergboer, Judith G. M.; Zeeuwen, Patrick L. J. M.; Irvine, Alan D.; Weidinger, Stephan; Giardina, Emiliano; Novelli, Giuseppe; Den Heijer, Martin; Rodriguez, Elke; Illig, Thomas; Riveira-Munoz, Eva; Campbell, Linda E.; Tyson, Jess; Dannhauser, Emma N.; O'Regan, Grainne M.; Galli, Elena; Klopp, Norman; Koppelman, Gerard H.; Novak, Natalija; Estivill, Xavier; McLean, W. H. Irwin; Postma, Dirkje S.; Armour, John A. L.; Schalkwijk, Joost

    Atopic dermatitis (AD) and psoriasis are common skin diseases characterized by cutaneous inflammation and disturbed epidermal differentiation. Genome-wide analyses have shown overlapping susceptibility loci, such as the epidermal differentiation complex on chromosome 1q21. Recently, a deletion on

  10. Deletion of Late Cornified Envelope 3B and 3C genes is not associated with atopic dermatitis.

    NARCIS (Netherlands)

    Bergboer, J.G.M.; Zeeuwen, P.L.J.M.; Irvine, A.D.; Weidinger, S.; Giardina, E.; Novelli, G.; Heijer, M. den; Rodriguez, E.; Illig, T.; Riveira-Munoz, E.; Campbell, L.E.; Tyson, J.; Dannhauser, E.N.; O'Regan, G.M.; Galli, E.; Klopp, N.; Koppelman, G.H.; Novak, N.; Estivill, X.; McLean, W.H.I.; Postma, D.S.; Armour, J.A.; Schalkwijk, J.

    2010-01-01

    Atopic dermatitis (AD) and psoriasis are common skin diseases characterized by cutaneous inflammation and disturbed epidermal differentiation. Genome-wide analyses have shown overlapping susceptibility loci, such as the epidermal differentiation complex on chromosome 1q21. Recently, a deletion on

  11. Interstitial deletion 1p as a result of a de novo reciprocal 1p;2p translocation

    DEFF Research Database (Denmark)

    Hertz, Jens Michael; Jensen, P H

    1985-01-01

    A 5-month-old female patient with psychomotor retardation and minor dysmorphisms is described. Cytogenetic analysis using high-resolution banding technique revealed an interstitial deletion of the short arm of one chromosome 1 (p21----p22.2) resulting from a de novo translocation t(1;2)(p22;p25)....

  12. 16p11.2 Deletion Mice Display Cognitive Deficits in Touchscreen Learning and Novelty Recognition Tasks

    Science.gov (United States)

    Yang, Mu; Lewis, Freeman C.; Sarvi, Michael S.; Foley, Gillian M.; Crawley, Jacqueline N.

    2015-01-01

    Chromosomal 16p11.2 deletion syndrome frequently presents with intellectual disabilities, speech delays, and autism. Here we investigated the Dolmetsch line of 16p11.2 heterozygous (+/-) mice on a range of cognitive tasks with different neuroanatomical substrates. Robust novel object recognition deficits were replicated in two cohorts of 16p11.2…

  13. The del(2)(q32.2q33) deletion syndrome defined by clinical and molecular characterization of four patients.

    NARCIS (Netherlands)

    Buggenhout, G.J.C.M. van; Ravenswaaij-Arts, C.M.A. van; Maas, N.; Thoelen, R.; Vogels, A.; Smeets, D.F.C.M.; Salden, I.; Matthijs, G.; Fryns, J.P.; Vermeesch, J.

    2005-01-01

    We report four patients with an interstitial deletion of chromosome 2q32-->2q33. They presented similar clinical findings including pre- and postnatal growth retardation, distinct facial dysmorphism, thin and sparse hair and fair built, micrognathia, cleft or high palate, relative macroglossia,

  14. Rare genome-wide copy number variation and expression of schizophrenia in 22q11.2 deletion syndrome

    NARCIS (Netherlands)

    Bassett, Anne S.; Lowther, Chelsea; Merico, Daniele; Costain, Gregory; Chow, Eva W C; Van Amelsvoort, Therese; McDonald-Mcginn, Donna M.; Gur, Raquel E.; Swillen, Ann; van den Bree, Marianne B M; Murphy, Kieran C.; Gothelf, Doron; Bearden, Carrie E.; Eliez, Stephan; Kates, Wendy R.; Philip, Nicole; Sashi, Vandana; Campbell, Linda E.; Vorstman, Jacob; Cubells, Joseph; Repetto, Gabriela M.; Simon, Tony J.; Boot, Erik; Heung, Tracy; Evers, Rens; Vingerhoets, Claudia; Van Duin, Esther; Zackai, Elaine; Vergaelen, Elfi; Devriendt, Koen; Vermeesch, Joris R.; Owen, Michael J; Murphy, Clodagh M.; Michaelovosky, Elena; Kushan, Leila; Schneider, Maude; Fremont, Wanda; Busa, Tiffany; Hooper, Stephen R.; McCabe, Kathryn; Duijff, Sasja; Isaev, Karin; Pellecchia, Giovanna; Wei, John; Gazzellone, Matthew J.; Scherer, Stephen W.; Emanuel, Beverly S.; Guo, Tingwei; Morrow, Bernice E.; Marshall, Christian R.

    2017-01-01

    Objective: Chromosome 22q11.2 deletion syndrome (22q11.2DS) is associated with a more than 20-fold increased risk for developing schizophrenia. The aim of this studywas to identify additional genetic factors (i.e., "second hits") that may contribute to schizophrenia expression. Method: Through an

  15. Deletion of the multidrug resistance protein MRP1 gene in acute myeloid leukemia : the impact on MRP activity

    NARCIS (Netherlands)

    Vellenga, E; van der Veen, AY; Noordhoek, L; Timmer-Bosscha, H; Ossenkoppele, GJ; Raymakers, RA; Muller, M; van den Berg, E; de Vries, EGE

    2000-01-01

    Deletion of the multidrug resistance gene MRP1 has been demonstrated in acute myeloid leukemia (AML) patients with inversion of chromosome 16 (inv[16]), These AML patients are known to have a relatively favorable prognosis, which suggests that MRP1 might play an important role In determining

  16. Homozygous deletion of the α- and β1-interferon genes in human leukemia and derived cell lines

    International Nuclear Information System (INIS)

    Diaz, M.O.; Ziemin, S.; Le Beau, M.M.; Pitha, P.; Smith, S.D.; Chilcote, R.R.; Rowley, J.D.

    1988-01-01

    The loss of bands p21-22 from one chromosome 9 homologue as a consequence of a deletion of the short arm [del(9p)], unbalanced translocation, or monosomy 9 is frequently observed in the malignant cells of patients with lymphoid neoplasias, including acute lymphoblastic leukemia and non-Hodgkin lymphoma. The α- and β 1 -interferon genes have been assigned to this chromosome region (9p21-22). The authors now present evidence of the homozygous deletion of the interferon genes in neoplastic hematopoietic cell lines and primary leukemia cells in the presence or absence of chromosomal deletions that are detectable at the level of the light microscope. In these cell lines, the deletion of the interferon genes is accompanied by a deficiency of 5'-methylthioadenosine phosphorylase, an enzyme of purine metabolism. These homozygous deletions may be associated with the loss of a tumor-suppressor gene that is involved in the development of these neoplasias. The relevant genes may be either the interferon genes themselves or a gene that has a tumor-suppressor function and is closely linked to them

  17. De novo deletion of HOXB gene cluster in a patient with failure to thrive, developmental delay, gastroesophageal reflux and bronchiectasis.

    Science.gov (United States)

    Pajusalu, Sander; Reimand, Tiia; Uibo, Oivi; Vasar, Maire; Talvik, Inga; Zilina, Olga; Tammur, Pille; Õunap, Katrin

    2015-01-01

    We report a female patient with a complex phenotype consisting of failure to thrive, developmental delay, congenital bronchiectasis, gastroesophageal reflux and bilateral inguinal hernias. Chromosomal microarray analysis revealed a 230 kilobase deletion in chromosomal region 17q21.32 (arr[hg19] 17q21.32(46 550 362-46 784 039)×1) encompassing only 9 genes - HOXB1 to HOXB9. The deletion was not found in her mother or father. This is the first report of a patient with a HOXB gene cluster deletion involving only HOXB1 to HOXB9 genes. By comparing our case to previously reported five patients with larger chromosomal aberrations involving the HOXB gene cluster, we can suppose that HOXB gene cluster deletions are responsible for growth retardation, developmental delay, and specific facial dysmorphic features. Also, we suppose that bilateral inguinal hernias, tracheo-esophageal abnormalities, and lung malformations represent features with incomplete penetrance. Interestingly, previously published knock-out mice with targeted heterozygous deletion comparable to our patient did not show phenotypic alterations. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  18. A 45 X male patient with 7q distal deletion and rearrangement with SRY gene translocation: a case report.

    Science.gov (United States)

    Bilen, S; Okten, A; Karaguzel, G; Ikbal, M; Aslan, Y

    2013-01-01

    Here we present a male newborn with multiple congenital anomalies who also has an extremely rare form of testicular disorder of sex development (DSD). His karyotype was 45X, without any mosaicism. SRY gene was positive by polymerase chain reaction (PCR), and rearranged on distal part of the 7th chromosome by fluorescence in situ hybridization (FISH) analysis. SRY, normally located on the Y chromosome, is the most important gene that plays a role in the development of male sex. SRY gen may be translocated onto another chromosome, mostly X chromosome in the XX testicular DSD. On the other hand very few cases of 45 X testicular DSD were published to date. Other clinical manifestations of our patient were compatible with distal 7 q deletion syndrome. To the best of our knowledge this is the first case of 45 X testicular DSD with SRY gene rearranged on the 7th autosomal chromosome.

  19. Micromechanics of human mitotic chromosomes

    International Nuclear Information System (INIS)

    Sun, Mingxuan; Kawamura, Ryo; Marko, John F

    2011-01-01

    Eukaryote cells dramatically reorganize their long chromosomal DNAs to facilitate their physical segregation during mitosis. The internal organization of folded mitotic chromosomes remains a basic mystery of cell biology; its understanding would likely shed light on how chromosomes are separated from one another as well as into chromosome structure between cell divisions. We report biophysical experiments on single mitotic chromosomes from human cells, where we combine micromanipulation, nano-Newton-scale force measurement and biochemical treatments to study chromosome connectivity and topology. Results are in accord with previous experiments on amphibian chromosomes and support the 'chromatin network' model of mitotic chromosome structure. Prospects for studies of chromosome-organizing proteins using siRNA expression knockdowns, as well as for differential studies of chromosomes with and without mutations associated with genetic diseases, are also discussed

  20. Prevalence of chromosomal abnormalities and Y chromosome microdeletion among men with severe semen abnormalities and its correlation with successful sperm retrieval

    Directory of Open Access Journals (Sweden)

    Mariano Mascarenhas

    2016-01-01

    Full Text Available AIM: To estimate the prevalence of chromosomal abnormalities and Y chromosome microdeletion among men with azoospermia and severe oligozoospermia and its correlation with successful surgical sperm retrieval. SETTING AND DESIGN: A prospective study in a tertiary level infertility unit. MATERIALS AND METHODS: In a prospective observation study, men with azoospermia and severe oligozoospermia (concentration <5 million/ml attending the infertility center underwent genetic screening. Peripheral blood karyotype was done by Giemsa banding. Y chromosome microdeletion study was performed by a multiplex polymerase chain reaction. RESULTS: The study group consisted of 220 men, 133 of whom had azoospermia and 87 had severe oligozoospermia. Overall, 21/220 (9.5% men had chromosomal abnormalities and 13/220 (5.9% men had Y chromosome microdeletions. Chromosomal abnormalities were seen in 14.3% (19/133 of azoospermic men and Y chromosome microdeletions in 8.3% (11/133. Of the 87 men with severe oligozoospermia, chromosomal abnormalities and Y chromosome microdeletions were each seen in 2.3% (2/87. Testicular sperm aspiration was done in 13 men and was successful in only one, who had a deletion of azoospermia factor c. CONCLUSIONS: Our study found a fairly high prevalence of genetic abnormality in men with severe semen abnormalities and a correlation of genetic abnormalities with surgical sperm retrieval outcomes. These findings support the need for genetic screening of these men prior to embarking on surgical sperm retrieval and assisted reproductive technology intracytoplasmic sperm injection.

  1. Somatic DNA recombination yielding circular DNA and deletion of a genomic region in embryonic brain

    International Nuclear Information System (INIS)

    Maeda, Toyoki; Chijiiwa, Yoshiharu; Tsuji, Hideo; Sakoda, Saburo; Tani, Kenzaburo; Suzuki, Tomokazu

    2004-01-01

    In this study, a mouse genomic region is identified that undergoes DNA rearrangement and yields circular DNA in brain during embryogenesis. External region-directed inverse polymerase chain reaction on circular DNA extracted from late embryonic brain tissue repeatedly detected DNA of this region containing recombination joints. Wide-range genomic PCR and digestion-circularization PCR analysis showed this region underwent recombination accompanied with deletion of intervening sequences, including the circularized regions. This region was mapped by fluorescence in situ hybridization to C1 on mouse chromosome 16, where no gene and no physiological DNA rearrangement had been identified. DNA sequence in the region has segmental homology to an orthologous region on human chromosome 3q.13. These observations demonstrated somatic DNA recombination yielding genomic deletions in brain during embryogenesis

  2. Developmentally programmed DNA deletion in Tetrahymena thermophila by a transposition-like reaction pathway.

    Science.gov (United States)

    Saveliev, S V; Cox, M M

    1996-01-01

    We provide a molecular description of key intermediates in the deletion of two internal eliminated sequences (IES elements), the M and R regions, during macronuclear development in Tetrahymena thermophila. Using a variety of PCR-based methods in vivo, double-strand breaks are detected that are generated by hydrolytic cleavage and correspond closely to the observed chromosomal junctions left behind in the macronuclei. The breaks exhibit a temporal and structural relationship to the deletion reaction that provides strong evidence that they are intermediates in the deletion pathway. Breaks in the individual strands are staggered by 4 bp, producing a four nucleotide 5' extension. Evidence is presented that breaks do not occur simultaneously at both ends. The results are most consistent with a deletion mechanism featuring initiation by double-strand cleavage at one end of the deleted element, followed by transesterification to generate the macronuclear junction on one DNA strand. An adenosine residue is found at all the nucleophilic 3' ends used in the postulated transesterification step. Evidence for the transesterification step is provided by detection of a 3' hydroxyl that would be liberated by such a step at a deletion boundary where no other DNA strand ends are detected. Images PMID:8654384

  3. Numt-mediated double-strand break repair mitigates deletions during primate genome evolution.

    Directory of Open Access Journals (Sweden)

    Einat Hazkani-Covo

    2008-10-01

    Full Text Available Non-homologous end joining (NHEJ is the major mechanism of double-strand break repair (DSBR in mammalian cells. NHEJ has traditionally been inferred from experimental systems involving induced double strand breaks (DSBs. Whether or not the spectrum of repair events observed in experimental NHEJ reflects the repair of natural breaks by NHEJ during chromosomal evolution is an unresolved issue. In primate phylogeny, nuclear DNA sequences of mitochondrial origin, numts, are inserted into naturally occurring chromosomal breaks via NHEJ. Thus, numt integration sites harbor evidence for the mechanisms that act on the genome over evolutionary timescales. We have identified 35 and 55 lineage-specific numts in the human and chimpanzee genomes, respectively, using the rhesus monkey genome as an outgroup. One hundred and fifty two numt-chromosome fusion points were classified based on their repair patterns. Repair involving microhomology and repair leading to nucleotide additions were detected. These repair patterns are within the experimentally determined spectrum of classical NHEJ, suggesting that information from experimental systems is representative of broader genetic loci and end configurations. However, in incompatible DSBR events, small deletions always occur, whereas in 54% of numt integration events examined, no deletions were detected. Numts show a statistically significant reduction in deletion frequency, even in comparison to DSBR involving filler DNA. Therefore, numts show a unique mechanism of integration via NHEJ. Since the deletion frequency during numt insertion is low, native overhangs of chromosome breaks are preserved, allowing us to determine that 24% of the analyzed breaks are cohesive with overhangs of up to 11 bases. These data represent, to the best of our knowledge, the most comprehensive description of the structure of naturally occurring DSBs. We suggest a model in which the sealing of DSBs by numts, and probably by other filler

  4. Analysis of aneuploid lines of bread wheat to map chromosomal locations of genes controlling root hair length.

    Science.gov (United States)

    Liu, Miao; Rathjen, Tina; Weligama, Kumara; Forrest, Kerrie; Hayden, Matthew; Delhaize, Emmanuel

    2017-06-01

    Long root hairs enable the efficient uptake of poorly mobile nutrients such as phosphorus. Mapping the chromosomal locations of genes that control root hair length can help exploit the natural variation within crops to develop improved cultivars. Genetic stocks of the wheat cultivar 'Chinese Spring' were used to map genes that control root hair length. Aneuploid stocks of 'Chinese Spring' were screened using a rapid method based on rhizosheath size and then selected lines were assayed for root hair length to identify chromosomes harbouring genes controlling root hair length. A series of lines with various fractional deletions of candidate chromosomes were then screened to map the root hair loci more accurately. A line with a deletion in chromosome 5A was analysed with a 90 000 single nucleotide polymorphism (SNP) array. The phosphorus acquisition efficiency (PAE) of one deletion line was compared with that of euploid 'Chinese Spring' by growing the seedlings in pots at low and luxury phosphorus supplies. Chromosomes 1A, 1D and 5A were found to harbour genes controlling root hair length. The 90 000 SNP array identified two candidate genes controlling root hair length located on chromosome 5A. The line with a deletion in chromosome 5A had root hairs that were approx. 20 % shorter than euploid 'Chinese Spring', but this was insufficient to reduce its PAE. A rapid screen for rhizosheath size enabled chromosomal regions controlling root hair length to be mapped in the wheat cultivar 'Chinese Spring' and subsequent analysis with an SNP array identified candidate genes controlling root hair length. The difference in root hair length between euploid 'Chinese Spring' and a deletion line identified in the rapid screen was still apparent, albeit attenuated, when the seedlings were grown on a fully fertilized soil. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  5. Altered ultrasonic vocalization and impaired learning and memory in Angelman syndrome mouse model with a large maternal deletion from Ube3a to Gabrb3.

    Directory of Open Access Journals (Sweden)

    Yong-Hui Jiang

    2010-08-01

    Full Text Available Angelman syndrome (AS is a neurobehavioral disorder associated with mental retardation, absence of language development, characteristic electroencephalography (EEG abnormalities and epilepsy, happy disposition, movement or balance disorders, and autistic behaviors. The molecular defects underlying AS are heterogeneous, including large maternal deletions of chromosome 15q11-q13 (70%, paternal uniparental disomy (UPD of chromosome 15 (5%, imprinting mutations (rare, and mutations in the E6-AP ubiquitin ligase gene UBE3A (15%. Although patients with UBE3A mutations have a wide spectrum of neurological phenotypes, their features are usually milder than AS patients with deletions of 15q11-q13. Using a chromosomal engineering strategy, we generated mutant mice with a 1.6-Mb chromosomal deletion from Ube3a to Gabrb3, which inactivated the Ube3a and Gabrb3 genes and deleted the Atp10a gene. Homozygous deletion mutant mice died in the perinatal period due to a cleft palate resulting from the null mutation in Gabrb3 gene. Mice with a maternal deletion (m-/p+ were viable and did not have any obvious developmental defects. Expression analysis of the maternal and paternal deletion mice confirmed that the Ube3a gene is maternally expressed in brain, and showed that the Atp10a and Gabrb3 genes are biallelically expressed in all brain sub-regions studied. Maternal (m-/p+, but not paternal (m+/p-, deletion mice had increased spontaneous seizure activity and abnormal EEG. Extensive behavioral analyses revealed significant impairment in motor function, learning and memory tasks, and anxiety-related measures assayed in the light-dark box in maternal deletion but not paternal deletion mice. Ultrasonic vocalization (USV recording in newborns revealed that maternal deletion pups emitted significantly more USVs than wild-type littermates. The increased USV in maternal deletion mice suggests abnormal signaling behavior between mothers and pups that may reflect abnormal

  6. Velo-Cardio-Facial syndrome and DiGeorge sequence with meningomyelocele and deletions of the 22q11 region

    Energy Technology Data Exchange (ETDEWEB)

    Nickel, R.E.; Pillers, D.M.; Merkens, M.; Magenis, R.E.; Zonana, J. [Oregon Health Sciences Univ., Portland, OR (United States); Driscoll, D.A.; Emanuel, B.S. [Univ. of Pennsylvania Medical Center, Philadelphia, PA (United States)

    1994-10-01

    Approximately 5% of children with neural tube defects (NTDs) have a congenital heart defect and/or cleft lip and palate. The cause of isolated meningomyelocele, congenital heart defects, or cleft lip and palate has been largely thought to be multifactorial. However, chromosomal, teratogenic, and single gene causes of combinations of NTDs with congenital heart defects and/or cleft lip and palate have been reported. We report on 3 patients with meningomyelocele, congenital heart defects, and 22q11 deletions. Two of the children had the clinical diagnosis of velo-cardio-facial syndrome (VCFS); both have bifid uvula. The third child had DiGeorge sequence (DGS). The association of NTDs with 22q11 deletion has not been reported previously. An accurate diagnosis of the 22q11 deletion is critical as this micro-deletion and its associated clinical problems is transmitted as an autosomal dominant trait due to the inheritance of the deletion-bearing chromosome. We recommend that all children with NTDs and congenital heart defects, with or without cleft palate, have cytogenetic and molecular studies performed to detect 22q11 deletions. 31 refs., 3 figs.

  7. Age-related differences in 1p and 19q deletions in oligodendrogliomas

    Directory of Open Access Journals (Sweden)

    Del Bigio Marc R

    2003-12-01

    Full Text Available Abstract Background Recent reports indicate that anaplastic oligodendrogliomas frequently show allelic losses on chromosome arms 1p and 19q, and that these deletions are associated with better chemotherapeutic response and overall patient survival. Because of the diversified genetic makeup of the population and the centralized provincial referral system for brain tumor patients in Manitoba, the epidemiological features of such tumors sometimes differ from the published data acquired from non-community based settings. In this study, we assessed the prevalence of allelic deletions for chromosome arms 1p and 19q in anaplastic and in low-grade oligodendrogliomas in the Manitoba population. Methods Loss of heterozygosity (LOH analysis of brain tumors was carried out using 4 microsatellite markers (D1S508, D1S2734, D19S219 and D19S412 and a PCR based assay. The tumors were consecutively acquired during the period September 1999–March 2001 and a total of 63 tumors were assessed. Results We found that allelic loss of chromosome 1p and 19q was higher in oligodendrogliomas than in other diffuse gliomas and that for anaplastic oligodendrogliomas, younger patients exhibited significantly more deletions than older patients (>60 years of age. Conclusions These studies suggest that age may be a factor in the genetic alterations of oligodendrogliomas. In addition, these studies demonstrate that this assay can easily be carried out in a cost-effective manner in a small tertiary center.

  8. A case of an atypically large proximal 15q deletion as cause for Prader-Willi syndrome arising from a de novo unbalanced translocation.

    Science.gov (United States)

    Hickey, Scott E; Thrush, Devon Lamb; Walters-Sen, Lauren; Reshmi, Shalini C; Astbury, Caroline; Gastier-Foster, Julie M; Atkin, Joan

    2013-09-01

    We describe an 11 month old female with Prader-Willi syndrome (PWS) resulting from an atypically large deletion of proximal 15q due to a de novo 3;15 unbalanced translocation. The 10.6 Mb deletion extends from the chromosome 15 short arm and is not situated in a region previously reported as a common distal breakpoint for unbalanced translocations. There was no deletion of the reciprocal chromosome 3q subtelomeric region detected by either chromosomal microarray or FISH. The patient has hypotonia, failure to thrive, and typical dysmorphic facial features for PWS. The patient also has profound global developmental delay consistent with an expanded, more severe, phenotype. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  9. Partial Gene Deletions of PMP22 Causing Hereditary Neuropathy with Liability to Pressure Palsies

    Directory of Open Access Journals (Sweden)

    Sun-Mi Cho

    2014-01-01

    Full Text Available Hereditary neuropathy with liability to pressure palsies (HNPP is an autosomal neuropathy that is commonly caused by a reciprocal 1.5 Mb deletion on chromosome 17p11.2, at the site of the peripheral myelin protein 22 (PMP22 gene. Other patients with similar phenotypes have been shown to harbor point mutations or small deletions, although there is some clinical variation across these patients. In this report, we describe a case of HNPP with copy number changes in exon or promoter regions of PMP22. Multiplex ligation-dependent probe analysis revealed an exon 1b deletion in the patient, who had been diagnosed with HNPP in the first decade of life using molecular analysis.

  10. Molecular Mechanisms and Diagnosis of Chromosome 22q11.2 Rearrangements

    Science.gov (United States)

    Emanuel, Beverly S.

    2008-01-01

    Several recurrent, constitutional genomic disorders are present on chromosome 22q. These include the translocations and deletions associated with DiGeorge and velocardiofacial syndrome and the translocations that give rise to the recurrent t(11;22) supernumerary der(22) syndrome (Emanuel syndrome). The rearrangement breakpoints on 22q cluster…

  11. Nested Inversion Polymorphisms Predispose Chromosome 22q11.2 to Meiotic Rearrangements

    NARCIS (Netherlands)

    Demaerel, Wolfram; Hestand, Matthew S.; Vergaelen, Elfi; Swillen, Ann; López-Sánchez, Marcos; Pérez-Jurado, Luis A.; McDonald-Mcginn, Donna M.; Zackai, Elaine; Emanuel, Beverly S.; Morrow, Bernice E.; Breckpot, Jeroen; Devriendt, Koenraad; Vermeesch, Joris R.; Antshel, Kevin M.; Arango, Celso; Armando, Marco; Bassett, Anne S.; Bearden, Carrie E.; Boot, Erik; Bravo-Sanchez, Marta; Breetvelt, Elemi; Busa, Tiffany; Butcher, Nancy J.; Campbell, Linda E.; Carmel, Miri; Chow, Eva W C; Crowley, T. Blaine; Cubells, Joseph; Cutler, David; Demaerel, Wolfram; Digilio, Maria Cristina; Duijff, Sasja; Eliez, Stephan; Emanuel, Beverly S.; Epstein, Michael P.; Evers, Rens; Fernandez Garcia-Moya, Luis; Fiksinski, Ania; Fraguas, David; Fremont, Wanda; Fritsch, Rosemarie; Garcia-Minaur, Sixto; Golden, Aaron; Gothelf, Doron; Guo, Tingwei; Gur, Ruben C.; Gur, Raquel E.; Heine-Suner, Damian; Hestand, Matthew; Hooper, Stephen R.; Kates, Wendy R.; Kushan, Leila; Laorden-Nieto, Alejandra; Maeder, Johanna; Marino, Bruno; Marshall, Christian R.; McCabe, Kathryn; McDonald-Mcginn, Donna M.; Michaelovosky, Elena; Morrow, Bernice E.; Moss, Edward; Mulle, Jennifer; Murphy, Declan; Murphy, Kieran C.; Murphy, Clodagh M.; Niarchou, Maria; Ornstein, Claudia; Owen, Michael J; Philip, Nicole; Repetto, Gabriela M.; Schneider, Maude; Shashi, Vandana; Simon, Tony J.; Swillen, Ann; Tassone, Flora; Unolt, Marta; Van Amelsvoort, Therese; van den Bree, Marianne B M; Van Duin, Esther; Vergaelen, Elfi; Vermeesch, Joris R.; Vicari, Stefano; Vingerhoets, Claudia; Vorstman, Jacob; Warren, Steve; Weinberger, Ronnie; Weisman, Omri; Weizman, Abraham; Zackai, Elaine; Zhang, Zhengdong; Zwick, Michael

    2017-01-01

    Inversion polymorphisms between low-copy repeats (LCRs) might predispose chromosomes to meiotic non-allelic homologous recombination (NAHR) events and thus lead to genomic disorders. However, for the 22q11.2 deletion syndrome (22q11.2DS), the most common genomic disorder, no such inversions have

  12. Mapping of 5q35 chromosomal rearrangements within a genomically unstable region

    DEFF Research Database (Denmark)

    Buysse, Karen; Crepel, An; Menten, Björn

    2008-01-01

    these rearrangements. METHODS: We analysed a series of patients with breakpoints clustering within chromosome band 5q35. Using high density arrays and subsequent quantitative polymerase chain reaction (qPCR), we characterised the breakpoints of four interstitial deletions (including one associated with an unbalanced...

  13. Vibrio chromosome-specific families

    DEFF Research Database (Denmark)

    Lukjancenko, Oksana; Ussery, David

    2014-01-01

    We have compared chromosome-specific genes in a set of 18 finished Vibrio genomes, and, in addition, also calculated the pan- and core-genomes from a data set of more than 250 draft Vibrio genome sequences. These genomes come from 9 known species and 2 unknown species. Within the finished...... chromosomes, we find a core set of 1269 encoded protein families for chromosome 1, and a core of 252 encoded protein families for chromosome 2. Many of these core proteins are also found in the draft genomes (although which chromosome they are located on is unknown.) Of the chromosome specific core protein...... families, 1169 and 153 are uniquely found in chromosomes 1 and 2, respectively. Gene ontology (GO) terms for each of the protein families were determined, and the different sets for each chromosome were compared. A total of 363 different "Molecular Function" GO categories were found for chromosome 1...

  14. A novel large deletion of the ICR1 region including H19 and putative enhancer elements.

    Science.gov (United States)

    Fryssira, Helen; Amenta, Stella; Kanber, Deniz; Sofocleous, Christalena; Lykopoulou, Evangelia; Kanaka-Gantenbein, Christina; Cerrato, Flavia; Lüdecke, Hermann-Josef; Bens, Susanne; Riccio, Andrea; Buiting, Karin

    2015-05-06

    Beckwith-Wiedemann syndrome (BWS) is a rare pediatric overgrowth disorder with a variable clinical phenotype caused by deregulation affecting imprinted genes in the chromosomal region 11p15. Alterations of the imprinting control region 1 (ICR1) at the IGF2/H19 locus resulting in biallelic expression of IGF2 and biallelic silencing of H19 account for approximately 10% of patients with BWS. The majority of these patients have epimutations of the ICR1 without detectable DNA sequence changes. Only a few patients were found to have deletions. Most of these deletions are small affecting different parts of the ICR1 differentially methylated region (ICR1-DMR) removing target sequences for CTCF. Only a very few deletions reported so far include the H19 gene in addition to the CTCF binding sites. None of these deletions include IGF2. A male patient was born with hypotonia, facial dysmorphisms and hypoglycemia suggestive of Beckwith-Wiedemann syndrome. Using methylation-specific (MS)-MLPA (Multiplex ligation-dependent probe amplification) we have identified a maternally inherited large deletion of the ICR1 region in a patient and his mother. The deletion results in a variable clinical expression with a classical BWS in the mother and a more severe presentation of BWS in her son. By genome-wide SNP array analysis the deletion was found to span ~100 kb genomic DNA including the ICR1DMR, H19, two adjacent non-imprinted genes and two of three predicted enhancer elements downstream to H19. Methylation analysis by deep bisulfite next generation sequencing revealed hypermethylation of the maternal allele at the IGF2 locus in both, mother and child, although IGF2 is not affected by the deletion. We here report on a novel large familial deletion of the ICR1 region in a BWS family. Due to the deletion of the ICR1-DMR CTCF binding cannot take place and the residual enhancer elements have access to the IGF2 promoters. The aberrant methylation (hypermethylation) of the maternal IGF2

  15. Distinct phenotype of PHF6 deletions in females.

    Science.gov (United States)

    Di Donato, N; Isidor, B; Lopez Cazaux, S; Le Caignec, C; Klink, B; Kraus, C; Schrock, E; Hackmann, K

    2014-02-01

    We report on two female patients carrying small overlapping Xq26.2 deletions of 100 kb and 270 kb involving the PHF6 gene. Mutations in PHF6 have been reported in individuals with Borjeson-Forssman-Lehmann syndrome, a condition present almost exclusively in males. Two very recent papers revealed de novo PHF6 defects in seven female patients with intellectual disability and a phenotype resembling Coffin-Siris syndrome (sparse hair, bitemporal narrowing, arched eyebrows, synophrys, high nasal root, bulbous nasal tip, marked clinodactyly with the hypoplastic terminal phalanges of the fifth fingers and cutaneous syndactyly of the toes, Blaschkoid linear skin hyperpigmentation, dental anomalies and occasional major malformations). The clinical presentation of these patients overlaps completely with our first patient, who carries a germline deletion involving PHF6. The second patient has a mosaic deletion and presented with a very mild phenotype of PHF6 loss in females. Our report confirms that PHF6 loss in females results in a recognizable phenotype overlapping with Coffin-Siris syndrome and distinct from Borjeson-Forssman-Lehmann syndrome. We expand the clinical spectrum and provide the first summary of the recommended medical evaluation. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  16. Ring chromosome 4 and Wolf-Hirschhorn syndrome (WHS) in a child with multiple anomalies.

    Science.gov (United States)

    Balci, Sevim; Engiz, Ozlem; Aktaş, Dilek; Vargel, Ibrahim; Beksaç, M S; Mrasek, Kristin; Vermeesch, Joris; Liehr, Thomas

    2006-03-15

    We report on a 16-month-old male patient with ring chromosome 4 and deletion of Wolf-Hirschhorn syndrome (WHS) region with multiple congenital anomalies including unilateral cleft lip and palate, iris coloboma, microcephaly, midgut malrotation, hypospadias, and double urethral orifices. Peripheral chromosome analysis of the patient showed 46,XY,r(4)(p16.3q35) de novo. Multicolor fluorescence in situ hybridization (FISH) study was also performed and according to multicolor banding (MCB) a r(4)(::p16.3 --> q34.3 approximately 35.1::) was found in all metaphases. Subtelomeric 4p region, subtelomeric 4q region, as well as, Wolf-Hirschhorn critical region were deleted in ring chromosome 4. Genomic microarray analysis was also performed to delineate the size of deletion. Cranial magnetic resonance imaging (MRI) showed hypoplastic corpus callosum, delayed myelinization, and frontal and occipital lobe atrophies. Both maternal and paternal chromosomal analyses were normal. We compare the phenotypic appearance of our patient with the previously reported 16 cases of ring chromosome 4 in the medical literature. 2006 Wiley-Liss, Inc.

  17. Chromosome Studies in Patients with Polycythaemia Vera after Treatment with {sup 32}P

    Energy Technology Data Exchange (ETDEWEB)

    Millard, Rosemary E.; Kay, H. E.M.; Lawler, S. D. [Royal Marsden Hospital, London (United Kingdom)

    1969-11-15

    The chromosomes of bone-marrow cells and blood lymphocytes of forty-six patients with polycythaemia vera were analysed to trace the sequence of events leading to the development of bone-marrow failure or 'leukaemia'. All except one of the patients had received radiophosphorus ({sup 32}P). It might be expected that the yield of chromosomal aberrations of the two-break type (translocations etc.) from the low dose-rate beta radiation of {sup 32}P would be small. However, 'unstable' types of abnormality (dicentrics, fragments) and stable types (translocations, inversions, deletions) were observed in 6-25% of the blood lymphocytes; there was no evidence of clones of abnormal cells. In the majority of patients the bone marrow was predominantly normal diploid; occasional sporadic cells with 'stable' chromosomal abnormalities were seen in two-thirds of the cases, but 'unstable' aberrations were rare. In seven cases there were clones of cells characterised by deletions or translocations. All these chromosomal changes are probably radiation-induced. Clones of cells with a similar abnormality, an apparent deletion of one of the F-group chromosomes, were observed in the bone marrow in ten patients. Eight of these had received {sup 32}P and two busulphan. In two cases the clone appeared to develop after treatment. A similar anomaly has been reported in several cases of idiopathic sideroblastic anaemia who had not been irradiated. Progression into the leukaemic phase of the disease is associated in some cases with gross chromosomal abnormalities, such as shift of the stem line chromosome number and bizarre chromosome 'markers'. In other cases, some of whom have not been irradiated for several years, the chromosomal changes are less pronounced and may result from non-disjunctional gain of one or more chromosomes or chromosome loss. One case showed a step-by-step clonal evolution over a two-year period. None of the chromosomal abnormalities in the 'leukaemic' phase appear to be a

  18. Syndrome of proximal interstitial deletion 4p15

    Energy Technology Data Exchange (ETDEWEB)

    Fryns, J.P. [Univ. of Leuven (Belgium)

    1995-09-11

    In this journal, Chitayat et al. reported on 2 boys and a girl with interstitial deletion in the short arm of chromosome 4, including p15.2p15.33. All 3 patients had a characteristic face distinct from that of Wolf-Hirschhorn syndrome and multiple minor congenital anomalies. One patient had a congenitally enlarged penis. The authors noted that all had normal growth, and all had moderate psychomotor retardation (patient 1, developmental age of 4-6 years at age 9 years; patient 2, mental age 6 years at age 25 years; and patient 3, global delay with hypotonia, difficulties in both gross and fine motor development, and persistent delay in language skills). 5 refs., 1 fig.

  19. The DNA sequence and biology of human chromosome 19

    Energy Technology Data Exchange (ETDEWEB)

    Grimwood, J; Gordon, L A; Olsen, A; Terry, A; Schmutz, J; Lamerdin, J; Hellsten, U; Goodstein, D; Couronne, O; Tran-Gyamfi, M

    2004-04-06

    Chromosome 19 has the highest gene density of all human chromosomes, more than double the genome-wide average. The large clustered gene families, corresponding high GC content, CpG islands and density of repetitive DNA indicate a chromosome rich in biological and evolutionary significance. Here we describe 55.8 million base pairs of highly accurate finished sequence representing 99.9% of the euchromatin portion of the chromosome. Manual curation of gene loci reveals 1,461 protein-coding genes and 321 pseudogenes. Among these are genes directly implicated in Mendelian disorders, including familial hypercholesterolemia and insulin-resistant diabetes. Nearly one quarter of these genes belong to tandemly arranged families, encompassing more than 25% of the chromosome. Comparative analyses show a fascinating picture of conservation and divergence, revealing large blocks of gene orthology with rodents, scattered regions with more recent gene family expansions and deletions, and segments of coding and non-coding conservation with the distant fish species Takifugu.

  20. Chromosomal aberrations as etiological factors of intrauterine growth retardation

    Directory of Open Access Journals (Sweden)

    Petrović Bojana

    2008-01-01

    Full Text Available Background/Aim. Intrauterine growth retardation (IUGR is a pathological condition of pregnancy characterised by birth weight below the 10th centile. A number of fetal, placental and maternal causes can lead to IUGR; although, in most cases no specific causes can be identified. The aim of this study was to determine the part of chromosomal abnormalities in IUGR etiology. Methods. Fetal blood karyotype taken by cordocentesis from 168 fetuses with diagnosed IUGR was analyzed. Results. Chromosomal rearrangements both numerical and structural were detected in 14 cases (12.2%. Two cases were triploid. Patau syndrome, Edwards syndrome and Down syndrome were found in two cases each. There was one case of trisomy 7 (47, XY, +7 and one case of trisomy 16 (47, XX, +16; one translocation, 46, XY, t (2; 14(q23; q32 and a deletion 46, XYdel (12 (p12 as well as two cases of sex chromosomes abnormalities, 45, X (Turner syndrome and 47, XYY. Conclusion. These findings suggest that a consistent number of symmetrical IUGR cases (about 12% can be associated with chromosomal rearrangements. Chromosomal aberrations that cause IUGR are heterogeneous, aberration of autosomes, mostly autosomal trisomies, being the most common.

  1. Discovery and analysis of an active long terminal repeat-retrotransposable element in Aspergillus oryzae.

    Science.gov (United States)

    Jie Jin, Feng; Hara, Seiichi; Sato, Atsushi; Koyama, Yasuji

    2014-01-01

    Wild-type Aspergillus oryzae RIB40 contains two copies of the AO090005001597 gene. We previously constructed A. oryzae RIB40 strain, RKuAF8B, with multiple chromosomal deletions, in which the AO090005001597 copy number was found to be increased significantly. Sequence analysis indicated that AO090005001597 is part of a putative 6,000-bp retrotransposable element, flanked by two long terminal repeats (LTRs) of 669 bp, with characteristics of retroviruses and retrotransposons, and thus designated AoLTR (A. oryzae LTR-retrotransposable element). AoLTR comprised putative reverse transcriptase, RNase H, and integrase domains. The deduced amino acid sequence alignment of AoLTR showed 94% overall identity with AFLAV, an A. flavus Tf1/sushi retrotransposon. Quantitative real-time RT-PCR showed that AoLTR gene expression was significantly increased in the RKuAF8B, in accordance with the increased copy number. Inverse PCR indicated that the full-length retrotransposable element was randomly integrated into multiple genomic locations. However, no obvious phenotypic changes were associated with the increased AoLTR gene copy number.

  2. Male infertility associated with de novo pericentric inversion of chromosome 1.

    Science.gov (United States)

    Balasar, Özgür; Zamani, Ayşe Gül; Balasar, Mehmet; Acar, Hasan

    2017-12-01

    Inversion occurs after two breaks in a chromosome have happened and the segment rotates 180° before reinserting. Inversion carriers have produced abnormal gametes if there is an odd number crossing- over between the inverted and the normal homologous chromosomes causing a duplication or deletion. Reproductive risks such as infertility, abortion, stillbirth and birth of malformed child would be expected in that case. A 54-year- old male patient was consulted to our clinic for primary infertility. The routine chromosome study were applied using peripheral blood lymphocyte cultures and analyzed by giemsa-trypsin-giemsa (GTG) banding, and centromer banding (C-banding) stains. Y chromosome microdeletions in the azoospermia factor (AZF) regions were analyzed with polymerase chain reaction. Additional test such as fluorescence in situ hybridization (FISH) was used to detect the sex-determining region of the Y chromosome (SRY). Semen analysis showed azoospermia. A large pericentric inversion of chromosome 1 46,XY, inv(1) (p22q32) was found in routine chromosome analysis. No microdeletions were seen in AZF regions. In our patient the presence of SRY region was observed by using FISH technique with SRY-specific probe. Men who have pericentric inversion of chromosome 1, appear to be at risk for infertility brought about by spermatogenic breakdown. The etiopathogenic relationship between azoospermia and pericentric inversion of chromosome 1 is discussed.

  3. Profiling of Escherichia coli Chromosome database.

    Science.gov (United States)

    Yamazaki, Yukiko; Niki, Hironori; Kato, Jun-ichi

    2008-01-01

    The Profiling of Escherichia coli Chromosome (PEC) database (http://www.shigen.nig.ac.jp/ecoli/pec/) is designed to allow E. coli researchers to efficiently access information from functional genomics studies. The database contains two principal types of data: gene essentiality and a large collection of E. coli genetic research resources. The essentiality data are based on data compilation from published single-gene essentiality studies and on cell growth studies of large-deletion mutants. Using the circular and linear viewers for both whole genomes and the minimal genome, users can not only gain an overview of the genome structure but also retrieve information on contigs, gene products, mutants, deletions, and so forth. In particular, genome-wide exhaustive mutants are an essential resource for studying E. coli gene functions. Although the genomic database was constructed independently from the genetic resources database, users may seamlessly access both types of data. In addition to these data, the PEC database also provides a summary of homologous genes of other bacterial genomes and of protein structure information, with a comprehensive interface. The PEC is thus a convenient and useful platform for contemporary E. coli researchers.

  4. Electochemical detection of chromosome translocation

    DEFF Research Database (Denmark)

    Kwasny, Dorota; Dimaki, Maria; Silahtaroglu, Asli

    2014-01-01

    Cytogenetics is a study of the cell structure with a main focus on chromosomes content and their structure. Chromosome abnormalities, such as translocations may cause various genetic disorders and heametological malignancies. Chromosome translocations are structural rearrangements of two...... chromosomes that results in formation of derivative chromosomes with a mixed DNA sequence. The method currently used for their detection is Fluorescent In Situ Hybridization, which requires a use of expensive, fluorescently labeled probes that target the derivative chromosomes. We present here a double...... hybridization approach developed for label-free detection of the chromosome translocations. For specific translocation detection it is necessary to determine that the two DNA sequences forming a derivative chromosome are connected, which is achieved by two subsequent hybridization steps. The electrochemical...

  5. Mutations and chromosomal aberrations

    International Nuclear Information System (INIS)

    Kihlman, B.A.

    1977-01-01

    The genetic changes of mutations and chromosomal aberrations are discussed. The consequences of both depend not only on the type of genetic change produced but also on the type of cell that is affected and on the development stage of the organism. (C.F.)

  6. Chromosomes, cancer and radiosensitivity

    International Nuclear Information System (INIS)

    Samouhos, E.

    1983-01-01

    Some specific chromosomal abnormalities are associated with certain cancers. The earliest description of such a specific association is the one of the Philadelphia chromosome and myelogenous leukemia (1960). Other congenital karyotype abnormalities are associated with specific cancers. Examples of these are Down's syndrome with leukemia and Klinefelter's syndrome with male breast cancer. Genetic diseases of increased chromosome breakage, or of defective chromosome repair, are associated with greatly increased cancer incidence. Three such diseases have been recognized: 1) Fanconi's anemia, associated with leukemias and lymphomas, 2) Bloom's syndrome, associated with acute leukemias and lymphosarcoma, and 3) ataxia telangiectasia, associated with Hodgkin's disease, leukemia, and lymphosarcomas. Ten percent of individuals with ataxia telangiectasia will develop one of these neoplasms. Individuals with certain of these syndromes display an unusually high radiosensitivity. Radiation therapy for cancers has been fatal in patients who received as low as 3000 rad. This remarkable radiosensitivity has been quantitated in cell cultures from such cases. Evidence suggests that the apparent sensitivity may reflect subnormal ability to repair radiation damage. The rapid proliferation of information in this field stems from the interdigitation of many disciplines and specialties, including cytogenetics, cell biology, molecular biology, epidemiology, radiobiology, and several others. This paper is intended for clinicians; it presents a structured analytic scheme for correlating and classifying this multidisciplinary information as it becomes available

  7. Know Your Chromosomes

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 1; Issue 3. Know Your Chromosomes The Strong Holds of Family Trees. Vani Brahmachari. Series Article Volume 1 Issue 3 March 1996 pp 30-38. Fulltext. Click here to view fulltext PDF. Permanent link:

  8. Ring chromosome 13

    DEFF Research Database (Denmark)

    Brandt, C A; Hertz, Jens Michael; Petersen, M B

    1992-01-01

    A stillborn male child with anencephaly and multiple malformations was found to have the karyotype 46,XY,r(13) (p11q21.1). The breakpoint at 13q21.1, determined by high resolution banding, is the most proximal breakpoint ever reported in patients with ring chromosome 13. In situ hybridisation...

  9. Structure and chromosomal localization of the human lymphotoxin gene

    International Nuclear Information System (INIS)

    Nedwin, G.E.; Jarrett-Nedwin, J.; Smith, D.H.; Naylor, S.L.; Sakaguchi, A.Y.; Goeddel, D.V.; Gray, P.W.

    1987-01-01

    The authors have isolated, sequenced, and determined the chromosomal localization of the gene encoding human lymphotoxin (LT). The single copy gene was isolated from a human genomic library using a /sup 32/P-labeled 116 bp synthetic DNA fragment whose sequence was based on the NH/sub 2/-terminal amino acid sequence of LT. The gene spans 3 kb of DNA and is interrupted by three intervening sequences. The LT gene is located on human chromosome 6, as determined by Southern blot analysis of human-murine hybrid DNA. Putative transcriptional control regions and areas of homology with the promoters of interferon and other genes are identified

  10. Rapid molecular cytogenetic analysis of X-chromosomal microdeletions: Fluorescence in situ hybridization (FISH) for complex glycerol kinase deficiency

    Energy Technology Data Exchange (ETDEWEB)

    Worley, K.C.; Lindsay, E.A.; McCabe, E.R.B. [Baylor College of Medicine, Houston, TX (United States)] [and others

    1995-07-17

    Diagnosis of X-chromosomal microdeletions has relied upon the traditional methods of Southern blotting and DNA amplification, with carrier identification requiring time-consuming and unreliable dosage calculations. In this report, we describe rapid molecular cytogenetic identification of deleted DNA in affected males with the Xp21 contiguous gene syndrome (complex glycerol kinase deficiency, CGKD) and female carriers for this disorder. CGKD deletions involve the genes for glycerol kinase, Duchenne muscular dystrophy, and/or adrenal hypoplasia congenita. We report an improved method for diagnosis of deletions in individuals with CGKD and for identification of female carriers within their families using fluorescence in situ hybridization (FISH) with a cosmid marker (cosmid 35) within the glycerol kinase gene. When used in combination with an Xq control probe, affected males demonstrate a single signal from the control probe, while female carriers demonstrate a normal chromosome with two signals, as well as a deleted chromosome with a single signal from the control probe. FISH analysis for CGKD provides the advantages of speed and accuracy for evaluation of submicroscopic X-chromosome deletions, particularly in identification of female carriers. In addition to improving carrier evaluation, FISH will make prenatal diagnosis of CGKD more readily available. 17 refs., 2 figs.

  11. Characteristic face: a key indicator for direct diagnosis of 22q11.2 deletions in Chinese velocardiofacial syndrome patients.

    Science.gov (United States)

    Wu, Dandan; Chen, Yang; Xu, Chen; Wang, Ke; Wang, Huijun; Zheng, Fengyun; Ma, Duan; Wang, Guomin

    2013-01-01

    Velocardiofacial syndrome (VCFS) is a disease in human with an expansive phenotypic spectrum and diverse genetic mechanisms mainly associated with copy number variations (CNVs) on 22q11.2 or other chromosomes. However, the correlations between CNVs and phenotypes remain ambiguous. This study aims to analyze the types and sizes of CNVs in VCFS patients, to define whether correlations exist between CNVs and clinical manifestations in Chinese VCFS patients. In total, 55 clinically suspected Chinese VCFS patients and 100 normal controls were detected by multiplex ligation-dependent probe amplification (MLPA). The data from MLPA and all the detailed clinical features of the objects were documented and analyzed. A total of 44 patients (80.0%) were diagnosed with CNVs on 22q11.2. Among them, 43 (78.2%) presented with 22q11.2 heterozygous deletions, of whom 40 (93.0%) had typical 3-Mb deletion, and 3 (7.0%) exhibited proximal 1.5-Mb deletion; no patient was found with atypical deletion on 22q11.2. One patient (1.8%) presented with a 3-Mb duplication mapping to the typical 3-Mb region on 22q11.2, while none of the chromosomal abnormalities in the MLPA kit were found in the other 11 patients and 100 normal controls. All the 43 patients with 22q11.2 deletions displayed characteristic face and palatal anomalies; 37 of them (86.0%) had cognitive or behavioral disorders, and 23 (53.5%) suffered from immune deficiencies; 10 patients (23.3%) manifested congenital heart diseases. Interestingly, all patients with the characteristic face had 22q11.2 heterozygous deletions, but no difference in phenotypic spectrum was observed between 3-Mb and 1.5-Mb deletions. Our data suggest that the characteristic face can be used as a key indicator for direct diagnosis of 22q11.2 deletions in Chinese VCFS patients.

  12. Telomere dysfunction and chromosome instability

    Energy Technology Data Exchange (ETDEWEB)

    Murnane, John P., E-mail: jmurnane@radonc.ucsf.edu [Department of Radiation Oncology, University of California San Francisco, 2340 Sutter Street, San Francisco, CA 94143-1331 (United States)

    2012-02-01

    The ends of chromosomes are composed of a short repeat sequence and associated proteins that together form a cap, called a telomere, that keeps the ends from appearing as double-strand breaks (DSBs) and prevents chromosome fusion. The loss of telomeric repeat sequences or deficiencies in telomeric proteins can result in chromosome fusion and lead to chromosome instability. The similarity between chromosome rearrangements resulting from telomere loss and those found in cancer cells implicates telomere loss as an important mechanism for the chromosome instability contributing to human cancer. Telomere loss in cancer cells can occur through gradual shortening due to insufficient telomerase, the protein that maintains telomeres. However, cancer cells often have a high rate of spontaneous telomere loss despite the expression of telomerase, which has been proposed to result from a combination of oncogene-mediated replication stress and a deficiency in DSB repair in telomeric regions. Chromosome fusion in mammalian cells primarily involves nonhomologous end joining (NHEJ), which is the major form of DSB repair. Chromosome fusion initiates chromosome instability involving breakage-fusion-bridge (B/F/B) cycles, in which dicentric chromosomes form bridges and break as the cell attempts to divide, repeating the process in subsequent cell cycles. Fusion between sister chromatids results in large inverted repeats on the end of the chromosome, which amplify further following additional B/F/B cycles. B/F/B cycles continue until the chromosome acquires a new telomere, most often by translocation of the end of another chromosome. The instability is not confined to a chromosome that loses its telomere, because the instability is transferred to the chromosome donating a translocation. Moreover, the amplified regions are unstable and form extrachromosomal DNA that can reintegrate at new locations. Knowledge concerning the factors promoting telomere loss and its consequences is

  13. Mandatory chromosomal segment balance in aneuploid tumor cells

    International Nuclear Information System (INIS)

    Kost-Alimova, Maria; Stanbridge, Eric; Klein, George; Imreh, Stefan; Darai-Ramqvist, Eva; Yau, Wing Lung; Sandlund, Agneta; Fedorova, Ludmila; Yang, Ying; Kholodnyuk, Irina; Cheng, Yue; Li Lung, Maria

    2007-01-01

    Euploid chromosome balance is vitally important for normal development, but is profoundly changed in many tumors. Is each tumor dependent on its own structurally and numerically changed chromosome complement that has evolved during its development and progression? We have previously shown that normal chromosome 3 transfer into the KH39 renal cell carcinoma line and into the Hone1 nasopharyngeal carcinoma line inhibited their tumorigenicity. The aim of the present study was to distinguish between a qualitative and a quantitative model of this suppression. According to the former, a damaged or deleted tumor suppressor gene would be restored by the transfer of a normal chromosome. If so, suppression would be released only when the corresponding sequences of the exogenous normal chromosome are lost or inactivated. According to the alternative quantitative model, the tumor cell would not tolerate an increased dosage of the relevant gene or segment. If so, either a normal cell derived, or, a tumor derived endogenous segment could be lost. Fluorescence in Situ Hybridization based methods, as well as analysis of polymorphic microsatellite markers were used to follow chromosome 3 constitution changes in monochromosomal hybrids. In both tumor lines with introduced supernumerary chromosomes 3, the copy number of 3p21 or the entire 3p tended to fall back to the original level during both in vitro and in vivo growth. An exogenous, normal cell derived, or an endogenous, tumor derived, chromosome segment was lost with similar probability. Identification of the lost versus retained segments showed that the intolerance for increased copy number was particularly strong for 3p14-p21, and weaker for other 3p regions. Gains in copy number were, on the other hand, well tolerated in the long arm and particularly the 3q26-q27 region. The inability of the cell to tolerate an experimentally imposed gain in 3p14-p21 in contrast to the well tolerated gain in 3q26-q27 is consistent with the

  14. Deletions of a differentially methylated CpG island at SNRPN define a putative imprinting control region

    Energy Technology Data Exchange (ETDEWEB)

    Sutcliffe, J.S.,; Nakao, M.; Beaudet, A.L. [Baylor College of Medicine, Houston, TX (United States)] [and others

    1994-09-01

    Prader-Willi syndrome (PWS) and Angelman syndrome (AS) are associated with paternal and maternal deficiencies, respectively, of gene expression within human chromosome 15q11-q13, and are caused by deletion, uniparental disomy, or other mutations. Four transcripts designated PAR-5, PAR-7, PAR-1 and PAR-4 were isolated and localized to a region within 300 kb telomeric to the gene encoding small nuclear ribonucleoprotein-associated polypeptide N (SNRPN). Analysis of the transcripts in cultured fibroblasts and lymphoblasts from deletion patients demonstrated that SNRPN, PAR-5 and PAR-1 are expressed exclusively from the paternal chromosome, defining an imprinted domain that spans at least 200 kb. All three imprinted transcripts were absent in cells from three PWS patients (one pair of sibs and one sporadic case) with small deletions that involve a differentially methylated CpG island containing a previously undescribed 5{prime} untranslated exon ({alpha}) of SNRPN. Methylation of the CpG island is specific for the maternal chromosome consistent with paternal expression of the imprinted domain. One deletion, which is benign when maternally transmitted, extends upstream <30 kb from the CpG island, and is associated with altered methylation centromeric to SNRPN, and loss of transcription telomeric to SNRPN, implying the presence of an imprinting control region around the CpG island containing exon {alpha}.

  15. Looking the Cow in the Eye: Deletion in the NID1 Gene Is Associated with Recessive Inherited Cataract in Romagnola Cattle

    Science.gov (United States)

    Murgiano, Leonardo; Jagannathan, Vidhya; Calderoni, Valerio; Joechler, Monika; Gentile, Arcangelo; Drögemüller, Cord

    2014-01-01

    Cataract is a known condition leading to opacification of the eye lens causing partial or total blindness. Mutations are known to cause autosomal dominant or recessive inherited forms of cataracts in humans, mice, rats, guinea pigs and dogs. The use of large-sized animal models instead of those using mice for the study of this condition has been discussed due to the small size of rodent lenses. Four juvenile-onset cases of bilateral incomplete immature nuclear cataract were recently observed in Romagnola cattle. Pedigree analysis suggested a monogenic autosomal recessive inheritance. In addition to the cataract, one of the cases displayed abnormal head movements. Genome-wide association and homozygosity mapping and subsequent whole genome sequencing of a single case identified two perfectly associated sequence variants in a critical interval of 7.2 Mb on cattle chromosome 28: a missense point mutation located in an uncharacterized locus and an 855 bp deletion across the exon 19/intron 19 border of the bovine nidogen 1 (NID1) gene (c.3579_3604+829del). RT-PCR showed that NID1 is expressed in bovine lenses while the transcript of the second locus was absent. The NID1 deletion leads to the skipping of exon 19 during transcription and is therefore predicted to cause a frameshift and premature stop codon (p.1164fs27X). The truncated protein lacks a C-terminal domain essential for binding with matrix assembly complexes. Nidogen 1 deficient mice show neurological abnormalities and highly irregular crystal lens alterations. This study adds NID1 to the list of candidate genes for inherited cataract in humans and is the first report of a naturally occurring mutation leading to non-syndromic catarct in cattle provides a potential large animal model for human cataract. PMID:25347398

  16. Looking the cow in the eye: deletion in the NID1 gene is associated with recessive inherited cataract in Romagnola cattle.

    Science.gov (United States)

    Murgiano, Leonardo; Jagannathan, Vidhya; Calderoni, Valerio; Joechler, Monika; Gentile, Arcangelo; Drögemüller, Cord

    2014-01-01

    Cataract is a known condition leading to opacification of the eye lens causing partial or total blindness. Mutations are known to cause autosomal dominant or recessive inherited forms of cataracts in humans, mice, rats, guinea pigs and dogs. The use of large-sized animal models instead of those using mice for the study of this condition has been discussed due to the small size of rodent lenses. Four juvenile-onset cases of bilateral incomplete immature nuclear cataract were recently observed in Romagnola cattle. Pedigree analysis suggested a monogenic autosomal recessive inheritance. In addition to the cataract, one of the cases displayed abnormal head movements. Genome-wide association and homozygosity mapping and subsequent whole genome sequencing of a single case identified two perfectly associated sequence variants in a critical interval of 7.2 Mb on cattle chromosome 28: a missense point mutation located in an uncharacterized locus and an 855 bp deletion across the exon 19/intron 19 border of the bovine nidogen 1 (NID1) gene (c.3579_3604+829del). RT-PCR showed that NID1 is expressed in bovine lenses while the transcript of the second locus was absent. The NID1 deletion leads to the skipping of exon 19 during transcription and is therefore predicted to cause a frameshift and premature stop codon (p.1164fs27X). The truncated protein lacks a C-terminal domain essential for binding with matrix assembly complexes. Nidogen 1 deficient mice show neurological abnormalities and highly irregular crystal lens alterations. This study adds NID1 to the list of candidate genes for inherited cataract in humans and is the first report of a naturally occurring mutation leading to non-syndromic catarct in cattle provides a potential large animal model for human cataract.

  17. kosh Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  18. kpdt Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  19. kewr Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  20. kiso Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  1. kpga Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  2. kbkw Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  3. ktcl Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  4. pgwt Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  5. kpsp Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  6. kbih Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  7. kdnl Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  8. kart Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  9. kilm Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  10. kpne Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  11. kabi Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  12. ptpn Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  13. kblf Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  14. panc Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  15. kpbi Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  16. kgdv Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  17. kcmx Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  18. kdls Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  19. koaj Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  20. krhi Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  1. kbpk Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  2. khuf Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  3. kbpi Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  4. ktrk Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  5. kwmc Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  6. katy Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  7. tjmz Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  8. kdet Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  9. kcxp Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  10. kbur Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  11. krkd Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  12. pawg Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  13. kloz Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  14. kcec Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  15. kdec Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  16. paor Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  17. kavl Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  18. kdrt Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  19. kstl Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  20. kbfi Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  1. khsv Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  2. pafa Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  3. kekn Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  4. tncm Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  5. kith Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  6. kgnv Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  7. ktoi Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  8. kgso Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  9. nstu Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  10. kmgm Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  11. khib Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  12. pavd Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  13. kfar Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  14. kluk Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  15. kwwr Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  16. klse Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  17. ksts Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  18. koth Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  19. kbfl Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...

  20. ksgf Terminal Aerodrome Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TAF (terminal aerodrome forecast or terminal area forecast) is a format for reporting weather forecast information, particularly as it relates to aviation. TAFs are...